1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/mib2.h> 76 #include <inet/ip.h> 77 #include <inet/ip6.h> 78 #include <inet/ip6_asp.h> 79 #include <inet/tcp.h> 80 #include <inet/ip_multi.h> 81 #include <inet/ip_ire.h> 82 #include <inet/ip_ftable.h> 83 #include <inet/ip_rts.h> 84 #include <inet/ip_ndp.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_impl.h> 87 #include <inet/tun.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 #include <inet/sadb.h> 94 #include <inet/ipsec_impl.h> 95 #include <sys/iphada.h> 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize, boolean_t insert); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 196 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 197 198 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 199 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 200 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 201 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 202 static void ipif_save_ire(ipif_t *, ire_t *); 203 static void ipif_remove_ire(ipif_t *, ire_t *); 204 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 205 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 206 static void phyint_free(phyint_t *); 207 208 /* 209 * Per-ill IPsec capabilities management. 210 */ 211 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 212 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 213 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 214 static void ill_ipsec_capab_delete(ill_t *, uint_t); 215 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 216 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 217 boolean_t); 218 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 220 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 221 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 222 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 223 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 224 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 225 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 226 dl_capability_sub_t *); 227 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 228 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 229 int *); 230 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 231 static void ill_capability_dld_ack(ill_t *, mblk_t *, 232 dl_capability_sub_t *); 233 static void ill_capability_dld_enable(ill_t *); 234 static void ill_capability_ack_thr(void *); 235 static void ill_capability_lso_enable(ill_t *); 236 static void ill_capability_send(ill_t *, mblk_t *); 237 238 static ill_t *ill_prev_usesrc(ill_t *); 239 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 240 static void ill_disband_usesrc_group(ill_t *); 241 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 242 243 #ifdef DEBUG 244 static void ill_trace_cleanup(const ill_t *); 245 static void ipif_trace_cleanup(const ipif_t *); 246 #endif 247 248 /* 249 * if we go over the memory footprint limit more than once in this msec 250 * interval, we'll start pruning aggressively. 251 */ 252 int ip_min_frag_prune_time = 0; 253 254 /* 255 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 256 * and the IPsec DOI 257 */ 258 #define MAX_IPSEC_ALGS 256 259 260 #define BITSPERBYTE 8 261 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 262 263 #define IPSEC_ALG_ENABLE(algs, algid) \ 264 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 265 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 266 267 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 typedef uint8_t ipsec_capab_elem_t; 272 273 /* 274 * Per-algorithm parameters. Note that at present, only encryption 275 * algorithms have variable keysize (IKE does not provide a way to negotiate 276 * auth algorithm keysize). 277 * 278 * All sizes here are in bits. 279 */ 280 typedef struct 281 { 282 uint16_t minkeylen; 283 uint16_t maxkeylen; 284 } ipsec_capab_algparm_t; 285 286 /* 287 * Per-ill capabilities. 288 */ 289 struct ill_ipsec_capab_s { 290 ipsec_capab_elem_t *encr_hw_algs; 291 ipsec_capab_elem_t *auth_hw_algs; 292 uint32_t algs_size; /* size of _hw_algs in bytes */ 293 /* algorithm key lengths */ 294 ipsec_capab_algparm_t *encr_algparm; 295 uint32_t encr_algparm_size; 296 uint32_t encr_algparm_end; 297 }; 298 299 /* 300 * The field values are larger than strictly necessary for simple 301 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 302 */ 303 static area_t ip_area_template = { 304 AR_ENTRY_ADD, /* area_cmd */ 305 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 306 /* area_name_offset */ 307 /* area_name_length temporarily holds this structure length */ 308 sizeof (area_t), /* area_name_length */ 309 IP_ARP_PROTO_TYPE, /* area_proto */ 310 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 311 IP_ADDR_LEN, /* area_proto_addr_length */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 313 /* area_proto_mask_offset */ 314 0, /* area_flags */ 315 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 316 /* area_hw_addr_offset */ 317 /* Zero length hw_addr_length means 'use your idea of the address' */ 318 0 /* area_hw_addr_length */ 319 }; 320 321 /* 322 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 323 * support 324 */ 325 static area_t ip6_area_template = { 326 AR_ENTRY_ADD, /* area_cmd */ 327 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 328 /* area_name_offset */ 329 /* area_name_length temporarily holds this structure length */ 330 sizeof (area_t), /* area_name_length */ 331 IP_ARP_PROTO_TYPE, /* area_proto */ 332 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 333 IPV6_ADDR_LEN, /* area_proto_addr_length */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 335 /* area_proto_mask_offset */ 336 0, /* area_flags */ 337 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 338 /* area_hw_addr_offset */ 339 /* Zero length hw_addr_length means 'use your idea of the address' */ 340 0 /* area_hw_addr_length */ 341 }; 342 343 static ared_t ip_ared_template = { 344 AR_ENTRY_DELETE, 345 sizeof (ared_t) + IP_ADDR_LEN, 346 sizeof (ared_t), 347 IP_ARP_PROTO_TYPE, 348 sizeof (ared_t), 349 IP_ADDR_LEN, 350 0 351 }; 352 353 static ared_t ip6_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IPV6_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IPV6_ADDR_LEN, 360 0 361 }; 362 363 /* 364 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 365 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 366 * areq is used). 367 */ 368 static areq_t ip_areq_template = { 369 AR_ENTRY_QUERY, /* cmd */ 370 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 371 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 372 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 373 sizeof (areq_t), /* target addr offset */ 374 IP_ADDR_LEN, /* target addr_length */ 375 0, /* flags */ 376 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 377 IP_ADDR_LEN, /* sender addr length */ 378 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 379 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 380 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 381 /* anything else filled in by the code */ 382 }; 383 384 static arc_t ip_aru_template = { 385 AR_INTERFACE_UP, 386 sizeof (arc_t), /* Name offset */ 387 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 388 }; 389 390 static arc_t ip_ard_template = { 391 AR_INTERFACE_DOWN, 392 sizeof (arc_t), /* Name offset */ 393 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 394 }; 395 396 static arc_t ip_aron_template = { 397 AR_INTERFACE_ON, 398 sizeof (arc_t), /* Name offset */ 399 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 400 }; 401 402 static arc_t ip_aroff_template = { 403 AR_INTERFACE_OFF, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arma_t ip_arma_multi_template = { 409 AR_MAPPING_ADD, 410 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 411 /* Name offset */ 412 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 413 IP_ARP_PROTO_TYPE, 414 sizeof (arma_t), /* proto_addr_offset */ 415 IP_ADDR_LEN, /* proto_addr_length */ 416 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 417 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 418 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 419 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 420 IP_MAX_HW_LEN, /* hw_addr_length */ 421 0, /* hw_mapping_start */ 422 }; 423 424 static ipft_t ip_ioctl_ftbl[] = { 425 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 426 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 427 IPFT_F_NO_REPLY }, 428 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 429 IPFT_F_NO_REPLY }, 430 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 431 { 0 } 432 }; 433 434 /* Simple ICMP IP Header Template */ 435 static ipha_t icmp_ipha = { 436 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 437 }; 438 439 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 440 441 static ip_m_t ip_m_tbl[] = { 442 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 443 ip_ether_v6intfid }, 444 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 445 ip_nodef_v6intfid }, 446 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 447 ip_nodef_v6intfid }, 448 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 449 ip_nodef_v6intfid }, 450 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 451 ip_ether_v6intfid }, 452 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 453 ip_ib_v6intfid }, 454 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 455 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 456 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 457 ip_nodef_v6intfid } 458 }; 459 460 static ill_t ill_null; /* Empty ILL for init. */ 461 char ipif_loopback_name[] = "lo0"; 462 static char *ipv4_forward_suffix = ":ip_forwarding"; 463 static char *ipv6_forward_suffix = ":ip6_forwarding"; 464 static sin6_t sin6_null; /* Zero address for quick clears */ 465 static sin_t sin_null; /* Zero address for quick clears */ 466 467 /* When set search for unused ipif_seqid */ 468 static ipif_t ipif_zero; 469 470 /* 471 * ppa arena is created after these many 472 * interfaces have been plumbed. 473 */ 474 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 475 476 /* 477 * Allocate per-interface mibs. 478 * Returns true if ok. False otherwise. 479 * ipsq may not yet be allocated (loopback case ). 480 */ 481 static boolean_t 482 ill_allocate_mibs(ill_t *ill) 483 { 484 /* Already allocated? */ 485 if (ill->ill_ip_mib != NULL) { 486 if (ill->ill_isv6) 487 ASSERT(ill->ill_icmp6_mib != NULL); 488 return (B_TRUE); 489 } 490 491 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 492 KM_NOSLEEP); 493 if (ill->ill_ip_mib == NULL) { 494 return (B_FALSE); 495 } 496 497 /* Setup static information */ 498 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 499 sizeof (mib2_ipIfStatsEntry_t)); 500 if (ill->ill_isv6) { 501 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 502 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 503 sizeof (mib2_ipv6AddrEntry_t)); 504 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 505 sizeof (mib2_ipv6RouteEntry_t)); 506 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 507 sizeof (mib2_ipv6NetToMediaEntry_t)); 508 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 509 sizeof (ipv6_member_t)); 510 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 511 sizeof (ipv6_grpsrc_t)); 512 } else { 513 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 514 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 515 sizeof (mib2_ipAddrEntry_t)); 516 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 517 sizeof (mib2_ipRouteEntry_t)); 518 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 519 sizeof (mib2_ipNetToMediaEntry_t)); 520 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 521 sizeof (ip_member_t)); 522 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 523 sizeof (ip_grpsrc_t)); 524 525 /* 526 * For a v4 ill, we are done at this point, because per ill 527 * icmp mibs are only used for v6. 528 */ 529 return (B_TRUE); 530 } 531 532 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 533 KM_NOSLEEP); 534 if (ill->ill_icmp6_mib == NULL) { 535 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 536 ill->ill_ip_mib = NULL; 537 return (B_FALSE); 538 } 539 /* static icmp info */ 540 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 541 sizeof (mib2_ipv6IfIcmpEntry_t); 542 /* 543 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 544 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 545 * -> ill_phyint_reinit 546 */ 547 return (B_TRUE); 548 } 549 550 /* 551 * Common code for preparation of ARP commands. Two points to remember: 552 * 1) The ill_name is tacked on at the end of the allocated space so 553 * the templates name_offset field must contain the total space 554 * to allocate less the name length. 555 * 556 * 2) The templates name_length field should contain the *template* 557 * length. We use it as a parameter to bcopy() and then write 558 * the real ill_name_length into the name_length field of the copy. 559 * (Always called as writer.) 560 */ 561 mblk_t * 562 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 563 { 564 arc_t *arc = (arc_t *)template; 565 char *cp; 566 int len; 567 mblk_t *mp; 568 uint_t name_length = ill->ill_name_length; 569 uint_t template_len = arc->arc_name_length; 570 571 len = arc->arc_name_offset + name_length; 572 mp = allocb(len, BPRI_HI); 573 if (mp == NULL) 574 return (NULL); 575 cp = (char *)mp->b_rptr; 576 mp->b_wptr = (uchar_t *)&cp[len]; 577 if (template_len) 578 bcopy(template, cp, template_len); 579 if (len > template_len) 580 bzero(&cp[template_len], len - template_len); 581 mp->b_datap->db_type = M_PROTO; 582 583 arc = (arc_t *)cp; 584 arc->arc_name_length = name_length; 585 cp = (char *)arc + arc->arc_name_offset; 586 bcopy(ill->ill_name, cp, name_length); 587 588 if (addr) { 589 area_t *area = (area_t *)mp->b_rptr; 590 591 cp = (char *)area + area->area_proto_addr_offset; 592 bcopy(addr, cp, area->area_proto_addr_length); 593 if (area->area_cmd == AR_ENTRY_ADD) { 594 cp = (char *)area; 595 len = area->area_proto_addr_length; 596 if (area->area_proto_mask_offset) 597 cp += area->area_proto_mask_offset; 598 else 599 cp += area->area_proto_addr_offset + len; 600 while (len-- > 0) 601 *cp++ = (char)~0; 602 } 603 } 604 return (mp); 605 } 606 607 mblk_t * 608 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 609 { 610 caddr_t addr; 611 mblk_t *mp; 612 area_t *area; 613 uchar_t *areap; 614 ill_t *ill = ipif->ipif_ill; 615 616 if (ill->ill_isv6) { 617 ASSERT(ill->ill_flags & ILLF_XRESOLV); 618 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 619 areap = (uchar_t *)&ip6_area_template; 620 } else { 621 addr = (caddr_t)&ipif->ipif_lcl_addr; 622 areap = (uchar_t *)&ip_area_template; 623 } 624 625 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 626 return (NULL); 627 628 /* 629 * IPMP requires that the hardware address be included in all 630 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 631 * If there are no active underlying ills in the group (and thus no 632 * hardware address, DAD will be deferred until an underlying ill 633 * becomes active. 634 */ 635 if (IS_IPMP(ill)) { 636 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 637 freemsg(mp); 638 return (NULL); 639 } 640 } else { 641 ill_refhold(ill); 642 } 643 644 area = (area_t *)mp->b_rptr; 645 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 646 area->area_flags |= optflags; 647 area->area_hw_addr_length = ill->ill_phys_addr_length; 648 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 649 area->area_hw_addr_length); 650 651 ill_refrele(ill); 652 return (mp); 653 } 654 655 mblk_t * 656 ipif_ared_alloc(ipif_t *ipif) 657 { 658 caddr_t addr; 659 uchar_t *aredp; 660 661 if (ipif->ipif_ill->ill_isv6) { 662 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 663 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 664 aredp = (uchar_t *)&ip6_ared_template; 665 } else { 666 addr = (caddr_t)&ipif->ipif_lcl_addr; 667 aredp = (uchar_t *)&ip_ared_template; 668 } 669 670 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 671 } 672 673 mblk_t * 674 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 675 { 676 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 677 (char *)&addr)); 678 } 679 680 mblk_t * 681 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 682 { 683 mblk_t *mp = ill_arp_alloc(ill, template, 0); 684 arie_t *arie; 685 686 if (mp != NULL) { 687 arie = (arie_t *)mp->b_rptr; 688 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 689 } 690 return (mp); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * Remove multicast references added as a result of calls to 750 * ip_join_allmulti(). 751 */ 752 ip_purge_allmulti(ill); 753 754 /* 755 * If the ill being deleted is under IPMP, boot it out of the illgrp. 756 */ 757 if (IS_UNDER_IPMP(ill)) 758 ipmp_ill_leave_illgrp(ill); 759 760 /* 761 * ill_down will arrange to blow off any IRE's dependent on this 762 * ILL, and shut down fragmentation reassembly. 763 */ 764 ill_down(ill); 765 766 /* Let SCTP know, so that it can remove this from its list. */ 767 sctp_update_ill(ill, SCTP_ILL_REMOVE); 768 769 /* 770 * If an address on this ILL is being used as a source address then 771 * clear out the pointers in other ILLs that point to this ILL. 772 */ 773 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 774 if (ill->ill_usesrc_grp_next != NULL) { 775 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 776 ill_disband_usesrc_group(ill); 777 } else { /* consumer of the usesrc ILL */ 778 prev_ill = ill_prev_usesrc(ill); 779 prev_ill->ill_usesrc_grp_next = 780 ill->ill_usesrc_grp_next; 781 } 782 } 783 rw_exit(&ipst->ips_ill_g_usesrc_lock); 784 } 785 786 static void 787 ipif_non_duplicate(ipif_t *ipif) 788 { 789 ill_t *ill = ipif->ipif_ill; 790 mutex_enter(&ill->ill_lock); 791 if (ipif->ipif_flags & IPIF_DUPLICATE) { 792 ipif->ipif_flags &= ~IPIF_DUPLICATE; 793 ASSERT(ill->ill_ipif_dup_count > 0); 794 ill->ill_ipif_dup_count--; 795 } 796 mutex_exit(&ill->ill_lock); 797 } 798 799 /* 800 * ill_delete_tail is called from ip_modclose after all references 801 * to the closing ill are gone. The wait is done in ip_modclose 802 */ 803 void 804 ill_delete_tail(ill_t *ill) 805 { 806 mblk_t **mpp; 807 ipif_t *ipif; 808 ip_stack_t *ipst = ill->ill_ipst; 809 810 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 811 ipif_non_duplicate(ipif); 812 ipif_down_tail(ipif); 813 } 814 815 ASSERT(ill->ill_ipif_dup_count == 0 && 816 ill->ill_arp_down_mp == NULL && 817 ill->ill_arp_del_mapping_mp == NULL); 818 819 /* 820 * If polling capability is enabled (which signifies direct 821 * upcall into IP and driver has ill saved as a handle), 822 * we need to make sure that unbind has completed before we 823 * let the ill disappear and driver no longer has any reference 824 * to this ill. 825 */ 826 mutex_enter(&ill->ill_lock); 827 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 828 cv_wait(&ill->ill_cv, &ill->ill_lock); 829 mutex_exit(&ill->ill_lock); 830 ASSERT(!(ill->ill_capabilities & 831 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 832 833 if (ill->ill_net_type != IRE_LOOPBACK) 834 qprocsoff(ill->ill_rq); 835 836 /* 837 * We do an ipsq_flush once again now. New messages could have 838 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 839 * could also have landed up if an ioctl thread had looked up 840 * the ill before we set the ILL_CONDEMNED flag, but not yet 841 * enqueued the ioctl when we did the ipsq_flush last time. 842 */ 843 ipsq_flush(ill); 844 845 /* 846 * Free capabilities. 847 */ 848 if (ill->ill_ipsec_capab_ah != NULL) { 849 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 850 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 851 ill->ill_ipsec_capab_ah = NULL; 852 } 853 854 if (ill->ill_ipsec_capab_esp != NULL) { 855 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 856 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 857 ill->ill_ipsec_capab_esp = NULL; 858 } 859 860 if (ill->ill_mdt_capab != NULL) { 861 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 862 ill->ill_mdt_capab = NULL; 863 } 864 865 if (ill->ill_hcksum_capab != NULL) { 866 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 867 ill->ill_hcksum_capab = NULL; 868 } 869 870 if (ill->ill_zerocopy_capab != NULL) { 871 kmem_free(ill->ill_zerocopy_capab, 872 sizeof (ill_zerocopy_capab_t)); 873 ill->ill_zerocopy_capab = NULL; 874 } 875 876 if (ill->ill_lso_capab != NULL) { 877 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 878 ill->ill_lso_capab = NULL; 879 } 880 881 if (ill->ill_dld_capab != NULL) { 882 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 883 ill->ill_dld_capab = NULL; 884 } 885 886 while (ill->ill_ipif != NULL) 887 ipif_free_tail(ill->ill_ipif); 888 889 /* 890 * We have removed all references to ilm from conn and the ones joined 891 * within the kernel. 892 * 893 * We don't walk conns, mrts and ires because 894 * 895 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 896 * 2) ill_down ->ill_downi walks all the ires and cleans up 897 * ill references. 898 */ 899 ASSERT(ilm_walk_ill(ill) == 0); 900 901 /* 902 * If this ill is an IPMP meta-interface, blow away the illgrp. This 903 * is safe to do because the illgrp has already been unlinked from the 904 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 905 */ 906 if (IS_IPMP(ill)) { 907 ipmp_illgrp_destroy(ill->ill_grp); 908 ill->ill_grp = NULL; 909 } 910 911 /* 912 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 913 * could free the phyint. No more reference to the phyint after this 914 * point. 915 */ 916 (void) ill_glist_delete(ill); 917 918 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 919 if (ill->ill_ndd_name != NULL) 920 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 921 rw_exit(&ipst->ips_ip_g_nd_lock); 922 923 if (ill->ill_frag_ptr != NULL) { 924 uint_t count; 925 926 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 927 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 928 } 929 mi_free(ill->ill_frag_ptr); 930 ill->ill_frag_ptr = NULL; 931 ill->ill_frag_hash_tbl = NULL; 932 } 933 934 freemsg(ill->ill_nd_lla_mp); 935 /* Free all retained control messages. */ 936 mpp = &ill->ill_first_mp_to_free; 937 do { 938 while (mpp[0]) { 939 mblk_t *mp; 940 mblk_t *mp1; 941 942 mp = mpp[0]; 943 mpp[0] = mp->b_next; 944 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 945 mp1->b_next = NULL; 946 mp1->b_prev = NULL; 947 } 948 freemsg(mp); 949 } 950 } while (mpp++ != &ill->ill_last_mp_to_free); 951 952 ill_free_mib(ill); 953 954 #ifdef DEBUG 955 ill_trace_cleanup(ill); 956 #endif 957 958 /* Drop refcnt here */ 959 netstack_rele(ill->ill_ipst->ips_netstack); 960 ill->ill_ipst = NULL; 961 } 962 963 static void 964 ill_free_mib(ill_t *ill) 965 { 966 ip_stack_t *ipst = ill->ill_ipst; 967 968 /* 969 * MIB statistics must not be lost, so when an interface 970 * goes away the counter values will be added to the global 971 * MIBs. 972 */ 973 if (ill->ill_ip_mib != NULL) { 974 if (ill->ill_isv6) { 975 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 976 ill->ill_ip_mib); 977 } else { 978 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 979 ill->ill_ip_mib); 980 } 981 982 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 983 ill->ill_ip_mib = NULL; 984 } 985 if (ill->ill_icmp6_mib != NULL) { 986 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 987 ill->ill_icmp6_mib); 988 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 989 ill->ill_icmp6_mib = NULL; 990 } 991 } 992 993 /* 994 * Concatenate together a physical address and a sap. 995 * 996 * Sap_lengths are interpreted as follows: 997 * sap_length == 0 ==> no sap 998 * sap_length > 0 ==> sap is at the head of the dlpi address 999 * sap_length < 0 ==> sap is at the tail of the dlpi address 1000 */ 1001 static void 1002 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1003 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1004 { 1005 uint16_t sap_addr = (uint16_t)sap_src; 1006 1007 if (sap_length == 0) { 1008 if (phys_src == NULL) 1009 bzero(dst, phys_length); 1010 else 1011 bcopy(phys_src, dst, phys_length); 1012 } else if (sap_length < 0) { 1013 if (phys_src == NULL) 1014 bzero(dst, phys_length); 1015 else 1016 bcopy(phys_src, dst, phys_length); 1017 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1018 } else { 1019 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1020 if (phys_src == NULL) 1021 bzero((char *)dst + sap_length, phys_length); 1022 else 1023 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1024 } 1025 } 1026 1027 /* 1028 * Generate a dl_unitdata_req mblk for the device and address given. 1029 * addr_length is the length of the physical portion of the address. 1030 * If addr is NULL include an all zero address of the specified length. 1031 * TRUE? In any case, addr_length is taken to be the entire length of the 1032 * dlpi address, including the absolute value of sap_length. 1033 */ 1034 mblk_t * 1035 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1036 t_scalar_t sap_length) 1037 { 1038 dl_unitdata_req_t *dlur; 1039 mblk_t *mp; 1040 t_scalar_t abs_sap_length; /* absolute value */ 1041 1042 abs_sap_length = ABS(sap_length); 1043 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1044 DL_UNITDATA_REQ); 1045 if (mp == NULL) 1046 return (NULL); 1047 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1048 /* HACK: accomodate incompatible DLPI drivers */ 1049 if (addr_length == 8) 1050 addr_length = 6; 1051 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1052 dlur->dl_dest_addr_offset = sizeof (*dlur); 1053 dlur->dl_priority.dl_min = 0; 1054 dlur->dl_priority.dl_max = 0; 1055 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1056 (uchar_t *)&dlur[1]); 1057 return (mp); 1058 } 1059 1060 /* 1061 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1062 * Return an error if we already have 1 or more ioctls in progress. 1063 * This is used only for non-exclusive ioctls. Currently this is used 1064 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1065 * and thus need to use ipsq_pending_mp_add. 1066 */ 1067 boolean_t 1068 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1069 { 1070 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1071 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1072 /* 1073 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1074 */ 1075 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1076 (add_mp->b_datap->db_type == M_IOCTL)); 1077 1078 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1079 /* 1080 * Return error if the conn has started closing. The conn 1081 * could have finished cleaning up the pending mp list, 1082 * If so we should not add another mp to the list negating 1083 * the cleanup. 1084 */ 1085 if (connp->conn_state_flags & CONN_CLOSING) 1086 return (B_FALSE); 1087 /* 1088 * Add the pending mp to the head of the list, chained by b_next. 1089 * Note down the conn on which the ioctl request came, in b_prev. 1090 * This will be used to later get the conn, when we get a response 1091 * on the ill queue, from some other module (typically arp) 1092 */ 1093 add_mp->b_next = (void *)ill->ill_pending_mp; 1094 add_mp->b_queue = CONNP_TO_WQ(connp); 1095 ill->ill_pending_mp = add_mp; 1096 if (connp != NULL) 1097 connp->conn_oper_pending_ill = ill; 1098 return (B_TRUE); 1099 } 1100 1101 /* 1102 * Retrieve the ill_pending_mp and return it. We have to walk the list 1103 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1104 */ 1105 mblk_t * 1106 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1107 { 1108 mblk_t *prev = NULL; 1109 mblk_t *curr = NULL; 1110 uint_t id; 1111 conn_t *connp; 1112 1113 /* 1114 * When the conn closes, conn_ioctl_cleanup needs to clean 1115 * up the pending mp, but it does not know the ioc_id and 1116 * passes in a zero for it. 1117 */ 1118 mutex_enter(&ill->ill_lock); 1119 if (ioc_id != 0) 1120 *connpp = NULL; 1121 1122 /* Search the list for the appropriate ioctl based on ioc_id */ 1123 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1124 prev = curr, curr = curr->b_next) { 1125 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1126 connp = Q_TO_CONN(curr->b_queue); 1127 /* Match based on the ioc_id or based on the conn */ 1128 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1129 break; 1130 } 1131 1132 if (curr != NULL) { 1133 /* Unlink the mblk from the pending mp list */ 1134 if (prev != NULL) { 1135 prev->b_next = curr->b_next; 1136 } else { 1137 ASSERT(ill->ill_pending_mp == curr); 1138 ill->ill_pending_mp = curr->b_next; 1139 } 1140 1141 /* 1142 * conn refcnt must have been bumped up at the start of 1143 * the ioctl. So we can safely access the conn. 1144 */ 1145 ASSERT(CONN_Q(curr->b_queue)); 1146 *connpp = Q_TO_CONN(curr->b_queue); 1147 curr->b_next = NULL; 1148 curr->b_queue = NULL; 1149 } 1150 1151 mutex_exit(&ill->ill_lock); 1152 1153 return (curr); 1154 } 1155 1156 /* 1157 * Add the pending mp to the list. There can be only 1 pending mp 1158 * in the list. Any exclusive ioctl that needs to wait for a response 1159 * from another module or driver needs to use this function to set 1160 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1161 * the other module/driver. This is also used while waiting for the 1162 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1163 */ 1164 boolean_t 1165 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1166 int waitfor) 1167 { 1168 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1169 1170 ASSERT(IAM_WRITER_IPIF(ipif)); 1171 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1172 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1173 ASSERT(ipx->ipx_pending_mp == NULL); 1174 /* 1175 * The caller may be using a different ipif than the one passed into 1176 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1177 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1178 * that `ipx_current_ipif == ipif'. 1179 */ 1180 ASSERT(ipx->ipx_current_ipif != NULL); 1181 1182 /* 1183 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1184 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1185 */ 1186 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1187 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1188 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1189 1190 if (connp != NULL) { 1191 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1192 /* 1193 * Return error if the conn has started closing. The conn 1194 * could have finished cleaning up the pending mp list, 1195 * If so we should not add another mp to the list negating 1196 * the cleanup. 1197 */ 1198 if (connp->conn_state_flags & CONN_CLOSING) 1199 return (B_FALSE); 1200 } 1201 mutex_enter(&ipx->ipx_lock); 1202 ipx->ipx_pending_ipif = ipif; 1203 /* 1204 * Note down the queue in b_queue. This will be returned by 1205 * ipsq_pending_mp_get. Caller will then use these values to restart 1206 * the processing 1207 */ 1208 add_mp->b_next = NULL; 1209 add_mp->b_queue = q; 1210 ipx->ipx_pending_mp = add_mp; 1211 ipx->ipx_waitfor = waitfor; 1212 mutex_exit(&ipx->ipx_lock); 1213 1214 if (connp != NULL) 1215 connp->conn_oper_pending_ill = ipif->ipif_ill; 1216 1217 return (B_TRUE); 1218 } 1219 1220 /* 1221 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1222 * queued in the list. 1223 */ 1224 mblk_t * 1225 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1226 { 1227 mblk_t *curr = NULL; 1228 ipxop_t *ipx = ipsq->ipsq_xop; 1229 1230 *connpp = NULL; 1231 mutex_enter(&ipx->ipx_lock); 1232 if (ipx->ipx_pending_mp == NULL) { 1233 mutex_exit(&ipx->ipx_lock); 1234 return (NULL); 1235 } 1236 1237 /* There can be only 1 such excl message */ 1238 curr = ipx->ipx_pending_mp; 1239 ASSERT(curr->b_next == NULL); 1240 ipx->ipx_pending_ipif = NULL; 1241 ipx->ipx_pending_mp = NULL; 1242 ipx->ipx_waitfor = 0; 1243 mutex_exit(&ipx->ipx_lock); 1244 1245 if (CONN_Q(curr->b_queue)) { 1246 /* 1247 * This mp did a refhold on the conn, at the start of the ioctl. 1248 * So we can safely return a pointer to the conn to the caller. 1249 */ 1250 *connpp = Q_TO_CONN(curr->b_queue); 1251 } else { 1252 *connpp = NULL; 1253 } 1254 curr->b_next = NULL; 1255 curr->b_prev = NULL; 1256 return (curr); 1257 } 1258 1259 /* 1260 * Cleanup the ioctl mp queued in ipx_pending_mp 1261 * - Called in the ill_delete path 1262 * - Called in the M_ERROR or M_HANGUP path on the ill. 1263 * - Called in the conn close path. 1264 */ 1265 boolean_t 1266 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1267 { 1268 mblk_t *mp; 1269 ipxop_t *ipx; 1270 queue_t *q; 1271 ipif_t *ipif; 1272 1273 ASSERT(IAM_WRITER_ILL(ill)); 1274 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1275 1276 /* 1277 * If connp is null, unconditionally clean up the ipx_pending_mp. 1278 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1279 * even if it is meant for another ill, since we have to enqueue 1280 * a new mp now in ipx_pending_mp to complete the ipif_down. 1281 * If connp is non-null we are called from the conn close path. 1282 */ 1283 mutex_enter(&ipx->ipx_lock); 1284 mp = ipx->ipx_pending_mp; 1285 if (mp == NULL || (connp != NULL && 1286 mp->b_queue != CONNP_TO_WQ(connp))) { 1287 mutex_exit(&ipx->ipx_lock); 1288 return (B_FALSE); 1289 } 1290 /* Now remove from the ipx_pending_mp */ 1291 ipx->ipx_pending_mp = NULL; 1292 q = mp->b_queue; 1293 mp->b_next = NULL; 1294 mp->b_prev = NULL; 1295 mp->b_queue = NULL; 1296 1297 ipif = ipx->ipx_pending_ipif; 1298 ipx->ipx_pending_ipif = NULL; 1299 ipx->ipx_waitfor = 0; 1300 ipx->ipx_current_ipif = NULL; 1301 ipx->ipx_current_ioctl = 0; 1302 ipx->ipx_current_done = B_TRUE; 1303 mutex_exit(&ipx->ipx_lock); 1304 1305 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1306 if (connp == NULL) { 1307 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1308 } else { 1309 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1310 mutex_enter(&ipif->ipif_ill->ill_lock); 1311 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1312 mutex_exit(&ipif->ipif_ill->ill_lock); 1313 } 1314 } else { 1315 /* 1316 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1317 * be just inet_freemsg. we have to restart it 1318 * otherwise the thread will be stuck. 1319 */ 1320 inet_freemsg(mp); 1321 } 1322 return (B_TRUE); 1323 } 1324 1325 /* 1326 * The ill is closing. Cleanup all the pending mps. Called exclusively 1327 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1328 * knows this ill, and hence nobody can add an mp to this list 1329 */ 1330 static void 1331 ill_pending_mp_cleanup(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 queue_t *q; 1335 1336 ASSERT(IAM_WRITER_ILL(ill)); 1337 1338 mutex_enter(&ill->ill_lock); 1339 /* 1340 * Every mp on the pending mp list originating from an ioctl 1341 * added 1 to the conn refcnt, at the start of the ioctl. 1342 * So bump it down now. See comments in ip_wput_nondata() 1343 */ 1344 while (ill->ill_pending_mp != NULL) { 1345 mp = ill->ill_pending_mp; 1346 ill->ill_pending_mp = mp->b_next; 1347 mutex_exit(&ill->ill_lock); 1348 1349 q = mp->b_queue; 1350 ASSERT(CONN_Q(q)); 1351 mp->b_next = NULL; 1352 mp->b_prev = NULL; 1353 mp->b_queue = NULL; 1354 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1355 mutex_enter(&ill->ill_lock); 1356 } 1357 ill->ill_pending_ipif = NULL; 1358 1359 mutex_exit(&ill->ill_lock); 1360 } 1361 1362 /* 1363 * Called in the conn close path and ill delete path 1364 */ 1365 static void 1366 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1367 { 1368 ipsq_t *ipsq; 1369 mblk_t *prev; 1370 mblk_t *curr; 1371 mblk_t *next; 1372 queue_t *q; 1373 mblk_t *tmp_list = NULL; 1374 1375 ASSERT(IAM_WRITER_ILL(ill)); 1376 if (connp != NULL) 1377 q = CONNP_TO_WQ(connp); 1378 else 1379 q = ill->ill_wq; 1380 1381 ipsq = ill->ill_phyint->phyint_ipsq; 1382 /* 1383 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1384 * In the case of ioctl from a conn, there can be only 1 mp 1385 * queued on the ipsq. If an ill is being unplumbed, only messages 1386 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1387 * ioctls meant for this ill form conn's are not flushed. They will 1388 * be processed during ipsq_exit and will not find the ill and will 1389 * return error. 1390 */ 1391 mutex_enter(&ipsq->ipsq_lock); 1392 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1393 curr = next) { 1394 next = curr->b_next; 1395 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1396 /* Unlink the mblk from the pending mp list */ 1397 if (prev != NULL) { 1398 prev->b_next = curr->b_next; 1399 } else { 1400 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1401 ipsq->ipsq_xopq_mphead = curr->b_next; 1402 } 1403 if (ipsq->ipsq_xopq_mptail == curr) 1404 ipsq->ipsq_xopq_mptail = prev; 1405 /* 1406 * Create a temporary list and release the ipsq lock 1407 * New elements are added to the head of the tmp_list 1408 */ 1409 curr->b_next = tmp_list; 1410 tmp_list = curr; 1411 } else { 1412 prev = curr; 1413 } 1414 } 1415 mutex_exit(&ipsq->ipsq_lock); 1416 1417 while (tmp_list != NULL) { 1418 curr = tmp_list; 1419 tmp_list = curr->b_next; 1420 curr->b_next = NULL; 1421 curr->b_prev = NULL; 1422 curr->b_queue = NULL; 1423 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1424 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1425 CONN_CLOSE : NO_COPYOUT, NULL); 1426 } else { 1427 /* 1428 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1429 * this can't be just inet_freemsg. we have to 1430 * restart it otherwise the thread will be stuck. 1431 */ 1432 inet_freemsg(curr); 1433 } 1434 } 1435 } 1436 1437 /* 1438 * This conn has started closing. Cleanup any pending ioctl from this conn. 1439 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1440 */ 1441 void 1442 conn_ioctl_cleanup(conn_t *connp) 1443 { 1444 mblk_t *curr; 1445 ipsq_t *ipsq; 1446 ill_t *ill; 1447 boolean_t refheld; 1448 1449 /* 1450 * Is any exclusive ioctl pending ? If so clean it up. If the 1451 * ioctl has not yet started, the mp is pending in the list headed by 1452 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1453 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1454 * is currently executing now the mp is not queued anywhere but 1455 * conn_oper_pending_ill is null. The conn close will wait 1456 * till the conn_ref drops to zero. 1457 */ 1458 mutex_enter(&connp->conn_lock); 1459 ill = connp->conn_oper_pending_ill; 1460 if (ill == NULL) { 1461 mutex_exit(&connp->conn_lock); 1462 return; 1463 } 1464 1465 curr = ill_pending_mp_get(ill, &connp, 0); 1466 if (curr != NULL) { 1467 mutex_exit(&connp->conn_lock); 1468 CONN_DEC_REF(connp); 1469 inet_freemsg(curr); 1470 return; 1471 } 1472 /* 1473 * We may not be able to refhold the ill if the ill/ipif 1474 * is changing. But we need to make sure that the ill will 1475 * not vanish. So we just bump up the ill_waiter count. 1476 */ 1477 refheld = ill_waiter_inc(ill); 1478 mutex_exit(&connp->conn_lock); 1479 if (refheld) { 1480 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1481 ill_waiter_dcr(ill); 1482 /* 1483 * Check whether this ioctl has started and is 1484 * pending. If it is not found there then check 1485 * whether this ioctl has not even started and is in 1486 * the ipsq_xopq list. 1487 */ 1488 if (!ipsq_pending_mp_cleanup(ill, connp)) 1489 ipsq_xopq_mp_cleanup(ill, connp); 1490 ipsq = ill->ill_phyint->phyint_ipsq; 1491 ipsq_exit(ipsq); 1492 return; 1493 } 1494 } 1495 1496 /* 1497 * The ill is also closing and we could not bump up the 1498 * ill_waiter_count or we could not enter the ipsq. Leave 1499 * the cleanup to ill_delete 1500 */ 1501 mutex_enter(&connp->conn_lock); 1502 while (connp->conn_oper_pending_ill != NULL) 1503 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1504 mutex_exit(&connp->conn_lock); 1505 if (refheld) 1506 ill_waiter_dcr(ill); 1507 } 1508 1509 /* 1510 * ipcl_walk function for cleaning up conn_*_ill fields. 1511 */ 1512 static void 1513 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1514 { 1515 ill_t *ill = (ill_t *)arg; 1516 ire_t *ire; 1517 1518 mutex_enter(&connp->conn_lock); 1519 if (connp->conn_multicast_ill == ill) { 1520 /* Revert to late binding */ 1521 connp->conn_multicast_ill = NULL; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_dhcpinit_ill == ill) { 1528 connp->conn_dhcpinit_ill = NULL; 1529 ASSERT(ill->ill_dhcpinit != 0); 1530 atomic_dec_32(&ill->ill_dhcpinit); 1531 } 1532 if (connp->conn_ire_cache != NULL) { 1533 ire = connp->conn_ire_cache; 1534 /* 1535 * Source address selection makes it possible for IRE_CACHE 1536 * entries to be created with ire_stq coming from interface X 1537 * and ipif coming from interface Y. Thus whenever interface 1538 * X goes down, remove all references to it by checking both 1539 * on ire_ipif and ire_stq. 1540 */ 1541 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1542 (ire->ire_type == IRE_CACHE && 1543 ire->ire_stq == ill->ill_wq)) { 1544 connp->conn_ire_cache = NULL; 1545 mutex_exit(&connp->conn_lock); 1546 ire_refrele_notr(ire); 1547 return; 1548 } 1549 } 1550 mutex_exit(&connp->conn_lock); 1551 } 1552 1553 static void 1554 ill_down_ipifs_tail(ill_t *ill) 1555 { 1556 ipif_t *ipif; 1557 1558 ASSERT(IAM_WRITER_ILL(ill)); 1559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1560 ipif_non_duplicate(ipif); 1561 ipif_down_tail(ipif); 1562 } 1563 } 1564 1565 /* ARGSUSED */ 1566 void 1567 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1568 { 1569 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1570 ill_down_ipifs_tail(q->q_ptr); 1571 freemsg(mp); 1572 ipsq_current_finish(ipsq); 1573 } 1574 1575 /* 1576 * ill_down_start is called when we want to down this ill and bring it up again 1577 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1578 * all interfaces, but don't tear down any plumbing. 1579 */ 1580 boolean_t 1581 ill_down_start(queue_t *q, mblk_t *mp) 1582 { 1583 ill_t *ill = q->q_ptr; 1584 ipif_t *ipif; 1585 1586 ASSERT(IAM_WRITER_ILL(ill)); 1587 1588 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1589 (void) ipif_down(ipif, NULL, NULL); 1590 1591 ill_down(ill); 1592 1593 (void) ipsq_pending_mp_cleanup(ill, NULL); 1594 1595 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1596 1597 /* 1598 * Atomically test and add the pending mp if references are active. 1599 */ 1600 mutex_enter(&ill->ill_lock); 1601 if (!ill_is_quiescent(ill)) { 1602 /* call cannot fail since `conn_t *' argument is NULL */ 1603 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1604 mp, ILL_DOWN); 1605 mutex_exit(&ill->ill_lock); 1606 return (B_FALSE); 1607 } 1608 mutex_exit(&ill->ill_lock); 1609 return (B_TRUE); 1610 } 1611 1612 static void 1613 ill_down(ill_t *ill) 1614 { 1615 ip_stack_t *ipst = ill->ill_ipst; 1616 1617 /* Blow off any IREs dependent on this ILL. */ 1618 ire_walk(ill_downi, ill, ipst); 1619 1620 /* Remove any conn_*_ill depending on this ill */ 1621 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * Source address selection makes it possible for IRE_CACHE 1635 * entries to be created with ire_stq coming from interface X 1636 * and ipif coming from interface Y. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 mblk_t *mp; 1742 1743 ASSERT(IAM_WRITER_ILL(ill)); 1744 1745 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1746 ill->ill_dlpi_capab_state != IDCS_FAILED) 1747 return; 1748 1749 /* 1750 * We are starting a new cycle of capability negotiation. 1751 * Free up the capab reset messages of any previous incarnation. 1752 * We will do a fresh allocation when we get the response to our probe 1753 */ 1754 if (ill->ill_capab_reset_mp != NULL) { 1755 freemsg(ill->ill_capab_reset_mp); 1756 ill->ill_capab_reset_mp = NULL; 1757 } 1758 1759 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1760 1761 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1762 if (mp == NULL) 1763 return; 1764 1765 ill_capability_send(ill, mp); 1766 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1767 } 1768 1769 void 1770 ill_capability_reset(ill_t *ill, boolean_t reneg) 1771 { 1772 ASSERT(IAM_WRITER_ILL(ill)); 1773 1774 if (ill->ill_dlpi_capab_state != IDCS_OK) 1775 return; 1776 1777 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1778 1779 ill_capability_send(ill, ill->ill_capab_reset_mp); 1780 ill->ill_capab_reset_mp = NULL; 1781 /* 1782 * We turn off all capabilities except those pertaining to 1783 * direct function call capabilities viz. ILL_CAPAB_DLD* 1784 * which will be turned off by the corresponding reset functions. 1785 */ 1786 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1787 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1788 } 1789 1790 static void 1791 ill_capability_reset_alloc(ill_t *ill) 1792 { 1793 mblk_t *mp; 1794 size_t size = 0; 1795 int err; 1796 dl_capability_req_t *capb; 1797 1798 ASSERT(IAM_WRITER_ILL(ill)); 1799 ASSERT(ill->ill_capab_reset_mp == NULL); 1800 1801 if (ILL_MDT_CAPABLE(ill)) 1802 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1803 1804 if (ILL_HCKSUM_CAPABLE(ill)) { 1805 size += sizeof (dl_capability_sub_t) + 1806 sizeof (dl_capab_hcksum_t); 1807 } 1808 1809 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1810 size += sizeof (dl_capability_sub_t) + 1811 sizeof (dl_capab_zerocopy_t); 1812 } 1813 1814 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1815 size += sizeof (dl_capability_sub_t); 1816 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1817 NULL, NULL); 1818 } 1819 1820 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1821 size += sizeof (dl_capability_sub_t) + 1822 sizeof (dl_capab_dld_t); 1823 } 1824 1825 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1826 STR_NOSIG, &err); 1827 1828 mp->b_datap->db_type = M_PROTO; 1829 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1830 1831 capb = (dl_capability_req_t *)mp->b_rptr; 1832 capb->dl_primitive = DL_CAPABILITY_REQ; 1833 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1834 capb->dl_sub_length = size; 1835 1836 mp->b_wptr += sizeof (dl_capability_req_t); 1837 1838 /* 1839 * Each handler fills in the corresponding dl_capability_sub_t 1840 * inside the mblk, 1841 */ 1842 ill_capability_mdt_reset_fill(ill, mp); 1843 ill_capability_hcksum_reset_fill(ill, mp); 1844 ill_capability_zerocopy_reset_fill(ill, mp); 1845 ill_capability_ipsec_reset_fill(ill, mp); 1846 ill_capability_dld_reset_fill(ill, mp); 1847 1848 ill->ill_capab_reset_mp = mp; 1849 } 1850 1851 static void 1852 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1853 { 1854 dl_capab_id_t *id_ic; 1855 uint_t sub_dl_cap = outers->dl_cap; 1856 dl_capability_sub_t *inners; 1857 uint8_t *capend; 1858 1859 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1860 1861 /* 1862 * Note: range checks here are not absolutely sufficient to 1863 * make us robust against malformed messages sent by drivers; 1864 * this is in keeping with the rest of IP's dlpi handling. 1865 * (Remember, it's coming from something else in the kernel 1866 * address space) 1867 */ 1868 1869 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1870 if (capend > mp->b_wptr) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: " 1872 "malformed sub-capability too long for mblk"); 1873 return; 1874 } 1875 1876 id_ic = (dl_capab_id_t *)(outers + 1); 1877 1878 if (outers->dl_length < sizeof (*id_ic) || 1879 (inners = &id_ic->id_subcap, 1880 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1881 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1882 "encapsulated capab type %d too long for mblk", 1883 inners->dl_cap); 1884 return; 1885 } 1886 1887 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1888 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1889 "isn't as expected; pass-thru module(s) detected, " 1890 "discarding capability\n", inners->dl_cap)); 1891 return; 1892 } 1893 1894 /* Process the encapsulated sub-capability */ 1895 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1896 } 1897 1898 /* 1899 * Process Multidata Transmit capability negotiation ack received from a 1900 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1901 * DL_CAPABILITY_ACK message. 1902 */ 1903 static void 1904 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1905 { 1906 mblk_t *nmp = NULL; 1907 dl_capability_req_t *oc; 1908 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1909 ill_mdt_capab_t **ill_mdt_capab; 1910 uint_t sub_dl_cap = isub->dl_cap; 1911 uint8_t *capend; 1912 1913 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1914 1915 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1916 1917 /* 1918 * Note: range checks here are not absolutely sufficient to 1919 * make us robust against malformed messages sent by drivers; 1920 * this is in keeping with the rest of IP's dlpi handling. 1921 * (Remember, it's coming from something else in the kernel 1922 * address space) 1923 */ 1924 1925 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1926 if (capend > mp->b_wptr) { 1927 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1928 "malformed sub-capability too long for mblk"); 1929 return; 1930 } 1931 1932 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1933 1934 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1935 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1936 "unsupported MDT sub-capability (version %d, expected %d)", 1937 mdt_ic->mdt_version, MDT_VERSION_2); 1938 return; 1939 } 1940 1941 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1942 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1943 "capability isn't as expected; pass-thru module(s) " 1944 "detected, discarding capability\n")); 1945 return; 1946 } 1947 1948 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1949 1950 if (*ill_mdt_capab == NULL) { 1951 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1952 KM_NOSLEEP); 1953 if (*ill_mdt_capab == NULL) { 1954 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1955 "could not enable MDT version %d " 1956 "for %s (ENOMEM)\n", MDT_VERSION_2, 1957 ill->ill_name); 1958 return; 1959 } 1960 } 1961 1962 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1963 "MDT version %d (%d bytes leading, %d bytes trailing " 1964 "header spaces, %d max pld bufs, %d span limit)\n", 1965 ill->ill_name, MDT_VERSION_2, 1966 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1967 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1968 1969 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1970 (*ill_mdt_capab)->ill_mdt_on = 1; 1971 /* 1972 * Round the following values to the nearest 32-bit; ULP 1973 * may further adjust them to accomodate for additional 1974 * protocol headers. We pass these values to ULP during 1975 * bind time. 1976 */ 1977 (*ill_mdt_capab)->ill_mdt_hdr_head = 1978 roundup(mdt_ic->mdt_hdr_head, 4); 1979 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1980 roundup(mdt_ic->mdt_hdr_tail, 4); 1981 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1982 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1983 1984 ill->ill_capabilities |= ILL_CAPAB_MDT; 1985 } else { 1986 uint_t size; 1987 uchar_t *rptr; 1988 1989 size = sizeof (dl_capability_req_t) + 1990 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1991 1992 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1993 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1994 "could not enable MDT for %s (ENOMEM)\n", 1995 ill->ill_name); 1996 return; 1997 } 1998 1999 rptr = nmp->b_rptr; 2000 /* initialize dl_capability_req_t */ 2001 oc = (dl_capability_req_t *)nmp->b_rptr; 2002 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2003 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2004 sizeof (dl_capab_mdt_t); 2005 nmp->b_rptr += sizeof (dl_capability_req_t); 2006 2007 /* initialize dl_capability_sub_t */ 2008 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2009 nmp->b_rptr += sizeof (*isub); 2010 2011 /* initialize dl_capab_mdt_t */ 2012 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2013 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2014 2015 nmp->b_rptr = rptr; 2016 2017 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2018 "to enable MDT version %d\n", ill->ill_name, 2019 MDT_VERSION_2)); 2020 2021 /* set ENABLE flag */ 2022 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2023 2024 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2025 ill_capability_send(ill, nmp); 2026 } 2027 } 2028 2029 static void 2030 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2031 { 2032 dl_capab_mdt_t *mdt_subcap; 2033 dl_capability_sub_t *dl_subcap; 2034 2035 if (!ILL_MDT_CAPABLE(ill)) 2036 return; 2037 2038 ASSERT(ill->ill_mdt_capab != NULL); 2039 2040 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2041 dl_subcap->dl_cap = DL_CAPAB_MDT; 2042 dl_subcap->dl_length = sizeof (*mdt_subcap); 2043 2044 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2045 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2046 mdt_subcap->mdt_flags = 0; 2047 mdt_subcap->mdt_hdr_head = 0; 2048 mdt_subcap->mdt_hdr_tail = 0; 2049 2050 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2051 } 2052 2053 static void 2054 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2055 { 2056 dl_capability_sub_t *dl_subcap; 2057 2058 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2059 return; 2060 2061 /* 2062 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2063 * initialized below since it is not used by DLD. 2064 */ 2065 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2066 dl_subcap->dl_cap = DL_CAPAB_DLD; 2067 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2068 2069 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2070 } 2071 2072 /* 2073 * Send a DL_NOTIFY_REQ to the specified ill to enable 2074 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2075 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2076 * acceleration. 2077 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2078 */ 2079 static boolean_t 2080 ill_enable_promisc_notify(ill_t *ill) 2081 { 2082 mblk_t *mp; 2083 dl_notify_req_t *req; 2084 2085 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2086 2087 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2088 if (mp == NULL) 2089 return (B_FALSE); 2090 2091 req = (dl_notify_req_t *)mp->b_rptr; 2092 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2093 DL_NOTE_PROMISC_OFF_PHYS; 2094 2095 ill_dlpi_send(ill, mp); 2096 2097 return (B_TRUE); 2098 } 2099 2100 /* 2101 * Allocate an IPsec capability request which will be filled by our 2102 * caller to turn on support for one or more algorithms. 2103 */ 2104 static mblk_t * 2105 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2106 { 2107 mblk_t *nmp; 2108 dl_capability_req_t *ocap; 2109 dl_capab_ipsec_t *ocip; 2110 dl_capab_ipsec_t *icip; 2111 uint8_t *ptr; 2112 icip = (dl_capab_ipsec_t *)(isub + 1); 2113 2114 /* 2115 * The first time around, we send a DL_NOTIFY_REQ to enable 2116 * PROMISC_ON/OFF notification from the provider. We need to 2117 * do this before enabling the algorithms to avoid leakage of 2118 * cleartext packets. 2119 */ 2120 2121 if (!ill_enable_promisc_notify(ill)) 2122 return (NULL); 2123 2124 /* 2125 * Allocate new mblk which will contain a new capability 2126 * request to enable the capabilities. 2127 */ 2128 2129 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2130 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2131 if (nmp == NULL) 2132 return (NULL); 2133 2134 ptr = nmp->b_rptr; 2135 2136 /* initialize dl_capability_req_t */ 2137 ocap = (dl_capability_req_t *)ptr; 2138 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2139 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2140 ptr += sizeof (dl_capability_req_t); 2141 2142 /* initialize dl_capability_sub_t */ 2143 bcopy(isub, ptr, sizeof (*isub)); 2144 ptr += sizeof (*isub); 2145 2146 /* initialize dl_capab_ipsec_t */ 2147 ocip = (dl_capab_ipsec_t *)ptr; 2148 bcopy(icip, ocip, sizeof (*icip)); 2149 2150 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2151 return (nmp); 2152 } 2153 2154 /* 2155 * Process an IPsec capability negotiation ack received from a DLS Provider. 2156 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2157 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2158 */ 2159 static void 2160 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2161 { 2162 dl_capab_ipsec_t *icip; 2163 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2164 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2165 uint_t cipher, nciphers; 2166 mblk_t *nmp; 2167 uint_t alg_len; 2168 boolean_t need_sadb_dump; 2169 uint_t sub_dl_cap = isub->dl_cap; 2170 ill_ipsec_capab_t **ill_capab; 2171 uint64_t ill_capab_flag; 2172 uint8_t *capend, *ciphend; 2173 boolean_t sadb_resync; 2174 2175 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2176 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2177 2178 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2179 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2180 ill_capab_flag = ILL_CAPAB_AH; 2181 } else { 2182 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2183 ill_capab_flag = ILL_CAPAB_ESP; 2184 } 2185 2186 /* 2187 * If the ill capability structure exists, then this incoming 2188 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2189 * If this is so, then we'd need to resynchronize the SADB 2190 * after re-enabling the offloaded ciphers. 2191 */ 2192 sadb_resync = (*ill_capab != NULL); 2193 2194 /* 2195 * Note: range checks here are not absolutely sufficient to 2196 * make us robust against malformed messages sent by drivers; 2197 * this is in keeping with the rest of IP's dlpi handling. 2198 * (Remember, it's coming from something else in the kernel 2199 * address space) 2200 */ 2201 2202 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2203 if (capend > mp->b_wptr) { 2204 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2205 "malformed sub-capability too long for mblk"); 2206 return; 2207 } 2208 2209 /* 2210 * There are two types of acks we process here: 2211 * 1. acks in reply to a (first form) generic capability req 2212 * (no ENABLE flag set) 2213 * 2. acks in reply to a ENABLE capability req. 2214 * (ENABLE flag set) 2215 * 2216 * We process the subcapability passed as argument as follows: 2217 * 1 do initializations 2218 * 1.1 initialize nmp = NULL 2219 * 1.2 set need_sadb_dump to B_FALSE 2220 * 2 for each cipher in subcapability: 2221 * 2.1 if ENABLE flag is set: 2222 * 2.1.1 update per-ill ipsec capabilities info 2223 * 2.1.2 set need_sadb_dump to B_TRUE 2224 * 2.2 if ENABLE flag is not set: 2225 * 2.2.1 if nmp is NULL: 2226 * 2.2.1.1 allocate and initialize nmp 2227 * 2.2.1.2 init current pos in nmp 2228 * 2.2.2 copy current cipher to current pos in nmp 2229 * 2.2.3 set ENABLE flag in nmp 2230 * 2.2.4 update current pos 2231 * 3 if nmp is not equal to NULL, send enable request 2232 * 3.1 send capability request 2233 * 4 if need_sadb_dump is B_TRUE 2234 * 4.1 enable promiscuous on/off notifications 2235 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2236 * AH or ESP SA's to interface. 2237 */ 2238 2239 nmp = NULL; 2240 oalg = NULL; 2241 need_sadb_dump = B_FALSE; 2242 icip = (dl_capab_ipsec_t *)(isub + 1); 2243 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2244 2245 nciphers = icip->cip_nciphers; 2246 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2247 2248 if (ciphend > capend) { 2249 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2250 "too many ciphers for sub-capability len"); 2251 return; 2252 } 2253 2254 for (cipher = 0; cipher < nciphers; cipher++) { 2255 alg_len = sizeof (dl_capab_ipsec_alg_t); 2256 2257 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2258 /* 2259 * TBD: when we provide a way to disable capabilities 2260 * from above, need to manage the request-pending state 2261 * and fail if we were not expecting this ACK. 2262 */ 2263 IPSECHW_DEBUG(IPSECHW_CAPAB, 2264 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2265 2266 /* 2267 * Update IPsec capabilities for this ill 2268 */ 2269 2270 if (*ill_capab == NULL) { 2271 IPSECHW_DEBUG(IPSECHW_CAPAB, 2272 ("ill_capability_ipsec_ack: " 2273 "allocating ipsec_capab for ill\n")); 2274 *ill_capab = ill_ipsec_capab_alloc(); 2275 2276 if (*ill_capab == NULL) { 2277 cmn_err(CE_WARN, 2278 "ill_capability_ipsec_ack: " 2279 "could not enable IPsec Hardware " 2280 "acceleration for %s (ENOMEM)\n", 2281 ill->ill_name); 2282 return; 2283 } 2284 } 2285 2286 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2287 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2288 2289 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2290 cmn_err(CE_WARN, 2291 "ill_capability_ipsec_ack: " 2292 "malformed IPsec algorithm id %d", 2293 ialg->alg_prim); 2294 continue; 2295 } 2296 2297 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2298 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2299 ialg->alg_prim); 2300 } else { 2301 ipsec_capab_algparm_t *alp; 2302 2303 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2304 ialg->alg_prim); 2305 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2306 ialg->alg_prim)) { 2307 cmn_err(CE_WARN, 2308 "ill_capability_ipsec_ack: " 2309 "no space for IPsec alg id %d", 2310 ialg->alg_prim); 2311 continue; 2312 } 2313 alp = &((*ill_capab)->encr_algparm[ 2314 ialg->alg_prim]); 2315 alp->minkeylen = ialg->alg_minbits; 2316 alp->maxkeylen = ialg->alg_maxbits; 2317 } 2318 ill->ill_capabilities |= ill_capab_flag; 2319 /* 2320 * indicate that a capability was enabled, which 2321 * will be used below to kick off a SADB dump 2322 * to the ill. 2323 */ 2324 need_sadb_dump = B_TRUE; 2325 } else { 2326 IPSECHW_DEBUG(IPSECHW_CAPAB, 2327 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2328 ialg->alg_prim)); 2329 2330 if (nmp == NULL) { 2331 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2332 if (nmp == NULL) { 2333 /* 2334 * Sending the PROMISC_ON/OFF 2335 * notification request failed. 2336 * We cannot enable the algorithms 2337 * since the Provider will not 2338 * notify IP of promiscous mode 2339 * changes, which could lead 2340 * to leakage of packets. 2341 */ 2342 cmn_err(CE_WARN, 2343 "ill_capability_ipsec_ack: " 2344 "could not enable IPsec Hardware " 2345 "acceleration for %s (ENOMEM)\n", 2346 ill->ill_name); 2347 return; 2348 } 2349 /* ptr to current output alg specifier */ 2350 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2351 } 2352 2353 /* 2354 * Copy current alg specifier, set ENABLE 2355 * flag, and advance to next output alg. 2356 * For now we enable all IPsec capabilities. 2357 */ 2358 ASSERT(oalg != NULL); 2359 bcopy(ialg, oalg, alg_len); 2360 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2361 nmp->b_wptr += alg_len; 2362 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2363 } 2364 2365 /* move to next input algorithm specifier */ 2366 ialg = (dl_capab_ipsec_alg_t *) 2367 ((char *)ialg + alg_len); 2368 } 2369 2370 if (nmp != NULL) 2371 /* 2372 * nmp points to a DL_CAPABILITY_REQ message to enable 2373 * IPsec hardware acceleration. 2374 */ 2375 ill_capability_send(ill, nmp); 2376 2377 if (need_sadb_dump) 2378 /* 2379 * An acknowledgement corresponding to a request to 2380 * enable acceleration was received, notify SADB. 2381 */ 2382 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2383 } 2384 2385 /* 2386 * Given an mblk with enough space in it, create sub-capability entries for 2387 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2388 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2389 * in preparation for the reset the DL_CAPABILITY_REQ message. 2390 */ 2391 static void 2392 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2393 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2394 { 2395 dl_capab_ipsec_t *oipsec; 2396 dl_capab_ipsec_alg_t *oalg; 2397 dl_capability_sub_t *dl_subcap; 2398 int i, k; 2399 2400 ASSERT(nciphers > 0); 2401 ASSERT(ill_cap != NULL); 2402 ASSERT(mp != NULL); 2403 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2404 2405 /* dl_capability_sub_t for "stype" */ 2406 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2407 dl_subcap->dl_cap = stype; 2408 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2409 mp->b_wptr += sizeof (dl_capability_sub_t); 2410 2411 /* dl_capab_ipsec_t for "stype" */ 2412 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2413 oipsec->cip_version = 1; 2414 oipsec->cip_nciphers = nciphers; 2415 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2416 2417 /* create entries for "stype" AUTH ciphers */ 2418 for (i = 0; i < ill_cap->algs_size; i++) { 2419 for (k = 0; k < BITSPERBYTE; k++) { 2420 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2421 continue; 2422 2423 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2424 bzero((void *)oalg, sizeof (*oalg)); 2425 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2426 oalg->alg_prim = k + (BITSPERBYTE * i); 2427 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2428 } 2429 } 2430 /* create entries for "stype" ENCR ciphers */ 2431 for (i = 0; i < ill_cap->algs_size; i++) { 2432 for (k = 0; k < BITSPERBYTE; k++) { 2433 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2434 continue; 2435 2436 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2437 bzero((void *)oalg, sizeof (*oalg)); 2438 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2439 oalg->alg_prim = k + (BITSPERBYTE * i); 2440 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2441 } 2442 } 2443 } 2444 2445 /* 2446 * Macro to count number of 1s in a byte (8-bit word). The total count is 2447 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2448 * POPC instruction, but our macro is more flexible for an arbitrary length 2449 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2450 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2451 * stays that way, we can reduce the number of iterations required. 2452 */ 2453 #define COUNT_1S(val, sum) { \ 2454 uint8_t x = val & 0xff; \ 2455 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2456 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2457 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2458 } 2459 2460 /* ARGSUSED */ 2461 static int 2462 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2463 int *esp_cntp, int *esp_lenp) 2464 { 2465 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2466 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2467 uint64_t ill_capabilities = ill->ill_capabilities; 2468 int ah_cnt = 0, esp_cnt = 0; 2469 int ah_len = 0, esp_len = 0; 2470 int i, size = 0; 2471 2472 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2473 return (0); 2474 2475 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2476 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2477 2478 /* Find out the number of ciphers for AH */ 2479 if (cap_ah != NULL) { 2480 for (i = 0; i < cap_ah->algs_size; i++) { 2481 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2482 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2483 } 2484 if (ah_cnt > 0) { 2485 size += sizeof (dl_capability_sub_t) + 2486 sizeof (dl_capab_ipsec_t); 2487 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2488 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2489 size += ah_len; 2490 } 2491 } 2492 2493 /* Find out the number of ciphers for ESP */ 2494 if (cap_esp != NULL) { 2495 for (i = 0; i < cap_esp->algs_size; i++) { 2496 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2497 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2498 } 2499 if (esp_cnt > 0) { 2500 size += sizeof (dl_capability_sub_t) + 2501 sizeof (dl_capab_ipsec_t); 2502 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2503 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2504 size += esp_len; 2505 } 2506 } 2507 2508 if (ah_cntp != NULL) 2509 *ah_cntp = ah_cnt; 2510 if (ah_lenp != NULL) 2511 *ah_lenp = ah_len; 2512 if (esp_cntp != NULL) 2513 *esp_cntp = esp_cnt; 2514 if (esp_lenp != NULL) 2515 *esp_lenp = esp_len; 2516 2517 return (size); 2518 } 2519 2520 /* ARGSUSED */ 2521 static void 2522 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2523 { 2524 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2525 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2526 int ah_cnt = 0, esp_cnt = 0; 2527 int ah_len = 0, esp_len = 0; 2528 int size; 2529 2530 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2531 &esp_cnt, &esp_len); 2532 if (size == 0) 2533 return; 2534 2535 /* 2536 * Clear the capability flags for IPsec HA but retain the ill 2537 * capability structures since it's possible that another thread 2538 * is still referring to them. The structures only get deallocated 2539 * when we destroy the ill. 2540 * 2541 * Various places check the flags to see if the ill is capable of 2542 * hardware acceleration, and by clearing them we ensure that new 2543 * outbound IPsec packets are sent down encrypted. 2544 */ 2545 2546 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2547 if (ah_cnt > 0) { 2548 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2549 cap_ah, mp); 2550 } 2551 2552 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2553 if (esp_cnt > 0) { 2554 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2555 cap_esp, mp); 2556 } 2557 2558 /* 2559 * At this point we've composed a bunch of sub-capabilities to be 2560 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2561 * by the caller. Upon receiving this reset message, the driver 2562 * must stop inbound decryption (by destroying all inbound SAs) 2563 * and let the corresponding packets come in encrypted. 2564 */ 2565 } 2566 2567 static void 2568 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2569 boolean_t encapsulated) 2570 { 2571 boolean_t legacy = B_FALSE; 2572 2573 /* 2574 * Note that only the following two sub-capabilities may be 2575 * considered as "legacy", since their original definitions 2576 * do not incorporate the dl_mid_t module ID token, and hence 2577 * may require the use of the wrapper sub-capability. 2578 */ 2579 switch (subp->dl_cap) { 2580 case DL_CAPAB_IPSEC_AH: 2581 case DL_CAPAB_IPSEC_ESP: 2582 legacy = B_TRUE; 2583 break; 2584 } 2585 2586 /* 2587 * For legacy sub-capabilities which don't incorporate a queue_t 2588 * pointer in their structures, discard them if we detect that 2589 * there are intermediate modules in between IP and the driver. 2590 */ 2591 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2592 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2593 "%d discarded; %d module(s) present below IP\n", 2594 subp->dl_cap, ill->ill_lmod_cnt)); 2595 return; 2596 } 2597 2598 switch (subp->dl_cap) { 2599 case DL_CAPAB_IPSEC_AH: 2600 case DL_CAPAB_IPSEC_ESP: 2601 ill_capability_ipsec_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_MDT: 2604 ill_capability_mdt_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_HCKSUM: 2607 ill_capability_hcksum_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_ZEROCOPY: 2610 ill_capability_zerocopy_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_DLD: 2613 ill_capability_dld_ack(ill, mp, subp); 2614 break; 2615 default: 2616 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2617 subp->dl_cap)); 2618 } 2619 } 2620 2621 /* 2622 * Process a hardware checksum offload capability negotiation ack received 2623 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2624 * of a DL_CAPABILITY_ACK message. 2625 */ 2626 static void 2627 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2628 { 2629 dl_capability_req_t *ocap; 2630 dl_capab_hcksum_t *ihck, *ohck; 2631 ill_hcksum_capab_t **ill_hcksum; 2632 mblk_t *nmp = NULL; 2633 uint_t sub_dl_cap = isub->dl_cap; 2634 uint8_t *capend; 2635 2636 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2637 2638 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2639 2640 /* 2641 * Note: range checks here are not absolutely sufficient to 2642 * make us robust against malformed messages sent by drivers; 2643 * this is in keeping with the rest of IP's dlpi handling. 2644 * (Remember, it's coming from something else in the kernel 2645 * address space) 2646 */ 2647 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2648 if (capend > mp->b_wptr) { 2649 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2650 "malformed sub-capability too long for mblk"); 2651 return; 2652 } 2653 2654 /* 2655 * There are two types of acks we process here: 2656 * 1. acks in reply to a (first form) generic capability req 2657 * (no ENABLE flag set) 2658 * 2. acks in reply to a ENABLE capability req. 2659 * (ENABLE flag set) 2660 */ 2661 ihck = (dl_capab_hcksum_t *)(isub + 1); 2662 2663 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2664 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2665 "unsupported hardware checksum " 2666 "sub-capability (version %d, expected %d)", 2667 ihck->hcksum_version, HCKSUM_VERSION_1); 2668 return; 2669 } 2670 2671 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2672 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2673 "checksum capability isn't as expected; pass-thru " 2674 "module(s) detected, discarding capability\n")); 2675 return; 2676 } 2677 2678 #define CURR_HCKSUM_CAPAB \ 2679 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2680 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2681 2682 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2683 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2684 /* do ENABLE processing */ 2685 if (*ill_hcksum == NULL) { 2686 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2687 KM_NOSLEEP); 2688 2689 if (*ill_hcksum == NULL) { 2690 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2691 "could not enable hcksum version %d " 2692 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2693 ill->ill_name); 2694 return; 2695 } 2696 } 2697 2698 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2699 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2700 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2701 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2702 "has enabled hardware checksumming\n ", 2703 ill->ill_name)); 2704 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2705 /* 2706 * Enabling hardware checksum offload 2707 * Currently IP supports {TCP,UDP}/IPv4 2708 * partial and full cksum offload and 2709 * IPv4 header checksum offload. 2710 * Allocate new mblk which will 2711 * contain a new capability request 2712 * to enable hardware checksum offload. 2713 */ 2714 uint_t size; 2715 uchar_t *rptr; 2716 2717 size = sizeof (dl_capability_req_t) + 2718 sizeof (dl_capability_sub_t) + isub->dl_length; 2719 2720 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2721 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2722 "could not enable hardware cksum for %s (ENOMEM)\n", 2723 ill->ill_name); 2724 return; 2725 } 2726 2727 rptr = nmp->b_rptr; 2728 /* initialize dl_capability_req_t */ 2729 ocap = (dl_capability_req_t *)nmp->b_rptr; 2730 ocap->dl_sub_offset = 2731 sizeof (dl_capability_req_t); 2732 ocap->dl_sub_length = 2733 sizeof (dl_capability_sub_t) + 2734 isub->dl_length; 2735 nmp->b_rptr += sizeof (dl_capability_req_t); 2736 2737 /* initialize dl_capability_sub_t */ 2738 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2739 nmp->b_rptr += sizeof (*isub); 2740 2741 /* initialize dl_capab_hcksum_t */ 2742 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2743 bcopy(ihck, ohck, sizeof (*ihck)); 2744 2745 nmp->b_rptr = rptr; 2746 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2747 2748 /* Set ENABLE flag */ 2749 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2750 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2751 2752 /* 2753 * nmp points to a DL_CAPABILITY_REQ message to enable 2754 * hardware checksum acceleration. 2755 */ 2756 ill_capability_send(ill, nmp); 2757 } else { 2758 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2759 "advertised %x hardware checksum capability flags\n", 2760 ill->ill_name, ihck->hcksum_txflags)); 2761 } 2762 } 2763 2764 static void 2765 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2766 { 2767 dl_capab_hcksum_t *hck_subcap; 2768 dl_capability_sub_t *dl_subcap; 2769 2770 if (!ILL_HCKSUM_CAPABLE(ill)) 2771 return; 2772 2773 ASSERT(ill->ill_hcksum_capab != NULL); 2774 2775 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2776 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2777 dl_subcap->dl_length = sizeof (*hck_subcap); 2778 2779 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2780 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2781 hck_subcap->hcksum_txflags = 0; 2782 2783 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2784 } 2785 2786 static void 2787 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2788 { 2789 mblk_t *nmp = NULL; 2790 dl_capability_req_t *oc; 2791 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2792 ill_zerocopy_capab_t **ill_zerocopy_capab; 2793 uint_t sub_dl_cap = isub->dl_cap; 2794 uint8_t *capend; 2795 2796 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2797 2798 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2799 2800 /* 2801 * Note: range checks here are not absolutely sufficient to 2802 * make us robust against malformed messages sent by drivers; 2803 * this is in keeping with the rest of IP's dlpi handling. 2804 * (Remember, it's coming from something else in the kernel 2805 * address space) 2806 */ 2807 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2808 if (capend > mp->b_wptr) { 2809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2810 "malformed sub-capability too long for mblk"); 2811 return; 2812 } 2813 2814 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2815 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2816 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2817 "unsupported ZEROCOPY sub-capability (version %d, " 2818 "expected %d)", zc_ic->zerocopy_version, 2819 ZEROCOPY_VERSION_1); 2820 return; 2821 } 2822 2823 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2824 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2825 "capability isn't as expected; pass-thru module(s) " 2826 "detected, discarding capability\n")); 2827 return; 2828 } 2829 2830 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2831 if (*ill_zerocopy_capab == NULL) { 2832 *ill_zerocopy_capab = 2833 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2834 KM_NOSLEEP); 2835 2836 if (*ill_zerocopy_capab == NULL) { 2837 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2838 "could not enable Zero-copy version %d " 2839 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2840 ill->ill_name); 2841 return; 2842 } 2843 } 2844 2845 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2846 "supports Zero-copy version %d\n", ill->ill_name, 2847 ZEROCOPY_VERSION_1)); 2848 2849 (*ill_zerocopy_capab)->ill_zerocopy_version = 2850 zc_ic->zerocopy_version; 2851 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2852 zc_ic->zerocopy_flags; 2853 2854 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2855 } else { 2856 uint_t size; 2857 uchar_t *rptr; 2858 2859 size = sizeof (dl_capability_req_t) + 2860 sizeof (dl_capability_sub_t) + 2861 sizeof (dl_capab_zerocopy_t); 2862 2863 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2864 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2865 "could not enable zerocopy for %s (ENOMEM)\n", 2866 ill->ill_name); 2867 return; 2868 } 2869 2870 rptr = nmp->b_rptr; 2871 /* initialize dl_capability_req_t */ 2872 oc = (dl_capability_req_t *)rptr; 2873 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2874 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2875 sizeof (dl_capab_zerocopy_t); 2876 rptr += sizeof (dl_capability_req_t); 2877 2878 /* initialize dl_capability_sub_t */ 2879 bcopy(isub, rptr, sizeof (*isub)); 2880 rptr += sizeof (*isub); 2881 2882 /* initialize dl_capab_zerocopy_t */ 2883 zc_oc = (dl_capab_zerocopy_t *)rptr; 2884 *zc_oc = *zc_ic; 2885 2886 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2887 "to enable zero-copy version %d\n", ill->ill_name, 2888 ZEROCOPY_VERSION_1)); 2889 2890 /* set VMSAFE_MEM flag */ 2891 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2892 2893 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2894 ill_capability_send(ill, nmp); 2895 } 2896 } 2897 2898 static void 2899 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2900 { 2901 dl_capab_zerocopy_t *zerocopy_subcap; 2902 dl_capability_sub_t *dl_subcap; 2903 2904 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2905 return; 2906 2907 ASSERT(ill->ill_zerocopy_capab != NULL); 2908 2909 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2910 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2911 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2912 2913 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2914 zerocopy_subcap->zerocopy_version = 2915 ill->ill_zerocopy_capab->ill_zerocopy_version; 2916 zerocopy_subcap->zerocopy_flags = 0; 2917 2918 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2919 } 2920 2921 /* 2922 * DLD capability 2923 * Refer to dld.h for more information regarding the purpose and usage 2924 * of this capability. 2925 */ 2926 static void 2927 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2928 { 2929 dl_capab_dld_t *dld_ic, dld; 2930 uint_t sub_dl_cap = isub->dl_cap; 2931 uint8_t *capend; 2932 ill_dld_capab_t *idc; 2933 2934 ASSERT(IAM_WRITER_ILL(ill)); 2935 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2936 2937 /* 2938 * Note: range checks here are not absolutely sufficient to 2939 * make us robust against malformed messages sent by drivers; 2940 * this is in keeping with the rest of IP's dlpi handling. 2941 * (Remember, it's coming from something else in the kernel 2942 * address space) 2943 */ 2944 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2945 if (capend > mp->b_wptr) { 2946 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2947 "malformed sub-capability too long for mblk"); 2948 return; 2949 } 2950 dld_ic = (dl_capab_dld_t *)(isub + 1); 2951 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2952 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2953 "unsupported DLD sub-capability (version %d, " 2954 "expected %d)", dld_ic->dld_version, 2955 DLD_CURRENT_VERSION); 2956 return; 2957 } 2958 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2959 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2960 "capability isn't as expected; pass-thru module(s) " 2961 "detected, discarding capability\n")); 2962 return; 2963 } 2964 2965 /* 2966 * Copy locally to ensure alignment. 2967 */ 2968 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2969 2970 if ((idc = ill->ill_dld_capab) == NULL) { 2971 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 2972 if (idc == NULL) { 2973 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2974 "could not enable DLD version %d " 2975 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 2976 ill->ill_name); 2977 return; 2978 } 2979 ill->ill_dld_capab = idc; 2980 } 2981 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 2982 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 2983 ip1dbg(("ill_capability_dld_ack: interface %s " 2984 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 2985 2986 ill_capability_dld_enable(ill); 2987 } 2988 2989 /* 2990 * Typically capability negotiation between IP and the driver happens via 2991 * DLPI message exchange. However GLD also offers a direct function call 2992 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 2993 * But arbitrary function calls into IP or GLD are not permitted, since both 2994 * of them are protected by their own perimeter mechanism. The perimeter can 2995 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 2996 * these perimeters is IP -> MAC. Thus for example to enable the squeue 2997 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 2998 * to enter the mac perimeter and then do the direct function calls into 2999 * GLD to enable squeue polling. The ring related callbacks from the mac into 3000 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3001 * protected by the mac perimeter. 3002 */ 3003 static void 3004 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3005 { 3006 ill_dld_capab_t *idc = ill->ill_dld_capab; 3007 int err; 3008 3009 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3010 DLD_ENABLE); 3011 ASSERT(err == 0); 3012 } 3013 3014 static void 3015 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3016 { 3017 ill_dld_capab_t *idc = ill->ill_dld_capab; 3018 int err; 3019 3020 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3021 DLD_DISABLE); 3022 ASSERT(err == 0); 3023 } 3024 3025 boolean_t 3026 ill_mac_perim_held(ill_t *ill) 3027 { 3028 ill_dld_capab_t *idc = ill->ill_dld_capab; 3029 3030 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3031 DLD_QUERY)); 3032 } 3033 3034 static void 3035 ill_capability_direct_enable(ill_t *ill) 3036 { 3037 ill_dld_capab_t *idc = ill->ill_dld_capab; 3038 ill_dld_direct_t *idd = &idc->idc_direct; 3039 dld_capab_direct_t direct; 3040 int rc; 3041 3042 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3043 3044 bzero(&direct, sizeof (direct)); 3045 direct.di_rx_cf = (uintptr_t)ip_input; 3046 direct.di_rx_ch = ill; 3047 3048 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3049 DLD_ENABLE); 3050 if (rc == 0) { 3051 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3052 idd->idd_tx_dh = direct.di_tx_dh; 3053 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3054 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3055 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 3056 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 3057 /* 3058 * One time registration of flow enable callback function 3059 */ 3060 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3061 ill_flow_enable, ill); 3062 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3063 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3064 } else { 3065 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3066 "capability, rc = %d\n", rc); 3067 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3068 } 3069 } 3070 3071 static void 3072 ill_capability_poll_enable(ill_t *ill) 3073 { 3074 ill_dld_capab_t *idc = ill->ill_dld_capab; 3075 dld_capab_poll_t poll; 3076 int rc; 3077 3078 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3079 3080 bzero(&poll, sizeof (poll)); 3081 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3082 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3083 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3084 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3085 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3086 poll.poll_ring_ch = ill; 3087 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3088 DLD_ENABLE); 3089 if (rc == 0) { 3090 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3091 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3092 } else { 3093 ip1dbg(("warning: could not enable POLL " 3094 "capability, rc = %d\n", rc)); 3095 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3096 } 3097 } 3098 3099 /* 3100 * Enable the LSO capability. 3101 */ 3102 static void 3103 ill_capability_lso_enable(ill_t *ill) 3104 { 3105 ill_dld_capab_t *idc = ill->ill_dld_capab; 3106 dld_capab_lso_t lso; 3107 int rc; 3108 3109 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3110 3111 if (ill->ill_lso_capab == NULL) { 3112 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3113 KM_NOSLEEP); 3114 if (ill->ill_lso_capab == NULL) { 3115 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3116 "could not enable LSO for %s (ENOMEM)\n", 3117 ill->ill_name); 3118 return; 3119 } 3120 } 3121 3122 bzero(&lso, sizeof (lso)); 3123 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3124 DLD_ENABLE)) == 0) { 3125 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3126 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3127 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3128 ip1dbg(("ill_capability_lso_enable: interface %s " 3129 "has enabled LSO\n ", ill->ill_name)); 3130 } else { 3131 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3132 ill->ill_lso_capab = NULL; 3133 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3134 } 3135 } 3136 3137 static void 3138 ill_capability_dld_enable(ill_t *ill) 3139 { 3140 mac_perim_handle_t mph; 3141 3142 ASSERT(IAM_WRITER_ILL(ill)); 3143 3144 if (ill->ill_isv6) 3145 return; 3146 3147 ill_mac_perim_enter(ill, &mph); 3148 if (!ill->ill_isv6) { 3149 ill_capability_direct_enable(ill); 3150 ill_capability_poll_enable(ill); 3151 ill_capability_lso_enable(ill); 3152 } 3153 ill->ill_capabilities |= ILL_CAPAB_DLD; 3154 ill_mac_perim_exit(ill, mph); 3155 } 3156 3157 static void 3158 ill_capability_dld_disable(ill_t *ill) 3159 { 3160 ill_dld_capab_t *idc; 3161 ill_dld_direct_t *idd; 3162 mac_perim_handle_t mph; 3163 3164 ASSERT(IAM_WRITER_ILL(ill)); 3165 3166 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3167 return; 3168 3169 ill_mac_perim_enter(ill, &mph); 3170 3171 idc = ill->ill_dld_capab; 3172 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3173 /* 3174 * For performance we avoid locks in the transmit data path 3175 * and don't maintain a count of the number of threads using 3176 * direct calls. Thus some threads could be using direct 3177 * transmit calls to GLD, even after the capability mechanism 3178 * turns it off. This is still safe since the handles used in 3179 * the direct calls continue to be valid until the unplumb is 3180 * completed. Remove the callback that was added (1-time) at 3181 * capab enable time. 3182 */ 3183 mutex_enter(&ill->ill_lock); 3184 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3185 mutex_exit(&ill->ill_lock); 3186 if (ill->ill_flownotify_mh != NULL) { 3187 idd = &idc->idc_direct; 3188 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3189 ill->ill_flownotify_mh); 3190 ill->ill_flownotify_mh = NULL; 3191 } 3192 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3193 NULL, DLD_DISABLE); 3194 } 3195 3196 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3197 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3198 ip_squeue_clean_all(ill); 3199 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3200 NULL, DLD_DISABLE); 3201 } 3202 3203 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3204 ASSERT(ill->ill_lso_capab != NULL); 3205 /* 3206 * Clear the capability flag for LSO but retain the 3207 * ill_lso_capab structure since it's possible that another 3208 * thread is still referring to it. The structure only gets 3209 * deallocated when we destroy the ill. 3210 */ 3211 3212 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3213 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3214 NULL, DLD_DISABLE); 3215 } 3216 3217 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3218 ill_mac_perim_exit(ill, mph); 3219 } 3220 3221 /* 3222 * Capability Negotiation protocol 3223 * 3224 * We don't wait for DLPI capability operations to finish during interface 3225 * bringup or teardown. Doing so would introduce more asynchrony and the 3226 * interface up/down operations will need multiple return and restarts. 3227 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3228 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3229 * exclusive operation won't start until the DLPI operations of the previous 3230 * exclusive operation complete. 3231 * 3232 * The capability state machine is shown below. 3233 * 3234 * state next state event, action 3235 * 3236 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3237 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3238 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3239 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3240 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3241 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3242 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3243 * ill_capability_probe. 3244 */ 3245 3246 /* 3247 * Dedicated thread started from ip_stack_init that handles capability 3248 * disable. This thread ensures the taskq dispatch does not fail by waiting 3249 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3250 * that direct calls to DLD are done in a cv_waitable context. 3251 */ 3252 void 3253 ill_taskq_dispatch(ip_stack_t *ipst) 3254 { 3255 callb_cpr_t cprinfo; 3256 char name[64]; 3257 mblk_t *mp; 3258 3259 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3260 ipst->ips_netstack->netstack_stackid); 3261 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3262 name); 3263 mutex_enter(&ipst->ips_capab_taskq_lock); 3264 3265 for (;;) { 3266 mp = list_head(&ipst->ips_capab_taskq_list); 3267 while (mp != NULL) { 3268 list_remove(&ipst->ips_capab_taskq_list, mp); 3269 mutex_exit(&ipst->ips_capab_taskq_lock); 3270 VERIFY(taskq_dispatch(system_taskq, 3271 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3272 mutex_enter(&ipst->ips_capab_taskq_lock); 3273 mp = list_head(&ipst->ips_capab_taskq_list); 3274 } 3275 3276 if (ipst->ips_capab_taskq_quit) 3277 break; 3278 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3279 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3280 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3281 } 3282 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3283 CALLB_CPR_EXIT(&cprinfo); 3284 thread_exit(); 3285 } 3286 3287 /* 3288 * Consume a new-style hardware capabilities negotiation ack. 3289 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3290 */ 3291 static void 3292 ill_capability_ack_thr(void *arg) 3293 { 3294 mblk_t *mp = arg; 3295 dl_capability_ack_t *capp; 3296 dl_capability_sub_t *subp, *endp; 3297 ill_t *ill; 3298 boolean_t reneg; 3299 3300 ill = (ill_t *)mp->b_prev; 3301 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3302 3303 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3304 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3305 /* 3306 * We have received the ack for our DL_CAPAB reset request. 3307 * There isnt' anything in the message that needs processing. 3308 * All message based capabilities have been disabled, now 3309 * do the function call based capability disable. 3310 */ 3311 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3312 ill_capability_dld_disable(ill); 3313 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3314 if (reneg) 3315 ill_capability_probe(ill); 3316 goto done; 3317 } 3318 3319 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3320 ill->ill_dlpi_capab_state = IDCS_OK; 3321 3322 capp = (dl_capability_ack_t *)mp->b_rptr; 3323 3324 if (capp->dl_sub_length == 0) { 3325 /* no new-style capabilities */ 3326 goto done; 3327 } 3328 3329 /* make sure the driver supplied correct dl_sub_length */ 3330 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3331 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3332 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3333 goto done; 3334 } 3335 3336 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3337 /* 3338 * There are sub-capabilities. Process the ones we know about. 3339 * Loop until we don't have room for another sub-cap header.. 3340 */ 3341 for (subp = SC(capp, capp->dl_sub_offset), 3342 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3343 subp <= endp; 3344 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3345 3346 switch (subp->dl_cap) { 3347 case DL_CAPAB_ID_WRAPPER: 3348 ill_capability_id_ack(ill, mp, subp); 3349 break; 3350 default: 3351 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3352 break; 3353 } 3354 } 3355 #undef SC 3356 done: 3357 inet_freemsg(mp); 3358 ill_capability_done(ill); 3359 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3360 } 3361 3362 /* 3363 * This needs to be started in a taskq thread to provide a cv_waitable 3364 * context. 3365 */ 3366 void 3367 ill_capability_ack(ill_t *ill, mblk_t *mp) 3368 { 3369 ip_stack_t *ipst = ill->ill_ipst; 3370 3371 mp->b_prev = (mblk_t *)ill; 3372 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3373 TQ_NOSLEEP) != 0) 3374 return; 3375 3376 /* 3377 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3378 * which will do the dispatch using TQ_SLEEP to guarantee success. 3379 */ 3380 mutex_enter(&ipst->ips_capab_taskq_lock); 3381 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3382 cv_signal(&ipst->ips_capab_taskq_cv); 3383 mutex_exit(&ipst->ips_capab_taskq_lock); 3384 } 3385 3386 /* 3387 * This routine is called to scan the fragmentation reassembly table for 3388 * the specified ILL for any packets that are starting to smell. 3389 * dead_interval is the maximum time in seconds that will be tolerated. It 3390 * will either be the value specified in ip_g_frag_timeout, or zero if the 3391 * ILL is shutting down and it is time to blow everything off. 3392 * 3393 * It returns the number of seconds (as a time_t) that the next frag timer 3394 * should be scheduled for, 0 meaning that the timer doesn't need to be 3395 * re-started. Note that the method of calculating next_timeout isn't 3396 * entirely accurate since time will flow between the time we grab 3397 * current_time and the time we schedule the next timeout. This isn't a 3398 * big problem since this is the timer for sending an ICMP reassembly time 3399 * exceeded messages, and it doesn't have to be exactly accurate. 3400 * 3401 * This function is 3402 * sometimes called as writer, although this is not required. 3403 */ 3404 time_t 3405 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3406 { 3407 ipfb_t *ipfb; 3408 ipfb_t *endp; 3409 ipf_t *ipf; 3410 ipf_t *ipfnext; 3411 mblk_t *mp; 3412 time_t current_time = gethrestime_sec(); 3413 time_t next_timeout = 0; 3414 uint32_t hdr_length; 3415 mblk_t *send_icmp_head; 3416 mblk_t *send_icmp_head_v6; 3417 zoneid_t zoneid; 3418 ip_stack_t *ipst = ill->ill_ipst; 3419 3420 ipfb = ill->ill_frag_hash_tbl; 3421 if (ipfb == NULL) 3422 return (B_FALSE); 3423 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3424 /* Walk the frag hash table. */ 3425 for (; ipfb < endp; ipfb++) { 3426 send_icmp_head = NULL; 3427 send_icmp_head_v6 = NULL; 3428 mutex_enter(&ipfb->ipfb_lock); 3429 while ((ipf = ipfb->ipfb_ipf) != 0) { 3430 time_t frag_time = current_time - ipf->ipf_timestamp; 3431 time_t frag_timeout; 3432 3433 if (frag_time < dead_interval) { 3434 /* 3435 * There are some outstanding fragments 3436 * that will timeout later. Make note of 3437 * the time so that we can reschedule the 3438 * next timeout appropriately. 3439 */ 3440 frag_timeout = dead_interval - frag_time; 3441 if (next_timeout == 0 || 3442 frag_timeout < next_timeout) { 3443 next_timeout = frag_timeout; 3444 } 3445 break; 3446 } 3447 /* Time's up. Get it out of here. */ 3448 hdr_length = ipf->ipf_nf_hdr_len; 3449 ipfnext = ipf->ipf_hash_next; 3450 if (ipfnext) 3451 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3452 *ipf->ipf_ptphn = ipfnext; 3453 mp = ipf->ipf_mp->b_cont; 3454 for (; mp; mp = mp->b_cont) { 3455 /* Extra points for neatness. */ 3456 IP_REASS_SET_START(mp, 0); 3457 IP_REASS_SET_END(mp, 0); 3458 } 3459 mp = ipf->ipf_mp->b_cont; 3460 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3461 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3462 ipfb->ipfb_count -= ipf->ipf_count; 3463 ASSERT(ipfb->ipfb_frag_pkts > 0); 3464 ipfb->ipfb_frag_pkts--; 3465 /* 3466 * We do not send any icmp message from here because 3467 * we currently are holding the ipfb_lock for this 3468 * hash chain. If we try and send any icmp messages 3469 * from here we may end up via a put back into ip 3470 * trying to get the same lock, causing a recursive 3471 * mutex panic. Instead we build a list and send all 3472 * the icmp messages after we have dropped the lock. 3473 */ 3474 if (ill->ill_isv6) { 3475 if (hdr_length != 0) { 3476 mp->b_next = send_icmp_head_v6; 3477 send_icmp_head_v6 = mp; 3478 } else { 3479 freemsg(mp); 3480 } 3481 } else { 3482 if (hdr_length != 0) { 3483 mp->b_next = send_icmp_head; 3484 send_icmp_head = mp; 3485 } else { 3486 freemsg(mp); 3487 } 3488 } 3489 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3490 freeb(ipf->ipf_mp); 3491 } 3492 mutex_exit(&ipfb->ipfb_lock); 3493 /* 3494 * Now need to send any icmp messages that we delayed from 3495 * above. 3496 */ 3497 while (send_icmp_head_v6 != NULL) { 3498 ip6_t *ip6h; 3499 3500 mp = send_icmp_head_v6; 3501 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3502 mp->b_next = NULL; 3503 if (mp->b_datap->db_type == M_CTL) 3504 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3505 else 3506 ip6h = (ip6_t *)mp->b_rptr; 3507 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3508 ill, ipst); 3509 if (zoneid == ALL_ZONES) { 3510 freemsg(mp); 3511 } else { 3512 icmp_time_exceeded_v6(ill->ill_wq, mp, 3513 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3514 B_FALSE, zoneid, ipst); 3515 } 3516 } 3517 while (send_icmp_head != NULL) { 3518 ipaddr_t dst; 3519 3520 mp = send_icmp_head; 3521 send_icmp_head = send_icmp_head->b_next; 3522 mp->b_next = NULL; 3523 3524 if (mp->b_datap->db_type == M_CTL) 3525 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3526 else 3527 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3528 3529 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3530 if (zoneid == ALL_ZONES) { 3531 freemsg(mp); 3532 } else { 3533 icmp_time_exceeded(ill->ill_wq, mp, 3534 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3535 ipst); 3536 } 3537 } 3538 } 3539 /* 3540 * A non-dying ILL will use the return value to decide whether to 3541 * restart the frag timer, and for how long. 3542 */ 3543 return (next_timeout); 3544 } 3545 3546 /* 3547 * This routine is called when the approximate count of mblk memory used 3548 * for the specified ILL has exceeded max_count. 3549 */ 3550 void 3551 ill_frag_prune(ill_t *ill, uint_t max_count) 3552 { 3553 ipfb_t *ipfb; 3554 ipf_t *ipf; 3555 size_t count; 3556 3557 /* 3558 * If we are here within ip_min_frag_prune_time msecs remove 3559 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3560 * ill_frag_free_num_pkts. 3561 */ 3562 mutex_enter(&ill->ill_lock); 3563 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3564 (ip_min_frag_prune_time != 0 ? 3565 ip_min_frag_prune_time : msec_per_tick)) { 3566 3567 ill->ill_frag_free_num_pkts++; 3568 3569 } else { 3570 ill->ill_frag_free_num_pkts = 0; 3571 } 3572 ill->ill_last_frag_clean_time = lbolt; 3573 mutex_exit(&ill->ill_lock); 3574 3575 /* 3576 * free ill_frag_free_num_pkts oldest packets from each bucket. 3577 */ 3578 if (ill->ill_frag_free_num_pkts != 0) { 3579 int ix; 3580 3581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3582 ipfb = &ill->ill_frag_hash_tbl[ix]; 3583 mutex_enter(&ipfb->ipfb_lock); 3584 if (ipfb->ipfb_ipf != NULL) { 3585 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3586 ill->ill_frag_free_num_pkts); 3587 } 3588 mutex_exit(&ipfb->ipfb_lock); 3589 } 3590 } 3591 /* 3592 * While the reassembly list for this ILL is too big, prune a fragment 3593 * queue by age, oldest first. 3594 */ 3595 while (ill->ill_frag_count > max_count) { 3596 int ix; 3597 ipfb_t *oipfb = NULL; 3598 uint_t oldest = UINT_MAX; 3599 3600 count = 0; 3601 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3602 ipfb = &ill->ill_frag_hash_tbl[ix]; 3603 mutex_enter(&ipfb->ipfb_lock); 3604 ipf = ipfb->ipfb_ipf; 3605 if (ipf != NULL && ipf->ipf_gen < oldest) { 3606 oldest = ipf->ipf_gen; 3607 oipfb = ipfb; 3608 } 3609 count += ipfb->ipfb_count; 3610 mutex_exit(&ipfb->ipfb_lock); 3611 } 3612 if (oipfb == NULL) 3613 break; 3614 3615 if (count <= max_count) 3616 return; /* Somebody beat us to it, nothing to do */ 3617 mutex_enter(&oipfb->ipfb_lock); 3618 ipf = oipfb->ipfb_ipf; 3619 if (ipf != NULL) { 3620 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3621 } 3622 mutex_exit(&oipfb->ipfb_lock); 3623 } 3624 } 3625 3626 /* 3627 * free 'free_cnt' fragmented packets starting at ipf. 3628 */ 3629 void 3630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3631 { 3632 size_t count; 3633 mblk_t *mp; 3634 mblk_t *tmp; 3635 ipf_t **ipfp = ipf->ipf_ptphn; 3636 3637 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3638 ASSERT(ipfp != NULL); 3639 ASSERT(ipf != NULL); 3640 3641 while (ipf != NULL && free_cnt-- > 0) { 3642 count = ipf->ipf_count; 3643 mp = ipf->ipf_mp; 3644 ipf = ipf->ipf_hash_next; 3645 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3646 IP_REASS_SET_START(tmp, 0); 3647 IP_REASS_SET_END(tmp, 0); 3648 } 3649 atomic_add_32(&ill->ill_frag_count, -count); 3650 ASSERT(ipfb->ipfb_count >= count); 3651 ipfb->ipfb_count -= count; 3652 ASSERT(ipfb->ipfb_frag_pkts > 0); 3653 ipfb->ipfb_frag_pkts--; 3654 freemsg(mp); 3655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3656 } 3657 3658 if (ipf) 3659 ipf->ipf_ptphn = ipfp; 3660 ipfp[0] = ipf; 3661 } 3662 3663 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3664 "obsolete and may be removed in a future release of Solaris. Use " \ 3665 "ifconfig(1M) to manipulate the forwarding status of an interface." 3666 3667 /* 3668 * For obsolete per-interface forwarding configuration; 3669 * called in response to ND_GET. 3670 */ 3671 /* ARGSUSED */ 3672 static int 3673 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3674 { 3675 ill_t *ill = (ill_t *)cp; 3676 3677 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3678 3679 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3680 return (0); 3681 } 3682 3683 /* 3684 * For obsolete per-interface forwarding configuration; 3685 * called in response to ND_SET. 3686 */ 3687 /* ARGSUSED */ 3688 static int 3689 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3690 cred_t *ioc_cr) 3691 { 3692 long value; 3693 int retval; 3694 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3695 3696 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3697 3698 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3699 value < 0 || value > 1) { 3700 return (EINVAL); 3701 } 3702 3703 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3704 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3705 rw_exit(&ipst->ips_ill_g_lock); 3706 return (retval); 3707 } 3708 3709 /* 3710 * Helper function for ill_forward_set(). 3711 */ 3712 static void 3713 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3714 { 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3718 3719 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3720 (enable ? "Enabling" : "Disabling"), 3721 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3722 mutex_enter(&ill->ill_lock); 3723 if (enable) 3724 ill->ill_flags |= ILLF_ROUTER; 3725 else 3726 ill->ill_flags &= ~ILLF_ROUTER; 3727 mutex_exit(&ill->ill_lock); 3728 if (ill->ill_isv6) 3729 ill_set_nce_router_flags(ill, enable); 3730 /* Notify routing socket listeners of this change. */ 3731 if (ill->ill_ipif != NULL) 3732 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3733 } 3734 3735 /* 3736 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3737 * socket messages for each interface whose flags we change. 3738 */ 3739 int 3740 ill_forward_set(ill_t *ill, boolean_t enable) 3741 { 3742 ipmp_illgrp_t *illg; 3743 ip_stack_t *ipst = ill->ill_ipst; 3744 3745 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3746 3747 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3748 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3749 return (0); 3750 3751 if (IS_LOOPBACK(ill)) 3752 return (EINVAL); 3753 3754 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3755 /* 3756 * Update all of the interfaces in the group. 3757 */ 3758 illg = ill->ill_grp; 3759 ill = list_head(&illg->ig_if); 3760 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3761 ill_forward_set_on_ill(ill, enable); 3762 3763 /* 3764 * Update the IPMP meta-interface. 3765 */ 3766 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3767 return (0); 3768 } 3769 3770 ill_forward_set_on_ill(ill, enable); 3771 return (0); 3772 } 3773 3774 /* 3775 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3776 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3777 * set or clear. 3778 */ 3779 static void 3780 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3781 { 3782 ipif_t *ipif; 3783 nce_t *nce; 3784 3785 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3786 /* 3787 * NOTE: we match across the illgrp because nce's for 3788 * addresses on IPMP interfaces have an nce_ill that points to 3789 * the bound underlying ill. 3790 */ 3791 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3792 B_FALSE); 3793 if (nce != NULL) { 3794 mutex_enter(&nce->nce_lock); 3795 if (enable) 3796 nce->nce_flags |= NCE_F_ISROUTER; 3797 else 3798 nce->nce_flags &= ~NCE_F_ISROUTER; 3799 mutex_exit(&nce->nce_lock); 3800 NCE_REFRELE(nce); 3801 } 3802 } 3803 } 3804 3805 /* 3806 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3807 * for this ill. Make sure the v6/v4 question has been answered about this 3808 * ill. The creation of this ndd variable is only for backwards compatibility. 3809 * The preferred way to control per-interface IP forwarding is through the 3810 * ILLF_ROUTER interface flag. 3811 */ 3812 static int 3813 ill_set_ndd_name(ill_t *ill) 3814 { 3815 char *suffix; 3816 ip_stack_t *ipst = ill->ill_ipst; 3817 3818 ASSERT(IAM_WRITER_ILL(ill)); 3819 3820 if (ill->ill_isv6) 3821 suffix = ipv6_forward_suffix; 3822 else 3823 suffix = ipv4_forward_suffix; 3824 3825 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3826 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3827 /* 3828 * Copies over the '\0'. 3829 * Note that strlen(suffix) is always bounded. 3830 */ 3831 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3832 strlen(suffix) + 1); 3833 3834 /* 3835 * Use of the nd table requires holding the reader lock. 3836 * Modifying the nd table thru nd_load/nd_unload requires 3837 * the writer lock. 3838 */ 3839 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3840 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3841 nd_ill_forward_set, (caddr_t)ill)) { 3842 /* 3843 * If the nd_load failed, it only meant that it could not 3844 * allocate a new bunch of room for further NDD expansion. 3845 * Because of that, the ill_ndd_name will be set to 0, and 3846 * this interface is at the mercy of the global ip_forwarding 3847 * variable. 3848 */ 3849 rw_exit(&ipst->ips_ip_g_nd_lock); 3850 ill->ill_ndd_name = NULL; 3851 return (ENOMEM); 3852 } 3853 rw_exit(&ipst->ips_ip_g_nd_lock); 3854 return (0); 3855 } 3856 3857 /* 3858 * Intializes the context structure and returns the first ill in the list 3859 * cuurently start_list and end_list can have values: 3860 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3861 * IP_V4_G_HEAD Traverse IPV4 list only. 3862 * IP_V6_G_HEAD Traverse IPV6 list only. 3863 */ 3864 3865 /* 3866 * We don't check for CONDEMNED ills here. Caller must do that if 3867 * necessary under the ill lock. 3868 */ 3869 ill_t * 3870 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3871 ip_stack_t *ipst) 3872 { 3873 ill_if_t *ifp; 3874 ill_t *ill; 3875 avl_tree_t *avl_tree; 3876 3877 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3878 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3879 3880 /* 3881 * setup the lists to search 3882 */ 3883 if (end_list != MAX_G_HEADS) { 3884 ctx->ctx_current_list = start_list; 3885 ctx->ctx_last_list = end_list; 3886 } else { 3887 ctx->ctx_last_list = MAX_G_HEADS - 1; 3888 ctx->ctx_current_list = 0; 3889 } 3890 3891 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3892 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3893 if (ifp != (ill_if_t *) 3894 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3895 avl_tree = &ifp->illif_avl_by_ppa; 3896 ill = avl_first(avl_tree); 3897 /* 3898 * ill is guaranteed to be non NULL or ifp should have 3899 * not existed. 3900 */ 3901 ASSERT(ill != NULL); 3902 return (ill); 3903 } 3904 ctx->ctx_current_list++; 3905 } 3906 3907 return (NULL); 3908 } 3909 3910 /* 3911 * returns the next ill in the list. ill_first() must have been called 3912 * before calling ill_next() or bad things will happen. 3913 */ 3914 3915 /* 3916 * We don't check for CONDEMNED ills here. Caller must do that if 3917 * necessary under the ill lock. 3918 */ 3919 ill_t * 3920 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3921 { 3922 ill_if_t *ifp; 3923 ill_t *ill; 3924 ip_stack_t *ipst = lastill->ill_ipst; 3925 3926 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3927 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3928 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3929 AVL_AFTER)) != NULL) { 3930 return (ill); 3931 } 3932 3933 /* goto next ill_ifp in the list. */ 3934 ifp = lastill->ill_ifptr->illif_next; 3935 3936 /* make sure not at end of circular list */ 3937 while (ifp == 3938 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3939 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3940 return (NULL); 3941 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3942 } 3943 3944 return (avl_first(&ifp->illif_avl_by_ppa)); 3945 } 3946 3947 /* 3948 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3949 * The final number (PPA) must not have any leading zeros. Upon success, a 3950 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3951 */ 3952 static char * 3953 ill_get_ppa_ptr(char *name) 3954 { 3955 int namelen = strlen(name); 3956 int end_ndx = namelen - 1; 3957 int ppa_ndx, i; 3958 3959 /* 3960 * Check that the first character is [a-zA-Z], and that the last 3961 * character is [0-9]. 3962 */ 3963 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3964 return (NULL); 3965 3966 /* 3967 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3968 */ 3969 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3970 if (!isdigit(name[ppa_ndx - 1])) 3971 break; 3972 3973 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 3974 return (NULL); 3975 3976 /* 3977 * Check that the intermediate characters are [a-z0-9.] 3978 */ 3979 for (i = 1; i < ppa_ndx; i++) { 3980 if (!isalpha(name[i]) && !isdigit(name[i]) && 3981 name[i] != '.' && name[i] != '_') { 3982 return (NULL); 3983 } 3984 } 3985 3986 return (name + ppa_ndx); 3987 } 3988 3989 /* 3990 * use avl tree to locate the ill. 3991 */ 3992 static ill_t * 3993 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3994 ipsq_func_t func, int *error, ip_stack_t *ipst) 3995 { 3996 char *ppa_ptr = NULL; 3997 int len; 3998 uint_t ppa; 3999 ill_t *ill = NULL; 4000 ill_if_t *ifp; 4001 int list; 4002 ipsq_t *ipsq; 4003 4004 if (error != NULL) 4005 *error = 0; 4006 4007 /* 4008 * get ppa ptr 4009 */ 4010 if (isv6) 4011 list = IP_V6_G_HEAD; 4012 else 4013 list = IP_V4_G_HEAD; 4014 4015 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4016 if (error != NULL) 4017 *error = ENXIO; 4018 return (NULL); 4019 } 4020 4021 len = ppa_ptr - name + 1; 4022 4023 ppa = stoi(&ppa_ptr); 4024 4025 ifp = IP_VX_ILL_G_LIST(list, ipst); 4026 4027 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4028 /* 4029 * match is done on len - 1 as the name is not null 4030 * terminated it contains ppa in addition to the interface 4031 * name. 4032 */ 4033 if ((ifp->illif_name_len == len) && 4034 bcmp(ifp->illif_name, name, len - 1) == 0) { 4035 break; 4036 } else { 4037 ifp = ifp->illif_next; 4038 } 4039 } 4040 4041 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4042 /* 4043 * Even the interface type does not exist. 4044 */ 4045 if (error != NULL) 4046 *error = ENXIO; 4047 return (NULL); 4048 } 4049 4050 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4051 if (ill != NULL) { 4052 /* 4053 * The block comment at the start of ipif_down 4054 * explains the use of the macros used below 4055 */ 4056 GRAB_CONN_LOCK(q); 4057 mutex_enter(&ill->ill_lock); 4058 if (ILL_CAN_LOOKUP(ill)) { 4059 ill_refhold_locked(ill); 4060 mutex_exit(&ill->ill_lock); 4061 RELEASE_CONN_LOCK(q); 4062 return (ill); 4063 } else if (ILL_CAN_WAIT(ill, q)) { 4064 ipsq = ill->ill_phyint->phyint_ipsq; 4065 mutex_enter(&ipsq->ipsq_lock); 4066 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4067 mutex_exit(&ill->ill_lock); 4068 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4069 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4070 mutex_exit(&ipsq->ipsq_lock); 4071 RELEASE_CONN_LOCK(q); 4072 if (error != NULL) 4073 *error = EINPROGRESS; 4074 return (NULL); 4075 } 4076 mutex_exit(&ill->ill_lock); 4077 RELEASE_CONN_LOCK(q); 4078 } 4079 if (error != NULL) 4080 *error = ENXIO; 4081 return (NULL); 4082 } 4083 4084 /* 4085 * comparison function for use with avl. 4086 */ 4087 static int 4088 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4089 { 4090 uint_t ppa; 4091 uint_t ill_ppa; 4092 4093 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4094 4095 ppa = *((uint_t *)ppa_ptr); 4096 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4097 /* 4098 * We want the ill with the lowest ppa to be on the 4099 * top. 4100 */ 4101 if (ill_ppa < ppa) 4102 return (1); 4103 if (ill_ppa > ppa) 4104 return (-1); 4105 return (0); 4106 } 4107 4108 /* 4109 * remove an interface type from the global list. 4110 */ 4111 static void 4112 ill_delete_interface_type(ill_if_t *interface) 4113 { 4114 ASSERT(interface != NULL); 4115 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4116 4117 avl_destroy(&interface->illif_avl_by_ppa); 4118 if (interface->illif_ppa_arena != NULL) 4119 vmem_destroy(interface->illif_ppa_arena); 4120 4121 remque(interface); 4122 4123 mi_free(interface); 4124 } 4125 4126 /* 4127 * remove ill from the global list. 4128 */ 4129 static void 4130 ill_glist_delete(ill_t *ill) 4131 { 4132 ip_stack_t *ipst; 4133 phyint_t *phyi; 4134 4135 if (ill == NULL) 4136 return; 4137 ipst = ill->ill_ipst; 4138 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4139 4140 /* 4141 * If the ill was never inserted into the AVL tree 4142 * we skip the if branch. 4143 */ 4144 if (ill->ill_ifptr != NULL) { 4145 /* 4146 * remove from AVL tree and free ppa number 4147 */ 4148 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4149 4150 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4151 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4152 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4153 } 4154 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4155 ill_delete_interface_type(ill->ill_ifptr); 4156 } 4157 4158 /* 4159 * Indicate ill is no longer in the list. 4160 */ 4161 ill->ill_ifptr = NULL; 4162 ill->ill_name_length = 0; 4163 ill->ill_name[0] = '\0'; 4164 ill->ill_ppa = UINT_MAX; 4165 } 4166 4167 /* Generate one last event for this ill. */ 4168 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4169 ill->ill_name_length); 4170 4171 ASSERT(ill->ill_phyint != NULL); 4172 phyi = ill->ill_phyint; 4173 ill->ill_phyint = NULL; 4174 4175 /* 4176 * ill_init allocates a phyint always to store the copy 4177 * of flags relevant to phyint. At that point in time, we could 4178 * not assign the name and hence phyint_illv4/v6 could not be 4179 * initialized. Later in ipif_set_values, we assign the name to 4180 * the ill, at which point in time we assign phyint_illv4/v6. 4181 * Thus we don't rely on phyint_illv6 to be initialized always. 4182 */ 4183 if (ill->ill_flags & ILLF_IPV6) 4184 phyi->phyint_illv6 = NULL; 4185 else 4186 phyi->phyint_illv4 = NULL; 4187 4188 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4189 rw_exit(&ipst->ips_ill_g_lock); 4190 return; 4191 } 4192 4193 /* 4194 * There are no ills left on this phyint; pull it out of the phyint 4195 * avl trees, and free it. 4196 */ 4197 if (phyi->phyint_ifindex > 0) { 4198 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4199 phyi); 4200 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4201 phyi); 4202 } 4203 rw_exit(&ipst->ips_ill_g_lock); 4204 4205 phyint_free(phyi); 4206 } 4207 4208 /* 4209 * allocate a ppa, if the number of plumbed interfaces of this type are 4210 * less than ill_no_arena do a linear search to find a unused ppa. 4211 * When the number goes beyond ill_no_arena switch to using an arena. 4212 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4213 * is the return value for an error condition, so allocation starts at one 4214 * and is decremented by one. 4215 */ 4216 static int 4217 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4218 { 4219 ill_t *tmp_ill; 4220 uint_t start, end; 4221 int ppa; 4222 4223 if (ifp->illif_ppa_arena == NULL && 4224 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4225 /* 4226 * Create an arena. 4227 */ 4228 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4229 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4230 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4231 /* allocate what has already been assigned */ 4232 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4233 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4234 tmp_ill, AVL_AFTER)) { 4235 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4236 1, /* size */ 4237 1, /* align/quantum */ 4238 0, /* phase */ 4239 0, /* nocross */ 4240 /* minaddr */ 4241 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4242 /* maxaddr */ 4243 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4244 VM_NOSLEEP|VM_FIRSTFIT); 4245 if (ppa == 0) { 4246 ip1dbg(("ill_alloc_ppa: ppa allocation" 4247 " failed while switching")); 4248 vmem_destroy(ifp->illif_ppa_arena); 4249 ifp->illif_ppa_arena = NULL; 4250 break; 4251 } 4252 } 4253 } 4254 4255 if (ifp->illif_ppa_arena != NULL) { 4256 if (ill->ill_ppa == UINT_MAX) { 4257 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4258 1, VM_NOSLEEP|VM_FIRSTFIT); 4259 if (ppa == 0) 4260 return (EAGAIN); 4261 ill->ill_ppa = --ppa; 4262 } else { 4263 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4264 1, /* size */ 4265 1, /* align/quantum */ 4266 0, /* phase */ 4267 0, /* nocross */ 4268 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4269 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4270 VM_NOSLEEP|VM_FIRSTFIT); 4271 /* 4272 * Most likely the allocation failed because 4273 * the requested ppa was in use. 4274 */ 4275 if (ppa == 0) 4276 return (EEXIST); 4277 } 4278 return (0); 4279 } 4280 4281 /* 4282 * No arena is in use and not enough (>ill_no_arena) interfaces have 4283 * been plumbed to create one. Do a linear search to get a unused ppa. 4284 */ 4285 if (ill->ill_ppa == UINT_MAX) { 4286 end = UINT_MAX - 1; 4287 start = 0; 4288 } else { 4289 end = start = ill->ill_ppa; 4290 } 4291 4292 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4293 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4294 if (start++ >= end) { 4295 if (ill->ill_ppa == UINT_MAX) 4296 return (EAGAIN); 4297 else 4298 return (EEXIST); 4299 } 4300 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4301 } 4302 ill->ill_ppa = start; 4303 return (0); 4304 } 4305 4306 /* 4307 * Insert ill into the list of configured ill's. Once this function completes, 4308 * the ill is globally visible and is available through lookups. More precisely 4309 * this happens after the caller drops the ill_g_lock. 4310 */ 4311 static int 4312 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4313 { 4314 ill_if_t *ill_interface; 4315 avl_index_t where = 0; 4316 int error; 4317 int name_length; 4318 int index; 4319 boolean_t check_length = B_FALSE; 4320 ip_stack_t *ipst = ill->ill_ipst; 4321 4322 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4323 4324 name_length = mi_strlen(name) + 1; 4325 4326 if (isv6) 4327 index = IP_V6_G_HEAD; 4328 else 4329 index = IP_V4_G_HEAD; 4330 4331 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4332 /* 4333 * Search for interface type based on name 4334 */ 4335 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4336 if ((ill_interface->illif_name_len == name_length) && 4337 (strcmp(ill_interface->illif_name, name) == 0)) { 4338 break; 4339 } 4340 ill_interface = ill_interface->illif_next; 4341 } 4342 4343 /* 4344 * Interface type not found, create one. 4345 */ 4346 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4347 ill_g_head_t ghead; 4348 4349 /* 4350 * allocate ill_if_t structure 4351 */ 4352 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4353 if (ill_interface == NULL) { 4354 return (ENOMEM); 4355 } 4356 4357 (void) strcpy(ill_interface->illif_name, name); 4358 ill_interface->illif_name_len = name_length; 4359 4360 avl_create(&ill_interface->illif_avl_by_ppa, 4361 ill_compare_ppa, sizeof (ill_t), 4362 offsetof(struct ill_s, ill_avl_byppa)); 4363 4364 /* 4365 * link the structure in the back to maintain order 4366 * of configuration for ifconfig output. 4367 */ 4368 ghead = ipst->ips_ill_g_heads[index]; 4369 insque(ill_interface, ghead.ill_g_list_tail); 4370 } 4371 4372 if (ill->ill_ppa == UINT_MAX) 4373 check_length = B_TRUE; 4374 4375 error = ill_alloc_ppa(ill_interface, ill); 4376 if (error != 0) { 4377 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4378 ill_delete_interface_type(ill->ill_ifptr); 4379 return (error); 4380 } 4381 4382 /* 4383 * When the ppa is choosen by the system, check that there is 4384 * enough space to insert ppa. if a specific ppa was passed in this 4385 * check is not required as the interface name passed in will have 4386 * the right ppa in it. 4387 */ 4388 if (check_length) { 4389 /* 4390 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4391 */ 4392 char buf[sizeof (uint_t) * 3]; 4393 4394 /* 4395 * convert ppa to string to calculate the amount of space 4396 * required for it in the name. 4397 */ 4398 numtos(ill->ill_ppa, buf); 4399 4400 /* Do we have enough space to insert ppa ? */ 4401 4402 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4403 /* Free ppa and interface type struct */ 4404 if (ill_interface->illif_ppa_arena != NULL) { 4405 vmem_free(ill_interface->illif_ppa_arena, 4406 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4407 } 4408 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4409 ill_delete_interface_type(ill->ill_ifptr); 4410 4411 return (EINVAL); 4412 } 4413 } 4414 4415 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4416 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4417 4418 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4419 &where); 4420 ill->ill_ifptr = ill_interface; 4421 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4422 4423 ill_phyint_reinit(ill); 4424 return (0); 4425 } 4426 4427 /* Initialize the per phyint ipsq used for serialization */ 4428 static boolean_t 4429 ipsq_init(ill_t *ill, boolean_t enter) 4430 { 4431 ipsq_t *ipsq; 4432 ipxop_t *ipx; 4433 4434 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4435 return (B_FALSE); 4436 4437 ill->ill_phyint->phyint_ipsq = ipsq; 4438 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4439 ipx->ipx_ipsq = ipsq; 4440 ipsq->ipsq_next = ipsq; 4441 ipsq->ipsq_phyint = ill->ill_phyint; 4442 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4443 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4444 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4445 if (enter) { 4446 ipx->ipx_writer = curthread; 4447 ipx->ipx_forced = B_FALSE; 4448 ipx->ipx_reentry_cnt = 1; 4449 #ifdef DEBUG 4450 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4451 #endif 4452 } 4453 return (B_TRUE); 4454 } 4455 4456 /* 4457 * ill_init is called by ip_open when a device control stream is opened. 4458 * It does a few initializations, and shoots a DL_INFO_REQ message down 4459 * to the driver. The response is later picked up in ip_rput_dlpi and 4460 * used to set up default mechanisms for talking to the driver. (Always 4461 * called as writer.) 4462 * 4463 * If this function returns error, ip_open will call ip_close which in 4464 * turn will call ill_delete to clean up any memory allocated here that 4465 * is not yet freed. 4466 */ 4467 int 4468 ill_init(queue_t *q, ill_t *ill) 4469 { 4470 int count; 4471 dl_info_req_t *dlir; 4472 mblk_t *info_mp; 4473 uchar_t *frag_ptr; 4474 4475 /* 4476 * The ill is initialized to zero by mi_alloc*(). In addition 4477 * some fields already contain valid values, initialized in 4478 * ip_open(), before we reach here. 4479 */ 4480 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4481 4482 ill->ill_rq = q; 4483 ill->ill_wq = WR(q); 4484 4485 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4486 BPRI_HI); 4487 if (info_mp == NULL) 4488 return (ENOMEM); 4489 4490 /* 4491 * Allocate sufficient space to contain our fragment hash table and 4492 * the device name. 4493 */ 4494 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4495 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4496 if (frag_ptr == NULL) { 4497 freemsg(info_mp); 4498 return (ENOMEM); 4499 } 4500 ill->ill_frag_ptr = frag_ptr; 4501 ill->ill_frag_free_num_pkts = 0; 4502 ill->ill_last_frag_clean_time = 0; 4503 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4504 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4505 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4506 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4507 NULL, MUTEX_DEFAULT, NULL); 4508 } 4509 4510 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4511 if (ill->ill_phyint == NULL) { 4512 freemsg(info_mp); 4513 mi_free(frag_ptr); 4514 return (ENOMEM); 4515 } 4516 4517 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4518 /* 4519 * For now pretend this is a v4 ill. We need to set phyint_ill* 4520 * at this point because of the following reason. If we can't 4521 * enter the ipsq at some point and cv_wait, the writer that 4522 * wakes us up tries to locate us using the list of all phyints 4523 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4524 * If we don't set it now, we risk a missed wakeup. 4525 */ 4526 ill->ill_phyint->phyint_illv4 = ill; 4527 ill->ill_ppa = UINT_MAX; 4528 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4529 4530 if (!ipsq_init(ill, B_TRUE)) { 4531 freemsg(info_mp); 4532 mi_free(frag_ptr); 4533 mi_free(ill->ill_phyint); 4534 return (ENOMEM); 4535 } 4536 4537 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4538 4539 /* Frag queue limit stuff */ 4540 ill->ill_frag_count = 0; 4541 ill->ill_ipf_gen = 0; 4542 4543 ill->ill_global_timer = INFINITY; 4544 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4545 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4546 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4547 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4548 4549 /* 4550 * Initialize IPv6 configuration variables. The IP module is always 4551 * opened as an IPv4 module. Instead tracking down the cases where 4552 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4553 * here for convenience, this has no effect until the ill is set to do 4554 * IPv6. 4555 */ 4556 ill->ill_reachable_time = ND_REACHABLE_TIME; 4557 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4558 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4559 ill->ill_max_buf = ND_MAX_Q; 4560 ill->ill_refcnt = 0; 4561 4562 /* Send down the Info Request to the driver. */ 4563 info_mp->b_datap->db_type = M_PCPROTO; 4564 dlir = (dl_info_req_t *)info_mp->b_rptr; 4565 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4566 dlir->dl_primitive = DL_INFO_REQ; 4567 4568 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4569 4570 qprocson(q); 4571 ill_dlpi_send(ill, info_mp); 4572 4573 return (0); 4574 } 4575 4576 /* 4577 * ill_dls_info 4578 * creates datalink socket info from the device. 4579 */ 4580 int 4581 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4582 { 4583 size_t len; 4584 ill_t *ill = ipif->ipif_ill; 4585 4586 sdl->sdl_family = AF_LINK; 4587 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4588 sdl->sdl_type = ill->ill_type; 4589 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4590 len = strlen(sdl->sdl_data); 4591 ASSERT(len < 256); 4592 sdl->sdl_nlen = (uchar_t)len; 4593 sdl->sdl_alen = ill->ill_phys_addr_length; 4594 sdl->sdl_slen = 0; 4595 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4596 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4597 4598 return (sizeof (struct sockaddr_dl)); 4599 } 4600 4601 /* 4602 * ill_xarp_info 4603 * creates xarp info from the device. 4604 */ 4605 static int 4606 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4607 { 4608 sdl->sdl_family = AF_LINK; 4609 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4610 sdl->sdl_type = ill->ill_type; 4611 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4612 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4613 sdl->sdl_alen = ill->ill_phys_addr_length; 4614 sdl->sdl_slen = 0; 4615 return (sdl->sdl_nlen); 4616 } 4617 4618 static int 4619 loopback_kstat_update(kstat_t *ksp, int rw) 4620 { 4621 kstat_named_t *kn; 4622 netstackid_t stackid; 4623 netstack_t *ns; 4624 ip_stack_t *ipst; 4625 4626 if (ksp == NULL || ksp->ks_data == NULL) 4627 return (EIO); 4628 4629 if (rw == KSTAT_WRITE) 4630 return (EACCES); 4631 4632 kn = KSTAT_NAMED_PTR(ksp); 4633 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4634 4635 ns = netstack_find_by_stackid(stackid); 4636 if (ns == NULL) 4637 return (-1); 4638 4639 ipst = ns->netstack_ip; 4640 if (ipst == NULL) { 4641 netstack_rele(ns); 4642 return (-1); 4643 } 4644 kn[0].value.ui32 = ipst->ips_loopback_packets; 4645 kn[1].value.ui32 = ipst->ips_loopback_packets; 4646 netstack_rele(ns); 4647 return (0); 4648 } 4649 4650 /* 4651 * Has ifindex been plumbed already? 4652 */ 4653 boolean_t 4654 phyint_exists(uint_t index, ip_stack_t *ipst) 4655 { 4656 ASSERT(index != 0); 4657 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4658 4659 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4660 &index, NULL) != NULL); 4661 } 4662 4663 /* Pick a unique ifindex */ 4664 boolean_t 4665 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4666 { 4667 uint_t starting_index; 4668 4669 if (!ipst->ips_ill_index_wrap) { 4670 *indexp = ipst->ips_ill_index++; 4671 if (ipst->ips_ill_index == 0) { 4672 /* Reached the uint_t limit Next time wrap */ 4673 ipst->ips_ill_index_wrap = B_TRUE; 4674 } 4675 return (B_TRUE); 4676 } 4677 4678 /* 4679 * Start reusing unused indexes. Note that we hold the ill_g_lock 4680 * at this point and don't want to call any function that attempts 4681 * to get the lock again. 4682 */ 4683 starting_index = ipst->ips_ill_index++; 4684 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4685 if (ipst->ips_ill_index != 0 && 4686 !phyint_exists(ipst->ips_ill_index, ipst)) { 4687 /* found unused index - use it */ 4688 *indexp = ipst->ips_ill_index; 4689 return (B_TRUE); 4690 } 4691 } 4692 4693 /* 4694 * all interface indicies are inuse. 4695 */ 4696 return (B_FALSE); 4697 } 4698 4699 /* 4700 * Assign a unique interface index for the phyint. 4701 */ 4702 static boolean_t 4703 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4704 { 4705 ASSERT(phyi->phyint_ifindex == 0); 4706 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4707 } 4708 4709 /* 4710 * Initialize the flags on `phyi' as per the provided mactype. 4711 */ 4712 static void 4713 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 4714 { 4715 uint64_t flags = 0; 4716 4717 /* 4718 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 4719 * we always presume the underlying hardware is working and set 4720 * PHYI_RUNNING (if it's not, the driver will subsequently send a 4721 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 4722 * there are no active interfaces in the group so we set PHYI_FAILED. 4723 */ 4724 if (mactype == SUNW_DL_IPMP) 4725 flags |= PHYI_FAILED; 4726 else 4727 flags |= PHYI_RUNNING; 4728 4729 switch (mactype) { 4730 case SUNW_DL_VNI: 4731 flags |= PHYI_VIRTUAL; 4732 break; 4733 case SUNW_DL_IPMP: 4734 flags |= PHYI_IPMP; 4735 break; 4736 case DL_LOOP: 4737 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 4738 break; 4739 } 4740 4741 mutex_enter(&phyi->phyint_lock); 4742 phyi->phyint_flags |= flags; 4743 mutex_exit(&phyi->phyint_lock); 4744 } 4745 4746 /* 4747 * Return a pointer to the ill which matches the supplied name. Note that 4748 * the ill name length includes the null termination character. (May be 4749 * called as writer.) 4750 * If do_alloc and the interface is "lo0" it will be automatically created. 4751 * Cannot bump up reference on condemned ills. So dup detect can't be done 4752 * using this func. 4753 */ 4754 ill_t * 4755 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4756 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4757 ip_stack_t *ipst) 4758 { 4759 ill_t *ill; 4760 ipif_t *ipif; 4761 ipsq_t *ipsq; 4762 kstat_named_t *kn; 4763 boolean_t isloopback; 4764 in6_addr_t ov6addr; 4765 4766 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4767 4768 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4769 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4770 rw_exit(&ipst->ips_ill_g_lock); 4771 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4772 return (ill); 4773 4774 /* 4775 * Couldn't find it. Does this happen to be a lookup for the 4776 * loopback device and are we allowed to allocate it? 4777 */ 4778 if (!isloopback || !do_alloc) 4779 return (NULL); 4780 4781 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4782 4783 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4784 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4785 rw_exit(&ipst->ips_ill_g_lock); 4786 return (ill); 4787 } 4788 4789 /* Create the loopback device on demand */ 4790 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4791 sizeof (ipif_loopback_name), BPRI_MED)); 4792 if (ill == NULL) 4793 goto done; 4794 4795 *ill = ill_null; 4796 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4797 ill->ill_ipst = ipst; 4798 netstack_hold(ipst->ips_netstack); 4799 /* 4800 * For exclusive stacks we set the zoneid to zero 4801 * to make IP operate as if in the global zone. 4802 */ 4803 ill->ill_zoneid = GLOBAL_ZONEID; 4804 4805 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4806 if (ill->ill_phyint == NULL) 4807 goto done; 4808 4809 if (isv6) 4810 ill->ill_phyint->phyint_illv6 = ill; 4811 else 4812 ill->ill_phyint->phyint_illv4 = ill; 4813 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4814 phyint_flags_init(ill->ill_phyint, DL_LOOP); 4815 4816 ill->ill_max_frag = IP_LOOPBACK_MTU; 4817 /* Add room for tcp+ip headers */ 4818 if (isv6) { 4819 ill->ill_isv6 = B_TRUE; 4820 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4821 } else { 4822 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4823 } 4824 if (!ill_allocate_mibs(ill)) 4825 goto done; 4826 ill->ill_max_mtu = ill->ill_max_frag; 4827 /* 4828 * ipif_loopback_name can't be pointed at directly because its used 4829 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4830 * from the glist, ill_glist_delete() sets the first character of 4831 * ill_name to '\0'. 4832 */ 4833 ill->ill_name = (char *)ill + sizeof (*ill); 4834 (void) strcpy(ill->ill_name, ipif_loopback_name); 4835 ill->ill_name_length = sizeof (ipif_loopback_name); 4836 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4837 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4838 4839 ill->ill_global_timer = INFINITY; 4840 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4841 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4842 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4843 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4844 4845 /* No resolver here. */ 4846 ill->ill_net_type = IRE_LOOPBACK; 4847 4848 /* Initialize the ipsq */ 4849 if (!ipsq_init(ill, B_FALSE)) 4850 goto done; 4851 4852 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4853 if (ipif == NULL) 4854 goto done; 4855 4856 ill->ill_flags = ILLF_MULTICAST; 4857 4858 ov6addr = ipif->ipif_v6lcl_addr; 4859 /* Set up default loopback address and mask. */ 4860 if (!isv6) { 4861 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4862 4863 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4864 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4865 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4866 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4867 ipif->ipif_v6subnet); 4868 ill->ill_flags |= ILLF_IPV4; 4869 } else { 4870 ipif->ipif_v6lcl_addr = ipv6_loopback; 4871 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4872 ipif->ipif_v6net_mask = ipv6_all_ones; 4873 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4874 ipif->ipif_v6subnet); 4875 ill->ill_flags |= ILLF_IPV6; 4876 } 4877 4878 /* 4879 * Chain us in at the end of the ill list. hold the ill 4880 * before we make it globally visible. 1 for the lookup. 4881 */ 4882 ill->ill_refcnt = 0; 4883 ill_refhold(ill); 4884 4885 ill->ill_frag_count = 0; 4886 ill->ill_frag_free_num_pkts = 0; 4887 ill->ill_last_frag_clean_time = 0; 4888 4889 ipsq = ill->ill_phyint->phyint_ipsq; 4890 4891 if (ill_glist_insert(ill, "lo", isv6) != 0) 4892 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4893 4894 /* Let SCTP know so that it can add this to its list */ 4895 sctp_update_ill(ill, SCTP_ILL_INSERT); 4896 4897 /* 4898 * We have already assigned ipif_v6lcl_addr above, but we need to 4899 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4900 * requires to be after ill_glist_insert() since we need the 4901 * ill_index set. Pass on ipv6_loopback as the old address. 4902 */ 4903 sctp_update_ipif_addr(ipif, ov6addr); 4904 4905 /* 4906 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4907 * If so, free our original one. 4908 */ 4909 if (ipsq != ill->ill_phyint->phyint_ipsq) 4910 ipsq_delete(ipsq); 4911 4912 if (ipst->ips_loopback_ksp == NULL) { 4913 /* Export loopback interface statistics */ 4914 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4915 ipif_loopback_name, "net", 4916 KSTAT_TYPE_NAMED, 2, 0, 4917 ipst->ips_netstack->netstack_stackid); 4918 if (ipst->ips_loopback_ksp != NULL) { 4919 ipst->ips_loopback_ksp->ks_update = 4920 loopback_kstat_update; 4921 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4922 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4923 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4924 ipst->ips_loopback_ksp->ks_private = 4925 (void *)(uintptr_t)ipst->ips_netstack-> 4926 netstack_stackid; 4927 kstat_install(ipst->ips_loopback_ksp); 4928 } 4929 } 4930 4931 if (error != NULL) 4932 *error = 0; 4933 *did_alloc = B_TRUE; 4934 rw_exit(&ipst->ips_ill_g_lock); 4935 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4936 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4937 return (ill); 4938 done: 4939 if (ill != NULL) { 4940 if (ill->ill_phyint != NULL) { 4941 ipsq = ill->ill_phyint->phyint_ipsq; 4942 if (ipsq != NULL) { 4943 ipsq->ipsq_phyint = NULL; 4944 ipsq_delete(ipsq); 4945 } 4946 mi_free(ill->ill_phyint); 4947 } 4948 ill_free_mib(ill); 4949 if (ill->ill_ipst != NULL) 4950 netstack_rele(ill->ill_ipst->ips_netstack); 4951 mi_free(ill); 4952 } 4953 rw_exit(&ipst->ips_ill_g_lock); 4954 if (error != NULL) 4955 *error = ENOMEM; 4956 return (NULL); 4957 } 4958 4959 /* 4960 * For IPP calls - use the ip_stack_t for global stack. 4961 */ 4962 ill_t * 4963 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4964 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4965 { 4966 ip_stack_t *ipst; 4967 ill_t *ill; 4968 4969 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4970 if (ipst == NULL) { 4971 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4972 return (NULL); 4973 } 4974 4975 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4976 netstack_rele(ipst->ips_netstack); 4977 return (ill); 4978 } 4979 4980 /* 4981 * Return a pointer to the ill which matches the index and IP version type. 4982 */ 4983 ill_t * 4984 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4985 ipsq_func_t func, int *err, ip_stack_t *ipst) 4986 { 4987 ill_t *ill; 4988 ipsq_t *ipsq; 4989 phyint_t *phyi; 4990 4991 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4992 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4993 4994 if (err != NULL) 4995 *err = 0; 4996 4997 /* 4998 * Indexes are stored in the phyint - a common structure 4999 * to both IPv4 and IPv6. 5000 */ 5001 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5002 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5003 (void *) &index, NULL); 5004 if (phyi != NULL) { 5005 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5006 if (ill != NULL) { 5007 /* 5008 * The block comment at the start of ipif_down 5009 * explains the use of the macros used below 5010 */ 5011 GRAB_CONN_LOCK(q); 5012 mutex_enter(&ill->ill_lock); 5013 if (ILL_CAN_LOOKUP(ill)) { 5014 ill_refhold_locked(ill); 5015 mutex_exit(&ill->ill_lock); 5016 RELEASE_CONN_LOCK(q); 5017 rw_exit(&ipst->ips_ill_g_lock); 5018 return (ill); 5019 } else if (ILL_CAN_WAIT(ill, q)) { 5020 ipsq = ill->ill_phyint->phyint_ipsq; 5021 mutex_enter(&ipsq->ipsq_lock); 5022 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5023 rw_exit(&ipst->ips_ill_g_lock); 5024 mutex_exit(&ill->ill_lock); 5025 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5026 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5027 mutex_exit(&ipsq->ipsq_lock); 5028 RELEASE_CONN_LOCK(q); 5029 if (err != NULL) 5030 *err = EINPROGRESS; 5031 return (NULL); 5032 } 5033 RELEASE_CONN_LOCK(q); 5034 mutex_exit(&ill->ill_lock); 5035 } 5036 } 5037 rw_exit(&ipst->ips_ill_g_lock); 5038 if (err != NULL) 5039 *err = ENXIO; 5040 return (NULL); 5041 } 5042 5043 /* 5044 * Return the ifindex next in sequence after the passed in ifindex. 5045 * If there is no next ifindex for the given protocol, return 0. 5046 */ 5047 uint_t 5048 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5049 { 5050 phyint_t *phyi; 5051 phyint_t *phyi_initial; 5052 uint_t ifindex; 5053 5054 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5055 5056 if (index == 0) { 5057 phyi = avl_first( 5058 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5059 } else { 5060 phyi = phyi_initial = avl_find( 5061 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5062 (void *) &index, NULL); 5063 } 5064 5065 for (; phyi != NULL; 5066 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5067 phyi, AVL_AFTER)) { 5068 /* 5069 * If we're not returning the first interface in the tree 5070 * and we still haven't moved past the phyint_t that 5071 * corresponds to index, avl_walk needs to be called again 5072 */ 5073 if (!((index != 0) && (phyi == phyi_initial))) { 5074 if (isv6) { 5075 if ((phyi->phyint_illv6) && 5076 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5077 (phyi->phyint_illv6->ill_isv6 == 1)) 5078 break; 5079 } else { 5080 if ((phyi->phyint_illv4) && 5081 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5082 (phyi->phyint_illv4->ill_isv6 == 0)) 5083 break; 5084 } 5085 } 5086 } 5087 5088 rw_exit(&ipst->ips_ill_g_lock); 5089 5090 if (phyi != NULL) 5091 ifindex = phyi->phyint_ifindex; 5092 else 5093 ifindex = 0; 5094 5095 return (ifindex); 5096 } 5097 5098 /* 5099 * Return the ifindex for the named interface. 5100 * If there is no next ifindex for the interface, return 0. 5101 */ 5102 uint_t 5103 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5104 { 5105 phyint_t *phyi; 5106 avl_index_t where = 0; 5107 uint_t ifindex; 5108 5109 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5110 5111 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5112 name, &where)) == NULL) { 5113 rw_exit(&ipst->ips_ill_g_lock); 5114 return (0); 5115 } 5116 5117 ifindex = phyi->phyint_ifindex; 5118 5119 rw_exit(&ipst->ips_ill_g_lock); 5120 5121 return (ifindex); 5122 } 5123 5124 /* 5125 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5126 * that gives a running thread a reference to the ill. This reference must be 5127 * released by the thread when it is done accessing the ill and related 5128 * objects. ill_refcnt can not be used to account for static references 5129 * such as other structures pointing to an ill. Callers must generally 5130 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5131 * or be sure that the ill is not being deleted or changing state before 5132 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5133 * ill won't change any of its critical state such as address, netmask etc. 5134 */ 5135 void 5136 ill_refhold(ill_t *ill) 5137 { 5138 mutex_enter(&ill->ill_lock); 5139 ill->ill_refcnt++; 5140 ILL_TRACE_REF(ill); 5141 mutex_exit(&ill->ill_lock); 5142 } 5143 5144 void 5145 ill_refhold_locked(ill_t *ill) 5146 { 5147 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5148 ill->ill_refcnt++; 5149 ILL_TRACE_REF(ill); 5150 } 5151 5152 int 5153 ill_check_and_refhold(ill_t *ill) 5154 { 5155 mutex_enter(&ill->ill_lock); 5156 if (ILL_CAN_LOOKUP(ill)) { 5157 ill_refhold_locked(ill); 5158 mutex_exit(&ill->ill_lock); 5159 return (0); 5160 } 5161 mutex_exit(&ill->ill_lock); 5162 return (ILL_LOOKUP_FAILED); 5163 } 5164 5165 /* 5166 * Must not be called while holding any locks. Otherwise if this is 5167 * the last reference to be released, there is a chance of recursive mutex 5168 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5169 * to restart an ioctl. 5170 */ 5171 void 5172 ill_refrele(ill_t *ill) 5173 { 5174 mutex_enter(&ill->ill_lock); 5175 ASSERT(ill->ill_refcnt != 0); 5176 ill->ill_refcnt--; 5177 ILL_UNTRACE_REF(ill); 5178 if (ill->ill_refcnt != 0) { 5179 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5180 mutex_exit(&ill->ill_lock); 5181 return; 5182 } 5183 5184 /* Drops the ill_lock */ 5185 ipif_ill_refrele_tail(ill); 5186 } 5187 5188 /* 5189 * Obtain a weak reference count on the ill. This reference ensures the 5190 * ill won't be freed, but the ill may change any of its critical state 5191 * such as netmask, address etc. Returns an error if the ill has started 5192 * closing. 5193 */ 5194 boolean_t 5195 ill_waiter_inc(ill_t *ill) 5196 { 5197 mutex_enter(&ill->ill_lock); 5198 if (ill->ill_state_flags & ILL_CONDEMNED) { 5199 mutex_exit(&ill->ill_lock); 5200 return (B_FALSE); 5201 } 5202 ill->ill_waiters++; 5203 mutex_exit(&ill->ill_lock); 5204 return (B_TRUE); 5205 } 5206 5207 void 5208 ill_waiter_dcr(ill_t *ill) 5209 { 5210 mutex_enter(&ill->ill_lock); 5211 ill->ill_waiters--; 5212 if (ill->ill_waiters == 0) 5213 cv_broadcast(&ill->ill_cv); 5214 mutex_exit(&ill->ill_lock); 5215 } 5216 5217 /* 5218 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5219 * driver. We construct best guess defaults for lower level information that 5220 * we need. If an interface is brought up without injection of any overriding 5221 * information from outside, we have to be ready to go with these defaults. 5222 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5223 * we primarely want the dl_provider_style. 5224 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5225 * at which point we assume the other part of the information is valid. 5226 */ 5227 void 5228 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5229 { 5230 uchar_t *brdcst_addr; 5231 uint_t brdcst_addr_length, phys_addr_length; 5232 t_scalar_t sap_length; 5233 dl_info_ack_t *dlia; 5234 ip_m_t *ipm; 5235 dl_qos_cl_sel1_t *sel1; 5236 int min_mtu; 5237 5238 ASSERT(IAM_WRITER_ILL(ill)); 5239 5240 /* 5241 * Till the ill is fully up ILL_CHANGING will be set and 5242 * the ill is not globally visible. So no need for a lock. 5243 */ 5244 dlia = (dl_info_ack_t *)mp->b_rptr; 5245 ill->ill_mactype = dlia->dl_mac_type; 5246 5247 ipm = ip_m_lookup(dlia->dl_mac_type); 5248 if (ipm == NULL) { 5249 ipm = ip_m_lookup(DL_OTHER); 5250 ASSERT(ipm != NULL); 5251 } 5252 ill->ill_media = ipm; 5253 5254 /* 5255 * When the new DLPI stuff is ready we'll pull lengths 5256 * from dlia. 5257 */ 5258 if (dlia->dl_version == DL_VERSION_2) { 5259 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5260 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5261 brdcst_addr_length); 5262 if (brdcst_addr == NULL) { 5263 brdcst_addr_length = 0; 5264 } 5265 sap_length = dlia->dl_sap_length; 5266 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5267 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5268 brdcst_addr_length, sap_length, phys_addr_length)); 5269 } else { 5270 brdcst_addr_length = 6; 5271 brdcst_addr = ip_six_byte_all_ones; 5272 sap_length = -2; 5273 phys_addr_length = brdcst_addr_length; 5274 } 5275 5276 ill->ill_bcast_addr_length = brdcst_addr_length; 5277 ill->ill_phys_addr_length = phys_addr_length; 5278 ill->ill_sap_length = sap_length; 5279 5280 /* 5281 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5282 * but we must ensure a minimum IP MTU is used since other bits of 5283 * IP will fly apart otherwise. 5284 */ 5285 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5286 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5287 ill->ill_max_mtu = ill->ill_max_frag; 5288 5289 ill->ill_type = ipm->ip_m_type; 5290 5291 if (!ill->ill_dlpi_style_set) { 5292 if (dlia->dl_provider_style == DL_STYLE2) 5293 ill->ill_needs_attach = 1; 5294 5295 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 5296 5297 /* 5298 * Allocate the first ipif on this ill. We don't delay it 5299 * further as ioctl handling assumes at least one ipif exists. 5300 * 5301 * At this point we don't know whether the ill is v4 or v6. 5302 * We will know this whan the SIOCSLIFNAME happens and 5303 * the correct value for ill_isv6 will be assigned in 5304 * ipif_set_values(). We need to hold the ill lock and 5305 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5306 * the wakeup. 5307 */ 5308 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5309 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5310 mutex_enter(&ill->ill_lock); 5311 ASSERT(ill->ill_dlpi_style_set == 0); 5312 ill->ill_dlpi_style_set = 1; 5313 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5314 cv_broadcast(&ill->ill_cv); 5315 mutex_exit(&ill->ill_lock); 5316 freemsg(mp); 5317 return; 5318 } 5319 ASSERT(ill->ill_ipif != NULL); 5320 /* 5321 * We know whether it is IPv4 or IPv6 now, as this is the 5322 * second DL_INFO_ACK we are recieving in response to the 5323 * DL_INFO_REQ sent in ipif_set_values. 5324 */ 5325 if (ill->ill_isv6) 5326 ill->ill_sap = IP6_DL_SAP; 5327 else 5328 ill->ill_sap = IP_DL_SAP; 5329 /* 5330 * Set ipif_mtu which is used to set the IRE's 5331 * ire_max_frag value. The driver could have sent 5332 * a different mtu from what it sent last time. No 5333 * need to call ipif_mtu_change because IREs have 5334 * not yet been created. 5335 */ 5336 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5337 /* 5338 * Clear all the flags that were set based on ill_bcast_addr_length 5339 * and ill_phys_addr_length (in ipif_set_values) as these could have 5340 * changed now and we need to re-evaluate. 5341 */ 5342 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5343 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5344 5345 /* 5346 * Free ill_resolver_mp and ill_bcast_mp as things could have 5347 * changed now. 5348 * 5349 * NOTE: The IPMP meta-interface is special-cased because it starts 5350 * with no underlying interfaces (and thus an unknown broadcast 5351 * address length), but we enforce that an interface is broadcast- 5352 * capable as part of allowing it to join a group. 5353 */ 5354 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5355 if (ill->ill_resolver_mp != NULL) 5356 freemsg(ill->ill_resolver_mp); 5357 if (ill->ill_bcast_mp != NULL) 5358 freemsg(ill->ill_bcast_mp); 5359 if (ill->ill_flags & ILLF_XRESOLV) 5360 ill->ill_net_type = IRE_IF_RESOLVER; 5361 else 5362 ill->ill_net_type = IRE_IF_NORESOLVER; 5363 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5364 ill->ill_phys_addr_length, 5365 ill->ill_sap, 5366 ill->ill_sap_length); 5367 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5368 5369 if (ill->ill_isv6) 5370 /* 5371 * Note: xresolv interfaces will eventually need NOARP 5372 * set here as well, but that will require those 5373 * external resolvers to have some knowledge of 5374 * that flag and act appropriately. Not to be changed 5375 * at present. 5376 */ 5377 ill->ill_flags |= ILLF_NONUD; 5378 else 5379 ill->ill_flags |= ILLF_NOARP; 5380 5381 if (ill->ill_phys_addr_length == 0) { 5382 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5383 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5384 } else { 5385 /* pt-pt supports multicast. */ 5386 ill->ill_flags |= ILLF_MULTICAST; 5387 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5388 } 5389 } 5390 } else { 5391 ill->ill_net_type = IRE_IF_RESOLVER; 5392 if (ill->ill_bcast_mp != NULL) 5393 freemsg(ill->ill_bcast_mp); 5394 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5395 ill->ill_bcast_addr_length, ill->ill_sap, 5396 ill->ill_sap_length); 5397 /* 5398 * Later detect lack of DLPI driver multicast 5399 * capability by catching DL_ENABMULTI errors in 5400 * ip_rput_dlpi. 5401 */ 5402 ill->ill_flags |= ILLF_MULTICAST; 5403 if (!ill->ill_isv6) 5404 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5405 } 5406 5407 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 5408 if (ill->ill_mactype == SUNW_DL_IPMP) 5409 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5410 5411 /* By default an interface does not support any CoS marking */ 5412 ill->ill_flags &= ~ILLF_COS_ENABLED; 5413 5414 /* 5415 * If we get QoS information in DL_INFO_ACK, the device supports 5416 * some form of CoS marking, set ILLF_COS_ENABLED. 5417 */ 5418 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5419 dlia->dl_qos_length); 5420 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5421 ill->ill_flags |= ILLF_COS_ENABLED; 5422 } 5423 5424 /* Clear any previous error indication. */ 5425 ill->ill_error = 0; 5426 freemsg(mp); 5427 } 5428 5429 /* 5430 * Perform various checks to verify that an address would make sense as a 5431 * local, remote, or subnet interface address. 5432 */ 5433 static boolean_t 5434 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5435 { 5436 ipaddr_t net_mask; 5437 5438 /* 5439 * Don't allow all zeroes, or all ones, but allow 5440 * all ones netmask. 5441 */ 5442 if ((net_mask = ip_net_mask(addr)) == 0) 5443 return (B_FALSE); 5444 /* A given netmask overrides the "guess" netmask */ 5445 if (subnet_mask != 0) 5446 net_mask = subnet_mask; 5447 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5448 (addr == (addr | ~net_mask)))) { 5449 return (B_FALSE); 5450 } 5451 5452 /* 5453 * Even if the netmask is all ones, we do not allow address to be 5454 * 255.255.255.255 5455 */ 5456 if (addr == INADDR_BROADCAST) 5457 return (B_FALSE); 5458 5459 if (CLASSD(addr)) 5460 return (B_FALSE); 5461 5462 return (B_TRUE); 5463 } 5464 5465 #define V6_IPIF_LINKLOCAL(p) \ 5466 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5467 5468 /* 5469 * Compare two given ipifs and check if the second one is better than 5470 * the first one using the order of preference (not taking deprecated 5471 * into acount) specified in ipif_lookup_multicast(). 5472 */ 5473 static boolean_t 5474 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5475 { 5476 /* Check the least preferred first. */ 5477 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5478 /* If both ipifs are the same, use the first one. */ 5479 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5480 return (B_FALSE); 5481 else 5482 return (B_TRUE); 5483 } 5484 5485 /* For IPv6, check for link local address. */ 5486 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5487 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5488 V6_IPIF_LINKLOCAL(new_ipif)) { 5489 /* The second one is equal or less preferred. */ 5490 return (B_FALSE); 5491 } else { 5492 return (B_TRUE); 5493 } 5494 } 5495 5496 /* Then check for point to point interface. */ 5497 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5498 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5499 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5500 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5501 return (B_FALSE); 5502 } else { 5503 return (B_TRUE); 5504 } 5505 } 5506 5507 /* old_ipif is a normal interface, so no need to use the new one. */ 5508 return (B_FALSE); 5509 } 5510 5511 /* 5512 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5513 * The ipif must be up, and its ill must multicast-capable, not 5514 * condemned, not an underlying interface in an IPMP group, and 5515 * not a VNI interface. Order of preference: 5516 * 5517 * 1a. normal 5518 * 1b. normal, but deprecated 5519 * 2a. point to point 5520 * 2b. point to point, but deprecated 5521 * 3a. link local 5522 * 3b. link local, but deprecated 5523 * 4. loopback. 5524 */ 5525 ipif_t * 5526 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5527 { 5528 ill_t *ill; 5529 ill_walk_context_t ctx; 5530 ipif_t *ipif; 5531 ipif_t *saved_ipif = NULL; 5532 ipif_t *dep_ipif = NULL; 5533 5534 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5535 if (isv6) 5536 ill = ILL_START_WALK_V6(&ctx, ipst); 5537 else 5538 ill = ILL_START_WALK_V4(&ctx, ipst); 5539 5540 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5541 mutex_enter(&ill->ill_lock); 5542 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5543 !(ill->ill_flags & ILLF_MULTICAST)) { 5544 mutex_exit(&ill->ill_lock); 5545 continue; 5546 } 5547 for (ipif = ill->ill_ipif; ipif != NULL; 5548 ipif = ipif->ipif_next) { 5549 if (zoneid != ipif->ipif_zoneid && 5550 zoneid != ALL_ZONES && 5551 ipif->ipif_zoneid != ALL_ZONES) { 5552 continue; 5553 } 5554 if (!(ipif->ipif_flags & IPIF_UP) || 5555 !IPIF_CAN_LOOKUP(ipif)) { 5556 continue; 5557 } 5558 5559 /* 5560 * Found one candidate. If it is deprecated, 5561 * remember it in dep_ipif. If it is not deprecated, 5562 * remember it in saved_ipif. 5563 */ 5564 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5565 if (dep_ipif == NULL) { 5566 dep_ipif = ipif; 5567 } else if (ipif_comp_multi(dep_ipif, ipif, 5568 isv6)) { 5569 /* 5570 * If the previous dep_ipif does not 5571 * belong to the same ill, we've done 5572 * a ipif_refhold() on it. So we need 5573 * to release it. 5574 */ 5575 if (dep_ipif->ipif_ill != ill) 5576 ipif_refrele(dep_ipif); 5577 dep_ipif = ipif; 5578 } 5579 continue; 5580 } 5581 if (saved_ipif == NULL) { 5582 saved_ipif = ipif; 5583 } else { 5584 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5585 if (saved_ipif->ipif_ill != ill) 5586 ipif_refrele(saved_ipif); 5587 saved_ipif = ipif; 5588 } 5589 } 5590 } 5591 /* 5592 * Before going to the next ill, do a ipif_refhold() on the 5593 * saved ones. 5594 */ 5595 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5596 ipif_refhold_locked(saved_ipif); 5597 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5598 ipif_refhold_locked(dep_ipif); 5599 mutex_exit(&ill->ill_lock); 5600 } 5601 rw_exit(&ipst->ips_ill_g_lock); 5602 5603 /* 5604 * If we have only the saved_ipif, return it. But if we have both 5605 * saved_ipif and dep_ipif, check to see which one is better. 5606 */ 5607 if (saved_ipif != NULL) { 5608 if (dep_ipif != NULL) { 5609 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5610 ipif_refrele(saved_ipif); 5611 return (dep_ipif); 5612 } else { 5613 ipif_refrele(dep_ipif); 5614 return (saved_ipif); 5615 } 5616 } 5617 return (saved_ipif); 5618 } else { 5619 return (dep_ipif); 5620 } 5621 } 5622 5623 /* 5624 * This function is called when an application does not specify an interface 5625 * to be used for multicast traffic (joining a group/sending data). It 5626 * calls ire_lookup_multi() to look for an interface route for the 5627 * specified multicast group. Doing this allows the administrator to add 5628 * prefix routes for multicast to indicate which interface to be used for 5629 * multicast traffic in the above scenario. The route could be for all 5630 * multicast (224.0/4), for a single multicast group (a /32 route) or 5631 * anything in between. If there is no such multicast route, we just find 5632 * any multicast capable interface and return it. The returned ipif 5633 * is refhold'ed. 5634 */ 5635 ipif_t * 5636 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5637 { 5638 ire_t *ire; 5639 ipif_t *ipif; 5640 5641 ire = ire_lookup_multi(group, zoneid, ipst); 5642 if (ire != NULL) { 5643 ipif = ire->ire_ipif; 5644 ipif_refhold(ipif); 5645 ire_refrele(ire); 5646 return (ipif); 5647 } 5648 5649 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5650 } 5651 5652 /* 5653 * Look for an ipif with the specified interface address and destination. 5654 * The destination address is used only for matching point-to-point interfaces. 5655 */ 5656 ipif_t * 5657 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5658 ipsq_func_t func, int *error, ip_stack_t *ipst) 5659 { 5660 ipif_t *ipif; 5661 ill_t *ill; 5662 ill_walk_context_t ctx; 5663 ipsq_t *ipsq; 5664 5665 if (error != NULL) 5666 *error = 0; 5667 5668 /* 5669 * First match all the point-to-point interfaces 5670 * before looking at non-point-to-point interfaces. 5671 * This is done to avoid returning non-point-to-point 5672 * ipif instead of unnumbered point-to-point ipif. 5673 */ 5674 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5675 ill = ILL_START_WALK_V4(&ctx, ipst); 5676 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5677 GRAB_CONN_LOCK(q); 5678 mutex_enter(&ill->ill_lock); 5679 for (ipif = ill->ill_ipif; ipif != NULL; 5680 ipif = ipif->ipif_next) { 5681 /* Allow the ipif to be down */ 5682 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5683 (ipif->ipif_lcl_addr == if_addr) && 5684 (ipif->ipif_pp_dst_addr == dst)) { 5685 /* 5686 * The block comment at the start of ipif_down 5687 * explains the use of the macros used below 5688 */ 5689 if (IPIF_CAN_LOOKUP(ipif)) { 5690 ipif_refhold_locked(ipif); 5691 mutex_exit(&ill->ill_lock); 5692 RELEASE_CONN_LOCK(q); 5693 rw_exit(&ipst->ips_ill_g_lock); 5694 return (ipif); 5695 } else if (IPIF_CAN_WAIT(ipif, q)) { 5696 ipsq = ill->ill_phyint->phyint_ipsq; 5697 mutex_enter(&ipsq->ipsq_lock); 5698 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5699 mutex_exit(&ill->ill_lock); 5700 rw_exit(&ipst->ips_ill_g_lock); 5701 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5702 ill); 5703 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5704 mutex_exit(&ipsq->ipsq_lock); 5705 RELEASE_CONN_LOCK(q); 5706 if (error != NULL) 5707 *error = EINPROGRESS; 5708 return (NULL); 5709 } 5710 } 5711 } 5712 mutex_exit(&ill->ill_lock); 5713 RELEASE_CONN_LOCK(q); 5714 } 5715 rw_exit(&ipst->ips_ill_g_lock); 5716 5717 /* lookup the ipif based on interface address */ 5718 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5719 ipst); 5720 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5721 return (ipif); 5722 } 5723 5724 /* 5725 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5726 */ 5727 static ipif_t * 5728 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5729 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5730 ip_stack_t *ipst) 5731 { 5732 ipif_t *ipif; 5733 ill_t *ill; 5734 boolean_t ptp = B_FALSE; 5735 ipsq_t *ipsq; 5736 ill_walk_context_t ctx; 5737 5738 if (error != NULL) 5739 *error = 0; 5740 5741 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5742 /* 5743 * Repeat twice, first based on local addresses and 5744 * next time for pointopoint. 5745 */ 5746 repeat: 5747 ill = ILL_START_WALK_V4(&ctx, ipst); 5748 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5749 if (match_ill != NULL && ill != match_ill && 5750 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5751 continue; 5752 } 5753 GRAB_CONN_LOCK(q); 5754 mutex_enter(&ill->ill_lock); 5755 for (ipif = ill->ill_ipif; ipif != NULL; 5756 ipif = ipif->ipif_next) { 5757 if (zoneid != ALL_ZONES && 5758 zoneid != ipif->ipif_zoneid && 5759 ipif->ipif_zoneid != ALL_ZONES) 5760 continue; 5761 /* Allow the ipif to be down */ 5762 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5763 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5764 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5765 (ipif->ipif_pp_dst_addr == addr))) { 5766 /* 5767 * The block comment at the start of ipif_down 5768 * explains the use of the macros used below 5769 */ 5770 if (IPIF_CAN_LOOKUP(ipif)) { 5771 ipif_refhold_locked(ipif); 5772 mutex_exit(&ill->ill_lock); 5773 RELEASE_CONN_LOCK(q); 5774 rw_exit(&ipst->ips_ill_g_lock); 5775 return (ipif); 5776 } else if (IPIF_CAN_WAIT(ipif, q)) { 5777 ipsq = ill->ill_phyint->phyint_ipsq; 5778 mutex_enter(&ipsq->ipsq_lock); 5779 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5780 mutex_exit(&ill->ill_lock); 5781 rw_exit(&ipst->ips_ill_g_lock); 5782 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5783 ill); 5784 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5785 mutex_exit(&ipsq->ipsq_lock); 5786 RELEASE_CONN_LOCK(q); 5787 if (error != NULL) 5788 *error = EINPROGRESS; 5789 return (NULL); 5790 } 5791 } 5792 } 5793 mutex_exit(&ill->ill_lock); 5794 RELEASE_CONN_LOCK(q); 5795 } 5796 5797 /* If we already did the ptp case, then we are done */ 5798 if (ptp) { 5799 rw_exit(&ipst->ips_ill_g_lock); 5800 if (error != NULL) 5801 *error = ENXIO; 5802 return (NULL); 5803 } 5804 ptp = B_TRUE; 5805 goto repeat; 5806 } 5807 5808 /* 5809 * Check if the address exists in the system. 5810 * We don't hold the conn_lock as we will not perform defered ipsqueue 5811 * operation. 5812 */ 5813 boolean_t 5814 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5815 { 5816 ipif_t *ipif; 5817 ill_t *ill; 5818 ill_walk_context_t ctx; 5819 5820 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5821 5822 ill = ILL_START_WALK_V4(&ctx, ipst); 5823 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5824 mutex_enter(&ill->ill_lock); 5825 for (ipif = ill->ill_ipif; ipif != NULL; 5826 ipif = ipif->ipif_next) { 5827 if (zoneid != ALL_ZONES && 5828 zoneid != ipif->ipif_zoneid && 5829 ipif->ipif_zoneid != ALL_ZONES) 5830 continue; 5831 /* Allow the ipif to be down */ 5832 /* 5833 * XXX Different from ipif_lookup_addr(), we don't do 5834 * twice lookups. As from bind()'s point of view, we 5835 * may return once we find a match. 5836 */ 5837 if (((ipif->ipif_lcl_addr == addr) && 5838 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5839 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5840 (ipif->ipif_pp_dst_addr == addr))) { 5841 /* 5842 * Allow bind() to be successful even if the 5843 * ipif is with IPIF_CHANGING bit set. 5844 */ 5845 mutex_exit(&ill->ill_lock); 5846 rw_exit(&ipst->ips_ill_g_lock); 5847 return (B_TRUE); 5848 } 5849 } 5850 mutex_exit(&ill->ill_lock); 5851 } 5852 5853 rw_exit(&ipst->ips_ill_g_lock); 5854 return (B_FALSE); 5855 } 5856 5857 /* 5858 * Lookup an ipif with the specified address. For point-to-point links we 5859 * look for matches on either the destination address or the local address, 5860 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5861 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5862 * (or illgrp if `match_ill' is in an IPMP group). 5863 */ 5864 ipif_t * 5865 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5866 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5867 { 5868 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5869 func, error, ipst)); 5870 } 5871 5872 /* 5873 * Special abbreviated version of ipif_lookup_addr() that doesn't match 5874 * `match_ill' across the IPMP group. This function is only needed in some 5875 * corner-cases; almost everything should use ipif_lookup_addr(). 5876 */ 5877 static ipif_t * 5878 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5879 { 5880 ASSERT(match_ill != NULL); 5881 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 5882 NULL, NULL, NULL, NULL, ipst)); 5883 } 5884 5885 /* 5886 * Look for an ipif with the specified address. For point-point links 5887 * we look for matches on either the destination address and the local 5888 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5889 * is set. 5890 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 5891 * ill (or illgrp if `match_ill' is in an IPMP group). 5892 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5893 */ 5894 zoneid_t 5895 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5896 { 5897 zoneid_t zoneid; 5898 ipif_t *ipif; 5899 ill_t *ill; 5900 boolean_t ptp = B_FALSE; 5901 ill_walk_context_t ctx; 5902 5903 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5904 /* 5905 * Repeat twice, first based on local addresses and 5906 * next time for pointopoint. 5907 */ 5908 repeat: 5909 ill = ILL_START_WALK_V4(&ctx, ipst); 5910 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5911 if (match_ill != NULL && ill != match_ill && 5912 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 5913 continue; 5914 } 5915 mutex_enter(&ill->ill_lock); 5916 for (ipif = ill->ill_ipif; ipif != NULL; 5917 ipif = ipif->ipif_next) { 5918 /* Allow the ipif to be down */ 5919 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5920 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5921 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5922 (ipif->ipif_pp_dst_addr == addr)) && 5923 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5924 zoneid = ipif->ipif_zoneid; 5925 mutex_exit(&ill->ill_lock); 5926 rw_exit(&ipst->ips_ill_g_lock); 5927 /* 5928 * If ipif_zoneid was ALL_ZONES then we have 5929 * a trusted extensions shared IP address. 5930 * In that case GLOBAL_ZONEID works to send. 5931 */ 5932 if (zoneid == ALL_ZONES) 5933 zoneid = GLOBAL_ZONEID; 5934 return (zoneid); 5935 } 5936 } 5937 mutex_exit(&ill->ill_lock); 5938 } 5939 5940 /* If we already did the ptp case, then we are done */ 5941 if (ptp) { 5942 rw_exit(&ipst->ips_ill_g_lock); 5943 return (ALL_ZONES); 5944 } 5945 ptp = B_TRUE; 5946 goto repeat; 5947 } 5948 5949 /* 5950 * Look for an ipif that matches the specified remote address i.e. the 5951 * ipif that would receive the specified packet. 5952 * First look for directly connected interfaces and then do a recursive 5953 * IRE lookup and pick the first ipif corresponding to the source address in the 5954 * ire. 5955 * Returns: held ipif 5956 */ 5957 ipif_t * 5958 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5959 { 5960 ipif_t *ipif; 5961 ire_t *ire; 5962 ip_stack_t *ipst = ill->ill_ipst; 5963 5964 ASSERT(!ill->ill_isv6); 5965 5966 /* 5967 * Someone could be changing this ipif currently or change it 5968 * after we return this. Thus a few packets could use the old 5969 * old values. However structure updates/creates (ire, ilg, ilm etc) 5970 * will atomically be updated or cleaned up with the new value 5971 * Thus we don't need a lock to check the flags or other attrs below. 5972 */ 5973 mutex_enter(&ill->ill_lock); 5974 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5975 if (!IPIF_CAN_LOOKUP(ipif)) 5976 continue; 5977 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5978 ipif->ipif_zoneid != ALL_ZONES) 5979 continue; 5980 /* Allow the ipif to be down */ 5981 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5982 if ((ipif->ipif_pp_dst_addr == addr) || 5983 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5984 ipif->ipif_lcl_addr == addr)) { 5985 ipif_refhold_locked(ipif); 5986 mutex_exit(&ill->ill_lock); 5987 return (ipif); 5988 } 5989 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5990 ipif_refhold_locked(ipif); 5991 mutex_exit(&ill->ill_lock); 5992 return (ipif); 5993 } 5994 } 5995 mutex_exit(&ill->ill_lock); 5996 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5997 NULL, MATCH_IRE_RECURSIVE, ipst); 5998 if (ire != NULL) { 5999 /* 6000 * The callers of this function wants to know the 6001 * interface on which they have to send the replies 6002 * back. For IREs that have ire_stq and ire_ipif 6003 * derived from different ills, we really don't care 6004 * what we return here. 6005 */ 6006 ipif = ire->ire_ipif; 6007 if (ipif != NULL) { 6008 ipif_refhold(ipif); 6009 ire_refrele(ire); 6010 return (ipif); 6011 } 6012 ire_refrele(ire); 6013 } 6014 /* Pick the first interface */ 6015 ipif = ipif_get_next_ipif(NULL, ill); 6016 return (ipif); 6017 } 6018 6019 /* 6020 * This func does not prevent refcnt from increasing. But if 6021 * the caller has taken steps to that effect, then this func 6022 * can be used to determine whether the ill has become quiescent 6023 */ 6024 static boolean_t 6025 ill_is_quiescent(ill_t *ill) 6026 { 6027 ipif_t *ipif; 6028 6029 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6030 6031 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6032 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6033 return (B_FALSE); 6034 } 6035 } 6036 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6037 return (B_FALSE); 6038 } 6039 return (B_TRUE); 6040 } 6041 6042 boolean_t 6043 ill_is_freeable(ill_t *ill) 6044 { 6045 ipif_t *ipif; 6046 6047 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6048 6049 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6050 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6051 return (B_FALSE); 6052 } 6053 } 6054 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6055 return (B_FALSE); 6056 } 6057 return (B_TRUE); 6058 } 6059 6060 /* 6061 * This func does not prevent refcnt from increasing. But if 6062 * the caller has taken steps to that effect, then this func 6063 * can be used to determine whether the ipif has become quiescent 6064 */ 6065 static boolean_t 6066 ipif_is_quiescent(ipif_t *ipif) 6067 { 6068 ill_t *ill; 6069 6070 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6071 6072 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6073 return (B_FALSE); 6074 } 6075 6076 ill = ipif->ipif_ill; 6077 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6078 ill->ill_logical_down) { 6079 return (B_TRUE); 6080 } 6081 6082 /* This is the last ipif going down or being deleted on this ill */ 6083 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6084 return (B_FALSE); 6085 } 6086 6087 return (B_TRUE); 6088 } 6089 6090 /* 6091 * return true if the ipif can be destroyed: the ipif has to be quiescent 6092 * with zero references from ire/nce/ilm to it. 6093 */ 6094 static boolean_t 6095 ipif_is_freeable(ipif_t *ipif) 6096 { 6097 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6098 ASSERT(ipif->ipif_id != 0); 6099 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6100 } 6101 6102 /* 6103 * The ipif/ill/ire has been refreled. Do the tail processing. 6104 * Determine if the ipif or ill in question has become quiescent and if so 6105 * wakeup close and/or restart any queued pending ioctl that is waiting 6106 * for the ipif_down (or ill_down) 6107 */ 6108 void 6109 ipif_ill_refrele_tail(ill_t *ill) 6110 { 6111 mblk_t *mp; 6112 conn_t *connp; 6113 ipsq_t *ipsq; 6114 ipxop_t *ipx; 6115 ipif_t *ipif; 6116 dl_notify_ind_t *dlindp; 6117 6118 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6119 6120 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6121 /* ip_modclose() may be waiting */ 6122 cv_broadcast(&ill->ill_cv); 6123 } 6124 6125 ipsq = ill->ill_phyint->phyint_ipsq; 6126 mutex_enter(&ipsq->ipsq_lock); 6127 ipx = ipsq->ipsq_xop; 6128 mutex_enter(&ipx->ipx_lock); 6129 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6130 goto unlock; 6131 6132 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6133 6134 ipif = ipx->ipx_pending_ipif; 6135 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6136 goto unlock; 6137 6138 switch (ipx->ipx_waitfor) { 6139 case IPIF_DOWN: 6140 if (!ipif_is_quiescent(ipif)) 6141 goto unlock; 6142 break; 6143 case IPIF_FREE: 6144 if (!ipif_is_freeable(ipif)) 6145 goto unlock; 6146 break; 6147 case ILL_DOWN: 6148 if (!ill_is_quiescent(ill)) 6149 goto unlock; 6150 break; 6151 case ILL_FREE: 6152 /* 6153 * ILL_FREE is only for loopback; normal ill teardown waits 6154 * synchronously in ip_modclose() without using ipx_waitfor, 6155 * handled by the cv_broadcast() at the top of this function. 6156 */ 6157 if (!ill_is_freeable(ill)) 6158 goto unlock; 6159 break; 6160 default: 6161 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6162 (void *)ipsq, ipx->ipx_waitfor); 6163 } 6164 6165 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6166 mutex_exit(&ipx->ipx_lock); 6167 mp = ipsq_pending_mp_get(ipsq, &connp); 6168 mutex_exit(&ipsq->ipsq_lock); 6169 mutex_exit(&ill->ill_lock); 6170 6171 ASSERT(mp != NULL); 6172 /* 6173 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6174 * we can only get here when the current operation decides it 6175 * it needs to quiesce via ipsq_pending_mp_add(). 6176 */ 6177 switch (mp->b_datap->db_type) { 6178 case M_PCPROTO: 6179 case M_PROTO: 6180 /* 6181 * For now, only DL_NOTIFY_IND messages can use this facility. 6182 */ 6183 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6184 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6185 6186 switch (dlindp->dl_notification) { 6187 case DL_NOTE_PHYS_ADDR: 6188 qwriter_ip(ill, ill->ill_rq, mp, 6189 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6190 return; 6191 case DL_NOTE_REPLUMB: 6192 qwriter_ip(ill, ill->ill_rq, mp, 6193 ill_replumb_tail, CUR_OP, B_TRUE); 6194 return; 6195 default: 6196 ASSERT(0); 6197 ill_refrele(ill); 6198 } 6199 break; 6200 6201 case M_ERROR: 6202 case M_HANGUP: 6203 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6204 B_TRUE); 6205 return; 6206 6207 case M_IOCTL: 6208 case M_IOCDATA: 6209 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6210 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6211 return; 6212 6213 default: 6214 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6215 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6216 } 6217 return; 6218 unlock: 6219 mutex_exit(&ipsq->ipsq_lock); 6220 mutex_exit(&ipx->ipx_lock); 6221 mutex_exit(&ill->ill_lock); 6222 } 6223 6224 #ifdef DEBUG 6225 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6226 static void 6227 th_trace_rrecord(th_trace_t *th_trace) 6228 { 6229 tr_buf_t *tr_buf; 6230 uint_t lastref; 6231 6232 lastref = th_trace->th_trace_lastref; 6233 lastref++; 6234 if (lastref == TR_BUF_MAX) 6235 lastref = 0; 6236 th_trace->th_trace_lastref = lastref; 6237 tr_buf = &th_trace->th_trbuf[lastref]; 6238 tr_buf->tr_time = lbolt; 6239 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6240 } 6241 6242 static void 6243 th_trace_free(void *value) 6244 { 6245 th_trace_t *th_trace = value; 6246 6247 ASSERT(th_trace->th_refcnt == 0); 6248 kmem_free(th_trace, sizeof (*th_trace)); 6249 } 6250 6251 /* 6252 * Find or create the per-thread hash table used to track object references. 6253 * The ipst argument is NULL if we shouldn't allocate. 6254 * 6255 * Accesses per-thread data, so there's no need to lock here. 6256 */ 6257 static mod_hash_t * 6258 th_trace_gethash(ip_stack_t *ipst) 6259 { 6260 th_hash_t *thh; 6261 6262 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6263 mod_hash_t *mh; 6264 char name[256]; 6265 size_t objsize, rshift; 6266 int retv; 6267 6268 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6269 return (NULL); 6270 (void) snprintf(name, sizeof (name), "th_trace_%p", 6271 (void *)curthread); 6272 6273 /* 6274 * We use mod_hash_create_extended here rather than the more 6275 * obvious mod_hash_create_ptrhash because the latter has a 6276 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6277 * block. 6278 */ 6279 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6280 MAX(sizeof (ire_t), sizeof (nce_t))); 6281 rshift = highbit(objsize); 6282 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6283 th_trace_free, mod_hash_byptr, (void *)rshift, 6284 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6285 if (mh == NULL) { 6286 kmem_free(thh, sizeof (*thh)); 6287 return (NULL); 6288 } 6289 thh->thh_hash = mh; 6290 thh->thh_ipst = ipst; 6291 /* 6292 * We trace ills, ipifs, ires, and nces. All of these are 6293 * per-IP-stack, so the lock on the thread list is as well. 6294 */ 6295 rw_enter(&ip_thread_rwlock, RW_WRITER); 6296 list_insert_tail(&ip_thread_list, thh); 6297 rw_exit(&ip_thread_rwlock); 6298 retv = tsd_set(ip_thread_data, thh); 6299 ASSERT(retv == 0); 6300 } 6301 return (thh != NULL ? thh->thh_hash : NULL); 6302 } 6303 6304 boolean_t 6305 th_trace_ref(const void *obj, ip_stack_t *ipst) 6306 { 6307 th_trace_t *th_trace; 6308 mod_hash_t *mh; 6309 mod_hash_val_t val; 6310 6311 if ((mh = th_trace_gethash(ipst)) == NULL) 6312 return (B_FALSE); 6313 6314 /* 6315 * Attempt to locate the trace buffer for this obj and thread. 6316 * If it does not exist, then allocate a new trace buffer and 6317 * insert into the hash. 6318 */ 6319 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6320 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6321 if (th_trace == NULL) 6322 return (B_FALSE); 6323 6324 th_trace->th_id = curthread; 6325 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6326 (mod_hash_val_t)th_trace) != 0) { 6327 kmem_free(th_trace, sizeof (th_trace_t)); 6328 return (B_FALSE); 6329 } 6330 } else { 6331 th_trace = (th_trace_t *)val; 6332 } 6333 6334 ASSERT(th_trace->th_refcnt >= 0 && 6335 th_trace->th_refcnt < TR_BUF_MAX - 1); 6336 6337 th_trace->th_refcnt++; 6338 th_trace_rrecord(th_trace); 6339 return (B_TRUE); 6340 } 6341 6342 /* 6343 * For the purpose of tracing a reference release, we assume that global 6344 * tracing is always on and that the same thread initiated the reference hold 6345 * is releasing. 6346 */ 6347 void 6348 th_trace_unref(const void *obj) 6349 { 6350 int retv; 6351 mod_hash_t *mh; 6352 th_trace_t *th_trace; 6353 mod_hash_val_t val; 6354 6355 mh = th_trace_gethash(NULL); 6356 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6357 ASSERT(retv == 0); 6358 th_trace = (th_trace_t *)val; 6359 6360 ASSERT(th_trace->th_refcnt > 0); 6361 th_trace->th_refcnt--; 6362 th_trace_rrecord(th_trace); 6363 } 6364 6365 /* 6366 * If tracing has been disabled, then we assume that the reference counts are 6367 * now useless, and we clear them out before destroying the entries. 6368 */ 6369 void 6370 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6371 { 6372 th_hash_t *thh; 6373 mod_hash_t *mh; 6374 mod_hash_val_t val; 6375 th_trace_t *th_trace; 6376 int retv; 6377 6378 rw_enter(&ip_thread_rwlock, RW_READER); 6379 for (thh = list_head(&ip_thread_list); thh != NULL; 6380 thh = list_next(&ip_thread_list, thh)) { 6381 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6382 &val) == 0) { 6383 th_trace = (th_trace_t *)val; 6384 if (trace_disable) 6385 th_trace->th_refcnt = 0; 6386 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6387 ASSERT(retv == 0); 6388 } 6389 } 6390 rw_exit(&ip_thread_rwlock); 6391 } 6392 6393 void 6394 ipif_trace_ref(ipif_t *ipif) 6395 { 6396 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6397 6398 if (ipif->ipif_trace_disable) 6399 return; 6400 6401 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6402 ipif->ipif_trace_disable = B_TRUE; 6403 ipif_trace_cleanup(ipif); 6404 } 6405 } 6406 6407 void 6408 ipif_untrace_ref(ipif_t *ipif) 6409 { 6410 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6411 6412 if (!ipif->ipif_trace_disable) 6413 th_trace_unref(ipif); 6414 } 6415 6416 void 6417 ill_trace_ref(ill_t *ill) 6418 { 6419 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6420 6421 if (ill->ill_trace_disable) 6422 return; 6423 6424 if (!th_trace_ref(ill, ill->ill_ipst)) { 6425 ill->ill_trace_disable = B_TRUE; 6426 ill_trace_cleanup(ill); 6427 } 6428 } 6429 6430 void 6431 ill_untrace_ref(ill_t *ill) 6432 { 6433 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6434 6435 if (!ill->ill_trace_disable) 6436 th_trace_unref(ill); 6437 } 6438 6439 /* 6440 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6441 * failure, ipif_trace_disable is set. 6442 */ 6443 static void 6444 ipif_trace_cleanup(const ipif_t *ipif) 6445 { 6446 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6447 } 6448 6449 /* 6450 * Called when ill is unplumbed or when memory alloc fails. Note that on 6451 * failure, ill_trace_disable is set. 6452 */ 6453 static void 6454 ill_trace_cleanup(const ill_t *ill) 6455 { 6456 th_trace_cleanup(ill, ill->ill_trace_disable); 6457 } 6458 #endif /* DEBUG */ 6459 6460 void 6461 ipif_refhold_locked(ipif_t *ipif) 6462 { 6463 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6464 ipif->ipif_refcnt++; 6465 IPIF_TRACE_REF(ipif); 6466 } 6467 6468 void 6469 ipif_refhold(ipif_t *ipif) 6470 { 6471 ill_t *ill; 6472 6473 ill = ipif->ipif_ill; 6474 mutex_enter(&ill->ill_lock); 6475 ipif->ipif_refcnt++; 6476 IPIF_TRACE_REF(ipif); 6477 mutex_exit(&ill->ill_lock); 6478 } 6479 6480 /* 6481 * Must not be called while holding any locks. Otherwise if this is 6482 * the last reference to be released there is a chance of recursive mutex 6483 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6484 * to restart an ioctl. 6485 */ 6486 void 6487 ipif_refrele(ipif_t *ipif) 6488 { 6489 ill_t *ill; 6490 6491 ill = ipif->ipif_ill; 6492 6493 mutex_enter(&ill->ill_lock); 6494 ASSERT(ipif->ipif_refcnt != 0); 6495 ipif->ipif_refcnt--; 6496 IPIF_UNTRACE_REF(ipif); 6497 if (ipif->ipif_refcnt != 0) { 6498 mutex_exit(&ill->ill_lock); 6499 return; 6500 } 6501 6502 /* Drops the ill_lock */ 6503 ipif_ill_refrele_tail(ill); 6504 } 6505 6506 ipif_t * 6507 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6508 { 6509 ipif_t *ipif; 6510 6511 mutex_enter(&ill->ill_lock); 6512 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6513 ipif != NULL; ipif = ipif->ipif_next) { 6514 if (!IPIF_CAN_LOOKUP(ipif)) 6515 continue; 6516 ipif_refhold_locked(ipif); 6517 mutex_exit(&ill->ill_lock); 6518 return (ipif); 6519 } 6520 mutex_exit(&ill->ill_lock); 6521 return (NULL); 6522 } 6523 6524 /* 6525 * TODO: make this table extendible at run time 6526 * Return a pointer to the mac type info for 'mac_type' 6527 */ 6528 static ip_m_t * 6529 ip_m_lookup(t_uscalar_t mac_type) 6530 { 6531 ip_m_t *ipm; 6532 6533 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6534 if (ipm->ip_m_mac_type == mac_type) 6535 return (ipm); 6536 return (NULL); 6537 } 6538 6539 /* 6540 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6541 * ipif_arg is passed in to associate it with the correct interface. 6542 * We may need to restart this operation if the ipif cannot be looked up 6543 * due to an exclusive operation that is currently in progress. The restart 6544 * entry point is specified by 'func' 6545 */ 6546 int 6547 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6548 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6549 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6550 struct rtsa_s *sp, ip_stack_t *ipst) 6551 { 6552 ire_t *ire; 6553 ire_t *gw_ire = NULL; 6554 ipif_t *ipif = NULL; 6555 boolean_t ipif_refheld = B_FALSE; 6556 uint_t type; 6557 int match_flags = MATCH_IRE_TYPE; 6558 int error; 6559 tsol_gc_t *gc = NULL; 6560 tsol_gcgrp_t *gcgrp = NULL; 6561 boolean_t gcgrp_xtraref = B_FALSE; 6562 6563 ip1dbg(("ip_rt_add:")); 6564 6565 if (ire_arg != NULL) 6566 *ire_arg = NULL; 6567 6568 /* 6569 * If this is the case of RTF_HOST being set, then we set the netmask 6570 * to all ones (regardless if one was supplied). 6571 */ 6572 if (flags & RTF_HOST) 6573 mask = IP_HOST_MASK; 6574 6575 /* 6576 * Prevent routes with a zero gateway from being created (since 6577 * interfaces can currently be plumbed and brought up no assigned 6578 * address). 6579 */ 6580 if (gw_addr == 0) 6581 return (ENETUNREACH); 6582 /* 6583 * Get the ipif, if any, corresponding to the gw_addr 6584 */ 6585 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6586 ipst); 6587 if (ipif != NULL) { 6588 if (IS_VNI(ipif->ipif_ill)) { 6589 ipif_refrele(ipif); 6590 return (EINVAL); 6591 } 6592 ipif_refheld = B_TRUE; 6593 } else if (error == EINPROGRESS) { 6594 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6595 return (EINPROGRESS); 6596 } else { 6597 error = 0; 6598 } 6599 6600 if (ipif != NULL) { 6601 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6602 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6603 } else { 6604 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6605 } 6606 6607 /* 6608 * GateD will attempt to create routes with a loopback interface 6609 * address as the gateway and with RTF_GATEWAY set. We allow 6610 * these routes to be added, but create them as interface routes 6611 * since the gateway is an interface address. 6612 */ 6613 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6614 flags &= ~RTF_GATEWAY; 6615 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6616 mask == IP_HOST_MASK) { 6617 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6618 ALL_ZONES, NULL, match_flags, ipst); 6619 if (ire != NULL) { 6620 ire_refrele(ire); 6621 if (ipif_refheld) 6622 ipif_refrele(ipif); 6623 return (EEXIST); 6624 } 6625 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 6626 "for 0x%x\n", (void *)ipif, 6627 ipif->ipif_ire_type, 6628 ntohl(ipif->ipif_lcl_addr))); 6629 ire = ire_create( 6630 (uchar_t *)&dst_addr, /* dest address */ 6631 (uchar_t *)&mask, /* mask */ 6632 (uchar_t *)&ipif->ipif_src_addr, 6633 NULL, /* no gateway */ 6634 &ipif->ipif_mtu, 6635 NULL, 6636 ipif->ipif_rq, /* recv-from queue */ 6637 NULL, /* no send-to queue */ 6638 ipif->ipif_ire_type, /* LOOPBACK */ 6639 ipif, 6640 0, 6641 0, 6642 0, 6643 (ipif->ipif_flags & IPIF_PRIVATE) ? 6644 RTF_PRIVATE : 0, 6645 &ire_uinfo_null, 6646 NULL, 6647 NULL, 6648 ipst); 6649 6650 if (ire == NULL) { 6651 if (ipif_refheld) 6652 ipif_refrele(ipif); 6653 return (ENOMEM); 6654 } 6655 error = ire_add(&ire, q, mp, func, B_FALSE); 6656 if (error == 0) 6657 goto save_ire; 6658 if (ipif_refheld) 6659 ipif_refrele(ipif); 6660 return (error); 6661 6662 } 6663 } 6664 6665 /* 6666 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6667 * and the gateway address provided is one of the system's interface 6668 * addresses. By using the routing socket interface and supplying an 6669 * RTA_IFP sockaddr with an interface index, an alternate method of 6670 * specifying an interface route to be created is available which uses 6671 * the interface index that specifies the outgoing interface rather than 6672 * the address of an outgoing interface (which may not be able to 6673 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6674 * flag, routes can be specified which not only specify the next-hop to 6675 * be used when routing to a certain prefix, but also which outgoing 6676 * interface should be used. 6677 * 6678 * Previously, interfaces would have unique addresses assigned to them 6679 * and so the address assigned to a particular interface could be used 6680 * to identify a particular interface. One exception to this was the 6681 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6682 * 6683 * With the advent of IPv6 and its link-local addresses, this 6684 * restriction was relaxed and interfaces could share addresses between 6685 * themselves. In fact, typically all of the link-local interfaces on 6686 * an IPv6 node or router will have the same link-local address. In 6687 * order to differentiate between these interfaces, the use of an 6688 * interface index is necessary and this index can be carried inside a 6689 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6690 * of using the interface index, however, is that all of the ipif's that 6691 * are part of an ill have the same index and so the RTA_IFP sockaddr 6692 * cannot be used to differentiate between ipif's (or logical 6693 * interfaces) that belong to the same ill (physical interface). 6694 * 6695 * For example, in the following case involving IPv4 interfaces and 6696 * logical interfaces 6697 * 6698 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6699 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6700 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6701 * 6702 * the ipif's corresponding to each of these interface routes can be 6703 * uniquely identified by the "gateway" (actually interface address). 6704 * 6705 * In this case involving multiple IPv6 default routes to a particular 6706 * link-local gateway, the use of RTA_IFP is necessary to specify which 6707 * default route is of interest: 6708 * 6709 * default fe80::123:4567:89ab:cdef U if0 6710 * default fe80::123:4567:89ab:cdef U if1 6711 */ 6712 6713 /* RTF_GATEWAY not set */ 6714 if (!(flags & RTF_GATEWAY)) { 6715 queue_t *stq; 6716 6717 if (sp != NULL) { 6718 ip2dbg(("ip_rt_add: gateway security attributes " 6719 "cannot be set with interface route\n")); 6720 if (ipif_refheld) 6721 ipif_refrele(ipif); 6722 return (EINVAL); 6723 } 6724 6725 /* 6726 * As the interface index specified with the RTA_IFP sockaddr is 6727 * the same for all ipif's off of an ill, the matching logic 6728 * below uses MATCH_IRE_ILL if such an index was specified. 6729 * This means that routes sharing the same prefix when added 6730 * using a RTA_IFP sockaddr must have distinct interface 6731 * indices (namely, they must be on distinct ill's). 6732 * 6733 * On the other hand, since the gateway address will usually be 6734 * different for each ipif on the system, the matching logic 6735 * uses MATCH_IRE_IPIF in the case of a traditional interface 6736 * route. This means that interface routes for the same prefix 6737 * can be created if they belong to distinct ipif's and if a 6738 * RTA_IFP sockaddr is not present. 6739 */ 6740 if (ipif_arg != NULL) { 6741 if (ipif_refheld) { 6742 ipif_refrele(ipif); 6743 ipif_refheld = B_FALSE; 6744 } 6745 ipif = ipif_arg; 6746 match_flags |= MATCH_IRE_ILL; 6747 } else { 6748 /* 6749 * Check the ipif corresponding to the gw_addr 6750 */ 6751 if (ipif == NULL) 6752 return (ENETUNREACH); 6753 match_flags |= MATCH_IRE_IPIF; 6754 } 6755 ASSERT(ipif != NULL); 6756 6757 /* 6758 * We check for an existing entry at this point. 6759 * 6760 * Since a netmask isn't passed in via the ioctl interface 6761 * (SIOCADDRT), we don't check for a matching netmask in that 6762 * case. 6763 */ 6764 if (!ioctl_msg) 6765 match_flags |= MATCH_IRE_MASK; 6766 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6767 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6768 if (ire != NULL) { 6769 ire_refrele(ire); 6770 if (ipif_refheld) 6771 ipif_refrele(ipif); 6772 return (EEXIST); 6773 } 6774 6775 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6776 ? ipif->ipif_rq : ipif->ipif_wq; 6777 6778 /* 6779 * Create a copy of the IRE_LOOPBACK, 6780 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6781 * the modified address and netmask. 6782 */ 6783 ire = ire_create( 6784 (uchar_t *)&dst_addr, 6785 (uint8_t *)&mask, 6786 (uint8_t *)&ipif->ipif_src_addr, 6787 NULL, 6788 &ipif->ipif_mtu, 6789 NULL, 6790 NULL, 6791 stq, 6792 ipif->ipif_net_type, 6793 ipif, 6794 0, 6795 0, 6796 0, 6797 flags, 6798 &ire_uinfo_null, 6799 NULL, 6800 NULL, 6801 ipst); 6802 if (ire == NULL) { 6803 if (ipif_refheld) 6804 ipif_refrele(ipif); 6805 return (ENOMEM); 6806 } 6807 6808 /* 6809 * Some software (for example, GateD and Sun Cluster) attempts 6810 * to create (what amount to) IRE_PREFIX routes with the 6811 * loopback address as the gateway. This is primarily done to 6812 * set up prefixes with the RTF_REJECT flag set (for example, 6813 * when generating aggregate routes.) 6814 * 6815 * If the IRE type (as defined by ipif->ipif_net_type) is 6816 * IRE_LOOPBACK, then we map the request into a 6817 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6818 * these interface routes, by definition, can only be that. 6819 * 6820 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6821 * routine, but rather using ire_create() directly. 6822 * 6823 */ 6824 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6825 ire->ire_type = IRE_IF_NORESOLVER; 6826 ire->ire_flags |= RTF_BLACKHOLE; 6827 } 6828 6829 error = ire_add(&ire, q, mp, func, B_FALSE); 6830 if (error == 0) 6831 goto save_ire; 6832 6833 /* 6834 * In the result of failure, ire_add() will have already 6835 * deleted the ire in question, so there is no need to 6836 * do that here. 6837 */ 6838 if (ipif_refheld) 6839 ipif_refrele(ipif); 6840 return (error); 6841 } 6842 if (ipif_refheld) { 6843 ipif_refrele(ipif); 6844 ipif_refheld = B_FALSE; 6845 } 6846 6847 /* 6848 * Get an interface IRE for the specified gateway. 6849 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6850 * gateway, it is currently unreachable and we fail the request 6851 * accordingly. 6852 */ 6853 ipif = ipif_arg; 6854 if (ipif_arg != NULL) 6855 match_flags |= MATCH_IRE_ILL; 6856 again: 6857 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6858 ALL_ZONES, 0, NULL, match_flags, ipst); 6859 if (gw_ire == NULL) { 6860 /* 6861 * With IPMP, we allow host routes to influence in.mpathd's 6862 * target selection. However, if the test addresses are on 6863 * their own network, the above lookup will fail since the 6864 * underlying IRE_INTERFACEs are marked hidden. So allow 6865 * hidden test IREs to be found and try again. 6866 */ 6867 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6868 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6869 goto again; 6870 } 6871 return (ENETUNREACH); 6872 } 6873 6874 /* 6875 * We create one of three types of IREs as a result of this request 6876 * based on the netmask. A netmask of all ones (which is automatically 6877 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6878 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6879 * created. Otherwise, an IRE_PREFIX route is created for the 6880 * destination prefix. 6881 */ 6882 if (mask == IP_HOST_MASK) 6883 type = IRE_HOST; 6884 else if (mask == 0) 6885 type = IRE_DEFAULT; 6886 else 6887 type = IRE_PREFIX; 6888 6889 /* check for a duplicate entry */ 6890 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6891 NULL, ALL_ZONES, 0, NULL, 6892 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 6893 if (ire != NULL) { 6894 ire_refrele(gw_ire); 6895 ire_refrele(ire); 6896 return (EEXIST); 6897 } 6898 6899 /* Security attribute exists */ 6900 if (sp != NULL) { 6901 tsol_gcgrp_addr_t ga; 6902 6903 /* find or create the gateway credentials group */ 6904 ga.ga_af = AF_INET; 6905 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6906 6907 /* we hold reference to it upon success */ 6908 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6909 if (gcgrp == NULL) { 6910 ire_refrele(gw_ire); 6911 return (ENOMEM); 6912 } 6913 6914 /* 6915 * Create and add the security attribute to the group; a 6916 * reference to the group is made upon allocating a new 6917 * entry successfully. If it finds an already-existing 6918 * entry for the security attribute in the group, it simply 6919 * returns it and no new reference is made to the group. 6920 */ 6921 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6922 if (gc == NULL) { 6923 /* release reference held by gcgrp_lookup */ 6924 GCGRP_REFRELE(gcgrp); 6925 ire_refrele(gw_ire); 6926 return (ENOMEM); 6927 } 6928 } 6929 6930 /* Create the IRE. */ 6931 ire = ire_create( 6932 (uchar_t *)&dst_addr, /* dest address */ 6933 (uchar_t *)&mask, /* mask */ 6934 /* src address assigned by the caller? */ 6935 (uchar_t *)(((src_addr != INADDR_ANY) && 6936 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6937 (uchar_t *)&gw_addr, /* gateway address */ 6938 &gw_ire->ire_max_frag, 6939 NULL, /* no src nce */ 6940 NULL, /* no recv-from queue */ 6941 NULL, /* no send-to queue */ 6942 (ushort_t)type, /* IRE type */ 6943 ipif_arg, 6944 0, 6945 0, 6946 0, 6947 flags, 6948 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6949 gc, /* security attribute */ 6950 NULL, 6951 ipst); 6952 6953 /* 6954 * The ire holds a reference to the 'gc' and the 'gc' holds a 6955 * reference to the 'gcgrp'. We can now release the extra reference 6956 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6957 */ 6958 if (gcgrp_xtraref) 6959 GCGRP_REFRELE(gcgrp); 6960 if (ire == NULL) { 6961 if (gc != NULL) 6962 GC_REFRELE(gc); 6963 ire_refrele(gw_ire); 6964 return (ENOMEM); 6965 } 6966 6967 /* 6968 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6969 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6970 */ 6971 6972 /* Add the new IRE. */ 6973 error = ire_add(&ire, q, mp, func, B_FALSE); 6974 if (error != 0) { 6975 /* 6976 * In the result of failure, ire_add() will have already 6977 * deleted the ire in question, so there is no need to 6978 * do that here. 6979 */ 6980 ire_refrele(gw_ire); 6981 return (error); 6982 } 6983 6984 if (flags & RTF_MULTIRT) { 6985 /* 6986 * Invoke the CGTP (multirouting) filtering module 6987 * to add the dst address in the filtering database. 6988 * Replicated inbound packets coming from that address 6989 * will be filtered to discard the duplicates. 6990 * It is not necessary to call the CGTP filter hook 6991 * when the dst address is a broadcast or multicast, 6992 * because an IP source address cannot be a broadcast 6993 * or a multicast. 6994 */ 6995 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6996 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 6997 if (ire_dst != NULL) { 6998 ip_cgtp_bcast_add(ire, ire_dst, ipst); 6999 ire_refrele(ire_dst); 7000 goto save_ire; 7001 } 7002 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7003 !CLASSD(ire->ire_addr)) { 7004 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7005 ipst->ips_netstack->netstack_stackid, 7006 ire->ire_addr, 7007 ire->ire_gateway_addr, 7008 ire->ire_src_addr, 7009 gw_ire->ire_src_addr); 7010 if (res != 0) { 7011 ire_refrele(gw_ire); 7012 ire_delete(ire); 7013 return (res); 7014 } 7015 } 7016 } 7017 7018 /* 7019 * Now that the prefix IRE entry has been created, delete any 7020 * existing gateway IRE cache entries as well as any IRE caches 7021 * using the gateway, and force them to be created through 7022 * ip_newroute. 7023 */ 7024 if (gc != NULL) { 7025 ASSERT(gcgrp != NULL); 7026 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7027 } 7028 7029 save_ire: 7030 if (gw_ire != NULL) { 7031 ire_refrele(gw_ire); 7032 } 7033 if (ipif != NULL) { 7034 /* 7035 * Save enough information so that we can recreate the IRE if 7036 * the interface goes down and then up. The metrics associated 7037 * with the route will be saved as well when rts_setmetrics() is 7038 * called after the IRE has been created. In the case where 7039 * memory cannot be allocated, none of this information will be 7040 * saved. 7041 */ 7042 ipif_save_ire(ipif, ire); 7043 } 7044 if (ioctl_msg) 7045 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7046 if (ire_arg != NULL) { 7047 /* 7048 * Store the ire that was successfully added into where ire_arg 7049 * points to so that callers don't have to look it up 7050 * themselves (but they are responsible for ire_refrele()ing 7051 * the ire when they are finished with it). 7052 */ 7053 *ire_arg = ire; 7054 } else { 7055 ire_refrele(ire); /* Held in ire_add */ 7056 } 7057 if (ipif_refheld) 7058 ipif_refrele(ipif); 7059 return (0); 7060 } 7061 7062 /* 7063 * ip_rt_delete is called to delete an IPv4 route. 7064 * ipif_arg is passed in to associate it with the correct interface. 7065 * We may need to restart this operation if the ipif cannot be looked up 7066 * due to an exclusive operation that is currently in progress. The restart 7067 * entry point is specified by 'func' 7068 */ 7069 /* ARGSUSED4 */ 7070 int 7071 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7072 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7073 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7074 { 7075 ire_t *ire = NULL; 7076 ipif_t *ipif; 7077 boolean_t ipif_refheld = B_FALSE; 7078 uint_t type; 7079 uint_t match_flags = MATCH_IRE_TYPE; 7080 int err = 0; 7081 7082 ip1dbg(("ip_rt_delete:")); 7083 /* 7084 * If this is the case of RTF_HOST being set, then we set the netmask 7085 * to all ones. Otherwise, we use the netmask if one was supplied. 7086 */ 7087 if (flags & RTF_HOST) { 7088 mask = IP_HOST_MASK; 7089 match_flags |= MATCH_IRE_MASK; 7090 } else if (rtm_addrs & RTA_NETMASK) { 7091 match_flags |= MATCH_IRE_MASK; 7092 } 7093 7094 /* 7095 * Note that RTF_GATEWAY is never set on a delete, therefore 7096 * we check if the gateway address is one of our interfaces first, 7097 * and fall back on RTF_GATEWAY routes. 7098 * 7099 * This makes it possible to delete an original 7100 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7101 * 7102 * As the interface index specified with the RTA_IFP sockaddr is the 7103 * same for all ipif's off of an ill, the matching logic below uses 7104 * MATCH_IRE_ILL if such an index was specified. This means a route 7105 * sharing the same prefix and interface index as the the route 7106 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7107 * is specified in the request. 7108 * 7109 * On the other hand, since the gateway address will usually be 7110 * different for each ipif on the system, the matching logic 7111 * uses MATCH_IRE_IPIF in the case of a traditional interface 7112 * route. This means that interface routes for the same prefix can be 7113 * uniquely identified if they belong to distinct ipif's and if a 7114 * RTA_IFP sockaddr is not present. 7115 * 7116 * For more detail on specifying routes by gateway address and by 7117 * interface index, see the comments in ip_rt_add(). 7118 */ 7119 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7120 ipst); 7121 if (ipif != NULL) 7122 ipif_refheld = B_TRUE; 7123 else if (err == EINPROGRESS) 7124 return (err); 7125 else 7126 err = 0; 7127 if (ipif != NULL) { 7128 if (ipif_arg != NULL) { 7129 if (ipif_refheld) { 7130 ipif_refrele(ipif); 7131 ipif_refheld = B_FALSE; 7132 } 7133 ipif = ipif_arg; 7134 match_flags |= MATCH_IRE_ILL; 7135 } else { 7136 match_flags |= MATCH_IRE_IPIF; 7137 } 7138 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7139 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7140 ALL_ZONES, NULL, match_flags, ipst); 7141 } 7142 if (ire == NULL) { 7143 ire = ire_ftable_lookup(dst_addr, mask, 0, 7144 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7145 match_flags, ipst); 7146 } 7147 } 7148 7149 if (ire == NULL) { 7150 /* 7151 * At this point, the gateway address is not one of our own 7152 * addresses or a matching interface route was not found. We 7153 * set the IRE type to lookup based on whether 7154 * this is a host route, a default route or just a prefix. 7155 * 7156 * If an ipif_arg was passed in, then the lookup is based on an 7157 * interface index so MATCH_IRE_ILL is added to match_flags. 7158 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7159 * set as the route being looked up is not a traditional 7160 * interface route. 7161 */ 7162 match_flags &= ~MATCH_IRE_IPIF; 7163 match_flags |= MATCH_IRE_GW; 7164 if (ipif_arg != NULL) 7165 match_flags |= MATCH_IRE_ILL; 7166 if (mask == IP_HOST_MASK) 7167 type = IRE_HOST; 7168 else if (mask == 0) 7169 type = IRE_DEFAULT; 7170 else 7171 type = IRE_PREFIX; 7172 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7173 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7174 } 7175 7176 if (ipif_refheld) 7177 ipif_refrele(ipif); 7178 7179 /* ipif is not refheld anymore */ 7180 if (ire == NULL) 7181 return (ESRCH); 7182 7183 if (ire->ire_flags & RTF_MULTIRT) { 7184 /* 7185 * Invoke the CGTP (multirouting) filtering module 7186 * to remove the dst address from the filtering database. 7187 * Packets coming from that address will no longer be 7188 * filtered to remove duplicates. 7189 */ 7190 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7191 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7192 ipst->ips_netstack->netstack_stackid, 7193 ire->ire_addr, ire->ire_gateway_addr); 7194 } 7195 ip_cgtp_bcast_delete(ire, ipst); 7196 } 7197 7198 ipif = ire->ire_ipif; 7199 if (ipif != NULL) 7200 ipif_remove_ire(ipif, ire); 7201 if (ioctl_msg) 7202 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7203 ire_delete(ire); 7204 ire_refrele(ire); 7205 return (err); 7206 } 7207 7208 /* 7209 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7210 */ 7211 /* ARGSUSED */ 7212 int 7213 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7214 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7215 { 7216 ipaddr_t dst_addr; 7217 ipaddr_t gw_addr; 7218 ipaddr_t mask; 7219 int error = 0; 7220 mblk_t *mp1; 7221 struct rtentry *rt; 7222 ipif_t *ipif = NULL; 7223 ip_stack_t *ipst; 7224 7225 ASSERT(q->q_next == NULL); 7226 ipst = CONNQ_TO_IPST(q); 7227 7228 ip1dbg(("ip_siocaddrt:")); 7229 /* Existence of mp1 verified in ip_wput_nondata */ 7230 mp1 = mp->b_cont->b_cont; 7231 rt = (struct rtentry *)mp1->b_rptr; 7232 7233 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7234 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7235 7236 /* 7237 * If the RTF_HOST flag is on, this is a request to assign a gateway 7238 * to a particular host address. In this case, we set the netmask to 7239 * all ones for the particular destination address. Otherwise, 7240 * determine the netmask to be used based on dst_addr and the interfaces 7241 * in use. 7242 */ 7243 if (rt->rt_flags & RTF_HOST) { 7244 mask = IP_HOST_MASK; 7245 } else { 7246 /* 7247 * Note that ip_subnet_mask returns a zero mask in the case of 7248 * default (an all-zeroes address). 7249 */ 7250 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7251 } 7252 7253 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7254 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7255 if (ipif != NULL) 7256 ipif_refrele(ipif); 7257 return (error); 7258 } 7259 7260 /* 7261 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7262 */ 7263 /* ARGSUSED */ 7264 int 7265 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7266 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7267 { 7268 ipaddr_t dst_addr; 7269 ipaddr_t gw_addr; 7270 ipaddr_t mask; 7271 int error; 7272 mblk_t *mp1; 7273 struct rtentry *rt; 7274 ipif_t *ipif = NULL; 7275 ip_stack_t *ipst; 7276 7277 ASSERT(q->q_next == NULL); 7278 ipst = CONNQ_TO_IPST(q); 7279 7280 ip1dbg(("ip_siocdelrt:")); 7281 /* Existence of mp1 verified in ip_wput_nondata */ 7282 mp1 = mp->b_cont->b_cont; 7283 rt = (struct rtentry *)mp1->b_rptr; 7284 7285 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7286 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7287 7288 /* 7289 * If the RTF_HOST flag is on, this is a request to delete a gateway 7290 * to a particular host address. In this case, we set the netmask to 7291 * all ones for the particular destination address. Otherwise, 7292 * determine the netmask to be used based on dst_addr and the interfaces 7293 * in use. 7294 */ 7295 if (rt->rt_flags & RTF_HOST) { 7296 mask = IP_HOST_MASK; 7297 } else { 7298 /* 7299 * Note that ip_subnet_mask returns a zero mask in the case of 7300 * default (an all-zeroes address). 7301 */ 7302 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7303 } 7304 7305 error = ip_rt_delete(dst_addr, mask, gw_addr, 7306 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7307 mp, ip_process_ioctl, ipst); 7308 if (ipif != NULL) 7309 ipif_refrele(ipif); 7310 return (error); 7311 } 7312 7313 /* 7314 * Enqueue the mp onto the ipsq, chained by b_next. 7315 * b_prev stores the function to be executed later, and b_queue the queue 7316 * where this mp originated. 7317 */ 7318 void 7319 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7320 ill_t *pending_ill) 7321 { 7322 conn_t *connp; 7323 ipxop_t *ipx = ipsq->ipsq_xop; 7324 7325 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7326 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7327 ASSERT(func != NULL); 7328 7329 mp->b_queue = q; 7330 mp->b_prev = (void *)func; 7331 mp->b_next = NULL; 7332 7333 switch (type) { 7334 case CUR_OP: 7335 if (ipx->ipx_mptail != NULL) { 7336 ASSERT(ipx->ipx_mphead != NULL); 7337 ipx->ipx_mptail->b_next = mp; 7338 } else { 7339 ASSERT(ipx->ipx_mphead == NULL); 7340 ipx->ipx_mphead = mp; 7341 } 7342 ipx->ipx_mptail = mp; 7343 break; 7344 7345 case NEW_OP: 7346 if (ipsq->ipsq_xopq_mptail != NULL) { 7347 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7348 ipsq->ipsq_xopq_mptail->b_next = mp; 7349 } else { 7350 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7351 ipsq->ipsq_xopq_mphead = mp; 7352 } 7353 ipsq->ipsq_xopq_mptail = mp; 7354 ipx->ipx_ipsq_queued = B_TRUE; 7355 break; 7356 7357 case SWITCH_OP: 7358 ASSERT(ipsq->ipsq_swxop != NULL); 7359 /* only one switch operation is currently allowed */ 7360 ASSERT(ipsq->ipsq_switch_mp == NULL); 7361 ipsq->ipsq_switch_mp = mp; 7362 ipx->ipx_ipsq_queued = B_TRUE; 7363 break; 7364 default: 7365 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7366 } 7367 7368 if (CONN_Q(q) && pending_ill != NULL) { 7369 connp = Q_TO_CONN(q); 7370 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7371 connp->conn_oper_pending_ill = pending_ill; 7372 } 7373 } 7374 7375 /* 7376 * Dequeue the next message that requested exclusive access to this IPSQ's 7377 * xop. Specifically: 7378 * 7379 * 1. If we're still processing the current operation on `ipsq', then 7380 * dequeue the next message for the operation (from ipx_mphead), or 7381 * return NULL if there are no queued messages for the operation. 7382 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7383 * 7384 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7385 * not set) see if the ipsq has requested an xop switch. If so, switch 7386 * `ipsq' to a different xop. Xop switches only happen when joining or 7387 * leaving IPMP groups and require a careful dance -- see the comments 7388 * in-line below for details. If we're leaving a group xop or if we're 7389 * joining a group xop and become writer on it, then we proceed to (3). 7390 * Otherwise, we return NULL and exit the xop. 7391 * 7392 * 3. For each IPSQ in the xop, return any switch operation stored on 7393 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7394 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7395 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7396 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7397 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7398 * each phyint in the group, including the IPMP meta-interface phyint. 7399 */ 7400 static mblk_t * 7401 ipsq_dq(ipsq_t *ipsq) 7402 { 7403 ill_t *illv4, *illv6; 7404 mblk_t *mp; 7405 ipsq_t *xopipsq; 7406 ipsq_t *leftipsq = NULL; 7407 ipxop_t *ipx; 7408 phyint_t *phyi = ipsq->ipsq_phyint; 7409 ip_stack_t *ipst = ipsq->ipsq_ipst; 7410 boolean_t emptied = B_FALSE; 7411 7412 /* 7413 * Grab all the locks we need in the defined order (ill_g_lock -> 7414 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7415 */ 7416 rw_enter(&ipst->ips_ill_g_lock, 7417 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7418 mutex_enter(&ipsq->ipsq_lock); 7419 ipx = ipsq->ipsq_xop; 7420 mutex_enter(&ipx->ipx_lock); 7421 7422 /* 7423 * Dequeue the next message associated with the current exclusive 7424 * operation, if any. 7425 */ 7426 if ((mp = ipx->ipx_mphead) != NULL) { 7427 ipx->ipx_mphead = mp->b_next; 7428 if (ipx->ipx_mphead == NULL) 7429 ipx->ipx_mptail = NULL; 7430 mp->b_next = (void *)ipsq; 7431 goto out; 7432 } 7433 7434 if (ipx->ipx_current_ipif != NULL) 7435 goto empty; 7436 7437 if (ipsq->ipsq_swxop != NULL) { 7438 /* 7439 * The exclusive operation that is now being completed has 7440 * requested a switch to a different xop. This happens 7441 * when an interface joins or leaves an IPMP group. Joins 7442 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7443 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7444 * (phyint_free()), or interface plumb for an ill type 7445 * not in the IPMP group (ip_rput_dlpi_writer()). 7446 * 7447 * Xop switches are not allowed on the IPMP meta-interface. 7448 */ 7449 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7450 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7451 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7452 7453 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7454 /* 7455 * We're switching back to our own xop, so we have two 7456 * xop's to drain/exit: our own, and the group xop 7457 * that we are leaving. 7458 * 7459 * First, pull ourselves out of the group ipsq list. 7460 * This is safe since we're writer on ill_g_lock. 7461 */ 7462 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7463 7464 xopipsq = ipx->ipx_ipsq; 7465 while (xopipsq->ipsq_next != ipsq) 7466 xopipsq = xopipsq->ipsq_next; 7467 7468 xopipsq->ipsq_next = ipsq->ipsq_next; 7469 ipsq->ipsq_next = ipsq; 7470 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7471 ipsq->ipsq_swxop = NULL; 7472 7473 /* 7474 * Second, prepare to exit the group xop. The actual 7475 * ipsq_exit() is done at the end of this function 7476 * since we cannot hold any locks across ipsq_exit(). 7477 * Note that although we drop the group's ipx_lock, no 7478 * threads can proceed since we're still ipx_writer. 7479 */ 7480 leftipsq = xopipsq; 7481 mutex_exit(&ipx->ipx_lock); 7482 7483 /* 7484 * Third, set ipx to point to our own xop (which was 7485 * inactive and therefore can be entered). 7486 */ 7487 ipx = ipsq->ipsq_xop; 7488 mutex_enter(&ipx->ipx_lock); 7489 ASSERT(ipx->ipx_writer == NULL); 7490 ASSERT(ipx->ipx_current_ipif == NULL); 7491 } else { 7492 /* 7493 * We're switching from our own xop to a group xop. 7494 * The requestor of the switch must ensure that the 7495 * group xop cannot go away (e.g. by ensuring the 7496 * phyint associated with the xop cannot go away). 7497 * 7498 * If we can become writer on our new xop, then we'll 7499 * do the drain. Otherwise, the current writer of our 7500 * new xop will do the drain when it exits. 7501 * 7502 * First, splice ourselves into the group IPSQ list. 7503 * This is safe since we're writer on ill_g_lock. 7504 */ 7505 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7506 7507 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7508 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7509 xopipsq = xopipsq->ipsq_next; 7510 7511 xopipsq->ipsq_next = ipsq; 7512 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7513 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7514 ipsq->ipsq_swxop = NULL; 7515 7516 /* 7517 * Second, exit our own xop, since it's now unused. 7518 * This is safe since we've got the only reference. 7519 */ 7520 ASSERT(ipx->ipx_writer == curthread); 7521 ipx->ipx_writer = NULL; 7522 VERIFY(--ipx->ipx_reentry_cnt == 0); 7523 ipx->ipx_ipsq_queued = B_FALSE; 7524 mutex_exit(&ipx->ipx_lock); 7525 7526 /* 7527 * Third, set ipx to point to our new xop, and check 7528 * if we can become writer on it. If we cannot, then 7529 * the current writer will drain the IPSQ group when 7530 * it exits. Our ipsq_xop is guaranteed to be stable 7531 * because we're still holding ipsq_lock. 7532 */ 7533 ipx = ipsq->ipsq_xop; 7534 mutex_enter(&ipx->ipx_lock); 7535 if (ipx->ipx_writer != NULL || 7536 ipx->ipx_current_ipif != NULL) { 7537 goto out; 7538 } 7539 } 7540 7541 /* 7542 * Fourth, become writer on our new ipx before we continue 7543 * with the drain. Note that we never dropped ipsq_lock 7544 * above, so no other thread could've raced with us to 7545 * become writer first. Also, we're holding ipx_lock, so 7546 * no other thread can examine the ipx right now. 7547 */ 7548 ASSERT(ipx->ipx_current_ipif == NULL); 7549 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7550 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7551 ipx->ipx_writer = curthread; 7552 ipx->ipx_forced = B_FALSE; 7553 #ifdef DEBUG 7554 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7555 #endif 7556 } 7557 7558 xopipsq = ipsq; 7559 do { 7560 /* 7561 * So that other operations operate on a consistent and 7562 * complete phyint, a switch message on an IPSQ must be 7563 * handled prior to any other operations on that IPSQ. 7564 */ 7565 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7566 xopipsq->ipsq_switch_mp = NULL; 7567 ASSERT(mp->b_next == NULL); 7568 mp->b_next = (void *)xopipsq; 7569 goto out; 7570 } 7571 7572 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7573 xopipsq->ipsq_xopq_mphead = mp->b_next; 7574 if (xopipsq->ipsq_xopq_mphead == NULL) 7575 xopipsq->ipsq_xopq_mptail = NULL; 7576 mp->b_next = (void *)xopipsq; 7577 goto out; 7578 } 7579 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7580 empty: 7581 /* 7582 * There are no messages. Further, we are holding ipx_lock, hence no 7583 * new messages can end up on any IPSQ in the xop. 7584 */ 7585 ipx->ipx_writer = NULL; 7586 ipx->ipx_forced = B_FALSE; 7587 VERIFY(--ipx->ipx_reentry_cnt == 0); 7588 ipx->ipx_ipsq_queued = B_FALSE; 7589 emptied = B_TRUE; 7590 #ifdef DEBUG 7591 ipx->ipx_depth = 0; 7592 #endif 7593 out: 7594 mutex_exit(&ipx->ipx_lock); 7595 mutex_exit(&ipsq->ipsq_lock); 7596 7597 /* 7598 * If we completely emptied the xop, then wake up any threads waiting 7599 * to enter any of the IPSQ's associated with it. 7600 */ 7601 if (emptied) { 7602 xopipsq = ipsq; 7603 do { 7604 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7605 continue; 7606 7607 illv4 = phyi->phyint_illv4; 7608 illv6 = phyi->phyint_illv6; 7609 7610 GRAB_ILL_LOCKS(illv4, illv6); 7611 if (illv4 != NULL) 7612 cv_broadcast(&illv4->ill_cv); 7613 if (illv6 != NULL) 7614 cv_broadcast(&illv6->ill_cv); 7615 RELEASE_ILL_LOCKS(illv4, illv6); 7616 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7617 } 7618 rw_exit(&ipst->ips_ill_g_lock); 7619 7620 /* 7621 * Now that all locks are dropped, exit the IPSQ we left. 7622 */ 7623 if (leftipsq != NULL) 7624 ipsq_exit(leftipsq); 7625 7626 return (mp); 7627 } 7628 7629 /* 7630 * Enter the ipsq corresponding to ill, by waiting synchronously till 7631 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7632 * will have to drain completely before ipsq_enter returns success. 7633 * ipx_current_ipif will be set if some exclusive op is in progress, 7634 * and the ipsq_exit logic will start the next enqueued op after 7635 * completion of the current op. If 'force' is used, we don't wait 7636 * for the enqueued ops. This is needed when a conn_close wants to 7637 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7638 * of an ill can also use this option. But we dont' use it currently. 7639 */ 7640 #define ENTER_SQ_WAIT_TICKS 100 7641 boolean_t 7642 ipsq_enter(ill_t *ill, boolean_t force, int type) 7643 { 7644 ipsq_t *ipsq; 7645 ipxop_t *ipx; 7646 boolean_t waited_enough = B_FALSE; 7647 7648 /* 7649 * Note that the relationship between ill and ipsq is fixed as long as 7650 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7651 * relationship between the IPSQ and xop cannot change. However, 7652 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7653 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7654 * waking up all ills in the xop when it becomes available. 7655 */ 7656 mutex_enter(&ill->ill_lock); 7657 for (;;) { 7658 if (ill->ill_state_flags & ILL_CONDEMNED) { 7659 mutex_exit(&ill->ill_lock); 7660 return (B_FALSE); 7661 } 7662 7663 ipsq = ill->ill_phyint->phyint_ipsq; 7664 mutex_enter(&ipsq->ipsq_lock); 7665 ipx = ipsq->ipsq_xop; 7666 mutex_enter(&ipx->ipx_lock); 7667 7668 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7669 ipx->ipx_current_ipif == NULL || waited_enough)) 7670 break; 7671 7672 if (!force || ipx->ipx_writer != NULL) { 7673 mutex_exit(&ipx->ipx_lock); 7674 mutex_exit(&ipsq->ipsq_lock); 7675 cv_wait(&ill->ill_cv, &ill->ill_lock); 7676 } else { 7677 mutex_exit(&ipx->ipx_lock); 7678 mutex_exit(&ipsq->ipsq_lock); 7679 (void) cv_timedwait(&ill->ill_cv, 7680 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7681 waited_enough = B_TRUE; 7682 } 7683 } 7684 7685 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7686 ASSERT(ipx->ipx_reentry_cnt == 0); 7687 ipx->ipx_writer = curthread; 7688 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7689 ipx->ipx_reentry_cnt++; 7690 #ifdef DEBUG 7691 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7692 #endif 7693 mutex_exit(&ipx->ipx_lock); 7694 mutex_exit(&ipsq->ipsq_lock); 7695 mutex_exit(&ill->ill_lock); 7696 return (B_TRUE); 7697 } 7698 7699 boolean_t 7700 ill_perim_enter(ill_t *ill) 7701 { 7702 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7703 } 7704 7705 void 7706 ill_perim_exit(ill_t *ill) 7707 { 7708 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7709 } 7710 7711 /* 7712 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7713 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7714 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7715 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7716 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7717 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7718 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7719 * up the interface) and are enqueued in ipx_mphead. 7720 * 7721 * If a thread does not want to reenter the ipsq when it is already writer, 7722 * it must make sure that the specified reentry point to be called later 7723 * when the ipsq is empty, nor any code path starting from the specified reentry 7724 * point must never ever try to enter the ipsq again. Otherwise it can lead 7725 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7726 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7727 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7728 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7729 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7730 * ioctl if the current ioctl has completed. If the current ioctl is still 7731 * in progress it simply returns. The current ioctl could be waiting for 7732 * a response from another module (arp or the driver or could be waiting for 7733 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7734 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7735 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7736 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7737 * all associated DLPI operations have completed. 7738 */ 7739 7740 /* 7741 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7742 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7743 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7744 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7745 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7746 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7747 */ 7748 ipsq_t * 7749 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7750 ipsq_func_t func, int type, boolean_t reentry_ok) 7751 { 7752 ipsq_t *ipsq; 7753 ipxop_t *ipx; 7754 7755 /* Only 1 of ipif or ill can be specified */ 7756 ASSERT((ipif != NULL) ^ (ill != NULL)); 7757 if (ipif != NULL) 7758 ill = ipif->ipif_ill; 7759 7760 /* 7761 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7762 * ipx of an ipsq can't change when ipsq_lock is held. 7763 */ 7764 GRAB_CONN_LOCK(q); 7765 mutex_enter(&ill->ill_lock); 7766 ipsq = ill->ill_phyint->phyint_ipsq; 7767 mutex_enter(&ipsq->ipsq_lock); 7768 ipx = ipsq->ipsq_xop; 7769 mutex_enter(&ipx->ipx_lock); 7770 7771 /* 7772 * 1. Enter the ipsq if we are already writer and reentry is ok. 7773 * (Note: If the caller does not specify reentry_ok then neither 7774 * 'func' nor any of its callees must ever attempt to enter the ipsq 7775 * again. Otherwise it can lead to an infinite loop 7776 * 2. Enter the ipsq if there is no current writer and this attempted 7777 * entry is part of the current operation 7778 * 3. Enter the ipsq if there is no current writer and this is a new 7779 * operation and the operation queue is empty and there is no 7780 * operation currently in progress 7781 */ 7782 if ((ipx->ipx_writer == curthread && reentry_ok) || 7783 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7784 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7785 /* Success. */ 7786 ipx->ipx_reentry_cnt++; 7787 ipx->ipx_writer = curthread; 7788 ipx->ipx_forced = B_FALSE; 7789 mutex_exit(&ipx->ipx_lock); 7790 mutex_exit(&ipsq->ipsq_lock); 7791 mutex_exit(&ill->ill_lock); 7792 RELEASE_CONN_LOCK(q); 7793 #ifdef DEBUG 7794 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7795 #endif 7796 return (ipsq); 7797 } 7798 7799 if (func != NULL) 7800 ipsq_enq(ipsq, q, mp, func, type, ill); 7801 7802 mutex_exit(&ipx->ipx_lock); 7803 mutex_exit(&ipsq->ipsq_lock); 7804 mutex_exit(&ill->ill_lock); 7805 RELEASE_CONN_LOCK(q); 7806 return (NULL); 7807 } 7808 7809 /* 7810 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7811 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7812 * cannot be entered, the mp is queued for completion. 7813 */ 7814 void 7815 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7816 boolean_t reentry_ok) 7817 { 7818 ipsq_t *ipsq; 7819 7820 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7821 7822 /* 7823 * Drop the caller's refhold on the ill. This is safe since we either 7824 * entered the IPSQ (and thus are exclusive), or failed to enter the 7825 * IPSQ, in which case we return without accessing ill anymore. This 7826 * is needed because func needs to see the correct refcount. 7827 * e.g. removeif can work only then. 7828 */ 7829 ill_refrele(ill); 7830 if (ipsq != NULL) { 7831 (*func)(ipsq, q, mp, NULL); 7832 ipsq_exit(ipsq); 7833 } 7834 } 7835 7836 /* 7837 * Exit the specified IPSQ. If this is the final exit on it then drain it 7838 * prior to exiting. Caller must be writer on the specified IPSQ. 7839 */ 7840 void 7841 ipsq_exit(ipsq_t *ipsq) 7842 { 7843 mblk_t *mp; 7844 ipsq_t *mp_ipsq; 7845 queue_t *q; 7846 phyint_t *phyi; 7847 ipsq_func_t func; 7848 7849 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7850 7851 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7852 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7853 ipsq->ipsq_xop->ipx_reentry_cnt--; 7854 return; 7855 } 7856 7857 for (;;) { 7858 phyi = ipsq->ipsq_phyint; 7859 mp = ipsq_dq(ipsq); 7860 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7861 7862 /* 7863 * If we've changed to a new IPSQ, and the phyint associated 7864 * with the old one has gone away, free the old IPSQ. Note 7865 * that this cannot happen while the IPSQ is in a group. 7866 */ 7867 if (mp_ipsq != ipsq && phyi == NULL) { 7868 ASSERT(ipsq->ipsq_next == ipsq); 7869 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7870 ipsq_delete(ipsq); 7871 } 7872 7873 if (mp == NULL) 7874 break; 7875 7876 q = mp->b_queue; 7877 func = (ipsq_func_t)mp->b_prev; 7878 ipsq = mp_ipsq; 7879 mp->b_next = mp->b_prev = NULL; 7880 mp->b_queue = NULL; 7881 7882 /* 7883 * If 'q' is an conn queue, it is valid, since we did a 7884 * a refhold on the conn at the start of the ioctl. 7885 * If 'q' is an ill queue, it is valid, since close of an 7886 * ill will clean up its IPSQ. 7887 */ 7888 (*func)(ipsq, q, mp, NULL); 7889 } 7890 } 7891 7892 /* 7893 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7894 * and `ioccmd'. 7895 */ 7896 void 7897 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7898 { 7899 ill_t *ill = ipif->ipif_ill; 7900 ipxop_t *ipx = ipsq->ipsq_xop; 7901 7902 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7903 ASSERT(ipx->ipx_current_ipif == NULL); 7904 ASSERT(ipx->ipx_current_ioctl == 0); 7905 7906 ipx->ipx_current_done = B_FALSE; 7907 ipx->ipx_current_ioctl = ioccmd; 7908 mutex_enter(&ipx->ipx_lock); 7909 ipx->ipx_current_ipif = ipif; 7910 mutex_exit(&ipx->ipx_lock); 7911 7912 /* 7913 * Set IPIF_CHANGING on one or more ipifs associated with the 7914 * current exclusive operation. IPIF_CHANGING prevents any new 7915 * references to the ipif (so that the references will eventually 7916 * drop to zero) and also prevents any "get" operations (e.g., 7917 * SIOCGLIFFLAGS) from being able to access the ipif until the 7918 * operation has completed and the ipif is again in a stable state. 7919 * 7920 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 7921 * ioctl. For internal operations (where ioccmd is zero), all ipifs 7922 * on the ill are marked with IPIF_CHANGING since it's unclear which 7923 * ipifs will be affected. 7924 * 7925 * Note that SIOCLIFREMOVEIF is a special case as it sets 7926 * IPIF_CONDEMNED internally after identifying the right ipif to 7927 * operate on. 7928 */ 7929 switch (ioccmd) { 7930 case SIOCLIFREMOVEIF: 7931 break; 7932 case 0: 7933 mutex_enter(&ill->ill_lock); 7934 ipif = ipif->ipif_ill->ill_ipif; 7935 for (; ipif != NULL; ipif = ipif->ipif_next) 7936 ipif->ipif_state_flags |= IPIF_CHANGING; 7937 mutex_exit(&ill->ill_lock); 7938 break; 7939 default: 7940 mutex_enter(&ill->ill_lock); 7941 ipif->ipif_state_flags |= IPIF_CHANGING; 7942 mutex_exit(&ill->ill_lock); 7943 } 7944 } 7945 7946 /* 7947 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7948 * the next exclusive operation to begin once we ipsq_exit(). However, if 7949 * pending DLPI operations remain, then we will wait for the queue to drain 7950 * before allowing the next exclusive operation to begin. This ensures that 7951 * DLPI operations from one exclusive operation are never improperly processed 7952 * as part of a subsequent exclusive operation. 7953 */ 7954 void 7955 ipsq_current_finish(ipsq_t *ipsq) 7956 { 7957 ipxop_t *ipx = ipsq->ipsq_xop; 7958 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7959 ipif_t *ipif = ipx->ipx_current_ipif; 7960 7961 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7962 7963 /* 7964 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 7965 * (but in that case, IPIF_CHANGING will already be clear and no 7966 * pending DLPI messages can remain). 7967 */ 7968 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 7969 ill_t *ill = ipif->ipif_ill; 7970 7971 mutex_enter(&ill->ill_lock); 7972 dlpi_pending = ill->ill_dlpi_pending; 7973 if (ipx->ipx_current_ioctl == 0) { 7974 ipif = ill->ill_ipif; 7975 for (; ipif != NULL; ipif = ipif->ipif_next) 7976 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7977 } else { 7978 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7979 } 7980 mutex_exit(&ill->ill_lock); 7981 } 7982 7983 ASSERT(!ipx->ipx_current_done); 7984 ipx->ipx_current_done = B_TRUE; 7985 ipx->ipx_current_ioctl = 0; 7986 if (dlpi_pending == DL_PRIM_INVAL) { 7987 mutex_enter(&ipx->ipx_lock); 7988 ipx->ipx_current_ipif = NULL; 7989 mutex_exit(&ipx->ipx_lock); 7990 } 7991 } 7992 7993 /* 7994 * The ill is closing. Flush all messages on the ipsq that originated 7995 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7996 * for this ill since ipsq_enter could not have entered until then. 7997 * New messages can't be queued since the CONDEMNED flag is set. 7998 */ 7999 static void 8000 ipsq_flush(ill_t *ill) 8001 { 8002 queue_t *q; 8003 mblk_t *prev; 8004 mblk_t *mp; 8005 mblk_t *mp_next; 8006 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8007 8008 ASSERT(IAM_WRITER_ILL(ill)); 8009 8010 /* 8011 * Flush any messages sent up by the driver. 8012 */ 8013 mutex_enter(&ipx->ipx_lock); 8014 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8015 mp_next = mp->b_next; 8016 q = mp->b_queue; 8017 if (q == ill->ill_rq || q == ill->ill_wq) { 8018 /* dequeue mp */ 8019 if (prev == NULL) 8020 ipx->ipx_mphead = mp->b_next; 8021 else 8022 prev->b_next = mp->b_next; 8023 if (ipx->ipx_mptail == mp) { 8024 ASSERT(mp_next == NULL); 8025 ipx->ipx_mptail = prev; 8026 } 8027 inet_freemsg(mp); 8028 } else { 8029 prev = mp; 8030 } 8031 } 8032 mutex_exit(&ipx->ipx_lock); 8033 (void) ipsq_pending_mp_cleanup(ill, NULL); 8034 ipsq_xopq_mp_cleanup(ill, NULL); 8035 ill_pending_mp_cleanup(ill); 8036 } 8037 8038 /* 8039 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8040 * refhold and return the associated ipif 8041 */ 8042 /* ARGSUSED */ 8043 int 8044 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8045 cmd_info_t *ci, ipsq_func_t func) 8046 { 8047 boolean_t exists; 8048 struct iftun_req *ta; 8049 ipif_t *ipif; 8050 ill_t *ill; 8051 boolean_t isv6; 8052 mblk_t *mp1; 8053 int error; 8054 conn_t *connp; 8055 ip_stack_t *ipst; 8056 8057 /* Existence verified in ip_wput_nondata */ 8058 mp1 = mp->b_cont->b_cont; 8059 ta = (struct iftun_req *)mp1->b_rptr; 8060 /* 8061 * Null terminate the string to protect against buffer 8062 * overrun. String was generated by user code and may not 8063 * be trusted. 8064 */ 8065 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8066 8067 connp = Q_TO_CONN(q); 8068 isv6 = connp->conn_af_isv6; 8069 ipst = connp->conn_netstack->netstack_ip; 8070 8071 /* Disallows implicit create */ 8072 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8073 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8074 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8075 if (ipif == NULL) 8076 return (error); 8077 8078 if (ipif->ipif_id != 0) { 8079 /* 8080 * We really don't want to set/get tunnel parameters 8081 * on virtual tunnel interfaces. Only allow the 8082 * base tunnel to do these. 8083 */ 8084 ipif_refrele(ipif); 8085 return (EINVAL); 8086 } 8087 8088 /* 8089 * Send down to tunnel mod for ioctl processing. 8090 * Will finish ioctl in ip_rput_other(). 8091 */ 8092 ill = ipif->ipif_ill; 8093 if (ill->ill_net_type == IRE_LOOPBACK) { 8094 ipif_refrele(ipif); 8095 return (EOPNOTSUPP); 8096 } 8097 8098 if (ill->ill_wq == NULL) { 8099 ipif_refrele(ipif); 8100 return (ENXIO); 8101 } 8102 /* 8103 * Mark the ioctl as coming from an IPv6 interface for 8104 * tun's convenience. 8105 */ 8106 if (ill->ill_isv6) 8107 ta->ifta_flags |= 0x80000000; 8108 ci->ci_ipif = ipif; 8109 return (0); 8110 } 8111 8112 /* 8113 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8114 * and return the associated ipif. 8115 * Return value: 8116 * Non zero: An error has occurred. ci may not be filled out. 8117 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8118 * a held ipif in ci.ci_ipif. 8119 */ 8120 int 8121 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8122 cmd_info_t *ci, ipsq_func_t func) 8123 { 8124 char *name; 8125 struct ifreq *ifr; 8126 struct lifreq *lifr; 8127 ipif_t *ipif = NULL; 8128 ill_t *ill; 8129 conn_t *connp; 8130 boolean_t isv6; 8131 boolean_t exists; 8132 int err; 8133 mblk_t *mp1; 8134 zoneid_t zoneid; 8135 ip_stack_t *ipst; 8136 8137 if (q->q_next != NULL) { 8138 ill = (ill_t *)q->q_ptr; 8139 isv6 = ill->ill_isv6; 8140 connp = NULL; 8141 zoneid = ALL_ZONES; 8142 ipst = ill->ill_ipst; 8143 } else { 8144 ill = NULL; 8145 connp = Q_TO_CONN(q); 8146 isv6 = connp->conn_af_isv6; 8147 zoneid = connp->conn_zoneid; 8148 if (zoneid == GLOBAL_ZONEID) { 8149 /* global zone can access ipifs in all zones */ 8150 zoneid = ALL_ZONES; 8151 } 8152 ipst = connp->conn_netstack->netstack_ip; 8153 } 8154 8155 /* Has been checked in ip_wput_nondata */ 8156 mp1 = mp->b_cont->b_cont; 8157 8158 if (ipip->ipi_cmd_type == IF_CMD) { 8159 /* This a old style SIOC[GS]IF* command */ 8160 ifr = (struct ifreq *)mp1->b_rptr; 8161 /* 8162 * Null terminate the string to protect against buffer 8163 * overrun. String was generated by user code and may not 8164 * be trusted. 8165 */ 8166 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8167 name = ifr->ifr_name; 8168 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8169 ci->ci_sin6 = NULL; 8170 ci->ci_lifr = (struct lifreq *)ifr; 8171 } else { 8172 /* This a new style SIOC[GS]LIF* command */ 8173 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8174 lifr = (struct lifreq *)mp1->b_rptr; 8175 /* 8176 * Null terminate the string to protect against buffer 8177 * overrun. String was generated by user code and may not 8178 * be trusted. 8179 */ 8180 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8181 name = lifr->lifr_name; 8182 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8183 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8184 ci->ci_lifr = lifr; 8185 } 8186 8187 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8188 /* 8189 * The ioctl will be failed if the ioctl comes down 8190 * an conn stream 8191 */ 8192 if (ill == NULL) { 8193 /* 8194 * Not an ill queue, return EINVAL same as the 8195 * old error code. 8196 */ 8197 return (ENXIO); 8198 } 8199 ipif = ill->ill_ipif; 8200 ipif_refhold(ipif); 8201 } else { 8202 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8203 &exists, isv6, zoneid, 8204 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8205 ipst); 8206 if (ipif == NULL) { 8207 if (err == EINPROGRESS) 8208 return (err); 8209 err = 0; /* Ensure we don't use it below */ 8210 } 8211 } 8212 8213 /* 8214 * Old style [GS]IFCMD does not admit IPv6 ipif 8215 */ 8216 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8217 ipif_refrele(ipif); 8218 return (ENXIO); 8219 } 8220 8221 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8222 name[0] == '\0') { 8223 /* 8224 * Handle a or a SIOC?IF* with a null name 8225 * during plumb (on the ill queue before the I_PLINK). 8226 */ 8227 ipif = ill->ill_ipif; 8228 ipif_refhold(ipif); 8229 } 8230 8231 if (ipif == NULL) 8232 return (ENXIO); 8233 8234 ci->ci_ipif = ipif; 8235 return (0); 8236 } 8237 8238 /* 8239 * Return the total number of ipifs. 8240 */ 8241 static uint_t 8242 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8243 { 8244 uint_t numifs = 0; 8245 ill_t *ill; 8246 ill_walk_context_t ctx; 8247 ipif_t *ipif; 8248 8249 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8250 ill = ILL_START_WALK_V4(&ctx, ipst); 8251 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8252 if (IS_UNDER_IPMP(ill)) 8253 continue; 8254 for (ipif = ill->ill_ipif; ipif != NULL; 8255 ipif = ipif->ipif_next) { 8256 if (ipif->ipif_zoneid == zoneid || 8257 ipif->ipif_zoneid == ALL_ZONES) 8258 numifs++; 8259 } 8260 } 8261 rw_exit(&ipst->ips_ill_g_lock); 8262 return (numifs); 8263 } 8264 8265 /* 8266 * Return the total number of ipifs. 8267 */ 8268 static uint_t 8269 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8270 { 8271 uint_t numifs = 0; 8272 ill_t *ill; 8273 ipif_t *ipif; 8274 ill_walk_context_t ctx; 8275 8276 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8277 8278 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8279 if (family == AF_INET) 8280 ill = ILL_START_WALK_V4(&ctx, ipst); 8281 else if (family == AF_INET6) 8282 ill = ILL_START_WALK_V6(&ctx, ipst); 8283 else 8284 ill = ILL_START_WALK_ALL(&ctx, ipst); 8285 8286 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8287 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8288 continue; 8289 8290 for (ipif = ill->ill_ipif; ipif != NULL; 8291 ipif = ipif->ipif_next) { 8292 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8293 !(lifn_flags & LIFC_NOXMIT)) 8294 continue; 8295 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8296 !(lifn_flags & LIFC_TEMPORARY)) 8297 continue; 8298 if (((ipif->ipif_flags & 8299 (IPIF_NOXMIT|IPIF_NOLOCAL| 8300 IPIF_DEPRECATED)) || 8301 IS_LOOPBACK(ill) || 8302 !(ipif->ipif_flags & IPIF_UP)) && 8303 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8304 continue; 8305 8306 if (zoneid != ipif->ipif_zoneid && 8307 ipif->ipif_zoneid != ALL_ZONES && 8308 (zoneid != GLOBAL_ZONEID || 8309 !(lifn_flags & LIFC_ALLZONES))) 8310 continue; 8311 8312 numifs++; 8313 } 8314 } 8315 rw_exit(&ipst->ips_ill_g_lock); 8316 return (numifs); 8317 } 8318 8319 uint_t 8320 ip_get_lifsrcofnum(ill_t *ill) 8321 { 8322 uint_t numifs = 0; 8323 ill_t *ill_head = ill; 8324 ip_stack_t *ipst = ill->ill_ipst; 8325 8326 /* 8327 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8328 * other thread may be trying to relink the ILLs in this usesrc group 8329 * and adjusting the ill_usesrc_grp_next pointers 8330 */ 8331 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8332 if ((ill->ill_usesrc_ifindex == 0) && 8333 (ill->ill_usesrc_grp_next != NULL)) { 8334 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8335 ill = ill->ill_usesrc_grp_next) 8336 numifs++; 8337 } 8338 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8339 8340 return (numifs); 8341 } 8342 8343 /* Null values are passed in for ipif, sin, and ifreq */ 8344 /* ARGSUSED */ 8345 int 8346 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8347 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8348 { 8349 int *nump; 8350 conn_t *connp = Q_TO_CONN(q); 8351 8352 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8353 8354 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8355 nump = (int *)mp->b_cont->b_cont->b_rptr; 8356 8357 *nump = ip_get_numifs(connp->conn_zoneid, 8358 connp->conn_netstack->netstack_ip); 8359 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8360 return (0); 8361 } 8362 8363 /* Null values are passed in for ipif, sin, and ifreq */ 8364 /* ARGSUSED */ 8365 int 8366 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8367 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8368 { 8369 struct lifnum *lifn; 8370 mblk_t *mp1; 8371 conn_t *connp = Q_TO_CONN(q); 8372 8373 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8374 8375 /* Existence checked in ip_wput_nondata */ 8376 mp1 = mp->b_cont->b_cont; 8377 8378 lifn = (struct lifnum *)mp1->b_rptr; 8379 switch (lifn->lifn_family) { 8380 case AF_UNSPEC: 8381 case AF_INET: 8382 case AF_INET6: 8383 break; 8384 default: 8385 return (EAFNOSUPPORT); 8386 } 8387 8388 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8389 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8390 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8391 return (0); 8392 } 8393 8394 /* ARGSUSED */ 8395 int 8396 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8397 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8398 { 8399 STRUCT_HANDLE(ifconf, ifc); 8400 mblk_t *mp1; 8401 struct iocblk *iocp; 8402 struct ifreq *ifr; 8403 ill_walk_context_t ctx; 8404 ill_t *ill; 8405 ipif_t *ipif; 8406 struct sockaddr_in *sin; 8407 int32_t ifclen; 8408 zoneid_t zoneid; 8409 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8410 8411 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8412 8413 ip1dbg(("ip_sioctl_get_ifconf")); 8414 /* Existence verified in ip_wput_nondata */ 8415 mp1 = mp->b_cont->b_cont; 8416 iocp = (struct iocblk *)mp->b_rptr; 8417 zoneid = Q_TO_CONN(q)->conn_zoneid; 8418 8419 /* 8420 * The original SIOCGIFCONF passed in a struct ifconf which specified 8421 * the user buffer address and length into which the list of struct 8422 * ifreqs was to be copied. Since AT&T Streams does not seem to 8423 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8424 * the SIOCGIFCONF operation was redefined to simply provide 8425 * a large output buffer into which we are supposed to jam the ifreq 8426 * array. The same ioctl command code was used, despite the fact that 8427 * both the applications and the kernel code had to change, thus making 8428 * it impossible to support both interfaces. 8429 * 8430 * For reasons not good enough to try to explain, the following 8431 * algorithm is used for deciding what to do with one of these: 8432 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8433 * form with the output buffer coming down as the continuation message. 8434 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8435 * and we have to copy in the ifconf structure to find out how big the 8436 * output buffer is and where to copy out to. Sure no problem... 8437 * 8438 */ 8439 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8440 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8441 int numifs = 0; 8442 size_t ifc_bufsize; 8443 8444 /* 8445 * Must be (better be!) continuation of a TRANSPARENT 8446 * IOCTL. We just copied in the ifconf structure. 8447 */ 8448 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8449 (struct ifconf *)mp1->b_rptr); 8450 8451 /* 8452 * Allocate a buffer to hold requested information. 8453 * 8454 * If ifc_len is larger than what is needed, we only 8455 * allocate what we will use. 8456 * 8457 * If ifc_len is smaller than what is needed, return 8458 * EINVAL. 8459 * 8460 * XXX: the ill_t structure can hava 2 counters, for 8461 * v4 and v6 (not just ill_ipif_up_count) to store the 8462 * number of interfaces for a device, so we don't need 8463 * to count them here... 8464 */ 8465 numifs = ip_get_numifs(zoneid, ipst); 8466 8467 ifclen = STRUCT_FGET(ifc, ifc_len); 8468 ifc_bufsize = numifs * sizeof (struct ifreq); 8469 if (ifc_bufsize > ifclen) { 8470 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8471 /* old behaviour */ 8472 return (EINVAL); 8473 } else { 8474 ifc_bufsize = ifclen; 8475 } 8476 } 8477 8478 mp1 = mi_copyout_alloc(q, mp, 8479 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8480 if (mp1 == NULL) 8481 return (ENOMEM); 8482 8483 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8484 } 8485 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8486 /* 8487 * the SIOCGIFCONF ioctl only knows about 8488 * IPv4 addresses, so don't try to tell 8489 * it about interfaces with IPv6-only 8490 * addresses. (Last parm 'isv6' is B_FALSE) 8491 */ 8492 8493 ifr = (struct ifreq *)mp1->b_rptr; 8494 8495 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8496 ill = ILL_START_WALK_V4(&ctx, ipst); 8497 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8498 if (IS_UNDER_IPMP(ill)) 8499 continue; 8500 for (ipif = ill->ill_ipif; ipif != NULL; 8501 ipif = ipif->ipif_next) { 8502 if (zoneid != ipif->ipif_zoneid && 8503 ipif->ipif_zoneid != ALL_ZONES) 8504 continue; 8505 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8506 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8507 /* old behaviour */ 8508 rw_exit(&ipst->ips_ill_g_lock); 8509 return (EINVAL); 8510 } else { 8511 goto if_copydone; 8512 } 8513 } 8514 ipif_get_name(ipif, ifr->ifr_name, 8515 sizeof (ifr->ifr_name)); 8516 sin = (sin_t *)&ifr->ifr_addr; 8517 *sin = sin_null; 8518 sin->sin_family = AF_INET; 8519 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8520 ifr++; 8521 } 8522 } 8523 if_copydone: 8524 rw_exit(&ipst->ips_ill_g_lock); 8525 mp1->b_wptr = (uchar_t *)ifr; 8526 8527 if (STRUCT_BUF(ifc) != NULL) { 8528 STRUCT_FSET(ifc, ifc_len, 8529 (int)((uchar_t *)ifr - mp1->b_rptr)); 8530 } 8531 return (0); 8532 } 8533 8534 /* 8535 * Get the interfaces using the address hosted on the interface passed in, 8536 * as a source adddress 8537 */ 8538 /* ARGSUSED */ 8539 int 8540 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8541 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8542 { 8543 mblk_t *mp1; 8544 ill_t *ill, *ill_head; 8545 ipif_t *ipif, *orig_ipif; 8546 int numlifs = 0; 8547 size_t lifs_bufsize, lifsmaxlen; 8548 struct lifreq *lifr; 8549 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8550 uint_t ifindex; 8551 zoneid_t zoneid; 8552 int err = 0; 8553 boolean_t isv6 = B_FALSE; 8554 struct sockaddr_in *sin; 8555 struct sockaddr_in6 *sin6; 8556 STRUCT_HANDLE(lifsrcof, lifs); 8557 ip_stack_t *ipst; 8558 8559 ipst = CONNQ_TO_IPST(q); 8560 8561 ASSERT(q->q_next == NULL); 8562 8563 zoneid = Q_TO_CONN(q)->conn_zoneid; 8564 8565 /* Existence verified in ip_wput_nondata */ 8566 mp1 = mp->b_cont->b_cont; 8567 8568 /* 8569 * Must be (better be!) continuation of a TRANSPARENT 8570 * IOCTL. We just copied in the lifsrcof structure. 8571 */ 8572 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8573 (struct lifsrcof *)mp1->b_rptr); 8574 8575 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8576 return (EINVAL); 8577 8578 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8579 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8580 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8581 ip_process_ioctl, &err, ipst); 8582 if (ipif == NULL) { 8583 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8584 ifindex)); 8585 return (err); 8586 } 8587 8588 /* Allocate a buffer to hold requested information */ 8589 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8590 lifs_bufsize = numlifs * sizeof (struct lifreq); 8591 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8592 /* The actual size needed is always returned in lifs_len */ 8593 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8594 8595 /* If the amount we need is more than what is passed in, abort */ 8596 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8597 ipif_refrele(ipif); 8598 return (0); 8599 } 8600 8601 mp1 = mi_copyout_alloc(q, mp, 8602 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8603 if (mp1 == NULL) { 8604 ipif_refrele(ipif); 8605 return (ENOMEM); 8606 } 8607 8608 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8609 bzero(mp1->b_rptr, lifs_bufsize); 8610 8611 lifr = (struct lifreq *)mp1->b_rptr; 8612 8613 ill = ill_head = ipif->ipif_ill; 8614 orig_ipif = ipif; 8615 8616 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8617 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8618 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8619 8620 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8621 for (; (ill != NULL) && (ill != ill_head); 8622 ill = ill->ill_usesrc_grp_next) { 8623 8624 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8625 break; 8626 8627 ipif = ill->ill_ipif; 8628 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8629 if (ipif->ipif_isv6) { 8630 sin6 = (sin6_t *)&lifr->lifr_addr; 8631 *sin6 = sin6_null; 8632 sin6->sin6_family = AF_INET6; 8633 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8634 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8635 &ipif->ipif_v6net_mask); 8636 } else { 8637 sin = (sin_t *)&lifr->lifr_addr; 8638 *sin = sin_null; 8639 sin->sin_family = AF_INET; 8640 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8641 lifr->lifr_addrlen = ip_mask_to_plen( 8642 ipif->ipif_net_mask); 8643 } 8644 lifr++; 8645 } 8646 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8647 rw_exit(&ipst->ips_ill_g_lock); 8648 ipif_refrele(orig_ipif); 8649 mp1->b_wptr = (uchar_t *)lifr; 8650 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8651 8652 return (0); 8653 } 8654 8655 /* ARGSUSED */ 8656 int 8657 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8658 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8659 { 8660 mblk_t *mp1; 8661 int list; 8662 ill_t *ill; 8663 ipif_t *ipif; 8664 int flags; 8665 int numlifs = 0; 8666 size_t lifc_bufsize; 8667 struct lifreq *lifr; 8668 sa_family_t family; 8669 struct sockaddr_in *sin; 8670 struct sockaddr_in6 *sin6; 8671 ill_walk_context_t ctx; 8672 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8673 int32_t lifclen; 8674 zoneid_t zoneid; 8675 STRUCT_HANDLE(lifconf, lifc); 8676 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8677 8678 ip1dbg(("ip_sioctl_get_lifconf")); 8679 8680 ASSERT(q->q_next == NULL); 8681 8682 zoneid = Q_TO_CONN(q)->conn_zoneid; 8683 8684 /* Existence verified in ip_wput_nondata */ 8685 mp1 = mp->b_cont->b_cont; 8686 8687 /* 8688 * An extended version of SIOCGIFCONF that takes an 8689 * additional address family and flags field. 8690 * AF_UNSPEC retrieve both IPv4 and IPv6. 8691 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8692 * interfaces are omitted. 8693 * Similarly, IPIF_TEMPORARY interfaces are omitted 8694 * unless LIFC_TEMPORARY is specified. 8695 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8696 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8697 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8698 * has priority over LIFC_NOXMIT. 8699 */ 8700 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8701 8702 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8703 return (EINVAL); 8704 8705 /* 8706 * Must be (better be!) continuation of a TRANSPARENT 8707 * IOCTL. We just copied in the lifconf structure. 8708 */ 8709 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8710 8711 family = STRUCT_FGET(lifc, lifc_family); 8712 flags = STRUCT_FGET(lifc, lifc_flags); 8713 8714 switch (family) { 8715 case AF_UNSPEC: 8716 /* 8717 * walk all ILL's. 8718 */ 8719 list = MAX_G_HEADS; 8720 break; 8721 case AF_INET: 8722 /* 8723 * walk only IPV4 ILL's. 8724 */ 8725 list = IP_V4_G_HEAD; 8726 break; 8727 case AF_INET6: 8728 /* 8729 * walk only IPV6 ILL's. 8730 */ 8731 list = IP_V6_G_HEAD; 8732 break; 8733 default: 8734 return (EAFNOSUPPORT); 8735 } 8736 8737 /* 8738 * Allocate a buffer to hold requested information. 8739 * 8740 * If lifc_len is larger than what is needed, we only 8741 * allocate what we will use. 8742 * 8743 * If lifc_len is smaller than what is needed, return 8744 * EINVAL. 8745 */ 8746 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8747 lifc_bufsize = numlifs * sizeof (struct lifreq); 8748 lifclen = STRUCT_FGET(lifc, lifc_len); 8749 if (lifc_bufsize > lifclen) { 8750 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8751 return (EINVAL); 8752 else 8753 lifc_bufsize = lifclen; 8754 } 8755 8756 mp1 = mi_copyout_alloc(q, mp, 8757 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8758 if (mp1 == NULL) 8759 return (ENOMEM); 8760 8761 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8762 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8763 8764 lifr = (struct lifreq *)mp1->b_rptr; 8765 8766 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8767 ill = ill_first(list, list, &ctx, ipst); 8768 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8769 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8770 continue; 8771 8772 for (ipif = ill->ill_ipif; ipif != NULL; 8773 ipif = ipif->ipif_next) { 8774 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8775 !(flags & LIFC_NOXMIT)) 8776 continue; 8777 8778 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8779 !(flags & LIFC_TEMPORARY)) 8780 continue; 8781 8782 if (((ipif->ipif_flags & 8783 (IPIF_NOXMIT|IPIF_NOLOCAL| 8784 IPIF_DEPRECATED)) || 8785 IS_LOOPBACK(ill) || 8786 !(ipif->ipif_flags & IPIF_UP)) && 8787 (flags & LIFC_EXTERNAL_SOURCE)) 8788 continue; 8789 8790 if (zoneid != ipif->ipif_zoneid && 8791 ipif->ipif_zoneid != ALL_ZONES && 8792 (zoneid != GLOBAL_ZONEID || 8793 !(flags & LIFC_ALLZONES))) 8794 continue; 8795 8796 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8797 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8798 rw_exit(&ipst->ips_ill_g_lock); 8799 return (EINVAL); 8800 } else { 8801 goto lif_copydone; 8802 } 8803 } 8804 8805 ipif_get_name(ipif, lifr->lifr_name, 8806 sizeof (lifr->lifr_name)); 8807 lifr->lifr_type = ill->ill_type; 8808 if (ipif->ipif_isv6) { 8809 sin6 = (sin6_t *)&lifr->lifr_addr; 8810 *sin6 = sin6_null; 8811 sin6->sin6_family = AF_INET6; 8812 sin6->sin6_addr = 8813 ipif->ipif_v6lcl_addr; 8814 lifr->lifr_addrlen = 8815 ip_mask_to_plen_v6( 8816 &ipif->ipif_v6net_mask); 8817 } else { 8818 sin = (sin_t *)&lifr->lifr_addr; 8819 *sin = sin_null; 8820 sin->sin_family = AF_INET; 8821 sin->sin_addr.s_addr = 8822 ipif->ipif_lcl_addr; 8823 lifr->lifr_addrlen = 8824 ip_mask_to_plen( 8825 ipif->ipif_net_mask); 8826 } 8827 lifr++; 8828 } 8829 } 8830 lif_copydone: 8831 rw_exit(&ipst->ips_ill_g_lock); 8832 8833 mp1->b_wptr = (uchar_t *)lifr; 8834 if (STRUCT_BUF(lifc) != NULL) { 8835 STRUCT_FSET(lifc, lifc_len, 8836 (int)((uchar_t *)lifr - mp1->b_rptr)); 8837 } 8838 return (0); 8839 } 8840 8841 static void 8842 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8843 { 8844 ip6_asp_t *table; 8845 size_t table_size; 8846 mblk_t *data_mp; 8847 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8848 ip_stack_t *ipst; 8849 8850 if (q->q_next == NULL) 8851 ipst = CONNQ_TO_IPST(q); 8852 else 8853 ipst = ILLQ_TO_IPST(q); 8854 8855 /* These two ioctls are I_STR only */ 8856 if (iocp->ioc_count == TRANSPARENT) { 8857 miocnak(q, mp, 0, EINVAL); 8858 return; 8859 } 8860 8861 data_mp = mp->b_cont; 8862 if (data_mp == NULL) { 8863 /* The user passed us a NULL argument */ 8864 table = NULL; 8865 table_size = iocp->ioc_count; 8866 } else { 8867 /* 8868 * The user provided a table. The stream head 8869 * may have copied in the user data in chunks, 8870 * so make sure everything is pulled up 8871 * properly. 8872 */ 8873 if (MBLKL(data_mp) < iocp->ioc_count) { 8874 mblk_t *new_data_mp; 8875 if ((new_data_mp = msgpullup(data_mp, -1)) == 8876 NULL) { 8877 miocnak(q, mp, 0, ENOMEM); 8878 return; 8879 } 8880 freemsg(data_mp); 8881 data_mp = new_data_mp; 8882 mp->b_cont = data_mp; 8883 } 8884 table = (ip6_asp_t *)data_mp->b_rptr; 8885 table_size = iocp->ioc_count; 8886 } 8887 8888 switch (iocp->ioc_cmd) { 8889 case SIOCGIP6ADDRPOLICY: 8890 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8891 if (iocp->ioc_rval == -1) 8892 iocp->ioc_error = EINVAL; 8893 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8894 else if (table != NULL && 8895 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8896 ip6_asp_t *src = table; 8897 ip6_asp32_t *dst = (void *)table; 8898 int count = table_size / sizeof (ip6_asp_t); 8899 int i; 8900 8901 /* 8902 * We need to do an in-place shrink of the array 8903 * to match the alignment attributes of the 8904 * 32-bit ABI looking at it. 8905 */ 8906 /* LINTED: logical expression always true: op "||" */ 8907 ASSERT(sizeof (*src) > sizeof (*dst)); 8908 for (i = 1; i < count; i++) 8909 bcopy(src + i, dst + i, sizeof (*dst)); 8910 } 8911 #endif 8912 break; 8913 8914 case SIOCSIP6ADDRPOLICY: 8915 ASSERT(mp->b_prev == NULL); 8916 mp->b_prev = (void *)q; 8917 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8918 /* 8919 * We pass in the datamodel here so that the ip6_asp_replace() 8920 * routine can handle converting from 32-bit to native formats 8921 * where necessary. 8922 * 8923 * A better way to handle this might be to convert the inbound 8924 * data structure here, and hang it off a new 'mp'; thus the 8925 * ip6_asp_replace() logic would always be dealing with native 8926 * format data structures.. 8927 * 8928 * (An even simpler way to handle these ioctls is to just 8929 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8930 * and just recompile everything that depends on it.) 8931 */ 8932 #endif 8933 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 8934 iocp->ioc_flag & IOC_MODELS); 8935 return; 8936 } 8937 8938 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8939 qreply(q, mp); 8940 } 8941 8942 static void 8943 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8944 { 8945 mblk_t *data_mp; 8946 struct dstinforeq *dir; 8947 uint8_t *end, *cur; 8948 in6_addr_t *daddr, *saddr; 8949 ipaddr_t v4daddr; 8950 ire_t *ire; 8951 char *slabel, *dlabel; 8952 boolean_t isipv4; 8953 int match_ire; 8954 ill_t *dst_ill; 8955 ipif_t *src_ipif, *ire_ipif; 8956 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8957 zoneid_t zoneid; 8958 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8959 8960 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8961 zoneid = Q_TO_CONN(q)->conn_zoneid; 8962 8963 /* 8964 * This ioctl is I_STR only, and must have a 8965 * data mblk following the M_IOCTL mblk. 8966 */ 8967 data_mp = mp->b_cont; 8968 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8969 miocnak(q, mp, 0, EINVAL); 8970 return; 8971 } 8972 8973 if (MBLKL(data_mp) < iocp->ioc_count) { 8974 mblk_t *new_data_mp; 8975 8976 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8977 miocnak(q, mp, 0, ENOMEM); 8978 return; 8979 } 8980 freemsg(data_mp); 8981 data_mp = new_data_mp; 8982 mp->b_cont = data_mp; 8983 } 8984 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8985 8986 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8987 end - cur >= sizeof (struct dstinforeq); 8988 cur += sizeof (struct dstinforeq)) { 8989 dir = (struct dstinforeq *)cur; 8990 daddr = &dir->dir_daddr; 8991 saddr = &dir->dir_saddr; 8992 8993 /* 8994 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8995 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8996 * and ipif_select_source[_v6]() do not. 8997 */ 8998 dir->dir_dscope = ip_addr_scope_v6(daddr); 8999 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9000 9001 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9002 if (isipv4) { 9003 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9004 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9005 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9006 } else { 9007 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9008 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9009 } 9010 if (ire == NULL) { 9011 dir->dir_dreachable = 0; 9012 9013 /* move on to next dst addr */ 9014 continue; 9015 } 9016 dir->dir_dreachable = 1; 9017 9018 ire_ipif = ire->ire_ipif; 9019 if (ire_ipif == NULL) 9020 goto next_dst; 9021 9022 /* 9023 * We expect to get back an interface ire or a 9024 * gateway ire cache entry. For both types, the 9025 * output interface is ire_ipif->ipif_ill. 9026 */ 9027 dst_ill = ire_ipif->ipif_ill; 9028 dir->dir_dmactype = dst_ill->ill_mactype; 9029 9030 if (isipv4) { 9031 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9032 } else { 9033 src_ipif = ipif_select_source_v6(dst_ill, 9034 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9035 } 9036 if (src_ipif == NULL) 9037 goto next_dst; 9038 9039 *saddr = src_ipif->ipif_v6lcl_addr; 9040 dir->dir_sscope = ip_addr_scope_v6(saddr); 9041 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9042 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9043 dir->dir_sdeprecated = 9044 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9045 ipif_refrele(src_ipif); 9046 next_dst: 9047 ire_refrele(ire); 9048 } 9049 miocack(q, mp, iocp->ioc_count, 0); 9050 } 9051 9052 /* 9053 * Check if this is an address assigned to this machine. 9054 * Skips interfaces that are down by using ire checks. 9055 * Translates mapped addresses to v4 addresses and then 9056 * treats them as such, returning true if the v4 address 9057 * associated with this mapped address is configured. 9058 * Note: Applications will have to be careful what they do 9059 * with the response; use of mapped addresses limits 9060 * what can be done with the socket, especially with 9061 * respect to socket options and ioctls - neither IPv4 9062 * options nor IPv6 sticky options/ancillary data options 9063 * may be used. 9064 */ 9065 /* ARGSUSED */ 9066 int 9067 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9068 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9069 { 9070 struct sioc_addrreq *sia; 9071 sin_t *sin; 9072 ire_t *ire; 9073 mblk_t *mp1; 9074 zoneid_t zoneid; 9075 ip_stack_t *ipst; 9076 9077 ip1dbg(("ip_sioctl_tmyaddr")); 9078 9079 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9080 zoneid = Q_TO_CONN(q)->conn_zoneid; 9081 ipst = CONNQ_TO_IPST(q); 9082 9083 /* Existence verified in ip_wput_nondata */ 9084 mp1 = mp->b_cont->b_cont; 9085 sia = (struct sioc_addrreq *)mp1->b_rptr; 9086 sin = (sin_t *)&sia->sa_addr; 9087 switch (sin->sin_family) { 9088 case AF_INET6: { 9089 sin6_t *sin6 = (sin6_t *)sin; 9090 9091 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9092 ipaddr_t v4_addr; 9093 9094 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9095 v4_addr); 9096 ire = ire_ctable_lookup(v4_addr, 0, 9097 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9098 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9099 } else { 9100 in6_addr_t v6addr; 9101 9102 v6addr = sin6->sin6_addr; 9103 ire = ire_ctable_lookup_v6(&v6addr, 0, 9104 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9105 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9106 } 9107 break; 9108 } 9109 case AF_INET: { 9110 ipaddr_t v4addr; 9111 9112 v4addr = sin->sin_addr.s_addr; 9113 ire = ire_ctable_lookup(v4addr, 0, 9114 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9115 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9116 break; 9117 } 9118 default: 9119 return (EAFNOSUPPORT); 9120 } 9121 if (ire != NULL) { 9122 sia->sa_res = 1; 9123 ire_refrele(ire); 9124 } else { 9125 sia->sa_res = 0; 9126 } 9127 return (0); 9128 } 9129 9130 /* 9131 * Check if this is an address assigned on-link i.e. neighbor, 9132 * and makes sure it's reachable from the current zone. 9133 * Returns true for my addresses as well. 9134 * Translates mapped addresses to v4 addresses and then 9135 * treats them as such, returning true if the v4 address 9136 * associated with this mapped address is configured. 9137 * Note: Applications will have to be careful what they do 9138 * with the response; use of mapped addresses limits 9139 * what can be done with the socket, especially with 9140 * respect to socket options and ioctls - neither IPv4 9141 * options nor IPv6 sticky options/ancillary data options 9142 * may be used. 9143 */ 9144 /* ARGSUSED */ 9145 int 9146 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9147 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9148 { 9149 struct sioc_addrreq *sia; 9150 sin_t *sin; 9151 mblk_t *mp1; 9152 ire_t *ire = NULL; 9153 zoneid_t zoneid; 9154 ip_stack_t *ipst; 9155 9156 ip1dbg(("ip_sioctl_tonlink")); 9157 9158 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9159 zoneid = Q_TO_CONN(q)->conn_zoneid; 9160 ipst = CONNQ_TO_IPST(q); 9161 9162 /* Existence verified in ip_wput_nondata */ 9163 mp1 = mp->b_cont->b_cont; 9164 sia = (struct sioc_addrreq *)mp1->b_rptr; 9165 sin = (sin_t *)&sia->sa_addr; 9166 9167 /* 9168 * Match addresses with a zero gateway field to avoid 9169 * routes going through a router. 9170 * Exclude broadcast and multicast addresses. 9171 */ 9172 switch (sin->sin_family) { 9173 case AF_INET6: { 9174 sin6_t *sin6 = (sin6_t *)sin; 9175 9176 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9177 ipaddr_t v4_addr; 9178 9179 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9180 v4_addr); 9181 if (!CLASSD(v4_addr)) { 9182 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9183 NULL, NULL, zoneid, NULL, 9184 MATCH_IRE_GW, ipst); 9185 } 9186 } else { 9187 in6_addr_t v6addr; 9188 in6_addr_t v6gw; 9189 9190 v6addr = sin6->sin6_addr; 9191 v6gw = ipv6_all_zeros; 9192 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9193 ire = ire_route_lookup_v6(&v6addr, 0, 9194 &v6gw, 0, NULL, NULL, zoneid, 9195 NULL, MATCH_IRE_GW, ipst); 9196 } 9197 } 9198 break; 9199 } 9200 case AF_INET: { 9201 ipaddr_t v4addr; 9202 9203 v4addr = sin->sin_addr.s_addr; 9204 if (!CLASSD(v4addr)) { 9205 ire = ire_route_lookup(v4addr, 0, 0, 0, 9206 NULL, NULL, zoneid, NULL, 9207 MATCH_IRE_GW, ipst); 9208 } 9209 break; 9210 } 9211 default: 9212 return (EAFNOSUPPORT); 9213 } 9214 sia->sa_res = 0; 9215 if (ire != NULL) { 9216 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9217 IRE_LOCAL|IRE_LOOPBACK)) { 9218 sia->sa_res = 1; 9219 } 9220 ire_refrele(ire); 9221 } 9222 return (0); 9223 } 9224 9225 /* 9226 * TBD: implement when kernel maintaines a list of site prefixes. 9227 */ 9228 /* ARGSUSED */ 9229 int 9230 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9231 ip_ioctl_cmd_t *ipip, void *ifreq) 9232 { 9233 return (ENXIO); 9234 } 9235 9236 /* ARGSUSED */ 9237 int 9238 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9239 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9240 { 9241 ill_t *ill; 9242 mblk_t *mp1; 9243 conn_t *connp; 9244 boolean_t success; 9245 9246 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9247 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9248 /* ioctl comes down on an conn */ 9249 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9250 connp = Q_TO_CONN(q); 9251 9252 mp->b_datap->db_type = M_IOCTL; 9253 9254 /* 9255 * Send down a copy. (copymsg does not copy b_next/b_prev). 9256 * The original mp contains contaminated b_next values due to 'mi', 9257 * which is needed to do the mi_copy_done. Unfortunately if we 9258 * send down the original mblk itself and if we are popped due to an 9259 * an unplumb before the response comes back from tunnel, 9260 * the streamhead (which does a freemsg) will see this contaminated 9261 * message and the assertion in freemsg about non-null b_next/b_prev 9262 * will panic a DEBUG kernel. 9263 */ 9264 mp1 = copymsg(mp); 9265 if (mp1 == NULL) 9266 return (ENOMEM); 9267 9268 ill = ipif->ipif_ill; 9269 mutex_enter(&connp->conn_lock); 9270 mutex_enter(&ill->ill_lock); 9271 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9272 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9273 mp, 0); 9274 } else { 9275 success = ill_pending_mp_add(ill, connp, mp); 9276 } 9277 mutex_exit(&ill->ill_lock); 9278 mutex_exit(&connp->conn_lock); 9279 9280 if (success) { 9281 ip1dbg(("sending down tunparam request ")); 9282 putnext(ill->ill_wq, mp1); 9283 return (EINPROGRESS); 9284 } else { 9285 /* The conn has started closing */ 9286 freemsg(mp1); 9287 return (EINTR); 9288 } 9289 } 9290 9291 /* 9292 * ARP IOCTLs. 9293 * How does IP get in the business of fronting ARP configuration/queries? 9294 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9295 * are by tradition passed in through a datagram socket. That lands in IP. 9296 * As it happens, this is just as well since the interface is quite crude in 9297 * that it passes in no information about protocol or hardware types, or 9298 * interface association. After making the protocol assumption, IP is in 9299 * the position to look up the name of the ILL, which ARP will need, and 9300 * format a request that can be handled by ARP. The request is passed up 9301 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9302 * back a response. ARP supports its own set of more general IOCTLs, in 9303 * case anyone is interested. 9304 */ 9305 /* ARGSUSED */ 9306 int 9307 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9308 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9309 { 9310 mblk_t *mp1; 9311 mblk_t *mp2; 9312 mblk_t *pending_mp; 9313 ipaddr_t ipaddr; 9314 area_t *area; 9315 struct iocblk *iocp; 9316 conn_t *connp; 9317 struct arpreq *ar; 9318 struct xarpreq *xar; 9319 int flags, alength; 9320 uchar_t *lladdr; 9321 ire_t *ire; 9322 ip_stack_t *ipst; 9323 ill_t *ill = ipif->ipif_ill; 9324 ill_t *proxy_ill = NULL; 9325 ipmp_arpent_t *entp = NULL; 9326 boolean_t if_arp_ioctl = B_FALSE; 9327 boolean_t proxyarp = B_FALSE; 9328 9329 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9330 connp = Q_TO_CONN(q); 9331 ipst = connp->conn_netstack->netstack_ip; 9332 9333 if (ipip->ipi_cmd_type == XARP_CMD) { 9334 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9335 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9336 ar = NULL; 9337 9338 flags = xar->xarp_flags; 9339 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9340 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9341 /* 9342 * Validate against user's link layer address length 9343 * input and name and addr length limits. 9344 */ 9345 alength = ill->ill_phys_addr_length; 9346 if (ipip->ipi_cmd == SIOCSXARP) { 9347 if (alength != xar->xarp_ha.sdl_alen || 9348 (alength + xar->xarp_ha.sdl_nlen > 9349 sizeof (xar->xarp_ha.sdl_data))) 9350 return (EINVAL); 9351 } 9352 } else { 9353 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9354 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9355 xar = NULL; 9356 9357 flags = ar->arp_flags; 9358 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9359 /* 9360 * Theoretically, the sa_family could tell us what link 9361 * layer type this operation is trying to deal with. By 9362 * common usage AF_UNSPEC means ethernet. We'll assume 9363 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9364 * for now. Our new SIOC*XARP ioctls can be used more 9365 * generally. 9366 * 9367 * If the underlying media happens to have a non 6 byte 9368 * address, arp module will fail set/get, but the del 9369 * operation will succeed. 9370 */ 9371 alength = 6; 9372 if ((ipip->ipi_cmd != SIOCDARP) && 9373 (alength != ill->ill_phys_addr_length)) { 9374 return (EINVAL); 9375 } 9376 } 9377 9378 ipaddr = sin->sin_addr.s_addr; 9379 9380 /* 9381 * IPMP ARP special handling: 9382 * 9383 * 1. Since ARP mappings must appear consistent across the group, 9384 * prohibit changing ARP mappings on the underlying interfaces. 9385 * 9386 * 2. Since ARP mappings for IPMP data addresses are maintained by 9387 * IP itself, prohibit changing them. 9388 * 9389 * 3. For proxy ARP, use a functioning hardware address in the group, 9390 * provided one exists. If one doesn't, just add the entry as-is; 9391 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9392 */ 9393 if (IS_UNDER_IPMP(ill)) { 9394 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9395 return (EPERM); 9396 } 9397 if (IS_IPMP(ill)) { 9398 ipmp_illgrp_t *illg = ill->ill_grp; 9399 9400 switch (ipip->ipi_cmd) { 9401 case SIOCSARP: 9402 case SIOCSXARP: 9403 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9404 if (proxy_ill != NULL) { 9405 proxyarp = B_TRUE; 9406 if (!ipmp_ill_is_active(proxy_ill)) 9407 proxy_ill = ipmp_illgrp_next_ill(illg); 9408 if (proxy_ill != NULL) 9409 lladdr = proxy_ill->ill_phys_addr; 9410 } 9411 /* FALLTHRU */ 9412 case SIOCDARP: 9413 case SIOCDXARP: 9414 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9415 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9416 if (ire != NULL) { 9417 ire_refrele(ire); 9418 return (EPERM); 9419 } 9420 } 9421 } 9422 9423 /* 9424 * We are going to pass up to ARP a packet chain that looks 9425 * like: 9426 * 9427 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9428 * 9429 * Get a copy of the original IOCTL mblk to head the chain, 9430 * to be sent up (in mp1). Also get another copy to store 9431 * in the ill_pending_mp list, for matching the response 9432 * when it comes back from ARP. 9433 */ 9434 mp1 = copyb(mp); 9435 pending_mp = copymsg(mp); 9436 if (mp1 == NULL || pending_mp == NULL) { 9437 if (mp1 != NULL) 9438 freeb(mp1); 9439 if (pending_mp != NULL) 9440 inet_freemsg(pending_mp); 9441 return (ENOMEM); 9442 } 9443 9444 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9445 (caddr_t)&ipaddr); 9446 if (mp2 == NULL) { 9447 freeb(mp1); 9448 inet_freemsg(pending_mp); 9449 return (ENOMEM); 9450 } 9451 /* Put together the chain. */ 9452 mp1->b_cont = mp2; 9453 mp1->b_datap->db_type = M_IOCTL; 9454 mp2->b_cont = mp; 9455 mp2->b_datap->db_type = M_DATA; 9456 9457 iocp = (struct iocblk *)mp1->b_rptr; 9458 9459 /* 9460 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9461 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9462 * cp_private field (or cp_rval on 32-bit systems) in place of the 9463 * ioc_count field; set ioc_count to be correct. 9464 */ 9465 iocp->ioc_count = MBLKL(mp1->b_cont); 9466 9467 /* 9468 * Set the proper command in the ARP message. 9469 * Convert the SIOC{G|S|D}ARP calls into our 9470 * AR_ENTRY_xxx calls. 9471 */ 9472 area = (area_t *)mp2->b_rptr; 9473 switch (iocp->ioc_cmd) { 9474 case SIOCDARP: 9475 case SIOCDXARP: 9476 /* 9477 * We defer deleting the corresponding IRE until 9478 * we return from arp. 9479 */ 9480 area->area_cmd = AR_ENTRY_DELETE; 9481 area->area_proto_mask_offset = 0; 9482 break; 9483 case SIOCGARP: 9484 case SIOCGXARP: 9485 area->area_cmd = AR_ENTRY_SQUERY; 9486 area->area_proto_mask_offset = 0; 9487 break; 9488 case SIOCSARP: 9489 case SIOCSXARP: 9490 /* 9491 * Delete the corresponding ire to make sure IP will 9492 * pick up any change from arp. 9493 */ 9494 if (!if_arp_ioctl) { 9495 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9496 } else { 9497 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9498 if (ipif != NULL) { 9499 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9500 ipst); 9501 ipif_refrele(ipif); 9502 } 9503 } 9504 break; 9505 } 9506 iocp->ioc_cmd = area->area_cmd; 9507 9508 /* 9509 * Fill in the rest of the ARP operation fields. 9510 */ 9511 area->area_hw_addr_length = alength; 9512 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9513 9514 /* Translate the flags. */ 9515 if (flags & ATF_PERM) 9516 area->area_flags |= ACE_F_PERMANENT; 9517 if (flags & ATF_PUBL) 9518 area->area_flags |= ACE_F_PUBLISH; 9519 if (flags & ATF_AUTHORITY) 9520 area->area_flags |= ACE_F_AUTHORITY; 9521 9522 /* 9523 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9524 * so that IP can update ARP as the active ills in the group change. 9525 */ 9526 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9527 (area->area_flags & ACE_F_PERMANENT)) { 9528 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9529 9530 /* 9531 * The second part of the conditional below handles a corner 9532 * case: if this is proxy ARP and the IPMP group has no active 9533 * interfaces, we can't send the request to ARP now since it 9534 * won't be able to build an ACE. So we return success and 9535 * notify ARP about the proxy ARP entry once an interface 9536 * becomes active. 9537 */ 9538 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9539 mp2->b_cont = NULL; 9540 inet_freemsg(mp1); 9541 inet_freemsg(pending_mp); 9542 return (entp == NULL ? ENOMEM : 0); 9543 } 9544 } 9545 9546 /* 9547 * Before sending 'mp' to ARP, we have to clear the b_next 9548 * and b_prev. Otherwise if STREAMS encounters such a message 9549 * in freemsg(), (because ARP can close any time) it can cause 9550 * a panic. But mi code needs the b_next and b_prev values of 9551 * mp->b_cont, to complete the ioctl. So we store it here 9552 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9553 * when the response comes down from ARP. 9554 */ 9555 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9556 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9557 mp->b_cont->b_next = NULL; 9558 mp->b_cont->b_prev = NULL; 9559 9560 mutex_enter(&connp->conn_lock); 9561 mutex_enter(&ill->ill_lock); 9562 /* conn has not yet started closing, hence this can't fail */ 9563 if (ipip->ipi_flags & IPI_WR) { 9564 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9565 pending_mp, 0) != 0); 9566 } else { 9567 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9568 } 9569 mutex_exit(&ill->ill_lock); 9570 mutex_exit(&connp->conn_lock); 9571 9572 /* 9573 * Up to ARP it goes. The response will come back in ip_wput() as an 9574 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9575 */ 9576 putnext(ill->ill_rq, mp1); 9577 9578 /* 9579 * If we created an IPMP ARP entry, mark that we've notified ARP. 9580 */ 9581 if (entp != NULL) 9582 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9583 9584 return (EINPROGRESS); 9585 } 9586 9587 /* 9588 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9589 * the associated sin and refhold and return the associated ipif via `ci'. 9590 */ 9591 int 9592 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9593 cmd_info_t *ci, ipsq_func_t func) 9594 { 9595 mblk_t *mp1; 9596 int err; 9597 sin_t *sin; 9598 conn_t *connp; 9599 ipif_t *ipif; 9600 ire_t *ire = NULL; 9601 ill_t *ill = NULL; 9602 boolean_t exists; 9603 ip_stack_t *ipst; 9604 struct arpreq *ar; 9605 struct xarpreq *xar; 9606 struct sockaddr_dl *sdl; 9607 9608 /* ioctl comes down on a conn */ 9609 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9610 connp = Q_TO_CONN(q); 9611 if (connp->conn_af_isv6) 9612 return (ENXIO); 9613 9614 ipst = connp->conn_netstack->netstack_ip; 9615 9616 /* Verified in ip_wput_nondata */ 9617 mp1 = mp->b_cont->b_cont; 9618 9619 if (ipip->ipi_cmd_type == XARP_CMD) { 9620 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9621 xar = (struct xarpreq *)mp1->b_rptr; 9622 sin = (sin_t *)&xar->xarp_pa; 9623 sdl = &xar->xarp_ha; 9624 9625 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9626 return (ENXIO); 9627 if (sdl->sdl_nlen >= LIFNAMSIZ) 9628 return (EINVAL); 9629 } else { 9630 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9631 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9632 ar = (struct arpreq *)mp1->b_rptr; 9633 sin = (sin_t *)&ar->arp_pa; 9634 } 9635 9636 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9637 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9638 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9639 mp, func, &err, ipst); 9640 if (ipif == NULL) 9641 return (err); 9642 if (ipif->ipif_id != 0) { 9643 ipif_refrele(ipif); 9644 return (ENXIO); 9645 } 9646 } else { 9647 /* 9648 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9649 * of 0: use the IP address to find the ipif. If the IP 9650 * address is an IPMP test address, ire_ftable_lookup() will 9651 * find the wrong ill, so we first do an ipif_lookup_addr(). 9652 */ 9653 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9654 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9655 if (ipif == NULL) { 9656 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9657 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9658 MATCH_IRE_TYPE, ipst); 9659 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9660 if (ire != NULL) 9661 ire_refrele(ire); 9662 return (ENXIO); 9663 } 9664 ipif = ill->ill_ipif; 9665 ipif_refhold(ipif); 9666 ire_refrele(ire); 9667 } 9668 } 9669 9670 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9671 ipif_refrele(ipif); 9672 return (ENXIO); 9673 } 9674 9675 ci->ci_sin = sin; 9676 ci->ci_ipif = ipif; 9677 return (0); 9678 } 9679 9680 /* 9681 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9682 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9683 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9684 * up and thus an ill can join that illgrp. 9685 * 9686 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9687 * open()/close() primarily because close() is not allowed to fail or block 9688 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9689 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9690 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9691 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9692 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9693 * state if I_UNLINK didn't occur. 9694 * 9695 * Note that for each plumb/unplumb operation, we may end up here more than 9696 * once because of the way ifconfig works. However, it's OK to link the same 9697 * illgrp more than once, or unlink an illgrp that's already unlinked. 9698 */ 9699 static int 9700 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9701 { 9702 int err; 9703 ip_stack_t *ipst = ill->ill_ipst; 9704 9705 ASSERT(IS_IPMP(ill)); 9706 ASSERT(IAM_WRITER_ILL(ill)); 9707 9708 switch (ioccmd) { 9709 case I_LINK: 9710 return (ENOTSUP); 9711 9712 case I_PLINK: 9713 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9714 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9715 rw_exit(&ipst->ips_ipmp_lock); 9716 break; 9717 9718 case I_PUNLINK: 9719 /* 9720 * Require all UP ipifs be brought down prior to unlinking the 9721 * illgrp so any associated IREs (and other state) is torched. 9722 */ 9723 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9724 return (EBUSY); 9725 9726 /* 9727 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9728 * with an SIOCSLIFGROUPNAME request from an ill trying to 9729 * join this group. Specifically: ills trying to join grab 9730 * ipmp_lock and bump a "pending join" counter checked by 9731 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9732 * joins can occur (since we have ipmp_lock). Once we drop 9733 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9734 * find the illgrp (since we unlinked it) and will return 9735 * EAFNOSUPPORT. This will then take them back through the 9736 * IPMP meta-interface plumbing logic in ifconfig, and thus 9737 * back through I_PLINK above. 9738 */ 9739 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9740 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9741 rw_exit(&ipst->ips_ipmp_lock); 9742 return (err); 9743 default: 9744 break; 9745 } 9746 return (0); 9747 } 9748 9749 /* 9750 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9751 * atomically set/clear the muxids. Also complete the ioctl by acking or 9752 * naking it. Note that the code is structured such that the link type, 9753 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9754 * its clones use the persistent link, while pppd(1M) and perhaps many 9755 * other daemons may use non-persistent link. When combined with some 9756 * ill_t states, linking and unlinking lower streams may be used as 9757 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9758 */ 9759 /* ARGSUSED */ 9760 void 9761 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9762 { 9763 mblk_t *mp1, *mp2; 9764 struct linkblk *li; 9765 struct ipmx_s *ipmxp; 9766 ill_t *ill; 9767 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9768 int err = 0; 9769 boolean_t entered_ipsq = B_FALSE; 9770 boolean_t islink; 9771 ip_stack_t *ipst; 9772 9773 if (CONN_Q(q)) 9774 ipst = CONNQ_TO_IPST(q); 9775 else 9776 ipst = ILLQ_TO_IPST(q); 9777 9778 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9779 ioccmd == I_LINK || ioccmd == I_UNLINK); 9780 9781 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9782 9783 mp1 = mp->b_cont; /* This is the linkblk info */ 9784 li = (struct linkblk *)mp1->b_rptr; 9785 9786 /* 9787 * ARP has added this special mblk, and the utility is asking us 9788 * to perform consistency checks, and also atomically set the 9789 * muxid. Ifconfig is an example. It achieves this by using 9790 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9791 * to /dev/udp[6] stream for use as the mux when plinking the IP 9792 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9793 * and other comments in this routine for more details. 9794 */ 9795 mp2 = mp1->b_cont; /* This is added by ARP */ 9796 9797 /* 9798 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9799 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9800 * get the special mblk above. For backward compatibility, we 9801 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9802 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9803 * not atomic, and can leave the streams unplumbable if the utility 9804 * is interrupted before it does the SIOCSLIFMUXID. 9805 */ 9806 if (mp2 == NULL) { 9807 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9808 if (err == EINPROGRESS) 9809 return; 9810 goto done; 9811 } 9812 9813 /* 9814 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9815 * ARP has appended this last mblk to tell us whether the lower stream 9816 * is an arp-dev stream or an IP module stream. 9817 */ 9818 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9819 if (ipmxp->ipmx_arpdev_stream) { 9820 /* 9821 * The lower stream is the arp-dev stream. 9822 */ 9823 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9824 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9825 if (ill == NULL) { 9826 if (err == EINPROGRESS) 9827 return; 9828 err = EINVAL; 9829 goto done; 9830 } 9831 9832 if (ipsq == NULL) { 9833 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9834 NEW_OP, B_FALSE); 9835 if (ipsq == NULL) { 9836 ill_refrele(ill); 9837 return; 9838 } 9839 entered_ipsq = B_TRUE; 9840 } 9841 ASSERT(IAM_WRITER_ILL(ill)); 9842 ill_refrele(ill); 9843 9844 /* 9845 * To ensure consistency between IP and ARP, the following 9846 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9847 * This is because the muxid's are stored in the IP stream on 9848 * the ill. 9849 * 9850 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9851 * the ARP stream. On an arp-dev stream, IP checks that it is 9852 * not yet plinked, and it also checks that the corresponding 9853 * IP stream is already plinked. 9854 * 9855 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9856 * punlinking the IP stream. IP does not allow punlink of the 9857 * IP stream unless the arp stream has been punlinked. 9858 */ 9859 if ((islink && 9860 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9861 (!islink && ill->ill_arp_muxid != li->l_index)) { 9862 err = EINVAL; 9863 goto done; 9864 } 9865 9866 if (IS_IPMP(ill) && 9867 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9868 goto done; 9869 9870 ill->ill_arp_muxid = islink ? li->l_index : 0; 9871 } else { 9872 /* 9873 * The lower stream is probably an IP module stream. Do 9874 * consistency checking. 9875 */ 9876 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9877 if (err == EINPROGRESS) 9878 return; 9879 } 9880 done: 9881 if (err == 0) 9882 miocack(q, mp, 0, 0); 9883 else 9884 miocnak(q, mp, 0, err); 9885 9886 /* Conn was refheld in ip_sioctl_copyin_setup */ 9887 if (CONN_Q(q)) 9888 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9889 if (entered_ipsq) 9890 ipsq_exit(ipsq); 9891 } 9892 9893 /* 9894 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9895 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9896 * module stream). If `doconsist' is set, then do the extended consistency 9897 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9898 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9899 * an error code on failure. 9900 */ 9901 static int 9902 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9903 struct linkblk *li, boolean_t doconsist) 9904 { 9905 int err = 0; 9906 ill_t *ill; 9907 queue_t *ipwq, *dwq; 9908 const char *name; 9909 struct qinit *qinfo; 9910 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9911 boolean_t entered_ipsq = B_FALSE; 9912 9913 /* 9914 * Walk the lower stream to verify it's the IP module stream. 9915 * The IP module is identified by its name, wput function, 9916 * and non-NULL q_next. STREAMS ensures that the lower stream 9917 * (li->l_qbot) will not vanish until this ioctl completes. 9918 */ 9919 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9920 qinfo = ipwq->q_qinfo; 9921 name = qinfo->qi_minfo->mi_idname; 9922 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9923 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9924 break; 9925 } 9926 } 9927 9928 /* 9929 * If this isn't an IP module stream, bail. 9930 */ 9931 if (ipwq == NULL) 9932 return (0); 9933 9934 ill = ipwq->q_ptr; 9935 ASSERT(ill != NULL); 9936 9937 if (ipsq == NULL) { 9938 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9939 NEW_OP, B_FALSE); 9940 if (ipsq == NULL) 9941 return (EINPROGRESS); 9942 entered_ipsq = B_TRUE; 9943 } 9944 ASSERT(IAM_WRITER_ILL(ill)); 9945 9946 if (doconsist) { 9947 /* 9948 * Consistency checking requires that I_{P}LINK occurs 9949 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9950 * occurs prior to clearing ill_arp_muxid. 9951 */ 9952 if ((islink && ill->ill_ip_muxid != 0) || 9953 (!islink && ill->ill_arp_muxid != 0)) { 9954 err = EINVAL; 9955 goto done; 9956 } 9957 } 9958 9959 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9960 goto done; 9961 9962 /* 9963 * As part of I_{P}LINKing, stash the number of downstream modules and 9964 * the read queue of the module immediately below IP in the ill. 9965 * These are used during the capability negotiation below. 9966 */ 9967 ill->ill_lmod_rq = NULL; 9968 ill->ill_lmod_cnt = 0; 9969 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9970 ill->ill_lmod_rq = RD(dwq); 9971 for (; dwq != NULL; dwq = dwq->q_next) 9972 ill->ill_lmod_cnt++; 9973 } 9974 9975 if (doconsist) 9976 ill->ill_ip_muxid = islink ? li->l_index : 0; 9977 9978 /* 9979 * Mark the ipsq busy until the capability operations initiated below 9980 * complete. The PLINK/UNLINK ioctl itself completes when our caller 9981 * returns, but the capability operation may complete asynchronously 9982 * much later. 9983 */ 9984 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 9985 /* 9986 * If there's at least one up ipif on this ill, then we're bound to 9987 * the underlying driver via DLPI. In that case, renegotiate 9988 * capabilities to account for any possible change in modules 9989 * interposed between IP and the driver. 9990 */ 9991 if (ill->ill_ipif_up_count > 0) { 9992 if (islink) 9993 ill_capability_probe(ill); 9994 else 9995 ill_capability_reset(ill, B_FALSE); 9996 } 9997 ipsq_current_finish(ipsq); 9998 done: 9999 if (entered_ipsq) 10000 ipsq_exit(ipsq); 10001 10002 return (err); 10003 } 10004 10005 /* 10006 * Search the ioctl command in the ioctl tables and return a pointer 10007 * to the ioctl command information. The ioctl command tables are 10008 * static and fully populated at compile time. 10009 */ 10010 ip_ioctl_cmd_t * 10011 ip_sioctl_lookup(int ioc_cmd) 10012 { 10013 int index; 10014 ip_ioctl_cmd_t *ipip; 10015 ip_ioctl_cmd_t *ipip_end; 10016 10017 if (ioc_cmd == IPI_DONTCARE) 10018 return (NULL); 10019 10020 /* 10021 * Do a 2 step search. First search the indexed table 10022 * based on the least significant byte of the ioctl cmd. 10023 * If we don't find a match, then search the misc table 10024 * serially. 10025 */ 10026 index = ioc_cmd & 0xFF; 10027 if (index < ip_ndx_ioctl_count) { 10028 ipip = &ip_ndx_ioctl_table[index]; 10029 if (ipip->ipi_cmd == ioc_cmd) { 10030 /* Found a match in the ndx table */ 10031 return (ipip); 10032 } 10033 } 10034 10035 /* Search the misc table */ 10036 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10037 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10038 if (ipip->ipi_cmd == ioc_cmd) 10039 /* Found a match in the misc table */ 10040 return (ipip); 10041 } 10042 10043 return (NULL); 10044 } 10045 10046 /* 10047 * Wrapper function for resuming deferred ioctl processing 10048 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10049 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10050 */ 10051 /* ARGSUSED */ 10052 void 10053 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10054 void *dummy_arg) 10055 { 10056 ip_sioctl_copyin_setup(q, mp); 10057 } 10058 10059 /* 10060 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10061 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10062 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10063 * We establish here the size of the block to be copied in. mi_copyin 10064 * arranges for this to happen, an processing continues in ip_wput with 10065 * an M_IOCDATA message. 10066 */ 10067 void 10068 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10069 { 10070 int copyin_size; 10071 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10072 ip_ioctl_cmd_t *ipip; 10073 cred_t *cr; 10074 ip_stack_t *ipst; 10075 10076 if (CONN_Q(q)) 10077 ipst = CONNQ_TO_IPST(q); 10078 else 10079 ipst = ILLQ_TO_IPST(q); 10080 10081 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10082 if (ipip == NULL) { 10083 /* 10084 * The ioctl is not one we understand or own. 10085 * Pass it along to be processed down stream, 10086 * if this is a module instance of IP, else nak 10087 * the ioctl. 10088 */ 10089 if (q->q_next == NULL) { 10090 goto nak; 10091 } else { 10092 putnext(q, mp); 10093 return; 10094 } 10095 } 10096 10097 /* 10098 * If this is deferred, then we will do all the checks when we 10099 * come back. 10100 */ 10101 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10102 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10103 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10104 return; 10105 } 10106 10107 /* 10108 * Only allow a very small subset of IP ioctls on this stream if 10109 * IP is a module and not a driver. Allowing ioctls to be processed 10110 * in this case may cause assert failures or data corruption. 10111 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10112 * ioctls allowed on an IP module stream, after which this stream 10113 * normally becomes a multiplexor (at which time the stream head 10114 * will fail all ioctls). 10115 */ 10116 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10117 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10118 /* 10119 * Pass common Streams ioctls which the IP 10120 * module does not own or consume along to 10121 * be processed down stream. 10122 */ 10123 putnext(q, mp); 10124 return; 10125 } else { 10126 goto nak; 10127 } 10128 } 10129 10130 /* Make sure we have ioctl data to process. */ 10131 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10132 goto nak; 10133 10134 /* 10135 * Prefer dblk credential over ioctl credential; some synthesized 10136 * ioctls have kcred set because there's no way to crhold() 10137 * a credential in some contexts. (ioc_cr is not crfree() by 10138 * the framework; the caller of ioctl needs to hold the reference 10139 * for the duration of the call). 10140 */ 10141 cr = msg_getcred(mp, NULL); 10142 if (cr == NULL) 10143 cr = iocp->ioc_cr; 10144 10145 /* Make sure normal users don't send down privileged ioctls */ 10146 if ((ipip->ipi_flags & IPI_PRIV) && 10147 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10148 /* We checked the privilege earlier but log it here */ 10149 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10150 return; 10151 } 10152 10153 /* 10154 * The ioctl command tables can only encode fixed length 10155 * ioctl data. If the length is variable, the table will 10156 * encode the length as zero. Such special cases are handled 10157 * below in the switch. 10158 */ 10159 if (ipip->ipi_copyin_size != 0) { 10160 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10161 return; 10162 } 10163 10164 switch (iocp->ioc_cmd) { 10165 case O_SIOCGIFCONF: 10166 case SIOCGIFCONF: 10167 /* 10168 * This IOCTL is hilarious. See comments in 10169 * ip_sioctl_get_ifconf for the story. 10170 */ 10171 if (iocp->ioc_count == TRANSPARENT) 10172 copyin_size = SIZEOF_STRUCT(ifconf, 10173 iocp->ioc_flag); 10174 else 10175 copyin_size = iocp->ioc_count; 10176 mi_copyin(q, mp, NULL, copyin_size); 10177 return; 10178 10179 case O_SIOCGLIFCONF: 10180 case SIOCGLIFCONF: 10181 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10182 mi_copyin(q, mp, NULL, copyin_size); 10183 return; 10184 10185 case SIOCGLIFSRCOF: 10186 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10187 mi_copyin(q, mp, NULL, copyin_size); 10188 return; 10189 case SIOCGIP6ADDRPOLICY: 10190 ip_sioctl_ip6addrpolicy(q, mp); 10191 ip6_asp_table_refrele(ipst); 10192 return; 10193 10194 case SIOCSIP6ADDRPOLICY: 10195 ip_sioctl_ip6addrpolicy(q, mp); 10196 return; 10197 10198 case SIOCGDSTINFO: 10199 ip_sioctl_dstinfo(q, mp); 10200 ip6_asp_table_refrele(ipst); 10201 return; 10202 10203 case I_PLINK: 10204 case I_PUNLINK: 10205 case I_LINK: 10206 case I_UNLINK: 10207 /* 10208 * We treat non-persistent link similarly as the persistent 10209 * link case, in terms of plumbing/unplumbing, as well as 10210 * dynamic re-plumbing events indicator. See comments 10211 * in ip_sioctl_plink() for more. 10212 * 10213 * Request can be enqueued in the 'ipsq' while waiting 10214 * to become exclusive. So bump up the conn ref. 10215 */ 10216 if (CONN_Q(q)) 10217 CONN_INC_REF(Q_TO_CONN(q)); 10218 ip_sioctl_plink(NULL, q, mp, NULL); 10219 return; 10220 10221 case ND_GET: 10222 case ND_SET: 10223 /* 10224 * Use of the nd table requires holding the reader lock. 10225 * Modifying the nd table thru nd_load/nd_unload requires 10226 * the writer lock. 10227 */ 10228 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10229 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10230 rw_exit(&ipst->ips_ip_g_nd_lock); 10231 10232 if (iocp->ioc_error) 10233 iocp->ioc_count = 0; 10234 mp->b_datap->db_type = M_IOCACK; 10235 qreply(q, mp); 10236 return; 10237 } 10238 rw_exit(&ipst->ips_ip_g_nd_lock); 10239 /* 10240 * We don't understand this subioctl of ND_GET / ND_SET. 10241 * Maybe intended for some driver / module below us 10242 */ 10243 if (q->q_next) { 10244 putnext(q, mp); 10245 } else { 10246 iocp->ioc_error = ENOENT; 10247 mp->b_datap->db_type = M_IOCNAK; 10248 iocp->ioc_count = 0; 10249 qreply(q, mp); 10250 } 10251 return; 10252 10253 case IP_IOCTL: 10254 ip_wput_ioctl(q, mp); 10255 return; 10256 default: 10257 cmn_err(CE_PANIC, "should not happen "); 10258 } 10259 nak: 10260 if (mp->b_cont != NULL) { 10261 freemsg(mp->b_cont); 10262 mp->b_cont = NULL; 10263 } 10264 iocp->ioc_error = EINVAL; 10265 mp->b_datap->db_type = M_IOCNAK; 10266 iocp->ioc_count = 0; 10267 qreply(q, mp); 10268 } 10269 10270 /* ip_wput hands off ARP IOCTL responses to us */ 10271 /* ARGSUSED3 */ 10272 void 10273 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10274 { 10275 struct arpreq *ar; 10276 struct xarpreq *xar; 10277 area_t *area; 10278 mblk_t *area_mp; 10279 struct iocblk *iocp; 10280 mblk_t *orig_ioc_mp, *tmp; 10281 struct iocblk *orig_iocp; 10282 ill_t *ill; 10283 conn_t *connp = NULL; 10284 mblk_t *pending_mp; 10285 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10286 int *flagsp; 10287 char *storage = NULL; 10288 sin_t *sin; 10289 ipaddr_t addr; 10290 int err; 10291 ip_stack_t *ipst; 10292 10293 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10294 ill = q->q_ptr; 10295 ASSERT(ill != NULL); 10296 ipst = ill->ill_ipst; 10297 10298 /* 10299 * We should get back from ARP a packet chain that looks like: 10300 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10301 */ 10302 if (!(area_mp = mp->b_cont) || 10303 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10304 !(orig_ioc_mp = area_mp->b_cont) || 10305 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10306 freemsg(mp); 10307 return; 10308 } 10309 10310 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10311 10312 tmp = (orig_ioc_mp->b_cont)->b_cont; 10313 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10314 (orig_iocp->ioc_cmd == SIOCSXARP) || 10315 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10316 x_arp_ioctl = B_TRUE; 10317 xar = (struct xarpreq *)tmp->b_rptr; 10318 sin = (sin_t *)&xar->xarp_pa; 10319 flagsp = &xar->xarp_flags; 10320 storage = xar->xarp_ha.sdl_data; 10321 if (xar->xarp_ha.sdl_nlen != 0) 10322 ifx_arp_ioctl = B_TRUE; 10323 } else { 10324 ar = (struct arpreq *)tmp->b_rptr; 10325 sin = (sin_t *)&ar->arp_pa; 10326 flagsp = &ar->arp_flags; 10327 storage = ar->arp_ha.sa_data; 10328 } 10329 10330 iocp = (struct iocblk *)mp->b_rptr; 10331 10332 /* 10333 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10334 * Otherwise, we can find it from our ioc_id. 10335 */ 10336 if (ipsq != NULL) 10337 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10338 else 10339 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10340 10341 if (pending_mp == NULL) { 10342 ASSERT(connp == NULL); 10343 inet_freemsg(mp); 10344 return; 10345 } 10346 ASSERT(connp != NULL); 10347 q = CONNP_TO_WQ(connp); 10348 10349 /* Uncouple the internally generated IOCTL from the original one */ 10350 area = (area_t *)area_mp->b_rptr; 10351 area_mp->b_cont = NULL; 10352 10353 /* 10354 * Restore the b_next and b_prev used by mi code. This is needed 10355 * to complete the ioctl using mi* functions. We stored them in 10356 * the pending mp prior to sending the request to ARP. 10357 */ 10358 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10359 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10360 inet_freemsg(pending_mp); 10361 10362 /* 10363 * We're done if there was an error or if this is not an SIOCG{X}ARP 10364 * Catch the case where there is an IRE_CACHE by no entry in the 10365 * arp table. 10366 */ 10367 addr = sin->sin_addr.s_addr; 10368 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10369 ire_t *ire; 10370 dl_unitdata_req_t *dlup; 10371 mblk_t *llmp; 10372 int addr_len; 10373 ill_t *ipsqill = NULL; 10374 10375 if (ifx_arp_ioctl) { 10376 /* 10377 * There's no need to lookup the ill, since 10378 * we've already done that when we started 10379 * processing the ioctl and sent the message 10380 * to ARP on that ill. So use the ill that 10381 * is stored in q->q_ptr. 10382 */ 10383 ipsqill = ill; 10384 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10385 ipsqill->ill_ipif, ALL_ZONES, 10386 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10387 } else { 10388 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10389 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10390 if (ire != NULL) 10391 ipsqill = ire_to_ill(ire); 10392 } 10393 10394 if ((x_arp_ioctl) && (ipsqill != NULL)) 10395 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10396 10397 if (ire != NULL) { 10398 /* 10399 * Since the ire obtained from cachetable is used for 10400 * mac addr copying below, treat an incomplete ire as if 10401 * as if we never found it. 10402 */ 10403 if (ire->ire_nce != NULL && 10404 ire->ire_nce->nce_state != ND_REACHABLE) { 10405 ire_refrele(ire); 10406 ire = NULL; 10407 ipsqill = NULL; 10408 goto errack; 10409 } 10410 *flagsp = ATF_INUSE; 10411 llmp = (ire->ire_nce != NULL ? 10412 ire->ire_nce->nce_res_mp : NULL); 10413 if (llmp != NULL && ipsqill != NULL) { 10414 uchar_t *macaddr; 10415 10416 addr_len = ipsqill->ill_phys_addr_length; 10417 if (x_arp_ioctl && ((addr_len + 10418 ipsqill->ill_name_length) > 10419 sizeof (xar->xarp_ha.sdl_data))) { 10420 ire_refrele(ire); 10421 freemsg(mp); 10422 ip_ioctl_finish(q, orig_ioc_mp, 10423 EINVAL, NO_COPYOUT, ipsq); 10424 return; 10425 } 10426 *flagsp |= ATF_COM; 10427 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10428 if (ipsqill->ill_sap_length < 0) 10429 macaddr = llmp->b_rptr + 10430 dlup->dl_dest_addr_offset; 10431 else 10432 macaddr = llmp->b_rptr + 10433 dlup->dl_dest_addr_offset + 10434 ipsqill->ill_sap_length; 10435 /* 10436 * For SIOCGARP, MAC address length 10437 * validation has already been done 10438 * before the ioctl was issued to ARP to 10439 * allow it to progress only on 6 byte 10440 * addressable (ethernet like) media. Thus 10441 * the mac address copying can not overwrite 10442 * the sa_data area below. 10443 */ 10444 bcopy(macaddr, storage, addr_len); 10445 } 10446 /* Ditch the internal IOCTL. */ 10447 freemsg(mp); 10448 ire_refrele(ire); 10449 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10450 return; 10451 } 10452 } 10453 10454 /* 10455 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10456 * on the IPMP meta-interface, ensure any ARP entries added in 10457 * ip_sioctl_arp() are deleted. 10458 */ 10459 if (IS_IPMP(ill) && 10460 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10461 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10462 ipmp_illgrp_t *illg = ill->ill_grp; 10463 ipmp_arpent_t *entp; 10464 10465 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10466 ipmp_illgrp_destroy_arpent(illg, entp); 10467 } 10468 10469 /* 10470 * Delete the coresponding IRE_CACHE if any. 10471 * Reset the error if there was one (in case there was no entry 10472 * in arp.) 10473 */ 10474 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10475 ipif_t *ipintf = NULL; 10476 10477 if (ifx_arp_ioctl) { 10478 /* 10479 * There's no need to lookup the ill, since 10480 * we've already done that when we started 10481 * processing the ioctl and sent the message 10482 * to ARP on that ill. So use the ill that 10483 * is stored in q->q_ptr. 10484 */ 10485 ipintf = ill->ill_ipif; 10486 } 10487 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10488 /* 10489 * The address in "addr" may be an entry for a 10490 * router. If that's true, then any off-net 10491 * IRE_CACHE entries that go through the router 10492 * with address "addr" must be clobbered. Use 10493 * ire_walk to achieve this goal. 10494 */ 10495 if (ifx_arp_ioctl) 10496 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10497 ire_delete_cache_gw, (char *)&addr, ill); 10498 else 10499 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10500 ALL_ZONES, ipst); 10501 iocp->ioc_error = 0; 10502 } 10503 } 10504 errack: 10505 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10506 err = iocp->ioc_error; 10507 freemsg(mp); 10508 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10509 return; 10510 } 10511 10512 /* 10513 * Completion of an SIOCG{X}ARP. Translate the information from 10514 * the area_t into the struct {x}arpreq. 10515 */ 10516 if (x_arp_ioctl) { 10517 storage += ill_xarp_info(&xar->xarp_ha, ill); 10518 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10519 sizeof (xar->xarp_ha.sdl_data)) { 10520 freemsg(mp); 10521 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10522 ipsq); 10523 return; 10524 } 10525 } 10526 *flagsp = ATF_INUSE; 10527 if (area->area_flags & ACE_F_PERMANENT) 10528 *flagsp |= ATF_PERM; 10529 if (area->area_flags & ACE_F_PUBLISH) 10530 *flagsp |= ATF_PUBL; 10531 if (area->area_flags & ACE_F_AUTHORITY) 10532 *flagsp |= ATF_AUTHORITY; 10533 if (area->area_hw_addr_length != 0) { 10534 *flagsp |= ATF_COM; 10535 /* 10536 * For SIOCGARP, MAC address length validation has 10537 * already been done before the ioctl was issued to ARP 10538 * to allow it to progress only on 6 byte addressable 10539 * (ethernet like) media. Thus the mac address copying 10540 * can not overwrite the sa_data area below. 10541 */ 10542 bcopy((char *)area + area->area_hw_addr_offset, 10543 storage, area->area_hw_addr_length); 10544 } 10545 10546 /* Ditch the internal IOCTL. */ 10547 freemsg(mp); 10548 /* Complete the original. */ 10549 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10550 } 10551 10552 /* 10553 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10554 * interface) create the next available logical interface for this 10555 * physical interface. 10556 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10557 * ipif with the specified name. 10558 * 10559 * If the address family is not AF_UNSPEC then set the address as well. 10560 * 10561 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10562 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10563 * 10564 * Executed as a writer on the ill. 10565 * So no lock is needed to traverse the ipif chain, or examine the 10566 * phyint flags. 10567 */ 10568 /* ARGSUSED */ 10569 int 10570 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10571 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10572 { 10573 mblk_t *mp1; 10574 struct lifreq *lifr; 10575 boolean_t isv6; 10576 boolean_t exists; 10577 char *name; 10578 char *endp; 10579 char *cp; 10580 int namelen; 10581 ipif_t *ipif; 10582 long id; 10583 ipsq_t *ipsq; 10584 ill_t *ill; 10585 sin_t *sin; 10586 int err = 0; 10587 boolean_t found_sep = B_FALSE; 10588 conn_t *connp; 10589 zoneid_t zoneid; 10590 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10591 10592 ASSERT(q->q_next == NULL); 10593 ip1dbg(("ip_sioctl_addif\n")); 10594 /* Existence of mp1 has been checked in ip_wput_nondata */ 10595 mp1 = mp->b_cont->b_cont; 10596 /* 10597 * Null terminate the string to protect against buffer 10598 * overrun. String was generated by user code and may not 10599 * be trusted. 10600 */ 10601 lifr = (struct lifreq *)mp1->b_rptr; 10602 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10603 name = lifr->lifr_name; 10604 ASSERT(CONN_Q(q)); 10605 connp = Q_TO_CONN(q); 10606 isv6 = connp->conn_af_isv6; 10607 zoneid = connp->conn_zoneid; 10608 namelen = mi_strlen(name); 10609 if (namelen == 0) 10610 return (EINVAL); 10611 10612 exists = B_FALSE; 10613 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10614 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10615 /* 10616 * Allow creating lo0 using SIOCLIFADDIF. 10617 * can't be any other writer thread. So can pass null below 10618 * for the last 4 args to ipif_lookup_name. 10619 */ 10620 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10621 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10622 /* Prevent any further action */ 10623 if (ipif == NULL) { 10624 return (ENOBUFS); 10625 } else if (!exists) { 10626 /* We created the ipif now and as writer */ 10627 ipif_refrele(ipif); 10628 return (0); 10629 } else { 10630 ill = ipif->ipif_ill; 10631 ill_refhold(ill); 10632 ipif_refrele(ipif); 10633 } 10634 } else { 10635 /* Look for a colon in the name. */ 10636 endp = &name[namelen]; 10637 for (cp = endp; --cp > name; ) { 10638 if (*cp == IPIF_SEPARATOR_CHAR) { 10639 found_sep = B_TRUE; 10640 /* 10641 * Reject any non-decimal aliases for plumbing 10642 * of logical interfaces. Aliases with leading 10643 * zeroes are also rejected as they introduce 10644 * ambiguity in the naming of the interfaces. 10645 * Comparing with "0" takes care of all such 10646 * cases. 10647 */ 10648 if ((strncmp("0", cp+1, 1)) == 0) 10649 return (EINVAL); 10650 10651 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10652 id <= 0 || *endp != '\0') { 10653 return (EINVAL); 10654 } 10655 *cp = '\0'; 10656 break; 10657 } 10658 } 10659 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10660 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10661 if (found_sep) 10662 *cp = IPIF_SEPARATOR_CHAR; 10663 if (ill == NULL) 10664 return (err); 10665 } 10666 10667 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10668 B_TRUE); 10669 10670 /* 10671 * Release the refhold due to the lookup, now that we are excl 10672 * or we are just returning 10673 */ 10674 ill_refrele(ill); 10675 10676 if (ipsq == NULL) 10677 return (EINPROGRESS); 10678 10679 /* We are now exclusive on the IPSQ */ 10680 ASSERT(IAM_WRITER_ILL(ill)); 10681 10682 if (found_sep) { 10683 /* Now see if there is an IPIF with this unit number. */ 10684 for (ipif = ill->ill_ipif; ipif != NULL; 10685 ipif = ipif->ipif_next) { 10686 if (ipif->ipif_id == id) { 10687 err = EEXIST; 10688 goto done; 10689 } 10690 } 10691 } 10692 10693 /* 10694 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10695 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10696 * instead. 10697 */ 10698 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10699 B_TRUE, B_TRUE)) == NULL) { 10700 err = ENOBUFS; 10701 goto done; 10702 } 10703 10704 /* Return created name with ioctl */ 10705 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10706 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10707 ip1dbg(("created %s\n", lifr->lifr_name)); 10708 10709 /* Set address */ 10710 sin = (sin_t *)&lifr->lifr_addr; 10711 if (sin->sin_family != AF_UNSPEC) { 10712 err = ip_sioctl_addr(ipif, sin, q, mp, 10713 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10714 } 10715 10716 done: 10717 ipsq_exit(ipsq); 10718 return (err); 10719 } 10720 10721 /* 10722 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10723 * interface) delete it based on the IP address (on this physical interface). 10724 * Otherwise delete it based on the ipif_id. 10725 * Also, special handling to allow a removeif of lo0. 10726 */ 10727 /* ARGSUSED */ 10728 int 10729 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10730 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10731 { 10732 conn_t *connp; 10733 ill_t *ill = ipif->ipif_ill; 10734 boolean_t success; 10735 ip_stack_t *ipst; 10736 10737 ipst = CONNQ_TO_IPST(q); 10738 10739 ASSERT(q->q_next == NULL); 10740 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10741 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10742 ASSERT(IAM_WRITER_IPIF(ipif)); 10743 10744 connp = Q_TO_CONN(q); 10745 /* 10746 * Special case for unplumbing lo0 (the loopback physical interface). 10747 * If unplumbing lo0, the incoming address structure has been 10748 * initialized to all zeros. When unplumbing lo0, all its logical 10749 * interfaces must be removed too. 10750 * 10751 * Note that this interface may be called to remove a specific 10752 * loopback logical interface (eg, lo0:1). But in that case 10753 * ipif->ipif_id != 0 so that the code path for that case is the 10754 * same as any other interface (meaning it skips the code directly 10755 * below). 10756 */ 10757 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10758 if (sin->sin_family == AF_UNSPEC && 10759 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10760 /* 10761 * Mark it condemned. No new ref. will be made to ill. 10762 */ 10763 mutex_enter(&ill->ill_lock); 10764 ill->ill_state_flags |= ILL_CONDEMNED; 10765 for (ipif = ill->ill_ipif; ipif != NULL; 10766 ipif = ipif->ipif_next) { 10767 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10768 } 10769 mutex_exit(&ill->ill_lock); 10770 10771 ipif = ill->ill_ipif; 10772 /* unplumb the loopback interface */ 10773 ill_delete(ill); 10774 mutex_enter(&connp->conn_lock); 10775 mutex_enter(&ill->ill_lock); 10776 10777 /* Are any references to this ill active */ 10778 if (ill_is_freeable(ill)) { 10779 mutex_exit(&ill->ill_lock); 10780 mutex_exit(&connp->conn_lock); 10781 ill_delete_tail(ill); 10782 mi_free(ill); 10783 return (0); 10784 } 10785 success = ipsq_pending_mp_add(connp, ipif, 10786 CONNP_TO_WQ(connp), mp, ILL_FREE); 10787 mutex_exit(&connp->conn_lock); 10788 mutex_exit(&ill->ill_lock); 10789 if (success) 10790 return (EINPROGRESS); 10791 else 10792 return (EINTR); 10793 } 10794 } 10795 10796 if (ipif->ipif_id == 0) { 10797 ipsq_t *ipsq; 10798 10799 /* Find based on address */ 10800 if (ipif->ipif_isv6) { 10801 sin6_t *sin6; 10802 10803 if (sin->sin_family != AF_INET6) 10804 return (EAFNOSUPPORT); 10805 10806 sin6 = (sin6_t *)sin; 10807 /* We are a writer, so we should be able to lookup */ 10808 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10809 ipst); 10810 } else { 10811 if (sin->sin_family != AF_INET) 10812 return (EAFNOSUPPORT); 10813 10814 /* We are a writer, so we should be able to lookup */ 10815 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10816 ipst); 10817 } 10818 if (ipif == NULL) { 10819 return (EADDRNOTAVAIL); 10820 } 10821 10822 /* 10823 * It is possible for a user to send an SIOCLIFREMOVEIF with 10824 * lifr_name of the physical interface but with an ip address 10825 * lifr_addr of a logical interface plumbed over it. 10826 * So update ipx_current_ipif now that ipif points to the 10827 * correct one. 10828 */ 10829 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10830 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10831 10832 /* This is a writer */ 10833 ipif_refrele(ipif); 10834 } 10835 10836 /* 10837 * Can not delete instance zero since it is tied to the ill. 10838 */ 10839 if (ipif->ipif_id == 0) 10840 return (EBUSY); 10841 10842 mutex_enter(&ill->ill_lock); 10843 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10844 mutex_exit(&ill->ill_lock); 10845 10846 ipif_free(ipif); 10847 10848 mutex_enter(&connp->conn_lock); 10849 mutex_enter(&ill->ill_lock); 10850 10851 /* Are any references to this ipif active */ 10852 if (ipif_is_freeable(ipif)) { 10853 mutex_exit(&ill->ill_lock); 10854 mutex_exit(&connp->conn_lock); 10855 ipif_non_duplicate(ipif); 10856 ipif_down_tail(ipif); 10857 ipif_free_tail(ipif); /* frees ipif */ 10858 return (0); 10859 } 10860 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10861 IPIF_FREE); 10862 mutex_exit(&ill->ill_lock); 10863 mutex_exit(&connp->conn_lock); 10864 if (success) 10865 return (EINPROGRESS); 10866 else 10867 return (EINTR); 10868 } 10869 10870 /* 10871 * Restart the removeif ioctl. The refcnt has gone down to 0. 10872 * The ipif is already condemned. So can't find it thru lookups. 10873 */ 10874 /* ARGSUSED */ 10875 int 10876 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10877 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10878 { 10879 ill_t *ill = ipif->ipif_ill; 10880 10881 ASSERT(IAM_WRITER_IPIF(ipif)); 10882 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10883 10884 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10885 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10886 10887 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10888 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10889 ill_delete_tail(ill); 10890 mi_free(ill); 10891 return (0); 10892 } 10893 10894 ipif_non_duplicate(ipif); 10895 ipif_down_tail(ipif); 10896 ipif_free_tail(ipif); 10897 10898 ILL_UNMARK_CHANGING(ill); 10899 return (0); 10900 } 10901 10902 /* 10903 * Set the local interface address. 10904 * Allow an address of all zero when the interface is down. 10905 */ 10906 /* ARGSUSED */ 10907 int 10908 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10909 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10910 { 10911 int err = 0; 10912 in6_addr_t v6addr; 10913 boolean_t need_up = B_FALSE; 10914 10915 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10916 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10917 10918 ASSERT(IAM_WRITER_IPIF(ipif)); 10919 10920 if (ipif->ipif_isv6) { 10921 sin6_t *sin6; 10922 ill_t *ill; 10923 phyint_t *phyi; 10924 10925 if (sin->sin_family != AF_INET6) 10926 return (EAFNOSUPPORT); 10927 10928 sin6 = (sin6_t *)sin; 10929 v6addr = sin6->sin6_addr; 10930 ill = ipif->ipif_ill; 10931 phyi = ill->ill_phyint; 10932 10933 /* 10934 * Enforce that true multicast interfaces have a link-local 10935 * address for logical unit 0. 10936 */ 10937 if (ipif->ipif_id == 0 && 10938 (ill->ill_flags & ILLF_MULTICAST) && 10939 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10940 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10941 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10942 return (EADDRNOTAVAIL); 10943 } 10944 10945 /* 10946 * up interfaces shouldn't have the unspecified address 10947 * unless they also have the IPIF_NOLOCAL flags set and 10948 * have a subnet assigned. 10949 */ 10950 if ((ipif->ipif_flags & IPIF_UP) && 10951 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10952 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10953 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10954 return (EADDRNOTAVAIL); 10955 } 10956 10957 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10958 return (EADDRNOTAVAIL); 10959 } else { 10960 ipaddr_t addr; 10961 10962 if (sin->sin_family != AF_INET) 10963 return (EAFNOSUPPORT); 10964 10965 addr = sin->sin_addr.s_addr; 10966 10967 /* Allow 0 as the local address. */ 10968 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10969 return (EADDRNOTAVAIL); 10970 10971 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10972 } 10973 10974 /* 10975 * Even if there is no change we redo things just to rerun 10976 * ipif_set_default. 10977 */ 10978 if (ipif->ipif_flags & IPIF_UP) { 10979 /* 10980 * Setting a new local address, make sure 10981 * we have net and subnet bcast ire's for 10982 * the old address if we need them. 10983 */ 10984 if (!ipif->ipif_isv6) 10985 ipif_check_bcast_ires(ipif); 10986 /* 10987 * If the interface is already marked up, 10988 * we call ipif_down which will take care 10989 * of ditching any IREs that have been set 10990 * up based on the old interface address. 10991 */ 10992 err = ipif_logical_down(ipif, q, mp); 10993 if (err == EINPROGRESS) 10994 return (err); 10995 ipif_down_tail(ipif); 10996 need_up = 1; 10997 } 10998 10999 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11000 return (err); 11001 } 11002 11003 int 11004 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11005 boolean_t need_up) 11006 { 11007 in6_addr_t v6addr; 11008 in6_addr_t ov6addr; 11009 ipaddr_t addr; 11010 sin6_t *sin6; 11011 int sinlen; 11012 int err = 0; 11013 ill_t *ill = ipif->ipif_ill; 11014 boolean_t need_dl_down; 11015 boolean_t need_arp_down; 11016 struct iocblk *iocp; 11017 11018 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11019 11020 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11021 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11022 ASSERT(IAM_WRITER_IPIF(ipif)); 11023 11024 /* Must cancel any pending timer before taking the ill_lock */ 11025 if (ipif->ipif_recovery_id != 0) 11026 (void) untimeout(ipif->ipif_recovery_id); 11027 ipif->ipif_recovery_id = 0; 11028 11029 if (ipif->ipif_isv6) { 11030 sin6 = (sin6_t *)sin; 11031 v6addr = sin6->sin6_addr; 11032 sinlen = sizeof (struct sockaddr_in6); 11033 } else { 11034 addr = sin->sin_addr.s_addr; 11035 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11036 sinlen = sizeof (struct sockaddr_in); 11037 } 11038 mutex_enter(&ill->ill_lock); 11039 ov6addr = ipif->ipif_v6lcl_addr; 11040 ipif->ipif_v6lcl_addr = v6addr; 11041 sctp_update_ipif_addr(ipif, ov6addr); 11042 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11043 ipif->ipif_v6src_addr = ipv6_all_zeros; 11044 } else { 11045 ipif->ipif_v6src_addr = v6addr; 11046 } 11047 ipif->ipif_addr_ready = 0; 11048 11049 /* 11050 * If the interface was previously marked as a duplicate, then since 11051 * we've now got a "new" address, it should no longer be considered a 11052 * duplicate -- even if the "new" address is the same as the old one. 11053 * Note that if all ipifs are down, we may have a pending ARP down 11054 * event to handle. This is because we want to recover from duplicates 11055 * and thus delay tearing down ARP until the duplicates have been 11056 * removed or disabled. 11057 */ 11058 need_dl_down = need_arp_down = B_FALSE; 11059 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11060 need_arp_down = !need_up; 11061 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11062 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11063 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11064 need_dl_down = B_TRUE; 11065 } 11066 } 11067 11068 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11069 !ill->ill_is_6to4tun) { 11070 queue_t *wqp = ill->ill_wq; 11071 11072 /* 11073 * The local address of this interface is a 6to4 address, 11074 * check if this interface is in fact a 6to4 tunnel or just 11075 * an interface configured with a 6to4 address. We are only 11076 * interested in the former. 11077 */ 11078 if (wqp != NULL) { 11079 while ((wqp->q_next != NULL) && 11080 (wqp->q_next->q_qinfo != NULL) && 11081 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11082 11083 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11084 == TUN6TO4_MODID) { 11085 /* set for use in IP */ 11086 ill->ill_is_6to4tun = 1; 11087 break; 11088 } 11089 wqp = wqp->q_next; 11090 } 11091 } 11092 } 11093 11094 ipif_set_default(ipif); 11095 11096 /* 11097 * When publishing an interface address change event, we only notify 11098 * the event listeners of the new address. It is assumed that if they 11099 * actively care about the addresses assigned that they will have 11100 * already discovered the previous address assigned (if there was one.) 11101 * 11102 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11103 */ 11104 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11105 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11106 NE_ADDRESS_CHANGE, sin, sinlen); 11107 } 11108 11109 mutex_exit(&ill->ill_lock); 11110 11111 if (need_up) { 11112 /* 11113 * Now bring the interface back up. If this 11114 * is the only IPIF for the ILL, ipif_up 11115 * will have to re-bind to the device, so 11116 * we may get back EINPROGRESS, in which 11117 * case, this IOCTL will get completed in 11118 * ip_rput_dlpi when we see the DL_BIND_ACK. 11119 */ 11120 err = ipif_up(ipif, q, mp); 11121 } 11122 11123 if (need_dl_down) 11124 ill_dl_down(ill); 11125 if (need_arp_down) 11126 ipif_resolver_down(ipif); 11127 11128 return (err); 11129 } 11130 11131 /* 11132 * Restart entry point to restart the address set operation after the 11133 * refcounts have dropped to zero. 11134 */ 11135 /* ARGSUSED */ 11136 int 11137 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11138 ip_ioctl_cmd_t *ipip, void *ifreq) 11139 { 11140 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11141 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11142 ASSERT(IAM_WRITER_IPIF(ipif)); 11143 ipif_down_tail(ipif); 11144 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11145 } 11146 11147 /* ARGSUSED */ 11148 int 11149 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11150 ip_ioctl_cmd_t *ipip, void *if_req) 11151 { 11152 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11153 struct lifreq *lifr = (struct lifreq *)if_req; 11154 11155 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11156 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11157 /* 11158 * The net mask and address can't change since we have a 11159 * reference to the ipif. So no lock is necessary. 11160 */ 11161 if (ipif->ipif_isv6) { 11162 *sin6 = sin6_null; 11163 sin6->sin6_family = AF_INET6; 11164 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11165 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11166 lifr->lifr_addrlen = 11167 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11168 } else { 11169 *sin = sin_null; 11170 sin->sin_family = AF_INET; 11171 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11172 if (ipip->ipi_cmd_type == LIF_CMD) { 11173 lifr->lifr_addrlen = 11174 ip_mask_to_plen(ipif->ipif_net_mask); 11175 } 11176 } 11177 return (0); 11178 } 11179 11180 /* 11181 * Set the destination address for a pt-pt interface. 11182 */ 11183 /* ARGSUSED */ 11184 int 11185 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11186 ip_ioctl_cmd_t *ipip, void *if_req) 11187 { 11188 int err = 0; 11189 in6_addr_t v6addr; 11190 boolean_t need_up = B_FALSE; 11191 11192 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11193 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11194 ASSERT(IAM_WRITER_IPIF(ipif)); 11195 11196 if (ipif->ipif_isv6) { 11197 sin6_t *sin6; 11198 11199 if (sin->sin_family != AF_INET6) 11200 return (EAFNOSUPPORT); 11201 11202 sin6 = (sin6_t *)sin; 11203 v6addr = sin6->sin6_addr; 11204 11205 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11206 return (EADDRNOTAVAIL); 11207 } else { 11208 ipaddr_t addr; 11209 11210 if (sin->sin_family != AF_INET) 11211 return (EAFNOSUPPORT); 11212 11213 addr = sin->sin_addr.s_addr; 11214 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11215 return (EADDRNOTAVAIL); 11216 11217 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11218 } 11219 11220 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11221 return (0); /* No change */ 11222 11223 if (ipif->ipif_flags & IPIF_UP) { 11224 /* 11225 * If the interface is already marked up, 11226 * we call ipif_down which will take care 11227 * of ditching any IREs that have been set 11228 * up based on the old pp dst address. 11229 */ 11230 err = ipif_logical_down(ipif, q, mp); 11231 if (err == EINPROGRESS) 11232 return (err); 11233 ipif_down_tail(ipif); 11234 need_up = B_TRUE; 11235 } 11236 /* 11237 * could return EINPROGRESS. If so ioctl will complete in 11238 * ip_rput_dlpi_writer 11239 */ 11240 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11241 return (err); 11242 } 11243 11244 static int 11245 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11246 boolean_t need_up) 11247 { 11248 in6_addr_t v6addr; 11249 ill_t *ill = ipif->ipif_ill; 11250 int err = 0; 11251 boolean_t need_dl_down; 11252 boolean_t need_arp_down; 11253 11254 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11255 ipif->ipif_id, (void *)ipif)); 11256 11257 /* Must cancel any pending timer before taking the ill_lock */ 11258 if (ipif->ipif_recovery_id != 0) 11259 (void) untimeout(ipif->ipif_recovery_id); 11260 ipif->ipif_recovery_id = 0; 11261 11262 if (ipif->ipif_isv6) { 11263 sin6_t *sin6; 11264 11265 sin6 = (sin6_t *)sin; 11266 v6addr = sin6->sin6_addr; 11267 } else { 11268 ipaddr_t addr; 11269 11270 addr = sin->sin_addr.s_addr; 11271 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11272 } 11273 mutex_enter(&ill->ill_lock); 11274 /* Set point to point destination address. */ 11275 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11276 /* 11277 * Allow this as a means of creating logical 11278 * pt-pt interfaces on top of e.g. an Ethernet. 11279 * XXX Undocumented HACK for testing. 11280 * pt-pt interfaces are created with NUD disabled. 11281 */ 11282 ipif->ipif_flags |= IPIF_POINTOPOINT; 11283 ipif->ipif_flags &= ~IPIF_BROADCAST; 11284 if (ipif->ipif_isv6) 11285 ill->ill_flags |= ILLF_NONUD; 11286 } 11287 11288 /* 11289 * If the interface was previously marked as a duplicate, then since 11290 * we've now got a "new" address, it should no longer be considered a 11291 * duplicate -- even if the "new" address is the same as the old one. 11292 * Note that if all ipifs are down, we may have a pending ARP down 11293 * event to handle. 11294 */ 11295 need_dl_down = need_arp_down = B_FALSE; 11296 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11297 need_arp_down = !need_up; 11298 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11299 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11300 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11301 need_dl_down = B_TRUE; 11302 } 11303 } 11304 11305 /* Set the new address. */ 11306 ipif->ipif_v6pp_dst_addr = v6addr; 11307 /* Make sure subnet tracks pp_dst */ 11308 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11309 mutex_exit(&ill->ill_lock); 11310 11311 if (need_up) { 11312 /* 11313 * Now bring the interface back up. If this 11314 * is the only IPIF for the ILL, ipif_up 11315 * will have to re-bind to the device, so 11316 * we may get back EINPROGRESS, in which 11317 * case, this IOCTL will get completed in 11318 * ip_rput_dlpi when we see the DL_BIND_ACK. 11319 */ 11320 err = ipif_up(ipif, q, mp); 11321 } 11322 11323 if (need_dl_down) 11324 ill_dl_down(ill); 11325 if (need_arp_down) 11326 ipif_resolver_down(ipif); 11327 11328 return (err); 11329 } 11330 11331 /* 11332 * Restart entry point to restart the dstaddress set operation after the 11333 * refcounts have dropped to zero. 11334 */ 11335 /* ARGSUSED */ 11336 int 11337 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11338 ip_ioctl_cmd_t *ipip, void *ifreq) 11339 { 11340 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11341 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11342 ipif_down_tail(ipif); 11343 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11344 } 11345 11346 /* ARGSUSED */ 11347 int 11348 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11349 ip_ioctl_cmd_t *ipip, void *if_req) 11350 { 11351 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11352 11353 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11354 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11355 /* 11356 * Get point to point destination address. The addresses can't 11357 * change since we hold a reference to the ipif. 11358 */ 11359 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11360 return (EADDRNOTAVAIL); 11361 11362 if (ipif->ipif_isv6) { 11363 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11364 *sin6 = sin6_null; 11365 sin6->sin6_family = AF_INET6; 11366 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11367 } else { 11368 *sin = sin_null; 11369 sin->sin_family = AF_INET; 11370 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11371 } 11372 return (0); 11373 } 11374 11375 /* 11376 * Set interface flags. Many flags require special handling (e.g., 11377 * bringing the interface down); see below for details. 11378 * 11379 * NOTE : We really don't enforce that ipif_id zero should be used 11380 * for setting any flags other than IFF_LOGINT_FLAGS. This 11381 * is because applications generally does SICGLIFFLAGS and 11382 * ORs in the new flags (that affects the logical) and does a 11383 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11384 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11385 * flags that will be turned on is correct with respect to 11386 * ipif_id 0. For backward compatibility reasons, it is not done. 11387 */ 11388 /* ARGSUSED */ 11389 int 11390 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11391 ip_ioctl_cmd_t *ipip, void *if_req) 11392 { 11393 uint64_t turn_on; 11394 uint64_t turn_off; 11395 int err = 0; 11396 phyint_t *phyi; 11397 ill_t *ill; 11398 uint64_t intf_flags, cantchange_flags; 11399 boolean_t phyint_flags_modified = B_FALSE; 11400 uint64_t flags; 11401 struct ifreq *ifr; 11402 struct lifreq *lifr; 11403 boolean_t set_linklocal = B_FALSE; 11404 boolean_t zero_source = B_FALSE; 11405 11406 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11407 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11408 11409 ASSERT(IAM_WRITER_IPIF(ipif)); 11410 11411 ill = ipif->ipif_ill; 11412 phyi = ill->ill_phyint; 11413 11414 if (ipip->ipi_cmd_type == IF_CMD) { 11415 ifr = (struct ifreq *)if_req; 11416 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11417 } else { 11418 lifr = (struct lifreq *)if_req; 11419 flags = lifr->lifr_flags; 11420 } 11421 11422 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11423 11424 /* 11425 * Have the flags been set correctly until now? 11426 */ 11427 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11428 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11429 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11430 /* 11431 * Compare the new flags to the old, and partition 11432 * into those coming on and those going off. 11433 * For the 16 bit command keep the bits above bit 16 unchanged. 11434 */ 11435 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11436 flags |= intf_flags & ~0xFFFF; 11437 11438 /* 11439 * Explicitly fail attempts to change flags that are always invalid on 11440 * an IPMP meta-interface. 11441 */ 11442 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11443 return (EINVAL); 11444 11445 /* 11446 * Check which flags will change; silently ignore flags which userland 11447 * is not allowed to control. (Because these flags may change between 11448 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11449 * control, we need to silently ignore them rather than fail.) 11450 */ 11451 cantchange_flags = IFF_CANTCHANGE; 11452 if (IS_IPMP(ill)) 11453 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11454 11455 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11456 if (turn_on == 0) 11457 return (0); /* No change */ 11458 11459 turn_off = intf_flags & turn_on; 11460 turn_on ^= turn_off; 11461 11462 /* 11463 * All test addresses must be IFF_DEPRECATED (to ensure source address 11464 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11465 * allow it to be turned off. 11466 */ 11467 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11468 (turn_on|intf_flags) & IFF_NOFAILOVER) 11469 return (EINVAL); 11470 11471 if (turn_on & IFF_NOFAILOVER) { 11472 turn_on |= IFF_DEPRECATED; 11473 flags |= IFF_DEPRECATED; 11474 } 11475 11476 /* 11477 * On underlying interfaces, only allow applications to manage test 11478 * addresses -- otherwise, they may get confused when the address 11479 * moves as part of being brought up. Likewise, prevent an 11480 * application-managed test address from being converted to a data 11481 * address. To prevent migration of administratively up addresses in 11482 * the kernel, we don't allow them to be converted either. 11483 */ 11484 if (IS_UNDER_IPMP(ill)) { 11485 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11486 11487 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11488 return (EINVAL); 11489 11490 if ((turn_off & IFF_NOFAILOVER) && 11491 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11492 return (EINVAL); 11493 } 11494 11495 /* 11496 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11497 * IPv6 interfaces. 11498 */ 11499 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11500 return (EINVAL); 11501 11502 /* 11503 * cannot turn off IFF_NOXMIT on VNI interfaces. 11504 */ 11505 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11506 return (EINVAL); 11507 11508 /* 11509 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11510 * interfaces. It makes no sense in that context. 11511 */ 11512 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11513 return (EINVAL); 11514 11515 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11516 zero_source = B_TRUE; 11517 11518 /* 11519 * For IPv6 ipif_id 0, don't allow the interface to be up without 11520 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11521 * If the link local address isn't set, and can be set, it will get 11522 * set later on in this function. 11523 */ 11524 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11525 (flags & IFF_UP) && !zero_source && 11526 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11527 if (ipif_cant_setlinklocal(ipif)) 11528 return (EINVAL); 11529 set_linklocal = B_TRUE; 11530 } 11531 11532 /* 11533 * If we modify physical interface flags, we'll potentially need to 11534 * send up two routing socket messages for the changes (one for the 11535 * IPv4 ill, and another for the IPv6 ill). Note that here. 11536 */ 11537 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11538 phyint_flags_modified = B_TRUE; 11539 11540 /* 11541 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11542 * (otherwise, we'd immediately use them, defeating standby). Also, 11543 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11544 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11545 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11546 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11547 * will not be honored. 11548 */ 11549 if (turn_on & PHYI_STANDBY) { 11550 /* 11551 * No need to grab ill_g_usesrc_lock here; see the 11552 * synchronization notes in ip.c. 11553 */ 11554 if (ill->ill_usesrc_grp_next != NULL || 11555 intf_flags & PHYI_INACTIVE) 11556 return (EINVAL); 11557 if (!(flags & PHYI_FAILED)) { 11558 flags |= PHYI_INACTIVE; 11559 turn_on |= PHYI_INACTIVE; 11560 } 11561 } 11562 11563 if (turn_off & PHYI_STANDBY) { 11564 flags &= ~PHYI_INACTIVE; 11565 turn_off |= PHYI_INACTIVE; 11566 } 11567 11568 /* 11569 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11570 * would end up on. 11571 */ 11572 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11573 (PHYI_FAILED | PHYI_INACTIVE)) 11574 return (EINVAL); 11575 11576 /* 11577 * If ILLF_ROUTER changes, we need to change the ip forwarding 11578 * status of the interface. 11579 */ 11580 if ((turn_on | turn_off) & ILLF_ROUTER) 11581 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11582 11583 /* 11584 * If the interface is not UP and we are not going to 11585 * bring it UP, record the flags and return. When the 11586 * interface comes UP later, the right actions will be 11587 * taken. 11588 */ 11589 if (!(ipif->ipif_flags & IPIF_UP) && 11590 !(turn_on & IPIF_UP)) { 11591 /* Record new flags in their respective places. */ 11592 mutex_enter(&ill->ill_lock); 11593 mutex_enter(&ill->ill_phyint->phyint_lock); 11594 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11595 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11596 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11597 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11598 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11599 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11600 mutex_exit(&ill->ill_lock); 11601 mutex_exit(&ill->ill_phyint->phyint_lock); 11602 11603 /* 11604 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11605 * same to the kernel: if any of them has been set by 11606 * userland, the interface cannot be used for data traffic. 11607 */ 11608 if ((turn_on|turn_off) & 11609 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11610 ASSERT(!IS_IPMP(ill)); 11611 /* 11612 * It's possible the ill is part of an "anonymous" 11613 * IPMP group rather than a real group. In that case, 11614 * there are no other interfaces in the group and thus 11615 * no need to call ipmp_phyint_refresh_active(). 11616 */ 11617 if (IS_UNDER_IPMP(ill)) 11618 ipmp_phyint_refresh_active(phyi); 11619 } 11620 11621 if (phyint_flags_modified) { 11622 if (phyi->phyint_illv4 != NULL) { 11623 ip_rts_ifmsg(phyi->phyint_illv4-> 11624 ill_ipif, RTSQ_DEFAULT); 11625 } 11626 if (phyi->phyint_illv6 != NULL) { 11627 ip_rts_ifmsg(phyi->phyint_illv6-> 11628 ill_ipif, RTSQ_DEFAULT); 11629 } 11630 } 11631 return (0); 11632 } else if (set_linklocal || zero_source) { 11633 mutex_enter(&ill->ill_lock); 11634 if (set_linklocal) 11635 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11636 if (zero_source) 11637 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11638 mutex_exit(&ill->ill_lock); 11639 } 11640 11641 /* 11642 * Disallow IPv6 interfaces coming up that have the unspecified address, 11643 * or point-to-point interfaces with an unspecified destination. We do 11644 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11645 * have a subnet assigned, which is how in.ndpd currently manages its 11646 * onlink prefix list when no addresses are configured with those 11647 * prefixes. 11648 */ 11649 if (ipif->ipif_isv6 && 11650 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11651 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11652 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11653 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11654 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11655 return (EINVAL); 11656 } 11657 11658 /* 11659 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11660 * from being brought up. 11661 */ 11662 if (!ipif->ipif_isv6 && 11663 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11664 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11665 return (EINVAL); 11666 } 11667 11668 /* 11669 * The only flag changes that we currently take specific action on are 11670 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11671 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11672 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11673 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11674 * of bringing it back up will trigger the address to be moved. 11675 */ 11676 if ((turn_on|turn_off) & 11677 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11678 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11679 IPIF_NOFAILOVER)) { 11680 /* 11681 * Taking this ipif down, make sure we have 11682 * valid net and subnet bcast ire's for other 11683 * logical interfaces, if we need them. 11684 */ 11685 if (!ipif->ipif_isv6) 11686 ipif_check_bcast_ires(ipif); 11687 11688 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11689 !(turn_off & IPIF_UP)) { 11690 if (ipif->ipif_flags & IPIF_UP) 11691 ill->ill_logical_down = 1; 11692 turn_on &= ~IPIF_UP; 11693 } 11694 err = ipif_down(ipif, q, mp); 11695 ip1dbg(("ipif_down returns %d err ", err)); 11696 if (err == EINPROGRESS) 11697 return (err); 11698 ipif_down_tail(ipif); 11699 } 11700 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11701 } 11702 11703 static int 11704 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11705 { 11706 ill_t *ill; 11707 phyint_t *phyi; 11708 uint64_t turn_on, turn_off; 11709 uint64_t intf_flags, cantchange_flags; 11710 boolean_t phyint_flags_modified = B_FALSE; 11711 int err = 0; 11712 boolean_t set_linklocal = B_FALSE; 11713 boolean_t zero_source = B_FALSE; 11714 11715 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11716 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11717 11718 ASSERT(IAM_WRITER_IPIF(ipif)); 11719 11720 ill = ipif->ipif_ill; 11721 phyi = ill->ill_phyint; 11722 11723 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11724 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11725 if (IS_IPMP(ill)) 11726 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11727 11728 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11729 turn_off = intf_flags & turn_on; 11730 turn_on ^= turn_off; 11731 11732 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11733 phyint_flags_modified = B_TRUE; 11734 11735 /* 11736 * Now we change the flags. Track current value of 11737 * other flags in their respective places. 11738 */ 11739 mutex_enter(&ill->ill_lock); 11740 mutex_enter(&phyi->phyint_lock); 11741 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11742 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11743 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11744 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11745 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11746 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11747 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11748 set_linklocal = B_TRUE; 11749 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11750 } 11751 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11752 zero_source = B_TRUE; 11753 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11754 } 11755 mutex_exit(&ill->ill_lock); 11756 mutex_exit(&phyi->phyint_lock); 11757 11758 if (set_linklocal) 11759 (void) ipif_setlinklocal(ipif); 11760 11761 if (zero_source) 11762 ipif->ipif_v6src_addr = ipv6_all_zeros; 11763 else 11764 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11765 11766 /* 11767 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11768 * the kernel: if any of them has been set by userland, the interface 11769 * cannot be used for data traffic. 11770 */ 11771 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11772 ASSERT(!IS_IPMP(ill)); 11773 /* 11774 * It's possible the ill is part of an "anonymous" IPMP group 11775 * rather than a real group. In that case, there are no other 11776 * interfaces in the group and thus no need for us to call 11777 * ipmp_phyint_refresh_active(). 11778 */ 11779 if (IS_UNDER_IPMP(ill)) 11780 ipmp_phyint_refresh_active(phyi); 11781 } 11782 11783 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11784 /* 11785 * XXX ipif_up really does not know whether a phyint flags 11786 * was modified or not. So, it sends up information on 11787 * only one routing sockets message. As we don't bring up 11788 * the interface and also set PHYI_ flags simultaneously 11789 * it should be okay. 11790 */ 11791 err = ipif_up(ipif, q, mp); 11792 } else { 11793 /* 11794 * Make sure routing socket sees all changes to the flags. 11795 * ipif_up_done* handles this when we use ipif_up. 11796 */ 11797 if (phyint_flags_modified) { 11798 if (phyi->phyint_illv4 != NULL) { 11799 ip_rts_ifmsg(phyi->phyint_illv4-> 11800 ill_ipif, RTSQ_DEFAULT); 11801 } 11802 if (phyi->phyint_illv6 != NULL) { 11803 ip_rts_ifmsg(phyi->phyint_illv6-> 11804 ill_ipif, RTSQ_DEFAULT); 11805 } 11806 } else { 11807 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11808 } 11809 /* 11810 * Update the flags in SCTP's IPIF list, ipif_up() will do 11811 * this in need_up case. 11812 */ 11813 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11814 } 11815 return (err); 11816 } 11817 11818 /* 11819 * Restart the flags operation now that the refcounts have dropped to zero. 11820 */ 11821 /* ARGSUSED */ 11822 int 11823 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11824 ip_ioctl_cmd_t *ipip, void *if_req) 11825 { 11826 uint64_t flags; 11827 struct ifreq *ifr = if_req; 11828 struct lifreq *lifr = if_req; 11829 11830 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11831 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11832 11833 ipif_down_tail(ipif); 11834 if (ipip->ipi_cmd_type == IF_CMD) { 11835 /* cast to uint16_t prevents unwanted sign extension */ 11836 flags = (uint16_t)ifr->ifr_flags; 11837 } else { 11838 flags = lifr->lifr_flags; 11839 } 11840 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11841 } 11842 11843 /* 11844 * Can operate on either a module or a driver queue. 11845 */ 11846 /* ARGSUSED */ 11847 int 11848 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11849 ip_ioctl_cmd_t *ipip, void *if_req) 11850 { 11851 /* 11852 * Has the flags been set correctly till now ? 11853 */ 11854 ill_t *ill = ipif->ipif_ill; 11855 phyint_t *phyi = ill->ill_phyint; 11856 11857 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11858 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11859 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11860 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11861 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11862 11863 /* 11864 * Need a lock since some flags can be set even when there are 11865 * references to the ipif. 11866 */ 11867 mutex_enter(&ill->ill_lock); 11868 if (ipip->ipi_cmd_type == IF_CMD) { 11869 struct ifreq *ifr = (struct ifreq *)if_req; 11870 11871 /* Get interface flags (low 16 only). */ 11872 ifr->ifr_flags = ((ipif->ipif_flags | 11873 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11874 } else { 11875 struct lifreq *lifr = (struct lifreq *)if_req; 11876 11877 /* Get interface flags. */ 11878 lifr->lifr_flags = ipif->ipif_flags | 11879 ill->ill_flags | phyi->phyint_flags; 11880 } 11881 mutex_exit(&ill->ill_lock); 11882 return (0); 11883 } 11884 11885 /* ARGSUSED */ 11886 int 11887 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11888 ip_ioctl_cmd_t *ipip, void *if_req) 11889 { 11890 int mtu; 11891 int ip_min_mtu; 11892 struct ifreq *ifr; 11893 struct lifreq *lifr; 11894 ire_t *ire; 11895 ip_stack_t *ipst; 11896 11897 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11898 ipif->ipif_id, (void *)ipif)); 11899 if (ipip->ipi_cmd_type == IF_CMD) { 11900 ifr = (struct ifreq *)if_req; 11901 mtu = ifr->ifr_metric; 11902 } else { 11903 lifr = (struct lifreq *)if_req; 11904 mtu = lifr->lifr_mtu; 11905 } 11906 11907 if (ipif->ipif_isv6) 11908 ip_min_mtu = IPV6_MIN_MTU; 11909 else 11910 ip_min_mtu = IP_MIN_MTU; 11911 11912 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11913 return (EINVAL); 11914 11915 /* 11916 * Change the MTU size in all relevant ire's. 11917 * Mtu change Vs. new ire creation - protocol below. 11918 * First change ipif_mtu and the ire_max_frag of the 11919 * interface ire. Then do an ire walk and change the 11920 * ire_max_frag of all affected ires. During ire_add 11921 * under the bucket lock, set the ire_max_frag of the 11922 * new ire being created from the ipif/ire from which 11923 * it is being derived. If an mtu change happens after 11924 * the ire is added, the new ire will be cleaned up. 11925 * Conversely if the mtu change happens before the ire 11926 * is added, ire_add will see the new value of the mtu. 11927 */ 11928 ipif->ipif_mtu = mtu; 11929 ipif->ipif_flags |= IPIF_FIXEDMTU; 11930 11931 if (ipif->ipif_isv6) 11932 ire = ipif_to_ire_v6(ipif); 11933 else 11934 ire = ipif_to_ire(ipif); 11935 if (ire != NULL) { 11936 ire->ire_max_frag = ipif->ipif_mtu; 11937 ire_refrele(ire); 11938 } 11939 ipst = ipif->ipif_ill->ill_ipst; 11940 if (ipif->ipif_flags & IPIF_UP) { 11941 if (ipif->ipif_isv6) 11942 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11943 ipst); 11944 else 11945 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11946 ipst); 11947 } 11948 /* Update the MTU in SCTP's list */ 11949 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11950 return (0); 11951 } 11952 11953 /* Get interface MTU. */ 11954 /* ARGSUSED */ 11955 int 11956 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11957 ip_ioctl_cmd_t *ipip, void *if_req) 11958 { 11959 struct ifreq *ifr; 11960 struct lifreq *lifr; 11961 11962 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11963 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11964 if (ipip->ipi_cmd_type == IF_CMD) { 11965 ifr = (struct ifreq *)if_req; 11966 ifr->ifr_metric = ipif->ipif_mtu; 11967 } else { 11968 lifr = (struct lifreq *)if_req; 11969 lifr->lifr_mtu = ipif->ipif_mtu; 11970 } 11971 return (0); 11972 } 11973 11974 /* Set interface broadcast address. */ 11975 /* ARGSUSED2 */ 11976 int 11977 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11978 ip_ioctl_cmd_t *ipip, void *if_req) 11979 { 11980 ipaddr_t addr; 11981 ire_t *ire; 11982 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11983 11984 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11985 ipif->ipif_id)); 11986 11987 ASSERT(IAM_WRITER_IPIF(ipif)); 11988 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11989 return (EADDRNOTAVAIL); 11990 11991 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11992 11993 if (sin->sin_family != AF_INET) 11994 return (EAFNOSUPPORT); 11995 11996 addr = sin->sin_addr.s_addr; 11997 if (ipif->ipif_flags & IPIF_UP) { 11998 /* 11999 * If we are already up, make sure the new 12000 * broadcast address makes sense. If it does, 12001 * there should be an IRE for it already. 12002 * Don't match on ipif, only on the ill 12003 * since we are sharing these now. 12004 */ 12005 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12006 ipif, ALL_ZONES, NULL, 12007 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12008 if (ire == NULL) { 12009 return (EINVAL); 12010 } else { 12011 ire_refrele(ire); 12012 } 12013 } 12014 /* 12015 * Changing the broadcast addr for this ipif. 12016 * Make sure we have valid net and subnet bcast 12017 * ire's for other logical interfaces, if needed. 12018 */ 12019 if (addr != ipif->ipif_brd_addr) 12020 ipif_check_bcast_ires(ipif); 12021 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12022 return (0); 12023 } 12024 12025 /* Get interface broadcast address. */ 12026 /* ARGSUSED */ 12027 int 12028 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12029 ip_ioctl_cmd_t *ipip, void *if_req) 12030 { 12031 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12032 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12033 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12034 return (EADDRNOTAVAIL); 12035 12036 /* IPIF_BROADCAST not possible with IPv6 */ 12037 ASSERT(!ipif->ipif_isv6); 12038 *sin = sin_null; 12039 sin->sin_family = AF_INET; 12040 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12041 return (0); 12042 } 12043 12044 /* 12045 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12046 */ 12047 /* ARGSUSED */ 12048 int 12049 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12050 ip_ioctl_cmd_t *ipip, void *if_req) 12051 { 12052 int err = 0; 12053 in6_addr_t v6mask; 12054 12055 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12056 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12057 12058 ASSERT(IAM_WRITER_IPIF(ipif)); 12059 12060 if (ipif->ipif_isv6) { 12061 sin6_t *sin6; 12062 12063 if (sin->sin_family != AF_INET6) 12064 return (EAFNOSUPPORT); 12065 12066 sin6 = (sin6_t *)sin; 12067 v6mask = sin6->sin6_addr; 12068 } else { 12069 ipaddr_t mask; 12070 12071 if (sin->sin_family != AF_INET) 12072 return (EAFNOSUPPORT); 12073 12074 mask = sin->sin_addr.s_addr; 12075 V4MASK_TO_V6(mask, v6mask); 12076 } 12077 12078 /* 12079 * No big deal if the interface isn't already up, or the mask 12080 * isn't really changing, or this is pt-pt. 12081 */ 12082 if (!(ipif->ipif_flags & IPIF_UP) || 12083 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12084 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12085 ipif->ipif_v6net_mask = v6mask; 12086 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12087 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12088 ipif->ipif_v6net_mask, 12089 ipif->ipif_v6subnet); 12090 } 12091 return (0); 12092 } 12093 /* 12094 * Make sure we have valid net and subnet broadcast ire's 12095 * for the old netmask, if needed by other logical interfaces. 12096 */ 12097 if (!ipif->ipif_isv6) 12098 ipif_check_bcast_ires(ipif); 12099 12100 err = ipif_logical_down(ipif, q, mp); 12101 if (err == EINPROGRESS) 12102 return (err); 12103 ipif_down_tail(ipif); 12104 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12105 return (err); 12106 } 12107 12108 static int 12109 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12110 { 12111 in6_addr_t v6mask; 12112 int err = 0; 12113 12114 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12116 12117 if (ipif->ipif_isv6) { 12118 sin6_t *sin6; 12119 12120 sin6 = (sin6_t *)sin; 12121 v6mask = sin6->sin6_addr; 12122 } else { 12123 ipaddr_t mask; 12124 12125 mask = sin->sin_addr.s_addr; 12126 V4MASK_TO_V6(mask, v6mask); 12127 } 12128 12129 ipif->ipif_v6net_mask = v6mask; 12130 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12131 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12132 ipif->ipif_v6subnet); 12133 } 12134 err = ipif_up(ipif, q, mp); 12135 12136 if (err == 0 || err == EINPROGRESS) { 12137 /* 12138 * The interface must be DL_BOUND if this packet has to 12139 * go out on the wire. Since we only go through a logical 12140 * down and are bound with the driver during an internal 12141 * down/up that is satisfied. 12142 */ 12143 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12144 /* Potentially broadcast an address mask reply. */ 12145 ipif_mask_reply(ipif); 12146 } 12147 } 12148 return (err); 12149 } 12150 12151 /* ARGSUSED */ 12152 int 12153 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12154 ip_ioctl_cmd_t *ipip, void *if_req) 12155 { 12156 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12157 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12158 ipif_down_tail(ipif); 12159 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12160 } 12161 12162 /* Get interface net mask. */ 12163 /* ARGSUSED */ 12164 int 12165 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12166 ip_ioctl_cmd_t *ipip, void *if_req) 12167 { 12168 struct lifreq *lifr = (struct lifreq *)if_req; 12169 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12170 12171 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12173 12174 /* 12175 * net mask can't change since we have a reference to the ipif. 12176 */ 12177 if (ipif->ipif_isv6) { 12178 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12179 *sin6 = sin6_null; 12180 sin6->sin6_family = AF_INET6; 12181 sin6->sin6_addr = ipif->ipif_v6net_mask; 12182 lifr->lifr_addrlen = 12183 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12184 } else { 12185 *sin = sin_null; 12186 sin->sin_family = AF_INET; 12187 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12188 if (ipip->ipi_cmd_type == LIF_CMD) { 12189 lifr->lifr_addrlen = 12190 ip_mask_to_plen(ipif->ipif_net_mask); 12191 } 12192 } 12193 return (0); 12194 } 12195 12196 /* ARGSUSED */ 12197 int 12198 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12199 ip_ioctl_cmd_t *ipip, void *if_req) 12200 { 12201 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12202 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12203 12204 /* 12205 * Since no applications should ever be setting metrics on underlying 12206 * interfaces, we explicitly fail to smoke 'em out. 12207 */ 12208 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12209 return (EINVAL); 12210 12211 /* 12212 * Set interface metric. We don't use this for 12213 * anything but we keep track of it in case it is 12214 * important to routing applications or such. 12215 */ 12216 if (ipip->ipi_cmd_type == IF_CMD) { 12217 struct ifreq *ifr; 12218 12219 ifr = (struct ifreq *)if_req; 12220 ipif->ipif_metric = ifr->ifr_metric; 12221 } else { 12222 struct lifreq *lifr; 12223 12224 lifr = (struct lifreq *)if_req; 12225 ipif->ipif_metric = lifr->lifr_metric; 12226 } 12227 return (0); 12228 } 12229 12230 /* ARGSUSED */ 12231 int 12232 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12233 ip_ioctl_cmd_t *ipip, void *if_req) 12234 { 12235 /* Get interface metric. */ 12236 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12237 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12238 12239 if (ipip->ipi_cmd_type == IF_CMD) { 12240 struct ifreq *ifr; 12241 12242 ifr = (struct ifreq *)if_req; 12243 ifr->ifr_metric = ipif->ipif_metric; 12244 } else { 12245 struct lifreq *lifr; 12246 12247 lifr = (struct lifreq *)if_req; 12248 lifr->lifr_metric = ipif->ipif_metric; 12249 } 12250 12251 return (0); 12252 } 12253 12254 /* ARGSUSED */ 12255 int 12256 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12257 ip_ioctl_cmd_t *ipip, void *if_req) 12258 { 12259 12260 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12261 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12262 /* 12263 * Set the muxid returned from I_PLINK. 12264 */ 12265 if (ipip->ipi_cmd_type == IF_CMD) { 12266 struct ifreq *ifr = (struct ifreq *)if_req; 12267 12268 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12269 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12270 } else { 12271 struct lifreq *lifr = (struct lifreq *)if_req; 12272 12273 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12274 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12275 } 12276 return (0); 12277 } 12278 12279 /* ARGSUSED */ 12280 int 12281 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12282 ip_ioctl_cmd_t *ipip, void *if_req) 12283 { 12284 12285 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12286 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12287 /* 12288 * Get the muxid saved in ill for I_PUNLINK. 12289 */ 12290 if (ipip->ipi_cmd_type == IF_CMD) { 12291 struct ifreq *ifr = (struct ifreq *)if_req; 12292 12293 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12294 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12295 } else { 12296 struct lifreq *lifr = (struct lifreq *)if_req; 12297 12298 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12299 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12300 } 12301 return (0); 12302 } 12303 12304 /* 12305 * Set the subnet prefix. Does not modify the broadcast address. 12306 */ 12307 /* ARGSUSED */ 12308 int 12309 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12310 ip_ioctl_cmd_t *ipip, void *if_req) 12311 { 12312 int err = 0; 12313 in6_addr_t v6addr; 12314 in6_addr_t v6mask; 12315 boolean_t need_up = B_FALSE; 12316 int addrlen; 12317 12318 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12319 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12320 12321 ASSERT(IAM_WRITER_IPIF(ipif)); 12322 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12323 12324 if (ipif->ipif_isv6) { 12325 sin6_t *sin6; 12326 12327 if (sin->sin_family != AF_INET6) 12328 return (EAFNOSUPPORT); 12329 12330 sin6 = (sin6_t *)sin; 12331 v6addr = sin6->sin6_addr; 12332 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12333 return (EADDRNOTAVAIL); 12334 } else { 12335 ipaddr_t addr; 12336 12337 if (sin->sin_family != AF_INET) 12338 return (EAFNOSUPPORT); 12339 12340 addr = sin->sin_addr.s_addr; 12341 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12342 return (EADDRNOTAVAIL); 12343 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12344 /* Add 96 bits */ 12345 addrlen += IPV6_ABITS - IP_ABITS; 12346 } 12347 12348 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12349 return (EINVAL); 12350 12351 /* Check if bits in the address is set past the mask */ 12352 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12353 return (EINVAL); 12354 12355 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12356 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12357 return (0); /* No change */ 12358 12359 if (ipif->ipif_flags & IPIF_UP) { 12360 /* 12361 * If the interface is already marked up, 12362 * we call ipif_down which will take care 12363 * of ditching any IREs that have been set 12364 * up based on the old interface address. 12365 */ 12366 err = ipif_logical_down(ipif, q, mp); 12367 if (err == EINPROGRESS) 12368 return (err); 12369 ipif_down_tail(ipif); 12370 need_up = B_TRUE; 12371 } 12372 12373 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12374 return (err); 12375 } 12376 12377 static int 12378 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12379 queue_t *q, mblk_t *mp, boolean_t need_up) 12380 { 12381 ill_t *ill = ipif->ipif_ill; 12382 int err = 0; 12383 12384 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12385 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12386 12387 /* Set the new address. */ 12388 mutex_enter(&ill->ill_lock); 12389 ipif->ipif_v6net_mask = v6mask; 12390 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12391 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12392 ipif->ipif_v6subnet); 12393 } 12394 mutex_exit(&ill->ill_lock); 12395 12396 if (need_up) { 12397 /* 12398 * Now bring the interface back up. If this 12399 * is the only IPIF for the ILL, ipif_up 12400 * will have to re-bind to the device, so 12401 * we may get back EINPROGRESS, in which 12402 * case, this IOCTL will get completed in 12403 * ip_rput_dlpi when we see the DL_BIND_ACK. 12404 */ 12405 err = ipif_up(ipif, q, mp); 12406 if (err == EINPROGRESS) 12407 return (err); 12408 } 12409 return (err); 12410 } 12411 12412 /* ARGSUSED */ 12413 int 12414 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12415 ip_ioctl_cmd_t *ipip, void *if_req) 12416 { 12417 int addrlen; 12418 in6_addr_t v6addr; 12419 in6_addr_t v6mask; 12420 struct lifreq *lifr = (struct lifreq *)if_req; 12421 12422 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12423 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12424 ipif_down_tail(ipif); 12425 12426 addrlen = lifr->lifr_addrlen; 12427 if (ipif->ipif_isv6) { 12428 sin6_t *sin6; 12429 12430 sin6 = (sin6_t *)sin; 12431 v6addr = sin6->sin6_addr; 12432 } else { 12433 ipaddr_t addr; 12434 12435 addr = sin->sin_addr.s_addr; 12436 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12437 addrlen += IPV6_ABITS - IP_ABITS; 12438 } 12439 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12440 12441 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12442 } 12443 12444 /* ARGSUSED */ 12445 int 12446 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12447 ip_ioctl_cmd_t *ipip, void *if_req) 12448 { 12449 struct lifreq *lifr = (struct lifreq *)if_req; 12450 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12451 12452 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12453 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12454 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12455 12456 if (ipif->ipif_isv6) { 12457 *sin6 = sin6_null; 12458 sin6->sin6_family = AF_INET6; 12459 sin6->sin6_addr = ipif->ipif_v6subnet; 12460 lifr->lifr_addrlen = 12461 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12462 } else { 12463 *sin = sin_null; 12464 sin->sin_family = AF_INET; 12465 sin->sin_addr.s_addr = ipif->ipif_subnet; 12466 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12467 } 12468 return (0); 12469 } 12470 12471 /* 12472 * Set the IPv6 address token. 12473 */ 12474 /* ARGSUSED */ 12475 int 12476 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12477 ip_ioctl_cmd_t *ipi, void *if_req) 12478 { 12479 ill_t *ill = ipif->ipif_ill; 12480 int err; 12481 in6_addr_t v6addr; 12482 in6_addr_t v6mask; 12483 boolean_t need_up = B_FALSE; 12484 int i; 12485 sin6_t *sin6 = (sin6_t *)sin; 12486 struct lifreq *lifr = (struct lifreq *)if_req; 12487 int addrlen; 12488 12489 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12490 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12491 ASSERT(IAM_WRITER_IPIF(ipif)); 12492 12493 addrlen = lifr->lifr_addrlen; 12494 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12495 if (ipif->ipif_id != 0) 12496 return (EINVAL); 12497 12498 if (!ipif->ipif_isv6) 12499 return (EINVAL); 12500 12501 if (addrlen > IPV6_ABITS) 12502 return (EINVAL); 12503 12504 v6addr = sin6->sin6_addr; 12505 12506 /* 12507 * The length of the token is the length from the end. To get 12508 * the proper mask for this, compute the mask of the bits not 12509 * in the token; ie. the prefix, and then xor to get the mask. 12510 */ 12511 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12512 return (EINVAL); 12513 for (i = 0; i < 4; i++) { 12514 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12515 } 12516 12517 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12518 ill->ill_token_length == addrlen) 12519 return (0); /* No change */ 12520 12521 if (ipif->ipif_flags & IPIF_UP) { 12522 err = ipif_logical_down(ipif, q, mp); 12523 if (err == EINPROGRESS) 12524 return (err); 12525 ipif_down_tail(ipif); 12526 need_up = B_TRUE; 12527 } 12528 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12529 return (err); 12530 } 12531 12532 static int 12533 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12534 mblk_t *mp, boolean_t need_up) 12535 { 12536 in6_addr_t v6addr; 12537 in6_addr_t v6mask; 12538 ill_t *ill = ipif->ipif_ill; 12539 int i; 12540 int err = 0; 12541 12542 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12543 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12544 v6addr = sin6->sin6_addr; 12545 /* 12546 * The length of the token is the length from the end. To get 12547 * the proper mask for this, compute the mask of the bits not 12548 * in the token; ie. the prefix, and then xor to get the mask. 12549 */ 12550 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12551 for (i = 0; i < 4; i++) 12552 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12553 12554 mutex_enter(&ill->ill_lock); 12555 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12556 ill->ill_token_length = addrlen; 12557 mutex_exit(&ill->ill_lock); 12558 12559 if (need_up) { 12560 /* 12561 * Now bring the interface back up. If this 12562 * is the only IPIF for the ILL, ipif_up 12563 * will have to re-bind to the device, so 12564 * we may get back EINPROGRESS, in which 12565 * case, this IOCTL will get completed in 12566 * ip_rput_dlpi when we see the DL_BIND_ACK. 12567 */ 12568 err = ipif_up(ipif, q, mp); 12569 if (err == EINPROGRESS) 12570 return (err); 12571 } 12572 return (err); 12573 } 12574 12575 /* ARGSUSED */ 12576 int 12577 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12578 ip_ioctl_cmd_t *ipi, void *if_req) 12579 { 12580 ill_t *ill; 12581 sin6_t *sin6 = (sin6_t *)sin; 12582 struct lifreq *lifr = (struct lifreq *)if_req; 12583 12584 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12585 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12586 if (ipif->ipif_id != 0) 12587 return (EINVAL); 12588 12589 ill = ipif->ipif_ill; 12590 if (!ill->ill_isv6) 12591 return (ENXIO); 12592 12593 *sin6 = sin6_null; 12594 sin6->sin6_family = AF_INET6; 12595 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12596 sin6->sin6_addr = ill->ill_token; 12597 lifr->lifr_addrlen = ill->ill_token_length; 12598 return (0); 12599 } 12600 12601 /* 12602 * Set (hardware) link specific information that might override 12603 * what was acquired through the DL_INFO_ACK. 12604 * The logic is as follows. 12605 * 12606 * become exclusive 12607 * set CHANGING flag 12608 * change mtu on affected IREs 12609 * clear CHANGING flag 12610 * 12611 * An ire add that occurs before the CHANGING flag is set will have its mtu 12612 * changed by the ip_sioctl_lnkinfo. 12613 * 12614 * During the time the CHANGING flag is set, no new ires will be added to the 12615 * bucket, and ire add will fail (due the CHANGING flag). 12616 * 12617 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12618 * before it is added to the bucket. 12619 * 12620 * Obviously only 1 thread can set the CHANGING flag and we need to become 12621 * exclusive to set the flag. 12622 */ 12623 /* ARGSUSED */ 12624 int 12625 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12626 ip_ioctl_cmd_t *ipi, void *if_req) 12627 { 12628 ill_t *ill = ipif->ipif_ill; 12629 ipif_t *nipif; 12630 int ip_min_mtu; 12631 boolean_t mtu_walk = B_FALSE; 12632 struct lifreq *lifr = (struct lifreq *)if_req; 12633 lif_ifinfo_req_t *lir; 12634 ire_t *ire; 12635 12636 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12637 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12638 lir = &lifr->lifr_ifinfo; 12639 ASSERT(IAM_WRITER_IPIF(ipif)); 12640 12641 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12642 if (ipif->ipif_id != 0) 12643 return (EINVAL); 12644 12645 /* Set interface MTU. */ 12646 if (ipif->ipif_isv6) 12647 ip_min_mtu = IPV6_MIN_MTU; 12648 else 12649 ip_min_mtu = IP_MIN_MTU; 12650 12651 /* 12652 * Verify values before we set anything. Allow zero to 12653 * mean unspecified. 12654 */ 12655 if (lir->lir_maxmtu != 0 && 12656 (lir->lir_maxmtu > ill->ill_max_frag || 12657 lir->lir_maxmtu < ip_min_mtu)) 12658 return (EINVAL); 12659 if (lir->lir_reachtime != 0 && 12660 lir->lir_reachtime > ND_MAX_REACHTIME) 12661 return (EINVAL); 12662 if (lir->lir_reachretrans != 0 && 12663 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12664 return (EINVAL); 12665 12666 mutex_enter(&ill->ill_lock); 12667 ill->ill_state_flags |= ILL_CHANGING; 12668 for (nipif = ill->ill_ipif; nipif != NULL; 12669 nipif = nipif->ipif_next) { 12670 nipif->ipif_state_flags |= IPIF_CHANGING; 12671 } 12672 12673 if (lir->lir_maxmtu != 0) { 12674 ill->ill_max_mtu = lir->lir_maxmtu; 12675 ill->ill_user_mtu = lir->lir_maxmtu; 12676 mtu_walk = B_TRUE; 12677 } 12678 mutex_exit(&ill->ill_lock); 12679 12680 if (lir->lir_reachtime != 0) 12681 ill->ill_reachable_time = lir->lir_reachtime; 12682 12683 if (lir->lir_reachretrans != 0) 12684 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12685 12686 ill->ill_max_hops = lir->lir_maxhops; 12687 12688 ill->ill_max_buf = ND_MAX_Q; 12689 12690 if (mtu_walk) { 12691 /* 12692 * Set the MTU on all ipifs associated with this ill except 12693 * for those whose MTU was fixed via SIOCSLIFMTU. 12694 */ 12695 for (nipif = ill->ill_ipif; nipif != NULL; 12696 nipif = nipif->ipif_next) { 12697 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12698 continue; 12699 12700 nipif->ipif_mtu = ill->ill_max_mtu; 12701 12702 if (!(nipif->ipif_flags & IPIF_UP)) 12703 continue; 12704 12705 if (nipif->ipif_isv6) 12706 ire = ipif_to_ire_v6(nipif); 12707 else 12708 ire = ipif_to_ire(nipif); 12709 if (ire != NULL) { 12710 ire->ire_max_frag = ipif->ipif_mtu; 12711 ire_refrele(ire); 12712 } 12713 12714 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12715 nipif, ill); 12716 } 12717 } 12718 12719 mutex_enter(&ill->ill_lock); 12720 for (nipif = ill->ill_ipif; nipif != NULL; 12721 nipif = nipif->ipif_next) { 12722 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12723 } 12724 ILL_UNMARK_CHANGING(ill); 12725 mutex_exit(&ill->ill_lock); 12726 12727 /* 12728 * Refresh IPMP meta-interface MTU if necessary. 12729 */ 12730 if (IS_UNDER_IPMP(ill)) 12731 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12732 12733 return (0); 12734 } 12735 12736 /* ARGSUSED */ 12737 int 12738 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12739 ip_ioctl_cmd_t *ipi, void *if_req) 12740 { 12741 struct lif_ifinfo_req *lir; 12742 ill_t *ill = ipif->ipif_ill; 12743 12744 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12745 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12746 if (ipif->ipif_id != 0) 12747 return (EINVAL); 12748 12749 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12750 lir->lir_maxhops = ill->ill_max_hops; 12751 lir->lir_reachtime = ill->ill_reachable_time; 12752 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12753 lir->lir_maxmtu = ill->ill_max_mtu; 12754 12755 return (0); 12756 } 12757 12758 /* 12759 * Return best guess as to the subnet mask for the specified address. 12760 * Based on the subnet masks for all the configured interfaces. 12761 * 12762 * We end up returning a zero mask in the case of default, multicast or 12763 * experimental. 12764 */ 12765 static ipaddr_t 12766 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12767 { 12768 ipaddr_t net_mask; 12769 ill_t *ill; 12770 ipif_t *ipif; 12771 ill_walk_context_t ctx; 12772 ipif_t *fallback_ipif = NULL; 12773 12774 net_mask = ip_net_mask(addr); 12775 if (net_mask == 0) { 12776 *ipifp = NULL; 12777 return (0); 12778 } 12779 12780 /* Let's check to see if this is maybe a local subnet route. */ 12781 /* this function only applies to IPv4 interfaces */ 12782 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12783 ill = ILL_START_WALK_V4(&ctx, ipst); 12784 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12785 mutex_enter(&ill->ill_lock); 12786 for (ipif = ill->ill_ipif; ipif != NULL; 12787 ipif = ipif->ipif_next) { 12788 if (!IPIF_CAN_LOOKUP(ipif)) 12789 continue; 12790 if (!(ipif->ipif_flags & IPIF_UP)) 12791 continue; 12792 if ((ipif->ipif_subnet & net_mask) == 12793 (addr & net_mask)) { 12794 /* 12795 * Don't trust pt-pt interfaces if there are 12796 * other interfaces. 12797 */ 12798 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12799 if (fallback_ipif == NULL) { 12800 ipif_refhold_locked(ipif); 12801 fallback_ipif = ipif; 12802 } 12803 continue; 12804 } 12805 12806 /* 12807 * Fine. Just assume the same net mask as the 12808 * directly attached subnet interface is using. 12809 */ 12810 ipif_refhold_locked(ipif); 12811 mutex_exit(&ill->ill_lock); 12812 rw_exit(&ipst->ips_ill_g_lock); 12813 if (fallback_ipif != NULL) 12814 ipif_refrele(fallback_ipif); 12815 *ipifp = ipif; 12816 return (ipif->ipif_net_mask); 12817 } 12818 } 12819 mutex_exit(&ill->ill_lock); 12820 } 12821 rw_exit(&ipst->ips_ill_g_lock); 12822 12823 *ipifp = fallback_ipif; 12824 return ((fallback_ipif != NULL) ? 12825 fallback_ipif->ipif_net_mask : net_mask); 12826 } 12827 12828 /* 12829 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12830 */ 12831 static void 12832 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12833 { 12834 IOCP iocp; 12835 ipft_t *ipft; 12836 ipllc_t *ipllc; 12837 mblk_t *mp1; 12838 cred_t *cr; 12839 int error = 0; 12840 conn_t *connp; 12841 12842 ip1dbg(("ip_wput_ioctl")); 12843 iocp = (IOCP)mp->b_rptr; 12844 mp1 = mp->b_cont; 12845 if (mp1 == NULL) { 12846 iocp->ioc_error = EINVAL; 12847 mp->b_datap->db_type = M_IOCNAK; 12848 iocp->ioc_count = 0; 12849 qreply(q, mp); 12850 return; 12851 } 12852 12853 /* 12854 * These IOCTLs provide various control capabilities to 12855 * upstream agents such as ULPs and processes. There 12856 * are currently two such IOCTLs implemented. They 12857 * are used by TCP to provide update information for 12858 * existing IREs and to forcibly delete an IRE for a 12859 * host that is not responding, thereby forcing an 12860 * attempt at a new route. 12861 */ 12862 iocp->ioc_error = EINVAL; 12863 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12864 goto done; 12865 12866 ipllc = (ipllc_t *)mp1->b_rptr; 12867 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12868 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12869 break; 12870 } 12871 /* 12872 * prefer credential from mblk over ioctl; 12873 * see ip_sioctl_copyin_setup 12874 */ 12875 cr = msg_getcred(mp, NULL); 12876 if (cr == NULL) 12877 cr = iocp->ioc_cr; 12878 12879 /* 12880 * Refhold the conn in case the request gets queued up in some lookup 12881 */ 12882 ASSERT(CONN_Q(q)); 12883 connp = Q_TO_CONN(q); 12884 CONN_INC_REF(connp); 12885 if (ipft->ipft_pfi && 12886 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12887 pullupmsg(mp1, ipft->ipft_min_size))) { 12888 error = (*ipft->ipft_pfi)(q, 12889 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12890 } 12891 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12892 /* 12893 * CONN_OPER_PENDING_DONE happens in the function called 12894 * through ipft_pfi above. 12895 */ 12896 return; 12897 } 12898 12899 CONN_OPER_PENDING_DONE(connp); 12900 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12901 freemsg(mp); 12902 return; 12903 } 12904 iocp->ioc_error = error; 12905 12906 done: 12907 mp->b_datap->db_type = M_IOCACK; 12908 if (iocp->ioc_error) 12909 iocp->ioc_count = 0; 12910 qreply(q, mp); 12911 } 12912 12913 /* 12914 * Lookup an ipif using the sequence id (ipif_seqid) 12915 */ 12916 ipif_t * 12917 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12918 { 12919 ipif_t *ipif; 12920 12921 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12922 12923 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12924 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12925 return (ipif); 12926 } 12927 return (NULL); 12928 } 12929 12930 /* 12931 * Assign a unique id for the ipif. This is used later when we send 12932 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12933 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12934 * IRE is added, we verify that ipif has not disappeared. 12935 */ 12936 12937 static void 12938 ipif_assign_seqid(ipif_t *ipif) 12939 { 12940 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12941 12942 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 12943 } 12944 12945 /* 12946 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 12947 * administratively down (i.e., no DAD), of the same type, and locked. Note 12948 * that the clone is complete -- including the seqid -- and the expectation is 12949 * that the caller will either free or overwrite `sipif' before it's unlocked. 12950 */ 12951 static void 12952 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 12953 { 12954 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 12955 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 12956 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12957 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12958 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 12959 ASSERT(sipif->ipif_arp_del_mp == NULL); 12960 ASSERT(dipif->ipif_arp_del_mp == NULL); 12961 ASSERT(sipif->ipif_igmp_rpt == NULL); 12962 ASSERT(dipif->ipif_igmp_rpt == NULL); 12963 ASSERT(sipif->ipif_multicast_up == 0); 12964 ASSERT(dipif->ipif_multicast_up == 0); 12965 ASSERT(sipif->ipif_joined_allhosts == 0); 12966 ASSERT(dipif->ipif_joined_allhosts == 0); 12967 12968 dipif->ipif_mtu = sipif->ipif_mtu; 12969 dipif->ipif_flags = sipif->ipif_flags; 12970 dipif->ipif_metric = sipif->ipif_metric; 12971 dipif->ipif_zoneid = sipif->ipif_zoneid; 12972 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 12973 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 12974 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 12975 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 12976 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 12977 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 12978 12979 /* 12980 * While dipif is down right now, it might've been up before. Since 12981 * it's changing identity, its packet counters need to be reset. 12982 */ 12983 dipif->ipif_ib_pkt_count = 0; 12984 dipif->ipif_ob_pkt_count = 0; 12985 dipif->ipif_fo_pkt_count = 0; 12986 12987 /* 12988 * As per the comment atop the function, we assume that these sipif 12989 * fields will be changed before sipif is unlocked. 12990 */ 12991 dipif->ipif_seqid = sipif->ipif_seqid; 12992 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 12993 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 12994 dipif->ipif_state_flags = sipif->ipif_state_flags; 12995 } 12996 12997 /* 12998 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 12999 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 13000 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13001 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13002 * down (i.e., no DAD), of the same type, and unlocked. 13003 */ 13004 static void 13005 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13006 { 13007 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13008 ipxop_t *ipx = ipsq->ipsq_xop; 13009 13010 ASSERT(sipif != dipif); 13011 ASSERT(sipif != virgipif); 13012 13013 /* 13014 * Grab all of the locks that protect the ipif in a defined order. 13015 */ 13016 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13017 if (sipif > dipif) { 13018 mutex_enter(&sipif->ipif_saved_ire_lock); 13019 mutex_enter(&dipif->ipif_saved_ire_lock); 13020 } else { 13021 mutex_enter(&dipif->ipif_saved_ire_lock); 13022 mutex_enter(&sipif->ipif_saved_ire_lock); 13023 } 13024 13025 ipif_clone(sipif, dipif); 13026 if (virgipif != NULL) { 13027 ipif_clone(virgipif, sipif); 13028 mi_free(virgipif); 13029 } 13030 13031 mutex_exit(&sipif->ipif_saved_ire_lock); 13032 mutex_exit(&dipif->ipif_saved_ire_lock); 13033 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13034 13035 /* 13036 * Transfer ownership of the current xop, if necessary. 13037 */ 13038 if (ipx->ipx_current_ipif == sipif) { 13039 ASSERT(ipx->ipx_pending_ipif == NULL); 13040 mutex_enter(&ipx->ipx_lock); 13041 ipx->ipx_current_ipif = dipif; 13042 mutex_exit(&ipx->ipx_lock); 13043 } 13044 13045 if (virgipif == NULL) 13046 mi_free(sipif); 13047 } 13048 13049 /* 13050 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13051 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13052 * be inserted into the first space available in the list. The value of 13053 * ipif_id will then be set to the appropriate value for its position. 13054 */ 13055 static int 13056 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13057 { 13058 ill_t *ill; 13059 ipif_t *tipif; 13060 ipif_t **tipifp; 13061 int id; 13062 ip_stack_t *ipst; 13063 13064 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13065 IAM_WRITER_IPIF(ipif)); 13066 13067 ill = ipif->ipif_ill; 13068 ASSERT(ill != NULL); 13069 ipst = ill->ill_ipst; 13070 13071 /* 13072 * In the case of lo0:0 we already hold the ill_g_lock. 13073 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13074 * ipif_insert. 13075 */ 13076 if (acquire_g_lock) 13077 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13078 mutex_enter(&ill->ill_lock); 13079 id = ipif->ipif_id; 13080 tipifp = &(ill->ill_ipif); 13081 if (id == -1) { /* need to find a real id */ 13082 id = 0; 13083 while ((tipif = *tipifp) != NULL) { 13084 ASSERT(tipif->ipif_id >= id); 13085 if (tipif->ipif_id != id) 13086 break; /* non-consecutive id */ 13087 id++; 13088 tipifp = &(tipif->ipif_next); 13089 } 13090 /* limit number of logical interfaces */ 13091 if (id >= ipst->ips_ip_addrs_per_if) { 13092 mutex_exit(&ill->ill_lock); 13093 if (acquire_g_lock) 13094 rw_exit(&ipst->ips_ill_g_lock); 13095 return (-1); 13096 } 13097 ipif->ipif_id = id; /* assign new id */ 13098 } else if (id < ipst->ips_ip_addrs_per_if) { 13099 /* we have a real id; insert ipif in the right place */ 13100 while ((tipif = *tipifp) != NULL) { 13101 ASSERT(tipif->ipif_id != id); 13102 if (tipif->ipif_id > id) 13103 break; /* found correct location */ 13104 tipifp = &(tipif->ipif_next); 13105 } 13106 } else { 13107 mutex_exit(&ill->ill_lock); 13108 if (acquire_g_lock) 13109 rw_exit(&ipst->ips_ill_g_lock); 13110 return (-1); 13111 } 13112 13113 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13114 13115 ipif->ipif_next = tipif; 13116 *tipifp = ipif; 13117 mutex_exit(&ill->ill_lock); 13118 if (acquire_g_lock) 13119 rw_exit(&ipst->ips_ill_g_lock); 13120 13121 return (0); 13122 } 13123 13124 static void 13125 ipif_remove(ipif_t *ipif) 13126 { 13127 ipif_t **ipifp; 13128 ill_t *ill = ipif->ipif_ill; 13129 13130 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13131 13132 mutex_enter(&ill->ill_lock); 13133 ipifp = &ill->ill_ipif; 13134 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13135 if (*ipifp == ipif) { 13136 *ipifp = ipif->ipif_next; 13137 break; 13138 } 13139 } 13140 mutex_exit(&ill->ill_lock); 13141 } 13142 13143 /* 13144 * Allocate and initialize a new interface control structure. (Always 13145 * called as writer.) 13146 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13147 * is not part of the global linked list of ills. ipif_seqid is unique 13148 * in the system and to preserve the uniqueness, it is assigned only 13149 * when ill becomes part of the global list. At that point ill will 13150 * have a name. If it doesn't get assigned here, it will get assigned 13151 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13152 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13153 * the interface flags or any other information from the DL_INFO_ACK for 13154 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13155 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13156 * second DL_INFO_ACK comes in from the driver. 13157 */ 13158 static ipif_t * 13159 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13160 boolean_t insert) 13161 { 13162 ipif_t *ipif; 13163 ip_stack_t *ipst = ill->ill_ipst; 13164 13165 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13166 ill->ill_name, id, (void *)ill)); 13167 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13168 13169 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13170 return (NULL); 13171 *ipif = ipif_zero; /* start clean */ 13172 13173 ipif->ipif_ill = ill; 13174 ipif->ipif_id = id; /* could be -1 */ 13175 /* 13176 * Inherit the zoneid from the ill; for the shared stack instance 13177 * this is always the global zone 13178 */ 13179 ipif->ipif_zoneid = ill->ill_zoneid; 13180 13181 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13182 13183 ipif->ipif_refcnt = 0; 13184 ipif->ipif_saved_ire_cnt = 0; 13185 13186 if (insert) { 13187 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13188 mi_free(ipif); 13189 return (NULL); 13190 } 13191 /* -1 id should have been replaced by real id */ 13192 id = ipif->ipif_id; 13193 ASSERT(id >= 0); 13194 } 13195 13196 if (ill->ill_name[0] != '\0') 13197 ipif_assign_seqid(ipif); 13198 13199 /* 13200 * If this is the zeroth ipif on the IPMP ill, create the illgrp 13201 * (which must not exist yet because the zeroth ipif is created once 13202 * per ill). However, do not not link it to the ipmp_grp_t until 13203 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 13204 */ 13205 if (id == 0 && IS_IPMP(ill)) { 13206 if (ipmp_illgrp_create(ill) == NULL) { 13207 if (insert) { 13208 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13209 ipif_remove(ipif); 13210 rw_exit(&ipst->ips_ill_g_lock); 13211 } 13212 mi_free(ipif); 13213 return (NULL); 13214 } 13215 } 13216 13217 /* 13218 * We grab ill_lock to protect the flag changes. The ipif is still 13219 * not up and can't be looked up until the ioctl completes and the 13220 * IPIF_CHANGING flag is cleared. 13221 */ 13222 mutex_enter(&ill->ill_lock); 13223 13224 ipif->ipif_ire_type = ire_type; 13225 13226 if (ipif->ipif_isv6) { 13227 ill->ill_flags |= ILLF_IPV6; 13228 } else { 13229 ipaddr_t inaddr_any = INADDR_ANY; 13230 13231 ill->ill_flags |= ILLF_IPV4; 13232 13233 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13234 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13235 &ipif->ipif_v6lcl_addr); 13236 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13237 &ipif->ipif_v6src_addr); 13238 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13239 &ipif->ipif_v6subnet); 13240 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13241 &ipif->ipif_v6net_mask); 13242 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13243 &ipif->ipif_v6brd_addr); 13244 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13245 &ipif->ipif_v6pp_dst_addr); 13246 } 13247 13248 /* 13249 * Don't set the interface flags etc. now, will do it in 13250 * ip_ll_subnet_defaults. 13251 */ 13252 if (!initialize) 13253 goto out; 13254 13255 ipif->ipif_mtu = ill->ill_max_mtu; 13256 13257 /* 13258 * NOTE: The IPMP meta-interface is special-cased because it starts 13259 * with no underlying interfaces (and thus an unknown broadcast 13260 * address length), but all interfaces that can be placed into an IPMP 13261 * group are required to be broadcast-capable. 13262 */ 13263 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13264 /* 13265 * Later detect lack of DLPI driver multicast capability by 13266 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 13267 */ 13268 ill->ill_flags |= ILLF_MULTICAST; 13269 if (!ipif->ipif_isv6) 13270 ipif->ipif_flags |= IPIF_BROADCAST; 13271 } else { 13272 if (ill->ill_net_type != IRE_LOOPBACK) { 13273 if (ipif->ipif_isv6) 13274 /* 13275 * Note: xresolv interfaces will eventually need 13276 * NOARP set here as well, but that will require 13277 * those external resolvers to have some 13278 * knowledge of that flag and act appropriately. 13279 * Not to be changed at present. 13280 */ 13281 ill->ill_flags |= ILLF_NONUD; 13282 else 13283 ill->ill_flags |= ILLF_NOARP; 13284 } 13285 if (ill->ill_phys_addr_length == 0) { 13286 if (IS_VNI(ill)) { 13287 ipif->ipif_flags |= IPIF_NOXMIT; 13288 } else { 13289 /* pt-pt supports multicast. */ 13290 ill->ill_flags |= ILLF_MULTICAST; 13291 if (ill->ill_net_type != IRE_LOOPBACK) 13292 ipif->ipif_flags |= IPIF_POINTOPOINT; 13293 } 13294 } 13295 } 13296 out: 13297 mutex_exit(&ill->ill_lock); 13298 return (ipif); 13299 } 13300 13301 /* 13302 * If appropriate, send a message up to the resolver delete the entry 13303 * for the address of this interface which is going out of business. 13304 * (Always called as writer). 13305 * 13306 * NOTE : We need to check for NULL mps as some of the fields are 13307 * initialized only for some interface types. See ipif_resolver_up() 13308 * for details. 13309 */ 13310 void 13311 ipif_resolver_down(ipif_t *ipif) 13312 { 13313 mblk_t *mp; 13314 ill_t *ill = ipif->ipif_ill; 13315 13316 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13317 ASSERT(IAM_WRITER_IPIF(ipif)); 13318 13319 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13320 return; 13321 13322 /* Delete the mapping for the local address */ 13323 mp = ipif->ipif_arp_del_mp; 13324 if (mp != NULL) { 13325 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13326 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13327 putnext(ill->ill_rq, mp); 13328 ipif->ipif_arp_del_mp = NULL; 13329 } 13330 13331 /* 13332 * Make IPMP aware of the deleted data address. 13333 */ 13334 if (IS_IPMP(ill)) 13335 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13336 13337 /* 13338 * If this is the last ipif that is going down and there are no 13339 * duplicate addresses we may yet attempt to re-probe, then we need to 13340 * clean up ARP completely. 13341 */ 13342 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13343 /* 13344 * If this was the last ipif on an IPMP interface, purge any 13345 * IPMP ARP entries associated with it. 13346 */ 13347 if (IS_IPMP(ill)) 13348 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13349 13350 /* Send up AR_INTERFACE_DOWN message */ 13351 mp = ill->ill_arp_down_mp; 13352 if (mp != NULL) { 13353 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13354 *(unsigned *)mp->b_rptr, ill->ill_name, 13355 ipif->ipif_id)); 13356 putnext(ill->ill_rq, mp); 13357 ill->ill_arp_down_mp = NULL; 13358 } 13359 13360 /* Tell ARP to delete the multicast mappings */ 13361 mp = ill->ill_arp_del_mapping_mp; 13362 if (mp != NULL) { 13363 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13364 *(unsigned *)mp->b_rptr, ill->ill_name, 13365 ipif->ipif_id)); 13366 putnext(ill->ill_rq, mp); 13367 ill->ill_arp_del_mapping_mp = NULL; 13368 } 13369 } 13370 } 13371 13372 /* 13373 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13374 * is non-NULL, then upon success it will contain an mblk that can be passed 13375 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13376 * will have already been notified to create the mapping. Returns zero on 13377 * success, -1 upon failure. 13378 */ 13379 int 13380 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13381 { 13382 mblk_t *del_mp = NULL; 13383 mblk_t *add_mp = NULL; 13384 mblk_t *mp; 13385 ill_t *ill = ipif->ipif_ill; 13386 phyint_t *phyi = ill->ill_phyint; 13387 ipaddr_t addr, mask, extract_mask = 0; 13388 arma_t *arma; 13389 uint8_t *maddr, *bphys_addr; 13390 uint32_t hw_start; 13391 dl_unitdata_req_t *dlur; 13392 13393 ASSERT(IAM_WRITER_IPIF(ipif)); 13394 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13395 return (0); 13396 13397 /* 13398 * IPMP meta-interfaces don't have any inherent multicast mappings, 13399 * and instead use the ones on the underlying interfaces. 13400 */ 13401 if (IS_IPMP(ill)) 13402 return (0); 13403 13404 /* 13405 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13406 * ipif_resolver_down() will send this up to ARP, but it may be that 13407 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13408 */ 13409 mp = ill->ill_arp_del_mapping_mp; 13410 if (mp != NULL) { 13411 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13412 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13413 putnext(ill->ill_rq, mp); 13414 ill->ill_arp_del_mapping_mp = NULL; 13415 } 13416 13417 if (arp_add_mapping_mp != NULL) 13418 *arp_add_mapping_mp = NULL; 13419 13420 /* 13421 * Check that the address is not to long for the constant 13422 * length reserved in the template arma_t. 13423 */ 13424 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13425 return (-1); 13426 13427 /* Add mapping mblk */ 13428 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13429 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13430 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13431 (caddr_t)&addr); 13432 if (add_mp == NULL) 13433 return (-1); 13434 arma = (arma_t *)add_mp->b_rptr; 13435 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13436 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13437 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13438 13439 /* 13440 * Determine the broadcast address. 13441 */ 13442 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13443 if (ill->ill_sap_length < 0) 13444 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13445 else 13446 bphys_addr = (uchar_t *)dlur + 13447 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13448 /* 13449 * Check PHYI_MULTI_BCAST and length of physical 13450 * address to determine if we use the mapping or the 13451 * broadcast address. 13452 */ 13453 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13454 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13455 bphys_addr, maddr, &hw_start, &extract_mask)) 13456 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13457 13458 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13459 (ill->ill_flags & ILLF_MULTICAST)) { 13460 /* Make sure this will not match the "exact" entry. */ 13461 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13462 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13463 (caddr_t)&addr); 13464 if (del_mp == NULL) { 13465 freemsg(add_mp); 13466 return (-1); 13467 } 13468 bcopy(&extract_mask, (char *)arma + 13469 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13470 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13471 /* Use link-layer broadcast address for MULTI_BCAST */ 13472 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13473 ip2dbg(("ipif_arp_setup_multicast: adding" 13474 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13475 } else { 13476 arma->arma_hw_mapping_start = hw_start; 13477 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13478 " ARP setup for %s\n", ill->ill_name)); 13479 } 13480 } else { 13481 freemsg(add_mp); 13482 ASSERT(del_mp == NULL); 13483 /* It is neither MULTICAST nor MULTI_BCAST */ 13484 return (0); 13485 } 13486 ASSERT(add_mp != NULL && del_mp != NULL); 13487 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13488 ill->ill_arp_del_mapping_mp = del_mp; 13489 if (arp_add_mapping_mp != NULL) { 13490 /* The caller just wants the mblks allocated */ 13491 *arp_add_mapping_mp = add_mp; 13492 } else { 13493 /* The caller wants us to send it to arp */ 13494 putnext(ill->ill_rq, add_mp); 13495 } 13496 return (0); 13497 } 13498 13499 /* 13500 * Get the resolver set up for a new IP address. (Always called as writer.) 13501 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13502 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13503 * 13504 * The enumerated value res_act tunes the behavior: 13505 * * Res_act_initial: set up all the resolver structures for a new 13506 * IP address. 13507 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13508 * ARP message in defense of the address. 13509 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13510 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13511 * 13512 * Returns zero on success, or an errno upon failure. 13513 */ 13514 int 13515 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13516 { 13517 mblk_t *arp_up_mp = NULL; 13518 mblk_t *arp_down_mp = NULL; 13519 mblk_t *arp_add_mp = NULL; 13520 mblk_t *arp_del_mp = NULL; 13521 mblk_t *arp_add_mapping_mp = NULL; 13522 mblk_t *arp_del_mapping_mp = NULL; 13523 ill_t *ill = ipif->ipif_ill; 13524 int err = ENOMEM; 13525 boolean_t added_ipif = B_FALSE; 13526 boolean_t publish; 13527 boolean_t was_dup; 13528 13529 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13530 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13531 ASSERT(IAM_WRITER_IPIF(ipif)); 13532 13533 was_dup = B_FALSE; 13534 if (res_act == Res_act_initial) { 13535 ipif->ipif_addr_ready = 0; 13536 /* 13537 * We're bringing an interface up here. There's no way that we 13538 * should need to shut down ARP now. 13539 */ 13540 mutex_enter(&ill->ill_lock); 13541 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13542 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13543 ill->ill_ipif_dup_count--; 13544 was_dup = B_TRUE; 13545 } 13546 mutex_exit(&ill->ill_lock); 13547 } 13548 if (ipif->ipif_recovery_id != 0) 13549 (void) untimeout(ipif->ipif_recovery_id); 13550 ipif->ipif_recovery_id = 0; 13551 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13552 ipif->ipif_addr_ready = 1; 13553 return (0); 13554 } 13555 /* NDP will set the ipif_addr_ready flag when it's ready */ 13556 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13557 return (0); 13558 13559 if (ill->ill_isv6) { 13560 /* 13561 * External resolver for IPv6 13562 */ 13563 ASSERT(res_act == Res_act_initial); 13564 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13565 } else { 13566 /* 13567 * IPv4 arp case. If the ARP stream has already started 13568 * closing, fail this request for ARP bringup. Else 13569 * record the fact that an ARP bringup is pending. 13570 */ 13571 mutex_enter(&ill->ill_lock); 13572 if (ill->ill_arp_closing) { 13573 mutex_exit(&ill->ill_lock); 13574 err = EINVAL; 13575 goto failed; 13576 } else { 13577 if (ill->ill_ipif_up_count == 0 && 13578 ill->ill_ipif_dup_count == 0 && !was_dup) 13579 ill->ill_arp_bringup_pending = 1; 13580 mutex_exit(&ill->ill_lock); 13581 } 13582 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13583 } 13584 13585 if (IS_IPMP(ill) && publish) { 13586 /* 13587 * If we're here via ipif_up(), then the ipif won't be bound 13588 * yet -- add it to the group, which will bind it if possible. 13589 * (We would add it in ipif_up(), but deleting on failure 13590 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13591 * then the ipif has already been added to the group and we 13592 * just need to use the binding. 13593 */ 13594 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13595 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13596 /* 13597 * We couldn't bind the ipif to an ill yet, 13598 * so we have nothing to publish. 13599 */ 13600 publish = B_FALSE; 13601 } 13602 added_ipif = B_TRUE; 13603 } 13604 } 13605 13606 /* 13607 * Add an entry for the local address in ARP only if it 13608 * is not UNNUMBERED and it is suitable for publishing. 13609 */ 13610 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13611 if (res_act == Res_act_defend) { 13612 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13613 if (arp_add_mp == NULL) 13614 goto failed; 13615 /* 13616 * If we're just defending our address now, then 13617 * there's no need to set up ARP multicast mappings. 13618 * The publish command is enough. 13619 */ 13620 goto done; 13621 } 13622 13623 /* 13624 * Allocate an ARP add message and an ARP delete message (the 13625 * latter is saved for use when the address goes down). 13626 */ 13627 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13628 goto failed; 13629 13630 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13631 goto failed; 13632 13633 if (res_act != Res_act_initial) 13634 goto arp_setup_multicast; 13635 } else { 13636 if (res_act != Res_act_initial) 13637 goto done; 13638 } 13639 /* 13640 * Need to bring up ARP or setup multicast mapping only 13641 * when the first interface is coming UP. 13642 */ 13643 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13644 goto done; 13645 13646 /* 13647 * Allocate an ARP down message (to be saved) and an ARP up message. 13648 */ 13649 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13650 if (arp_down_mp == NULL) 13651 goto failed; 13652 13653 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13654 if (arp_up_mp == NULL) 13655 goto failed; 13656 13657 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13658 goto done; 13659 13660 arp_setup_multicast: 13661 /* 13662 * Setup the multicast mappings. This function initializes 13663 * ill_arp_del_mapping_mp also. This does not need to be done for 13664 * IPv6, or for the IPMP interface (since it has no link-layer). 13665 */ 13666 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13667 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13668 if (err != 0) 13669 goto failed; 13670 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13671 ASSERT(arp_add_mapping_mp != NULL); 13672 } 13673 done: 13674 if (arp_up_mp != NULL) { 13675 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13676 ill->ill_name, ipif->ipif_id)); 13677 putnext(ill->ill_rq, arp_up_mp); 13678 arp_up_mp = NULL; 13679 } 13680 if (arp_add_mp != NULL) { 13681 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13682 ill->ill_name, ipif->ipif_id)); 13683 /* 13684 * If it's an extended ARP implementation, then we'll wait to 13685 * hear that DAD has finished before using the interface. 13686 */ 13687 if (!ill->ill_arp_extend) 13688 ipif->ipif_addr_ready = 1; 13689 putnext(ill->ill_rq, arp_add_mp); 13690 arp_add_mp = NULL; 13691 } else { 13692 ipif->ipif_addr_ready = 1; 13693 } 13694 if (arp_add_mapping_mp != NULL) { 13695 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13696 ill->ill_name, ipif->ipif_id)); 13697 putnext(ill->ill_rq, arp_add_mapping_mp); 13698 arp_add_mapping_mp = NULL; 13699 } 13700 13701 if (res_act == Res_act_initial) { 13702 if (ill->ill_flags & ILLF_NOARP) 13703 err = ill_arp_off(ill); 13704 else 13705 err = ill_arp_on(ill); 13706 if (err != 0) { 13707 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13708 err)); 13709 goto failed; 13710 } 13711 } 13712 13713 if (arp_del_mp != NULL) { 13714 ASSERT(ipif->ipif_arp_del_mp == NULL); 13715 ipif->ipif_arp_del_mp = arp_del_mp; 13716 } 13717 if (arp_down_mp != NULL) { 13718 ASSERT(ill->ill_arp_down_mp == NULL); 13719 ill->ill_arp_down_mp = arp_down_mp; 13720 } 13721 if (arp_del_mapping_mp != NULL) { 13722 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13723 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13724 } 13725 13726 return ((ill->ill_ipif_up_count != 0 || was_dup || 13727 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13728 failed: 13729 ip1dbg(("ipif_resolver_up: FAILED\n")); 13730 if (added_ipif) 13731 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13732 freemsg(arp_add_mp); 13733 freemsg(arp_del_mp); 13734 freemsg(arp_add_mapping_mp); 13735 freemsg(arp_up_mp); 13736 freemsg(arp_down_mp); 13737 ill->ill_arp_bringup_pending = 0; 13738 return (err); 13739 } 13740 13741 /* 13742 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13743 * just gone back up. 13744 */ 13745 static void 13746 ipif_arp_start_dad(ipif_t *ipif) 13747 { 13748 ill_t *ill = ipif->ipif_ill; 13749 mblk_t *arp_add_mp; 13750 13751 /* ACE_F_UNVERIFIED restarts DAD */ 13752 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13753 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13754 ipif->ipif_lcl_addr == INADDR_ANY || 13755 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13756 /* 13757 * If we can't contact ARP for some reason, that's not really a 13758 * problem. Just send out the routing socket notification that 13759 * DAD completion would have done, and continue. 13760 */ 13761 ipif_mask_reply(ipif); 13762 ipif_up_notify(ipif); 13763 ipif->ipif_addr_ready = 1; 13764 return; 13765 } 13766 13767 putnext(ill->ill_rq, arp_add_mp); 13768 } 13769 13770 static void 13771 ipif_ndp_start_dad(ipif_t *ipif) 13772 { 13773 nce_t *nce; 13774 13775 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13776 B_FALSE); 13777 if (nce == NULL) 13778 return; 13779 13780 if (!ndp_restart_dad(nce)) { 13781 /* 13782 * If we can't restart DAD for some reason, that's not really a 13783 * problem. Just send out the routing socket notification that 13784 * DAD completion would have done, and continue. 13785 */ 13786 ipif_up_notify(ipif); 13787 ipif->ipif_addr_ready = 1; 13788 } 13789 NCE_REFRELE(nce); 13790 } 13791 13792 /* 13793 * Restart duplicate address detection on all interfaces on the given ill. 13794 * 13795 * This is called when an interface transitions from down to up 13796 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13797 * 13798 * Note that since the underlying physical link has transitioned, we must cause 13799 * at least one routing socket message to be sent here, either via DAD 13800 * completion or just by default on the first ipif. (If we don't do this, then 13801 * in.mpathd will see long delays when doing link-based failure recovery.) 13802 */ 13803 void 13804 ill_restart_dad(ill_t *ill, boolean_t went_up) 13805 { 13806 ipif_t *ipif; 13807 13808 if (ill == NULL) 13809 return; 13810 13811 /* 13812 * If layer two doesn't support duplicate address detection, then just 13813 * send the routing socket message now and be done with it. 13814 */ 13815 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13816 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13817 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13818 return; 13819 } 13820 13821 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13822 if (went_up) { 13823 if (ipif->ipif_flags & IPIF_UP) { 13824 if (ill->ill_isv6) 13825 ipif_ndp_start_dad(ipif); 13826 else 13827 ipif_arp_start_dad(ipif); 13828 } else if (ill->ill_isv6 && 13829 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13830 /* 13831 * For IPv4, the ARP module itself will 13832 * automatically start the DAD process when it 13833 * sees DL_NOTE_LINK_UP. We respond to the 13834 * AR_CN_READY at the completion of that task. 13835 * For IPv6, we must kick off the bring-up 13836 * process now. 13837 */ 13838 ndp_do_recovery(ipif); 13839 } else { 13840 /* 13841 * Unfortunately, the first ipif is "special" 13842 * and represents the underlying ill in the 13843 * routing socket messages. Thus, when this 13844 * one ipif is down, we must still notify so 13845 * that the user knows the IFF_RUNNING status 13846 * change. (If the first ipif is up, then 13847 * we'll handle eventual routing socket 13848 * notification via DAD completion.) 13849 */ 13850 if (ipif == ill->ill_ipif) { 13851 ip_rts_ifmsg(ill->ill_ipif, 13852 RTSQ_DEFAULT); 13853 } 13854 } 13855 } else { 13856 /* 13857 * After link down, we'll need to send a new routing 13858 * message when the link comes back, so clear 13859 * ipif_addr_ready. 13860 */ 13861 ipif->ipif_addr_ready = 0; 13862 } 13863 } 13864 13865 /* 13866 * If we've torn down links, then notify the user right away. 13867 */ 13868 if (!went_up) 13869 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13870 } 13871 13872 static void 13873 ipsq_delete(ipsq_t *ipsq) 13874 { 13875 ipxop_t *ipx = ipsq->ipsq_xop; 13876 13877 ipsq->ipsq_ipst = NULL; 13878 ASSERT(ipsq->ipsq_phyint == NULL); 13879 ASSERT(ipsq->ipsq_xop != NULL); 13880 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 13881 ASSERT(ipx->ipx_pending_mp == NULL); 13882 kmem_free(ipsq, sizeof (ipsq_t)); 13883 } 13884 13885 static int 13886 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 13887 { 13888 int err; 13889 ipif_t *ipif; 13890 13891 if (ill == NULL) 13892 return (0); 13893 13894 ASSERT(IAM_WRITER_ILL(ill)); 13895 ill->ill_up_ipifs = B_TRUE; 13896 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13897 if (ipif->ipif_was_up) { 13898 if (!(ipif->ipif_flags & IPIF_UP)) 13899 err = ipif_up(ipif, q, mp); 13900 ipif->ipif_was_up = B_FALSE; 13901 if (err != 0) { 13902 ASSERT(err == EINPROGRESS); 13903 return (err); 13904 } 13905 } 13906 } 13907 mutex_enter(&ill->ill_lock); 13908 ill->ill_state_flags &= ~ILL_CHANGING; 13909 mutex_exit(&ill->ill_lock); 13910 ill->ill_up_ipifs = B_FALSE; 13911 return (0); 13912 } 13913 13914 /* 13915 * This function is called to bring up all the ipifs that were up before 13916 * bringing the ill down via ill_down_ipifs(). 13917 */ 13918 int 13919 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13920 { 13921 int err; 13922 13923 ASSERT(IAM_WRITER_ILL(ill)); 13924 13925 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 13926 if (err != 0) 13927 return (err); 13928 13929 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 13930 } 13931 13932 /* 13933 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 13934 * down the ipifs without sending DL_UNBIND_REQ to the driver. 13935 */ 13936 static void 13937 ill_down_ipifs(ill_t *ill, boolean_t logical) 13938 { 13939 ipif_t *ipif; 13940 13941 ASSERT(IAM_WRITER_ILL(ill)); 13942 13943 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13944 /* 13945 * We go through the ipif_down logic even if the ipif 13946 * is already down, since routes can be added based 13947 * on down ipifs. Going through ipif_down once again 13948 * will delete any IREs created based on these routes. 13949 */ 13950 if (ipif->ipif_flags & IPIF_UP) 13951 ipif->ipif_was_up = B_TRUE; 13952 13953 /* 13954 * Need to re-create net/subnet bcast ires if 13955 * they are dependent on ipif. 13956 */ 13957 if (!ipif->ipif_isv6) 13958 ipif_check_bcast_ires(ipif); 13959 if (logical) { 13960 (void) ipif_logical_down(ipif, NULL, NULL); 13961 ipif_non_duplicate(ipif); 13962 ipif_down_tail(ipif); 13963 } else { 13964 (void) ipif_down(ipif, NULL, NULL); 13965 } 13966 } 13967 } 13968 13969 /* 13970 * Redo source address selection. This is called when a 13971 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 13972 */ 13973 void 13974 ill_update_source_selection(ill_t *ill) 13975 { 13976 ipif_t *ipif; 13977 13978 ASSERT(IAM_WRITER_ILL(ill)); 13979 13980 /* 13981 * Underlying interfaces are only used for test traffic and thus 13982 * should always send with their (deprecated) source addresses. 13983 */ 13984 if (IS_UNDER_IPMP(ill)) 13985 return; 13986 13987 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13988 if (ill->ill_isv6) 13989 ipif_recreate_interface_routes_v6(NULL, ipif); 13990 else 13991 ipif_recreate_interface_routes(NULL, ipif); 13992 } 13993 } 13994 13995 /* 13996 * Finish the group join started in ip_sioctl_groupname(). 13997 */ 13998 /* ARGSUSED */ 13999 static void 14000 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14001 { 14002 ill_t *ill = q->q_ptr; 14003 phyint_t *phyi = ill->ill_phyint; 14004 ipmp_grp_t *grp = phyi->phyint_grp; 14005 ip_stack_t *ipst = ill->ill_ipst; 14006 14007 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14008 ASSERT(!IS_IPMP(ill) && grp != NULL); 14009 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14010 14011 if (phyi->phyint_illv4 != NULL) { 14012 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14013 VERIFY(grp->gr_pendv4-- > 0); 14014 rw_exit(&ipst->ips_ipmp_lock); 14015 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14016 } 14017 if (phyi->phyint_illv6 != NULL) { 14018 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14019 VERIFY(grp->gr_pendv6-- > 0); 14020 rw_exit(&ipst->ips_ipmp_lock); 14021 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14022 } 14023 freemsg(mp); 14024 } 14025 14026 /* 14027 * Process an SIOCSLIFGROUPNAME request. 14028 */ 14029 /* ARGSUSED */ 14030 int 14031 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14032 ip_ioctl_cmd_t *ipip, void *ifreq) 14033 { 14034 struct lifreq *lifr = ifreq; 14035 ill_t *ill = ipif->ipif_ill; 14036 ip_stack_t *ipst = ill->ill_ipst; 14037 phyint_t *phyi = ill->ill_phyint; 14038 ipmp_grp_t *grp = phyi->phyint_grp; 14039 mblk_t *ipsq_mp; 14040 int err = 0; 14041 14042 /* 14043 * Note that phyint_grp can only change here, where we're exclusive. 14044 */ 14045 ASSERT(IAM_WRITER_ILL(ill)); 14046 14047 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14048 (phyi->phyint_flags & PHYI_VIRTUAL)) 14049 return (EINVAL); 14050 14051 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14052 14053 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14054 14055 /* 14056 * If the name hasn't changed, there's nothing to do. 14057 */ 14058 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14059 goto unlock; 14060 14061 /* 14062 * Handle requests to rename an IPMP meta-interface. 14063 * 14064 * Note that creation of the IPMP meta-interface is handled in 14065 * userland through the standard plumbing sequence. As part of the 14066 * plumbing the IPMP meta-interface, its initial groupname is set to 14067 * the name of the interface (see ipif_set_values_tail()). 14068 */ 14069 if (IS_IPMP(ill)) { 14070 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14071 goto unlock; 14072 } 14073 14074 /* 14075 * Handle requests to add or remove an IP interface from a group. 14076 */ 14077 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14078 /* 14079 * Moves are handled by first removing the interface from 14080 * its existing group, and then adding it to another group. 14081 * So, fail if it's already in a group. 14082 */ 14083 if (IS_UNDER_IPMP(ill)) { 14084 err = EALREADY; 14085 goto unlock; 14086 } 14087 14088 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14089 if (grp == NULL) { 14090 err = ENOENT; 14091 goto unlock; 14092 } 14093 14094 /* 14095 * Check if the phyint and its ills are suitable for 14096 * inclusion into the group. 14097 */ 14098 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14099 goto unlock; 14100 14101 /* 14102 * Checks pass; join the group, and enqueue the remaining 14103 * illgrp joins for when we've become part of the group xop 14104 * and are exclusive across its IPSQs. Since qwriter_ip() 14105 * requires an mblk_t to scribble on, and since `mp' will be 14106 * freed as part of completing the ioctl, allocate another. 14107 */ 14108 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14109 err = ENOMEM; 14110 goto unlock; 14111 } 14112 14113 /* 14114 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14115 * IPMP meta-interface ills needed by `phyi' cannot go away 14116 * before ip_join_illgrps() is called back. See the comments 14117 * in ip_sioctl_plink_ipmp() for more. 14118 */ 14119 if (phyi->phyint_illv4 != NULL) 14120 grp->gr_pendv4++; 14121 if (phyi->phyint_illv6 != NULL) 14122 grp->gr_pendv6++; 14123 14124 rw_exit(&ipst->ips_ipmp_lock); 14125 14126 ipmp_phyint_join_grp(phyi, grp); 14127 ill_refhold(ill); 14128 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14129 SWITCH_OP, B_FALSE); 14130 return (0); 14131 } else { 14132 /* 14133 * Request to remove the interface from a group. If the 14134 * interface is not in a group, this trivially succeeds. 14135 */ 14136 rw_exit(&ipst->ips_ipmp_lock); 14137 if (IS_UNDER_IPMP(ill)) 14138 ipmp_phyint_leave_grp(phyi); 14139 return (0); 14140 } 14141 unlock: 14142 rw_exit(&ipst->ips_ipmp_lock); 14143 return (err); 14144 } 14145 14146 /* 14147 * Process an SIOCGLIFBINDING request. 14148 */ 14149 /* ARGSUSED */ 14150 int 14151 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14152 ip_ioctl_cmd_t *ipip, void *ifreq) 14153 { 14154 ill_t *ill; 14155 struct lifreq *lifr = ifreq; 14156 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14157 14158 if (!IS_IPMP(ipif->ipif_ill)) 14159 return (EINVAL); 14160 14161 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14162 if ((ill = ipif->ipif_bound_ill) == NULL) 14163 lifr->lifr_binding[0] = '\0'; 14164 else 14165 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14166 rw_exit(&ipst->ips_ipmp_lock); 14167 return (0); 14168 } 14169 14170 /* 14171 * Process an SIOCGLIFGROUPNAME request. 14172 */ 14173 /* ARGSUSED */ 14174 int 14175 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14176 ip_ioctl_cmd_t *ipip, void *ifreq) 14177 { 14178 ipmp_grp_t *grp; 14179 struct lifreq *lifr = ifreq; 14180 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14181 14182 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14183 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14184 lifr->lifr_groupname[0] = '\0'; 14185 else 14186 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14187 rw_exit(&ipst->ips_ipmp_lock); 14188 return (0); 14189 } 14190 14191 /* 14192 * Process an SIOCGLIFGROUPINFO request. 14193 */ 14194 /* ARGSUSED */ 14195 int 14196 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14197 ip_ioctl_cmd_t *ipip, void *dummy) 14198 { 14199 ipmp_grp_t *grp; 14200 lifgroupinfo_t *lifgr; 14201 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14202 14203 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14204 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14205 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14206 14207 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14208 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14209 rw_exit(&ipst->ips_ipmp_lock); 14210 return (ENOENT); 14211 } 14212 ipmp_grp_info(grp, lifgr); 14213 rw_exit(&ipst->ips_ipmp_lock); 14214 return (0); 14215 } 14216 14217 static void 14218 ill_dl_down(ill_t *ill) 14219 { 14220 /* 14221 * The ill is down; unbind but stay attached since we're still 14222 * associated with a PPA. If we have negotiated DLPI capabilites 14223 * with the data link service provider (IDS_OK) then reset them. 14224 * The interval between unbinding and rebinding is potentially 14225 * unbounded hence we cannot assume things will be the same. 14226 * The DLPI capabilities will be probed again when the data link 14227 * is brought up. 14228 */ 14229 mblk_t *mp = ill->ill_unbind_mp; 14230 14231 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14232 14233 ill->ill_unbind_mp = NULL; 14234 if (mp != NULL) { 14235 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14236 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14237 ill->ill_name)); 14238 mutex_enter(&ill->ill_lock); 14239 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14240 mutex_exit(&ill->ill_lock); 14241 /* 14242 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14243 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14244 * ill_capability_dld_disable disable rightaway. If this is not 14245 * an unplumb operation then the disable happens on receipt of 14246 * the capab ack via ip_rput_dlpi_writer -> 14247 * ill_capability_ack_thr. In both cases the order of 14248 * the operations seen by DLD is capability disable followed 14249 * by DL_UNBIND. Also the DLD capability disable needs a 14250 * cv_wait'able context. 14251 */ 14252 if (ill->ill_state_flags & ILL_CONDEMNED) 14253 ill_capability_dld_disable(ill); 14254 ill_capability_reset(ill, B_FALSE); 14255 ill_dlpi_send(ill, mp); 14256 } 14257 14258 /* 14259 * Toss all of our multicast memberships. We could keep them, but 14260 * then we'd have to do bookkeeping of any joins and leaves performed 14261 * by the application while the the interface is down (we can't just 14262 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14263 * on a downed interface). 14264 */ 14265 ill_leave_multicast(ill); 14266 14267 mutex_enter(&ill->ill_lock); 14268 ill->ill_dl_up = 0; 14269 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14270 mutex_exit(&ill->ill_lock); 14271 } 14272 14273 static void 14274 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14275 { 14276 union DL_primitives *dlp; 14277 t_uscalar_t prim; 14278 boolean_t waitack = B_FALSE; 14279 14280 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14281 14282 dlp = (union DL_primitives *)mp->b_rptr; 14283 prim = dlp->dl_primitive; 14284 14285 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14286 dl_primstr(prim), prim, ill->ill_name)); 14287 14288 switch (prim) { 14289 case DL_PHYS_ADDR_REQ: 14290 { 14291 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14292 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14293 break; 14294 } 14295 case DL_BIND_REQ: 14296 mutex_enter(&ill->ill_lock); 14297 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14298 mutex_exit(&ill->ill_lock); 14299 break; 14300 } 14301 14302 /* 14303 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14304 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14305 * we only wait for the ACK of the DL_UNBIND_REQ. 14306 */ 14307 mutex_enter(&ill->ill_lock); 14308 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 14309 (prim == DL_UNBIND_REQ)) { 14310 ill->ill_dlpi_pending = prim; 14311 waitack = B_TRUE; 14312 } 14313 14314 mutex_exit(&ill->ill_lock); 14315 putnext(ill->ill_wq, mp); 14316 14317 /* 14318 * There is no ack for DL_NOTIFY_CONF messages 14319 */ 14320 if (waitack && prim == DL_NOTIFY_CONF) 14321 ill_dlpi_done(ill, prim); 14322 } 14323 14324 /* 14325 * Helper function for ill_dlpi_send(). 14326 */ 14327 /* ARGSUSED */ 14328 static void 14329 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14330 { 14331 ill_dlpi_send(q->q_ptr, mp); 14332 } 14333 14334 /* 14335 * Send a DLPI control message to the driver but make sure there 14336 * is only one outstanding message. Uses ill_dlpi_pending to tell 14337 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14338 * when an ACK or a NAK is received to process the next queued message. 14339 */ 14340 void 14341 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14342 { 14343 mblk_t **mpp; 14344 14345 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14346 14347 /* 14348 * To ensure that any DLPI requests for current exclusive operation 14349 * are always completely sent before any DLPI messages for other 14350 * operations, require writer access before enqueuing. 14351 */ 14352 if (!IAM_WRITER_ILL(ill)) { 14353 ill_refhold(ill); 14354 /* qwriter_ip() does the ill_refrele() */ 14355 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14356 NEW_OP, B_TRUE); 14357 return; 14358 } 14359 14360 mutex_enter(&ill->ill_lock); 14361 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14362 /* Must queue message. Tail insertion */ 14363 mpp = &ill->ill_dlpi_deferred; 14364 while (*mpp != NULL) 14365 mpp = &((*mpp)->b_next); 14366 14367 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14368 ill->ill_name)); 14369 14370 *mpp = mp; 14371 mutex_exit(&ill->ill_lock); 14372 return; 14373 } 14374 mutex_exit(&ill->ill_lock); 14375 ill_dlpi_dispatch(ill, mp); 14376 } 14377 14378 static void 14379 ill_capability_send(ill_t *ill, mblk_t *mp) 14380 { 14381 ill->ill_capab_pending_cnt++; 14382 ill_dlpi_send(ill, mp); 14383 } 14384 14385 void 14386 ill_capability_done(ill_t *ill) 14387 { 14388 ASSERT(ill->ill_capab_pending_cnt != 0); 14389 14390 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14391 14392 ill->ill_capab_pending_cnt--; 14393 if (ill->ill_capab_pending_cnt == 0 && 14394 ill->ill_dlpi_capab_state == IDCS_OK) 14395 ill_capability_reset_alloc(ill); 14396 } 14397 14398 /* 14399 * Send all deferred DLPI messages without waiting for their ACKs. 14400 */ 14401 void 14402 ill_dlpi_send_deferred(ill_t *ill) 14403 { 14404 mblk_t *mp, *nextmp; 14405 14406 /* 14407 * Clear ill_dlpi_pending so that the message is not queued in 14408 * ill_dlpi_send(). 14409 */ 14410 mutex_enter(&ill->ill_lock); 14411 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14412 mp = ill->ill_dlpi_deferred; 14413 ill->ill_dlpi_deferred = NULL; 14414 mutex_exit(&ill->ill_lock); 14415 14416 for (; mp != NULL; mp = nextmp) { 14417 nextmp = mp->b_next; 14418 mp->b_next = NULL; 14419 ill_dlpi_send(ill, mp); 14420 } 14421 } 14422 14423 /* 14424 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14425 */ 14426 boolean_t 14427 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14428 { 14429 t_uscalar_t pending; 14430 14431 mutex_enter(&ill->ill_lock); 14432 if (ill->ill_dlpi_pending == prim) { 14433 mutex_exit(&ill->ill_lock); 14434 return (B_TRUE); 14435 } 14436 14437 /* 14438 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14439 * without waiting, so don't print any warnings in that case. 14440 */ 14441 if (ill->ill_state_flags & ILL_CONDEMNED) { 14442 mutex_exit(&ill->ill_lock); 14443 return (B_FALSE); 14444 } 14445 pending = ill->ill_dlpi_pending; 14446 mutex_exit(&ill->ill_lock); 14447 14448 if (pending == DL_PRIM_INVAL) { 14449 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14450 "received unsolicited ack for %s on %s\n", 14451 dl_primstr(prim), ill->ill_name); 14452 } else { 14453 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14454 "received unexpected ack for %s on %s (expecting %s)\n", 14455 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14456 } 14457 return (B_FALSE); 14458 } 14459 14460 /* 14461 * Complete the current DLPI operation associated with `prim' on `ill' and 14462 * start the next queued DLPI operation (if any). If there are no queued DLPI 14463 * operations and the ill's current exclusive IPSQ operation has finished 14464 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14465 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14466 * the comments above ipsq_current_finish() for details. 14467 */ 14468 void 14469 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14470 { 14471 mblk_t *mp; 14472 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14473 ipxop_t *ipx = ipsq->ipsq_xop; 14474 14475 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14476 mutex_enter(&ill->ill_lock); 14477 14478 ASSERT(prim != DL_PRIM_INVAL); 14479 ASSERT(ill->ill_dlpi_pending == prim); 14480 14481 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14482 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14483 14484 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14485 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14486 if (ipx->ipx_current_done) { 14487 mutex_enter(&ipx->ipx_lock); 14488 ipx->ipx_current_ipif = NULL; 14489 mutex_exit(&ipx->ipx_lock); 14490 } 14491 cv_signal(&ill->ill_cv); 14492 mutex_exit(&ill->ill_lock); 14493 return; 14494 } 14495 14496 ill->ill_dlpi_deferred = mp->b_next; 14497 mp->b_next = NULL; 14498 mutex_exit(&ill->ill_lock); 14499 14500 ill_dlpi_dispatch(ill, mp); 14501 } 14502 14503 void 14504 conn_delete_ire(conn_t *connp, caddr_t arg) 14505 { 14506 ipif_t *ipif = (ipif_t *)arg; 14507 ire_t *ire; 14508 14509 /* 14510 * Look at the cached ires on conns which has pointers to ipifs. 14511 * We just call ire_refrele which clears up the reference 14512 * to ire. Called when a conn closes. Also called from ipif_free 14513 * to cleanup indirect references to the stale ipif via the cached ire. 14514 */ 14515 mutex_enter(&connp->conn_lock); 14516 ire = connp->conn_ire_cache; 14517 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14518 connp->conn_ire_cache = NULL; 14519 mutex_exit(&connp->conn_lock); 14520 IRE_REFRELE_NOTR(ire); 14521 return; 14522 } 14523 mutex_exit(&connp->conn_lock); 14524 14525 } 14526 14527 /* 14528 * Some operations (e.g., ipif_down()) conditionally delete a number 14529 * of IREs. Those IREs may have been previously cached in the conn structure. 14530 * This ipcl_walk() walker function releases all references to such IREs based 14531 * on the condemned flag. 14532 */ 14533 /* ARGSUSED */ 14534 void 14535 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14536 { 14537 ire_t *ire; 14538 14539 mutex_enter(&connp->conn_lock); 14540 ire = connp->conn_ire_cache; 14541 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14542 connp->conn_ire_cache = NULL; 14543 mutex_exit(&connp->conn_lock); 14544 IRE_REFRELE_NOTR(ire); 14545 return; 14546 } 14547 mutex_exit(&connp->conn_lock); 14548 } 14549 14550 /* 14551 * Take down a specific interface, but don't lose any information about it. 14552 * (Always called as writer.) 14553 * This function goes through the down sequence even if the interface is 14554 * already down. There are 2 reasons. 14555 * a. Currently we permit interface routes that depend on down interfaces 14556 * to be added. This behaviour itself is questionable. However it appears 14557 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14558 * time. We go thru the cleanup in order to remove these routes. 14559 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14560 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14561 * down, but we need to cleanup i.e. do ill_dl_down and 14562 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14563 * 14564 * IP-MT notes: 14565 * 14566 * Model of reference to interfaces. 14567 * 14568 * The following members in ipif_t track references to the ipif. 14569 * int ipif_refcnt; Active reference count 14570 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14571 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14572 * 14573 * The following members in ill_t track references to the ill. 14574 * int ill_refcnt; active refcnt 14575 * uint_t ill_ire_cnt; Number of ires referencing ill 14576 * uint_t ill_nce_cnt; Number of nces referencing ill 14577 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14578 * 14579 * Reference to an ipif or ill can be obtained in any of the following ways. 14580 * 14581 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14582 * Pointers to ipif / ill from other data structures viz ire and conn. 14583 * Implicit reference to the ipif / ill by holding a reference to the ire. 14584 * 14585 * The ipif/ill lookup functions return a reference held ipif / ill. 14586 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14587 * This is a purely dynamic reference count associated with threads holding 14588 * references to the ipif / ill. Pointers from other structures do not 14589 * count towards this reference count. 14590 * 14591 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14592 * associated with the ipif/ill. This is incremented whenever a new 14593 * ire is created referencing the ipif/ill. This is done atomically inside 14594 * ire_add_v[46] where the ire is actually added to the ire hash table. 14595 * The count is decremented in ire_inactive where the ire is destroyed. 14596 * 14597 * nce's reference ill's thru nce_ill and the count of nce's associated with 14598 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14599 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14600 * table. Similarly it is decremented in ndp_inactive() where the nce 14601 * is destroyed. 14602 * 14603 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14604 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14605 * in ilm_walker_cleanup() or ilm_delete(). 14606 * 14607 * Flow of ioctls involving interface down/up 14608 * 14609 * The following is the sequence of an attempt to set some critical flags on an 14610 * up interface. 14611 * ip_sioctl_flags 14612 * ipif_down 14613 * wait for ipif to be quiescent 14614 * ipif_down_tail 14615 * ip_sioctl_flags_tail 14616 * 14617 * All set ioctls that involve down/up sequence would have a skeleton similar 14618 * to the above. All the *tail functions are called after the refcounts have 14619 * dropped to the appropriate values. 14620 * 14621 * The mechanism to quiesce an ipif is as follows. 14622 * 14623 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14624 * on the ipif. Callers either pass a flag requesting wait or the lookup 14625 * functions will return NULL. 14626 * 14627 * Delete all ires referencing this ipif 14628 * 14629 * Any thread attempting to do an ipif_refhold on an ipif that has been 14630 * obtained thru a cached pointer will first make sure that 14631 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14632 * increment the refcount. 14633 * 14634 * The above guarantees that the ipif refcount will eventually come down to 14635 * zero and the ipif will quiesce, once all threads that currently hold a 14636 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14637 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14638 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14639 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14640 * in ip.h 14641 * 14642 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14643 * 14644 * Threads trying to lookup an ipif or ill can pass a flag requesting 14645 * wait and restart if the ipif / ill cannot be looked up currently. 14646 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14647 * failure if the ipif is currently undergoing an exclusive operation, and 14648 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14649 * is restarted by ipsq_exit() when the current exclusive operation completes. 14650 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14651 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14652 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14653 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14654 * until we release the ipsq_lock, even though the the ill/ipif state flags 14655 * can change after we drop the ill_lock. 14656 * 14657 * An attempt to send out a packet using an ipif that is currently 14658 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14659 * operation and restart it later when the exclusive condition on the ipif ends. 14660 * This is an example of not passing the wait flag to the lookup functions. For 14661 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14662 * out a multicast packet on that ipif will fail while the ipif is 14663 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14664 * currently IPIF_CHANGING will also fail. 14665 */ 14666 int 14667 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14668 { 14669 ill_t *ill = ipif->ipif_ill; 14670 conn_t *connp; 14671 boolean_t success; 14672 boolean_t ipif_was_up = B_FALSE; 14673 ip_stack_t *ipst = ill->ill_ipst; 14674 14675 ASSERT(IAM_WRITER_IPIF(ipif)); 14676 14677 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14678 14679 if (ipif->ipif_flags & IPIF_UP) { 14680 mutex_enter(&ill->ill_lock); 14681 ipif->ipif_flags &= ~IPIF_UP; 14682 ASSERT(ill->ill_ipif_up_count > 0); 14683 --ill->ill_ipif_up_count; 14684 mutex_exit(&ill->ill_lock); 14685 ipif_was_up = B_TRUE; 14686 /* Update status in SCTP's list */ 14687 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14688 ill_nic_event_dispatch(ipif->ipif_ill, 14689 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14690 } 14691 14692 /* 14693 * Blow away memberships we established in ipif_multicast_up(). 14694 */ 14695 ipif_multicast_down(ipif); 14696 14697 /* 14698 * Remove from the mapping for __sin6_src_id. We insert only 14699 * when the address is not INADDR_ANY. As IPv4 addresses are 14700 * stored as mapped addresses, we need to check for mapped 14701 * INADDR_ANY also. 14702 */ 14703 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14704 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14705 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14706 int err; 14707 14708 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14709 ipif->ipif_zoneid, ipst); 14710 if (err != 0) { 14711 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14712 } 14713 } 14714 14715 /* 14716 * Delete all IRE's pointing at this ipif or its source address. 14717 */ 14718 if (ipif->ipif_isv6) { 14719 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14720 ipst); 14721 } else { 14722 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14723 ipst); 14724 } 14725 14726 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14727 /* 14728 * Since the interface is now down, it may have just become 14729 * inactive. Note that this needs to be done even for a 14730 * lll_logical_down(), or ARP entries will not get correctly 14731 * restored when the interface comes back up. 14732 */ 14733 if (IS_UNDER_IPMP(ill)) 14734 ipmp_ill_refresh_active(ill); 14735 } 14736 14737 /* 14738 * Cleaning up the conn_ire_cache or conns must be done only after the 14739 * ires have been deleted above. Otherwise a thread could end up 14740 * caching an ire in a conn after we have finished the cleanup of the 14741 * conn. The caching is done after making sure that the ire is not yet 14742 * condemned. Also documented in the block comment above ip_output 14743 */ 14744 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14745 /* Also, delete the ires cached in SCTP */ 14746 sctp_ire_cache_flush(ipif); 14747 14748 /* 14749 * Update any other ipifs which have used "our" local address as 14750 * a source address. This entails removing and recreating IRE_INTERFACE 14751 * entries for such ipifs. 14752 */ 14753 if (ipif->ipif_isv6) 14754 ipif_update_other_ipifs_v6(ipif); 14755 else 14756 ipif_update_other_ipifs(ipif); 14757 14758 /* 14759 * neighbor-discovery or arp entries for this interface. 14760 */ 14761 ipif_ndp_down(ipif); 14762 14763 /* 14764 * If mp is NULL the caller will wait for the appropriate refcnt. 14765 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14766 * and ill_delete -> ipif_free -> ipif_down 14767 */ 14768 if (mp == NULL) { 14769 ASSERT(q == NULL); 14770 return (0); 14771 } 14772 14773 if (CONN_Q(q)) { 14774 connp = Q_TO_CONN(q); 14775 mutex_enter(&connp->conn_lock); 14776 } else { 14777 connp = NULL; 14778 } 14779 mutex_enter(&ill->ill_lock); 14780 /* 14781 * Are there any ire's pointing to this ipif that are still active ? 14782 * If this is the last ipif going down, are there any ire's pointing 14783 * to this ill that are still active ? 14784 */ 14785 if (ipif_is_quiescent(ipif)) { 14786 mutex_exit(&ill->ill_lock); 14787 if (connp != NULL) 14788 mutex_exit(&connp->conn_lock); 14789 return (0); 14790 } 14791 14792 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14793 ill->ill_name, (void *)ill)); 14794 /* 14795 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14796 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14797 * which in turn is called by the last refrele on the ipif/ill/ire. 14798 */ 14799 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14800 if (!success) { 14801 /* The conn is closing. So just return */ 14802 ASSERT(connp != NULL); 14803 mutex_exit(&ill->ill_lock); 14804 mutex_exit(&connp->conn_lock); 14805 return (EINTR); 14806 } 14807 14808 mutex_exit(&ill->ill_lock); 14809 if (connp != NULL) 14810 mutex_exit(&connp->conn_lock); 14811 return (EINPROGRESS); 14812 } 14813 14814 void 14815 ipif_down_tail(ipif_t *ipif) 14816 { 14817 ill_t *ill = ipif->ipif_ill; 14818 14819 /* 14820 * Skip any loopback interface (null wq). 14821 * If this is the last logical interface on the ill 14822 * have ill_dl_down tell the driver we are gone (unbind) 14823 * Note that lun 0 can ipif_down even though 14824 * there are other logical units that are up. 14825 * This occurs e.g. when we change a "significant" IFF_ flag. 14826 */ 14827 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14828 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14829 ill->ill_dl_up) { 14830 ill_dl_down(ill); 14831 } 14832 ill->ill_logical_down = 0; 14833 14834 /* 14835 * Has to be after removing the routes in ipif_down_delete_ire. 14836 */ 14837 ipif_resolver_down(ipif); 14838 14839 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14840 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14841 } 14842 14843 /* 14844 * Bring interface logically down without bringing the physical interface 14845 * down e.g. when the netmask is changed. This avoids long lasting link 14846 * negotiations between an ethernet interface and a certain switches. 14847 */ 14848 static int 14849 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14850 { 14851 /* 14852 * The ill_logical_down flag is a transient flag. It is set here 14853 * and is cleared once the down has completed in ipif_down_tail. 14854 * This flag does not indicate whether the ill stream is in the 14855 * DL_BOUND state with the driver. Instead this flag is used by 14856 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14857 * the driver. The state of the ill stream i.e. whether it is 14858 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14859 */ 14860 ipif->ipif_ill->ill_logical_down = 1; 14861 return (ipif_down(ipif, q, mp)); 14862 } 14863 14864 /* 14865 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14866 * If the usesrc client ILL is already part of a usesrc group or not, 14867 * in either case a ire_stq with the matching usesrc client ILL will 14868 * locate the IRE's that need to be deleted. We want IREs to be created 14869 * with the new source address. 14870 */ 14871 static void 14872 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14873 { 14874 ill_t *ucill = (ill_t *)ill_arg; 14875 14876 ASSERT(IAM_WRITER_ILL(ucill)); 14877 14878 if (ire->ire_stq == NULL) 14879 return; 14880 14881 if ((ire->ire_type == IRE_CACHE) && 14882 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 14883 ire_delete(ire); 14884 } 14885 14886 /* 14887 * ire_walk routine to delete every IRE dependent on the interface 14888 * address that is going down. (Always called as writer.) 14889 * Works for both v4 and v6. 14890 * In addition for checking for ire_ipif matches it also checks for 14891 * IRE_CACHE entries which have the same source address as the 14892 * disappearing ipif since ipif_select_source might have picked 14893 * that source. Note that ipif_down/ipif_update_other_ipifs takes 14894 * care of any IRE_INTERFACE with the disappearing source address. 14895 */ 14896 static void 14897 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 14898 { 14899 ipif_t *ipif = (ipif_t *)ipif_arg; 14900 14901 ASSERT(IAM_WRITER_IPIF(ipif)); 14902 if (ire->ire_ipif == NULL) 14903 return; 14904 14905 if (ire->ire_ipif != ipif) { 14906 /* 14907 * Look for a matching source address. 14908 */ 14909 if (ire->ire_type != IRE_CACHE) 14910 return; 14911 if (ipif->ipif_flags & IPIF_NOLOCAL) 14912 return; 14913 14914 if (ire->ire_ipversion == IPV4_VERSION) { 14915 if (ire->ire_src_addr != ipif->ipif_src_addr) 14916 return; 14917 } else { 14918 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 14919 &ipif->ipif_v6lcl_addr)) 14920 return; 14921 } 14922 ire_delete(ire); 14923 return; 14924 } 14925 /* 14926 * ire_delete() will do an ire_flush_cache which will delete 14927 * all ire_ipif matches 14928 */ 14929 ire_delete(ire); 14930 } 14931 14932 /* 14933 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 14934 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 14935 * 2) when an interface is brought up or down (on that ill). 14936 * This ensures that the IRE_CACHE entries don't retain stale source 14937 * address selection results. 14938 */ 14939 void 14940 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 14941 { 14942 ill_t *ill = (ill_t *)ill_arg; 14943 14944 ASSERT(IAM_WRITER_ILL(ill)); 14945 ASSERT(ire->ire_type == IRE_CACHE); 14946 14947 /* 14948 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14949 * ill, but we only want to delete the IRE if ire_ipif matches. 14950 */ 14951 ASSERT(ire->ire_ipif != NULL); 14952 if (ill == ire->ire_ipif->ipif_ill) 14953 ire_delete(ire); 14954 } 14955 14956 /* 14957 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 14958 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 14959 * the IPMP ill. 14960 */ 14961 void 14962 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 14963 { 14964 ill_t *ill = (ill_t *)ill_arg; 14965 14966 ASSERT(IAM_WRITER_ILL(ill)); 14967 ASSERT(ire->ire_type == IRE_CACHE); 14968 14969 /* 14970 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14971 * ill, but we only want to delete the IRE if ire_stq matches. 14972 */ 14973 if (ire->ire_stq->q_ptr == ill_arg) 14974 ire_delete(ire); 14975 } 14976 14977 /* 14978 * Delete all the IREs whose ire_stq's reference any ill in the same IPMP 14979 * group as `ill_arg'. Used by ipmp_ill_deactivate() to flush all IRE_CACHE 14980 * entries for the illgrp. 14981 */ 14982 void 14983 ill_grp_cache_delete(ire_t *ire, char *ill_arg) 14984 { 14985 ill_t *ill = (ill_t *)ill_arg; 14986 14987 ASSERT(IAM_WRITER_ILL(ill)); 14988 14989 if (ire->ire_type == IRE_CACHE && 14990 IS_IN_SAME_ILLGRP((ill_t *)ire->ire_stq->q_ptr, ill)) { 14991 ire_delete(ire); 14992 } 14993 } 14994 14995 /* 14996 * Delete all broadcast IREs with a source address on `ill_arg'. 14997 */ 14998 static void 14999 ill_broadcast_delete(ire_t *ire, char *ill_arg) 15000 { 15001 ill_t *ill = (ill_t *)ill_arg; 15002 15003 ASSERT(IAM_WRITER_ILL(ill)); 15004 ASSERT(ire->ire_type == IRE_BROADCAST); 15005 15006 if (ire->ire_ipif->ipif_ill == ill) 15007 ire_delete(ire); 15008 } 15009 15010 /* 15011 * Initiate deallocate of an IPIF. Always called as writer. Called by 15012 * ill_delete or ip_sioctl_removeif. 15013 */ 15014 static void 15015 ipif_free(ipif_t *ipif) 15016 { 15017 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15018 15019 ASSERT(IAM_WRITER_IPIF(ipif)); 15020 15021 if (ipif->ipif_recovery_id != 0) 15022 (void) untimeout(ipif->ipif_recovery_id); 15023 ipif->ipif_recovery_id = 0; 15024 15025 /* Remove conn references */ 15026 reset_conn_ipif(ipif); 15027 15028 /* 15029 * Make sure we have valid net and subnet broadcast ire's for the 15030 * other ipif's which share them with this ipif. 15031 */ 15032 if (!ipif->ipif_isv6) 15033 ipif_check_bcast_ires(ipif); 15034 15035 /* 15036 * Take down the interface. We can be called either from ill_delete 15037 * or from ip_sioctl_removeif. 15038 */ 15039 (void) ipif_down(ipif, NULL, NULL); 15040 15041 /* 15042 * Now that the interface is down, there's no chance it can still 15043 * become a duplicate. Cancel any timer that may have been set while 15044 * tearing down. 15045 */ 15046 if (ipif->ipif_recovery_id != 0) 15047 (void) untimeout(ipif->ipif_recovery_id); 15048 ipif->ipif_recovery_id = 0; 15049 15050 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15051 /* Remove pointers to this ill in the multicast routing tables */ 15052 reset_mrt_vif_ipif(ipif); 15053 /* If necessary, clear the cached source ipif rotor. */ 15054 if (ipif->ipif_ill->ill_src_ipif == ipif) 15055 ipif->ipif_ill->ill_src_ipif = NULL; 15056 rw_exit(&ipst->ips_ill_g_lock); 15057 } 15058 15059 static void 15060 ipif_free_tail(ipif_t *ipif) 15061 { 15062 mblk_t *mp; 15063 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15064 15065 /* 15066 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15067 */ 15068 mutex_enter(&ipif->ipif_saved_ire_lock); 15069 mp = ipif->ipif_saved_ire_mp; 15070 ipif->ipif_saved_ire_mp = NULL; 15071 mutex_exit(&ipif->ipif_saved_ire_lock); 15072 freemsg(mp); 15073 15074 /* 15075 * Need to hold both ill_g_lock and ill_lock while 15076 * inserting or removing an ipif from the linked list 15077 * of ipifs hanging off the ill. 15078 */ 15079 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15080 15081 ASSERT(ilm_walk_ipif(ipif) == 0); 15082 15083 #ifdef DEBUG 15084 ipif_trace_cleanup(ipif); 15085 #endif 15086 15087 /* Ask SCTP to take it out of it list */ 15088 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15089 15090 /* Get it out of the ILL interface list. */ 15091 ipif_remove(ipif); 15092 rw_exit(&ipst->ips_ill_g_lock); 15093 15094 mutex_destroy(&ipif->ipif_saved_ire_lock); 15095 15096 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15097 ASSERT(ipif->ipif_recovery_id == 0); 15098 15099 /* Free the memory. */ 15100 mi_free(ipif); 15101 } 15102 15103 /* 15104 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15105 * is zero. 15106 */ 15107 void 15108 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15109 { 15110 char lbuf[LIFNAMSIZ]; 15111 char *name; 15112 size_t name_len; 15113 15114 buf[0] = '\0'; 15115 name = ipif->ipif_ill->ill_name; 15116 name_len = ipif->ipif_ill->ill_name_length; 15117 if (ipif->ipif_id != 0) { 15118 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15119 ipif->ipif_id); 15120 name = lbuf; 15121 name_len = mi_strlen(name) + 1; 15122 } 15123 len -= 1; 15124 buf[len] = '\0'; 15125 len = MIN(len, name_len); 15126 bcopy(name, buf, len); 15127 } 15128 15129 /* 15130 * Find an IPIF based on the name passed in. Names can be of the 15131 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15132 * The <phys> string can have forms like <dev><#> (e.g., le0), 15133 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15134 * When there is no colon, the implied unit id is zero. <phys> must 15135 * correspond to the name of an ILL. (May be called as writer.) 15136 */ 15137 static ipif_t * 15138 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15139 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15140 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15141 { 15142 char *cp; 15143 char *endp; 15144 long id; 15145 ill_t *ill; 15146 ipif_t *ipif; 15147 uint_t ire_type; 15148 boolean_t did_alloc = B_FALSE; 15149 ipsq_t *ipsq; 15150 15151 if (error != NULL) 15152 *error = 0; 15153 15154 /* 15155 * If the caller wants to us to create the ipif, make sure we have a 15156 * valid zoneid 15157 */ 15158 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15159 15160 if (namelen == 0) { 15161 if (error != NULL) 15162 *error = ENXIO; 15163 return (NULL); 15164 } 15165 15166 *exists = B_FALSE; 15167 /* Look for a colon in the name. */ 15168 endp = &name[namelen]; 15169 for (cp = endp; --cp > name; ) { 15170 if (*cp == IPIF_SEPARATOR_CHAR) 15171 break; 15172 } 15173 15174 if (*cp == IPIF_SEPARATOR_CHAR) { 15175 /* 15176 * Reject any non-decimal aliases for logical 15177 * interfaces. Aliases with leading zeroes 15178 * are also rejected as they introduce ambiguity 15179 * in the naming of the interfaces. 15180 * In order to confirm with existing semantics, 15181 * and to not break any programs/script relying 15182 * on that behaviour, if<0>:0 is considered to be 15183 * a valid interface. 15184 * 15185 * If alias has two or more digits and the first 15186 * is zero, fail. 15187 */ 15188 if (&cp[2] < endp && cp[1] == '0') { 15189 if (error != NULL) 15190 *error = EINVAL; 15191 return (NULL); 15192 } 15193 } 15194 15195 if (cp <= name) { 15196 cp = endp; 15197 } else { 15198 *cp = '\0'; 15199 } 15200 15201 /* 15202 * Look up the ILL, based on the portion of the name 15203 * before the slash. ill_lookup_on_name returns a held ill. 15204 * Temporary to check whether ill exists already. If so 15205 * ill_lookup_on_name will clear it. 15206 */ 15207 ill = ill_lookup_on_name(name, do_alloc, isv6, 15208 q, mp, func, error, &did_alloc, ipst); 15209 if (cp != endp) 15210 *cp = IPIF_SEPARATOR_CHAR; 15211 if (ill == NULL) 15212 return (NULL); 15213 15214 /* Establish the unit number in the name. */ 15215 id = 0; 15216 if (cp < endp && *endp == '\0') { 15217 /* If there was a colon, the unit number follows. */ 15218 cp++; 15219 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15220 ill_refrele(ill); 15221 if (error != NULL) 15222 *error = ENXIO; 15223 return (NULL); 15224 } 15225 } 15226 15227 GRAB_CONN_LOCK(q); 15228 mutex_enter(&ill->ill_lock); 15229 /* Now see if there is an IPIF with this unit number. */ 15230 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15231 if (ipif->ipif_id == id) { 15232 if (zoneid != ALL_ZONES && 15233 zoneid != ipif->ipif_zoneid && 15234 ipif->ipif_zoneid != ALL_ZONES) { 15235 mutex_exit(&ill->ill_lock); 15236 RELEASE_CONN_LOCK(q); 15237 ill_refrele(ill); 15238 if (error != NULL) 15239 *error = ENXIO; 15240 return (NULL); 15241 } 15242 /* 15243 * The block comment at the start of ipif_down 15244 * explains the use of the macros used below 15245 */ 15246 if (IPIF_CAN_LOOKUP(ipif)) { 15247 ipif_refhold_locked(ipif); 15248 mutex_exit(&ill->ill_lock); 15249 if (!did_alloc) 15250 *exists = B_TRUE; 15251 /* 15252 * Drop locks before calling ill_refrele 15253 * since it can potentially call into 15254 * ipif_ill_refrele_tail which can end up 15255 * in trying to acquire any lock. 15256 */ 15257 RELEASE_CONN_LOCK(q); 15258 ill_refrele(ill); 15259 return (ipif); 15260 } else if (IPIF_CAN_WAIT(ipif, q)) { 15261 ipsq = ill->ill_phyint->phyint_ipsq; 15262 mutex_enter(&ipsq->ipsq_lock); 15263 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15264 mutex_exit(&ill->ill_lock); 15265 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15266 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15267 mutex_exit(&ipsq->ipsq_lock); 15268 RELEASE_CONN_LOCK(q); 15269 ill_refrele(ill); 15270 if (error != NULL) 15271 *error = EINPROGRESS; 15272 return (NULL); 15273 } 15274 } 15275 } 15276 RELEASE_CONN_LOCK(q); 15277 15278 if (!do_alloc) { 15279 mutex_exit(&ill->ill_lock); 15280 ill_refrele(ill); 15281 if (error != NULL) 15282 *error = ENXIO; 15283 return (NULL); 15284 } 15285 15286 /* 15287 * If none found, atomically allocate and return a new one. 15288 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15289 * to support "receive only" use of lo0:1 etc. as is still done 15290 * below as an initial guess. 15291 * However, this is now likely to be overriden later in ipif_up_done() 15292 * when we know for sure what address has been configured on the 15293 * interface, since we might have more than one loopback interface 15294 * with a loopback address, e.g. in the case of zones, and all the 15295 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15296 */ 15297 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15298 ire_type = IRE_LOOPBACK; 15299 else 15300 ire_type = IRE_LOCAL; 15301 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15302 if (ipif != NULL) 15303 ipif_refhold_locked(ipif); 15304 else if (error != NULL) 15305 *error = ENOMEM; 15306 mutex_exit(&ill->ill_lock); 15307 ill_refrele(ill); 15308 return (ipif); 15309 } 15310 15311 /* 15312 * This routine is called whenever a new address comes up on an ipif. If 15313 * we are configured to respond to address mask requests, then we are supposed 15314 * to broadcast an address mask reply at this time. This routine is also 15315 * called if we are already up, but a netmask change is made. This is legal 15316 * but might not make the system manager very popular. (May be called 15317 * as writer.) 15318 */ 15319 void 15320 ipif_mask_reply(ipif_t *ipif) 15321 { 15322 icmph_t *icmph; 15323 ipha_t *ipha; 15324 mblk_t *mp; 15325 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15326 15327 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15328 15329 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15330 return; 15331 15332 /* ICMP mask reply is IPv4 only */ 15333 ASSERT(!ipif->ipif_isv6); 15334 /* ICMP mask reply is not for a loopback interface */ 15335 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15336 15337 mp = allocb(REPLY_LEN, BPRI_HI); 15338 if (mp == NULL) 15339 return; 15340 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15341 15342 ipha = (ipha_t *)mp->b_rptr; 15343 bzero(ipha, REPLY_LEN); 15344 *ipha = icmp_ipha; 15345 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15346 ipha->ipha_src = ipif->ipif_src_addr; 15347 ipha->ipha_dst = ipif->ipif_brd_addr; 15348 ipha->ipha_length = htons(REPLY_LEN); 15349 ipha->ipha_ident = 0; 15350 15351 icmph = (icmph_t *)&ipha[1]; 15352 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15353 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15354 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15355 15356 put(ipif->ipif_wq, mp); 15357 15358 #undef REPLY_LEN 15359 } 15360 15361 /* 15362 * When the mtu in the ipif changes, we call this routine through ire_walk 15363 * to update all the relevant IREs. 15364 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15365 */ 15366 static void 15367 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15368 { 15369 ipif_t *ipif = (ipif_t *)ipif_arg; 15370 15371 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15372 return; 15373 15374 mutex_enter(&ire->ire_lock); 15375 if (ire->ire_marks & IRE_MARK_PMTU) { 15376 /* Avoid increasing the PMTU */ 15377 ire->ire_max_frag = MIN(ipif->ipif_mtu, ire->ire_max_frag); 15378 if (ire->ire_max_frag == ipif->ipif_mtu) 15379 ire->ire_marks &= ~IRE_MARK_PMTU; 15380 } else { 15381 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15382 } 15383 mutex_exit(&ire->ire_lock); 15384 } 15385 15386 /* 15387 * When the mtu in the ill changes, we call this routine through ire_walk 15388 * to update all the relevant IREs. 15389 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15390 */ 15391 void 15392 ill_mtu_change(ire_t *ire, char *ill_arg) 15393 { 15394 ill_t *ill = (ill_t *)ill_arg; 15395 15396 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15397 return; 15398 15399 mutex_enter(&ire->ire_lock); 15400 if (ire->ire_marks & IRE_MARK_PMTU) { 15401 /* Avoid increasing the PMTU */ 15402 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 15403 ire->ire_max_frag); 15404 if (ire->ire_max_frag == ire->ire_ipif->ipif_mtu) { 15405 ire->ire_marks &= ~IRE_MARK_PMTU; 15406 } 15407 } else { 15408 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET); 15409 } 15410 mutex_exit(&ire->ire_lock); 15411 } 15412 15413 /* 15414 * Join the ipif specific multicast groups. 15415 * Must be called after a mapping has been set up in the resolver. (Always 15416 * called as writer.) 15417 */ 15418 void 15419 ipif_multicast_up(ipif_t *ipif) 15420 { 15421 int err; 15422 ill_t *ill; 15423 15424 ASSERT(IAM_WRITER_IPIF(ipif)); 15425 15426 ill = ipif->ipif_ill; 15427 15428 ip1dbg(("ipif_multicast_up\n")); 15429 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15430 return; 15431 15432 if (ipif->ipif_isv6) { 15433 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15434 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15435 15436 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15437 15438 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15439 return; 15440 15441 ip1dbg(("ipif_multicast_up - addmulti\n")); 15442 15443 /* 15444 * Join the all hosts multicast address. We skip this for 15445 * underlying IPMP interfaces since they should be invisible. 15446 */ 15447 if (!IS_UNDER_IPMP(ill)) { 15448 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15449 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15450 if (err != 0) { 15451 ip0dbg(("ipif_multicast_up: " 15452 "all_hosts_mcast failed %d\n", err)); 15453 return; 15454 } 15455 ipif->ipif_joined_allhosts = 1; 15456 } 15457 15458 /* 15459 * Enable multicast for the solicited node multicast address 15460 */ 15461 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15462 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15463 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15464 if (err != 0) { 15465 ip0dbg(("ipif_multicast_up: solicited MC" 15466 " failed %d\n", err)); 15467 if (ipif->ipif_joined_allhosts) { 15468 (void) ip_delmulti_v6(&v6allmc, ill, 15469 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15470 ipif->ipif_joined_allhosts = 0; 15471 } 15472 return; 15473 } 15474 } 15475 } else { 15476 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15477 return; 15478 15479 /* Join the all hosts multicast address */ 15480 ip1dbg(("ipif_multicast_up - addmulti\n")); 15481 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15482 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15483 if (err) { 15484 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15485 return; 15486 } 15487 } 15488 ipif->ipif_multicast_up = 1; 15489 } 15490 15491 /* 15492 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15493 * (Explicit memberships are blown away in ill_leave_multicast() when the 15494 * ill is brought down.) 15495 */ 15496 void 15497 ipif_multicast_down(ipif_t *ipif) 15498 { 15499 int err; 15500 15501 ASSERT(IAM_WRITER_IPIF(ipif)); 15502 15503 ip1dbg(("ipif_multicast_down\n")); 15504 if (!ipif->ipif_multicast_up) 15505 return; 15506 15507 ip1dbg(("ipif_multicast_down - delmulti\n")); 15508 15509 if (!ipif->ipif_isv6) { 15510 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15511 B_TRUE); 15512 if (err != 0) 15513 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15514 15515 ipif->ipif_multicast_up = 0; 15516 return; 15517 } 15518 15519 /* 15520 * Leave the all-hosts multicast address. 15521 */ 15522 if (ipif->ipif_joined_allhosts) { 15523 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15524 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15525 if (err != 0) { 15526 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15527 "failed %d\n", err)); 15528 } 15529 ipif->ipif_joined_allhosts = 0; 15530 } 15531 15532 /* 15533 * Disable multicast for the solicited node multicast address 15534 */ 15535 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15536 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15537 15538 ipv6_multi.s6_addr32[3] |= 15539 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15540 15541 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15542 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15543 if (err != 0) { 15544 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15545 err)); 15546 } 15547 } 15548 15549 ipif->ipif_multicast_up = 0; 15550 } 15551 15552 /* 15553 * Used when an interface comes up to recreate any extra routes on this 15554 * interface. 15555 */ 15556 static ire_t ** 15557 ipif_recover_ire(ipif_t *ipif) 15558 { 15559 mblk_t *mp; 15560 ire_t **ipif_saved_irep; 15561 ire_t **irep; 15562 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15563 15564 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15565 ipif->ipif_id)); 15566 15567 mutex_enter(&ipif->ipif_saved_ire_lock); 15568 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15569 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15570 if (ipif_saved_irep == NULL) { 15571 mutex_exit(&ipif->ipif_saved_ire_lock); 15572 return (NULL); 15573 } 15574 15575 irep = ipif_saved_irep; 15576 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15577 ire_t *ire; 15578 queue_t *rfq; 15579 queue_t *stq; 15580 ifrt_t *ifrt; 15581 uchar_t *src_addr; 15582 uchar_t *gateway_addr; 15583 ushort_t type; 15584 15585 /* 15586 * When the ire was initially created and then added in 15587 * ip_rt_add(), it was created either using ipif->ipif_net_type 15588 * in the case of a traditional interface route, or as one of 15589 * the IRE_OFFSUBNET types (with the exception of 15590 * IRE_HOST types ire which is created by icmp_redirect() and 15591 * which we don't need to save or recover). In the case where 15592 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15593 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15594 * to satisfy software like GateD and Sun Cluster which creates 15595 * routes using the the loopback interface's address as a 15596 * gateway. 15597 * 15598 * As ifrt->ifrt_type reflects the already updated ire_type, 15599 * ire_create() will be called in the same way here as 15600 * in ip_rt_add(), namely using ipif->ipif_net_type when 15601 * the route looks like a traditional interface route (where 15602 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15603 * the saved ifrt->ifrt_type. This means that in the case where 15604 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15605 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15606 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15607 */ 15608 ifrt = (ifrt_t *)mp->b_rptr; 15609 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15610 if (ifrt->ifrt_type & IRE_INTERFACE) { 15611 rfq = NULL; 15612 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15613 ? ipif->ipif_rq : ipif->ipif_wq; 15614 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15615 ? (uint8_t *)&ifrt->ifrt_src_addr 15616 : (uint8_t *)&ipif->ipif_src_addr; 15617 gateway_addr = NULL; 15618 type = ipif->ipif_net_type; 15619 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15620 /* Recover multiroute broadcast IRE. */ 15621 rfq = ipif->ipif_rq; 15622 stq = ipif->ipif_wq; 15623 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15624 ? (uint8_t *)&ifrt->ifrt_src_addr 15625 : (uint8_t *)&ipif->ipif_src_addr; 15626 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15627 type = ifrt->ifrt_type; 15628 } else { 15629 rfq = NULL; 15630 stq = NULL; 15631 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15632 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15633 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15634 type = ifrt->ifrt_type; 15635 } 15636 15637 /* 15638 * Create a copy of the IRE with the saved address and netmask. 15639 */ 15640 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15641 "0x%x/0x%x\n", 15642 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15643 ntohl(ifrt->ifrt_addr), 15644 ntohl(ifrt->ifrt_mask))); 15645 ire = ire_create( 15646 (uint8_t *)&ifrt->ifrt_addr, 15647 (uint8_t *)&ifrt->ifrt_mask, 15648 src_addr, 15649 gateway_addr, 15650 &ifrt->ifrt_max_frag, 15651 NULL, 15652 rfq, 15653 stq, 15654 type, 15655 ipif, 15656 0, 15657 0, 15658 0, 15659 ifrt->ifrt_flags, 15660 &ifrt->ifrt_iulp_info, 15661 NULL, 15662 NULL, 15663 ipst); 15664 15665 if (ire == NULL) { 15666 mutex_exit(&ipif->ipif_saved_ire_lock); 15667 kmem_free(ipif_saved_irep, 15668 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15669 return (NULL); 15670 } 15671 15672 /* 15673 * Some software (for example, GateD and Sun Cluster) attempts 15674 * to create (what amount to) IRE_PREFIX routes with the 15675 * loopback address as the gateway. This is primarily done to 15676 * set up prefixes with the RTF_REJECT flag set (for example, 15677 * when generating aggregate routes.) 15678 * 15679 * If the IRE type (as defined by ipif->ipif_net_type) is 15680 * IRE_LOOPBACK, then we map the request into a 15681 * IRE_IF_NORESOLVER. 15682 */ 15683 if (ipif->ipif_net_type == IRE_LOOPBACK) 15684 ire->ire_type = IRE_IF_NORESOLVER; 15685 /* 15686 * ire held by ire_add, will be refreled' towards the 15687 * the end of ipif_up_done 15688 */ 15689 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15690 *irep = ire; 15691 irep++; 15692 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15693 } 15694 mutex_exit(&ipif->ipif_saved_ire_lock); 15695 return (ipif_saved_irep); 15696 } 15697 15698 /* 15699 * Used to set the netmask and broadcast address to default values when the 15700 * interface is brought up. (Always called as writer.) 15701 */ 15702 static void 15703 ipif_set_default(ipif_t *ipif) 15704 { 15705 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15706 15707 if (!ipif->ipif_isv6) { 15708 /* 15709 * Interface holds an IPv4 address. Default 15710 * mask is the natural netmask. 15711 */ 15712 if (!ipif->ipif_net_mask) { 15713 ipaddr_t v4mask; 15714 15715 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15716 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15717 } 15718 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15719 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15720 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15721 } else { 15722 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15723 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15724 } 15725 /* 15726 * NOTE: SunOS 4.X does this even if the broadcast address 15727 * has been already set thus we do the same here. 15728 */ 15729 if (ipif->ipif_flags & IPIF_BROADCAST) { 15730 ipaddr_t v4addr; 15731 15732 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15733 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15734 } 15735 } else { 15736 /* 15737 * Interface holds an IPv6-only address. Default 15738 * mask is all-ones. 15739 */ 15740 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15741 ipif->ipif_v6net_mask = ipv6_all_ones; 15742 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15743 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15744 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15745 } else { 15746 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15747 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15748 } 15749 } 15750 } 15751 15752 /* 15753 * Return 0 if this address can be used as local address without causing 15754 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15755 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15756 * Note that the same IPv6 link-local address is allowed as long as the ills 15757 * are not on the same link. 15758 */ 15759 int 15760 ip_addr_availability_check(ipif_t *new_ipif) 15761 { 15762 in6_addr_t our_v6addr; 15763 ill_t *ill; 15764 ipif_t *ipif; 15765 ill_walk_context_t ctx; 15766 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15767 15768 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15769 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15770 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15771 15772 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15773 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15774 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15775 return (0); 15776 15777 our_v6addr = new_ipif->ipif_v6lcl_addr; 15778 15779 if (new_ipif->ipif_isv6) 15780 ill = ILL_START_WALK_V6(&ctx, ipst); 15781 else 15782 ill = ILL_START_WALK_V4(&ctx, ipst); 15783 15784 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15785 for (ipif = ill->ill_ipif; ipif != NULL; 15786 ipif = ipif->ipif_next) { 15787 if ((ipif == new_ipif) || 15788 !(ipif->ipif_flags & IPIF_UP) || 15789 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15790 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15791 &our_v6addr)) 15792 continue; 15793 15794 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15795 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15796 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15797 ipif->ipif_flags |= IPIF_UNNUMBERED; 15798 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15799 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15800 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15801 continue; 15802 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15803 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15804 continue; 15805 else if (new_ipif->ipif_ill == ill) 15806 return (EADDRINUSE); 15807 else 15808 return (EADDRNOTAVAIL); 15809 } 15810 } 15811 15812 return (0); 15813 } 15814 15815 /* 15816 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15817 * IREs for the ipif. 15818 * When the routine returns EINPROGRESS then mp has been consumed and 15819 * the ioctl will be acked from ip_rput_dlpi. 15820 */ 15821 int 15822 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15823 { 15824 ill_t *ill = ipif->ipif_ill; 15825 boolean_t isv6 = ipif->ipif_isv6; 15826 int err = 0; 15827 boolean_t success; 15828 uint_t ipif_orig_id; 15829 ip_stack_t *ipst = ill->ill_ipst; 15830 15831 ASSERT(IAM_WRITER_IPIF(ipif)); 15832 15833 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15834 15835 /* Shouldn't get here if it is already up. */ 15836 if (ipif->ipif_flags & IPIF_UP) 15837 return (EALREADY); 15838 15839 /* 15840 * If this is a request to bring up a data address on an interface 15841 * under IPMP, then move the address to its IPMP meta-interface and 15842 * try to bring it up. One complication is that the zeroth ipif for 15843 * an ill is special, in that every ill always has one, and that code 15844 * throughout IP deferences ill->ill_ipif without holding any locks. 15845 */ 15846 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15847 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15848 ipif_t *stubipif = NULL, *moveipif = NULL; 15849 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15850 15851 /* 15852 * The ipif being brought up should be quiesced. If it's not, 15853 * something has gone amiss and we need to bail out. (If it's 15854 * quiesced, we know it will remain so via IPIF_CHANGING.) 15855 */ 15856 mutex_enter(&ill->ill_lock); 15857 if (!ipif_is_quiescent(ipif)) { 15858 mutex_exit(&ill->ill_lock); 15859 return (EINVAL); 15860 } 15861 mutex_exit(&ill->ill_lock); 15862 15863 /* 15864 * If we're going to need to allocate ipifs, do it prior 15865 * to starting the move (and grabbing locks). 15866 */ 15867 if (ipif->ipif_id == 0) { 15868 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15869 B_FALSE); 15870 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15871 B_FALSE); 15872 if (moveipif == NULL || stubipif == NULL) { 15873 mi_free(moveipif); 15874 mi_free(stubipif); 15875 return (ENOMEM); 15876 } 15877 } 15878 15879 /* 15880 * Grab or transfer the ipif to move. During the move, keep 15881 * ill_g_lock held to prevent any ill walker threads from 15882 * seeing things in an inconsistent state. 15883 */ 15884 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15885 if (ipif->ipif_id != 0) { 15886 ipif_remove(ipif); 15887 } else { 15888 ipif_transfer(ipif, moveipif, stubipif); 15889 ipif = moveipif; 15890 } 15891 15892 /* 15893 * Place the ipif on the IPMP ill. If the zeroth ipif on 15894 * the IPMP ill is a stub (0.0.0.0 down address) then we 15895 * replace that one. Otherwise, pick the next available slot. 15896 */ 15897 ipif->ipif_ill = ipmp_ill; 15898 ipif_orig_id = ipif->ipif_id; 15899 15900 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15901 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15902 ipif = ipmp_ill->ill_ipif; 15903 } else { 15904 ipif->ipif_id = -1; 15905 if (ipif_insert(ipif, B_FALSE) != 0) { 15906 /* 15907 * No more available ipif_id's -- put it back 15908 * on the original ill and fail the operation. 15909 * Since we're writer on the ill, we can be 15910 * sure our old slot is still available. 15911 */ 15912 ipif->ipif_id = ipif_orig_id; 15913 ipif->ipif_ill = ill; 15914 if (ipif_orig_id == 0) { 15915 ipif_transfer(ipif, ill->ill_ipif, 15916 NULL); 15917 } else { 15918 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 15919 } 15920 rw_exit(&ipst->ips_ill_g_lock); 15921 return (ENOMEM); 15922 } 15923 } 15924 rw_exit(&ipst->ips_ill_g_lock); 15925 15926 /* 15927 * Tell SCTP that the ipif has moved. Note that even if we 15928 * had to allocate a new ipif, the original sequence id was 15929 * preserved and therefore SCTP won't know. 15930 */ 15931 sctp_move_ipif(ipif, ill, ipmp_ill); 15932 15933 /* 15934 * If the ipif being brought up was on slot zero, then we 15935 * first need to bring up the placeholder we stuck there. In 15936 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 15937 * to ipif_up() itself, if we successfully bring up the 15938 * placeholder, we'll check ill_move_ipif and bring it up too. 15939 */ 15940 if (ipif_orig_id == 0) { 15941 ASSERT(ill->ill_move_ipif == NULL); 15942 ill->ill_move_ipif = ipif; 15943 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 15944 ASSERT(ill->ill_move_ipif == NULL); 15945 if (err != EINPROGRESS) 15946 ill->ill_move_ipif = NULL; 15947 return (err); 15948 } 15949 15950 /* 15951 * Bring it up on the IPMP ill. 15952 */ 15953 return (ipif_up(ipif, q, mp)); 15954 } 15955 15956 /* Skip arp/ndp for any loopback interface. */ 15957 if (ill->ill_wq != NULL) { 15958 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 15959 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 15960 15961 if (!ill->ill_dl_up) { 15962 /* 15963 * ill_dl_up is not yet set. i.e. we are yet to 15964 * DL_BIND with the driver and this is the first 15965 * logical interface on the ill to become "up". 15966 * Tell the driver to get going (via DL_BIND_REQ). 15967 * Note that changing "significant" IFF_ flags 15968 * address/netmask etc cause a down/up dance, but 15969 * does not cause an unbind (DL_UNBIND) with the driver 15970 */ 15971 return (ill_dl_up(ill, ipif, mp, q)); 15972 } 15973 15974 /* 15975 * ipif_resolver_up may end up sending an 15976 * AR_INTERFACE_UP message to ARP, which would, in 15977 * turn send a DLPI message to the driver. ioctls are 15978 * serialized and so we cannot send more than one 15979 * interface up message at a time. If ipif_resolver_up 15980 * does send an interface up message to ARP, we get 15981 * EINPROGRESS and we will complete in ip_arp_done. 15982 */ 15983 15984 ASSERT(connp != NULL || !CONN_Q(q)); 15985 if (connp != NULL) 15986 mutex_enter(&connp->conn_lock); 15987 mutex_enter(&ill->ill_lock); 15988 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 15989 mutex_exit(&ill->ill_lock); 15990 if (connp != NULL) 15991 mutex_exit(&connp->conn_lock); 15992 if (!success) 15993 return (EINTR); 15994 15995 /* 15996 * Crank up the resolver. For IPv6, this cranks up the 15997 * external resolver if one is configured, but even if an 15998 * external resolver isn't configured, it must be called to 15999 * reset DAD state. For IPv6, if an external resolver is not 16000 * being used, ipif_resolver_up() will never return 16001 * EINPROGRESS, so we can always call ipif_ndp_up() here. 16002 * Note that if an external resolver is being used, there's no 16003 * need to call ipif_ndp_up() since it will do nothing. 16004 */ 16005 err = ipif_resolver_up(ipif, Res_act_initial); 16006 if (err == EINPROGRESS) { 16007 /* We will complete it in ip_arp_done() */ 16008 return (err); 16009 } 16010 16011 if (isv6 && err == 0) 16012 err = ipif_ndp_up(ipif, B_TRUE); 16013 16014 ASSERT(err != EINPROGRESS); 16015 mp = ipsq_pending_mp_get(ipsq, &connp); 16016 ASSERT(mp != NULL); 16017 if (err != 0) 16018 return (err); 16019 } else { 16020 /* 16021 * Interfaces without underlying hardware don't do duplicate 16022 * address detection. 16023 */ 16024 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16025 ipif->ipif_addr_ready = 1; 16026 } 16027 16028 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16029 if (err == 0 && ill->ill_move_ipif != NULL) { 16030 ipif = ill->ill_move_ipif; 16031 ill->ill_move_ipif = NULL; 16032 return (ipif_up(ipif, q, mp)); 16033 } 16034 return (err); 16035 } 16036 16037 /* 16038 * Perform a bind for the physical device. 16039 * When the routine returns EINPROGRESS then mp has been consumed and 16040 * the ioctl will be acked from ip_rput_dlpi. 16041 * Allocate an unbind message and save it until ipif_down. 16042 */ 16043 static int 16044 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16045 { 16046 areq_t *areq; 16047 mblk_t *areq_mp = NULL; 16048 mblk_t *bind_mp = NULL; 16049 mblk_t *unbind_mp = NULL; 16050 conn_t *connp; 16051 boolean_t success; 16052 uint16_t sap_addr; 16053 16054 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16055 ASSERT(IAM_WRITER_ILL(ill)); 16056 ASSERT(mp != NULL); 16057 16058 /* Create a resolver cookie for ARP */ 16059 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16060 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16061 if (areq_mp == NULL) 16062 return (ENOMEM); 16063 16064 freemsg(ill->ill_resolver_mp); 16065 ill->ill_resolver_mp = areq_mp; 16066 areq = (areq_t *)areq_mp->b_rptr; 16067 sap_addr = ill->ill_sap; 16068 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16069 } 16070 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16071 DL_BIND_REQ); 16072 if (bind_mp == NULL) 16073 goto bad; 16074 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16075 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16076 16077 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16078 if (unbind_mp == NULL) 16079 goto bad; 16080 16081 /* 16082 * Record state needed to complete this operation when the 16083 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16084 */ 16085 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16086 ASSERT(connp != NULL || !CONN_Q(q)); 16087 GRAB_CONN_LOCK(q); 16088 mutex_enter(&ipif->ipif_ill->ill_lock); 16089 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16090 mutex_exit(&ipif->ipif_ill->ill_lock); 16091 RELEASE_CONN_LOCK(q); 16092 if (!success) 16093 goto bad; 16094 16095 /* 16096 * Save the unbind message for ill_dl_down(); it will be consumed when 16097 * the interface goes down. 16098 */ 16099 ASSERT(ill->ill_unbind_mp == NULL); 16100 ill->ill_unbind_mp = unbind_mp; 16101 16102 ill_dlpi_send(ill, bind_mp); 16103 /* Send down link-layer capabilities probe if not already done. */ 16104 ill_capability_probe(ill); 16105 16106 /* 16107 * Sysid used to rely on the fact that netboots set domainname 16108 * and the like. Now that miniroot boots aren't strictly netboots 16109 * and miniroot network configuration is driven from userland 16110 * these things still need to be set. This situation can be detected 16111 * by comparing the interface being configured here to the one 16112 * dhcifname was set to reference by the boot loader. Once sysid is 16113 * converted to use dhcp_ipc_getinfo() this call can go away. 16114 */ 16115 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16116 (strcmp(ill->ill_name, dhcifname) == 0) && 16117 (strlen(srpc_domain) == 0)) { 16118 if (dhcpinit() != 0) 16119 cmn_err(CE_WARN, "no cached dhcp response"); 16120 } 16121 16122 /* 16123 * This operation will complete in ip_rput_dlpi with either 16124 * a DL_BIND_ACK or DL_ERROR_ACK. 16125 */ 16126 return (EINPROGRESS); 16127 bad: 16128 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16129 16130 freemsg(bind_mp); 16131 freemsg(unbind_mp); 16132 return (ENOMEM); 16133 } 16134 16135 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16136 16137 /* 16138 * DLPI and ARP is up. 16139 * Create all the IREs associated with an interface bring up multicast. 16140 * Set the interface flag and finish other initialization 16141 * that potentially had to be differed to after DL_BIND_ACK. 16142 */ 16143 int 16144 ipif_up_done(ipif_t *ipif) 16145 { 16146 ire_t *ire_array[20]; 16147 ire_t **irep = ire_array; 16148 ire_t **irep1; 16149 ipaddr_t net_mask = 0; 16150 ipaddr_t subnet_mask, route_mask; 16151 ill_t *ill = ipif->ipif_ill; 16152 queue_t *stq; 16153 ipif_t *src_ipif; 16154 ipif_t *tmp_ipif; 16155 boolean_t flush_ire_cache = B_TRUE; 16156 int err = 0; 16157 ire_t **ipif_saved_irep = NULL; 16158 int ipif_saved_ire_cnt; 16159 int cnt; 16160 boolean_t src_ipif_held = B_FALSE; 16161 boolean_t loopback = B_FALSE; 16162 ip_stack_t *ipst = ill->ill_ipst; 16163 16164 ip1dbg(("ipif_up_done(%s:%u)\n", 16165 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16166 /* Check if this is a loopback interface */ 16167 if (ipif->ipif_ill->ill_wq == NULL) 16168 loopback = B_TRUE; 16169 16170 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16171 /* 16172 * If all other interfaces for this ill are down or DEPRECATED, 16173 * or otherwise unsuitable for source address selection, remove 16174 * any IRE_CACHE entries for this ill to make sure source 16175 * address selection gets to take this new ipif into account. 16176 * No need to hold ill_lock while traversing the ipif list since 16177 * we are writer 16178 */ 16179 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16180 tmp_ipif = tmp_ipif->ipif_next) { 16181 if (((tmp_ipif->ipif_flags & 16182 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16183 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16184 (tmp_ipif == ipif)) 16185 continue; 16186 /* first useable pre-existing interface */ 16187 flush_ire_cache = B_FALSE; 16188 break; 16189 } 16190 if (flush_ire_cache) 16191 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16192 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16193 16194 /* 16195 * Figure out which way the send-to queue should go. Only 16196 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16197 * should show up here. 16198 */ 16199 switch (ill->ill_net_type) { 16200 case IRE_IF_RESOLVER: 16201 stq = ill->ill_rq; 16202 break; 16203 case IRE_IF_NORESOLVER: 16204 case IRE_LOOPBACK: 16205 stq = ill->ill_wq; 16206 break; 16207 default: 16208 return (EINVAL); 16209 } 16210 16211 if (IS_LOOPBACK(ill)) { 16212 /* 16213 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16214 * ipif_lookup_on_name(), but in the case of zones we can have 16215 * several loopback addresses on lo0. So all the interfaces with 16216 * loopback addresses need to be marked IRE_LOOPBACK. 16217 */ 16218 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16219 htonl(INADDR_LOOPBACK)) 16220 ipif->ipif_ire_type = IRE_LOOPBACK; 16221 else 16222 ipif->ipif_ire_type = IRE_LOCAL; 16223 } 16224 16225 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16226 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16227 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16228 /* 16229 * Can't use our source address. Select a different 16230 * source address for the IRE_INTERFACE and IRE_LOCAL 16231 */ 16232 src_ipif = ipif_select_source(ipif->ipif_ill, 16233 ipif->ipif_subnet, ipif->ipif_zoneid); 16234 if (src_ipif == NULL) 16235 src_ipif = ipif; /* Last resort */ 16236 else 16237 src_ipif_held = B_TRUE; 16238 } else { 16239 src_ipif = ipif; 16240 } 16241 16242 /* Create all the IREs associated with this interface */ 16243 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16244 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16245 16246 /* 16247 * If we're on a labeled system then make sure that zone- 16248 * private addresses have proper remote host database entries. 16249 */ 16250 if (is_system_labeled() && 16251 ipif->ipif_ire_type != IRE_LOOPBACK && 16252 !tsol_check_interface_address(ipif)) 16253 return (EINVAL); 16254 16255 /* Register the source address for __sin6_src_id */ 16256 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16257 ipif->ipif_zoneid, ipst); 16258 if (err != 0) { 16259 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16260 return (err); 16261 } 16262 16263 /* If the interface address is set, create the local IRE. */ 16264 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16265 (void *)ipif, 16266 ipif->ipif_ire_type, 16267 ntohl(ipif->ipif_lcl_addr))); 16268 *irep++ = ire_create( 16269 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16270 (uchar_t *)&ip_g_all_ones, /* mask */ 16271 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16272 NULL, /* no gateway */ 16273 &ip_loopback_mtuplus, /* max frag size */ 16274 NULL, 16275 ipif->ipif_rq, /* recv-from queue */ 16276 NULL, /* no send-to queue */ 16277 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16278 ipif, 16279 0, 16280 0, 16281 0, 16282 (ipif->ipif_flags & IPIF_PRIVATE) ? 16283 RTF_PRIVATE : 0, 16284 &ire_uinfo_null, 16285 NULL, 16286 NULL, 16287 ipst); 16288 } else { 16289 ip1dbg(( 16290 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16291 ipif->ipif_ire_type, 16292 ntohl(ipif->ipif_lcl_addr), 16293 (uint_t)ipif->ipif_flags)); 16294 } 16295 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16296 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16297 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16298 } else { 16299 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16300 } 16301 16302 subnet_mask = ipif->ipif_net_mask; 16303 16304 /* 16305 * If mask was not specified, use natural netmask of 16306 * interface address. Also, store this mask back into the 16307 * ipif struct. 16308 */ 16309 if (subnet_mask == 0) { 16310 subnet_mask = net_mask; 16311 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16312 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16313 ipif->ipif_v6subnet); 16314 } 16315 16316 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16317 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16318 ipif->ipif_subnet != INADDR_ANY) { 16319 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16320 16321 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16322 route_mask = IP_HOST_MASK; 16323 } else { 16324 route_mask = subnet_mask; 16325 } 16326 16327 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16328 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16329 (void *)ipif, (void *)ill, 16330 ill->ill_net_type, 16331 ntohl(ipif->ipif_subnet))); 16332 *irep++ = ire_create( 16333 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16334 (uchar_t *)&route_mask, /* mask */ 16335 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16336 NULL, /* no gateway */ 16337 &ipif->ipif_mtu, /* max frag */ 16338 NULL, 16339 NULL, /* no recv queue */ 16340 stq, /* send-to queue */ 16341 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16342 ipif, 16343 0, 16344 0, 16345 0, 16346 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16347 &ire_uinfo_null, 16348 NULL, 16349 NULL, 16350 ipst); 16351 } 16352 16353 /* 16354 * Create any necessary broadcast IREs. 16355 */ 16356 if (ipif->ipif_flags & IPIF_BROADCAST) 16357 irep = ipif_create_bcast_ires(ipif, irep); 16358 16359 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16360 16361 /* If an earlier ire_create failed, get out now */ 16362 for (irep1 = irep; irep1 > ire_array; ) { 16363 irep1--; 16364 if (*irep1 == NULL) { 16365 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16366 err = ENOMEM; 16367 goto bad; 16368 } 16369 } 16370 16371 /* 16372 * Need to atomically check for IP address availability under 16373 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16374 * ills or new ipifs can be added while we are checking availability. 16375 */ 16376 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16377 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16378 /* Mark it up, and increment counters. */ 16379 ipif->ipif_flags |= IPIF_UP; 16380 ill->ill_ipif_up_count++; 16381 err = ip_addr_availability_check(ipif); 16382 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16383 rw_exit(&ipst->ips_ill_g_lock); 16384 16385 if (err != 0) { 16386 /* 16387 * Our address may already be up on the same ill. In this case, 16388 * the ARP entry for our ipif replaced the one for the other 16389 * ipif. So we don't want to delete it (otherwise the other ipif 16390 * would be unable to send packets). 16391 * ip_addr_availability_check() identifies this case for us and 16392 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16393 * which is the expected error code. 16394 */ 16395 if (err == EADDRINUSE) { 16396 freemsg(ipif->ipif_arp_del_mp); 16397 ipif->ipif_arp_del_mp = NULL; 16398 err = EADDRNOTAVAIL; 16399 } 16400 ill->ill_ipif_up_count--; 16401 ipif->ipif_flags &= ~IPIF_UP; 16402 goto bad; 16403 } 16404 16405 /* 16406 * Add in all newly created IREs. ire_create_bcast() has 16407 * already checked for duplicates of the IRE_BROADCAST type. 16408 */ 16409 for (irep1 = irep; irep1 > ire_array; ) { 16410 irep1--; 16411 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16412 /* 16413 * refheld by ire_add. refele towards the end of the func 16414 */ 16415 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16416 } 16417 16418 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16419 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16420 ipif_saved_irep = ipif_recover_ire(ipif); 16421 16422 if (!loopback) { 16423 /* 16424 * If the broadcast address has been set, make sure it makes 16425 * sense based on the interface address. 16426 * Only match on ill since we are sharing broadcast addresses. 16427 */ 16428 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16429 (ipif->ipif_flags & IPIF_BROADCAST)) { 16430 ire_t *ire; 16431 16432 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16433 IRE_BROADCAST, ipif, ALL_ZONES, 16434 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16435 16436 if (ire == NULL) { 16437 /* 16438 * If there isn't a matching broadcast IRE, 16439 * revert to the default for this netmask. 16440 */ 16441 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16442 mutex_enter(&ipif->ipif_ill->ill_lock); 16443 ipif_set_default(ipif); 16444 mutex_exit(&ipif->ipif_ill->ill_lock); 16445 } else { 16446 ire_refrele(ire); 16447 } 16448 } 16449 16450 } 16451 16452 if (ill->ill_need_recover_multicast) { 16453 /* 16454 * Need to recover all multicast memberships in the driver. 16455 * This had to be deferred until we had attached. The same 16456 * code exists in ipif_up_done_v6() to recover IPv6 16457 * memberships. 16458 * 16459 * Note that it would be preferable to unconditionally do the 16460 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16461 * that since ill_join_allmulti() depends on ill_dl_up being 16462 * set, and it is not set until we receive a DL_BIND_ACK after 16463 * having called ill_dl_up(). 16464 */ 16465 ill_recover_multicast(ill); 16466 } 16467 16468 if (ill->ill_ipif_up_count == 1) { 16469 /* 16470 * Since the interface is now up, it may now be active. 16471 */ 16472 if (IS_UNDER_IPMP(ill)) 16473 ipmp_ill_refresh_active(ill); 16474 16475 /* 16476 * If this is an IPMP interface, we may now be able to 16477 * establish ARP entries. 16478 */ 16479 if (IS_IPMP(ill)) 16480 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16481 } 16482 16483 /* Join the allhosts multicast address */ 16484 ipif_multicast_up(ipif); 16485 16486 /* 16487 * See if anybody else would benefit from our new ipif. 16488 */ 16489 if (!loopback && 16490 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16491 ill_update_source_selection(ill); 16492 } 16493 16494 for (irep1 = irep; irep1 > ire_array; ) { 16495 irep1--; 16496 if (*irep1 != NULL) { 16497 /* was held in ire_add */ 16498 ire_refrele(*irep1); 16499 } 16500 } 16501 16502 cnt = ipif_saved_ire_cnt; 16503 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16504 if (*irep1 != NULL) { 16505 /* was held in ire_add */ 16506 ire_refrele(*irep1); 16507 } 16508 } 16509 16510 if (!loopback && ipif->ipif_addr_ready) { 16511 /* Broadcast an address mask reply. */ 16512 ipif_mask_reply(ipif); 16513 } 16514 if (ipif_saved_irep != NULL) { 16515 kmem_free(ipif_saved_irep, 16516 ipif_saved_ire_cnt * sizeof (ire_t *)); 16517 } 16518 if (src_ipif_held) 16519 ipif_refrele(src_ipif); 16520 16521 /* 16522 * This had to be deferred until we had bound. Tell routing sockets and 16523 * others that this interface is up if it looks like the address has 16524 * been validated. Otherwise, if it isn't ready yet, wait for 16525 * duplicate address detection to do its thing. 16526 */ 16527 if (ipif->ipif_addr_ready) 16528 ipif_up_notify(ipif); 16529 return (0); 16530 16531 bad: 16532 ip1dbg(("ipif_up_done: FAILED \n")); 16533 16534 while (irep > ire_array) { 16535 irep--; 16536 if (*irep != NULL) 16537 ire_delete(*irep); 16538 } 16539 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16540 16541 if (ipif_saved_irep != NULL) { 16542 kmem_free(ipif_saved_irep, 16543 ipif_saved_ire_cnt * sizeof (ire_t *)); 16544 } 16545 if (src_ipif_held) 16546 ipif_refrele(src_ipif); 16547 16548 ipif_resolver_down(ipif); 16549 return (err); 16550 } 16551 16552 /* 16553 * Turn off the ARP with the ILLF_NOARP flag. 16554 */ 16555 static int 16556 ill_arp_off(ill_t *ill) 16557 { 16558 mblk_t *arp_off_mp = NULL; 16559 mblk_t *arp_on_mp = NULL; 16560 16561 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16562 16563 ASSERT(IAM_WRITER_ILL(ill)); 16564 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16565 16566 /* 16567 * If the on message is still around we've already done 16568 * an arp_off without doing an arp_on thus there is no 16569 * work needed. 16570 */ 16571 if (ill->ill_arp_on_mp != NULL) 16572 return (0); 16573 16574 /* 16575 * Allocate an ARP on message (to be saved) and an ARP off message 16576 */ 16577 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16578 if (!arp_off_mp) 16579 return (ENOMEM); 16580 16581 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16582 if (!arp_on_mp) 16583 goto failed; 16584 16585 ASSERT(ill->ill_arp_on_mp == NULL); 16586 ill->ill_arp_on_mp = arp_on_mp; 16587 16588 /* Send an AR_INTERFACE_OFF request */ 16589 putnext(ill->ill_rq, arp_off_mp); 16590 return (0); 16591 failed: 16592 16593 if (arp_off_mp) 16594 freemsg(arp_off_mp); 16595 return (ENOMEM); 16596 } 16597 16598 /* 16599 * Turn on ARP by turning off the ILLF_NOARP flag. 16600 */ 16601 static int 16602 ill_arp_on(ill_t *ill) 16603 { 16604 mblk_t *mp; 16605 16606 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16607 16608 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16609 16610 ASSERT(IAM_WRITER_ILL(ill)); 16611 /* 16612 * Send an AR_INTERFACE_ON request if we have already done 16613 * an arp_off (which allocated the message). 16614 */ 16615 if (ill->ill_arp_on_mp != NULL) { 16616 mp = ill->ill_arp_on_mp; 16617 ill->ill_arp_on_mp = NULL; 16618 putnext(ill->ill_rq, mp); 16619 } 16620 return (0); 16621 } 16622 16623 /* 16624 * Checks for availbility of a usable source address (if there is one) when the 16625 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16626 * this selection is done regardless of the destination. 16627 */ 16628 boolean_t 16629 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16630 { 16631 uint_t ifindex; 16632 ipif_t *ipif = NULL; 16633 ill_t *uill; 16634 boolean_t isv6; 16635 ip_stack_t *ipst = ill->ill_ipst; 16636 16637 ASSERT(ill != NULL); 16638 16639 isv6 = ill->ill_isv6; 16640 ifindex = ill->ill_usesrc_ifindex; 16641 if (ifindex != 0) { 16642 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16643 NULL, ipst); 16644 if (uill == NULL) 16645 return (NULL); 16646 mutex_enter(&uill->ill_lock); 16647 for (ipif = uill->ill_ipif; ipif != NULL; 16648 ipif = ipif->ipif_next) { 16649 if (!IPIF_CAN_LOOKUP(ipif)) 16650 continue; 16651 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16652 continue; 16653 if (!(ipif->ipif_flags & IPIF_UP)) 16654 continue; 16655 if (ipif->ipif_zoneid != zoneid) 16656 continue; 16657 if ((isv6 && 16658 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16659 (ipif->ipif_lcl_addr == INADDR_ANY)) 16660 continue; 16661 mutex_exit(&uill->ill_lock); 16662 ill_refrele(uill); 16663 return (B_TRUE); 16664 } 16665 mutex_exit(&uill->ill_lock); 16666 ill_refrele(uill); 16667 } 16668 return (B_FALSE); 16669 } 16670 16671 /* 16672 * IP source address type, sorted from worst to best. For a given type, 16673 * always prefer IP addresses on the same subnet. All-zones addresses are 16674 * suboptimal because they pose problems with unlabeled destinations. 16675 */ 16676 typedef enum { 16677 IPIF_NONE, 16678 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16679 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16680 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16681 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16682 IPIF_DIFFNET, /* normal and different subnet */ 16683 IPIF_SAMENET /* normal and same subnet */ 16684 } ipif_type_t; 16685 16686 /* 16687 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16688 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16689 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16690 * the first one, unless IPMP is used in which case we round-robin among them; 16691 * see below for more. 16692 * 16693 * Returns NULL if there is no suitable source address for the ill. 16694 * This only occurs when there is no valid source address for the ill. 16695 */ 16696 ipif_t * 16697 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16698 { 16699 ill_t *usill = NULL; 16700 ill_t *ipmp_ill = NULL; 16701 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16702 ipif_type_t type, best_type; 16703 tsol_tpc_t *src_rhtp, *dst_rhtp; 16704 ip_stack_t *ipst = ill->ill_ipst; 16705 boolean_t samenet; 16706 16707 if (ill->ill_usesrc_ifindex != 0) { 16708 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16709 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16710 if (usill != NULL) 16711 ill = usill; /* Select source from usesrc ILL */ 16712 else 16713 return (NULL); 16714 } 16715 16716 /* 16717 * Test addresses should never be used for source address selection, 16718 * so if we were passed one, switch to the IPMP meta-interface. 16719 */ 16720 if (IS_UNDER_IPMP(ill)) { 16721 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16722 ill = ipmp_ill; /* Select source from IPMP ill */ 16723 else 16724 return (NULL); 16725 } 16726 16727 /* 16728 * If we're dealing with an unlabeled destination on a labeled system, 16729 * make sure that we ignore source addresses that are incompatible with 16730 * the destination's default label. That destination's default label 16731 * must dominate the minimum label on the source address. 16732 */ 16733 dst_rhtp = NULL; 16734 if (is_system_labeled()) { 16735 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16736 if (dst_rhtp == NULL) 16737 return (NULL); 16738 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16739 TPC_RELE(dst_rhtp); 16740 dst_rhtp = NULL; 16741 } 16742 } 16743 16744 /* 16745 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16746 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16747 * After selecting the right ipif, under ill_lock make sure ipif is 16748 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16749 * we retry. Inside the loop we still need to check for CONDEMNED, 16750 * but not under a lock. 16751 */ 16752 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16753 retry: 16754 /* 16755 * For source address selection, we treat the ipif list as circular 16756 * and continue until we get back to where we started. This allows 16757 * IPMP to vary source address selection (which improves inbound load 16758 * spreading) by caching its last ending point and starting from 16759 * there. NOTE: we don't have to worry about ill_src_ipif changing 16760 * ills since that can't happen on the IPMP ill. 16761 */ 16762 start_ipif = ill->ill_ipif; 16763 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16764 start_ipif = ill->ill_src_ipif; 16765 16766 ipif = start_ipif; 16767 best_ipif = NULL; 16768 best_type = IPIF_NONE; 16769 do { 16770 if ((next_ipif = ipif->ipif_next) == NULL) 16771 next_ipif = ill->ill_ipif; 16772 16773 if (!IPIF_CAN_LOOKUP(ipif)) 16774 continue; 16775 /* Always skip NOLOCAL and ANYCAST interfaces */ 16776 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16777 continue; 16778 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16779 continue; 16780 if (ipif->ipif_zoneid != zoneid && 16781 ipif->ipif_zoneid != ALL_ZONES) 16782 continue; 16783 16784 /* 16785 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16786 * are not valid as source addresses. 16787 */ 16788 if (ipif->ipif_lcl_addr == INADDR_ANY) 16789 continue; 16790 16791 /* 16792 * Check compatibility of local address for destination's 16793 * default label if we're on a labeled system. Incompatible 16794 * addresses can't be used at all. 16795 */ 16796 if (dst_rhtp != NULL) { 16797 boolean_t incompat; 16798 16799 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16800 IPV4_VERSION, B_FALSE); 16801 if (src_rhtp == NULL) 16802 continue; 16803 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16804 src_rhtp->tpc_tp.tp_doi != 16805 dst_rhtp->tpc_tp.tp_doi || 16806 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16807 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16808 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16809 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16810 TPC_RELE(src_rhtp); 16811 if (incompat) 16812 continue; 16813 } 16814 16815 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16816 16817 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16818 type = samenet ? IPIF_SAMENET_DEPRECATED : 16819 IPIF_DIFFNET_DEPRECATED; 16820 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16821 type = samenet ? IPIF_SAMENET_ALLZONES : 16822 IPIF_DIFFNET_ALLZONES; 16823 } else { 16824 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16825 } 16826 16827 if (type > best_type) { 16828 best_type = type; 16829 best_ipif = ipif; 16830 if (best_type == IPIF_SAMENET) 16831 break; /* can't get better */ 16832 } 16833 } while ((ipif = next_ipif) != start_ipif); 16834 16835 if ((ipif = best_ipif) != NULL) { 16836 mutex_enter(&ipif->ipif_ill->ill_lock); 16837 if (!IPIF_CAN_LOOKUP(ipif)) { 16838 mutex_exit(&ipif->ipif_ill->ill_lock); 16839 goto retry; 16840 } 16841 ipif_refhold_locked(ipif); 16842 16843 /* 16844 * For IPMP, update the source ipif rotor to the next ipif, 16845 * provided we can look it up. (We must not use it if it's 16846 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16847 * ipif_free() checked ill_src_ipif.) 16848 */ 16849 if (IS_IPMP(ill) && ipif != NULL) { 16850 next_ipif = ipif->ipif_next; 16851 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16852 ill->ill_src_ipif = next_ipif; 16853 else 16854 ill->ill_src_ipif = NULL; 16855 } 16856 mutex_exit(&ipif->ipif_ill->ill_lock); 16857 } 16858 16859 rw_exit(&ipst->ips_ill_g_lock); 16860 if (usill != NULL) 16861 ill_refrele(usill); 16862 if (ipmp_ill != NULL) 16863 ill_refrele(ipmp_ill); 16864 if (dst_rhtp != NULL) 16865 TPC_RELE(dst_rhtp); 16866 16867 #ifdef DEBUG 16868 if (ipif == NULL) { 16869 char buf1[INET6_ADDRSTRLEN]; 16870 16871 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16872 ill->ill_name, 16873 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16874 } else { 16875 char buf1[INET6_ADDRSTRLEN]; 16876 char buf2[INET6_ADDRSTRLEN]; 16877 16878 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16879 ipif->ipif_ill->ill_name, 16880 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16881 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16882 buf2, sizeof (buf2)))); 16883 } 16884 #endif /* DEBUG */ 16885 return (ipif); 16886 } 16887 16888 /* 16889 * If old_ipif is not NULL, see if ipif was derived from old 16890 * ipif and if so, recreate the interface route by re-doing 16891 * source address selection. This happens when ipif_down -> 16892 * ipif_update_other_ipifs calls us. 16893 * 16894 * If old_ipif is NULL, just redo the source address selection 16895 * if needed. This happens when ipif_up_done calls us. 16896 */ 16897 static void 16898 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16899 { 16900 ire_t *ire; 16901 ire_t *ipif_ire; 16902 queue_t *stq; 16903 ipif_t *nipif; 16904 ill_t *ill; 16905 boolean_t need_rele = B_FALSE; 16906 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16907 16908 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16909 ASSERT(IAM_WRITER_IPIF(ipif)); 16910 16911 ill = ipif->ipif_ill; 16912 if (!(ipif->ipif_flags & 16913 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16914 /* 16915 * Can't possibly have borrowed the source 16916 * from old_ipif. 16917 */ 16918 return; 16919 } 16920 16921 /* 16922 * Is there any work to be done? No work if the address 16923 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 16924 * ipif_select_source() does not borrow addresses from 16925 * NOLOCAL and ANYCAST interfaces). 16926 */ 16927 if ((old_ipif != NULL) && 16928 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 16929 (old_ipif->ipif_ill->ill_wq == NULL) || 16930 (old_ipif->ipif_flags & 16931 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 16932 return; 16933 } 16934 16935 /* 16936 * Perform the same checks as when creating the 16937 * IRE_INTERFACE in ipif_up_done. 16938 */ 16939 if (!(ipif->ipif_flags & IPIF_UP)) 16940 return; 16941 16942 if ((ipif->ipif_flags & IPIF_NOXMIT) || 16943 (ipif->ipif_subnet == INADDR_ANY)) 16944 return; 16945 16946 ipif_ire = ipif_to_ire(ipif); 16947 if (ipif_ire == NULL) 16948 return; 16949 16950 /* 16951 * We know that ipif uses some other source for its 16952 * IRE_INTERFACE. Is it using the source of this 16953 * old_ipif? 16954 */ 16955 if (old_ipif != NULL && 16956 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 16957 ire_refrele(ipif_ire); 16958 return; 16959 } 16960 if (ip_debug > 2) { 16961 /* ip1dbg */ 16962 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 16963 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 16964 } 16965 16966 stq = ipif_ire->ire_stq; 16967 16968 /* 16969 * Can't use our source address. Select a different 16970 * source address for the IRE_INTERFACE. 16971 */ 16972 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 16973 if (nipif == NULL) { 16974 /* Last resort - all ipif's have IPIF_NOLOCAL */ 16975 nipif = ipif; 16976 } else { 16977 need_rele = B_TRUE; 16978 } 16979 16980 ire = ire_create( 16981 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 16982 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 16983 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 16984 NULL, /* no gateway */ 16985 &ipif->ipif_mtu, /* max frag */ 16986 NULL, /* no src nce */ 16987 NULL, /* no recv from queue */ 16988 stq, /* send-to queue */ 16989 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16990 ipif, 16991 0, 16992 0, 16993 0, 16994 0, 16995 &ire_uinfo_null, 16996 NULL, 16997 NULL, 16998 ipst); 16999 17000 if (ire != NULL) { 17001 ire_t *ret_ire; 17002 int error; 17003 17004 /* 17005 * We don't need ipif_ire anymore. We need to delete 17006 * before we add so that ire_add does not detect 17007 * duplicates. 17008 */ 17009 ire_delete(ipif_ire); 17010 ret_ire = ire; 17011 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 17012 ASSERT(error == 0); 17013 ASSERT(ire == ret_ire); 17014 /* Held in ire_add */ 17015 ire_refrele(ret_ire); 17016 } 17017 /* 17018 * Either we are falling through from above or could not 17019 * allocate a replacement. 17020 */ 17021 ire_refrele(ipif_ire); 17022 if (need_rele) 17023 ipif_refrele(nipif); 17024 } 17025 17026 /* 17027 * This old_ipif is going away. 17028 * 17029 * Determine if any other ipif's are using our address as 17030 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17031 * IPIF_DEPRECATED). 17032 * Find the IRE_INTERFACE for such ipifs and recreate them 17033 * to use an different source address following the rules in 17034 * ipif_up_done. 17035 */ 17036 static void 17037 ipif_update_other_ipifs(ipif_t *old_ipif) 17038 { 17039 ipif_t *ipif; 17040 ill_t *ill; 17041 char buf[INET6_ADDRSTRLEN]; 17042 17043 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17044 17045 ill = old_ipif->ipif_ill; 17046 17047 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17048 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17049 17050 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17051 if (ipif == old_ipif) 17052 continue; 17053 ipif_recreate_interface_routes(old_ipif, ipif); 17054 } 17055 } 17056 17057 /* ARGSUSED */ 17058 int 17059 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17060 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17061 { 17062 /* 17063 * ill_phyint_reinit merged the v4 and v6 into a single 17064 * ipsq. We might not have been able to complete the 17065 * operation in ipif_set_values, if we could not become 17066 * exclusive. If so restart it here. 17067 */ 17068 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17069 } 17070 17071 /* 17072 * Can operate on either a module or a driver queue. 17073 * Returns an error if not a module queue. 17074 */ 17075 /* ARGSUSED */ 17076 int 17077 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17078 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17079 { 17080 queue_t *q1 = q; 17081 char *cp; 17082 char interf_name[LIFNAMSIZ]; 17083 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17084 17085 if (q->q_next == NULL) { 17086 ip1dbg(( 17087 "if_unitsel: IF_UNITSEL: no q_next\n")); 17088 return (EINVAL); 17089 } 17090 17091 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17092 return (EALREADY); 17093 17094 do { 17095 q1 = q1->q_next; 17096 } while (q1->q_next); 17097 cp = q1->q_qinfo->qi_minfo->mi_idname; 17098 (void) sprintf(interf_name, "%s%d", cp, ppa); 17099 17100 /* 17101 * Here we are not going to delay the ioack until after 17102 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17103 * original ioctl message before sending the requests. 17104 */ 17105 return (ipif_set_values(q, mp, interf_name, &ppa)); 17106 } 17107 17108 /* ARGSUSED */ 17109 int 17110 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17111 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17112 { 17113 return (ENXIO); 17114 } 17115 17116 /* 17117 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17118 * minimum (but complete) set exist. This is necessary when adding or 17119 * removing an interface to/from an IPMP group, since interfaces in an 17120 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17121 * its test address subnets overlap with IPMP data addresses). It's also 17122 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17123 * interface when the nominated broadcast interface changes. 17124 */ 17125 void 17126 ill_refresh_bcast(ill_t *ill) 17127 { 17128 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17129 ire_t **irep; 17130 ipif_t *ipif; 17131 17132 ASSERT(!ill->ill_isv6); 17133 ASSERT(IAM_WRITER_ILL(ill)); 17134 17135 /* 17136 * Remove any old broadcast IREs. 17137 */ 17138 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17139 ill_broadcast_delete, ill, ill); 17140 17141 /* 17142 * Create new ones for any ipifs that are up and broadcast-capable. 17143 */ 17144 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17145 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17146 (IPIF_UP|IPIF_BROADCAST)) 17147 continue; 17148 17149 irep = ipif_create_bcast_ires(ipif, ire_array); 17150 while (irep-- > ire_array) { 17151 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17152 if (*irep != NULL) 17153 ire_refrele(*irep); 17154 } 17155 } 17156 } 17157 17158 /* 17159 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17160 * `irep'. Returns a pointer to the next free `irep' entry (just like 17161 * ire_check_and_create_bcast()). 17162 */ 17163 static ire_t ** 17164 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17165 { 17166 ipaddr_t addr; 17167 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17168 ipaddr_t subnetmask = ipif->ipif_net_mask; 17169 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17170 17171 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17172 17173 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17174 17175 if (ipif->ipif_lcl_addr == INADDR_ANY || 17176 (ipif->ipif_flags & IPIF_NOLOCAL)) 17177 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17178 17179 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17180 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17181 17182 /* 17183 * For backward compatibility, we create net broadcast IREs based on 17184 * the old "IP address class system", since some old machines only 17185 * respond to these class derived net broadcast. However, we must not 17186 * create these net broadcast IREs if the subnetmask is shorter than 17187 * the IP address class based derived netmask. Otherwise, we may 17188 * create a net broadcast address which is the same as an IP address 17189 * on the subnet -- and then TCP will refuse to talk to that address. 17190 */ 17191 if (netmask < subnetmask) { 17192 addr = netmask & ipif->ipif_subnet; 17193 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17194 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17195 flags); 17196 } 17197 17198 /* 17199 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17200 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17201 * created. Creating these broadcast IREs will only create confusion 17202 * as `addr' will be the same as the IP address. 17203 */ 17204 if (subnetmask != 0xFFFFFFFF) { 17205 addr = ipif->ipif_subnet; 17206 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17207 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17208 irep, flags); 17209 } 17210 17211 return (irep); 17212 } 17213 17214 /* 17215 * Broadcast IRE info structure used in the functions below. Since we 17216 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17217 */ 17218 typedef struct bcast_ireinfo { 17219 uchar_t bi_type; /* BCAST_* value from below */ 17220 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17221 bi_needrep:1, /* do we need to replace it? */ 17222 bi_haverep:1, /* have we replaced it? */ 17223 bi_pad:5; 17224 ipaddr_t bi_addr; /* IRE address */ 17225 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17226 } bcast_ireinfo_t; 17227 17228 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17229 17230 /* 17231 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17232 * return B_TRUE if it should immediately be used to recreate the IRE. 17233 */ 17234 static boolean_t 17235 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17236 { 17237 ipaddr_t addr; 17238 17239 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17240 17241 switch (bireinfop->bi_type) { 17242 case BCAST_NET: 17243 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17244 if (addr != bireinfop->bi_addr) 17245 return (B_FALSE); 17246 break; 17247 case BCAST_SUBNET: 17248 if (ipif->ipif_subnet != bireinfop->bi_addr) 17249 return (B_FALSE); 17250 break; 17251 } 17252 17253 bireinfop->bi_needrep = 1; 17254 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17255 if (bireinfop->bi_backup == NULL) 17256 bireinfop->bi_backup = ipif; 17257 return (B_FALSE); 17258 } 17259 return (B_TRUE); 17260 } 17261 17262 /* 17263 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17264 * them ala ire_check_and_create_bcast(). 17265 */ 17266 static ire_t ** 17267 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17268 { 17269 ipaddr_t mask, addr; 17270 17271 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17272 17273 addr = bireinfop->bi_addr; 17274 irep = ire_create_bcast(ipif, addr, irep); 17275 17276 switch (bireinfop->bi_type) { 17277 case BCAST_NET: 17278 mask = ip_net_mask(ipif->ipif_subnet); 17279 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17280 break; 17281 case BCAST_SUBNET: 17282 mask = ipif->ipif_net_mask; 17283 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17284 break; 17285 } 17286 17287 bireinfop->bi_haverep = 1; 17288 return (irep); 17289 } 17290 17291 /* 17292 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17293 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17294 * that are going away are still needed. If so, have ipif_create_bcast() 17295 * recreate them (except for the deprecated case, as explained below). 17296 */ 17297 static ire_t ** 17298 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17299 ire_t **irep) 17300 { 17301 int i; 17302 ipif_t *ipif; 17303 17304 ASSERT(!ill->ill_isv6); 17305 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17306 /* 17307 * Skip this ipif if it's (a) the one being taken down, (b) 17308 * not in the same zone, or (c) has no valid local address. 17309 */ 17310 if (ipif == test_ipif || 17311 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17312 ipif->ipif_subnet == 0 || 17313 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17314 (IPIF_UP|IPIF_BROADCAST)) 17315 continue; 17316 17317 /* 17318 * For each dying IRE that hasn't yet been replaced, see if 17319 * `ipif' needs it and whether the IRE should be recreated on 17320 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17321 * will return B_FALSE even if `ipif' needs the IRE on the 17322 * hopes that we'll later find a needy non-deprecated ipif. 17323 * However, the ipif is recorded in bi_backup for possible 17324 * subsequent use by ipif_check_bcast_ires(). 17325 */ 17326 for (i = 0; i < BCAST_COUNT; i++) { 17327 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17328 continue; 17329 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17330 continue; 17331 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17332 } 17333 17334 /* 17335 * If we've replaced all of the broadcast IREs that are going 17336 * to be taken down, we know we're done. 17337 */ 17338 for (i = 0; i < BCAST_COUNT; i++) { 17339 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17340 break; 17341 } 17342 if (i == BCAST_COUNT) 17343 break; 17344 } 17345 return (irep); 17346 } 17347 17348 /* 17349 * Check if `test_ipif' (which is going away) is associated with any existing 17350 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17351 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17352 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17353 * 17354 * This is necessary because broadcast IREs are shared. In particular, a 17355 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17356 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17357 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17358 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17359 * same zone, they will share the same set of broadcast IREs. 17360 * 17361 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17362 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17363 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17364 */ 17365 static void 17366 ipif_check_bcast_ires(ipif_t *test_ipif) 17367 { 17368 ill_t *ill = test_ipif->ipif_ill; 17369 ire_t *ire, *ire_array[12]; /* see note above */ 17370 ire_t **irep1, **irep = &ire_array[0]; 17371 uint_t i, willdie; 17372 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17373 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17374 17375 ASSERT(!test_ipif->ipif_isv6); 17376 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17377 17378 /* 17379 * No broadcast IREs for the LOOPBACK interface 17380 * or others such as point to point and IPIF_NOXMIT. 17381 */ 17382 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17383 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17384 return; 17385 17386 bzero(bireinfo, sizeof (bireinfo)); 17387 bireinfo[0].bi_type = BCAST_ALLZEROES; 17388 bireinfo[0].bi_addr = 0; 17389 17390 bireinfo[1].bi_type = BCAST_ALLONES; 17391 bireinfo[1].bi_addr = INADDR_BROADCAST; 17392 17393 bireinfo[2].bi_type = BCAST_NET; 17394 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17395 17396 if (test_ipif->ipif_net_mask != 0) 17397 mask = test_ipif->ipif_net_mask; 17398 bireinfo[3].bi_type = BCAST_SUBNET; 17399 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17400 17401 /* 17402 * Figure out what (if any) broadcast IREs will die as a result of 17403 * `test_ipif' going away. If none will die, we're done. 17404 */ 17405 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17406 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17407 test_ipif, ALL_ZONES, NULL, 17408 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17409 if (ire != NULL) { 17410 willdie++; 17411 bireinfo[i].bi_willdie = 1; 17412 ire_refrele(ire); 17413 } 17414 } 17415 17416 if (willdie == 0) 17417 return; 17418 17419 /* 17420 * Walk through all the ipifs that will be affected by the dying IREs, 17421 * and recreate the IREs as necessary. Note that all interfaces in an 17422 * IPMP illgrp share the same broadcast IREs, and thus the entire 17423 * illgrp must be walked, starting with the IPMP meta-interface (so 17424 * that broadcast IREs end up on it whenever possible). 17425 */ 17426 if (IS_UNDER_IPMP(ill)) 17427 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17428 17429 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17430 17431 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17432 ipmp_illgrp_t *illg = ill->ill_grp; 17433 17434 ill = list_head(&illg->ig_if); 17435 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17436 for (i = 0; i < BCAST_COUNT; i++) { 17437 if (bireinfo[i].bi_willdie && 17438 !bireinfo[i].bi_haverep) 17439 break; 17440 } 17441 if (i == BCAST_COUNT) 17442 break; 17443 17444 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17445 } 17446 } 17447 17448 /* 17449 * Scan through the set of broadcast IREs and see if there are any 17450 * that we need to replace that have not yet been replaced. If so, 17451 * replace them using the appropriate backup ipif. 17452 */ 17453 for (i = 0; i < BCAST_COUNT; i++) { 17454 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17455 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17456 &bireinfo[i], irep); 17457 } 17458 17459 /* 17460 * If we can't create all of them, don't add any of them. (Code in 17461 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17462 * non-loopback copy and loopback copy for a given address.) 17463 */ 17464 for (irep1 = irep; irep1 > ire_array; ) { 17465 irep1--; 17466 if (*irep1 == NULL) { 17467 ip0dbg(("ipif_check_bcast_ires: can't create " 17468 "IRE_BROADCAST, memory allocation failure\n")); 17469 while (irep > ire_array) { 17470 irep--; 17471 if (*irep != NULL) 17472 ire_delete(*irep); 17473 } 17474 return; 17475 } 17476 } 17477 17478 for (irep1 = irep; irep1 > ire_array; ) { 17479 irep1--; 17480 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17481 ire_refrele(*irep1); /* Held in ire_add */ 17482 } 17483 } 17484 17485 /* 17486 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17487 * from lifr_flags and the name from lifr_name. 17488 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17489 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17490 * Returns EINPROGRESS when mp has been consumed by queueing it on 17491 * ill_pending_mp and the ioctl will complete in ip_rput. 17492 * 17493 * Can operate on either a module or a driver queue. 17494 * Returns an error if not a module queue. 17495 */ 17496 /* ARGSUSED */ 17497 int 17498 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17499 ip_ioctl_cmd_t *ipip, void *if_req) 17500 { 17501 ill_t *ill = q->q_ptr; 17502 phyint_t *phyi; 17503 ip_stack_t *ipst; 17504 struct lifreq *lifr = if_req; 17505 uint64_t new_flags; 17506 17507 ASSERT(ipif != NULL); 17508 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17509 17510 if (q->q_next == NULL) { 17511 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17512 return (EINVAL); 17513 } 17514 17515 /* 17516 * If we are not writer on 'q' then this interface exists already 17517 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17518 * so return EALREADY. 17519 */ 17520 if (ill != ipif->ipif_ill) 17521 return (EALREADY); 17522 17523 if (ill->ill_name[0] != '\0') 17524 return (EALREADY); 17525 17526 /* 17527 * If there's another ill already with the requested name, ensure 17528 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17529 * fuse together two unrelated ills, which will cause chaos. 17530 */ 17531 ipst = ill->ill_ipst; 17532 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17533 lifr->lifr_name, NULL); 17534 if (phyi != NULL) { 17535 ill_t *ill_mate = phyi->phyint_illv4; 17536 17537 if (ill_mate == NULL) 17538 ill_mate = phyi->phyint_illv6; 17539 ASSERT(ill_mate != NULL); 17540 17541 if (ill_mate->ill_media->ip_m_mac_type != 17542 ill->ill_media->ip_m_mac_type) { 17543 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17544 "use the same ill name on differing media\n")); 17545 return (EINVAL); 17546 } 17547 } 17548 17549 /* 17550 * We start off as IFF_IPV4 in ipif_allocate and become 17551 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 17552 * The only flags that we read from user space are IFF_IPV4, 17553 * IFF_IPV6, IFF_XRESOLV and IFF_BROADCAST. 17554 * 17555 * This ill has not been inserted into the global list. 17556 * So we are still single threaded and don't need any lock 17557 * 17558 * Saniy check the flags. 17559 */ 17560 17561 if ((lifr->lifr_flags & IFF_BROADCAST) && 17562 ((lifr->lifr_flags & IFF_IPV6) || 17563 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17564 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 17565 "or IPv6 i.e., no broadcast \n")); 17566 return (EINVAL); 17567 } 17568 17569 new_flags = 17570 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_XRESOLV|IFF_BROADCAST); 17571 17572 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 17573 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 17574 "IFF_IPV4 or IFF_IPV6\n")); 17575 return (EINVAL); 17576 } 17577 /* 17578 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17579 */ 17580 if ((new_flags & IFF_XRESOLV) && !(new_flags & IFF_IPV6) && 17581 !(ipif->ipif_isv6)) { 17582 ip1dbg(("ip_sioctl_slifname: XRESOLV only allowed on " 17583 "IPv6 interface\n")); 17584 return (EINVAL); 17585 } 17586 17587 /* 17588 * We always start off as IPv4, so only need to check for IPv6. 17589 */ 17590 if ((new_flags & IFF_IPV6) != 0) { 17591 ill->ill_flags |= ILLF_IPV6; 17592 ill->ill_flags &= ~ILLF_IPV4; 17593 } 17594 17595 if ((new_flags & IFF_BROADCAST) != 0) 17596 ipif->ipif_flags |= IPIF_BROADCAST; 17597 else 17598 ipif->ipif_flags &= ~IPIF_BROADCAST; 17599 17600 if ((new_flags & IFF_XRESOLV) != 0) 17601 ill->ill_flags |= ILLF_XRESOLV; 17602 else 17603 ill->ill_flags &= ~ILLF_XRESOLV; 17604 17605 /* We started off as V4. */ 17606 if (ill->ill_flags & ILLF_IPV6) { 17607 ill->ill_phyint->phyint_illv6 = ill; 17608 ill->ill_phyint->phyint_illv4 = NULL; 17609 } 17610 17611 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17612 } 17613 17614 /* ARGSUSED */ 17615 int 17616 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17617 ip_ioctl_cmd_t *ipip, void *if_req) 17618 { 17619 /* 17620 * ill_phyint_reinit merged the v4 and v6 into a single 17621 * ipsq. We might not have been able to complete the 17622 * slifname in ipif_set_values, if we could not become 17623 * exclusive. If so restart it here 17624 */ 17625 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17626 } 17627 17628 /* 17629 * Return a pointer to the ipif which matches the index, IP version type and 17630 * zoneid. 17631 */ 17632 ipif_t * 17633 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17634 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17635 { 17636 ill_t *ill; 17637 ipif_t *ipif = NULL; 17638 17639 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17640 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17641 17642 if (err != NULL) 17643 *err = 0; 17644 17645 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17646 if (ill != NULL) { 17647 mutex_enter(&ill->ill_lock); 17648 for (ipif = ill->ill_ipif; ipif != NULL; 17649 ipif = ipif->ipif_next) { 17650 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17651 zoneid == ipif->ipif_zoneid || 17652 ipif->ipif_zoneid == ALL_ZONES)) { 17653 ipif_refhold_locked(ipif); 17654 break; 17655 } 17656 } 17657 mutex_exit(&ill->ill_lock); 17658 ill_refrele(ill); 17659 if (ipif == NULL && err != NULL) 17660 *err = ENXIO; 17661 } 17662 return (ipif); 17663 } 17664 17665 /* 17666 * Change an existing physical interface's index. If the new index 17667 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17668 * Finally, we update other systems which may have a dependence on the 17669 * index value. 17670 */ 17671 /* ARGSUSED */ 17672 int 17673 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17674 ip_ioctl_cmd_t *ipip, void *ifreq) 17675 { 17676 ill_t *ill; 17677 phyint_t *phyi; 17678 struct ifreq *ifr = (struct ifreq *)ifreq; 17679 struct lifreq *lifr = (struct lifreq *)ifreq; 17680 uint_t old_index, index; 17681 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17682 avl_index_t where; 17683 17684 if (ipip->ipi_cmd_type == IF_CMD) 17685 index = ifr->ifr_index; 17686 else 17687 index = lifr->lifr_index; 17688 17689 /* 17690 * Only allow on physical interface. Also, index zero is illegal. 17691 */ 17692 ill = ipif->ipif_ill; 17693 phyi = ill->ill_phyint; 17694 if (ipif->ipif_id != 0 || index == 0) { 17695 return (EINVAL); 17696 } 17697 17698 /* If the index is not changing, no work to do */ 17699 if (phyi->phyint_ifindex == index) 17700 return (0); 17701 17702 /* 17703 * Use phyint_exists() to determine if the new interface index 17704 * is already in use. If the index is unused then we need to 17705 * change the phyint's position in the phyint_list_avl_by_index 17706 * tree. If we do not do this, subsequent lookups (using the new 17707 * index value) will not find the phyint. 17708 */ 17709 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17710 if (phyint_exists(index, ipst)) { 17711 rw_exit(&ipst->ips_ill_g_lock); 17712 return (EEXIST); 17713 } 17714 17715 /* The new index is unused. Set it in the phyint. */ 17716 old_index = phyi->phyint_ifindex; 17717 phyi->phyint_ifindex = index; 17718 17719 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17720 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17721 &index, &where); 17722 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17723 phyi, where); 17724 rw_exit(&ipst->ips_ill_g_lock); 17725 17726 /* Update SCTP's ILL list */ 17727 sctp_ill_reindex(ill, old_index); 17728 17729 /* Send the routing sockets message */ 17730 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17731 if (ILL_OTHER(ill)) 17732 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17733 17734 return (0); 17735 } 17736 17737 /* ARGSUSED */ 17738 int 17739 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17740 ip_ioctl_cmd_t *ipip, void *ifreq) 17741 { 17742 struct ifreq *ifr = (struct ifreq *)ifreq; 17743 struct lifreq *lifr = (struct lifreq *)ifreq; 17744 17745 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17746 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17747 /* Get the interface index */ 17748 if (ipip->ipi_cmd_type == IF_CMD) { 17749 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17750 } else { 17751 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17752 } 17753 return (0); 17754 } 17755 17756 /* ARGSUSED */ 17757 int 17758 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17759 ip_ioctl_cmd_t *ipip, void *ifreq) 17760 { 17761 struct lifreq *lifr = (struct lifreq *)ifreq; 17762 17763 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17764 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17765 /* Get the interface zone */ 17766 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17767 lifr->lifr_zoneid = ipif->ipif_zoneid; 17768 return (0); 17769 } 17770 17771 /* 17772 * Set the zoneid of an interface. 17773 */ 17774 /* ARGSUSED */ 17775 int 17776 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17777 ip_ioctl_cmd_t *ipip, void *ifreq) 17778 { 17779 struct lifreq *lifr = (struct lifreq *)ifreq; 17780 int err = 0; 17781 boolean_t need_up = B_FALSE; 17782 zone_t *zptr; 17783 zone_status_t status; 17784 zoneid_t zoneid; 17785 17786 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17787 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17788 if (!is_system_labeled()) 17789 return (ENOTSUP); 17790 zoneid = GLOBAL_ZONEID; 17791 } 17792 17793 /* cannot assign instance zero to a non-global zone */ 17794 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17795 return (ENOTSUP); 17796 17797 /* 17798 * Cannot assign to a zone that doesn't exist or is shutting down. In 17799 * the event of a race with the zone shutdown processing, since IP 17800 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17801 * interface will be cleaned up even if the zone is shut down 17802 * immediately after the status check. If the interface can't be brought 17803 * down right away, and the zone is shut down before the restart 17804 * function is called, we resolve the possible races by rechecking the 17805 * zone status in the restart function. 17806 */ 17807 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17808 return (EINVAL); 17809 status = zone_status_get(zptr); 17810 zone_rele(zptr); 17811 17812 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17813 return (EINVAL); 17814 17815 if (ipif->ipif_flags & IPIF_UP) { 17816 /* 17817 * If the interface is already marked up, 17818 * we call ipif_down which will take care 17819 * of ditching any IREs that have been set 17820 * up based on the old interface address. 17821 */ 17822 err = ipif_logical_down(ipif, q, mp); 17823 if (err == EINPROGRESS) 17824 return (err); 17825 ipif_down_tail(ipif); 17826 need_up = B_TRUE; 17827 } 17828 17829 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17830 return (err); 17831 } 17832 17833 static int 17834 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17835 queue_t *q, mblk_t *mp, boolean_t need_up) 17836 { 17837 int err = 0; 17838 ip_stack_t *ipst; 17839 17840 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17841 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17842 17843 if (CONN_Q(q)) 17844 ipst = CONNQ_TO_IPST(q); 17845 else 17846 ipst = ILLQ_TO_IPST(q); 17847 17848 /* 17849 * For exclusive stacks we don't allow a different zoneid than 17850 * global. 17851 */ 17852 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17853 zoneid != GLOBAL_ZONEID) 17854 return (EINVAL); 17855 17856 /* Set the new zone id. */ 17857 ipif->ipif_zoneid = zoneid; 17858 17859 /* Update sctp list */ 17860 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17861 17862 if (need_up) { 17863 /* 17864 * Now bring the interface back up. If this 17865 * is the only IPIF for the ILL, ipif_up 17866 * will have to re-bind to the device, so 17867 * we may get back EINPROGRESS, in which 17868 * case, this IOCTL will get completed in 17869 * ip_rput_dlpi when we see the DL_BIND_ACK. 17870 */ 17871 err = ipif_up(ipif, q, mp); 17872 } 17873 return (err); 17874 } 17875 17876 /* ARGSUSED */ 17877 int 17878 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17879 ip_ioctl_cmd_t *ipip, void *if_req) 17880 { 17881 struct lifreq *lifr = (struct lifreq *)if_req; 17882 zoneid_t zoneid; 17883 zone_t *zptr; 17884 zone_status_t status; 17885 17886 ASSERT(ipif->ipif_id != 0); 17887 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17888 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17889 zoneid = GLOBAL_ZONEID; 17890 17891 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17892 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17893 17894 /* 17895 * We recheck the zone status to resolve the following race condition: 17896 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17897 * 2) hme0:1 is up and can't be brought down right away; 17898 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17899 * 3) zone "myzone" is halted; the zone status switches to 17900 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17901 * the interfaces to remove - hme0:1 is not returned because it's not 17902 * yet in "myzone", so it won't be removed; 17903 * 4) the restart function for SIOCSLIFZONE is called; without the 17904 * status check here, we would have hme0:1 in "myzone" after it's been 17905 * destroyed. 17906 * Note that if the status check fails, we need to bring the interface 17907 * back to its state prior to ip_sioctl_slifzone(), hence the call to 17908 * ipif_up_done[_v6](). 17909 */ 17910 status = ZONE_IS_UNINITIALIZED; 17911 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 17912 status = zone_status_get(zptr); 17913 zone_rele(zptr); 17914 } 17915 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 17916 if (ipif->ipif_isv6) { 17917 (void) ipif_up_done_v6(ipif); 17918 } else { 17919 (void) ipif_up_done(ipif); 17920 } 17921 return (EINVAL); 17922 } 17923 17924 ipif_down_tail(ipif); 17925 17926 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 17927 B_TRUE)); 17928 } 17929 17930 /* 17931 * Return the number of addresses on `ill' with one or more of the values 17932 * in `set' set and all of the values in `clear' clear. 17933 */ 17934 static uint_t 17935 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 17936 { 17937 ipif_t *ipif; 17938 uint_t cnt = 0; 17939 17940 ASSERT(IAM_WRITER_ILL(ill)); 17941 17942 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 17943 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 17944 cnt++; 17945 17946 return (cnt); 17947 } 17948 17949 /* 17950 * Return the number of migratable addresses on `ill' that are under 17951 * application control. 17952 */ 17953 uint_t 17954 ill_appaddr_cnt(const ill_t *ill) 17955 { 17956 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 17957 IPIF_NOFAILOVER)); 17958 } 17959 17960 /* 17961 * Return the number of point-to-point addresses on `ill'. 17962 */ 17963 uint_t 17964 ill_ptpaddr_cnt(const ill_t *ill) 17965 { 17966 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 17967 } 17968 17969 /* ARGSUSED */ 17970 int 17971 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17972 ip_ioctl_cmd_t *ipip, void *ifreq) 17973 { 17974 struct lifreq *lifr = ifreq; 17975 17976 ASSERT(q->q_next == NULL); 17977 ASSERT(CONN_Q(q)); 17978 17979 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 17980 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17981 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 17982 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 17983 17984 return (0); 17985 } 17986 17987 /* Find the previous ILL in this usesrc group */ 17988 static ill_t * 17989 ill_prev_usesrc(ill_t *uill) 17990 { 17991 ill_t *ill; 17992 17993 for (ill = uill->ill_usesrc_grp_next; 17994 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 17995 ill = ill->ill_usesrc_grp_next) 17996 /* do nothing */; 17997 return (ill); 17998 } 17999 18000 /* 18001 * Release all members of the usesrc group. This routine is called 18002 * from ill_delete when the interface being unplumbed is the 18003 * group head. 18004 */ 18005 static void 18006 ill_disband_usesrc_group(ill_t *uill) 18007 { 18008 ill_t *next_ill, *tmp_ill; 18009 ip_stack_t *ipst = uill->ill_ipst; 18010 18011 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18012 next_ill = uill->ill_usesrc_grp_next; 18013 18014 do { 18015 ASSERT(next_ill != NULL); 18016 tmp_ill = next_ill->ill_usesrc_grp_next; 18017 ASSERT(tmp_ill != NULL); 18018 next_ill->ill_usesrc_grp_next = NULL; 18019 next_ill->ill_usesrc_ifindex = 0; 18020 next_ill = tmp_ill; 18021 } while (next_ill->ill_usesrc_ifindex != 0); 18022 uill->ill_usesrc_grp_next = NULL; 18023 } 18024 18025 /* 18026 * Remove the client usesrc ILL from the list and relink to a new list 18027 */ 18028 int 18029 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18030 { 18031 ill_t *ill, *tmp_ill; 18032 ip_stack_t *ipst = ucill->ill_ipst; 18033 18034 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18035 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18036 18037 /* 18038 * Check if the usesrc client ILL passed in is not already 18039 * in use as a usesrc ILL i.e one whose source address is 18040 * in use OR a usesrc ILL is not already in use as a usesrc 18041 * client ILL 18042 */ 18043 if ((ucill->ill_usesrc_ifindex == 0) || 18044 (uill->ill_usesrc_ifindex != 0)) { 18045 return (-1); 18046 } 18047 18048 ill = ill_prev_usesrc(ucill); 18049 ASSERT(ill->ill_usesrc_grp_next != NULL); 18050 18051 /* Remove from the current list */ 18052 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18053 /* Only two elements in the list */ 18054 ASSERT(ill->ill_usesrc_ifindex == 0); 18055 ill->ill_usesrc_grp_next = NULL; 18056 } else { 18057 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18058 } 18059 18060 if (ifindex == 0) { 18061 ucill->ill_usesrc_ifindex = 0; 18062 ucill->ill_usesrc_grp_next = NULL; 18063 return (0); 18064 } 18065 18066 ucill->ill_usesrc_ifindex = ifindex; 18067 tmp_ill = uill->ill_usesrc_grp_next; 18068 uill->ill_usesrc_grp_next = ucill; 18069 ucill->ill_usesrc_grp_next = 18070 (tmp_ill != NULL) ? tmp_ill : uill; 18071 return (0); 18072 } 18073 18074 /* 18075 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18076 * ip.c for locking details. 18077 */ 18078 /* ARGSUSED */ 18079 int 18080 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18081 ip_ioctl_cmd_t *ipip, void *ifreq) 18082 { 18083 struct lifreq *lifr = (struct lifreq *)ifreq; 18084 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18085 ill_flag_changed = B_FALSE; 18086 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18087 int err = 0, ret; 18088 uint_t ifindex; 18089 ipsq_t *ipsq = NULL; 18090 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18091 18092 ASSERT(IAM_WRITER_IPIF(ipif)); 18093 ASSERT(q->q_next == NULL); 18094 ASSERT(CONN_Q(q)); 18095 18096 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18097 18098 ifindex = lifr->lifr_index; 18099 if (ifindex == 0) { 18100 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18101 /* non usesrc group interface, nothing to reset */ 18102 return (0); 18103 } 18104 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18105 /* valid reset request */ 18106 reset_flg = B_TRUE; 18107 } 18108 18109 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18110 ip_process_ioctl, &err, ipst); 18111 if (usesrc_ill == NULL) { 18112 return (err); 18113 } 18114 18115 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18116 NEW_OP, B_TRUE); 18117 if (ipsq == NULL) { 18118 err = EINPROGRESS; 18119 /* Operation enqueued on the ipsq of the usesrc ILL */ 18120 goto done; 18121 } 18122 18123 /* USESRC isn't currently supported with IPMP */ 18124 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18125 err = ENOTSUP; 18126 goto done; 18127 } 18128 18129 /* 18130 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18131 * used by IPMP underlying interfaces, but someone might think it's 18132 * more general and try to use it independently with VNI.) 18133 */ 18134 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18135 err = ENOTSUP; 18136 goto done; 18137 } 18138 18139 /* 18140 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18141 * already a client then return EINVAL 18142 */ 18143 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18144 err = EINVAL; 18145 goto done; 18146 } 18147 18148 /* 18149 * If the ill_usesrc_ifindex field is already set to what it needs to 18150 * be then this is a duplicate operation. 18151 */ 18152 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18153 err = 0; 18154 goto done; 18155 } 18156 18157 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18158 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18159 usesrc_ill->ill_isv6)); 18160 18161 /* 18162 * The next step ensures that no new ires will be created referencing 18163 * the client ill, until the ILL_CHANGING flag is cleared. Then 18164 * we go through an ire walk deleting all ire caches that reference 18165 * the client ill. New ires referencing the client ill that are added 18166 * to the ire table before the ILL_CHANGING flag is set, will be 18167 * cleaned up by the ire walk below. Attempt to add new ires referencing 18168 * the client ill while the ILL_CHANGING flag is set will be failed 18169 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18170 * checks (under the ill_g_usesrc_lock) that the ire being added 18171 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18172 * belong to the same usesrc group. 18173 */ 18174 mutex_enter(&usesrc_cli_ill->ill_lock); 18175 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18176 mutex_exit(&usesrc_cli_ill->ill_lock); 18177 ill_flag_changed = B_TRUE; 18178 18179 if (ipif->ipif_isv6) 18180 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18181 ALL_ZONES, ipst); 18182 else 18183 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18184 ALL_ZONES, ipst); 18185 18186 /* 18187 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18188 * and the ill_usesrc_ifindex fields 18189 */ 18190 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18191 18192 if (reset_flg) { 18193 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18194 if (ret != 0) { 18195 err = EINVAL; 18196 } 18197 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18198 goto done; 18199 } 18200 18201 /* 18202 * Four possibilities to consider: 18203 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18204 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18205 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18206 * 4. Both are part of their respective usesrc groups 18207 */ 18208 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18209 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18210 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18211 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18212 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18213 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18214 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18215 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18216 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18217 /* Insert at head of list */ 18218 usesrc_cli_ill->ill_usesrc_grp_next = 18219 usesrc_ill->ill_usesrc_grp_next; 18220 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18221 } else { 18222 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18223 ifindex); 18224 if (ret != 0) 18225 err = EINVAL; 18226 } 18227 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18228 18229 done: 18230 if (ill_flag_changed) { 18231 mutex_enter(&usesrc_cli_ill->ill_lock); 18232 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18233 mutex_exit(&usesrc_cli_ill->ill_lock); 18234 } 18235 if (ipsq != NULL) 18236 ipsq_exit(ipsq); 18237 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18238 ill_refrele(usesrc_ill); 18239 return (err); 18240 } 18241 18242 /* 18243 * comparison function used by avl. 18244 */ 18245 static int 18246 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18247 { 18248 18249 uint_t index; 18250 18251 ASSERT(phyip != NULL && index_ptr != NULL); 18252 18253 index = *((uint_t *)index_ptr); 18254 /* 18255 * let the phyint with the lowest index be on top. 18256 */ 18257 if (((phyint_t *)phyip)->phyint_ifindex < index) 18258 return (1); 18259 if (((phyint_t *)phyip)->phyint_ifindex > index) 18260 return (-1); 18261 return (0); 18262 } 18263 18264 /* 18265 * comparison function used by avl. 18266 */ 18267 static int 18268 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18269 { 18270 ill_t *ill; 18271 int res = 0; 18272 18273 ASSERT(phyip != NULL && name_ptr != NULL); 18274 18275 if (((phyint_t *)phyip)->phyint_illv4) 18276 ill = ((phyint_t *)phyip)->phyint_illv4; 18277 else 18278 ill = ((phyint_t *)phyip)->phyint_illv6; 18279 ASSERT(ill != NULL); 18280 18281 res = strcmp(ill->ill_name, (char *)name_ptr); 18282 if (res > 0) 18283 return (1); 18284 else if (res < 0) 18285 return (-1); 18286 return (0); 18287 } 18288 18289 /* 18290 * This function is called on the unplumb path via ill_glist_delete() when 18291 * there are no ills left on the phyint and thus the phyint can be freed. 18292 */ 18293 static void 18294 phyint_free(phyint_t *phyi) 18295 { 18296 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18297 18298 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18299 18300 /* 18301 * If this phyint was an IPMP meta-interface, blow away the group. 18302 * This is safe to do because all of the illgrps have already been 18303 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18304 * If we're cleaning up as a result of failed initialization, 18305 * phyint_grp may be NULL. 18306 */ 18307 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18308 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18309 ipmp_grp_destroy(phyi->phyint_grp); 18310 phyi->phyint_grp = NULL; 18311 rw_exit(&ipst->ips_ipmp_lock); 18312 } 18313 18314 /* 18315 * If this interface was under IPMP, take it out of the group. 18316 */ 18317 if (phyi->phyint_grp != NULL) 18318 ipmp_phyint_leave_grp(phyi); 18319 18320 /* 18321 * Delete the phyint and disassociate its ipsq. The ipsq itself 18322 * will be freed in ipsq_exit(). 18323 */ 18324 phyi->phyint_ipsq->ipsq_phyint = NULL; 18325 phyi->phyint_name[0] = '\0'; 18326 18327 mi_free(phyi); 18328 } 18329 18330 /* 18331 * Attach the ill to the phyint structure which can be shared by both 18332 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18333 * function is called from ipif_set_values and ill_lookup_on_name (for 18334 * loopback) where we know the name of the ill. We lookup the ill and if 18335 * there is one present already with the name use that phyint. Otherwise 18336 * reuse the one allocated by ill_init. 18337 */ 18338 static void 18339 ill_phyint_reinit(ill_t *ill) 18340 { 18341 boolean_t isv6 = ill->ill_isv6; 18342 phyint_t *phyi_old; 18343 phyint_t *phyi; 18344 avl_index_t where = 0; 18345 ill_t *ill_other = NULL; 18346 ip_stack_t *ipst = ill->ill_ipst; 18347 18348 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18349 18350 phyi_old = ill->ill_phyint; 18351 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18352 phyi_old->phyint_illv6 == NULL)); 18353 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18354 phyi_old->phyint_illv4 == NULL)); 18355 ASSERT(phyi_old->phyint_ifindex == 0); 18356 18357 /* 18358 * Now that our ill has a name, set it in the phyint. 18359 */ 18360 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18361 18362 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18363 ill->ill_name, &where); 18364 18365 /* 18366 * 1. We grabbed the ill_g_lock before inserting this ill into 18367 * the global list of ills. So no other thread could have located 18368 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18369 * 2. Now locate the other protocol instance of this ill. 18370 * 3. Now grab both ill locks in the right order, and the phyint lock of 18371 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18372 * of neither ill can change. 18373 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18374 * other ill. 18375 * 5. Release all locks. 18376 */ 18377 18378 /* 18379 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18380 * we are initializing IPv4. 18381 */ 18382 if (phyi != NULL) { 18383 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18384 ASSERT(ill_other->ill_phyint != NULL); 18385 ASSERT((isv6 && !ill_other->ill_isv6) || 18386 (!isv6 && ill_other->ill_isv6)); 18387 GRAB_ILL_LOCKS(ill, ill_other); 18388 /* 18389 * We are potentially throwing away phyint_flags which 18390 * could be different from the one that we obtain from 18391 * ill_other->ill_phyint. But it is okay as we are assuming 18392 * that the state maintained within IP is correct. 18393 */ 18394 mutex_enter(&phyi->phyint_lock); 18395 if (isv6) { 18396 ASSERT(phyi->phyint_illv6 == NULL); 18397 phyi->phyint_illv6 = ill; 18398 } else { 18399 ASSERT(phyi->phyint_illv4 == NULL); 18400 phyi->phyint_illv4 = ill; 18401 } 18402 18403 /* 18404 * Delete the old phyint and make its ipsq eligible 18405 * to be freed in ipsq_exit(). 18406 */ 18407 phyi_old->phyint_illv4 = NULL; 18408 phyi_old->phyint_illv6 = NULL; 18409 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18410 phyi_old->phyint_name[0] = '\0'; 18411 mi_free(phyi_old); 18412 } else { 18413 mutex_enter(&ill->ill_lock); 18414 /* 18415 * We don't need to acquire any lock, since 18416 * the ill is not yet visible globally and we 18417 * have not yet released the ill_g_lock. 18418 */ 18419 phyi = phyi_old; 18420 mutex_enter(&phyi->phyint_lock); 18421 /* XXX We need a recovery strategy here. */ 18422 if (!phyint_assign_ifindex(phyi, ipst)) 18423 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18424 18425 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18426 (void *)phyi, where); 18427 18428 (void) avl_find(&ipst->ips_phyint_g_list-> 18429 phyint_list_avl_by_index, 18430 &phyi->phyint_ifindex, &where); 18431 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18432 (void *)phyi, where); 18433 } 18434 18435 /* 18436 * Reassigning ill_phyint automatically reassigns the ipsq also. 18437 * pending mp is not affected because that is per ill basis. 18438 */ 18439 ill->ill_phyint = phyi; 18440 18441 /* 18442 * Now that the phyint's ifindex has been assigned, complete the 18443 * remaining 18444 */ 18445 18446 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18447 if (ill->ill_isv6) { 18448 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18449 ill->ill_phyint->phyint_ifindex; 18450 ill->ill_mcast_type = ipst->ips_mld_max_version; 18451 } else { 18452 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18453 } 18454 18455 /* 18456 * Generate an event within the hooks framework to indicate that 18457 * a new interface has just been added to IP. For this event to 18458 * be generated, the network interface must, at least, have an 18459 * ifindex assigned to it. (We don't generate the event for 18460 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 18461 * 18462 * This needs to be run inside the ill_g_lock perimeter to ensure 18463 * that the ordering of delivered events to listeners matches the 18464 * order of them in the kernel. 18465 */ 18466 if (!IS_LOOPBACK(ill)) { 18467 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18468 ill->ill_name_length); 18469 } 18470 RELEASE_ILL_LOCKS(ill, ill_other); 18471 mutex_exit(&phyi->phyint_lock); 18472 } 18473 18474 /* 18475 * Notify any downstream modules of the name of this interface. 18476 * An M_IOCTL is used even though we don't expect a successful reply. 18477 * Any reply message from the driver (presumably an M_IOCNAK) will 18478 * eventually get discarded somewhere upstream. The message format is 18479 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18480 * to IP. 18481 */ 18482 static void 18483 ip_ifname_notify(ill_t *ill, queue_t *q) 18484 { 18485 mblk_t *mp1, *mp2; 18486 struct iocblk *iocp; 18487 struct lifreq *lifr; 18488 18489 mp1 = mkiocb(SIOCSLIFNAME); 18490 if (mp1 == NULL) 18491 return; 18492 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18493 if (mp2 == NULL) { 18494 freeb(mp1); 18495 return; 18496 } 18497 18498 mp1->b_cont = mp2; 18499 iocp = (struct iocblk *)mp1->b_rptr; 18500 iocp->ioc_count = sizeof (struct lifreq); 18501 18502 lifr = (struct lifreq *)mp2->b_rptr; 18503 mp2->b_wptr += sizeof (struct lifreq); 18504 bzero(lifr, sizeof (struct lifreq)); 18505 18506 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18507 lifr->lifr_ppa = ill->ill_ppa; 18508 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18509 18510 putnext(q, mp1); 18511 } 18512 18513 static int 18514 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18515 { 18516 int err; 18517 ip_stack_t *ipst = ill->ill_ipst; 18518 phyint_t *phyi = ill->ill_phyint; 18519 18520 /* Set the obsolete NDD per-interface forwarding name. */ 18521 err = ill_set_ndd_name(ill); 18522 if (err != 0) { 18523 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18524 err); 18525 } 18526 18527 /* 18528 * Now that ill_name is set, the configuration for the IPMP 18529 * meta-interface can be performed. 18530 */ 18531 if (IS_IPMP(ill)) { 18532 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18533 /* 18534 * If phyi->phyint_grp is NULL, then this is the first IPMP 18535 * meta-interface and we need to create the IPMP group. 18536 */ 18537 if (phyi->phyint_grp == NULL) { 18538 /* 18539 * If someone has renamed another IPMP group to have 18540 * the same name as our interface, bail. 18541 */ 18542 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18543 rw_exit(&ipst->ips_ipmp_lock); 18544 return (EEXIST); 18545 } 18546 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18547 if (phyi->phyint_grp == NULL) { 18548 rw_exit(&ipst->ips_ipmp_lock); 18549 return (ENOMEM); 18550 } 18551 } 18552 rw_exit(&ipst->ips_ipmp_lock); 18553 } 18554 18555 /* Tell downstream modules where they are. */ 18556 ip_ifname_notify(ill, q); 18557 18558 /* 18559 * ill_dl_phys returns EINPROGRESS in the usual case. 18560 * Error cases are ENOMEM ... 18561 */ 18562 err = ill_dl_phys(ill, ipif, mp, q); 18563 18564 /* 18565 * If there is no IRE expiration timer running, get one started. 18566 * igmp and mld timers will be triggered by the first multicast 18567 */ 18568 if (ipst->ips_ip_ire_expire_id == 0) { 18569 /* 18570 * acquire the lock and check again. 18571 */ 18572 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18573 if (ipst->ips_ip_ire_expire_id == 0) { 18574 ipst->ips_ip_ire_expire_id = timeout( 18575 ip_trash_timer_expire, ipst, 18576 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18577 } 18578 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18579 } 18580 18581 if (ill->ill_isv6) { 18582 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18583 if (ipst->ips_mld_slowtimeout_id == 0) { 18584 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18585 (void *)ipst, 18586 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18587 } 18588 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18589 } else { 18590 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18591 if (ipst->ips_igmp_slowtimeout_id == 0) { 18592 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18593 (void *)ipst, 18594 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18595 } 18596 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18597 } 18598 18599 return (err); 18600 } 18601 18602 /* 18603 * Common routine for ppa and ifname setting. Should be called exclusive. 18604 * 18605 * Returns EINPROGRESS when mp has been consumed by queueing it on 18606 * ill_pending_mp and the ioctl will complete in ip_rput. 18607 * 18608 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18609 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18610 * For SLIFNAME, we pass these values back to the userland. 18611 */ 18612 static int 18613 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18614 { 18615 ill_t *ill; 18616 ipif_t *ipif; 18617 ipsq_t *ipsq; 18618 char *ppa_ptr; 18619 char *old_ptr; 18620 char old_char; 18621 int error; 18622 ip_stack_t *ipst; 18623 18624 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18625 ASSERT(q->q_next != NULL); 18626 ASSERT(interf_name != NULL); 18627 18628 ill = (ill_t *)q->q_ptr; 18629 ipst = ill->ill_ipst; 18630 18631 ASSERT(ill->ill_ipst != NULL); 18632 ASSERT(ill->ill_name[0] == '\0'); 18633 ASSERT(IAM_WRITER_ILL(ill)); 18634 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18635 ASSERT(ill->ill_ppa == UINT_MAX); 18636 18637 /* The ppa is sent down by ifconfig or is chosen */ 18638 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18639 return (EINVAL); 18640 } 18641 18642 /* 18643 * make sure ppa passed in is same as ppa in the name. 18644 * This check is not made when ppa == UINT_MAX in that case ppa 18645 * in the name could be anything. System will choose a ppa and 18646 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18647 */ 18648 if (*new_ppa_ptr != UINT_MAX) { 18649 /* stoi changes the pointer */ 18650 old_ptr = ppa_ptr; 18651 /* 18652 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18653 * (they don't have an externally visible ppa). We assign one 18654 * here so that we can manage the interface. Note that in 18655 * the past this value was always 0 for DLPI 1 drivers. 18656 */ 18657 if (*new_ppa_ptr == 0) 18658 *new_ppa_ptr = stoi(&old_ptr); 18659 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18660 return (EINVAL); 18661 } 18662 /* 18663 * terminate string before ppa 18664 * save char at that location. 18665 */ 18666 old_char = ppa_ptr[0]; 18667 ppa_ptr[0] = '\0'; 18668 18669 ill->ill_ppa = *new_ppa_ptr; 18670 /* 18671 * Finish as much work now as possible before calling ill_glist_insert 18672 * which makes the ill globally visible and also merges it with the 18673 * other protocol instance of this phyint. The remaining work is 18674 * done after entering the ipsq which may happen sometime later. 18675 * ill_set_ndd_name occurs after the ill has been made globally visible. 18676 */ 18677 ipif = ill->ill_ipif; 18678 18679 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18680 ipif_assign_seqid(ipif); 18681 18682 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18683 ill->ill_flags |= ILLF_IPV4; 18684 18685 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18686 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18687 18688 if (ill->ill_flags & ILLF_IPV6) { 18689 18690 ill->ill_isv6 = B_TRUE; 18691 if (ill->ill_rq != NULL) { 18692 ill->ill_rq->q_qinfo = &iprinitv6; 18693 ill->ill_wq->q_qinfo = &ipwinitv6; 18694 } 18695 18696 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18697 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18698 ipif->ipif_v6src_addr = ipv6_all_zeros; 18699 ipif->ipif_v6subnet = ipv6_all_zeros; 18700 ipif->ipif_v6net_mask = ipv6_all_zeros; 18701 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18702 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18703 /* 18704 * point-to-point or Non-mulicast capable 18705 * interfaces won't do NUD unless explicitly 18706 * configured to do so. 18707 */ 18708 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18709 !(ill->ill_flags & ILLF_MULTICAST)) { 18710 ill->ill_flags |= ILLF_NONUD; 18711 } 18712 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18713 if (ill->ill_flags & ILLF_NOARP) { 18714 /* 18715 * Note: xresolv interfaces will eventually need 18716 * NOARP set here as well, but that will require 18717 * those external resolvers to have some 18718 * knowledge of that flag and act appropriately. 18719 * Not to be changed at present. 18720 */ 18721 ill->ill_flags &= ~ILLF_NOARP; 18722 } 18723 /* 18724 * Set the ILLF_ROUTER flag according to the global 18725 * IPv6 forwarding policy. 18726 */ 18727 if (ipst->ips_ipv6_forward != 0) 18728 ill->ill_flags |= ILLF_ROUTER; 18729 } else if (ill->ill_flags & ILLF_IPV4) { 18730 ill->ill_isv6 = B_FALSE; 18731 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18732 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18733 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18734 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18735 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18736 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18737 /* 18738 * Set the ILLF_ROUTER flag according to the global 18739 * IPv4 forwarding policy. 18740 */ 18741 if (ipst->ips_ip_g_forward != 0) 18742 ill->ill_flags |= ILLF_ROUTER; 18743 } 18744 18745 ASSERT(ill->ill_phyint != NULL); 18746 18747 /* 18748 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18749 * be completed in ill_glist_insert -> ill_phyint_reinit 18750 */ 18751 if (!ill_allocate_mibs(ill)) 18752 return (ENOMEM); 18753 18754 /* 18755 * Pick a default sap until we get the DL_INFO_ACK back from 18756 * the driver. 18757 */ 18758 if (ill->ill_sap == 0) { 18759 if (ill->ill_isv6) 18760 ill->ill_sap = IP6_DL_SAP; 18761 else 18762 ill->ill_sap = IP_DL_SAP; 18763 } 18764 18765 ill->ill_ifname_pending = 1; 18766 ill->ill_ifname_pending_err = 0; 18767 18768 /* 18769 * When the first ipif comes up in ipif_up_done(), multicast groups 18770 * that were joined while this ill was not bound to the DLPI link need 18771 * to be recovered by ill_recover_multicast(). 18772 */ 18773 ill->ill_need_recover_multicast = 1; 18774 18775 ill_refhold(ill); 18776 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18777 if ((error = ill_glist_insert(ill, interf_name, 18778 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18779 ill->ill_ppa = UINT_MAX; 18780 ill->ill_name[0] = '\0'; 18781 /* 18782 * undo null termination done above. 18783 */ 18784 ppa_ptr[0] = old_char; 18785 rw_exit(&ipst->ips_ill_g_lock); 18786 ill_refrele(ill); 18787 return (error); 18788 } 18789 18790 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18791 18792 /* 18793 * When we return the buffer pointed to by interf_name should contain 18794 * the same name as in ill_name. 18795 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18796 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18797 * so copy full name and update the ppa ptr. 18798 * When ppa passed in != UINT_MAX all values are correct just undo 18799 * null termination, this saves a bcopy. 18800 */ 18801 if (*new_ppa_ptr == UINT_MAX) { 18802 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18803 *new_ppa_ptr = ill->ill_ppa; 18804 } else { 18805 /* 18806 * undo null termination done above. 18807 */ 18808 ppa_ptr[0] = old_char; 18809 } 18810 18811 /* Let SCTP know about this ILL */ 18812 sctp_update_ill(ill, SCTP_ILL_INSERT); 18813 18814 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18815 B_TRUE); 18816 18817 rw_exit(&ipst->ips_ill_g_lock); 18818 ill_refrele(ill); 18819 if (ipsq == NULL) 18820 return (EINPROGRESS); 18821 18822 /* 18823 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18824 */ 18825 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18826 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18827 else 18828 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18829 18830 error = ipif_set_values_tail(ill, ipif, mp, q); 18831 ipsq_exit(ipsq); 18832 if (error != 0 && error != EINPROGRESS) { 18833 /* 18834 * restore previous values 18835 */ 18836 ill->ill_isv6 = B_FALSE; 18837 } 18838 return (error); 18839 } 18840 18841 void 18842 ipif_init(ip_stack_t *ipst) 18843 { 18844 int i; 18845 18846 for (i = 0; i < MAX_G_HEADS; i++) { 18847 ipst->ips_ill_g_heads[i].ill_g_list_head = 18848 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18849 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18850 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18851 } 18852 18853 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18854 ill_phyint_compare_index, 18855 sizeof (phyint_t), 18856 offsetof(struct phyint, phyint_avl_by_index)); 18857 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18858 ill_phyint_compare_name, 18859 sizeof (phyint_t), 18860 offsetof(struct phyint, phyint_avl_by_name)); 18861 } 18862 18863 /* 18864 * Lookup the ipif corresponding to the onlink destination address. For 18865 * point-to-point interfaces, it matches with remote endpoint destination 18866 * address. For point-to-multipoint interfaces it only tries to match the 18867 * destination with the interface's subnet address. The longest, most specific 18868 * match is found to take care of such rare network configurations like - 18869 * le0: 129.146.1.1/16 18870 * le1: 129.146.2.2/24 18871 * 18872 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18873 * supported on underlying interfaces in an IPMP group, underlying interfaces 18874 * are ignored when looking up a match. (If we didn't ignore them, we'd 18875 * risk using a test address as a source for outgoing traffic.) 18876 */ 18877 ipif_t * 18878 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18879 { 18880 ipif_t *ipif, *best_ipif; 18881 ill_t *ill; 18882 ill_walk_context_t ctx; 18883 18884 ASSERT(zoneid != ALL_ZONES); 18885 best_ipif = NULL; 18886 18887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18888 ill = ILL_START_WALK_V4(&ctx, ipst); 18889 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18890 if (IS_UNDER_IPMP(ill)) 18891 continue; 18892 mutex_enter(&ill->ill_lock); 18893 for (ipif = ill->ill_ipif; ipif != NULL; 18894 ipif = ipif->ipif_next) { 18895 if (!IPIF_CAN_LOOKUP(ipif)) 18896 continue; 18897 if (ipif->ipif_zoneid != zoneid && 18898 ipif->ipif_zoneid != ALL_ZONES) 18899 continue; 18900 /* 18901 * Point-to-point case. Look for exact match with 18902 * destination address. 18903 */ 18904 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18905 if (ipif->ipif_pp_dst_addr == addr) { 18906 ipif_refhold_locked(ipif); 18907 mutex_exit(&ill->ill_lock); 18908 rw_exit(&ipst->ips_ill_g_lock); 18909 if (best_ipif != NULL) 18910 ipif_refrele(best_ipif); 18911 return (ipif); 18912 } 18913 } else if (ipif->ipif_subnet == (addr & 18914 ipif->ipif_net_mask)) { 18915 /* 18916 * Point-to-multipoint case. Looping through to 18917 * find the most specific match. If there are 18918 * multiple best match ipif's then prefer ipif's 18919 * that are UP. If there is only one best match 18920 * ipif and it is DOWN we must still return it. 18921 */ 18922 if ((best_ipif == NULL) || 18923 (ipif->ipif_net_mask > 18924 best_ipif->ipif_net_mask) || 18925 ((ipif->ipif_net_mask == 18926 best_ipif->ipif_net_mask) && 18927 ((ipif->ipif_flags & IPIF_UP) && 18928 (!(best_ipif->ipif_flags & IPIF_UP))))) { 18929 ipif_refhold_locked(ipif); 18930 mutex_exit(&ill->ill_lock); 18931 rw_exit(&ipst->ips_ill_g_lock); 18932 if (best_ipif != NULL) 18933 ipif_refrele(best_ipif); 18934 best_ipif = ipif; 18935 rw_enter(&ipst->ips_ill_g_lock, 18936 RW_READER); 18937 mutex_enter(&ill->ill_lock); 18938 } 18939 } 18940 } 18941 mutex_exit(&ill->ill_lock); 18942 } 18943 rw_exit(&ipst->ips_ill_g_lock); 18944 return (best_ipif); 18945 } 18946 18947 /* 18948 * Save enough information so that we can recreate the IRE if 18949 * the interface goes down and then up. 18950 */ 18951 static void 18952 ipif_save_ire(ipif_t *ipif, ire_t *ire) 18953 { 18954 mblk_t *save_mp; 18955 18956 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 18957 if (save_mp != NULL) { 18958 ifrt_t *ifrt; 18959 18960 save_mp->b_wptr += sizeof (ifrt_t); 18961 ifrt = (ifrt_t *)save_mp->b_rptr; 18962 bzero(ifrt, sizeof (ifrt_t)); 18963 ifrt->ifrt_type = ire->ire_type; 18964 ifrt->ifrt_addr = ire->ire_addr; 18965 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 18966 ifrt->ifrt_src_addr = ire->ire_src_addr; 18967 ifrt->ifrt_mask = ire->ire_mask; 18968 ifrt->ifrt_flags = ire->ire_flags; 18969 ifrt->ifrt_max_frag = ire->ire_max_frag; 18970 mutex_enter(&ipif->ipif_saved_ire_lock); 18971 save_mp->b_cont = ipif->ipif_saved_ire_mp; 18972 ipif->ipif_saved_ire_mp = save_mp; 18973 ipif->ipif_saved_ire_cnt++; 18974 mutex_exit(&ipif->ipif_saved_ire_lock); 18975 } 18976 } 18977 18978 static void 18979 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 18980 { 18981 mblk_t **mpp; 18982 mblk_t *mp; 18983 ifrt_t *ifrt; 18984 18985 /* Remove from ipif_saved_ire_mp list if it is there */ 18986 mutex_enter(&ipif->ipif_saved_ire_lock); 18987 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 18988 mpp = &(*mpp)->b_cont) { 18989 /* 18990 * On a given ipif, the triple of address, gateway and 18991 * mask is unique for each saved IRE (in the case of 18992 * ordinary interface routes, the gateway address is 18993 * all-zeroes). 18994 */ 18995 mp = *mpp; 18996 ifrt = (ifrt_t *)mp->b_rptr; 18997 if (ifrt->ifrt_addr == ire->ire_addr && 18998 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 18999 ifrt->ifrt_mask == ire->ire_mask) { 19000 *mpp = mp->b_cont; 19001 ipif->ipif_saved_ire_cnt--; 19002 freeb(mp); 19003 break; 19004 } 19005 } 19006 mutex_exit(&ipif->ipif_saved_ire_lock); 19007 } 19008 19009 /* 19010 * IP multirouting broadcast routes handling 19011 * Append CGTP broadcast IREs to regular ones created 19012 * at ifconfig time. 19013 */ 19014 static void 19015 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 19016 { 19017 ire_t *ire_prim; 19018 19019 ASSERT(ire != NULL); 19020 ASSERT(ire_dst != NULL); 19021 19022 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19023 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19024 if (ire_prim != NULL) { 19025 /* 19026 * We are in the special case of broadcasts for 19027 * CGTP. We add an IRE_BROADCAST that holds 19028 * the RTF_MULTIRT flag, the destination 19029 * address of ire_dst and the low level 19030 * info of ire_prim. In other words, CGTP 19031 * broadcast is added to the redundant ipif. 19032 */ 19033 ipif_t *ipif_prim; 19034 ire_t *bcast_ire; 19035 19036 ipif_prim = ire_prim->ire_ipif; 19037 19038 ip2dbg(("ip_cgtp_filter_bcast_add: " 19039 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19040 (void *)ire_dst, (void *)ire_prim, 19041 (void *)ipif_prim)); 19042 19043 bcast_ire = ire_create( 19044 (uchar_t *)&ire->ire_addr, 19045 (uchar_t *)&ip_g_all_ones, 19046 (uchar_t *)&ire_dst->ire_src_addr, 19047 (uchar_t *)&ire->ire_gateway_addr, 19048 &ipif_prim->ipif_mtu, 19049 NULL, 19050 ipif_prim->ipif_rq, 19051 ipif_prim->ipif_wq, 19052 IRE_BROADCAST, 19053 ipif_prim, 19054 0, 19055 0, 19056 0, 19057 ire->ire_flags, 19058 &ire_uinfo_null, 19059 NULL, 19060 NULL, 19061 ipst); 19062 19063 if (bcast_ire != NULL) { 19064 19065 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19066 B_FALSE) == 0) { 19067 ip2dbg(("ip_cgtp_filter_bcast_add: " 19068 "added bcast_ire %p\n", 19069 (void *)bcast_ire)); 19070 19071 ipif_save_ire(bcast_ire->ire_ipif, 19072 bcast_ire); 19073 ire_refrele(bcast_ire); 19074 } 19075 } 19076 ire_refrele(ire_prim); 19077 } 19078 } 19079 19080 /* 19081 * IP multirouting broadcast routes handling 19082 * Remove the broadcast ire 19083 */ 19084 static void 19085 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19086 { 19087 ire_t *ire_dst; 19088 19089 ASSERT(ire != NULL); 19090 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19091 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19092 if (ire_dst != NULL) { 19093 ire_t *ire_prim; 19094 19095 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19096 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19097 if (ire_prim != NULL) { 19098 ipif_t *ipif_prim; 19099 ire_t *bcast_ire; 19100 19101 ipif_prim = ire_prim->ire_ipif; 19102 19103 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19104 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19105 (void *)ire_dst, (void *)ire_prim, 19106 (void *)ipif_prim)); 19107 19108 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19109 ire->ire_gateway_addr, 19110 IRE_BROADCAST, 19111 ipif_prim, ALL_ZONES, 19112 NULL, 19113 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19114 MATCH_IRE_MASK, ipst); 19115 19116 if (bcast_ire != NULL) { 19117 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19118 "looked up bcast_ire %p\n", 19119 (void *)bcast_ire)); 19120 ipif_remove_ire(bcast_ire->ire_ipif, 19121 bcast_ire); 19122 ire_delete(bcast_ire); 19123 ire_refrele(bcast_ire); 19124 } 19125 ire_refrele(ire_prim); 19126 } 19127 ire_refrele(ire_dst); 19128 } 19129 } 19130 19131 /* 19132 * IPsec hardware acceleration capabilities related functions. 19133 */ 19134 19135 /* 19136 * Free a per-ill IPsec capabilities structure. 19137 */ 19138 static void 19139 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19140 { 19141 if (capab->auth_hw_algs != NULL) 19142 kmem_free(capab->auth_hw_algs, capab->algs_size); 19143 if (capab->encr_hw_algs != NULL) 19144 kmem_free(capab->encr_hw_algs, capab->algs_size); 19145 if (capab->encr_algparm != NULL) 19146 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19147 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19148 } 19149 19150 /* 19151 * Allocate a new per-ill IPsec capabilities structure. This structure 19152 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19153 * an array which specifies, for each algorithm, whether this algorithm 19154 * is supported by the ill or not. 19155 */ 19156 static ill_ipsec_capab_t * 19157 ill_ipsec_capab_alloc(void) 19158 { 19159 ill_ipsec_capab_t *capab; 19160 uint_t nelems; 19161 19162 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19163 if (capab == NULL) 19164 return (NULL); 19165 19166 /* we need one bit per algorithm */ 19167 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19168 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19169 19170 /* allocate memory to store algorithm flags */ 19171 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19172 if (capab->encr_hw_algs == NULL) 19173 goto nomem; 19174 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19175 if (capab->auth_hw_algs == NULL) 19176 goto nomem; 19177 /* 19178 * Leave encr_algparm NULL for now since we won't need it half 19179 * the time 19180 */ 19181 return (capab); 19182 19183 nomem: 19184 ill_ipsec_capab_free(capab); 19185 return (NULL); 19186 } 19187 19188 /* 19189 * Resize capability array. Since we're exclusive, this is OK. 19190 */ 19191 static boolean_t 19192 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19193 { 19194 ipsec_capab_algparm_t *nalp, *oalp; 19195 uint32_t olen, nlen; 19196 19197 oalp = capab->encr_algparm; 19198 olen = capab->encr_algparm_size; 19199 19200 if (oalp != NULL) { 19201 if (algid < capab->encr_algparm_end) 19202 return (B_TRUE); 19203 } 19204 19205 nlen = (algid + 1) * sizeof (*nalp); 19206 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19207 if (nalp == NULL) 19208 return (B_FALSE); 19209 19210 if (oalp != NULL) { 19211 bcopy(oalp, nalp, olen); 19212 kmem_free(oalp, olen); 19213 } 19214 capab->encr_algparm = nalp; 19215 capab->encr_algparm_size = nlen; 19216 capab->encr_algparm_end = algid + 1; 19217 19218 return (B_TRUE); 19219 } 19220 19221 /* 19222 * Compare the capabilities of the specified ill with the protocol 19223 * and algorithms specified by the SA passed as argument. 19224 * If they match, returns B_TRUE, B_FALSE if they do not match. 19225 * 19226 * The ill can be passed as a pointer to it, or by specifying its index 19227 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19228 * 19229 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19230 * packet is eligible for hardware acceleration, and by 19231 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19232 * to a particular ill. 19233 */ 19234 boolean_t 19235 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19236 ipsa_t *sa, netstack_t *ns) 19237 { 19238 boolean_t sa_isv6; 19239 uint_t algid; 19240 struct ill_ipsec_capab_s *cpp; 19241 boolean_t need_refrele = B_FALSE; 19242 ip_stack_t *ipst = ns->netstack_ip; 19243 19244 if (ill == NULL) { 19245 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19246 NULL, NULL, NULL, ipst); 19247 if (ill == NULL) { 19248 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19249 return (B_FALSE); 19250 } 19251 need_refrele = B_TRUE; 19252 } 19253 19254 /* 19255 * Use the address length specified by the SA to determine 19256 * if it corresponds to a IPv6 address, and fail the matching 19257 * if the isv6 flag passed as argument does not match. 19258 * Note: this check is used for SADB capability checking before 19259 * sending SA information to an ill. 19260 */ 19261 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19262 if (sa_isv6 != ill_isv6) 19263 /* protocol mismatch */ 19264 goto done; 19265 19266 /* 19267 * Check if the ill supports the protocol, algorithm(s) and 19268 * key size(s) specified by the SA, and get the pointers to 19269 * the algorithms supported by the ill. 19270 */ 19271 switch (sa->ipsa_type) { 19272 19273 case SADB_SATYPE_ESP: 19274 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19275 /* ill does not support ESP acceleration */ 19276 goto done; 19277 cpp = ill->ill_ipsec_capab_esp; 19278 algid = sa->ipsa_auth_alg; 19279 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19280 goto done; 19281 algid = sa->ipsa_encr_alg; 19282 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19283 goto done; 19284 if (algid < cpp->encr_algparm_end) { 19285 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19286 if (sa->ipsa_encrkeybits < alp->minkeylen) 19287 goto done; 19288 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19289 goto done; 19290 } 19291 break; 19292 19293 case SADB_SATYPE_AH: 19294 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19295 /* ill does not support AH acceleration */ 19296 goto done; 19297 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19298 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19299 goto done; 19300 break; 19301 } 19302 19303 if (need_refrele) 19304 ill_refrele(ill); 19305 return (B_TRUE); 19306 done: 19307 if (need_refrele) 19308 ill_refrele(ill); 19309 return (B_FALSE); 19310 } 19311 19312 /* 19313 * Add a new ill to the list of IPsec capable ills. 19314 * Called from ill_capability_ipsec_ack() when an ACK was received 19315 * indicating that IPsec hardware processing was enabled for an ill. 19316 * 19317 * ill must point to the ill for which acceleration was enabled. 19318 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19319 */ 19320 static void 19321 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19322 { 19323 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19324 uint_t sa_type; 19325 uint_t ipproto; 19326 ip_stack_t *ipst = ill->ill_ipst; 19327 19328 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19329 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19330 19331 switch (dl_cap) { 19332 case DL_CAPAB_IPSEC_AH: 19333 sa_type = SADB_SATYPE_AH; 19334 ills = &ipst->ips_ipsec_capab_ills_ah; 19335 ipproto = IPPROTO_AH; 19336 break; 19337 case DL_CAPAB_IPSEC_ESP: 19338 sa_type = SADB_SATYPE_ESP; 19339 ills = &ipst->ips_ipsec_capab_ills_esp; 19340 ipproto = IPPROTO_ESP; 19341 break; 19342 } 19343 19344 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19345 19346 /* 19347 * Add ill index to list of hardware accelerators. If 19348 * already in list, do nothing. 19349 */ 19350 for (cur_ill = *ills; cur_ill != NULL && 19351 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19352 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19353 ; 19354 19355 if (cur_ill == NULL) { 19356 /* if this is a new entry for this ill */ 19357 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19358 if (new_ill == NULL) { 19359 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19360 return; 19361 } 19362 19363 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19364 new_ill->ill_isv6 = ill->ill_isv6; 19365 new_ill->next = *ills; 19366 *ills = new_ill; 19367 } else if (!sadb_resync) { 19368 /* not resync'ing SADB and an entry exists for this ill */ 19369 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19370 return; 19371 } 19372 19373 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19374 19375 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19376 /* 19377 * IPsec module for protocol loaded, initiate dump 19378 * of the SADB to this ill. 19379 */ 19380 sadb_ill_download(ill, sa_type); 19381 } 19382 19383 /* 19384 * Remove an ill from the list of IPsec capable ills. 19385 */ 19386 static void 19387 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19388 { 19389 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19390 ip_stack_t *ipst = ill->ill_ipst; 19391 19392 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19393 dl_cap == DL_CAPAB_IPSEC_ESP); 19394 19395 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19396 &ipst->ips_ipsec_capab_ills_esp; 19397 19398 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19399 19400 prev_ill = NULL; 19401 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19402 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19403 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19404 ; 19405 if (cur_ill == NULL) { 19406 /* entry not found */ 19407 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19408 return; 19409 } 19410 if (prev_ill == NULL) { 19411 /* entry at front of list */ 19412 *ills = NULL; 19413 } else { 19414 prev_ill->next = cur_ill->next; 19415 } 19416 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19417 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19418 } 19419 19420 /* 19421 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19422 * supporting the specified IPsec protocol acceleration. 19423 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19424 * We free the mblk and, if sa is non-null, release the held referece. 19425 */ 19426 void 19427 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19428 netstack_t *ns) 19429 { 19430 ipsec_capab_ill_t *ici, *cur_ici; 19431 ill_t *ill; 19432 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19433 ip_stack_t *ipst = ns->netstack_ip; 19434 19435 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19436 ipst->ips_ipsec_capab_ills_esp; 19437 19438 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19439 19440 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19441 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19442 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19443 19444 /* 19445 * Handle the case where the ill goes away while the SADB is 19446 * attempting to send messages. If it's going away, it's 19447 * nuking its shadow SADB, so we don't care.. 19448 */ 19449 19450 if (ill == NULL) 19451 continue; 19452 19453 if (sa != NULL) { 19454 /* 19455 * Make sure capabilities match before 19456 * sending SA to ill. 19457 */ 19458 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19459 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19460 ill_refrele(ill); 19461 continue; 19462 } 19463 19464 mutex_enter(&sa->ipsa_lock); 19465 sa->ipsa_flags |= IPSA_F_HW; 19466 mutex_exit(&sa->ipsa_lock); 19467 } 19468 19469 /* 19470 * Copy template message, and add it to the front 19471 * of the mblk ship list. We want to avoid holding 19472 * the ipsec_capab_ills_lock while sending the 19473 * message to the ills. 19474 * 19475 * The b_next and b_prev are temporarily used 19476 * to build a list of mblks to be sent down, and to 19477 * save the ill to which they must be sent. 19478 */ 19479 nmp = copymsg(mp); 19480 if (nmp == NULL) { 19481 ill_refrele(ill); 19482 continue; 19483 } 19484 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19485 nmp->b_next = mp_ship_list; 19486 mp_ship_list = nmp; 19487 nmp->b_prev = (mblk_t *)ill; 19488 } 19489 19490 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19491 19492 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19493 /* restore the mblk to a sane state */ 19494 next_mp = nmp->b_next; 19495 nmp->b_next = NULL; 19496 ill = (ill_t *)nmp->b_prev; 19497 nmp->b_prev = NULL; 19498 19499 ill_dlpi_send(ill, nmp); 19500 ill_refrele(ill); 19501 } 19502 19503 if (sa != NULL) 19504 IPSA_REFRELE(sa); 19505 freemsg(mp); 19506 } 19507 19508 /* 19509 * Derive an interface id from the link layer address. 19510 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19511 */ 19512 static boolean_t 19513 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19514 { 19515 char *addr; 19516 19517 if (ill->ill_phys_addr_length != ETHERADDRL) 19518 return (B_FALSE); 19519 19520 /* Form EUI-64 like address */ 19521 addr = (char *)&v6addr->s6_addr32[2]; 19522 bcopy(ill->ill_phys_addr, addr, 3); 19523 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19524 addr[3] = (char)0xff; 19525 addr[4] = (char)0xfe; 19526 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19527 return (B_TRUE); 19528 } 19529 19530 /* ARGSUSED */ 19531 static boolean_t 19532 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19533 { 19534 return (B_FALSE); 19535 } 19536 19537 typedef struct ipmp_ifcookie { 19538 uint32_t ic_hostid; 19539 char ic_ifname[LIFNAMSIZ]; 19540 char ic_zonename[ZONENAME_MAX]; 19541 } ipmp_ifcookie_t; 19542 19543 /* 19544 * Construct a pseudo-random interface ID for the IPMP interface that's both 19545 * predictable and (almost) guaranteed to be unique. 19546 */ 19547 static boolean_t 19548 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19549 { 19550 zone_t *zp; 19551 uint8_t *addr; 19552 uchar_t hash[16]; 19553 ulong_t hostid; 19554 MD5_CTX ctx; 19555 ipmp_ifcookie_t ic = { 0 }; 19556 19557 ASSERT(IS_IPMP(ill)); 19558 19559 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19560 ic.ic_hostid = htonl((uint32_t)hostid); 19561 19562 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19563 19564 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19565 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19566 zone_rele(zp); 19567 } 19568 19569 MD5Init(&ctx); 19570 MD5Update(&ctx, &ic, sizeof (ic)); 19571 MD5Final(hash, &ctx); 19572 19573 /* 19574 * Map the hash to an interface ID per the basic approach in RFC3041. 19575 */ 19576 addr = &v6addr->s6_addr8[8]; 19577 bcopy(hash + 8, addr, sizeof (uint64_t)); 19578 addr[0] &= ~0x2; /* set local bit */ 19579 19580 return (B_TRUE); 19581 } 19582 19583 /* ARGSUSED */ 19584 static boolean_t 19585 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19586 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19587 { 19588 /* 19589 * Multicast address mappings used over Ethernet/802.X. 19590 * This address is used as a base for mappings. 19591 */ 19592 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19593 0x00, 0x00, 0x00}; 19594 19595 /* 19596 * Extract low order 32 bits from IPv6 multicast address. 19597 * Or that into the link layer address, starting from the 19598 * second byte. 19599 */ 19600 *hw_start = 2; 19601 v6_extract_mask->s6_addr32[0] = 0; 19602 v6_extract_mask->s6_addr32[1] = 0; 19603 v6_extract_mask->s6_addr32[2] = 0; 19604 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19605 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19606 return (B_TRUE); 19607 } 19608 19609 /* 19610 * Indicate by return value whether multicast is supported. If not, 19611 * this code should not touch/change any parameters. 19612 */ 19613 /* ARGSUSED */ 19614 static boolean_t 19615 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19616 uint32_t *hw_start, ipaddr_t *extract_mask) 19617 { 19618 /* 19619 * Multicast address mappings used over Ethernet/802.X. 19620 * This address is used as a base for mappings. 19621 */ 19622 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19623 0x00, 0x00, 0x00 }; 19624 19625 if (phys_length != ETHERADDRL) 19626 return (B_FALSE); 19627 19628 *extract_mask = htonl(0x007fffff); 19629 *hw_start = 2; 19630 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19631 return (B_TRUE); 19632 } 19633 19634 /* 19635 * Derive IPoIB interface id from the link layer address. 19636 */ 19637 static boolean_t 19638 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19639 { 19640 char *addr; 19641 19642 if (ill->ill_phys_addr_length != 20) 19643 return (B_FALSE); 19644 addr = (char *)&v6addr->s6_addr32[2]; 19645 bcopy(ill->ill_phys_addr + 12, addr, 8); 19646 /* 19647 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19648 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19649 * rules. In these cases, the IBA considers these GUIDs to be in 19650 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19651 * required; vendors are required not to assign global EUI-64's 19652 * that differ only in u/l bit values, thus guaranteeing uniqueness 19653 * of the interface identifier. Whether the GUID is in modified 19654 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19655 * bit set to 1. 19656 */ 19657 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19658 return (B_TRUE); 19659 } 19660 19661 /* 19662 * Note on mapping from multicast IP addresses to IPoIB multicast link 19663 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19664 * The format of an IPoIB multicast address is: 19665 * 19666 * 4 byte QPN Scope Sign. Pkey 19667 * +--------------------------------------------+ 19668 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19669 * +--------------------------------------------+ 19670 * 19671 * The Scope and Pkey components are properties of the IBA port and 19672 * network interface. They can be ascertained from the broadcast address. 19673 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19674 */ 19675 19676 static boolean_t 19677 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19678 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19679 { 19680 /* 19681 * Base IPoIB IPv6 multicast address used for mappings. 19682 * Does not contain the IBA scope/Pkey values. 19683 */ 19684 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19685 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19686 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19687 19688 /* 19689 * Extract low order 80 bits from IPv6 multicast address. 19690 * Or that into the link layer address, starting from the 19691 * sixth byte. 19692 */ 19693 *hw_start = 6; 19694 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19695 19696 /* 19697 * Now fill in the IBA scope/Pkey values from the broadcast address. 19698 */ 19699 *(maddr + 5) = *(bphys_addr + 5); 19700 *(maddr + 8) = *(bphys_addr + 8); 19701 *(maddr + 9) = *(bphys_addr + 9); 19702 19703 v6_extract_mask->s6_addr32[0] = 0; 19704 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19705 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19706 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19707 return (B_TRUE); 19708 } 19709 19710 static boolean_t 19711 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19712 uint32_t *hw_start, ipaddr_t *extract_mask) 19713 { 19714 /* 19715 * Base IPoIB IPv4 multicast address used for mappings. 19716 * Does not contain the IBA scope/Pkey values. 19717 */ 19718 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19719 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19720 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19721 19722 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19723 return (B_FALSE); 19724 19725 /* 19726 * Extract low order 28 bits from IPv4 multicast address. 19727 * Or that into the link layer address, starting from the 19728 * sixteenth byte. 19729 */ 19730 *extract_mask = htonl(0x0fffffff); 19731 *hw_start = 16; 19732 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19733 19734 /* 19735 * Now fill in the IBA scope/Pkey values from the broadcast address. 19736 */ 19737 *(maddr + 5) = *(bphys_addr + 5); 19738 *(maddr + 8) = *(bphys_addr + 8); 19739 *(maddr + 9) = *(bphys_addr + 9); 19740 return (B_TRUE); 19741 } 19742 19743 /* 19744 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19745 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19746 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19747 * the link-local address is preferred. 19748 */ 19749 boolean_t 19750 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19751 { 19752 ipif_t *ipif; 19753 ipif_t *maybe_ipif = NULL; 19754 19755 mutex_enter(&ill->ill_lock); 19756 if (ill->ill_state_flags & ILL_CONDEMNED) { 19757 mutex_exit(&ill->ill_lock); 19758 if (ipifp != NULL) 19759 *ipifp = NULL; 19760 return (B_FALSE); 19761 } 19762 19763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19764 if (!IPIF_CAN_LOOKUP(ipif)) 19765 continue; 19766 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19767 ipif->ipif_zoneid != ALL_ZONES) 19768 continue; 19769 if ((ipif->ipif_flags & flags) != flags) 19770 continue; 19771 19772 if (ipifp == NULL) { 19773 mutex_exit(&ill->ill_lock); 19774 ASSERT(maybe_ipif == NULL); 19775 return (B_TRUE); 19776 } 19777 if (!ill->ill_isv6 || 19778 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19779 ipif_refhold_locked(ipif); 19780 mutex_exit(&ill->ill_lock); 19781 *ipifp = ipif; 19782 return (B_TRUE); 19783 } 19784 if (maybe_ipif == NULL) 19785 maybe_ipif = ipif; 19786 } 19787 if (ipifp != NULL) { 19788 if (maybe_ipif != NULL) 19789 ipif_refhold_locked(maybe_ipif); 19790 *ipifp = maybe_ipif; 19791 } 19792 mutex_exit(&ill->ill_lock); 19793 return (maybe_ipif != NULL); 19794 } 19795 19796 /* 19797 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19798 * If a pointer to an ipif_t is returned then the caller will need to do 19799 * an ill_refrele(). 19800 */ 19801 ipif_t * 19802 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19803 ip_stack_t *ipst) 19804 { 19805 ipif_t *ipif; 19806 ill_t *ill; 19807 19808 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19809 ipst); 19810 if (ill == NULL) 19811 return (NULL); 19812 19813 mutex_enter(&ill->ill_lock); 19814 if (ill->ill_state_flags & ILL_CONDEMNED) { 19815 mutex_exit(&ill->ill_lock); 19816 ill_refrele(ill); 19817 return (NULL); 19818 } 19819 19820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19821 if (!IPIF_CAN_LOOKUP(ipif)) 19822 continue; 19823 if (lifidx == ipif->ipif_id) { 19824 ipif_refhold_locked(ipif); 19825 break; 19826 } 19827 } 19828 19829 mutex_exit(&ill->ill_lock); 19830 ill_refrele(ill); 19831 return (ipif); 19832 } 19833 19834 /* 19835 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19836 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19837 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19838 * for details. 19839 */ 19840 void 19841 ill_fastpath_flush(ill_t *ill) 19842 { 19843 ip_stack_t *ipst = ill->ill_ipst; 19844 19845 nce_fastpath_list_dispatch(ill, NULL, NULL); 19846 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19847 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19848 } 19849 19850 /* 19851 * Set the physical address information for `ill' to the contents of the 19852 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19853 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19854 * EINPROGRESS will be returned. 19855 */ 19856 int 19857 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19858 { 19859 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19860 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19861 19862 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19863 19864 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19865 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19866 /* Changing DL_IPV6_TOKEN is not yet supported */ 19867 return (0); 19868 } 19869 19870 /* 19871 * We need to store up to two copies of `mp' in `ill'. Due to the 19872 * design of ipsq_pending_mp_add(), we can't pass them as separate 19873 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19874 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19875 */ 19876 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19877 freemsg(mp); 19878 return (ENOMEM); 19879 } 19880 19881 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19882 19883 /* 19884 * If we can quiesce the ill, then set the address. If not, then 19885 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19886 */ 19887 ill_down_ipifs(ill, B_TRUE); 19888 mutex_enter(&ill->ill_lock); 19889 if (!ill_is_quiescent(ill)) { 19890 /* call cannot fail since `conn_t *' argument is NULL */ 19891 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19892 mp, ILL_DOWN); 19893 mutex_exit(&ill->ill_lock); 19894 return (EINPROGRESS); 19895 } 19896 mutex_exit(&ill->ill_lock); 19897 19898 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19899 return (0); 19900 } 19901 19902 /* 19903 * Once the ill associated with `q' has quiesced, set its physical address 19904 * information to the values in `addrmp'. Note that two copies of `addrmp' 19905 * are passed (linked by b_cont), since we sometimes need to save two distinct 19906 * copies in the ill_t, and our context doesn't permit sleeping or allocation 19907 * failure (we'll free the other copy if it's not needed). Since the ill_t 19908 * is quiesced, we know any stale IREs with the old address information have 19909 * already been removed, so we don't need to call ill_fastpath_flush(). 19910 */ 19911 /* ARGSUSED */ 19912 static void 19913 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 19914 { 19915 ill_t *ill = q->q_ptr; 19916 mblk_t *addrmp2 = unlinkb(addrmp); 19917 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 19918 uint_t addrlen, addroff; 19919 19920 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19921 19922 addroff = dlindp->dl_addr_offset; 19923 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 19924 19925 switch (dlindp->dl_data) { 19926 case DL_IPV6_LINK_LAYER_ADDR: 19927 ill_set_ndmp(ill, addrmp, addroff, addrlen); 19928 freemsg(addrmp2); 19929 break; 19930 19931 case DL_CURR_PHYS_ADDR: 19932 freemsg(ill->ill_phys_addr_mp); 19933 ill->ill_phys_addr = addrmp->b_rptr + addroff; 19934 ill->ill_phys_addr_mp = addrmp; 19935 ill->ill_phys_addr_length = addrlen; 19936 19937 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 19938 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 19939 else 19940 freemsg(addrmp2); 19941 break; 19942 default: 19943 ASSERT(0); 19944 } 19945 19946 /* 19947 * If there are ipifs to bring up, ill_up_ipifs() will return 19948 * EINPROGRESS, and ipsq_current_finish() will be called by 19949 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 19950 * brought up. 19951 */ 19952 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 19953 ipsq_current_finish(ipsq); 19954 } 19955 19956 /* 19957 * Helper routine for setting the ill_nd_lla fields. 19958 */ 19959 void 19960 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 19961 { 19962 freemsg(ill->ill_nd_lla_mp); 19963 ill->ill_nd_lla = ndmp->b_rptr + addroff; 19964 ill->ill_nd_lla_mp = ndmp; 19965 ill->ill_nd_lla_len = addrlen; 19966 } 19967 19968 /* 19969 * Replumb the ill. 19970 */ 19971 int 19972 ill_replumb(ill_t *ill, mblk_t *mp) 19973 { 19974 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19975 19976 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19977 19978 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19979 19980 /* 19981 * If we can quiesce the ill, then continue. If not, then 19982 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 19983 */ 19984 ill_down_ipifs(ill, B_FALSE); 19985 19986 mutex_enter(&ill->ill_lock); 19987 if (!ill_is_quiescent(ill)) { 19988 /* call cannot fail since `conn_t *' argument is NULL */ 19989 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19990 mp, ILL_DOWN); 19991 mutex_exit(&ill->ill_lock); 19992 return (EINPROGRESS); 19993 } 19994 mutex_exit(&ill->ill_lock); 19995 19996 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 19997 return (0); 19998 } 19999 20000 /* ARGSUSED */ 20001 static void 20002 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 20003 { 20004 ill_t *ill = q->q_ptr; 20005 20006 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20007 20008 ill_down_ipifs_tail(ill); 20009 20010 freemsg(ill->ill_replumb_mp); 20011 ill->ill_replumb_mp = copyb(mp); 20012 20013 /* 20014 * Successfully quiesced and brought down the interface, now we send 20015 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 20016 * DL_NOTE_REPLUMB message. 20017 */ 20018 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 20019 DL_NOTIFY_CONF); 20020 ASSERT(mp != NULL); 20021 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 20022 DL_NOTE_REPLUMB_DONE; 20023 ill_dlpi_send(ill, mp); 20024 20025 /* 20026 * If there are ipifs to bring up, ill_up_ipifs() will return 20027 * EINPROGRESS, and ipsq_current_finish() will be called by 20028 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20029 * brought up. 20030 */ 20031 if (ill->ill_replumb_mp == NULL || 20032 ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) { 20033 ipsq_current_finish(ipsq); 20034 } 20035 } 20036 20037 major_t IP_MAJ; 20038 #define IP "ip" 20039 20040 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20041 #define UDPDEV "/devices/pseudo/udp@0:udp" 20042 20043 /* 20044 * Issue REMOVEIF ioctls to have the loopback interfaces 20045 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20046 * the former going away when the user-level processes in the zone 20047 * are killed * and the latter are cleaned up by the stream head 20048 * str_stack_shutdown callback that undoes all I_PLINKs. 20049 */ 20050 void 20051 ip_loopback_cleanup(ip_stack_t *ipst) 20052 { 20053 int error; 20054 ldi_handle_t lh = NULL; 20055 ldi_ident_t li = NULL; 20056 int rval; 20057 cred_t *cr; 20058 struct strioctl iocb; 20059 struct lifreq lifreq; 20060 20061 IP_MAJ = ddi_name_to_major(IP); 20062 20063 #ifdef NS_DEBUG 20064 (void) printf("ip_loopback_cleanup() stackid %d\n", 20065 ipst->ips_netstack->netstack_stackid); 20066 #endif 20067 20068 bzero(&lifreq, sizeof (lifreq)); 20069 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20070 20071 error = ldi_ident_from_major(IP_MAJ, &li); 20072 if (error) { 20073 #ifdef DEBUG 20074 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20075 error); 20076 #endif 20077 return; 20078 } 20079 20080 cr = zone_get_kcred(netstackid_to_zoneid( 20081 ipst->ips_netstack->netstack_stackid)); 20082 ASSERT(cr != NULL); 20083 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20084 if (error) { 20085 #ifdef DEBUG 20086 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20087 error); 20088 #endif 20089 goto out; 20090 } 20091 iocb.ic_cmd = SIOCLIFREMOVEIF; 20092 iocb.ic_timout = 15; 20093 iocb.ic_len = sizeof (lifreq); 20094 iocb.ic_dp = (char *)&lifreq; 20095 20096 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20097 /* LINTED - statement has no consequent */ 20098 if (error) { 20099 #ifdef NS_DEBUG 20100 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20101 "UDP6 error %d\n", error); 20102 #endif 20103 } 20104 (void) ldi_close(lh, FREAD|FWRITE, cr); 20105 lh = NULL; 20106 20107 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20108 if (error) { 20109 #ifdef NS_DEBUG 20110 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20111 error); 20112 #endif 20113 goto out; 20114 } 20115 20116 iocb.ic_cmd = SIOCLIFREMOVEIF; 20117 iocb.ic_timout = 15; 20118 iocb.ic_len = sizeof (lifreq); 20119 iocb.ic_dp = (char *)&lifreq; 20120 20121 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20122 /* LINTED - statement has no consequent */ 20123 if (error) { 20124 #ifdef NS_DEBUG 20125 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20126 "UDP error %d\n", error); 20127 #endif 20128 } 20129 (void) ldi_close(lh, FREAD|FWRITE, cr); 20130 lh = NULL; 20131 20132 out: 20133 /* Close layered handles */ 20134 if (lh) 20135 (void) ldi_close(lh, FREAD|FWRITE, cr); 20136 if (li) 20137 ldi_ident_release(li); 20138 20139 crfree(cr); 20140 } 20141 20142 /* 20143 * This needs to be in-sync with nic_event_t definition 20144 */ 20145 static const char * 20146 ill_hook_event2str(nic_event_t event) 20147 { 20148 switch (event) { 20149 case NE_PLUMB: 20150 return ("PLUMB"); 20151 case NE_UNPLUMB: 20152 return ("UNPLUMB"); 20153 case NE_UP: 20154 return ("UP"); 20155 case NE_DOWN: 20156 return ("DOWN"); 20157 case NE_ADDRESS_CHANGE: 20158 return ("ADDRESS_CHANGE"); 20159 case NE_LIF_UP: 20160 return ("LIF_UP"); 20161 case NE_LIF_DOWN: 20162 return ("LIF_DOWN"); 20163 default: 20164 return ("UNKNOWN"); 20165 } 20166 } 20167 20168 void 20169 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20170 nic_event_data_t data, size_t datalen) 20171 { 20172 ip_stack_t *ipst = ill->ill_ipst; 20173 hook_nic_event_int_t *info; 20174 const char *str = NULL; 20175 20176 /* create a new nic event info */ 20177 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20178 goto fail; 20179 20180 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20181 info->hnei_event.hne_lif = lif; 20182 info->hnei_event.hne_event = event; 20183 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20184 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20185 info->hnei_event.hne_data = NULL; 20186 info->hnei_event.hne_datalen = 0; 20187 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20188 20189 if (data != NULL && datalen != 0) { 20190 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20191 if (info->hnei_event.hne_data == NULL) 20192 goto fail; 20193 bcopy(data, info->hnei_event.hne_data, datalen); 20194 info->hnei_event.hne_datalen = datalen; 20195 } 20196 20197 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20198 DDI_NOSLEEP) == DDI_SUCCESS) 20199 return; 20200 20201 fail: 20202 if (info != NULL) { 20203 if (info->hnei_event.hne_data != NULL) { 20204 kmem_free(info->hnei_event.hne_data, 20205 info->hnei_event.hne_datalen); 20206 } 20207 kmem_free(info, sizeof (hook_nic_event_t)); 20208 } 20209 str = ill_hook_event2str(event); 20210 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20211 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20212 } 20213 20214 void 20215 ipif_up_notify(ipif_t *ipif) 20216 { 20217 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20218 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20219 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20220 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20221 NE_LIF_UP, NULL, 0); 20222 } 20223