1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_multicast_down(ipif_t *ipif); 173 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 174 static void ipif_set_default(ipif_t *ipif); 175 static int ipif_set_values(queue_t *q, mblk_t *mp, 176 char *interf_name, uint_t *ppa); 177 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 178 queue_t *q); 179 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 180 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 181 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 182 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 183 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 184 185 static int ill_alloc_ppa(ill_if_t *, ill_t *); 186 static int ill_arp_off(ill_t *ill); 187 static int ill_arp_on(ill_t *ill); 188 static void ill_delete_interface_type(ill_if_t *); 189 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 190 static void ill_dl_down(ill_t *ill); 191 static void ill_down(ill_t *ill); 192 static void ill_downi(ire_t *ire, char *ill_arg); 193 static void ill_free_mib(ill_t *ill); 194 static void ill_glist_delete(ill_t *); 195 static boolean_t ill_has_usable_ipif(ill_t *); 196 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 197 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 198 static void ill_phyint_free(ill_t *ill); 199 static void ill_phyint_reinit(ill_t *ill); 200 static void ill_set_nce_router_flags(ill_t *, boolean_t); 201 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 202 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 203 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 204 static void ill_stq_cache_delete(ire_t *, char *); 205 206 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 208 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 in6_addr_t *); 210 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 ipaddr_t *); 212 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 213 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 in6_addr_t *); 215 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 216 ipaddr_t *); 217 218 static void ipif_save_ire(ipif_t *, ire_t *); 219 static void ipif_remove_ire(ipif_t *, ire_t *); 220 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 221 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 222 223 /* 224 * Per-ill IPsec capabilities management. 225 */ 226 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 227 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 228 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 229 static void ill_ipsec_capab_delete(ill_t *, uint_t); 230 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 243 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 244 int *); 245 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 246 static void ill_capability_dld_ack(ill_t *, mblk_t *, 247 dl_capability_sub_t *); 248 static void ill_capability_dld_enable(ill_t *); 249 static void ill_capability_ack_thr(void *); 250 static void ill_capability_lso_enable(ill_t *); 251 static void ill_capability_send(ill_t *, mblk_t *); 252 253 static void illgrp_cache_delete(ire_t *, char *); 254 static void illgrp_delete(ill_t *ill); 255 static void illgrp_reset_schednext(ill_t *ill); 256 257 static ill_t *ill_prev_usesrc(ill_t *); 258 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 259 static void ill_disband_usesrc_group(ill_t *); 260 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 261 262 #ifdef DEBUG 263 static void ill_trace_cleanup(const ill_t *); 264 static void ipif_trace_cleanup(const ipif_t *); 265 #endif 266 267 /* 268 * if we go over the memory footprint limit more than once in this msec 269 * interval, we'll start pruning aggressively. 270 */ 271 int ip_min_frag_prune_time = 0; 272 273 /* 274 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 275 * and the IPsec DOI 276 */ 277 #define MAX_IPSEC_ALGS 256 278 279 #define BITSPERBYTE 8 280 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 281 282 #define IPSEC_ALG_ENABLE(algs, algid) \ 283 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 284 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 285 286 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 287 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 288 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 289 290 typedef uint8_t ipsec_capab_elem_t; 291 292 /* 293 * Per-algorithm parameters. Note that at present, only encryption 294 * algorithms have variable keysize (IKE does not provide a way to negotiate 295 * auth algorithm keysize). 296 * 297 * All sizes here are in bits. 298 */ 299 typedef struct 300 { 301 uint16_t minkeylen; 302 uint16_t maxkeylen; 303 } ipsec_capab_algparm_t; 304 305 /* 306 * Per-ill capabilities. 307 */ 308 struct ill_ipsec_capab_s { 309 ipsec_capab_elem_t *encr_hw_algs; 310 ipsec_capab_elem_t *auth_hw_algs; 311 uint32_t algs_size; /* size of _hw_algs in bytes */ 312 /* algorithm key lengths */ 313 ipsec_capab_algparm_t *encr_algparm; 314 uint32_t encr_algparm_size; 315 uint32_t encr_algparm_end; 316 }; 317 318 /* 319 * The field values are larger than strictly necessary for simple 320 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 321 */ 322 static area_t ip_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IP_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 /* 341 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 342 * support 343 */ 344 static area_t ip6_area_template = { 345 AR_ENTRY_ADD, /* area_cmd */ 346 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 347 /* area_name_offset */ 348 /* area_name_length temporarily holds this structure length */ 349 sizeof (area_t), /* area_name_length */ 350 IP_ARP_PROTO_TYPE, /* area_proto */ 351 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 352 IPV6_ADDR_LEN, /* area_proto_addr_length */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 354 /* area_proto_mask_offset */ 355 0, /* area_flags */ 356 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 357 /* area_hw_addr_offset */ 358 /* Zero length hw_addr_length means 'use your idea of the address' */ 359 0 /* area_hw_addr_length */ 360 }; 361 362 static ared_t ip_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IP_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IP_ADDR_LEN, 369 0 370 }; 371 372 static ared_t ip6_ared_template = { 373 AR_ENTRY_DELETE, 374 sizeof (ared_t) + IPV6_ADDR_LEN, 375 sizeof (ared_t), 376 IP_ARP_PROTO_TYPE, 377 sizeof (ared_t), 378 IPV6_ADDR_LEN, 379 0 380 }; 381 382 /* 383 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 384 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 385 * areq is used). 386 */ 387 static areq_t ip_areq_template = { 388 AR_ENTRY_QUERY, /* cmd */ 389 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 390 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 391 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 392 sizeof (areq_t), /* target addr offset */ 393 IP_ADDR_LEN, /* target addr_length */ 394 0, /* flags */ 395 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 396 IP_ADDR_LEN, /* sender addr length */ 397 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 398 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 399 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 400 /* anything else filled in by the code */ 401 }; 402 403 static arc_t ip_aru_template = { 404 AR_INTERFACE_UP, 405 sizeof (arc_t), /* Name offset */ 406 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 407 }; 408 409 static arc_t ip_ard_template = { 410 AR_INTERFACE_DOWN, 411 sizeof (arc_t), /* Name offset */ 412 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 413 }; 414 415 static arc_t ip_aron_template = { 416 AR_INTERFACE_ON, 417 sizeof (arc_t), /* Name offset */ 418 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 419 }; 420 421 static arc_t ip_aroff_template = { 422 AR_INTERFACE_OFF, 423 sizeof (arc_t), /* Name offset */ 424 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 425 }; 426 427 static arma_t ip_arma_multi_template = { 428 AR_MAPPING_ADD, 429 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 430 /* Name offset */ 431 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 432 IP_ARP_PROTO_TYPE, 433 sizeof (arma_t), /* proto_addr_offset */ 434 IP_ADDR_LEN, /* proto_addr_length */ 435 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 436 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 437 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 438 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 439 IP_MAX_HW_LEN, /* hw_addr_length */ 440 0, /* hw_mapping_start */ 441 }; 442 443 static ipft_t ip_ioctl_ftbl[] = { 444 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 445 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 446 IPFT_F_NO_REPLY }, 447 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 448 IPFT_F_NO_REPLY }, 449 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 450 { 0 } 451 }; 452 453 /* Simple ICMP IP Header Template */ 454 static ipha_t icmp_ipha = { 455 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 456 }; 457 458 /* Flag descriptors for ip_ipif_report */ 459 static nv_t ipif_nv_tbl[] = { 460 { IPIF_UP, "UP" }, 461 { IPIF_BROADCAST, "BROADCAST" }, 462 { ILLF_DEBUG, "DEBUG" }, 463 { PHYI_LOOPBACK, "LOOPBACK" }, 464 { IPIF_POINTOPOINT, "POINTOPOINT" }, 465 { ILLF_NOTRAILERS, "NOTRAILERS" }, 466 { PHYI_RUNNING, "RUNNING" }, 467 { ILLF_NOARP, "NOARP" }, 468 { PHYI_PROMISC, "PROMISC" }, 469 { PHYI_ALLMULTI, "ALLMULTI" }, 470 { PHYI_INTELLIGENT, "INTELLIGENT" }, 471 { ILLF_MULTICAST, "MULTICAST" }, 472 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 473 { IPIF_UNNUMBERED, "UNNUMBERED" }, 474 { IPIF_DHCPRUNNING, "DHCP" }, 475 { IPIF_PRIVATE, "PRIVATE" }, 476 { IPIF_NOXMIT, "NOXMIT" }, 477 { IPIF_NOLOCAL, "NOLOCAL" }, 478 { IPIF_DEPRECATED, "DEPRECATED" }, 479 { IPIF_PREFERRED, "PREFERRED" }, 480 { IPIF_TEMPORARY, "TEMPORARY" }, 481 { IPIF_ADDRCONF, "ADDRCONF" }, 482 { PHYI_VIRTUAL, "VIRTUAL" }, 483 { ILLF_ROUTER, "ROUTER" }, 484 { ILLF_NONUD, "NONUD" }, 485 { IPIF_ANYCAST, "ANYCAST" }, 486 { ILLF_NORTEXCH, "NORTEXCH" }, 487 { ILLF_IPV4, "IPV4" }, 488 { ILLF_IPV6, "IPV6" }, 489 { IPIF_NOFAILOVER, "NOFAILOVER" }, 490 { PHYI_FAILED, "FAILED" }, 491 { PHYI_STANDBY, "STANDBY" }, 492 { PHYI_INACTIVE, "INACTIVE" }, 493 { PHYI_OFFLINE, "OFFLINE" }, 494 }; 495 496 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 497 498 static ip_m_t ip_m_tbl[] = { 499 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_nodef_v6intfid }, 507 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_ether_v6intfid }, 509 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 510 ip_ib_v6intfid }, 511 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 512 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 513 ip_nodef_v6intfid } 514 }; 515 516 static ill_t ill_null; /* Empty ILL for init. */ 517 char ipif_loopback_name[] = "lo0"; 518 static char *ipv4_forward_suffix = ":ip_forwarding"; 519 static char *ipv6_forward_suffix = ":ip6_forwarding"; 520 static sin6_t sin6_null; /* Zero address for quick clears */ 521 static sin_t sin_null; /* Zero address for quick clears */ 522 523 /* When set search for unused ipif_seqid */ 524 static ipif_t ipif_zero; 525 526 /* 527 * ppa arena is created after these many 528 * interfaces have been plumbed. 529 */ 530 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 531 532 static uint_t 533 ipif_rand(ip_stack_t *ipst) 534 { 535 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 536 12345; 537 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 538 } 539 540 /* 541 * Allocate per-interface mibs. 542 * Returns true if ok. False otherwise. 543 * ipsq may not yet be allocated (loopback case ). 544 */ 545 static boolean_t 546 ill_allocate_mibs(ill_t *ill) 547 { 548 /* Already allocated? */ 549 if (ill->ill_ip_mib != NULL) { 550 if (ill->ill_isv6) 551 ASSERT(ill->ill_icmp6_mib != NULL); 552 return (B_TRUE); 553 } 554 555 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 556 KM_NOSLEEP); 557 if (ill->ill_ip_mib == NULL) { 558 return (B_FALSE); 559 } 560 561 /* Setup static information */ 562 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 563 sizeof (mib2_ipIfStatsEntry_t)); 564 if (ill->ill_isv6) { 565 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 566 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 567 sizeof (mib2_ipv6AddrEntry_t)); 568 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 569 sizeof (mib2_ipv6RouteEntry_t)); 570 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 571 sizeof (mib2_ipv6NetToMediaEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 573 sizeof (ipv6_member_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 575 sizeof (ipv6_grpsrc_t)); 576 } else { 577 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 578 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 579 sizeof (mib2_ipAddrEntry_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 581 sizeof (mib2_ipRouteEntry_t)); 582 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 583 sizeof (mib2_ipNetToMediaEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 585 sizeof (ip_member_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 587 sizeof (ip_grpsrc_t)); 588 589 /* 590 * For a v4 ill, we are done at this point, because per ill 591 * icmp mibs are only used for v6. 592 */ 593 return (B_TRUE); 594 } 595 596 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_icmp6_mib == NULL) { 599 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 600 ill->ill_ip_mib = NULL; 601 return (B_FALSE); 602 } 603 /* static icmp info */ 604 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 605 sizeof (mib2_ipv6IfIcmpEntry_t); 606 /* 607 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 608 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 609 * -> ill_phyint_reinit 610 */ 611 return (B_TRUE); 612 } 613 614 /* 615 * Common code for preparation of ARP commands. Two points to remember: 616 * 1) The ill_name is tacked on at the end of the allocated space so 617 * the templates name_offset field must contain the total space 618 * to allocate less the name length. 619 * 620 * 2) The templates name_length field should contain the *template* 621 * length. We use it as a parameter to bcopy() and then write 622 * the real ill_name_length into the name_length field of the copy. 623 * (Always called as writer.) 624 */ 625 mblk_t * 626 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 627 { 628 arc_t *arc = (arc_t *)template; 629 char *cp; 630 int len; 631 mblk_t *mp; 632 uint_t name_length = ill->ill_name_length; 633 uint_t template_len = arc->arc_name_length; 634 635 len = arc->arc_name_offset + name_length; 636 mp = allocb(len, BPRI_HI); 637 if (mp == NULL) 638 return (NULL); 639 cp = (char *)mp->b_rptr; 640 mp->b_wptr = (uchar_t *)&cp[len]; 641 if (template_len) 642 bcopy(template, cp, template_len); 643 if (len > template_len) 644 bzero(&cp[template_len], len - template_len); 645 mp->b_datap->db_type = M_PROTO; 646 647 arc = (arc_t *)cp; 648 arc->arc_name_length = name_length; 649 cp = (char *)arc + arc->arc_name_offset; 650 bcopy(ill->ill_name, cp, name_length); 651 652 if (addr) { 653 area_t *area = (area_t *)mp->b_rptr; 654 655 cp = (char *)area + area->area_proto_addr_offset; 656 bcopy(addr, cp, area->area_proto_addr_length); 657 if (area->area_cmd == AR_ENTRY_ADD) { 658 cp = (char *)area; 659 len = area->area_proto_addr_length; 660 if (area->area_proto_mask_offset) 661 cp += area->area_proto_mask_offset; 662 else 663 cp += area->area_proto_addr_offset + len; 664 while (len-- > 0) 665 *cp++ = (char)~0; 666 } 667 } 668 return (mp); 669 } 670 671 mblk_t * 672 ipif_area_alloc(ipif_t *ipif) 673 { 674 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 675 (char *)&ipif->ipif_lcl_addr)); 676 } 677 678 mblk_t * 679 ipif_ared_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 687 { 688 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 689 (char *)&addr)); 690 } 691 692 /* 693 * Completely vaporize a lower level tap and all associated interfaces. 694 * ill_delete is called only out of ip_close when the device control 695 * stream is being closed. 696 */ 697 void 698 ill_delete(ill_t *ill) 699 { 700 ipif_t *ipif; 701 ill_t *prev_ill; 702 ip_stack_t *ipst = ill->ill_ipst; 703 704 /* 705 * ill_delete may be forcibly entering the ipsq. The previous 706 * ioctl may not have completed and may need to be aborted. 707 * ipsq_flush takes care of it. If we don't need to enter the 708 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 709 * ill_delete_tail is sufficient. 710 */ 711 ipsq_flush(ill); 712 713 /* 714 * Nuke all interfaces. ipif_free will take down the interface, 715 * remove it from the list, and free the data structure. 716 * Walk down the ipif list and remove the logical interfaces 717 * first before removing the main ipif. We can't unplumb 718 * zeroth interface first in the case of IPv6 as reset_conn_ill 719 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 720 * POINTOPOINT. 721 * 722 * If ill_ipif was not properly initialized (i.e low on memory), 723 * then no interfaces to clean up. In this case just clean up the 724 * ill. 725 */ 726 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 727 ipif_free(ipif); 728 729 /* 730 * Used only by ill_arp_on and ill_arp_off, which are writers. 731 * So nobody can be using this mp now. Free the mp allocated for 732 * honoring ILLF_NOARP 733 */ 734 freemsg(ill->ill_arp_on_mp); 735 ill->ill_arp_on_mp = NULL; 736 737 /* Clean up msgs on pending upcalls for mrouted */ 738 reset_mrt_ill(ill); 739 740 /* 741 * ipif_free -> reset_conn_ipif will remove all multicast 742 * references for IPv4. For IPv6, we need to do it here as 743 * it points only at ills. 744 */ 745 reset_conn_ill(ill); 746 747 /* 748 * Remove multicast references added as a result of calls to 749 * ip_join_allmulti(). 750 */ 751 ip_purge_allmulti(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 ASSERT(!(ill->ill_capabilities & 824 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 825 826 if (ill->ill_net_type != IRE_LOOPBACK) 827 qprocsoff(ill->ill_rq); 828 829 /* 830 * We do an ipsq_flush once again now. New messages could have 831 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 832 * could also have landed up if an ioctl thread had looked up 833 * the ill before we set the ILL_CONDEMNED flag, but not yet 834 * enqueued the ioctl when we did the ipsq_flush last time. 835 */ 836 ipsq_flush(ill); 837 838 /* 839 * Free capabilities. 840 */ 841 if (ill->ill_ipsec_capab_ah != NULL) { 842 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 843 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 844 ill->ill_ipsec_capab_ah = NULL; 845 } 846 847 if (ill->ill_ipsec_capab_esp != NULL) { 848 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 849 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 850 ill->ill_ipsec_capab_esp = NULL; 851 } 852 853 if (ill->ill_mdt_capab != NULL) { 854 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 855 ill->ill_mdt_capab = NULL; 856 } 857 858 if (ill->ill_hcksum_capab != NULL) { 859 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 860 ill->ill_hcksum_capab = NULL; 861 } 862 863 if (ill->ill_zerocopy_capab != NULL) { 864 kmem_free(ill->ill_zerocopy_capab, 865 sizeof (ill_zerocopy_capab_t)); 866 ill->ill_zerocopy_capab = NULL; 867 } 868 869 if (ill->ill_lso_capab != NULL) { 870 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 871 ill->ill_lso_capab = NULL; 872 } 873 874 if (ill->ill_dld_capab != NULL) { 875 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 876 ill->ill_dld_capab = NULL; 877 } 878 879 while (ill->ill_ipif != NULL) 880 ipif_free_tail(ill->ill_ipif); 881 882 /* 883 * We have removed all references to ilm from conn and the ones joined 884 * within the kernel. 885 * 886 * We don't walk conns, mrts and ires because 887 * 888 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 889 * 2) ill_down ->ill_downi walks all the ires and cleans up 890 * ill references. 891 */ 892 ASSERT(ilm_walk_ill(ill) == 0); 893 /* 894 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 895 * could free the phyint. No more reference to the phyint after this 896 * point. 897 */ 898 (void) ill_glist_delete(ill); 899 900 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 901 if (ill->ill_ndd_name != NULL) 902 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 903 rw_exit(&ipst->ips_ip_g_nd_lock); 904 905 if (ill->ill_frag_ptr != NULL) { 906 uint_t count; 907 908 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 909 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 910 } 911 mi_free(ill->ill_frag_ptr); 912 ill->ill_frag_ptr = NULL; 913 ill->ill_frag_hash_tbl = NULL; 914 } 915 916 freemsg(ill->ill_nd_lla_mp); 917 /* Free all retained control messages. */ 918 mpp = &ill->ill_first_mp_to_free; 919 do { 920 while (mpp[0]) { 921 mblk_t *mp; 922 mblk_t *mp1; 923 924 mp = mpp[0]; 925 mpp[0] = mp->b_next; 926 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 927 mp1->b_next = NULL; 928 mp1->b_prev = NULL; 929 } 930 freemsg(mp); 931 } 932 } while (mpp++ != &ill->ill_last_mp_to_free); 933 934 ill_free_mib(ill); 935 936 #ifdef DEBUG 937 ill_trace_cleanup(ill); 938 #endif 939 940 /* Drop refcnt here */ 941 netstack_rele(ill->ill_ipst->ips_netstack); 942 ill->ill_ipst = NULL; 943 } 944 945 static void 946 ill_free_mib(ill_t *ill) 947 { 948 ip_stack_t *ipst = ill->ill_ipst; 949 950 /* 951 * MIB statistics must not be lost, so when an interface 952 * goes away the counter values will be added to the global 953 * MIBs. 954 */ 955 if (ill->ill_ip_mib != NULL) { 956 if (ill->ill_isv6) { 957 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 958 ill->ill_ip_mib); 959 } else { 960 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 961 ill->ill_ip_mib); 962 } 963 964 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 965 ill->ill_ip_mib = NULL; 966 } 967 if (ill->ill_icmp6_mib != NULL) { 968 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 969 ill->ill_icmp6_mib); 970 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 971 ill->ill_icmp6_mib = NULL; 972 } 973 } 974 975 /* 976 * Concatenate together a physical address and a sap. 977 * 978 * Sap_lengths are interpreted as follows: 979 * sap_length == 0 ==> no sap 980 * sap_length > 0 ==> sap is at the head of the dlpi address 981 * sap_length < 0 ==> sap is at the tail of the dlpi address 982 */ 983 static void 984 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 985 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 986 { 987 uint16_t sap_addr = (uint16_t)sap_src; 988 989 if (sap_length == 0) { 990 if (phys_src == NULL) 991 bzero(dst, phys_length); 992 else 993 bcopy(phys_src, dst, phys_length); 994 } else if (sap_length < 0) { 995 if (phys_src == NULL) 996 bzero(dst, phys_length); 997 else 998 bcopy(phys_src, dst, phys_length); 999 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1000 } else { 1001 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1002 if (phys_src == NULL) 1003 bzero((char *)dst + sap_length, phys_length); 1004 else 1005 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1006 } 1007 } 1008 1009 /* 1010 * Generate a dl_unitdata_req mblk for the device and address given. 1011 * addr_length is the length of the physical portion of the address. 1012 * If addr is NULL include an all zero address of the specified length. 1013 * TRUE? In any case, addr_length is taken to be the entire length of the 1014 * dlpi address, including the absolute value of sap_length. 1015 */ 1016 mblk_t * 1017 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1018 t_scalar_t sap_length) 1019 { 1020 dl_unitdata_req_t *dlur; 1021 mblk_t *mp; 1022 t_scalar_t abs_sap_length; /* absolute value */ 1023 1024 abs_sap_length = ABS(sap_length); 1025 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1026 DL_UNITDATA_REQ); 1027 if (mp == NULL) 1028 return (NULL); 1029 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1030 /* HACK: accomodate incompatible DLPI drivers */ 1031 if (addr_length == 8) 1032 addr_length = 6; 1033 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1034 dlur->dl_dest_addr_offset = sizeof (*dlur); 1035 dlur->dl_priority.dl_min = 0; 1036 dlur->dl_priority.dl_max = 0; 1037 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1038 (uchar_t *)&dlur[1]); 1039 return (mp); 1040 } 1041 1042 /* 1043 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1044 * Return an error if we already have 1 or more ioctls in progress. 1045 * This is used only for non-exclusive ioctls. Currently this is used 1046 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1047 * and thus need to use ipsq_pending_mp_add. 1048 */ 1049 boolean_t 1050 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1051 { 1052 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1053 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1054 /* 1055 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1056 */ 1057 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1058 (add_mp->b_datap->db_type == M_IOCTL)); 1059 1060 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1061 /* 1062 * Return error if the conn has started closing. The conn 1063 * could have finished cleaning up the pending mp list, 1064 * If so we should not add another mp to the list negating 1065 * the cleanup. 1066 */ 1067 if (connp->conn_state_flags & CONN_CLOSING) 1068 return (B_FALSE); 1069 /* 1070 * Add the pending mp to the head of the list, chained by b_next. 1071 * Note down the conn on which the ioctl request came, in b_prev. 1072 * This will be used to later get the conn, when we get a response 1073 * on the ill queue, from some other module (typically arp) 1074 */ 1075 add_mp->b_next = (void *)ill->ill_pending_mp; 1076 add_mp->b_queue = CONNP_TO_WQ(connp); 1077 ill->ill_pending_mp = add_mp; 1078 if (connp != NULL) 1079 connp->conn_oper_pending_ill = ill; 1080 return (B_TRUE); 1081 } 1082 1083 /* 1084 * Retrieve the ill_pending_mp and return it. We have to walk the list 1085 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1086 */ 1087 mblk_t * 1088 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1089 { 1090 mblk_t *prev = NULL; 1091 mblk_t *curr = NULL; 1092 uint_t id; 1093 conn_t *connp; 1094 1095 /* 1096 * When the conn closes, conn_ioctl_cleanup needs to clean 1097 * up the pending mp, but it does not know the ioc_id and 1098 * passes in a zero for it. 1099 */ 1100 mutex_enter(&ill->ill_lock); 1101 if (ioc_id != 0) 1102 *connpp = NULL; 1103 1104 /* Search the list for the appropriate ioctl based on ioc_id */ 1105 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1106 prev = curr, curr = curr->b_next) { 1107 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1108 connp = Q_TO_CONN(curr->b_queue); 1109 /* Match based on the ioc_id or based on the conn */ 1110 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1111 break; 1112 } 1113 1114 if (curr != NULL) { 1115 /* Unlink the mblk from the pending mp list */ 1116 if (prev != NULL) { 1117 prev->b_next = curr->b_next; 1118 } else { 1119 ASSERT(ill->ill_pending_mp == curr); 1120 ill->ill_pending_mp = curr->b_next; 1121 } 1122 1123 /* 1124 * conn refcnt must have been bumped up at the start of 1125 * the ioctl. So we can safely access the conn. 1126 */ 1127 ASSERT(CONN_Q(curr->b_queue)); 1128 *connpp = Q_TO_CONN(curr->b_queue); 1129 curr->b_next = NULL; 1130 curr->b_queue = NULL; 1131 } 1132 1133 mutex_exit(&ill->ill_lock); 1134 1135 return (curr); 1136 } 1137 1138 /* 1139 * Add the pending mp to the list. There can be only 1 pending mp 1140 * in the list. Any exclusive ioctl that needs to wait for a response 1141 * from another module or driver needs to use this function to set 1142 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1143 * the other module/driver. This is also used while waiting for the 1144 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1145 */ 1146 boolean_t 1147 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1148 int waitfor) 1149 { 1150 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1151 1152 ASSERT(IAM_WRITER_IPIF(ipif)); 1153 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1154 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1155 ASSERT(ipsq->ipsq_pending_mp == NULL); 1156 /* 1157 * The caller may be using a different ipif than the one passed into 1158 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1159 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1160 * that `ipsq_current_ipif == ipif'. 1161 */ 1162 ASSERT(ipsq->ipsq_current_ipif != NULL); 1163 1164 /* 1165 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1166 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1167 */ 1168 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1169 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1170 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1171 1172 if (connp != NULL) { 1173 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1174 /* 1175 * Return error if the conn has started closing. The conn 1176 * could have finished cleaning up the pending mp list, 1177 * If so we should not add another mp to the list negating 1178 * the cleanup. 1179 */ 1180 if (connp->conn_state_flags & CONN_CLOSING) 1181 return (B_FALSE); 1182 } 1183 mutex_enter(&ipsq->ipsq_lock); 1184 ipsq->ipsq_pending_ipif = ipif; 1185 /* 1186 * Note down the queue in b_queue. This will be returned by 1187 * ipsq_pending_mp_get. Caller will then use these values to restart 1188 * the processing 1189 */ 1190 add_mp->b_next = NULL; 1191 add_mp->b_queue = q; 1192 ipsq->ipsq_pending_mp = add_mp; 1193 ipsq->ipsq_waitfor = waitfor; 1194 1195 if (connp != NULL) 1196 connp->conn_oper_pending_ill = ipif->ipif_ill; 1197 mutex_exit(&ipsq->ipsq_lock); 1198 return (B_TRUE); 1199 } 1200 1201 /* 1202 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1203 * queued in the list. 1204 */ 1205 mblk_t * 1206 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1207 { 1208 mblk_t *curr = NULL; 1209 1210 mutex_enter(&ipsq->ipsq_lock); 1211 *connpp = NULL; 1212 if (ipsq->ipsq_pending_mp == NULL) { 1213 mutex_exit(&ipsq->ipsq_lock); 1214 return (NULL); 1215 } 1216 1217 /* There can be only 1 such excl message */ 1218 curr = ipsq->ipsq_pending_mp; 1219 ASSERT(curr != NULL && curr->b_next == NULL); 1220 ipsq->ipsq_pending_ipif = NULL; 1221 ipsq->ipsq_pending_mp = NULL; 1222 ipsq->ipsq_waitfor = 0; 1223 mutex_exit(&ipsq->ipsq_lock); 1224 1225 if (CONN_Q(curr->b_queue)) { 1226 /* 1227 * This mp did a refhold on the conn, at the start of the ioctl. 1228 * So we can safely return a pointer to the conn to the caller. 1229 */ 1230 *connpp = Q_TO_CONN(curr->b_queue); 1231 } else { 1232 *connpp = NULL; 1233 } 1234 curr->b_next = NULL; 1235 curr->b_prev = NULL; 1236 return (curr); 1237 } 1238 1239 /* 1240 * Cleanup the ioctl mp queued in ipsq_pending_mp 1241 * - Called in the ill_delete path 1242 * - Called in the M_ERROR or M_HANGUP path on the ill. 1243 * - Called in the conn close path. 1244 */ 1245 boolean_t 1246 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1247 { 1248 mblk_t *mp; 1249 ipsq_t *ipsq; 1250 queue_t *q; 1251 ipif_t *ipif; 1252 1253 ASSERT(IAM_WRITER_ILL(ill)); 1254 ipsq = ill->ill_phyint->phyint_ipsq; 1255 mutex_enter(&ipsq->ipsq_lock); 1256 /* 1257 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1258 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1259 * even if it is meant for another ill, since we have to enqueue 1260 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1261 * If connp is non-null we are called from the conn close path. 1262 */ 1263 mp = ipsq->ipsq_pending_mp; 1264 if (mp == NULL || (connp != NULL && 1265 mp->b_queue != CONNP_TO_WQ(connp))) { 1266 mutex_exit(&ipsq->ipsq_lock); 1267 return (B_FALSE); 1268 } 1269 /* Now remove from the ipsq_pending_mp */ 1270 ipsq->ipsq_pending_mp = NULL; 1271 q = mp->b_queue; 1272 mp->b_next = NULL; 1273 mp->b_prev = NULL; 1274 mp->b_queue = NULL; 1275 1276 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1277 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1278 if (ill->ill_move_in_progress) { 1279 ILL_CLEAR_MOVE(ill); 1280 } else if (ill->ill_up_ipifs) { 1281 ill_group_cleanup(ill); 1282 } 1283 1284 ipif = ipsq->ipsq_pending_ipif; 1285 ipsq->ipsq_pending_ipif = NULL; 1286 ipsq->ipsq_waitfor = 0; 1287 ipsq->ipsq_current_ipif = NULL; 1288 ipsq->ipsq_current_ioctl = 0; 1289 ipsq->ipsq_current_done = B_TRUE; 1290 mutex_exit(&ipsq->ipsq_lock); 1291 1292 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1293 if (connp == NULL) { 1294 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1295 } else { 1296 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1297 mutex_enter(&ipif->ipif_ill->ill_lock); 1298 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1299 mutex_exit(&ipif->ipif_ill->ill_lock); 1300 } 1301 } else { 1302 /* 1303 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1304 * be just inet_freemsg. we have to restart it 1305 * otherwise the thread will be stuck. 1306 */ 1307 inet_freemsg(mp); 1308 } 1309 return (B_TRUE); 1310 } 1311 1312 /* 1313 * The ill is closing. Cleanup all the pending mps. Called exclusively 1314 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1315 * knows this ill, and hence nobody can add an mp to this list 1316 */ 1317 static void 1318 ill_pending_mp_cleanup(ill_t *ill) 1319 { 1320 mblk_t *mp; 1321 queue_t *q; 1322 1323 ASSERT(IAM_WRITER_ILL(ill)); 1324 1325 mutex_enter(&ill->ill_lock); 1326 /* 1327 * Every mp on the pending mp list originating from an ioctl 1328 * added 1 to the conn refcnt, at the start of the ioctl. 1329 * So bump it down now. See comments in ip_wput_nondata() 1330 */ 1331 while (ill->ill_pending_mp != NULL) { 1332 mp = ill->ill_pending_mp; 1333 ill->ill_pending_mp = mp->b_next; 1334 mutex_exit(&ill->ill_lock); 1335 1336 q = mp->b_queue; 1337 ASSERT(CONN_Q(q)); 1338 mp->b_next = NULL; 1339 mp->b_prev = NULL; 1340 mp->b_queue = NULL; 1341 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1342 mutex_enter(&ill->ill_lock); 1343 } 1344 ill->ill_pending_ipif = NULL; 1345 1346 mutex_exit(&ill->ill_lock); 1347 } 1348 1349 /* 1350 * Called in the conn close path and ill delete path 1351 */ 1352 static void 1353 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1354 { 1355 ipsq_t *ipsq; 1356 mblk_t *prev; 1357 mblk_t *curr; 1358 mblk_t *next; 1359 queue_t *q; 1360 mblk_t *tmp_list = NULL; 1361 1362 ASSERT(IAM_WRITER_ILL(ill)); 1363 if (connp != NULL) 1364 q = CONNP_TO_WQ(connp); 1365 else 1366 q = ill->ill_wq; 1367 1368 ipsq = ill->ill_phyint->phyint_ipsq; 1369 /* 1370 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1371 * In the case of ioctl from a conn, there can be only 1 mp 1372 * queued on the ipsq. If an ill is being unplumbed, only messages 1373 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1374 * ioctls meant for this ill form conn's are not flushed. They will 1375 * be processed during ipsq_exit and will not find the ill and will 1376 * return error. 1377 */ 1378 mutex_enter(&ipsq->ipsq_lock); 1379 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1380 curr = next) { 1381 next = curr->b_next; 1382 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1383 /* Unlink the mblk from the pending mp list */ 1384 if (prev != NULL) { 1385 prev->b_next = curr->b_next; 1386 } else { 1387 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1388 ipsq->ipsq_xopq_mphead = curr->b_next; 1389 } 1390 if (ipsq->ipsq_xopq_mptail == curr) 1391 ipsq->ipsq_xopq_mptail = prev; 1392 /* 1393 * Create a temporary list and release the ipsq lock 1394 * New elements are added to the head of the tmp_list 1395 */ 1396 curr->b_next = tmp_list; 1397 tmp_list = curr; 1398 } else { 1399 prev = curr; 1400 } 1401 } 1402 mutex_exit(&ipsq->ipsq_lock); 1403 1404 while (tmp_list != NULL) { 1405 curr = tmp_list; 1406 tmp_list = curr->b_next; 1407 curr->b_next = NULL; 1408 curr->b_prev = NULL; 1409 curr->b_queue = NULL; 1410 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1411 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1412 CONN_CLOSE : NO_COPYOUT, NULL); 1413 } else { 1414 /* 1415 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1416 * this can't be just inet_freemsg. we have to 1417 * restart it otherwise the thread will be stuck. 1418 */ 1419 inet_freemsg(curr); 1420 } 1421 } 1422 } 1423 1424 /* 1425 * This conn has started closing. Cleanup any pending ioctl from this conn. 1426 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1427 */ 1428 void 1429 conn_ioctl_cleanup(conn_t *connp) 1430 { 1431 mblk_t *curr; 1432 ipsq_t *ipsq; 1433 ill_t *ill; 1434 boolean_t refheld; 1435 1436 /* 1437 * Is any exclusive ioctl pending ? If so clean it up. If the 1438 * ioctl has not yet started, the mp is pending in the list headed by 1439 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1440 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1441 * is currently executing now the mp is not queued anywhere but 1442 * conn_oper_pending_ill is null. The conn close will wait 1443 * till the conn_ref drops to zero. 1444 */ 1445 mutex_enter(&connp->conn_lock); 1446 ill = connp->conn_oper_pending_ill; 1447 if (ill == NULL) { 1448 mutex_exit(&connp->conn_lock); 1449 return; 1450 } 1451 1452 curr = ill_pending_mp_get(ill, &connp, 0); 1453 if (curr != NULL) { 1454 mutex_exit(&connp->conn_lock); 1455 CONN_DEC_REF(connp); 1456 inet_freemsg(curr); 1457 return; 1458 } 1459 /* 1460 * We may not be able to refhold the ill if the ill/ipif 1461 * is changing. But we need to make sure that the ill will 1462 * not vanish. So we just bump up the ill_waiter count. 1463 */ 1464 refheld = ill_waiter_inc(ill); 1465 mutex_exit(&connp->conn_lock); 1466 if (refheld) { 1467 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1468 ill_waiter_dcr(ill); 1469 /* 1470 * Check whether this ioctl has started and is 1471 * pending now in ipsq_pending_mp. If it is not 1472 * found there then check whether this ioctl has 1473 * not even started and is in the ipsq_xopq list. 1474 */ 1475 if (!ipsq_pending_mp_cleanup(ill, connp)) 1476 ipsq_xopq_mp_cleanup(ill, connp); 1477 ipsq = ill->ill_phyint->phyint_ipsq; 1478 ipsq_exit(ipsq); 1479 return; 1480 } 1481 } 1482 1483 /* 1484 * The ill is also closing and we could not bump up the 1485 * ill_waiter_count or we could not enter the ipsq. Leave 1486 * the cleanup to ill_delete 1487 */ 1488 mutex_enter(&connp->conn_lock); 1489 while (connp->conn_oper_pending_ill != NULL) 1490 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1491 mutex_exit(&connp->conn_lock); 1492 if (refheld) 1493 ill_waiter_dcr(ill); 1494 } 1495 1496 /* 1497 * ipcl_walk function for cleaning up conn_*_ill fields. 1498 */ 1499 static void 1500 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1501 { 1502 ill_t *ill = (ill_t *)arg; 1503 ire_t *ire; 1504 1505 mutex_enter(&connp->conn_lock); 1506 if (connp->conn_multicast_ill == ill) { 1507 /* Revert to late binding */ 1508 connp->conn_multicast_ill = NULL; 1509 connp->conn_orig_multicast_ifindex = 0; 1510 } 1511 if (connp->conn_incoming_ill == ill) 1512 connp->conn_incoming_ill = NULL; 1513 if (connp->conn_outgoing_ill == ill) 1514 connp->conn_outgoing_ill = NULL; 1515 if (connp->conn_outgoing_pill == ill) 1516 connp->conn_outgoing_pill = NULL; 1517 if (connp->conn_nofailover_ill == ill) 1518 connp->conn_nofailover_ill = NULL; 1519 if (connp->conn_dhcpinit_ill == ill) { 1520 connp->conn_dhcpinit_ill = NULL; 1521 ASSERT(ill->ill_dhcpinit != 0); 1522 atomic_dec_32(&ill->ill_dhcpinit); 1523 } 1524 if (connp->conn_ire_cache != NULL) { 1525 ire = connp->conn_ire_cache; 1526 /* 1527 * ip_newroute creates IRE_CACHE with ire_stq coming from 1528 * interface X and ipif coming from interface Y, if interface 1529 * X and Y are part of the same IPMPgroup. Thus whenever 1530 * interface X goes down, remove all references to it by 1531 * checking both on ire_ipif and ire_stq. 1532 */ 1533 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1534 (ire->ire_type == IRE_CACHE && 1535 ire->ire_stq == ill->ill_wq)) { 1536 connp->conn_ire_cache = NULL; 1537 mutex_exit(&connp->conn_lock); 1538 ire_refrele_notr(ire); 1539 return; 1540 } 1541 } 1542 mutex_exit(&connp->conn_lock); 1543 } 1544 1545 /* ARGSUSED */ 1546 void 1547 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1548 { 1549 ill_t *ill = q->q_ptr; 1550 ipif_t *ipif; 1551 1552 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1553 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1554 ipif_non_duplicate(ipif); 1555 ipif_down_tail(ipif); 1556 } 1557 freemsg(mp); 1558 ipsq_current_finish(ipsq); 1559 } 1560 1561 /* 1562 * ill_down_start is called when we want to down this ill and bring it up again 1563 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1564 * all interfaces, but don't tear down any plumbing. 1565 */ 1566 boolean_t 1567 ill_down_start(queue_t *q, mblk_t *mp) 1568 { 1569 ill_t *ill = q->q_ptr; 1570 ipif_t *ipif; 1571 1572 ASSERT(IAM_WRITER_ILL(ill)); 1573 1574 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1575 (void) ipif_down(ipif, NULL, NULL); 1576 1577 ill_down(ill); 1578 1579 (void) ipsq_pending_mp_cleanup(ill, NULL); 1580 1581 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1582 1583 /* 1584 * Atomically test and add the pending mp if references are active. 1585 */ 1586 mutex_enter(&ill->ill_lock); 1587 if (!ill_is_quiescent(ill)) { 1588 /* call cannot fail since `conn_t *' argument is NULL */ 1589 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1590 mp, ILL_DOWN); 1591 mutex_exit(&ill->ill_lock); 1592 return (B_FALSE); 1593 } 1594 mutex_exit(&ill->ill_lock); 1595 return (B_TRUE); 1596 } 1597 1598 static void 1599 ill_down(ill_t *ill) 1600 { 1601 ip_stack_t *ipst = ill->ill_ipst; 1602 1603 /* Blow off any IREs dependent on this ILL. */ 1604 ire_walk(ill_downi, (char *)ill, ipst); 1605 1606 /* Remove any conn_*_ill depending on this ill */ 1607 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1608 1609 if (ill->ill_group != NULL) { 1610 illgrp_delete(ill); 1611 } 1612 } 1613 1614 /* 1615 * ire_walk routine used to delete every IRE that depends on queues 1616 * associated with 'ill'. (Always called as writer.) 1617 */ 1618 static void 1619 ill_downi(ire_t *ire, char *ill_arg) 1620 { 1621 ill_t *ill = (ill_t *)ill_arg; 1622 1623 /* 1624 * ip_newroute creates IRE_CACHE with ire_stq coming from 1625 * interface X and ipif coming from interface Y, if interface 1626 * X and Y are part of the same IPMP group. Thus whenever interface 1627 * X goes down, remove all references to it by checking both 1628 * on ire_ipif and ire_stq. 1629 */ 1630 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1631 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1632 ire_delete(ire); 1633 } 1634 } 1635 1636 /* 1637 * Remove ire/nce from the fastpath list. 1638 */ 1639 void 1640 ill_fastpath_nack(ill_t *ill) 1641 { 1642 nce_fastpath_list_dispatch(ill, NULL, NULL); 1643 } 1644 1645 /* Consume an M_IOCACK of the fastpath probe. */ 1646 void 1647 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1648 { 1649 mblk_t *mp1 = mp; 1650 1651 /* 1652 * If this was the first attempt turn on the fastpath probing. 1653 */ 1654 mutex_enter(&ill->ill_lock); 1655 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1656 ill->ill_dlpi_fastpath_state = IDS_OK; 1657 mutex_exit(&ill->ill_lock); 1658 1659 /* Free the M_IOCACK mblk, hold on to the data */ 1660 mp = mp->b_cont; 1661 freeb(mp1); 1662 if (mp == NULL) 1663 return; 1664 if (mp->b_cont != NULL) { 1665 /* 1666 * Update all IRE's or NCE's that are waiting for 1667 * fastpath update. 1668 */ 1669 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1670 mp1 = mp->b_cont; 1671 freeb(mp); 1672 mp = mp1; 1673 } else { 1674 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1675 } 1676 1677 freeb(mp); 1678 } 1679 1680 /* 1681 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1682 * The data portion of the request is a dl_unitdata_req_t template for 1683 * what we would send downstream in the absence of a fastpath confirmation. 1684 */ 1685 int 1686 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1687 { 1688 struct iocblk *ioc; 1689 mblk_t *mp; 1690 1691 if (dlur_mp == NULL) 1692 return (EINVAL); 1693 1694 mutex_enter(&ill->ill_lock); 1695 switch (ill->ill_dlpi_fastpath_state) { 1696 case IDS_FAILED: 1697 /* 1698 * Driver NAKed the first fastpath ioctl - assume it doesn't 1699 * support it. 1700 */ 1701 mutex_exit(&ill->ill_lock); 1702 return (ENOTSUP); 1703 case IDS_UNKNOWN: 1704 /* This is the first probe */ 1705 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1706 break; 1707 default: 1708 break; 1709 } 1710 mutex_exit(&ill->ill_lock); 1711 1712 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1713 return (EAGAIN); 1714 1715 mp->b_cont = copyb(dlur_mp); 1716 if (mp->b_cont == NULL) { 1717 freeb(mp); 1718 return (EAGAIN); 1719 } 1720 1721 ioc = (struct iocblk *)mp->b_rptr; 1722 ioc->ioc_count = msgdsize(mp->b_cont); 1723 1724 putnext(ill->ill_wq, mp); 1725 return (0); 1726 } 1727 1728 void 1729 ill_capability_probe(ill_t *ill) 1730 { 1731 mblk_t *mp; 1732 1733 ASSERT(IAM_WRITER_ILL(ill)); 1734 1735 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1736 ill->ill_dlpi_capab_state != IDCS_FAILED) 1737 return; 1738 1739 /* 1740 * We are starting a new cycle of capability negotiation. 1741 * Free up the capab reset messages of any previous incarnation. 1742 * We will do a fresh allocation when we get the response to our probe 1743 */ 1744 if (ill->ill_capab_reset_mp != NULL) { 1745 freemsg(ill->ill_capab_reset_mp); 1746 ill->ill_capab_reset_mp = NULL; 1747 } 1748 1749 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1750 1751 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1752 if (mp == NULL) 1753 return; 1754 1755 ill_capability_send(ill, mp); 1756 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1757 } 1758 1759 void 1760 ill_capability_reset(ill_t *ill, boolean_t reneg) 1761 { 1762 ASSERT(IAM_WRITER_ILL(ill)); 1763 1764 if (ill->ill_dlpi_capab_state != IDCS_OK) 1765 return; 1766 1767 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1768 1769 ill_capability_send(ill, ill->ill_capab_reset_mp); 1770 ill->ill_capab_reset_mp = NULL; 1771 /* 1772 * We turn off all capabilities except those pertaining to 1773 * direct function call capabilities viz. ILL_CAPAB_DLD* 1774 * which will be turned off by the corresponding reset functions. 1775 */ 1776 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1777 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1778 } 1779 1780 static void 1781 ill_capability_reset_alloc(ill_t *ill) 1782 { 1783 mblk_t *mp; 1784 size_t size = 0; 1785 int err; 1786 dl_capability_req_t *capb; 1787 1788 ASSERT(IAM_WRITER_ILL(ill)); 1789 ASSERT(ill->ill_capab_reset_mp == NULL); 1790 1791 if (ILL_MDT_CAPABLE(ill)) 1792 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1793 1794 if (ILL_HCKSUM_CAPABLE(ill)) { 1795 size += sizeof (dl_capability_sub_t) + 1796 sizeof (dl_capab_hcksum_t); 1797 } 1798 1799 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1800 size += sizeof (dl_capability_sub_t) + 1801 sizeof (dl_capab_zerocopy_t); 1802 } 1803 1804 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1805 size += sizeof (dl_capability_sub_t); 1806 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1807 NULL, NULL); 1808 } 1809 1810 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1811 size += sizeof (dl_capability_sub_t) + 1812 sizeof (dl_capab_dld_t); 1813 } 1814 1815 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1816 STR_NOSIG, &err); 1817 1818 mp->b_datap->db_type = M_PROTO; 1819 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1820 1821 capb = (dl_capability_req_t *)mp->b_rptr; 1822 capb->dl_primitive = DL_CAPABILITY_REQ; 1823 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1824 capb->dl_sub_length = size; 1825 1826 mp->b_wptr += sizeof (dl_capability_req_t); 1827 1828 /* 1829 * Each handler fills in the corresponding dl_capability_sub_t 1830 * inside the mblk, 1831 */ 1832 ill_capability_mdt_reset_fill(ill, mp); 1833 ill_capability_hcksum_reset_fill(ill, mp); 1834 ill_capability_zerocopy_reset_fill(ill, mp); 1835 ill_capability_ipsec_reset_fill(ill, mp); 1836 ill_capability_dld_reset_fill(ill, mp); 1837 1838 ill->ill_capab_reset_mp = mp; 1839 } 1840 1841 static void 1842 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1843 { 1844 dl_capab_id_t *id_ic; 1845 uint_t sub_dl_cap = outers->dl_cap; 1846 dl_capability_sub_t *inners; 1847 uint8_t *capend; 1848 1849 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1850 1851 /* 1852 * Note: range checks here are not absolutely sufficient to 1853 * make us robust against malformed messages sent by drivers; 1854 * this is in keeping with the rest of IP's dlpi handling. 1855 * (Remember, it's coming from something else in the kernel 1856 * address space) 1857 */ 1858 1859 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1860 if (capend > mp->b_wptr) { 1861 cmn_err(CE_WARN, "ill_capability_id_ack: " 1862 "malformed sub-capability too long for mblk"); 1863 return; 1864 } 1865 1866 id_ic = (dl_capab_id_t *)(outers + 1); 1867 1868 if (outers->dl_length < sizeof (*id_ic) || 1869 (inners = &id_ic->id_subcap, 1870 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1872 "encapsulated capab type %d too long for mblk", 1873 inners->dl_cap); 1874 return; 1875 } 1876 1877 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1878 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1879 "isn't as expected; pass-thru module(s) detected, " 1880 "discarding capability\n", inners->dl_cap)); 1881 return; 1882 } 1883 1884 /* Process the encapsulated sub-capability */ 1885 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1886 } 1887 1888 /* 1889 * Process Multidata Transmit capability negotiation ack received from a 1890 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1891 * DL_CAPABILITY_ACK message. 1892 */ 1893 static void 1894 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 mblk_t *nmp = NULL; 1897 dl_capability_req_t *oc; 1898 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1899 ill_mdt_capab_t **ill_mdt_capab; 1900 uint_t sub_dl_cap = isub->dl_cap; 1901 uint8_t *capend; 1902 1903 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1904 1905 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1906 1907 /* 1908 * Note: range checks here are not absolutely sufficient to 1909 * make us robust against malformed messages sent by drivers; 1910 * this is in keeping with the rest of IP's dlpi handling. 1911 * (Remember, it's coming from something else in the kernel 1912 * address space) 1913 */ 1914 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 1922 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1923 1924 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1925 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1926 "unsupported MDT sub-capability (version %d, expected %d)", 1927 mdt_ic->mdt_version, MDT_VERSION_2); 1928 return; 1929 } 1930 1931 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1932 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1933 "capability isn't as expected; pass-thru module(s) " 1934 "detected, discarding capability\n")); 1935 return; 1936 } 1937 1938 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1939 1940 if (*ill_mdt_capab == NULL) { 1941 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1942 KM_NOSLEEP); 1943 if (*ill_mdt_capab == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1945 "could not enable MDT version %d " 1946 "for %s (ENOMEM)\n", MDT_VERSION_2, 1947 ill->ill_name); 1948 return; 1949 } 1950 } 1951 1952 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1953 "MDT version %d (%d bytes leading, %d bytes trailing " 1954 "header spaces, %d max pld bufs, %d span limit)\n", 1955 ill->ill_name, MDT_VERSION_2, 1956 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1957 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1958 1959 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1960 (*ill_mdt_capab)->ill_mdt_on = 1; 1961 /* 1962 * Round the following values to the nearest 32-bit; ULP 1963 * may further adjust them to accomodate for additional 1964 * protocol headers. We pass these values to ULP during 1965 * bind time. 1966 */ 1967 (*ill_mdt_capab)->ill_mdt_hdr_head = 1968 roundup(mdt_ic->mdt_hdr_head, 4); 1969 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1970 roundup(mdt_ic->mdt_hdr_tail, 4); 1971 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1972 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1973 1974 ill->ill_capabilities |= ILL_CAPAB_MDT; 1975 } else { 1976 uint_t size; 1977 uchar_t *rptr; 1978 1979 size = sizeof (dl_capability_req_t) + 1980 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1981 1982 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1983 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1984 "could not enable MDT for %s (ENOMEM)\n", 1985 ill->ill_name); 1986 return; 1987 } 1988 1989 rptr = nmp->b_rptr; 1990 /* initialize dl_capability_req_t */ 1991 oc = (dl_capability_req_t *)nmp->b_rptr; 1992 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1993 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1994 sizeof (dl_capab_mdt_t); 1995 nmp->b_rptr += sizeof (dl_capability_req_t); 1996 1997 /* initialize dl_capability_sub_t */ 1998 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1999 nmp->b_rptr += sizeof (*isub); 2000 2001 /* initialize dl_capab_mdt_t */ 2002 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2003 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2004 2005 nmp->b_rptr = rptr; 2006 2007 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2008 "to enable MDT version %d\n", ill->ill_name, 2009 MDT_VERSION_2)); 2010 2011 /* set ENABLE flag */ 2012 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2013 2014 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2015 ill_capability_send(ill, nmp); 2016 } 2017 } 2018 2019 static void 2020 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2021 { 2022 dl_capab_mdt_t *mdt_subcap; 2023 dl_capability_sub_t *dl_subcap; 2024 2025 if (!ILL_MDT_CAPABLE(ill)) 2026 return; 2027 2028 ASSERT(ill->ill_mdt_capab != NULL); 2029 2030 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2031 dl_subcap->dl_cap = DL_CAPAB_MDT; 2032 dl_subcap->dl_length = sizeof (*mdt_subcap); 2033 2034 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2035 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2036 mdt_subcap->mdt_flags = 0; 2037 mdt_subcap->mdt_hdr_head = 0; 2038 mdt_subcap->mdt_hdr_tail = 0; 2039 2040 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2041 } 2042 2043 static void 2044 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2045 { 2046 dl_capability_sub_t *dl_subcap; 2047 2048 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2049 return; 2050 2051 /* 2052 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2053 * initialized below since it is not used by DLD. 2054 */ 2055 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2056 dl_subcap->dl_cap = DL_CAPAB_DLD; 2057 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2058 2059 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2060 } 2061 2062 /* 2063 * Send a DL_NOTIFY_REQ to the specified ill to enable 2064 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2065 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2066 * acceleration. 2067 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2068 */ 2069 static boolean_t 2070 ill_enable_promisc_notify(ill_t *ill) 2071 { 2072 mblk_t *mp; 2073 dl_notify_req_t *req; 2074 2075 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2076 2077 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2078 if (mp == NULL) 2079 return (B_FALSE); 2080 2081 req = (dl_notify_req_t *)mp->b_rptr; 2082 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2083 DL_NOTE_PROMISC_OFF_PHYS; 2084 2085 ill_dlpi_send(ill, mp); 2086 2087 return (B_TRUE); 2088 } 2089 2090 /* 2091 * Allocate an IPsec capability request which will be filled by our 2092 * caller to turn on support for one or more algorithms. 2093 */ 2094 static mblk_t * 2095 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2096 { 2097 mblk_t *nmp; 2098 dl_capability_req_t *ocap; 2099 dl_capab_ipsec_t *ocip; 2100 dl_capab_ipsec_t *icip; 2101 uint8_t *ptr; 2102 icip = (dl_capab_ipsec_t *)(isub + 1); 2103 2104 /* 2105 * The first time around, we send a DL_NOTIFY_REQ to enable 2106 * PROMISC_ON/OFF notification from the provider. We need to 2107 * do this before enabling the algorithms to avoid leakage of 2108 * cleartext packets. 2109 */ 2110 2111 if (!ill_enable_promisc_notify(ill)) 2112 return (NULL); 2113 2114 /* 2115 * Allocate new mblk which will contain a new capability 2116 * request to enable the capabilities. 2117 */ 2118 2119 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2120 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2121 if (nmp == NULL) 2122 return (NULL); 2123 2124 ptr = nmp->b_rptr; 2125 2126 /* initialize dl_capability_req_t */ 2127 ocap = (dl_capability_req_t *)ptr; 2128 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2129 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2130 ptr += sizeof (dl_capability_req_t); 2131 2132 /* initialize dl_capability_sub_t */ 2133 bcopy(isub, ptr, sizeof (*isub)); 2134 ptr += sizeof (*isub); 2135 2136 /* initialize dl_capab_ipsec_t */ 2137 ocip = (dl_capab_ipsec_t *)ptr; 2138 bcopy(icip, ocip, sizeof (*icip)); 2139 2140 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2141 return (nmp); 2142 } 2143 2144 /* 2145 * Process an IPsec capability negotiation ack received from a DLS Provider. 2146 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2147 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2148 */ 2149 static void 2150 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2151 { 2152 dl_capab_ipsec_t *icip; 2153 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2154 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2155 uint_t cipher, nciphers; 2156 mblk_t *nmp; 2157 uint_t alg_len; 2158 boolean_t need_sadb_dump; 2159 uint_t sub_dl_cap = isub->dl_cap; 2160 ill_ipsec_capab_t **ill_capab; 2161 uint64_t ill_capab_flag; 2162 uint8_t *capend, *ciphend; 2163 boolean_t sadb_resync; 2164 2165 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2166 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2167 2168 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2169 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2170 ill_capab_flag = ILL_CAPAB_AH; 2171 } else { 2172 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2173 ill_capab_flag = ILL_CAPAB_ESP; 2174 } 2175 2176 /* 2177 * If the ill capability structure exists, then this incoming 2178 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2179 * If this is so, then we'd need to resynchronize the SADB 2180 * after re-enabling the offloaded ciphers. 2181 */ 2182 sadb_resync = (*ill_capab != NULL); 2183 2184 /* 2185 * Note: range checks here are not absolutely sufficient to 2186 * make us robust against malformed messages sent by drivers; 2187 * this is in keeping with the rest of IP's dlpi handling. 2188 * (Remember, it's coming from something else in the kernel 2189 * address space) 2190 */ 2191 2192 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2193 if (capend > mp->b_wptr) { 2194 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2195 "malformed sub-capability too long for mblk"); 2196 return; 2197 } 2198 2199 /* 2200 * There are two types of acks we process here: 2201 * 1. acks in reply to a (first form) generic capability req 2202 * (no ENABLE flag set) 2203 * 2. acks in reply to a ENABLE capability req. 2204 * (ENABLE flag set) 2205 * 2206 * We process the subcapability passed as argument as follows: 2207 * 1 do initializations 2208 * 1.1 initialize nmp = NULL 2209 * 1.2 set need_sadb_dump to B_FALSE 2210 * 2 for each cipher in subcapability: 2211 * 2.1 if ENABLE flag is set: 2212 * 2.1.1 update per-ill ipsec capabilities info 2213 * 2.1.2 set need_sadb_dump to B_TRUE 2214 * 2.2 if ENABLE flag is not set: 2215 * 2.2.1 if nmp is NULL: 2216 * 2.2.1.1 allocate and initialize nmp 2217 * 2.2.1.2 init current pos in nmp 2218 * 2.2.2 copy current cipher to current pos in nmp 2219 * 2.2.3 set ENABLE flag in nmp 2220 * 2.2.4 update current pos 2221 * 3 if nmp is not equal to NULL, send enable request 2222 * 3.1 send capability request 2223 * 4 if need_sadb_dump is B_TRUE 2224 * 4.1 enable promiscuous on/off notifications 2225 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2226 * AH or ESP SA's to interface. 2227 */ 2228 2229 nmp = NULL; 2230 oalg = NULL; 2231 need_sadb_dump = B_FALSE; 2232 icip = (dl_capab_ipsec_t *)(isub + 1); 2233 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2234 2235 nciphers = icip->cip_nciphers; 2236 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2237 2238 if (ciphend > capend) { 2239 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2240 "too many ciphers for sub-capability len"); 2241 return; 2242 } 2243 2244 for (cipher = 0; cipher < nciphers; cipher++) { 2245 alg_len = sizeof (dl_capab_ipsec_alg_t); 2246 2247 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2248 /* 2249 * TBD: when we provide a way to disable capabilities 2250 * from above, need to manage the request-pending state 2251 * and fail if we were not expecting this ACK. 2252 */ 2253 IPSECHW_DEBUG(IPSECHW_CAPAB, 2254 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2255 2256 /* 2257 * Update IPsec capabilities for this ill 2258 */ 2259 2260 if (*ill_capab == NULL) { 2261 IPSECHW_DEBUG(IPSECHW_CAPAB, 2262 ("ill_capability_ipsec_ack: " 2263 "allocating ipsec_capab for ill\n")); 2264 *ill_capab = ill_ipsec_capab_alloc(); 2265 2266 if (*ill_capab == NULL) { 2267 cmn_err(CE_WARN, 2268 "ill_capability_ipsec_ack: " 2269 "could not enable IPsec Hardware " 2270 "acceleration for %s (ENOMEM)\n", 2271 ill->ill_name); 2272 return; 2273 } 2274 } 2275 2276 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2277 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2278 2279 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2280 cmn_err(CE_WARN, 2281 "ill_capability_ipsec_ack: " 2282 "malformed IPsec algorithm id %d", 2283 ialg->alg_prim); 2284 continue; 2285 } 2286 2287 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2288 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2289 ialg->alg_prim); 2290 } else { 2291 ipsec_capab_algparm_t *alp; 2292 2293 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2294 ialg->alg_prim); 2295 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2296 ialg->alg_prim)) { 2297 cmn_err(CE_WARN, 2298 "ill_capability_ipsec_ack: " 2299 "no space for IPsec alg id %d", 2300 ialg->alg_prim); 2301 continue; 2302 } 2303 alp = &((*ill_capab)->encr_algparm[ 2304 ialg->alg_prim]); 2305 alp->minkeylen = ialg->alg_minbits; 2306 alp->maxkeylen = ialg->alg_maxbits; 2307 } 2308 ill->ill_capabilities |= ill_capab_flag; 2309 /* 2310 * indicate that a capability was enabled, which 2311 * will be used below to kick off a SADB dump 2312 * to the ill. 2313 */ 2314 need_sadb_dump = B_TRUE; 2315 } else { 2316 IPSECHW_DEBUG(IPSECHW_CAPAB, 2317 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2318 ialg->alg_prim)); 2319 2320 if (nmp == NULL) { 2321 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2322 if (nmp == NULL) { 2323 /* 2324 * Sending the PROMISC_ON/OFF 2325 * notification request failed. 2326 * We cannot enable the algorithms 2327 * since the Provider will not 2328 * notify IP of promiscous mode 2329 * changes, which could lead 2330 * to leakage of packets. 2331 */ 2332 cmn_err(CE_WARN, 2333 "ill_capability_ipsec_ack: " 2334 "could not enable IPsec Hardware " 2335 "acceleration for %s (ENOMEM)\n", 2336 ill->ill_name); 2337 return; 2338 } 2339 /* ptr to current output alg specifier */ 2340 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2341 } 2342 2343 /* 2344 * Copy current alg specifier, set ENABLE 2345 * flag, and advance to next output alg. 2346 * For now we enable all IPsec capabilities. 2347 */ 2348 ASSERT(oalg != NULL); 2349 bcopy(ialg, oalg, alg_len); 2350 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2351 nmp->b_wptr += alg_len; 2352 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2353 } 2354 2355 /* move to next input algorithm specifier */ 2356 ialg = (dl_capab_ipsec_alg_t *) 2357 ((char *)ialg + alg_len); 2358 } 2359 2360 if (nmp != NULL) 2361 /* 2362 * nmp points to a DL_CAPABILITY_REQ message to enable 2363 * IPsec hardware acceleration. 2364 */ 2365 ill_capability_send(ill, nmp); 2366 2367 if (need_sadb_dump) 2368 /* 2369 * An acknowledgement corresponding to a request to 2370 * enable acceleration was received, notify SADB. 2371 */ 2372 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2373 } 2374 2375 /* 2376 * Given an mblk with enough space in it, create sub-capability entries for 2377 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2378 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2379 * in preparation for the reset the DL_CAPABILITY_REQ message. 2380 */ 2381 static void 2382 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2383 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2384 { 2385 dl_capab_ipsec_t *oipsec; 2386 dl_capab_ipsec_alg_t *oalg; 2387 dl_capability_sub_t *dl_subcap; 2388 int i, k; 2389 2390 ASSERT(nciphers > 0); 2391 ASSERT(ill_cap != NULL); 2392 ASSERT(mp != NULL); 2393 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2394 2395 /* dl_capability_sub_t for "stype" */ 2396 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2397 dl_subcap->dl_cap = stype; 2398 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2399 mp->b_wptr += sizeof (dl_capability_sub_t); 2400 2401 /* dl_capab_ipsec_t for "stype" */ 2402 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2403 oipsec->cip_version = 1; 2404 oipsec->cip_nciphers = nciphers; 2405 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2406 2407 /* create entries for "stype" AUTH ciphers */ 2408 for (i = 0; i < ill_cap->algs_size; i++) { 2409 for (k = 0; k < BITSPERBYTE; k++) { 2410 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2411 continue; 2412 2413 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2414 bzero((void *)oalg, sizeof (*oalg)); 2415 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2416 oalg->alg_prim = k + (BITSPERBYTE * i); 2417 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2418 } 2419 } 2420 /* create entries for "stype" ENCR ciphers */ 2421 for (i = 0; i < ill_cap->algs_size; i++) { 2422 for (k = 0; k < BITSPERBYTE; k++) { 2423 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2424 continue; 2425 2426 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2427 bzero((void *)oalg, sizeof (*oalg)); 2428 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2429 oalg->alg_prim = k + (BITSPERBYTE * i); 2430 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2431 } 2432 } 2433 } 2434 2435 /* 2436 * Macro to count number of 1s in a byte (8-bit word). The total count is 2437 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2438 * POPC instruction, but our macro is more flexible for an arbitrary length 2439 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2440 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2441 * stays that way, we can reduce the number of iterations required. 2442 */ 2443 #define COUNT_1S(val, sum) { \ 2444 uint8_t x = val & 0xff; \ 2445 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2446 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2447 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2448 } 2449 2450 /* ARGSUSED */ 2451 static int 2452 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2453 int *esp_cntp, int *esp_lenp) 2454 { 2455 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2456 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2457 uint64_t ill_capabilities = ill->ill_capabilities; 2458 int ah_cnt = 0, esp_cnt = 0; 2459 int ah_len = 0, esp_len = 0; 2460 int i, size = 0; 2461 2462 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2463 return (0); 2464 2465 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2466 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2467 2468 /* Find out the number of ciphers for AH */ 2469 if (cap_ah != NULL) { 2470 for (i = 0; i < cap_ah->algs_size; i++) { 2471 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2472 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2473 } 2474 if (ah_cnt > 0) { 2475 size += sizeof (dl_capability_sub_t) + 2476 sizeof (dl_capab_ipsec_t); 2477 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2478 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2479 size += ah_len; 2480 } 2481 } 2482 2483 /* Find out the number of ciphers for ESP */ 2484 if (cap_esp != NULL) { 2485 for (i = 0; i < cap_esp->algs_size; i++) { 2486 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2487 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2488 } 2489 if (esp_cnt > 0) { 2490 size += sizeof (dl_capability_sub_t) + 2491 sizeof (dl_capab_ipsec_t); 2492 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2493 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2494 size += esp_len; 2495 } 2496 } 2497 2498 if (ah_cntp != NULL) 2499 *ah_cntp = ah_cnt; 2500 if (ah_lenp != NULL) 2501 *ah_lenp = ah_len; 2502 if (esp_cntp != NULL) 2503 *esp_cntp = esp_cnt; 2504 if (esp_lenp != NULL) 2505 *esp_lenp = esp_len; 2506 2507 return (size); 2508 } 2509 2510 /* ARGSUSED */ 2511 static void 2512 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2513 { 2514 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2515 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2516 int ah_cnt = 0, esp_cnt = 0; 2517 int ah_len = 0, esp_len = 0; 2518 int size; 2519 2520 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2521 &esp_cnt, &esp_len); 2522 if (size == 0) 2523 return; 2524 2525 /* 2526 * Clear the capability flags for IPsec HA but retain the ill 2527 * capability structures since it's possible that another thread 2528 * is still referring to them. The structures only get deallocated 2529 * when we destroy the ill. 2530 * 2531 * Various places check the flags to see if the ill is capable of 2532 * hardware acceleration, and by clearing them we ensure that new 2533 * outbound IPsec packets are sent down encrypted. 2534 */ 2535 2536 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2537 if (ah_cnt > 0) { 2538 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2539 cap_ah, mp); 2540 } 2541 2542 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2543 if (esp_cnt > 0) { 2544 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2545 cap_esp, mp); 2546 } 2547 2548 /* 2549 * At this point we've composed a bunch of sub-capabilities to be 2550 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2551 * by the caller. Upon receiving this reset message, the driver 2552 * must stop inbound decryption (by destroying all inbound SAs) 2553 * and let the corresponding packets come in encrypted. 2554 */ 2555 } 2556 2557 static void 2558 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2559 boolean_t encapsulated) 2560 { 2561 boolean_t legacy = B_FALSE; 2562 2563 /* 2564 * Note that only the following two sub-capabilities may be 2565 * considered as "legacy", since their original definitions 2566 * do not incorporate the dl_mid_t module ID token, and hence 2567 * may require the use of the wrapper sub-capability. 2568 */ 2569 switch (subp->dl_cap) { 2570 case DL_CAPAB_IPSEC_AH: 2571 case DL_CAPAB_IPSEC_ESP: 2572 legacy = B_TRUE; 2573 break; 2574 } 2575 2576 /* 2577 * For legacy sub-capabilities which don't incorporate a queue_t 2578 * pointer in their structures, discard them if we detect that 2579 * there are intermediate modules in between IP and the driver. 2580 */ 2581 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2582 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2583 "%d discarded; %d module(s) present below IP\n", 2584 subp->dl_cap, ill->ill_lmod_cnt)); 2585 return; 2586 } 2587 2588 switch (subp->dl_cap) { 2589 case DL_CAPAB_IPSEC_AH: 2590 case DL_CAPAB_IPSEC_ESP: 2591 ill_capability_ipsec_ack(ill, mp, subp); 2592 break; 2593 case DL_CAPAB_MDT: 2594 ill_capability_mdt_ack(ill, mp, subp); 2595 break; 2596 case DL_CAPAB_HCKSUM: 2597 ill_capability_hcksum_ack(ill, mp, subp); 2598 break; 2599 case DL_CAPAB_ZEROCOPY: 2600 ill_capability_zerocopy_ack(ill, mp, subp); 2601 break; 2602 case DL_CAPAB_DLD: 2603 ill_capability_dld_ack(ill, mp, subp); 2604 break; 2605 default: 2606 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2607 subp->dl_cap)); 2608 } 2609 } 2610 2611 /* 2612 * Process a hardware checksum offload capability negotiation ack received 2613 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2614 * of a DL_CAPABILITY_ACK message. 2615 */ 2616 static void 2617 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2618 { 2619 dl_capability_req_t *ocap; 2620 dl_capab_hcksum_t *ihck, *ohck; 2621 ill_hcksum_capab_t **ill_hcksum; 2622 mblk_t *nmp = NULL; 2623 uint_t sub_dl_cap = isub->dl_cap; 2624 uint8_t *capend; 2625 2626 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2627 2628 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2629 2630 /* 2631 * Note: range checks here are not absolutely sufficient to 2632 * make us robust against malformed messages sent by drivers; 2633 * this is in keeping with the rest of IP's dlpi handling. 2634 * (Remember, it's coming from something else in the kernel 2635 * address space) 2636 */ 2637 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2638 if (capend > mp->b_wptr) { 2639 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2640 "malformed sub-capability too long for mblk"); 2641 return; 2642 } 2643 2644 /* 2645 * There are two types of acks we process here: 2646 * 1. acks in reply to a (first form) generic capability req 2647 * (no ENABLE flag set) 2648 * 2. acks in reply to a ENABLE capability req. 2649 * (ENABLE flag set) 2650 */ 2651 ihck = (dl_capab_hcksum_t *)(isub + 1); 2652 2653 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2654 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2655 "unsupported hardware checksum " 2656 "sub-capability (version %d, expected %d)", 2657 ihck->hcksum_version, HCKSUM_VERSION_1); 2658 return; 2659 } 2660 2661 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2662 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2663 "checksum capability isn't as expected; pass-thru " 2664 "module(s) detected, discarding capability\n")); 2665 return; 2666 } 2667 2668 #define CURR_HCKSUM_CAPAB \ 2669 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2670 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2671 2672 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2673 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2674 /* do ENABLE processing */ 2675 if (*ill_hcksum == NULL) { 2676 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2677 KM_NOSLEEP); 2678 2679 if (*ill_hcksum == NULL) { 2680 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2681 "could not enable hcksum version %d " 2682 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2683 ill->ill_name); 2684 return; 2685 } 2686 } 2687 2688 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2689 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2690 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2691 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2692 "has enabled hardware checksumming\n ", 2693 ill->ill_name)); 2694 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2695 /* 2696 * Enabling hardware checksum offload 2697 * Currently IP supports {TCP,UDP}/IPv4 2698 * partial and full cksum offload and 2699 * IPv4 header checksum offload. 2700 * Allocate new mblk which will 2701 * contain a new capability request 2702 * to enable hardware checksum offload. 2703 */ 2704 uint_t size; 2705 uchar_t *rptr; 2706 2707 size = sizeof (dl_capability_req_t) + 2708 sizeof (dl_capability_sub_t) + isub->dl_length; 2709 2710 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2711 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2712 "could not enable hardware cksum for %s (ENOMEM)\n", 2713 ill->ill_name); 2714 return; 2715 } 2716 2717 rptr = nmp->b_rptr; 2718 /* initialize dl_capability_req_t */ 2719 ocap = (dl_capability_req_t *)nmp->b_rptr; 2720 ocap->dl_sub_offset = 2721 sizeof (dl_capability_req_t); 2722 ocap->dl_sub_length = 2723 sizeof (dl_capability_sub_t) + 2724 isub->dl_length; 2725 nmp->b_rptr += sizeof (dl_capability_req_t); 2726 2727 /* initialize dl_capability_sub_t */ 2728 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2729 nmp->b_rptr += sizeof (*isub); 2730 2731 /* initialize dl_capab_hcksum_t */ 2732 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2733 bcopy(ihck, ohck, sizeof (*ihck)); 2734 2735 nmp->b_rptr = rptr; 2736 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2737 2738 /* Set ENABLE flag */ 2739 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2740 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2741 2742 /* 2743 * nmp points to a DL_CAPABILITY_REQ message to enable 2744 * hardware checksum acceleration. 2745 */ 2746 ill_capability_send(ill, nmp); 2747 } else { 2748 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2749 "advertised %x hardware checksum capability flags\n", 2750 ill->ill_name, ihck->hcksum_txflags)); 2751 } 2752 } 2753 2754 static void 2755 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2756 { 2757 dl_capab_hcksum_t *hck_subcap; 2758 dl_capability_sub_t *dl_subcap; 2759 2760 if (!ILL_HCKSUM_CAPABLE(ill)) 2761 return; 2762 2763 ASSERT(ill->ill_hcksum_capab != NULL); 2764 2765 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2766 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2767 dl_subcap->dl_length = sizeof (*hck_subcap); 2768 2769 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2770 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2771 hck_subcap->hcksum_txflags = 0; 2772 2773 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2774 } 2775 2776 static void 2777 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2778 { 2779 mblk_t *nmp = NULL; 2780 dl_capability_req_t *oc; 2781 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2782 ill_zerocopy_capab_t **ill_zerocopy_capab; 2783 uint_t sub_dl_cap = isub->dl_cap; 2784 uint8_t *capend; 2785 2786 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2787 2788 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2789 2790 /* 2791 * Note: range checks here are not absolutely sufficient to 2792 * make us robust against malformed messages sent by drivers; 2793 * this is in keeping with the rest of IP's dlpi handling. 2794 * (Remember, it's coming from something else in the kernel 2795 * address space) 2796 */ 2797 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2798 if (capend > mp->b_wptr) { 2799 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2800 "malformed sub-capability too long for mblk"); 2801 return; 2802 } 2803 2804 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2805 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2806 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2807 "unsupported ZEROCOPY sub-capability (version %d, " 2808 "expected %d)", zc_ic->zerocopy_version, 2809 ZEROCOPY_VERSION_1); 2810 return; 2811 } 2812 2813 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2814 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2815 "capability isn't as expected; pass-thru module(s) " 2816 "detected, discarding capability\n")); 2817 return; 2818 } 2819 2820 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2821 if (*ill_zerocopy_capab == NULL) { 2822 *ill_zerocopy_capab = 2823 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2824 KM_NOSLEEP); 2825 2826 if (*ill_zerocopy_capab == NULL) { 2827 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2828 "could not enable Zero-copy version %d " 2829 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2830 ill->ill_name); 2831 return; 2832 } 2833 } 2834 2835 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2836 "supports Zero-copy version %d\n", ill->ill_name, 2837 ZEROCOPY_VERSION_1)); 2838 2839 (*ill_zerocopy_capab)->ill_zerocopy_version = 2840 zc_ic->zerocopy_version; 2841 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2842 zc_ic->zerocopy_flags; 2843 2844 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2845 } else { 2846 uint_t size; 2847 uchar_t *rptr; 2848 2849 size = sizeof (dl_capability_req_t) + 2850 sizeof (dl_capability_sub_t) + 2851 sizeof (dl_capab_zerocopy_t); 2852 2853 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2854 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2855 "could not enable zerocopy for %s (ENOMEM)\n", 2856 ill->ill_name); 2857 return; 2858 } 2859 2860 rptr = nmp->b_rptr; 2861 /* initialize dl_capability_req_t */ 2862 oc = (dl_capability_req_t *)rptr; 2863 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2864 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2865 sizeof (dl_capab_zerocopy_t); 2866 rptr += sizeof (dl_capability_req_t); 2867 2868 /* initialize dl_capability_sub_t */ 2869 bcopy(isub, rptr, sizeof (*isub)); 2870 rptr += sizeof (*isub); 2871 2872 /* initialize dl_capab_zerocopy_t */ 2873 zc_oc = (dl_capab_zerocopy_t *)rptr; 2874 *zc_oc = *zc_ic; 2875 2876 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2877 "to enable zero-copy version %d\n", ill->ill_name, 2878 ZEROCOPY_VERSION_1)); 2879 2880 /* set VMSAFE_MEM flag */ 2881 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2882 2883 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2884 ill_capability_send(ill, nmp); 2885 } 2886 } 2887 2888 static void 2889 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2890 { 2891 dl_capab_zerocopy_t *zerocopy_subcap; 2892 dl_capability_sub_t *dl_subcap; 2893 2894 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2895 return; 2896 2897 ASSERT(ill->ill_zerocopy_capab != NULL); 2898 2899 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2900 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2901 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2902 2903 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2904 zerocopy_subcap->zerocopy_version = 2905 ill->ill_zerocopy_capab->ill_zerocopy_version; 2906 zerocopy_subcap->zerocopy_flags = 0; 2907 2908 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2909 } 2910 2911 /* 2912 * DLD capability 2913 * Refer to dld.h for more information regarding the purpose and usage 2914 * of this capability. 2915 */ 2916 static void 2917 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2918 { 2919 dl_capab_dld_t *dld_ic, dld; 2920 uint_t sub_dl_cap = isub->dl_cap; 2921 uint8_t *capend; 2922 ill_dld_capab_t *idc; 2923 2924 ASSERT(IAM_WRITER_ILL(ill)); 2925 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2926 2927 /* 2928 * Note: range checks here are not absolutely sufficient to 2929 * make us robust against malformed messages sent by drivers; 2930 * this is in keeping with the rest of IP's dlpi handling. 2931 * (Remember, it's coming from something else in the kernel 2932 * address space) 2933 */ 2934 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2935 if (capend > mp->b_wptr) { 2936 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2937 "malformed sub-capability too long for mblk"); 2938 return; 2939 } 2940 dld_ic = (dl_capab_dld_t *)(isub + 1); 2941 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2942 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2943 "unsupported DLD sub-capability (version %d, " 2944 "expected %d)", dld_ic->dld_version, 2945 DLD_CURRENT_VERSION); 2946 return; 2947 } 2948 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2949 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2950 "capability isn't as expected; pass-thru module(s) " 2951 "detected, discarding capability\n")); 2952 return; 2953 } 2954 2955 /* 2956 * Copy locally to ensure alignment. 2957 */ 2958 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2959 2960 if ((idc = ill->ill_dld_capab) == NULL) { 2961 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 2962 if (idc == NULL) { 2963 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2964 "could not enable DLD version %d " 2965 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 2966 ill->ill_name); 2967 return; 2968 } 2969 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 2970 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 2971 ill->ill_dld_capab = idc; 2972 } 2973 ip1dbg(("ill_capability_dld_ack: interface %s " 2974 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 2975 2976 ill_capability_dld_enable(ill); 2977 } 2978 2979 /* 2980 * Typically capability negotiation between IP and the driver happens via 2981 * DLPI message exchange. However GLD also offers a direct function call 2982 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 2983 * But arbitrary function calls into IP or GLD are not permitted, since both 2984 * of them are protected by their own perimeter mechanism. The perimeter can 2985 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 2986 * these perimeters is IP -> MAC. Thus for example to enable the squeue 2987 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 2988 * to enter the mac perimeter and then do the direct function calls into 2989 * GLD to enable squeue polling. The ring related callbacks from the mac into 2990 * the stack to add, bind, quiesce, restart or cleanup a ring are all 2991 * protected by the mac perimeter. 2992 */ 2993 static void 2994 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 2995 { 2996 ill_dld_capab_t *idc = ill->ill_dld_capab; 2997 int err; 2998 2999 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3000 DLD_ENABLE); 3001 ASSERT(err == 0); 3002 } 3003 3004 static void 3005 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3006 { 3007 ill_dld_capab_t *idc = ill->ill_dld_capab; 3008 int err; 3009 3010 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3011 DLD_DISABLE); 3012 ASSERT(err == 0); 3013 } 3014 3015 boolean_t 3016 ill_mac_perim_held(ill_t *ill) 3017 { 3018 ill_dld_capab_t *idc = ill->ill_dld_capab; 3019 3020 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3021 DLD_QUERY)); 3022 } 3023 3024 static void 3025 ill_capability_direct_enable(ill_t *ill) 3026 { 3027 ill_dld_capab_t *idc = ill->ill_dld_capab; 3028 ill_dld_direct_t *idd = &idc->idc_direct; 3029 dld_capab_direct_t direct; 3030 int rc; 3031 3032 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3033 3034 bzero(&direct, sizeof (direct)); 3035 direct.di_rx_cf = (uintptr_t)ip_input; 3036 direct.di_rx_ch = ill; 3037 3038 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3039 DLD_ENABLE); 3040 if (rc == 0) { 3041 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3042 idd->idd_tx_dh = direct.di_tx_dh; 3043 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3044 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3045 /* 3046 * One time registration of flow enable callback function 3047 */ 3048 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3049 ill_flow_enable, ill); 3050 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3051 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3052 } else { 3053 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3054 "capability, rc = %d\n", rc); 3055 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3056 } 3057 } 3058 3059 static void 3060 ill_capability_poll_enable(ill_t *ill) 3061 { 3062 ill_dld_capab_t *idc = ill->ill_dld_capab; 3063 dld_capab_poll_t poll; 3064 int rc; 3065 3066 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3067 3068 bzero(&poll, sizeof (poll)); 3069 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3070 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3071 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3072 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3073 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3074 poll.poll_ring_ch = ill; 3075 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3076 DLD_ENABLE); 3077 if (rc == 0) { 3078 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3079 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3080 } else { 3081 ip1dbg(("warning: could not enable POLL " 3082 "capability, rc = %d\n", rc)); 3083 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3084 } 3085 } 3086 3087 /* 3088 * Enable the LSO capability. 3089 */ 3090 static void 3091 ill_capability_lso_enable(ill_t *ill) 3092 { 3093 ill_dld_capab_t *idc = ill->ill_dld_capab; 3094 dld_capab_lso_t lso; 3095 int rc; 3096 3097 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3098 3099 if (ill->ill_lso_capab == NULL) { 3100 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3101 KM_NOSLEEP); 3102 if (ill->ill_lso_capab == NULL) { 3103 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3104 "could not enable LSO for %s (ENOMEM)\n", 3105 ill->ill_name); 3106 return; 3107 } 3108 } 3109 3110 bzero(&lso, sizeof (lso)); 3111 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3112 DLD_ENABLE)) == 0) { 3113 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3114 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3115 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3116 ip1dbg(("ill_capability_lso_enable: interface %s " 3117 "has enabled LSO\n ", ill->ill_name)); 3118 } else { 3119 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3120 ill->ill_lso_capab = NULL; 3121 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3122 } 3123 } 3124 3125 static void 3126 ill_capability_dld_enable(ill_t *ill) 3127 { 3128 mac_perim_handle_t mph; 3129 3130 ASSERT(IAM_WRITER_ILL(ill)); 3131 3132 if (ill->ill_isv6) 3133 return; 3134 3135 ill_mac_perim_enter(ill, &mph); 3136 if (!ill->ill_isv6) { 3137 ill_capability_direct_enable(ill); 3138 ill_capability_poll_enable(ill); 3139 ill_capability_lso_enable(ill); 3140 } 3141 ill->ill_capabilities |= ILL_CAPAB_DLD; 3142 ill_mac_perim_exit(ill, mph); 3143 } 3144 3145 static void 3146 ill_capability_dld_disable(ill_t *ill) 3147 { 3148 ill_dld_capab_t *idc; 3149 ill_dld_direct_t *idd; 3150 mac_perim_handle_t mph; 3151 3152 ASSERT(IAM_WRITER_ILL(ill)); 3153 3154 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3155 return; 3156 3157 ill_mac_perim_enter(ill, &mph); 3158 3159 idc = ill->ill_dld_capab; 3160 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3161 /* 3162 * For performance we avoid locks in the transmit data path 3163 * and don't maintain a count of the number of threads using 3164 * direct calls. Thus some threads could be using direct 3165 * transmit calls to GLD, even after the capability mechanism 3166 * turns it off. This is still safe since the handles used in 3167 * the direct calls continue to be valid until the unplumb is 3168 * completed. Remove the callback that was added (1-time) at 3169 * capab enable time. 3170 */ 3171 mutex_enter(&ill->ill_lock); 3172 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3173 mutex_exit(&ill->ill_lock); 3174 if (ill->ill_flownotify_mh != NULL) { 3175 idd = &idc->idc_direct; 3176 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3177 ill->ill_flownotify_mh); 3178 ill->ill_flownotify_mh = NULL; 3179 } 3180 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3181 NULL, DLD_DISABLE); 3182 } 3183 3184 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3185 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3186 ip_squeue_clean_all(ill); 3187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3188 NULL, DLD_DISABLE); 3189 } 3190 3191 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3192 ASSERT(ill->ill_lso_capab != NULL); 3193 /* 3194 * Clear the capability flag for LSO but retain the 3195 * ill_lso_capab structure since it's possible that another 3196 * thread is still referring to it. The structure only gets 3197 * deallocated when we destroy the ill. 3198 */ 3199 3200 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3201 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3202 NULL, DLD_DISABLE); 3203 } 3204 3205 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3206 ill_mac_perim_exit(ill, mph); 3207 } 3208 3209 /* 3210 * Capability Negotiation protocol 3211 * 3212 * We don't wait for DLPI capability operations to finish during interface 3213 * bringup or teardown. Doing so would introduce more asynchrony and the 3214 * interface up/down operations will need multiple return and restarts. 3215 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3216 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3217 * exclusive operation won't start until the DLPI operations of the previous 3218 * exclusive operation complete. 3219 * 3220 * The capability state machine is shown below. 3221 * 3222 * state next state event, action 3223 * 3224 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3225 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3226 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3227 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3228 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3229 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3230 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3231 * ill_capability_probe. 3232 */ 3233 3234 /* 3235 * Dedicated thread started from ip_stack_init that handles capability 3236 * disable. This thread ensures the taskq dispatch does not fail by waiting 3237 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3238 * that direct calls to DLD are done in a cv_waitable context. 3239 */ 3240 void 3241 ill_taskq_dispatch(ip_stack_t *ipst) 3242 { 3243 callb_cpr_t cprinfo; 3244 char name[64]; 3245 mblk_t *mp; 3246 3247 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3248 ipst->ips_netstack->netstack_stackid); 3249 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3250 name); 3251 mutex_enter(&ipst->ips_capab_taskq_lock); 3252 3253 for (;;) { 3254 mp = list_head(&ipst->ips_capab_taskq_list); 3255 while (mp != NULL) { 3256 list_remove(&ipst->ips_capab_taskq_list, mp); 3257 mutex_exit(&ipst->ips_capab_taskq_lock); 3258 VERIFY(taskq_dispatch(system_taskq, 3259 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3260 mutex_enter(&ipst->ips_capab_taskq_lock); 3261 mp = list_head(&ipst->ips_capab_taskq_list); 3262 } 3263 3264 if (ipst->ips_capab_taskq_quit) 3265 break; 3266 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3267 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3268 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3269 } 3270 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3271 CALLB_CPR_EXIT(&cprinfo); 3272 thread_exit(); 3273 } 3274 3275 /* 3276 * Consume a new-style hardware capabilities negotiation ack. 3277 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3278 */ 3279 static void 3280 ill_capability_ack_thr(void *arg) 3281 { 3282 mblk_t *mp = arg; 3283 dl_capability_ack_t *capp; 3284 dl_capability_sub_t *subp, *endp; 3285 ill_t *ill; 3286 boolean_t reneg; 3287 3288 ill = (ill_t *)mp->b_prev; 3289 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3290 3291 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3292 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3293 /* 3294 * We have received the ack for our DL_CAPAB reset request. 3295 * There isnt' anything in the message that needs processing. 3296 * All message based capabilities have been disabled, now 3297 * do the function call based capability disable. 3298 */ 3299 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3300 ill_capability_dld_disable(ill); 3301 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3302 if (reneg) 3303 ill_capability_probe(ill); 3304 goto done; 3305 } 3306 3307 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3308 ill->ill_dlpi_capab_state = IDCS_OK; 3309 3310 capp = (dl_capability_ack_t *)mp->b_rptr; 3311 3312 if (capp->dl_sub_length == 0) { 3313 /* no new-style capabilities */ 3314 goto done; 3315 } 3316 3317 /* make sure the driver supplied correct dl_sub_length */ 3318 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3319 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3320 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3321 goto done; 3322 } 3323 3324 3325 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3326 /* 3327 * There are sub-capabilities. Process the ones we know about. 3328 * Loop until we don't have room for another sub-cap header.. 3329 */ 3330 for (subp = SC(capp, capp->dl_sub_offset), 3331 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3332 subp <= endp; 3333 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3334 3335 switch (subp->dl_cap) { 3336 case DL_CAPAB_ID_WRAPPER: 3337 ill_capability_id_ack(ill, mp, subp); 3338 break; 3339 default: 3340 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3341 break; 3342 } 3343 } 3344 #undef SC 3345 done: 3346 inet_freemsg(mp); 3347 ill_capability_done(ill); 3348 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3349 } 3350 3351 /* 3352 * This needs to be started in a taskq thread to provide a cv_waitable 3353 * context. 3354 */ 3355 void 3356 ill_capability_ack(ill_t *ill, mblk_t *mp) 3357 { 3358 ip_stack_t *ipst = ill->ill_ipst; 3359 3360 mp->b_prev = (mblk_t *)ill; 3361 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3362 TQ_NOSLEEP) != 0) 3363 return; 3364 3365 /* 3366 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3367 * which will do the dispatch using TQ_SLEEP to guarantee success. 3368 */ 3369 mutex_enter(&ipst->ips_capab_taskq_lock); 3370 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3371 cv_signal(&ipst->ips_capab_taskq_cv); 3372 mutex_exit(&ipst->ips_capab_taskq_lock); 3373 } 3374 3375 /* 3376 * This routine is called to scan the fragmentation reassembly table for 3377 * the specified ILL for any packets that are starting to smell. 3378 * dead_interval is the maximum time in seconds that will be tolerated. It 3379 * will either be the value specified in ip_g_frag_timeout, or zero if the 3380 * ILL is shutting down and it is time to blow everything off. 3381 * 3382 * It returns the number of seconds (as a time_t) that the next frag timer 3383 * should be scheduled for, 0 meaning that the timer doesn't need to be 3384 * re-started. Note that the method of calculating next_timeout isn't 3385 * entirely accurate since time will flow between the time we grab 3386 * current_time and the time we schedule the next timeout. This isn't a 3387 * big problem since this is the timer for sending an ICMP reassembly time 3388 * exceeded messages, and it doesn't have to be exactly accurate. 3389 * 3390 * This function is 3391 * sometimes called as writer, although this is not required. 3392 */ 3393 time_t 3394 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3395 { 3396 ipfb_t *ipfb; 3397 ipfb_t *endp; 3398 ipf_t *ipf; 3399 ipf_t *ipfnext; 3400 mblk_t *mp; 3401 time_t current_time = gethrestime_sec(); 3402 time_t next_timeout = 0; 3403 uint32_t hdr_length; 3404 mblk_t *send_icmp_head; 3405 mblk_t *send_icmp_head_v6; 3406 zoneid_t zoneid; 3407 ip_stack_t *ipst = ill->ill_ipst; 3408 3409 ipfb = ill->ill_frag_hash_tbl; 3410 if (ipfb == NULL) 3411 return (B_FALSE); 3412 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3413 /* Walk the frag hash table. */ 3414 for (; ipfb < endp; ipfb++) { 3415 send_icmp_head = NULL; 3416 send_icmp_head_v6 = NULL; 3417 mutex_enter(&ipfb->ipfb_lock); 3418 while ((ipf = ipfb->ipfb_ipf) != 0) { 3419 time_t frag_time = current_time - ipf->ipf_timestamp; 3420 time_t frag_timeout; 3421 3422 if (frag_time < dead_interval) { 3423 /* 3424 * There are some outstanding fragments 3425 * that will timeout later. Make note of 3426 * the time so that we can reschedule the 3427 * next timeout appropriately. 3428 */ 3429 frag_timeout = dead_interval - frag_time; 3430 if (next_timeout == 0 || 3431 frag_timeout < next_timeout) { 3432 next_timeout = frag_timeout; 3433 } 3434 break; 3435 } 3436 /* Time's up. Get it out of here. */ 3437 hdr_length = ipf->ipf_nf_hdr_len; 3438 ipfnext = ipf->ipf_hash_next; 3439 if (ipfnext) 3440 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3441 *ipf->ipf_ptphn = ipfnext; 3442 mp = ipf->ipf_mp->b_cont; 3443 for (; mp; mp = mp->b_cont) { 3444 /* Extra points for neatness. */ 3445 IP_REASS_SET_START(mp, 0); 3446 IP_REASS_SET_END(mp, 0); 3447 } 3448 mp = ipf->ipf_mp->b_cont; 3449 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3450 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3451 ipfb->ipfb_count -= ipf->ipf_count; 3452 ASSERT(ipfb->ipfb_frag_pkts > 0); 3453 ipfb->ipfb_frag_pkts--; 3454 /* 3455 * We do not send any icmp message from here because 3456 * we currently are holding the ipfb_lock for this 3457 * hash chain. If we try and send any icmp messages 3458 * from here we may end up via a put back into ip 3459 * trying to get the same lock, causing a recursive 3460 * mutex panic. Instead we build a list and send all 3461 * the icmp messages after we have dropped the lock. 3462 */ 3463 if (ill->ill_isv6) { 3464 if (hdr_length != 0) { 3465 mp->b_next = send_icmp_head_v6; 3466 send_icmp_head_v6 = mp; 3467 } else { 3468 freemsg(mp); 3469 } 3470 } else { 3471 if (hdr_length != 0) { 3472 mp->b_next = send_icmp_head; 3473 send_icmp_head = mp; 3474 } else { 3475 freemsg(mp); 3476 } 3477 } 3478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3479 freeb(ipf->ipf_mp); 3480 } 3481 mutex_exit(&ipfb->ipfb_lock); 3482 /* 3483 * Now need to send any icmp messages that we delayed from 3484 * above. 3485 */ 3486 while (send_icmp_head_v6 != NULL) { 3487 ip6_t *ip6h; 3488 3489 mp = send_icmp_head_v6; 3490 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3491 mp->b_next = NULL; 3492 if (mp->b_datap->db_type == M_CTL) 3493 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3494 else 3495 ip6h = (ip6_t *)mp->b_rptr; 3496 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3497 ill, ipst); 3498 if (zoneid == ALL_ZONES) { 3499 freemsg(mp); 3500 } else { 3501 icmp_time_exceeded_v6(ill->ill_wq, mp, 3502 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3503 B_FALSE, zoneid, ipst); 3504 } 3505 } 3506 while (send_icmp_head != NULL) { 3507 ipaddr_t dst; 3508 3509 mp = send_icmp_head; 3510 send_icmp_head = send_icmp_head->b_next; 3511 mp->b_next = NULL; 3512 3513 if (mp->b_datap->db_type == M_CTL) 3514 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3515 else 3516 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3517 3518 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3519 if (zoneid == ALL_ZONES) { 3520 freemsg(mp); 3521 } else { 3522 icmp_time_exceeded(ill->ill_wq, mp, 3523 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3524 ipst); 3525 } 3526 } 3527 } 3528 /* 3529 * A non-dying ILL will use the return value to decide whether to 3530 * restart the frag timer, and for how long. 3531 */ 3532 return (next_timeout); 3533 } 3534 3535 /* 3536 * This routine is called when the approximate count of mblk memory used 3537 * for the specified ILL has exceeded max_count. 3538 */ 3539 void 3540 ill_frag_prune(ill_t *ill, uint_t max_count) 3541 { 3542 ipfb_t *ipfb; 3543 ipf_t *ipf; 3544 size_t count; 3545 3546 /* 3547 * If we are here within ip_min_frag_prune_time msecs remove 3548 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3549 * ill_frag_free_num_pkts. 3550 */ 3551 mutex_enter(&ill->ill_lock); 3552 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3553 (ip_min_frag_prune_time != 0 ? 3554 ip_min_frag_prune_time : msec_per_tick)) { 3555 3556 ill->ill_frag_free_num_pkts++; 3557 3558 } else { 3559 ill->ill_frag_free_num_pkts = 0; 3560 } 3561 ill->ill_last_frag_clean_time = lbolt; 3562 mutex_exit(&ill->ill_lock); 3563 3564 /* 3565 * free ill_frag_free_num_pkts oldest packets from each bucket. 3566 */ 3567 if (ill->ill_frag_free_num_pkts != 0) { 3568 int ix; 3569 3570 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3571 ipfb = &ill->ill_frag_hash_tbl[ix]; 3572 mutex_enter(&ipfb->ipfb_lock); 3573 if (ipfb->ipfb_ipf != NULL) { 3574 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3575 ill->ill_frag_free_num_pkts); 3576 } 3577 mutex_exit(&ipfb->ipfb_lock); 3578 } 3579 } 3580 /* 3581 * While the reassembly list for this ILL is too big, prune a fragment 3582 * queue by age, oldest first. 3583 */ 3584 while (ill->ill_frag_count > max_count) { 3585 int ix; 3586 ipfb_t *oipfb = NULL; 3587 uint_t oldest = UINT_MAX; 3588 3589 count = 0; 3590 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3591 ipfb = &ill->ill_frag_hash_tbl[ix]; 3592 mutex_enter(&ipfb->ipfb_lock); 3593 ipf = ipfb->ipfb_ipf; 3594 if (ipf != NULL && ipf->ipf_gen < oldest) { 3595 oldest = ipf->ipf_gen; 3596 oipfb = ipfb; 3597 } 3598 count += ipfb->ipfb_count; 3599 mutex_exit(&ipfb->ipfb_lock); 3600 } 3601 if (oipfb == NULL) 3602 break; 3603 3604 if (count <= max_count) 3605 return; /* Somebody beat us to it, nothing to do */ 3606 mutex_enter(&oipfb->ipfb_lock); 3607 ipf = oipfb->ipfb_ipf; 3608 if (ipf != NULL) { 3609 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3610 } 3611 mutex_exit(&oipfb->ipfb_lock); 3612 } 3613 } 3614 3615 /* 3616 * free 'free_cnt' fragmented packets starting at ipf. 3617 */ 3618 void 3619 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3620 { 3621 size_t count; 3622 mblk_t *mp; 3623 mblk_t *tmp; 3624 ipf_t **ipfp = ipf->ipf_ptphn; 3625 3626 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3627 ASSERT(ipfp != NULL); 3628 ASSERT(ipf != NULL); 3629 3630 while (ipf != NULL && free_cnt-- > 0) { 3631 count = ipf->ipf_count; 3632 mp = ipf->ipf_mp; 3633 ipf = ipf->ipf_hash_next; 3634 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3635 IP_REASS_SET_START(tmp, 0); 3636 IP_REASS_SET_END(tmp, 0); 3637 } 3638 atomic_add_32(&ill->ill_frag_count, -count); 3639 ASSERT(ipfb->ipfb_count >= count); 3640 ipfb->ipfb_count -= count; 3641 ASSERT(ipfb->ipfb_frag_pkts > 0); 3642 ipfb->ipfb_frag_pkts--; 3643 freemsg(mp); 3644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3645 } 3646 3647 if (ipf) 3648 ipf->ipf_ptphn = ipfp; 3649 ipfp[0] = ipf; 3650 } 3651 3652 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3653 "obsolete and may be removed in a future release of Solaris. Use " \ 3654 "ifconfig(1M) to manipulate the forwarding status of an interface." 3655 3656 /* 3657 * For obsolete per-interface forwarding configuration; 3658 * called in response to ND_GET. 3659 */ 3660 /* ARGSUSED */ 3661 static int 3662 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3663 { 3664 ill_t *ill = (ill_t *)cp; 3665 3666 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3667 3668 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3669 return (0); 3670 } 3671 3672 /* 3673 * For obsolete per-interface forwarding configuration; 3674 * called in response to ND_SET. 3675 */ 3676 /* ARGSUSED */ 3677 static int 3678 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3679 cred_t *ioc_cr) 3680 { 3681 long value; 3682 int retval; 3683 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3684 3685 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3686 3687 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3688 value < 0 || value > 1) { 3689 return (EINVAL); 3690 } 3691 3692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3693 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3694 rw_exit(&ipst->ips_ill_g_lock); 3695 return (retval); 3696 } 3697 3698 /* 3699 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3700 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3701 * up RTS_IFINFO routing socket messages for each interface whose flags we 3702 * change. 3703 */ 3704 int 3705 ill_forward_set(ill_t *ill, boolean_t enable) 3706 { 3707 ill_group_t *illgrp; 3708 ip_stack_t *ipst = ill->ill_ipst; 3709 3710 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3711 3712 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3713 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3714 return (0); 3715 3716 if (IS_LOOPBACK(ill)) 3717 return (EINVAL); 3718 3719 /* 3720 * If the ill is in an IPMP group, set the forwarding policy on all 3721 * members of the group to the same value. 3722 */ 3723 illgrp = ill->ill_group; 3724 if (illgrp != NULL) { 3725 ill_t *tmp_ill; 3726 3727 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3728 tmp_ill = tmp_ill->ill_group_next) { 3729 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3730 (enable ? "Enabling" : "Disabling"), 3731 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3732 tmp_ill->ill_name)); 3733 mutex_enter(&tmp_ill->ill_lock); 3734 if (enable) 3735 tmp_ill->ill_flags |= ILLF_ROUTER; 3736 else 3737 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3738 mutex_exit(&tmp_ill->ill_lock); 3739 if (tmp_ill->ill_isv6) 3740 ill_set_nce_router_flags(tmp_ill, enable); 3741 /* Notify routing socket listeners of this change. */ 3742 ip_rts_ifmsg(tmp_ill->ill_ipif); 3743 } 3744 } else { 3745 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3746 (enable ? "Enabling" : "Disabling"), 3747 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3748 mutex_enter(&ill->ill_lock); 3749 if (enable) 3750 ill->ill_flags |= ILLF_ROUTER; 3751 else 3752 ill->ill_flags &= ~ILLF_ROUTER; 3753 mutex_exit(&ill->ill_lock); 3754 if (ill->ill_isv6) 3755 ill_set_nce_router_flags(ill, enable); 3756 /* Notify routing socket listeners of this change. */ 3757 ip_rts_ifmsg(ill->ill_ipif); 3758 } 3759 3760 return (0); 3761 } 3762 3763 /* 3764 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3765 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3766 * set or clear. 3767 */ 3768 static void 3769 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3770 { 3771 ipif_t *ipif; 3772 nce_t *nce; 3773 3774 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3775 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3776 if (nce != NULL) { 3777 mutex_enter(&nce->nce_lock); 3778 if (enable) 3779 nce->nce_flags |= NCE_F_ISROUTER; 3780 else 3781 nce->nce_flags &= ~NCE_F_ISROUTER; 3782 mutex_exit(&nce->nce_lock); 3783 NCE_REFRELE(nce); 3784 } 3785 } 3786 } 3787 3788 /* 3789 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3790 * for this ill. Make sure the v6/v4 question has been answered about this 3791 * ill. The creation of this ndd variable is only for backwards compatibility. 3792 * The preferred way to control per-interface IP forwarding is through the 3793 * ILLF_ROUTER interface flag. 3794 */ 3795 static int 3796 ill_set_ndd_name(ill_t *ill) 3797 { 3798 char *suffix; 3799 ip_stack_t *ipst = ill->ill_ipst; 3800 3801 ASSERT(IAM_WRITER_ILL(ill)); 3802 3803 if (ill->ill_isv6) 3804 suffix = ipv6_forward_suffix; 3805 else 3806 suffix = ipv4_forward_suffix; 3807 3808 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3809 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3810 /* 3811 * Copies over the '\0'. 3812 * Note that strlen(suffix) is always bounded. 3813 */ 3814 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3815 strlen(suffix) + 1); 3816 3817 /* 3818 * Use of the nd table requires holding the reader lock. 3819 * Modifying the nd table thru nd_load/nd_unload requires 3820 * the writer lock. 3821 */ 3822 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3823 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3824 nd_ill_forward_set, (caddr_t)ill)) { 3825 /* 3826 * If the nd_load failed, it only meant that it could not 3827 * allocate a new bunch of room for further NDD expansion. 3828 * Because of that, the ill_ndd_name will be set to 0, and 3829 * this interface is at the mercy of the global ip_forwarding 3830 * variable. 3831 */ 3832 rw_exit(&ipst->ips_ip_g_nd_lock); 3833 ill->ill_ndd_name = NULL; 3834 return (ENOMEM); 3835 } 3836 rw_exit(&ipst->ips_ip_g_nd_lock); 3837 return (0); 3838 } 3839 3840 /* 3841 * Intializes the context structure and returns the first ill in the list 3842 * cuurently start_list and end_list can have values: 3843 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3844 * IP_V4_G_HEAD Traverse IPV4 list only. 3845 * IP_V6_G_HEAD Traverse IPV6 list only. 3846 */ 3847 3848 /* 3849 * We don't check for CONDEMNED ills here. Caller must do that if 3850 * necessary under the ill lock. 3851 */ 3852 ill_t * 3853 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3854 ip_stack_t *ipst) 3855 { 3856 ill_if_t *ifp; 3857 ill_t *ill; 3858 avl_tree_t *avl_tree; 3859 3860 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3861 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3862 3863 /* 3864 * setup the lists to search 3865 */ 3866 if (end_list != MAX_G_HEADS) { 3867 ctx->ctx_current_list = start_list; 3868 ctx->ctx_last_list = end_list; 3869 } else { 3870 ctx->ctx_last_list = MAX_G_HEADS - 1; 3871 ctx->ctx_current_list = 0; 3872 } 3873 3874 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3875 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3876 if (ifp != (ill_if_t *) 3877 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3878 avl_tree = &ifp->illif_avl_by_ppa; 3879 ill = avl_first(avl_tree); 3880 /* 3881 * ill is guaranteed to be non NULL or ifp should have 3882 * not existed. 3883 */ 3884 ASSERT(ill != NULL); 3885 return (ill); 3886 } 3887 ctx->ctx_current_list++; 3888 } 3889 3890 return (NULL); 3891 } 3892 3893 /* 3894 * returns the next ill in the list. ill_first() must have been called 3895 * before calling ill_next() or bad things will happen. 3896 */ 3897 3898 /* 3899 * We don't check for CONDEMNED ills here. Caller must do that if 3900 * necessary under the ill lock. 3901 */ 3902 ill_t * 3903 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3904 { 3905 ill_if_t *ifp; 3906 ill_t *ill; 3907 ip_stack_t *ipst = lastill->ill_ipst; 3908 3909 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3910 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3911 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3912 AVL_AFTER)) != NULL) { 3913 return (ill); 3914 } 3915 3916 /* goto next ill_ifp in the list. */ 3917 ifp = lastill->ill_ifptr->illif_next; 3918 3919 /* make sure not at end of circular list */ 3920 while (ifp == 3921 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3922 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3923 return (NULL); 3924 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3925 } 3926 3927 return (avl_first(&ifp->illif_avl_by_ppa)); 3928 } 3929 3930 /* 3931 * Check interface name for correct format which is name+ppa. 3932 * name can contain characters and digits, the right most digits 3933 * make up the ppa number. use of octal is not allowed, name must contain 3934 * a ppa, return pointer to the start of ppa. 3935 * In case of error return NULL. 3936 */ 3937 static char * 3938 ill_get_ppa_ptr(char *name) 3939 { 3940 int namelen = mi_strlen(name); 3941 3942 int len = namelen; 3943 3944 name += len; 3945 while (len > 0) { 3946 name--; 3947 if (*name < '0' || *name > '9') 3948 break; 3949 len--; 3950 } 3951 3952 /* empty string, all digits, or no trailing digits */ 3953 if (len == 0 || len == (int)namelen) 3954 return (NULL); 3955 3956 name++; 3957 /* check for attempted use of octal */ 3958 if (*name == '0' && len != (int)namelen - 1) 3959 return (NULL); 3960 return (name); 3961 } 3962 3963 /* 3964 * use avl tree to locate the ill. 3965 */ 3966 static ill_t * 3967 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3968 ipsq_func_t func, int *error, ip_stack_t *ipst) 3969 { 3970 char *ppa_ptr = NULL; 3971 int len; 3972 uint_t ppa; 3973 ill_t *ill = NULL; 3974 ill_if_t *ifp; 3975 int list; 3976 ipsq_t *ipsq; 3977 3978 if (error != NULL) 3979 *error = 0; 3980 3981 /* 3982 * get ppa ptr 3983 */ 3984 if (isv6) 3985 list = IP_V6_G_HEAD; 3986 else 3987 list = IP_V4_G_HEAD; 3988 3989 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3990 if (error != NULL) 3991 *error = ENXIO; 3992 return (NULL); 3993 } 3994 3995 len = ppa_ptr - name + 1; 3996 3997 ppa = stoi(&ppa_ptr); 3998 3999 ifp = IP_VX_ILL_G_LIST(list, ipst); 4000 4001 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4002 /* 4003 * match is done on len - 1 as the name is not null 4004 * terminated it contains ppa in addition to the interface 4005 * name. 4006 */ 4007 if ((ifp->illif_name_len == len) && 4008 bcmp(ifp->illif_name, name, len - 1) == 0) { 4009 break; 4010 } else { 4011 ifp = ifp->illif_next; 4012 } 4013 } 4014 4015 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4016 /* 4017 * Even the interface type does not exist. 4018 */ 4019 if (error != NULL) 4020 *error = ENXIO; 4021 return (NULL); 4022 } 4023 4024 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4025 if (ill != NULL) { 4026 /* 4027 * The block comment at the start of ipif_down 4028 * explains the use of the macros used below 4029 */ 4030 GRAB_CONN_LOCK(q); 4031 mutex_enter(&ill->ill_lock); 4032 if (ILL_CAN_LOOKUP(ill)) { 4033 ill_refhold_locked(ill); 4034 mutex_exit(&ill->ill_lock); 4035 RELEASE_CONN_LOCK(q); 4036 return (ill); 4037 } else if (ILL_CAN_WAIT(ill, q)) { 4038 ipsq = ill->ill_phyint->phyint_ipsq; 4039 mutex_enter(&ipsq->ipsq_lock); 4040 mutex_exit(&ill->ill_lock); 4041 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4042 mutex_exit(&ipsq->ipsq_lock); 4043 RELEASE_CONN_LOCK(q); 4044 if (error != NULL) 4045 *error = EINPROGRESS; 4046 return (NULL); 4047 } 4048 mutex_exit(&ill->ill_lock); 4049 RELEASE_CONN_LOCK(q); 4050 } 4051 if (error != NULL) 4052 *error = ENXIO; 4053 return (NULL); 4054 } 4055 4056 /* 4057 * comparison function for use with avl. 4058 */ 4059 static int 4060 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4061 { 4062 uint_t ppa; 4063 uint_t ill_ppa; 4064 4065 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4066 4067 ppa = *((uint_t *)ppa_ptr); 4068 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4069 /* 4070 * We want the ill with the lowest ppa to be on the 4071 * top. 4072 */ 4073 if (ill_ppa < ppa) 4074 return (1); 4075 if (ill_ppa > ppa) 4076 return (-1); 4077 return (0); 4078 } 4079 4080 /* 4081 * remove an interface type from the global list. 4082 */ 4083 static void 4084 ill_delete_interface_type(ill_if_t *interface) 4085 { 4086 ASSERT(interface != NULL); 4087 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4088 4089 avl_destroy(&interface->illif_avl_by_ppa); 4090 if (interface->illif_ppa_arena != NULL) 4091 vmem_destroy(interface->illif_ppa_arena); 4092 4093 remque(interface); 4094 4095 mi_free(interface); 4096 } 4097 4098 /* 4099 * remove ill from the global list. 4100 */ 4101 static void 4102 ill_glist_delete(ill_t *ill) 4103 { 4104 ip_stack_t *ipst; 4105 4106 if (ill == NULL) 4107 return; 4108 ipst = ill->ill_ipst; 4109 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4110 4111 /* 4112 * If the ill was never inserted into the AVL tree 4113 * we skip the if branch. 4114 */ 4115 if (ill->ill_ifptr != NULL) { 4116 /* 4117 * remove from AVL tree and free ppa number 4118 */ 4119 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4120 4121 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4122 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4123 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4124 } 4125 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4126 ill_delete_interface_type(ill->ill_ifptr); 4127 } 4128 4129 /* 4130 * Indicate ill is no longer in the list. 4131 */ 4132 ill->ill_ifptr = NULL; 4133 ill->ill_name_length = 0; 4134 ill->ill_name[0] = '\0'; 4135 ill->ill_ppa = UINT_MAX; 4136 } 4137 4138 /* Generate one last event for this ill. */ 4139 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4140 ill->ill_name_length); 4141 4142 ill_phyint_free(ill); 4143 rw_exit(&ipst->ips_ill_g_lock); 4144 } 4145 4146 /* 4147 * allocate a ppa, if the number of plumbed interfaces of this type are 4148 * less than ill_no_arena do a linear search to find a unused ppa. 4149 * When the number goes beyond ill_no_arena switch to using an arena. 4150 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4151 * is the return value for an error condition, so allocation starts at one 4152 * and is decremented by one. 4153 */ 4154 static int 4155 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4156 { 4157 ill_t *tmp_ill; 4158 uint_t start, end; 4159 int ppa; 4160 4161 if (ifp->illif_ppa_arena == NULL && 4162 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4163 /* 4164 * Create an arena. 4165 */ 4166 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4167 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4168 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4169 /* allocate what has already been assigned */ 4170 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4171 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4172 tmp_ill, AVL_AFTER)) { 4173 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4174 1, /* size */ 4175 1, /* align/quantum */ 4176 0, /* phase */ 4177 0, /* nocross */ 4178 /* minaddr */ 4179 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4180 /* maxaddr */ 4181 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4182 VM_NOSLEEP|VM_FIRSTFIT); 4183 if (ppa == 0) { 4184 ip1dbg(("ill_alloc_ppa: ppa allocation" 4185 " failed while switching")); 4186 vmem_destroy(ifp->illif_ppa_arena); 4187 ifp->illif_ppa_arena = NULL; 4188 break; 4189 } 4190 } 4191 } 4192 4193 if (ifp->illif_ppa_arena != NULL) { 4194 if (ill->ill_ppa == UINT_MAX) { 4195 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4196 1, VM_NOSLEEP|VM_FIRSTFIT); 4197 if (ppa == 0) 4198 return (EAGAIN); 4199 ill->ill_ppa = --ppa; 4200 } else { 4201 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4202 1, /* size */ 4203 1, /* align/quantum */ 4204 0, /* phase */ 4205 0, /* nocross */ 4206 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4207 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4208 VM_NOSLEEP|VM_FIRSTFIT); 4209 /* 4210 * Most likely the allocation failed because 4211 * the requested ppa was in use. 4212 */ 4213 if (ppa == 0) 4214 return (EEXIST); 4215 } 4216 return (0); 4217 } 4218 4219 /* 4220 * No arena is in use and not enough (>ill_no_arena) interfaces have 4221 * been plumbed to create one. Do a linear search to get a unused ppa. 4222 */ 4223 if (ill->ill_ppa == UINT_MAX) { 4224 end = UINT_MAX - 1; 4225 start = 0; 4226 } else { 4227 end = start = ill->ill_ppa; 4228 } 4229 4230 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4231 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4232 if (start++ >= end) { 4233 if (ill->ill_ppa == UINT_MAX) 4234 return (EAGAIN); 4235 else 4236 return (EEXIST); 4237 } 4238 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4239 } 4240 ill->ill_ppa = start; 4241 return (0); 4242 } 4243 4244 /* 4245 * Insert ill into the list of configured ill's. Once this function completes, 4246 * the ill is globally visible and is available through lookups. More precisely 4247 * this happens after the caller drops the ill_g_lock. 4248 */ 4249 static int 4250 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4251 { 4252 ill_if_t *ill_interface; 4253 avl_index_t where = 0; 4254 int error; 4255 int name_length; 4256 int index; 4257 boolean_t check_length = B_FALSE; 4258 ip_stack_t *ipst = ill->ill_ipst; 4259 4260 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4261 4262 name_length = mi_strlen(name) + 1; 4263 4264 if (isv6) 4265 index = IP_V6_G_HEAD; 4266 else 4267 index = IP_V4_G_HEAD; 4268 4269 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4270 /* 4271 * Search for interface type based on name 4272 */ 4273 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4274 if ((ill_interface->illif_name_len == name_length) && 4275 (strcmp(ill_interface->illif_name, name) == 0)) { 4276 break; 4277 } 4278 ill_interface = ill_interface->illif_next; 4279 } 4280 4281 /* 4282 * Interface type not found, create one. 4283 */ 4284 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4285 4286 ill_g_head_t ghead; 4287 4288 /* 4289 * allocate ill_if_t structure 4290 */ 4291 4292 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4293 if (ill_interface == NULL) { 4294 return (ENOMEM); 4295 } 4296 4297 4298 4299 (void) strcpy(ill_interface->illif_name, name); 4300 ill_interface->illif_name_len = name_length; 4301 4302 avl_create(&ill_interface->illif_avl_by_ppa, 4303 ill_compare_ppa, sizeof (ill_t), 4304 offsetof(struct ill_s, ill_avl_byppa)); 4305 4306 /* 4307 * link the structure in the back to maintain order 4308 * of configuration for ifconfig output. 4309 */ 4310 ghead = ipst->ips_ill_g_heads[index]; 4311 insque(ill_interface, ghead.ill_g_list_tail); 4312 4313 } 4314 4315 if (ill->ill_ppa == UINT_MAX) 4316 check_length = B_TRUE; 4317 4318 error = ill_alloc_ppa(ill_interface, ill); 4319 if (error != 0) { 4320 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4321 ill_delete_interface_type(ill->ill_ifptr); 4322 return (error); 4323 } 4324 4325 /* 4326 * When the ppa is choosen by the system, check that there is 4327 * enough space to insert ppa. if a specific ppa was passed in this 4328 * check is not required as the interface name passed in will have 4329 * the right ppa in it. 4330 */ 4331 if (check_length) { 4332 /* 4333 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4334 */ 4335 char buf[sizeof (uint_t) * 3]; 4336 4337 /* 4338 * convert ppa to string to calculate the amount of space 4339 * required for it in the name. 4340 */ 4341 numtos(ill->ill_ppa, buf); 4342 4343 /* Do we have enough space to insert ppa ? */ 4344 4345 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4346 /* Free ppa and interface type struct */ 4347 if (ill_interface->illif_ppa_arena != NULL) { 4348 vmem_free(ill_interface->illif_ppa_arena, 4349 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4350 } 4351 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4352 ill_delete_interface_type(ill->ill_ifptr); 4353 4354 return (EINVAL); 4355 } 4356 } 4357 4358 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4359 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4360 4361 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4362 &where); 4363 ill->ill_ifptr = ill_interface; 4364 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4365 4366 ill_phyint_reinit(ill); 4367 return (0); 4368 } 4369 4370 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4371 static boolean_t 4372 ipsq_init(ill_t *ill) 4373 { 4374 ipsq_t *ipsq; 4375 4376 /* Init the ipsq and impicitly enter as writer */ 4377 ill->ill_phyint->phyint_ipsq = 4378 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4379 if (ill->ill_phyint->phyint_ipsq == NULL) 4380 return (B_FALSE); 4381 ipsq = ill->ill_phyint->phyint_ipsq; 4382 ipsq->ipsq_phyint_list = ill->ill_phyint; 4383 ill->ill_phyint->phyint_ipsq_next = NULL; 4384 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4385 ipsq->ipsq_refs = 1; 4386 ipsq->ipsq_writer = curthread; 4387 ipsq->ipsq_reentry_cnt = 1; 4388 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4389 #ifdef DEBUG 4390 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4391 IPSQ_STACK_DEPTH); 4392 #endif 4393 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4394 return (B_TRUE); 4395 } 4396 4397 /* 4398 * ill_init is called by ip_open when a device control stream is opened. 4399 * It does a few initializations, and shoots a DL_INFO_REQ message down 4400 * to the driver. The response is later picked up in ip_rput_dlpi and 4401 * used to set up default mechanisms for talking to the driver. (Always 4402 * called as writer.) 4403 * 4404 * If this function returns error, ip_open will call ip_close which in 4405 * turn will call ill_delete to clean up any memory allocated here that 4406 * is not yet freed. 4407 */ 4408 int 4409 ill_init(queue_t *q, ill_t *ill) 4410 { 4411 int count; 4412 dl_info_req_t *dlir; 4413 mblk_t *info_mp; 4414 uchar_t *frag_ptr; 4415 4416 /* 4417 * The ill is initialized to zero by mi_alloc*(). In addition 4418 * some fields already contain valid values, initialized in 4419 * ip_open(), before we reach here. 4420 */ 4421 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4422 4423 ill->ill_rq = q; 4424 ill->ill_wq = WR(q); 4425 4426 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4427 BPRI_HI); 4428 if (info_mp == NULL) 4429 return (ENOMEM); 4430 4431 /* 4432 * Allocate sufficient space to contain our fragment hash table and 4433 * the device name. 4434 */ 4435 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4436 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4437 if (frag_ptr == NULL) { 4438 freemsg(info_mp); 4439 return (ENOMEM); 4440 } 4441 ill->ill_frag_ptr = frag_ptr; 4442 ill->ill_frag_free_num_pkts = 0; 4443 ill->ill_last_frag_clean_time = 0; 4444 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4445 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4446 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4447 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4448 NULL, MUTEX_DEFAULT, NULL); 4449 } 4450 4451 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4452 if (ill->ill_phyint == NULL) { 4453 freemsg(info_mp); 4454 mi_free(frag_ptr); 4455 return (ENOMEM); 4456 } 4457 4458 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4459 /* 4460 * For now pretend this is a v4 ill. We need to set phyint_ill* 4461 * at this point because of the following reason. If we can't 4462 * enter the ipsq at some point and cv_wait, the writer that 4463 * wakes us up tries to locate us using the list of all phyints 4464 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4465 * If we don't set it now, we risk a missed wakeup. 4466 */ 4467 ill->ill_phyint->phyint_illv4 = ill; 4468 ill->ill_ppa = UINT_MAX; 4469 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4470 4471 if (!ipsq_init(ill)) { 4472 freemsg(info_mp); 4473 mi_free(frag_ptr); 4474 mi_free(ill->ill_phyint); 4475 return (ENOMEM); 4476 } 4477 4478 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4479 4480 /* Frag queue limit stuff */ 4481 ill->ill_frag_count = 0; 4482 ill->ill_ipf_gen = 0; 4483 4484 ill->ill_global_timer = INFINITY; 4485 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4486 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4487 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4488 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4489 4490 /* 4491 * Initialize IPv6 configuration variables. The IP module is always 4492 * opened as an IPv4 module. Instead tracking down the cases where 4493 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4494 * here for convenience, this has no effect until the ill is set to do 4495 * IPv6. 4496 */ 4497 ill->ill_reachable_time = ND_REACHABLE_TIME; 4498 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4499 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4500 ill->ill_max_buf = ND_MAX_Q; 4501 ill->ill_refcnt = 0; 4502 4503 /* Send down the Info Request to the driver. */ 4504 info_mp->b_datap->db_type = M_PCPROTO; 4505 dlir = (dl_info_req_t *)info_mp->b_rptr; 4506 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4507 dlir->dl_primitive = DL_INFO_REQ; 4508 4509 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4510 4511 qprocson(q); 4512 ill_dlpi_send(ill, info_mp); 4513 4514 return (0); 4515 } 4516 4517 /* 4518 * ill_dls_info 4519 * creates datalink socket info from the device. 4520 */ 4521 int 4522 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4523 { 4524 size_t len; 4525 ill_t *ill = ipif->ipif_ill; 4526 4527 sdl->sdl_family = AF_LINK; 4528 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4529 sdl->sdl_type = ill->ill_type; 4530 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4531 len = strlen(sdl->sdl_data); 4532 ASSERT(len < 256); 4533 sdl->sdl_nlen = (uchar_t)len; 4534 sdl->sdl_alen = ill->ill_phys_addr_length; 4535 sdl->sdl_slen = 0; 4536 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4537 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4538 4539 return (sizeof (struct sockaddr_dl)); 4540 } 4541 4542 /* 4543 * ill_xarp_info 4544 * creates xarp info from the device. 4545 */ 4546 static int 4547 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4548 { 4549 sdl->sdl_family = AF_LINK; 4550 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4551 sdl->sdl_type = ill->ill_type; 4552 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4553 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4554 sdl->sdl_alen = ill->ill_phys_addr_length; 4555 sdl->sdl_slen = 0; 4556 return (sdl->sdl_nlen); 4557 } 4558 4559 static int 4560 loopback_kstat_update(kstat_t *ksp, int rw) 4561 { 4562 kstat_named_t *kn; 4563 netstackid_t stackid; 4564 netstack_t *ns; 4565 ip_stack_t *ipst; 4566 4567 if (ksp == NULL || ksp->ks_data == NULL) 4568 return (EIO); 4569 4570 if (rw == KSTAT_WRITE) 4571 return (EACCES); 4572 4573 kn = KSTAT_NAMED_PTR(ksp); 4574 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4575 4576 ns = netstack_find_by_stackid(stackid); 4577 if (ns == NULL) 4578 return (-1); 4579 4580 ipst = ns->netstack_ip; 4581 if (ipst == NULL) { 4582 netstack_rele(ns); 4583 return (-1); 4584 } 4585 kn[0].value.ui32 = ipst->ips_loopback_packets; 4586 kn[1].value.ui32 = ipst->ips_loopback_packets; 4587 netstack_rele(ns); 4588 return (0); 4589 } 4590 4591 /* 4592 * Has ifindex been plumbed already. 4593 * Compares both phyint_ifindex and phyint_group_ifindex. 4594 */ 4595 static boolean_t 4596 phyint_exists(uint_t index, ip_stack_t *ipst) 4597 { 4598 phyint_t *phyi; 4599 4600 ASSERT(index != 0); 4601 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4602 /* 4603 * Indexes are stored in the phyint - a common structure 4604 * to both IPv4 and IPv6. 4605 */ 4606 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4607 for (; phyi != NULL; 4608 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4609 phyi, AVL_AFTER)) { 4610 if (phyi->phyint_ifindex == index || 4611 phyi->phyint_group_ifindex == index) 4612 return (B_TRUE); 4613 } 4614 return (B_FALSE); 4615 } 4616 4617 /* Pick a unique ifindex */ 4618 boolean_t 4619 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4620 { 4621 uint_t starting_index; 4622 4623 if (!ipst->ips_ill_index_wrap) { 4624 *indexp = ipst->ips_ill_index++; 4625 if (ipst->ips_ill_index == 0) { 4626 /* Reached the uint_t limit Next time wrap */ 4627 ipst->ips_ill_index_wrap = B_TRUE; 4628 } 4629 return (B_TRUE); 4630 } 4631 4632 /* 4633 * Start reusing unused indexes. Note that we hold the ill_g_lock 4634 * at this point and don't want to call any function that attempts 4635 * to get the lock again. 4636 */ 4637 starting_index = ipst->ips_ill_index++; 4638 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4639 if (ipst->ips_ill_index != 0 && 4640 !phyint_exists(ipst->ips_ill_index, ipst)) { 4641 /* found unused index - use it */ 4642 *indexp = ipst->ips_ill_index; 4643 return (B_TRUE); 4644 } 4645 } 4646 4647 /* 4648 * all interface indicies are inuse. 4649 */ 4650 return (B_FALSE); 4651 } 4652 4653 /* 4654 * Assign a unique interface index for the phyint. 4655 */ 4656 static boolean_t 4657 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4658 { 4659 ASSERT(phyi->phyint_ifindex == 0); 4660 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4661 } 4662 4663 /* 4664 * Return a pointer to the ill which matches the supplied name. Note that 4665 * the ill name length includes the null termination character. (May be 4666 * called as writer.) 4667 * If do_alloc and the interface is "lo0" it will be automatically created. 4668 * Cannot bump up reference on condemned ills. So dup detect can't be done 4669 * using this func. 4670 */ 4671 ill_t * 4672 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4673 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4674 ip_stack_t *ipst) 4675 { 4676 ill_t *ill; 4677 ipif_t *ipif; 4678 kstat_named_t *kn; 4679 boolean_t isloopback; 4680 ipsq_t *old_ipsq; 4681 in6_addr_t ov6addr; 4682 4683 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4684 4685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4686 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4687 rw_exit(&ipst->ips_ill_g_lock); 4688 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4689 return (ill); 4690 4691 /* 4692 * Couldn't find it. Does this happen to be a lookup for the 4693 * loopback device and are we allowed to allocate it? 4694 */ 4695 if (!isloopback || !do_alloc) 4696 return (NULL); 4697 4698 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4699 4700 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4701 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4702 rw_exit(&ipst->ips_ill_g_lock); 4703 return (ill); 4704 } 4705 4706 /* Create the loopback device on demand */ 4707 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4708 sizeof (ipif_loopback_name), BPRI_MED)); 4709 if (ill == NULL) 4710 goto done; 4711 4712 *ill = ill_null; 4713 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4714 ill->ill_ipst = ipst; 4715 netstack_hold(ipst->ips_netstack); 4716 /* 4717 * For exclusive stacks we set the zoneid to zero 4718 * to make IP operate as if in the global zone. 4719 */ 4720 ill->ill_zoneid = GLOBAL_ZONEID; 4721 4722 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4723 if (ill->ill_phyint == NULL) 4724 goto done; 4725 4726 if (isv6) 4727 ill->ill_phyint->phyint_illv6 = ill; 4728 else 4729 ill->ill_phyint->phyint_illv4 = ill; 4730 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4731 ill->ill_max_frag = IP_LOOPBACK_MTU; 4732 /* Add room for tcp+ip headers */ 4733 if (isv6) { 4734 ill->ill_isv6 = B_TRUE; 4735 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4736 } else { 4737 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4738 } 4739 if (!ill_allocate_mibs(ill)) 4740 goto done; 4741 ill->ill_max_mtu = ill->ill_max_frag; 4742 /* 4743 * ipif_loopback_name can't be pointed at directly because its used 4744 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4745 * from the glist, ill_glist_delete() sets the first character of 4746 * ill_name to '\0'. 4747 */ 4748 ill->ill_name = (char *)ill + sizeof (*ill); 4749 (void) strcpy(ill->ill_name, ipif_loopback_name); 4750 ill->ill_name_length = sizeof (ipif_loopback_name); 4751 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4752 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4753 4754 ill->ill_global_timer = INFINITY; 4755 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4756 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4757 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4758 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4759 4760 /* No resolver here. */ 4761 ill->ill_net_type = IRE_LOOPBACK; 4762 4763 /* Initialize the ipsq */ 4764 if (!ipsq_init(ill)) 4765 goto done; 4766 4767 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4768 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4769 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4770 #ifdef DEBUG 4771 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4772 #endif 4773 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4774 if (ipif == NULL) 4775 goto done; 4776 4777 ill->ill_flags = ILLF_MULTICAST; 4778 4779 ov6addr = ipif->ipif_v6lcl_addr; 4780 /* Set up default loopback address and mask. */ 4781 if (!isv6) { 4782 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4783 4784 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4785 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4786 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4787 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4788 ipif->ipif_v6subnet); 4789 ill->ill_flags |= ILLF_IPV4; 4790 } else { 4791 ipif->ipif_v6lcl_addr = ipv6_loopback; 4792 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4793 ipif->ipif_v6net_mask = ipv6_all_ones; 4794 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4795 ipif->ipif_v6subnet); 4796 ill->ill_flags |= ILLF_IPV6; 4797 } 4798 4799 /* 4800 * Chain us in at the end of the ill list. hold the ill 4801 * before we make it globally visible. 1 for the lookup. 4802 */ 4803 ill->ill_refcnt = 0; 4804 ill_refhold(ill); 4805 4806 ill->ill_frag_count = 0; 4807 ill->ill_frag_free_num_pkts = 0; 4808 ill->ill_last_frag_clean_time = 0; 4809 4810 old_ipsq = ill->ill_phyint->phyint_ipsq; 4811 4812 if (ill_glist_insert(ill, "lo", isv6) != 0) 4813 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4814 4815 /* Let SCTP know so that it can add this to its list */ 4816 sctp_update_ill(ill, SCTP_ILL_INSERT); 4817 4818 /* 4819 * We have already assigned ipif_v6lcl_addr above, but we need to 4820 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4821 * requires to be after ill_glist_insert() since we need the 4822 * ill_index set. Pass on ipv6_loopback as the old address. 4823 */ 4824 sctp_update_ipif_addr(ipif, ov6addr); 4825 4826 /* 4827 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4828 */ 4829 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4830 /* Loopback ills aren't in any IPMP group */ 4831 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4832 ipsq_delete(old_ipsq); 4833 } 4834 4835 /* 4836 * Delay this till the ipif is allocated as ipif_allocate 4837 * de-references ill_phyint for getting the ifindex. We 4838 * can't do this before ipif_allocate because ill_phyint_reinit 4839 * -> phyint_assign_ifindex expects ipif to be present. 4840 */ 4841 mutex_enter(&ill->ill_phyint->phyint_lock); 4842 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4843 mutex_exit(&ill->ill_phyint->phyint_lock); 4844 4845 if (ipst->ips_loopback_ksp == NULL) { 4846 /* Export loopback interface statistics */ 4847 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4848 ipif_loopback_name, "net", 4849 KSTAT_TYPE_NAMED, 2, 0, 4850 ipst->ips_netstack->netstack_stackid); 4851 if (ipst->ips_loopback_ksp != NULL) { 4852 ipst->ips_loopback_ksp->ks_update = 4853 loopback_kstat_update; 4854 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4855 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4856 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4857 ipst->ips_loopback_ksp->ks_private = 4858 (void *)(uintptr_t)ipst->ips_netstack-> 4859 netstack_stackid; 4860 kstat_install(ipst->ips_loopback_ksp); 4861 } 4862 } 4863 4864 if (error != NULL) 4865 *error = 0; 4866 *did_alloc = B_TRUE; 4867 rw_exit(&ipst->ips_ill_g_lock); 4868 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4869 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4870 return (ill); 4871 done: 4872 if (ill != NULL) { 4873 if (ill->ill_phyint != NULL) { 4874 ipsq_t *ipsq; 4875 4876 ipsq = ill->ill_phyint->phyint_ipsq; 4877 if (ipsq != NULL) { 4878 ipsq->ipsq_ipst = NULL; 4879 kmem_free(ipsq, sizeof (ipsq_t)); 4880 } 4881 mi_free(ill->ill_phyint); 4882 } 4883 ill_free_mib(ill); 4884 if (ill->ill_ipst != NULL) 4885 netstack_rele(ill->ill_ipst->ips_netstack); 4886 mi_free(ill); 4887 } 4888 rw_exit(&ipst->ips_ill_g_lock); 4889 if (error != NULL) 4890 *error = ENOMEM; 4891 return (NULL); 4892 } 4893 4894 /* 4895 * For IPP calls - use the ip_stack_t for global stack. 4896 */ 4897 ill_t * 4898 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4899 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4900 { 4901 ip_stack_t *ipst; 4902 ill_t *ill; 4903 4904 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4905 if (ipst == NULL) { 4906 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4907 return (NULL); 4908 } 4909 4910 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4911 netstack_rele(ipst->ips_netstack); 4912 return (ill); 4913 } 4914 4915 /* 4916 * Return a pointer to the ill which matches the index and IP version type. 4917 */ 4918 ill_t * 4919 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4920 ipsq_func_t func, int *err, ip_stack_t *ipst) 4921 { 4922 ill_t *ill; 4923 ipsq_t *ipsq; 4924 phyint_t *phyi; 4925 4926 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4927 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4928 4929 if (err != NULL) 4930 *err = 0; 4931 4932 /* 4933 * Indexes are stored in the phyint - a common structure 4934 * to both IPv4 and IPv6. 4935 */ 4936 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4937 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4938 (void *) &index, NULL); 4939 if (phyi != NULL) { 4940 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4941 if (ill != NULL) { 4942 /* 4943 * The block comment at the start of ipif_down 4944 * explains the use of the macros used below 4945 */ 4946 GRAB_CONN_LOCK(q); 4947 mutex_enter(&ill->ill_lock); 4948 if (ILL_CAN_LOOKUP(ill)) { 4949 ill_refhold_locked(ill); 4950 mutex_exit(&ill->ill_lock); 4951 RELEASE_CONN_LOCK(q); 4952 rw_exit(&ipst->ips_ill_g_lock); 4953 return (ill); 4954 } else if (ILL_CAN_WAIT(ill, q)) { 4955 ipsq = ill->ill_phyint->phyint_ipsq; 4956 mutex_enter(&ipsq->ipsq_lock); 4957 rw_exit(&ipst->ips_ill_g_lock); 4958 mutex_exit(&ill->ill_lock); 4959 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4960 mutex_exit(&ipsq->ipsq_lock); 4961 RELEASE_CONN_LOCK(q); 4962 if (err != NULL) 4963 *err = EINPROGRESS; 4964 return (NULL); 4965 } 4966 RELEASE_CONN_LOCK(q); 4967 mutex_exit(&ill->ill_lock); 4968 } 4969 } 4970 rw_exit(&ipst->ips_ill_g_lock); 4971 if (err != NULL) 4972 *err = ENXIO; 4973 return (NULL); 4974 } 4975 4976 /* 4977 * Return the ifindex next in sequence after the passed in ifindex. 4978 * If there is no next ifindex for the given protocol, return 0. 4979 */ 4980 uint_t 4981 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 4982 { 4983 phyint_t *phyi; 4984 phyint_t *phyi_initial; 4985 uint_t ifindex; 4986 4987 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4988 4989 if (index == 0) { 4990 phyi = avl_first( 4991 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4992 } else { 4993 phyi = phyi_initial = avl_find( 4994 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4995 (void *) &index, NULL); 4996 } 4997 4998 for (; phyi != NULL; 4999 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5000 phyi, AVL_AFTER)) { 5001 /* 5002 * If we're not returning the first interface in the tree 5003 * and we still haven't moved past the phyint_t that 5004 * corresponds to index, avl_walk needs to be called again 5005 */ 5006 if (!((index != 0) && (phyi == phyi_initial))) { 5007 if (isv6) { 5008 if ((phyi->phyint_illv6) && 5009 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5010 (phyi->phyint_illv6->ill_isv6 == 1)) 5011 break; 5012 } else { 5013 if ((phyi->phyint_illv4) && 5014 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5015 (phyi->phyint_illv4->ill_isv6 == 0)) 5016 break; 5017 } 5018 } 5019 } 5020 5021 rw_exit(&ipst->ips_ill_g_lock); 5022 5023 if (phyi != NULL) 5024 ifindex = phyi->phyint_ifindex; 5025 else 5026 ifindex = 0; 5027 5028 return (ifindex); 5029 } 5030 5031 /* 5032 * Return the ifindex for the named interface. 5033 * If there is no next ifindex for the interface, return 0. 5034 */ 5035 uint_t 5036 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5037 { 5038 phyint_t *phyi; 5039 avl_index_t where = 0; 5040 uint_t ifindex; 5041 5042 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5043 5044 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5045 name, &where)) == NULL) { 5046 rw_exit(&ipst->ips_ill_g_lock); 5047 return (0); 5048 } 5049 5050 ifindex = phyi->phyint_ifindex; 5051 5052 rw_exit(&ipst->ips_ill_g_lock); 5053 5054 return (ifindex); 5055 } 5056 5057 /* 5058 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5059 * that gives a running thread a reference to the ill. This reference must be 5060 * released by the thread when it is done accessing the ill and related 5061 * objects. ill_refcnt can not be used to account for static references 5062 * such as other structures pointing to an ill. Callers must generally 5063 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5064 * or be sure that the ill is not being deleted or changing state before 5065 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5066 * ill won't change any of its critical state such as address, netmask etc. 5067 */ 5068 void 5069 ill_refhold(ill_t *ill) 5070 { 5071 mutex_enter(&ill->ill_lock); 5072 ill->ill_refcnt++; 5073 ILL_TRACE_REF(ill); 5074 mutex_exit(&ill->ill_lock); 5075 } 5076 5077 void 5078 ill_refhold_locked(ill_t *ill) 5079 { 5080 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5081 ill->ill_refcnt++; 5082 ILL_TRACE_REF(ill); 5083 } 5084 5085 int 5086 ill_check_and_refhold(ill_t *ill) 5087 { 5088 mutex_enter(&ill->ill_lock); 5089 if (ILL_CAN_LOOKUP(ill)) { 5090 ill_refhold_locked(ill); 5091 mutex_exit(&ill->ill_lock); 5092 return (0); 5093 } 5094 mutex_exit(&ill->ill_lock); 5095 return (ILL_LOOKUP_FAILED); 5096 } 5097 5098 /* 5099 * Must not be called while holding any locks. Otherwise if this is 5100 * the last reference to be released, there is a chance of recursive mutex 5101 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5102 * to restart an ioctl. 5103 */ 5104 void 5105 ill_refrele(ill_t *ill) 5106 { 5107 mutex_enter(&ill->ill_lock); 5108 ASSERT(ill->ill_refcnt != 0); 5109 ill->ill_refcnt--; 5110 ILL_UNTRACE_REF(ill); 5111 if (ill->ill_refcnt != 0) { 5112 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5113 mutex_exit(&ill->ill_lock); 5114 return; 5115 } 5116 5117 /* Drops the ill_lock */ 5118 ipif_ill_refrele_tail(ill); 5119 } 5120 5121 /* 5122 * Obtain a weak reference count on the ill. This reference ensures the 5123 * ill won't be freed, but the ill may change any of its critical state 5124 * such as netmask, address etc. Returns an error if the ill has started 5125 * closing. 5126 */ 5127 boolean_t 5128 ill_waiter_inc(ill_t *ill) 5129 { 5130 mutex_enter(&ill->ill_lock); 5131 if (ill->ill_state_flags & ILL_CONDEMNED) { 5132 mutex_exit(&ill->ill_lock); 5133 return (B_FALSE); 5134 } 5135 ill->ill_waiters++; 5136 mutex_exit(&ill->ill_lock); 5137 return (B_TRUE); 5138 } 5139 5140 void 5141 ill_waiter_dcr(ill_t *ill) 5142 { 5143 mutex_enter(&ill->ill_lock); 5144 ill->ill_waiters--; 5145 if (ill->ill_waiters == 0) 5146 cv_broadcast(&ill->ill_cv); 5147 mutex_exit(&ill->ill_lock); 5148 } 5149 5150 /* 5151 * Named Dispatch routine to produce a formatted report on all ILLs. 5152 * This report is accessed by using the ndd utility to "get" ND variable 5153 * "ip_ill_status". 5154 */ 5155 /* ARGSUSED */ 5156 int 5157 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5158 { 5159 ill_t *ill; 5160 ill_walk_context_t ctx; 5161 ip_stack_t *ipst; 5162 5163 ipst = CONNQ_TO_IPST(q); 5164 5165 (void) mi_mpprintf(mp, 5166 "ILL " MI_COL_HDRPAD_STR 5167 /* 01234567[89ABCDEF] */ 5168 "rq " MI_COL_HDRPAD_STR 5169 /* 01234567[89ABCDEF] */ 5170 "wq " MI_COL_HDRPAD_STR 5171 /* 01234567[89ABCDEF] */ 5172 "upcnt mxfrg err name"); 5173 /* 12345 12345 123 xxxxxxxx */ 5174 5175 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5176 ill = ILL_START_WALK_ALL(&ctx, ipst); 5177 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5178 (void) mi_mpprintf(mp, 5179 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5180 "%05u %05u %03d %s", 5181 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5182 ill->ill_ipif_up_count, 5183 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5184 } 5185 rw_exit(&ipst->ips_ill_g_lock); 5186 5187 return (0); 5188 } 5189 5190 /* 5191 * Named Dispatch routine to produce a formatted report on all IPIFs. 5192 * This report is accessed by using the ndd utility to "get" ND variable 5193 * "ip_ipif_status". 5194 */ 5195 /* ARGSUSED */ 5196 int 5197 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5198 { 5199 char buf1[INET6_ADDRSTRLEN]; 5200 char buf2[INET6_ADDRSTRLEN]; 5201 char buf3[INET6_ADDRSTRLEN]; 5202 char buf4[INET6_ADDRSTRLEN]; 5203 char buf5[INET6_ADDRSTRLEN]; 5204 char buf6[INET6_ADDRSTRLEN]; 5205 char buf[LIFNAMSIZ]; 5206 ill_t *ill; 5207 ipif_t *ipif; 5208 nv_t *nvp; 5209 uint64_t flags; 5210 zoneid_t zoneid; 5211 ill_walk_context_t ctx; 5212 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5213 5214 (void) mi_mpprintf(mp, 5215 "IPIF metric mtu in/out/forward name zone flags...\n" 5216 "\tlocal address\n" 5217 "\tsrc address\n" 5218 "\tsubnet\n" 5219 "\tmask\n" 5220 "\tbroadcast\n" 5221 "\tp-p-dst"); 5222 5223 ASSERT(q->q_next == NULL); 5224 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5225 5226 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5227 ill = ILL_START_WALK_ALL(&ctx, ipst); 5228 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5229 for (ipif = ill->ill_ipif; ipif != NULL; 5230 ipif = ipif->ipif_next) { 5231 if (zoneid != GLOBAL_ZONEID && 5232 zoneid != ipif->ipif_zoneid && 5233 ipif->ipif_zoneid != ALL_ZONES) 5234 continue; 5235 5236 ipif_get_name(ipif, buf, sizeof (buf)); 5237 (void) mi_mpprintf(mp, 5238 MI_COL_PTRFMT_STR 5239 "%04u %05u %u/%u/%u %s %d", 5240 (void *)ipif, 5241 ipif->ipif_metric, ipif->ipif_mtu, 5242 ipif->ipif_ib_pkt_count, 5243 ipif->ipif_ob_pkt_count, 5244 ipif->ipif_fo_pkt_count, 5245 buf, 5246 ipif->ipif_zoneid); 5247 5248 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5249 ipif->ipif_ill->ill_phyint->phyint_flags; 5250 5251 /* Tack on text strings for any flags. */ 5252 nvp = ipif_nv_tbl; 5253 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5254 if (nvp->nv_value & flags) 5255 (void) mi_mpprintf_nr(mp, " %s", 5256 nvp->nv_name); 5257 } 5258 (void) mi_mpprintf(mp, 5259 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5260 inet_ntop(AF_INET6, 5261 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5262 inet_ntop(AF_INET6, 5263 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5264 inet_ntop(AF_INET6, 5265 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5266 inet_ntop(AF_INET6, 5267 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5268 inet_ntop(AF_INET6, 5269 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5270 inet_ntop(AF_INET6, 5271 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5272 } 5273 } 5274 rw_exit(&ipst->ips_ill_g_lock); 5275 return (0); 5276 } 5277 5278 /* 5279 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5280 * driver. We construct best guess defaults for lower level information that 5281 * we need. If an interface is brought up without injection of any overriding 5282 * information from outside, we have to be ready to go with these defaults. 5283 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5284 * we primarely want the dl_provider_style. 5285 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5286 * at which point we assume the other part of the information is valid. 5287 */ 5288 void 5289 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5290 { 5291 uchar_t *brdcst_addr; 5292 uint_t brdcst_addr_length, phys_addr_length; 5293 t_scalar_t sap_length; 5294 dl_info_ack_t *dlia; 5295 ip_m_t *ipm; 5296 dl_qos_cl_sel1_t *sel1; 5297 5298 ASSERT(IAM_WRITER_ILL(ill)); 5299 5300 /* 5301 * Till the ill is fully up ILL_CHANGING will be set and 5302 * the ill is not globally visible. So no need for a lock. 5303 */ 5304 dlia = (dl_info_ack_t *)mp->b_rptr; 5305 ill->ill_mactype = dlia->dl_mac_type; 5306 5307 ipm = ip_m_lookup(dlia->dl_mac_type); 5308 if (ipm == NULL) { 5309 ipm = ip_m_lookup(DL_OTHER); 5310 ASSERT(ipm != NULL); 5311 } 5312 ill->ill_media = ipm; 5313 5314 /* 5315 * When the new DLPI stuff is ready we'll pull lengths 5316 * from dlia. 5317 */ 5318 if (dlia->dl_version == DL_VERSION_2) { 5319 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5320 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5321 brdcst_addr_length); 5322 if (brdcst_addr == NULL) { 5323 brdcst_addr_length = 0; 5324 } 5325 sap_length = dlia->dl_sap_length; 5326 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5327 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5328 brdcst_addr_length, sap_length, phys_addr_length)); 5329 } else { 5330 brdcst_addr_length = 6; 5331 brdcst_addr = ip_six_byte_all_ones; 5332 sap_length = -2; 5333 phys_addr_length = brdcst_addr_length; 5334 } 5335 5336 ill->ill_bcast_addr_length = brdcst_addr_length; 5337 ill->ill_phys_addr_length = phys_addr_length; 5338 ill->ill_sap_length = sap_length; 5339 ill->ill_max_frag = dlia->dl_max_sdu; 5340 ill->ill_max_mtu = ill->ill_max_frag; 5341 5342 ill->ill_type = ipm->ip_m_type; 5343 5344 if (!ill->ill_dlpi_style_set) { 5345 if (dlia->dl_provider_style == DL_STYLE2) 5346 ill->ill_needs_attach = 1; 5347 5348 /* 5349 * Allocate the first ipif on this ill. We don't delay it 5350 * further as ioctl handling assumes atleast one ipif to 5351 * be present. 5352 * 5353 * At this point we don't know whether the ill is v4 or v6. 5354 * We will know this whan the SIOCSLIFNAME happens and 5355 * the correct value for ill_isv6 will be assigned in 5356 * ipif_set_values(). We need to hold the ill lock and 5357 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5358 * the wakeup. 5359 */ 5360 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5361 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5362 mutex_enter(&ill->ill_lock); 5363 ASSERT(ill->ill_dlpi_style_set == 0); 5364 ill->ill_dlpi_style_set = 1; 5365 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5366 cv_broadcast(&ill->ill_cv); 5367 mutex_exit(&ill->ill_lock); 5368 freemsg(mp); 5369 return; 5370 } 5371 ASSERT(ill->ill_ipif != NULL); 5372 /* 5373 * We know whether it is IPv4 or IPv6 now, as this is the 5374 * second DL_INFO_ACK we are recieving in response to the 5375 * DL_INFO_REQ sent in ipif_set_values. 5376 */ 5377 if (ill->ill_isv6) 5378 ill->ill_sap = IP6_DL_SAP; 5379 else 5380 ill->ill_sap = IP_DL_SAP; 5381 /* 5382 * Set ipif_mtu which is used to set the IRE's 5383 * ire_max_frag value. The driver could have sent 5384 * a different mtu from what it sent last time. No 5385 * need to call ipif_mtu_change because IREs have 5386 * not yet been created. 5387 */ 5388 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5389 /* 5390 * Clear all the flags that were set based on ill_bcast_addr_length 5391 * and ill_phys_addr_length (in ipif_set_values) as these could have 5392 * changed now and we need to re-evaluate. 5393 */ 5394 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5395 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5396 5397 /* 5398 * Free ill_resolver_mp and ill_bcast_mp as things could have 5399 * changed now. 5400 */ 5401 if (ill->ill_bcast_addr_length == 0) { 5402 if (ill->ill_resolver_mp != NULL) 5403 freemsg(ill->ill_resolver_mp); 5404 if (ill->ill_bcast_mp != NULL) 5405 freemsg(ill->ill_bcast_mp); 5406 if (ill->ill_flags & ILLF_XRESOLV) 5407 ill->ill_net_type = IRE_IF_RESOLVER; 5408 else 5409 ill->ill_net_type = IRE_IF_NORESOLVER; 5410 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5411 ill->ill_phys_addr_length, 5412 ill->ill_sap, 5413 ill->ill_sap_length); 5414 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5415 5416 if (ill->ill_isv6) 5417 /* 5418 * Note: xresolv interfaces will eventually need NOARP 5419 * set here as well, but that will require those 5420 * external resolvers to have some knowledge of 5421 * that flag and act appropriately. Not to be changed 5422 * at present. 5423 */ 5424 ill->ill_flags |= ILLF_NONUD; 5425 else 5426 ill->ill_flags |= ILLF_NOARP; 5427 5428 if (ill->ill_phys_addr_length == 0) { 5429 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5430 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5431 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5432 } else { 5433 /* pt-pt supports multicast. */ 5434 ill->ill_flags |= ILLF_MULTICAST; 5435 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5436 } 5437 } 5438 } else { 5439 ill->ill_net_type = IRE_IF_RESOLVER; 5440 if (ill->ill_bcast_mp != NULL) 5441 freemsg(ill->ill_bcast_mp); 5442 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5443 ill->ill_bcast_addr_length, ill->ill_sap, 5444 ill->ill_sap_length); 5445 /* 5446 * Later detect lack of DLPI driver multicast 5447 * capability by catching DL_ENABMULTI errors in 5448 * ip_rput_dlpi. 5449 */ 5450 ill->ill_flags |= ILLF_MULTICAST; 5451 if (!ill->ill_isv6) 5452 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5453 } 5454 /* By default an interface does not support any CoS marking */ 5455 ill->ill_flags &= ~ILLF_COS_ENABLED; 5456 5457 /* 5458 * If we get QoS information in DL_INFO_ACK, the device supports 5459 * some form of CoS marking, set ILLF_COS_ENABLED. 5460 */ 5461 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5462 dlia->dl_qos_length); 5463 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5464 ill->ill_flags |= ILLF_COS_ENABLED; 5465 } 5466 5467 /* Clear any previous error indication. */ 5468 ill->ill_error = 0; 5469 freemsg(mp); 5470 } 5471 5472 /* 5473 * Perform various checks to verify that an address would make sense as a 5474 * local, remote, or subnet interface address. 5475 */ 5476 static boolean_t 5477 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5478 { 5479 ipaddr_t net_mask; 5480 5481 /* 5482 * Don't allow all zeroes, or all ones, but allow 5483 * all ones netmask. 5484 */ 5485 if ((net_mask = ip_net_mask(addr)) == 0) 5486 return (B_FALSE); 5487 /* A given netmask overrides the "guess" netmask */ 5488 if (subnet_mask != 0) 5489 net_mask = subnet_mask; 5490 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5491 (addr == (addr | ~net_mask)))) { 5492 return (B_FALSE); 5493 } 5494 5495 /* 5496 * Even if the netmask is all ones, we do not allow address to be 5497 * 255.255.255.255 5498 */ 5499 if (addr == INADDR_BROADCAST) 5500 return (B_FALSE); 5501 5502 if (CLASSD(addr)) 5503 return (B_FALSE); 5504 5505 return (B_TRUE); 5506 } 5507 5508 #define V6_IPIF_LINKLOCAL(p) \ 5509 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5510 5511 /* 5512 * Compare two given ipifs and check if the second one is better than 5513 * the first one using the order of preference (not taking deprecated 5514 * into acount) specified in ipif_lookup_multicast(). 5515 */ 5516 static boolean_t 5517 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5518 { 5519 /* Check the least preferred first. */ 5520 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5521 /* If both ipifs are the same, use the first one. */ 5522 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5523 return (B_FALSE); 5524 else 5525 return (B_TRUE); 5526 } 5527 5528 /* For IPv6, check for link local address. */ 5529 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5530 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5531 V6_IPIF_LINKLOCAL(new_ipif)) { 5532 /* The second one is equal or less preferred. */ 5533 return (B_FALSE); 5534 } else { 5535 return (B_TRUE); 5536 } 5537 } 5538 5539 /* Then check for point to point interface. */ 5540 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5541 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5542 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5543 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5544 return (B_FALSE); 5545 } else { 5546 return (B_TRUE); 5547 } 5548 } 5549 5550 /* old_ipif is a normal interface, so no need to use the new one. */ 5551 return (B_FALSE); 5552 } 5553 5554 /* 5555 * Find any non-virtual, not condemned, and up multicast capable interface 5556 * given an IP instance and zoneid. Order of preference is: 5557 * 5558 * 1. normal 5559 * 1.1 normal, but deprecated 5560 * 2. point to point 5561 * 2.1 point to point, but deprecated 5562 * 3. link local 5563 * 3.1 link local, but deprecated 5564 * 4. loopback. 5565 */ 5566 ipif_t * 5567 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5568 { 5569 ill_t *ill; 5570 ill_walk_context_t ctx; 5571 ipif_t *ipif; 5572 ipif_t *saved_ipif = NULL; 5573 ipif_t *dep_ipif = NULL; 5574 5575 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5576 if (isv6) 5577 ill = ILL_START_WALK_V6(&ctx, ipst); 5578 else 5579 ill = ILL_START_WALK_V4(&ctx, ipst); 5580 5581 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5582 mutex_enter(&ill->ill_lock); 5583 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5584 !(ill->ill_flags & ILLF_MULTICAST)) { 5585 mutex_exit(&ill->ill_lock); 5586 continue; 5587 } 5588 for (ipif = ill->ill_ipif; ipif != NULL; 5589 ipif = ipif->ipif_next) { 5590 if (zoneid != ipif->ipif_zoneid && 5591 zoneid != ALL_ZONES && 5592 ipif->ipif_zoneid != ALL_ZONES) { 5593 continue; 5594 } 5595 if (!(ipif->ipif_flags & IPIF_UP) || 5596 !IPIF_CAN_LOOKUP(ipif)) { 5597 continue; 5598 } 5599 5600 /* 5601 * Found one candidate. If it is deprecated, 5602 * remember it in dep_ipif. If it is not deprecated, 5603 * remember it in saved_ipif. 5604 */ 5605 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5606 if (dep_ipif == NULL) { 5607 dep_ipif = ipif; 5608 } else if (ipif_comp_multi(dep_ipif, ipif, 5609 isv6)) { 5610 /* 5611 * If the previous dep_ipif does not 5612 * belong to the same ill, we've done 5613 * a ipif_refhold() on it. So we need 5614 * to release it. 5615 */ 5616 if (dep_ipif->ipif_ill != ill) 5617 ipif_refrele(dep_ipif); 5618 dep_ipif = ipif; 5619 } 5620 continue; 5621 } 5622 if (saved_ipif == NULL) { 5623 saved_ipif = ipif; 5624 } else { 5625 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5626 if (saved_ipif->ipif_ill != ill) 5627 ipif_refrele(saved_ipif); 5628 saved_ipif = ipif; 5629 } 5630 } 5631 } 5632 /* 5633 * Before going to the next ill, do a ipif_refhold() on the 5634 * saved ones. 5635 */ 5636 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5637 ipif_refhold_locked(saved_ipif); 5638 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5639 ipif_refhold_locked(dep_ipif); 5640 mutex_exit(&ill->ill_lock); 5641 } 5642 rw_exit(&ipst->ips_ill_g_lock); 5643 5644 /* 5645 * If we have only the saved_ipif, return it. But if we have both 5646 * saved_ipif and dep_ipif, check to see which one is better. 5647 */ 5648 if (saved_ipif != NULL) { 5649 if (dep_ipif != NULL) { 5650 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5651 ipif_refrele(saved_ipif); 5652 return (dep_ipif); 5653 } else { 5654 ipif_refrele(dep_ipif); 5655 return (saved_ipif); 5656 } 5657 } 5658 return (saved_ipif); 5659 } else { 5660 return (dep_ipif); 5661 } 5662 } 5663 5664 /* 5665 * This function is called when an application does not specify an interface 5666 * to be used for multicast traffic (joining a group/sending data). It 5667 * calls ire_lookup_multi() to look for an interface route for the 5668 * specified multicast group. Doing this allows the administrator to add 5669 * prefix routes for multicast to indicate which interface to be used for 5670 * multicast traffic in the above scenario. The route could be for all 5671 * multicast (224.0/4), for a single multicast group (a /32 route) or 5672 * anything in between. If there is no such multicast route, we just find 5673 * any multicast capable interface and return it. The returned ipif 5674 * is refhold'ed. 5675 */ 5676 ipif_t * 5677 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5678 { 5679 ire_t *ire; 5680 ipif_t *ipif; 5681 5682 ire = ire_lookup_multi(group, zoneid, ipst); 5683 if (ire != NULL) { 5684 ipif = ire->ire_ipif; 5685 ipif_refhold(ipif); 5686 ire_refrele(ire); 5687 return (ipif); 5688 } 5689 5690 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5691 } 5692 5693 /* 5694 * Look for an ipif with the specified interface address and destination. 5695 * The destination address is used only for matching point-to-point interfaces. 5696 */ 5697 ipif_t * 5698 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5699 ipsq_func_t func, int *error, ip_stack_t *ipst) 5700 { 5701 ipif_t *ipif; 5702 ill_t *ill; 5703 ill_walk_context_t ctx; 5704 ipsq_t *ipsq; 5705 5706 if (error != NULL) 5707 *error = 0; 5708 5709 /* 5710 * First match all the point-to-point interfaces 5711 * before looking at non-point-to-point interfaces. 5712 * This is done to avoid returning non-point-to-point 5713 * ipif instead of unnumbered point-to-point ipif. 5714 */ 5715 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5716 ill = ILL_START_WALK_V4(&ctx, ipst); 5717 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5718 GRAB_CONN_LOCK(q); 5719 mutex_enter(&ill->ill_lock); 5720 for (ipif = ill->ill_ipif; ipif != NULL; 5721 ipif = ipif->ipif_next) { 5722 /* Allow the ipif to be down */ 5723 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5724 (ipif->ipif_lcl_addr == if_addr) && 5725 (ipif->ipif_pp_dst_addr == dst)) { 5726 /* 5727 * The block comment at the start of ipif_down 5728 * explains the use of the macros used below 5729 */ 5730 if (IPIF_CAN_LOOKUP(ipif)) { 5731 ipif_refhold_locked(ipif); 5732 mutex_exit(&ill->ill_lock); 5733 RELEASE_CONN_LOCK(q); 5734 rw_exit(&ipst->ips_ill_g_lock); 5735 return (ipif); 5736 } else if (IPIF_CAN_WAIT(ipif, q)) { 5737 ipsq = ill->ill_phyint->phyint_ipsq; 5738 mutex_enter(&ipsq->ipsq_lock); 5739 mutex_exit(&ill->ill_lock); 5740 rw_exit(&ipst->ips_ill_g_lock); 5741 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5742 ill); 5743 mutex_exit(&ipsq->ipsq_lock); 5744 RELEASE_CONN_LOCK(q); 5745 if (error != NULL) 5746 *error = EINPROGRESS; 5747 return (NULL); 5748 } 5749 } 5750 } 5751 mutex_exit(&ill->ill_lock); 5752 RELEASE_CONN_LOCK(q); 5753 } 5754 rw_exit(&ipst->ips_ill_g_lock); 5755 5756 /* lookup the ipif based on interface address */ 5757 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5758 ipst); 5759 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5760 return (ipif); 5761 } 5762 5763 /* 5764 * Look for an ipif with the specified address. For point-point links 5765 * we look for matches on either the destination address and the local 5766 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5767 * is set. 5768 * Matches on a specific ill if match_ill is set. 5769 */ 5770 ipif_t * 5771 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5772 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5773 { 5774 ipif_t *ipif; 5775 ill_t *ill; 5776 boolean_t ptp = B_FALSE; 5777 ipsq_t *ipsq; 5778 ill_walk_context_t ctx; 5779 5780 if (error != NULL) 5781 *error = 0; 5782 5783 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5784 /* 5785 * Repeat twice, first based on local addresses and 5786 * next time for pointopoint. 5787 */ 5788 repeat: 5789 ill = ILL_START_WALK_V4(&ctx, ipst); 5790 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5791 if (match_ill != NULL && ill != match_ill) { 5792 continue; 5793 } 5794 GRAB_CONN_LOCK(q); 5795 mutex_enter(&ill->ill_lock); 5796 for (ipif = ill->ill_ipif; ipif != NULL; 5797 ipif = ipif->ipif_next) { 5798 if (zoneid != ALL_ZONES && 5799 zoneid != ipif->ipif_zoneid && 5800 ipif->ipif_zoneid != ALL_ZONES) 5801 continue; 5802 /* Allow the ipif to be down */ 5803 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5804 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5805 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5806 (ipif->ipif_pp_dst_addr == addr))) { 5807 /* 5808 * The block comment at the start of ipif_down 5809 * explains the use of the macros used below 5810 */ 5811 if (IPIF_CAN_LOOKUP(ipif)) { 5812 ipif_refhold_locked(ipif); 5813 mutex_exit(&ill->ill_lock); 5814 RELEASE_CONN_LOCK(q); 5815 rw_exit(&ipst->ips_ill_g_lock); 5816 return (ipif); 5817 } else if (IPIF_CAN_WAIT(ipif, q)) { 5818 ipsq = ill->ill_phyint->phyint_ipsq; 5819 mutex_enter(&ipsq->ipsq_lock); 5820 mutex_exit(&ill->ill_lock); 5821 rw_exit(&ipst->ips_ill_g_lock); 5822 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5823 ill); 5824 mutex_exit(&ipsq->ipsq_lock); 5825 RELEASE_CONN_LOCK(q); 5826 if (error != NULL) 5827 *error = EINPROGRESS; 5828 return (NULL); 5829 } 5830 } 5831 } 5832 mutex_exit(&ill->ill_lock); 5833 RELEASE_CONN_LOCK(q); 5834 } 5835 5836 /* If we already did the ptp case, then we are done */ 5837 if (ptp) { 5838 rw_exit(&ipst->ips_ill_g_lock); 5839 if (error != NULL) 5840 *error = ENXIO; 5841 return (NULL); 5842 } 5843 ptp = B_TRUE; 5844 goto repeat; 5845 } 5846 5847 /* 5848 * Look for an ipif with the specified address. For point-point links 5849 * we look for matches on either the destination address and the local 5850 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5851 * is set. 5852 * Matches on a specific ill if match_ill is set. 5853 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5854 */ 5855 zoneid_t 5856 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5857 { 5858 zoneid_t zoneid; 5859 ipif_t *ipif; 5860 ill_t *ill; 5861 boolean_t ptp = B_FALSE; 5862 ill_walk_context_t ctx; 5863 5864 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5865 /* 5866 * Repeat twice, first based on local addresses and 5867 * next time for pointopoint. 5868 */ 5869 repeat: 5870 ill = ILL_START_WALK_V4(&ctx, ipst); 5871 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5872 if (match_ill != NULL && ill != match_ill) { 5873 continue; 5874 } 5875 mutex_enter(&ill->ill_lock); 5876 for (ipif = ill->ill_ipif; ipif != NULL; 5877 ipif = ipif->ipif_next) { 5878 /* Allow the ipif to be down */ 5879 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5880 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5881 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5882 (ipif->ipif_pp_dst_addr == addr)) && 5883 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5884 zoneid = ipif->ipif_zoneid; 5885 mutex_exit(&ill->ill_lock); 5886 rw_exit(&ipst->ips_ill_g_lock); 5887 /* 5888 * If ipif_zoneid was ALL_ZONES then we have 5889 * a trusted extensions shared IP address. 5890 * In that case GLOBAL_ZONEID works to send. 5891 */ 5892 if (zoneid == ALL_ZONES) 5893 zoneid = GLOBAL_ZONEID; 5894 return (zoneid); 5895 } 5896 } 5897 mutex_exit(&ill->ill_lock); 5898 } 5899 5900 /* If we already did the ptp case, then we are done */ 5901 if (ptp) { 5902 rw_exit(&ipst->ips_ill_g_lock); 5903 return (ALL_ZONES); 5904 } 5905 ptp = B_TRUE; 5906 goto repeat; 5907 } 5908 5909 /* 5910 * Look for an ipif that matches the specified remote address i.e. the 5911 * ipif that would receive the specified packet. 5912 * First look for directly connected interfaces and then do a recursive 5913 * IRE lookup and pick the first ipif corresponding to the source address in the 5914 * ire. 5915 * Returns: held ipif 5916 */ 5917 ipif_t * 5918 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5919 { 5920 ipif_t *ipif; 5921 ire_t *ire; 5922 ip_stack_t *ipst = ill->ill_ipst; 5923 5924 ASSERT(!ill->ill_isv6); 5925 5926 /* 5927 * Someone could be changing this ipif currently or change it 5928 * after we return this. Thus a few packets could use the old 5929 * old values. However structure updates/creates (ire, ilg, ilm etc) 5930 * will atomically be updated or cleaned up with the new value 5931 * Thus we don't need a lock to check the flags or other attrs below. 5932 */ 5933 mutex_enter(&ill->ill_lock); 5934 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5935 if (!IPIF_CAN_LOOKUP(ipif)) 5936 continue; 5937 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5938 ipif->ipif_zoneid != ALL_ZONES) 5939 continue; 5940 /* Allow the ipif to be down */ 5941 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5942 if ((ipif->ipif_pp_dst_addr == addr) || 5943 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5944 ipif->ipif_lcl_addr == addr)) { 5945 ipif_refhold_locked(ipif); 5946 mutex_exit(&ill->ill_lock); 5947 return (ipif); 5948 } 5949 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5950 ipif_refhold_locked(ipif); 5951 mutex_exit(&ill->ill_lock); 5952 return (ipif); 5953 } 5954 } 5955 mutex_exit(&ill->ill_lock); 5956 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5957 NULL, MATCH_IRE_RECURSIVE, ipst); 5958 if (ire != NULL) { 5959 /* 5960 * The callers of this function wants to know the 5961 * interface on which they have to send the replies 5962 * back. For IRE_CACHES that have ire_stq and ire_ipif 5963 * derived from different ills, we really don't care 5964 * what we return here. 5965 */ 5966 ipif = ire->ire_ipif; 5967 if (ipif != NULL) { 5968 ipif_refhold(ipif); 5969 ire_refrele(ire); 5970 return (ipif); 5971 } 5972 ire_refrele(ire); 5973 } 5974 /* Pick the first interface */ 5975 ipif = ipif_get_next_ipif(NULL, ill); 5976 return (ipif); 5977 } 5978 5979 /* 5980 * This func does not prevent refcnt from increasing. But if 5981 * the caller has taken steps to that effect, then this func 5982 * can be used to determine whether the ill has become quiescent 5983 */ 5984 static boolean_t 5985 ill_is_quiescent(ill_t *ill) 5986 { 5987 ipif_t *ipif; 5988 5989 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5990 5991 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5992 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 5993 return (B_FALSE); 5994 } 5995 } 5996 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 5997 return (B_FALSE); 5998 } 5999 return (B_TRUE); 6000 } 6001 6002 boolean_t 6003 ill_is_freeable(ill_t *ill) 6004 { 6005 ipif_t *ipif; 6006 6007 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6008 6009 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6010 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6011 return (B_FALSE); 6012 } 6013 } 6014 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6015 return (B_FALSE); 6016 } 6017 return (B_TRUE); 6018 } 6019 6020 /* 6021 * This func does not prevent refcnt from increasing. But if 6022 * the caller has taken steps to that effect, then this func 6023 * can be used to determine whether the ipif has become quiescent 6024 */ 6025 static boolean_t 6026 ipif_is_quiescent(ipif_t *ipif) 6027 { 6028 ill_t *ill; 6029 6030 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6031 6032 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6033 return (B_FALSE); 6034 } 6035 6036 ill = ipif->ipif_ill; 6037 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6038 ill->ill_logical_down) { 6039 return (B_TRUE); 6040 } 6041 6042 /* This is the last ipif going down or being deleted on this ill */ 6043 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6044 return (B_FALSE); 6045 } 6046 6047 return (B_TRUE); 6048 } 6049 6050 /* 6051 * return true if the ipif can be destroyed: the ipif has to be quiescent 6052 * with zero references from ire/nce/ilm to it. 6053 */ 6054 static boolean_t 6055 ipif_is_freeable(ipif_t *ipif) 6056 { 6057 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6058 ASSERT(ipif->ipif_id != 0); 6059 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6060 } 6061 6062 /* 6063 * This func does not prevent refcnt from increasing. But if 6064 * the caller has taken steps to that effect, then this func 6065 * can be used to determine whether the ipifs marked with IPIF_MOVING 6066 * have become quiescent and can be moved in a failover/failback. 6067 */ 6068 static ipif_t * 6069 ill_quiescent_to_move(ill_t *ill) 6070 { 6071 ipif_t *ipif; 6072 6073 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6074 6075 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6076 if (ipif->ipif_state_flags & IPIF_MOVING) { 6077 if (ipif->ipif_refcnt != 0 || 6078 !IPIF_DOWN_OK(ipif)) { 6079 return (ipif); 6080 } 6081 } 6082 } 6083 return (NULL); 6084 } 6085 6086 /* 6087 * The ipif/ill/ire has been refreled. Do the tail processing. 6088 * Determine if the ipif or ill in question has become quiescent and if so 6089 * wakeup close and/or restart any queued pending ioctl that is waiting 6090 * for the ipif_down (or ill_down) 6091 */ 6092 void 6093 ipif_ill_refrele_tail(ill_t *ill) 6094 { 6095 mblk_t *mp; 6096 conn_t *connp; 6097 ipsq_t *ipsq; 6098 ipif_t *ipif; 6099 dl_notify_ind_t *dlindp; 6100 6101 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6102 6103 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6104 ill_is_freeable(ill)) { 6105 /* ill_close may be waiting */ 6106 cv_broadcast(&ill->ill_cv); 6107 } 6108 6109 /* ipsq can't change because ill_lock is held */ 6110 ipsq = ill->ill_phyint->phyint_ipsq; 6111 if (ipsq->ipsq_waitfor == 0) { 6112 /* Not waiting for anything, just return. */ 6113 mutex_exit(&ill->ill_lock); 6114 return; 6115 } 6116 ASSERT(ipsq->ipsq_pending_mp != NULL && 6117 ipsq->ipsq_pending_ipif != NULL); 6118 /* 6119 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6120 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6121 * be zero for restarting an ioctl that ends up downing the ill. 6122 */ 6123 ipif = ipsq->ipsq_pending_ipif; 6124 if (ipif->ipif_ill != ill) { 6125 /* The ioctl is pending on some other ill. */ 6126 mutex_exit(&ill->ill_lock); 6127 return; 6128 } 6129 6130 switch (ipsq->ipsq_waitfor) { 6131 case IPIF_DOWN: 6132 if (!ipif_is_quiescent(ipif)) { 6133 mutex_exit(&ill->ill_lock); 6134 return; 6135 } 6136 break; 6137 case IPIF_FREE: 6138 if (!ipif_is_freeable(ipif)) { 6139 mutex_exit(&ill->ill_lock); 6140 return; 6141 } 6142 break; 6143 6144 case ILL_DOWN: 6145 if (!ill_is_quiescent(ill)) { 6146 mutex_exit(&ill->ill_lock); 6147 return; 6148 } 6149 break; 6150 case ILL_FREE: 6151 /* 6152 * case ILL_FREE arises only for loopback. otherwise ill_delete 6153 * waits synchronously in ip_close, and no message is queued in 6154 * ipsq_pending_mp at all in this case 6155 */ 6156 if (!ill_is_freeable(ill)) { 6157 mutex_exit(&ill->ill_lock); 6158 return; 6159 } 6160 break; 6161 6162 case ILL_MOVE_OK: 6163 if (ill_quiescent_to_move(ill) != NULL) { 6164 mutex_exit(&ill->ill_lock); 6165 return; 6166 } 6167 break; 6168 default: 6169 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6170 (void *)ipsq, ipsq->ipsq_waitfor); 6171 } 6172 6173 /* 6174 * Incr refcnt for the qwriter_ip call below which 6175 * does a refrele 6176 */ 6177 ill_refhold_locked(ill); 6178 mp = ipsq_pending_mp_get(ipsq, &connp); 6179 mutex_exit(&ill->ill_lock); 6180 6181 ASSERT(mp != NULL); 6182 /* 6183 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6184 * we can only get here when the current operation decides it 6185 * it needs to quiesce via ipsq_pending_mp_add(). 6186 */ 6187 switch (mp->b_datap->db_type) { 6188 case M_PCPROTO: 6189 case M_PROTO: 6190 /* 6191 * For now, only DL_NOTIFY_IND messages can use this facility. 6192 */ 6193 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6194 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6195 6196 switch (dlindp->dl_notification) { 6197 case DL_NOTE_PHYS_ADDR: 6198 qwriter_ip(ill, ill->ill_rq, mp, 6199 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6200 return; 6201 default: 6202 ASSERT(0); 6203 } 6204 break; 6205 6206 case M_ERROR: 6207 case M_HANGUP: 6208 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6209 B_TRUE); 6210 return; 6211 6212 case M_IOCTL: 6213 case M_IOCDATA: 6214 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6215 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6216 return; 6217 6218 default: 6219 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6220 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6221 } 6222 } 6223 6224 #ifdef DEBUG 6225 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6226 static void 6227 th_trace_rrecord(th_trace_t *th_trace) 6228 { 6229 tr_buf_t *tr_buf; 6230 uint_t lastref; 6231 6232 lastref = th_trace->th_trace_lastref; 6233 lastref++; 6234 if (lastref == TR_BUF_MAX) 6235 lastref = 0; 6236 th_trace->th_trace_lastref = lastref; 6237 tr_buf = &th_trace->th_trbuf[lastref]; 6238 tr_buf->tr_time = lbolt; 6239 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6240 } 6241 6242 static void 6243 th_trace_free(void *value) 6244 { 6245 th_trace_t *th_trace = value; 6246 6247 ASSERT(th_trace->th_refcnt == 0); 6248 kmem_free(th_trace, sizeof (*th_trace)); 6249 } 6250 6251 /* 6252 * Find or create the per-thread hash table used to track object references. 6253 * The ipst argument is NULL if we shouldn't allocate. 6254 * 6255 * Accesses per-thread data, so there's no need to lock here. 6256 */ 6257 static mod_hash_t * 6258 th_trace_gethash(ip_stack_t *ipst) 6259 { 6260 th_hash_t *thh; 6261 6262 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6263 mod_hash_t *mh; 6264 char name[256]; 6265 size_t objsize, rshift; 6266 int retv; 6267 6268 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6269 return (NULL); 6270 (void) snprintf(name, sizeof (name), "th_trace_%p", 6271 (void *)curthread); 6272 6273 /* 6274 * We use mod_hash_create_extended here rather than the more 6275 * obvious mod_hash_create_ptrhash because the latter has a 6276 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6277 * block. 6278 */ 6279 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6280 MAX(sizeof (ire_t), sizeof (nce_t))); 6281 rshift = highbit(objsize); 6282 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6283 th_trace_free, mod_hash_byptr, (void *)rshift, 6284 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6285 if (mh == NULL) { 6286 kmem_free(thh, sizeof (*thh)); 6287 return (NULL); 6288 } 6289 thh->thh_hash = mh; 6290 thh->thh_ipst = ipst; 6291 /* 6292 * We trace ills, ipifs, ires, and nces. All of these are 6293 * per-IP-stack, so the lock on the thread list is as well. 6294 */ 6295 rw_enter(&ip_thread_rwlock, RW_WRITER); 6296 list_insert_tail(&ip_thread_list, thh); 6297 rw_exit(&ip_thread_rwlock); 6298 retv = tsd_set(ip_thread_data, thh); 6299 ASSERT(retv == 0); 6300 } 6301 return (thh != NULL ? thh->thh_hash : NULL); 6302 } 6303 6304 boolean_t 6305 th_trace_ref(const void *obj, ip_stack_t *ipst) 6306 { 6307 th_trace_t *th_trace; 6308 mod_hash_t *mh; 6309 mod_hash_val_t val; 6310 6311 if ((mh = th_trace_gethash(ipst)) == NULL) 6312 return (B_FALSE); 6313 6314 /* 6315 * Attempt to locate the trace buffer for this obj and thread. 6316 * If it does not exist, then allocate a new trace buffer and 6317 * insert into the hash. 6318 */ 6319 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6320 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6321 if (th_trace == NULL) 6322 return (B_FALSE); 6323 6324 th_trace->th_id = curthread; 6325 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6326 (mod_hash_val_t)th_trace) != 0) { 6327 kmem_free(th_trace, sizeof (th_trace_t)); 6328 return (B_FALSE); 6329 } 6330 } else { 6331 th_trace = (th_trace_t *)val; 6332 } 6333 6334 ASSERT(th_trace->th_refcnt >= 0 && 6335 th_trace->th_refcnt < TR_BUF_MAX - 1); 6336 6337 th_trace->th_refcnt++; 6338 th_trace_rrecord(th_trace); 6339 return (B_TRUE); 6340 } 6341 6342 /* 6343 * For the purpose of tracing a reference release, we assume that global 6344 * tracing is always on and that the same thread initiated the reference hold 6345 * is releasing. 6346 */ 6347 void 6348 th_trace_unref(const void *obj) 6349 { 6350 int retv; 6351 mod_hash_t *mh; 6352 th_trace_t *th_trace; 6353 mod_hash_val_t val; 6354 6355 mh = th_trace_gethash(NULL); 6356 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6357 ASSERT(retv == 0); 6358 th_trace = (th_trace_t *)val; 6359 6360 ASSERT(th_trace->th_refcnt > 0); 6361 th_trace->th_refcnt--; 6362 th_trace_rrecord(th_trace); 6363 } 6364 6365 /* 6366 * If tracing has been disabled, then we assume that the reference counts are 6367 * now useless, and we clear them out before destroying the entries. 6368 */ 6369 void 6370 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6371 { 6372 th_hash_t *thh; 6373 mod_hash_t *mh; 6374 mod_hash_val_t val; 6375 th_trace_t *th_trace; 6376 int retv; 6377 6378 rw_enter(&ip_thread_rwlock, RW_READER); 6379 for (thh = list_head(&ip_thread_list); thh != NULL; 6380 thh = list_next(&ip_thread_list, thh)) { 6381 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6382 &val) == 0) { 6383 th_trace = (th_trace_t *)val; 6384 if (trace_disable) 6385 th_trace->th_refcnt = 0; 6386 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6387 ASSERT(retv == 0); 6388 } 6389 } 6390 rw_exit(&ip_thread_rwlock); 6391 } 6392 6393 void 6394 ipif_trace_ref(ipif_t *ipif) 6395 { 6396 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6397 6398 if (ipif->ipif_trace_disable) 6399 return; 6400 6401 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6402 ipif->ipif_trace_disable = B_TRUE; 6403 ipif_trace_cleanup(ipif); 6404 } 6405 } 6406 6407 void 6408 ipif_untrace_ref(ipif_t *ipif) 6409 { 6410 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6411 6412 if (!ipif->ipif_trace_disable) 6413 th_trace_unref(ipif); 6414 } 6415 6416 void 6417 ill_trace_ref(ill_t *ill) 6418 { 6419 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6420 6421 if (ill->ill_trace_disable) 6422 return; 6423 6424 if (!th_trace_ref(ill, ill->ill_ipst)) { 6425 ill->ill_trace_disable = B_TRUE; 6426 ill_trace_cleanup(ill); 6427 } 6428 } 6429 6430 void 6431 ill_untrace_ref(ill_t *ill) 6432 { 6433 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6434 6435 if (!ill->ill_trace_disable) 6436 th_trace_unref(ill); 6437 } 6438 6439 /* 6440 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6441 * failure, ipif_trace_disable is set. 6442 */ 6443 static void 6444 ipif_trace_cleanup(const ipif_t *ipif) 6445 { 6446 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6447 } 6448 6449 /* 6450 * Called when ill is unplumbed or when memory alloc fails. Note that on 6451 * failure, ill_trace_disable is set. 6452 */ 6453 static void 6454 ill_trace_cleanup(const ill_t *ill) 6455 { 6456 th_trace_cleanup(ill, ill->ill_trace_disable); 6457 } 6458 #endif /* DEBUG */ 6459 6460 void 6461 ipif_refhold_locked(ipif_t *ipif) 6462 { 6463 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6464 ipif->ipif_refcnt++; 6465 IPIF_TRACE_REF(ipif); 6466 } 6467 6468 void 6469 ipif_refhold(ipif_t *ipif) 6470 { 6471 ill_t *ill; 6472 6473 ill = ipif->ipif_ill; 6474 mutex_enter(&ill->ill_lock); 6475 ipif->ipif_refcnt++; 6476 IPIF_TRACE_REF(ipif); 6477 mutex_exit(&ill->ill_lock); 6478 } 6479 6480 /* 6481 * Must not be called while holding any locks. Otherwise if this is 6482 * the last reference to be released there is a chance of recursive mutex 6483 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6484 * to restart an ioctl. 6485 */ 6486 void 6487 ipif_refrele(ipif_t *ipif) 6488 { 6489 ill_t *ill; 6490 6491 ill = ipif->ipif_ill; 6492 6493 mutex_enter(&ill->ill_lock); 6494 ASSERT(ipif->ipif_refcnt != 0); 6495 ipif->ipif_refcnt--; 6496 IPIF_UNTRACE_REF(ipif); 6497 if (ipif->ipif_refcnt != 0) { 6498 mutex_exit(&ill->ill_lock); 6499 return; 6500 } 6501 6502 /* Drops the ill_lock */ 6503 ipif_ill_refrele_tail(ill); 6504 } 6505 6506 ipif_t * 6507 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6508 { 6509 ipif_t *ipif; 6510 6511 mutex_enter(&ill->ill_lock); 6512 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6513 ipif != NULL; ipif = ipif->ipif_next) { 6514 if (!IPIF_CAN_LOOKUP(ipif)) 6515 continue; 6516 ipif_refhold_locked(ipif); 6517 mutex_exit(&ill->ill_lock); 6518 return (ipif); 6519 } 6520 mutex_exit(&ill->ill_lock); 6521 return (NULL); 6522 } 6523 6524 /* 6525 * TODO: make this table extendible at run time 6526 * Return a pointer to the mac type info for 'mac_type' 6527 */ 6528 static ip_m_t * 6529 ip_m_lookup(t_uscalar_t mac_type) 6530 { 6531 ip_m_t *ipm; 6532 6533 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6534 if (ipm->ip_m_mac_type == mac_type) 6535 return (ipm); 6536 return (NULL); 6537 } 6538 6539 /* 6540 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6541 * ipif_arg is passed in to associate it with the correct interface. 6542 * We may need to restart this operation if the ipif cannot be looked up 6543 * due to an exclusive operation that is currently in progress. The restart 6544 * entry point is specified by 'func' 6545 */ 6546 int 6547 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6548 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6549 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6550 struct rtsa_s *sp, ip_stack_t *ipst) 6551 { 6552 ire_t *ire; 6553 ire_t *gw_ire = NULL; 6554 ipif_t *ipif = NULL; 6555 boolean_t ipif_refheld = B_FALSE; 6556 uint_t type; 6557 int match_flags = MATCH_IRE_TYPE; 6558 int error; 6559 tsol_gc_t *gc = NULL; 6560 tsol_gcgrp_t *gcgrp = NULL; 6561 boolean_t gcgrp_xtraref = B_FALSE; 6562 6563 ip1dbg(("ip_rt_add:")); 6564 6565 if (ire_arg != NULL) 6566 *ire_arg = NULL; 6567 6568 /* 6569 * If this is the case of RTF_HOST being set, then we set the netmask 6570 * to all ones (regardless if one was supplied). 6571 */ 6572 if (flags & RTF_HOST) 6573 mask = IP_HOST_MASK; 6574 6575 /* 6576 * Prevent routes with a zero gateway from being created (since 6577 * interfaces can currently be plumbed and brought up no assigned 6578 * address). 6579 */ 6580 if (gw_addr == 0) 6581 return (ENETUNREACH); 6582 /* 6583 * Get the ipif, if any, corresponding to the gw_addr 6584 */ 6585 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6586 ipst); 6587 if (ipif != NULL) { 6588 if (IS_VNI(ipif->ipif_ill)) { 6589 ipif_refrele(ipif); 6590 return (EINVAL); 6591 } 6592 ipif_refheld = B_TRUE; 6593 } else if (error == EINPROGRESS) { 6594 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6595 return (EINPROGRESS); 6596 } else { 6597 error = 0; 6598 } 6599 6600 if (ipif != NULL) { 6601 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6602 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6603 } else { 6604 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6605 } 6606 6607 /* 6608 * GateD will attempt to create routes with a loopback interface 6609 * address as the gateway and with RTF_GATEWAY set. We allow 6610 * these routes to be added, but create them as interface routes 6611 * since the gateway is an interface address. 6612 */ 6613 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6614 flags &= ~RTF_GATEWAY; 6615 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6616 mask == IP_HOST_MASK) { 6617 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6618 ALL_ZONES, NULL, match_flags, ipst); 6619 if (ire != NULL) { 6620 ire_refrele(ire); 6621 if (ipif_refheld) 6622 ipif_refrele(ipif); 6623 return (EEXIST); 6624 } 6625 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6626 "for 0x%x\n", (void *)ipif, 6627 ipif->ipif_ire_type, 6628 ntohl(ipif->ipif_lcl_addr))); 6629 ire = ire_create( 6630 (uchar_t *)&dst_addr, /* dest address */ 6631 (uchar_t *)&mask, /* mask */ 6632 (uchar_t *)&ipif->ipif_src_addr, 6633 NULL, /* no gateway */ 6634 &ipif->ipif_mtu, 6635 NULL, 6636 ipif->ipif_rq, /* recv-from queue */ 6637 NULL, /* no send-to queue */ 6638 ipif->ipif_ire_type, /* LOOPBACK */ 6639 ipif, 6640 0, 6641 0, 6642 0, 6643 (ipif->ipif_flags & IPIF_PRIVATE) ? 6644 RTF_PRIVATE : 0, 6645 &ire_uinfo_null, 6646 NULL, 6647 NULL, 6648 ipst); 6649 6650 if (ire == NULL) { 6651 if (ipif_refheld) 6652 ipif_refrele(ipif); 6653 return (ENOMEM); 6654 } 6655 error = ire_add(&ire, q, mp, func, B_FALSE); 6656 if (error == 0) 6657 goto save_ire; 6658 if (ipif_refheld) 6659 ipif_refrele(ipif); 6660 return (error); 6661 6662 } 6663 } 6664 6665 /* 6666 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6667 * and the gateway address provided is one of the system's interface 6668 * addresses. By using the routing socket interface and supplying an 6669 * RTA_IFP sockaddr with an interface index, an alternate method of 6670 * specifying an interface route to be created is available which uses 6671 * the interface index that specifies the outgoing interface rather than 6672 * the address of an outgoing interface (which may not be able to 6673 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6674 * flag, routes can be specified which not only specify the next-hop to 6675 * be used when routing to a certain prefix, but also which outgoing 6676 * interface should be used. 6677 * 6678 * Previously, interfaces would have unique addresses assigned to them 6679 * and so the address assigned to a particular interface could be used 6680 * to identify a particular interface. One exception to this was the 6681 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6682 * 6683 * With the advent of IPv6 and its link-local addresses, this 6684 * restriction was relaxed and interfaces could share addresses between 6685 * themselves. In fact, typically all of the link-local interfaces on 6686 * an IPv6 node or router will have the same link-local address. In 6687 * order to differentiate between these interfaces, the use of an 6688 * interface index is necessary and this index can be carried inside a 6689 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6690 * of using the interface index, however, is that all of the ipif's that 6691 * are part of an ill have the same index and so the RTA_IFP sockaddr 6692 * cannot be used to differentiate between ipif's (or logical 6693 * interfaces) that belong to the same ill (physical interface). 6694 * 6695 * For example, in the following case involving IPv4 interfaces and 6696 * logical interfaces 6697 * 6698 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6699 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6700 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6701 * 6702 * the ipif's corresponding to each of these interface routes can be 6703 * uniquely identified by the "gateway" (actually interface address). 6704 * 6705 * In this case involving multiple IPv6 default routes to a particular 6706 * link-local gateway, the use of RTA_IFP is necessary to specify which 6707 * default route is of interest: 6708 * 6709 * default fe80::123:4567:89ab:cdef U if0 6710 * default fe80::123:4567:89ab:cdef U if1 6711 */ 6712 6713 /* RTF_GATEWAY not set */ 6714 if (!(flags & RTF_GATEWAY)) { 6715 queue_t *stq; 6716 6717 if (sp != NULL) { 6718 ip2dbg(("ip_rt_add: gateway security attributes " 6719 "cannot be set with interface route\n")); 6720 if (ipif_refheld) 6721 ipif_refrele(ipif); 6722 return (EINVAL); 6723 } 6724 6725 /* 6726 * As the interface index specified with the RTA_IFP sockaddr is 6727 * the same for all ipif's off of an ill, the matching logic 6728 * below uses MATCH_IRE_ILL if such an index was specified. 6729 * This means that routes sharing the same prefix when added 6730 * using a RTA_IFP sockaddr must have distinct interface 6731 * indices (namely, they must be on distinct ill's). 6732 * 6733 * On the other hand, since the gateway address will usually be 6734 * different for each ipif on the system, the matching logic 6735 * uses MATCH_IRE_IPIF in the case of a traditional interface 6736 * route. This means that interface routes for the same prefix 6737 * can be created if they belong to distinct ipif's and if a 6738 * RTA_IFP sockaddr is not present. 6739 */ 6740 if (ipif_arg != NULL) { 6741 if (ipif_refheld) { 6742 ipif_refrele(ipif); 6743 ipif_refheld = B_FALSE; 6744 } 6745 ipif = ipif_arg; 6746 match_flags |= MATCH_IRE_ILL; 6747 } else { 6748 /* 6749 * Check the ipif corresponding to the gw_addr 6750 */ 6751 if (ipif == NULL) 6752 return (ENETUNREACH); 6753 match_flags |= MATCH_IRE_IPIF; 6754 } 6755 ASSERT(ipif != NULL); 6756 6757 /* 6758 * We check for an existing entry at this point. 6759 * 6760 * Since a netmask isn't passed in via the ioctl interface 6761 * (SIOCADDRT), we don't check for a matching netmask in that 6762 * case. 6763 */ 6764 if (!ioctl_msg) 6765 match_flags |= MATCH_IRE_MASK; 6766 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6767 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6768 if (ire != NULL) { 6769 ire_refrele(ire); 6770 if (ipif_refheld) 6771 ipif_refrele(ipif); 6772 return (EEXIST); 6773 } 6774 6775 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6776 ? ipif->ipif_rq : ipif->ipif_wq; 6777 6778 /* 6779 * Create a copy of the IRE_LOOPBACK, 6780 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6781 * the modified address and netmask. 6782 */ 6783 ire = ire_create( 6784 (uchar_t *)&dst_addr, 6785 (uint8_t *)&mask, 6786 (uint8_t *)&ipif->ipif_src_addr, 6787 NULL, 6788 &ipif->ipif_mtu, 6789 NULL, 6790 NULL, 6791 stq, 6792 ipif->ipif_net_type, 6793 ipif, 6794 0, 6795 0, 6796 0, 6797 flags, 6798 &ire_uinfo_null, 6799 NULL, 6800 NULL, 6801 ipst); 6802 if (ire == NULL) { 6803 if (ipif_refheld) 6804 ipif_refrele(ipif); 6805 return (ENOMEM); 6806 } 6807 6808 /* 6809 * Some software (for example, GateD and Sun Cluster) attempts 6810 * to create (what amount to) IRE_PREFIX routes with the 6811 * loopback address as the gateway. This is primarily done to 6812 * set up prefixes with the RTF_REJECT flag set (for example, 6813 * when generating aggregate routes.) 6814 * 6815 * If the IRE type (as defined by ipif->ipif_net_type) is 6816 * IRE_LOOPBACK, then we map the request into a 6817 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6818 * these interface routes, by definition, can only be that. 6819 * 6820 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6821 * routine, but rather using ire_create() directly. 6822 * 6823 */ 6824 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6825 ire->ire_type = IRE_IF_NORESOLVER; 6826 ire->ire_flags |= RTF_BLACKHOLE; 6827 } 6828 6829 error = ire_add(&ire, q, mp, func, B_FALSE); 6830 if (error == 0) 6831 goto save_ire; 6832 6833 /* 6834 * In the result of failure, ire_add() will have already 6835 * deleted the ire in question, so there is no need to 6836 * do that here. 6837 */ 6838 if (ipif_refheld) 6839 ipif_refrele(ipif); 6840 return (error); 6841 } 6842 if (ipif_refheld) { 6843 ipif_refrele(ipif); 6844 ipif_refheld = B_FALSE; 6845 } 6846 6847 /* 6848 * Get an interface IRE for the specified gateway. 6849 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6850 * gateway, it is currently unreachable and we fail the request 6851 * accordingly. 6852 */ 6853 ipif = ipif_arg; 6854 if (ipif_arg != NULL) 6855 match_flags |= MATCH_IRE_ILL; 6856 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6857 ALL_ZONES, 0, NULL, match_flags, ipst); 6858 if (gw_ire == NULL) 6859 return (ENETUNREACH); 6860 6861 /* 6862 * We create one of three types of IREs as a result of this request 6863 * based on the netmask. A netmask of all ones (which is automatically 6864 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6865 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6866 * created. Otherwise, an IRE_PREFIX route is created for the 6867 * destination prefix. 6868 */ 6869 if (mask == IP_HOST_MASK) 6870 type = IRE_HOST; 6871 else if (mask == 0) 6872 type = IRE_DEFAULT; 6873 else 6874 type = IRE_PREFIX; 6875 6876 /* check for a duplicate entry */ 6877 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6878 NULL, ALL_ZONES, 0, NULL, 6879 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 6880 if (ire != NULL) { 6881 ire_refrele(gw_ire); 6882 ire_refrele(ire); 6883 return (EEXIST); 6884 } 6885 6886 /* Security attribute exists */ 6887 if (sp != NULL) { 6888 tsol_gcgrp_addr_t ga; 6889 6890 /* find or create the gateway credentials group */ 6891 ga.ga_af = AF_INET; 6892 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6893 6894 /* we hold reference to it upon success */ 6895 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6896 if (gcgrp == NULL) { 6897 ire_refrele(gw_ire); 6898 return (ENOMEM); 6899 } 6900 6901 /* 6902 * Create and add the security attribute to the group; a 6903 * reference to the group is made upon allocating a new 6904 * entry successfully. If it finds an already-existing 6905 * entry for the security attribute in the group, it simply 6906 * returns it and no new reference is made to the group. 6907 */ 6908 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6909 if (gc == NULL) { 6910 /* release reference held by gcgrp_lookup */ 6911 GCGRP_REFRELE(gcgrp); 6912 ire_refrele(gw_ire); 6913 return (ENOMEM); 6914 } 6915 } 6916 6917 /* Create the IRE. */ 6918 ire = ire_create( 6919 (uchar_t *)&dst_addr, /* dest address */ 6920 (uchar_t *)&mask, /* mask */ 6921 /* src address assigned by the caller? */ 6922 (uchar_t *)(((src_addr != INADDR_ANY) && 6923 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6924 (uchar_t *)&gw_addr, /* gateway address */ 6925 &gw_ire->ire_max_frag, 6926 NULL, /* no src nce */ 6927 NULL, /* no recv-from queue */ 6928 NULL, /* no send-to queue */ 6929 (ushort_t)type, /* IRE type */ 6930 ipif_arg, 6931 0, 6932 0, 6933 0, 6934 flags, 6935 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6936 gc, /* security attribute */ 6937 NULL, 6938 ipst); 6939 6940 /* 6941 * The ire holds a reference to the 'gc' and the 'gc' holds a 6942 * reference to the 'gcgrp'. We can now release the extra reference 6943 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6944 */ 6945 if (gcgrp_xtraref) 6946 GCGRP_REFRELE(gcgrp); 6947 if (ire == NULL) { 6948 if (gc != NULL) 6949 GC_REFRELE(gc); 6950 ire_refrele(gw_ire); 6951 return (ENOMEM); 6952 } 6953 6954 /* 6955 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6956 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6957 */ 6958 6959 /* Add the new IRE. */ 6960 error = ire_add(&ire, q, mp, func, B_FALSE); 6961 if (error != 0) { 6962 /* 6963 * In the result of failure, ire_add() will have already 6964 * deleted the ire in question, so there is no need to 6965 * do that here. 6966 */ 6967 ire_refrele(gw_ire); 6968 return (error); 6969 } 6970 6971 if (flags & RTF_MULTIRT) { 6972 /* 6973 * Invoke the CGTP (multirouting) filtering module 6974 * to add the dst address in the filtering database. 6975 * Replicated inbound packets coming from that address 6976 * will be filtered to discard the duplicates. 6977 * It is not necessary to call the CGTP filter hook 6978 * when the dst address is a broadcast or multicast, 6979 * because an IP source address cannot be a broadcast 6980 * or a multicast. 6981 */ 6982 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6983 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 6984 if (ire_dst != NULL) { 6985 ip_cgtp_bcast_add(ire, ire_dst, ipst); 6986 ire_refrele(ire_dst); 6987 goto save_ire; 6988 } 6989 if (ipst->ips_ip_cgtp_filter_ops != NULL && 6990 !CLASSD(ire->ire_addr)) { 6991 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 6992 ipst->ips_netstack->netstack_stackid, 6993 ire->ire_addr, 6994 ire->ire_gateway_addr, 6995 ire->ire_src_addr, 6996 gw_ire->ire_src_addr); 6997 if (res != 0) { 6998 ire_refrele(gw_ire); 6999 ire_delete(ire); 7000 return (res); 7001 } 7002 } 7003 } 7004 7005 /* 7006 * Now that the prefix IRE entry has been created, delete any 7007 * existing gateway IRE cache entries as well as any IRE caches 7008 * using the gateway, and force them to be created through 7009 * ip_newroute. 7010 */ 7011 if (gc != NULL) { 7012 ASSERT(gcgrp != NULL); 7013 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7014 } 7015 7016 save_ire: 7017 if (gw_ire != NULL) { 7018 ire_refrele(gw_ire); 7019 } 7020 if (ipif != NULL) { 7021 /* 7022 * Save enough information so that we can recreate the IRE if 7023 * the interface goes down and then up. The metrics associated 7024 * with the route will be saved as well when rts_setmetrics() is 7025 * called after the IRE has been created. In the case where 7026 * memory cannot be allocated, none of this information will be 7027 * saved. 7028 */ 7029 ipif_save_ire(ipif, ire); 7030 } 7031 if (ioctl_msg) 7032 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7033 if (ire_arg != NULL) { 7034 /* 7035 * Store the ire that was successfully added into where ire_arg 7036 * points to so that callers don't have to look it up 7037 * themselves (but they are responsible for ire_refrele()ing 7038 * the ire when they are finished with it). 7039 */ 7040 *ire_arg = ire; 7041 } else { 7042 ire_refrele(ire); /* Held in ire_add */ 7043 } 7044 if (ipif_refheld) 7045 ipif_refrele(ipif); 7046 return (0); 7047 } 7048 7049 /* 7050 * ip_rt_delete is called to delete an IPv4 route. 7051 * ipif_arg is passed in to associate it with the correct interface. 7052 * We may need to restart this operation if the ipif cannot be looked up 7053 * due to an exclusive operation that is currently in progress. The restart 7054 * entry point is specified by 'func' 7055 */ 7056 /* ARGSUSED4 */ 7057 int 7058 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7059 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7060 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7061 { 7062 ire_t *ire = NULL; 7063 ipif_t *ipif; 7064 boolean_t ipif_refheld = B_FALSE; 7065 uint_t type; 7066 uint_t match_flags = MATCH_IRE_TYPE; 7067 int err = 0; 7068 7069 ip1dbg(("ip_rt_delete:")); 7070 /* 7071 * If this is the case of RTF_HOST being set, then we set the netmask 7072 * to all ones. Otherwise, we use the netmask if one was supplied. 7073 */ 7074 if (flags & RTF_HOST) { 7075 mask = IP_HOST_MASK; 7076 match_flags |= MATCH_IRE_MASK; 7077 } else if (rtm_addrs & RTA_NETMASK) { 7078 match_flags |= MATCH_IRE_MASK; 7079 } 7080 7081 /* 7082 * Note that RTF_GATEWAY is never set on a delete, therefore 7083 * we check if the gateway address is one of our interfaces first, 7084 * and fall back on RTF_GATEWAY routes. 7085 * 7086 * This makes it possible to delete an original 7087 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7088 * 7089 * As the interface index specified with the RTA_IFP sockaddr is the 7090 * same for all ipif's off of an ill, the matching logic below uses 7091 * MATCH_IRE_ILL if such an index was specified. This means a route 7092 * sharing the same prefix and interface index as the the route 7093 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7094 * is specified in the request. 7095 * 7096 * On the other hand, since the gateway address will usually be 7097 * different for each ipif on the system, the matching logic 7098 * uses MATCH_IRE_IPIF in the case of a traditional interface 7099 * route. This means that interface routes for the same prefix can be 7100 * uniquely identified if they belong to distinct ipif's and if a 7101 * RTA_IFP sockaddr is not present. 7102 * 7103 * For more detail on specifying routes by gateway address and by 7104 * interface index, see the comments in ip_rt_add(). 7105 */ 7106 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7107 ipst); 7108 if (ipif != NULL) 7109 ipif_refheld = B_TRUE; 7110 else if (err == EINPROGRESS) 7111 return (err); 7112 else 7113 err = 0; 7114 if (ipif != NULL) { 7115 if (ipif_arg != NULL) { 7116 if (ipif_refheld) { 7117 ipif_refrele(ipif); 7118 ipif_refheld = B_FALSE; 7119 } 7120 ipif = ipif_arg; 7121 match_flags |= MATCH_IRE_ILL; 7122 } else { 7123 match_flags |= MATCH_IRE_IPIF; 7124 } 7125 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7126 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7127 ALL_ZONES, NULL, match_flags, ipst); 7128 } 7129 if (ire == NULL) { 7130 ire = ire_ftable_lookup(dst_addr, mask, 0, 7131 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7132 match_flags, ipst); 7133 } 7134 } 7135 7136 if (ire == NULL) { 7137 /* 7138 * At this point, the gateway address is not one of our own 7139 * addresses or a matching interface route was not found. We 7140 * set the IRE type to lookup based on whether 7141 * this is a host route, a default route or just a prefix. 7142 * 7143 * If an ipif_arg was passed in, then the lookup is based on an 7144 * interface index so MATCH_IRE_ILL is added to match_flags. 7145 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7146 * set as the route being looked up is not a traditional 7147 * interface route. 7148 */ 7149 match_flags &= ~MATCH_IRE_IPIF; 7150 match_flags |= MATCH_IRE_GW; 7151 if (ipif_arg != NULL) 7152 match_flags |= MATCH_IRE_ILL; 7153 if (mask == IP_HOST_MASK) 7154 type = IRE_HOST; 7155 else if (mask == 0) 7156 type = IRE_DEFAULT; 7157 else 7158 type = IRE_PREFIX; 7159 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7160 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7161 } 7162 7163 if (ipif_refheld) 7164 ipif_refrele(ipif); 7165 7166 /* ipif is not refheld anymore */ 7167 if (ire == NULL) 7168 return (ESRCH); 7169 7170 if (ire->ire_flags & RTF_MULTIRT) { 7171 /* 7172 * Invoke the CGTP (multirouting) filtering module 7173 * to remove the dst address from the filtering database. 7174 * Packets coming from that address will no longer be 7175 * filtered to remove duplicates. 7176 */ 7177 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7178 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7179 ipst->ips_netstack->netstack_stackid, 7180 ire->ire_addr, ire->ire_gateway_addr); 7181 } 7182 ip_cgtp_bcast_delete(ire, ipst); 7183 } 7184 7185 ipif = ire->ire_ipif; 7186 if (ipif != NULL) 7187 ipif_remove_ire(ipif, ire); 7188 if (ioctl_msg) 7189 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7190 ire_delete(ire); 7191 ire_refrele(ire); 7192 return (err); 7193 } 7194 7195 /* 7196 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7197 */ 7198 /* ARGSUSED */ 7199 int 7200 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7201 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7202 { 7203 ipaddr_t dst_addr; 7204 ipaddr_t gw_addr; 7205 ipaddr_t mask; 7206 int error = 0; 7207 mblk_t *mp1; 7208 struct rtentry *rt; 7209 ipif_t *ipif = NULL; 7210 ip_stack_t *ipst; 7211 7212 ASSERT(q->q_next == NULL); 7213 ipst = CONNQ_TO_IPST(q); 7214 7215 ip1dbg(("ip_siocaddrt:")); 7216 /* Existence of mp1 verified in ip_wput_nondata */ 7217 mp1 = mp->b_cont->b_cont; 7218 rt = (struct rtentry *)mp1->b_rptr; 7219 7220 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7221 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7222 7223 /* 7224 * If the RTF_HOST flag is on, this is a request to assign a gateway 7225 * to a particular host address. In this case, we set the netmask to 7226 * all ones for the particular destination address. Otherwise, 7227 * determine the netmask to be used based on dst_addr and the interfaces 7228 * in use. 7229 */ 7230 if (rt->rt_flags & RTF_HOST) { 7231 mask = IP_HOST_MASK; 7232 } else { 7233 /* 7234 * Note that ip_subnet_mask returns a zero mask in the case of 7235 * default (an all-zeroes address). 7236 */ 7237 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7238 } 7239 7240 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7241 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7242 if (ipif != NULL) 7243 ipif_refrele(ipif); 7244 return (error); 7245 } 7246 7247 /* 7248 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7249 */ 7250 /* ARGSUSED */ 7251 int 7252 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7253 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7254 { 7255 ipaddr_t dst_addr; 7256 ipaddr_t gw_addr; 7257 ipaddr_t mask; 7258 int error; 7259 mblk_t *mp1; 7260 struct rtentry *rt; 7261 ipif_t *ipif = NULL; 7262 ip_stack_t *ipst; 7263 7264 ASSERT(q->q_next == NULL); 7265 ipst = CONNQ_TO_IPST(q); 7266 7267 ip1dbg(("ip_siocdelrt:")); 7268 /* Existence of mp1 verified in ip_wput_nondata */ 7269 mp1 = mp->b_cont->b_cont; 7270 rt = (struct rtentry *)mp1->b_rptr; 7271 7272 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7273 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7274 7275 /* 7276 * If the RTF_HOST flag is on, this is a request to delete a gateway 7277 * to a particular host address. In this case, we set the netmask to 7278 * all ones for the particular destination address. Otherwise, 7279 * determine the netmask to be used based on dst_addr and the interfaces 7280 * in use. 7281 */ 7282 if (rt->rt_flags & RTF_HOST) { 7283 mask = IP_HOST_MASK; 7284 } else { 7285 /* 7286 * Note that ip_subnet_mask returns a zero mask in the case of 7287 * default (an all-zeroes address). 7288 */ 7289 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7290 } 7291 7292 error = ip_rt_delete(dst_addr, mask, gw_addr, 7293 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7294 mp, ip_process_ioctl, ipst); 7295 if (ipif != NULL) 7296 ipif_refrele(ipif); 7297 return (error); 7298 } 7299 7300 /* 7301 * Enqueue the mp onto the ipsq, chained by b_next. 7302 * b_prev stores the function to be executed later, and b_queue the queue 7303 * where this mp originated. 7304 */ 7305 void 7306 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7307 ill_t *pending_ill) 7308 { 7309 conn_t *connp = NULL; 7310 7311 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7312 ASSERT(func != NULL); 7313 7314 mp->b_queue = q; 7315 mp->b_prev = (void *)func; 7316 mp->b_next = NULL; 7317 7318 switch (type) { 7319 case CUR_OP: 7320 if (ipsq->ipsq_mptail != NULL) { 7321 ASSERT(ipsq->ipsq_mphead != NULL); 7322 ipsq->ipsq_mptail->b_next = mp; 7323 } else { 7324 ASSERT(ipsq->ipsq_mphead == NULL); 7325 ipsq->ipsq_mphead = mp; 7326 } 7327 ipsq->ipsq_mptail = mp; 7328 break; 7329 7330 case NEW_OP: 7331 if (ipsq->ipsq_xopq_mptail != NULL) { 7332 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7333 ipsq->ipsq_xopq_mptail->b_next = mp; 7334 } else { 7335 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7336 ipsq->ipsq_xopq_mphead = mp; 7337 } 7338 ipsq->ipsq_xopq_mptail = mp; 7339 break; 7340 default: 7341 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7342 } 7343 7344 if (CONN_Q(q) && pending_ill != NULL) { 7345 connp = Q_TO_CONN(q); 7346 7347 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7348 connp->conn_oper_pending_ill = pending_ill; 7349 } 7350 } 7351 7352 /* 7353 * Return the mp at the head of the ipsq. After emptying the ipsq 7354 * look at the next ioctl, if this ioctl is complete. Otherwise 7355 * return, we will resume when we complete the current ioctl. 7356 * The current ioctl will wait till it gets a response from the 7357 * driver below. 7358 */ 7359 static mblk_t * 7360 ipsq_dq(ipsq_t *ipsq) 7361 { 7362 mblk_t *mp; 7363 7364 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7365 7366 mp = ipsq->ipsq_mphead; 7367 if (mp != NULL) { 7368 ipsq->ipsq_mphead = mp->b_next; 7369 if (ipsq->ipsq_mphead == NULL) 7370 ipsq->ipsq_mptail = NULL; 7371 mp->b_next = NULL; 7372 return (mp); 7373 } 7374 if (ipsq->ipsq_current_ipif != NULL) 7375 return (NULL); 7376 mp = ipsq->ipsq_xopq_mphead; 7377 if (mp != NULL) { 7378 ipsq->ipsq_xopq_mphead = mp->b_next; 7379 if (ipsq->ipsq_xopq_mphead == NULL) 7380 ipsq->ipsq_xopq_mptail = NULL; 7381 mp->b_next = NULL; 7382 return (mp); 7383 } 7384 return (NULL); 7385 } 7386 7387 /* 7388 * Enter the ipsq corresponding to ill, by waiting synchronously till 7389 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7390 * will have to drain completely before ipsq_enter returns success. 7391 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7392 * and the ipsq_exit logic will start the next enqueued ioctl after 7393 * completion of the current ioctl. If 'force' is used, we don't wait 7394 * for the enqueued ioctls. This is needed when a conn_close wants to 7395 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7396 * of an ill can also use this option. But we dont' use it currently. 7397 */ 7398 #define ENTER_SQ_WAIT_TICKS 100 7399 boolean_t 7400 ipsq_enter(ill_t *ill, boolean_t force, int type) 7401 { 7402 ipsq_t *ipsq; 7403 boolean_t waited_enough = B_FALSE; 7404 7405 /* 7406 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7407 * Since the <ill-ipsq> assocs could change while we wait for the 7408 * writer, it is easier to wait on a fixed global rather than try to 7409 * cv_wait on a changing ipsq. 7410 */ 7411 mutex_enter(&ill->ill_lock); 7412 for (;;) { 7413 if (ill->ill_state_flags & ILL_CONDEMNED) { 7414 mutex_exit(&ill->ill_lock); 7415 return (B_FALSE); 7416 } 7417 7418 ipsq = ill->ill_phyint->phyint_ipsq; 7419 mutex_enter(&ipsq->ipsq_lock); 7420 if (ipsq->ipsq_writer == NULL && 7421 (type == CUR_OP || ipsq->ipsq_current_ipif == NULL || 7422 waited_enough)) { 7423 break; 7424 } else if (ipsq->ipsq_writer != NULL) { 7425 mutex_exit(&ipsq->ipsq_lock); 7426 cv_wait(&ill->ill_cv, &ill->ill_lock); 7427 } else { 7428 mutex_exit(&ipsq->ipsq_lock); 7429 if (force) { 7430 (void) cv_timedwait(&ill->ill_cv, 7431 &ill->ill_lock, 7432 lbolt + ENTER_SQ_WAIT_TICKS); 7433 waited_enough = B_TRUE; 7434 continue; 7435 } else { 7436 cv_wait(&ill->ill_cv, &ill->ill_lock); 7437 } 7438 } 7439 } 7440 7441 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7442 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7443 ipsq->ipsq_writer = curthread; 7444 ipsq->ipsq_reentry_cnt++; 7445 #ifdef DEBUG 7446 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7447 #endif 7448 mutex_exit(&ipsq->ipsq_lock); 7449 mutex_exit(&ill->ill_lock); 7450 return (B_TRUE); 7451 } 7452 7453 boolean_t 7454 ill_perim_enter(ill_t *ill) 7455 { 7456 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7457 } 7458 7459 void 7460 ill_perim_exit(ill_t *ill) 7461 { 7462 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7463 } 7464 7465 /* 7466 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7467 * certain critical operations like plumbing (i.e. most set ioctls), 7468 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7469 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7470 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7471 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7472 * threads executing in the ipsq. Responses from the driver pertain to the 7473 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7474 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7475 * 7476 * If a thread does not want to reenter the ipsq when it is already writer, 7477 * it must make sure that the specified reentry point to be called later 7478 * when the ipsq is empty, nor any code path starting from the specified reentry 7479 * point must never ever try to enter the ipsq again. Otherwise it can lead 7480 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7481 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7482 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7483 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7484 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7485 * ioctl if the current ioctl has completed. If the current ioctl is still 7486 * in progress it simply returns. The current ioctl could be waiting for 7487 * a response from another module (arp_ or the driver or could be waiting for 7488 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7489 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7490 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7491 * ipsq_current_ipif is clear which happens only on ioctl completion. 7492 */ 7493 7494 /* 7495 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7496 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7497 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7498 * completion. 7499 */ 7500 ipsq_t * 7501 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7502 ipsq_func_t func, int type, boolean_t reentry_ok) 7503 { 7504 ipsq_t *ipsq; 7505 7506 /* Only 1 of ipif or ill can be specified */ 7507 ASSERT((ipif != NULL) ^ (ill != NULL)); 7508 if (ipif != NULL) 7509 ill = ipif->ipif_ill; 7510 7511 /* 7512 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7513 * ipsq of an ill can't change when ill_lock is held. 7514 */ 7515 GRAB_CONN_LOCK(q); 7516 mutex_enter(&ill->ill_lock); 7517 ipsq = ill->ill_phyint->phyint_ipsq; 7518 mutex_enter(&ipsq->ipsq_lock); 7519 7520 /* 7521 * 1. Enter the ipsq if we are already writer and reentry is ok. 7522 * (Note: If the caller does not specify reentry_ok then neither 7523 * 'func' nor any of its callees must ever attempt to enter the ipsq 7524 * again. Otherwise it can lead to an infinite loop 7525 * 2. Enter the ipsq if there is no current writer and this attempted 7526 * entry is part of the current ioctl or operation 7527 * 3. Enter the ipsq if there is no current writer and this is a new 7528 * ioctl (or operation) and the ioctl (or operation) queue is 7529 * empty and there is no ioctl (or operation) currently in progress 7530 */ 7531 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7532 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7533 ipsq->ipsq_current_ipif == NULL))) || 7534 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7535 /* Success. */ 7536 ipsq->ipsq_reentry_cnt++; 7537 ipsq->ipsq_writer = curthread; 7538 mutex_exit(&ipsq->ipsq_lock); 7539 mutex_exit(&ill->ill_lock); 7540 RELEASE_CONN_LOCK(q); 7541 #ifdef DEBUG 7542 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7543 IPSQ_STACK_DEPTH); 7544 #endif 7545 return (ipsq); 7546 } 7547 7548 ipsq_enq(ipsq, q, mp, func, type, ill); 7549 7550 mutex_exit(&ipsq->ipsq_lock); 7551 mutex_exit(&ill->ill_lock); 7552 RELEASE_CONN_LOCK(q); 7553 return (NULL); 7554 } 7555 7556 /* 7557 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7558 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7559 * cannot be entered, the mp is queued for completion. 7560 */ 7561 void 7562 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7563 boolean_t reentry_ok) 7564 { 7565 ipsq_t *ipsq; 7566 7567 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7568 7569 /* 7570 * Drop the caller's refhold on the ill. This is safe since we either 7571 * entered the IPSQ (and thus are exclusive), or failed to enter the 7572 * IPSQ, in which case we return without accessing ill anymore. This 7573 * is needed because func needs to see the correct refcount. 7574 * e.g. removeif can work only then. 7575 */ 7576 ill_refrele(ill); 7577 if (ipsq != NULL) { 7578 (*func)(ipsq, q, mp, NULL); 7579 ipsq_exit(ipsq); 7580 } 7581 } 7582 7583 /* 7584 * If there are more than ILL_GRP_CNT ills in a group, 7585 * we use kmem alloc'd buffers, else use the stack 7586 */ 7587 #define ILL_GRP_CNT 14 7588 /* 7589 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7590 * Called by a thread that is currently exclusive on this ipsq. 7591 */ 7592 void 7593 ipsq_exit(ipsq_t *ipsq) 7594 { 7595 queue_t *q; 7596 mblk_t *mp; 7597 ipsq_func_t func; 7598 int next; 7599 ill_t **ill_list = NULL; 7600 size_t ill_list_size = 0; 7601 int cnt = 0; 7602 boolean_t need_ipsq_free = B_FALSE; 7603 ip_stack_t *ipst = ipsq->ipsq_ipst; 7604 7605 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7606 mutex_enter(&ipsq->ipsq_lock); 7607 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7608 if (ipsq->ipsq_reentry_cnt != 1) { 7609 ipsq->ipsq_reentry_cnt--; 7610 mutex_exit(&ipsq->ipsq_lock); 7611 return; 7612 } 7613 7614 mp = ipsq_dq(ipsq); 7615 while (mp != NULL) { 7616 again: 7617 mutex_exit(&ipsq->ipsq_lock); 7618 func = (ipsq_func_t)mp->b_prev; 7619 q = (queue_t *)mp->b_queue; 7620 mp->b_prev = NULL; 7621 mp->b_queue = NULL; 7622 7623 /* 7624 * If 'q' is an conn queue, it is valid, since we did a 7625 * a refhold on the connp, at the start of the ioctl. 7626 * If 'q' is an ill queue, it is valid, since close of an 7627 * ill will clean up the 'ipsq'. 7628 */ 7629 (*func)(ipsq, q, mp, NULL); 7630 7631 mutex_enter(&ipsq->ipsq_lock); 7632 mp = ipsq_dq(ipsq); 7633 } 7634 7635 mutex_exit(&ipsq->ipsq_lock); 7636 7637 /* 7638 * Need to grab the locks in the right order. Need to 7639 * atomically check (under ipsq_lock) that there are no 7640 * messages before relinquishing the ipsq. Also need to 7641 * atomically wakeup waiters on ill_cv while holding ill_lock. 7642 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7643 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7644 * to grab ill_g_lock as writer. 7645 */ 7646 rw_enter(&ipst->ips_ill_g_lock, 7647 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7648 7649 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7650 if (ipsq->ipsq_refs != 0) { 7651 /* At most 2 ills v4/v6 per phyint */ 7652 cnt = ipsq->ipsq_refs << 1; 7653 ill_list_size = cnt * sizeof (ill_t *); 7654 /* 7655 * If memory allocation fails, we will do the split 7656 * the next time ipsq_exit is called for whatever reason. 7657 * As long as the ipsq_split flag is set the need to 7658 * split is remembered. 7659 */ 7660 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7661 if (ill_list != NULL) 7662 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7663 } 7664 mutex_enter(&ipsq->ipsq_lock); 7665 mp = ipsq_dq(ipsq); 7666 if (mp != NULL) { 7667 /* oops, some message has landed up, we can't get out */ 7668 if (ill_list != NULL) 7669 ill_unlock_ills(ill_list, cnt); 7670 rw_exit(&ipst->ips_ill_g_lock); 7671 if (ill_list != NULL) 7672 kmem_free(ill_list, ill_list_size); 7673 ill_list = NULL; 7674 ill_list_size = 0; 7675 cnt = 0; 7676 goto again; 7677 } 7678 7679 /* 7680 * Split only if no ioctl is pending and if memory alloc succeeded 7681 * above. 7682 */ 7683 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7684 ill_list != NULL) { 7685 /* 7686 * No new ill can join this ipsq since we are holding the 7687 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7688 * ipsq. ill_split_ipsq may fail due to memory shortage. 7689 * If so we will retry on the next ipsq_exit. 7690 */ 7691 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7692 } 7693 7694 /* 7695 * We are holding the ipsq lock, hence no new messages can 7696 * land up on the ipsq, and there are no messages currently. 7697 * Now safe to get out. Wake up waiters and relinquish ipsq 7698 * atomically while holding ill locks. 7699 */ 7700 ipsq->ipsq_writer = NULL; 7701 ipsq->ipsq_reentry_cnt--; 7702 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7703 #ifdef DEBUG 7704 ipsq->ipsq_depth = 0; 7705 #endif 7706 mutex_exit(&ipsq->ipsq_lock); 7707 /* 7708 * For IPMP this should wake up all ills in this ipsq. 7709 * We need to hold the ill_lock while waking up waiters to 7710 * avoid missed wakeups. But there is no need to acquire all 7711 * the ill locks and then wakeup. If we have not acquired all 7712 * the locks (due to memory failure above) ill_signal_ipsq_ills 7713 * wakes up ills one at a time after getting the right ill_lock 7714 */ 7715 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7716 if (ill_list != NULL) 7717 ill_unlock_ills(ill_list, cnt); 7718 if (ipsq->ipsq_refs == 0) 7719 need_ipsq_free = B_TRUE; 7720 rw_exit(&ipst->ips_ill_g_lock); 7721 if (ill_list != 0) 7722 kmem_free(ill_list, ill_list_size); 7723 7724 if (need_ipsq_free) { 7725 /* 7726 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7727 * looked up. ipsq can be looked up only thru ill or phyint 7728 * and there are no ills/phyint on this ipsq. 7729 */ 7730 ipsq_delete(ipsq); 7731 } 7732 7733 /* 7734 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7735 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7736 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7737 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7738 * (executing the timeout, waiting to get inside the IPSQ). 7739 * 7740 * However, there is one exception to the above: if this thread *is* 7741 * the IGMP/MLD timeout handler thread, then we must not start its 7742 * timer until the current handler is done. 7743 */ 7744 mutex_enter(&ipst->ips_igmp_timer_lock); 7745 if (curthread != ipst->ips_igmp_timer_thread) { 7746 next = ipst->ips_igmp_deferred_next; 7747 ipst->ips_igmp_deferred_next = INFINITY; 7748 mutex_exit(&ipst->ips_igmp_timer_lock); 7749 7750 if (next != INFINITY) 7751 igmp_start_timers(next, ipst); 7752 } else { 7753 mutex_exit(&ipst->ips_igmp_timer_lock); 7754 } 7755 7756 mutex_enter(&ipst->ips_mld_timer_lock); 7757 if (curthread != ipst->ips_mld_timer_thread) { 7758 next = ipst->ips_mld_deferred_next; 7759 ipst->ips_mld_deferred_next = INFINITY; 7760 mutex_exit(&ipst->ips_mld_timer_lock); 7761 7762 if (next != INFINITY) 7763 mld_start_timers(next, ipst); 7764 } else { 7765 mutex_exit(&ipst->ips_mld_timer_lock); 7766 } 7767 } 7768 7769 /* 7770 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7771 * and `ioccmd'. 7772 */ 7773 void 7774 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7775 { 7776 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7777 7778 mutex_enter(&ipsq->ipsq_lock); 7779 ASSERT(ipsq->ipsq_current_ipif == NULL); 7780 ASSERT(ipsq->ipsq_current_ioctl == 0); 7781 ipsq->ipsq_current_done = B_FALSE; 7782 ipsq->ipsq_current_ipif = ipif; 7783 ipsq->ipsq_current_ioctl = ioccmd; 7784 mutex_exit(&ipsq->ipsq_lock); 7785 } 7786 7787 /* 7788 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7789 * the next exclusive operation to begin once we ipsq_exit(). However, if 7790 * pending DLPI operations remain, then we will wait for the queue to drain 7791 * before allowing the next exclusive operation to begin. This ensures that 7792 * DLPI operations from one exclusive operation are never improperly processed 7793 * as part of a subsequent exclusive operation. 7794 */ 7795 void 7796 ipsq_current_finish(ipsq_t *ipsq) 7797 { 7798 ipif_t *ipif = ipsq->ipsq_current_ipif; 7799 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7800 7801 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7802 7803 /* 7804 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 7805 * (but in that case, IPIF_CHANGING will already be clear and no 7806 * pending DLPI messages can remain). 7807 */ 7808 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 7809 ill_t *ill = ipif->ipif_ill; 7810 7811 mutex_enter(&ill->ill_lock); 7812 dlpi_pending = ill->ill_dlpi_pending; 7813 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7814 mutex_exit(&ill->ill_lock); 7815 } 7816 7817 mutex_enter(&ipsq->ipsq_lock); 7818 ipsq->ipsq_current_ioctl = 0; 7819 ipsq->ipsq_current_done = B_TRUE; 7820 if (dlpi_pending == DL_PRIM_INVAL) 7821 ipsq->ipsq_current_ipif = NULL; 7822 mutex_exit(&ipsq->ipsq_lock); 7823 } 7824 7825 /* 7826 * The ill is closing. Flush all messages on the ipsq that originated 7827 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7828 * for this ill since ipsq_enter could not have entered until then. 7829 * New messages can't be queued since the CONDEMNED flag is set. 7830 */ 7831 static void 7832 ipsq_flush(ill_t *ill) 7833 { 7834 queue_t *q; 7835 mblk_t *prev; 7836 mblk_t *mp; 7837 mblk_t *mp_next; 7838 ipsq_t *ipsq; 7839 7840 ASSERT(IAM_WRITER_ILL(ill)); 7841 ipsq = ill->ill_phyint->phyint_ipsq; 7842 /* 7843 * Flush any messages sent up by the driver. 7844 */ 7845 mutex_enter(&ipsq->ipsq_lock); 7846 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7847 mp_next = mp->b_next; 7848 q = mp->b_queue; 7849 if (q == ill->ill_rq || q == ill->ill_wq) { 7850 /* Remove the mp from the ipsq */ 7851 if (prev == NULL) 7852 ipsq->ipsq_mphead = mp->b_next; 7853 else 7854 prev->b_next = mp->b_next; 7855 if (ipsq->ipsq_mptail == mp) { 7856 ASSERT(mp_next == NULL); 7857 ipsq->ipsq_mptail = prev; 7858 } 7859 inet_freemsg(mp); 7860 } else { 7861 prev = mp; 7862 } 7863 } 7864 mutex_exit(&ipsq->ipsq_lock); 7865 (void) ipsq_pending_mp_cleanup(ill, NULL); 7866 ipsq_xopq_mp_cleanup(ill, NULL); 7867 ill_pending_mp_cleanup(ill); 7868 } 7869 7870 /* ARGSUSED */ 7871 int 7872 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7873 ip_ioctl_cmd_t *ipip, void *ifreq) 7874 { 7875 ill_t *ill; 7876 struct lifreq *lifr = (struct lifreq *)ifreq; 7877 boolean_t isv6; 7878 conn_t *connp; 7879 ip_stack_t *ipst; 7880 7881 connp = Q_TO_CONN(q); 7882 ipst = connp->conn_netstack->netstack_ip; 7883 isv6 = connp->conn_af_isv6; 7884 /* 7885 * Set original index. 7886 * Failover and failback move logical interfaces 7887 * from one physical interface to another. The 7888 * original index indicates the parent of a logical 7889 * interface, in other words, the physical interface 7890 * the logical interface will be moved back to on 7891 * failback. 7892 */ 7893 7894 /* 7895 * Don't allow the original index to be changed 7896 * for non-failover addresses, autoconfigured 7897 * addresses, or IPv6 link local addresses. 7898 */ 7899 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7900 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7901 return (EINVAL); 7902 } 7903 /* 7904 * The new original index must be in use by some 7905 * physical interface. 7906 */ 7907 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7908 NULL, NULL, ipst); 7909 if (ill == NULL) 7910 return (ENXIO); 7911 ill_refrele(ill); 7912 7913 ipif->ipif_orig_ifindex = lifr->lifr_index; 7914 /* 7915 * When this ipif gets failed back, don't 7916 * preserve the original id, as it is no 7917 * longer applicable. 7918 */ 7919 ipif->ipif_orig_ipifid = 0; 7920 /* 7921 * For IPv4, change the original index of any 7922 * multicast addresses associated with the 7923 * ipif to the new value. 7924 */ 7925 if (!isv6) { 7926 ilm_t *ilm; 7927 7928 mutex_enter(&ipif->ipif_ill->ill_lock); 7929 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7930 ilm = ilm->ilm_next) { 7931 if (ilm->ilm_ipif == ipif) { 7932 ilm->ilm_orig_ifindex = lifr->lifr_index; 7933 } 7934 } 7935 mutex_exit(&ipif->ipif_ill->ill_lock); 7936 } 7937 return (0); 7938 } 7939 7940 /* ARGSUSED */ 7941 int 7942 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7943 ip_ioctl_cmd_t *ipip, void *ifreq) 7944 { 7945 struct lifreq *lifr = (struct lifreq *)ifreq; 7946 7947 /* 7948 * Get the original interface index i.e the one 7949 * before FAILOVER if it ever happened. 7950 */ 7951 lifr->lifr_index = ipif->ipif_orig_ifindex; 7952 return (0); 7953 } 7954 7955 /* 7956 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7957 * refhold and return the associated ipif 7958 */ 7959 /* ARGSUSED */ 7960 int 7961 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7962 cmd_info_t *ci, ipsq_func_t func) 7963 { 7964 boolean_t exists; 7965 struct iftun_req *ta; 7966 ipif_t *ipif; 7967 ill_t *ill; 7968 boolean_t isv6; 7969 mblk_t *mp1; 7970 int error; 7971 conn_t *connp; 7972 ip_stack_t *ipst; 7973 7974 /* Existence verified in ip_wput_nondata */ 7975 mp1 = mp->b_cont->b_cont; 7976 ta = (struct iftun_req *)mp1->b_rptr; 7977 /* 7978 * Null terminate the string to protect against buffer 7979 * overrun. String was generated by user code and may not 7980 * be trusted. 7981 */ 7982 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7983 7984 connp = Q_TO_CONN(q); 7985 isv6 = connp->conn_af_isv6; 7986 ipst = connp->conn_netstack->netstack_ip; 7987 7988 /* Disallows implicit create */ 7989 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7990 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7991 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 7992 if (ipif == NULL) 7993 return (error); 7994 7995 if (ipif->ipif_id != 0) { 7996 /* 7997 * We really don't want to set/get tunnel parameters 7998 * on virtual tunnel interfaces. Only allow the 7999 * base tunnel to do these. 8000 */ 8001 ipif_refrele(ipif); 8002 return (EINVAL); 8003 } 8004 8005 /* 8006 * Send down to tunnel mod for ioctl processing. 8007 * Will finish ioctl in ip_rput_other(). 8008 */ 8009 ill = ipif->ipif_ill; 8010 if (ill->ill_net_type == IRE_LOOPBACK) { 8011 ipif_refrele(ipif); 8012 return (EOPNOTSUPP); 8013 } 8014 8015 if (ill->ill_wq == NULL) { 8016 ipif_refrele(ipif); 8017 return (ENXIO); 8018 } 8019 /* 8020 * Mark the ioctl as coming from an IPv6 interface for 8021 * tun's convenience. 8022 */ 8023 if (ill->ill_isv6) 8024 ta->ifta_flags |= 0x80000000; 8025 ci->ci_ipif = ipif; 8026 return (0); 8027 } 8028 8029 /* 8030 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8031 * and return the associated ipif. 8032 * Return value: 8033 * Non zero: An error has occurred. ci may not be filled out. 8034 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8035 * a held ipif in ci.ci_ipif. 8036 */ 8037 int 8038 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8039 cmd_info_t *ci, ipsq_func_t func) 8040 { 8041 sin_t *sin; 8042 sin6_t *sin6; 8043 char *name; 8044 struct ifreq *ifr; 8045 struct lifreq *lifr; 8046 ipif_t *ipif = NULL; 8047 ill_t *ill; 8048 conn_t *connp; 8049 boolean_t isv6; 8050 boolean_t exists; 8051 int err; 8052 mblk_t *mp1; 8053 zoneid_t zoneid; 8054 ip_stack_t *ipst; 8055 8056 if (q->q_next != NULL) { 8057 ill = (ill_t *)q->q_ptr; 8058 isv6 = ill->ill_isv6; 8059 connp = NULL; 8060 zoneid = ALL_ZONES; 8061 ipst = ill->ill_ipst; 8062 } else { 8063 ill = NULL; 8064 connp = Q_TO_CONN(q); 8065 isv6 = connp->conn_af_isv6; 8066 zoneid = connp->conn_zoneid; 8067 if (zoneid == GLOBAL_ZONEID) { 8068 /* global zone can access ipifs in all zones */ 8069 zoneid = ALL_ZONES; 8070 } 8071 ipst = connp->conn_netstack->netstack_ip; 8072 } 8073 8074 /* Has been checked in ip_wput_nondata */ 8075 mp1 = mp->b_cont->b_cont; 8076 8077 if (ipip->ipi_cmd_type == IF_CMD) { 8078 /* This a old style SIOC[GS]IF* command */ 8079 ifr = (struct ifreq *)mp1->b_rptr; 8080 /* 8081 * Null terminate the string to protect against buffer 8082 * overrun. String was generated by user code and may not 8083 * be trusted. 8084 */ 8085 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8086 sin = (sin_t *)&ifr->ifr_addr; 8087 name = ifr->ifr_name; 8088 ci->ci_sin = sin; 8089 ci->ci_sin6 = NULL; 8090 ci->ci_lifr = (struct lifreq *)ifr; 8091 } else { 8092 /* This a new style SIOC[GS]LIF* command */ 8093 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8094 lifr = (struct lifreq *)mp1->b_rptr; 8095 /* 8096 * Null terminate the string to protect against buffer 8097 * overrun. String was generated by user code and may not 8098 * be trusted. 8099 */ 8100 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8101 name = lifr->lifr_name; 8102 sin = (sin_t *)&lifr->lifr_addr; 8103 sin6 = (sin6_t *)&lifr->lifr_addr; 8104 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8105 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8106 LIFNAMSIZ); 8107 } 8108 ci->ci_sin = sin; 8109 ci->ci_sin6 = sin6; 8110 ci->ci_lifr = lifr; 8111 } 8112 8113 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8114 /* 8115 * The ioctl will be failed if the ioctl comes down 8116 * an conn stream 8117 */ 8118 if (ill == NULL) { 8119 /* 8120 * Not an ill queue, return EINVAL same as the 8121 * old error code. 8122 */ 8123 return (ENXIO); 8124 } 8125 ipif = ill->ill_ipif; 8126 ipif_refhold(ipif); 8127 } else { 8128 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8129 &exists, isv6, zoneid, 8130 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8131 ipst); 8132 if (ipif == NULL) { 8133 if (err == EINPROGRESS) 8134 return (err); 8135 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8136 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8137 /* 8138 * Need to try both v4 and v6 since this 8139 * ioctl can come down either v4 or v6 8140 * socket. The lifreq.lifr_family passed 8141 * down by this ioctl is AF_UNSPEC. 8142 */ 8143 ipif = ipif_lookup_on_name(name, 8144 mi_strlen(name), B_FALSE, &exists, !isv6, 8145 zoneid, (connp == NULL) ? q : 8146 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8147 if (err == EINPROGRESS) 8148 return (err); 8149 } 8150 err = 0; /* Ensure we don't use it below */ 8151 } 8152 } 8153 8154 /* 8155 * Old style [GS]IFCMD does not admit IPv6 ipif 8156 */ 8157 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8158 ipif_refrele(ipif); 8159 return (ENXIO); 8160 } 8161 8162 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8163 name[0] == '\0') { 8164 /* 8165 * Handle a or a SIOC?IF* with a null name 8166 * during plumb (on the ill queue before the I_PLINK). 8167 */ 8168 ipif = ill->ill_ipif; 8169 ipif_refhold(ipif); 8170 } 8171 8172 if (ipif == NULL) 8173 return (ENXIO); 8174 8175 /* 8176 * Allow only GET operations if this ipif has been created 8177 * temporarily due to a MOVE operation. 8178 */ 8179 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8180 ipif_refrele(ipif); 8181 return (EINVAL); 8182 } 8183 8184 ci->ci_ipif = ipif; 8185 return (0); 8186 } 8187 8188 /* 8189 * Return the total number of ipifs. 8190 */ 8191 static uint_t 8192 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8193 { 8194 uint_t numifs = 0; 8195 ill_t *ill; 8196 ill_walk_context_t ctx; 8197 ipif_t *ipif; 8198 8199 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8200 ill = ILL_START_WALK_V4(&ctx, ipst); 8201 8202 while (ill != NULL) { 8203 for (ipif = ill->ill_ipif; ipif != NULL; 8204 ipif = ipif->ipif_next) { 8205 if (ipif->ipif_zoneid == zoneid || 8206 ipif->ipif_zoneid == ALL_ZONES) 8207 numifs++; 8208 } 8209 ill = ill_next(&ctx, ill); 8210 } 8211 rw_exit(&ipst->ips_ill_g_lock); 8212 return (numifs); 8213 } 8214 8215 /* 8216 * Return the total number of ipifs. 8217 */ 8218 static uint_t 8219 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8220 { 8221 uint_t numifs = 0; 8222 ill_t *ill; 8223 ipif_t *ipif; 8224 ill_walk_context_t ctx; 8225 8226 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8227 8228 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8229 if (family == AF_INET) 8230 ill = ILL_START_WALK_V4(&ctx, ipst); 8231 else if (family == AF_INET6) 8232 ill = ILL_START_WALK_V6(&ctx, ipst); 8233 else 8234 ill = ILL_START_WALK_ALL(&ctx, ipst); 8235 8236 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8237 for (ipif = ill->ill_ipif; ipif != NULL; 8238 ipif = ipif->ipif_next) { 8239 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8240 !(lifn_flags & LIFC_NOXMIT)) 8241 continue; 8242 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8243 !(lifn_flags & LIFC_TEMPORARY)) 8244 continue; 8245 if (((ipif->ipif_flags & 8246 (IPIF_NOXMIT|IPIF_NOLOCAL| 8247 IPIF_DEPRECATED)) || 8248 IS_LOOPBACK(ill) || 8249 !(ipif->ipif_flags & IPIF_UP)) && 8250 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8251 continue; 8252 8253 if (zoneid != ipif->ipif_zoneid && 8254 ipif->ipif_zoneid != ALL_ZONES && 8255 (zoneid != GLOBAL_ZONEID || 8256 !(lifn_flags & LIFC_ALLZONES))) 8257 continue; 8258 8259 numifs++; 8260 } 8261 } 8262 rw_exit(&ipst->ips_ill_g_lock); 8263 return (numifs); 8264 } 8265 8266 uint_t 8267 ip_get_lifsrcofnum(ill_t *ill) 8268 { 8269 uint_t numifs = 0; 8270 ill_t *ill_head = ill; 8271 ip_stack_t *ipst = ill->ill_ipst; 8272 8273 /* 8274 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8275 * other thread may be trying to relink the ILLs in this usesrc group 8276 * and adjusting the ill_usesrc_grp_next pointers 8277 */ 8278 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8279 if ((ill->ill_usesrc_ifindex == 0) && 8280 (ill->ill_usesrc_grp_next != NULL)) { 8281 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8282 ill = ill->ill_usesrc_grp_next) 8283 numifs++; 8284 } 8285 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8286 8287 return (numifs); 8288 } 8289 8290 /* Null values are passed in for ipif, sin, and ifreq */ 8291 /* ARGSUSED */ 8292 int 8293 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8294 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8295 { 8296 int *nump; 8297 conn_t *connp = Q_TO_CONN(q); 8298 8299 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8300 8301 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8302 nump = (int *)mp->b_cont->b_cont->b_rptr; 8303 8304 *nump = ip_get_numifs(connp->conn_zoneid, 8305 connp->conn_netstack->netstack_ip); 8306 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8307 return (0); 8308 } 8309 8310 /* Null values are passed in for ipif, sin, and ifreq */ 8311 /* ARGSUSED */ 8312 int 8313 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8314 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8315 { 8316 struct lifnum *lifn; 8317 mblk_t *mp1; 8318 conn_t *connp = Q_TO_CONN(q); 8319 8320 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8321 8322 /* Existence checked in ip_wput_nondata */ 8323 mp1 = mp->b_cont->b_cont; 8324 8325 lifn = (struct lifnum *)mp1->b_rptr; 8326 switch (lifn->lifn_family) { 8327 case AF_UNSPEC: 8328 case AF_INET: 8329 case AF_INET6: 8330 break; 8331 default: 8332 return (EAFNOSUPPORT); 8333 } 8334 8335 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8336 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8337 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8338 return (0); 8339 } 8340 8341 /* ARGSUSED */ 8342 int 8343 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8344 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8345 { 8346 STRUCT_HANDLE(ifconf, ifc); 8347 mblk_t *mp1; 8348 struct iocblk *iocp; 8349 struct ifreq *ifr; 8350 ill_walk_context_t ctx; 8351 ill_t *ill; 8352 ipif_t *ipif; 8353 struct sockaddr_in *sin; 8354 int32_t ifclen; 8355 zoneid_t zoneid; 8356 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8357 8358 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8359 8360 ip1dbg(("ip_sioctl_get_ifconf")); 8361 /* Existence verified in ip_wput_nondata */ 8362 mp1 = mp->b_cont->b_cont; 8363 iocp = (struct iocblk *)mp->b_rptr; 8364 zoneid = Q_TO_CONN(q)->conn_zoneid; 8365 8366 /* 8367 * The original SIOCGIFCONF passed in a struct ifconf which specified 8368 * the user buffer address and length into which the list of struct 8369 * ifreqs was to be copied. Since AT&T Streams does not seem to 8370 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8371 * the SIOCGIFCONF operation was redefined to simply provide 8372 * a large output buffer into which we are supposed to jam the ifreq 8373 * array. The same ioctl command code was used, despite the fact that 8374 * both the applications and the kernel code had to change, thus making 8375 * it impossible to support both interfaces. 8376 * 8377 * For reasons not good enough to try to explain, the following 8378 * algorithm is used for deciding what to do with one of these: 8379 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8380 * form with the output buffer coming down as the continuation message. 8381 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8382 * and we have to copy in the ifconf structure to find out how big the 8383 * output buffer is and where to copy out to. Sure no problem... 8384 * 8385 */ 8386 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8387 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8388 int numifs = 0; 8389 size_t ifc_bufsize; 8390 8391 /* 8392 * Must be (better be!) continuation of a TRANSPARENT 8393 * IOCTL. We just copied in the ifconf structure. 8394 */ 8395 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8396 (struct ifconf *)mp1->b_rptr); 8397 8398 /* 8399 * Allocate a buffer to hold requested information. 8400 * 8401 * If ifc_len is larger than what is needed, we only 8402 * allocate what we will use. 8403 * 8404 * If ifc_len is smaller than what is needed, return 8405 * EINVAL. 8406 * 8407 * XXX: the ill_t structure can hava 2 counters, for 8408 * v4 and v6 (not just ill_ipif_up_count) to store the 8409 * number of interfaces for a device, so we don't need 8410 * to count them here... 8411 */ 8412 numifs = ip_get_numifs(zoneid, ipst); 8413 8414 ifclen = STRUCT_FGET(ifc, ifc_len); 8415 ifc_bufsize = numifs * sizeof (struct ifreq); 8416 if (ifc_bufsize > ifclen) { 8417 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8418 /* old behaviour */ 8419 return (EINVAL); 8420 } else { 8421 ifc_bufsize = ifclen; 8422 } 8423 } 8424 8425 mp1 = mi_copyout_alloc(q, mp, 8426 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8427 if (mp1 == NULL) 8428 return (ENOMEM); 8429 8430 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8431 } 8432 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8433 /* 8434 * the SIOCGIFCONF ioctl only knows about 8435 * IPv4 addresses, so don't try to tell 8436 * it about interfaces with IPv6-only 8437 * addresses. (Last parm 'isv6' is B_FALSE) 8438 */ 8439 8440 ifr = (struct ifreq *)mp1->b_rptr; 8441 8442 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8443 ill = ILL_START_WALK_V4(&ctx, ipst); 8444 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8445 for (ipif = ill->ill_ipif; ipif != NULL; 8446 ipif = ipif->ipif_next) { 8447 if (zoneid != ipif->ipif_zoneid && 8448 ipif->ipif_zoneid != ALL_ZONES) 8449 continue; 8450 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8451 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8452 /* old behaviour */ 8453 rw_exit(&ipst->ips_ill_g_lock); 8454 return (EINVAL); 8455 } else { 8456 goto if_copydone; 8457 } 8458 } 8459 ipif_get_name(ipif, ifr->ifr_name, 8460 sizeof (ifr->ifr_name)); 8461 sin = (sin_t *)&ifr->ifr_addr; 8462 *sin = sin_null; 8463 sin->sin_family = AF_INET; 8464 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8465 ifr++; 8466 } 8467 } 8468 if_copydone: 8469 rw_exit(&ipst->ips_ill_g_lock); 8470 mp1->b_wptr = (uchar_t *)ifr; 8471 8472 if (STRUCT_BUF(ifc) != NULL) { 8473 STRUCT_FSET(ifc, ifc_len, 8474 (int)((uchar_t *)ifr - mp1->b_rptr)); 8475 } 8476 return (0); 8477 } 8478 8479 /* 8480 * Get the interfaces using the address hosted on the interface passed in, 8481 * as a source adddress 8482 */ 8483 /* ARGSUSED */ 8484 int 8485 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8486 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8487 { 8488 mblk_t *mp1; 8489 ill_t *ill, *ill_head; 8490 ipif_t *ipif, *orig_ipif; 8491 int numlifs = 0; 8492 size_t lifs_bufsize, lifsmaxlen; 8493 struct lifreq *lifr; 8494 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8495 uint_t ifindex; 8496 zoneid_t zoneid; 8497 int err = 0; 8498 boolean_t isv6 = B_FALSE; 8499 struct sockaddr_in *sin; 8500 struct sockaddr_in6 *sin6; 8501 STRUCT_HANDLE(lifsrcof, lifs); 8502 ip_stack_t *ipst; 8503 8504 ipst = CONNQ_TO_IPST(q); 8505 8506 ASSERT(q->q_next == NULL); 8507 8508 zoneid = Q_TO_CONN(q)->conn_zoneid; 8509 8510 /* Existence verified in ip_wput_nondata */ 8511 mp1 = mp->b_cont->b_cont; 8512 8513 /* 8514 * Must be (better be!) continuation of a TRANSPARENT 8515 * IOCTL. We just copied in the lifsrcof structure. 8516 */ 8517 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8518 (struct lifsrcof *)mp1->b_rptr); 8519 8520 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8521 return (EINVAL); 8522 8523 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8524 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8525 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8526 ip_process_ioctl, &err, ipst); 8527 if (ipif == NULL) { 8528 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8529 ifindex)); 8530 return (err); 8531 } 8532 8533 /* Allocate a buffer to hold requested information */ 8534 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8535 lifs_bufsize = numlifs * sizeof (struct lifreq); 8536 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8537 /* The actual size needed is always returned in lifs_len */ 8538 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8539 8540 /* If the amount we need is more than what is passed in, abort */ 8541 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8542 ipif_refrele(ipif); 8543 return (0); 8544 } 8545 8546 mp1 = mi_copyout_alloc(q, mp, 8547 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8548 if (mp1 == NULL) { 8549 ipif_refrele(ipif); 8550 return (ENOMEM); 8551 } 8552 8553 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8554 bzero(mp1->b_rptr, lifs_bufsize); 8555 8556 lifr = (struct lifreq *)mp1->b_rptr; 8557 8558 ill = ill_head = ipif->ipif_ill; 8559 orig_ipif = ipif; 8560 8561 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8562 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8563 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8564 8565 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8566 for (; (ill != NULL) && (ill != ill_head); 8567 ill = ill->ill_usesrc_grp_next) { 8568 8569 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8570 break; 8571 8572 ipif = ill->ill_ipif; 8573 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8574 if (ipif->ipif_isv6) { 8575 sin6 = (sin6_t *)&lifr->lifr_addr; 8576 *sin6 = sin6_null; 8577 sin6->sin6_family = AF_INET6; 8578 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8579 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8580 &ipif->ipif_v6net_mask); 8581 } else { 8582 sin = (sin_t *)&lifr->lifr_addr; 8583 *sin = sin_null; 8584 sin->sin_family = AF_INET; 8585 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8586 lifr->lifr_addrlen = ip_mask_to_plen( 8587 ipif->ipif_net_mask); 8588 } 8589 lifr++; 8590 } 8591 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8592 rw_exit(&ipst->ips_ill_g_lock); 8593 ipif_refrele(orig_ipif); 8594 mp1->b_wptr = (uchar_t *)lifr; 8595 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8596 8597 return (0); 8598 } 8599 8600 /* ARGSUSED */ 8601 int 8602 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8603 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8604 { 8605 mblk_t *mp1; 8606 int list; 8607 ill_t *ill; 8608 ipif_t *ipif; 8609 int flags; 8610 int numlifs = 0; 8611 size_t lifc_bufsize; 8612 struct lifreq *lifr; 8613 sa_family_t family; 8614 struct sockaddr_in *sin; 8615 struct sockaddr_in6 *sin6; 8616 ill_walk_context_t ctx; 8617 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8618 int32_t lifclen; 8619 zoneid_t zoneid; 8620 STRUCT_HANDLE(lifconf, lifc); 8621 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8622 8623 ip1dbg(("ip_sioctl_get_lifconf")); 8624 8625 ASSERT(q->q_next == NULL); 8626 8627 zoneid = Q_TO_CONN(q)->conn_zoneid; 8628 8629 /* Existence verified in ip_wput_nondata */ 8630 mp1 = mp->b_cont->b_cont; 8631 8632 /* 8633 * An extended version of SIOCGIFCONF that takes an 8634 * additional address family and flags field. 8635 * AF_UNSPEC retrieve both IPv4 and IPv6. 8636 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8637 * interfaces are omitted. 8638 * Similarly, IPIF_TEMPORARY interfaces are omitted 8639 * unless LIFC_TEMPORARY is specified. 8640 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8641 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8642 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8643 * has priority over LIFC_NOXMIT. 8644 */ 8645 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8646 8647 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8648 return (EINVAL); 8649 8650 /* 8651 * Must be (better be!) continuation of a TRANSPARENT 8652 * IOCTL. We just copied in the lifconf structure. 8653 */ 8654 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8655 8656 family = STRUCT_FGET(lifc, lifc_family); 8657 flags = STRUCT_FGET(lifc, lifc_flags); 8658 8659 switch (family) { 8660 case AF_UNSPEC: 8661 /* 8662 * walk all ILL's. 8663 */ 8664 list = MAX_G_HEADS; 8665 break; 8666 case AF_INET: 8667 /* 8668 * walk only IPV4 ILL's. 8669 */ 8670 list = IP_V4_G_HEAD; 8671 break; 8672 case AF_INET6: 8673 /* 8674 * walk only IPV6 ILL's. 8675 */ 8676 list = IP_V6_G_HEAD; 8677 break; 8678 default: 8679 return (EAFNOSUPPORT); 8680 } 8681 8682 /* 8683 * Allocate a buffer to hold requested information. 8684 * 8685 * If lifc_len is larger than what is needed, we only 8686 * allocate what we will use. 8687 * 8688 * If lifc_len is smaller than what is needed, return 8689 * EINVAL. 8690 */ 8691 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8692 lifc_bufsize = numlifs * sizeof (struct lifreq); 8693 lifclen = STRUCT_FGET(lifc, lifc_len); 8694 if (lifc_bufsize > lifclen) { 8695 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8696 return (EINVAL); 8697 else 8698 lifc_bufsize = lifclen; 8699 } 8700 8701 mp1 = mi_copyout_alloc(q, mp, 8702 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8703 if (mp1 == NULL) 8704 return (ENOMEM); 8705 8706 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8707 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8708 8709 lifr = (struct lifreq *)mp1->b_rptr; 8710 8711 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8712 ill = ill_first(list, list, &ctx, ipst); 8713 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8714 for (ipif = ill->ill_ipif; ipif != NULL; 8715 ipif = ipif->ipif_next) { 8716 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8717 !(flags & LIFC_NOXMIT)) 8718 continue; 8719 8720 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8721 !(flags & LIFC_TEMPORARY)) 8722 continue; 8723 8724 if (((ipif->ipif_flags & 8725 (IPIF_NOXMIT|IPIF_NOLOCAL| 8726 IPIF_DEPRECATED)) || 8727 IS_LOOPBACK(ill) || 8728 !(ipif->ipif_flags & IPIF_UP)) && 8729 (flags & LIFC_EXTERNAL_SOURCE)) 8730 continue; 8731 8732 if (zoneid != ipif->ipif_zoneid && 8733 ipif->ipif_zoneid != ALL_ZONES && 8734 (zoneid != GLOBAL_ZONEID || 8735 !(flags & LIFC_ALLZONES))) 8736 continue; 8737 8738 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8739 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8740 rw_exit(&ipst->ips_ill_g_lock); 8741 return (EINVAL); 8742 } else { 8743 goto lif_copydone; 8744 } 8745 } 8746 8747 ipif_get_name(ipif, lifr->lifr_name, 8748 sizeof (lifr->lifr_name)); 8749 if (ipif->ipif_isv6) { 8750 sin6 = (sin6_t *)&lifr->lifr_addr; 8751 *sin6 = sin6_null; 8752 sin6->sin6_family = AF_INET6; 8753 sin6->sin6_addr = 8754 ipif->ipif_v6lcl_addr; 8755 lifr->lifr_addrlen = 8756 ip_mask_to_plen_v6( 8757 &ipif->ipif_v6net_mask); 8758 } else { 8759 sin = (sin_t *)&lifr->lifr_addr; 8760 *sin = sin_null; 8761 sin->sin_family = AF_INET; 8762 sin->sin_addr.s_addr = 8763 ipif->ipif_lcl_addr; 8764 lifr->lifr_addrlen = 8765 ip_mask_to_plen( 8766 ipif->ipif_net_mask); 8767 } 8768 lifr++; 8769 } 8770 } 8771 lif_copydone: 8772 rw_exit(&ipst->ips_ill_g_lock); 8773 8774 mp1->b_wptr = (uchar_t *)lifr; 8775 if (STRUCT_BUF(lifc) != NULL) { 8776 STRUCT_FSET(lifc, lifc_len, 8777 (int)((uchar_t *)lifr - mp1->b_rptr)); 8778 } 8779 return (0); 8780 } 8781 8782 /* ARGSUSED */ 8783 int 8784 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8785 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8786 { 8787 ip_stack_t *ipst; 8788 8789 if (q->q_next == NULL) 8790 ipst = CONNQ_TO_IPST(q); 8791 else 8792 ipst = ILLQ_TO_IPST(q); 8793 8794 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8795 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8796 return (0); 8797 } 8798 8799 static void 8800 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8801 { 8802 ip6_asp_t *table; 8803 size_t table_size; 8804 mblk_t *data_mp; 8805 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8806 ip_stack_t *ipst; 8807 8808 if (q->q_next == NULL) 8809 ipst = CONNQ_TO_IPST(q); 8810 else 8811 ipst = ILLQ_TO_IPST(q); 8812 8813 /* These two ioctls are I_STR only */ 8814 if (iocp->ioc_count == TRANSPARENT) { 8815 miocnak(q, mp, 0, EINVAL); 8816 return; 8817 } 8818 8819 data_mp = mp->b_cont; 8820 if (data_mp == NULL) { 8821 /* The user passed us a NULL argument */ 8822 table = NULL; 8823 table_size = iocp->ioc_count; 8824 } else { 8825 /* 8826 * The user provided a table. The stream head 8827 * may have copied in the user data in chunks, 8828 * so make sure everything is pulled up 8829 * properly. 8830 */ 8831 if (MBLKL(data_mp) < iocp->ioc_count) { 8832 mblk_t *new_data_mp; 8833 if ((new_data_mp = msgpullup(data_mp, -1)) == 8834 NULL) { 8835 miocnak(q, mp, 0, ENOMEM); 8836 return; 8837 } 8838 freemsg(data_mp); 8839 data_mp = new_data_mp; 8840 mp->b_cont = data_mp; 8841 } 8842 table = (ip6_asp_t *)data_mp->b_rptr; 8843 table_size = iocp->ioc_count; 8844 } 8845 8846 switch (iocp->ioc_cmd) { 8847 case SIOCGIP6ADDRPOLICY: 8848 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8849 if (iocp->ioc_rval == -1) 8850 iocp->ioc_error = EINVAL; 8851 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8852 else if (table != NULL && 8853 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8854 ip6_asp_t *src = table; 8855 ip6_asp32_t *dst = (void *)table; 8856 int count = table_size / sizeof (ip6_asp_t); 8857 int i; 8858 8859 /* 8860 * We need to do an in-place shrink of the array 8861 * to match the alignment attributes of the 8862 * 32-bit ABI looking at it. 8863 */ 8864 /* LINTED: logical expression always true: op "||" */ 8865 ASSERT(sizeof (*src) > sizeof (*dst)); 8866 for (i = 1; i < count; i++) 8867 bcopy(src + i, dst + i, sizeof (*dst)); 8868 } 8869 #endif 8870 break; 8871 8872 case SIOCSIP6ADDRPOLICY: 8873 ASSERT(mp->b_prev == NULL); 8874 mp->b_prev = (void *)q; 8875 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8876 /* 8877 * We pass in the datamodel here so that the ip6_asp_replace() 8878 * routine can handle converting from 32-bit to native formats 8879 * where necessary. 8880 * 8881 * A better way to handle this might be to convert the inbound 8882 * data structure here, and hang it off a new 'mp'; thus the 8883 * ip6_asp_replace() logic would always be dealing with native 8884 * format data structures.. 8885 * 8886 * (An even simpler way to handle these ioctls is to just 8887 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8888 * and just recompile everything that depends on it.) 8889 */ 8890 #endif 8891 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 8892 iocp->ioc_flag & IOC_MODELS); 8893 return; 8894 } 8895 8896 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8897 qreply(q, mp); 8898 } 8899 8900 static void 8901 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8902 { 8903 mblk_t *data_mp; 8904 struct dstinforeq *dir; 8905 uint8_t *end, *cur; 8906 in6_addr_t *daddr, *saddr; 8907 ipaddr_t v4daddr; 8908 ire_t *ire; 8909 char *slabel, *dlabel; 8910 boolean_t isipv4; 8911 int match_ire; 8912 ill_t *dst_ill; 8913 ipif_t *src_ipif, *ire_ipif; 8914 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8915 zoneid_t zoneid; 8916 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8917 8918 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8919 zoneid = Q_TO_CONN(q)->conn_zoneid; 8920 8921 /* 8922 * This ioctl is I_STR only, and must have a 8923 * data mblk following the M_IOCTL mblk. 8924 */ 8925 data_mp = mp->b_cont; 8926 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8927 miocnak(q, mp, 0, EINVAL); 8928 return; 8929 } 8930 8931 if (MBLKL(data_mp) < iocp->ioc_count) { 8932 mblk_t *new_data_mp; 8933 8934 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8935 miocnak(q, mp, 0, ENOMEM); 8936 return; 8937 } 8938 freemsg(data_mp); 8939 data_mp = new_data_mp; 8940 mp->b_cont = data_mp; 8941 } 8942 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8943 8944 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8945 end - cur >= sizeof (struct dstinforeq); 8946 cur += sizeof (struct dstinforeq)) { 8947 dir = (struct dstinforeq *)cur; 8948 daddr = &dir->dir_daddr; 8949 saddr = &dir->dir_saddr; 8950 8951 /* 8952 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8953 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8954 * and ipif_select_source[_v6]() do not. 8955 */ 8956 dir->dir_dscope = ip_addr_scope_v6(daddr); 8957 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 8958 8959 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8960 if (isipv4) { 8961 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8962 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8963 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 8964 } else { 8965 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8966 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 8967 } 8968 if (ire == NULL) { 8969 dir->dir_dreachable = 0; 8970 8971 /* move on to next dst addr */ 8972 continue; 8973 } 8974 dir->dir_dreachable = 1; 8975 8976 ire_ipif = ire->ire_ipif; 8977 if (ire_ipif == NULL) 8978 goto next_dst; 8979 8980 /* 8981 * We expect to get back an interface ire or a 8982 * gateway ire cache entry. For both types, the 8983 * output interface is ire_ipif->ipif_ill. 8984 */ 8985 dst_ill = ire_ipif->ipif_ill; 8986 dir->dir_dmactype = dst_ill->ill_mactype; 8987 8988 if (isipv4) { 8989 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8990 } else { 8991 src_ipif = ipif_select_source_v6(dst_ill, 8992 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 8993 zoneid); 8994 } 8995 if (src_ipif == NULL) 8996 goto next_dst; 8997 8998 *saddr = src_ipif->ipif_v6lcl_addr; 8999 dir->dir_sscope = ip_addr_scope_v6(saddr); 9000 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9001 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9002 dir->dir_sdeprecated = 9003 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9004 ipif_refrele(src_ipif); 9005 next_dst: 9006 ire_refrele(ire); 9007 } 9008 miocack(q, mp, iocp->ioc_count, 0); 9009 } 9010 9011 /* 9012 * Check if this is an address assigned to this machine. 9013 * Skips interfaces that are down by using ire checks. 9014 * Translates mapped addresses to v4 addresses and then 9015 * treats them as such, returning true if the v4 address 9016 * associated with this mapped address is configured. 9017 * Note: Applications will have to be careful what they do 9018 * with the response; use of mapped addresses limits 9019 * what can be done with the socket, especially with 9020 * respect to socket options and ioctls - neither IPv4 9021 * options nor IPv6 sticky options/ancillary data options 9022 * may be used. 9023 */ 9024 /* ARGSUSED */ 9025 int 9026 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9027 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9028 { 9029 struct sioc_addrreq *sia; 9030 sin_t *sin; 9031 ire_t *ire; 9032 mblk_t *mp1; 9033 zoneid_t zoneid; 9034 ip_stack_t *ipst; 9035 9036 ip1dbg(("ip_sioctl_tmyaddr")); 9037 9038 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9039 zoneid = Q_TO_CONN(q)->conn_zoneid; 9040 ipst = CONNQ_TO_IPST(q); 9041 9042 /* Existence verified in ip_wput_nondata */ 9043 mp1 = mp->b_cont->b_cont; 9044 sia = (struct sioc_addrreq *)mp1->b_rptr; 9045 sin = (sin_t *)&sia->sa_addr; 9046 switch (sin->sin_family) { 9047 case AF_INET6: { 9048 sin6_t *sin6 = (sin6_t *)sin; 9049 9050 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9051 ipaddr_t v4_addr; 9052 9053 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9054 v4_addr); 9055 ire = ire_ctable_lookup(v4_addr, 0, 9056 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9057 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9058 } else { 9059 in6_addr_t v6addr; 9060 9061 v6addr = sin6->sin6_addr; 9062 ire = ire_ctable_lookup_v6(&v6addr, 0, 9063 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9064 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9065 } 9066 break; 9067 } 9068 case AF_INET: { 9069 ipaddr_t v4addr; 9070 9071 v4addr = sin->sin_addr.s_addr; 9072 ire = ire_ctable_lookup(v4addr, 0, 9073 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9074 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9075 break; 9076 } 9077 default: 9078 return (EAFNOSUPPORT); 9079 } 9080 if (ire != NULL) { 9081 sia->sa_res = 1; 9082 ire_refrele(ire); 9083 } else { 9084 sia->sa_res = 0; 9085 } 9086 return (0); 9087 } 9088 9089 /* 9090 * Check if this is an address assigned on-link i.e. neighbor, 9091 * and makes sure it's reachable from the current zone. 9092 * Returns true for my addresses as well. 9093 * Translates mapped addresses to v4 addresses and then 9094 * treats them as such, returning true if the v4 address 9095 * associated with this mapped address is configured. 9096 * Note: Applications will have to be careful what they do 9097 * with the response; use of mapped addresses limits 9098 * what can be done with the socket, especially with 9099 * respect to socket options and ioctls - neither IPv4 9100 * options nor IPv6 sticky options/ancillary data options 9101 * may be used. 9102 */ 9103 /* ARGSUSED */ 9104 int 9105 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9106 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9107 { 9108 struct sioc_addrreq *sia; 9109 sin_t *sin; 9110 mblk_t *mp1; 9111 ire_t *ire = NULL; 9112 zoneid_t zoneid; 9113 ip_stack_t *ipst; 9114 9115 ip1dbg(("ip_sioctl_tonlink")); 9116 9117 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9118 zoneid = Q_TO_CONN(q)->conn_zoneid; 9119 ipst = CONNQ_TO_IPST(q); 9120 9121 /* Existence verified in ip_wput_nondata */ 9122 mp1 = mp->b_cont->b_cont; 9123 sia = (struct sioc_addrreq *)mp1->b_rptr; 9124 sin = (sin_t *)&sia->sa_addr; 9125 9126 /* 9127 * Match addresses with a zero gateway field to avoid 9128 * routes going through a router. 9129 * Exclude broadcast and multicast addresses. 9130 */ 9131 switch (sin->sin_family) { 9132 case AF_INET6: { 9133 sin6_t *sin6 = (sin6_t *)sin; 9134 9135 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9136 ipaddr_t v4_addr; 9137 9138 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9139 v4_addr); 9140 if (!CLASSD(v4_addr)) { 9141 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9142 NULL, NULL, zoneid, NULL, 9143 MATCH_IRE_GW, ipst); 9144 } 9145 } else { 9146 in6_addr_t v6addr; 9147 in6_addr_t v6gw; 9148 9149 v6addr = sin6->sin6_addr; 9150 v6gw = ipv6_all_zeros; 9151 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9152 ire = ire_route_lookup_v6(&v6addr, 0, 9153 &v6gw, 0, NULL, NULL, zoneid, 9154 NULL, MATCH_IRE_GW, ipst); 9155 } 9156 } 9157 break; 9158 } 9159 case AF_INET: { 9160 ipaddr_t v4addr; 9161 9162 v4addr = sin->sin_addr.s_addr; 9163 if (!CLASSD(v4addr)) { 9164 ire = ire_route_lookup(v4addr, 0, 0, 0, 9165 NULL, NULL, zoneid, NULL, 9166 MATCH_IRE_GW, ipst); 9167 } 9168 break; 9169 } 9170 default: 9171 return (EAFNOSUPPORT); 9172 } 9173 sia->sa_res = 0; 9174 if (ire != NULL) { 9175 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9176 IRE_LOCAL|IRE_LOOPBACK)) { 9177 sia->sa_res = 1; 9178 } 9179 ire_refrele(ire); 9180 } 9181 return (0); 9182 } 9183 9184 /* 9185 * TBD: implement when kernel maintaines a list of site prefixes. 9186 */ 9187 /* ARGSUSED */ 9188 int 9189 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9190 ip_ioctl_cmd_t *ipip, void *ifreq) 9191 { 9192 return (ENXIO); 9193 } 9194 9195 /* ARGSUSED */ 9196 int 9197 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9198 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9199 { 9200 ill_t *ill; 9201 mblk_t *mp1; 9202 conn_t *connp; 9203 boolean_t success; 9204 9205 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9206 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9207 /* ioctl comes down on an conn */ 9208 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9209 connp = Q_TO_CONN(q); 9210 9211 mp->b_datap->db_type = M_IOCTL; 9212 9213 /* 9214 * Send down a copy. (copymsg does not copy b_next/b_prev). 9215 * The original mp contains contaminated b_next values due to 'mi', 9216 * which is needed to do the mi_copy_done. Unfortunately if we 9217 * send down the original mblk itself and if we are popped due to an 9218 * an unplumb before the response comes back from tunnel, 9219 * the streamhead (which does a freemsg) will see this contaminated 9220 * message and the assertion in freemsg about non-null b_next/b_prev 9221 * will panic a DEBUG kernel. 9222 */ 9223 mp1 = copymsg(mp); 9224 if (mp1 == NULL) 9225 return (ENOMEM); 9226 9227 ill = ipif->ipif_ill; 9228 mutex_enter(&connp->conn_lock); 9229 mutex_enter(&ill->ill_lock); 9230 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9231 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9232 mp, 0); 9233 } else { 9234 success = ill_pending_mp_add(ill, connp, mp); 9235 } 9236 mutex_exit(&ill->ill_lock); 9237 mutex_exit(&connp->conn_lock); 9238 9239 if (success) { 9240 ip1dbg(("sending down tunparam request ")); 9241 putnext(ill->ill_wq, mp1); 9242 return (EINPROGRESS); 9243 } else { 9244 /* The conn has started closing */ 9245 freemsg(mp1); 9246 return (EINTR); 9247 } 9248 } 9249 9250 /* 9251 * ARP IOCTLs. 9252 * How does IP get in the business of fronting ARP configuration/queries? 9253 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9254 * are by tradition passed in through a datagram socket. That lands in IP. 9255 * As it happens, this is just as well since the interface is quite crude in 9256 * that it passes in no information about protocol or hardware types, or 9257 * interface association. After making the protocol assumption, IP is in 9258 * the position to look up the name of the ILL, which ARP will need, and 9259 * format a request that can be handled by ARP. The request is passed up 9260 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9261 * back a response. ARP supports its own set of more general IOCTLs, in 9262 * case anyone is interested. 9263 */ 9264 /* ARGSUSED */ 9265 int 9266 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9267 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9268 { 9269 mblk_t *mp1; 9270 mblk_t *mp2; 9271 mblk_t *pending_mp; 9272 ipaddr_t ipaddr; 9273 area_t *area; 9274 struct iocblk *iocp; 9275 conn_t *connp; 9276 struct arpreq *ar; 9277 struct xarpreq *xar; 9278 int flags, alength; 9279 char *lladdr; 9280 ip_stack_t *ipst; 9281 ill_t *ill = ipif->ipif_ill; 9282 boolean_t if_arp_ioctl = B_FALSE; 9283 9284 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9285 connp = Q_TO_CONN(q); 9286 ipst = connp->conn_netstack->netstack_ip; 9287 9288 if (ipip->ipi_cmd_type == XARP_CMD) { 9289 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9290 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9291 ar = NULL; 9292 9293 flags = xar->xarp_flags; 9294 lladdr = LLADDR(&xar->xarp_ha); 9295 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9296 /* 9297 * Validate against user's link layer address length 9298 * input and name and addr length limits. 9299 */ 9300 alength = ill->ill_phys_addr_length; 9301 if (ipip->ipi_cmd == SIOCSXARP) { 9302 if (alength != xar->xarp_ha.sdl_alen || 9303 (alength + xar->xarp_ha.sdl_nlen > 9304 sizeof (xar->xarp_ha.sdl_data))) 9305 return (EINVAL); 9306 } 9307 } else { 9308 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9309 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9310 xar = NULL; 9311 9312 flags = ar->arp_flags; 9313 lladdr = ar->arp_ha.sa_data; 9314 /* 9315 * Theoretically, the sa_family could tell us what link 9316 * layer type this operation is trying to deal with. By 9317 * common usage AF_UNSPEC means ethernet. We'll assume 9318 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9319 * for now. Our new SIOC*XARP ioctls can be used more 9320 * generally. 9321 * 9322 * If the underlying media happens to have a non 6 byte 9323 * address, arp module will fail set/get, but the del 9324 * operation will succeed. 9325 */ 9326 alength = 6; 9327 if ((ipip->ipi_cmd != SIOCDARP) && 9328 (alength != ill->ill_phys_addr_length)) { 9329 return (EINVAL); 9330 } 9331 } 9332 9333 /* 9334 * We are going to pass up to ARP a packet chain that looks 9335 * like: 9336 * 9337 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9338 * 9339 * Get a copy of the original IOCTL mblk to head the chain, 9340 * to be sent up (in mp1). Also get another copy to store 9341 * in the ill_pending_mp list, for matching the response 9342 * when it comes back from ARP. 9343 */ 9344 mp1 = copyb(mp); 9345 pending_mp = copymsg(mp); 9346 if (mp1 == NULL || pending_mp == NULL) { 9347 if (mp1 != NULL) 9348 freeb(mp1); 9349 if (pending_mp != NULL) 9350 inet_freemsg(pending_mp); 9351 return (ENOMEM); 9352 } 9353 9354 ipaddr = sin->sin_addr.s_addr; 9355 9356 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9357 (caddr_t)&ipaddr); 9358 if (mp2 == NULL) { 9359 freeb(mp1); 9360 inet_freemsg(pending_mp); 9361 return (ENOMEM); 9362 } 9363 /* Put together the chain. */ 9364 mp1->b_cont = mp2; 9365 mp1->b_datap->db_type = M_IOCTL; 9366 mp2->b_cont = mp; 9367 mp2->b_datap->db_type = M_DATA; 9368 9369 iocp = (struct iocblk *)mp1->b_rptr; 9370 9371 /* 9372 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9373 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9374 * cp_private field (or cp_rval on 32-bit systems) in place of the 9375 * ioc_count field; set ioc_count to be correct. 9376 */ 9377 iocp->ioc_count = MBLKL(mp1->b_cont); 9378 9379 /* 9380 * Set the proper command in the ARP message. 9381 * Convert the SIOC{G|S|D}ARP calls into our 9382 * AR_ENTRY_xxx calls. 9383 */ 9384 area = (area_t *)mp2->b_rptr; 9385 switch (iocp->ioc_cmd) { 9386 case SIOCDARP: 9387 case SIOCDXARP: 9388 /* 9389 * We defer deleting the corresponding IRE until 9390 * we return from arp. 9391 */ 9392 area->area_cmd = AR_ENTRY_DELETE; 9393 area->area_proto_mask_offset = 0; 9394 break; 9395 case SIOCGARP: 9396 case SIOCGXARP: 9397 area->area_cmd = AR_ENTRY_SQUERY; 9398 area->area_proto_mask_offset = 0; 9399 break; 9400 case SIOCSARP: 9401 case SIOCSXARP: 9402 /* 9403 * Delete the corresponding ire to make sure IP will 9404 * pick up any change from arp. 9405 */ 9406 if (!if_arp_ioctl) { 9407 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9408 } else { 9409 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9410 if (ipif != NULL) { 9411 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9412 ipst); 9413 ipif_refrele(ipif); 9414 } 9415 } 9416 break; 9417 } 9418 iocp->ioc_cmd = area->area_cmd; 9419 9420 /* 9421 * Fill in the rest of the ARP operation fields. 9422 */ 9423 area->area_hw_addr_length = alength; 9424 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9425 9426 /* Translate the flags. */ 9427 if (flags & ATF_PERM) 9428 area->area_flags |= ACE_F_PERMANENT; 9429 if (flags & ATF_PUBL) 9430 area->area_flags |= ACE_F_PUBLISH; 9431 if (flags & ATF_AUTHORITY) 9432 area->area_flags |= ACE_F_AUTHORITY; 9433 9434 /* 9435 * Before sending 'mp' to ARP, we have to clear the b_next 9436 * and b_prev. Otherwise if STREAMS encounters such a message 9437 * in freemsg(), (because ARP can close any time) it can cause 9438 * a panic. But mi code needs the b_next and b_prev values of 9439 * mp->b_cont, to complete the ioctl. So we store it here 9440 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9441 * when the response comes down from ARP. 9442 */ 9443 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9444 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9445 mp->b_cont->b_next = NULL; 9446 mp->b_cont->b_prev = NULL; 9447 9448 mutex_enter(&connp->conn_lock); 9449 mutex_enter(&ill->ill_lock); 9450 /* conn has not yet started closing, hence this can't fail */ 9451 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9452 mutex_exit(&ill->ill_lock); 9453 mutex_exit(&connp->conn_lock); 9454 9455 /* 9456 * Up to ARP it goes. The response will come back in ip_wput() as an 9457 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9458 */ 9459 putnext(ill->ill_rq, mp1); 9460 return (EINPROGRESS); 9461 } 9462 9463 /* 9464 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9465 * the associated sin and refhold and return the associated ipif via `ci'. 9466 */ 9467 int 9468 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9469 cmd_info_t *ci, ipsq_func_t func) 9470 { 9471 mblk_t *mp1; 9472 int err; 9473 sin_t *sin; 9474 conn_t *connp; 9475 ipif_t *ipif; 9476 ire_t *ire = NULL; 9477 ill_t *ill = NULL; 9478 boolean_t exists; 9479 ip_stack_t *ipst; 9480 struct arpreq *ar; 9481 struct xarpreq *xar; 9482 struct sockaddr_dl *sdl; 9483 9484 /* ioctl comes down on a conn */ 9485 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9486 connp = Q_TO_CONN(q); 9487 if (connp->conn_af_isv6) 9488 return (ENXIO); 9489 9490 ipst = connp->conn_netstack->netstack_ip; 9491 9492 /* Verified in ip_wput_nondata */ 9493 mp1 = mp->b_cont->b_cont; 9494 9495 if (ipip->ipi_cmd_type == XARP_CMD) { 9496 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9497 xar = (struct xarpreq *)mp1->b_rptr; 9498 sin = (sin_t *)&xar->xarp_pa; 9499 sdl = &xar->xarp_ha; 9500 9501 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9502 return (ENXIO); 9503 if (sdl->sdl_nlen >= LIFNAMSIZ) 9504 return (EINVAL); 9505 } else { 9506 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9507 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9508 ar = (struct arpreq *)mp1->b_rptr; 9509 sin = (sin_t *)&ar->arp_pa; 9510 } 9511 9512 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9513 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9514 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9515 mp, func, &err, ipst); 9516 if (ipif == NULL) 9517 return (err); 9518 if (ipif->ipif_id != 0 || 9519 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9520 ipif_refrele(ipif); 9521 return (ENXIO); 9522 } 9523 } else { 9524 /* 9525 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9526 * 0: use the IP address to figure out the ill. In the IPMP 9527 * case, a simple forwarding table lookup will return the 9528 * IRE_IF_RESOLVER for the first interface in the group, which 9529 * might not be the interface on which the requested IP 9530 * address was resolved due to the ill selection algorithm 9531 * (see ip_newroute_get_dst_ill()). So we do a cache table 9532 * lookup first: if the IRE cache entry for the IP address is 9533 * still there, it will contain the ill pointer for the right 9534 * interface, so we use that. If the cache entry has been 9535 * flushed, we fall back to the forwarding table lookup. This 9536 * should be rare enough since IRE cache entries have a longer 9537 * life expectancy than ARP cache entries. 9538 */ 9539 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9540 ipst); 9541 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9542 ((ill = ire_to_ill(ire)) == NULL) || 9543 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9544 if (ire != NULL) 9545 ire_refrele(ire); 9546 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9547 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9548 NULL, MATCH_IRE_TYPE, ipst); 9549 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9550 9551 if (ire != NULL) 9552 ire_refrele(ire); 9553 return (ENXIO); 9554 } 9555 } 9556 ASSERT(ire != NULL && ill != NULL); 9557 ipif = ill->ill_ipif; 9558 ipif_refhold(ipif); 9559 ire_refrele(ire); 9560 } 9561 ci->ci_sin = sin; 9562 ci->ci_ipif = ipif; 9563 return (0); 9564 } 9565 9566 /* 9567 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9568 * atomically set/clear the muxids. Also complete the ioctl by acking or 9569 * naking it. Note that the code is structured such that the link type, 9570 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9571 * its clones use the persistent link, while pppd(1M) and perhaps many 9572 * other daemons may use non-persistent link. When combined with some 9573 * ill_t states, linking and unlinking lower streams may be used as 9574 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9575 */ 9576 /* ARGSUSED */ 9577 void 9578 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9579 { 9580 mblk_t *mp1, *mp2; 9581 struct linkblk *li; 9582 struct ipmx_s *ipmxp; 9583 ill_t *ill; 9584 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9585 int err = 0; 9586 boolean_t entered_ipsq = B_FALSE; 9587 boolean_t islink; 9588 ip_stack_t *ipst; 9589 9590 if (CONN_Q(q)) 9591 ipst = CONNQ_TO_IPST(q); 9592 else 9593 ipst = ILLQ_TO_IPST(q); 9594 9595 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9596 ioccmd == I_LINK || ioccmd == I_UNLINK); 9597 9598 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9599 9600 mp1 = mp->b_cont; /* This is the linkblk info */ 9601 li = (struct linkblk *)mp1->b_rptr; 9602 9603 /* 9604 * ARP has added this special mblk, and the utility is asking us 9605 * to perform consistency checks, and also atomically set the 9606 * muxid. Ifconfig is an example. It achieves this by using 9607 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9608 * to /dev/udp[6] stream for use as the mux when plinking the IP 9609 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9610 * and other comments in this routine for more details. 9611 */ 9612 mp2 = mp1->b_cont; /* This is added by ARP */ 9613 9614 /* 9615 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9616 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9617 * get the special mblk above. For backward compatibility, we 9618 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9619 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9620 * not atomic, and can leave the streams unplumbable if the utility 9621 * is interrupted before it does the SIOCSLIFMUXID. 9622 */ 9623 if (mp2 == NULL) { 9624 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9625 if (err == EINPROGRESS) 9626 return; 9627 goto done; 9628 } 9629 9630 /* 9631 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9632 * ARP has appended this last mblk to tell us whether the lower stream 9633 * is an arp-dev stream or an IP module stream. 9634 */ 9635 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9636 if (ipmxp->ipmx_arpdev_stream) { 9637 /* 9638 * The lower stream is the arp-dev stream. 9639 */ 9640 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9641 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9642 if (ill == NULL) { 9643 if (err == EINPROGRESS) 9644 return; 9645 err = EINVAL; 9646 goto done; 9647 } 9648 9649 if (ipsq == NULL) { 9650 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9651 NEW_OP, B_TRUE); 9652 if (ipsq == NULL) { 9653 ill_refrele(ill); 9654 return; 9655 } 9656 entered_ipsq = B_TRUE; 9657 } 9658 ASSERT(IAM_WRITER_ILL(ill)); 9659 ill_refrele(ill); 9660 9661 /* 9662 * To ensure consistency between IP and ARP, the following 9663 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9664 * This is because the muxid's are stored in the IP stream on 9665 * the ill. 9666 * 9667 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9668 * the ARP stream. On an arp-dev stream, IP checks that it is 9669 * not yet plinked, and it also checks that the corresponding 9670 * IP stream is already plinked. 9671 * 9672 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9673 * punlinking the IP stream. IP does not allow punlink of the 9674 * IP stream unless the arp stream has been punlinked. 9675 */ 9676 if ((islink && 9677 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9678 (!islink && ill->ill_arp_muxid != li->l_index)) { 9679 err = EINVAL; 9680 goto done; 9681 } 9682 ill->ill_arp_muxid = islink ? li->l_index : 0; 9683 } else { 9684 /* 9685 * The lower stream is probably an IP module stream. Do 9686 * consistency checking. 9687 */ 9688 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9689 if (err == EINPROGRESS) 9690 return; 9691 } 9692 done: 9693 if (err == 0) 9694 miocack(q, mp, 0, 0); 9695 else 9696 miocnak(q, mp, 0, err); 9697 9698 /* Conn was refheld in ip_sioctl_copyin_setup */ 9699 if (CONN_Q(q)) 9700 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9701 if (entered_ipsq) 9702 ipsq_exit(ipsq); 9703 } 9704 9705 /* 9706 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9707 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9708 * module stream). If `doconsist' is set, then do the extended consistency 9709 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9710 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9711 * an error code on failure. 9712 */ 9713 static int 9714 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9715 struct linkblk *li, boolean_t doconsist) 9716 { 9717 ill_t *ill; 9718 queue_t *ipwq, *dwq; 9719 const char *name; 9720 struct qinit *qinfo; 9721 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9722 boolean_t entered_ipsq = B_FALSE; 9723 9724 /* 9725 * Walk the lower stream to verify it's the IP module stream. 9726 * The IP module is identified by its name, wput function, 9727 * and non-NULL q_next. STREAMS ensures that the lower stream 9728 * (li->l_qbot) will not vanish until this ioctl completes. 9729 */ 9730 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9731 qinfo = ipwq->q_qinfo; 9732 name = qinfo->qi_minfo->mi_idname; 9733 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9734 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9735 break; 9736 } 9737 } 9738 9739 /* 9740 * If this isn't an IP module stream, bail. 9741 */ 9742 if (ipwq == NULL) 9743 return (0); 9744 9745 ill = ipwq->q_ptr; 9746 ASSERT(ill != NULL); 9747 9748 if (ipsq == NULL) { 9749 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9750 NEW_OP, B_TRUE); 9751 if (ipsq == NULL) 9752 return (EINPROGRESS); 9753 entered_ipsq = B_TRUE; 9754 } 9755 ASSERT(IAM_WRITER_ILL(ill)); 9756 9757 if (doconsist) { 9758 /* 9759 * Consistency checking requires that I_{P}LINK occurs 9760 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9761 * occurs prior to clearing ill_arp_muxid. 9762 */ 9763 if ((islink && ill->ill_ip_muxid != 0) || 9764 (!islink && ill->ill_arp_muxid != 0)) { 9765 if (entered_ipsq) 9766 ipsq_exit(ipsq); 9767 return (EINVAL); 9768 } 9769 } 9770 9771 /* 9772 * As part of I_{P}LINKing, stash the number of downstream modules and 9773 * the read queue of the module immediately below IP in the ill. 9774 * These are used during the capability negotiation below. 9775 */ 9776 ill->ill_lmod_rq = NULL; 9777 ill->ill_lmod_cnt = 0; 9778 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9779 ill->ill_lmod_rq = RD(dwq); 9780 for (; dwq != NULL; dwq = dwq->q_next) 9781 ill->ill_lmod_cnt++; 9782 } 9783 9784 if (doconsist) 9785 ill->ill_ip_muxid = islink ? li->l_index : 0; 9786 9787 /* 9788 * Mark the ipsq busy until the capability operations initiated below 9789 * complete. The PLINK/UNLINK ioctl itself completes when our caller 9790 * returns, but the capability operation may complete asynchronously 9791 * much later. 9792 */ 9793 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 9794 /* 9795 * If there's at least one up ipif on this ill, then we're bound to 9796 * the underlying driver via DLPI. In that case, renegotiate 9797 * capabilities to account for any possible change in modules 9798 * interposed between IP and the driver. 9799 */ 9800 if (ill->ill_ipif_up_count > 0) { 9801 if (islink) 9802 ill_capability_probe(ill); 9803 else 9804 ill_capability_reset(ill, B_FALSE); 9805 } 9806 ipsq_current_finish(ipsq); 9807 9808 if (entered_ipsq) 9809 ipsq_exit(ipsq); 9810 9811 return (0); 9812 } 9813 9814 /* 9815 * Search the ioctl command in the ioctl tables and return a pointer 9816 * to the ioctl command information. The ioctl command tables are 9817 * static and fully populated at compile time. 9818 */ 9819 ip_ioctl_cmd_t * 9820 ip_sioctl_lookup(int ioc_cmd) 9821 { 9822 int index; 9823 ip_ioctl_cmd_t *ipip; 9824 ip_ioctl_cmd_t *ipip_end; 9825 9826 if (ioc_cmd == IPI_DONTCARE) 9827 return (NULL); 9828 9829 /* 9830 * Do a 2 step search. First search the indexed table 9831 * based on the least significant byte of the ioctl cmd. 9832 * If we don't find a match, then search the misc table 9833 * serially. 9834 */ 9835 index = ioc_cmd & 0xFF; 9836 if (index < ip_ndx_ioctl_count) { 9837 ipip = &ip_ndx_ioctl_table[index]; 9838 if (ipip->ipi_cmd == ioc_cmd) { 9839 /* Found a match in the ndx table */ 9840 return (ipip); 9841 } 9842 } 9843 9844 /* Search the misc table */ 9845 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9846 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9847 if (ipip->ipi_cmd == ioc_cmd) 9848 /* Found a match in the misc table */ 9849 return (ipip); 9850 } 9851 9852 return (NULL); 9853 } 9854 9855 /* 9856 * Wrapper function for resuming deferred ioctl processing 9857 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9858 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9859 */ 9860 /* ARGSUSED */ 9861 void 9862 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9863 void *dummy_arg) 9864 { 9865 ip_sioctl_copyin_setup(q, mp); 9866 } 9867 9868 /* 9869 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9870 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9871 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9872 * We establish here the size of the block to be copied in. mi_copyin 9873 * arranges for this to happen, an processing continues in ip_wput with 9874 * an M_IOCDATA message. 9875 */ 9876 void 9877 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9878 { 9879 int copyin_size; 9880 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9881 ip_ioctl_cmd_t *ipip; 9882 cred_t *cr; 9883 ip_stack_t *ipst; 9884 9885 if (CONN_Q(q)) 9886 ipst = CONNQ_TO_IPST(q); 9887 else 9888 ipst = ILLQ_TO_IPST(q); 9889 9890 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9891 if (ipip == NULL) { 9892 /* 9893 * The ioctl is not one we understand or own. 9894 * Pass it along to be processed down stream, 9895 * if this is a module instance of IP, else nak 9896 * the ioctl. 9897 */ 9898 if (q->q_next == NULL) { 9899 goto nak; 9900 } else { 9901 putnext(q, mp); 9902 return; 9903 } 9904 } 9905 9906 /* 9907 * If this is deferred, then we will do all the checks when we 9908 * come back. 9909 */ 9910 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9911 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9912 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9913 return; 9914 } 9915 9916 /* 9917 * Only allow a very small subset of IP ioctls on this stream if 9918 * IP is a module and not a driver. Allowing ioctls to be processed 9919 * in this case may cause assert failures or data corruption. 9920 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9921 * ioctls allowed on an IP module stream, after which this stream 9922 * normally becomes a multiplexor (at which time the stream head 9923 * will fail all ioctls). 9924 */ 9925 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9926 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9927 /* 9928 * Pass common Streams ioctls which the IP 9929 * module does not own or consume along to 9930 * be processed down stream. 9931 */ 9932 putnext(q, mp); 9933 return; 9934 } else { 9935 goto nak; 9936 } 9937 } 9938 9939 /* Make sure we have ioctl data to process. */ 9940 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9941 goto nak; 9942 9943 /* 9944 * Prefer dblk credential over ioctl credential; some synthesized 9945 * ioctls have kcred set because there's no way to crhold() 9946 * a credential in some contexts. (ioc_cr is not crfree() by 9947 * the framework; the caller of ioctl needs to hold the reference 9948 * for the duration of the call). 9949 */ 9950 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9951 9952 /* Make sure normal users don't send down privileged ioctls */ 9953 if ((ipip->ipi_flags & IPI_PRIV) && 9954 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9955 /* We checked the privilege earlier but log it here */ 9956 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9957 return; 9958 } 9959 9960 /* 9961 * The ioctl command tables can only encode fixed length 9962 * ioctl data. If the length is variable, the table will 9963 * encode the length as zero. Such special cases are handled 9964 * below in the switch. 9965 */ 9966 if (ipip->ipi_copyin_size != 0) { 9967 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9968 return; 9969 } 9970 9971 switch (iocp->ioc_cmd) { 9972 case O_SIOCGIFCONF: 9973 case SIOCGIFCONF: 9974 /* 9975 * This IOCTL is hilarious. See comments in 9976 * ip_sioctl_get_ifconf for the story. 9977 */ 9978 if (iocp->ioc_count == TRANSPARENT) 9979 copyin_size = SIZEOF_STRUCT(ifconf, 9980 iocp->ioc_flag); 9981 else 9982 copyin_size = iocp->ioc_count; 9983 mi_copyin(q, mp, NULL, copyin_size); 9984 return; 9985 9986 case O_SIOCGLIFCONF: 9987 case SIOCGLIFCONF: 9988 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9989 mi_copyin(q, mp, NULL, copyin_size); 9990 return; 9991 9992 case SIOCGLIFSRCOF: 9993 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9994 mi_copyin(q, mp, NULL, copyin_size); 9995 return; 9996 case SIOCGIP6ADDRPOLICY: 9997 ip_sioctl_ip6addrpolicy(q, mp); 9998 ip6_asp_table_refrele(ipst); 9999 return; 10000 10001 case SIOCSIP6ADDRPOLICY: 10002 ip_sioctl_ip6addrpolicy(q, mp); 10003 return; 10004 10005 case SIOCGDSTINFO: 10006 ip_sioctl_dstinfo(q, mp); 10007 ip6_asp_table_refrele(ipst); 10008 return; 10009 10010 case I_PLINK: 10011 case I_PUNLINK: 10012 case I_LINK: 10013 case I_UNLINK: 10014 /* 10015 * We treat non-persistent link similarly as the persistent 10016 * link case, in terms of plumbing/unplumbing, as well as 10017 * dynamic re-plumbing events indicator. See comments 10018 * in ip_sioctl_plink() for more. 10019 * 10020 * Request can be enqueued in the 'ipsq' while waiting 10021 * to become exclusive. So bump up the conn ref. 10022 */ 10023 if (CONN_Q(q)) 10024 CONN_INC_REF(Q_TO_CONN(q)); 10025 ip_sioctl_plink(NULL, q, mp, NULL); 10026 return; 10027 10028 case ND_GET: 10029 case ND_SET: 10030 /* 10031 * Use of the nd table requires holding the reader lock. 10032 * Modifying the nd table thru nd_load/nd_unload requires 10033 * the writer lock. 10034 */ 10035 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10036 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10037 rw_exit(&ipst->ips_ip_g_nd_lock); 10038 10039 if (iocp->ioc_error) 10040 iocp->ioc_count = 0; 10041 mp->b_datap->db_type = M_IOCACK; 10042 qreply(q, mp); 10043 return; 10044 } 10045 rw_exit(&ipst->ips_ip_g_nd_lock); 10046 /* 10047 * We don't understand this subioctl of ND_GET / ND_SET. 10048 * Maybe intended for some driver / module below us 10049 */ 10050 if (q->q_next) { 10051 putnext(q, mp); 10052 } else { 10053 iocp->ioc_error = ENOENT; 10054 mp->b_datap->db_type = M_IOCNAK; 10055 iocp->ioc_count = 0; 10056 qreply(q, mp); 10057 } 10058 return; 10059 10060 case IP_IOCTL: 10061 ip_wput_ioctl(q, mp); 10062 return; 10063 default: 10064 cmn_err(CE_PANIC, "should not happen "); 10065 } 10066 nak: 10067 if (mp->b_cont != NULL) { 10068 freemsg(mp->b_cont); 10069 mp->b_cont = NULL; 10070 } 10071 iocp->ioc_error = EINVAL; 10072 mp->b_datap->db_type = M_IOCNAK; 10073 iocp->ioc_count = 0; 10074 qreply(q, mp); 10075 } 10076 10077 /* ip_wput hands off ARP IOCTL responses to us */ 10078 void 10079 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10080 { 10081 struct arpreq *ar; 10082 struct xarpreq *xar; 10083 area_t *area; 10084 mblk_t *area_mp; 10085 struct iocblk *iocp; 10086 mblk_t *orig_ioc_mp, *tmp; 10087 struct iocblk *orig_iocp; 10088 ill_t *ill; 10089 conn_t *connp = NULL; 10090 uint_t ioc_id; 10091 mblk_t *pending_mp; 10092 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10093 int *flagsp; 10094 char *storage = NULL; 10095 sin_t *sin; 10096 ipaddr_t addr; 10097 int err; 10098 ip_stack_t *ipst; 10099 10100 ill = q->q_ptr; 10101 ASSERT(ill != NULL); 10102 ipst = ill->ill_ipst; 10103 10104 /* 10105 * We should get back from ARP a packet chain that looks like: 10106 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10107 */ 10108 if (!(area_mp = mp->b_cont) || 10109 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10110 !(orig_ioc_mp = area_mp->b_cont) || 10111 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10112 freemsg(mp); 10113 return; 10114 } 10115 10116 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10117 10118 tmp = (orig_ioc_mp->b_cont)->b_cont; 10119 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10120 (orig_iocp->ioc_cmd == SIOCSXARP) || 10121 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10122 x_arp_ioctl = B_TRUE; 10123 xar = (struct xarpreq *)tmp->b_rptr; 10124 sin = (sin_t *)&xar->xarp_pa; 10125 flagsp = &xar->xarp_flags; 10126 storage = xar->xarp_ha.sdl_data; 10127 if (xar->xarp_ha.sdl_nlen != 0) 10128 ifx_arp_ioctl = B_TRUE; 10129 } else { 10130 ar = (struct arpreq *)tmp->b_rptr; 10131 sin = (sin_t *)&ar->arp_pa; 10132 flagsp = &ar->arp_flags; 10133 storage = ar->arp_ha.sa_data; 10134 } 10135 10136 iocp = (struct iocblk *)mp->b_rptr; 10137 10138 /* 10139 * Pick out the originating queue based on the ioc_id. 10140 */ 10141 ioc_id = iocp->ioc_id; 10142 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10143 if (pending_mp == NULL) { 10144 ASSERT(connp == NULL); 10145 inet_freemsg(mp); 10146 return; 10147 } 10148 ASSERT(connp != NULL); 10149 q = CONNP_TO_WQ(connp); 10150 10151 /* Uncouple the internally generated IOCTL from the original one */ 10152 area = (area_t *)area_mp->b_rptr; 10153 area_mp->b_cont = NULL; 10154 10155 /* 10156 * Restore the b_next and b_prev used by mi code. This is needed 10157 * to complete the ioctl using mi* functions. We stored them in 10158 * the pending mp prior to sending the request to ARP. 10159 */ 10160 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10161 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10162 inet_freemsg(pending_mp); 10163 10164 /* 10165 * We're done if there was an error or if this is not an SIOCG{X}ARP 10166 * Catch the case where there is an IRE_CACHE by no entry in the 10167 * arp table. 10168 */ 10169 addr = sin->sin_addr.s_addr; 10170 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10171 ire_t *ire; 10172 dl_unitdata_req_t *dlup; 10173 mblk_t *llmp; 10174 int addr_len; 10175 ill_t *ipsqill = NULL; 10176 10177 if (ifx_arp_ioctl) { 10178 /* 10179 * There's no need to lookup the ill, since 10180 * we've already done that when we started 10181 * processing the ioctl and sent the message 10182 * to ARP on that ill. So use the ill that 10183 * is stored in q->q_ptr. 10184 */ 10185 ipsqill = ill; 10186 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10187 ipsqill->ill_ipif, ALL_ZONES, 10188 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10189 } else { 10190 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10191 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10192 if (ire != NULL) 10193 ipsqill = ire_to_ill(ire); 10194 } 10195 10196 if ((x_arp_ioctl) && (ipsqill != NULL)) 10197 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10198 10199 if (ire != NULL) { 10200 /* 10201 * Since the ire obtained from cachetable is used for 10202 * mac addr copying below, treat an incomplete ire as if 10203 * as if we never found it. 10204 */ 10205 if (ire->ire_nce != NULL && 10206 ire->ire_nce->nce_state != ND_REACHABLE) { 10207 ire_refrele(ire); 10208 ire = NULL; 10209 ipsqill = NULL; 10210 goto errack; 10211 } 10212 *flagsp = ATF_INUSE; 10213 llmp = (ire->ire_nce != NULL ? 10214 ire->ire_nce->nce_res_mp : NULL); 10215 if (llmp != NULL && ipsqill != NULL) { 10216 uchar_t *macaddr; 10217 10218 addr_len = ipsqill->ill_phys_addr_length; 10219 if (x_arp_ioctl && ((addr_len + 10220 ipsqill->ill_name_length) > 10221 sizeof (xar->xarp_ha.sdl_data))) { 10222 ire_refrele(ire); 10223 freemsg(mp); 10224 ip_ioctl_finish(q, orig_ioc_mp, 10225 EINVAL, NO_COPYOUT, NULL); 10226 return; 10227 } 10228 *flagsp |= ATF_COM; 10229 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10230 if (ipsqill->ill_sap_length < 0) 10231 macaddr = llmp->b_rptr + 10232 dlup->dl_dest_addr_offset; 10233 else 10234 macaddr = llmp->b_rptr + 10235 dlup->dl_dest_addr_offset + 10236 ipsqill->ill_sap_length; 10237 /* 10238 * For SIOCGARP, MAC address length 10239 * validation has already been done 10240 * before the ioctl was issued to ARP to 10241 * allow it to progress only on 6 byte 10242 * addressable (ethernet like) media. Thus 10243 * the mac address copying can not overwrite 10244 * the sa_data area below. 10245 */ 10246 bcopy(macaddr, storage, addr_len); 10247 } 10248 /* Ditch the internal IOCTL. */ 10249 freemsg(mp); 10250 ire_refrele(ire); 10251 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10252 return; 10253 } 10254 } 10255 10256 /* 10257 * Delete the coresponding IRE_CACHE if any. 10258 * Reset the error if there was one (in case there was no entry 10259 * in arp.) 10260 */ 10261 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10262 ipif_t *ipintf = NULL; 10263 10264 if (ifx_arp_ioctl) { 10265 /* 10266 * There's no need to lookup the ill, since 10267 * we've already done that when we started 10268 * processing the ioctl and sent the message 10269 * to ARP on that ill. So use the ill that 10270 * is stored in q->q_ptr. 10271 */ 10272 ipintf = ill->ill_ipif; 10273 } 10274 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10275 /* 10276 * The address in "addr" may be an entry for a 10277 * router. If that's true, then any off-net 10278 * IRE_CACHE entries that go through the router 10279 * with address "addr" must be clobbered. Use 10280 * ire_walk to achieve this goal. 10281 */ 10282 if (ifx_arp_ioctl) 10283 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10284 ire_delete_cache_gw, (char *)&addr, ill); 10285 else 10286 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10287 ALL_ZONES, ipst); 10288 iocp->ioc_error = 0; 10289 } 10290 } 10291 errack: 10292 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10293 err = iocp->ioc_error; 10294 freemsg(mp); 10295 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10296 return; 10297 } 10298 10299 /* 10300 * Completion of an SIOCG{X}ARP. Translate the information from 10301 * the area_t into the struct {x}arpreq. 10302 */ 10303 if (x_arp_ioctl) { 10304 storage += ill_xarp_info(&xar->xarp_ha, ill); 10305 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10306 sizeof (xar->xarp_ha.sdl_data)) { 10307 freemsg(mp); 10308 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10309 NULL); 10310 return; 10311 } 10312 } 10313 *flagsp = ATF_INUSE; 10314 if (area->area_flags & ACE_F_PERMANENT) 10315 *flagsp |= ATF_PERM; 10316 if (area->area_flags & ACE_F_PUBLISH) 10317 *flagsp |= ATF_PUBL; 10318 if (area->area_flags & ACE_F_AUTHORITY) 10319 *flagsp |= ATF_AUTHORITY; 10320 if (area->area_hw_addr_length != 0) { 10321 *flagsp |= ATF_COM; 10322 /* 10323 * For SIOCGARP, MAC address length validation has 10324 * already been done before the ioctl was issued to ARP 10325 * to allow it to progress only on 6 byte addressable 10326 * (ethernet like) media. Thus the mac address copying 10327 * can not overwrite the sa_data area below. 10328 */ 10329 bcopy((char *)area + area->area_hw_addr_offset, 10330 storage, area->area_hw_addr_length); 10331 } 10332 10333 /* Ditch the internal IOCTL. */ 10334 freemsg(mp); 10335 /* Complete the original. */ 10336 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10337 } 10338 10339 /* 10340 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10341 * interface) create the next available logical interface for this 10342 * physical interface. 10343 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10344 * ipif with the specified name. 10345 * 10346 * If the address family is not AF_UNSPEC then set the address as well. 10347 * 10348 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10349 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10350 * 10351 * Executed as a writer on the ill or ill group. 10352 * So no lock is needed to traverse the ipif chain, or examine the 10353 * phyint flags. 10354 */ 10355 /* ARGSUSED */ 10356 int 10357 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10358 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10359 { 10360 mblk_t *mp1; 10361 struct lifreq *lifr; 10362 boolean_t isv6; 10363 boolean_t exists; 10364 char *name; 10365 char *endp; 10366 char *cp; 10367 int namelen; 10368 ipif_t *ipif; 10369 long id; 10370 ipsq_t *ipsq; 10371 ill_t *ill; 10372 sin_t *sin; 10373 int err = 0; 10374 boolean_t found_sep = B_FALSE; 10375 conn_t *connp; 10376 zoneid_t zoneid; 10377 int orig_ifindex = 0; 10378 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10379 10380 ASSERT(q->q_next == NULL); 10381 ip1dbg(("ip_sioctl_addif\n")); 10382 /* Existence of mp1 has been checked in ip_wput_nondata */ 10383 mp1 = mp->b_cont->b_cont; 10384 /* 10385 * Null terminate the string to protect against buffer 10386 * overrun. String was generated by user code and may not 10387 * be trusted. 10388 */ 10389 lifr = (struct lifreq *)mp1->b_rptr; 10390 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10391 name = lifr->lifr_name; 10392 ASSERT(CONN_Q(q)); 10393 connp = Q_TO_CONN(q); 10394 isv6 = connp->conn_af_isv6; 10395 zoneid = connp->conn_zoneid; 10396 namelen = mi_strlen(name); 10397 if (namelen == 0) 10398 return (EINVAL); 10399 10400 exists = B_FALSE; 10401 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10402 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10403 /* 10404 * Allow creating lo0 using SIOCLIFADDIF. 10405 * can't be any other writer thread. So can pass null below 10406 * for the last 4 args to ipif_lookup_name. 10407 */ 10408 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10409 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10410 /* Prevent any further action */ 10411 if (ipif == NULL) { 10412 return (ENOBUFS); 10413 } else if (!exists) { 10414 /* We created the ipif now and as writer */ 10415 ipif_refrele(ipif); 10416 return (0); 10417 } else { 10418 ill = ipif->ipif_ill; 10419 ill_refhold(ill); 10420 ipif_refrele(ipif); 10421 } 10422 } else { 10423 /* Look for a colon in the name. */ 10424 endp = &name[namelen]; 10425 for (cp = endp; --cp > name; ) { 10426 if (*cp == IPIF_SEPARATOR_CHAR) { 10427 found_sep = B_TRUE; 10428 /* 10429 * Reject any non-decimal aliases for plumbing 10430 * of logical interfaces. Aliases with leading 10431 * zeroes are also rejected as they introduce 10432 * ambiguity in the naming of the interfaces. 10433 * Comparing with "0" takes care of all such 10434 * cases. 10435 */ 10436 if ((strncmp("0", cp+1, 1)) == 0) 10437 return (EINVAL); 10438 10439 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10440 id <= 0 || *endp != '\0') { 10441 return (EINVAL); 10442 } 10443 *cp = '\0'; 10444 break; 10445 } 10446 } 10447 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10448 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10449 if (found_sep) 10450 *cp = IPIF_SEPARATOR_CHAR; 10451 if (ill == NULL) 10452 return (err); 10453 } 10454 10455 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10456 B_TRUE); 10457 10458 /* 10459 * Release the refhold due to the lookup, now that we are excl 10460 * or we are just returning 10461 */ 10462 ill_refrele(ill); 10463 10464 if (ipsq == NULL) 10465 return (EINPROGRESS); 10466 10467 /* 10468 * If the interface is failed, inactive or offlined, look for a working 10469 * interface in the ill group and create the ipif there. If we can't 10470 * find a good interface, create the ipif anyway so that in.mpathd can 10471 * move it to the first repaired interface. 10472 */ 10473 if ((ill->ill_phyint->phyint_flags & 10474 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10475 ill->ill_phyint->phyint_groupname_len != 0) { 10476 phyint_t *phyi; 10477 char *groupname = ill->ill_phyint->phyint_groupname; 10478 10479 /* 10480 * We're looking for a working interface, but it doesn't matter 10481 * if it's up or down; so instead of following the group lists, 10482 * we look at each physical interface and compare the groupname. 10483 * We're only interested in interfaces with IPv4 (resp. IPv6) 10484 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10485 * Otherwise we create the ipif on the failed interface. 10486 */ 10487 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10488 phyi = avl_first(&ipst->ips_phyint_g_list-> 10489 phyint_list_avl_by_index); 10490 for (; phyi != NULL; 10491 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10492 phyint_list_avl_by_index, 10493 phyi, AVL_AFTER)) { 10494 if (phyi->phyint_groupname_len == 0) 10495 continue; 10496 ASSERT(phyi->phyint_groupname != NULL); 10497 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10498 !(phyi->phyint_flags & 10499 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10500 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10501 (phyi->phyint_illv4 != NULL))) { 10502 break; 10503 } 10504 } 10505 rw_exit(&ipst->ips_ill_g_lock); 10506 10507 if (phyi != NULL) { 10508 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10509 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10510 phyi->phyint_illv4); 10511 } 10512 } 10513 10514 /* 10515 * We are now exclusive on the ipsq, so an ill move will be serialized 10516 * before or after us. 10517 */ 10518 ASSERT(IAM_WRITER_ILL(ill)); 10519 ASSERT(ill->ill_move_in_progress == B_FALSE); 10520 10521 if (found_sep && orig_ifindex == 0) { 10522 /* Now see if there is an IPIF with this unit number. */ 10523 for (ipif = ill->ill_ipif; ipif != NULL; 10524 ipif = ipif->ipif_next) { 10525 if (ipif->ipif_id == id) { 10526 err = EEXIST; 10527 goto done; 10528 } 10529 } 10530 } 10531 10532 /* 10533 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10534 * of lo0. We never come here when we plumb lo0:0. It 10535 * happens in ipif_lookup_on_name. 10536 * The specified unit number is ignored when we create the ipif on a 10537 * different interface. However, we save it in ipif_orig_ipifid below so 10538 * that the ipif fails back to the right position. 10539 */ 10540 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10541 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10542 err = ENOBUFS; 10543 goto done; 10544 } 10545 10546 /* Return created name with ioctl */ 10547 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10548 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10549 ip1dbg(("created %s\n", lifr->lifr_name)); 10550 10551 /* Set address */ 10552 sin = (sin_t *)&lifr->lifr_addr; 10553 if (sin->sin_family != AF_UNSPEC) { 10554 err = ip_sioctl_addr(ipif, sin, q, mp, 10555 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10556 } 10557 10558 /* Set ifindex and unit number for failback */ 10559 if (err == 0 && orig_ifindex != 0) { 10560 ipif->ipif_orig_ifindex = orig_ifindex; 10561 if (found_sep) { 10562 ipif->ipif_orig_ipifid = id; 10563 } 10564 } 10565 10566 done: 10567 ipsq_exit(ipsq); 10568 return (err); 10569 } 10570 10571 /* 10572 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10573 * interface) delete it based on the IP address (on this physical interface). 10574 * Otherwise delete it based on the ipif_id. 10575 * Also, special handling to allow a removeif of lo0. 10576 */ 10577 /* ARGSUSED */ 10578 int 10579 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10580 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10581 { 10582 conn_t *connp; 10583 ill_t *ill = ipif->ipif_ill; 10584 boolean_t success; 10585 ip_stack_t *ipst; 10586 10587 ipst = CONNQ_TO_IPST(q); 10588 10589 ASSERT(q->q_next == NULL); 10590 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10591 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10592 ASSERT(IAM_WRITER_IPIF(ipif)); 10593 10594 connp = Q_TO_CONN(q); 10595 /* 10596 * Special case for unplumbing lo0 (the loopback physical interface). 10597 * If unplumbing lo0, the incoming address structure has been 10598 * initialized to all zeros. When unplumbing lo0, all its logical 10599 * interfaces must be removed too. 10600 * 10601 * Note that this interface may be called to remove a specific 10602 * loopback logical interface (eg, lo0:1). But in that case 10603 * ipif->ipif_id != 0 so that the code path for that case is the 10604 * same as any other interface (meaning it skips the code directly 10605 * below). 10606 */ 10607 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10608 if (sin->sin_family == AF_UNSPEC && 10609 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10610 /* 10611 * Mark it condemned. No new ref. will be made to ill. 10612 */ 10613 mutex_enter(&ill->ill_lock); 10614 ill->ill_state_flags |= ILL_CONDEMNED; 10615 for (ipif = ill->ill_ipif; ipif != NULL; 10616 ipif = ipif->ipif_next) { 10617 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10618 } 10619 mutex_exit(&ill->ill_lock); 10620 10621 ipif = ill->ill_ipif; 10622 /* unplumb the loopback interface */ 10623 ill_delete(ill); 10624 mutex_enter(&connp->conn_lock); 10625 mutex_enter(&ill->ill_lock); 10626 ASSERT(ill->ill_group == NULL); 10627 10628 /* Are any references to this ill active */ 10629 if (ill_is_freeable(ill)) { 10630 mutex_exit(&ill->ill_lock); 10631 mutex_exit(&connp->conn_lock); 10632 ill_delete_tail(ill); 10633 mi_free(ill); 10634 return (0); 10635 } 10636 success = ipsq_pending_mp_add(connp, ipif, 10637 CONNP_TO_WQ(connp), mp, ILL_FREE); 10638 mutex_exit(&connp->conn_lock); 10639 mutex_exit(&ill->ill_lock); 10640 if (success) 10641 return (EINPROGRESS); 10642 else 10643 return (EINTR); 10644 } 10645 } 10646 10647 /* 10648 * We are exclusive on the ipsq, so an ill move will be serialized 10649 * before or after us. 10650 */ 10651 ASSERT(ill->ill_move_in_progress == B_FALSE); 10652 10653 if (ipif->ipif_id == 0) { 10654 10655 ipsq_t *ipsq; 10656 10657 /* Find based on address */ 10658 if (ipif->ipif_isv6) { 10659 sin6_t *sin6; 10660 10661 if (sin->sin_family != AF_INET6) 10662 return (EAFNOSUPPORT); 10663 10664 sin6 = (sin6_t *)sin; 10665 /* We are a writer, so we should be able to lookup */ 10666 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10667 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10668 if (ipif == NULL) { 10669 /* 10670 * Maybe the address in on another interface in 10671 * the same IPMP group? We check this below. 10672 */ 10673 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10674 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10675 ipst); 10676 } 10677 } else { 10678 ipaddr_t addr; 10679 10680 if (sin->sin_family != AF_INET) 10681 return (EAFNOSUPPORT); 10682 10683 addr = sin->sin_addr.s_addr; 10684 /* We are a writer, so we should be able to lookup */ 10685 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10686 NULL, NULL, NULL, ipst); 10687 if (ipif == NULL) { 10688 /* 10689 * Maybe the address in on another interface in 10690 * the same IPMP group? We check this below. 10691 */ 10692 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10693 NULL, NULL, NULL, NULL, ipst); 10694 } 10695 } 10696 if (ipif == NULL) { 10697 return (EADDRNOTAVAIL); 10698 } 10699 10700 /* 10701 * It is possible for a user to send an SIOCLIFREMOVEIF with 10702 * lifr_name of the physical interface but with an ip address 10703 * lifr_addr of a logical interface plumbed over it. 10704 * So update ipsq_current_ipif once ipif points to the 10705 * correct interface after doing ipif_lookup_addr(). 10706 */ 10707 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10708 ASSERT(ipsq != NULL); 10709 10710 mutex_enter(&ipsq->ipsq_lock); 10711 ipsq->ipsq_current_ipif = ipif; 10712 mutex_exit(&ipsq->ipsq_lock); 10713 10714 /* 10715 * When the address to be removed is hosted on a different 10716 * interface, we check if the interface is in the same IPMP 10717 * group as the specified one; if so we proceed with the 10718 * removal. 10719 * ill->ill_group is NULL when the ill is down, so we have to 10720 * compare the group names instead. 10721 */ 10722 if (ipif->ipif_ill != ill && 10723 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10724 ill->ill_phyint->phyint_groupname_len == 0 || 10725 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10726 ill->ill_phyint->phyint_groupname) != 0)) { 10727 ipif_refrele(ipif); 10728 return (EADDRNOTAVAIL); 10729 } 10730 10731 /* This is a writer */ 10732 ipif_refrele(ipif); 10733 } 10734 10735 /* 10736 * Can not delete instance zero since it is tied to the ill. 10737 */ 10738 if (ipif->ipif_id == 0) 10739 return (EBUSY); 10740 10741 mutex_enter(&ill->ill_lock); 10742 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10743 mutex_exit(&ill->ill_lock); 10744 10745 ipif_free(ipif); 10746 10747 mutex_enter(&connp->conn_lock); 10748 mutex_enter(&ill->ill_lock); 10749 10750 10751 /* Are any references to this ipif active */ 10752 if (ipif_is_freeable(ipif)) { 10753 mutex_exit(&ill->ill_lock); 10754 mutex_exit(&connp->conn_lock); 10755 ipif_non_duplicate(ipif); 10756 ipif_down_tail(ipif); 10757 ipif_free_tail(ipif); /* frees ipif */ 10758 return (0); 10759 } 10760 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10761 IPIF_FREE); 10762 mutex_exit(&ill->ill_lock); 10763 mutex_exit(&connp->conn_lock); 10764 if (success) 10765 return (EINPROGRESS); 10766 else 10767 return (EINTR); 10768 } 10769 10770 /* 10771 * Restart the removeif ioctl. The refcnt has gone down to 0. 10772 * The ipif is already condemned. So can't find it thru lookups. 10773 */ 10774 /* ARGSUSED */ 10775 int 10776 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10777 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10778 { 10779 ill_t *ill = ipif->ipif_ill; 10780 10781 ASSERT(IAM_WRITER_IPIF(ipif)); 10782 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10783 10784 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10785 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10786 10787 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10788 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10789 ill_delete_tail(ill); 10790 mi_free(ill); 10791 return (0); 10792 } 10793 10794 ipif_non_duplicate(ipif); 10795 ipif_down_tail(ipif); 10796 ipif_free_tail(ipif); 10797 10798 ILL_UNMARK_CHANGING(ill); 10799 return (0); 10800 } 10801 10802 /* 10803 * Set the local interface address. 10804 * Allow an address of all zero when the interface is down. 10805 */ 10806 /* ARGSUSED */ 10807 int 10808 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10809 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10810 { 10811 int err = 0; 10812 in6_addr_t v6addr; 10813 boolean_t need_up = B_FALSE; 10814 10815 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10816 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10817 10818 ASSERT(IAM_WRITER_IPIF(ipif)); 10819 10820 if (ipif->ipif_isv6) { 10821 sin6_t *sin6; 10822 ill_t *ill; 10823 phyint_t *phyi; 10824 10825 if (sin->sin_family != AF_INET6) 10826 return (EAFNOSUPPORT); 10827 10828 sin6 = (sin6_t *)sin; 10829 v6addr = sin6->sin6_addr; 10830 ill = ipif->ipif_ill; 10831 phyi = ill->ill_phyint; 10832 10833 /* 10834 * Enforce that true multicast interfaces have a link-local 10835 * address for logical unit 0. 10836 */ 10837 if (ipif->ipif_id == 0 && 10838 (ill->ill_flags & ILLF_MULTICAST) && 10839 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10840 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10841 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10842 return (EADDRNOTAVAIL); 10843 } 10844 10845 /* 10846 * up interfaces shouldn't have the unspecified address 10847 * unless they also have the IPIF_NOLOCAL flags set and 10848 * have a subnet assigned. 10849 */ 10850 if ((ipif->ipif_flags & IPIF_UP) && 10851 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10852 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10853 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10854 return (EADDRNOTAVAIL); 10855 } 10856 10857 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10858 return (EADDRNOTAVAIL); 10859 } else { 10860 ipaddr_t addr; 10861 10862 if (sin->sin_family != AF_INET) 10863 return (EAFNOSUPPORT); 10864 10865 addr = sin->sin_addr.s_addr; 10866 10867 /* Allow 0 as the local address. */ 10868 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10869 return (EADDRNOTAVAIL); 10870 10871 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10872 } 10873 10874 /* 10875 * Even if there is no change we redo things just to rerun 10876 * ipif_set_default. 10877 */ 10878 if (ipif->ipif_flags & IPIF_UP) { 10879 /* 10880 * Setting a new local address, make sure 10881 * we have net and subnet bcast ire's for 10882 * the old address if we need them. 10883 */ 10884 if (!ipif->ipif_isv6) 10885 ipif_check_bcast_ires(ipif); 10886 /* 10887 * If the interface is already marked up, 10888 * we call ipif_down which will take care 10889 * of ditching any IREs that have been set 10890 * up based on the old interface address. 10891 */ 10892 err = ipif_logical_down(ipif, q, mp); 10893 if (err == EINPROGRESS) 10894 return (err); 10895 ipif_down_tail(ipif); 10896 need_up = 1; 10897 } 10898 10899 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10900 return (err); 10901 } 10902 10903 int 10904 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10905 boolean_t need_up) 10906 { 10907 in6_addr_t v6addr; 10908 in6_addr_t ov6addr; 10909 ipaddr_t addr; 10910 sin6_t *sin6; 10911 int sinlen; 10912 int err = 0; 10913 ill_t *ill = ipif->ipif_ill; 10914 boolean_t need_dl_down; 10915 boolean_t need_arp_down; 10916 struct iocblk *iocp; 10917 10918 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 10919 10920 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10921 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10922 ASSERT(IAM_WRITER_IPIF(ipif)); 10923 10924 /* Must cancel any pending timer before taking the ill_lock */ 10925 if (ipif->ipif_recovery_id != 0) 10926 (void) untimeout(ipif->ipif_recovery_id); 10927 ipif->ipif_recovery_id = 0; 10928 10929 if (ipif->ipif_isv6) { 10930 sin6 = (sin6_t *)sin; 10931 v6addr = sin6->sin6_addr; 10932 sinlen = sizeof (struct sockaddr_in6); 10933 } else { 10934 addr = sin->sin_addr.s_addr; 10935 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10936 sinlen = sizeof (struct sockaddr_in); 10937 } 10938 mutex_enter(&ill->ill_lock); 10939 ov6addr = ipif->ipif_v6lcl_addr; 10940 ipif->ipif_v6lcl_addr = v6addr; 10941 sctp_update_ipif_addr(ipif, ov6addr); 10942 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10943 ipif->ipif_v6src_addr = ipv6_all_zeros; 10944 } else { 10945 ipif->ipif_v6src_addr = v6addr; 10946 } 10947 ipif->ipif_addr_ready = 0; 10948 10949 /* 10950 * If the interface was previously marked as a duplicate, then since 10951 * we've now got a "new" address, it should no longer be considered a 10952 * duplicate -- even if the "new" address is the same as the old one. 10953 * Note that if all ipifs are down, we may have a pending ARP down 10954 * event to handle. This is because we want to recover from duplicates 10955 * and thus delay tearing down ARP until the duplicates have been 10956 * removed or disabled. 10957 */ 10958 need_dl_down = need_arp_down = B_FALSE; 10959 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10960 need_arp_down = !need_up; 10961 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10962 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10963 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10964 need_dl_down = B_TRUE; 10965 } 10966 } 10967 10968 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 10969 !ill->ill_is_6to4tun) { 10970 queue_t *wqp = ill->ill_wq; 10971 10972 /* 10973 * The local address of this interface is a 6to4 address, 10974 * check if this interface is in fact a 6to4 tunnel or just 10975 * an interface configured with a 6to4 address. We are only 10976 * interested in the former. 10977 */ 10978 if (wqp != NULL) { 10979 while ((wqp->q_next != NULL) && 10980 (wqp->q_next->q_qinfo != NULL) && 10981 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10982 10983 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10984 == TUN6TO4_MODID) { 10985 /* set for use in IP */ 10986 ill->ill_is_6to4tun = 1; 10987 break; 10988 } 10989 wqp = wqp->q_next; 10990 } 10991 } 10992 } 10993 10994 ipif_set_default(ipif); 10995 10996 /* 10997 * When publishing an interface address change event, we only notify 10998 * the event listeners of the new address. It is assumed that if they 10999 * actively care about the addresses assigned that they will have 11000 * already discovered the previous address assigned (if there was one.) 11001 * 11002 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11003 */ 11004 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11005 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11006 NE_ADDRESS_CHANGE, sin, sinlen); 11007 } 11008 11009 mutex_exit(&ill->ill_lock); 11010 11011 if (need_up) { 11012 /* 11013 * Now bring the interface back up. If this 11014 * is the only IPIF for the ILL, ipif_up 11015 * will have to re-bind to the device, so 11016 * we may get back EINPROGRESS, in which 11017 * case, this IOCTL will get completed in 11018 * ip_rput_dlpi when we see the DL_BIND_ACK. 11019 */ 11020 err = ipif_up(ipif, q, mp); 11021 } 11022 11023 if (need_dl_down) 11024 ill_dl_down(ill); 11025 if (need_arp_down) 11026 ipif_arp_down(ipif); 11027 11028 return (err); 11029 } 11030 11031 11032 /* 11033 * Restart entry point to restart the address set operation after the 11034 * refcounts have dropped to zero. 11035 */ 11036 /* ARGSUSED */ 11037 int 11038 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11039 ip_ioctl_cmd_t *ipip, void *ifreq) 11040 { 11041 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11042 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11043 ASSERT(IAM_WRITER_IPIF(ipif)); 11044 ipif_down_tail(ipif); 11045 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11046 } 11047 11048 /* ARGSUSED */ 11049 int 11050 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11051 ip_ioctl_cmd_t *ipip, void *if_req) 11052 { 11053 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11054 struct lifreq *lifr = (struct lifreq *)if_req; 11055 11056 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11057 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11058 /* 11059 * The net mask and address can't change since we have a 11060 * reference to the ipif. So no lock is necessary. 11061 */ 11062 if (ipif->ipif_isv6) { 11063 *sin6 = sin6_null; 11064 sin6->sin6_family = AF_INET6; 11065 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11066 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11067 lifr->lifr_addrlen = 11068 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11069 } else { 11070 *sin = sin_null; 11071 sin->sin_family = AF_INET; 11072 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11073 if (ipip->ipi_cmd_type == LIF_CMD) { 11074 lifr->lifr_addrlen = 11075 ip_mask_to_plen(ipif->ipif_net_mask); 11076 } 11077 } 11078 return (0); 11079 } 11080 11081 /* 11082 * Set the destination address for a pt-pt interface. 11083 */ 11084 /* ARGSUSED */ 11085 int 11086 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11087 ip_ioctl_cmd_t *ipip, void *if_req) 11088 { 11089 int err = 0; 11090 in6_addr_t v6addr; 11091 boolean_t need_up = B_FALSE; 11092 11093 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11094 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11095 ASSERT(IAM_WRITER_IPIF(ipif)); 11096 11097 if (ipif->ipif_isv6) { 11098 sin6_t *sin6; 11099 11100 if (sin->sin_family != AF_INET6) 11101 return (EAFNOSUPPORT); 11102 11103 sin6 = (sin6_t *)sin; 11104 v6addr = sin6->sin6_addr; 11105 11106 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11107 return (EADDRNOTAVAIL); 11108 } else { 11109 ipaddr_t addr; 11110 11111 if (sin->sin_family != AF_INET) 11112 return (EAFNOSUPPORT); 11113 11114 addr = sin->sin_addr.s_addr; 11115 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11116 return (EADDRNOTAVAIL); 11117 11118 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11119 } 11120 11121 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11122 return (0); /* No change */ 11123 11124 if (ipif->ipif_flags & IPIF_UP) { 11125 /* 11126 * If the interface is already marked up, 11127 * we call ipif_down which will take care 11128 * of ditching any IREs that have been set 11129 * up based on the old pp dst address. 11130 */ 11131 err = ipif_logical_down(ipif, q, mp); 11132 if (err == EINPROGRESS) 11133 return (err); 11134 ipif_down_tail(ipif); 11135 need_up = B_TRUE; 11136 } 11137 /* 11138 * could return EINPROGRESS. If so ioctl will complete in 11139 * ip_rput_dlpi_writer 11140 */ 11141 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11142 return (err); 11143 } 11144 11145 static int 11146 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11147 boolean_t need_up) 11148 { 11149 in6_addr_t v6addr; 11150 ill_t *ill = ipif->ipif_ill; 11151 int err = 0; 11152 boolean_t need_dl_down; 11153 boolean_t need_arp_down; 11154 11155 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11156 ipif->ipif_id, (void *)ipif)); 11157 11158 /* Must cancel any pending timer before taking the ill_lock */ 11159 if (ipif->ipif_recovery_id != 0) 11160 (void) untimeout(ipif->ipif_recovery_id); 11161 ipif->ipif_recovery_id = 0; 11162 11163 if (ipif->ipif_isv6) { 11164 sin6_t *sin6; 11165 11166 sin6 = (sin6_t *)sin; 11167 v6addr = sin6->sin6_addr; 11168 } else { 11169 ipaddr_t addr; 11170 11171 addr = sin->sin_addr.s_addr; 11172 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11173 } 11174 mutex_enter(&ill->ill_lock); 11175 /* Set point to point destination address. */ 11176 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11177 /* 11178 * Allow this as a means of creating logical 11179 * pt-pt interfaces on top of e.g. an Ethernet. 11180 * XXX Undocumented HACK for testing. 11181 * pt-pt interfaces are created with NUD disabled. 11182 */ 11183 ipif->ipif_flags |= IPIF_POINTOPOINT; 11184 ipif->ipif_flags &= ~IPIF_BROADCAST; 11185 if (ipif->ipif_isv6) 11186 ill->ill_flags |= ILLF_NONUD; 11187 } 11188 11189 /* 11190 * If the interface was previously marked as a duplicate, then since 11191 * we've now got a "new" address, it should no longer be considered a 11192 * duplicate -- even if the "new" address is the same as the old one. 11193 * Note that if all ipifs are down, we may have a pending ARP down 11194 * event to handle. 11195 */ 11196 need_dl_down = need_arp_down = B_FALSE; 11197 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11198 need_arp_down = !need_up; 11199 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11200 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11201 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11202 need_dl_down = B_TRUE; 11203 } 11204 } 11205 11206 /* Set the new address. */ 11207 ipif->ipif_v6pp_dst_addr = v6addr; 11208 /* Make sure subnet tracks pp_dst */ 11209 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11210 mutex_exit(&ill->ill_lock); 11211 11212 if (need_up) { 11213 /* 11214 * Now bring the interface back up. If this 11215 * is the only IPIF for the ILL, ipif_up 11216 * will have to re-bind to the device, so 11217 * we may get back EINPROGRESS, in which 11218 * case, this IOCTL will get completed in 11219 * ip_rput_dlpi when we see the DL_BIND_ACK. 11220 */ 11221 err = ipif_up(ipif, q, mp); 11222 } 11223 11224 if (need_dl_down) 11225 ill_dl_down(ill); 11226 11227 if (need_arp_down) 11228 ipif_arp_down(ipif); 11229 return (err); 11230 } 11231 11232 /* 11233 * Restart entry point to restart the dstaddress set operation after the 11234 * refcounts have dropped to zero. 11235 */ 11236 /* ARGSUSED */ 11237 int 11238 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11239 ip_ioctl_cmd_t *ipip, void *ifreq) 11240 { 11241 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11242 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11243 ipif_down_tail(ipif); 11244 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11245 } 11246 11247 /* ARGSUSED */ 11248 int 11249 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11250 ip_ioctl_cmd_t *ipip, void *if_req) 11251 { 11252 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11253 11254 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11255 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11256 /* 11257 * Get point to point destination address. The addresses can't 11258 * change since we hold a reference to the ipif. 11259 */ 11260 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11261 return (EADDRNOTAVAIL); 11262 11263 if (ipif->ipif_isv6) { 11264 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11265 *sin6 = sin6_null; 11266 sin6->sin6_family = AF_INET6; 11267 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11268 } else { 11269 *sin = sin_null; 11270 sin->sin_family = AF_INET; 11271 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11272 } 11273 return (0); 11274 } 11275 11276 /* 11277 * part of ipmp, make this func return the active/inactive state and 11278 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11279 */ 11280 /* 11281 * This function either sets or clears the IFF_INACTIVE flag. 11282 * 11283 * As long as there are some addresses or multicast memberships on the 11284 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11285 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11286 * will be used for outbound packets. 11287 * 11288 * Caller needs to verify the validity of setting IFF_INACTIVE. 11289 */ 11290 static void 11291 phyint_inactive(phyint_t *phyi) 11292 { 11293 ill_t *ill_v4; 11294 ill_t *ill_v6; 11295 ipif_t *ipif; 11296 ilm_t *ilm; 11297 11298 ill_v4 = phyi->phyint_illv4; 11299 ill_v6 = phyi->phyint_illv6; 11300 11301 /* 11302 * No need for a lock while traversing the list since iam 11303 * a writer 11304 */ 11305 if (ill_v4 != NULL) { 11306 ASSERT(IAM_WRITER_ILL(ill_v4)); 11307 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11308 ipif = ipif->ipif_next) { 11309 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11310 mutex_enter(&phyi->phyint_lock); 11311 phyi->phyint_flags &= ~PHYI_INACTIVE; 11312 mutex_exit(&phyi->phyint_lock); 11313 return; 11314 } 11315 } 11316 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11317 ilm = ilm->ilm_next) { 11318 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11319 mutex_enter(&phyi->phyint_lock); 11320 phyi->phyint_flags &= ~PHYI_INACTIVE; 11321 mutex_exit(&phyi->phyint_lock); 11322 return; 11323 } 11324 } 11325 } 11326 if (ill_v6 != NULL) { 11327 ill_v6 = phyi->phyint_illv6; 11328 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11329 ipif = ipif->ipif_next) { 11330 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11331 mutex_enter(&phyi->phyint_lock); 11332 phyi->phyint_flags &= ~PHYI_INACTIVE; 11333 mutex_exit(&phyi->phyint_lock); 11334 return; 11335 } 11336 } 11337 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11338 ilm = ilm->ilm_next) { 11339 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11340 mutex_enter(&phyi->phyint_lock); 11341 phyi->phyint_flags &= ~PHYI_INACTIVE; 11342 mutex_exit(&phyi->phyint_lock); 11343 return; 11344 } 11345 } 11346 } 11347 mutex_enter(&phyi->phyint_lock); 11348 phyi->phyint_flags |= PHYI_INACTIVE; 11349 mutex_exit(&phyi->phyint_lock); 11350 } 11351 11352 /* 11353 * This function is called only when the phyint flags change. Currently 11354 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11355 * that we can select a good ill. 11356 */ 11357 static void 11358 ip_redo_nomination(phyint_t *phyi) 11359 { 11360 ill_t *ill_v4; 11361 11362 ill_v4 = phyi->phyint_illv4; 11363 11364 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11365 ASSERT(IAM_WRITER_ILL(ill_v4)); 11366 if (ill_v4->ill_group->illgrp_ill_count > 1) 11367 ill_nominate_bcast_rcv(ill_v4->ill_group); 11368 } 11369 } 11370 11371 /* 11372 * Heuristic to check if ill is INACTIVE. 11373 * Checks if ill has an ipif with an usable ip address. 11374 * 11375 * Return values: 11376 * B_TRUE - ill is INACTIVE; has no usable ipif 11377 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11378 */ 11379 static boolean_t 11380 ill_is_inactive(ill_t *ill) 11381 { 11382 ipif_t *ipif; 11383 11384 /* Check whether it is in an IPMP group */ 11385 if (ill->ill_phyint->phyint_groupname == NULL) 11386 return (B_FALSE); 11387 11388 if (ill->ill_ipif_up_count == 0) 11389 return (B_TRUE); 11390 11391 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11392 uint64_t flags = ipif->ipif_flags; 11393 11394 /* 11395 * This ipif is usable if it is IPIF_UP and not a 11396 * dedicated test address. A dedicated test address 11397 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11398 * (note in particular that V6 test addresses are 11399 * link-local data addresses and thus are marked 11400 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11401 */ 11402 if ((flags & IPIF_UP) && 11403 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11404 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11405 return (B_FALSE); 11406 } 11407 return (B_TRUE); 11408 } 11409 11410 /* 11411 * Set interface flags. 11412 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11413 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11414 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11415 * 11416 * NOTE : We really don't enforce that ipif_id zero should be used 11417 * for setting any flags other than IFF_LOGINT_FLAGS. This 11418 * is because applications generally does SICGLIFFLAGS and 11419 * ORs in the new flags (that affects the logical) and does a 11420 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11421 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11422 * flags that will be turned on is correct with respect to 11423 * ipif_id 0. For backward compatibility reasons, it is not done. 11424 */ 11425 /* ARGSUSED */ 11426 int 11427 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11428 ip_ioctl_cmd_t *ipip, void *if_req) 11429 { 11430 uint64_t turn_on; 11431 uint64_t turn_off; 11432 int err; 11433 phyint_t *phyi; 11434 ill_t *ill; 11435 uint64_t intf_flags; 11436 boolean_t phyint_flags_modified = B_FALSE; 11437 uint64_t flags; 11438 struct ifreq *ifr; 11439 struct lifreq *lifr; 11440 boolean_t set_linklocal = B_FALSE; 11441 boolean_t zero_source = B_FALSE; 11442 ip_stack_t *ipst; 11443 11444 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11445 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11446 11447 ASSERT(IAM_WRITER_IPIF(ipif)); 11448 11449 ill = ipif->ipif_ill; 11450 phyi = ill->ill_phyint; 11451 ipst = ill->ill_ipst; 11452 11453 if (ipip->ipi_cmd_type == IF_CMD) { 11454 ifr = (struct ifreq *)if_req; 11455 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11456 } else { 11457 lifr = (struct lifreq *)if_req; 11458 flags = lifr->lifr_flags; 11459 } 11460 11461 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11462 11463 /* 11464 * Have the flags been set correctly until now? 11465 */ 11466 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11467 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11468 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11469 /* 11470 * Compare the new flags to the old, and partition 11471 * into those coming on and those going off. 11472 * For the 16 bit command keep the bits above bit 16 unchanged. 11473 */ 11474 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11475 flags |= intf_flags & ~0xFFFF; 11476 11477 /* 11478 * First check which bits will change and then which will 11479 * go on and off 11480 */ 11481 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11482 if (!turn_on) 11483 return (0); /* No change */ 11484 11485 turn_off = intf_flags & turn_on; 11486 turn_on ^= turn_off; 11487 err = 0; 11488 11489 /* 11490 * Don't allow any bits belonging to the logical interface 11491 * to be set or cleared on the replacement ipif that was 11492 * created temporarily during a MOVE. 11493 */ 11494 if (ipif->ipif_replace_zero && 11495 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11496 return (EINVAL); 11497 } 11498 11499 /* 11500 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11501 * IPv6 interfaces. 11502 */ 11503 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11504 return (EINVAL); 11505 11506 /* 11507 * cannot turn off IFF_NOXMIT on VNI interfaces. 11508 */ 11509 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11510 return (EINVAL); 11511 11512 /* 11513 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11514 * interfaces. It makes no sense in that context. 11515 */ 11516 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11517 return (EINVAL); 11518 11519 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11520 zero_source = B_TRUE; 11521 11522 /* 11523 * For IPv6 ipif_id 0, don't allow the interface to be up without 11524 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11525 * If the link local address isn't set, and can be set, it will get 11526 * set later on in this function. 11527 */ 11528 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11529 (flags & IFF_UP) && !zero_source && 11530 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11531 if (ipif_cant_setlinklocal(ipif)) 11532 return (EINVAL); 11533 set_linklocal = B_TRUE; 11534 } 11535 11536 /* 11537 * ILL cannot be part of a usesrc group and and IPMP group at the 11538 * same time. No need to grab ill_g_usesrc_lock here, see 11539 * synchronization notes in ip.c 11540 */ 11541 if (turn_on & PHYI_STANDBY && 11542 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11543 return (EINVAL); 11544 } 11545 11546 /* 11547 * If we modify physical interface flags, we'll potentially need to 11548 * send up two routing socket messages for the changes (one for the 11549 * IPv4 ill, and another for the IPv6 ill). Note that here. 11550 */ 11551 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11552 phyint_flags_modified = B_TRUE; 11553 11554 /* 11555 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11556 * we need to flush the IRE_CACHES belonging to this ill. 11557 * We handle this case here without doing the DOWN/UP dance 11558 * like it is done for other flags. If some other flags are 11559 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11560 * below will handle it by bringing it down and then 11561 * bringing it UP. 11562 */ 11563 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11564 ill_t *ill_v4, *ill_v6; 11565 11566 ill_v4 = phyi->phyint_illv4; 11567 ill_v6 = phyi->phyint_illv6; 11568 11569 /* 11570 * First set the INACTIVE flag if needed. Then delete the ires. 11571 * ire_add will atomically prevent creating new IRE_CACHEs 11572 * unless hidden flag is set. 11573 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11574 */ 11575 if ((turn_on & PHYI_FAILED) && 11576 ((intf_flags & PHYI_STANDBY) || 11577 !ipst->ips_ipmp_enable_failback)) { 11578 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11579 phyi->phyint_flags &= ~PHYI_INACTIVE; 11580 } 11581 if ((turn_off & PHYI_FAILED) && 11582 ((intf_flags & PHYI_STANDBY) || 11583 (!ipst->ips_ipmp_enable_failback && 11584 ill_is_inactive(ill)))) { 11585 phyint_inactive(phyi); 11586 } 11587 11588 if (turn_on & PHYI_STANDBY) { 11589 /* 11590 * We implicitly set INACTIVE only when STANDBY is set. 11591 * INACTIVE is also set on non-STANDBY phyint when user 11592 * disables FAILBACK using configuration file. 11593 * Do not allow STANDBY to be set on such INACTIVE 11594 * phyint 11595 */ 11596 if (phyi->phyint_flags & PHYI_INACTIVE) 11597 return (EINVAL); 11598 if (!(phyi->phyint_flags & PHYI_FAILED)) 11599 phyint_inactive(phyi); 11600 } 11601 if (turn_off & PHYI_STANDBY) { 11602 if (ipst->ips_ipmp_enable_failback) { 11603 /* 11604 * Reset PHYI_INACTIVE. 11605 */ 11606 phyi->phyint_flags &= ~PHYI_INACTIVE; 11607 } else if (ill_is_inactive(ill) && 11608 !(phyi->phyint_flags & PHYI_FAILED)) { 11609 /* 11610 * Need to set INACTIVE, when user sets 11611 * STANDBY on a non-STANDBY phyint and 11612 * later resets STANDBY 11613 */ 11614 phyint_inactive(phyi); 11615 } 11616 } 11617 /* 11618 * We should always send up a message so that the 11619 * daemons come to know of it. Note that the zeroth 11620 * interface can be down and the check below for IPIF_UP 11621 * will not make sense as we are actually setting 11622 * a phyint flag here. We assume that the ipif used 11623 * is always the zeroth ipif. (ip_rts_ifmsg does not 11624 * send up any message for non-zero ipifs). 11625 */ 11626 phyint_flags_modified = B_TRUE; 11627 11628 if (ill_v4 != NULL) { 11629 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11630 IRE_CACHE, ill_stq_cache_delete, 11631 (char *)ill_v4, ill_v4); 11632 illgrp_reset_schednext(ill_v4); 11633 } 11634 if (ill_v6 != NULL) { 11635 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11636 IRE_CACHE, ill_stq_cache_delete, 11637 (char *)ill_v6, ill_v6); 11638 illgrp_reset_schednext(ill_v6); 11639 } 11640 } 11641 11642 /* 11643 * If ILLF_ROUTER changes, we need to change the ip forwarding 11644 * status of the interface and, if the interface is part of an IPMP 11645 * group, all other interfaces that are part of the same IPMP 11646 * group. 11647 */ 11648 if ((turn_on | turn_off) & ILLF_ROUTER) 11649 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11650 11651 /* 11652 * If the interface is not UP and we are not going to 11653 * bring it UP, record the flags and return. When the 11654 * interface comes UP later, the right actions will be 11655 * taken. 11656 */ 11657 if (!(ipif->ipif_flags & IPIF_UP) && 11658 !(turn_on & IPIF_UP)) { 11659 /* Record new flags in their respective places. */ 11660 mutex_enter(&ill->ill_lock); 11661 mutex_enter(&ill->ill_phyint->phyint_lock); 11662 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11663 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11664 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11665 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11666 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11667 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11668 mutex_exit(&ill->ill_lock); 11669 mutex_exit(&ill->ill_phyint->phyint_lock); 11670 11671 /* 11672 * We do the broadcast and nomination here rather 11673 * than waiting for a FAILOVER/FAILBACK to happen. In 11674 * the case of FAILBACK from INACTIVE standby to the 11675 * interface that has been repaired, PHYI_FAILED has not 11676 * been cleared yet. If there are only two interfaces in 11677 * that group, all we have is a FAILED and INACTIVE 11678 * interface. If we do the nomination soon after a failback, 11679 * the broadcast nomination code would select the 11680 * INACTIVE interface for receiving broadcasts as FAILED is 11681 * not yet cleared. As we don't want STANDBY/INACTIVE to 11682 * receive broadcast packets, we need to redo nomination 11683 * when the FAILED is cleared here. Thus, in general we 11684 * always do the nomination here for FAILED, STANDBY 11685 * and OFFLINE. 11686 */ 11687 if (((turn_on | turn_off) & 11688 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11689 ip_redo_nomination(phyi); 11690 } 11691 if (phyint_flags_modified) { 11692 if (phyi->phyint_illv4 != NULL) { 11693 ip_rts_ifmsg(phyi->phyint_illv4-> 11694 ill_ipif); 11695 } 11696 if (phyi->phyint_illv6 != NULL) { 11697 ip_rts_ifmsg(phyi->phyint_illv6-> 11698 ill_ipif); 11699 } 11700 } 11701 return (0); 11702 } else if (set_linklocal || zero_source) { 11703 mutex_enter(&ill->ill_lock); 11704 if (set_linklocal) 11705 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11706 if (zero_source) 11707 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11708 mutex_exit(&ill->ill_lock); 11709 } 11710 11711 /* 11712 * Disallow IPv6 interfaces coming up that have the unspecified address, 11713 * or point-to-point interfaces with an unspecified destination. We do 11714 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11715 * have a subnet assigned, which is how in.ndpd currently manages its 11716 * onlink prefix list when no addresses are configured with those 11717 * prefixes. 11718 */ 11719 if (ipif->ipif_isv6 && 11720 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11721 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11722 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11723 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11724 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11725 return (EINVAL); 11726 } 11727 11728 /* 11729 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11730 * from being brought up. 11731 */ 11732 if (!ipif->ipif_isv6 && 11733 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11734 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11735 return (EINVAL); 11736 } 11737 11738 /* 11739 * The only flag changes that we currently take specific action on 11740 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11741 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11742 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11743 * the flags and bringing it back up again. 11744 */ 11745 if ((turn_on|turn_off) & 11746 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11747 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11748 /* 11749 * Taking this ipif down, make sure we have 11750 * valid net and subnet bcast ire's for other 11751 * logical interfaces, if we need them. 11752 */ 11753 if (!ipif->ipif_isv6) 11754 ipif_check_bcast_ires(ipif); 11755 11756 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11757 !(turn_off & IPIF_UP)) { 11758 if (ipif->ipif_flags & IPIF_UP) 11759 ill->ill_logical_down = 1; 11760 turn_on &= ~IPIF_UP; 11761 } 11762 err = ipif_down(ipif, q, mp); 11763 ip1dbg(("ipif_down returns %d err ", err)); 11764 if (err == EINPROGRESS) 11765 return (err); 11766 ipif_down_tail(ipif); 11767 } 11768 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11769 } 11770 11771 static int 11772 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11773 { 11774 ill_t *ill; 11775 phyint_t *phyi; 11776 uint64_t turn_on; 11777 uint64_t turn_off; 11778 uint64_t intf_flags; 11779 boolean_t phyint_flags_modified = B_FALSE; 11780 int err = 0; 11781 boolean_t set_linklocal = B_FALSE; 11782 boolean_t zero_source = B_FALSE; 11783 11784 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11785 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11786 11787 ASSERT(IAM_WRITER_IPIF(ipif)); 11788 11789 ill = ipif->ipif_ill; 11790 phyi = ill->ill_phyint; 11791 11792 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11793 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11794 11795 turn_off = intf_flags & turn_on; 11796 turn_on ^= turn_off; 11797 11798 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11799 phyint_flags_modified = B_TRUE; 11800 11801 /* 11802 * Now we change the flags. Track current value of 11803 * other flags in their respective places. 11804 */ 11805 mutex_enter(&ill->ill_lock); 11806 mutex_enter(&phyi->phyint_lock); 11807 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11808 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11809 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11810 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11811 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11812 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11813 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11814 set_linklocal = B_TRUE; 11815 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11816 } 11817 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11818 zero_source = B_TRUE; 11819 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11820 } 11821 mutex_exit(&ill->ill_lock); 11822 mutex_exit(&phyi->phyint_lock); 11823 11824 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11825 ip_redo_nomination(phyi); 11826 11827 if (set_linklocal) 11828 (void) ipif_setlinklocal(ipif); 11829 11830 if (zero_source) 11831 ipif->ipif_v6src_addr = ipv6_all_zeros; 11832 else 11833 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11834 11835 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11836 /* 11837 * XXX ipif_up really does not know whether a phyint flags 11838 * was modified or not. So, it sends up information on 11839 * only one routing sockets message. As we don't bring up 11840 * the interface and also set STANDBY/FAILED simultaneously 11841 * it should be okay. 11842 */ 11843 err = ipif_up(ipif, q, mp); 11844 } else { 11845 /* 11846 * Make sure routing socket sees all changes to the flags. 11847 * ipif_up_done* handles this when we use ipif_up. 11848 */ 11849 if (phyint_flags_modified) { 11850 if (phyi->phyint_illv4 != NULL) { 11851 ip_rts_ifmsg(phyi->phyint_illv4-> 11852 ill_ipif); 11853 } 11854 if (phyi->phyint_illv6 != NULL) { 11855 ip_rts_ifmsg(phyi->phyint_illv6-> 11856 ill_ipif); 11857 } 11858 } else { 11859 ip_rts_ifmsg(ipif); 11860 } 11861 /* 11862 * Update the flags in SCTP's IPIF list, ipif_up() will do 11863 * this in need_up case. 11864 */ 11865 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11866 } 11867 return (err); 11868 } 11869 11870 /* 11871 * Restart the flags operation now that the refcounts have dropped to zero. 11872 */ 11873 /* ARGSUSED */ 11874 int 11875 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11876 ip_ioctl_cmd_t *ipip, void *if_req) 11877 { 11878 uint64_t flags; 11879 struct ifreq *ifr = if_req; 11880 struct lifreq *lifr = if_req; 11881 11882 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11883 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11884 11885 ipif_down_tail(ipif); 11886 if (ipip->ipi_cmd_type == IF_CMD) { 11887 /* cast to uint16_t prevents unwanted sign extension */ 11888 flags = (uint16_t)ifr->ifr_flags; 11889 } else { 11890 flags = lifr->lifr_flags; 11891 } 11892 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11893 } 11894 11895 /* 11896 * Can operate on either a module or a driver queue. 11897 */ 11898 /* ARGSUSED */ 11899 int 11900 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11901 ip_ioctl_cmd_t *ipip, void *if_req) 11902 { 11903 /* 11904 * Has the flags been set correctly till now ? 11905 */ 11906 ill_t *ill = ipif->ipif_ill; 11907 phyint_t *phyi = ill->ill_phyint; 11908 11909 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11910 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11911 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11912 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11913 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11914 11915 /* 11916 * Need a lock since some flags can be set even when there are 11917 * references to the ipif. 11918 */ 11919 mutex_enter(&ill->ill_lock); 11920 if (ipip->ipi_cmd_type == IF_CMD) { 11921 struct ifreq *ifr = (struct ifreq *)if_req; 11922 11923 /* Get interface flags (low 16 only). */ 11924 ifr->ifr_flags = ((ipif->ipif_flags | 11925 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11926 } else { 11927 struct lifreq *lifr = (struct lifreq *)if_req; 11928 11929 /* Get interface flags. */ 11930 lifr->lifr_flags = ipif->ipif_flags | 11931 ill->ill_flags | phyi->phyint_flags; 11932 } 11933 mutex_exit(&ill->ill_lock); 11934 return (0); 11935 } 11936 11937 /* ARGSUSED */ 11938 int 11939 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11940 ip_ioctl_cmd_t *ipip, void *if_req) 11941 { 11942 int mtu; 11943 int ip_min_mtu; 11944 struct ifreq *ifr; 11945 struct lifreq *lifr; 11946 ire_t *ire; 11947 ip_stack_t *ipst; 11948 11949 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11950 ipif->ipif_id, (void *)ipif)); 11951 if (ipip->ipi_cmd_type == IF_CMD) { 11952 ifr = (struct ifreq *)if_req; 11953 mtu = ifr->ifr_metric; 11954 } else { 11955 lifr = (struct lifreq *)if_req; 11956 mtu = lifr->lifr_mtu; 11957 } 11958 11959 if (ipif->ipif_isv6) 11960 ip_min_mtu = IPV6_MIN_MTU; 11961 else 11962 ip_min_mtu = IP_MIN_MTU; 11963 11964 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11965 return (EINVAL); 11966 11967 /* 11968 * Change the MTU size in all relevant ire's. 11969 * Mtu change Vs. new ire creation - protocol below. 11970 * First change ipif_mtu and the ire_max_frag of the 11971 * interface ire. Then do an ire walk and change the 11972 * ire_max_frag of all affected ires. During ire_add 11973 * under the bucket lock, set the ire_max_frag of the 11974 * new ire being created from the ipif/ire from which 11975 * it is being derived. If an mtu change happens after 11976 * the ire is added, the new ire will be cleaned up. 11977 * Conversely if the mtu change happens before the ire 11978 * is added, ire_add will see the new value of the mtu. 11979 */ 11980 ipif->ipif_mtu = mtu; 11981 ipif->ipif_flags |= IPIF_FIXEDMTU; 11982 11983 if (ipif->ipif_isv6) 11984 ire = ipif_to_ire_v6(ipif); 11985 else 11986 ire = ipif_to_ire(ipif); 11987 if (ire != NULL) { 11988 ire->ire_max_frag = ipif->ipif_mtu; 11989 ire_refrele(ire); 11990 } 11991 ipst = ipif->ipif_ill->ill_ipst; 11992 if (ipif->ipif_flags & IPIF_UP) { 11993 if (ipif->ipif_isv6) 11994 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11995 ipst); 11996 else 11997 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11998 ipst); 11999 } 12000 /* Update the MTU in SCTP's list */ 12001 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12002 return (0); 12003 } 12004 12005 /* Get interface MTU. */ 12006 /* ARGSUSED */ 12007 int 12008 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12009 ip_ioctl_cmd_t *ipip, void *if_req) 12010 { 12011 struct ifreq *ifr; 12012 struct lifreq *lifr; 12013 12014 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12015 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12016 if (ipip->ipi_cmd_type == IF_CMD) { 12017 ifr = (struct ifreq *)if_req; 12018 ifr->ifr_metric = ipif->ipif_mtu; 12019 } else { 12020 lifr = (struct lifreq *)if_req; 12021 lifr->lifr_mtu = ipif->ipif_mtu; 12022 } 12023 return (0); 12024 } 12025 12026 /* Set interface broadcast address. */ 12027 /* ARGSUSED2 */ 12028 int 12029 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12030 ip_ioctl_cmd_t *ipip, void *if_req) 12031 { 12032 ipaddr_t addr; 12033 ire_t *ire; 12034 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12035 12036 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12037 ipif->ipif_id)); 12038 12039 ASSERT(IAM_WRITER_IPIF(ipif)); 12040 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12041 return (EADDRNOTAVAIL); 12042 12043 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12044 12045 if (sin->sin_family != AF_INET) 12046 return (EAFNOSUPPORT); 12047 12048 addr = sin->sin_addr.s_addr; 12049 if (ipif->ipif_flags & IPIF_UP) { 12050 /* 12051 * If we are already up, make sure the new 12052 * broadcast address makes sense. If it does, 12053 * there should be an IRE for it already. 12054 * Don't match on ipif, only on the ill 12055 * since we are sharing these now. Don't use 12056 * MATCH_IRE_ILL_GROUP as we are looking for 12057 * the broadcast ire on this ill and each ill 12058 * in the group has its own broadcast ire. 12059 */ 12060 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12061 ipif, ALL_ZONES, NULL, 12062 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12063 if (ire == NULL) { 12064 return (EINVAL); 12065 } else { 12066 ire_refrele(ire); 12067 } 12068 } 12069 /* 12070 * Changing the broadcast addr for this ipif. 12071 * Make sure we have valid net and subnet bcast 12072 * ire's for other logical interfaces, if needed. 12073 */ 12074 if (addr != ipif->ipif_brd_addr) 12075 ipif_check_bcast_ires(ipif); 12076 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12077 return (0); 12078 } 12079 12080 /* Get interface broadcast address. */ 12081 /* ARGSUSED */ 12082 int 12083 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12084 ip_ioctl_cmd_t *ipip, void *if_req) 12085 { 12086 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12087 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12088 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12089 return (EADDRNOTAVAIL); 12090 12091 /* IPIF_BROADCAST not possible with IPv6 */ 12092 ASSERT(!ipif->ipif_isv6); 12093 *sin = sin_null; 12094 sin->sin_family = AF_INET; 12095 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12096 return (0); 12097 } 12098 12099 /* 12100 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12101 */ 12102 /* ARGSUSED */ 12103 int 12104 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12105 ip_ioctl_cmd_t *ipip, void *if_req) 12106 { 12107 int err = 0; 12108 in6_addr_t v6mask; 12109 12110 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12111 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12112 12113 ASSERT(IAM_WRITER_IPIF(ipif)); 12114 12115 if (ipif->ipif_isv6) { 12116 sin6_t *sin6; 12117 12118 if (sin->sin_family != AF_INET6) 12119 return (EAFNOSUPPORT); 12120 12121 sin6 = (sin6_t *)sin; 12122 v6mask = sin6->sin6_addr; 12123 } else { 12124 ipaddr_t mask; 12125 12126 if (sin->sin_family != AF_INET) 12127 return (EAFNOSUPPORT); 12128 12129 mask = sin->sin_addr.s_addr; 12130 V4MASK_TO_V6(mask, v6mask); 12131 } 12132 12133 /* 12134 * No big deal if the interface isn't already up, or the mask 12135 * isn't really changing, or this is pt-pt. 12136 */ 12137 if (!(ipif->ipif_flags & IPIF_UP) || 12138 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12139 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12140 ipif->ipif_v6net_mask = v6mask; 12141 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12142 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12143 ipif->ipif_v6net_mask, 12144 ipif->ipif_v6subnet); 12145 } 12146 return (0); 12147 } 12148 /* 12149 * Make sure we have valid net and subnet broadcast ire's 12150 * for the old netmask, if needed by other logical interfaces. 12151 */ 12152 if (!ipif->ipif_isv6) 12153 ipif_check_bcast_ires(ipif); 12154 12155 err = ipif_logical_down(ipif, q, mp); 12156 if (err == EINPROGRESS) 12157 return (err); 12158 ipif_down_tail(ipif); 12159 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12160 return (err); 12161 } 12162 12163 static int 12164 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12165 { 12166 in6_addr_t v6mask; 12167 int err = 0; 12168 12169 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12170 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12171 12172 if (ipif->ipif_isv6) { 12173 sin6_t *sin6; 12174 12175 sin6 = (sin6_t *)sin; 12176 v6mask = sin6->sin6_addr; 12177 } else { 12178 ipaddr_t mask; 12179 12180 mask = sin->sin_addr.s_addr; 12181 V4MASK_TO_V6(mask, v6mask); 12182 } 12183 12184 ipif->ipif_v6net_mask = v6mask; 12185 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12186 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12187 ipif->ipif_v6subnet); 12188 } 12189 err = ipif_up(ipif, q, mp); 12190 12191 if (err == 0 || err == EINPROGRESS) { 12192 /* 12193 * The interface must be DL_BOUND if this packet has to 12194 * go out on the wire. Since we only go through a logical 12195 * down and are bound with the driver during an internal 12196 * down/up that is satisfied. 12197 */ 12198 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12199 /* Potentially broadcast an address mask reply. */ 12200 ipif_mask_reply(ipif); 12201 } 12202 } 12203 return (err); 12204 } 12205 12206 /* ARGSUSED */ 12207 int 12208 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12209 ip_ioctl_cmd_t *ipip, void *if_req) 12210 { 12211 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12212 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12213 ipif_down_tail(ipif); 12214 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12215 } 12216 12217 /* Get interface net mask. */ 12218 /* ARGSUSED */ 12219 int 12220 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12221 ip_ioctl_cmd_t *ipip, void *if_req) 12222 { 12223 struct lifreq *lifr = (struct lifreq *)if_req; 12224 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12225 12226 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12227 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12228 12229 /* 12230 * net mask can't change since we have a reference to the ipif. 12231 */ 12232 if (ipif->ipif_isv6) { 12233 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12234 *sin6 = sin6_null; 12235 sin6->sin6_family = AF_INET6; 12236 sin6->sin6_addr = ipif->ipif_v6net_mask; 12237 lifr->lifr_addrlen = 12238 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12239 } else { 12240 *sin = sin_null; 12241 sin->sin_family = AF_INET; 12242 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12243 if (ipip->ipi_cmd_type == LIF_CMD) { 12244 lifr->lifr_addrlen = 12245 ip_mask_to_plen(ipif->ipif_net_mask); 12246 } 12247 } 12248 return (0); 12249 } 12250 12251 /* ARGSUSED */ 12252 int 12253 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12254 ip_ioctl_cmd_t *ipip, void *if_req) 12255 { 12256 12257 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12258 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12259 /* 12260 * Set interface metric. We don't use this for 12261 * anything but we keep track of it in case it is 12262 * important to routing applications or such. 12263 */ 12264 if (ipip->ipi_cmd_type == IF_CMD) { 12265 struct ifreq *ifr; 12266 12267 ifr = (struct ifreq *)if_req; 12268 ipif->ipif_metric = ifr->ifr_metric; 12269 } else { 12270 struct lifreq *lifr; 12271 12272 lifr = (struct lifreq *)if_req; 12273 ipif->ipif_metric = lifr->lifr_metric; 12274 } 12275 return (0); 12276 } 12277 12278 /* ARGSUSED */ 12279 int 12280 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12281 ip_ioctl_cmd_t *ipip, void *if_req) 12282 { 12283 /* Get interface metric. */ 12284 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12285 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12286 if (ipip->ipi_cmd_type == IF_CMD) { 12287 struct ifreq *ifr; 12288 12289 ifr = (struct ifreq *)if_req; 12290 ifr->ifr_metric = ipif->ipif_metric; 12291 } else { 12292 struct lifreq *lifr; 12293 12294 lifr = (struct lifreq *)if_req; 12295 lifr->lifr_metric = ipif->ipif_metric; 12296 } 12297 12298 return (0); 12299 } 12300 12301 /* ARGSUSED */ 12302 int 12303 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12304 ip_ioctl_cmd_t *ipip, void *if_req) 12305 { 12306 12307 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12308 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12309 /* 12310 * Set the muxid returned from I_PLINK. 12311 */ 12312 if (ipip->ipi_cmd_type == IF_CMD) { 12313 struct ifreq *ifr = (struct ifreq *)if_req; 12314 12315 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12316 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12317 } else { 12318 struct lifreq *lifr = (struct lifreq *)if_req; 12319 12320 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12321 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12322 } 12323 return (0); 12324 } 12325 12326 /* ARGSUSED */ 12327 int 12328 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12329 ip_ioctl_cmd_t *ipip, void *if_req) 12330 { 12331 12332 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12333 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12334 /* 12335 * Get the muxid saved in ill for I_PUNLINK. 12336 */ 12337 if (ipip->ipi_cmd_type == IF_CMD) { 12338 struct ifreq *ifr = (struct ifreq *)if_req; 12339 12340 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12341 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12342 } else { 12343 struct lifreq *lifr = (struct lifreq *)if_req; 12344 12345 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12346 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12347 } 12348 return (0); 12349 } 12350 12351 /* 12352 * Set the subnet prefix. Does not modify the broadcast address. 12353 */ 12354 /* ARGSUSED */ 12355 int 12356 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12357 ip_ioctl_cmd_t *ipip, void *if_req) 12358 { 12359 int err = 0; 12360 in6_addr_t v6addr; 12361 in6_addr_t v6mask; 12362 boolean_t need_up = B_FALSE; 12363 int addrlen; 12364 12365 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12366 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12367 12368 ASSERT(IAM_WRITER_IPIF(ipif)); 12369 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12370 12371 if (ipif->ipif_isv6) { 12372 sin6_t *sin6; 12373 12374 if (sin->sin_family != AF_INET6) 12375 return (EAFNOSUPPORT); 12376 12377 sin6 = (sin6_t *)sin; 12378 v6addr = sin6->sin6_addr; 12379 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12380 return (EADDRNOTAVAIL); 12381 } else { 12382 ipaddr_t addr; 12383 12384 if (sin->sin_family != AF_INET) 12385 return (EAFNOSUPPORT); 12386 12387 addr = sin->sin_addr.s_addr; 12388 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12389 return (EADDRNOTAVAIL); 12390 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12391 /* Add 96 bits */ 12392 addrlen += IPV6_ABITS - IP_ABITS; 12393 } 12394 12395 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12396 return (EINVAL); 12397 12398 /* Check if bits in the address is set past the mask */ 12399 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12400 return (EINVAL); 12401 12402 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12403 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12404 return (0); /* No change */ 12405 12406 if (ipif->ipif_flags & IPIF_UP) { 12407 /* 12408 * If the interface is already marked up, 12409 * we call ipif_down which will take care 12410 * of ditching any IREs that have been set 12411 * up based on the old interface address. 12412 */ 12413 err = ipif_logical_down(ipif, q, mp); 12414 if (err == EINPROGRESS) 12415 return (err); 12416 ipif_down_tail(ipif); 12417 need_up = B_TRUE; 12418 } 12419 12420 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12421 return (err); 12422 } 12423 12424 static int 12425 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12426 queue_t *q, mblk_t *mp, boolean_t need_up) 12427 { 12428 ill_t *ill = ipif->ipif_ill; 12429 int err = 0; 12430 12431 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12432 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12433 12434 /* Set the new address. */ 12435 mutex_enter(&ill->ill_lock); 12436 ipif->ipif_v6net_mask = v6mask; 12437 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12438 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12439 ipif->ipif_v6subnet); 12440 } 12441 mutex_exit(&ill->ill_lock); 12442 12443 if (need_up) { 12444 /* 12445 * Now bring the interface back up. If this 12446 * is the only IPIF for the ILL, ipif_up 12447 * will have to re-bind to the device, so 12448 * we may get back EINPROGRESS, in which 12449 * case, this IOCTL will get completed in 12450 * ip_rput_dlpi when we see the DL_BIND_ACK. 12451 */ 12452 err = ipif_up(ipif, q, mp); 12453 if (err == EINPROGRESS) 12454 return (err); 12455 } 12456 return (err); 12457 } 12458 12459 /* ARGSUSED */ 12460 int 12461 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12462 ip_ioctl_cmd_t *ipip, void *if_req) 12463 { 12464 int addrlen; 12465 in6_addr_t v6addr; 12466 in6_addr_t v6mask; 12467 struct lifreq *lifr = (struct lifreq *)if_req; 12468 12469 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12470 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12471 ipif_down_tail(ipif); 12472 12473 addrlen = lifr->lifr_addrlen; 12474 if (ipif->ipif_isv6) { 12475 sin6_t *sin6; 12476 12477 sin6 = (sin6_t *)sin; 12478 v6addr = sin6->sin6_addr; 12479 } else { 12480 ipaddr_t addr; 12481 12482 addr = sin->sin_addr.s_addr; 12483 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12484 addrlen += IPV6_ABITS - IP_ABITS; 12485 } 12486 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12487 12488 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12489 } 12490 12491 /* ARGSUSED */ 12492 int 12493 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12494 ip_ioctl_cmd_t *ipip, void *if_req) 12495 { 12496 struct lifreq *lifr = (struct lifreq *)if_req; 12497 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12498 12499 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12500 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12501 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12502 12503 if (ipif->ipif_isv6) { 12504 *sin6 = sin6_null; 12505 sin6->sin6_family = AF_INET6; 12506 sin6->sin6_addr = ipif->ipif_v6subnet; 12507 lifr->lifr_addrlen = 12508 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12509 } else { 12510 *sin = sin_null; 12511 sin->sin_family = AF_INET; 12512 sin->sin_addr.s_addr = ipif->ipif_subnet; 12513 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12514 } 12515 return (0); 12516 } 12517 12518 /* 12519 * Set the IPv6 address token. 12520 */ 12521 /* ARGSUSED */ 12522 int 12523 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12524 ip_ioctl_cmd_t *ipi, void *if_req) 12525 { 12526 ill_t *ill = ipif->ipif_ill; 12527 int err; 12528 in6_addr_t v6addr; 12529 in6_addr_t v6mask; 12530 boolean_t need_up = B_FALSE; 12531 int i; 12532 sin6_t *sin6 = (sin6_t *)sin; 12533 struct lifreq *lifr = (struct lifreq *)if_req; 12534 int addrlen; 12535 12536 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12537 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12538 ASSERT(IAM_WRITER_IPIF(ipif)); 12539 12540 addrlen = lifr->lifr_addrlen; 12541 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12542 if (ipif->ipif_id != 0) 12543 return (EINVAL); 12544 12545 if (!ipif->ipif_isv6) 12546 return (EINVAL); 12547 12548 if (addrlen > IPV6_ABITS) 12549 return (EINVAL); 12550 12551 v6addr = sin6->sin6_addr; 12552 12553 /* 12554 * The length of the token is the length from the end. To get 12555 * the proper mask for this, compute the mask of the bits not 12556 * in the token; ie. the prefix, and then xor to get the mask. 12557 */ 12558 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12559 return (EINVAL); 12560 for (i = 0; i < 4; i++) { 12561 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12562 } 12563 12564 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12565 ill->ill_token_length == addrlen) 12566 return (0); /* No change */ 12567 12568 if (ipif->ipif_flags & IPIF_UP) { 12569 err = ipif_logical_down(ipif, q, mp); 12570 if (err == EINPROGRESS) 12571 return (err); 12572 ipif_down_tail(ipif); 12573 need_up = B_TRUE; 12574 } 12575 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12576 return (err); 12577 } 12578 12579 static int 12580 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12581 mblk_t *mp, boolean_t need_up) 12582 { 12583 in6_addr_t v6addr; 12584 in6_addr_t v6mask; 12585 ill_t *ill = ipif->ipif_ill; 12586 int i; 12587 int err = 0; 12588 12589 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12590 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12591 v6addr = sin6->sin6_addr; 12592 /* 12593 * The length of the token is the length from the end. To get 12594 * the proper mask for this, compute the mask of the bits not 12595 * in the token; ie. the prefix, and then xor to get the mask. 12596 */ 12597 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12598 for (i = 0; i < 4; i++) 12599 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12600 12601 mutex_enter(&ill->ill_lock); 12602 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12603 ill->ill_token_length = addrlen; 12604 mutex_exit(&ill->ill_lock); 12605 12606 if (need_up) { 12607 /* 12608 * Now bring the interface back up. If this 12609 * is the only IPIF for the ILL, ipif_up 12610 * will have to re-bind to the device, so 12611 * we may get back EINPROGRESS, in which 12612 * case, this IOCTL will get completed in 12613 * ip_rput_dlpi when we see the DL_BIND_ACK. 12614 */ 12615 err = ipif_up(ipif, q, mp); 12616 if (err == EINPROGRESS) 12617 return (err); 12618 } 12619 return (err); 12620 } 12621 12622 /* ARGSUSED */ 12623 int 12624 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12625 ip_ioctl_cmd_t *ipi, void *if_req) 12626 { 12627 ill_t *ill; 12628 sin6_t *sin6 = (sin6_t *)sin; 12629 struct lifreq *lifr = (struct lifreq *)if_req; 12630 12631 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12632 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12633 if (ipif->ipif_id != 0) 12634 return (EINVAL); 12635 12636 ill = ipif->ipif_ill; 12637 if (!ill->ill_isv6) 12638 return (ENXIO); 12639 12640 *sin6 = sin6_null; 12641 sin6->sin6_family = AF_INET6; 12642 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12643 sin6->sin6_addr = ill->ill_token; 12644 lifr->lifr_addrlen = ill->ill_token_length; 12645 return (0); 12646 } 12647 12648 /* 12649 * Set (hardware) link specific information that might override 12650 * what was acquired through the DL_INFO_ACK. 12651 * The logic is as follows. 12652 * 12653 * become exclusive 12654 * set CHANGING flag 12655 * change mtu on affected IREs 12656 * clear CHANGING flag 12657 * 12658 * An ire add that occurs before the CHANGING flag is set will have its mtu 12659 * changed by the ip_sioctl_lnkinfo. 12660 * 12661 * During the time the CHANGING flag is set, no new ires will be added to the 12662 * bucket, and ire add will fail (due the CHANGING flag). 12663 * 12664 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12665 * before it is added to the bucket. 12666 * 12667 * Obviously only 1 thread can set the CHANGING flag and we need to become 12668 * exclusive to set the flag. 12669 */ 12670 /* ARGSUSED */ 12671 int 12672 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12673 ip_ioctl_cmd_t *ipi, void *if_req) 12674 { 12675 ill_t *ill = ipif->ipif_ill; 12676 ipif_t *nipif; 12677 int ip_min_mtu; 12678 boolean_t mtu_walk = B_FALSE; 12679 struct lifreq *lifr = (struct lifreq *)if_req; 12680 lif_ifinfo_req_t *lir; 12681 ire_t *ire; 12682 12683 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12684 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12685 lir = &lifr->lifr_ifinfo; 12686 ASSERT(IAM_WRITER_IPIF(ipif)); 12687 12688 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12689 if (ipif->ipif_id != 0) 12690 return (EINVAL); 12691 12692 /* Set interface MTU. */ 12693 if (ipif->ipif_isv6) 12694 ip_min_mtu = IPV6_MIN_MTU; 12695 else 12696 ip_min_mtu = IP_MIN_MTU; 12697 12698 /* 12699 * Verify values before we set anything. Allow zero to 12700 * mean unspecified. 12701 */ 12702 if (lir->lir_maxmtu != 0 && 12703 (lir->lir_maxmtu > ill->ill_max_frag || 12704 lir->lir_maxmtu < ip_min_mtu)) 12705 return (EINVAL); 12706 if (lir->lir_reachtime != 0 && 12707 lir->lir_reachtime > ND_MAX_REACHTIME) 12708 return (EINVAL); 12709 if (lir->lir_reachretrans != 0 && 12710 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12711 return (EINVAL); 12712 12713 mutex_enter(&ill->ill_lock); 12714 ill->ill_state_flags |= ILL_CHANGING; 12715 for (nipif = ill->ill_ipif; nipif != NULL; 12716 nipif = nipif->ipif_next) { 12717 nipif->ipif_state_flags |= IPIF_CHANGING; 12718 } 12719 12720 mutex_exit(&ill->ill_lock); 12721 12722 if (lir->lir_maxmtu != 0) { 12723 ill->ill_max_mtu = lir->lir_maxmtu; 12724 ill->ill_mtu_userspecified = 1; 12725 mtu_walk = B_TRUE; 12726 } 12727 12728 if (lir->lir_reachtime != 0) 12729 ill->ill_reachable_time = lir->lir_reachtime; 12730 12731 if (lir->lir_reachretrans != 0) 12732 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12733 12734 ill->ill_max_hops = lir->lir_maxhops; 12735 12736 ill->ill_max_buf = ND_MAX_Q; 12737 12738 if (mtu_walk) { 12739 /* 12740 * Set the MTU on all ipifs associated with this ill except 12741 * for those whose MTU was fixed via SIOCSLIFMTU. 12742 */ 12743 for (nipif = ill->ill_ipif; nipif != NULL; 12744 nipif = nipif->ipif_next) { 12745 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12746 continue; 12747 12748 nipif->ipif_mtu = ill->ill_max_mtu; 12749 12750 if (!(nipif->ipif_flags & IPIF_UP)) 12751 continue; 12752 12753 if (nipif->ipif_isv6) 12754 ire = ipif_to_ire_v6(nipif); 12755 else 12756 ire = ipif_to_ire(nipif); 12757 if (ire != NULL) { 12758 ire->ire_max_frag = ipif->ipif_mtu; 12759 ire_refrele(ire); 12760 } 12761 12762 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12763 nipif, ill); 12764 } 12765 } 12766 12767 mutex_enter(&ill->ill_lock); 12768 for (nipif = ill->ill_ipif; nipif != NULL; 12769 nipif = nipif->ipif_next) { 12770 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12771 } 12772 ILL_UNMARK_CHANGING(ill); 12773 mutex_exit(&ill->ill_lock); 12774 12775 return (0); 12776 } 12777 12778 /* ARGSUSED */ 12779 int 12780 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12781 ip_ioctl_cmd_t *ipi, void *if_req) 12782 { 12783 struct lif_ifinfo_req *lir; 12784 ill_t *ill = ipif->ipif_ill; 12785 12786 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12787 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12788 if (ipif->ipif_id != 0) 12789 return (EINVAL); 12790 12791 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12792 lir->lir_maxhops = ill->ill_max_hops; 12793 lir->lir_reachtime = ill->ill_reachable_time; 12794 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12795 lir->lir_maxmtu = ill->ill_max_mtu; 12796 12797 return (0); 12798 } 12799 12800 /* 12801 * Return best guess as to the subnet mask for the specified address. 12802 * Based on the subnet masks for all the configured interfaces. 12803 * 12804 * We end up returning a zero mask in the case of default, multicast or 12805 * experimental. 12806 */ 12807 static ipaddr_t 12808 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12809 { 12810 ipaddr_t net_mask; 12811 ill_t *ill; 12812 ipif_t *ipif; 12813 ill_walk_context_t ctx; 12814 ipif_t *fallback_ipif = NULL; 12815 12816 net_mask = ip_net_mask(addr); 12817 if (net_mask == 0) { 12818 *ipifp = NULL; 12819 return (0); 12820 } 12821 12822 /* Let's check to see if this is maybe a local subnet route. */ 12823 /* this function only applies to IPv4 interfaces */ 12824 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12825 ill = ILL_START_WALK_V4(&ctx, ipst); 12826 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12827 mutex_enter(&ill->ill_lock); 12828 for (ipif = ill->ill_ipif; ipif != NULL; 12829 ipif = ipif->ipif_next) { 12830 if (!IPIF_CAN_LOOKUP(ipif)) 12831 continue; 12832 if (!(ipif->ipif_flags & IPIF_UP)) 12833 continue; 12834 if ((ipif->ipif_subnet & net_mask) == 12835 (addr & net_mask)) { 12836 /* 12837 * Don't trust pt-pt interfaces if there are 12838 * other interfaces. 12839 */ 12840 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12841 if (fallback_ipif == NULL) { 12842 ipif_refhold_locked(ipif); 12843 fallback_ipif = ipif; 12844 } 12845 continue; 12846 } 12847 12848 /* 12849 * Fine. Just assume the same net mask as the 12850 * directly attached subnet interface is using. 12851 */ 12852 ipif_refhold_locked(ipif); 12853 mutex_exit(&ill->ill_lock); 12854 rw_exit(&ipst->ips_ill_g_lock); 12855 if (fallback_ipif != NULL) 12856 ipif_refrele(fallback_ipif); 12857 *ipifp = ipif; 12858 return (ipif->ipif_net_mask); 12859 } 12860 } 12861 mutex_exit(&ill->ill_lock); 12862 } 12863 rw_exit(&ipst->ips_ill_g_lock); 12864 12865 *ipifp = fallback_ipif; 12866 return ((fallback_ipif != NULL) ? 12867 fallback_ipif->ipif_net_mask : net_mask); 12868 } 12869 12870 /* 12871 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12872 */ 12873 static void 12874 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12875 { 12876 IOCP iocp; 12877 ipft_t *ipft; 12878 ipllc_t *ipllc; 12879 mblk_t *mp1; 12880 cred_t *cr; 12881 int error = 0; 12882 conn_t *connp; 12883 12884 ip1dbg(("ip_wput_ioctl")); 12885 iocp = (IOCP)mp->b_rptr; 12886 mp1 = mp->b_cont; 12887 if (mp1 == NULL) { 12888 iocp->ioc_error = EINVAL; 12889 mp->b_datap->db_type = M_IOCNAK; 12890 iocp->ioc_count = 0; 12891 qreply(q, mp); 12892 return; 12893 } 12894 12895 /* 12896 * These IOCTLs provide various control capabilities to 12897 * upstream agents such as ULPs and processes. There 12898 * are currently two such IOCTLs implemented. They 12899 * are used by TCP to provide update information for 12900 * existing IREs and to forcibly delete an IRE for a 12901 * host that is not responding, thereby forcing an 12902 * attempt at a new route. 12903 */ 12904 iocp->ioc_error = EINVAL; 12905 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12906 goto done; 12907 12908 ipllc = (ipllc_t *)mp1->b_rptr; 12909 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12910 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12911 break; 12912 } 12913 /* 12914 * prefer credential from mblk over ioctl; 12915 * see ip_sioctl_copyin_setup 12916 */ 12917 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12918 12919 /* 12920 * Refhold the conn in case the request gets queued up in some lookup 12921 */ 12922 ASSERT(CONN_Q(q)); 12923 connp = Q_TO_CONN(q); 12924 CONN_INC_REF(connp); 12925 if (ipft->ipft_pfi && 12926 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12927 pullupmsg(mp1, ipft->ipft_min_size))) { 12928 error = (*ipft->ipft_pfi)(q, 12929 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12930 } 12931 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12932 /* 12933 * CONN_OPER_PENDING_DONE happens in the function called 12934 * through ipft_pfi above. 12935 */ 12936 return; 12937 } 12938 12939 CONN_OPER_PENDING_DONE(connp); 12940 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12941 freemsg(mp); 12942 return; 12943 } 12944 iocp->ioc_error = error; 12945 12946 done: 12947 mp->b_datap->db_type = M_IOCACK; 12948 if (iocp->ioc_error) 12949 iocp->ioc_count = 0; 12950 qreply(q, mp); 12951 } 12952 12953 /* 12954 * Lookup an ipif using the sequence id (ipif_seqid) 12955 */ 12956 ipif_t * 12957 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12958 { 12959 ipif_t *ipif; 12960 12961 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12962 12963 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12964 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12965 return (ipif); 12966 } 12967 return (NULL); 12968 } 12969 12970 /* 12971 * Assign a unique id for the ipif. This is used later when we send 12972 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12973 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12974 * IRE is added, we verify that ipif has not disappeared. 12975 */ 12976 12977 static void 12978 ipif_assign_seqid(ipif_t *ipif) 12979 { 12980 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12981 12982 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 12983 } 12984 12985 /* 12986 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12987 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12988 * be inserted into the first space available in the list. The value of 12989 * ipif_id will then be set to the appropriate value for its position. 12990 */ 12991 static int 12992 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12993 { 12994 ill_t *ill; 12995 ipif_t *tipif; 12996 ipif_t **tipifp; 12997 int id; 12998 ip_stack_t *ipst; 12999 13000 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13001 IAM_WRITER_IPIF(ipif)); 13002 13003 ill = ipif->ipif_ill; 13004 ASSERT(ill != NULL); 13005 ipst = ill->ill_ipst; 13006 13007 /* 13008 * In the case of lo0:0 we already hold the ill_g_lock. 13009 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13010 * ipif_insert. Another such caller is ipif_move. 13011 */ 13012 if (acquire_g_lock) 13013 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13014 if (acquire_ill_lock) 13015 mutex_enter(&ill->ill_lock); 13016 id = ipif->ipif_id; 13017 tipifp = &(ill->ill_ipif); 13018 if (id == -1) { /* need to find a real id */ 13019 id = 0; 13020 while ((tipif = *tipifp) != NULL) { 13021 ASSERT(tipif->ipif_id >= id); 13022 if (tipif->ipif_id != id) 13023 break; /* non-consecutive id */ 13024 id++; 13025 tipifp = &(tipif->ipif_next); 13026 } 13027 /* limit number of logical interfaces */ 13028 if (id >= ipst->ips_ip_addrs_per_if) { 13029 if (acquire_ill_lock) 13030 mutex_exit(&ill->ill_lock); 13031 if (acquire_g_lock) 13032 rw_exit(&ipst->ips_ill_g_lock); 13033 return (-1); 13034 } 13035 ipif->ipif_id = id; /* assign new id */ 13036 } else if (id < ipst->ips_ip_addrs_per_if) { 13037 /* we have a real id; insert ipif in the right place */ 13038 while ((tipif = *tipifp) != NULL) { 13039 ASSERT(tipif->ipif_id != id); 13040 if (tipif->ipif_id > id) 13041 break; /* found correct location */ 13042 tipifp = &(tipif->ipif_next); 13043 } 13044 } else { 13045 if (acquire_ill_lock) 13046 mutex_exit(&ill->ill_lock); 13047 if (acquire_g_lock) 13048 rw_exit(&ipst->ips_ill_g_lock); 13049 return (-1); 13050 } 13051 13052 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13053 13054 ipif->ipif_next = tipif; 13055 *tipifp = ipif; 13056 if (acquire_ill_lock) 13057 mutex_exit(&ill->ill_lock); 13058 if (acquire_g_lock) 13059 rw_exit(&ipst->ips_ill_g_lock); 13060 return (0); 13061 } 13062 13063 static void 13064 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13065 { 13066 ipif_t **ipifp; 13067 ill_t *ill = ipif->ipif_ill; 13068 13069 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13070 if (acquire_ill_lock) 13071 mutex_enter(&ill->ill_lock); 13072 else 13073 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13074 13075 ipifp = &ill->ill_ipif; 13076 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13077 if (*ipifp == ipif) { 13078 *ipifp = ipif->ipif_next; 13079 break; 13080 } 13081 } 13082 13083 if (acquire_ill_lock) 13084 mutex_exit(&ill->ill_lock); 13085 } 13086 13087 /* 13088 * Allocate and initialize a new interface control structure. (Always 13089 * called as writer.) 13090 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13091 * is not part of the global linked list of ills. ipif_seqid is unique 13092 * in the system and to preserve the uniqueness, it is assigned only 13093 * when ill becomes part of the global list. At that point ill will 13094 * have a name. If it doesn't get assigned here, it will get assigned 13095 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13096 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13097 * the interface flags or any other information from the DL_INFO_ACK for 13098 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13099 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13100 * second DL_INFO_ACK comes in from the driver. 13101 */ 13102 static ipif_t * 13103 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13104 { 13105 ipif_t *ipif; 13106 phyint_t *phyi; 13107 13108 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13109 ill->ill_name, id, (void *)ill)); 13110 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13111 13112 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13113 return (NULL); 13114 *ipif = ipif_zero; /* start clean */ 13115 13116 ipif->ipif_ill = ill; 13117 ipif->ipif_id = id; /* could be -1 */ 13118 /* 13119 * Inherit the zoneid from the ill; for the shared stack instance 13120 * this is always the global zone 13121 */ 13122 ipif->ipif_zoneid = ill->ill_zoneid; 13123 13124 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13125 13126 ipif->ipif_refcnt = 0; 13127 ipif->ipif_saved_ire_cnt = 0; 13128 13129 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13130 mi_free(ipif); 13131 return (NULL); 13132 } 13133 /* -1 id should have been replaced by real id */ 13134 id = ipif->ipif_id; 13135 ASSERT(id >= 0); 13136 13137 if (ill->ill_name[0] != '\0') 13138 ipif_assign_seqid(ipif); 13139 13140 /* 13141 * Keep a copy of original id in ipif_orig_ipifid. Failback 13142 * will attempt to restore the original id. The SIOCSLIFOINDEX 13143 * ioctl sets ipif_orig_ipifid to zero. 13144 */ 13145 ipif->ipif_orig_ipifid = id; 13146 13147 /* 13148 * We grab the ill_lock and phyint_lock to protect the flag changes. 13149 * The ipif is still not up and can't be looked up until the 13150 * ioctl completes and the IPIF_CHANGING flag is cleared. 13151 */ 13152 mutex_enter(&ill->ill_lock); 13153 mutex_enter(&ill->ill_phyint->phyint_lock); 13154 /* 13155 * Set the running flag when logical interface zero is created. 13156 * For subsequent logical interfaces, a DLPI link down 13157 * notification message may have cleared the running flag to 13158 * indicate the link is down, so we shouldn't just blindly set it. 13159 */ 13160 if (id == 0) 13161 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13162 ipif->ipif_ire_type = ire_type; 13163 phyi = ill->ill_phyint; 13164 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13165 13166 if (ipif->ipif_isv6) { 13167 ill->ill_flags |= ILLF_IPV6; 13168 } else { 13169 ipaddr_t inaddr_any = INADDR_ANY; 13170 13171 ill->ill_flags |= ILLF_IPV4; 13172 13173 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13174 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13175 &ipif->ipif_v6lcl_addr); 13176 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13177 &ipif->ipif_v6src_addr); 13178 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13179 &ipif->ipif_v6subnet); 13180 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13181 &ipif->ipif_v6net_mask); 13182 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13183 &ipif->ipif_v6brd_addr); 13184 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13185 &ipif->ipif_v6pp_dst_addr); 13186 } 13187 13188 /* 13189 * Don't set the interface flags etc. now, will do it in 13190 * ip_ll_subnet_defaults. 13191 */ 13192 if (!initialize) { 13193 mutex_exit(&ill->ill_lock); 13194 mutex_exit(&ill->ill_phyint->phyint_lock); 13195 return (ipif); 13196 } 13197 ipif->ipif_mtu = ill->ill_max_mtu; 13198 13199 if (ill->ill_bcast_addr_length != 0) { 13200 /* 13201 * Later detect lack of DLPI driver multicast 13202 * capability by catching DL_ENABMULTI errors in 13203 * ip_rput_dlpi. 13204 */ 13205 ill->ill_flags |= ILLF_MULTICAST; 13206 if (!ipif->ipif_isv6) 13207 ipif->ipif_flags |= IPIF_BROADCAST; 13208 } else { 13209 if (ill->ill_net_type != IRE_LOOPBACK) { 13210 if (ipif->ipif_isv6) 13211 /* 13212 * Note: xresolv interfaces will eventually need 13213 * NOARP set here as well, but that will require 13214 * those external resolvers to have some 13215 * knowledge of that flag and act appropriately. 13216 * Not to be changed at present. 13217 */ 13218 ill->ill_flags |= ILLF_NONUD; 13219 else 13220 ill->ill_flags |= ILLF_NOARP; 13221 } 13222 if (ill->ill_phys_addr_length == 0) { 13223 if (ill->ill_media && 13224 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13225 ipif->ipif_flags |= IPIF_NOXMIT; 13226 phyi->phyint_flags |= PHYI_VIRTUAL; 13227 } else { 13228 /* pt-pt supports multicast. */ 13229 ill->ill_flags |= ILLF_MULTICAST; 13230 if (ill->ill_net_type == IRE_LOOPBACK) { 13231 phyi->phyint_flags |= 13232 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13233 } else { 13234 ipif->ipif_flags |= IPIF_POINTOPOINT; 13235 } 13236 } 13237 } 13238 } 13239 mutex_exit(&ill->ill_lock); 13240 mutex_exit(&ill->ill_phyint->phyint_lock); 13241 return (ipif); 13242 } 13243 13244 /* 13245 * If appropriate, send a message up to the resolver delete the entry 13246 * for the address of this interface which is going out of business. 13247 * (Always called as writer). 13248 * 13249 * NOTE : We need to check for NULL mps as some of the fields are 13250 * initialized only for some interface types. See ipif_resolver_up() 13251 * for details. 13252 */ 13253 void 13254 ipif_arp_down(ipif_t *ipif) 13255 { 13256 mblk_t *mp; 13257 ill_t *ill = ipif->ipif_ill; 13258 13259 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13260 ASSERT(IAM_WRITER_IPIF(ipif)); 13261 13262 /* Delete the mapping for the local address */ 13263 mp = ipif->ipif_arp_del_mp; 13264 if (mp != NULL) { 13265 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13266 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13267 putnext(ill->ill_rq, mp); 13268 ipif->ipif_arp_del_mp = NULL; 13269 } 13270 13271 /* 13272 * If this is the last ipif that is going down and there are no 13273 * duplicate addresses we may yet attempt to re-probe, then we need to 13274 * clean up ARP completely. 13275 */ 13276 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13277 13278 /* Send up AR_INTERFACE_DOWN message */ 13279 mp = ill->ill_arp_down_mp; 13280 if (mp != NULL) { 13281 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13282 *(unsigned *)mp->b_rptr, ill->ill_name, 13283 ipif->ipif_id)); 13284 putnext(ill->ill_rq, mp); 13285 ill->ill_arp_down_mp = NULL; 13286 } 13287 13288 /* Tell ARP to delete the multicast mappings */ 13289 mp = ill->ill_arp_del_mapping_mp; 13290 if (mp != NULL) { 13291 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13292 *(unsigned *)mp->b_rptr, ill->ill_name, 13293 ipif->ipif_id)); 13294 putnext(ill->ill_rq, mp); 13295 ill->ill_arp_del_mapping_mp = NULL; 13296 } 13297 } 13298 } 13299 13300 /* 13301 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13302 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13303 * that it wants the add_mp allocated in this function to be returned 13304 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13305 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13306 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13307 * as it does a ipif_arp_down after calling this function - which will 13308 * remove what we add here. 13309 * 13310 * Returns -1 on failures and 0 on success. 13311 */ 13312 int 13313 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13314 { 13315 mblk_t *del_mp = NULL; 13316 mblk_t *add_mp = NULL; 13317 mblk_t *mp; 13318 ill_t *ill = ipif->ipif_ill; 13319 phyint_t *phyi = ill->ill_phyint; 13320 ipaddr_t addr, mask, extract_mask = 0; 13321 arma_t *arma; 13322 uint8_t *maddr, *bphys_addr; 13323 uint32_t hw_start; 13324 dl_unitdata_req_t *dlur; 13325 13326 ASSERT(IAM_WRITER_IPIF(ipif)); 13327 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13328 return (0); 13329 13330 /* 13331 * Delete the existing mapping from ARP. Normally ipif_down 13332 * -> ipif_arp_down should send this up to ARP. The only 13333 * reason we would find this when we are switching from 13334 * Multicast to Broadcast where we did not do a down. 13335 */ 13336 mp = ill->ill_arp_del_mapping_mp; 13337 if (mp != NULL) { 13338 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13339 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13340 putnext(ill->ill_rq, mp); 13341 ill->ill_arp_del_mapping_mp = NULL; 13342 } 13343 13344 if (arp_add_mapping_mp != NULL) 13345 *arp_add_mapping_mp = NULL; 13346 13347 /* 13348 * Check that the address is not to long for the constant 13349 * length reserved in the template arma_t. 13350 */ 13351 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13352 return (-1); 13353 13354 /* Add mapping mblk */ 13355 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13356 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13357 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13358 (caddr_t)&addr); 13359 if (add_mp == NULL) 13360 return (-1); 13361 arma = (arma_t *)add_mp->b_rptr; 13362 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13363 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13364 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13365 13366 /* 13367 * Determine the broadcast address. 13368 */ 13369 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13370 if (ill->ill_sap_length < 0) 13371 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13372 else 13373 bphys_addr = (uchar_t *)dlur + 13374 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13375 /* 13376 * Check PHYI_MULTI_BCAST and length of physical 13377 * address to determine if we use the mapping or the 13378 * broadcast address. 13379 */ 13380 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13381 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13382 bphys_addr, maddr, &hw_start, &extract_mask)) 13383 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13384 13385 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13386 (ill->ill_flags & ILLF_MULTICAST)) { 13387 /* Make sure this will not match the "exact" entry. */ 13388 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13389 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13390 (caddr_t)&addr); 13391 if (del_mp == NULL) { 13392 freemsg(add_mp); 13393 return (-1); 13394 } 13395 bcopy(&extract_mask, (char *)arma + 13396 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13397 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13398 /* Use link-layer broadcast address for MULTI_BCAST */ 13399 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13400 ip2dbg(("ipif_arp_setup_multicast: adding" 13401 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13402 } else { 13403 arma->arma_hw_mapping_start = hw_start; 13404 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13405 " ARP setup for %s\n", ill->ill_name)); 13406 } 13407 } else { 13408 freemsg(add_mp); 13409 ASSERT(del_mp == NULL); 13410 /* It is neither MULTICAST nor MULTI_BCAST */ 13411 return (0); 13412 } 13413 ASSERT(add_mp != NULL && del_mp != NULL); 13414 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13415 ill->ill_arp_del_mapping_mp = del_mp; 13416 if (arp_add_mapping_mp != NULL) { 13417 /* The caller just wants the mblks allocated */ 13418 *arp_add_mapping_mp = add_mp; 13419 } else { 13420 /* The caller wants us to send it to arp */ 13421 putnext(ill->ill_rq, add_mp); 13422 } 13423 return (0); 13424 } 13425 13426 /* 13427 * Get the resolver set up for a new interface address. 13428 * (Always called as writer.) 13429 * Called both for IPv4 and IPv6 interfaces, 13430 * though it only sets up the resolver for v6 13431 * if it's an xresolv interface (one using an external resolver). 13432 * Honors ILLF_NOARP. 13433 * The enumerated value res_act is used to tune the behavior. 13434 * If set to Res_act_initial, then we set up all the resolver 13435 * structures for a new interface. If set to Res_act_move, then 13436 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13437 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13438 * asynchronous hardware address change notification. If set to 13439 * Res_act_defend, then we tell ARP that it needs to send a single 13440 * gratuitous message in defense of the address. 13441 * Returns error on failure. 13442 */ 13443 int 13444 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13445 { 13446 caddr_t addr; 13447 mblk_t *arp_up_mp = NULL; 13448 mblk_t *arp_down_mp = NULL; 13449 mblk_t *arp_add_mp = NULL; 13450 mblk_t *arp_del_mp = NULL; 13451 mblk_t *arp_add_mapping_mp = NULL; 13452 mblk_t *arp_del_mapping_mp = NULL; 13453 ill_t *ill = ipif->ipif_ill; 13454 uchar_t *area_p = NULL; 13455 uchar_t *ared_p = NULL; 13456 int err = ENOMEM; 13457 boolean_t was_dup; 13458 13459 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13460 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13461 ASSERT(IAM_WRITER_IPIF(ipif)); 13462 13463 was_dup = B_FALSE; 13464 if (res_act == Res_act_initial) { 13465 ipif->ipif_addr_ready = 0; 13466 /* 13467 * We're bringing an interface up here. There's no way that we 13468 * should need to shut down ARP now. 13469 */ 13470 mutex_enter(&ill->ill_lock); 13471 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13472 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13473 ill->ill_ipif_dup_count--; 13474 was_dup = B_TRUE; 13475 } 13476 mutex_exit(&ill->ill_lock); 13477 } 13478 if (ipif->ipif_recovery_id != 0) 13479 (void) untimeout(ipif->ipif_recovery_id); 13480 ipif->ipif_recovery_id = 0; 13481 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13482 ipif->ipif_addr_ready = 1; 13483 return (0); 13484 } 13485 /* NDP will set the ipif_addr_ready flag when it's ready */ 13486 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13487 return (0); 13488 13489 if (ill->ill_isv6) { 13490 /* 13491 * External resolver for IPv6 13492 */ 13493 ASSERT(res_act == Res_act_initial); 13494 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13495 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13496 area_p = (uchar_t *)&ip6_area_template; 13497 ared_p = (uchar_t *)&ip6_ared_template; 13498 } 13499 } else { 13500 /* 13501 * IPv4 arp case. If the ARP stream has already started 13502 * closing, fail this request for ARP bringup. Else 13503 * record the fact that an ARP bringup is pending. 13504 */ 13505 mutex_enter(&ill->ill_lock); 13506 if (ill->ill_arp_closing) { 13507 mutex_exit(&ill->ill_lock); 13508 err = EINVAL; 13509 goto failed; 13510 } else { 13511 if (ill->ill_ipif_up_count == 0 && 13512 ill->ill_ipif_dup_count == 0 && !was_dup) 13513 ill->ill_arp_bringup_pending = 1; 13514 mutex_exit(&ill->ill_lock); 13515 } 13516 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13517 addr = (caddr_t)&ipif->ipif_lcl_addr; 13518 area_p = (uchar_t *)&ip_area_template; 13519 ared_p = (uchar_t *)&ip_ared_template; 13520 } 13521 } 13522 13523 /* 13524 * Add an entry for the local address in ARP only if it 13525 * is not UNNUMBERED and the address is not INADDR_ANY. 13526 */ 13527 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13528 area_t *area; 13529 13530 /* Now ask ARP to publish our address. */ 13531 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13532 if (arp_add_mp == NULL) 13533 goto failed; 13534 area = (area_t *)arp_add_mp->b_rptr; 13535 if (res_act != Res_act_initial) { 13536 /* 13537 * Copy the new hardware address and length into 13538 * arp_add_mp to be sent to ARP. 13539 */ 13540 area->area_hw_addr_length = ill->ill_phys_addr_length; 13541 bcopy(ill->ill_phys_addr, 13542 ((char *)area + area->area_hw_addr_offset), 13543 area->area_hw_addr_length); 13544 } 13545 13546 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13547 ACE_F_MYADDR; 13548 13549 if (res_act == Res_act_defend) { 13550 area->area_flags |= ACE_F_DEFEND; 13551 /* 13552 * If we're just defending our address now, then 13553 * there's no need to set up ARP multicast mappings. 13554 * The publish command is enough. 13555 */ 13556 goto done; 13557 } 13558 13559 if (res_act != Res_act_initial) 13560 goto arp_setup_multicast; 13561 13562 /* 13563 * Allocate an ARP deletion message so we know we can tell ARP 13564 * when the interface goes down. 13565 */ 13566 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13567 if (arp_del_mp == NULL) 13568 goto failed; 13569 13570 } else { 13571 if (res_act != Res_act_initial) 13572 goto done; 13573 } 13574 /* 13575 * Need to bring up ARP or setup multicast mapping only 13576 * when the first interface is coming UP. 13577 */ 13578 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13579 was_dup) { 13580 goto done; 13581 } 13582 13583 /* 13584 * Allocate an ARP down message (to be saved) and an ARP up 13585 * message. 13586 */ 13587 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13588 if (arp_down_mp == NULL) 13589 goto failed; 13590 13591 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13592 if (arp_up_mp == NULL) 13593 goto failed; 13594 13595 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13596 goto done; 13597 13598 arp_setup_multicast: 13599 /* 13600 * Setup the multicast mappings. This function initializes 13601 * ill_arp_del_mapping_mp also. This does not need to be done for 13602 * IPv6. 13603 */ 13604 if (!ill->ill_isv6) { 13605 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13606 if (err != 0) 13607 goto failed; 13608 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13609 ASSERT(arp_add_mapping_mp != NULL); 13610 } 13611 13612 done: 13613 if (arp_del_mp != NULL) { 13614 ASSERT(ipif->ipif_arp_del_mp == NULL); 13615 ipif->ipif_arp_del_mp = arp_del_mp; 13616 } 13617 if (arp_down_mp != NULL) { 13618 ASSERT(ill->ill_arp_down_mp == NULL); 13619 ill->ill_arp_down_mp = arp_down_mp; 13620 } 13621 if (arp_del_mapping_mp != NULL) { 13622 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13623 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13624 } 13625 if (arp_up_mp != NULL) { 13626 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13627 ill->ill_name, ipif->ipif_id)); 13628 putnext(ill->ill_rq, arp_up_mp); 13629 } 13630 if (arp_add_mp != NULL) { 13631 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13632 ill->ill_name, ipif->ipif_id)); 13633 /* 13634 * If it's an extended ARP implementation, then we'll wait to 13635 * hear that DAD has finished before using the interface. 13636 */ 13637 if (!ill->ill_arp_extend) 13638 ipif->ipif_addr_ready = 1; 13639 putnext(ill->ill_rq, arp_add_mp); 13640 } else { 13641 ipif->ipif_addr_ready = 1; 13642 } 13643 if (arp_add_mapping_mp != NULL) { 13644 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13645 ill->ill_name, ipif->ipif_id)); 13646 putnext(ill->ill_rq, arp_add_mapping_mp); 13647 } 13648 if (res_act != Res_act_initial) 13649 return (0); 13650 13651 if (ill->ill_flags & ILLF_NOARP) 13652 err = ill_arp_off(ill); 13653 else 13654 err = ill_arp_on(ill); 13655 if (err != 0) { 13656 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13657 freemsg(ipif->ipif_arp_del_mp); 13658 freemsg(ill->ill_arp_down_mp); 13659 freemsg(ill->ill_arp_del_mapping_mp); 13660 ipif->ipif_arp_del_mp = NULL; 13661 ill->ill_arp_down_mp = NULL; 13662 ill->ill_arp_del_mapping_mp = NULL; 13663 return (err); 13664 } 13665 return ((ill->ill_ipif_up_count != 0 || was_dup || 13666 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13667 13668 failed: 13669 ip1dbg(("ipif_resolver_up: FAILED\n")); 13670 freemsg(arp_add_mp); 13671 freemsg(arp_del_mp); 13672 freemsg(arp_add_mapping_mp); 13673 freemsg(arp_up_mp); 13674 freemsg(arp_down_mp); 13675 ill->ill_arp_bringup_pending = 0; 13676 return (err); 13677 } 13678 13679 /* 13680 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13681 * just gone back up. 13682 */ 13683 static void 13684 ipif_arp_start_dad(ipif_t *ipif) 13685 { 13686 ill_t *ill = ipif->ipif_ill; 13687 mblk_t *arp_add_mp; 13688 area_t *area; 13689 13690 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13691 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13692 ipif->ipif_lcl_addr == INADDR_ANY || 13693 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13694 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13695 /* 13696 * If we can't contact ARP for some reason, that's not really a 13697 * problem. Just send out the routing socket notification that 13698 * DAD completion would have done, and continue. 13699 */ 13700 ipif_mask_reply(ipif); 13701 ipif_up_notify(ipif); 13702 ipif->ipif_addr_ready = 1; 13703 return; 13704 } 13705 13706 /* Setting the 'unverified' flag restarts DAD */ 13707 area = (area_t *)arp_add_mp->b_rptr; 13708 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13709 ACE_F_UNVERIFIED; 13710 putnext(ill->ill_rq, arp_add_mp); 13711 } 13712 13713 static void 13714 ipif_ndp_start_dad(ipif_t *ipif) 13715 { 13716 nce_t *nce; 13717 13718 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13719 if (nce == NULL) 13720 return; 13721 13722 if (!ndp_restart_dad(nce)) { 13723 /* 13724 * If we can't restart DAD for some reason, that's not really a 13725 * problem. Just send out the routing socket notification that 13726 * DAD completion would have done, and continue. 13727 */ 13728 ipif_up_notify(ipif); 13729 ipif->ipif_addr_ready = 1; 13730 } 13731 NCE_REFRELE(nce); 13732 } 13733 13734 /* 13735 * Restart duplicate address detection on all interfaces on the given ill. 13736 * 13737 * This is called when an interface transitions from down to up 13738 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13739 * 13740 * Note that since the underlying physical link has transitioned, we must cause 13741 * at least one routing socket message to be sent here, either via DAD 13742 * completion or just by default on the first ipif. (If we don't do this, then 13743 * in.mpathd will see long delays when doing link-based failure recovery.) 13744 */ 13745 void 13746 ill_restart_dad(ill_t *ill, boolean_t went_up) 13747 { 13748 ipif_t *ipif; 13749 13750 if (ill == NULL) 13751 return; 13752 13753 /* 13754 * If layer two doesn't support duplicate address detection, then just 13755 * send the routing socket message now and be done with it. 13756 */ 13757 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13758 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13759 ip_rts_ifmsg(ill->ill_ipif); 13760 return; 13761 } 13762 13763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13764 if (went_up) { 13765 if (ipif->ipif_flags & IPIF_UP) { 13766 if (ill->ill_isv6) 13767 ipif_ndp_start_dad(ipif); 13768 else 13769 ipif_arp_start_dad(ipif); 13770 } else if (ill->ill_isv6 && 13771 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13772 /* 13773 * For IPv4, the ARP module itself will 13774 * automatically start the DAD process when it 13775 * sees DL_NOTE_LINK_UP. We respond to the 13776 * AR_CN_READY at the completion of that task. 13777 * For IPv6, we must kick off the bring-up 13778 * process now. 13779 */ 13780 ndp_do_recovery(ipif); 13781 } else { 13782 /* 13783 * Unfortunately, the first ipif is "special" 13784 * and represents the underlying ill in the 13785 * routing socket messages. Thus, when this 13786 * one ipif is down, we must still notify so 13787 * that the user knows the IFF_RUNNING status 13788 * change. (If the first ipif is up, then 13789 * we'll handle eventual routing socket 13790 * notification via DAD completion.) 13791 */ 13792 if (ipif == ill->ill_ipif) 13793 ip_rts_ifmsg(ill->ill_ipif); 13794 } 13795 } else { 13796 /* 13797 * After link down, we'll need to send a new routing 13798 * message when the link comes back, so clear 13799 * ipif_addr_ready. 13800 */ 13801 ipif->ipif_addr_ready = 0; 13802 } 13803 } 13804 13805 /* 13806 * If we've torn down links, then notify the user right away. 13807 */ 13808 if (!went_up) 13809 ip_rts_ifmsg(ill->ill_ipif); 13810 } 13811 13812 /* 13813 * Wakeup all threads waiting to enter the ipsq, and sleeping 13814 * on any of the ills in this ipsq. The ill_lock of the ill 13815 * must be held so that waiters don't miss wakeups 13816 */ 13817 static void 13818 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13819 { 13820 phyint_t *phyint; 13821 13822 phyint = ipsq->ipsq_phyint_list; 13823 while (phyint != NULL) { 13824 if (phyint->phyint_illv4) { 13825 if (!caller_holds_lock) 13826 mutex_enter(&phyint->phyint_illv4->ill_lock); 13827 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13828 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13829 if (!caller_holds_lock) 13830 mutex_exit(&phyint->phyint_illv4->ill_lock); 13831 } 13832 if (phyint->phyint_illv6) { 13833 if (!caller_holds_lock) 13834 mutex_enter(&phyint->phyint_illv6->ill_lock); 13835 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13836 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13837 if (!caller_holds_lock) 13838 mutex_exit(&phyint->phyint_illv6->ill_lock); 13839 } 13840 phyint = phyint->phyint_ipsq_next; 13841 } 13842 } 13843 13844 static ipsq_t * 13845 ipsq_create(char *groupname, ip_stack_t *ipst) 13846 { 13847 ipsq_t *ipsq; 13848 13849 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 13850 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13851 if (ipsq == NULL) { 13852 return (NULL); 13853 } 13854 13855 if (groupname != NULL) 13856 (void) strcpy(ipsq->ipsq_name, groupname); 13857 else 13858 ipsq->ipsq_name[0] = '\0'; 13859 13860 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13861 ipsq->ipsq_flags |= IPSQ_GROUP; 13862 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 13863 ipst->ips_ipsq_g_head = ipsq; 13864 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 13865 return (ipsq); 13866 } 13867 13868 /* 13869 * Return an ipsq correspoding to the groupname. If 'create' is true 13870 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13871 * uniquely with an IPMP group. However during IPMP groupname operations, 13872 * multiple IPMP groups may be associated with a single ipsq. But no 13873 * IPMP group can be associated with more than 1 ipsq at any time. 13874 * For example 13875 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13876 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13877 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13878 * 13879 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13880 * status shown below during the execution of the above command. 13881 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13882 * 13883 * After the completion of the above groupname command we return to the stable 13884 * state shown below. 13885 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13886 * hme4 mpk17-85 ipsq2 mpk17-85 1 13887 * 13888 * Because of the above, we don't search based on the ipsq_name since that 13889 * would miss the correct ipsq during certain windows as shown above. 13890 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13891 * natural state. 13892 */ 13893 static ipsq_t * 13894 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 13895 ip_stack_t *ipst) 13896 { 13897 ipsq_t *ipsq; 13898 int group_len; 13899 phyint_t *phyint; 13900 13901 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 13902 13903 group_len = strlen(groupname); 13904 ASSERT(group_len != 0); 13905 group_len++; 13906 13907 for (ipsq = ipst->ips_ipsq_g_head; 13908 ipsq != NULL; 13909 ipsq = ipsq->ipsq_next) { 13910 /* 13911 * When an ipsq is being split, and ill_split_ipsq 13912 * calls this function, we exclude it from being considered. 13913 */ 13914 if (ipsq == exclude_ipsq) 13915 continue; 13916 13917 /* 13918 * Compare against the ipsq_name. The groupname change happens 13919 * in 2 phases. The 1st phase merges the from group into 13920 * the to group's ipsq, by calling ill_merge_groups and restarts 13921 * the ioctl. The 2nd phase then locates the ipsq again thru 13922 * ipsq_name. At this point the phyint_groupname has not been 13923 * updated. 13924 */ 13925 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13926 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13927 /* 13928 * Verify that an ipmp groupname is exactly 13929 * part of 1 ipsq and is not found in any other 13930 * ipsq. 13931 */ 13932 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 13933 NULL); 13934 return (ipsq); 13935 } 13936 13937 /* 13938 * Comparison against ipsq_name alone is not sufficient. 13939 * In the case when groups are currently being 13940 * merged, the ipsq could hold other IPMP groups temporarily. 13941 * so we walk the phyint list and compare against the 13942 * phyint_groupname as well. 13943 */ 13944 phyint = ipsq->ipsq_phyint_list; 13945 while (phyint != NULL) { 13946 if ((group_len == phyint->phyint_groupname_len) && 13947 (bcmp(phyint->phyint_groupname, groupname, 13948 group_len) == 0)) { 13949 /* 13950 * Verify that an ipmp groupname is exactly 13951 * part of 1 ipsq and is not found in any other 13952 * ipsq. 13953 */ 13954 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 13955 ipst) == NULL); 13956 return (ipsq); 13957 } 13958 phyint = phyint->phyint_ipsq_next; 13959 } 13960 } 13961 if (create) 13962 ipsq = ipsq_create(groupname, ipst); 13963 return (ipsq); 13964 } 13965 13966 static void 13967 ipsq_delete(ipsq_t *ipsq) 13968 { 13969 ipsq_t *nipsq; 13970 ipsq_t *pipsq = NULL; 13971 ip_stack_t *ipst = ipsq->ipsq_ipst; 13972 13973 /* 13974 * We don't hold the ipsq lock, but we are sure no new 13975 * messages can land up, since the ipsq_refs is zero. 13976 * i.e. this ipsq is unnamed and no phyint or phyint group 13977 * is associated with this ipsq. (Lookups are based on ill_name 13978 * or phyint_groupname) 13979 */ 13980 ASSERT(ipsq->ipsq_refs == 0); 13981 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13982 ASSERT(ipsq->ipsq_pending_mp == NULL); 13983 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13984 /* 13985 * This is not the ipsq of an IPMP group. 13986 */ 13987 ipsq->ipsq_ipst = NULL; 13988 kmem_free(ipsq, sizeof (ipsq_t)); 13989 return; 13990 } 13991 13992 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13993 13994 /* 13995 * Locate the ipsq before we can remove it from 13996 * the singly linked list of ipsq's. 13997 */ 13998 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 13999 nipsq = nipsq->ipsq_next) { 14000 if (nipsq == ipsq) { 14001 break; 14002 } 14003 pipsq = nipsq; 14004 } 14005 14006 ASSERT(nipsq == ipsq); 14007 14008 /* unlink ipsq from the list */ 14009 if (pipsq != NULL) 14010 pipsq->ipsq_next = ipsq->ipsq_next; 14011 else 14012 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14013 ipsq->ipsq_ipst = NULL; 14014 kmem_free(ipsq, sizeof (ipsq_t)); 14015 rw_exit(&ipst->ips_ill_g_lock); 14016 } 14017 14018 static void 14019 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14020 queue_t *q) 14021 { 14022 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14023 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14024 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14025 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14026 ASSERT(current_mp != NULL); 14027 14028 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14029 NEW_OP, NULL); 14030 14031 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14032 new_ipsq->ipsq_xopq_mphead != NULL); 14033 14034 /* 14035 * move from old ipsq to the new ipsq. 14036 */ 14037 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14038 if (old_ipsq->ipsq_xopq_mphead != NULL) 14039 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14040 14041 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14042 } 14043 14044 void 14045 ill_group_cleanup(ill_t *ill) 14046 { 14047 ill_t *ill_v4; 14048 ill_t *ill_v6; 14049 ipif_t *ipif; 14050 14051 ill_v4 = ill->ill_phyint->phyint_illv4; 14052 ill_v6 = ill->ill_phyint->phyint_illv6; 14053 14054 if (ill_v4 != NULL) { 14055 mutex_enter(&ill_v4->ill_lock); 14056 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14057 ipif = ipif->ipif_next) { 14058 IPIF_UNMARK_MOVING(ipif); 14059 } 14060 ill_v4->ill_up_ipifs = B_FALSE; 14061 mutex_exit(&ill_v4->ill_lock); 14062 } 14063 14064 if (ill_v6 != NULL) { 14065 mutex_enter(&ill_v6->ill_lock); 14066 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14067 ipif = ipif->ipif_next) { 14068 IPIF_UNMARK_MOVING(ipif); 14069 } 14070 ill_v6->ill_up_ipifs = B_FALSE; 14071 mutex_exit(&ill_v6->ill_lock); 14072 } 14073 } 14074 /* 14075 * This function is called when an ill has had a change in its group status 14076 * to bring up all the ipifs that were up before the change. 14077 */ 14078 int 14079 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14080 { 14081 ipif_t *ipif; 14082 ill_t *ill_v4; 14083 ill_t *ill_v6; 14084 ill_t *from_ill; 14085 int err = 0; 14086 14087 ASSERT(IAM_WRITER_ILL(ill)); 14088 14089 /* 14090 * Except for ipif_state_flags and ill_state_flags the other 14091 * fields of the ipif/ill that are modified below are protected 14092 * implicitly since we are a writer. We would have tried to down 14093 * even an ipif that was already down, in ill_down_ipifs. So we 14094 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14095 */ 14096 ill_v4 = ill->ill_phyint->phyint_illv4; 14097 ill_v6 = ill->ill_phyint->phyint_illv6; 14098 if (ill_v4 != NULL) { 14099 ill_v4->ill_up_ipifs = B_TRUE; 14100 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14101 ipif = ipif->ipif_next) { 14102 mutex_enter(&ill_v4->ill_lock); 14103 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14104 IPIF_UNMARK_MOVING(ipif); 14105 mutex_exit(&ill_v4->ill_lock); 14106 if (ipif->ipif_was_up) { 14107 if (!(ipif->ipif_flags & IPIF_UP)) 14108 err = ipif_up(ipif, q, mp); 14109 ipif->ipif_was_up = B_FALSE; 14110 if (err != 0) { 14111 /* 14112 * Can there be any other error ? 14113 */ 14114 ASSERT(err == EINPROGRESS); 14115 return (err); 14116 } 14117 } 14118 } 14119 mutex_enter(&ill_v4->ill_lock); 14120 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14121 mutex_exit(&ill_v4->ill_lock); 14122 ill_v4->ill_up_ipifs = B_FALSE; 14123 if (ill_v4->ill_move_in_progress) { 14124 ASSERT(ill_v4->ill_move_peer != NULL); 14125 ill_v4->ill_move_in_progress = B_FALSE; 14126 from_ill = ill_v4->ill_move_peer; 14127 from_ill->ill_move_in_progress = B_FALSE; 14128 from_ill->ill_move_peer = NULL; 14129 mutex_enter(&from_ill->ill_lock); 14130 from_ill->ill_state_flags &= ~ILL_CHANGING; 14131 mutex_exit(&from_ill->ill_lock); 14132 if (ill_v6 == NULL) { 14133 if (from_ill->ill_phyint->phyint_flags & 14134 PHYI_STANDBY) { 14135 phyint_inactive(from_ill->ill_phyint); 14136 } 14137 if (ill_v4->ill_phyint->phyint_flags & 14138 PHYI_STANDBY) { 14139 phyint_inactive(ill_v4->ill_phyint); 14140 } 14141 } 14142 ill_v4->ill_move_peer = NULL; 14143 } 14144 } 14145 14146 if (ill_v6 != NULL) { 14147 ill_v6->ill_up_ipifs = B_TRUE; 14148 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14149 ipif = ipif->ipif_next) { 14150 mutex_enter(&ill_v6->ill_lock); 14151 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14152 IPIF_UNMARK_MOVING(ipif); 14153 mutex_exit(&ill_v6->ill_lock); 14154 if (ipif->ipif_was_up) { 14155 if (!(ipif->ipif_flags & IPIF_UP)) 14156 err = ipif_up(ipif, q, mp); 14157 ipif->ipif_was_up = B_FALSE; 14158 if (err != 0) { 14159 /* 14160 * Can there be any other error ? 14161 */ 14162 ASSERT(err == EINPROGRESS); 14163 return (err); 14164 } 14165 } 14166 } 14167 mutex_enter(&ill_v6->ill_lock); 14168 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14169 mutex_exit(&ill_v6->ill_lock); 14170 ill_v6->ill_up_ipifs = B_FALSE; 14171 if (ill_v6->ill_move_in_progress) { 14172 ASSERT(ill_v6->ill_move_peer != NULL); 14173 ill_v6->ill_move_in_progress = B_FALSE; 14174 from_ill = ill_v6->ill_move_peer; 14175 from_ill->ill_move_in_progress = B_FALSE; 14176 from_ill->ill_move_peer = NULL; 14177 mutex_enter(&from_ill->ill_lock); 14178 from_ill->ill_state_flags &= ~ILL_CHANGING; 14179 mutex_exit(&from_ill->ill_lock); 14180 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14181 phyint_inactive(from_ill->ill_phyint); 14182 } 14183 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14184 phyint_inactive(ill_v6->ill_phyint); 14185 } 14186 ill_v6->ill_move_peer = NULL; 14187 } 14188 } 14189 return (0); 14190 } 14191 14192 /* 14193 * bring down all the approriate ipifs. 14194 */ 14195 /* ARGSUSED */ 14196 static void 14197 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14198 { 14199 ipif_t *ipif; 14200 14201 ASSERT(IAM_WRITER_ILL(ill)); 14202 14203 /* 14204 * Except for ipif_state_flags the other fields of the ipif/ill that 14205 * are modified below are protected implicitly since we are a writer 14206 */ 14207 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14208 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14209 continue; 14210 /* 14211 * Don't bring down the LINK LOCAL addresses as they are tied 14212 * to physical interface and they don't move. Treat them as 14213 * IPIF_NOFAILOVER. 14214 */ 14215 if (chk_nofailover && ill->ill_isv6 && 14216 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) 14217 continue; 14218 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14219 /* 14220 * We go through the ipif_down logic even if the ipif 14221 * is already down, since routes can be added based 14222 * on down ipifs. Going through ipif_down once again 14223 * will delete any IREs created based on these routes. 14224 */ 14225 if (ipif->ipif_flags & IPIF_UP) 14226 ipif->ipif_was_up = B_TRUE; 14227 /* 14228 * If called with chk_nofailover true ipif is moving. 14229 */ 14230 mutex_enter(&ill->ill_lock); 14231 if (chk_nofailover) { 14232 ipif->ipif_state_flags |= 14233 IPIF_MOVING | IPIF_CHANGING; 14234 } else { 14235 ipif->ipif_state_flags |= IPIF_CHANGING; 14236 } 14237 mutex_exit(&ill->ill_lock); 14238 /* 14239 * Need to re-create net/subnet bcast ires if 14240 * they are dependent on ipif. 14241 */ 14242 if (!ipif->ipif_isv6) 14243 ipif_check_bcast_ires(ipif); 14244 (void) ipif_logical_down(ipif, NULL, NULL); 14245 ipif_non_duplicate(ipif); 14246 ipif_down_tail(ipif); 14247 } 14248 } 14249 } 14250 14251 #define IPSQ_INC_REF(ipsq, ipst) { \ 14252 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14253 (ipsq)->ipsq_refs++; \ 14254 } 14255 14256 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14257 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14258 (ipsq)->ipsq_refs--; \ 14259 if ((ipsq)->ipsq_refs == 0) \ 14260 (ipsq)->ipsq_name[0] = '\0'; \ 14261 } 14262 14263 /* 14264 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14265 * new_ipsq. 14266 */ 14267 static void 14268 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14269 { 14270 phyint_t *phyint; 14271 phyint_t *next_phyint; 14272 14273 /* 14274 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14275 * writer and the ill_lock of the ill in question. Also the dest 14276 * ipsq can't vanish while we hold the ill_g_lock as writer. 14277 */ 14278 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14279 14280 phyint = cur_ipsq->ipsq_phyint_list; 14281 cur_ipsq->ipsq_phyint_list = NULL; 14282 while (phyint != NULL) { 14283 next_phyint = phyint->phyint_ipsq_next; 14284 IPSQ_DEC_REF(cur_ipsq, ipst); 14285 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14286 new_ipsq->ipsq_phyint_list = phyint; 14287 IPSQ_INC_REF(new_ipsq, ipst); 14288 phyint->phyint_ipsq = new_ipsq; 14289 phyint = next_phyint; 14290 } 14291 } 14292 14293 #define SPLIT_SUCCESS 0 14294 #define SPLIT_NOT_NEEDED 1 14295 #define SPLIT_FAILED 2 14296 14297 int 14298 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14299 ip_stack_t *ipst) 14300 { 14301 ipsq_t *newipsq = NULL; 14302 14303 /* 14304 * Assertions denote pre-requisites for changing the ipsq of 14305 * a phyint 14306 */ 14307 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14308 /* 14309 * <ill-phyint> assocs can't change while ill_g_lock 14310 * is held as writer. See ill_phyint_reinit() 14311 */ 14312 ASSERT(phyint->phyint_illv4 == NULL || 14313 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14314 ASSERT(phyint->phyint_illv6 == NULL || 14315 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14316 14317 if ((phyint->phyint_groupname_len != 14318 (strlen(cur_ipsq->ipsq_name) + 1) || 14319 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14320 phyint->phyint_groupname_len) != 0)) { 14321 /* 14322 * Once we fail in creating a new ipsq due to memory shortage, 14323 * don't attempt to create new ipsq again, based on another 14324 * phyint, since we want all phyints belonging to an IPMP group 14325 * to be in the same ipsq even in the event of mem alloc fails. 14326 */ 14327 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14328 cur_ipsq, ipst); 14329 if (newipsq == NULL) { 14330 /* Memory allocation failure */ 14331 return (SPLIT_FAILED); 14332 } else { 14333 /* ipsq_refs protected by ill_g_lock (writer) */ 14334 IPSQ_DEC_REF(cur_ipsq, ipst); 14335 phyint->phyint_ipsq = newipsq; 14336 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14337 newipsq->ipsq_phyint_list = phyint; 14338 IPSQ_INC_REF(newipsq, ipst); 14339 return (SPLIT_SUCCESS); 14340 } 14341 } 14342 return (SPLIT_NOT_NEEDED); 14343 } 14344 14345 /* 14346 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14347 * to do this split 14348 */ 14349 static int 14350 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14351 { 14352 ipsq_t *newipsq; 14353 14354 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14355 /* 14356 * <ill-phyint> assocs can't change while ill_g_lock 14357 * is held as writer. See ill_phyint_reinit() 14358 */ 14359 14360 ASSERT(phyint->phyint_illv4 == NULL || 14361 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14362 ASSERT(phyint->phyint_illv6 == NULL || 14363 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14364 14365 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14366 phyint->phyint_illv4: phyint->phyint_illv6)) { 14367 /* 14368 * ipsq_init failed due to no memory 14369 * caller will use the same ipsq 14370 */ 14371 return (SPLIT_FAILED); 14372 } 14373 14374 /* ipsq_ref is protected by ill_g_lock (writer) */ 14375 IPSQ_DEC_REF(cur_ipsq, ipst); 14376 14377 /* 14378 * This is a new ipsq that is unknown to the world. 14379 * So we don't need to hold ipsq_lock, 14380 */ 14381 newipsq = phyint->phyint_ipsq; 14382 newipsq->ipsq_writer = NULL; 14383 newipsq->ipsq_reentry_cnt--; 14384 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14385 #ifdef DEBUG 14386 newipsq->ipsq_depth = 0; 14387 #endif 14388 14389 return (SPLIT_SUCCESS); 14390 } 14391 14392 /* 14393 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14394 * ipsq's representing their individual groups or themselves. Return 14395 * whether split needs to be retried again later. 14396 */ 14397 static boolean_t 14398 ill_split_ipsq(ipsq_t *cur_ipsq) 14399 { 14400 phyint_t *phyint; 14401 phyint_t *next_phyint; 14402 int error; 14403 boolean_t need_retry = B_FALSE; 14404 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14405 14406 phyint = cur_ipsq->ipsq_phyint_list; 14407 cur_ipsq->ipsq_phyint_list = NULL; 14408 while (phyint != NULL) { 14409 next_phyint = phyint->phyint_ipsq_next; 14410 /* 14411 * 'created' will tell us whether the callee actually 14412 * created an ipsq. Lack of memory may force the callee 14413 * to return without creating an ipsq. 14414 */ 14415 if (phyint->phyint_groupname == NULL) { 14416 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14417 } else { 14418 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14419 need_retry, ipst); 14420 } 14421 14422 switch (error) { 14423 case SPLIT_FAILED: 14424 need_retry = B_TRUE; 14425 /* FALLTHRU */ 14426 case SPLIT_NOT_NEEDED: 14427 /* 14428 * Keep it on the list. 14429 */ 14430 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14431 cur_ipsq->ipsq_phyint_list = phyint; 14432 break; 14433 case SPLIT_SUCCESS: 14434 break; 14435 default: 14436 ASSERT(0); 14437 } 14438 14439 phyint = next_phyint; 14440 } 14441 return (need_retry); 14442 } 14443 14444 /* 14445 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14446 * and return the ills in the list. This list will be 14447 * needed to unlock all the ills later on by the caller. 14448 * The <ill-ipsq> associations could change between the 14449 * lock and unlock. Hence the unlock can't traverse the 14450 * ipsq to get the list of ills. 14451 */ 14452 static int 14453 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14454 { 14455 int cnt = 0; 14456 phyint_t *phyint; 14457 ip_stack_t *ipst = ipsq->ipsq_ipst; 14458 14459 /* 14460 * The caller holds ill_g_lock to ensure that the ill memberships 14461 * of the ipsq don't change 14462 */ 14463 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14464 14465 phyint = ipsq->ipsq_phyint_list; 14466 while (phyint != NULL) { 14467 if (phyint->phyint_illv4 != NULL) { 14468 ASSERT(cnt < list_max); 14469 list[cnt++] = phyint->phyint_illv4; 14470 } 14471 if (phyint->phyint_illv6 != NULL) { 14472 ASSERT(cnt < list_max); 14473 list[cnt++] = phyint->phyint_illv6; 14474 } 14475 phyint = phyint->phyint_ipsq_next; 14476 } 14477 ill_lock_ills(list, cnt); 14478 return (cnt); 14479 } 14480 14481 void 14482 ill_lock_ills(ill_t **list, int cnt) 14483 { 14484 int i; 14485 14486 if (cnt > 1) { 14487 boolean_t try_again; 14488 do { 14489 try_again = B_FALSE; 14490 for (i = 0; i < cnt - 1; i++) { 14491 if (list[i] < list[i + 1]) { 14492 ill_t *tmp; 14493 14494 /* swap the elements */ 14495 tmp = list[i]; 14496 list[i] = list[i + 1]; 14497 list[i + 1] = tmp; 14498 try_again = B_TRUE; 14499 } 14500 } 14501 } while (try_again); 14502 } 14503 14504 for (i = 0; i < cnt; i++) { 14505 if (i == 0) { 14506 if (list[i] != NULL) 14507 mutex_enter(&list[i]->ill_lock); 14508 else 14509 return; 14510 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14511 mutex_enter(&list[i]->ill_lock); 14512 } 14513 } 14514 } 14515 14516 void 14517 ill_unlock_ills(ill_t **list, int cnt) 14518 { 14519 int i; 14520 14521 for (i = 0; i < cnt; i++) { 14522 if ((i == 0) && (list[i] != NULL)) { 14523 mutex_exit(&list[i]->ill_lock); 14524 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14525 mutex_exit(&list[i]->ill_lock); 14526 } 14527 } 14528 } 14529 14530 /* 14531 * Merge all the ills from 1 ipsq group into another ipsq group. 14532 * The source ipsq group is specified by the ipsq associated with 14533 * 'from_ill'. The destination ipsq group is specified by the ipsq 14534 * associated with 'to_ill' or 'groupname' respectively. 14535 * Note that ipsq itself does not have a reference count mechanism 14536 * and functions don't look up an ipsq and pass it around. Instead 14537 * functions pass around an ill or groupname, and the ipsq is looked 14538 * up from the ill or groupname and the required operation performed 14539 * atomically with the lookup on the ipsq. 14540 */ 14541 static int 14542 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14543 queue_t *q) 14544 { 14545 ipsq_t *old_ipsq; 14546 ipsq_t *new_ipsq; 14547 ill_t **ill_list; 14548 int cnt; 14549 size_t ill_list_size; 14550 boolean_t became_writer_on_new_sq = B_FALSE; 14551 ip_stack_t *ipst = from_ill->ill_ipst; 14552 14553 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14554 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14555 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14556 14557 /* 14558 * Need to hold ill_g_lock as writer and also the ill_lock to 14559 * change the <ill-ipsq> assoc of an ill. Need to hold the 14560 * ipsq_lock to prevent new messages from landing on an ipsq. 14561 */ 14562 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14563 14564 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14565 if (groupname != NULL) 14566 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14567 else { 14568 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14569 } 14570 14571 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14572 14573 /* 14574 * both groups are on the same ipsq. 14575 */ 14576 if (old_ipsq == new_ipsq) { 14577 rw_exit(&ipst->ips_ill_g_lock); 14578 return (0); 14579 } 14580 14581 cnt = old_ipsq->ipsq_refs << 1; 14582 ill_list_size = cnt * sizeof (ill_t *); 14583 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14584 if (ill_list == NULL) { 14585 rw_exit(&ipst->ips_ill_g_lock); 14586 return (ENOMEM); 14587 } 14588 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14589 14590 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14591 mutex_enter(&new_ipsq->ipsq_lock); 14592 if ((new_ipsq->ipsq_writer == NULL && 14593 new_ipsq->ipsq_current_ipif == NULL) || 14594 (new_ipsq->ipsq_writer == curthread)) { 14595 new_ipsq->ipsq_writer = curthread; 14596 new_ipsq->ipsq_reentry_cnt++; 14597 became_writer_on_new_sq = B_TRUE; 14598 } 14599 14600 /* 14601 * We are holding ill_g_lock as writer and all the ill locks of 14602 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14603 * message can land up on the old ipsq even though we don't hold the 14604 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14605 */ 14606 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14607 14608 /* 14609 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14610 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14611 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14612 */ 14613 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14614 14615 /* 14616 * Mark the new ipsq as needing a split since it is currently 14617 * being shared by more than 1 IPMP group. The split will 14618 * occur at the end of ipsq_exit 14619 */ 14620 new_ipsq->ipsq_split = B_TRUE; 14621 14622 /* Now release all the locks */ 14623 mutex_exit(&new_ipsq->ipsq_lock); 14624 ill_unlock_ills(ill_list, cnt); 14625 rw_exit(&ipst->ips_ill_g_lock); 14626 14627 kmem_free(ill_list, ill_list_size); 14628 14629 /* 14630 * If we succeeded in becoming writer on the new ipsq, then 14631 * drain the new ipsq and start processing all enqueued messages 14632 * including the current ioctl we are processing which is either 14633 * a set groupname or failover/failback. 14634 */ 14635 if (became_writer_on_new_sq) 14636 ipsq_exit(new_ipsq); 14637 14638 /* 14639 * syncq has been changed and all the messages have been moved. 14640 */ 14641 mutex_enter(&old_ipsq->ipsq_lock); 14642 old_ipsq->ipsq_current_ipif = NULL; 14643 old_ipsq->ipsq_current_ioctl = 0; 14644 old_ipsq->ipsq_current_done = B_TRUE; 14645 mutex_exit(&old_ipsq->ipsq_lock); 14646 return (EINPROGRESS); 14647 } 14648 14649 /* 14650 * Delete and add the loopback copy and non-loopback copy of 14651 * the BROADCAST ire corresponding to ill and addr. Used to 14652 * group broadcast ires together when ill becomes part of 14653 * a group. 14654 * 14655 * This function is also called when ill is leaving the group 14656 * so that the ires belonging to the group gets re-grouped. 14657 */ 14658 static void 14659 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14660 { 14661 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14662 ire_t **ire_ptpn = &ire_head; 14663 ip_stack_t *ipst = ill->ill_ipst; 14664 14665 /* 14666 * The loopback and non-loopback IREs are inserted in the order in which 14667 * they're found, on the basis that they are correctly ordered (loopback 14668 * first). 14669 */ 14670 for (;;) { 14671 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14672 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14673 if (ire == NULL) 14674 break; 14675 14676 /* 14677 * we are passing in KM_SLEEP because it is not easy to 14678 * go back to a sane state in case of memory failure. 14679 */ 14680 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14681 ASSERT(nire != NULL); 14682 bzero(nire, sizeof (ire_t)); 14683 /* 14684 * Don't use ire_max_frag directly since we don't 14685 * hold on to 'ire' until we add the new ire 'nire' and 14686 * we don't want the new ire to have a dangling reference 14687 * to 'ire'. The ire_max_frag of a broadcast ire must 14688 * be in sync with the ipif_mtu of the associate ipif. 14689 * For eg. this happens as a result of SIOCSLIFNAME, 14690 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14691 * the driver. A change in ire_max_frag triggered as 14692 * as a result of path mtu discovery, or due to an 14693 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14694 * route change -mtu command does not apply to broadcast ires. 14695 * 14696 * XXX We need a recovery strategy here if ire_init fails 14697 */ 14698 if (ire_init(nire, 14699 (uchar_t *)&ire->ire_addr, 14700 (uchar_t *)&ire->ire_mask, 14701 (uchar_t *)&ire->ire_src_addr, 14702 (uchar_t *)&ire->ire_gateway_addr, 14703 ire->ire_stq == NULL ? &ip_loopback_mtu : 14704 &ire->ire_ipif->ipif_mtu, 14705 ire->ire_nce, 14706 ire->ire_rfq, 14707 ire->ire_stq, 14708 ire->ire_type, 14709 ire->ire_ipif, 14710 ire->ire_cmask, 14711 ire->ire_phandle, 14712 ire->ire_ihandle, 14713 ire->ire_flags, 14714 &ire->ire_uinfo, 14715 NULL, 14716 NULL, 14717 ipst) == NULL) { 14718 cmn_err(CE_PANIC, "ire_init() failed"); 14719 } 14720 ire_delete(ire); 14721 ire_refrele(ire); 14722 14723 /* 14724 * The newly created IREs are inserted at the tail of the list 14725 * starting with ire_head. As we've just allocated them no one 14726 * knows about them so it's safe. 14727 */ 14728 *ire_ptpn = nire; 14729 ire_ptpn = &nire->ire_next; 14730 } 14731 14732 for (nire = ire_head; nire != NULL; nire = nire_next) { 14733 int error; 14734 ire_t *oire; 14735 /* unlink the IRE from our list before calling ire_add() */ 14736 nire_next = nire->ire_next; 14737 nire->ire_next = NULL; 14738 14739 /* ire_add adds the ire at the right place in the list */ 14740 oire = nire; 14741 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14742 ASSERT(error == 0); 14743 ASSERT(oire == nire); 14744 ire_refrele(nire); /* Held in ire_add */ 14745 } 14746 } 14747 14748 /* 14749 * This function is usually called when an ill is inserted in 14750 * a group and all the ipifs are already UP. As all the ipifs 14751 * are already UP, the broadcast ires have already been created 14752 * and been inserted. But, ire_add_v4 would not have grouped properly. 14753 * We need to re-group for the benefit of ip_wput_ire which 14754 * expects BROADCAST ires to be grouped properly to avoid sending 14755 * more than one copy of the broadcast packet per group. 14756 * 14757 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14758 * because when ipif_up_done ends up calling this, ires have 14759 * already been added before illgrp_insert i.e before ill_group 14760 * has been initialized. 14761 */ 14762 static void 14763 ill_group_bcast_for_xmit(ill_t *ill) 14764 { 14765 ill_group_t *illgrp; 14766 ipif_t *ipif; 14767 ipaddr_t addr; 14768 ipaddr_t net_mask; 14769 ipaddr_t subnet_netmask; 14770 14771 illgrp = ill->ill_group; 14772 14773 /* 14774 * This function is called even when an ill is deleted from 14775 * the group. Hence, illgrp could be null. 14776 */ 14777 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14778 return; 14779 14780 /* 14781 * Delete all the BROADCAST ires matching this ill and add 14782 * them back. This time, ire_add_v4 should take care of 14783 * grouping them with others because ill is part of the 14784 * group. 14785 */ 14786 ill_bcast_delete_and_add(ill, 0); 14787 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14788 14789 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14790 14791 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14792 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14793 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14794 } else { 14795 net_mask = htonl(IN_CLASSA_NET); 14796 } 14797 addr = net_mask & ipif->ipif_subnet; 14798 ill_bcast_delete_and_add(ill, addr); 14799 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14800 14801 subnet_netmask = ipif->ipif_net_mask; 14802 addr = ipif->ipif_subnet; 14803 ill_bcast_delete_and_add(ill, addr); 14804 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14805 } 14806 } 14807 14808 /* 14809 * This function is called from illgrp_delete when ill is being deleted 14810 * from the group. 14811 * 14812 * As ill is not there in the group anymore, any address belonging 14813 * to this ill should be cleared of IRE_MARK_NORECV. 14814 */ 14815 static void 14816 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14817 { 14818 ire_t *ire; 14819 irb_t *irb; 14820 ip_stack_t *ipst = ill->ill_ipst; 14821 14822 ASSERT(ill->ill_group == NULL); 14823 14824 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14825 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14826 14827 if (ire != NULL) { 14828 /* 14829 * IPMP and plumbing operations are serialized on the ipsq, so 14830 * no one will insert or delete a broadcast ire under our feet. 14831 */ 14832 irb = ire->ire_bucket; 14833 rw_enter(&irb->irb_lock, RW_READER); 14834 ire_refrele(ire); 14835 14836 for (; ire != NULL; ire = ire->ire_next) { 14837 if (ire->ire_addr != addr) 14838 break; 14839 if (ire_to_ill(ire) != ill) 14840 continue; 14841 14842 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14843 ire->ire_marks &= ~IRE_MARK_NORECV; 14844 } 14845 rw_exit(&irb->irb_lock); 14846 } 14847 } 14848 14849 ire_t * 14850 irep_insert(ill_group_t *illgrp, ipaddr_t addr, ire_t *ire, ire_t ***pirep) 14851 { 14852 boolean_t first = B_TRUE; 14853 ire_t *clear_ire = NULL; 14854 ire_t *start_ire = NULL; 14855 uint64_t match_flags; 14856 uint64_t phyi_flags; 14857 boolean_t fallback = B_FALSE; 14858 14859 /* 14860 * irb_lock must be held by the caller. 14861 * Get to the first ire matching the address and the 14862 * group. If the address does not match we are done 14863 * as we could not find the IRE. If the address matches 14864 * we should get to the first one matching the group. 14865 */ 14866 while (ire != NULL) { 14867 if (ire->ire_addr != addr || 14868 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14869 break; 14870 } 14871 ire = ire->ire_next; 14872 } 14873 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14874 start_ire = ire; 14875 redo: 14876 while (ire != NULL && ire->ire_addr == addr && 14877 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14878 /* 14879 * The first ire for any address within a group 14880 * should always be the one with IRE_MARK_NORECV cleared 14881 * so that ip_wput_ire can avoid searching for one. 14882 * Note down the insertion point which will be used 14883 * later. 14884 */ 14885 if (first && (*pirep == NULL)) 14886 *pirep = ire->ire_ptpn; 14887 /* 14888 * PHYI_FAILED is set when the interface fails. 14889 * This interface might have become good, but the 14890 * daemon has not yet detected. We should still 14891 * not receive on this. PHYI_OFFLINE should never 14892 * be picked as this has been offlined and soon 14893 * be removed. 14894 */ 14895 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14896 if (phyi_flags & PHYI_OFFLINE) { 14897 ire->ire_marks |= IRE_MARK_NORECV; 14898 ire = ire->ire_next; 14899 continue; 14900 } 14901 if (phyi_flags & match_flags) { 14902 ire->ire_marks |= IRE_MARK_NORECV; 14903 ire = ire->ire_next; 14904 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14905 PHYI_INACTIVE) { 14906 fallback = B_TRUE; 14907 } 14908 continue; 14909 } 14910 if (first) { 14911 /* 14912 * We will move this to the front of the list later 14913 * on. 14914 */ 14915 clear_ire = ire; 14916 ire->ire_marks &= ~IRE_MARK_NORECV; 14917 } else { 14918 ire->ire_marks |= IRE_MARK_NORECV; 14919 } 14920 first = B_FALSE; 14921 ire = ire->ire_next; 14922 } 14923 /* 14924 * If we never nominated anybody, try nominating at least 14925 * an INACTIVE, if we found one. Do it only once though. 14926 */ 14927 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14928 fallback) { 14929 match_flags = PHYI_FAILED; 14930 ire = start_ire; 14931 *pirep = NULL; 14932 goto redo; 14933 } 14934 return (clear_ire); 14935 } 14936 14937 /* 14938 * This function must be called only after the broadcast ires 14939 * have been grouped together. For a given address addr, nominate 14940 * only one of the ires whose interface is not FAILED or OFFLINE. 14941 * 14942 * This is also called when an ipif goes down, so that we can nominate 14943 * a different ire with the same address for receiving. 14944 */ 14945 static void 14946 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 14947 { 14948 irb_t *irb; 14949 ire_t *ire; 14950 ire_t *ire1; 14951 ire_t *save_ire; 14952 ire_t **irep = NULL; 14953 ire_t *clear_ire = NULL; 14954 ire_t *new_lb_ire; 14955 ire_t *new_nlb_ire; 14956 boolean_t new_lb_ire_used = B_FALSE; 14957 boolean_t new_nlb_ire_used = B_FALSE; 14958 boolean_t refrele_lb_ire = B_FALSE; 14959 boolean_t refrele_nlb_ire = B_FALSE; 14960 uint_t max_frag; 14961 14962 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14963 NULL, MATCH_IRE_TYPE, ipst); 14964 /* 14965 * We may not be able to find some ires if a previous 14966 * ire_create failed. This happens when an ipif goes 14967 * down and we are unable to create BROADCAST ires due 14968 * to memory failure. Thus, we have to check for NULL 14969 * below. This should handle the case for LOOPBACK, 14970 * POINTOPOINT and interfaces with some POINTOPOINT 14971 * logicals for which there are no BROADCAST ires. 14972 */ 14973 if (ire == NULL) 14974 return; 14975 /* 14976 * Currently IRE_BROADCASTS are deleted when an ipif 14977 * goes down which runs exclusively. Thus, setting 14978 * IRE_MARK_RCVD should not race with ire_delete marking 14979 * IRE_MARK_CONDEMNED. We grab the lock below just to 14980 * be consistent with other parts of the code that walks 14981 * a given bucket. 14982 */ 14983 save_ire = ire; 14984 irb = ire->ire_bucket; 14985 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14986 if (new_lb_ire == NULL) { 14987 ire_refrele(ire); 14988 return; 14989 } 14990 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14991 if (new_nlb_ire == NULL) { 14992 ire_refrele(ire); 14993 kmem_cache_free(ire_cache, new_lb_ire); 14994 return; 14995 } 14996 IRB_REFHOLD(irb); 14997 rw_enter(&irb->irb_lock, RW_WRITER); 14998 clear_ire = irep_insert(illgrp, addr, ire, &irep); 14999 15000 /* 15001 * irep non-NULL indicates that we entered the while loop 15002 * above. If clear_ire is at the insertion point, we don't 15003 * have to do anything. clear_ire will be NULL if all the 15004 * interfaces are failed. 15005 * 15006 * We cannot unlink and reinsert the ire at the right place 15007 * in the list since there can be other walkers of this bucket. 15008 * Instead we delete and recreate the ire 15009 */ 15010 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15011 ire_t *clear_ire_stq = NULL; 15012 ire_t *clr_ire = NULL; 15013 ire_t *ire_next = NULL; 15014 15015 if (clear_ire->ire_stq == NULL) 15016 ire_next = clear_ire->ire_next; 15017 15018 rw_exit(&irb->irb_lock); 15019 15020 bzero(new_lb_ire, sizeof (ire_t)); 15021 /* XXX We need a recovery strategy here. */ 15022 if (ire_init(new_lb_ire, 15023 (uchar_t *)&clear_ire->ire_addr, 15024 (uchar_t *)&clear_ire->ire_mask, 15025 (uchar_t *)&clear_ire->ire_src_addr, 15026 (uchar_t *)&clear_ire->ire_gateway_addr, 15027 &clear_ire->ire_max_frag, 15028 NULL, /* let ire_nce_init derive the resolver info */ 15029 clear_ire->ire_rfq, 15030 clear_ire->ire_stq, 15031 clear_ire->ire_type, 15032 clear_ire->ire_ipif, 15033 clear_ire->ire_cmask, 15034 clear_ire->ire_phandle, 15035 clear_ire->ire_ihandle, 15036 clear_ire->ire_flags, 15037 &clear_ire->ire_uinfo, 15038 NULL, 15039 NULL, 15040 ipst) == NULL) 15041 cmn_err(CE_PANIC, "ire_init() failed"); 15042 15043 refrele_lb_ire = B_TRUE; 15044 15045 if (ire_next != NULL && 15046 ire_next->ire_stq != NULL && 15047 ire_next->ire_addr == clear_ire->ire_addr && 15048 ire_next->ire_ipif->ipif_ill == 15049 clear_ire->ire_ipif->ipif_ill) { 15050 clear_ire_stq = ire_next; 15051 15052 bzero(new_nlb_ire, sizeof (ire_t)); 15053 /* XXX We need a recovery strategy here. */ 15054 if (ire_init(new_nlb_ire, 15055 (uchar_t *)&clear_ire_stq->ire_addr, 15056 (uchar_t *)&clear_ire_stq->ire_mask, 15057 (uchar_t *)&clear_ire_stq->ire_src_addr, 15058 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15059 &clear_ire_stq->ire_max_frag, 15060 NULL, 15061 clear_ire_stq->ire_rfq, 15062 clear_ire_stq->ire_stq, 15063 clear_ire_stq->ire_type, 15064 clear_ire_stq->ire_ipif, 15065 clear_ire_stq->ire_cmask, 15066 clear_ire_stq->ire_phandle, 15067 clear_ire_stq->ire_ihandle, 15068 clear_ire_stq->ire_flags, 15069 &clear_ire_stq->ire_uinfo, 15070 NULL, 15071 NULL, 15072 ipst) == NULL) 15073 cmn_err(CE_PANIC, "ire_init() failed"); 15074 15075 refrele_nlb_ire = B_TRUE; 15076 } 15077 15078 rw_enter(&irb->irb_lock, RW_WRITER); 15079 /* 15080 * irb_lock was dropped across call to ire_init() due to 15081 * lock ordering issue with ipst->ips_ndp{4,6}->ndp_g_lock 15082 * mutex lock. Therefore irep could have changed. call 15083 * irep_insert() to get the new insertion point (irep) and 15084 * recheck all known conditions. 15085 */ 15086 irep = NULL; 15087 clr_ire = irep_insert(illgrp, addr, save_ire, &irep); 15088 if ((irep != NULL) && (*irep != clear_ire) && 15089 (clr_ire == clear_ire)) { 15090 if ((clear_ire_stq != NULL) && 15091 (clr_ire->ire_next != clear_ire_stq)) 15092 clear_ire_stq = NULL; 15093 /* 15094 * Delete the ire. We can't call ire_delete() since 15095 * we are holding the bucket lock. We can't release the 15096 * bucket lock since we can't allow irep to change. 15097 * So just mark it CONDEMNED. 15098 * The IRB_REFRELE will delete the ire from the list 15099 * and do the refrele. 15100 */ 15101 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15102 irb->irb_marks |= IRB_MARK_CONDEMNED; 15103 15104 if (clear_ire_stq != NULL && 15105 clear_ire_stq->ire_nce != NULL) { 15106 nce_fastpath_list_delete( 15107 clear_ire_stq->ire_nce); 15108 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15109 } 15110 15111 /* 15112 * Also take care of otherfields like ib/ob pkt count 15113 * etc. Need to dup them. 15114 * ditto in ill_bcast_delete_and_add 15115 */ 15116 15117 /* Set the max_frag before adding the ire */ 15118 max_frag = *new_lb_ire->ire_max_fragp; 15119 new_lb_ire->ire_max_fragp = NULL; 15120 new_lb_ire->ire_max_frag = max_frag; 15121 15122 /* Add the new ire's. Insert at *irep */ 15123 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15124 ire1 = *irep; 15125 if (ire1 != NULL) 15126 ire1->ire_ptpn = &new_lb_ire->ire_next; 15127 new_lb_ire->ire_next = ire1; 15128 /* Link the new one in. */ 15129 new_lb_ire->ire_ptpn = irep; 15130 membar_producer(); 15131 *irep = new_lb_ire; 15132 new_lb_ire_used = B_TRUE; 15133 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15134 ire_stats_inserted); 15135 new_lb_ire->ire_bucket->irb_ire_cnt++; 15136 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), 15137 new_lb_ire->ire_ipif, 15138 (char *), "ire", (void *), new_lb_ire); 15139 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15140 15141 if (clear_ire_stq != NULL) { 15142 ill_t *ire_ill; 15143 /* Set the max_frag before adding the ire */ 15144 max_frag = *new_nlb_ire->ire_max_fragp; 15145 new_nlb_ire->ire_max_fragp = NULL; 15146 new_nlb_ire->ire_max_frag = max_frag; 15147 15148 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15149 irep = &new_lb_ire->ire_next; 15150 /* Add the new ire. Insert at *irep */ 15151 ire1 = *irep; 15152 if (ire1 != NULL) 15153 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15154 new_nlb_ire->ire_next = ire1; 15155 /* Link the new one in. */ 15156 new_nlb_ire->ire_ptpn = irep; 15157 membar_producer(); 15158 *irep = new_nlb_ire; 15159 new_nlb_ire_used = B_TRUE; 15160 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15161 ire_stats_inserted); 15162 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15163 DTRACE_PROBE3(ipif__incr__cnt, 15164 (ipif_t *), new_nlb_ire->ire_ipif, 15165 (char *), "ire", (void *), new_nlb_ire); 15166 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15167 DTRACE_PROBE3(ill__incr__cnt, 15168 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15169 (char *), "ire", (void *), new_nlb_ire); 15170 ire_ill = (ill_t *)new_nlb_ire->ire_stq->q_ptr; 15171 ire_ill->ill_ire_cnt++; 15172 } 15173 } 15174 } 15175 ire_refrele(save_ire); 15176 rw_exit(&irb->irb_lock); 15177 /* 15178 * Since we dropped the irb_lock across call to ire_init() 15179 * and rechecking known conditions, it is possible that 15180 * the checks might fail, therefore undo the work done by 15181 * ire_init() by calling ire_refrele() on the newly created ire. 15182 */ 15183 if (!new_lb_ire_used) { 15184 if (refrele_lb_ire) { 15185 ire_refrele(new_lb_ire); 15186 } else { 15187 kmem_cache_free(ire_cache, new_lb_ire); 15188 } 15189 } 15190 if (!new_nlb_ire_used) { 15191 if (refrele_nlb_ire) { 15192 ire_refrele(new_nlb_ire); 15193 } else { 15194 kmem_cache_free(ire_cache, new_nlb_ire); 15195 } 15196 } 15197 IRB_REFRELE(irb); 15198 } 15199 15200 /* 15201 * Whenever an ipif goes down we have to renominate a different 15202 * broadcast ire to receive. Whenever an ipif comes up, we need 15203 * to make sure that we have only one nominated to receive. 15204 */ 15205 static void 15206 ipif_renominate_bcast(ipif_t *ipif) 15207 { 15208 ill_t *ill = ipif->ipif_ill; 15209 ipaddr_t subnet_addr; 15210 ipaddr_t net_addr; 15211 ipaddr_t net_mask = 0; 15212 ipaddr_t subnet_netmask; 15213 ipaddr_t addr; 15214 ill_group_t *illgrp; 15215 ip_stack_t *ipst = ill->ill_ipst; 15216 15217 illgrp = ill->ill_group; 15218 /* 15219 * If this is the last ipif going down, it might take 15220 * the ill out of the group. In that case ipif_down -> 15221 * illgrp_delete takes care of doing the nomination. 15222 * ipif_down does not call for this case. 15223 */ 15224 ASSERT(illgrp != NULL); 15225 15226 /* There could not have been any ires associated with this */ 15227 if (ipif->ipif_subnet == 0) 15228 return; 15229 15230 ill_mark_bcast(illgrp, 0, ipst); 15231 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15232 15233 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15234 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15235 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15236 } else { 15237 net_mask = htonl(IN_CLASSA_NET); 15238 } 15239 addr = net_mask & ipif->ipif_subnet; 15240 ill_mark_bcast(illgrp, addr, ipst); 15241 15242 net_addr = ~net_mask | addr; 15243 ill_mark_bcast(illgrp, net_addr, ipst); 15244 15245 subnet_netmask = ipif->ipif_net_mask; 15246 addr = ipif->ipif_subnet; 15247 ill_mark_bcast(illgrp, addr, ipst); 15248 15249 subnet_addr = ~subnet_netmask | addr; 15250 ill_mark_bcast(illgrp, subnet_addr, ipst); 15251 } 15252 15253 /* 15254 * Whenever we form or delete ill groups, we need to nominate one set of 15255 * BROADCAST ires for receiving in the group. 15256 * 15257 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15258 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15259 * for ill_ipif_up_count to be non-zero. This is the only case where 15260 * ill_ipif_up_count is zero and we would still find the ires. 15261 * 15262 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15263 * ipif is UP and we just have to do the nomination. 15264 * 15265 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15266 * from the group. So, we have to do the nomination. 15267 * 15268 * Because of (3), there could be just one ill in the group. But we have 15269 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15270 * Thus, this function does not optimize when there is only one ill as 15271 * it is not correct for (3). 15272 */ 15273 static void 15274 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15275 { 15276 ill_t *ill; 15277 ipif_t *ipif; 15278 ipaddr_t subnet_addr; 15279 ipaddr_t prev_subnet_addr = 0; 15280 ipaddr_t net_addr; 15281 ipaddr_t prev_net_addr = 0; 15282 ipaddr_t net_mask = 0; 15283 ipaddr_t subnet_netmask; 15284 ipaddr_t addr; 15285 ip_stack_t *ipst; 15286 15287 /* 15288 * When the last memeber is leaving, there is nothing to 15289 * nominate. 15290 */ 15291 if (illgrp->illgrp_ill_count == 0) { 15292 ASSERT(illgrp->illgrp_ill == NULL); 15293 return; 15294 } 15295 15296 ill = illgrp->illgrp_ill; 15297 ASSERT(!ill->ill_isv6); 15298 ipst = ill->ill_ipst; 15299 /* 15300 * We assume that ires with same address and belonging to the 15301 * same group, has been grouped together. Nominating a *single* 15302 * ill in the group for sending and receiving broadcast is done 15303 * by making sure that the first BROADCAST ire (which will be 15304 * the one returned by ire_ctable_lookup for ip_rput and the 15305 * one that will be used in ip_wput_ire) will be the one that 15306 * will not have IRE_MARK_NORECV set. 15307 * 15308 * 1) ip_rput checks and discards packets received on ires marked 15309 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15310 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15311 * first ire in the group for every broadcast address in the group. 15312 * ip_rput will accept packets only on the first ire i.e only 15313 * one copy of the ill. 15314 * 15315 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15316 * packet for the whole group. It needs to send out on the ill 15317 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15318 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15319 * the copy echoed back on other port where the ire is not marked 15320 * with IRE_MARK_NORECV. 15321 * 15322 * Note that we just need to have the first IRE either loopback or 15323 * non-loopback (either of them may not exist if ire_create failed 15324 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15325 * always hit the first one and hence will always accept one copy. 15326 * 15327 * We have a broadcast ire per ill for all the unique prefixes 15328 * hosted on that ill. As we don't have a way of knowing the 15329 * unique prefixes on a given ill and hence in the whole group, 15330 * we just call ill_mark_bcast on all the prefixes that exist 15331 * in the group. For the common case of one prefix, the code 15332 * below optimizes by remebering the last address used for 15333 * markng. In the case of multiple prefixes, this will still 15334 * optimize depending the order of prefixes. 15335 * 15336 * The only unique address across the whole group is 0.0.0.0 and 15337 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15338 * the first ire in the bucket for receiving and disables the 15339 * others. 15340 */ 15341 ill_mark_bcast(illgrp, 0, ipst); 15342 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15343 for (; ill != NULL; ill = ill->ill_group_next) { 15344 15345 for (ipif = ill->ill_ipif; ipif != NULL; 15346 ipif = ipif->ipif_next) { 15347 15348 if (!(ipif->ipif_flags & IPIF_UP) || 15349 ipif->ipif_subnet == 0) { 15350 continue; 15351 } 15352 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15353 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15354 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15355 } else { 15356 net_mask = htonl(IN_CLASSA_NET); 15357 } 15358 addr = net_mask & ipif->ipif_subnet; 15359 if (prev_net_addr == 0 || prev_net_addr != addr) { 15360 ill_mark_bcast(illgrp, addr, ipst); 15361 net_addr = ~net_mask | addr; 15362 ill_mark_bcast(illgrp, net_addr, ipst); 15363 } 15364 prev_net_addr = addr; 15365 15366 subnet_netmask = ipif->ipif_net_mask; 15367 addr = ipif->ipif_subnet; 15368 if (prev_subnet_addr == 0 || 15369 prev_subnet_addr != addr) { 15370 ill_mark_bcast(illgrp, addr, ipst); 15371 subnet_addr = ~subnet_netmask | addr; 15372 ill_mark_bcast(illgrp, subnet_addr, ipst); 15373 } 15374 prev_subnet_addr = addr; 15375 } 15376 } 15377 } 15378 15379 /* 15380 * This function is called while forming ill groups. 15381 * 15382 * Currently, we handle only allmulti groups. We want to join 15383 * allmulti on only one of the ills in the groups. In future, 15384 * when we have link aggregation, we may have to join normal 15385 * multicast groups on multiple ills as switch does inbound load 15386 * balancing. Following are the functions that calls this 15387 * function : 15388 * 15389 * 1) ill_recover_multicast : Interface is coming back UP. 15390 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15391 * will call ill_recover_multicast to recover all the multicast 15392 * groups. We need to make sure that only one member is joined 15393 * in the ill group. 15394 * 15395 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15396 * Somebody is joining allmulti. We need to make sure that only one 15397 * member is joined in the group. 15398 * 15399 * 3) illgrp_insert : If allmulti has already joined, we need to make 15400 * sure that only one member is joined in the group. 15401 * 15402 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15403 * allmulti who we have nominated. We need to pick someother ill. 15404 * 15405 * 5) illgrp_delete : The ill we nominated is leaving the group, 15406 * we need to pick a new ill to join the group. 15407 * 15408 * For (1), (2), (5) - we just have to check whether there is 15409 * a good ill joined in the group. If we could not find any ills 15410 * joined the group, we should join. 15411 * 15412 * For (4), the one that was nominated to receive, left the group. 15413 * There could be nobody joined in the group when this function is 15414 * called. 15415 * 15416 * For (3) - we need to explicitly check whether there are multiple 15417 * ills joined in the group. 15418 * 15419 * For simplicity, we don't differentiate any of the above cases. We 15420 * just leave the group if it is joined on any of them and join on 15421 * the first good ill. 15422 */ 15423 int 15424 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15425 { 15426 ilm_t *ilm; 15427 ill_t *ill; 15428 ill_t *fallback_inactive_ill = NULL; 15429 ill_t *fallback_failed_ill = NULL; 15430 int ret = 0; 15431 15432 /* 15433 * Leave the allmulti on all the ills and start fresh. 15434 */ 15435 for (ill = illgrp->illgrp_ill; ill != NULL; 15436 ill = ill->ill_group_next) { 15437 if (ill->ill_join_allmulti) 15438 ill_leave_allmulti(ill); 15439 } 15440 15441 /* 15442 * Choose a good ill. Fallback to inactive or failed if 15443 * none available. We need to fallback to FAILED in the 15444 * case where we have 2 interfaces in a group - where 15445 * one of them is failed and another is a good one and 15446 * the good one (not marked inactive) is leaving the group. 15447 */ 15448 for (ill = illgrp->illgrp_ill; ill != NULL; ill = ill->ill_group_next) { 15449 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15450 continue; 15451 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15452 fallback_failed_ill = ill; 15453 continue; 15454 } 15455 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15456 fallback_inactive_ill = ill; 15457 continue; 15458 } 15459 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15460 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15461 ret = ill_join_allmulti(ill); 15462 /* 15463 * ill_join_allmulti() can fail because of 15464 * memory failures so make sure we join at 15465 * least on one ill. 15466 */ 15467 if (ill->ill_join_allmulti) 15468 return (0); 15469 } 15470 } 15471 } 15472 if (ret != 0) { 15473 /* 15474 * If we tried nominating above and failed to do so, 15475 * return error. We might have tried multiple times. 15476 * But, return the latest error. 15477 */ 15478 return (ret); 15479 } 15480 if ((ill = fallback_inactive_ill) != NULL) { 15481 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15482 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) 15483 return (ill_join_allmulti(ill)); 15484 } 15485 } else if ((ill = fallback_failed_ill) != NULL) { 15486 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15487 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) 15488 return (ill_join_allmulti(ill)); 15489 } 15490 } 15491 return (0); 15492 } 15493 15494 /* 15495 * This function is called from illgrp_delete after it is 15496 * deleted from the group to reschedule responsibilities 15497 * to a different ill. 15498 */ 15499 static void 15500 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15501 { 15502 ilm_t *ilm; 15503 ipif_t *ipif; 15504 ipaddr_t subnet_addr; 15505 ipaddr_t net_addr; 15506 ipaddr_t net_mask = 0; 15507 ipaddr_t subnet_netmask; 15508 ipaddr_t addr; 15509 ip_stack_t *ipst = ill->ill_ipst; 15510 15511 ASSERT(ill->ill_group == NULL); 15512 /* 15513 * Broadcast Responsibility: 15514 * 15515 * 1. If this ill has been nominated for receiving broadcast 15516 * packets, we need to find a new one. Before we find a new 15517 * one, we need to re-group the ires that are part of this new 15518 * group (assumed by ill_nominate_bcast_rcv). We do this by 15519 * calling ill_group_bcast_for_xmit(ill) which will do the right 15520 * thing for us. 15521 * 15522 * 2. If this ill was not nominated for receiving broadcast 15523 * packets, we need to clear the IRE_MARK_NORECV flag 15524 * so that we continue to send up broadcast packets. 15525 */ 15526 if (!ill->ill_isv6) { 15527 /* 15528 * Case 1 above : No optimization here. Just redo the 15529 * nomination. 15530 */ 15531 ill_group_bcast_for_xmit(ill); 15532 ill_nominate_bcast_rcv(illgrp); 15533 15534 /* 15535 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15536 */ 15537 ill_clear_bcast_mark(ill, 0); 15538 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15539 15540 for (ipif = ill->ill_ipif; ipif != NULL; 15541 ipif = ipif->ipif_next) { 15542 15543 if (!(ipif->ipif_flags & IPIF_UP) || 15544 ipif->ipif_subnet == 0) { 15545 continue; 15546 } 15547 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15548 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15549 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15550 } else { 15551 net_mask = htonl(IN_CLASSA_NET); 15552 } 15553 addr = net_mask & ipif->ipif_subnet; 15554 ill_clear_bcast_mark(ill, addr); 15555 15556 net_addr = ~net_mask | addr; 15557 ill_clear_bcast_mark(ill, net_addr); 15558 15559 subnet_netmask = ipif->ipif_net_mask; 15560 addr = ipif->ipif_subnet; 15561 ill_clear_bcast_mark(ill, addr); 15562 15563 subnet_addr = ~subnet_netmask | addr; 15564 ill_clear_bcast_mark(ill, subnet_addr); 15565 } 15566 } 15567 15568 /* 15569 * Multicast Responsibility. 15570 * 15571 * If we have joined allmulti on this one, find a new member 15572 * in the group to join allmulti. As this ill is already part 15573 * of allmulti, we don't have to join on this one. 15574 * 15575 * If we have not joined allmulti on this one, there is no 15576 * responsibility to handoff. But we need to take new 15577 * responsibility i.e, join allmulti on this one if we need 15578 * to. 15579 */ 15580 if (ill->ill_join_allmulti) { 15581 (void) ill_nominate_mcast_rcv(illgrp); 15582 } else { 15583 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15584 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15585 (void) ill_join_allmulti(ill); 15586 break; 15587 } 15588 } 15589 } 15590 15591 /* 15592 * We intentionally do the flushing of IRE_CACHES only matching 15593 * on the ill and not on groups. Note that we are already deleted 15594 * from the group. 15595 * 15596 * This will make sure that all IRE_CACHES whose stq is pointing 15597 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15598 * deleted and IRE_CACHES that are not pointing at this ill will 15599 * be left alone. 15600 */ 15601 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15602 illgrp_cache_delete, ill, ill); 15603 15604 /* 15605 * Some conn may have cached one of the IREs deleted above. By removing 15606 * the ire reference, we clean up the extra reference to the ill held in 15607 * ire->ire_stq. 15608 */ 15609 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15610 15611 /* 15612 * Re-do source address selection for all the members in the 15613 * group, if they borrowed source address from one of the ipifs 15614 * in this ill. 15615 */ 15616 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15617 if (ill->ill_isv6) { 15618 ipif_update_other_ipifs_v6(ipif, illgrp); 15619 } else { 15620 ipif_update_other_ipifs(ipif, illgrp); 15621 } 15622 } 15623 } 15624 15625 /* 15626 * Delete the ill from the group. The caller makes sure that it is 15627 * in a group and it okay to delete from the group. So, we always 15628 * delete here. 15629 */ 15630 static void 15631 illgrp_delete(ill_t *ill) 15632 { 15633 ill_group_t *illgrp; 15634 ill_group_t *tmpg; 15635 ill_t *tmp_ill; 15636 ip_stack_t *ipst = ill->ill_ipst; 15637 15638 /* 15639 * Reset illgrp_ill_schednext if it was pointing at us. 15640 * We need to do this before we set ill_group to NULL. 15641 */ 15642 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15643 mutex_enter(&ill->ill_lock); 15644 15645 illgrp_reset_schednext(ill); 15646 15647 illgrp = ill->ill_group; 15648 15649 /* Delete the ill from illgrp. */ 15650 if (illgrp->illgrp_ill == ill) { 15651 illgrp->illgrp_ill = ill->ill_group_next; 15652 } else { 15653 tmp_ill = illgrp->illgrp_ill; 15654 while (tmp_ill->ill_group_next != ill) { 15655 tmp_ill = tmp_ill->ill_group_next; 15656 ASSERT(tmp_ill != NULL); 15657 } 15658 tmp_ill->ill_group_next = ill->ill_group_next; 15659 } 15660 ill->ill_group = NULL; 15661 ill->ill_group_next = NULL; 15662 15663 illgrp->illgrp_ill_count--; 15664 mutex_exit(&ill->ill_lock); 15665 rw_exit(&ipst->ips_ill_g_lock); 15666 15667 /* 15668 * As this ill is leaving the group, we need to hand off 15669 * the responsibilities to the other ills in the group, if 15670 * this ill had some responsibilities. 15671 */ 15672 15673 ill_handoff_responsibility(ill, illgrp); 15674 15675 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15676 15677 if (illgrp->illgrp_ill_count == 0) { 15678 15679 ASSERT(illgrp->illgrp_ill == NULL); 15680 if (ill->ill_isv6) { 15681 if (illgrp == ipst->ips_illgrp_head_v6) { 15682 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15683 } else { 15684 tmpg = ipst->ips_illgrp_head_v6; 15685 while (tmpg->illgrp_next != illgrp) { 15686 tmpg = tmpg->illgrp_next; 15687 ASSERT(tmpg != NULL); 15688 } 15689 tmpg->illgrp_next = illgrp->illgrp_next; 15690 } 15691 } else { 15692 if (illgrp == ipst->ips_illgrp_head_v4) { 15693 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15694 } else { 15695 tmpg = ipst->ips_illgrp_head_v4; 15696 while (tmpg->illgrp_next != illgrp) { 15697 tmpg = tmpg->illgrp_next; 15698 ASSERT(tmpg != NULL); 15699 } 15700 tmpg->illgrp_next = illgrp->illgrp_next; 15701 } 15702 } 15703 mutex_destroy(&illgrp->illgrp_lock); 15704 mi_free(illgrp); 15705 } 15706 rw_exit(&ipst->ips_ill_g_lock); 15707 15708 /* 15709 * Even though the ill is out of the group its not necessary 15710 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15711 * We will split the ipsq when phyint_groupname is set to NULL. 15712 */ 15713 15714 /* 15715 * Send a routing sockets message if we are deleting from 15716 * groups with names. 15717 */ 15718 if (ill->ill_phyint->phyint_groupname_len != 0) 15719 ip_rts_ifmsg(ill->ill_ipif); 15720 } 15721 15722 /* 15723 * Re-do source address selection. This is normally called when 15724 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15725 * ipif comes up. 15726 */ 15727 void 15728 ill_update_source_selection(ill_t *ill) 15729 { 15730 ipif_t *ipif; 15731 15732 ASSERT(IAM_WRITER_ILL(ill)); 15733 15734 if (ill->ill_group != NULL) 15735 ill = ill->ill_group->illgrp_ill; 15736 15737 for (; ill != NULL; ill = ill->ill_group_next) { 15738 for (ipif = ill->ill_ipif; ipif != NULL; 15739 ipif = ipif->ipif_next) { 15740 if (ill->ill_isv6) 15741 ipif_recreate_interface_routes_v6(NULL, ipif); 15742 else 15743 ipif_recreate_interface_routes(NULL, ipif); 15744 } 15745 } 15746 } 15747 15748 /* 15749 * Insert ill in a group headed by illgrp_head. The caller can either 15750 * pass a groupname in which case we search for a group with the 15751 * same name to insert in or pass a group to insert in. This function 15752 * would only search groups with names. 15753 * 15754 * NOTE : The caller should make sure that there is at least one ipif 15755 * UP on this ill so that illgrp_scheduler can pick this ill 15756 * for outbound packets. If ill_ipif_up_count is zero, we have 15757 * already sent a DL_UNBIND to the driver and we don't want to 15758 * send anymore packets. We don't assert for ipif_up_count 15759 * to be greater than zero, because ipif_up_done wants to call 15760 * this function before bumping up the ipif_up_count. See 15761 * ipif_up_done() for details. 15762 */ 15763 int 15764 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15765 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15766 { 15767 ill_group_t *illgrp; 15768 ill_t *prev_ill; 15769 phyint_t *phyi; 15770 ip_stack_t *ipst = ill->ill_ipst; 15771 15772 ASSERT(ill->ill_group == NULL); 15773 15774 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15775 mutex_enter(&ill->ill_lock); 15776 15777 if (groupname != NULL) { 15778 /* 15779 * Look for a group with a matching groupname to insert. 15780 */ 15781 for (illgrp = *illgrp_head; illgrp != NULL; 15782 illgrp = illgrp->illgrp_next) { 15783 15784 ill_t *tmp_ill; 15785 15786 /* 15787 * If we have an ill_group_t in the list which has 15788 * no ill_t assigned then we must be in the process of 15789 * removing this group. We skip this as illgrp_delete() 15790 * will remove it from the list. 15791 */ 15792 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15793 ASSERT(illgrp->illgrp_ill_count == 0); 15794 continue; 15795 } 15796 15797 ASSERT(tmp_ill->ill_phyint != NULL); 15798 phyi = tmp_ill->ill_phyint; 15799 /* 15800 * Look at groups which has names only. 15801 */ 15802 if (phyi->phyint_groupname_len == 0) 15803 continue; 15804 /* 15805 * Names are stored in the phyint common to both 15806 * IPv4 and IPv6. 15807 */ 15808 if (mi_strcmp(phyi->phyint_groupname, 15809 groupname) == 0) { 15810 break; 15811 } 15812 } 15813 } else { 15814 /* 15815 * If the caller passes in a NULL "grp_to_insert", we 15816 * allocate one below and insert this singleton. 15817 */ 15818 illgrp = grp_to_insert; 15819 } 15820 15821 ill->ill_group_next = NULL; 15822 15823 if (illgrp == NULL) { 15824 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15825 if (illgrp == NULL) { 15826 return (ENOMEM); 15827 } 15828 illgrp->illgrp_next = *illgrp_head; 15829 *illgrp_head = illgrp; 15830 illgrp->illgrp_ill = ill; 15831 illgrp->illgrp_ill_count = 1; 15832 ill->ill_group = illgrp; 15833 /* 15834 * Used in illgrp_scheduler to protect multiple threads 15835 * from traversing the list. 15836 */ 15837 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15838 } else { 15839 ASSERT(ill->ill_net_type == 15840 illgrp->illgrp_ill->ill_net_type); 15841 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15842 15843 /* Insert ill at tail of this group */ 15844 prev_ill = illgrp->illgrp_ill; 15845 while (prev_ill->ill_group_next != NULL) 15846 prev_ill = prev_ill->ill_group_next; 15847 prev_ill->ill_group_next = ill; 15848 ill->ill_group = illgrp; 15849 illgrp->illgrp_ill_count++; 15850 /* 15851 * Inherit group properties. Currently only forwarding 15852 * is the property we try to keep the same with all the 15853 * ills. When there are more, we will abstract this into 15854 * a function. 15855 */ 15856 ill->ill_flags &= ~ILLF_ROUTER; 15857 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15858 } 15859 mutex_exit(&ill->ill_lock); 15860 rw_exit(&ipst->ips_ill_g_lock); 15861 15862 /* 15863 * 1) When ipif_up_done() calls this function, ipif_up_count 15864 * may be zero as it has not yet been bumped. But the ires 15865 * have already been added. So, we do the nomination here 15866 * itself. But, when ip_sioctl_groupname calls this, it checks 15867 * for ill_ipif_up_count != 0. Thus we don't check for 15868 * ill_ipif_up_count here while nominating broadcast ires for 15869 * receive. 15870 * 15871 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15872 * to group them properly as ire_add() has already happened 15873 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15874 * case, we need to do it here anyway. 15875 */ 15876 if (!ill->ill_isv6) { 15877 ill_group_bcast_for_xmit(ill); 15878 ill_nominate_bcast_rcv(illgrp); 15879 } 15880 15881 if (!ipif_is_coming_up) { 15882 /* 15883 * When ipif_up_done() calls this function, the multicast 15884 * groups have not been joined yet. So, there is no point in 15885 * nomination. ill_join_allmulti() will handle groups when 15886 * ill_recover_multicast() is called from ipif_up_done() later. 15887 */ 15888 (void) ill_nominate_mcast_rcv(illgrp); 15889 /* 15890 * ipif_up_done calls ill_update_source_selection 15891 * anyway. Moreover, we don't want to re-create 15892 * interface routes while ipif_up_done() still has reference 15893 * to them. Refer to ipif_up_done() for more details. 15894 */ 15895 ill_update_source_selection(ill); 15896 } 15897 15898 /* 15899 * Send a routing sockets message if we are inserting into 15900 * groups with names. 15901 */ 15902 if (groupname != NULL) 15903 ip_rts_ifmsg(ill->ill_ipif); 15904 return (0); 15905 } 15906 15907 /* 15908 * Return the first phyint matching the groupname. There could 15909 * be more than one when there are ill groups. 15910 * 15911 * If 'usable' is set, then we exclude ones that are marked with any of 15912 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 15913 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 15914 * emulation of ipmp. 15915 */ 15916 phyint_t * 15917 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 15918 { 15919 phyint_t *phyi; 15920 15921 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 15922 /* 15923 * Group names are stored in the phyint - a common structure 15924 * to both IPv4 and IPv6. 15925 */ 15926 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 15927 for (; phyi != NULL; 15928 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15929 phyi, AVL_AFTER)) { 15930 if (phyi->phyint_groupname_len == 0) 15931 continue; 15932 /* 15933 * Skip the ones that should not be used since the callers 15934 * sometime use this for sending packets. 15935 */ 15936 if (usable && (phyi->phyint_flags & 15937 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 15938 continue; 15939 15940 ASSERT(phyi->phyint_groupname != NULL); 15941 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15942 return (phyi); 15943 } 15944 return (NULL); 15945 } 15946 15947 15948 /* 15949 * Return the first usable phyint matching the group index. By 'usable' 15950 * we exclude ones that are marked ununsable with any of 15951 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 15952 * 15953 * Used only for the ipmp/netinfo emulation of ipmp. 15954 */ 15955 phyint_t * 15956 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 15957 { 15958 phyint_t *phyi; 15959 15960 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 15961 15962 if (!ipst->ips_ipmp_hook_emulation) 15963 return (NULL); 15964 15965 /* 15966 * Group indicies are stored in the phyint - a common structure 15967 * to both IPv4 and IPv6. 15968 */ 15969 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 15970 for (; phyi != NULL; 15971 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15972 phyi, AVL_AFTER)) { 15973 /* Ignore the ones that do not have a group */ 15974 if (phyi->phyint_groupname_len == 0) 15975 continue; 15976 15977 ASSERT(phyi->phyint_group_ifindex != 0); 15978 /* 15979 * Skip the ones that should not be used since the callers 15980 * sometime use this for sending packets. 15981 */ 15982 if (phyi->phyint_flags & 15983 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 15984 continue; 15985 if (phyi->phyint_group_ifindex == group_ifindex) 15986 return (phyi); 15987 } 15988 return (NULL); 15989 } 15990 15991 /* 15992 * MT notes on creation and deletion of IPMP groups 15993 * 15994 * Creation and deletion of IPMP groups introduce the need to merge or 15995 * split the associated serialization objects i.e the ipsq's. Normally all 15996 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15997 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15998 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15999 * is a need to change the <ill-ipsq> association and we have to operate on both 16000 * the source and destination IPMP groups. For eg. attempting to set the 16001 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16002 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16003 * source or destination IPMP group are mapped to a single ipsq for executing 16004 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16005 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16006 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16007 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16008 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16009 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16010 * 16011 * In the above example the ioctl handling code locates the current ipsq of hme0 16012 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16013 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16014 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16015 * the destination ipsq. If the destination ipsq is not busy, it also enters 16016 * the destination ipsq exclusively. Now the actual groupname setting operation 16017 * can proceed. If the destination ipsq is busy, the operation is enqueued 16018 * on the destination (merged) ipsq and will be handled in the unwind from 16019 * ipsq_exit. 16020 * 16021 * To prevent other threads accessing the ill while the group name change is 16022 * in progres, we bring down the ipifs which also removes the ill from the 16023 * group. The group is changed in phyint and when the first ipif on the ill 16024 * is brought up, the ill is inserted into the right IPMP group by 16025 * illgrp_insert. 16026 */ 16027 /* ARGSUSED */ 16028 int 16029 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16030 ip_ioctl_cmd_t *ipip, void *ifreq) 16031 { 16032 int i; 16033 char *tmp; 16034 int namelen; 16035 ill_t *ill = ipif->ipif_ill; 16036 ill_t *ill_v4, *ill_v6; 16037 int err = 0; 16038 phyint_t *phyi; 16039 phyint_t *phyi_tmp; 16040 struct lifreq *lifr; 16041 mblk_t *mp1; 16042 char *groupname; 16043 ipsq_t *ipsq; 16044 ip_stack_t *ipst = ill->ill_ipst; 16045 16046 ASSERT(IAM_WRITER_IPIF(ipif)); 16047 16048 /* Existance verified in ip_wput_nondata */ 16049 mp1 = mp->b_cont->b_cont; 16050 lifr = (struct lifreq *)mp1->b_rptr; 16051 groupname = lifr->lifr_groupname; 16052 16053 if (ipif->ipif_id != 0) 16054 return (EINVAL); 16055 16056 phyi = ill->ill_phyint; 16057 ASSERT(phyi != NULL); 16058 16059 if (phyi->phyint_flags & PHYI_VIRTUAL) 16060 return (EINVAL); 16061 16062 tmp = groupname; 16063 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16064 ; 16065 16066 if (i == LIFNAMSIZ) { 16067 /* no null termination */ 16068 return (EINVAL); 16069 } 16070 16071 /* 16072 * Calculate the namelen exclusive of the null 16073 * termination character. 16074 */ 16075 namelen = tmp - groupname; 16076 16077 ill_v4 = phyi->phyint_illv4; 16078 ill_v6 = phyi->phyint_illv6; 16079 16080 /* 16081 * ILL cannot be part of a usesrc group and and IPMP group at the 16082 * same time. No need to grab the ill_g_usesrc_lock here, see 16083 * synchronization notes in ip.c 16084 */ 16085 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16086 return (EINVAL); 16087 } 16088 16089 /* 16090 * mark the ill as changing. 16091 * this should queue all new requests on the syncq. 16092 */ 16093 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16094 16095 if (ill_v4 != NULL) 16096 ill_v4->ill_state_flags |= ILL_CHANGING; 16097 if (ill_v6 != NULL) 16098 ill_v6->ill_state_flags |= ILL_CHANGING; 16099 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16100 16101 if (namelen == 0) { 16102 /* 16103 * Null string means remove this interface from the 16104 * existing group. 16105 */ 16106 if (phyi->phyint_groupname_len == 0) { 16107 /* 16108 * Never was in a group. 16109 */ 16110 err = 0; 16111 goto done; 16112 } 16113 16114 /* 16115 * IPv4 or IPv6 may be temporarily out of the group when all 16116 * the ipifs are down. Thus, we need to check for ill_group to 16117 * be non-NULL. 16118 */ 16119 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16120 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16121 mutex_enter(&ill_v4->ill_lock); 16122 if (!ill_is_quiescent(ill_v4)) { 16123 /* 16124 * ipsq_pending_mp_add will not fail since 16125 * connp is NULL 16126 */ 16127 (void) ipsq_pending_mp_add(NULL, 16128 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16129 mutex_exit(&ill_v4->ill_lock); 16130 err = EINPROGRESS; 16131 goto done; 16132 } 16133 mutex_exit(&ill_v4->ill_lock); 16134 } 16135 16136 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16137 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16138 mutex_enter(&ill_v6->ill_lock); 16139 if (!ill_is_quiescent(ill_v6)) { 16140 (void) ipsq_pending_mp_add(NULL, 16141 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16142 mutex_exit(&ill_v6->ill_lock); 16143 err = EINPROGRESS; 16144 goto done; 16145 } 16146 mutex_exit(&ill_v6->ill_lock); 16147 } 16148 16149 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16150 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16151 mutex_enter(&phyi->phyint_lock); 16152 ASSERT(phyi->phyint_groupname != NULL); 16153 mi_free(phyi->phyint_groupname); 16154 phyi->phyint_groupname = NULL; 16155 phyi->phyint_groupname_len = 0; 16156 16157 /* Restore the ifindex used to be the per interface one */ 16158 phyi->phyint_group_ifindex = 0; 16159 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16160 mutex_exit(&phyi->phyint_lock); 16161 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16162 rw_exit(&ipst->ips_ill_g_lock); 16163 err = ill_up_ipifs(ill, q, mp); 16164 16165 /* 16166 * set the split flag so that the ipsq can be split 16167 */ 16168 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16169 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16170 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16171 16172 } else { 16173 if (phyi->phyint_groupname_len != 0) { 16174 ASSERT(phyi->phyint_groupname != NULL); 16175 /* Are we inserting in the same group ? */ 16176 if (mi_strcmp(groupname, 16177 phyi->phyint_groupname) == 0) { 16178 err = 0; 16179 goto done; 16180 } 16181 } 16182 16183 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16184 /* 16185 * Merge ipsq for the group's. 16186 * This check is here as multiple groups/ills might be 16187 * sharing the same ipsq. 16188 * If we have to merege than the operation is restarted 16189 * on the new ipsq. 16190 */ 16191 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16192 if (phyi->phyint_ipsq != ipsq) { 16193 rw_exit(&ipst->ips_ill_g_lock); 16194 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16195 goto done; 16196 } 16197 /* 16198 * Running exclusive on new ipsq. 16199 */ 16200 16201 ASSERT(ipsq != NULL); 16202 ASSERT(ipsq->ipsq_writer == curthread); 16203 16204 /* 16205 * Check whether the ill_type and ill_net_type matches before 16206 * we allocate any memory so that the cleanup is easier. 16207 * 16208 * We can't group dissimilar ones as we can't load spread 16209 * packets across the group because of potential link-level 16210 * header differences. 16211 */ 16212 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16213 if (phyi_tmp != NULL) { 16214 if ((ill_v4 != NULL && 16215 phyi_tmp->phyint_illv4 != NULL) && 16216 ((ill_v4->ill_net_type != 16217 phyi_tmp->phyint_illv4->ill_net_type) || 16218 (ill_v4->ill_type != 16219 phyi_tmp->phyint_illv4->ill_type))) { 16220 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16221 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16222 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16223 rw_exit(&ipst->ips_ill_g_lock); 16224 return (EINVAL); 16225 } 16226 if ((ill_v6 != NULL && 16227 phyi_tmp->phyint_illv6 != NULL) && 16228 ((ill_v6->ill_net_type != 16229 phyi_tmp->phyint_illv6->ill_net_type) || 16230 (ill_v6->ill_type != 16231 phyi_tmp->phyint_illv6->ill_type))) { 16232 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16233 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16234 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16235 rw_exit(&ipst->ips_ill_g_lock); 16236 return (EINVAL); 16237 } 16238 } 16239 16240 rw_exit(&ipst->ips_ill_g_lock); 16241 16242 /* 16243 * bring down all v4 ipifs. 16244 */ 16245 if (ill_v4 != NULL) { 16246 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16247 } 16248 16249 /* 16250 * bring down all v6 ipifs. 16251 */ 16252 if (ill_v6 != NULL) { 16253 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16254 } 16255 16256 /* 16257 * make sure all ipifs are down and there are no active 16258 * references. Call to ipsq_pending_mp_add will not fail 16259 * since connp is NULL. 16260 */ 16261 if (ill_v4 != NULL) { 16262 mutex_enter(&ill_v4->ill_lock); 16263 if (!ill_is_quiescent(ill_v4)) { 16264 (void) ipsq_pending_mp_add(NULL, 16265 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16266 mutex_exit(&ill_v4->ill_lock); 16267 err = EINPROGRESS; 16268 goto done; 16269 } 16270 mutex_exit(&ill_v4->ill_lock); 16271 } 16272 16273 if (ill_v6 != NULL) { 16274 mutex_enter(&ill_v6->ill_lock); 16275 if (!ill_is_quiescent(ill_v6)) { 16276 (void) ipsq_pending_mp_add(NULL, 16277 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16278 mutex_exit(&ill_v6->ill_lock); 16279 err = EINPROGRESS; 16280 goto done; 16281 } 16282 mutex_exit(&ill_v6->ill_lock); 16283 } 16284 16285 /* 16286 * allocate including space for null terminator 16287 * before we insert. 16288 */ 16289 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16290 if (tmp == NULL) 16291 return (ENOMEM); 16292 16293 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16294 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16295 mutex_enter(&phyi->phyint_lock); 16296 if (phyi->phyint_groupname_len != 0) { 16297 ASSERT(phyi->phyint_groupname != NULL); 16298 mi_free(phyi->phyint_groupname); 16299 } 16300 16301 /* 16302 * setup the new group name. 16303 */ 16304 phyi->phyint_groupname = tmp; 16305 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16306 phyi->phyint_groupname_len = namelen + 1; 16307 16308 if (ipst->ips_ipmp_hook_emulation) { 16309 /* 16310 * If the group already exists we use the existing 16311 * group_ifindex, otherwise we pick a new index here. 16312 */ 16313 if (phyi_tmp != NULL) { 16314 phyi->phyint_group_ifindex = 16315 phyi_tmp->phyint_group_ifindex; 16316 } else { 16317 /* XXX We need a recovery strategy here. */ 16318 if (!ip_assign_ifindex( 16319 &phyi->phyint_group_ifindex, ipst)) 16320 cmn_err(CE_PANIC, 16321 "ip_assign_ifindex() failed"); 16322 } 16323 } 16324 /* 16325 * Select whether the netinfo and hook use the per-interface 16326 * or per-group ifindex. 16327 */ 16328 if (ipst->ips_ipmp_hook_emulation) 16329 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16330 else 16331 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16332 16333 if (ipst->ips_ipmp_hook_emulation && 16334 phyi_tmp != NULL) { 16335 /* First phyint in group - group PLUMB event */ 16336 ill_nic_event_plumb(ill, B_TRUE); 16337 } 16338 mutex_exit(&phyi->phyint_lock); 16339 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16340 rw_exit(&ipst->ips_ill_g_lock); 16341 16342 err = ill_up_ipifs(ill, q, mp); 16343 } 16344 16345 done: 16346 /* 16347 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16348 */ 16349 if (err != EINPROGRESS) { 16350 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16351 if (ill_v4 != NULL) 16352 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16353 if (ill_v6 != NULL) 16354 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16355 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16356 } 16357 return (err); 16358 } 16359 16360 /* ARGSUSED */ 16361 int 16362 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16363 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16364 { 16365 ill_t *ill; 16366 phyint_t *phyi; 16367 struct lifreq *lifr; 16368 mblk_t *mp1; 16369 16370 /* Existence verified in ip_wput_nondata */ 16371 mp1 = mp->b_cont->b_cont; 16372 lifr = (struct lifreq *)mp1->b_rptr; 16373 ill = ipif->ipif_ill; 16374 phyi = ill->ill_phyint; 16375 16376 lifr->lifr_groupname[0] = '\0'; 16377 /* 16378 * ill_group may be null if all the interfaces 16379 * are down. But still, the phyint should always 16380 * hold the name. 16381 */ 16382 if (phyi->phyint_groupname_len != 0) { 16383 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16384 phyi->phyint_groupname_len); 16385 } 16386 16387 return (0); 16388 } 16389 16390 16391 typedef struct conn_move_s { 16392 ill_t *cm_from_ill; 16393 ill_t *cm_to_ill; 16394 int cm_ifindex; 16395 } conn_move_t; 16396 16397 /* 16398 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16399 */ 16400 static void 16401 conn_move(conn_t *connp, caddr_t arg) 16402 { 16403 conn_move_t *connm; 16404 int ifindex; 16405 int i; 16406 ill_t *from_ill; 16407 ill_t *to_ill; 16408 ilg_t *ilg; 16409 ilm_t *ret_ilm; 16410 16411 connm = (conn_move_t *)arg; 16412 ifindex = connm->cm_ifindex; 16413 from_ill = connm->cm_from_ill; 16414 to_ill = connm->cm_to_ill; 16415 16416 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16417 16418 /* All multicast fields protected by conn_lock */ 16419 mutex_enter(&connp->conn_lock); 16420 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16421 if ((connp->conn_outgoing_ill == from_ill) && 16422 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16423 connp->conn_outgoing_ill = to_ill; 16424 connp->conn_incoming_ill = to_ill; 16425 } 16426 16427 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16428 16429 if ((connp->conn_multicast_ill == from_ill) && 16430 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16431 connp->conn_multicast_ill = connm->cm_to_ill; 16432 } 16433 16434 /* 16435 * Change the ilg_ill to point to the new one. This assumes 16436 * ilm_move_v6 has moved the ilms to new_ill and the driver 16437 * has been told to receive packets on this interface. 16438 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16439 * But when doing a FAILOVER, it might fail with ENOMEM and so 16440 * some ilms may not have moved. We check to see whether 16441 * the ilms have moved to to_ill. We can't check on from_ill 16442 * as in the process of moving, we could have split an ilm 16443 * in to two - which has the same orig_ifindex and v6group. 16444 * 16445 * For IPv4, ilg_ipif moves implicitly. The code below really 16446 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16447 */ 16448 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16449 ilg = &connp->conn_ilg[i]; 16450 if ((ilg->ilg_ill == from_ill) && 16451 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16452 /* ifindex != 0 indicates failback */ 16453 if (ifindex != 0) { 16454 connp->conn_ilg[i].ilg_ill = to_ill; 16455 continue; 16456 } 16457 16458 mutex_enter(&to_ill->ill_lock); 16459 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16460 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16461 connp->conn_zoneid); 16462 mutex_exit(&to_ill->ill_lock); 16463 16464 if (ret_ilm != NULL) 16465 connp->conn_ilg[i].ilg_ill = to_ill; 16466 } 16467 } 16468 mutex_exit(&connp->conn_lock); 16469 } 16470 16471 static void 16472 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16473 { 16474 conn_move_t connm; 16475 ip_stack_t *ipst = from_ill->ill_ipst; 16476 16477 connm.cm_from_ill = from_ill; 16478 connm.cm_to_ill = to_ill; 16479 connm.cm_ifindex = ifindex; 16480 16481 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16482 } 16483 16484 /* 16485 * ilm has been moved from from_ill to to_ill. 16486 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16487 * appropriately. 16488 * 16489 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16490 * the code there de-references ipif_ill to get the ill to 16491 * send multicast requests. It does not work as ipif is on its 16492 * move and already moved when this function is called. 16493 * Thus, we need to use from_ill and to_ill send down multicast 16494 * requests. 16495 */ 16496 static void 16497 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16498 { 16499 ipif_t *ipif; 16500 ilm_t *ilm; 16501 16502 /* 16503 * See whether we need to send down DL_ENABMULTI_REQ on 16504 * to_ill as ilm has just been added. 16505 */ 16506 ASSERT(IAM_WRITER_ILL(to_ill)); 16507 ASSERT(IAM_WRITER_ILL(from_ill)); 16508 16509 ILM_WALKER_HOLD(to_ill); 16510 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16511 16512 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16513 continue; 16514 /* 16515 * no locks held, ill/ipif cannot dissappear as long 16516 * as we are writer. 16517 */ 16518 ipif = to_ill->ill_ipif; 16519 /* 16520 * No need to hold any lock as we are the writer and this 16521 * can only be changed by a writer. 16522 */ 16523 ilm->ilm_is_new = B_FALSE; 16524 16525 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16526 ipif->ipif_flags & IPIF_POINTOPOINT) { 16527 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16528 "resolver\n")); 16529 continue; /* Must be IRE_IF_NORESOLVER */ 16530 } 16531 16532 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16533 ip1dbg(("ilm_send_multicast_reqs: " 16534 "to_ill MULTI_BCAST\n")); 16535 goto from; 16536 } 16537 16538 if (to_ill->ill_isv6) 16539 mld_joingroup(ilm); 16540 else 16541 igmp_joingroup(ilm); 16542 16543 if (to_ill->ill_ipif_up_count == 0) { 16544 /* 16545 * Nobody there. All multicast addresses will be 16546 * re-joined when we get the DL_BIND_ACK bringing the 16547 * interface up. 16548 */ 16549 ilm->ilm_notify_driver = B_FALSE; 16550 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16551 goto from; 16552 } 16553 16554 /* 16555 * For allmulti address, we want to join on only one interface. 16556 * Checking for ilm_numentries_v6 is not correct as you may 16557 * find an ilm with zero address on to_ill, but we may not 16558 * have nominated to_ill for receiving. Thus, if we have 16559 * nominated from_ill (ill_join_allmulti is set), nominate 16560 * only if to_ill is not already nominated (to_ill normally 16561 * should not have been nominated if "from_ill" has already 16562 * been nominated. As we don't prevent failovers from happening 16563 * across groups, we don't assert). 16564 */ 16565 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16566 /* 16567 * There is no need to hold ill locks as we are 16568 * writer on both ills and when ill_join_allmulti() 16569 * is called the thread is always a writer. 16570 */ 16571 if (from_ill->ill_join_allmulti && 16572 !to_ill->ill_join_allmulti) { 16573 (void) ill_join_allmulti(to_ill); 16574 } 16575 } else if (ilm->ilm_notify_driver) { 16576 16577 /* 16578 * This is a newly moved ilm so we need to tell the 16579 * driver about the new group. There can be more than 16580 * one ilm's for the same group in the list each with a 16581 * different orig_ifindex. We have to inform the driver 16582 * once. In ilm_move_v[4,6] we only set the flag 16583 * ilm_notify_driver for the first ilm. 16584 */ 16585 16586 (void) ip_ll_send_enabmulti_req(to_ill, 16587 &ilm->ilm_v6addr); 16588 } 16589 16590 ilm->ilm_notify_driver = B_FALSE; 16591 16592 /* 16593 * See whether we need to send down DL_DISABMULTI_REQ on 16594 * from_ill as ilm has just been removed. 16595 */ 16596 from: 16597 ipif = from_ill->ill_ipif; 16598 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16599 ipif->ipif_flags & IPIF_POINTOPOINT) { 16600 ip1dbg(("ilm_send_multicast_reqs: " 16601 "from_ill not resolver\n")); 16602 continue; /* Must be IRE_IF_NORESOLVER */ 16603 } 16604 16605 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16606 ip1dbg(("ilm_send_multicast_reqs: " 16607 "from_ill MULTI_BCAST\n")); 16608 continue; 16609 } 16610 16611 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16612 if (from_ill->ill_join_allmulti) 16613 ill_leave_allmulti(from_ill); 16614 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16615 (void) ip_ll_send_disabmulti_req(from_ill, 16616 &ilm->ilm_v6addr); 16617 } 16618 } 16619 ILM_WALKER_RELE(to_ill); 16620 } 16621 16622 /* 16623 * This function is called when all multicast memberships needs 16624 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16625 * called only once unlike the IPv4 counterpart where it is called after 16626 * every logical interface is moved. The reason is due to multicast 16627 * memberships are joined using an interface address in IPv4 while in 16628 * IPv6, interface index is used. 16629 */ 16630 static void 16631 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16632 { 16633 ilm_t *ilm; 16634 ilm_t *ilm_next; 16635 ilm_t *new_ilm; 16636 ilm_t **ilmp; 16637 int count; 16638 char buf[INET6_ADDRSTRLEN]; 16639 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16640 ip_stack_t *ipst = from_ill->ill_ipst; 16641 16642 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16643 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16644 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16645 16646 if (ifindex == 0) { 16647 /* 16648 * Form the solicited node mcast address which is used later. 16649 */ 16650 ipif_t *ipif; 16651 16652 ipif = from_ill->ill_ipif; 16653 ASSERT(ipif->ipif_id == 0); 16654 16655 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16656 } 16657 16658 ilmp = &from_ill->ill_ilm; 16659 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16660 ilm_next = ilm->ilm_next; 16661 16662 if (ilm->ilm_flags & ILM_DELETED) { 16663 ilmp = &ilm->ilm_next; 16664 continue; 16665 } 16666 16667 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16668 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16669 ASSERT(ilm->ilm_orig_ifindex != 0); 16670 if (ilm->ilm_orig_ifindex == ifindex) { 16671 /* 16672 * We are failing back multicast memberships. 16673 * If the same ilm exists in to_ill, it means somebody 16674 * has joined the same group there e.g. ff02::1 16675 * is joined within the kernel when the interfaces 16676 * came UP. 16677 */ 16678 ASSERT(ilm->ilm_ipif == NULL); 16679 if (new_ilm != NULL) { 16680 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16681 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16682 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16683 new_ilm->ilm_is_new = B_TRUE; 16684 } 16685 } else { 16686 /* 16687 * check if we can just move the ilm 16688 */ 16689 if (from_ill->ill_ilm_walker_cnt != 0) { 16690 /* 16691 * We have walkers we cannot move 16692 * the ilm, so allocate a new ilm, 16693 * this (old) ilm will be marked 16694 * ILM_DELETED at the end of the loop 16695 * and will be freed when the 16696 * last walker exits. 16697 */ 16698 new_ilm = (ilm_t *)mi_zalloc 16699 (sizeof (ilm_t)); 16700 if (new_ilm == NULL) { 16701 ip0dbg(("ilm_move_v6: " 16702 "FAILBACK of IPv6" 16703 " multicast address %s : " 16704 "from %s to" 16705 " %s failed : ENOMEM \n", 16706 inet_ntop(AF_INET6, 16707 &ilm->ilm_v6addr, buf, 16708 sizeof (buf)), 16709 from_ill->ill_name, 16710 to_ill->ill_name)); 16711 16712 ilmp = &ilm->ilm_next; 16713 continue; 16714 } 16715 *new_ilm = *ilm; 16716 /* 16717 * we don't want new_ilm linked to 16718 * ilm's filter list. 16719 */ 16720 new_ilm->ilm_filter = NULL; 16721 } else { 16722 /* 16723 * No walkers we can move the ilm. 16724 * lets take it out of the list. 16725 */ 16726 *ilmp = ilm->ilm_next; 16727 ilm->ilm_next = NULL; 16728 DTRACE_PROBE3(ill__decr__cnt, 16729 (ill_t *), from_ill, 16730 (char *), "ilm", (void *), ilm); 16731 ASSERT(from_ill->ill_ilm_cnt > 0); 16732 from_ill->ill_ilm_cnt--; 16733 16734 new_ilm = ilm; 16735 } 16736 16737 /* 16738 * if this is the first ilm for the group 16739 * set ilm_notify_driver so that we notify the 16740 * driver in ilm_send_multicast_reqs. 16741 */ 16742 if (ilm_lookup_ill_v6(to_ill, 16743 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16744 new_ilm->ilm_notify_driver = B_TRUE; 16745 16746 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16747 (char *), "ilm", (void *), new_ilm); 16748 new_ilm->ilm_ill = to_ill; 16749 to_ill->ill_ilm_cnt++; 16750 16751 /* Add to the to_ill's list */ 16752 new_ilm->ilm_next = to_ill->ill_ilm; 16753 to_ill->ill_ilm = new_ilm; 16754 /* 16755 * set the flag so that mld_joingroup is 16756 * called in ilm_send_multicast_reqs(). 16757 */ 16758 new_ilm->ilm_is_new = B_TRUE; 16759 } 16760 goto bottom; 16761 } else if (ifindex != 0) { 16762 /* 16763 * If this is FAILBACK (ifindex != 0) and the ifindex 16764 * has not matched above, look at the next ilm. 16765 */ 16766 ilmp = &ilm->ilm_next; 16767 continue; 16768 } 16769 /* 16770 * If we are here, it means ifindex is 0. Failover 16771 * everything. 16772 * 16773 * We need to handle solicited node mcast address 16774 * and all_nodes mcast address differently as they 16775 * are joined witin the kenrel (ipif_multicast_up) 16776 * and potentially from the userland. We are called 16777 * after the ipifs of from_ill has been moved. 16778 * If we still find ilms on ill with solicited node 16779 * mcast address or all_nodes mcast address, it must 16780 * belong to the UP interface that has not moved e.g. 16781 * ipif_id 0 with the link local prefix does not move. 16782 * We join this on the new ill accounting for all the 16783 * userland memberships so that applications don't 16784 * see any failure. 16785 * 16786 * We need to make sure that we account only for the 16787 * solicited node and all node multicast addresses 16788 * that was brought UP on these. In the case of 16789 * a failover from A to B, we might have ilms belonging 16790 * to A (ilm_orig_ifindex pointing at A) on B accounting 16791 * for the membership from the userland. If we are failing 16792 * over from B to C now, we will find the ones belonging 16793 * to A on B. These don't account for the ill_ipif_up_count. 16794 * They just move from B to C. The check below on 16795 * ilm_orig_ifindex ensures that. 16796 */ 16797 if ((ilm->ilm_orig_ifindex == 16798 from_ill->ill_phyint->phyint_ifindex) && 16799 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16800 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16801 &ilm->ilm_v6addr))) { 16802 ASSERT(ilm->ilm_refcnt > 0); 16803 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16804 /* 16805 * For indentation reasons, we are not using a 16806 * "else" here. 16807 */ 16808 if (count == 0) { 16809 ilmp = &ilm->ilm_next; 16810 continue; 16811 } 16812 ilm->ilm_refcnt -= count; 16813 if (new_ilm != NULL) { 16814 /* 16815 * Can find one with the same 16816 * ilm_orig_ifindex, if we are failing 16817 * over to a STANDBY. This happens 16818 * when somebody wants to join a group 16819 * on a STANDBY interface and we 16820 * internally join on a different one. 16821 * If we had joined on from_ill then, a 16822 * failover now will find a new ilm 16823 * with this index. 16824 */ 16825 ip1dbg(("ilm_move_v6: FAILOVER, found" 16826 " new ilm on %s, group address %s\n", 16827 to_ill->ill_name, 16828 inet_ntop(AF_INET6, 16829 &ilm->ilm_v6addr, buf, 16830 sizeof (buf)))); 16831 new_ilm->ilm_refcnt += count; 16832 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16833 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16834 new_ilm->ilm_is_new = B_TRUE; 16835 } 16836 } else { 16837 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16838 if (new_ilm == NULL) { 16839 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16840 " multicast address %s : from %s to" 16841 " %s failed : ENOMEM \n", 16842 inet_ntop(AF_INET6, 16843 &ilm->ilm_v6addr, buf, 16844 sizeof (buf)), from_ill->ill_name, 16845 to_ill->ill_name)); 16846 ilmp = &ilm->ilm_next; 16847 continue; 16848 } 16849 *new_ilm = *ilm; 16850 new_ilm->ilm_filter = NULL; 16851 new_ilm->ilm_refcnt = count; 16852 new_ilm->ilm_timer = INFINITY; 16853 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16854 new_ilm->ilm_is_new = B_TRUE; 16855 /* 16856 * If the to_ill has not joined this 16857 * group we need to tell the driver in 16858 * ill_send_multicast_reqs. 16859 */ 16860 if (ilm_lookup_ill_v6(to_ill, 16861 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16862 new_ilm->ilm_notify_driver = B_TRUE; 16863 16864 new_ilm->ilm_ill = to_ill; 16865 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16866 (char *), "ilm", (void *), new_ilm); 16867 to_ill->ill_ilm_cnt++; 16868 16869 /* Add to the to_ill's list */ 16870 new_ilm->ilm_next = to_ill->ill_ilm; 16871 to_ill->ill_ilm = new_ilm; 16872 ASSERT(new_ilm->ilm_ipif == NULL); 16873 } 16874 if (ilm->ilm_refcnt == 0) { 16875 goto bottom; 16876 } else { 16877 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16878 CLEAR_SLIST(new_ilm->ilm_filter); 16879 ilmp = &ilm->ilm_next; 16880 } 16881 continue; 16882 } else { 16883 /* 16884 * ifindex = 0 means, move everything pointing at 16885 * from_ill. We are doing this becuase ill has 16886 * either FAILED or became INACTIVE. 16887 * 16888 * As we would like to move things later back to 16889 * from_ill, we want to retain the identity of this 16890 * ilm. Thus, we don't blindly increment the reference 16891 * count on the ilms matching the address alone. We 16892 * need to match on the ilm_orig_index also. new_ilm 16893 * was obtained by matching ilm_orig_index also. 16894 */ 16895 if (new_ilm != NULL) { 16896 /* 16897 * This is possible only if a previous restore 16898 * was incomplete i.e restore to 16899 * ilm_orig_ifindex left some ilms because 16900 * of some failures. Thus when we are failing 16901 * again, we might find our old friends there. 16902 */ 16903 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16904 " on %s, group address %s\n", 16905 to_ill->ill_name, 16906 inet_ntop(AF_INET6, 16907 &ilm->ilm_v6addr, buf, 16908 sizeof (buf)))); 16909 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16910 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16911 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16912 new_ilm->ilm_is_new = B_TRUE; 16913 } 16914 } else { 16915 if (from_ill->ill_ilm_walker_cnt != 0) { 16916 new_ilm = (ilm_t *) 16917 mi_zalloc(sizeof (ilm_t)); 16918 if (new_ilm == NULL) { 16919 ip0dbg(("ilm_move_v6: " 16920 "FAILOVER of IPv6" 16921 " multicast address %s : " 16922 "from %s to" 16923 " %s failed : ENOMEM \n", 16924 inet_ntop(AF_INET6, 16925 &ilm->ilm_v6addr, buf, 16926 sizeof (buf)), 16927 from_ill->ill_name, 16928 to_ill->ill_name)); 16929 16930 ilmp = &ilm->ilm_next; 16931 continue; 16932 } 16933 *new_ilm = *ilm; 16934 new_ilm->ilm_filter = NULL; 16935 } else { 16936 *ilmp = ilm->ilm_next; 16937 DTRACE_PROBE3(ill__decr__cnt, 16938 (ill_t *), from_ill, 16939 (char *), "ilm", (void *), ilm); 16940 ASSERT(from_ill->ill_ilm_cnt > 0); 16941 from_ill->ill_ilm_cnt--; 16942 16943 new_ilm = ilm; 16944 } 16945 /* 16946 * If the to_ill has not joined this 16947 * group we need to tell the driver in 16948 * ill_send_multicast_reqs. 16949 */ 16950 if (ilm_lookup_ill_v6(to_ill, 16951 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16952 new_ilm->ilm_notify_driver = B_TRUE; 16953 16954 /* Add to the to_ill's list */ 16955 new_ilm->ilm_next = to_ill->ill_ilm; 16956 to_ill->ill_ilm = new_ilm; 16957 ASSERT(ilm->ilm_ipif == NULL); 16958 new_ilm->ilm_ill = to_ill; 16959 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16960 (char *), "ilm", (void *), new_ilm); 16961 to_ill->ill_ilm_cnt++; 16962 new_ilm->ilm_is_new = B_TRUE; 16963 } 16964 16965 } 16966 16967 bottom: 16968 /* 16969 * Revert multicast filter state to (EXCLUDE, NULL). 16970 * new_ilm->ilm_is_new should already be set if needed. 16971 */ 16972 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16973 CLEAR_SLIST(new_ilm->ilm_filter); 16974 /* 16975 * We allocated/got a new ilm, free the old one. 16976 */ 16977 if (new_ilm != ilm) { 16978 if (from_ill->ill_ilm_walker_cnt == 0) { 16979 *ilmp = ilm->ilm_next; 16980 16981 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 16982 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 16983 from_ill, (char *), "ilm", (void *), ilm); 16984 ASSERT(from_ill->ill_ilm_cnt > 0); 16985 from_ill->ill_ilm_cnt--; 16986 16987 ilm_inactive(ilm); /* frees this ilm */ 16988 16989 } else { 16990 ilm->ilm_flags |= ILM_DELETED; 16991 from_ill->ill_ilm_cleanup_reqd = 1; 16992 ilmp = &ilm->ilm_next; 16993 } 16994 } 16995 } 16996 } 16997 16998 /* 16999 * Move all the multicast memberships to to_ill. Called when 17000 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17001 * different from IPv6 counterpart as multicast memberships are associated 17002 * with ills in IPv6. This function is called after every ipif is moved 17003 * unlike IPv6, where it is moved only once. 17004 */ 17005 static void 17006 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17007 { 17008 ilm_t *ilm; 17009 ilm_t *ilm_next; 17010 ilm_t *new_ilm; 17011 ilm_t **ilmp; 17012 ip_stack_t *ipst = from_ill->ill_ipst; 17013 17014 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17015 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17016 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17017 17018 ilmp = &from_ill->ill_ilm; 17019 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17020 ilm_next = ilm->ilm_next; 17021 17022 if (ilm->ilm_flags & ILM_DELETED) { 17023 ilmp = &ilm->ilm_next; 17024 continue; 17025 } 17026 17027 ASSERT(ilm->ilm_ipif != NULL); 17028 17029 if (ilm->ilm_ipif != ipif) { 17030 ilmp = &ilm->ilm_next; 17031 continue; 17032 } 17033 17034 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17035 htonl(INADDR_ALLHOSTS_GROUP)) { 17036 new_ilm = ilm_lookup_ipif(ipif, 17037 V4_PART_OF_V6(ilm->ilm_v6addr)); 17038 if (new_ilm != NULL) { 17039 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17040 /* 17041 * We still need to deal with the from_ill. 17042 */ 17043 new_ilm->ilm_is_new = B_TRUE; 17044 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17045 CLEAR_SLIST(new_ilm->ilm_filter); 17046 ASSERT(ilm->ilm_ipif == ipif); 17047 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17048 if (from_ill->ill_ilm_walker_cnt == 0) { 17049 DTRACE_PROBE3(ill__decr__cnt, 17050 (ill_t *), from_ill, 17051 (char *), "ilm", (void *), ilm); 17052 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17053 } 17054 goto delete_ilm; 17055 } 17056 /* 17057 * If we could not find one e.g. ipif is 17058 * still down on to_ill, we add this ilm 17059 * on ill_new to preserve the reference 17060 * count. 17061 */ 17062 } 17063 /* 17064 * When ipifs move, ilms always move with it 17065 * to the NEW ill. Thus we should never be 17066 * able to find ilm till we really move it here. 17067 */ 17068 ASSERT(ilm_lookup_ipif(ipif, 17069 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17070 17071 if (from_ill->ill_ilm_walker_cnt != 0) { 17072 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17073 if (new_ilm == NULL) { 17074 char buf[INET6_ADDRSTRLEN]; 17075 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17076 " multicast address %s : " 17077 "from %s to" 17078 " %s failed : ENOMEM \n", 17079 inet_ntop(AF_INET, 17080 &ilm->ilm_v6addr, buf, 17081 sizeof (buf)), 17082 from_ill->ill_name, 17083 to_ill->ill_name)); 17084 17085 ilmp = &ilm->ilm_next; 17086 continue; 17087 } 17088 *new_ilm = *ilm; 17089 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17090 (char *), "ilm", (void *), ilm); 17091 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17092 /* We don't want new_ilm linked to ilm's filter list */ 17093 new_ilm->ilm_filter = NULL; 17094 } else { 17095 /* Remove from the list */ 17096 *ilmp = ilm->ilm_next; 17097 new_ilm = ilm; 17098 } 17099 17100 /* 17101 * If we have never joined this group on the to_ill 17102 * make sure we tell the driver. 17103 */ 17104 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17105 ALL_ZONES) == NULL) 17106 new_ilm->ilm_notify_driver = B_TRUE; 17107 17108 /* Add to the to_ill's list */ 17109 new_ilm->ilm_next = to_ill->ill_ilm; 17110 to_ill->ill_ilm = new_ilm; 17111 new_ilm->ilm_is_new = B_TRUE; 17112 17113 /* 17114 * Revert multicast filter state to (EXCLUDE, NULL) 17115 */ 17116 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17117 CLEAR_SLIST(new_ilm->ilm_filter); 17118 17119 /* 17120 * Delete only if we have allocated a new ilm. 17121 */ 17122 if (new_ilm != ilm) { 17123 delete_ilm: 17124 if (from_ill->ill_ilm_walker_cnt == 0) { 17125 /* Remove from the list */ 17126 *ilmp = ilm->ilm_next; 17127 ilm->ilm_next = NULL; 17128 DTRACE_PROBE3(ipif__decr__cnt, 17129 (ipif_t *), ilm->ilm_ipif, 17130 (char *), "ilm", (void *), ilm); 17131 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17132 ilm->ilm_ipif->ipif_ilm_cnt--; 17133 ilm_inactive(ilm); 17134 } else { 17135 ilm->ilm_flags |= ILM_DELETED; 17136 from_ill->ill_ilm_cleanup_reqd = 1; 17137 ilmp = &ilm->ilm_next; 17138 } 17139 } 17140 } 17141 } 17142 17143 static uint_t 17144 ipif_get_id(ill_t *ill, uint_t id) 17145 { 17146 uint_t unit; 17147 ipif_t *tipif; 17148 boolean_t found = B_FALSE; 17149 ip_stack_t *ipst = ill->ill_ipst; 17150 17151 /* 17152 * During failback, we want to go back to the same id 17153 * instead of the smallest id so that the original 17154 * configuration is maintained. id is non-zero in that 17155 * case. 17156 */ 17157 if (id != 0) { 17158 /* 17159 * While failing back, if we still have an ipif with 17160 * MAX_ADDRS_PER_IF, it means this will be replaced 17161 * as soon as we return from this function. It was 17162 * to set to MAX_ADDRS_PER_IF by the caller so that 17163 * we can choose the smallest id. Thus we return zero 17164 * in that case ignoring the hint. 17165 */ 17166 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17167 return (0); 17168 for (tipif = ill->ill_ipif; tipif != NULL; 17169 tipif = tipif->ipif_next) { 17170 if (tipif->ipif_id == id) { 17171 found = B_TRUE; 17172 break; 17173 } 17174 } 17175 /* 17176 * If somebody already plumbed another logical 17177 * with the same id, we won't be able to find it. 17178 */ 17179 if (!found) 17180 return (id); 17181 } 17182 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17183 found = B_FALSE; 17184 for (tipif = ill->ill_ipif; tipif != NULL; 17185 tipif = tipif->ipif_next) { 17186 if (tipif->ipif_id == unit) { 17187 found = B_TRUE; 17188 break; 17189 } 17190 } 17191 if (!found) 17192 break; 17193 } 17194 return (unit); 17195 } 17196 17197 /* ARGSUSED */ 17198 static int 17199 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17200 ipif_t **rep_ipif_ptr) 17201 { 17202 ill_t *from_ill; 17203 ipif_t *rep_ipif; 17204 uint_t unit; 17205 int err = 0; 17206 ipif_t *to_ipif; 17207 struct iocblk *iocp; 17208 boolean_t failback_cmd; 17209 boolean_t remove_ipif; 17210 int rc; 17211 ip_stack_t *ipst; 17212 17213 ASSERT(IAM_WRITER_ILL(to_ill)); 17214 ASSERT(IAM_WRITER_IPIF(ipif)); 17215 17216 iocp = (struct iocblk *)mp->b_rptr; 17217 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17218 remove_ipif = B_FALSE; 17219 17220 from_ill = ipif->ipif_ill; 17221 ipst = from_ill->ill_ipst; 17222 17223 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17224 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17225 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17226 17227 /* 17228 * Don't move LINK LOCAL addresses as they are tied to 17229 * physical interface. 17230 */ 17231 if (from_ill->ill_isv6 && 17232 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17233 ipif->ipif_was_up = B_FALSE; 17234 IPIF_UNMARK_MOVING(ipif); 17235 return (0); 17236 } 17237 17238 /* 17239 * We set the ipif_id to maximum so that the search for 17240 * ipif_id will pick the lowest number i.e 0 in the 17241 * following 2 cases : 17242 * 17243 * 1) We have a replacement ipif at the head of to_ill. 17244 * We can't remove it yet as we can exceed ip_addrs_per_if 17245 * on to_ill and hence the MOVE might fail. We want to 17246 * remove it only if we could move the ipif. Thus, by 17247 * setting it to the MAX value, we make the search in 17248 * ipif_get_id return the zeroth id. 17249 * 17250 * 2) When DR pulls out the NIC and re-plumbs the interface, 17251 * we might just have a zero address plumbed on the ipif 17252 * with zero id in the case of IPv4. We remove that while 17253 * doing the failback. We want to remove it only if we 17254 * could move the ipif. Thus, by setting it to the MAX 17255 * value, we make the search in ipif_get_id return the 17256 * zeroth id. 17257 * 17258 * Both (1) and (2) are done only when when we are moving 17259 * an ipif (either due to failover/failback) which originally 17260 * belonged to this interface i.e the ipif_orig_ifindex is 17261 * the same as to_ill's ifindex. This is needed so that 17262 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17263 * from B -> A (B is being removed from the group) and 17264 * FAILBACK from A -> B restores the original configuration. 17265 * Without the check for orig_ifindex, the second FAILOVER 17266 * could make the ipif belonging to B replace the A's zeroth 17267 * ipif and the subsequent failback re-creating the replacement 17268 * ipif again. 17269 * 17270 * NOTE : We created the replacement ipif when we did a 17271 * FAILOVER (See below). We could check for FAILBACK and 17272 * then look for replacement ipif to be removed. But we don't 17273 * want to do that because we wan't to allow the possibility 17274 * of a FAILOVER from A -> B (which creates the replacement ipif), 17275 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17276 * from B -> A. 17277 */ 17278 to_ipif = to_ill->ill_ipif; 17279 if ((to_ill->ill_phyint->phyint_ifindex == 17280 ipif->ipif_orig_ifindex) && 17281 to_ipif->ipif_replace_zero) { 17282 ASSERT(to_ipif->ipif_id == 0); 17283 remove_ipif = B_TRUE; 17284 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17285 } 17286 /* 17287 * Find the lowest logical unit number on the to_ill. 17288 * If we are failing back, try to get the original id 17289 * rather than the lowest one so that the original 17290 * configuration is maintained. 17291 * 17292 * XXX need a better scheme for this. 17293 */ 17294 if (failback_cmd) { 17295 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17296 } else { 17297 unit = ipif_get_id(to_ill, 0); 17298 } 17299 17300 /* Reset back to zero in case we fail below */ 17301 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17302 to_ipif->ipif_id = 0; 17303 17304 if (unit == ipst->ips_ip_addrs_per_if) { 17305 ipif->ipif_was_up = B_FALSE; 17306 IPIF_UNMARK_MOVING(ipif); 17307 return (EINVAL); 17308 } 17309 17310 /* 17311 * ipif is ready to move from "from_ill" to "to_ill". 17312 * 17313 * 1) If we are moving ipif with id zero, create a 17314 * replacement ipif for this ipif on from_ill. If this fails 17315 * fail the MOVE operation. 17316 * 17317 * 2) Remove the replacement ipif on to_ill if any. 17318 * We could remove the replacement ipif when we are moving 17319 * the ipif with id zero. But what if somebody already 17320 * unplumbed it ? Thus we always remove it if it is present. 17321 * We want to do it only if we are sure we are going to 17322 * move the ipif to to_ill which is why there are no 17323 * returns due to error till ipif is linked to to_ill. 17324 * Note that the first ipif that we failback will always 17325 * be zero if it is present. 17326 */ 17327 if (ipif->ipif_id == 0) { 17328 ipaddr_t inaddr_any = INADDR_ANY; 17329 17330 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17331 if (rep_ipif == NULL) { 17332 ipif->ipif_was_up = B_FALSE; 17333 IPIF_UNMARK_MOVING(ipif); 17334 return (ENOMEM); 17335 } 17336 *rep_ipif = ipif_zero; 17337 /* 17338 * Before we put the ipif on the list, store the addresses 17339 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17340 * assumes so. This logic is not any different from what 17341 * ipif_allocate does. 17342 */ 17343 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17344 &rep_ipif->ipif_v6lcl_addr); 17345 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17346 &rep_ipif->ipif_v6src_addr); 17347 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17348 &rep_ipif->ipif_v6subnet); 17349 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17350 &rep_ipif->ipif_v6net_mask); 17351 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17352 &rep_ipif->ipif_v6brd_addr); 17353 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17354 &rep_ipif->ipif_v6pp_dst_addr); 17355 /* 17356 * We mark IPIF_NOFAILOVER so that this can never 17357 * move. 17358 */ 17359 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17360 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17361 rep_ipif->ipif_replace_zero = B_TRUE; 17362 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17363 MUTEX_DEFAULT, NULL); 17364 rep_ipif->ipif_id = 0; 17365 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17366 rep_ipif->ipif_ill = from_ill; 17367 rep_ipif->ipif_orig_ifindex = 17368 from_ill->ill_phyint->phyint_ifindex; 17369 /* Insert at head */ 17370 rep_ipif->ipif_next = from_ill->ill_ipif; 17371 from_ill->ill_ipif = rep_ipif; 17372 /* 17373 * We don't really care to let apps know about 17374 * this interface. 17375 */ 17376 } 17377 17378 if (remove_ipif) { 17379 /* 17380 * We set to a max value above for this case to get 17381 * id zero. ASSERT that we did get one. 17382 */ 17383 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17384 rep_ipif = to_ipif; 17385 to_ill->ill_ipif = rep_ipif->ipif_next; 17386 rep_ipif->ipif_next = NULL; 17387 /* 17388 * If some apps scanned and find this interface, 17389 * it is time to let them know, so that they can 17390 * delete it. 17391 */ 17392 17393 *rep_ipif_ptr = rep_ipif; 17394 } 17395 17396 /* Get it out of the ILL interface list. */ 17397 ipif_remove(ipif, B_FALSE); 17398 17399 /* Assign the new ill */ 17400 ipif->ipif_ill = to_ill; 17401 ipif->ipif_id = unit; 17402 /* id has already been checked */ 17403 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17404 ASSERT(rc == 0); 17405 /* Let SCTP update its list */ 17406 sctp_move_ipif(ipif, from_ill, to_ill); 17407 /* 17408 * Handle the failover and failback of ipif_t between 17409 * ill_t that have differing maximum mtu values. 17410 */ 17411 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17412 if (ipif->ipif_saved_mtu == 0) { 17413 /* 17414 * As this ipif_t is moving to an ill_t 17415 * that has a lower ill_max_mtu, its 17416 * ipif_mtu needs to be saved so it can 17417 * be restored during failback or during 17418 * failover to an ill_t which has a 17419 * higher ill_max_mtu. 17420 */ 17421 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17422 ipif->ipif_mtu = to_ill->ill_max_mtu; 17423 } else { 17424 /* 17425 * The ipif_t is, once again, moving to 17426 * an ill_t that has a lower maximum mtu 17427 * value. 17428 */ 17429 ipif->ipif_mtu = to_ill->ill_max_mtu; 17430 } 17431 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17432 ipif->ipif_saved_mtu != 0) { 17433 /* 17434 * The mtu of this ipif_t had to be reduced 17435 * during an earlier failover; this is an 17436 * opportunity for it to be increased (either as 17437 * part of another failover or a failback). 17438 */ 17439 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17440 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17441 ipif->ipif_saved_mtu = 0; 17442 } else { 17443 ipif->ipif_mtu = to_ill->ill_max_mtu; 17444 } 17445 } 17446 17447 /* 17448 * We preserve all the other fields of the ipif including 17449 * ipif_saved_ire_mp. The routes that are saved here will 17450 * be recreated on the new interface and back on the old 17451 * interface when we move back. 17452 */ 17453 ASSERT(ipif->ipif_arp_del_mp == NULL); 17454 17455 return (err); 17456 } 17457 17458 static int 17459 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17460 int ifindex, ipif_t **rep_ipif_ptr) 17461 { 17462 ipif_t *mipif; 17463 ipif_t *ipif_next; 17464 int err; 17465 17466 /* 17467 * We don't really try to MOVE back things if some of the 17468 * operations fail. The daemon will take care of moving again 17469 * later on. 17470 */ 17471 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17472 ipif_next = mipif->ipif_next; 17473 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17474 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17475 17476 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17477 17478 /* 17479 * When the MOVE fails, it is the job of the 17480 * application to take care of this properly 17481 * i.e try again if it is ENOMEM. 17482 */ 17483 if (mipif->ipif_ill != from_ill) { 17484 /* 17485 * ipif has moved. 17486 * 17487 * Move the multicast memberships associated 17488 * with this ipif to the new ill. For IPv6, we 17489 * do it once after all the ipifs are moved 17490 * (in ill_move) as they are not associated 17491 * with ipifs. 17492 * 17493 * We need to move the ilms as the ipif has 17494 * already been moved to a new ill even 17495 * in the case of errors. Neither 17496 * ilm_free(ipif) will find the ilm 17497 * when somebody unplumbs this ipif nor 17498 * ilm_delete(ilm) will be able to find the 17499 * ilm, if we don't move now. 17500 */ 17501 if (!from_ill->ill_isv6) 17502 ilm_move_v4(from_ill, to_ill, mipif); 17503 } 17504 17505 if (err != 0) 17506 return (err); 17507 } 17508 } 17509 return (0); 17510 } 17511 17512 static int 17513 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17514 { 17515 int ifindex; 17516 int err; 17517 struct iocblk *iocp; 17518 ipif_t *ipif; 17519 ipif_t *rep_ipif_ptr = NULL; 17520 ipif_t *from_ipif = NULL; 17521 boolean_t check_rep_if = B_FALSE; 17522 ip_stack_t *ipst = from_ill->ill_ipst; 17523 17524 iocp = (struct iocblk *)mp->b_rptr; 17525 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17526 /* 17527 * Move everything pointing at from_ill to to_ill. 17528 * We acheive this by passing in 0 as ifindex. 17529 */ 17530 ifindex = 0; 17531 } else { 17532 /* 17533 * Move everything pointing at from_ill whose original 17534 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17535 * We acheive this by passing in ifindex rather than 0. 17536 * Multicast vifs, ilgs move implicitly because ipifs move. 17537 */ 17538 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17539 ifindex = to_ill->ill_phyint->phyint_ifindex; 17540 } 17541 17542 /* 17543 * Determine if there is at least one ipif that would move from 17544 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17545 * ipif (if it exists) on the to_ill would be consumed as a result of 17546 * the move, in which case we need to quiesce the replacement ipif also. 17547 */ 17548 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17549 from_ipif = from_ipif->ipif_next) { 17550 if (((ifindex == 0) || 17551 (ifindex == from_ipif->ipif_orig_ifindex)) && 17552 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17553 check_rep_if = B_TRUE; 17554 break; 17555 } 17556 } 17557 17558 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17559 17560 GRAB_ILL_LOCKS(from_ill, to_ill); 17561 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17562 (void) ipsq_pending_mp_add(NULL, ipif, q, 17563 mp, ILL_MOVE_OK); 17564 RELEASE_ILL_LOCKS(from_ill, to_ill); 17565 return (EINPROGRESS); 17566 } 17567 17568 /* Check if the replacement ipif is quiescent to delete */ 17569 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17570 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17571 to_ill->ill_ipif->ipif_state_flags |= 17572 IPIF_MOVING | IPIF_CHANGING; 17573 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17574 (void) ipsq_pending_mp_add(NULL, ipif, q, 17575 mp, ILL_MOVE_OK); 17576 RELEASE_ILL_LOCKS(from_ill, to_ill); 17577 return (EINPROGRESS); 17578 } 17579 } 17580 RELEASE_ILL_LOCKS(from_ill, to_ill); 17581 17582 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17583 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17584 GRAB_ILL_LOCKS(from_ill, to_ill); 17585 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17586 17587 /* ilm_move is done inside ipif_move for IPv4 */ 17588 if (err == 0 && from_ill->ill_isv6) 17589 ilm_move_v6(from_ill, to_ill, ifindex); 17590 17591 RELEASE_ILL_LOCKS(from_ill, to_ill); 17592 rw_exit(&ipst->ips_ill_g_lock); 17593 17594 /* 17595 * send rts messages and multicast messages. 17596 */ 17597 if (rep_ipif_ptr != NULL) { 17598 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17599 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17600 rep_ipif_ptr->ipif_recovery_id = 0; 17601 } 17602 ip_rts_ifmsg(rep_ipif_ptr); 17603 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17604 #ifdef DEBUG 17605 ipif_trace_cleanup(rep_ipif_ptr); 17606 #endif 17607 mi_free(rep_ipif_ptr); 17608 } 17609 17610 conn_move_ill(from_ill, to_ill, ifindex); 17611 17612 return (err); 17613 } 17614 17615 /* 17616 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17617 * Also checks for the validity of the arguments. 17618 * Note: We are already exclusive inside the from group. 17619 * It is upto the caller to release refcnt on the to_ill's. 17620 */ 17621 static int 17622 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17623 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17624 { 17625 int dst_index; 17626 ipif_t *ipif_v4, *ipif_v6; 17627 struct lifreq *lifr; 17628 mblk_t *mp1; 17629 boolean_t exists; 17630 sin_t *sin; 17631 int err = 0; 17632 ip_stack_t *ipst; 17633 17634 if (CONN_Q(q)) 17635 ipst = CONNQ_TO_IPST(q); 17636 else 17637 ipst = ILLQ_TO_IPST(q); 17638 17639 if ((mp1 = mp->b_cont) == NULL) 17640 return (EPROTO); 17641 17642 if ((mp1 = mp1->b_cont) == NULL) 17643 return (EPROTO); 17644 17645 lifr = (struct lifreq *)mp1->b_rptr; 17646 sin = (sin_t *)&lifr->lifr_addr; 17647 17648 /* 17649 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17650 * specific operations. 17651 */ 17652 if (sin->sin_family != AF_UNSPEC) 17653 return (EINVAL); 17654 17655 /* 17656 * Get ipif with id 0. We are writer on the from ill. So we can pass 17657 * NULLs for the last 4 args and we know the lookup won't fail 17658 * with EINPROGRESS. 17659 */ 17660 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17661 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17662 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17663 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17664 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17665 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17666 17667 if (ipif_v4 == NULL && ipif_v6 == NULL) 17668 return (ENXIO); 17669 17670 if (ipif_v4 != NULL) { 17671 ASSERT(ipif_v4->ipif_refcnt != 0); 17672 if (ipif_v4->ipif_id != 0) { 17673 err = EINVAL; 17674 goto done; 17675 } 17676 17677 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17678 *ill_from_v4 = ipif_v4->ipif_ill; 17679 } 17680 17681 if (ipif_v6 != NULL) { 17682 ASSERT(ipif_v6->ipif_refcnt != 0); 17683 if (ipif_v6->ipif_id != 0) { 17684 err = EINVAL; 17685 goto done; 17686 } 17687 17688 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17689 *ill_from_v6 = ipif_v6->ipif_ill; 17690 } 17691 17692 err = 0; 17693 dst_index = lifr->lifr_movetoindex; 17694 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17695 q, mp, ip_process_ioctl, &err, ipst); 17696 if (err != 0) { 17697 /* 17698 * A move may be in progress, EINPROGRESS looking up the "to" 17699 * ill means changes already done to the "from" ipsq need to 17700 * be undone to avoid potential deadlocks. 17701 * 17702 * ENXIO will usually be because there is only v6 on the ill, 17703 * that's not treated as an error unless an ENXIO is also 17704 * seen when looking up the v6 "to" ill. 17705 * 17706 * If EINPROGRESS, the mp has been enqueued and can not be 17707 * used to look up the v6 "to" ill, but a preemptive clean 17708 * up of changes to the v6 "from" ipsq is done. 17709 */ 17710 if (err == EINPROGRESS) { 17711 if (*ill_from_v4 != NULL) { 17712 ill_t *from_ill; 17713 ipsq_t *from_ipsq; 17714 17715 from_ill = ipif_v4->ipif_ill; 17716 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17717 17718 mutex_enter(&from_ipsq->ipsq_lock); 17719 from_ipsq->ipsq_current_ipif = NULL; 17720 mutex_exit(&from_ipsq->ipsq_lock); 17721 } 17722 if (*ill_from_v6 != NULL) { 17723 ill_t *from_ill; 17724 ipsq_t *from_ipsq; 17725 17726 from_ill = ipif_v6->ipif_ill; 17727 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17728 17729 mutex_enter(&from_ipsq->ipsq_lock); 17730 from_ipsq->ipsq_current_ipif = NULL; 17731 mutex_exit(&from_ipsq->ipsq_lock); 17732 } 17733 goto done; 17734 } 17735 ASSERT(err == ENXIO); 17736 err = 0; 17737 } 17738 17739 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17740 q, mp, ip_process_ioctl, &err, ipst); 17741 if (err != 0) { 17742 /* 17743 * A move may be in progress, EINPROGRESS looking up the "to" 17744 * ill means changes already done to the "from" ipsq need to 17745 * be undone to avoid potential deadlocks. 17746 */ 17747 if (err == EINPROGRESS) { 17748 if (*ill_from_v6 != NULL) { 17749 ill_t *from_ill; 17750 ipsq_t *from_ipsq; 17751 17752 from_ill = ipif_v6->ipif_ill; 17753 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17754 17755 mutex_enter(&from_ipsq->ipsq_lock); 17756 from_ipsq->ipsq_current_ipif = NULL; 17757 mutex_exit(&from_ipsq->ipsq_lock); 17758 } 17759 goto done; 17760 } 17761 ASSERT(err == ENXIO); 17762 17763 /* Both v4 and v6 lookup failed */ 17764 if (*ill_to_v4 == NULL) { 17765 err = ENXIO; 17766 goto done; 17767 } 17768 err = 0; 17769 } 17770 17771 /* 17772 * If we have something to MOVE i.e "from" not NULL, 17773 * "to" should be non-NULL. 17774 */ 17775 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17776 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17777 err = EINVAL; 17778 } 17779 17780 done: 17781 if (ipif_v4 != NULL) 17782 ipif_refrele(ipif_v4); 17783 if (ipif_v6 != NULL) 17784 ipif_refrele(ipif_v6); 17785 return (err); 17786 } 17787 17788 /* 17789 * FAILOVER and FAILBACK are modelled as MOVE operations. 17790 * 17791 * We don't check whether the MOVE is within the same group or 17792 * not, because this ioctl can be used as a generic mechanism 17793 * to failover from interface A to B, though things will function 17794 * only if they are really part of the same group. Moreover, 17795 * all ipifs may be down and hence temporarily out of the group. 17796 * 17797 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17798 * down first and then V6. For each we wait for the ipif's to become quiescent. 17799 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17800 * have been deleted and there are no active references. Once quiescent the 17801 * ipif's are moved and brought up on the new ill. 17802 * 17803 * Normally the source ill and destination ill belong to the same IPMP group 17804 * and hence the same ipsq_t. In the event they don't belong to the same 17805 * same group the two ipsq's are first merged into one ipsq - that of the 17806 * to_ill. The multicast memberships on the source and destination ill cannot 17807 * change during the move operation since multicast joins/leaves also have to 17808 * execute on the same ipsq and are hence serialized. 17809 */ 17810 /* ARGSUSED */ 17811 int 17812 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17813 ip_ioctl_cmd_t *ipip, void *ifreq) 17814 { 17815 ill_t *ill_to_v4 = NULL; 17816 ill_t *ill_to_v6 = NULL; 17817 ill_t *ill_from_v4 = NULL; 17818 ill_t *ill_from_v6 = NULL; 17819 int err = 0; 17820 17821 /* 17822 * setup from and to ill's, we can get EINPROGRESS only for 17823 * to_ill's. 17824 */ 17825 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17826 &ill_to_v4, &ill_to_v6); 17827 17828 if (err != 0) { 17829 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17830 goto done; 17831 } 17832 17833 /* 17834 * nothing to do. 17835 */ 17836 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17837 goto done; 17838 } 17839 17840 /* 17841 * nothing to do. 17842 */ 17843 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17844 goto done; 17845 } 17846 17847 /* 17848 * Mark the ill as changing. 17849 * ILL_CHANGING flag is cleared when the ipif's are brought up 17850 * in ill_up_ipifs in case of error they are cleared below. 17851 */ 17852 17853 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17854 if (ill_from_v4 != NULL) 17855 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17856 if (ill_from_v6 != NULL) 17857 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17858 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17859 17860 /* 17861 * Make sure that both src and dst are 17862 * in the same syncq group. If not make it happen. 17863 * We are not holding any locks because we are the writer 17864 * on the from_ipsq and we will hold locks in ill_merge_groups 17865 * to protect to_ipsq against changing. 17866 */ 17867 if (ill_from_v4 != NULL) { 17868 if (ill_from_v4->ill_phyint->phyint_ipsq != 17869 ill_to_v4->ill_phyint->phyint_ipsq) { 17870 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17871 NULL, mp, q); 17872 goto err_ret; 17873 17874 } 17875 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17876 } else { 17877 17878 if (ill_from_v6->ill_phyint->phyint_ipsq != 17879 ill_to_v6->ill_phyint->phyint_ipsq) { 17880 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17881 NULL, mp, q); 17882 goto err_ret; 17883 17884 } 17885 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17886 } 17887 17888 /* 17889 * Now that the ipsq's have been merged and we are the writer 17890 * lets mark to_ill as changing as well. 17891 */ 17892 17893 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17894 if (ill_to_v4 != NULL) 17895 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17896 if (ill_to_v6 != NULL) 17897 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17898 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17899 17900 /* 17901 * Its ok for us to proceed with the move even if 17902 * ill_pending_mp is non null on one of the from ill's as the reply 17903 * should not be looking at the ipif, it should only care about the 17904 * ill itself. 17905 */ 17906 17907 /* 17908 * lets move ipv4 first. 17909 */ 17910 if (ill_from_v4 != NULL) { 17911 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17912 ill_from_v4->ill_move_in_progress = B_TRUE; 17913 ill_to_v4->ill_move_in_progress = B_TRUE; 17914 ill_to_v4->ill_move_peer = ill_from_v4; 17915 ill_from_v4->ill_move_peer = ill_to_v4; 17916 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17917 } 17918 17919 /* 17920 * Now lets move ipv6. 17921 */ 17922 if (err == 0 && ill_from_v6 != NULL) { 17923 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17924 ill_from_v6->ill_move_in_progress = B_TRUE; 17925 ill_to_v6->ill_move_in_progress = B_TRUE; 17926 ill_to_v6->ill_move_peer = ill_from_v6; 17927 ill_from_v6->ill_move_peer = ill_to_v6; 17928 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17929 } 17930 17931 err_ret: 17932 /* 17933 * EINPROGRESS means we are waiting for the ipif's that need to be 17934 * moved to become quiescent. 17935 */ 17936 if (err == EINPROGRESS) { 17937 goto done; 17938 } 17939 17940 /* 17941 * if err is set ill_up_ipifs will not be called 17942 * lets clear the flags. 17943 */ 17944 17945 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17946 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17947 /* 17948 * Some of the clearing may be redundant. But it is simple 17949 * not making any extra checks. 17950 */ 17951 if (ill_from_v6 != NULL) { 17952 ill_from_v6->ill_move_in_progress = B_FALSE; 17953 ill_from_v6->ill_move_peer = NULL; 17954 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17955 } 17956 if (ill_from_v4 != NULL) { 17957 ill_from_v4->ill_move_in_progress = B_FALSE; 17958 ill_from_v4->ill_move_peer = NULL; 17959 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17960 } 17961 if (ill_to_v6 != NULL) { 17962 ill_to_v6->ill_move_in_progress = B_FALSE; 17963 ill_to_v6->ill_move_peer = NULL; 17964 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17965 } 17966 if (ill_to_v4 != NULL) { 17967 ill_to_v4->ill_move_in_progress = B_FALSE; 17968 ill_to_v4->ill_move_peer = NULL; 17969 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17970 } 17971 17972 /* 17973 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17974 * Do this always to maintain proper state i.e even in case of errors. 17975 * As phyint_inactive looks at both v4 and v6 interfaces, 17976 * we need not call on both v4 and v6 interfaces. 17977 */ 17978 if (ill_from_v4 != NULL) { 17979 if ((ill_from_v4->ill_phyint->phyint_flags & 17980 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17981 phyint_inactive(ill_from_v4->ill_phyint); 17982 } 17983 } else if (ill_from_v6 != NULL) { 17984 if ((ill_from_v6->ill_phyint->phyint_flags & 17985 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17986 phyint_inactive(ill_from_v6->ill_phyint); 17987 } 17988 } 17989 17990 if (ill_to_v4 != NULL) { 17991 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17992 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17993 } 17994 } else if (ill_to_v6 != NULL) { 17995 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17996 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17997 } 17998 } 17999 18000 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18001 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18002 18003 no_err: 18004 /* 18005 * lets bring the interfaces up on the to_ill. 18006 */ 18007 if (err == 0) { 18008 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18009 q, mp); 18010 } 18011 18012 if (err == 0) { 18013 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18014 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18015 18016 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18017 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18018 } 18019 done: 18020 18021 if (ill_to_v4 != NULL) { 18022 ill_refrele(ill_to_v4); 18023 } 18024 if (ill_to_v6 != NULL) { 18025 ill_refrele(ill_to_v6); 18026 } 18027 18028 return (err); 18029 } 18030 18031 static void 18032 ill_dl_down(ill_t *ill) 18033 { 18034 /* 18035 * The ill is down; unbind but stay attached since we're still 18036 * associated with a PPA. If we have negotiated DLPI capabilites 18037 * with the data link service provider (IDS_OK) then reset them. 18038 * The interval between unbinding and rebinding is potentially 18039 * unbounded hence we cannot assume things will be the same. 18040 * The DLPI capabilities will be probed again when the data link 18041 * is brought up. 18042 */ 18043 mblk_t *mp = ill->ill_unbind_mp; 18044 18045 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18046 18047 ill->ill_unbind_mp = NULL; 18048 if (mp != NULL) { 18049 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18050 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18051 ill->ill_name)); 18052 mutex_enter(&ill->ill_lock); 18053 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18054 mutex_exit(&ill->ill_lock); 18055 /* 18056 * ip_rput does not pass up normal (M_PROTO) DLPI messages 18057 * after ILL_CONDEMNED is set. So in the unplumb case, we call 18058 * ill_capability_dld_disable disable rightaway. If this is not 18059 * an unplumb operation then the disable happens on receipt of 18060 * the capab ack via ip_rput_dlpi_writer -> 18061 * ill_capability_ack_thr. In both cases the order of 18062 * the operations seen by DLD is capability disable followed 18063 * by DL_UNBIND. Also the DLD capability disable needs a 18064 * cv_wait'able context. 18065 */ 18066 if (ill->ill_state_flags & ILL_CONDEMNED) 18067 ill_capability_dld_disable(ill); 18068 ill_capability_reset(ill, B_FALSE); 18069 ill_dlpi_send(ill, mp); 18070 } 18071 18072 /* 18073 * Toss all of our multicast memberships. We could keep them, but 18074 * then we'd have to do bookkeeping of any joins and leaves performed 18075 * by the application while the the interface is down (we can't just 18076 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18077 * on a downed interface). 18078 */ 18079 ill_leave_multicast(ill); 18080 18081 mutex_enter(&ill->ill_lock); 18082 ill->ill_dl_up = 0; 18083 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 18084 mutex_exit(&ill->ill_lock); 18085 } 18086 18087 static void 18088 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18089 { 18090 union DL_primitives *dlp; 18091 t_uscalar_t prim; 18092 18093 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18094 18095 dlp = (union DL_primitives *)mp->b_rptr; 18096 prim = dlp->dl_primitive; 18097 18098 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18099 dl_primstr(prim), prim, ill->ill_name)); 18100 18101 switch (prim) { 18102 case DL_PHYS_ADDR_REQ: 18103 { 18104 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18105 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18106 break; 18107 } 18108 case DL_BIND_REQ: 18109 mutex_enter(&ill->ill_lock); 18110 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18111 mutex_exit(&ill->ill_lock); 18112 break; 18113 } 18114 18115 /* 18116 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18117 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18118 * we only wait for the ACK of the DL_UNBIND_REQ. 18119 */ 18120 mutex_enter(&ill->ill_lock); 18121 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18122 (prim == DL_UNBIND_REQ)) { 18123 ill->ill_dlpi_pending = prim; 18124 } 18125 mutex_exit(&ill->ill_lock); 18126 putnext(ill->ill_wq, mp); 18127 } 18128 18129 /* 18130 * Helper function for ill_dlpi_send(). 18131 */ 18132 /* ARGSUSED */ 18133 static void 18134 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18135 { 18136 ill_dlpi_send(q->q_ptr, mp); 18137 } 18138 18139 /* 18140 * Send a DLPI control message to the driver but make sure there 18141 * is only one outstanding message. Uses ill_dlpi_pending to tell 18142 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18143 * when an ACK or a NAK is received to process the next queued message. 18144 */ 18145 void 18146 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18147 { 18148 mblk_t **mpp; 18149 18150 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18151 18152 /* 18153 * To ensure that any DLPI requests for current exclusive operation 18154 * are always completely sent before any DLPI messages for other 18155 * operations, require writer access before enqueuing. 18156 */ 18157 if (!IAM_WRITER_ILL(ill)) { 18158 ill_refhold(ill); 18159 /* qwriter_ip() does the ill_refrele() */ 18160 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18161 NEW_OP, B_TRUE); 18162 return; 18163 } 18164 18165 mutex_enter(&ill->ill_lock); 18166 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18167 /* Must queue message. Tail insertion */ 18168 mpp = &ill->ill_dlpi_deferred; 18169 while (*mpp != NULL) 18170 mpp = &((*mpp)->b_next); 18171 18172 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18173 ill->ill_name)); 18174 18175 *mpp = mp; 18176 mutex_exit(&ill->ill_lock); 18177 return; 18178 } 18179 mutex_exit(&ill->ill_lock); 18180 ill_dlpi_dispatch(ill, mp); 18181 } 18182 18183 static void 18184 ill_capability_send(ill_t *ill, mblk_t *mp) 18185 { 18186 ill->ill_capab_pending_cnt++; 18187 ill_dlpi_send(ill, mp); 18188 } 18189 18190 void 18191 ill_capability_done(ill_t *ill) 18192 { 18193 ASSERT(ill->ill_capab_pending_cnt != 0); 18194 18195 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 18196 18197 ill->ill_capab_pending_cnt--; 18198 if (ill->ill_capab_pending_cnt == 0 && 18199 ill->ill_dlpi_capab_state == IDCS_OK) 18200 ill_capability_reset_alloc(ill); 18201 } 18202 18203 /* 18204 * Send all deferred DLPI messages without waiting for their ACKs. 18205 */ 18206 void 18207 ill_dlpi_send_deferred(ill_t *ill) 18208 { 18209 mblk_t *mp, *nextmp; 18210 18211 /* 18212 * Clear ill_dlpi_pending so that the message is not queued in 18213 * ill_dlpi_send(). 18214 */ 18215 mutex_enter(&ill->ill_lock); 18216 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18217 mp = ill->ill_dlpi_deferred; 18218 ill->ill_dlpi_deferred = NULL; 18219 mutex_exit(&ill->ill_lock); 18220 18221 for (; mp != NULL; mp = nextmp) { 18222 nextmp = mp->b_next; 18223 mp->b_next = NULL; 18224 ill_dlpi_send(ill, mp); 18225 } 18226 } 18227 18228 /* 18229 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18230 */ 18231 boolean_t 18232 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18233 { 18234 t_uscalar_t pending; 18235 18236 mutex_enter(&ill->ill_lock); 18237 if (ill->ill_dlpi_pending == prim) { 18238 mutex_exit(&ill->ill_lock); 18239 return (B_TRUE); 18240 } 18241 18242 /* 18243 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18244 * without waiting, so don't print any warnings in that case. 18245 */ 18246 if (ill->ill_state_flags & ILL_CONDEMNED) { 18247 mutex_exit(&ill->ill_lock); 18248 return (B_FALSE); 18249 } 18250 pending = ill->ill_dlpi_pending; 18251 mutex_exit(&ill->ill_lock); 18252 18253 if (pending == DL_PRIM_INVAL) { 18254 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18255 "received unsolicited ack for %s on %s\n", 18256 dl_primstr(prim), ill->ill_name); 18257 } else { 18258 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18259 "received unexpected ack for %s on %s (expecting %s)\n", 18260 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18261 } 18262 return (B_FALSE); 18263 } 18264 18265 /* 18266 * Complete the current DLPI operation associated with `prim' on `ill' and 18267 * start the next queued DLPI operation (if any). If there are no queued DLPI 18268 * operations and the ill's current exclusive IPSQ operation has finished 18269 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18270 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18271 * the comments above ipsq_current_finish() for details. 18272 */ 18273 void 18274 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18275 { 18276 mblk_t *mp; 18277 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18278 18279 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18280 mutex_enter(&ill->ill_lock); 18281 18282 ASSERT(prim != DL_PRIM_INVAL); 18283 ASSERT(ill->ill_dlpi_pending == prim); 18284 18285 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18286 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18287 18288 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18289 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18290 18291 mutex_enter(&ipsq->ipsq_lock); 18292 if (ipsq->ipsq_current_done) 18293 ipsq->ipsq_current_ipif = NULL; 18294 mutex_exit(&ipsq->ipsq_lock); 18295 18296 cv_signal(&ill->ill_cv); 18297 mutex_exit(&ill->ill_lock); 18298 return; 18299 } 18300 18301 ill->ill_dlpi_deferred = mp->b_next; 18302 mp->b_next = NULL; 18303 mutex_exit(&ill->ill_lock); 18304 18305 ill_dlpi_dispatch(ill, mp); 18306 } 18307 18308 void 18309 conn_delete_ire(conn_t *connp, caddr_t arg) 18310 { 18311 ipif_t *ipif = (ipif_t *)arg; 18312 ire_t *ire; 18313 18314 /* 18315 * Look at the cached ires on conns which has pointers to ipifs. 18316 * We just call ire_refrele which clears up the reference 18317 * to ire. Called when a conn closes. Also called from ipif_free 18318 * to cleanup indirect references to the stale ipif via the cached ire. 18319 */ 18320 mutex_enter(&connp->conn_lock); 18321 ire = connp->conn_ire_cache; 18322 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18323 connp->conn_ire_cache = NULL; 18324 mutex_exit(&connp->conn_lock); 18325 IRE_REFRELE_NOTR(ire); 18326 return; 18327 } 18328 mutex_exit(&connp->conn_lock); 18329 18330 } 18331 18332 /* 18333 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18334 * of IREs. Those IREs may have been previously cached in the conn structure. 18335 * This ipcl_walk() walker function releases all references to such IREs based 18336 * on the condemned flag. 18337 */ 18338 /* ARGSUSED */ 18339 void 18340 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18341 { 18342 ire_t *ire; 18343 18344 mutex_enter(&connp->conn_lock); 18345 ire = connp->conn_ire_cache; 18346 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18347 connp->conn_ire_cache = NULL; 18348 mutex_exit(&connp->conn_lock); 18349 IRE_REFRELE_NOTR(ire); 18350 return; 18351 } 18352 mutex_exit(&connp->conn_lock); 18353 } 18354 18355 /* 18356 * Take down a specific interface, but don't lose any information about it. 18357 * Also delete interface from its interface group (ifgrp). 18358 * (Always called as writer.) 18359 * This function goes through the down sequence even if the interface is 18360 * already down. There are 2 reasons. 18361 * a. Currently we permit interface routes that depend on down interfaces 18362 * to be added. This behaviour itself is questionable. However it appears 18363 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18364 * time. We go thru the cleanup in order to remove these routes. 18365 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18366 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18367 * down, but we need to cleanup i.e. do ill_dl_down and 18368 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18369 * 18370 * IP-MT notes: 18371 * 18372 * Model of reference to interfaces. 18373 * 18374 * The following members in ipif_t track references to the ipif. 18375 * int ipif_refcnt; Active reference count 18376 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18377 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18378 * 18379 * The following members in ill_t track references to the ill. 18380 * int ill_refcnt; active refcnt 18381 * uint_t ill_ire_cnt; Number of ires referencing ill 18382 * uint_t ill_nce_cnt; Number of nces referencing ill 18383 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18384 * 18385 * Reference to an ipif or ill can be obtained in any of the following ways. 18386 * 18387 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18388 * Pointers to ipif / ill from other data structures viz ire and conn. 18389 * Implicit reference to the ipif / ill by holding a reference to the ire. 18390 * 18391 * The ipif/ill lookup functions return a reference held ipif / ill. 18392 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18393 * This is a purely dynamic reference count associated with threads holding 18394 * references to the ipif / ill. Pointers from other structures do not 18395 * count towards this reference count. 18396 * 18397 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18398 * associated with the ipif/ill. This is incremented whenever a new 18399 * ire is created referencing the ipif/ill. This is done atomically inside 18400 * ire_add_v[46] where the ire is actually added to the ire hash table. 18401 * The count is decremented in ire_inactive where the ire is destroyed. 18402 * 18403 * nce's reference ill's thru nce_ill and the count of nce's associated with 18404 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18405 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18406 * table. Similarly it is decremented in ndp_inactive() where the nce 18407 * is destroyed. 18408 * 18409 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18410 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18411 * in ilm_walker_cleanup() or ilm_delete(). 18412 * 18413 * Flow of ioctls involving interface down/up 18414 * 18415 * The following is the sequence of an attempt to set some critical flags on an 18416 * up interface. 18417 * ip_sioctl_flags 18418 * ipif_down 18419 * wait for ipif to be quiescent 18420 * ipif_down_tail 18421 * ip_sioctl_flags_tail 18422 * 18423 * All set ioctls that involve down/up sequence would have a skeleton similar 18424 * to the above. All the *tail functions are called after the refcounts have 18425 * dropped to the appropriate values. 18426 * 18427 * The mechanism to quiesce an ipif is as follows. 18428 * 18429 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18430 * on the ipif. Callers either pass a flag requesting wait or the lookup 18431 * functions will return NULL. 18432 * 18433 * Delete all ires referencing this ipif 18434 * 18435 * Any thread attempting to do an ipif_refhold on an ipif that has been 18436 * obtained thru a cached pointer will first make sure that 18437 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18438 * increment the refcount. 18439 * 18440 * The above guarantees that the ipif refcount will eventually come down to 18441 * zero and the ipif will quiesce, once all threads that currently hold a 18442 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18443 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18444 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18445 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18446 * in ip.h 18447 * 18448 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18449 * 18450 * Threads trying to lookup an ipif or ill can pass a flag requesting 18451 * wait and restart if the ipif / ill cannot be looked up currently. 18452 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18453 * failure if the ipif is currently undergoing an exclusive operation, and 18454 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18455 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18456 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18457 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18458 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18459 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18460 * until we release the ipsq_lock, even though the the ill/ipif state flags 18461 * can change after we drop the ill_lock. 18462 * 18463 * An attempt to send out a packet using an ipif that is currently 18464 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18465 * operation and restart it later when the exclusive condition on the ipif ends. 18466 * This is an example of not passing the wait flag to the lookup functions. For 18467 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18468 * out a multicast packet on that ipif will fail while the ipif is 18469 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18470 * currently IPIF_CHANGING will also fail. 18471 */ 18472 int 18473 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18474 { 18475 ill_t *ill = ipif->ipif_ill; 18476 phyint_t *phyi; 18477 conn_t *connp; 18478 boolean_t success; 18479 boolean_t ipif_was_up = B_FALSE; 18480 ip_stack_t *ipst = ill->ill_ipst; 18481 18482 ASSERT(IAM_WRITER_IPIF(ipif)); 18483 18484 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18485 18486 if (ipif->ipif_flags & IPIF_UP) { 18487 mutex_enter(&ill->ill_lock); 18488 ipif->ipif_flags &= ~IPIF_UP; 18489 ASSERT(ill->ill_ipif_up_count > 0); 18490 --ill->ill_ipif_up_count; 18491 mutex_exit(&ill->ill_lock); 18492 ipif_was_up = B_TRUE; 18493 /* Update status in SCTP's list */ 18494 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18495 ill_nic_event_dispatch(ipif->ipif_ill, 18496 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 18497 } 18498 18499 /* 18500 * Blow away memberships we established in ipif_multicast_up(). 18501 */ 18502 ipif_multicast_down(ipif); 18503 18504 /* 18505 * Remove from the mapping for __sin6_src_id. We insert only 18506 * when the address is not INADDR_ANY. As IPv4 addresses are 18507 * stored as mapped addresses, we need to check for mapped 18508 * INADDR_ANY also. 18509 */ 18510 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18511 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18512 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18513 int err; 18514 18515 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18516 ipif->ipif_zoneid, ipst); 18517 if (err != 0) { 18518 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18519 } 18520 } 18521 18522 /* 18523 * Before we delete the ill from the group (if any), we need 18524 * to make sure that we delete all the routes dependent on 18525 * this and also any ipifs dependent on this ipif for 18526 * source address. We need to do before we delete from 18527 * the group because 18528 * 18529 * 1) ipif_down_delete_ire de-references ill->ill_group. 18530 * 18531 * 2) ipif_update_other_ipifs needs to walk the whole group 18532 * for re-doing source address selection. Note that 18533 * ipif_select_source[_v6] called from 18534 * ipif_update_other_ipifs[_v6] will not pick this ipif 18535 * because we have already marked down here i.e cleared 18536 * IPIF_UP. 18537 */ 18538 if (ipif->ipif_isv6) { 18539 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18540 ipst); 18541 } else { 18542 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18543 ipst); 18544 } 18545 18546 /* 18547 * Cleaning up the conn_ire_cache or conns must be done only after the 18548 * ires have been deleted above. Otherwise a thread could end up 18549 * caching an ire in a conn after we have finished the cleanup of the 18550 * conn. The caching is done after making sure that the ire is not yet 18551 * condemned. Also documented in the block comment above ip_output 18552 */ 18553 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18554 /* Also, delete the ires cached in SCTP */ 18555 sctp_ire_cache_flush(ipif); 18556 18557 /* 18558 * Update any other ipifs which have used "our" local address as 18559 * a source address. This entails removing and recreating IRE_INTERFACE 18560 * entries for such ipifs. 18561 */ 18562 if (ipif->ipif_isv6) 18563 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18564 else 18565 ipif_update_other_ipifs(ipif, ill->ill_group); 18566 18567 if (ipif_was_up) { 18568 /* 18569 * Check whether it is last ipif to leave this group. 18570 * If this is the last ipif to leave, we should remove 18571 * this ill from the group as ipif_select_source will not 18572 * be able to find any useful ipifs if this ill is selected 18573 * for load balancing. 18574 * 18575 * For nameless groups, we should call ifgrp_delete if this 18576 * belongs to some group. As this ipif is going down, we may 18577 * need to reconstruct groups. 18578 */ 18579 phyi = ill->ill_phyint; 18580 /* 18581 * If the phyint_groupname_len is 0, it may or may not 18582 * be in the nameless group. If the phyint_groupname_len is 18583 * not 0, then this ill should be part of some group. 18584 * As we always insert this ill in the group if 18585 * phyint_groupname_len is not zero when the first ipif 18586 * comes up (in ipif_up_done), it should be in a group 18587 * when the namelen is not 0. 18588 * 18589 * NOTE : When we delete the ill from the group,it will 18590 * blow away all the IRE_CACHES pointing either at this ipif or 18591 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18592 * should be pointing at this ill. 18593 */ 18594 ASSERT(phyi->phyint_groupname_len == 0 || 18595 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18596 18597 if (phyi->phyint_groupname_len != 0) { 18598 if (ill->ill_ipif_up_count == 0) 18599 illgrp_delete(ill); 18600 } 18601 18602 /* 18603 * If we have deleted some of the broadcast ires associated 18604 * with this ipif, we need to re-nominate somebody else if 18605 * the ires that we deleted were the nominated ones. 18606 */ 18607 if (ill->ill_group != NULL && !ill->ill_isv6) 18608 ipif_renominate_bcast(ipif); 18609 } 18610 18611 /* 18612 * neighbor-discovery or arp entries for this interface. 18613 */ 18614 ipif_ndp_down(ipif); 18615 18616 /* 18617 * If mp is NULL the caller will wait for the appropriate refcnt. 18618 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18619 * and ill_delete -> ipif_free -> ipif_down 18620 */ 18621 if (mp == NULL) { 18622 ASSERT(q == NULL); 18623 return (0); 18624 } 18625 18626 if (CONN_Q(q)) { 18627 connp = Q_TO_CONN(q); 18628 mutex_enter(&connp->conn_lock); 18629 } else { 18630 connp = NULL; 18631 } 18632 mutex_enter(&ill->ill_lock); 18633 /* 18634 * Are there any ire's pointing to this ipif that are still active ? 18635 * If this is the last ipif going down, are there any ire's pointing 18636 * to this ill that are still active ? 18637 */ 18638 if (ipif_is_quiescent(ipif)) { 18639 mutex_exit(&ill->ill_lock); 18640 if (connp != NULL) 18641 mutex_exit(&connp->conn_lock); 18642 return (0); 18643 } 18644 18645 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18646 ill->ill_name, (void *)ill)); 18647 /* 18648 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18649 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18650 * which in turn is called by the last refrele on the ipif/ill/ire. 18651 */ 18652 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18653 if (!success) { 18654 /* The conn is closing. So just return */ 18655 ASSERT(connp != NULL); 18656 mutex_exit(&ill->ill_lock); 18657 mutex_exit(&connp->conn_lock); 18658 return (EINTR); 18659 } 18660 18661 mutex_exit(&ill->ill_lock); 18662 if (connp != NULL) 18663 mutex_exit(&connp->conn_lock); 18664 return (EINPROGRESS); 18665 } 18666 18667 void 18668 ipif_down_tail(ipif_t *ipif) 18669 { 18670 ill_t *ill = ipif->ipif_ill; 18671 18672 /* 18673 * Skip any loopback interface (null wq). 18674 * If this is the last logical interface on the ill 18675 * have ill_dl_down tell the driver we are gone (unbind) 18676 * Note that lun 0 can ipif_down even though 18677 * there are other logical units that are up. 18678 * This occurs e.g. when we change a "significant" IFF_ flag. 18679 */ 18680 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18681 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18682 ill->ill_dl_up) { 18683 ill_dl_down(ill); 18684 } 18685 ill->ill_logical_down = 0; 18686 18687 /* 18688 * Have to be after removing the routes in ipif_down_delete_ire. 18689 */ 18690 if (ipif->ipif_isv6) { 18691 if (ill->ill_flags & ILLF_XRESOLV) 18692 ipif_arp_down(ipif); 18693 } else { 18694 ipif_arp_down(ipif); 18695 } 18696 18697 ip_rts_ifmsg(ipif); 18698 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18699 } 18700 18701 /* 18702 * Bring interface logically down without bringing the physical interface 18703 * down e.g. when the netmask is changed. This avoids long lasting link 18704 * negotiations between an ethernet interface and a certain switches. 18705 */ 18706 static int 18707 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18708 { 18709 /* 18710 * The ill_logical_down flag is a transient flag. It is set here 18711 * and is cleared once the down has completed in ipif_down_tail. 18712 * This flag does not indicate whether the ill stream is in the 18713 * DL_BOUND state with the driver. Instead this flag is used by 18714 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18715 * the driver. The state of the ill stream i.e. whether it is 18716 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18717 */ 18718 ipif->ipif_ill->ill_logical_down = 1; 18719 return (ipif_down(ipif, q, mp)); 18720 } 18721 18722 /* 18723 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18724 * If the usesrc client ILL is already part of a usesrc group or not, 18725 * in either case a ire_stq with the matching usesrc client ILL will 18726 * locate the IRE's that need to be deleted. We want IREs to be created 18727 * with the new source address. 18728 */ 18729 static void 18730 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18731 { 18732 ill_t *ucill = (ill_t *)ill_arg; 18733 18734 ASSERT(IAM_WRITER_ILL(ucill)); 18735 18736 if (ire->ire_stq == NULL) 18737 return; 18738 18739 if ((ire->ire_type == IRE_CACHE) && 18740 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18741 ire_delete(ire); 18742 } 18743 18744 /* 18745 * ire_walk routine to delete every IRE dependent on the interface 18746 * address that is going down. (Always called as writer.) 18747 * Works for both v4 and v6. 18748 * In addition for checking for ire_ipif matches it also checks for 18749 * IRE_CACHE entries which have the same source address as the 18750 * disappearing ipif since ipif_select_source might have picked 18751 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18752 * care of any IRE_INTERFACE with the disappearing source address. 18753 */ 18754 static void 18755 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18756 { 18757 ipif_t *ipif = (ipif_t *)ipif_arg; 18758 ill_t *ire_ill; 18759 ill_t *ipif_ill; 18760 18761 ASSERT(IAM_WRITER_IPIF(ipif)); 18762 if (ire->ire_ipif == NULL) 18763 return; 18764 18765 /* 18766 * For IPv4, we derive source addresses for an IRE from ipif's 18767 * belonging to the same IPMP group as the IRE's outgoing 18768 * interface. If an IRE's outgoing interface isn't in the 18769 * same IPMP group as a particular ipif, then that ipif 18770 * couldn't have been used as a source address for this IRE. 18771 * 18772 * For IPv6, source addresses are only restricted to the IPMP group 18773 * if the IRE is for a link-local address or a multicast address. 18774 * Otherwise, source addresses for an IRE can be chosen from 18775 * interfaces other than the the outgoing interface for that IRE. 18776 * 18777 * For source address selection details, see ipif_select_source() 18778 * and ipif_select_source_v6(). 18779 */ 18780 if (ire->ire_ipversion == IPV4_VERSION || 18781 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18782 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18783 ire_ill = ire->ire_ipif->ipif_ill; 18784 ipif_ill = ipif->ipif_ill; 18785 18786 if (ire_ill->ill_group != ipif_ill->ill_group) { 18787 return; 18788 } 18789 } 18790 18791 if (ire->ire_ipif != ipif) { 18792 /* 18793 * Look for a matching source address. 18794 */ 18795 if (ire->ire_type != IRE_CACHE) 18796 return; 18797 if (ipif->ipif_flags & IPIF_NOLOCAL) 18798 return; 18799 18800 if (ire->ire_ipversion == IPV4_VERSION) { 18801 if (ire->ire_src_addr != ipif->ipif_src_addr) 18802 return; 18803 } else { 18804 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18805 &ipif->ipif_v6lcl_addr)) 18806 return; 18807 } 18808 ire_delete(ire); 18809 return; 18810 } 18811 /* 18812 * ire_delete() will do an ire_flush_cache which will delete 18813 * all ire_ipif matches 18814 */ 18815 ire_delete(ire); 18816 } 18817 18818 /* 18819 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18820 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18821 * 2) when an interface is brought up or down (on that ill). 18822 * This ensures that the IRE_CACHE entries don't retain stale source 18823 * address selection results. 18824 */ 18825 void 18826 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18827 { 18828 ill_t *ill = (ill_t *)ill_arg; 18829 ill_t *ipif_ill; 18830 18831 ASSERT(IAM_WRITER_ILL(ill)); 18832 /* 18833 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18834 * Hence this should be IRE_CACHE. 18835 */ 18836 ASSERT(ire->ire_type == IRE_CACHE); 18837 18838 /* 18839 * We are called for IRE_CACHES whose ire_ipif matches ill. 18840 * We are only interested in IRE_CACHES that has borrowed 18841 * the source address from ill_arg e.g. ipif_up_done[_v6] 18842 * for which we need to look at ire_ipif->ipif_ill match 18843 * with ill. 18844 */ 18845 ASSERT(ire->ire_ipif != NULL); 18846 ipif_ill = ire->ire_ipif->ipif_ill; 18847 if (ipif_ill == ill || (ill->ill_group != NULL && 18848 ipif_ill->ill_group == ill->ill_group)) { 18849 ire_delete(ire); 18850 } 18851 } 18852 18853 /* 18854 * Delete all the ire whose stq references ill_arg. 18855 */ 18856 static void 18857 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18858 { 18859 ill_t *ill = (ill_t *)ill_arg; 18860 ill_t *ire_ill; 18861 18862 ASSERT(IAM_WRITER_ILL(ill)); 18863 /* 18864 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18865 * Hence this should be IRE_CACHE. 18866 */ 18867 ASSERT(ire->ire_type == IRE_CACHE); 18868 18869 /* 18870 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18871 * matches ill. We are only interested in IRE_CACHES that 18872 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18873 * filtering here. 18874 */ 18875 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18876 18877 if (ire_ill == ill) 18878 ire_delete(ire); 18879 } 18880 18881 /* 18882 * This is called when an ill leaves the group. We want to delete 18883 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18884 * pointing at ill. 18885 */ 18886 static void 18887 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18888 { 18889 ill_t *ill = (ill_t *)ill_arg; 18890 18891 ASSERT(IAM_WRITER_ILL(ill)); 18892 ASSERT(ill->ill_group == NULL); 18893 /* 18894 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18895 * Hence this should be IRE_CACHE. 18896 */ 18897 ASSERT(ire->ire_type == IRE_CACHE); 18898 /* 18899 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18900 * matches ill. We are interested in both. 18901 */ 18902 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18903 (ire->ire_ipif->ipif_ill == ill)); 18904 18905 ire_delete(ire); 18906 } 18907 18908 /* 18909 * Initiate deallocate of an IPIF. Always called as writer. Called by 18910 * ill_delete or ip_sioctl_removeif. 18911 */ 18912 static void 18913 ipif_free(ipif_t *ipif) 18914 { 18915 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18916 18917 ASSERT(IAM_WRITER_IPIF(ipif)); 18918 18919 if (ipif->ipif_recovery_id != 0) 18920 (void) untimeout(ipif->ipif_recovery_id); 18921 ipif->ipif_recovery_id = 0; 18922 18923 /* Remove conn references */ 18924 reset_conn_ipif(ipif); 18925 18926 /* 18927 * Make sure we have valid net and subnet broadcast ire's for the 18928 * other ipif's which share them with this ipif. 18929 */ 18930 if (!ipif->ipif_isv6) 18931 ipif_check_bcast_ires(ipif); 18932 18933 /* 18934 * Take down the interface. We can be called either from ill_delete 18935 * or from ip_sioctl_removeif. 18936 */ 18937 (void) ipif_down(ipif, NULL, NULL); 18938 18939 /* 18940 * Now that the interface is down, there's no chance it can still 18941 * become a duplicate. Cancel any timer that may have been set while 18942 * tearing down. 18943 */ 18944 if (ipif->ipif_recovery_id != 0) 18945 (void) untimeout(ipif->ipif_recovery_id); 18946 ipif->ipif_recovery_id = 0; 18947 18948 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18949 /* Remove pointers to this ill in the multicast routing tables */ 18950 reset_mrt_vif_ipif(ipif); 18951 rw_exit(&ipst->ips_ill_g_lock); 18952 } 18953 18954 /* 18955 * Warning: this is not the only function that calls mi_free on an ipif_t. See 18956 * also ill_move(). 18957 */ 18958 static void 18959 ipif_free_tail(ipif_t *ipif) 18960 { 18961 mblk_t *mp; 18962 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18963 18964 /* 18965 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18966 */ 18967 mutex_enter(&ipif->ipif_saved_ire_lock); 18968 mp = ipif->ipif_saved_ire_mp; 18969 ipif->ipif_saved_ire_mp = NULL; 18970 mutex_exit(&ipif->ipif_saved_ire_lock); 18971 freemsg(mp); 18972 18973 /* 18974 * Need to hold both ill_g_lock and ill_lock while 18975 * inserting or removing an ipif from the linked list 18976 * of ipifs hanging off the ill. 18977 */ 18978 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18979 18980 ASSERT(ilm_walk_ipif(ipif) == 0); 18981 18982 #ifdef DEBUG 18983 ipif_trace_cleanup(ipif); 18984 #endif 18985 18986 /* Ask SCTP to take it out of it list */ 18987 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18988 18989 /* Get it out of the ILL interface list. */ 18990 ipif_remove(ipif, B_TRUE); 18991 rw_exit(&ipst->ips_ill_g_lock); 18992 18993 mutex_destroy(&ipif->ipif_saved_ire_lock); 18994 18995 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18996 ASSERT(ipif->ipif_recovery_id == 0); 18997 18998 /* Free the memory. */ 18999 mi_free(ipif); 19000 } 19001 19002 /* 19003 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19004 * is zero. 19005 */ 19006 void 19007 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19008 { 19009 char lbuf[LIFNAMSIZ]; 19010 char *name; 19011 size_t name_len; 19012 19013 buf[0] = '\0'; 19014 name = ipif->ipif_ill->ill_name; 19015 name_len = ipif->ipif_ill->ill_name_length; 19016 if (ipif->ipif_id != 0) { 19017 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19018 ipif->ipif_id); 19019 name = lbuf; 19020 name_len = mi_strlen(name) + 1; 19021 } 19022 len -= 1; 19023 buf[len] = '\0'; 19024 len = MIN(len, name_len); 19025 bcopy(name, buf, len); 19026 } 19027 19028 /* 19029 * Find an IPIF based on the name passed in. Names can be of the 19030 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19031 * The <phys> string can have forms like <dev><#> (e.g., le0), 19032 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19033 * When there is no colon, the implied unit id is zero. <phys> must 19034 * correspond to the name of an ILL. (May be called as writer.) 19035 */ 19036 static ipif_t * 19037 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19038 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19039 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19040 { 19041 char *cp; 19042 char *endp; 19043 long id; 19044 ill_t *ill; 19045 ipif_t *ipif; 19046 uint_t ire_type; 19047 boolean_t did_alloc = B_FALSE; 19048 ipsq_t *ipsq; 19049 19050 if (error != NULL) 19051 *error = 0; 19052 19053 /* 19054 * If the caller wants to us to create the ipif, make sure we have a 19055 * valid zoneid 19056 */ 19057 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19058 19059 if (namelen == 0) { 19060 if (error != NULL) 19061 *error = ENXIO; 19062 return (NULL); 19063 } 19064 19065 *exists = B_FALSE; 19066 /* Look for a colon in the name. */ 19067 endp = &name[namelen]; 19068 for (cp = endp; --cp > name; ) { 19069 if (*cp == IPIF_SEPARATOR_CHAR) 19070 break; 19071 } 19072 19073 if (*cp == IPIF_SEPARATOR_CHAR) { 19074 /* 19075 * Reject any non-decimal aliases for logical 19076 * interfaces. Aliases with leading zeroes 19077 * are also rejected as they introduce ambiguity 19078 * in the naming of the interfaces. 19079 * In order to confirm with existing semantics, 19080 * and to not break any programs/script relying 19081 * on that behaviour, if<0>:0 is considered to be 19082 * a valid interface. 19083 * 19084 * If alias has two or more digits and the first 19085 * is zero, fail. 19086 */ 19087 if (&cp[2] < endp && cp[1] == '0') { 19088 if (error != NULL) 19089 *error = EINVAL; 19090 return (NULL); 19091 } 19092 } 19093 19094 if (cp <= name) { 19095 cp = endp; 19096 } else { 19097 *cp = '\0'; 19098 } 19099 19100 /* 19101 * Look up the ILL, based on the portion of the name 19102 * before the slash. ill_lookup_on_name returns a held ill. 19103 * Temporary to check whether ill exists already. If so 19104 * ill_lookup_on_name will clear it. 19105 */ 19106 ill = ill_lookup_on_name(name, do_alloc, isv6, 19107 q, mp, func, error, &did_alloc, ipst); 19108 if (cp != endp) 19109 *cp = IPIF_SEPARATOR_CHAR; 19110 if (ill == NULL) 19111 return (NULL); 19112 19113 /* Establish the unit number in the name. */ 19114 id = 0; 19115 if (cp < endp && *endp == '\0') { 19116 /* If there was a colon, the unit number follows. */ 19117 cp++; 19118 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19119 ill_refrele(ill); 19120 if (error != NULL) 19121 *error = ENXIO; 19122 return (NULL); 19123 } 19124 } 19125 19126 GRAB_CONN_LOCK(q); 19127 mutex_enter(&ill->ill_lock); 19128 /* Now see if there is an IPIF with this unit number. */ 19129 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19130 if (ipif->ipif_id == id) { 19131 if (zoneid != ALL_ZONES && 19132 zoneid != ipif->ipif_zoneid && 19133 ipif->ipif_zoneid != ALL_ZONES) { 19134 mutex_exit(&ill->ill_lock); 19135 RELEASE_CONN_LOCK(q); 19136 ill_refrele(ill); 19137 if (error != NULL) 19138 *error = ENXIO; 19139 return (NULL); 19140 } 19141 /* 19142 * The block comment at the start of ipif_down 19143 * explains the use of the macros used below 19144 */ 19145 if (IPIF_CAN_LOOKUP(ipif)) { 19146 ipif_refhold_locked(ipif); 19147 mutex_exit(&ill->ill_lock); 19148 if (!did_alloc) 19149 *exists = B_TRUE; 19150 /* 19151 * Drop locks before calling ill_refrele 19152 * since it can potentially call into 19153 * ipif_ill_refrele_tail which can end up 19154 * in trying to acquire any lock. 19155 */ 19156 RELEASE_CONN_LOCK(q); 19157 ill_refrele(ill); 19158 return (ipif); 19159 } else if (IPIF_CAN_WAIT(ipif, q)) { 19160 ipsq = ill->ill_phyint->phyint_ipsq; 19161 mutex_enter(&ipsq->ipsq_lock); 19162 mutex_exit(&ill->ill_lock); 19163 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19164 mutex_exit(&ipsq->ipsq_lock); 19165 RELEASE_CONN_LOCK(q); 19166 ill_refrele(ill); 19167 if (error != NULL) 19168 *error = EINPROGRESS; 19169 return (NULL); 19170 } 19171 } 19172 } 19173 RELEASE_CONN_LOCK(q); 19174 19175 if (!do_alloc) { 19176 mutex_exit(&ill->ill_lock); 19177 ill_refrele(ill); 19178 if (error != NULL) 19179 *error = ENXIO; 19180 return (NULL); 19181 } 19182 19183 /* 19184 * If none found, atomically allocate and return a new one. 19185 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19186 * to support "receive only" use of lo0:1 etc. as is still done 19187 * below as an initial guess. 19188 * However, this is now likely to be overriden later in ipif_up_done() 19189 * when we know for sure what address has been configured on the 19190 * interface, since we might have more than one loopback interface 19191 * with a loopback address, e.g. in the case of zones, and all the 19192 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19193 */ 19194 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19195 ire_type = IRE_LOOPBACK; 19196 else 19197 ire_type = IRE_LOCAL; 19198 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19199 if (ipif != NULL) 19200 ipif_refhold_locked(ipif); 19201 else if (error != NULL) 19202 *error = ENOMEM; 19203 mutex_exit(&ill->ill_lock); 19204 ill_refrele(ill); 19205 return (ipif); 19206 } 19207 19208 /* 19209 * This routine is called whenever a new address comes up on an ipif. If 19210 * we are configured to respond to address mask requests, then we are supposed 19211 * to broadcast an address mask reply at this time. This routine is also 19212 * called if we are already up, but a netmask change is made. This is legal 19213 * but might not make the system manager very popular. (May be called 19214 * as writer.) 19215 */ 19216 void 19217 ipif_mask_reply(ipif_t *ipif) 19218 { 19219 icmph_t *icmph; 19220 ipha_t *ipha; 19221 mblk_t *mp; 19222 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19223 19224 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19225 19226 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19227 return; 19228 19229 /* ICMP mask reply is IPv4 only */ 19230 ASSERT(!ipif->ipif_isv6); 19231 /* ICMP mask reply is not for a loopback interface */ 19232 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19233 19234 mp = allocb(REPLY_LEN, BPRI_HI); 19235 if (mp == NULL) 19236 return; 19237 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19238 19239 ipha = (ipha_t *)mp->b_rptr; 19240 bzero(ipha, REPLY_LEN); 19241 *ipha = icmp_ipha; 19242 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19243 ipha->ipha_src = ipif->ipif_src_addr; 19244 ipha->ipha_dst = ipif->ipif_brd_addr; 19245 ipha->ipha_length = htons(REPLY_LEN); 19246 ipha->ipha_ident = 0; 19247 19248 icmph = (icmph_t *)&ipha[1]; 19249 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19250 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19251 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19252 19253 put(ipif->ipif_wq, mp); 19254 19255 #undef REPLY_LEN 19256 } 19257 19258 /* 19259 * When the mtu in the ipif changes, we call this routine through ire_walk 19260 * to update all the relevant IREs. 19261 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19262 */ 19263 static void 19264 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19265 { 19266 ipif_t *ipif = (ipif_t *)ipif_arg; 19267 19268 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19269 return; 19270 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19271 } 19272 19273 /* 19274 * When the mtu in the ill changes, we call this routine through ire_walk 19275 * to update all the relevant IREs. 19276 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19277 */ 19278 void 19279 ill_mtu_change(ire_t *ire, char *ill_arg) 19280 { 19281 ill_t *ill = (ill_t *)ill_arg; 19282 19283 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19284 return; 19285 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19286 } 19287 19288 /* 19289 * Join the ipif specific multicast groups. 19290 * Must be called after a mapping has been set up in the resolver. (Always 19291 * called as writer.) 19292 */ 19293 void 19294 ipif_multicast_up(ipif_t *ipif) 19295 { 19296 int err, index; 19297 ill_t *ill; 19298 19299 ASSERT(IAM_WRITER_IPIF(ipif)); 19300 19301 ill = ipif->ipif_ill; 19302 index = ill->ill_phyint->phyint_ifindex; 19303 19304 ip1dbg(("ipif_multicast_up\n")); 19305 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19306 return; 19307 19308 if (ipif->ipif_isv6) { 19309 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19310 return; 19311 19312 /* Join the all hosts multicast address */ 19313 ip1dbg(("ipif_multicast_up - addmulti\n")); 19314 /* 19315 * Passing B_TRUE means we have to join the multicast 19316 * membership on this interface even though this is 19317 * FAILED. If we join on a different one in the group, 19318 * we will not be able to delete the membership later 19319 * as we currently don't track where we join when we 19320 * join within the kernel unlike applications where 19321 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19322 * for more on this. 19323 */ 19324 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19325 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19326 if (err != 0) { 19327 ip0dbg(("ipif_multicast_up: " 19328 "all_hosts_mcast failed %d\n", 19329 err)); 19330 return; 19331 } 19332 /* 19333 * Enable multicast for the solicited node multicast address 19334 */ 19335 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19336 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19337 19338 ipv6_multi.s6_addr32[3] |= 19339 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19340 19341 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19342 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19343 NULL); 19344 if (err != 0) { 19345 ip0dbg(("ipif_multicast_up: solicited MC" 19346 " failed %d\n", err)); 19347 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19348 ill, ill->ill_phyint->phyint_ifindex, 19349 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19350 return; 19351 } 19352 } 19353 } else { 19354 if (ipif->ipif_lcl_addr == INADDR_ANY) 19355 return; 19356 19357 /* Join the all hosts multicast address */ 19358 ip1dbg(("ipif_multicast_up - addmulti\n")); 19359 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19360 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19361 if (err) { 19362 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19363 return; 19364 } 19365 } 19366 ipif->ipif_multicast_up = 1; 19367 } 19368 19369 /* 19370 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19371 * (Explicit memberships are blown away in ill_leave_multicast() when the 19372 * ill is brought down.) 19373 */ 19374 static void 19375 ipif_multicast_down(ipif_t *ipif) 19376 { 19377 int err; 19378 19379 ASSERT(IAM_WRITER_IPIF(ipif)); 19380 19381 ip1dbg(("ipif_multicast_down\n")); 19382 if (!ipif->ipif_multicast_up) 19383 return; 19384 19385 ip1dbg(("ipif_multicast_down - delmulti\n")); 19386 19387 if (!ipif->ipif_isv6) { 19388 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19389 B_TRUE); 19390 if (err != 0) 19391 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19392 19393 ipif->ipif_multicast_up = 0; 19394 return; 19395 } 19396 19397 /* 19398 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19399 * we should look for ilms on this ill rather than the ones that have 19400 * been failed over here. They are here temporarily. As 19401 * ipif_multicast_up has joined on this ill, we should delete only 19402 * from this ill. 19403 */ 19404 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19405 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19406 B_TRUE, B_TRUE); 19407 if (err != 0) { 19408 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19409 err)); 19410 } 19411 /* 19412 * Disable multicast for the solicited node multicast address 19413 */ 19414 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19415 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19416 19417 ipv6_multi.s6_addr32[3] |= 19418 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19419 19420 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19421 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19422 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19423 19424 if (err != 0) { 19425 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19426 err)); 19427 } 19428 } 19429 19430 ipif->ipif_multicast_up = 0; 19431 } 19432 19433 /* 19434 * Used when an interface comes up to recreate any extra routes on this 19435 * interface. 19436 */ 19437 static ire_t ** 19438 ipif_recover_ire(ipif_t *ipif) 19439 { 19440 mblk_t *mp; 19441 ire_t **ipif_saved_irep; 19442 ire_t **irep; 19443 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19444 19445 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19446 ipif->ipif_id)); 19447 19448 mutex_enter(&ipif->ipif_saved_ire_lock); 19449 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19450 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19451 if (ipif_saved_irep == NULL) { 19452 mutex_exit(&ipif->ipif_saved_ire_lock); 19453 return (NULL); 19454 } 19455 19456 irep = ipif_saved_irep; 19457 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19458 ire_t *ire; 19459 queue_t *rfq; 19460 queue_t *stq; 19461 ifrt_t *ifrt; 19462 uchar_t *src_addr; 19463 uchar_t *gateway_addr; 19464 ushort_t type; 19465 19466 /* 19467 * When the ire was initially created and then added in 19468 * ip_rt_add(), it was created either using ipif->ipif_net_type 19469 * in the case of a traditional interface route, or as one of 19470 * the IRE_OFFSUBNET types (with the exception of 19471 * IRE_HOST types ire which is created by icmp_redirect() and 19472 * which we don't need to save or recover). In the case where 19473 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19474 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19475 * to satisfy software like GateD and Sun Cluster which creates 19476 * routes using the the loopback interface's address as a 19477 * gateway. 19478 * 19479 * As ifrt->ifrt_type reflects the already updated ire_type, 19480 * ire_create() will be called in the same way here as 19481 * in ip_rt_add(), namely using ipif->ipif_net_type when 19482 * the route looks like a traditional interface route (where 19483 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19484 * the saved ifrt->ifrt_type. This means that in the case where 19485 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19486 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19487 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19488 */ 19489 ifrt = (ifrt_t *)mp->b_rptr; 19490 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19491 if (ifrt->ifrt_type & IRE_INTERFACE) { 19492 rfq = NULL; 19493 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19494 ? ipif->ipif_rq : ipif->ipif_wq; 19495 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19496 ? (uint8_t *)&ifrt->ifrt_src_addr 19497 : (uint8_t *)&ipif->ipif_src_addr; 19498 gateway_addr = NULL; 19499 type = ipif->ipif_net_type; 19500 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19501 /* Recover multiroute broadcast IRE. */ 19502 rfq = ipif->ipif_rq; 19503 stq = ipif->ipif_wq; 19504 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19505 ? (uint8_t *)&ifrt->ifrt_src_addr 19506 : (uint8_t *)&ipif->ipif_src_addr; 19507 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19508 type = ifrt->ifrt_type; 19509 } else { 19510 rfq = NULL; 19511 stq = NULL; 19512 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19513 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19514 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19515 type = ifrt->ifrt_type; 19516 } 19517 19518 /* 19519 * Create a copy of the IRE with the saved address and netmask. 19520 */ 19521 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19522 "0x%x/0x%x\n", 19523 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19524 ntohl(ifrt->ifrt_addr), 19525 ntohl(ifrt->ifrt_mask))); 19526 ire = ire_create( 19527 (uint8_t *)&ifrt->ifrt_addr, 19528 (uint8_t *)&ifrt->ifrt_mask, 19529 src_addr, 19530 gateway_addr, 19531 &ifrt->ifrt_max_frag, 19532 NULL, 19533 rfq, 19534 stq, 19535 type, 19536 ipif, 19537 0, 19538 0, 19539 0, 19540 ifrt->ifrt_flags, 19541 &ifrt->ifrt_iulp_info, 19542 NULL, 19543 NULL, 19544 ipst); 19545 19546 if (ire == NULL) { 19547 mutex_exit(&ipif->ipif_saved_ire_lock); 19548 kmem_free(ipif_saved_irep, 19549 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19550 return (NULL); 19551 } 19552 19553 /* 19554 * Some software (for example, GateD and Sun Cluster) attempts 19555 * to create (what amount to) IRE_PREFIX routes with the 19556 * loopback address as the gateway. This is primarily done to 19557 * set up prefixes with the RTF_REJECT flag set (for example, 19558 * when generating aggregate routes.) 19559 * 19560 * If the IRE type (as defined by ipif->ipif_net_type) is 19561 * IRE_LOOPBACK, then we map the request into a 19562 * IRE_IF_NORESOLVER. 19563 */ 19564 if (ipif->ipif_net_type == IRE_LOOPBACK) 19565 ire->ire_type = IRE_IF_NORESOLVER; 19566 /* 19567 * ire held by ire_add, will be refreled' towards the 19568 * the end of ipif_up_done 19569 */ 19570 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19571 *irep = ire; 19572 irep++; 19573 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19574 } 19575 mutex_exit(&ipif->ipif_saved_ire_lock); 19576 return (ipif_saved_irep); 19577 } 19578 19579 /* 19580 * Used to set the netmask and broadcast address to default values when the 19581 * interface is brought up. (Always called as writer.) 19582 */ 19583 static void 19584 ipif_set_default(ipif_t *ipif) 19585 { 19586 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19587 19588 if (!ipif->ipif_isv6) { 19589 /* 19590 * Interface holds an IPv4 address. Default 19591 * mask is the natural netmask. 19592 */ 19593 if (!ipif->ipif_net_mask) { 19594 ipaddr_t v4mask; 19595 19596 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19597 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19598 } 19599 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19600 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19601 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19602 } else { 19603 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19604 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19605 } 19606 /* 19607 * NOTE: SunOS 4.X does this even if the broadcast address 19608 * has been already set thus we do the same here. 19609 */ 19610 if (ipif->ipif_flags & IPIF_BROADCAST) { 19611 ipaddr_t v4addr; 19612 19613 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19614 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19615 } 19616 } else { 19617 /* 19618 * Interface holds an IPv6-only address. Default 19619 * mask is all-ones. 19620 */ 19621 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19622 ipif->ipif_v6net_mask = ipv6_all_ones; 19623 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19624 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19625 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19626 } else { 19627 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19628 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19629 } 19630 } 19631 } 19632 19633 /* 19634 * Return 0 if this address can be used as local address without causing 19635 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19636 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19637 * Special checks are needed to allow the same IPv6 link-local address 19638 * on different ills. 19639 * TODO: allowing the same site-local address on different ill's. 19640 */ 19641 int 19642 ip_addr_availability_check(ipif_t *new_ipif) 19643 { 19644 in6_addr_t our_v6addr; 19645 ill_t *ill; 19646 ipif_t *ipif; 19647 ill_walk_context_t ctx; 19648 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19649 19650 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19651 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19652 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19653 19654 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19655 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19656 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19657 return (0); 19658 19659 our_v6addr = new_ipif->ipif_v6lcl_addr; 19660 19661 if (new_ipif->ipif_isv6) 19662 ill = ILL_START_WALK_V6(&ctx, ipst); 19663 else 19664 ill = ILL_START_WALK_V4(&ctx, ipst); 19665 19666 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19667 for (ipif = ill->ill_ipif; ipif != NULL; 19668 ipif = ipif->ipif_next) { 19669 if ((ipif == new_ipif) || 19670 !(ipif->ipif_flags & IPIF_UP) || 19671 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19672 continue; 19673 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19674 &our_v6addr)) { 19675 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19676 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19677 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19678 ipif->ipif_flags |= IPIF_UNNUMBERED; 19679 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19680 new_ipif->ipif_ill != ill) 19681 continue; 19682 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19683 new_ipif->ipif_ill != ill) 19684 continue; 19685 else if (new_ipif->ipif_zoneid != 19686 ipif->ipif_zoneid && 19687 ipif->ipif_zoneid != ALL_ZONES && 19688 IS_LOOPBACK(ill)) 19689 continue; 19690 else if (new_ipif->ipif_ill == ill) 19691 return (EADDRINUSE); 19692 else 19693 return (EADDRNOTAVAIL); 19694 } 19695 } 19696 } 19697 19698 return (0); 19699 } 19700 19701 /* 19702 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19703 * IREs for the ipif. 19704 * When the routine returns EINPROGRESS then mp has been consumed and 19705 * the ioctl will be acked from ip_rput_dlpi. 19706 */ 19707 static int 19708 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19709 { 19710 ill_t *ill = ipif->ipif_ill; 19711 boolean_t isv6 = ipif->ipif_isv6; 19712 int err = 0; 19713 boolean_t success; 19714 19715 ASSERT(IAM_WRITER_IPIF(ipif)); 19716 19717 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19718 19719 /* Shouldn't get here if it is already up. */ 19720 if (ipif->ipif_flags & IPIF_UP) 19721 return (EALREADY); 19722 19723 /* Skip arp/ndp for any loopback interface. */ 19724 if (ill->ill_wq != NULL) { 19725 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19726 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19727 19728 if (!ill->ill_dl_up) { 19729 /* 19730 * ill_dl_up is not yet set. i.e. we are yet to 19731 * DL_BIND with the driver and this is the first 19732 * logical interface on the ill to become "up". 19733 * Tell the driver to get going (via DL_BIND_REQ). 19734 * Note that changing "significant" IFF_ flags 19735 * address/netmask etc cause a down/up dance, but 19736 * does not cause an unbind (DL_UNBIND) with the driver 19737 */ 19738 return (ill_dl_up(ill, ipif, mp, q)); 19739 } 19740 19741 /* 19742 * ipif_resolver_up may end up sending an 19743 * AR_INTERFACE_UP message to ARP, which would, in 19744 * turn send a DLPI message to the driver. ioctls are 19745 * serialized and so we cannot send more than one 19746 * interface up message at a time. If ipif_resolver_up 19747 * does send an interface up message to ARP, we get 19748 * EINPROGRESS and we will complete in ip_arp_done. 19749 */ 19750 19751 ASSERT(connp != NULL || !CONN_Q(q)); 19752 ASSERT(ipsq->ipsq_pending_mp == NULL); 19753 if (connp != NULL) 19754 mutex_enter(&connp->conn_lock); 19755 mutex_enter(&ill->ill_lock); 19756 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19757 mutex_exit(&ill->ill_lock); 19758 if (connp != NULL) 19759 mutex_exit(&connp->conn_lock); 19760 if (!success) 19761 return (EINTR); 19762 19763 /* 19764 * Crank up IPv6 neighbor discovery 19765 * Unlike ARP, this should complete when 19766 * ipif_ndp_up returns. However, for 19767 * ILLF_XRESOLV interfaces we also send a 19768 * AR_INTERFACE_UP to the external resolver. 19769 * That ioctl will complete in ip_rput. 19770 */ 19771 if (isv6) { 19772 err = ipif_ndp_up(ipif); 19773 if (err != 0) { 19774 if (err != EINPROGRESS) 19775 mp = ipsq_pending_mp_get(ipsq, &connp); 19776 return (err); 19777 } 19778 } 19779 /* Now, ARP */ 19780 err = ipif_resolver_up(ipif, Res_act_initial); 19781 if (err == EINPROGRESS) { 19782 /* We will complete it in ip_arp_done */ 19783 return (err); 19784 } 19785 mp = ipsq_pending_mp_get(ipsq, &connp); 19786 ASSERT(mp != NULL); 19787 if (err != 0) 19788 return (err); 19789 } else { 19790 /* 19791 * Interfaces without underlying hardware don't do duplicate 19792 * address detection. 19793 */ 19794 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19795 ipif->ipif_addr_ready = 1; 19796 } 19797 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19798 } 19799 19800 /* 19801 * Perform a bind for the physical device. 19802 * When the routine returns EINPROGRESS then mp has been consumed and 19803 * the ioctl will be acked from ip_rput_dlpi. 19804 * Allocate an unbind message and save it until ipif_down. 19805 */ 19806 static int 19807 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19808 { 19809 areq_t *areq; 19810 mblk_t *areq_mp = NULL; 19811 mblk_t *bind_mp = NULL; 19812 mblk_t *unbind_mp = NULL; 19813 conn_t *connp; 19814 boolean_t success; 19815 uint16_t sap_addr; 19816 19817 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19818 ASSERT(IAM_WRITER_ILL(ill)); 19819 ASSERT(mp != NULL); 19820 19821 /* Create a resolver cookie for ARP */ 19822 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19823 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19824 if (areq_mp == NULL) 19825 return (ENOMEM); 19826 19827 freemsg(ill->ill_resolver_mp); 19828 ill->ill_resolver_mp = areq_mp; 19829 areq = (areq_t *)areq_mp->b_rptr; 19830 sap_addr = ill->ill_sap; 19831 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19832 } 19833 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19834 DL_BIND_REQ); 19835 if (bind_mp == NULL) 19836 goto bad; 19837 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19838 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19839 19840 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19841 if (unbind_mp == NULL) 19842 goto bad; 19843 19844 /* 19845 * Record state needed to complete this operation when the 19846 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19847 */ 19848 ASSERT(WR(q)->q_next == NULL); 19849 connp = Q_TO_CONN(q); 19850 19851 mutex_enter(&connp->conn_lock); 19852 mutex_enter(&ipif->ipif_ill->ill_lock); 19853 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19854 mutex_exit(&ipif->ipif_ill->ill_lock); 19855 mutex_exit(&connp->conn_lock); 19856 if (!success) 19857 goto bad; 19858 19859 /* 19860 * Save the unbind message for ill_dl_down(); it will be consumed when 19861 * the interface goes down. 19862 */ 19863 ASSERT(ill->ill_unbind_mp == NULL); 19864 ill->ill_unbind_mp = unbind_mp; 19865 19866 ill_dlpi_send(ill, bind_mp); 19867 /* Send down link-layer capabilities probe if not already done. */ 19868 ill_capability_probe(ill); 19869 19870 /* 19871 * Sysid used to rely on the fact that netboots set domainname 19872 * and the like. Now that miniroot boots aren't strictly netboots 19873 * and miniroot network configuration is driven from userland 19874 * these things still need to be set. This situation can be detected 19875 * by comparing the interface being configured here to the one 19876 * dhcifname was set to reference by the boot loader. Once sysid is 19877 * converted to use dhcp_ipc_getinfo() this call can go away. 19878 */ 19879 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19880 (strcmp(ill->ill_name, dhcifname) == 0) && 19881 (strlen(srpc_domain) == 0)) { 19882 if (dhcpinit() != 0) 19883 cmn_err(CE_WARN, "no cached dhcp response"); 19884 } 19885 19886 /* 19887 * This operation will complete in ip_rput_dlpi with either 19888 * a DL_BIND_ACK or DL_ERROR_ACK. 19889 */ 19890 return (EINPROGRESS); 19891 bad: 19892 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19893 /* 19894 * We don't have to check for possible removal from illgrp 19895 * as we have not yet inserted in illgrp. For groups 19896 * without names, this ipif is still not UP and hence 19897 * this could not have possibly had any influence in forming 19898 * groups. 19899 */ 19900 19901 freemsg(bind_mp); 19902 freemsg(unbind_mp); 19903 return (ENOMEM); 19904 } 19905 19906 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19907 19908 /* 19909 * DLPI and ARP is up. 19910 * Create all the IREs associated with an interface bring up multicast. 19911 * Set the interface flag and finish other initialization 19912 * that potentially had to be differed to after DL_BIND_ACK. 19913 */ 19914 int 19915 ipif_up_done(ipif_t *ipif) 19916 { 19917 ire_t *ire_array[20]; 19918 ire_t **irep = ire_array; 19919 ire_t **irep1; 19920 ipaddr_t net_mask = 0; 19921 ipaddr_t subnet_mask, route_mask; 19922 ill_t *ill = ipif->ipif_ill; 19923 queue_t *stq; 19924 ipif_t *src_ipif; 19925 ipif_t *tmp_ipif; 19926 boolean_t flush_ire_cache = B_TRUE; 19927 int err = 0; 19928 phyint_t *phyi; 19929 ire_t **ipif_saved_irep = NULL; 19930 int ipif_saved_ire_cnt; 19931 int cnt; 19932 boolean_t src_ipif_held = B_FALSE; 19933 boolean_t ire_added = B_FALSE; 19934 boolean_t loopback = B_FALSE; 19935 ip_stack_t *ipst = ill->ill_ipst; 19936 19937 ip1dbg(("ipif_up_done(%s:%u)\n", 19938 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19939 /* Check if this is a loopback interface */ 19940 if (ipif->ipif_ill->ill_wq == NULL) 19941 loopback = B_TRUE; 19942 19943 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19944 /* 19945 * If all other interfaces for this ill are down or DEPRECATED, 19946 * or otherwise unsuitable for source address selection, remove 19947 * any IRE_CACHE entries for this ill to make sure source 19948 * address selection gets to take this new ipif into account. 19949 * No need to hold ill_lock while traversing the ipif list since 19950 * we are writer 19951 */ 19952 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19953 tmp_ipif = tmp_ipif->ipif_next) { 19954 if (((tmp_ipif->ipif_flags & 19955 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19956 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19957 (tmp_ipif == ipif)) 19958 continue; 19959 /* first useable pre-existing interface */ 19960 flush_ire_cache = B_FALSE; 19961 break; 19962 } 19963 if (flush_ire_cache) 19964 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19965 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19966 19967 /* 19968 * Figure out which way the send-to queue should go. Only 19969 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19970 * should show up here. 19971 */ 19972 switch (ill->ill_net_type) { 19973 case IRE_IF_RESOLVER: 19974 stq = ill->ill_rq; 19975 break; 19976 case IRE_IF_NORESOLVER: 19977 case IRE_LOOPBACK: 19978 stq = ill->ill_wq; 19979 break; 19980 default: 19981 return (EINVAL); 19982 } 19983 19984 if (IS_LOOPBACK(ill)) { 19985 /* 19986 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19987 * ipif_lookup_on_name(), but in the case of zones we can have 19988 * several loopback addresses on lo0. So all the interfaces with 19989 * loopback addresses need to be marked IRE_LOOPBACK. 19990 */ 19991 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19992 htonl(INADDR_LOOPBACK)) 19993 ipif->ipif_ire_type = IRE_LOOPBACK; 19994 else 19995 ipif->ipif_ire_type = IRE_LOCAL; 19996 } 19997 19998 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19999 /* 20000 * Can't use our source address. Select a different 20001 * source address for the IRE_INTERFACE and IRE_LOCAL 20002 */ 20003 src_ipif = ipif_select_source(ipif->ipif_ill, 20004 ipif->ipif_subnet, ipif->ipif_zoneid); 20005 if (src_ipif == NULL) 20006 src_ipif = ipif; /* Last resort */ 20007 else 20008 src_ipif_held = B_TRUE; 20009 } else { 20010 src_ipif = ipif; 20011 } 20012 20013 /* Create all the IREs associated with this interface */ 20014 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20015 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20016 20017 /* 20018 * If we're on a labeled system then make sure that zone- 20019 * private addresses have proper remote host database entries. 20020 */ 20021 if (is_system_labeled() && 20022 ipif->ipif_ire_type != IRE_LOOPBACK && 20023 !tsol_check_interface_address(ipif)) 20024 return (EINVAL); 20025 20026 /* Register the source address for __sin6_src_id */ 20027 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20028 ipif->ipif_zoneid, ipst); 20029 if (err != 0) { 20030 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20031 return (err); 20032 } 20033 20034 /* If the interface address is set, create the local IRE. */ 20035 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20036 (void *)ipif, 20037 ipif->ipif_ire_type, 20038 ntohl(ipif->ipif_lcl_addr))); 20039 *irep++ = ire_create( 20040 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20041 (uchar_t *)&ip_g_all_ones, /* mask */ 20042 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20043 NULL, /* no gateway */ 20044 &ip_loopback_mtuplus, /* max frag size */ 20045 NULL, 20046 ipif->ipif_rq, /* recv-from queue */ 20047 NULL, /* no send-to queue */ 20048 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20049 ipif, 20050 0, 20051 0, 20052 0, 20053 (ipif->ipif_flags & IPIF_PRIVATE) ? 20054 RTF_PRIVATE : 0, 20055 &ire_uinfo_null, 20056 NULL, 20057 NULL, 20058 ipst); 20059 } else { 20060 ip1dbg(( 20061 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20062 ipif->ipif_ire_type, 20063 ntohl(ipif->ipif_lcl_addr), 20064 (uint_t)ipif->ipif_flags)); 20065 } 20066 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20067 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20068 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20069 } else { 20070 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20071 } 20072 20073 subnet_mask = ipif->ipif_net_mask; 20074 20075 /* 20076 * If mask was not specified, use natural netmask of 20077 * interface address. Also, store this mask back into the 20078 * ipif struct. 20079 */ 20080 if (subnet_mask == 0) { 20081 subnet_mask = net_mask; 20082 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20083 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20084 ipif->ipif_v6subnet); 20085 } 20086 20087 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20088 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20089 ipif->ipif_subnet != INADDR_ANY) { 20090 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20091 20092 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20093 route_mask = IP_HOST_MASK; 20094 } else { 20095 route_mask = subnet_mask; 20096 } 20097 20098 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20099 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20100 (void *)ipif, (void *)ill, 20101 ill->ill_net_type, 20102 ntohl(ipif->ipif_subnet))); 20103 *irep++ = ire_create( 20104 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20105 (uchar_t *)&route_mask, /* mask */ 20106 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20107 NULL, /* no gateway */ 20108 &ipif->ipif_mtu, /* max frag */ 20109 NULL, 20110 NULL, /* no recv queue */ 20111 stq, /* send-to queue */ 20112 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20113 ipif, 20114 0, 20115 0, 20116 0, 20117 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20118 &ire_uinfo_null, 20119 NULL, 20120 NULL, 20121 ipst); 20122 } 20123 20124 /* 20125 * Create any necessary broadcast IREs. 20126 */ 20127 if (ipif->ipif_flags & IPIF_BROADCAST) 20128 irep = ipif_create_bcast_ires(ipif, irep); 20129 20130 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20131 20132 /* If an earlier ire_create failed, get out now */ 20133 for (irep1 = irep; irep1 > ire_array; ) { 20134 irep1--; 20135 if (*irep1 == NULL) { 20136 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20137 err = ENOMEM; 20138 goto bad; 20139 } 20140 } 20141 20142 /* 20143 * Need to atomically check for ip_addr_availablity_check 20144 * under ip_addr_avail_lock, and if it fails got bad, and remove 20145 * from group also.The ill_g_lock is grabbed as reader 20146 * just to make sure no new ills or new ipifs are being added 20147 * to the system while we are checking the uniqueness of addresses. 20148 */ 20149 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20150 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20151 /* Mark it up, and increment counters. */ 20152 ipif->ipif_flags |= IPIF_UP; 20153 ill->ill_ipif_up_count++; 20154 err = ip_addr_availability_check(ipif); 20155 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20156 rw_exit(&ipst->ips_ill_g_lock); 20157 20158 if (err != 0) { 20159 /* 20160 * Our address may already be up on the same ill. In this case, 20161 * the ARP entry for our ipif replaced the one for the other 20162 * ipif. So we don't want to delete it (otherwise the other ipif 20163 * would be unable to send packets). 20164 * ip_addr_availability_check() identifies this case for us and 20165 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20166 * which is the expected error code. 20167 */ 20168 if (err == EADDRINUSE) { 20169 freemsg(ipif->ipif_arp_del_mp); 20170 ipif->ipif_arp_del_mp = NULL; 20171 err = EADDRNOTAVAIL; 20172 } 20173 ill->ill_ipif_up_count--; 20174 ipif->ipif_flags &= ~IPIF_UP; 20175 goto bad; 20176 } 20177 20178 /* 20179 * Add in all newly created IREs. ire_create_bcast() has 20180 * already checked for duplicates of the IRE_BROADCAST type. 20181 * We want to add before we call ifgrp_insert which wants 20182 * to know whether IRE_IF_RESOLVER exists or not. 20183 * 20184 * NOTE : We refrele the ire though we may branch to "bad" 20185 * later on where we do ire_delete. This is okay 20186 * because nobody can delete it as we are running 20187 * exclusively. 20188 */ 20189 for (irep1 = irep; irep1 > ire_array; ) { 20190 irep1--; 20191 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20192 /* 20193 * refheld by ire_add. refele towards the end of the func 20194 */ 20195 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20196 } 20197 ire_added = B_TRUE; 20198 /* 20199 * Form groups if possible. 20200 * 20201 * If we are supposed to be in a ill_group with a name, insert it 20202 * now as we know that at least one ipif is UP. Otherwise form 20203 * nameless groups. 20204 * 20205 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20206 * this ipif into the appropriate interface group, or create a 20207 * new one. If this is already in a nameless group, we try to form 20208 * a bigger group looking at other ills potentially sharing this 20209 * ipif's prefix. 20210 */ 20211 phyi = ill->ill_phyint; 20212 if (phyi->phyint_groupname_len != 0) { 20213 ASSERT(phyi->phyint_groupname != NULL); 20214 if (ill->ill_ipif_up_count == 1) { 20215 ASSERT(ill->ill_group == NULL); 20216 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20217 phyi->phyint_groupname, NULL, B_TRUE); 20218 if (err != 0) { 20219 ip1dbg(("ipif_up_done: illgrp allocation " 20220 "failed, error %d\n", err)); 20221 goto bad; 20222 } 20223 } 20224 ASSERT(ill->ill_group != NULL); 20225 } 20226 20227 /* 20228 * When this is part of group, we need to make sure that 20229 * any broadcast ires created because of this ipif coming 20230 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20231 * so that we don't receive duplicate broadcast packets. 20232 */ 20233 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20234 ipif_renominate_bcast(ipif); 20235 20236 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20237 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20238 ipif_saved_irep = ipif_recover_ire(ipif); 20239 20240 if (!loopback) { 20241 /* 20242 * If the broadcast address has been set, make sure it makes 20243 * sense based on the interface address. 20244 * Only match on ill since we are sharing broadcast addresses. 20245 */ 20246 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20247 (ipif->ipif_flags & IPIF_BROADCAST)) { 20248 ire_t *ire; 20249 20250 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20251 IRE_BROADCAST, ipif, ALL_ZONES, 20252 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20253 20254 if (ire == NULL) { 20255 /* 20256 * If there isn't a matching broadcast IRE, 20257 * revert to the default for this netmask. 20258 */ 20259 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20260 mutex_enter(&ipif->ipif_ill->ill_lock); 20261 ipif_set_default(ipif); 20262 mutex_exit(&ipif->ipif_ill->ill_lock); 20263 } else { 20264 ire_refrele(ire); 20265 } 20266 } 20267 20268 } 20269 20270 if (ill->ill_need_recover_multicast) { 20271 /* 20272 * Need to recover all multicast memberships in the driver. 20273 * This had to be deferred until we had attached. The same 20274 * code exists in ipif_up_done_v6() to recover IPv6 20275 * memberships. 20276 * 20277 * Note that it would be preferable to unconditionally do the 20278 * ill_recover_multicast() in ill_dl_up(), but we cannot do 20279 * that since ill_join_allmulti() depends on ill_dl_up being 20280 * set, and it is not set until we receive a DL_BIND_ACK after 20281 * having called ill_dl_up(). 20282 */ 20283 ill_recover_multicast(ill); 20284 } 20285 /* Join the allhosts multicast address */ 20286 ipif_multicast_up(ipif); 20287 20288 if (!loopback) { 20289 /* 20290 * See whether anybody else would benefit from the 20291 * new ipif that we added. We call this always rather 20292 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20293 * ipif is for the benefit of illgrp_insert (done above) 20294 * which does not do source address selection as it does 20295 * not want to re-create interface routes that we are 20296 * having reference to it here. 20297 */ 20298 ill_update_source_selection(ill); 20299 } 20300 20301 for (irep1 = irep; irep1 > ire_array; ) { 20302 irep1--; 20303 if (*irep1 != NULL) { 20304 /* was held in ire_add */ 20305 ire_refrele(*irep1); 20306 } 20307 } 20308 20309 cnt = ipif_saved_ire_cnt; 20310 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20311 if (*irep1 != NULL) { 20312 /* was held in ire_add */ 20313 ire_refrele(*irep1); 20314 } 20315 } 20316 20317 if (!loopback && ipif->ipif_addr_ready) { 20318 /* Broadcast an address mask reply. */ 20319 ipif_mask_reply(ipif); 20320 } 20321 if (ipif_saved_irep != NULL) { 20322 kmem_free(ipif_saved_irep, 20323 ipif_saved_ire_cnt * sizeof (ire_t *)); 20324 } 20325 if (src_ipif_held) 20326 ipif_refrele(src_ipif); 20327 20328 /* 20329 * This had to be deferred until we had bound. Tell routing sockets and 20330 * others that this interface is up if it looks like the address has 20331 * been validated. Otherwise, if it isn't ready yet, wait for 20332 * duplicate address detection to do its thing. 20333 */ 20334 if (ipif->ipif_addr_ready) 20335 ipif_up_notify(ipif); 20336 return (0); 20337 20338 bad: 20339 ip1dbg(("ipif_up_done: FAILED \n")); 20340 /* 20341 * We don't have to bother removing from ill groups because 20342 * 20343 * 1) For groups with names, we insert only when the first ipif 20344 * comes up. In that case if it fails, it will not be in any 20345 * group. So, we need not try to remove for that case. 20346 * 20347 * 2) For groups without names, either we tried to insert ipif_ill 20348 * in a group as singleton or found some other group to become 20349 * a bigger group. For the former, if it fails we don't have 20350 * anything to do as ipif_ill is not in the group and for the 20351 * latter, there are no failures in illgrp_insert/illgrp_delete 20352 * (ENOMEM can't occur for this. Check ifgrp_insert). 20353 */ 20354 while (irep > ire_array) { 20355 irep--; 20356 if (*irep != NULL) { 20357 ire_delete(*irep); 20358 if (ire_added) 20359 ire_refrele(*irep); 20360 } 20361 } 20362 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20363 20364 if (ipif_saved_irep != NULL) { 20365 kmem_free(ipif_saved_irep, 20366 ipif_saved_ire_cnt * sizeof (ire_t *)); 20367 } 20368 if (src_ipif_held) 20369 ipif_refrele(src_ipif); 20370 20371 ipif_arp_down(ipif); 20372 return (err); 20373 } 20374 20375 /* 20376 * Turn off the ARP with the ILLF_NOARP flag. 20377 */ 20378 static int 20379 ill_arp_off(ill_t *ill) 20380 { 20381 mblk_t *arp_off_mp = NULL; 20382 mblk_t *arp_on_mp = NULL; 20383 20384 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20385 20386 ASSERT(IAM_WRITER_ILL(ill)); 20387 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20388 20389 /* 20390 * If the on message is still around we've already done 20391 * an arp_off without doing an arp_on thus there is no 20392 * work needed. 20393 */ 20394 if (ill->ill_arp_on_mp != NULL) 20395 return (0); 20396 20397 /* 20398 * Allocate an ARP on message (to be saved) and an ARP off message 20399 */ 20400 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20401 if (!arp_off_mp) 20402 return (ENOMEM); 20403 20404 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20405 if (!arp_on_mp) 20406 goto failed; 20407 20408 ASSERT(ill->ill_arp_on_mp == NULL); 20409 ill->ill_arp_on_mp = arp_on_mp; 20410 20411 /* Send an AR_INTERFACE_OFF request */ 20412 putnext(ill->ill_rq, arp_off_mp); 20413 return (0); 20414 failed: 20415 20416 if (arp_off_mp) 20417 freemsg(arp_off_mp); 20418 return (ENOMEM); 20419 } 20420 20421 /* 20422 * Turn on ARP by turning off the ILLF_NOARP flag. 20423 */ 20424 static int 20425 ill_arp_on(ill_t *ill) 20426 { 20427 mblk_t *mp; 20428 20429 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20430 20431 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20432 20433 ASSERT(IAM_WRITER_ILL(ill)); 20434 /* 20435 * Send an AR_INTERFACE_ON request if we have already done 20436 * an arp_off (which allocated the message). 20437 */ 20438 if (ill->ill_arp_on_mp != NULL) { 20439 mp = ill->ill_arp_on_mp; 20440 ill->ill_arp_on_mp = NULL; 20441 putnext(ill->ill_rq, mp); 20442 } 20443 return (0); 20444 } 20445 20446 /* 20447 * Called after either deleting ill from the group or when setting 20448 * FAILED or STANDBY on the interface. 20449 */ 20450 static void 20451 illgrp_reset_schednext(ill_t *ill) 20452 { 20453 ill_group_t *illgrp; 20454 ill_t *save_ill; 20455 20456 ASSERT(IAM_WRITER_ILL(ill)); 20457 /* 20458 * When called from illgrp_delete, ill_group will be non-NULL. 20459 * But when called from ip_sioctl_flags, it could be NULL if 20460 * somebody is setting FAILED/INACTIVE on some interface which 20461 * is not part of a group. 20462 */ 20463 illgrp = ill->ill_group; 20464 if (illgrp == NULL) 20465 return; 20466 if (illgrp->illgrp_ill_schednext != ill) 20467 return; 20468 20469 illgrp->illgrp_ill_schednext = NULL; 20470 save_ill = ill; 20471 /* 20472 * Choose a good ill to be the next one for 20473 * outbound traffic. As the flags FAILED/STANDBY is 20474 * not yet marked when called from ip_sioctl_flags, 20475 * we check for ill separately. 20476 */ 20477 for (ill = illgrp->illgrp_ill; ill != NULL; 20478 ill = ill->ill_group_next) { 20479 if ((ill != save_ill) && 20480 !(ill->ill_phyint->phyint_flags & 20481 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20482 illgrp->illgrp_ill_schednext = ill; 20483 return; 20484 } 20485 } 20486 } 20487 20488 /* 20489 * Given an ill, find the next ill in the group to be scheduled. 20490 * (This should be called by ip_newroute() before ire_create().) 20491 * The passed in ill may be pulled out of the group, after we have picked 20492 * up a different outgoing ill from the same group. However ire add will 20493 * atomically check this. 20494 */ 20495 ill_t * 20496 illgrp_scheduler(ill_t *ill) 20497 { 20498 ill_t *retill; 20499 ill_group_t *illgrp; 20500 int illcnt; 20501 int i; 20502 uint64_t flags; 20503 ip_stack_t *ipst = ill->ill_ipst; 20504 20505 /* 20506 * We don't use a lock to check for the ill_group. If this ill 20507 * is currently being inserted we may end up just returning this 20508 * ill itself. That is ok. 20509 */ 20510 if (ill->ill_group == NULL) { 20511 ill_refhold(ill); 20512 return (ill); 20513 } 20514 20515 /* 20516 * Grab the ill_g_lock as reader to make sure we are dealing with 20517 * a set of stable ills. No ill can be added or deleted or change 20518 * group while we hold the reader lock. 20519 */ 20520 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20521 if ((illgrp = ill->ill_group) == NULL) { 20522 rw_exit(&ipst->ips_ill_g_lock); 20523 ill_refhold(ill); 20524 return (ill); 20525 } 20526 20527 illcnt = illgrp->illgrp_ill_count; 20528 mutex_enter(&illgrp->illgrp_lock); 20529 retill = illgrp->illgrp_ill_schednext; 20530 20531 if (retill == NULL) 20532 retill = illgrp->illgrp_ill; 20533 20534 /* 20535 * We do a circular search beginning at illgrp_ill_schednext 20536 * or illgrp_ill. We don't check the flags against the ill lock 20537 * since it can change anytime. The ire creation will be atomic 20538 * and will fail if the ill is FAILED or OFFLINE. 20539 */ 20540 for (i = 0; i < illcnt; i++) { 20541 flags = retill->ill_phyint->phyint_flags; 20542 20543 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20544 ILL_CAN_LOOKUP(retill)) { 20545 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20546 ill_refhold(retill); 20547 break; 20548 } 20549 retill = retill->ill_group_next; 20550 if (retill == NULL) 20551 retill = illgrp->illgrp_ill; 20552 } 20553 mutex_exit(&illgrp->illgrp_lock); 20554 rw_exit(&ipst->ips_ill_g_lock); 20555 20556 return (i == illcnt ? NULL : retill); 20557 } 20558 20559 /* 20560 * Checks for availbility of a usable source address (if there is one) when the 20561 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20562 * this selection is done regardless of the destination. 20563 */ 20564 boolean_t 20565 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20566 { 20567 uint_t ifindex; 20568 ipif_t *ipif = NULL; 20569 ill_t *uill; 20570 boolean_t isv6; 20571 ip_stack_t *ipst = ill->ill_ipst; 20572 20573 ASSERT(ill != NULL); 20574 20575 isv6 = ill->ill_isv6; 20576 ifindex = ill->ill_usesrc_ifindex; 20577 if (ifindex != 0) { 20578 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20579 NULL, ipst); 20580 if (uill == NULL) 20581 return (NULL); 20582 mutex_enter(&uill->ill_lock); 20583 for (ipif = uill->ill_ipif; ipif != NULL; 20584 ipif = ipif->ipif_next) { 20585 if (!IPIF_CAN_LOOKUP(ipif)) 20586 continue; 20587 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20588 continue; 20589 if (!(ipif->ipif_flags & IPIF_UP)) 20590 continue; 20591 if (ipif->ipif_zoneid != zoneid) 20592 continue; 20593 if ((isv6 && 20594 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20595 (ipif->ipif_lcl_addr == INADDR_ANY)) 20596 continue; 20597 mutex_exit(&uill->ill_lock); 20598 ill_refrele(uill); 20599 return (B_TRUE); 20600 } 20601 mutex_exit(&uill->ill_lock); 20602 ill_refrele(uill); 20603 } 20604 return (B_FALSE); 20605 } 20606 20607 /* 20608 * Determine the best source address given a destination address and an ill. 20609 * Prefers non-deprecated over deprecated but will return a deprecated 20610 * address if there is no other choice. If there is a usable source address 20611 * on the interface pointed to by ill_usesrc_ifindex then that is given 20612 * first preference. 20613 * 20614 * Returns NULL if there is no suitable source address for the ill. 20615 * This only occurs when there is no valid source address for the ill. 20616 */ 20617 ipif_t * 20618 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20619 { 20620 ipif_t *ipif; 20621 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20622 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20623 int index = 0; 20624 boolean_t wrapped = B_FALSE; 20625 boolean_t same_subnet_only = B_FALSE; 20626 boolean_t ipif_same_found, ipif_other_found; 20627 boolean_t specific_found; 20628 ill_t *till, *usill = NULL; 20629 tsol_tpc_t *src_rhtp, *dst_rhtp; 20630 ip_stack_t *ipst = ill->ill_ipst; 20631 20632 if (ill->ill_usesrc_ifindex != 0) { 20633 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20634 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20635 if (usill != NULL) 20636 ill = usill; /* Select source from usesrc ILL */ 20637 else 20638 return (NULL); 20639 } 20640 20641 /* 20642 * If we're dealing with an unlabeled destination on a labeled system, 20643 * make sure that we ignore source addresses that are incompatible with 20644 * the destination's default label. That destination's default label 20645 * must dominate the minimum label on the source address. 20646 */ 20647 dst_rhtp = NULL; 20648 if (is_system_labeled()) { 20649 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20650 if (dst_rhtp == NULL) 20651 return (NULL); 20652 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20653 TPC_RELE(dst_rhtp); 20654 dst_rhtp = NULL; 20655 } 20656 } 20657 20658 /* 20659 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20660 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20661 * After selecting the right ipif, under ill_lock make sure ipif is 20662 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20663 * we retry. Inside the loop we still need to check for CONDEMNED, 20664 * but not under a lock. 20665 */ 20666 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20667 20668 retry: 20669 till = ill; 20670 ipif_arr[0] = NULL; 20671 20672 if (till->ill_group != NULL) 20673 till = till->ill_group->illgrp_ill; 20674 20675 /* 20676 * Choose one good source address from each ill across the group. 20677 * If possible choose a source address in the same subnet as 20678 * the destination address. 20679 * 20680 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20681 * This is okay because of the following. 20682 * 20683 * If PHYI_FAILED is set and we still have non-deprecated 20684 * addresses, it means the addresses have not yet been 20685 * failed over to a different interface. We potentially 20686 * select them to create IRE_CACHES, which will be later 20687 * flushed when the addresses move over. 20688 * 20689 * If PHYI_INACTIVE is set and we still have non-deprecated 20690 * addresses, it means either the user has configured them 20691 * or PHYI_INACTIVE has not been cleared after the addresses 20692 * been moved over. For the former, in.mpathd does a failover 20693 * when the interface becomes INACTIVE and hence we should 20694 * not find them. Once INACTIVE is set, we don't allow them 20695 * to create logical interfaces anymore. For the latter, a 20696 * flush will happen when INACTIVE is cleared which will 20697 * flush the IRE_CACHES. 20698 * 20699 * If PHYI_OFFLINE is set, all the addresses will be failed 20700 * over soon. We potentially select them to create IRE_CACHEs, 20701 * which will be later flushed when the addresses move over. 20702 * 20703 * NOTE : As ipif_select_source is called to borrow source address 20704 * for an ipif that is part of a group, source address selection 20705 * will be re-done whenever the group changes i.e either an 20706 * insertion/deletion in the group. 20707 * 20708 * Fill ipif_arr[] with source addresses, using these rules: 20709 * 20710 * 1. At most one source address from a given ill ends up 20711 * in ipif_arr[] -- that is, at most one of the ipif's 20712 * associated with a given ill ends up in ipif_arr[]. 20713 * 20714 * 2. If there is at least one non-deprecated ipif in the 20715 * IPMP group with a source address on the same subnet as 20716 * our destination, then fill ipif_arr[] only with 20717 * source addresses on the same subnet as our destination. 20718 * Note that because of (1), only the first 20719 * non-deprecated ipif found with a source address 20720 * matching the destination ends up in ipif_arr[]. 20721 * 20722 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20723 * addresses not in the same subnet as our destination. 20724 * Again, because of (1), only the first off-subnet source 20725 * address will be chosen. 20726 * 20727 * 4. If there are no non-deprecated ipifs, then just use 20728 * the source address associated with the last deprecated 20729 * one we find that happens to be on the same subnet, 20730 * otherwise the first one not in the same subnet. 20731 */ 20732 specific_found = B_FALSE; 20733 for (; till != NULL; till = till->ill_group_next) { 20734 ipif_same_found = B_FALSE; 20735 ipif_other_found = B_FALSE; 20736 for (ipif = till->ill_ipif; ipif != NULL; 20737 ipif = ipif->ipif_next) { 20738 if (!IPIF_CAN_LOOKUP(ipif)) 20739 continue; 20740 /* Always skip NOLOCAL and ANYCAST interfaces */ 20741 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20742 continue; 20743 if (!(ipif->ipif_flags & IPIF_UP) || 20744 !ipif->ipif_addr_ready) 20745 continue; 20746 if (ipif->ipif_zoneid != zoneid && 20747 ipif->ipif_zoneid != ALL_ZONES) 20748 continue; 20749 /* 20750 * Interfaces with 0.0.0.0 address are allowed to be UP, 20751 * but are not valid as source addresses. 20752 */ 20753 if (ipif->ipif_lcl_addr == INADDR_ANY) 20754 continue; 20755 20756 /* 20757 * Check compatibility of local address for 20758 * destination's default label if we're on a labeled 20759 * system. Incompatible addresses can't be used at 20760 * all. 20761 */ 20762 if (dst_rhtp != NULL) { 20763 boolean_t incompat; 20764 20765 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20766 IPV4_VERSION, B_FALSE); 20767 if (src_rhtp == NULL) 20768 continue; 20769 incompat = 20770 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20771 src_rhtp->tpc_tp.tp_doi != 20772 dst_rhtp->tpc_tp.tp_doi || 20773 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20774 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20775 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20776 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20777 TPC_RELE(src_rhtp); 20778 if (incompat) 20779 continue; 20780 } 20781 20782 /* 20783 * We prefer not to use all all-zones addresses, if we 20784 * can avoid it, as they pose problems with unlabeled 20785 * destinations. 20786 */ 20787 if (ipif->ipif_zoneid != ALL_ZONES) { 20788 if (!specific_found && 20789 (!same_subnet_only || 20790 (ipif->ipif_net_mask & dst) == 20791 ipif->ipif_subnet)) { 20792 index = 0; 20793 specific_found = B_TRUE; 20794 ipif_other_found = B_FALSE; 20795 } 20796 } else { 20797 if (specific_found) 20798 continue; 20799 } 20800 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20801 if (ipif_dep == NULL || 20802 (ipif->ipif_net_mask & dst) == 20803 ipif->ipif_subnet) 20804 ipif_dep = ipif; 20805 continue; 20806 } 20807 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20808 /* found a source address in the same subnet */ 20809 if (!same_subnet_only) { 20810 same_subnet_only = B_TRUE; 20811 index = 0; 20812 } 20813 ipif_same_found = B_TRUE; 20814 } else { 20815 if (same_subnet_only || ipif_other_found) 20816 continue; 20817 ipif_other_found = B_TRUE; 20818 } 20819 ipif_arr[index++] = ipif; 20820 if (index == MAX_IPIF_SELECT_SOURCE) { 20821 wrapped = B_TRUE; 20822 index = 0; 20823 } 20824 if (ipif_same_found) 20825 break; 20826 } 20827 } 20828 20829 if (ipif_arr[0] == NULL) { 20830 ipif = ipif_dep; 20831 } else { 20832 if (wrapped) 20833 index = MAX_IPIF_SELECT_SOURCE; 20834 ipif = ipif_arr[ipif_rand(ipst) % index]; 20835 ASSERT(ipif != NULL); 20836 } 20837 20838 if (ipif != NULL) { 20839 mutex_enter(&ipif->ipif_ill->ill_lock); 20840 if (!IPIF_CAN_LOOKUP(ipif)) { 20841 mutex_exit(&ipif->ipif_ill->ill_lock); 20842 goto retry; 20843 } 20844 ipif_refhold_locked(ipif); 20845 mutex_exit(&ipif->ipif_ill->ill_lock); 20846 } 20847 20848 rw_exit(&ipst->ips_ill_g_lock); 20849 if (usill != NULL) 20850 ill_refrele(usill); 20851 if (dst_rhtp != NULL) 20852 TPC_RELE(dst_rhtp); 20853 20854 #ifdef DEBUG 20855 if (ipif == NULL) { 20856 char buf1[INET6_ADDRSTRLEN]; 20857 20858 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20859 ill->ill_name, 20860 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20861 } else { 20862 char buf1[INET6_ADDRSTRLEN]; 20863 char buf2[INET6_ADDRSTRLEN]; 20864 20865 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20866 ipif->ipif_ill->ill_name, 20867 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20868 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20869 buf2, sizeof (buf2)))); 20870 } 20871 #endif /* DEBUG */ 20872 return (ipif); 20873 } 20874 20875 20876 /* 20877 * If old_ipif is not NULL, see if ipif was derived from old 20878 * ipif and if so, recreate the interface route by re-doing 20879 * source address selection. This happens when ipif_down -> 20880 * ipif_update_other_ipifs calls us. 20881 * 20882 * If old_ipif is NULL, just redo the source address selection 20883 * if needed. This happens when illgrp_insert or ipif_up_done 20884 * calls us. 20885 */ 20886 static void 20887 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20888 { 20889 ire_t *ire; 20890 ire_t *ipif_ire; 20891 queue_t *stq; 20892 ipif_t *nipif; 20893 ill_t *ill; 20894 boolean_t need_rele = B_FALSE; 20895 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20896 20897 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20898 ASSERT(IAM_WRITER_IPIF(ipif)); 20899 20900 ill = ipif->ipif_ill; 20901 if (!(ipif->ipif_flags & 20902 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20903 /* 20904 * Can't possibly have borrowed the source 20905 * from old_ipif. 20906 */ 20907 return; 20908 } 20909 20910 /* 20911 * Is there any work to be done? No work if the address 20912 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20913 * ipif_select_source() does not borrow addresses from 20914 * NOLOCAL and ANYCAST interfaces). 20915 */ 20916 if ((old_ipif != NULL) && 20917 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20918 (old_ipif->ipif_ill->ill_wq == NULL) || 20919 (old_ipif->ipif_flags & 20920 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20921 return; 20922 } 20923 20924 /* 20925 * Perform the same checks as when creating the 20926 * IRE_INTERFACE in ipif_up_done. 20927 */ 20928 if (!(ipif->ipif_flags & IPIF_UP)) 20929 return; 20930 20931 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20932 (ipif->ipif_subnet == INADDR_ANY)) 20933 return; 20934 20935 ipif_ire = ipif_to_ire(ipif); 20936 if (ipif_ire == NULL) 20937 return; 20938 20939 /* 20940 * We know that ipif uses some other source for its 20941 * IRE_INTERFACE. Is it using the source of this 20942 * old_ipif? 20943 */ 20944 if (old_ipif != NULL && 20945 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20946 ire_refrele(ipif_ire); 20947 return; 20948 } 20949 if (ip_debug > 2) { 20950 /* ip1dbg */ 20951 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20952 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20953 } 20954 20955 stq = ipif_ire->ire_stq; 20956 20957 /* 20958 * Can't use our source address. Select a different 20959 * source address for the IRE_INTERFACE. 20960 */ 20961 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20962 if (nipif == NULL) { 20963 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20964 nipif = ipif; 20965 } else { 20966 need_rele = B_TRUE; 20967 } 20968 20969 ire = ire_create( 20970 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20971 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20972 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20973 NULL, /* no gateway */ 20974 &ipif->ipif_mtu, /* max frag */ 20975 NULL, /* no src nce */ 20976 NULL, /* no recv from queue */ 20977 stq, /* send-to queue */ 20978 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20979 ipif, 20980 0, 20981 0, 20982 0, 20983 0, 20984 &ire_uinfo_null, 20985 NULL, 20986 NULL, 20987 ipst); 20988 20989 if (ire != NULL) { 20990 ire_t *ret_ire; 20991 int error; 20992 20993 /* 20994 * We don't need ipif_ire anymore. We need to delete 20995 * before we add so that ire_add does not detect 20996 * duplicates. 20997 */ 20998 ire_delete(ipif_ire); 20999 ret_ire = ire; 21000 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21001 ASSERT(error == 0); 21002 ASSERT(ire == ret_ire); 21003 /* Held in ire_add */ 21004 ire_refrele(ret_ire); 21005 } 21006 /* 21007 * Either we are falling through from above or could not 21008 * allocate a replacement. 21009 */ 21010 ire_refrele(ipif_ire); 21011 if (need_rele) 21012 ipif_refrele(nipif); 21013 } 21014 21015 /* 21016 * This old_ipif is going away. 21017 * 21018 * Determine if any other ipif's is using our address as 21019 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21020 * IPIF_DEPRECATED). 21021 * Find the IRE_INTERFACE for such ipifs and recreate them 21022 * to use an different source address following the rules in 21023 * ipif_up_done. 21024 * 21025 * This function takes an illgrp as an argument so that illgrp_delete 21026 * can call this to update source address even after deleting the 21027 * old_ipif->ipif_ill from the ill group. 21028 */ 21029 static void 21030 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21031 { 21032 ipif_t *ipif; 21033 ill_t *ill; 21034 char buf[INET6_ADDRSTRLEN]; 21035 21036 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21037 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21038 21039 ill = old_ipif->ipif_ill; 21040 21041 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21042 ill->ill_name, 21043 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21044 buf, sizeof (buf)))); 21045 /* 21046 * If this part of a group, look at all ills as ipif_select_source 21047 * borrows source address across all the ills in the group. 21048 */ 21049 if (illgrp != NULL) 21050 ill = illgrp->illgrp_ill; 21051 21052 for (; ill != NULL; ill = ill->ill_group_next) { 21053 for (ipif = ill->ill_ipif; ipif != NULL; 21054 ipif = ipif->ipif_next) { 21055 21056 if (ipif == old_ipif) 21057 continue; 21058 21059 ipif_recreate_interface_routes(old_ipif, ipif); 21060 } 21061 } 21062 } 21063 21064 /* ARGSUSED */ 21065 int 21066 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21067 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21068 { 21069 /* 21070 * ill_phyint_reinit merged the v4 and v6 into a single 21071 * ipsq. Could also have become part of a ipmp group in the 21072 * process, and we might not have been able to complete the 21073 * operation in ipif_set_values, if we could not become 21074 * exclusive. If so restart it here. 21075 */ 21076 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21077 } 21078 21079 /* 21080 * Can operate on either a module or a driver queue. 21081 * Returns an error if not a module queue. 21082 */ 21083 /* ARGSUSED */ 21084 int 21085 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21086 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21087 { 21088 queue_t *q1 = q; 21089 char *cp; 21090 char interf_name[LIFNAMSIZ]; 21091 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21092 21093 if (q->q_next == NULL) { 21094 ip1dbg(( 21095 "if_unitsel: IF_UNITSEL: no q_next\n")); 21096 return (EINVAL); 21097 } 21098 21099 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21100 return (EALREADY); 21101 21102 do { 21103 q1 = q1->q_next; 21104 } while (q1->q_next); 21105 cp = q1->q_qinfo->qi_minfo->mi_idname; 21106 (void) sprintf(interf_name, "%s%d", cp, ppa); 21107 21108 /* 21109 * Here we are not going to delay the ioack until after 21110 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21111 * original ioctl message before sending the requests. 21112 */ 21113 return (ipif_set_values(q, mp, interf_name, &ppa)); 21114 } 21115 21116 /* ARGSUSED */ 21117 int 21118 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21119 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21120 { 21121 return (ENXIO); 21122 } 21123 21124 /* 21125 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21126 * `irep'. Returns a pointer to the next free `irep' entry (just like 21127 * ire_check_and_create_bcast()). 21128 */ 21129 static ire_t ** 21130 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21131 { 21132 ipaddr_t addr; 21133 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21134 ipaddr_t subnetmask = ipif->ipif_net_mask; 21135 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21136 21137 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21138 21139 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21140 21141 if (ipif->ipif_lcl_addr == INADDR_ANY || 21142 (ipif->ipif_flags & IPIF_NOLOCAL)) 21143 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21144 21145 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21146 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21147 21148 /* 21149 * For backward compatibility, we create net broadcast IREs based on 21150 * the old "IP address class system", since some old machines only 21151 * respond to these class derived net broadcast. However, we must not 21152 * create these net broadcast IREs if the subnetmask is shorter than 21153 * the IP address class based derived netmask. Otherwise, we may 21154 * create a net broadcast address which is the same as an IP address 21155 * on the subnet -- and then TCP will refuse to talk to that address. 21156 */ 21157 if (netmask < subnetmask) { 21158 addr = netmask & ipif->ipif_subnet; 21159 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21160 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21161 flags); 21162 } 21163 21164 /* 21165 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21166 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21167 * created. Creating these broadcast IREs will only create confusion 21168 * as `addr' will be the same as the IP address. 21169 */ 21170 if (subnetmask != 0xFFFFFFFF) { 21171 addr = ipif->ipif_subnet; 21172 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21173 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21174 irep, flags); 21175 } 21176 21177 return (irep); 21178 } 21179 21180 /* 21181 * Broadcast IRE info structure used in the functions below. Since we 21182 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21183 */ 21184 typedef struct bcast_ireinfo { 21185 uchar_t bi_type; /* BCAST_* value from below */ 21186 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21187 bi_needrep:1, /* do we need to replace it? */ 21188 bi_haverep:1, /* have we replaced it? */ 21189 bi_pad:5; 21190 ipaddr_t bi_addr; /* IRE address */ 21191 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21192 } bcast_ireinfo_t; 21193 21194 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21195 21196 /* 21197 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21198 * return B_TRUE if it should immediately be used to recreate the IRE. 21199 */ 21200 static boolean_t 21201 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21202 { 21203 ipaddr_t addr; 21204 21205 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21206 21207 switch (bireinfop->bi_type) { 21208 case BCAST_NET: 21209 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21210 if (addr != bireinfop->bi_addr) 21211 return (B_FALSE); 21212 break; 21213 case BCAST_SUBNET: 21214 if (ipif->ipif_subnet != bireinfop->bi_addr) 21215 return (B_FALSE); 21216 break; 21217 } 21218 21219 bireinfop->bi_needrep = 1; 21220 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21221 if (bireinfop->bi_backup == NULL) 21222 bireinfop->bi_backup = ipif; 21223 return (B_FALSE); 21224 } 21225 return (B_TRUE); 21226 } 21227 21228 /* 21229 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21230 * them ala ire_check_and_create_bcast(). 21231 */ 21232 static ire_t ** 21233 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21234 { 21235 ipaddr_t mask, addr; 21236 21237 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21238 21239 addr = bireinfop->bi_addr; 21240 irep = ire_create_bcast(ipif, addr, irep); 21241 21242 switch (bireinfop->bi_type) { 21243 case BCAST_NET: 21244 mask = ip_net_mask(ipif->ipif_subnet); 21245 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21246 break; 21247 case BCAST_SUBNET: 21248 mask = ipif->ipif_net_mask; 21249 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21250 break; 21251 } 21252 21253 bireinfop->bi_haverep = 1; 21254 return (irep); 21255 } 21256 21257 /* 21258 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21259 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21260 * that are going away are still needed. If so, have ipif_create_bcast() 21261 * recreate them (except for the deprecated case, as explained below). 21262 */ 21263 static ire_t ** 21264 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21265 ire_t **irep) 21266 { 21267 int i; 21268 ipif_t *ipif; 21269 21270 ASSERT(!ill->ill_isv6); 21271 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21272 /* 21273 * Skip this ipif if it's (a) the one being taken down, (b) 21274 * not in the same zone, or (c) has no valid local address. 21275 */ 21276 if (ipif == test_ipif || 21277 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21278 ipif->ipif_subnet == 0 || 21279 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21280 (IPIF_UP|IPIF_BROADCAST)) 21281 continue; 21282 21283 /* 21284 * For each dying IRE that hasn't yet been replaced, see if 21285 * `ipif' needs it and whether the IRE should be recreated on 21286 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21287 * will return B_FALSE even if `ipif' needs the IRE on the 21288 * hopes that we'll later find a needy non-deprecated ipif. 21289 * However, the ipif is recorded in bi_backup for possible 21290 * subsequent use by ipif_check_bcast_ires(). 21291 */ 21292 for (i = 0; i < BCAST_COUNT; i++) { 21293 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21294 continue; 21295 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21296 continue; 21297 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21298 } 21299 21300 /* 21301 * If we've replaced all of the broadcast IREs that are going 21302 * to be taken down, we know we're done. 21303 */ 21304 for (i = 0; i < BCAST_COUNT; i++) { 21305 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21306 break; 21307 } 21308 if (i == BCAST_COUNT) 21309 break; 21310 } 21311 return (irep); 21312 } 21313 21314 /* 21315 * Check if `test_ipif' (which is going away) is associated with any existing 21316 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21317 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21318 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21319 * 21320 * This is necessary because broadcast IREs are shared. In particular, a 21321 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21322 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21323 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21324 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21325 * same zone, they will share the same set of broadcast IREs. 21326 * 21327 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21328 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21329 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21330 */ 21331 static void 21332 ipif_check_bcast_ires(ipif_t *test_ipif) 21333 { 21334 ill_t *ill = test_ipif->ipif_ill; 21335 ire_t *ire, *ire_array[12]; /* see note above */ 21336 ire_t **irep1, **irep = &ire_array[0]; 21337 uint_t i, willdie; 21338 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21339 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21340 21341 ASSERT(!test_ipif->ipif_isv6); 21342 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21343 21344 /* 21345 * No broadcast IREs for the LOOPBACK interface 21346 * or others such as point to point and IPIF_NOXMIT. 21347 */ 21348 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21349 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21350 return; 21351 21352 bzero(bireinfo, sizeof (bireinfo)); 21353 bireinfo[0].bi_type = BCAST_ALLZEROES; 21354 bireinfo[0].bi_addr = 0; 21355 21356 bireinfo[1].bi_type = BCAST_ALLONES; 21357 bireinfo[1].bi_addr = INADDR_BROADCAST; 21358 21359 bireinfo[2].bi_type = BCAST_NET; 21360 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21361 21362 if (test_ipif->ipif_net_mask != 0) 21363 mask = test_ipif->ipif_net_mask; 21364 bireinfo[3].bi_type = BCAST_SUBNET; 21365 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21366 21367 /* 21368 * Figure out what (if any) broadcast IREs will die as a result of 21369 * `test_ipif' going away. If none will die, we're done. 21370 */ 21371 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21372 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21373 test_ipif, ALL_ZONES, NULL, 21374 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21375 if (ire != NULL) { 21376 willdie++; 21377 bireinfo[i].bi_willdie = 1; 21378 ire_refrele(ire); 21379 } 21380 } 21381 21382 if (willdie == 0) 21383 return; 21384 21385 /* 21386 * Walk through all the ipifs that will be affected by the dying IREs, 21387 * and recreate the IREs as necessary. 21388 */ 21389 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21390 21391 /* 21392 * Scan through the set of broadcast IREs and see if there are any 21393 * that we need to replace that have not yet been replaced. If so, 21394 * replace them using the appropriate backup ipif. 21395 */ 21396 for (i = 0; i < BCAST_COUNT; i++) { 21397 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21398 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21399 &bireinfo[i], irep); 21400 } 21401 21402 /* 21403 * If we can't create all of them, don't add any of them. (Code in 21404 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21405 * non-loopback copy and loopback copy for a given address.) 21406 */ 21407 for (irep1 = irep; irep1 > ire_array; ) { 21408 irep1--; 21409 if (*irep1 == NULL) { 21410 ip0dbg(("ipif_check_bcast_ires: can't create " 21411 "IRE_BROADCAST, memory allocation failure\n")); 21412 while (irep > ire_array) { 21413 irep--; 21414 if (*irep != NULL) 21415 ire_delete(*irep); 21416 } 21417 return; 21418 } 21419 } 21420 21421 for (irep1 = irep; irep1 > ire_array; ) { 21422 irep1--; 21423 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21424 ire_refrele(*irep1); /* Held in ire_add */ 21425 } 21426 } 21427 21428 /* 21429 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21430 * from lifr_flags and the name from lifr_name. 21431 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21432 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21433 * Returns EINPROGRESS when mp has been consumed by queueing it on 21434 * ill_pending_mp and the ioctl will complete in ip_rput. 21435 * 21436 * Can operate on either a module or a driver queue. 21437 * Returns an error if not a module queue. 21438 */ 21439 /* ARGSUSED */ 21440 int 21441 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21442 ip_ioctl_cmd_t *ipip, void *if_req) 21443 { 21444 ill_t *ill = q->q_ptr; 21445 phyint_t *phyi; 21446 ip_stack_t *ipst; 21447 struct lifreq *lifr = if_req; 21448 21449 ASSERT(ipif != NULL); 21450 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21451 21452 if (q->q_next == NULL) { 21453 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21454 return (EINVAL); 21455 } 21456 21457 /* 21458 * If we are not writer on 'q' then this interface exists already 21459 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21460 * so return EALREADY. 21461 */ 21462 if (ill != ipif->ipif_ill) 21463 return (EALREADY); 21464 21465 if (ill->ill_name[0] != '\0') 21466 return (EALREADY); 21467 21468 /* 21469 * Set all the flags. Allows all kinds of override. Provide some 21470 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21471 * unless there is either multicast/broadcast support in the driver 21472 * or it is a pt-pt link. 21473 */ 21474 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21475 /* Meaningless to IP thus don't allow them to be set. */ 21476 ip1dbg(("ip_setname: EINVAL 1\n")); 21477 return (EINVAL); 21478 } 21479 21480 /* 21481 * If there's another ill already with the requested name, ensure 21482 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21483 * fuse together two unrelated ills, which will cause chaos. 21484 */ 21485 ipst = ill->ill_ipst; 21486 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21487 lifr->lifr_name, NULL); 21488 if (phyi != NULL) { 21489 ill_t *ill_mate = phyi->phyint_illv4; 21490 21491 if (ill_mate == NULL) 21492 ill_mate = phyi->phyint_illv6; 21493 ASSERT(ill_mate != NULL); 21494 21495 if (ill_mate->ill_media->ip_m_mac_type != 21496 ill->ill_media->ip_m_mac_type) { 21497 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21498 "use the same ill name on differing media\n")); 21499 return (EINVAL); 21500 } 21501 } 21502 21503 /* 21504 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21505 * ill_bcast_addr_length info. 21506 */ 21507 if (!ill->ill_needs_attach && 21508 ((lifr->lifr_flags & IFF_MULTICAST) && 21509 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21510 ill->ill_bcast_addr_length == 0)) { 21511 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21512 ip1dbg(("ip_setname: EINVAL 2\n")); 21513 return (EINVAL); 21514 } 21515 if ((lifr->lifr_flags & IFF_BROADCAST) && 21516 ((lifr->lifr_flags & IFF_IPV6) || 21517 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21518 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21519 ip1dbg(("ip_setname: EINVAL 3\n")); 21520 return (EINVAL); 21521 } 21522 if (lifr->lifr_flags & IFF_UP) { 21523 /* Can only be set with SIOCSLIFFLAGS */ 21524 ip1dbg(("ip_setname: EINVAL 4\n")); 21525 return (EINVAL); 21526 } 21527 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21528 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21529 ip1dbg(("ip_setname: EINVAL 5\n")); 21530 return (EINVAL); 21531 } 21532 /* 21533 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21534 */ 21535 if ((lifr->lifr_flags & IFF_XRESOLV) && 21536 !(lifr->lifr_flags & IFF_IPV6) && 21537 !(ipif->ipif_isv6)) { 21538 ip1dbg(("ip_setname: EINVAL 6\n")); 21539 return (EINVAL); 21540 } 21541 21542 /* 21543 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21544 * we have all the flags here. So, we assign rather than we OR. 21545 * We can't OR the flags here because we don't want to set 21546 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21547 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21548 * on lifr_flags value here. 21549 */ 21550 /* 21551 * This ill has not been inserted into the global list. 21552 * So we are still single threaded and don't need any lock 21553 */ 21554 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21555 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21556 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21557 21558 /* We started off as V4. */ 21559 if (ill->ill_flags & ILLF_IPV6) { 21560 ill->ill_phyint->phyint_illv6 = ill; 21561 ill->ill_phyint->phyint_illv4 = NULL; 21562 } 21563 21564 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21565 } 21566 21567 /* ARGSUSED */ 21568 int 21569 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21570 ip_ioctl_cmd_t *ipip, void *if_req) 21571 { 21572 /* 21573 * ill_phyint_reinit merged the v4 and v6 into a single 21574 * ipsq. Could also have become part of a ipmp group in the 21575 * process, and we might not have been able to complete the 21576 * slifname in ipif_set_values, if we could not become 21577 * exclusive. If so restart it here 21578 */ 21579 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21580 } 21581 21582 /* 21583 * Return a pointer to the ipif which matches the index, IP version type and 21584 * zoneid. 21585 */ 21586 ipif_t * 21587 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21588 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21589 { 21590 ill_t *ill; 21591 ipif_t *ipif = NULL; 21592 21593 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21594 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21595 21596 if (err != NULL) 21597 *err = 0; 21598 21599 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21600 if (ill != NULL) { 21601 mutex_enter(&ill->ill_lock); 21602 for (ipif = ill->ill_ipif; ipif != NULL; 21603 ipif = ipif->ipif_next) { 21604 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21605 zoneid == ipif->ipif_zoneid || 21606 ipif->ipif_zoneid == ALL_ZONES)) { 21607 ipif_refhold_locked(ipif); 21608 break; 21609 } 21610 } 21611 mutex_exit(&ill->ill_lock); 21612 ill_refrele(ill); 21613 if (ipif == NULL && err != NULL) 21614 *err = ENXIO; 21615 } 21616 return (ipif); 21617 } 21618 21619 typedef struct conn_change_s { 21620 uint_t cc_old_ifindex; 21621 uint_t cc_new_ifindex; 21622 } conn_change_t; 21623 21624 /* 21625 * ipcl_walk function for changing interface index. 21626 */ 21627 static void 21628 conn_change_ifindex(conn_t *connp, caddr_t arg) 21629 { 21630 conn_change_t *connc; 21631 uint_t old_ifindex; 21632 uint_t new_ifindex; 21633 int i; 21634 ilg_t *ilg; 21635 21636 connc = (conn_change_t *)arg; 21637 old_ifindex = connc->cc_old_ifindex; 21638 new_ifindex = connc->cc_new_ifindex; 21639 21640 if (connp->conn_orig_bound_ifindex == old_ifindex) 21641 connp->conn_orig_bound_ifindex = new_ifindex; 21642 21643 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21644 connp->conn_orig_multicast_ifindex = new_ifindex; 21645 21646 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21647 ilg = &connp->conn_ilg[i]; 21648 if (ilg->ilg_orig_ifindex == old_ifindex) 21649 ilg->ilg_orig_ifindex = new_ifindex; 21650 } 21651 } 21652 21653 /* 21654 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21655 * to new_index if it matches the old_index. 21656 * 21657 * Failovers typically happen within a group of ills. But somebody 21658 * can remove an ill from the group after a failover happened. If 21659 * we are setting the ifindex after this, we potentially need to 21660 * look at all the ills rather than just the ones in the group. 21661 * We cut down the work by looking at matching ill_net_types 21662 * and ill_types as we could not possibly grouped them together. 21663 */ 21664 static void 21665 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21666 { 21667 ill_t *ill; 21668 ipif_t *ipif; 21669 uint_t old_ifindex; 21670 uint_t new_ifindex; 21671 ilm_t *ilm; 21672 ill_walk_context_t ctx; 21673 ip_stack_t *ipst = ill_orig->ill_ipst; 21674 21675 old_ifindex = connc->cc_old_ifindex; 21676 new_ifindex = connc->cc_new_ifindex; 21677 21678 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21679 ill = ILL_START_WALK_ALL(&ctx, ipst); 21680 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21681 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21682 (ill_orig->ill_type != ill->ill_type)) { 21683 continue; 21684 } 21685 for (ipif = ill->ill_ipif; ipif != NULL; 21686 ipif = ipif->ipif_next) { 21687 if (ipif->ipif_orig_ifindex == old_ifindex) 21688 ipif->ipif_orig_ifindex = new_ifindex; 21689 } 21690 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21691 if (ilm->ilm_orig_ifindex == old_ifindex) 21692 ilm->ilm_orig_ifindex = new_ifindex; 21693 } 21694 } 21695 rw_exit(&ipst->ips_ill_g_lock); 21696 } 21697 21698 /* 21699 * We first need to ensure that the new index is unique, and 21700 * then carry the change across both v4 and v6 ill representation 21701 * of the physical interface. 21702 */ 21703 /* ARGSUSED */ 21704 int 21705 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21706 ip_ioctl_cmd_t *ipip, void *ifreq) 21707 { 21708 ill_t *ill; 21709 ill_t *ill_other; 21710 phyint_t *phyi; 21711 int old_index; 21712 conn_change_t connc; 21713 struct ifreq *ifr = (struct ifreq *)ifreq; 21714 struct lifreq *lifr = (struct lifreq *)ifreq; 21715 uint_t index; 21716 ill_t *ill_v4; 21717 ill_t *ill_v6; 21718 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21719 21720 if (ipip->ipi_cmd_type == IF_CMD) 21721 index = ifr->ifr_index; 21722 else 21723 index = lifr->lifr_index; 21724 21725 /* 21726 * Only allow on physical interface. Also, index zero is illegal. 21727 * 21728 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21729 * 21730 * 1) If PHYI_FAILED is set, a failover could have happened which 21731 * implies a possible failback might have to happen. As failback 21732 * depends on the old index, we should fail setting the index. 21733 * 21734 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21735 * any addresses or multicast memberships are failed over to 21736 * a non-STANDBY interface. As failback depends on the old 21737 * index, we should fail setting the index for this case also. 21738 * 21739 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21740 * Be consistent with PHYI_FAILED and fail the ioctl. 21741 */ 21742 ill = ipif->ipif_ill; 21743 phyi = ill->ill_phyint; 21744 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21745 ipif->ipif_id != 0 || index == 0) { 21746 return (EINVAL); 21747 } 21748 old_index = phyi->phyint_ifindex; 21749 21750 /* If the index is not changing, no work to do */ 21751 if (old_index == index) 21752 return (0); 21753 21754 /* 21755 * Use ill_lookup_on_ifindex to determine if the 21756 * new index is unused and if so allow the change. 21757 */ 21758 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21759 ipst); 21760 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21761 ipst); 21762 if (ill_v6 != NULL || ill_v4 != NULL) { 21763 if (ill_v4 != NULL) 21764 ill_refrele(ill_v4); 21765 if (ill_v6 != NULL) 21766 ill_refrele(ill_v6); 21767 return (EBUSY); 21768 } 21769 21770 /* 21771 * The new index is unused. Set it in the phyint. 21772 * Locate the other ill so that we can send a routing 21773 * sockets message. 21774 */ 21775 if (ill->ill_isv6) { 21776 ill_other = phyi->phyint_illv4; 21777 } else { 21778 ill_other = phyi->phyint_illv6; 21779 } 21780 21781 phyi->phyint_ifindex = index; 21782 21783 /* Update SCTP's ILL list */ 21784 sctp_ill_reindex(ill, old_index); 21785 21786 connc.cc_old_ifindex = old_index; 21787 connc.cc_new_ifindex = index; 21788 ip_change_ifindex(ill, &connc); 21789 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21790 21791 /* Send the routing sockets message */ 21792 ip_rts_ifmsg(ipif); 21793 if (ill_other != NULL) 21794 ip_rts_ifmsg(ill_other->ill_ipif); 21795 21796 return (0); 21797 } 21798 21799 /* ARGSUSED */ 21800 int 21801 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21802 ip_ioctl_cmd_t *ipip, void *ifreq) 21803 { 21804 struct ifreq *ifr = (struct ifreq *)ifreq; 21805 struct lifreq *lifr = (struct lifreq *)ifreq; 21806 21807 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21808 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21809 /* Get the interface index */ 21810 if (ipip->ipi_cmd_type == IF_CMD) { 21811 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21812 } else { 21813 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21814 } 21815 return (0); 21816 } 21817 21818 /* ARGSUSED */ 21819 int 21820 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21821 ip_ioctl_cmd_t *ipip, void *ifreq) 21822 { 21823 struct lifreq *lifr = (struct lifreq *)ifreq; 21824 21825 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21826 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21827 /* Get the interface zone */ 21828 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21829 lifr->lifr_zoneid = ipif->ipif_zoneid; 21830 return (0); 21831 } 21832 21833 /* 21834 * Set the zoneid of an interface. 21835 */ 21836 /* ARGSUSED */ 21837 int 21838 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21839 ip_ioctl_cmd_t *ipip, void *ifreq) 21840 { 21841 struct lifreq *lifr = (struct lifreq *)ifreq; 21842 int err = 0; 21843 boolean_t need_up = B_FALSE; 21844 zone_t *zptr; 21845 zone_status_t status; 21846 zoneid_t zoneid; 21847 21848 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21849 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21850 if (!is_system_labeled()) 21851 return (ENOTSUP); 21852 zoneid = GLOBAL_ZONEID; 21853 } 21854 21855 /* cannot assign instance zero to a non-global zone */ 21856 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21857 return (ENOTSUP); 21858 21859 /* 21860 * Cannot assign to a zone that doesn't exist or is shutting down. In 21861 * the event of a race with the zone shutdown processing, since IP 21862 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21863 * interface will be cleaned up even if the zone is shut down 21864 * immediately after the status check. If the interface can't be brought 21865 * down right away, and the zone is shut down before the restart 21866 * function is called, we resolve the possible races by rechecking the 21867 * zone status in the restart function. 21868 */ 21869 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21870 return (EINVAL); 21871 status = zone_status_get(zptr); 21872 zone_rele(zptr); 21873 21874 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21875 return (EINVAL); 21876 21877 if (ipif->ipif_flags & IPIF_UP) { 21878 /* 21879 * If the interface is already marked up, 21880 * we call ipif_down which will take care 21881 * of ditching any IREs that have been set 21882 * up based on the old interface address. 21883 */ 21884 err = ipif_logical_down(ipif, q, mp); 21885 if (err == EINPROGRESS) 21886 return (err); 21887 ipif_down_tail(ipif); 21888 need_up = B_TRUE; 21889 } 21890 21891 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21892 return (err); 21893 } 21894 21895 static int 21896 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21897 queue_t *q, mblk_t *mp, boolean_t need_up) 21898 { 21899 int err = 0; 21900 ip_stack_t *ipst; 21901 21902 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21903 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21904 21905 if (CONN_Q(q)) 21906 ipst = CONNQ_TO_IPST(q); 21907 else 21908 ipst = ILLQ_TO_IPST(q); 21909 21910 /* 21911 * For exclusive stacks we don't allow a different zoneid than 21912 * global. 21913 */ 21914 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21915 zoneid != GLOBAL_ZONEID) 21916 return (EINVAL); 21917 21918 /* Set the new zone id. */ 21919 ipif->ipif_zoneid = zoneid; 21920 21921 /* Update sctp list */ 21922 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21923 21924 if (need_up) { 21925 /* 21926 * Now bring the interface back up. If this 21927 * is the only IPIF for the ILL, ipif_up 21928 * will have to re-bind to the device, so 21929 * we may get back EINPROGRESS, in which 21930 * case, this IOCTL will get completed in 21931 * ip_rput_dlpi when we see the DL_BIND_ACK. 21932 */ 21933 err = ipif_up(ipif, q, mp); 21934 } 21935 return (err); 21936 } 21937 21938 /* ARGSUSED */ 21939 int 21940 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21941 ip_ioctl_cmd_t *ipip, void *if_req) 21942 { 21943 struct lifreq *lifr = (struct lifreq *)if_req; 21944 zoneid_t zoneid; 21945 zone_t *zptr; 21946 zone_status_t status; 21947 21948 ASSERT(ipif->ipif_id != 0); 21949 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21950 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21951 zoneid = GLOBAL_ZONEID; 21952 21953 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21954 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21955 21956 /* 21957 * We recheck the zone status to resolve the following race condition: 21958 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21959 * 2) hme0:1 is up and can't be brought down right away; 21960 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21961 * 3) zone "myzone" is halted; the zone status switches to 21962 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21963 * the interfaces to remove - hme0:1 is not returned because it's not 21964 * yet in "myzone", so it won't be removed; 21965 * 4) the restart function for SIOCSLIFZONE is called; without the 21966 * status check here, we would have hme0:1 in "myzone" after it's been 21967 * destroyed. 21968 * Note that if the status check fails, we need to bring the interface 21969 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21970 * ipif_up_done[_v6](). 21971 */ 21972 status = ZONE_IS_UNINITIALIZED; 21973 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21974 status = zone_status_get(zptr); 21975 zone_rele(zptr); 21976 } 21977 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21978 if (ipif->ipif_isv6) { 21979 (void) ipif_up_done_v6(ipif); 21980 } else { 21981 (void) ipif_up_done(ipif); 21982 } 21983 return (EINVAL); 21984 } 21985 21986 ipif_down_tail(ipif); 21987 21988 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21989 B_TRUE)); 21990 } 21991 21992 /* ARGSUSED */ 21993 int 21994 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21995 ip_ioctl_cmd_t *ipip, void *ifreq) 21996 { 21997 struct lifreq *lifr = ifreq; 21998 21999 ASSERT(q->q_next == NULL); 22000 ASSERT(CONN_Q(q)); 22001 22002 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22003 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22004 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22005 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22006 22007 return (0); 22008 } 22009 22010 /* Find the previous ILL in this usesrc group */ 22011 static ill_t * 22012 ill_prev_usesrc(ill_t *uill) 22013 { 22014 ill_t *ill; 22015 22016 for (ill = uill->ill_usesrc_grp_next; 22017 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22018 ill = ill->ill_usesrc_grp_next) 22019 /* do nothing */; 22020 return (ill); 22021 } 22022 22023 /* 22024 * Release all members of the usesrc group. This routine is called 22025 * from ill_delete when the interface being unplumbed is the 22026 * group head. 22027 */ 22028 static void 22029 ill_disband_usesrc_group(ill_t *uill) 22030 { 22031 ill_t *next_ill, *tmp_ill; 22032 ip_stack_t *ipst = uill->ill_ipst; 22033 22034 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22035 next_ill = uill->ill_usesrc_grp_next; 22036 22037 do { 22038 ASSERT(next_ill != NULL); 22039 tmp_ill = next_ill->ill_usesrc_grp_next; 22040 ASSERT(tmp_ill != NULL); 22041 next_ill->ill_usesrc_grp_next = NULL; 22042 next_ill->ill_usesrc_ifindex = 0; 22043 next_ill = tmp_ill; 22044 } while (next_ill->ill_usesrc_ifindex != 0); 22045 uill->ill_usesrc_grp_next = NULL; 22046 } 22047 22048 /* 22049 * Remove the client usesrc ILL from the list and relink to a new list 22050 */ 22051 int 22052 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22053 { 22054 ill_t *ill, *tmp_ill; 22055 ip_stack_t *ipst = ucill->ill_ipst; 22056 22057 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22058 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22059 22060 /* 22061 * Check if the usesrc client ILL passed in is not already 22062 * in use as a usesrc ILL i.e one whose source address is 22063 * in use OR a usesrc ILL is not already in use as a usesrc 22064 * client ILL 22065 */ 22066 if ((ucill->ill_usesrc_ifindex == 0) || 22067 (uill->ill_usesrc_ifindex != 0)) { 22068 return (-1); 22069 } 22070 22071 ill = ill_prev_usesrc(ucill); 22072 ASSERT(ill->ill_usesrc_grp_next != NULL); 22073 22074 /* Remove from the current list */ 22075 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22076 /* Only two elements in the list */ 22077 ASSERT(ill->ill_usesrc_ifindex == 0); 22078 ill->ill_usesrc_grp_next = NULL; 22079 } else { 22080 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22081 } 22082 22083 if (ifindex == 0) { 22084 ucill->ill_usesrc_ifindex = 0; 22085 ucill->ill_usesrc_grp_next = NULL; 22086 return (0); 22087 } 22088 22089 ucill->ill_usesrc_ifindex = ifindex; 22090 tmp_ill = uill->ill_usesrc_grp_next; 22091 uill->ill_usesrc_grp_next = ucill; 22092 ucill->ill_usesrc_grp_next = 22093 (tmp_ill != NULL) ? tmp_ill : uill; 22094 return (0); 22095 } 22096 22097 /* 22098 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22099 * ip.c for locking details. 22100 */ 22101 /* ARGSUSED */ 22102 int 22103 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22104 ip_ioctl_cmd_t *ipip, void *ifreq) 22105 { 22106 struct lifreq *lifr = (struct lifreq *)ifreq; 22107 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22108 ill_flag_changed = B_FALSE; 22109 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22110 int err = 0, ret; 22111 uint_t ifindex; 22112 phyint_t *us_phyint, *us_cli_phyint; 22113 ipsq_t *ipsq = NULL; 22114 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22115 22116 ASSERT(IAM_WRITER_IPIF(ipif)); 22117 ASSERT(q->q_next == NULL); 22118 ASSERT(CONN_Q(q)); 22119 22120 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22121 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22122 22123 ASSERT(us_cli_phyint != NULL); 22124 22125 /* 22126 * If the client ILL is being used for IPMP, abort. 22127 * Note, this can be done before ipsq_try_enter since we are already 22128 * exclusive on this ILL 22129 */ 22130 if ((us_cli_phyint->phyint_groupname != NULL) || 22131 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22132 return (EINVAL); 22133 } 22134 22135 ifindex = lifr->lifr_index; 22136 if (ifindex == 0) { 22137 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22138 /* non usesrc group interface, nothing to reset */ 22139 return (0); 22140 } 22141 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22142 /* valid reset request */ 22143 reset_flg = B_TRUE; 22144 } 22145 22146 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22147 ip_process_ioctl, &err, ipst); 22148 22149 if (usesrc_ill == NULL) { 22150 return (err); 22151 } 22152 22153 /* 22154 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22155 * group nor can either of the interfaces be used for standy. So 22156 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22157 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22158 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22159 * We are already exlusive on this ipsq i.e ipsq corresponding to 22160 * the usesrc_cli_ill 22161 */ 22162 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22163 NEW_OP, B_TRUE); 22164 if (ipsq == NULL) { 22165 err = EINPROGRESS; 22166 /* Operation enqueued on the ipsq of the usesrc ILL */ 22167 goto done; 22168 } 22169 22170 /* Check if the usesrc_ill is used for IPMP */ 22171 us_phyint = usesrc_ill->ill_phyint; 22172 if ((us_phyint->phyint_groupname != NULL) || 22173 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22174 err = EINVAL; 22175 goto done; 22176 } 22177 22178 /* 22179 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22180 * already a client then return EINVAL 22181 */ 22182 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22183 err = EINVAL; 22184 goto done; 22185 } 22186 22187 /* 22188 * If the ill_usesrc_ifindex field is already set to what it needs to 22189 * be then this is a duplicate operation. 22190 */ 22191 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22192 err = 0; 22193 goto done; 22194 } 22195 22196 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22197 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22198 usesrc_ill->ill_isv6)); 22199 22200 /* 22201 * The next step ensures that no new ires will be created referencing 22202 * the client ill, until the ILL_CHANGING flag is cleared. Then 22203 * we go through an ire walk deleting all ire caches that reference 22204 * the client ill. New ires referencing the client ill that are added 22205 * to the ire table before the ILL_CHANGING flag is set, will be 22206 * cleaned up by the ire walk below. Attempt to add new ires referencing 22207 * the client ill while the ILL_CHANGING flag is set will be failed 22208 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22209 * checks (under the ill_g_usesrc_lock) that the ire being added 22210 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22211 * belong to the same usesrc group. 22212 */ 22213 mutex_enter(&usesrc_cli_ill->ill_lock); 22214 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22215 mutex_exit(&usesrc_cli_ill->ill_lock); 22216 ill_flag_changed = B_TRUE; 22217 22218 if (ipif->ipif_isv6) 22219 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22220 ALL_ZONES, ipst); 22221 else 22222 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22223 ALL_ZONES, ipst); 22224 22225 /* 22226 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22227 * and the ill_usesrc_ifindex fields 22228 */ 22229 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22230 22231 if (reset_flg) { 22232 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22233 if (ret != 0) { 22234 err = EINVAL; 22235 } 22236 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22237 goto done; 22238 } 22239 22240 /* 22241 * Four possibilities to consider: 22242 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22243 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22244 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22245 * 4. Both are part of their respective usesrc groups 22246 */ 22247 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22248 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22249 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22250 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22251 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22252 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22253 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22254 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22255 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22256 /* Insert at head of list */ 22257 usesrc_cli_ill->ill_usesrc_grp_next = 22258 usesrc_ill->ill_usesrc_grp_next; 22259 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22260 } else { 22261 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22262 ifindex); 22263 if (ret != 0) 22264 err = EINVAL; 22265 } 22266 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22267 22268 done: 22269 if (ill_flag_changed) { 22270 mutex_enter(&usesrc_cli_ill->ill_lock); 22271 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22272 mutex_exit(&usesrc_cli_ill->ill_lock); 22273 } 22274 if (ipsq != NULL) 22275 ipsq_exit(ipsq); 22276 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22277 ill_refrele(usesrc_ill); 22278 return (err); 22279 } 22280 22281 /* 22282 * comparison function used by avl. 22283 */ 22284 static int 22285 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22286 { 22287 22288 uint_t index; 22289 22290 ASSERT(phyip != NULL && index_ptr != NULL); 22291 22292 index = *((uint_t *)index_ptr); 22293 /* 22294 * let the phyint with the lowest index be on top. 22295 */ 22296 if (((phyint_t *)phyip)->phyint_ifindex < index) 22297 return (1); 22298 if (((phyint_t *)phyip)->phyint_ifindex > index) 22299 return (-1); 22300 return (0); 22301 } 22302 22303 /* 22304 * comparison function used by avl. 22305 */ 22306 static int 22307 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22308 { 22309 ill_t *ill; 22310 int res = 0; 22311 22312 ASSERT(phyip != NULL && name_ptr != NULL); 22313 22314 if (((phyint_t *)phyip)->phyint_illv4) 22315 ill = ((phyint_t *)phyip)->phyint_illv4; 22316 else 22317 ill = ((phyint_t *)phyip)->phyint_illv6; 22318 ASSERT(ill != NULL); 22319 22320 res = strcmp(ill->ill_name, (char *)name_ptr); 22321 if (res > 0) 22322 return (1); 22323 else if (res < 0) 22324 return (-1); 22325 return (0); 22326 } 22327 /* 22328 * This function is called from ill_delete when the ill is being 22329 * unplumbed. We remove the reference from the phyint and we also 22330 * free the phyint when there are no more references to it. 22331 */ 22332 static void 22333 ill_phyint_free(ill_t *ill) 22334 { 22335 phyint_t *phyi; 22336 phyint_t *next_phyint; 22337 ipsq_t *cur_ipsq; 22338 ip_stack_t *ipst = ill->ill_ipst; 22339 22340 ASSERT(ill->ill_phyint != NULL); 22341 22342 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22343 phyi = ill->ill_phyint; 22344 ill->ill_phyint = NULL; 22345 /* 22346 * ill_init allocates a phyint always to store the copy 22347 * of flags relevant to phyint. At that point in time, we could 22348 * not assign the name and hence phyint_illv4/v6 could not be 22349 * initialized. Later in ipif_set_values, we assign the name to 22350 * the ill, at which point in time we assign phyint_illv4/v6. 22351 * Thus we don't rely on phyint_illv6 to be initialized always. 22352 */ 22353 if (ill->ill_flags & ILLF_IPV6) { 22354 phyi->phyint_illv6 = NULL; 22355 } else { 22356 phyi->phyint_illv4 = NULL; 22357 } 22358 /* 22359 * ipif_down removes it from the group when the last ipif goes 22360 * down. 22361 */ 22362 ASSERT(ill->ill_group == NULL); 22363 22364 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22365 return; 22366 22367 /* 22368 * Make sure this phyint was put in the list. 22369 */ 22370 if (phyi->phyint_ifindex > 0) { 22371 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22372 phyi); 22373 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22374 phyi); 22375 } 22376 /* 22377 * remove phyint from the ipsq list. 22378 */ 22379 cur_ipsq = phyi->phyint_ipsq; 22380 if (phyi == cur_ipsq->ipsq_phyint_list) { 22381 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22382 } else { 22383 next_phyint = cur_ipsq->ipsq_phyint_list; 22384 while (next_phyint != NULL) { 22385 if (next_phyint->phyint_ipsq_next == phyi) { 22386 next_phyint->phyint_ipsq_next = 22387 phyi->phyint_ipsq_next; 22388 break; 22389 } 22390 next_phyint = next_phyint->phyint_ipsq_next; 22391 } 22392 ASSERT(next_phyint != NULL); 22393 } 22394 IPSQ_DEC_REF(cur_ipsq, ipst); 22395 22396 if (phyi->phyint_groupname_len != 0) { 22397 ASSERT(phyi->phyint_groupname != NULL); 22398 mi_free(phyi->phyint_groupname); 22399 } 22400 mi_free(phyi); 22401 } 22402 22403 /* 22404 * Attach the ill to the phyint structure which can be shared by both 22405 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22406 * function is called from ipif_set_values and ill_lookup_on_name (for 22407 * loopback) where we know the name of the ill. We lookup the ill and if 22408 * there is one present already with the name use that phyint. Otherwise 22409 * reuse the one allocated by ill_init. 22410 */ 22411 static void 22412 ill_phyint_reinit(ill_t *ill) 22413 { 22414 boolean_t isv6 = ill->ill_isv6; 22415 phyint_t *phyi_old; 22416 phyint_t *phyi; 22417 avl_index_t where = 0; 22418 ill_t *ill_other = NULL; 22419 ipsq_t *ipsq; 22420 ip_stack_t *ipst = ill->ill_ipst; 22421 22422 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22423 22424 phyi_old = ill->ill_phyint; 22425 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22426 phyi_old->phyint_illv6 == NULL)); 22427 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22428 phyi_old->phyint_illv4 == NULL)); 22429 ASSERT(phyi_old->phyint_ifindex == 0); 22430 22431 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22432 ill->ill_name, &where); 22433 22434 /* 22435 * 1. We grabbed the ill_g_lock before inserting this ill into 22436 * the global list of ills. So no other thread could have located 22437 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22438 * 2. Now locate the other protocol instance of this ill. 22439 * 3. Now grab both ill locks in the right order, and the phyint lock of 22440 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22441 * of neither ill can change. 22442 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22443 * other ill. 22444 * 5. Release all locks. 22445 */ 22446 22447 /* 22448 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22449 * we are initializing IPv4. 22450 */ 22451 if (phyi != NULL) { 22452 ill_other = (isv6) ? phyi->phyint_illv4 : 22453 phyi->phyint_illv6; 22454 ASSERT(ill_other->ill_phyint != NULL); 22455 ASSERT((isv6 && !ill_other->ill_isv6) || 22456 (!isv6 && ill_other->ill_isv6)); 22457 GRAB_ILL_LOCKS(ill, ill_other); 22458 /* 22459 * We are potentially throwing away phyint_flags which 22460 * could be different from the one that we obtain from 22461 * ill_other->ill_phyint. But it is okay as we are assuming 22462 * that the state maintained within IP is correct. 22463 */ 22464 mutex_enter(&phyi->phyint_lock); 22465 if (isv6) { 22466 ASSERT(phyi->phyint_illv6 == NULL); 22467 phyi->phyint_illv6 = ill; 22468 } else { 22469 ASSERT(phyi->phyint_illv4 == NULL); 22470 phyi->phyint_illv4 = ill; 22471 } 22472 /* 22473 * This is a new ill, currently undergoing SLIFNAME 22474 * So we could not have joined an IPMP group until now. 22475 */ 22476 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22477 phyi_old->phyint_groupname == NULL); 22478 22479 /* 22480 * This phyi_old is going away. Decref ipsq_refs and 22481 * assert it is zero. The ipsq itself will be freed in 22482 * ipsq_exit 22483 */ 22484 ipsq = phyi_old->phyint_ipsq; 22485 IPSQ_DEC_REF(ipsq, ipst); 22486 ASSERT(ipsq->ipsq_refs == 0); 22487 /* Get the singleton phyint out of the ipsq list */ 22488 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22489 ipsq->ipsq_phyint_list = NULL; 22490 phyi_old->phyint_illv4 = NULL; 22491 phyi_old->phyint_illv6 = NULL; 22492 mi_free(phyi_old); 22493 } else { 22494 mutex_enter(&ill->ill_lock); 22495 /* 22496 * We don't need to acquire any lock, since 22497 * the ill is not yet visible globally and we 22498 * have not yet released the ill_g_lock. 22499 */ 22500 phyi = phyi_old; 22501 mutex_enter(&phyi->phyint_lock); 22502 /* XXX We need a recovery strategy here. */ 22503 if (!phyint_assign_ifindex(phyi, ipst)) 22504 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22505 22506 /* No IPMP group yet, thus the hook uses the ifindex */ 22507 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22508 22509 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22510 (void *)phyi, where); 22511 22512 (void) avl_find(&ipst->ips_phyint_g_list-> 22513 phyint_list_avl_by_index, 22514 &phyi->phyint_ifindex, &where); 22515 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22516 (void *)phyi, where); 22517 } 22518 22519 /* 22520 * Reassigning ill_phyint automatically reassigns the ipsq also. 22521 * pending mp is not affected because that is per ill basis. 22522 */ 22523 ill->ill_phyint = phyi; 22524 22525 /* 22526 * Keep the index on ipif_orig_index to be used by FAILOVER. 22527 * We do this here as when the first ipif was allocated, 22528 * ipif_allocate does not know the right interface index. 22529 */ 22530 22531 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22532 /* 22533 * Now that the phyint's ifindex has been assigned, complete the 22534 * remaining 22535 */ 22536 22537 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22538 if (ill->ill_isv6) { 22539 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22540 ill->ill_phyint->phyint_ifindex; 22541 ill->ill_mcast_type = ipst->ips_mld_max_version; 22542 } else { 22543 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22544 } 22545 22546 /* 22547 * Generate an event within the hooks framework to indicate that 22548 * a new interface has just been added to IP. For this event to 22549 * be generated, the network interface must, at least, have an 22550 * ifindex assigned to it. 22551 * 22552 * This needs to be run inside the ill_g_lock perimeter to ensure 22553 * that the ordering of delivered events to listeners matches the 22554 * order of them in the kernel. 22555 * 22556 * This function could be called from ill_lookup_on_name. In that case 22557 * the interface is loopback "lo", which will not generate a NIC event. 22558 */ 22559 if (ill->ill_name_length <= 2 || 22560 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22561 /* 22562 * Generate nic plumb event for ill_name even if 22563 * ipmp_hook_emulation is set. That avoids generating events 22564 * for the ill_names should ipmp_hook_emulation be turned on 22565 * later. 22566 */ 22567 ill_nic_event_plumb(ill, B_FALSE); 22568 } 22569 RELEASE_ILL_LOCKS(ill, ill_other); 22570 mutex_exit(&phyi->phyint_lock); 22571 } 22572 22573 /* 22574 * Allocate a NE_PLUMB nic info event and store in the ill. 22575 * If 'group' is set we do it for the group name, otherwise the ill name. 22576 * It will be sent when we leave the ipsq. 22577 */ 22578 void 22579 ill_nic_event_plumb(ill_t *ill, boolean_t group) 22580 { 22581 phyint_t *phyi = ill->ill_phyint; 22582 char *name; 22583 int namelen; 22584 22585 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22586 22587 if (group) { 22588 ASSERT(phyi->phyint_groupname_len != 0); 22589 namelen = phyi->phyint_groupname_len; 22590 name = phyi->phyint_groupname; 22591 } else { 22592 namelen = ill->ill_name_length; 22593 name = ill->ill_name; 22594 } 22595 22596 ill_nic_event_dispatch(ill, 0, NE_PLUMB, name, namelen); 22597 } 22598 22599 /* 22600 * Notify any downstream modules of the name of this interface. 22601 * An M_IOCTL is used even though we don't expect a successful reply. 22602 * Any reply message from the driver (presumably an M_IOCNAK) will 22603 * eventually get discarded somewhere upstream. The message format is 22604 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22605 * to IP. 22606 */ 22607 static void 22608 ip_ifname_notify(ill_t *ill, queue_t *q) 22609 { 22610 mblk_t *mp1, *mp2; 22611 struct iocblk *iocp; 22612 struct lifreq *lifr; 22613 22614 mp1 = mkiocb(SIOCSLIFNAME); 22615 if (mp1 == NULL) 22616 return; 22617 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22618 if (mp2 == NULL) { 22619 freeb(mp1); 22620 return; 22621 } 22622 22623 mp1->b_cont = mp2; 22624 iocp = (struct iocblk *)mp1->b_rptr; 22625 iocp->ioc_count = sizeof (struct lifreq); 22626 22627 lifr = (struct lifreq *)mp2->b_rptr; 22628 mp2->b_wptr += sizeof (struct lifreq); 22629 bzero(lifr, sizeof (struct lifreq)); 22630 22631 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22632 lifr->lifr_ppa = ill->ill_ppa; 22633 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22634 22635 putnext(q, mp1); 22636 } 22637 22638 static int 22639 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22640 { 22641 int err; 22642 ip_stack_t *ipst = ill->ill_ipst; 22643 22644 /* Set the obsolete NDD per-interface forwarding name. */ 22645 err = ill_set_ndd_name(ill); 22646 if (err != 0) { 22647 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22648 err); 22649 } 22650 22651 /* Tell downstream modules where they are. */ 22652 ip_ifname_notify(ill, q); 22653 22654 /* 22655 * ill_dl_phys returns EINPROGRESS in the usual case. 22656 * Error cases are ENOMEM ... 22657 */ 22658 err = ill_dl_phys(ill, ipif, mp, q); 22659 22660 /* 22661 * If there is no IRE expiration timer running, get one started. 22662 * igmp and mld timers will be triggered by the first multicast 22663 */ 22664 if (ipst->ips_ip_ire_expire_id == 0) { 22665 /* 22666 * acquire the lock and check again. 22667 */ 22668 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22669 if (ipst->ips_ip_ire_expire_id == 0) { 22670 ipst->ips_ip_ire_expire_id = timeout( 22671 ip_trash_timer_expire, ipst, 22672 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22673 } 22674 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22675 } 22676 22677 if (ill->ill_isv6) { 22678 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22679 if (ipst->ips_mld_slowtimeout_id == 0) { 22680 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22681 (void *)ipst, 22682 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22683 } 22684 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22685 } else { 22686 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22687 if (ipst->ips_igmp_slowtimeout_id == 0) { 22688 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22689 (void *)ipst, 22690 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22691 } 22692 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22693 } 22694 22695 return (err); 22696 } 22697 22698 /* 22699 * Common routine for ppa and ifname setting. Should be called exclusive. 22700 * 22701 * Returns EINPROGRESS when mp has been consumed by queueing it on 22702 * ill_pending_mp and the ioctl will complete in ip_rput. 22703 * 22704 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22705 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22706 * For SLIFNAME, we pass these values back to the userland. 22707 */ 22708 static int 22709 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22710 { 22711 ill_t *ill; 22712 ipif_t *ipif; 22713 ipsq_t *ipsq; 22714 char *ppa_ptr; 22715 char *old_ptr; 22716 char old_char; 22717 int error; 22718 ip_stack_t *ipst; 22719 22720 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22721 ASSERT(q->q_next != NULL); 22722 ASSERT(interf_name != NULL); 22723 22724 ill = (ill_t *)q->q_ptr; 22725 ipst = ill->ill_ipst; 22726 22727 ASSERT(ill->ill_ipst != NULL); 22728 ASSERT(ill->ill_name[0] == '\0'); 22729 ASSERT(IAM_WRITER_ILL(ill)); 22730 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22731 ASSERT(ill->ill_ppa == UINT_MAX); 22732 22733 /* The ppa is sent down by ifconfig or is chosen */ 22734 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22735 return (EINVAL); 22736 } 22737 22738 /* 22739 * make sure ppa passed in is same as ppa in the name. 22740 * This check is not made when ppa == UINT_MAX in that case ppa 22741 * in the name could be anything. System will choose a ppa and 22742 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22743 */ 22744 if (*new_ppa_ptr != UINT_MAX) { 22745 /* stoi changes the pointer */ 22746 old_ptr = ppa_ptr; 22747 /* 22748 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22749 * (they don't have an externally visible ppa). We assign one 22750 * here so that we can manage the interface. Note that in 22751 * the past this value was always 0 for DLPI 1 drivers. 22752 */ 22753 if (*new_ppa_ptr == 0) 22754 *new_ppa_ptr = stoi(&old_ptr); 22755 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22756 return (EINVAL); 22757 } 22758 /* 22759 * terminate string before ppa 22760 * save char at that location. 22761 */ 22762 old_char = ppa_ptr[0]; 22763 ppa_ptr[0] = '\0'; 22764 22765 ill->ill_ppa = *new_ppa_ptr; 22766 /* 22767 * Finish as much work now as possible before calling ill_glist_insert 22768 * which makes the ill globally visible and also merges it with the 22769 * other protocol instance of this phyint. The remaining work is 22770 * done after entering the ipsq which may happen sometime later. 22771 * ill_set_ndd_name occurs after the ill has been made globally visible. 22772 */ 22773 ipif = ill->ill_ipif; 22774 22775 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22776 ipif_assign_seqid(ipif); 22777 22778 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22779 ill->ill_flags |= ILLF_IPV4; 22780 22781 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22782 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22783 22784 if (ill->ill_flags & ILLF_IPV6) { 22785 22786 ill->ill_isv6 = B_TRUE; 22787 if (ill->ill_rq != NULL) { 22788 ill->ill_rq->q_qinfo = &iprinitv6; 22789 ill->ill_wq->q_qinfo = &ipwinitv6; 22790 } 22791 22792 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22793 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22794 ipif->ipif_v6src_addr = ipv6_all_zeros; 22795 ipif->ipif_v6subnet = ipv6_all_zeros; 22796 ipif->ipif_v6net_mask = ipv6_all_zeros; 22797 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22798 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22799 /* 22800 * point-to-point or Non-mulicast capable 22801 * interfaces won't do NUD unless explicitly 22802 * configured to do so. 22803 */ 22804 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22805 !(ill->ill_flags & ILLF_MULTICAST)) { 22806 ill->ill_flags |= ILLF_NONUD; 22807 } 22808 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22809 if (ill->ill_flags & ILLF_NOARP) { 22810 /* 22811 * Note: xresolv interfaces will eventually need 22812 * NOARP set here as well, but that will require 22813 * those external resolvers to have some 22814 * knowledge of that flag and act appropriately. 22815 * Not to be changed at present. 22816 */ 22817 ill->ill_flags &= ~ILLF_NOARP; 22818 } 22819 /* 22820 * Set the ILLF_ROUTER flag according to the global 22821 * IPv6 forwarding policy. 22822 */ 22823 if (ipst->ips_ipv6_forward != 0) 22824 ill->ill_flags |= ILLF_ROUTER; 22825 } else if (ill->ill_flags & ILLF_IPV4) { 22826 ill->ill_isv6 = B_FALSE; 22827 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22828 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22829 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22830 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22831 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22832 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22833 /* 22834 * Set the ILLF_ROUTER flag according to the global 22835 * IPv4 forwarding policy. 22836 */ 22837 if (ipst->ips_ip_g_forward != 0) 22838 ill->ill_flags |= ILLF_ROUTER; 22839 } 22840 22841 ASSERT(ill->ill_phyint != NULL); 22842 22843 /* 22844 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22845 * be completed in ill_glist_insert -> ill_phyint_reinit 22846 */ 22847 if (!ill_allocate_mibs(ill)) 22848 return (ENOMEM); 22849 22850 /* 22851 * Pick a default sap until we get the DL_INFO_ACK back from 22852 * the driver. 22853 */ 22854 if (ill->ill_sap == 0) { 22855 if (ill->ill_isv6) 22856 ill->ill_sap = IP6_DL_SAP; 22857 else 22858 ill->ill_sap = IP_DL_SAP; 22859 } 22860 22861 ill->ill_ifname_pending = 1; 22862 ill->ill_ifname_pending_err = 0; 22863 22864 /* 22865 * When the first ipif comes up in ipif_up_done(), multicast groups 22866 * that were joined while this ill was not bound to the DLPI link need 22867 * to be recovered by ill_recover_multicast(). 22868 */ 22869 ill->ill_need_recover_multicast = 1; 22870 22871 ill_refhold(ill); 22872 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22873 if ((error = ill_glist_insert(ill, interf_name, 22874 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22875 ill->ill_ppa = UINT_MAX; 22876 ill->ill_name[0] = '\0'; 22877 /* 22878 * undo null termination done above. 22879 */ 22880 ppa_ptr[0] = old_char; 22881 rw_exit(&ipst->ips_ill_g_lock); 22882 ill_refrele(ill); 22883 return (error); 22884 } 22885 22886 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22887 22888 /* 22889 * When we return the buffer pointed to by interf_name should contain 22890 * the same name as in ill_name. 22891 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22892 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22893 * so copy full name and update the ppa ptr. 22894 * When ppa passed in != UINT_MAX all values are correct just undo 22895 * null termination, this saves a bcopy. 22896 */ 22897 if (*new_ppa_ptr == UINT_MAX) { 22898 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22899 *new_ppa_ptr = ill->ill_ppa; 22900 } else { 22901 /* 22902 * undo null termination done above. 22903 */ 22904 ppa_ptr[0] = old_char; 22905 } 22906 22907 /* Let SCTP know about this ILL */ 22908 sctp_update_ill(ill, SCTP_ILL_INSERT); 22909 22910 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22911 B_TRUE); 22912 22913 rw_exit(&ipst->ips_ill_g_lock); 22914 ill_refrele(ill); 22915 if (ipsq == NULL) 22916 return (EINPROGRESS); 22917 22918 /* 22919 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 22920 */ 22921 if (ipsq->ipsq_current_ipif == NULL) 22922 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 22923 else 22924 ASSERT(ipsq->ipsq_current_ipif == ipif); 22925 22926 error = ipif_set_values_tail(ill, ipif, mp, q); 22927 ipsq_exit(ipsq); 22928 if (error != 0 && error != EINPROGRESS) { 22929 /* 22930 * restore previous values 22931 */ 22932 ill->ill_isv6 = B_FALSE; 22933 } 22934 return (error); 22935 } 22936 22937 22938 void 22939 ipif_init(ip_stack_t *ipst) 22940 { 22941 hrtime_t hrt; 22942 int i; 22943 22944 /* 22945 * Can't call drv_getparm here as it is too early in the boot. 22946 * As we use ipif_src_random just for picking a different 22947 * source address everytime, this need not be really random. 22948 */ 22949 hrt = gethrtime(); 22950 ipst->ips_ipif_src_random = 22951 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22952 22953 for (i = 0; i < MAX_G_HEADS; i++) { 22954 ipst->ips_ill_g_heads[i].ill_g_list_head = 22955 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 22956 ipst->ips_ill_g_heads[i].ill_g_list_tail = 22957 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 22958 } 22959 22960 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22961 ill_phyint_compare_index, 22962 sizeof (phyint_t), 22963 offsetof(struct phyint, phyint_avl_by_index)); 22964 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22965 ill_phyint_compare_name, 22966 sizeof (phyint_t), 22967 offsetof(struct phyint, phyint_avl_by_name)); 22968 } 22969 22970 /* 22971 * Lookup the ipif corresponding to the onlink destination address. For 22972 * point-to-point interfaces, it matches with remote endpoint destination 22973 * address. For point-to-multipoint interfaces it only tries to match the 22974 * destination with the interface's subnet address. The longest, most specific 22975 * match is found to take care of such rare network configurations like - 22976 * le0: 129.146.1.1/16 22977 * le1: 129.146.2.2/24 22978 * It is used only by SO_DONTROUTE at the moment. 22979 */ 22980 ipif_t * 22981 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 22982 { 22983 ipif_t *ipif, *best_ipif; 22984 ill_t *ill; 22985 ill_walk_context_t ctx; 22986 22987 ASSERT(zoneid != ALL_ZONES); 22988 best_ipif = NULL; 22989 22990 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22991 ill = ILL_START_WALK_V4(&ctx, ipst); 22992 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22993 mutex_enter(&ill->ill_lock); 22994 for (ipif = ill->ill_ipif; ipif != NULL; 22995 ipif = ipif->ipif_next) { 22996 if (!IPIF_CAN_LOOKUP(ipif)) 22997 continue; 22998 if (ipif->ipif_zoneid != zoneid && 22999 ipif->ipif_zoneid != ALL_ZONES) 23000 continue; 23001 /* 23002 * Point-to-point case. Look for exact match with 23003 * destination address. 23004 */ 23005 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23006 if (ipif->ipif_pp_dst_addr == addr) { 23007 ipif_refhold_locked(ipif); 23008 mutex_exit(&ill->ill_lock); 23009 rw_exit(&ipst->ips_ill_g_lock); 23010 if (best_ipif != NULL) 23011 ipif_refrele(best_ipif); 23012 return (ipif); 23013 } 23014 } else if (ipif->ipif_subnet == (addr & 23015 ipif->ipif_net_mask)) { 23016 /* 23017 * Point-to-multipoint case. Looping through to 23018 * find the most specific match. If there are 23019 * multiple best match ipif's then prefer ipif's 23020 * that are UP. If there is only one best match 23021 * ipif and it is DOWN we must still return it. 23022 */ 23023 if ((best_ipif == NULL) || 23024 (ipif->ipif_net_mask > 23025 best_ipif->ipif_net_mask) || 23026 ((ipif->ipif_net_mask == 23027 best_ipif->ipif_net_mask) && 23028 ((ipif->ipif_flags & IPIF_UP) && 23029 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23030 ipif_refhold_locked(ipif); 23031 mutex_exit(&ill->ill_lock); 23032 rw_exit(&ipst->ips_ill_g_lock); 23033 if (best_ipif != NULL) 23034 ipif_refrele(best_ipif); 23035 best_ipif = ipif; 23036 rw_enter(&ipst->ips_ill_g_lock, 23037 RW_READER); 23038 mutex_enter(&ill->ill_lock); 23039 } 23040 } 23041 } 23042 mutex_exit(&ill->ill_lock); 23043 } 23044 rw_exit(&ipst->ips_ill_g_lock); 23045 return (best_ipif); 23046 } 23047 23048 /* 23049 * Save enough information so that we can recreate the IRE if 23050 * the interface goes down and then up. 23051 */ 23052 static void 23053 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23054 { 23055 mblk_t *save_mp; 23056 23057 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23058 if (save_mp != NULL) { 23059 ifrt_t *ifrt; 23060 23061 save_mp->b_wptr += sizeof (ifrt_t); 23062 ifrt = (ifrt_t *)save_mp->b_rptr; 23063 bzero(ifrt, sizeof (ifrt_t)); 23064 ifrt->ifrt_type = ire->ire_type; 23065 ifrt->ifrt_addr = ire->ire_addr; 23066 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23067 ifrt->ifrt_src_addr = ire->ire_src_addr; 23068 ifrt->ifrt_mask = ire->ire_mask; 23069 ifrt->ifrt_flags = ire->ire_flags; 23070 ifrt->ifrt_max_frag = ire->ire_max_frag; 23071 mutex_enter(&ipif->ipif_saved_ire_lock); 23072 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23073 ipif->ipif_saved_ire_mp = save_mp; 23074 ipif->ipif_saved_ire_cnt++; 23075 mutex_exit(&ipif->ipif_saved_ire_lock); 23076 } 23077 } 23078 23079 static void 23080 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23081 { 23082 mblk_t **mpp; 23083 mblk_t *mp; 23084 ifrt_t *ifrt; 23085 23086 /* Remove from ipif_saved_ire_mp list if it is there */ 23087 mutex_enter(&ipif->ipif_saved_ire_lock); 23088 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23089 mpp = &(*mpp)->b_cont) { 23090 /* 23091 * On a given ipif, the triple of address, gateway and 23092 * mask is unique for each saved IRE (in the case of 23093 * ordinary interface routes, the gateway address is 23094 * all-zeroes). 23095 */ 23096 mp = *mpp; 23097 ifrt = (ifrt_t *)mp->b_rptr; 23098 if (ifrt->ifrt_addr == ire->ire_addr && 23099 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23100 ifrt->ifrt_mask == ire->ire_mask) { 23101 *mpp = mp->b_cont; 23102 ipif->ipif_saved_ire_cnt--; 23103 freeb(mp); 23104 break; 23105 } 23106 } 23107 mutex_exit(&ipif->ipif_saved_ire_lock); 23108 } 23109 23110 /* 23111 * IP multirouting broadcast routes handling 23112 * Append CGTP broadcast IREs to regular ones created 23113 * at ifconfig time. 23114 */ 23115 static void 23116 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23117 { 23118 ire_t *ire_prim; 23119 23120 ASSERT(ire != NULL); 23121 ASSERT(ire_dst != NULL); 23122 23123 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23124 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23125 if (ire_prim != NULL) { 23126 /* 23127 * We are in the special case of broadcasts for 23128 * CGTP. We add an IRE_BROADCAST that holds 23129 * the RTF_MULTIRT flag, the destination 23130 * address of ire_dst and the low level 23131 * info of ire_prim. In other words, CGTP 23132 * broadcast is added to the redundant ipif. 23133 */ 23134 ipif_t *ipif_prim; 23135 ire_t *bcast_ire; 23136 23137 ipif_prim = ire_prim->ire_ipif; 23138 23139 ip2dbg(("ip_cgtp_filter_bcast_add: " 23140 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23141 (void *)ire_dst, (void *)ire_prim, 23142 (void *)ipif_prim)); 23143 23144 bcast_ire = ire_create( 23145 (uchar_t *)&ire->ire_addr, 23146 (uchar_t *)&ip_g_all_ones, 23147 (uchar_t *)&ire_dst->ire_src_addr, 23148 (uchar_t *)&ire->ire_gateway_addr, 23149 &ipif_prim->ipif_mtu, 23150 NULL, 23151 ipif_prim->ipif_rq, 23152 ipif_prim->ipif_wq, 23153 IRE_BROADCAST, 23154 ipif_prim, 23155 0, 23156 0, 23157 0, 23158 ire->ire_flags, 23159 &ire_uinfo_null, 23160 NULL, 23161 NULL, 23162 ipst); 23163 23164 if (bcast_ire != NULL) { 23165 23166 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23167 B_FALSE) == 0) { 23168 ip2dbg(("ip_cgtp_filter_bcast_add: " 23169 "added bcast_ire %p\n", 23170 (void *)bcast_ire)); 23171 23172 ipif_save_ire(bcast_ire->ire_ipif, 23173 bcast_ire); 23174 ire_refrele(bcast_ire); 23175 } 23176 } 23177 ire_refrele(ire_prim); 23178 } 23179 } 23180 23181 23182 /* 23183 * IP multirouting broadcast routes handling 23184 * Remove the broadcast ire 23185 */ 23186 static void 23187 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23188 { 23189 ire_t *ire_dst; 23190 23191 ASSERT(ire != NULL); 23192 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23193 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23194 if (ire_dst != NULL) { 23195 ire_t *ire_prim; 23196 23197 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23198 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23199 if (ire_prim != NULL) { 23200 ipif_t *ipif_prim; 23201 ire_t *bcast_ire; 23202 23203 ipif_prim = ire_prim->ire_ipif; 23204 23205 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23206 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23207 (void *)ire_dst, (void *)ire_prim, 23208 (void *)ipif_prim)); 23209 23210 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23211 ire->ire_gateway_addr, 23212 IRE_BROADCAST, 23213 ipif_prim, ALL_ZONES, 23214 NULL, 23215 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23216 MATCH_IRE_MASK, ipst); 23217 23218 if (bcast_ire != NULL) { 23219 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23220 "looked up bcast_ire %p\n", 23221 (void *)bcast_ire)); 23222 ipif_remove_ire(bcast_ire->ire_ipif, 23223 bcast_ire); 23224 ire_delete(bcast_ire); 23225 ire_refrele(bcast_ire); 23226 } 23227 ire_refrele(ire_prim); 23228 } 23229 ire_refrele(ire_dst); 23230 } 23231 } 23232 23233 /* 23234 * IPsec hardware acceleration capabilities related functions. 23235 */ 23236 23237 /* 23238 * Free a per-ill IPsec capabilities structure. 23239 */ 23240 static void 23241 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23242 { 23243 if (capab->auth_hw_algs != NULL) 23244 kmem_free(capab->auth_hw_algs, capab->algs_size); 23245 if (capab->encr_hw_algs != NULL) 23246 kmem_free(capab->encr_hw_algs, capab->algs_size); 23247 if (capab->encr_algparm != NULL) 23248 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23249 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23250 } 23251 23252 /* 23253 * Allocate a new per-ill IPsec capabilities structure. This structure 23254 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23255 * an array which specifies, for each algorithm, whether this algorithm 23256 * is supported by the ill or not. 23257 */ 23258 static ill_ipsec_capab_t * 23259 ill_ipsec_capab_alloc(void) 23260 { 23261 ill_ipsec_capab_t *capab; 23262 uint_t nelems; 23263 23264 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23265 if (capab == NULL) 23266 return (NULL); 23267 23268 /* we need one bit per algorithm */ 23269 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23270 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23271 23272 /* allocate memory to store algorithm flags */ 23273 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23274 if (capab->encr_hw_algs == NULL) 23275 goto nomem; 23276 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23277 if (capab->auth_hw_algs == NULL) 23278 goto nomem; 23279 /* 23280 * Leave encr_algparm NULL for now since we won't need it half 23281 * the time 23282 */ 23283 return (capab); 23284 23285 nomem: 23286 ill_ipsec_capab_free(capab); 23287 return (NULL); 23288 } 23289 23290 /* 23291 * Resize capability array. Since we're exclusive, this is OK. 23292 */ 23293 static boolean_t 23294 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23295 { 23296 ipsec_capab_algparm_t *nalp, *oalp; 23297 uint32_t olen, nlen; 23298 23299 oalp = capab->encr_algparm; 23300 olen = capab->encr_algparm_size; 23301 23302 if (oalp != NULL) { 23303 if (algid < capab->encr_algparm_end) 23304 return (B_TRUE); 23305 } 23306 23307 nlen = (algid + 1) * sizeof (*nalp); 23308 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23309 if (nalp == NULL) 23310 return (B_FALSE); 23311 23312 if (oalp != NULL) { 23313 bcopy(oalp, nalp, olen); 23314 kmem_free(oalp, olen); 23315 } 23316 capab->encr_algparm = nalp; 23317 capab->encr_algparm_size = nlen; 23318 capab->encr_algparm_end = algid + 1; 23319 23320 return (B_TRUE); 23321 } 23322 23323 /* 23324 * Compare the capabilities of the specified ill with the protocol 23325 * and algorithms specified by the SA passed as argument. 23326 * If they match, returns B_TRUE, B_FALSE if they do not match. 23327 * 23328 * The ill can be passed as a pointer to it, or by specifying its index 23329 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23330 * 23331 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23332 * packet is eligible for hardware acceleration, and by 23333 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23334 * to a particular ill. 23335 */ 23336 boolean_t 23337 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23338 ipsa_t *sa, netstack_t *ns) 23339 { 23340 boolean_t sa_isv6; 23341 uint_t algid; 23342 struct ill_ipsec_capab_s *cpp; 23343 boolean_t need_refrele = B_FALSE; 23344 ip_stack_t *ipst = ns->netstack_ip; 23345 23346 if (ill == NULL) { 23347 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23348 NULL, NULL, NULL, ipst); 23349 if (ill == NULL) { 23350 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23351 return (B_FALSE); 23352 } 23353 need_refrele = B_TRUE; 23354 } 23355 23356 /* 23357 * Use the address length specified by the SA to determine 23358 * if it corresponds to a IPv6 address, and fail the matching 23359 * if the isv6 flag passed as argument does not match. 23360 * Note: this check is used for SADB capability checking before 23361 * sending SA information to an ill. 23362 */ 23363 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23364 if (sa_isv6 != ill_isv6) 23365 /* protocol mismatch */ 23366 goto done; 23367 23368 /* 23369 * Check if the ill supports the protocol, algorithm(s) and 23370 * key size(s) specified by the SA, and get the pointers to 23371 * the algorithms supported by the ill. 23372 */ 23373 switch (sa->ipsa_type) { 23374 23375 case SADB_SATYPE_ESP: 23376 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23377 /* ill does not support ESP acceleration */ 23378 goto done; 23379 cpp = ill->ill_ipsec_capab_esp; 23380 algid = sa->ipsa_auth_alg; 23381 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23382 goto done; 23383 algid = sa->ipsa_encr_alg; 23384 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23385 goto done; 23386 if (algid < cpp->encr_algparm_end) { 23387 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23388 if (sa->ipsa_encrkeybits < alp->minkeylen) 23389 goto done; 23390 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23391 goto done; 23392 } 23393 break; 23394 23395 case SADB_SATYPE_AH: 23396 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23397 /* ill does not support AH acceleration */ 23398 goto done; 23399 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23400 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23401 goto done; 23402 break; 23403 } 23404 23405 if (need_refrele) 23406 ill_refrele(ill); 23407 return (B_TRUE); 23408 done: 23409 if (need_refrele) 23410 ill_refrele(ill); 23411 return (B_FALSE); 23412 } 23413 23414 /* 23415 * Add a new ill to the list of IPsec capable ills. 23416 * Called from ill_capability_ipsec_ack() when an ACK was received 23417 * indicating that IPsec hardware processing was enabled for an ill. 23418 * 23419 * ill must point to the ill for which acceleration was enabled. 23420 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23421 */ 23422 static void 23423 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23424 { 23425 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23426 uint_t sa_type; 23427 uint_t ipproto; 23428 ip_stack_t *ipst = ill->ill_ipst; 23429 23430 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23431 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23432 23433 switch (dl_cap) { 23434 case DL_CAPAB_IPSEC_AH: 23435 sa_type = SADB_SATYPE_AH; 23436 ills = &ipst->ips_ipsec_capab_ills_ah; 23437 ipproto = IPPROTO_AH; 23438 break; 23439 case DL_CAPAB_IPSEC_ESP: 23440 sa_type = SADB_SATYPE_ESP; 23441 ills = &ipst->ips_ipsec_capab_ills_esp; 23442 ipproto = IPPROTO_ESP; 23443 break; 23444 } 23445 23446 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23447 23448 /* 23449 * Add ill index to list of hardware accelerators. If 23450 * already in list, do nothing. 23451 */ 23452 for (cur_ill = *ills; cur_ill != NULL && 23453 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23454 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23455 ; 23456 23457 if (cur_ill == NULL) { 23458 /* if this is a new entry for this ill */ 23459 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23460 if (new_ill == NULL) { 23461 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23462 return; 23463 } 23464 23465 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23466 new_ill->ill_isv6 = ill->ill_isv6; 23467 new_ill->next = *ills; 23468 *ills = new_ill; 23469 } else if (!sadb_resync) { 23470 /* not resync'ing SADB and an entry exists for this ill */ 23471 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23472 return; 23473 } 23474 23475 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23476 23477 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23478 /* 23479 * IPsec module for protocol loaded, initiate dump 23480 * of the SADB to this ill. 23481 */ 23482 sadb_ill_download(ill, sa_type); 23483 } 23484 23485 /* 23486 * Remove an ill from the list of IPsec capable ills. 23487 */ 23488 static void 23489 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23490 { 23491 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23492 ip_stack_t *ipst = ill->ill_ipst; 23493 23494 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23495 dl_cap == DL_CAPAB_IPSEC_ESP); 23496 23497 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23498 &ipst->ips_ipsec_capab_ills_esp; 23499 23500 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23501 23502 prev_ill = NULL; 23503 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23504 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23505 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23506 ; 23507 if (cur_ill == NULL) { 23508 /* entry not found */ 23509 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23510 return; 23511 } 23512 if (prev_ill == NULL) { 23513 /* entry at front of list */ 23514 *ills = NULL; 23515 } else { 23516 prev_ill->next = cur_ill->next; 23517 } 23518 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23519 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23520 } 23521 23522 /* 23523 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23524 * supporting the specified IPsec protocol acceleration. 23525 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23526 * We free the mblk and, if sa is non-null, release the held referece. 23527 */ 23528 void 23529 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23530 netstack_t *ns) 23531 { 23532 ipsec_capab_ill_t *ici, *cur_ici; 23533 ill_t *ill; 23534 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23535 ip_stack_t *ipst = ns->netstack_ip; 23536 23537 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23538 ipst->ips_ipsec_capab_ills_esp; 23539 23540 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23541 23542 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23543 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23544 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23545 23546 /* 23547 * Handle the case where the ill goes away while the SADB is 23548 * attempting to send messages. If it's going away, it's 23549 * nuking its shadow SADB, so we don't care.. 23550 */ 23551 23552 if (ill == NULL) 23553 continue; 23554 23555 if (sa != NULL) { 23556 /* 23557 * Make sure capabilities match before 23558 * sending SA to ill. 23559 */ 23560 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23561 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23562 ill_refrele(ill); 23563 continue; 23564 } 23565 23566 mutex_enter(&sa->ipsa_lock); 23567 sa->ipsa_flags |= IPSA_F_HW; 23568 mutex_exit(&sa->ipsa_lock); 23569 } 23570 23571 /* 23572 * Copy template message, and add it to the front 23573 * of the mblk ship list. We want to avoid holding 23574 * the ipsec_capab_ills_lock while sending the 23575 * message to the ills. 23576 * 23577 * The b_next and b_prev are temporarily used 23578 * to build a list of mblks to be sent down, and to 23579 * save the ill to which they must be sent. 23580 */ 23581 nmp = copymsg(mp); 23582 if (nmp == NULL) { 23583 ill_refrele(ill); 23584 continue; 23585 } 23586 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23587 nmp->b_next = mp_ship_list; 23588 mp_ship_list = nmp; 23589 nmp->b_prev = (mblk_t *)ill; 23590 } 23591 23592 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23593 23594 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23595 /* restore the mblk to a sane state */ 23596 next_mp = nmp->b_next; 23597 nmp->b_next = NULL; 23598 ill = (ill_t *)nmp->b_prev; 23599 nmp->b_prev = NULL; 23600 23601 ill_dlpi_send(ill, nmp); 23602 ill_refrele(ill); 23603 } 23604 23605 if (sa != NULL) 23606 IPSA_REFRELE(sa); 23607 freemsg(mp); 23608 } 23609 23610 /* 23611 * Derive an interface id from the link layer address. 23612 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23613 */ 23614 static boolean_t 23615 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23616 { 23617 char *addr; 23618 23619 if (phys_length != ETHERADDRL) 23620 return (B_FALSE); 23621 23622 /* Form EUI-64 like address */ 23623 addr = (char *)&v6addr->s6_addr32[2]; 23624 bcopy((char *)phys_addr, addr, 3); 23625 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23626 addr[3] = (char)0xff; 23627 addr[4] = (char)0xfe; 23628 bcopy((char *)phys_addr + 3, addr + 5, 3); 23629 return (B_TRUE); 23630 } 23631 23632 /* ARGSUSED */ 23633 static boolean_t 23634 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23635 { 23636 return (B_FALSE); 23637 } 23638 23639 /* ARGSUSED */ 23640 static boolean_t 23641 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23642 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23643 { 23644 /* 23645 * Multicast address mappings used over Ethernet/802.X. 23646 * This address is used as a base for mappings. 23647 */ 23648 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23649 0x00, 0x00, 0x00}; 23650 23651 /* 23652 * Extract low order 32 bits from IPv6 multicast address. 23653 * Or that into the link layer address, starting from the 23654 * second byte. 23655 */ 23656 *hw_start = 2; 23657 v6_extract_mask->s6_addr32[0] = 0; 23658 v6_extract_mask->s6_addr32[1] = 0; 23659 v6_extract_mask->s6_addr32[2] = 0; 23660 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23661 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23662 return (B_TRUE); 23663 } 23664 23665 /* 23666 * Indicate by return value whether multicast is supported. If not, 23667 * this code should not touch/change any parameters. 23668 */ 23669 /* ARGSUSED */ 23670 static boolean_t 23671 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23672 uint32_t *hw_start, ipaddr_t *extract_mask) 23673 { 23674 /* 23675 * Multicast address mappings used over Ethernet/802.X. 23676 * This address is used as a base for mappings. 23677 */ 23678 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23679 0x00, 0x00, 0x00 }; 23680 23681 if (phys_length != ETHERADDRL) 23682 return (B_FALSE); 23683 23684 *extract_mask = htonl(0x007fffff); 23685 *hw_start = 2; 23686 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23687 return (B_TRUE); 23688 } 23689 23690 /* 23691 * Derive IPoIB interface id from the link layer address. 23692 */ 23693 static boolean_t 23694 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23695 { 23696 char *addr; 23697 23698 if (phys_length != 20) 23699 return (B_FALSE); 23700 addr = (char *)&v6addr->s6_addr32[2]; 23701 bcopy(phys_addr + 12, addr, 8); 23702 /* 23703 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23704 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23705 * rules. In these cases, the IBA considers these GUIDs to be in 23706 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23707 * required; vendors are required not to assign global EUI-64's 23708 * that differ only in u/l bit values, thus guaranteeing uniqueness 23709 * of the interface identifier. Whether the GUID is in modified 23710 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23711 * bit set to 1. 23712 */ 23713 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23714 return (B_TRUE); 23715 } 23716 23717 /* 23718 * Note on mapping from multicast IP addresses to IPoIB multicast link 23719 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23720 * The format of an IPoIB multicast address is: 23721 * 23722 * 4 byte QPN Scope Sign. Pkey 23723 * +--------------------------------------------+ 23724 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23725 * +--------------------------------------------+ 23726 * 23727 * The Scope and Pkey components are properties of the IBA port and 23728 * network interface. They can be ascertained from the broadcast address. 23729 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23730 */ 23731 23732 static boolean_t 23733 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23734 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23735 { 23736 /* 23737 * Base IPoIB IPv6 multicast address used for mappings. 23738 * Does not contain the IBA scope/Pkey values. 23739 */ 23740 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23741 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23742 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23743 23744 /* 23745 * Extract low order 80 bits from IPv6 multicast address. 23746 * Or that into the link layer address, starting from the 23747 * sixth byte. 23748 */ 23749 *hw_start = 6; 23750 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23751 23752 /* 23753 * Now fill in the IBA scope/Pkey values from the broadcast address. 23754 */ 23755 *(maddr + 5) = *(bphys_addr + 5); 23756 *(maddr + 8) = *(bphys_addr + 8); 23757 *(maddr + 9) = *(bphys_addr + 9); 23758 23759 v6_extract_mask->s6_addr32[0] = 0; 23760 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23761 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23762 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23763 return (B_TRUE); 23764 } 23765 23766 static boolean_t 23767 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23768 uint32_t *hw_start, ipaddr_t *extract_mask) 23769 { 23770 /* 23771 * Base IPoIB IPv4 multicast address used for mappings. 23772 * Does not contain the IBA scope/Pkey values. 23773 */ 23774 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23775 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23776 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23777 23778 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23779 return (B_FALSE); 23780 23781 /* 23782 * Extract low order 28 bits from IPv4 multicast address. 23783 * Or that into the link layer address, starting from the 23784 * sixteenth byte. 23785 */ 23786 *extract_mask = htonl(0x0fffffff); 23787 *hw_start = 16; 23788 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23789 23790 /* 23791 * Now fill in the IBA scope/Pkey values from the broadcast address. 23792 */ 23793 *(maddr + 5) = *(bphys_addr + 5); 23794 *(maddr + 8) = *(bphys_addr + 8); 23795 *(maddr + 9) = *(bphys_addr + 9); 23796 return (B_TRUE); 23797 } 23798 23799 /* 23800 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23801 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23802 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23803 * the link-local address is preferred. 23804 */ 23805 boolean_t 23806 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23807 { 23808 ipif_t *ipif; 23809 ipif_t *maybe_ipif = NULL; 23810 23811 mutex_enter(&ill->ill_lock); 23812 if (ill->ill_state_flags & ILL_CONDEMNED) { 23813 mutex_exit(&ill->ill_lock); 23814 if (ipifp != NULL) 23815 *ipifp = NULL; 23816 return (B_FALSE); 23817 } 23818 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23819 if (!IPIF_CAN_LOOKUP(ipif)) 23820 continue; 23821 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23822 ipif->ipif_zoneid != ALL_ZONES) 23823 continue; 23824 if ((ipif->ipif_flags & flags) != flags) 23825 continue; 23826 23827 if (ipifp == NULL) { 23828 mutex_exit(&ill->ill_lock); 23829 ASSERT(maybe_ipif == NULL); 23830 return (B_TRUE); 23831 } 23832 if (!ill->ill_isv6 || 23833 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23834 ipif_refhold_locked(ipif); 23835 mutex_exit(&ill->ill_lock); 23836 *ipifp = ipif; 23837 return (B_TRUE); 23838 } 23839 if (maybe_ipif == NULL) 23840 maybe_ipif = ipif; 23841 } 23842 if (ipifp != NULL) { 23843 if (maybe_ipif != NULL) 23844 ipif_refhold_locked(maybe_ipif); 23845 *ipifp = maybe_ipif; 23846 } 23847 mutex_exit(&ill->ill_lock); 23848 return (maybe_ipif != NULL); 23849 } 23850 23851 /* 23852 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23853 */ 23854 boolean_t 23855 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23856 { 23857 ill_t *illg; 23858 ip_stack_t *ipst = ill->ill_ipst; 23859 23860 /* 23861 * We look at the passed-in ill first without grabbing ill_g_lock. 23862 */ 23863 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23864 return (B_TRUE); 23865 } 23866 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23867 if (ill->ill_group == NULL) { 23868 /* ill not in a group */ 23869 rw_exit(&ipst->ips_ill_g_lock); 23870 return (B_FALSE); 23871 } 23872 23873 /* 23874 * There's no ipif in the zone on ill, however ill is part of an IPMP 23875 * group. We need to look for an ipif in the zone on all the ills in the 23876 * group. 23877 */ 23878 illg = ill->ill_group->illgrp_ill; 23879 do { 23880 /* 23881 * We don't call ipif_lookup_zoneid() on ill as we already know 23882 * that it's not there. 23883 */ 23884 if (illg != ill && 23885 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23886 break; 23887 } 23888 } while ((illg = illg->ill_group_next) != NULL); 23889 rw_exit(&ipst->ips_ill_g_lock); 23890 return (illg != NULL); 23891 } 23892 23893 /* 23894 * Check if this ill is only being used to send ICMP probes for IPMP 23895 */ 23896 boolean_t 23897 ill_is_probeonly(ill_t *ill) 23898 { 23899 /* 23900 * Check if the interface is FAILED, or INACTIVE 23901 */ 23902 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23903 return (B_TRUE); 23904 23905 return (B_FALSE); 23906 } 23907 23908 /* 23909 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 23910 * If a pointer to an ipif_t is returned then the caller will need to do 23911 * an ill_refrele(). 23912 * 23913 * If there is no real interface which matches the ifindex, then it looks 23914 * for a group that has a matching index. In the case of a group match the 23915 * lifidx must be zero. We don't need emulate the logical interfaces 23916 * since IP Filter's use of netinfo doesn't use that. 23917 */ 23918 ipif_t * 23919 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 23920 ip_stack_t *ipst) 23921 { 23922 ipif_t *ipif; 23923 ill_t *ill; 23924 23925 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 23926 ipst); 23927 23928 if (ill == NULL) { 23929 /* Fallback to group names only if hook_emulation set */ 23930 if (!ipst->ips_ipmp_hook_emulation) 23931 return (NULL); 23932 23933 if (lifidx != 0) 23934 return (NULL); 23935 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 23936 if (ill == NULL) 23937 return (NULL); 23938 } 23939 23940 mutex_enter(&ill->ill_lock); 23941 if (ill->ill_state_flags & ILL_CONDEMNED) { 23942 mutex_exit(&ill->ill_lock); 23943 ill_refrele(ill); 23944 return (NULL); 23945 } 23946 23947 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23948 if (!IPIF_CAN_LOOKUP(ipif)) 23949 continue; 23950 if (lifidx == ipif->ipif_id) { 23951 ipif_refhold_locked(ipif); 23952 break; 23953 } 23954 } 23955 23956 mutex_exit(&ill->ill_lock); 23957 ill_refrele(ill); 23958 return (ipif); 23959 } 23960 23961 /* 23962 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 23963 * There is one exceptions IRE_BROADCAST are difficult to recreate, 23964 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 23965 * for details. 23966 */ 23967 void 23968 ill_fastpath_flush(ill_t *ill) 23969 { 23970 ip_stack_t *ipst = ill->ill_ipst; 23971 23972 nce_fastpath_list_dispatch(ill, NULL, NULL); 23973 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 23974 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 23975 } 23976 23977 /* 23978 * Set the physical address information for `ill' to the contents of the 23979 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 23980 * asynchronous if `ill' cannot immediately be quiesced -- in which case 23981 * EINPROGRESS will be returned. 23982 */ 23983 int 23984 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 23985 { 23986 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 23987 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 23988 23989 ASSERT(IAM_WRITER_IPSQ(ipsq)); 23990 23991 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 23992 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 23993 /* Changing DL_IPV6_TOKEN is not yet supported */ 23994 return (0); 23995 } 23996 23997 /* 23998 * We need to store up to two copies of `mp' in `ill'. Due to the 23999 * design of ipsq_pending_mp_add(), we can't pass them as separate 24000 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24001 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24002 */ 24003 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24004 freemsg(mp); 24005 return (ENOMEM); 24006 } 24007 24008 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24009 24010 /* 24011 * If we can quiesce the ill, then set the address. If not, then 24012 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24013 */ 24014 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24015 mutex_enter(&ill->ill_lock); 24016 if (!ill_is_quiescent(ill)) { 24017 /* call cannot fail since `conn_t *' argument is NULL */ 24018 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24019 mp, ILL_DOWN); 24020 mutex_exit(&ill->ill_lock); 24021 return (EINPROGRESS); 24022 } 24023 mutex_exit(&ill->ill_lock); 24024 24025 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24026 return (0); 24027 } 24028 24029 /* 24030 * Once the ill associated with `q' has quiesced, set its physical address 24031 * information to the values in `addrmp'. Note that two copies of `addrmp' 24032 * are passed (linked by b_cont), since we sometimes need to save two distinct 24033 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24034 * failure (we'll free the other copy if it's not needed). Since the ill_t 24035 * is quiesced, we know any stale IREs with the old address information have 24036 * already been removed, so we don't need to call ill_fastpath_flush(). 24037 */ 24038 /* ARGSUSED */ 24039 static void 24040 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24041 { 24042 ill_t *ill = q->q_ptr; 24043 mblk_t *addrmp2 = unlinkb(addrmp); 24044 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24045 uint_t addrlen, addroff; 24046 24047 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24048 24049 addroff = dlindp->dl_addr_offset; 24050 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24051 24052 switch (dlindp->dl_data) { 24053 case DL_IPV6_LINK_LAYER_ADDR: 24054 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24055 freemsg(addrmp2); 24056 break; 24057 24058 case DL_CURR_PHYS_ADDR: 24059 freemsg(ill->ill_phys_addr_mp); 24060 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24061 ill->ill_phys_addr_mp = addrmp; 24062 ill->ill_phys_addr_length = addrlen; 24063 24064 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24065 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24066 else 24067 freemsg(addrmp2); 24068 break; 24069 default: 24070 ASSERT(0); 24071 } 24072 24073 /* 24074 * If there are ipifs to bring up, ill_up_ipifs() will return 24075 * EINPROGRESS, and ipsq_current_finish() will be called by 24076 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24077 * brought up. 24078 */ 24079 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24080 ipsq_current_finish(ipsq); 24081 } 24082 24083 /* 24084 * Helper routine for setting the ill_nd_lla fields. 24085 */ 24086 void 24087 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24088 { 24089 freemsg(ill->ill_nd_lla_mp); 24090 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24091 ill->ill_nd_lla_mp = ndmp; 24092 ill->ill_nd_lla_len = addrlen; 24093 } 24094 24095 major_t IP_MAJ; 24096 #define IP "ip" 24097 24098 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24099 #define UDPDEV "/devices/pseudo/udp@0:udp" 24100 24101 /* 24102 * Issue REMOVEIF ioctls to have the loopback interfaces 24103 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24104 * the former going away when the user-level processes in the zone 24105 * are killed * and the latter are cleaned up by the stream head 24106 * str_stack_shutdown callback that undoes all I_PLINKs. 24107 */ 24108 void 24109 ip_loopback_cleanup(ip_stack_t *ipst) 24110 { 24111 int error; 24112 ldi_handle_t lh = NULL; 24113 ldi_ident_t li = NULL; 24114 int rval; 24115 cred_t *cr; 24116 struct strioctl iocb; 24117 struct lifreq lifreq; 24118 24119 IP_MAJ = ddi_name_to_major(IP); 24120 24121 #ifdef NS_DEBUG 24122 (void) printf("ip_loopback_cleanup() stackid %d\n", 24123 ipst->ips_netstack->netstack_stackid); 24124 #endif 24125 24126 bzero(&lifreq, sizeof (lifreq)); 24127 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24128 24129 error = ldi_ident_from_major(IP_MAJ, &li); 24130 if (error) { 24131 #ifdef DEBUG 24132 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24133 error); 24134 #endif 24135 return; 24136 } 24137 24138 cr = zone_get_kcred(netstackid_to_zoneid( 24139 ipst->ips_netstack->netstack_stackid)); 24140 ASSERT(cr != NULL); 24141 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24142 if (error) { 24143 #ifdef DEBUG 24144 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24145 error); 24146 #endif 24147 goto out; 24148 } 24149 iocb.ic_cmd = SIOCLIFREMOVEIF; 24150 iocb.ic_timout = 15; 24151 iocb.ic_len = sizeof (lifreq); 24152 iocb.ic_dp = (char *)&lifreq; 24153 24154 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24155 /* LINTED - statement has no consequent */ 24156 if (error) { 24157 #ifdef NS_DEBUG 24158 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24159 "UDP6 error %d\n", error); 24160 #endif 24161 } 24162 (void) ldi_close(lh, FREAD|FWRITE, cr); 24163 lh = NULL; 24164 24165 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24166 if (error) { 24167 #ifdef NS_DEBUG 24168 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24169 error); 24170 #endif 24171 goto out; 24172 } 24173 24174 iocb.ic_cmd = SIOCLIFREMOVEIF; 24175 iocb.ic_timout = 15; 24176 iocb.ic_len = sizeof (lifreq); 24177 iocb.ic_dp = (char *)&lifreq; 24178 24179 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24180 /* LINTED - statement has no consequent */ 24181 if (error) { 24182 #ifdef NS_DEBUG 24183 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24184 "UDP error %d\n", error); 24185 #endif 24186 } 24187 (void) ldi_close(lh, FREAD|FWRITE, cr); 24188 lh = NULL; 24189 24190 out: 24191 /* Close layered handles */ 24192 if (lh) 24193 (void) ldi_close(lh, FREAD|FWRITE, cr); 24194 if (li) 24195 ldi_ident_release(li); 24196 24197 crfree(cr); 24198 } 24199 24200 /* 24201 * This needs to be in-sync with nic_event_t definition 24202 */ 24203 static const char * 24204 ill_hook_event2str(nic_event_t event) 24205 { 24206 switch (event) { 24207 case NE_PLUMB: 24208 return ("PLUMB"); 24209 case NE_UNPLUMB: 24210 return ("UNPLUMB"); 24211 case NE_UP: 24212 return ("UP"); 24213 case NE_DOWN: 24214 return ("DOWN"); 24215 case NE_ADDRESS_CHANGE: 24216 return ("ADDRESS_CHANGE"); 24217 case NE_LIF_UP: 24218 return ("LIF_UP"); 24219 case NE_LIF_DOWN: 24220 return ("LIF_DOWN"); 24221 default: 24222 return ("UNKNOWN"); 24223 } 24224 } 24225 24226 void 24227 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 24228 nic_event_data_t data, size_t datalen) 24229 { 24230 ip_stack_t *ipst = ill->ill_ipst; 24231 hook_nic_event_int_t *info; 24232 const char *str = NULL; 24233 24234 /* create a new nic event info */ 24235 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 24236 goto fail; 24237 24238 if (event == NE_UNPLUMB) 24239 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 24240 else 24241 info->hnei_event.hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24242 info->hnei_event.hne_lif = lif; 24243 info->hnei_event.hne_event = event; 24244 info->hnei_event.hne_protocol = ill->ill_isv6 ? 24245 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24246 info->hnei_event.hne_data = NULL; 24247 info->hnei_event.hne_datalen = 0; 24248 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 24249 24250 if (data != NULL && datalen != 0) { 24251 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24252 if (info->hnei_event.hne_data == NULL) 24253 goto fail; 24254 bcopy(data, info->hnei_event.hne_data, datalen); 24255 info->hnei_event.hne_datalen = datalen; 24256 } 24257 24258 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 24259 DDI_NOSLEEP) == DDI_SUCCESS) 24260 return; 24261 24262 fail: 24263 if (info != NULL) { 24264 if (info->hnei_event.hne_data != NULL) { 24265 kmem_free(info->hnei_event.hne_data, 24266 info->hnei_event.hne_datalen); 24267 } 24268 kmem_free(info, sizeof (hook_nic_event_t)); 24269 } 24270 str = ill_hook_event2str(event); 24271 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 24272 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24273 } 24274 24275 void 24276 ipif_up_notify(ipif_t *ipif) 24277 { 24278 ip_rts_ifmsg(ipif); 24279 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 24280 sctp_update_ipif(ipif, SCTP_IPIF_UP); 24281 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 24282 NE_LIF_UP, NULL, 0); 24283 } 24284