1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 143 mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 149 int ioccmd, struct linkblk *li, boolean_t doconsist); 150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 152 static void ipsq_flush(ill_t *ill); 153 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 163 boolean_t isv6); 164 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 165 static void ipif_delete_cache_ire(ire_t *, char *); 166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 167 static void ipif_free(ipif_t *ipif); 168 static void ipif_free_tail(ipif_t *ipif); 169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 170 static void ipif_multicast_down(ipif_t *ipif); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 #ifdef DEBUG 260 static void ill_trace_cleanup(const ill_t *); 261 static void ipif_trace_cleanup(const ipif_t *); 262 #endif 263 264 /* 265 * if we go over the memory footprint limit more than once in this msec 266 * interval, we'll start pruning aggressively. 267 */ 268 int ip_min_frag_prune_time = 0; 269 270 /* 271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 272 * and the IPsec DOI 273 */ 274 #define MAX_IPSEC_ALGS 256 275 276 #define BITSPERBYTE 8 277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 278 279 #define IPSEC_ALG_ENABLE(algs, algid) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 285 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 286 287 typedef uint8_t ipsec_capab_elem_t; 288 289 /* 290 * Per-algorithm parameters. Note that at present, only encryption 291 * algorithms have variable keysize (IKE does not provide a way to negotiate 292 * auth algorithm keysize). 293 * 294 * All sizes here are in bits. 295 */ 296 typedef struct 297 { 298 uint16_t minkeylen; 299 uint16_t maxkeylen; 300 } ipsec_capab_algparm_t; 301 302 /* 303 * Per-ill capabilities. 304 */ 305 struct ill_ipsec_capab_s { 306 ipsec_capab_elem_t *encr_hw_algs; 307 ipsec_capab_elem_t *auth_hw_algs; 308 uint32_t algs_size; /* size of _hw_algs in bytes */ 309 /* algorithm key lengths */ 310 ipsec_capab_algparm_t *encr_algparm; 311 uint32_t encr_algparm_size; 312 uint32_t encr_algparm_end; 313 }; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 947 #ifdef DEBUG 948 ill_trace_cleanup(ill); 949 #endif 950 951 /* Drop refcnt here */ 952 netstack_rele(ill->ill_ipst->ips_netstack); 953 ill->ill_ipst = NULL; 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 ip_stack_t *ipst = ill->ill_ipst; 960 961 /* 962 * MIB statistics must not be lost, so when an interface 963 * goes away the counter values will be added to the global 964 * MIBs. 965 */ 966 if (ill->ill_ip_mib != NULL) { 967 if (ill->ill_isv6) { 968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 969 ill->ill_ip_mib); 970 } else { 971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 972 ill->ill_ip_mib); 973 } 974 975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 976 ill->ill_ip_mib = NULL; 977 } 978 if (ill->ill_icmp6_mib != NULL) { 979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 980 ill->ill_icmp6_mib); 981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 982 ill->ill_icmp6_mib = NULL; 983 } 984 } 985 986 /* 987 * Concatenate together a physical address and a sap. 988 * 989 * Sap_lengths are interpreted as follows: 990 * sap_length == 0 ==> no sap 991 * sap_length > 0 ==> sap is at the head of the dlpi address 992 * sap_length < 0 ==> sap is at the tail of the dlpi address 993 */ 994 static void 995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 997 { 998 uint16_t sap_addr = (uint16_t)sap_src; 999 1000 if (sap_length == 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 } else if (sap_length < 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1011 } else { 1012 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1013 if (phys_src == NULL) 1014 bzero((char *)dst + sap_length, phys_length); 1015 else 1016 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1017 } 1018 } 1019 1020 /* 1021 * Generate a dl_unitdata_req mblk for the device and address given. 1022 * addr_length is the length of the physical portion of the address. 1023 * If addr is NULL include an all zero address of the specified length. 1024 * TRUE? In any case, addr_length is taken to be the entire length of the 1025 * dlpi address, including the absolute value of sap_length. 1026 */ 1027 mblk_t * 1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1029 t_scalar_t sap_length) 1030 { 1031 dl_unitdata_req_t *dlur; 1032 mblk_t *mp; 1033 t_scalar_t abs_sap_length; /* absolute value */ 1034 1035 abs_sap_length = ABS(sap_length); 1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1037 DL_UNITDATA_REQ); 1038 if (mp == NULL) 1039 return (NULL); 1040 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1041 /* HACK: accomodate incompatible DLPI drivers */ 1042 if (addr_length == 8) 1043 addr_length = 6; 1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1045 dlur->dl_dest_addr_offset = sizeof (*dlur); 1046 dlur->dl_priority.dl_min = 0; 1047 dlur->dl_priority.dl_max = 0; 1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1049 (uchar_t *)&dlur[1]); 1050 return (mp); 1051 } 1052 1053 /* 1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1055 * Return an error if we already have 1 or more ioctls in progress. 1056 * This is used only for non-exclusive ioctls. Currently this is used 1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1058 * and thus need to use ipsq_pending_mp_add. 1059 */ 1060 boolean_t 1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1062 { 1063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1065 /* 1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1067 */ 1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1069 (add_mp->b_datap->db_type == M_IOCTL)); 1070 1071 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1072 /* 1073 * Return error if the conn has started closing. The conn 1074 * could have finished cleaning up the pending mp list, 1075 * If so we should not add another mp to the list negating 1076 * the cleanup. 1077 */ 1078 if (connp->conn_state_flags & CONN_CLOSING) 1079 return (B_FALSE); 1080 /* 1081 * Add the pending mp to the head of the list, chained by b_next. 1082 * Note down the conn on which the ioctl request came, in b_prev. 1083 * This will be used to later get the conn, when we get a response 1084 * on the ill queue, from some other module (typically arp) 1085 */ 1086 add_mp->b_next = (void *)ill->ill_pending_mp; 1087 add_mp->b_queue = CONNP_TO_WQ(connp); 1088 ill->ill_pending_mp = add_mp; 1089 if (connp != NULL) 1090 connp->conn_oper_pending_ill = ill; 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Retrieve the ill_pending_mp and return it. We have to walk the list 1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1097 */ 1098 mblk_t * 1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1100 { 1101 mblk_t *prev = NULL; 1102 mblk_t *curr = NULL; 1103 uint_t id; 1104 conn_t *connp; 1105 1106 /* 1107 * When the conn closes, conn_ioctl_cleanup needs to clean 1108 * up the pending mp, but it does not know the ioc_id and 1109 * passes in a zero for it. 1110 */ 1111 mutex_enter(&ill->ill_lock); 1112 if (ioc_id != 0) 1113 *connpp = NULL; 1114 1115 /* Search the list for the appropriate ioctl based on ioc_id */ 1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1117 prev = curr, curr = curr->b_next) { 1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1119 connp = Q_TO_CONN(curr->b_queue); 1120 /* Match based on the ioc_id or based on the conn */ 1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1122 break; 1123 } 1124 1125 if (curr != NULL) { 1126 /* Unlink the mblk from the pending mp list */ 1127 if (prev != NULL) { 1128 prev->b_next = curr->b_next; 1129 } else { 1130 ASSERT(ill->ill_pending_mp == curr); 1131 ill->ill_pending_mp = curr->b_next; 1132 } 1133 1134 /* 1135 * conn refcnt must have been bumped up at the start of 1136 * the ioctl. So we can safely access the conn. 1137 */ 1138 ASSERT(CONN_Q(curr->b_queue)); 1139 *connpp = Q_TO_CONN(curr->b_queue); 1140 curr->b_next = NULL; 1141 curr->b_queue = NULL; 1142 } 1143 1144 mutex_exit(&ill->ill_lock); 1145 1146 return (curr); 1147 } 1148 1149 /* 1150 * Add the pending mp to the list. There can be only 1 pending mp 1151 * in the list. Any exclusive ioctl that needs to wait for a response 1152 * from another module or driver needs to use this function to set 1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1154 * the other module/driver. This is also used while waiting for the 1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1156 */ 1157 boolean_t 1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1159 int waitfor) 1160 { 1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1162 1163 ASSERT(IAM_WRITER_IPIF(ipif)); 1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1166 ASSERT(ipsq->ipsq_pending_mp == NULL); 1167 /* 1168 * The caller may be using a different ipif than the one passed into 1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1171 * that `ipsq_current_ipif == ipif'. 1172 */ 1173 ASSERT(ipsq->ipsq_current_ipif != NULL); 1174 1175 /* 1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1178 */ 1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1182 1183 if (connp != NULL) { 1184 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1185 /* 1186 * Return error if the conn has started closing. The conn 1187 * could have finished cleaning up the pending mp list, 1188 * If so we should not add another mp to the list negating 1189 * the cleanup. 1190 */ 1191 if (connp->conn_state_flags & CONN_CLOSING) 1192 return (B_FALSE); 1193 } 1194 mutex_enter(&ipsq->ipsq_lock); 1195 ipsq->ipsq_pending_ipif = ipif; 1196 /* 1197 * Note down the queue in b_queue. This will be returned by 1198 * ipsq_pending_mp_get. Caller will then use these values to restart 1199 * the processing 1200 */ 1201 add_mp->b_next = NULL; 1202 add_mp->b_queue = q; 1203 ipsq->ipsq_pending_mp = add_mp; 1204 ipsq->ipsq_waitfor = waitfor; 1205 1206 if (connp != NULL) 1207 connp->conn_oper_pending_ill = ipif->ipif_ill; 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (B_TRUE); 1210 } 1211 1212 /* 1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1214 * queued in the list. 1215 */ 1216 mblk_t * 1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1218 { 1219 mblk_t *curr = NULL; 1220 1221 mutex_enter(&ipsq->ipsq_lock); 1222 *connpp = NULL; 1223 if (ipsq->ipsq_pending_mp == NULL) { 1224 mutex_exit(&ipsq->ipsq_lock); 1225 return (NULL); 1226 } 1227 1228 /* There can be only 1 such excl message */ 1229 curr = ipsq->ipsq_pending_mp; 1230 ASSERT(curr != NULL && curr->b_next == NULL); 1231 ipsq->ipsq_pending_ipif = NULL; 1232 ipsq->ipsq_pending_mp = NULL; 1233 ipsq->ipsq_waitfor = 0; 1234 mutex_exit(&ipsq->ipsq_lock); 1235 1236 if (CONN_Q(curr->b_queue)) { 1237 /* 1238 * This mp did a refhold on the conn, at the start of the ioctl. 1239 * So we can safely return a pointer to the conn to the caller. 1240 */ 1241 *connpp = Q_TO_CONN(curr->b_queue); 1242 } else { 1243 *connpp = NULL; 1244 } 1245 curr->b_next = NULL; 1246 curr->b_prev = NULL; 1247 return (curr); 1248 } 1249 1250 /* 1251 * Cleanup the ioctl mp queued in ipsq_pending_mp 1252 * - Called in the ill_delete path 1253 * - Called in the M_ERROR or M_HANGUP path on the ill. 1254 * - Called in the conn close path. 1255 */ 1256 boolean_t 1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1258 { 1259 mblk_t *mp; 1260 ipsq_t *ipsq; 1261 queue_t *q; 1262 ipif_t *ipif; 1263 1264 ASSERT(IAM_WRITER_ILL(ill)); 1265 ipsq = ill->ill_phyint->phyint_ipsq; 1266 mutex_enter(&ipsq->ipsq_lock); 1267 /* 1268 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1270 * even if it is meant for another ill, since we have to enqueue 1271 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1272 * If connp is non-null we are called from the conn close path. 1273 */ 1274 mp = ipsq->ipsq_pending_mp; 1275 if (mp == NULL || (connp != NULL && 1276 mp->b_queue != CONNP_TO_WQ(connp))) { 1277 mutex_exit(&ipsq->ipsq_lock); 1278 return (B_FALSE); 1279 } 1280 /* Now remove from the ipsq_pending_mp */ 1281 ipsq->ipsq_pending_mp = NULL; 1282 q = mp->b_queue; 1283 mp->b_next = NULL; 1284 mp->b_prev = NULL; 1285 mp->b_queue = NULL; 1286 1287 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1288 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1289 if (ill->ill_move_in_progress) { 1290 ILL_CLEAR_MOVE(ill); 1291 } else if (ill->ill_up_ipifs) { 1292 ill_group_cleanup(ill); 1293 } 1294 1295 ipif = ipsq->ipsq_pending_ipif; 1296 ipsq->ipsq_pending_ipif = NULL; 1297 ipsq->ipsq_waitfor = 0; 1298 ipsq->ipsq_current_ipif = NULL; 1299 ipsq->ipsq_current_ioctl = 0; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_dhcpinit_ill == ill) { 1530 connp->conn_dhcpinit_ill = NULL; 1531 ASSERT(ill->ill_dhcpinit != 0); 1532 atomic_dec_32(&ill->ill_dhcpinit); 1533 } 1534 if (connp->conn_ire_cache != NULL) { 1535 ire = connp->conn_ire_cache; 1536 /* 1537 * ip_newroute creates IRE_CACHE with ire_stq coming from 1538 * interface X and ipif coming from interface Y, if interface 1539 * X and Y are part of the same IPMPgroup. Thus whenever 1540 * interface X goes down, remove all references to it by 1541 * checking both on ire_ipif and ire_stq. 1542 */ 1543 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1544 (ire->ire_type == IRE_CACHE && 1545 ire->ire_stq == ill->ill_wq)) { 1546 connp->conn_ire_cache = NULL; 1547 mutex_exit(&connp->conn_lock); 1548 ire_refrele_notr(ire); 1549 return; 1550 } 1551 } 1552 mutex_exit(&connp->conn_lock); 1553 1554 } 1555 1556 /* ARGSUSED */ 1557 void 1558 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1559 { 1560 ill_t *ill = q->q_ptr; 1561 ipif_t *ipif; 1562 1563 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1564 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1565 ipif_non_duplicate(ipif); 1566 ipif_down_tail(ipif); 1567 } 1568 freemsg(mp); 1569 ipsq_current_finish(ipsq); 1570 } 1571 1572 /* 1573 * ill_down_start is called when we want to down this ill and bring it up again 1574 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1575 * all interfaces, but don't tear down any plumbing. 1576 */ 1577 boolean_t 1578 ill_down_start(queue_t *q, mblk_t *mp) 1579 { 1580 ill_t *ill = q->q_ptr; 1581 ipif_t *ipif; 1582 1583 ASSERT(IAM_WRITER_ILL(ill)); 1584 1585 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1586 (void) ipif_down(ipif, NULL, NULL); 1587 1588 ill_down(ill); 1589 1590 (void) ipsq_pending_mp_cleanup(ill, NULL); 1591 1592 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1593 1594 /* 1595 * Atomically test and add the pending mp if references are active. 1596 */ 1597 mutex_enter(&ill->ill_lock); 1598 if (!ill_is_quiescent(ill)) { 1599 /* call cannot fail since `conn_t *' argument is NULL */ 1600 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1601 mp, ILL_DOWN); 1602 mutex_exit(&ill->ill_lock); 1603 return (B_FALSE); 1604 } 1605 mutex_exit(&ill->ill_lock); 1606 return (B_TRUE); 1607 } 1608 1609 static void 1610 ill_down(ill_t *ill) 1611 { 1612 ip_stack_t *ipst = ill->ill_ipst; 1613 1614 /* Blow off any IREs dependent on this ILL. */ 1615 ire_walk(ill_downi, (char *)ill, ipst); 1616 1617 /* Remove any conn_*_ill depending on this ill */ 1618 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1619 1620 if (ill->ill_group != NULL) { 1621 illgrp_delete(ill); 1622 } 1623 } 1624 1625 /* 1626 * ire_walk routine used to delete every IRE that depends on queues 1627 * associated with 'ill'. (Always called as writer.) 1628 */ 1629 static void 1630 ill_downi(ire_t *ire, char *ill_arg) 1631 { 1632 ill_t *ill = (ill_t *)ill_arg; 1633 1634 /* 1635 * ip_newroute creates IRE_CACHE with ire_stq coming from 1636 * interface X and ipif coming from interface Y, if interface 1637 * X and Y are part of the same IPMP group. Thus whenever interface 1638 * X goes down, remove all references to it by checking both 1639 * on ire_ipif and ire_stq. 1640 */ 1641 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1642 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1643 ire_delete(ire); 1644 } 1645 } 1646 1647 /* 1648 * Remove ire/nce from the fastpath list. 1649 */ 1650 void 1651 ill_fastpath_nack(ill_t *ill) 1652 { 1653 nce_fastpath_list_dispatch(ill, NULL, NULL); 1654 } 1655 1656 /* Consume an M_IOCACK of the fastpath probe. */ 1657 void 1658 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1659 { 1660 mblk_t *mp1 = mp; 1661 1662 /* 1663 * If this was the first attempt turn on the fastpath probing. 1664 */ 1665 mutex_enter(&ill->ill_lock); 1666 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1667 ill->ill_dlpi_fastpath_state = IDS_OK; 1668 mutex_exit(&ill->ill_lock); 1669 1670 /* Free the M_IOCACK mblk, hold on to the data */ 1671 mp = mp->b_cont; 1672 freeb(mp1); 1673 if (mp == NULL) 1674 return; 1675 if (mp->b_cont != NULL) { 1676 /* 1677 * Update all IRE's or NCE's that are waiting for 1678 * fastpath update. 1679 */ 1680 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1681 mp1 = mp->b_cont; 1682 freeb(mp); 1683 mp = mp1; 1684 } else { 1685 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1686 } 1687 1688 freeb(mp); 1689 } 1690 1691 /* 1692 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1693 * The data portion of the request is a dl_unitdata_req_t template for 1694 * what we would send downstream in the absence of a fastpath confirmation. 1695 */ 1696 int 1697 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1698 { 1699 struct iocblk *ioc; 1700 mblk_t *mp; 1701 1702 if (dlur_mp == NULL) 1703 return (EINVAL); 1704 1705 mutex_enter(&ill->ill_lock); 1706 switch (ill->ill_dlpi_fastpath_state) { 1707 case IDS_FAILED: 1708 /* 1709 * Driver NAKed the first fastpath ioctl - assume it doesn't 1710 * support it. 1711 */ 1712 mutex_exit(&ill->ill_lock); 1713 return (ENOTSUP); 1714 case IDS_UNKNOWN: 1715 /* This is the first probe */ 1716 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1717 break; 1718 default: 1719 break; 1720 } 1721 mutex_exit(&ill->ill_lock); 1722 1723 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1724 return (EAGAIN); 1725 1726 mp->b_cont = copyb(dlur_mp); 1727 if (mp->b_cont == NULL) { 1728 freeb(mp); 1729 return (EAGAIN); 1730 } 1731 1732 ioc = (struct iocblk *)mp->b_rptr; 1733 ioc->ioc_count = msgdsize(mp->b_cont); 1734 1735 putnext(ill->ill_wq, mp); 1736 return (0); 1737 } 1738 1739 void 1740 ill_capability_probe(ill_t *ill) 1741 { 1742 /* 1743 * Do so only if capabilities are still unknown. 1744 */ 1745 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1746 return; 1747 1748 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1749 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1750 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1751 } 1752 1753 void 1754 ill_capability_reset(ill_t *ill) 1755 { 1756 mblk_t *sc_mp = NULL; 1757 mblk_t *tmp; 1758 1759 /* 1760 * Note here that we reset the state to UNKNOWN, and later send 1761 * down the DL_CAPABILITY_REQ without first setting the state to 1762 * INPROGRESS. We do this in order to distinguish the 1763 * DL_CAPABILITY_ACK response which may come back in response to 1764 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1765 * also handle the case where the driver doesn't send us back 1766 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1767 * requires the state to be in UNKNOWN anyway. In any case, all 1768 * features are turned off until the state reaches IDS_OK. 1769 */ 1770 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1771 ill->ill_capab_reneg = B_FALSE; 1772 1773 /* 1774 * Disable sub-capabilities and request a list of sub-capability 1775 * messages which will be sent down to the driver. Each handler 1776 * allocates the corresponding dl_capability_sub_t inside an 1777 * mblk, and links it to the existing sc_mp mblk, or return it 1778 * as sc_mp if it's the first sub-capability (the passed in 1779 * sc_mp is NULL). Upon returning from all capability handlers, 1780 * sc_mp will be pulled-up, before passing it downstream. 1781 */ 1782 ill_capability_mdt_reset(ill, &sc_mp); 1783 ill_capability_hcksum_reset(ill, &sc_mp); 1784 ill_capability_zerocopy_reset(ill, &sc_mp); 1785 ill_capability_ipsec_reset(ill, &sc_mp); 1786 ill_capability_dls_reset(ill, &sc_mp); 1787 ill_capability_lso_reset(ill, &sc_mp); 1788 1789 /* Nothing to send down in order to disable the capabilities? */ 1790 if (sc_mp == NULL) 1791 return; 1792 1793 tmp = msgpullup(sc_mp, -1); 1794 freemsg(sc_mp); 1795 if ((sc_mp = tmp) == NULL) { 1796 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1797 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1798 return; 1799 } 1800 1801 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1802 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1803 } 1804 1805 /* 1806 * Request or set new-style hardware capabilities supported by DLS provider. 1807 */ 1808 static void 1809 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1810 { 1811 mblk_t *mp; 1812 dl_capability_req_t *capb; 1813 size_t size = 0; 1814 uint8_t *ptr; 1815 1816 if (reqp != NULL) 1817 size = MBLKL(reqp); 1818 1819 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1820 if (mp == NULL) { 1821 freemsg(reqp); 1822 return; 1823 } 1824 ptr = mp->b_rptr; 1825 1826 capb = (dl_capability_req_t *)ptr; 1827 ptr += sizeof (dl_capability_req_t); 1828 1829 if (reqp != NULL) { 1830 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1831 capb->dl_sub_length = size; 1832 bcopy(reqp->b_rptr, ptr, size); 1833 ptr += size; 1834 mp->b_cont = reqp->b_cont; 1835 freeb(reqp); 1836 } 1837 ASSERT(ptr == mp->b_wptr); 1838 1839 ill_dlpi_send(ill, mp); 1840 } 1841 1842 static void 1843 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1844 { 1845 dl_capab_id_t *id_ic; 1846 uint_t sub_dl_cap = outers->dl_cap; 1847 dl_capability_sub_t *inners; 1848 uint8_t *capend; 1849 1850 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1851 1852 /* 1853 * Note: range checks here are not absolutely sufficient to 1854 * make us robust against malformed messages sent by drivers; 1855 * this is in keeping with the rest of IP's dlpi handling. 1856 * (Remember, it's coming from something else in the kernel 1857 * address space) 1858 */ 1859 1860 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1861 if (capend > mp->b_wptr) { 1862 cmn_err(CE_WARN, "ill_capability_id_ack: " 1863 "malformed sub-capability too long for mblk"); 1864 return; 1865 } 1866 1867 id_ic = (dl_capab_id_t *)(outers + 1); 1868 1869 if (outers->dl_length < sizeof (*id_ic) || 1870 (inners = &id_ic->id_subcap, 1871 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1872 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1873 "encapsulated capab type %d too long for mblk", 1874 inners->dl_cap); 1875 return; 1876 } 1877 1878 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1879 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1880 "isn't as expected; pass-thru module(s) detected, " 1881 "discarding capability\n", inners->dl_cap)); 1882 return; 1883 } 1884 1885 /* Process the encapsulated sub-capability */ 1886 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1887 } 1888 1889 /* 1890 * Process Multidata Transmit capability negotiation ack received from a 1891 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1892 * DL_CAPABILITY_ACK message. 1893 */ 1894 static void 1895 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1896 { 1897 mblk_t *nmp = NULL; 1898 dl_capability_req_t *oc; 1899 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1900 ill_mdt_capab_t **ill_mdt_capab; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 1904 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1905 1906 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 1916 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1917 if (capend > mp->b_wptr) { 1918 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1919 "malformed sub-capability too long for mblk"); 1920 return; 1921 } 1922 1923 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1924 1925 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1926 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1927 "unsupported MDT sub-capability (version %d, expected %d)", 1928 mdt_ic->mdt_version, MDT_VERSION_2); 1929 return; 1930 } 1931 1932 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1933 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1934 "capability isn't as expected; pass-thru module(s) " 1935 "detected, discarding capability\n")); 1936 return; 1937 } 1938 1939 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1940 1941 if (*ill_mdt_capab == NULL) { 1942 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1943 KM_NOSLEEP); 1944 1945 if (*ill_mdt_capab == NULL) { 1946 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1947 "could not enable MDT version %d " 1948 "for %s (ENOMEM)\n", MDT_VERSION_2, 1949 ill->ill_name); 1950 return; 1951 } 1952 } 1953 1954 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1955 "MDT version %d (%d bytes leading, %d bytes trailing " 1956 "header spaces, %d max pld bufs, %d span limit)\n", 1957 ill->ill_name, MDT_VERSION_2, 1958 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1959 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1960 1961 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1962 (*ill_mdt_capab)->ill_mdt_on = 1; 1963 /* 1964 * Round the following values to the nearest 32-bit; ULP 1965 * may further adjust them to accomodate for additional 1966 * protocol headers. We pass these values to ULP during 1967 * bind time. 1968 */ 1969 (*ill_mdt_capab)->ill_mdt_hdr_head = 1970 roundup(mdt_ic->mdt_hdr_head, 4); 1971 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1972 roundup(mdt_ic->mdt_hdr_tail, 4); 1973 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1974 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1975 1976 ill->ill_capabilities |= ILL_CAPAB_MDT; 1977 } else { 1978 uint_t size; 1979 uchar_t *rptr; 1980 1981 size = sizeof (dl_capability_req_t) + 1982 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1983 1984 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1985 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1986 "could not enable MDT for %s (ENOMEM)\n", 1987 ill->ill_name); 1988 return; 1989 } 1990 1991 rptr = nmp->b_rptr; 1992 /* initialize dl_capability_req_t */ 1993 oc = (dl_capability_req_t *)nmp->b_rptr; 1994 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1995 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1996 sizeof (dl_capab_mdt_t); 1997 nmp->b_rptr += sizeof (dl_capability_req_t); 1998 1999 /* initialize dl_capability_sub_t */ 2000 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2001 nmp->b_rptr += sizeof (*isub); 2002 2003 /* initialize dl_capab_mdt_t */ 2004 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2005 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2006 2007 nmp->b_rptr = rptr; 2008 2009 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2010 "to enable MDT version %d\n", ill->ill_name, 2011 MDT_VERSION_2)); 2012 2013 /* set ENABLE flag */ 2014 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2015 2016 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2017 ill_dlpi_send(ill, nmp); 2018 } 2019 } 2020 2021 static void 2022 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2023 { 2024 mblk_t *mp; 2025 dl_capab_mdt_t *mdt_subcap; 2026 dl_capability_sub_t *dl_subcap; 2027 int size; 2028 2029 if (!ILL_MDT_CAPABLE(ill)) 2030 return; 2031 2032 ASSERT(ill->ill_mdt_capab != NULL); 2033 /* 2034 * Clear the capability flag for MDT but retain the ill_mdt_capab 2035 * structure since it's possible that another thread is still 2036 * referring to it. The structure only gets deallocated when 2037 * we destroy the ill. 2038 */ 2039 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2040 2041 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2042 2043 mp = allocb(size, BPRI_HI); 2044 if (mp == NULL) { 2045 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2046 "request to disable MDT\n")); 2047 return; 2048 } 2049 2050 mp->b_wptr = mp->b_rptr + size; 2051 2052 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2053 dl_subcap->dl_cap = DL_CAPAB_MDT; 2054 dl_subcap->dl_length = sizeof (*mdt_subcap); 2055 2056 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2057 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2058 mdt_subcap->mdt_flags = 0; 2059 mdt_subcap->mdt_hdr_head = 0; 2060 mdt_subcap->mdt_hdr_tail = 0; 2061 2062 if (*sc_mp != NULL) 2063 linkb(*sc_mp, mp); 2064 else 2065 *sc_mp = mp; 2066 } 2067 2068 /* 2069 * Send a DL_NOTIFY_REQ to the specified ill to enable 2070 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2071 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2072 * acceleration. 2073 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2074 */ 2075 static boolean_t 2076 ill_enable_promisc_notify(ill_t *ill) 2077 { 2078 mblk_t *mp; 2079 dl_notify_req_t *req; 2080 2081 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2082 2083 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2084 if (mp == NULL) 2085 return (B_FALSE); 2086 2087 req = (dl_notify_req_t *)mp->b_rptr; 2088 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2089 DL_NOTE_PROMISC_OFF_PHYS; 2090 2091 ill_dlpi_send(ill, mp); 2092 2093 return (B_TRUE); 2094 } 2095 2096 2097 /* 2098 * Allocate an IPsec capability request which will be filled by our 2099 * caller to turn on support for one or more algorithms. 2100 */ 2101 static mblk_t * 2102 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2103 { 2104 mblk_t *nmp; 2105 dl_capability_req_t *ocap; 2106 dl_capab_ipsec_t *ocip; 2107 dl_capab_ipsec_t *icip; 2108 uint8_t *ptr; 2109 icip = (dl_capab_ipsec_t *)(isub + 1); 2110 2111 /* 2112 * The first time around, we send a DL_NOTIFY_REQ to enable 2113 * PROMISC_ON/OFF notification from the provider. We need to 2114 * do this before enabling the algorithms to avoid leakage of 2115 * cleartext packets. 2116 */ 2117 2118 if (!ill_enable_promisc_notify(ill)) 2119 return (NULL); 2120 2121 /* 2122 * Allocate new mblk which will contain a new capability 2123 * request to enable the capabilities. 2124 */ 2125 2126 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2127 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2128 if (nmp == NULL) 2129 return (NULL); 2130 2131 ptr = nmp->b_rptr; 2132 2133 /* initialize dl_capability_req_t */ 2134 ocap = (dl_capability_req_t *)ptr; 2135 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2136 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2137 ptr += sizeof (dl_capability_req_t); 2138 2139 /* initialize dl_capability_sub_t */ 2140 bcopy(isub, ptr, sizeof (*isub)); 2141 ptr += sizeof (*isub); 2142 2143 /* initialize dl_capab_ipsec_t */ 2144 ocip = (dl_capab_ipsec_t *)ptr; 2145 bcopy(icip, ocip, sizeof (*icip)); 2146 2147 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2148 return (nmp); 2149 } 2150 2151 /* 2152 * Process an IPsec capability negotiation ack received from a DLS Provider. 2153 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2154 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2155 */ 2156 static void 2157 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2158 { 2159 dl_capab_ipsec_t *icip; 2160 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2161 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2162 uint_t cipher, nciphers; 2163 mblk_t *nmp; 2164 uint_t alg_len; 2165 boolean_t need_sadb_dump; 2166 uint_t sub_dl_cap = isub->dl_cap; 2167 ill_ipsec_capab_t **ill_capab; 2168 uint64_t ill_capab_flag; 2169 uint8_t *capend, *ciphend; 2170 boolean_t sadb_resync; 2171 2172 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2173 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2174 2175 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2176 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2177 ill_capab_flag = ILL_CAPAB_AH; 2178 } else { 2179 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2180 ill_capab_flag = ILL_CAPAB_ESP; 2181 } 2182 2183 /* 2184 * If the ill capability structure exists, then this incoming 2185 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2186 * If this is so, then we'd need to resynchronize the SADB 2187 * after re-enabling the offloaded ciphers. 2188 */ 2189 sadb_resync = (*ill_capab != NULL); 2190 2191 /* 2192 * Note: range checks here are not absolutely sufficient to 2193 * make us robust against malformed messages sent by drivers; 2194 * this is in keeping with the rest of IP's dlpi handling. 2195 * (Remember, it's coming from something else in the kernel 2196 * address space) 2197 */ 2198 2199 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2200 if (capend > mp->b_wptr) { 2201 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2202 "malformed sub-capability too long for mblk"); 2203 return; 2204 } 2205 2206 /* 2207 * There are two types of acks we process here: 2208 * 1. acks in reply to a (first form) generic capability req 2209 * (no ENABLE flag set) 2210 * 2. acks in reply to a ENABLE capability req. 2211 * (ENABLE flag set) 2212 * 2213 * We process the subcapability passed as argument as follows: 2214 * 1 do initializations 2215 * 1.1 initialize nmp = NULL 2216 * 1.2 set need_sadb_dump to B_FALSE 2217 * 2 for each cipher in subcapability: 2218 * 2.1 if ENABLE flag is set: 2219 * 2.1.1 update per-ill ipsec capabilities info 2220 * 2.1.2 set need_sadb_dump to B_TRUE 2221 * 2.2 if ENABLE flag is not set: 2222 * 2.2.1 if nmp is NULL: 2223 * 2.2.1.1 allocate and initialize nmp 2224 * 2.2.1.2 init current pos in nmp 2225 * 2.2.2 copy current cipher to current pos in nmp 2226 * 2.2.3 set ENABLE flag in nmp 2227 * 2.2.4 update current pos 2228 * 3 if nmp is not equal to NULL, send enable request 2229 * 3.1 send capability request 2230 * 4 if need_sadb_dump is B_TRUE 2231 * 4.1 enable promiscuous on/off notifications 2232 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2233 * AH or ESP SA's to interface. 2234 */ 2235 2236 nmp = NULL; 2237 oalg = NULL; 2238 need_sadb_dump = B_FALSE; 2239 icip = (dl_capab_ipsec_t *)(isub + 1); 2240 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2241 2242 nciphers = icip->cip_nciphers; 2243 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2244 2245 if (ciphend > capend) { 2246 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2247 "too many ciphers for sub-capability len"); 2248 return; 2249 } 2250 2251 for (cipher = 0; cipher < nciphers; cipher++) { 2252 alg_len = sizeof (dl_capab_ipsec_alg_t); 2253 2254 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2255 /* 2256 * TBD: when we provide a way to disable capabilities 2257 * from above, need to manage the request-pending state 2258 * and fail if we were not expecting this ACK. 2259 */ 2260 IPSECHW_DEBUG(IPSECHW_CAPAB, 2261 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2262 2263 /* 2264 * Update IPsec capabilities for this ill 2265 */ 2266 2267 if (*ill_capab == NULL) { 2268 IPSECHW_DEBUG(IPSECHW_CAPAB, 2269 ("ill_capability_ipsec_ack: " 2270 "allocating ipsec_capab for ill\n")); 2271 *ill_capab = ill_ipsec_capab_alloc(); 2272 2273 if (*ill_capab == NULL) { 2274 cmn_err(CE_WARN, 2275 "ill_capability_ipsec_ack: " 2276 "could not enable IPsec Hardware " 2277 "acceleration for %s (ENOMEM)\n", 2278 ill->ill_name); 2279 return; 2280 } 2281 } 2282 2283 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2284 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2285 2286 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2287 cmn_err(CE_WARN, 2288 "ill_capability_ipsec_ack: " 2289 "malformed IPsec algorithm id %d", 2290 ialg->alg_prim); 2291 continue; 2292 } 2293 2294 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2295 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2296 ialg->alg_prim); 2297 } else { 2298 ipsec_capab_algparm_t *alp; 2299 2300 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2301 ialg->alg_prim); 2302 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2303 ialg->alg_prim)) { 2304 cmn_err(CE_WARN, 2305 "ill_capability_ipsec_ack: " 2306 "no space for IPsec alg id %d", 2307 ialg->alg_prim); 2308 continue; 2309 } 2310 alp = &((*ill_capab)->encr_algparm[ 2311 ialg->alg_prim]); 2312 alp->minkeylen = ialg->alg_minbits; 2313 alp->maxkeylen = ialg->alg_maxbits; 2314 } 2315 ill->ill_capabilities |= ill_capab_flag; 2316 /* 2317 * indicate that a capability was enabled, which 2318 * will be used below to kick off a SADB dump 2319 * to the ill. 2320 */ 2321 need_sadb_dump = B_TRUE; 2322 } else { 2323 IPSECHW_DEBUG(IPSECHW_CAPAB, 2324 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2325 ialg->alg_prim)); 2326 2327 if (nmp == NULL) { 2328 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2329 if (nmp == NULL) { 2330 /* 2331 * Sending the PROMISC_ON/OFF 2332 * notification request failed. 2333 * We cannot enable the algorithms 2334 * since the Provider will not 2335 * notify IP of promiscous mode 2336 * changes, which could lead 2337 * to leakage of packets. 2338 */ 2339 cmn_err(CE_WARN, 2340 "ill_capability_ipsec_ack: " 2341 "could not enable IPsec Hardware " 2342 "acceleration for %s (ENOMEM)\n", 2343 ill->ill_name); 2344 return; 2345 } 2346 /* ptr to current output alg specifier */ 2347 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2348 } 2349 2350 /* 2351 * Copy current alg specifier, set ENABLE 2352 * flag, and advance to next output alg. 2353 * For now we enable all IPsec capabilities. 2354 */ 2355 ASSERT(oalg != NULL); 2356 bcopy(ialg, oalg, alg_len); 2357 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2358 nmp->b_wptr += alg_len; 2359 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2360 } 2361 2362 /* move to next input algorithm specifier */ 2363 ialg = (dl_capab_ipsec_alg_t *) 2364 ((char *)ialg + alg_len); 2365 } 2366 2367 if (nmp != NULL) 2368 /* 2369 * nmp points to a DL_CAPABILITY_REQ message to enable 2370 * IPsec hardware acceleration. 2371 */ 2372 ill_dlpi_send(ill, nmp); 2373 2374 if (need_sadb_dump) 2375 /* 2376 * An acknowledgement corresponding to a request to 2377 * enable acceleration was received, notify SADB. 2378 */ 2379 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2380 } 2381 2382 /* 2383 * Given an mblk with enough space in it, create sub-capability entries for 2384 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2385 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2386 * in preparation for the reset the DL_CAPABILITY_REQ message. 2387 */ 2388 static void 2389 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2390 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2391 { 2392 dl_capab_ipsec_t *oipsec; 2393 dl_capab_ipsec_alg_t *oalg; 2394 dl_capability_sub_t *dl_subcap; 2395 int i, k; 2396 2397 ASSERT(nciphers > 0); 2398 ASSERT(ill_cap != NULL); 2399 ASSERT(mp != NULL); 2400 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2401 2402 /* dl_capability_sub_t for "stype" */ 2403 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2404 dl_subcap->dl_cap = stype; 2405 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2406 mp->b_wptr += sizeof (dl_capability_sub_t); 2407 2408 /* dl_capab_ipsec_t for "stype" */ 2409 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2410 oipsec->cip_version = 1; 2411 oipsec->cip_nciphers = nciphers; 2412 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2413 2414 /* create entries for "stype" AUTH ciphers */ 2415 for (i = 0; i < ill_cap->algs_size; i++) { 2416 for (k = 0; k < BITSPERBYTE; k++) { 2417 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2418 continue; 2419 2420 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2421 bzero((void *)oalg, sizeof (*oalg)); 2422 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2423 oalg->alg_prim = k + (BITSPERBYTE * i); 2424 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2425 } 2426 } 2427 /* create entries for "stype" ENCR ciphers */ 2428 for (i = 0; i < ill_cap->algs_size; i++) { 2429 for (k = 0; k < BITSPERBYTE; k++) { 2430 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2431 continue; 2432 2433 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2434 bzero((void *)oalg, sizeof (*oalg)); 2435 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2436 oalg->alg_prim = k + (BITSPERBYTE * i); 2437 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2438 } 2439 } 2440 } 2441 2442 /* 2443 * Macro to count number of 1s in a byte (8-bit word). The total count is 2444 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2445 * POPC instruction, but our macro is more flexible for an arbitrary length 2446 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2447 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2448 * stays that way, we can reduce the number of iterations required. 2449 */ 2450 #define COUNT_1S(val, sum) { \ 2451 uint8_t x = val & 0xff; \ 2452 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2453 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2454 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2455 } 2456 2457 /* ARGSUSED */ 2458 static void 2459 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2460 { 2461 mblk_t *mp; 2462 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2463 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2464 uint64_t ill_capabilities = ill->ill_capabilities; 2465 int ah_cnt = 0, esp_cnt = 0; 2466 int ah_len = 0, esp_len = 0; 2467 int i, size = 0; 2468 2469 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2470 return; 2471 2472 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2473 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2474 2475 /* Find out the number of ciphers for AH */ 2476 if (cap_ah != NULL) { 2477 for (i = 0; i < cap_ah->algs_size; i++) { 2478 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2479 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2480 } 2481 if (ah_cnt > 0) { 2482 size += sizeof (dl_capability_sub_t) + 2483 sizeof (dl_capab_ipsec_t); 2484 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2485 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2486 size += ah_len; 2487 } 2488 } 2489 2490 /* Find out the number of ciphers for ESP */ 2491 if (cap_esp != NULL) { 2492 for (i = 0; i < cap_esp->algs_size; i++) { 2493 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2494 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2495 } 2496 if (esp_cnt > 0) { 2497 size += sizeof (dl_capability_sub_t) + 2498 sizeof (dl_capab_ipsec_t); 2499 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2500 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2501 size += esp_len; 2502 } 2503 } 2504 2505 if (size == 0) { 2506 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2507 "there's nothing to reset\n")); 2508 return; 2509 } 2510 2511 mp = allocb(size, BPRI_HI); 2512 if (mp == NULL) { 2513 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2514 "request to disable IPSEC Hardware Acceleration\n")); 2515 return; 2516 } 2517 2518 /* 2519 * Clear the capability flags for IPsec HA but retain the ill 2520 * capability structures since it's possible that another thread 2521 * is still referring to them. The structures only get deallocated 2522 * when we destroy the ill. 2523 * 2524 * Various places check the flags to see if the ill is capable of 2525 * hardware acceleration, and by clearing them we ensure that new 2526 * outbound IPsec packets are sent down encrypted. 2527 */ 2528 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2529 2530 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2531 if (ah_cnt > 0) { 2532 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2533 cap_ah, mp); 2534 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2535 } 2536 2537 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2538 if (esp_cnt > 0) { 2539 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2540 cap_esp, mp); 2541 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2542 } 2543 2544 /* 2545 * At this point we've composed a bunch of sub-capabilities to be 2546 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2547 * by the caller. Upon receiving this reset message, the driver 2548 * must stop inbound decryption (by destroying all inbound SAs) 2549 * and let the corresponding packets come in encrypted. 2550 */ 2551 2552 if (*sc_mp != NULL) 2553 linkb(*sc_mp, mp); 2554 else 2555 *sc_mp = mp; 2556 } 2557 2558 static void 2559 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2560 boolean_t encapsulated) 2561 { 2562 boolean_t legacy = B_FALSE; 2563 2564 /* 2565 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2566 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2567 * instructed the driver to disable its advertised capabilities, 2568 * so there's no point in accepting any response at this moment. 2569 */ 2570 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2571 return; 2572 2573 /* 2574 * Note that only the following two sub-capabilities may be 2575 * considered as "legacy", since their original definitions 2576 * do not incorporate the dl_mid_t module ID token, and hence 2577 * may require the use of the wrapper sub-capability. 2578 */ 2579 switch (subp->dl_cap) { 2580 case DL_CAPAB_IPSEC_AH: 2581 case DL_CAPAB_IPSEC_ESP: 2582 legacy = B_TRUE; 2583 break; 2584 } 2585 2586 /* 2587 * For legacy sub-capabilities which don't incorporate a queue_t 2588 * pointer in their structures, discard them if we detect that 2589 * there are intermediate modules in between IP and the driver. 2590 */ 2591 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2592 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2593 "%d discarded; %d module(s) present below IP\n", 2594 subp->dl_cap, ill->ill_lmod_cnt)); 2595 return; 2596 } 2597 2598 switch (subp->dl_cap) { 2599 case DL_CAPAB_IPSEC_AH: 2600 case DL_CAPAB_IPSEC_ESP: 2601 ill_capability_ipsec_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_MDT: 2604 ill_capability_mdt_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_HCKSUM: 2607 ill_capability_hcksum_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_ZEROCOPY: 2610 ill_capability_zerocopy_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_POLL: 2613 if (!SOFT_RINGS_ENABLED()) 2614 ill_capability_dls_ack(ill, mp, subp); 2615 break; 2616 case DL_CAPAB_SOFT_RING: 2617 if (SOFT_RINGS_ENABLED()) 2618 ill_capability_dls_ack(ill, mp, subp); 2619 break; 2620 case DL_CAPAB_LSO: 2621 ill_capability_lso_ack(ill, mp, subp); 2622 break; 2623 default: 2624 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2625 subp->dl_cap)); 2626 } 2627 } 2628 2629 /* 2630 * As part of negotiating polling capability, the driver tells us 2631 * the default (or normal) blanking interval and packet threshold 2632 * (the receive timer fires if blanking interval is reached or 2633 * the packet threshold is reached). 2634 * 2635 * As part of manipulating the polling interval, we always use our 2636 * estimated interval (avg service time * number of packets queued 2637 * on the squeue) but we try to blank for a minimum of 2638 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2639 * packet threshold during this time. When we are not in polling mode 2640 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2641 * rr_min_blank_ratio but up the packet cnt by a ratio of 2642 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2643 * possible although for a shorter interval. 2644 */ 2645 #define RR_MAX_BLANK_RATIO 20 2646 #define RR_MIN_BLANK_RATIO 10 2647 #define RR_MAX_PKT_CNT_RATIO 3 2648 #define RR_MIN_PKT_CNT_RATIO 3 2649 2650 /* 2651 * These can be tuned via /etc/system. 2652 */ 2653 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2654 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2655 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2656 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2657 2658 static mac_resource_handle_t 2659 ill_ring_add(void *arg, mac_resource_t *mrp) 2660 { 2661 ill_t *ill = (ill_t *)arg; 2662 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2663 ill_rx_ring_t *rx_ring; 2664 int ip_rx_index; 2665 2666 ASSERT(mrp != NULL); 2667 if (mrp->mr_type != MAC_RX_FIFO) { 2668 return (NULL); 2669 } 2670 ASSERT(ill != NULL); 2671 ASSERT(ill->ill_dls_capab != NULL); 2672 2673 mutex_enter(&ill->ill_lock); 2674 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2675 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2676 ASSERT(rx_ring != NULL); 2677 2678 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2679 time_t normal_blank_time = 2680 mrfp->mrf_normal_blank_time; 2681 uint_t normal_pkt_cnt = 2682 mrfp->mrf_normal_pkt_count; 2683 2684 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2685 2686 rx_ring->rr_blank = mrfp->mrf_blank; 2687 rx_ring->rr_handle = mrfp->mrf_arg; 2688 rx_ring->rr_ill = ill; 2689 rx_ring->rr_normal_blank_time = normal_blank_time; 2690 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2691 2692 rx_ring->rr_max_blank_time = 2693 normal_blank_time * rr_max_blank_ratio; 2694 rx_ring->rr_min_blank_time = 2695 normal_blank_time * rr_min_blank_ratio; 2696 rx_ring->rr_max_pkt_cnt = 2697 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2698 rx_ring->rr_min_pkt_cnt = 2699 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2700 2701 rx_ring->rr_ring_state = ILL_RING_INUSE; 2702 mutex_exit(&ill->ill_lock); 2703 2704 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2705 (int), ip_rx_index); 2706 return ((mac_resource_handle_t)rx_ring); 2707 } 2708 } 2709 2710 /* 2711 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2712 * we have devices which can overwhelm this limit, ILL_MAX_RING 2713 * should be made configurable. Meanwhile it cause no panic because 2714 * driver will pass ip_input a NULL handle which will make 2715 * IP allocate the default squeue and Polling mode will not 2716 * be used for this ring. 2717 */ 2718 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2719 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2720 2721 mutex_exit(&ill->ill_lock); 2722 return (NULL); 2723 } 2724 2725 static boolean_t 2726 ill_capability_dls_init(ill_t *ill) 2727 { 2728 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2729 conn_t *connp; 2730 size_t sz; 2731 ip_stack_t *ipst = ill->ill_ipst; 2732 2733 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2734 if (ill_dls == NULL) { 2735 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2736 "soft_ring enabled for ill=%s (%p) but data " 2737 "structs uninitialized\n", ill->ill_name, 2738 (void *)ill); 2739 } 2740 return (B_TRUE); 2741 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2742 if (ill_dls == NULL) { 2743 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2744 "polling enabled for ill=%s (%p) but data " 2745 "structs uninitialized\n", ill->ill_name, 2746 (void *)ill); 2747 } 2748 return (B_TRUE); 2749 } 2750 2751 if (ill_dls != NULL) { 2752 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2753 /* Soft_Ring or polling is being re-enabled */ 2754 2755 connp = ill_dls->ill_unbind_conn; 2756 ASSERT(rx_ring != NULL); 2757 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2758 bzero((void *)rx_ring, 2759 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2760 ill_dls->ill_ring_tbl = rx_ring; 2761 ill_dls->ill_unbind_conn = connp; 2762 return (B_TRUE); 2763 } 2764 2765 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2766 ipst->ips_netstack)) == NULL) 2767 return (B_FALSE); 2768 2769 sz = sizeof (ill_dls_capab_t); 2770 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2771 2772 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2773 if (ill_dls == NULL) { 2774 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2775 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2776 (void *)ill); 2777 CONN_DEC_REF(connp); 2778 return (B_FALSE); 2779 } 2780 2781 /* Allocate space to hold ring table */ 2782 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2783 ill->ill_dls_capab = ill_dls; 2784 ill_dls->ill_unbind_conn = connp; 2785 return (B_TRUE); 2786 } 2787 2788 /* 2789 * ill_capability_dls_disable: disable soft_ring and/or polling 2790 * capability. Since any of the rings might already be in use, need 2791 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2792 * direct calls if necessary. 2793 */ 2794 static void 2795 ill_capability_dls_disable(ill_t *ill) 2796 { 2797 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2798 2799 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2800 ip_squeue_clean_all(ill); 2801 ill_dls->ill_tx = NULL; 2802 ill_dls->ill_tx_handle = NULL; 2803 ill_dls->ill_dls_change_status = NULL; 2804 ill_dls->ill_dls_bind = NULL; 2805 ill_dls->ill_dls_unbind = NULL; 2806 } 2807 2808 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2809 } 2810 2811 static void 2812 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2813 dl_capability_sub_t *isub) 2814 { 2815 uint_t size; 2816 uchar_t *rptr; 2817 dl_capab_dls_t dls, *odls; 2818 ill_dls_capab_t *ill_dls; 2819 mblk_t *nmp = NULL; 2820 dl_capability_req_t *ocap; 2821 uint_t sub_dl_cap = isub->dl_cap; 2822 2823 if (!ill_capability_dls_init(ill)) 2824 return; 2825 ill_dls = ill->ill_dls_capab; 2826 2827 /* Copy locally to get the members aligned */ 2828 bcopy((void *)idls, (void *)&dls, 2829 sizeof (dl_capab_dls_t)); 2830 2831 /* Get the tx function and handle from dld */ 2832 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2833 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2834 2835 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2836 ill_dls->ill_dls_change_status = 2837 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2838 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2839 ill_dls->ill_dls_unbind = 2840 (ip_dls_unbind_t)dls.dls_ring_unbind; 2841 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2842 } 2843 2844 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2845 isub->dl_length; 2846 2847 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2848 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2849 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2850 ill->ill_name, (void *)ill); 2851 return; 2852 } 2853 2854 /* initialize dl_capability_req_t */ 2855 rptr = nmp->b_rptr; 2856 ocap = (dl_capability_req_t *)rptr; 2857 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2858 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2859 rptr += sizeof (dl_capability_req_t); 2860 2861 /* initialize dl_capability_sub_t */ 2862 bcopy(isub, rptr, sizeof (*isub)); 2863 rptr += sizeof (*isub); 2864 2865 odls = (dl_capab_dls_t *)rptr; 2866 rptr += sizeof (dl_capab_dls_t); 2867 2868 /* initialize dl_capab_dls_t to be sent down */ 2869 dls.dls_rx_handle = (uintptr_t)ill; 2870 dls.dls_rx = (uintptr_t)ip_input; 2871 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2872 2873 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2874 dls.dls_ring_cnt = ip_soft_rings_cnt; 2875 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2876 dls.dls_flags = SOFT_RING_ENABLE; 2877 } else { 2878 dls.dls_flags = POLL_ENABLE; 2879 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2880 "to enable polling\n", ill->ill_name)); 2881 } 2882 bcopy((void *)&dls, (void *)odls, 2883 sizeof (dl_capab_dls_t)); 2884 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2885 /* 2886 * nmp points to a DL_CAPABILITY_REQ message to 2887 * enable either soft_ring or polling 2888 */ 2889 ill_dlpi_send(ill, nmp); 2890 } 2891 2892 static void 2893 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2894 { 2895 mblk_t *mp; 2896 dl_capab_dls_t *idls; 2897 dl_capability_sub_t *dl_subcap; 2898 int size; 2899 2900 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2901 return; 2902 2903 ASSERT(ill->ill_dls_capab != NULL); 2904 2905 size = sizeof (*dl_subcap) + sizeof (*idls); 2906 2907 mp = allocb(size, BPRI_HI); 2908 if (mp == NULL) { 2909 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2910 "request to disable soft_ring\n")); 2911 return; 2912 } 2913 2914 mp->b_wptr = mp->b_rptr + size; 2915 2916 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2917 dl_subcap->dl_length = sizeof (*idls); 2918 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2919 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2920 else 2921 dl_subcap->dl_cap = DL_CAPAB_POLL; 2922 2923 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2924 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2925 idls->dls_flags = SOFT_RING_DISABLE; 2926 else 2927 idls->dls_flags = POLL_DISABLE; 2928 2929 if (*sc_mp != NULL) 2930 linkb(*sc_mp, mp); 2931 else 2932 *sc_mp = mp; 2933 } 2934 2935 /* 2936 * Process a soft_ring/poll capability negotiation ack received 2937 * from a DLS Provider.isub must point to the sub-capability 2938 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2939 */ 2940 static void 2941 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2942 { 2943 dl_capab_dls_t *idls; 2944 uint_t sub_dl_cap = isub->dl_cap; 2945 uint8_t *capend; 2946 2947 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2948 sub_dl_cap == DL_CAPAB_POLL); 2949 2950 if (ill->ill_isv6) 2951 return; 2952 2953 /* 2954 * Note: range checks here are not absolutely sufficient to 2955 * make us robust against malformed messages sent by drivers; 2956 * this is in keeping with the rest of IP's dlpi handling. 2957 * (Remember, it's coming from something else in the kernel 2958 * address space) 2959 */ 2960 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2961 if (capend > mp->b_wptr) { 2962 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2963 "malformed sub-capability too long for mblk"); 2964 return; 2965 } 2966 2967 /* 2968 * There are two types of acks we process here: 2969 * 1. acks in reply to a (first form) generic capability req 2970 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2971 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2972 * capability req. 2973 */ 2974 idls = (dl_capab_dls_t *)(isub + 1); 2975 2976 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2977 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2978 "capability isn't as expected; pass-thru " 2979 "module(s) detected, discarding capability\n")); 2980 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2981 /* 2982 * This is a capability renegotitation case. 2983 * The interface better be unusable at this 2984 * point other wise bad things will happen 2985 * if we disable direct calls on a running 2986 * and up interface. 2987 */ 2988 ill_capability_dls_disable(ill); 2989 } 2990 return; 2991 } 2992 2993 switch (idls->dls_flags) { 2994 default: 2995 /* Disable if unknown flag */ 2996 case SOFT_RING_DISABLE: 2997 case POLL_DISABLE: 2998 ill_capability_dls_disable(ill); 2999 break; 3000 case SOFT_RING_CAPABLE: 3001 case POLL_CAPABLE: 3002 /* 3003 * If the capability was already enabled, its safe 3004 * to disable it first to get rid of stale information 3005 * and then start enabling it again. 3006 */ 3007 ill_capability_dls_disable(ill); 3008 ill_capability_dls_capable(ill, idls, isub); 3009 break; 3010 case SOFT_RING_ENABLE: 3011 case POLL_ENABLE: 3012 mutex_enter(&ill->ill_lock); 3013 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3014 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3015 ASSERT(ill->ill_dls_capab != NULL); 3016 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3017 } 3018 if (sub_dl_cap == DL_CAPAB_POLL && 3019 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3020 ASSERT(ill->ill_dls_capab != NULL); 3021 ill->ill_capabilities |= ILL_CAPAB_POLL; 3022 ip1dbg(("ill_capability_dls_ack: interface %s " 3023 "has enabled polling\n", ill->ill_name)); 3024 } 3025 mutex_exit(&ill->ill_lock); 3026 break; 3027 } 3028 } 3029 3030 /* 3031 * Process a hardware checksum offload capability negotiation ack received 3032 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3033 * of a DL_CAPABILITY_ACK message. 3034 */ 3035 static void 3036 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3037 { 3038 dl_capability_req_t *ocap; 3039 dl_capab_hcksum_t *ihck, *ohck; 3040 ill_hcksum_capab_t **ill_hcksum; 3041 mblk_t *nmp = NULL; 3042 uint_t sub_dl_cap = isub->dl_cap; 3043 uint8_t *capend; 3044 3045 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3046 3047 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3048 3049 /* 3050 * Note: range checks here are not absolutely sufficient to 3051 * make us robust against malformed messages sent by drivers; 3052 * this is in keeping with the rest of IP's dlpi handling. 3053 * (Remember, it's coming from something else in the kernel 3054 * address space) 3055 */ 3056 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3057 if (capend > mp->b_wptr) { 3058 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3059 "malformed sub-capability too long for mblk"); 3060 return; 3061 } 3062 3063 /* 3064 * There are two types of acks we process here: 3065 * 1. acks in reply to a (first form) generic capability req 3066 * (no ENABLE flag set) 3067 * 2. acks in reply to a ENABLE capability req. 3068 * (ENABLE flag set) 3069 */ 3070 ihck = (dl_capab_hcksum_t *)(isub + 1); 3071 3072 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3073 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3074 "unsupported hardware checksum " 3075 "sub-capability (version %d, expected %d)", 3076 ihck->hcksum_version, HCKSUM_VERSION_1); 3077 return; 3078 } 3079 3080 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3081 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3082 "checksum capability isn't as expected; pass-thru " 3083 "module(s) detected, discarding capability\n")); 3084 return; 3085 } 3086 3087 #define CURR_HCKSUM_CAPAB \ 3088 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3089 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3090 3091 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3092 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3093 /* do ENABLE processing */ 3094 if (*ill_hcksum == NULL) { 3095 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3096 KM_NOSLEEP); 3097 3098 if (*ill_hcksum == NULL) { 3099 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3100 "could not enable hcksum version %d " 3101 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3102 ill->ill_name); 3103 return; 3104 } 3105 } 3106 3107 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3108 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3109 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3110 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3111 "has enabled hardware checksumming\n ", 3112 ill->ill_name)); 3113 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3114 /* 3115 * Enabling hardware checksum offload 3116 * Currently IP supports {TCP,UDP}/IPv4 3117 * partial and full cksum offload and 3118 * IPv4 header checksum offload. 3119 * Allocate new mblk which will 3120 * contain a new capability request 3121 * to enable hardware checksum offload. 3122 */ 3123 uint_t size; 3124 uchar_t *rptr; 3125 3126 size = sizeof (dl_capability_req_t) + 3127 sizeof (dl_capability_sub_t) + isub->dl_length; 3128 3129 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3130 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3131 "could not enable hardware cksum for %s (ENOMEM)\n", 3132 ill->ill_name); 3133 return; 3134 } 3135 3136 rptr = nmp->b_rptr; 3137 /* initialize dl_capability_req_t */ 3138 ocap = (dl_capability_req_t *)nmp->b_rptr; 3139 ocap->dl_sub_offset = 3140 sizeof (dl_capability_req_t); 3141 ocap->dl_sub_length = 3142 sizeof (dl_capability_sub_t) + 3143 isub->dl_length; 3144 nmp->b_rptr += sizeof (dl_capability_req_t); 3145 3146 /* initialize dl_capability_sub_t */ 3147 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3148 nmp->b_rptr += sizeof (*isub); 3149 3150 /* initialize dl_capab_hcksum_t */ 3151 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3152 bcopy(ihck, ohck, sizeof (*ihck)); 3153 3154 nmp->b_rptr = rptr; 3155 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3156 3157 /* Set ENABLE flag */ 3158 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3159 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3160 3161 /* 3162 * nmp points to a DL_CAPABILITY_REQ message to enable 3163 * hardware checksum acceleration. 3164 */ 3165 ill_dlpi_send(ill, nmp); 3166 } else { 3167 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3168 "advertised %x hardware checksum capability flags\n", 3169 ill->ill_name, ihck->hcksum_txflags)); 3170 } 3171 } 3172 3173 static void 3174 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3175 { 3176 mblk_t *mp; 3177 dl_capab_hcksum_t *hck_subcap; 3178 dl_capability_sub_t *dl_subcap; 3179 int size; 3180 3181 if (!ILL_HCKSUM_CAPABLE(ill)) 3182 return; 3183 3184 ASSERT(ill->ill_hcksum_capab != NULL); 3185 /* 3186 * Clear the capability flag for hardware checksum offload but 3187 * retain the ill_hcksum_capab structure since it's possible that 3188 * another thread is still referring to it. The structure only 3189 * gets deallocated when we destroy the ill. 3190 */ 3191 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3192 3193 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3194 3195 mp = allocb(size, BPRI_HI); 3196 if (mp == NULL) { 3197 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3198 "request to disable hardware checksum offload\n")); 3199 return; 3200 } 3201 3202 mp->b_wptr = mp->b_rptr + size; 3203 3204 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3205 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3206 dl_subcap->dl_length = sizeof (*hck_subcap); 3207 3208 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3209 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3210 hck_subcap->hcksum_txflags = 0; 3211 3212 if (*sc_mp != NULL) 3213 linkb(*sc_mp, mp); 3214 else 3215 *sc_mp = mp; 3216 } 3217 3218 static void 3219 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3220 { 3221 mblk_t *nmp = NULL; 3222 dl_capability_req_t *oc; 3223 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3224 ill_zerocopy_capab_t **ill_zerocopy_capab; 3225 uint_t sub_dl_cap = isub->dl_cap; 3226 uint8_t *capend; 3227 3228 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3229 3230 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3231 3232 /* 3233 * Note: range checks here are not absolutely sufficient to 3234 * make us robust against malformed messages sent by drivers; 3235 * this is in keeping with the rest of IP's dlpi handling. 3236 * (Remember, it's coming from something else in the kernel 3237 * address space) 3238 */ 3239 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3240 if (capend > mp->b_wptr) { 3241 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3242 "malformed sub-capability too long for mblk"); 3243 return; 3244 } 3245 3246 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3247 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3248 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3249 "unsupported ZEROCOPY sub-capability (version %d, " 3250 "expected %d)", zc_ic->zerocopy_version, 3251 ZEROCOPY_VERSION_1); 3252 return; 3253 } 3254 3255 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3256 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3257 "capability isn't as expected; pass-thru module(s) " 3258 "detected, discarding capability\n")); 3259 return; 3260 } 3261 3262 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3263 if (*ill_zerocopy_capab == NULL) { 3264 *ill_zerocopy_capab = 3265 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3266 KM_NOSLEEP); 3267 3268 if (*ill_zerocopy_capab == NULL) { 3269 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3270 "could not enable Zero-copy version %d " 3271 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3272 ill->ill_name); 3273 return; 3274 } 3275 } 3276 3277 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3278 "supports Zero-copy version %d\n", ill->ill_name, 3279 ZEROCOPY_VERSION_1)); 3280 3281 (*ill_zerocopy_capab)->ill_zerocopy_version = 3282 zc_ic->zerocopy_version; 3283 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3284 zc_ic->zerocopy_flags; 3285 3286 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3287 } else { 3288 uint_t size; 3289 uchar_t *rptr; 3290 3291 size = sizeof (dl_capability_req_t) + 3292 sizeof (dl_capability_sub_t) + 3293 sizeof (dl_capab_zerocopy_t); 3294 3295 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3296 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3297 "could not enable zerocopy for %s (ENOMEM)\n", 3298 ill->ill_name); 3299 return; 3300 } 3301 3302 rptr = nmp->b_rptr; 3303 /* initialize dl_capability_req_t */ 3304 oc = (dl_capability_req_t *)rptr; 3305 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3306 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3307 sizeof (dl_capab_zerocopy_t); 3308 rptr += sizeof (dl_capability_req_t); 3309 3310 /* initialize dl_capability_sub_t */ 3311 bcopy(isub, rptr, sizeof (*isub)); 3312 rptr += sizeof (*isub); 3313 3314 /* initialize dl_capab_zerocopy_t */ 3315 zc_oc = (dl_capab_zerocopy_t *)rptr; 3316 *zc_oc = *zc_ic; 3317 3318 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3319 "to enable zero-copy version %d\n", ill->ill_name, 3320 ZEROCOPY_VERSION_1)); 3321 3322 /* set VMSAFE_MEM flag */ 3323 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3324 3325 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3326 ill_dlpi_send(ill, nmp); 3327 } 3328 } 3329 3330 static void 3331 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3332 { 3333 mblk_t *mp; 3334 dl_capab_zerocopy_t *zerocopy_subcap; 3335 dl_capability_sub_t *dl_subcap; 3336 int size; 3337 3338 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3339 return; 3340 3341 ASSERT(ill->ill_zerocopy_capab != NULL); 3342 /* 3343 * Clear the capability flag for Zero-copy but retain the 3344 * ill_zerocopy_capab structure since it's possible that another 3345 * thread is still referring to it. The structure only gets 3346 * deallocated when we destroy the ill. 3347 */ 3348 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3349 3350 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3351 3352 mp = allocb(size, BPRI_HI); 3353 if (mp == NULL) { 3354 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3355 "request to disable Zero-copy\n")); 3356 return; 3357 } 3358 3359 mp->b_wptr = mp->b_rptr + size; 3360 3361 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3362 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3363 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3364 3365 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3366 zerocopy_subcap->zerocopy_version = 3367 ill->ill_zerocopy_capab->ill_zerocopy_version; 3368 zerocopy_subcap->zerocopy_flags = 0; 3369 3370 if (*sc_mp != NULL) 3371 linkb(*sc_mp, mp); 3372 else 3373 *sc_mp = mp; 3374 } 3375 3376 /* 3377 * Process Large Segment Offload capability negotiation ack received from a 3378 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3379 * DL_CAPABILITY_ACK message. 3380 */ 3381 static void 3382 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3383 { 3384 mblk_t *nmp = NULL; 3385 dl_capability_req_t *oc; 3386 dl_capab_lso_t *lso_ic, *lso_oc; 3387 ill_lso_capab_t **ill_lso_capab; 3388 uint_t sub_dl_cap = isub->dl_cap; 3389 uint8_t *capend; 3390 3391 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3392 3393 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3394 3395 /* 3396 * Note: range checks here are not absolutely sufficient to 3397 * make us robust against malformed messages sent by drivers; 3398 * this is in keeping with the rest of IP's dlpi handling. 3399 * (Remember, it's coming from something else in the kernel 3400 * address space) 3401 */ 3402 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3403 if (capend > mp->b_wptr) { 3404 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3405 "malformed sub-capability too long for mblk"); 3406 return; 3407 } 3408 3409 lso_ic = (dl_capab_lso_t *)(isub + 1); 3410 3411 if (lso_ic->lso_version != LSO_VERSION_1) { 3412 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3413 "unsupported LSO sub-capability (version %d, expected %d)", 3414 lso_ic->lso_version, LSO_VERSION_1); 3415 return; 3416 } 3417 3418 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3419 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3420 "capability isn't as expected; pass-thru module(s) " 3421 "detected, discarding capability\n")); 3422 return; 3423 } 3424 3425 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3426 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3427 if (*ill_lso_capab == NULL) { 3428 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3429 KM_NOSLEEP); 3430 3431 if (*ill_lso_capab == NULL) { 3432 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3433 "could not enable LSO version %d " 3434 "for %s (ENOMEM)\n", LSO_VERSION_1, 3435 ill->ill_name); 3436 return; 3437 } 3438 } 3439 3440 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3441 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3442 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3443 ill->ill_capabilities |= ILL_CAPAB_LSO; 3444 3445 ip1dbg(("ill_capability_lso_ack: interface %s " 3446 "has enabled LSO\n ", ill->ill_name)); 3447 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3448 uint_t size; 3449 uchar_t *rptr; 3450 3451 size = sizeof (dl_capability_req_t) + 3452 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3453 3454 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3455 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3456 "could not enable LSO for %s (ENOMEM)\n", 3457 ill->ill_name); 3458 return; 3459 } 3460 3461 rptr = nmp->b_rptr; 3462 /* initialize dl_capability_req_t */ 3463 oc = (dl_capability_req_t *)nmp->b_rptr; 3464 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3465 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3466 sizeof (dl_capab_lso_t); 3467 nmp->b_rptr += sizeof (dl_capability_req_t); 3468 3469 /* initialize dl_capability_sub_t */ 3470 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3471 nmp->b_rptr += sizeof (*isub); 3472 3473 /* initialize dl_capab_lso_t */ 3474 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3475 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3476 3477 nmp->b_rptr = rptr; 3478 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3479 3480 /* set ENABLE flag */ 3481 lso_oc->lso_flags |= LSO_TX_ENABLE; 3482 3483 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3484 ill_dlpi_send(ill, nmp); 3485 } else { 3486 ip1dbg(("ill_capability_lso_ack: interface %s has " 3487 "advertised %x LSO capability flags\n", 3488 ill->ill_name, lso_ic->lso_flags)); 3489 } 3490 } 3491 3492 3493 static void 3494 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3495 { 3496 mblk_t *mp; 3497 dl_capab_lso_t *lso_subcap; 3498 dl_capability_sub_t *dl_subcap; 3499 int size; 3500 3501 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3502 return; 3503 3504 ASSERT(ill->ill_lso_capab != NULL); 3505 /* 3506 * Clear the capability flag for LSO but retain the 3507 * ill_lso_capab structure since it's possible that another 3508 * thread is still referring to it. The structure only gets 3509 * deallocated when we destroy the ill. 3510 */ 3511 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3512 3513 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3514 3515 mp = allocb(size, BPRI_HI); 3516 if (mp == NULL) { 3517 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3518 "request to disable LSO\n")); 3519 return; 3520 } 3521 3522 mp->b_wptr = mp->b_rptr + size; 3523 3524 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3525 dl_subcap->dl_cap = DL_CAPAB_LSO; 3526 dl_subcap->dl_length = sizeof (*lso_subcap); 3527 3528 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3529 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3530 lso_subcap->lso_flags = 0; 3531 3532 if (*sc_mp != NULL) 3533 linkb(*sc_mp, mp); 3534 else 3535 *sc_mp = mp; 3536 } 3537 3538 /* 3539 * Consume a new-style hardware capabilities negotiation ack. 3540 * Called from ip_rput_dlpi_writer(). 3541 */ 3542 void 3543 ill_capability_ack(ill_t *ill, mblk_t *mp) 3544 { 3545 dl_capability_ack_t *capp; 3546 dl_capability_sub_t *subp, *endp; 3547 3548 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3549 ill->ill_dlpi_capab_state = IDS_OK; 3550 3551 capp = (dl_capability_ack_t *)mp->b_rptr; 3552 3553 if (capp->dl_sub_length == 0) 3554 /* no new-style capabilities */ 3555 return; 3556 3557 /* make sure the driver supplied correct dl_sub_length */ 3558 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3559 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3560 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3561 return; 3562 } 3563 3564 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3565 /* 3566 * There are sub-capabilities. Process the ones we know about. 3567 * Loop until we don't have room for another sub-cap header.. 3568 */ 3569 for (subp = SC(capp, capp->dl_sub_offset), 3570 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3571 subp <= endp; 3572 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3573 3574 switch (subp->dl_cap) { 3575 case DL_CAPAB_ID_WRAPPER: 3576 ill_capability_id_ack(ill, mp, subp); 3577 break; 3578 default: 3579 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3580 break; 3581 } 3582 } 3583 #undef SC 3584 } 3585 3586 /* 3587 * This routine is called to scan the fragmentation reassembly table for 3588 * the specified ILL for any packets that are starting to smell. 3589 * dead_interval is the maximum time in seconds that will be tolerated. It 3590 * will either be the value specified in ip_g_frag_timeout, or zero if the 3591 * ILL is shutting down and it is time to blow everything off. 3592 * 3593 * It returns the number of seconds (as a time_t) that the next frag timer 3594 * should be scheduled for, 0 meaning that the timer doesn't need to be 3595 * re-started. Note that the method of calculating next_timeout isn't 3596 * entirely accurate since time will flow between the time we grab 3597 * current_time and the time we schedule the next timeout. This isn't a 3598 * big problem since this is the timer for sending an ICMP reassembly time 3599 * exceeded messages, and it doesn't have to be exactly accurate. 3600 * 3601 * This function is 3602 * sometimes called as writer, although this is not required. 3603 */ 3604 time_t 3605 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3606 { 3607 ipfb_t *ipfb; 3608 ipfb_t *endp; 3609 ipf_t *ipf; 3610 ipf_t *ipfnext; 3611 mblk_t *mp; 3612 time_t current_time = gethrestime_sec(); 3613 time_t next_timeout = 0; 3614 uint32_t hdr_length; 3615 mblk_t *send_icmp_head; 3616 mblk_t *send_icmp_head_v6; 3617 zoneid_t zoneid; 3618 ip_stack_t *ipst = ill->ill_ipst; 3619 3620 ipfb = ill->ill_frag_hash_tbl; 3621 if (ipfb == NULL) 3622 return (B_FALSE); 3623 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3624 /* Walk the frag hash table. */ 3625 for (; ipfb < endp; ipfb++) { 3626 send_icmp_head = NULL; 3627 send_icmp_head_v6 = NULL; 3628 mutex_enter(&ipfb->ipfb_lock); 3629 while ((ipf = ipfb->ipfb_ipf) != 0) { 3630 time_t frag_time = current_time - ipf->ipf_timestamp; 3631 time_t frag_timeout; 3632 3633 if (frag_time < dead_interval) { 3634 /* 3635 * There are some outstanding fragments 3636 * that will timeout later. Make note of 3637 * the time so that we can reschedule the 3638 * next timeout appropriately. 3639 */ 3640 frag_timeout = dead_interval - frag_time; 3641 if (next_timeout == 0 || 3642 frag_timeout < next_timeout) { 3643 next_timeout = frag_timeout; 3644 } 3645 break; 3646 } 3647 /* Time's up. Get it out of here. */ 3648 hdr_length = ipf->ipf_nf_hdr_len; 3649 ipfnext = ipf->ipf_hash_next; 3650 if (ipfnext) 3651 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3652 *ipf->ipf_ptphn = ipfnext; 3653 mp = ipf->ipf_mp->b_cont; 3654 for (; mp; mp = mp->b_cont) { 3655 /* Extra points for neatness. */ 3656 IP_REASS_SET_START(mp, 0); 3657 IP_REASS_SET_END(mp, 0); 3658 } 3659 mp = ipf->ipf_mp->b_cont; 3660 ill->ill_frag_count -= ipf->ipf_count; 3661 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3662 ipfb->ipfb_count -= ipf->ipf_count; 3663 ASSERT(ipfb->ipfb_frag_pkts > 0); 3664 ipfb->ipfb_frag_pkts--; 3665 /* 3666 * We do not send any icmp message from here because 3667 * we currently are holding the ipfb_lock for this 3668 * hash chain. If we try and send any icmp messages 3669 * from here we may end up via a put back into ip 3670 * trying to get the same lock, causing a recursive 3671 * mutex panic. Instead we build a list and send all 3672 * the icmp messages after we have dropped the lock. 3673 */ 3674 if (ill->ill_isv6) { 3675 if (hdr_length != 0) { 3676 mp->b_next = send_icmp_head_v6; 3677 send_icmp_head_v6 = mp; 3678 } else { 3679 freemsg(mp); 3680 } 3681 } else { 3682 if (hdr_length != 0) { 3683 mp->b_next = send_icmp_head; 3684 send_icmp_head = mp; 3685 } else { 3686 freemsg(mp); 3687 } 3688 } 3689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3690 freeb(ipf->ipf_mp); 3691 } 3692 mutex_exit(&ipfb->ipfb_lock); 3693 /* 3694 * Now need to send any icmp messages that we delayed from 3695 * above. 3696 */ 3697 while (send_icmp_head_v6 != NULL) { 3698 ip6_t *ip6h; 3699 3700 mp = send_icmp_head_v6; 3701 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3702 mp->b_next = NULL; 3703 if (mp->b_datap->db_type == M_CTL) 3704 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3705 else 3706 ip6h = (ip6_t *)mp->b_rptr; 3707 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3708 ill, ipst); 3709 if (zoneid == ALL_ZONES) { 3710 freemsg(mp); 3711 } else { 3712 icmp_time_exceeded_v6(ill->ill_wq, mp, 3713 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3714 B_FALSE, zoneid, ipst); 3715 } 3716 } 3717 while (send_icmp_head != NULL) { 3718 ipaddr_t dst; 3719 3720 mp = send_icmp_head; 3721 send_icmp_head = send_icmp_head->b_next; 3722 mp->b_next = NULL; 3723 3724 if (mp->b_datap->db_type == M_CTL) 3725 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3726 else 3727 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3728 3729 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3730 if (zoneid == ALL_ZONES) { 3731 freemsg(mp); 3732 } else { 3733 icmp_time_exceeded(ill->ill_wq, mp, 3734 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3735 ipst); 3736 } 3737 } 3738 } 3739 /* 3740 * A non-dying ILL will use the return value to decide whether to 3741 * restart the frag timer, and for how long. 3742 */ 3743 return (next_timeout); 3744 } 3745 3746 /* 3747 * This routine is called when the approximate count of mblk memory used 3748 * for the specified ILL has exceeded max_count. 3749 */ 3750 void 3751 ill_frag_prune(ill_t *ill, uint_t max_count) 3752 { 3753 ipfb_t *ipfb; 3754 ipf_t *ipf; 3755 size_t count; 3756 3757 /* 3758 * If we are here within ip_min_frag_prune_time msecs remove 3759 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3760 * ill_frag_free_num_pkts. 3761 */ 3762 mutex_enter(&ill->ill_lock); 3763 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3764 (ip_min_frag_prune_time != 0 ? 3765 ip_min_frag_prune_time : msec_per_tick)) { 3766 3767 ill->ill_frag_free_num_pkts++; 3768 3769 } else { 3770 ill->ill_frag_free_num_pkts = 0; 3771 } 3772 ill->ill_last_frag_clean_time = lbolt; 3773 mutex_exit(&ill->ill_lock); 3774 3775 /* 3776 * free ill_frag_free_num_pkts oldest packets from each bucket. 3777 */ 3778 if (ill->ill_frag_free_num_pkts != 0) { 3779 int ix; 3780 3781 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3782 ipfb = &ill->ill_frag_hash_tbl[ix]; 3783 mutex_enter(&ipfb->ipfb_lock); 3784 if (ipfb->ipfb_ipf != NULL) { 3785 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3786 ill->ill_frag_free_num_pkts); 3787 } 3788 mutex_exit(&ipfb->ipfb_lock); 3789 } 3790 } 3791 /* 3792 * While the reassembly list for this ILL is too big, prune a fragment 3793 * queue by age, oldest first. Note that the per ILL count is 3794 * approximate, while the per frag hash bucket counts are accurate. 3795 */ 3796 while (ill->ill_frag_count > max_count) { 3797 int ix; 3798 ipfb_t *oipfb = NULL; 3799 uint_t oldest = UINT_MAX; 3800 3801 count = 0; 3802 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3803 ipfb = &ill->ill_frag_hash_tbl[ix]; 3804 mutex_enter(&ipfb->ipfb_lock); 3805 ipf = ipfb->ipfb_ipf; 3806 if (ipf != NULL && ipf->ipf_gen < oldest) { 3807 oldest = ipf->ipf_gen; 3808 oipfb = ipfb; 3809 } 3810 count += ipfb->ipfb_count; 3811 mutex_exit(&ipfb->ipfb_lock); 3812 } 3813 /* Refresh the per ILL count */ 3814 ill->ill_frag_count = count; 3815 if (oipfb == NULL) { 3816 ill->ill_frag_count = 0; 3817 break; 3818 } 3819 if (count <= max_count) 3820 return; /* Somebody beat us to it, nothing to do */ 3821 mutex_enter(&oipfb->ipfb_lock); 3822 ipf = oipfb->ipfb_ipf; 3823 if (ipf != NULL) { 3824 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3825 } 3826 mutex_exit(&oipfb->ipfb_lock); 3827 } 3828 } 3829 3830 /* 3831 * free 'free_cnt' fragmented packets starting at ipf. 3832 */ 3833 void 3834 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3835 { 3836 size_t count; 3837 mblk_t *mp; 3838 mblk_t *tmp; 3839 ipf_t **ipfp = ipf->ipf_ptphn; 3840 3841 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3842 ASSERT(ipfp != NULL); 3843 ASSERT(ipf != NULL); 3844 3845 while (ipf != NULL && free_cnt-- > 0) { 3846 count = ipf->ipf_count; 3847 mp = ipf->ipf_mp; 3848 ipf = ipf->ipf_hash_next; 3849 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3850 IP_REASS_SET_START(tmp, 0); 3851 IP_REASS_SET_END(tmp, 0); 3852 } 3853 ill->ill_frag_count -= count; 3854 ASSERT(ipfb->ipfb_count >= count); 3855 ipfb->ipfb_count -= count; 3856 ASSERT(ipfb->ipfb_frag_pkts > 0); 3857 ipfb->ipfb_frag_pkts--; 3858 freemsg(mp); 3859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3860 } 3861 3862 if (ipf) 3863 ipf->ipf_ptphn = ipfp; 3864 ipfp[0] = ipf; 3865 } 3866 3867 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3868 "obsolete and may be removed in a future release of Solaris. Use " \ 3869 "ifconfig(1M) to manipulate the forwarding status of an interface." 3870 3871 /* 3872 * For obsolete per-interface forwarding configuration; 3873 * called in response to ND_GET. 3874 */ 3875 /* ARGSUSED */ 3876 static int 3877 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3878 { 3879 ill_t *ill = (ill_t *)cp; 3880 3881 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3882 3883 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3884 return (0); 3885 } 3886 3887 /* 3888 * For obsolete per-interface forwarding configuration; 3889 * called in response to ND_SET. 3890 */ 3891 /* ARGSUSED */ 3892 static int 3893 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3894 cred_t *ioc_cr) 3895 { 3896 long value; 3897 int retval; 3898 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3899 3900 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3901 3902 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3903 value < 0 || value > 1) { 3904 return (EINVAL); 3905 } 3906 3907 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3908 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3909 rw_exit(&ipst->ips_ill_g_lock); 3910 return (retval); 3911 } 3912 3913 /* 3914 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3915 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3916 * up RTS_IFINFO routing socket messages for each interface whose flags we 3917 * change. 3918 */ 3919 int 3920 ill_forward_set(ill_t *ill, boolean_t enable) 3921 { 3922 ill_group_t *illgrp; 3923 ip_stack_t *ipst = ill->ill_ipst; 3924 3925 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3926 3927 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3928 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3929 return (0); 3930 3931 if (IS_LOOPBACK(ill)) 3932 return (EINVAL); 3933 3934 /* 3935 * If the ill is in an IPMP group, set the forwarding policy on all 3936 * members of the group to the same value. 3937 */ 3938 illgrp = ill->ill_group; 3939 if (illgrp != NULL) { 3940 ill_t *tmp_ill; 3941 3942 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3943 tmp_ill = tmp_ill->ill_group_next) { 3944 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3945 (enable ? "Enabling" : "Disabling"), 3946 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3947 tmp_ill->ill_name)); 3948 mutex_enter(&tmp_ill->ill_lock); 3949 if (enable) 3950 tmp_ill->ill_flags |= ILLF_ROUTER; 3951 else 3952 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3953 mutex_exit(&tmp_ill->ill_lock); 3954 if (tmp_ill->ill_isv6) 3955 ill_set_nce_router_flags(tmp_ill, enable); 3956 /* Notify routing socket listeners of this change. */ 3957 ip_rts_ifmsg(tmp_ill->ill_ipif); 3958 } 3959 } else { 3960 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3961 (enable ? "Enabling" : "Disabling"), 3962 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3963 mutex_enter(&ill->ill_lock); 3964 if (enable) 3965 ill->ill_flags |= ILLF_ROUTER; 3966 else 3967 ill->ill_flags &= ~ILLF_ROUTER; 3968 mutex_exit(&ill->ill_lock); 3969 if (ill->ill_isv6) 3970 ill_set_nce_router_flags(ill, enable); 3971 /* Notify routing socket listeners of this change. */ 3972 ip_rts_ifmsg(ill->ill_ipif); 3973 } 3974 3975 return (0); 3976 } 3977 3978 /* 3979 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3980 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3981 * set or clear. 3982 */ 3983 static void 3984 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3985 { 3986 ipif_t *ipif; 3987 nce_t *nce; 3988 3989 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3990 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3991 if (nce != NULL) { 3992 mutex_enter(&nce->nce_lock); 3993 if (enable) 3994 nce->nce_flags |= NCE_F_ISROUTER; 3995 else 3996 nce->nce_flags &= ~NCE_F_ISROUTER; 3997 mutex_exit(&nce->nce_lock); 3998 NCE_REFRELE(nce); 3999 } 4000 } 4001 } 4002 4003 /* 4004 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4005 * for this ill. Make sure the v6/v4 question has been answered about this 4006 * ill. The creation of this ndd variable is only for backwards compatibility. 4007 * The preferred way to control per-interface IP forwarding is through the 4008 * ILLF_ROUTER interface flag. 4009 */ 4010 static int 4011 ill_set_ndd_name(ill_t *ill) 4012 { 4013 char *suffix; 4014 ip_stack_t *ipst = ill->ill_ipst; 4015 4016 ASSERT(IAM_WRITER_ILL(ill)); 4017 4018 if (ill->ill_isv6) 4019 suffix = ipv6_forward_suffix; 4020 else 4021 suffix = ipv4_forward_suffix; 4022 4023 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4024 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4025 /* 4026 * Copies over the '\0'. 4027 * Note that strlen(suffix) is always bounded. 4028 */ 4029 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4030 strlen(suffix) + 1); 4031 4032 /* 4033 * Use of the nd table requires holding the reader lock. 4034 * Modifying the nd table thru nd_load/nd_unload requires 4035 * the writer lock. 4036 */ 4037 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4038 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4039 nd_ill_forward_set, (caddr_t)ill)) { 4040 /* 4041 * If the nd_load failed, it only meant that it could not 4042 * allocate a new bunch of room for further NDD expansion. 4043 * Because of that, the ill_ndd_name will be set to 0, and 4044 * this interface is at the mercy of the global ip_forwarding 4045 * variable. 4046 */ 4047 rw_exit(&ipst->ips_ip_g_nd_lock); 4048 ill->ill_ndd_name = NULL; 4049 return (ENOMEM); 4050 } 4051 rw_exit(&ipst->ips_ip_g_nd_lock); 4052 return (0); 4053 } 4054 4055 /* 4056 * Intializes the context structure and returns the first ill in the list 4057 * cuurently start_list and end_list can have values: 4058 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4059 * IP_V4_G_HEAD Traverse IPV4 list only. 4060 * IP_V6_G_HEAD Traverse IPV6 list only. 4061 */ 4062 4063 /* 4064 * We don't check for CONDEMNED ills here. Caller must do that if 4065 * necessary under the ill lock. 4066 */ 4067 ill_t * 4068 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4069 ip_stack_t *ipst) 4070 { 4071 ill_if_t *ifp; 4072 ill_t *ill; 4073 avl_tree_t *avl_tree; 4074 4075 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4076 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4077 4078 /* 4079 * setup the lists to search 4080 */ 4081 if (end_list != MAX_G_HEADS) { 4082 ctx->ctx_current_list = start_list; 4083 ctx->ctx_last_list = end_list; 4084 } else { 4085 ctx->ctx_last_list = MAX_G_HEADS - 1; 4086 ctx->ctx_current_list = 0; 4087 } 4088 4089 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4090 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4091 if (ifp != (ill_if_t *) 4092 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4093 avl_tree = &ifp->illif_avl_by_ppa; 4094 ill = avl_first(avl_tree); 4095 /* 4096 * ill is guaranteed to be non NULL or ifp should have 4097 * not existed. 4098 */ 4099 ASSERT(ill != NULL); 4100 return (ill); 4101 } 4102 ctx->ctx_current_list++; 4103 } 4104 4105 return (NULL); 4106 } 4107 4108 /* 4109 * returns the next ill in the list. ill_first() must have been called 4110 * before calling ill_next() or bad things will happen. 4111 */ 4112 4113 /* 4114 * We don't check for CONDEMNED ills here. Caller must do that if 4115 * necessary under the ill lock. 4116 */ 4117 ill_t * 4118 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4119 { 4120 ill_if_t *ifp; 4121 ill_t *ill; 4122 ip_stack_t *ipst = lastill->ill_ipst; 4123 4124 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4125 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4126 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4127 AVL_AFTER)) != NULL) { 4128 return (ill); 4129 } 4130 4131 /* goto next ill_ifp in the list. */ 4132 ifp = lastill->ill_ifptr->illif_next; 4133 4134 /* make sure not at end of circular list */ 4135 while (ifp == 4136 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4137 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4138 return (NULL); 4139 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4140 } 4141 4142 return (avl_first(&ifp->illif_avl_by_ppa)); 4143 } 4144 4145 /* 4146 * Check interface name for correct format which is name+ppa. 4147 * name can contain characters and digits, the right most digits 4148 * make up the ppa number. use of octal is not allowed, name must contain 4149 * a ppa, return pointer to the start of ppa. 4150 * In case of error return NULL. 4151 */ 4152 static char * 4153 ill_get_ppa_ptr(char *name) 4154 { 4155 int namelen = mi_strlen(name); 4156 4157 int len = namelen; 4158 4159 name += len; 4160 while (len > 0) { 4161 name--; 4162 if (*name < '0' || *name > '9') 4163 break; 4164 len--; 4165 } 4166 4167 /* empty string, all digits, or no trailing digits */ 4168 if (len == 0 || len == (int)namelen) 4169 return (NULL); 4170 4171 name++; 4172 /* check for attempted use of octal */ 4173 if (*name == '0' && len != (int)namelen - 1) 4174 return (NULL); 4175 return (name); 4176 } 4177 4178 /* 4179 * use avl tree to locate the ill. 4180 */ 4181 static ill_t * 4182 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4183 ipsq_func_t func, int *error, ip_stack_t *ipst) 4184 { 4185 char *ppa_ptr = NULL; 4186 int len; 4187 uint_t ppa; 4188 ill_t *ill = NULL; 4189 ill_if_t *ifp; 4190 int list; 4191 ipsq_t *ipsq; 4192 4193 if (error != NULL) 4194 *error = 0; 4195 4196 /* 4197 * get ppa ptr 4198 */ 4199 if (isv6) 4200 list = IP_V6_G_HEAD; 4201 else 4202 list = IP_V4_G_HEAD; 4203 4204 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4205 if (error != NULL) 4206 *error = ENXIO; 4207 return (NULL); 4208 } 4209 4210 len = ppa_ptr - name + 1; 4211 4212 ppa = stoi(&ppa_ptr); 4213 4214 ifp = IP_VX_ILL_G_LIST(list, ipst); 4215 4216 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4217 /* 4218 * match is done on len - 1 as the name is not null 4219 * terminated it contains ppa in addition to the interface 4220 * name. 4221 */ 4222 if ((ifp->illif_name_len == len) && 4223 bcmp(ifp->illif_name, name, len - 1) == 0) { 4224 break; 4225 } else { 4226 ifp = ifp->illif_next; 4227 } 4228 } 4229 4230 4231 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4232 /* 4233 * Even the interface type does not exist. 4234 */ 4235 if (error != NULL) 4236 *error = ENXIO; 4237 return (NULL); 4238 } 4239 4240 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4241 if (ill != NULL) { 4242 /* 4243 * The block comment at the start of ipif_down 4244 * explains the use of the macros used below 4245 */ 4246 GRAB_CONN_LOCK(q); 4247 mutex_enter(&ill->ill_lock); 4248 if (ILL_CAN_LOOKUP(ill)) { 4249 ill_refhold_locked(ill); 4250 mutex_exit(&ill->ill_lock); 4251 RELEASE_CONN_LOCK(q); 4252 return (ill); 4253 } else if (ILL_CAN_WAIT(ill, q)) { 4254 ipsq = ill->ill_phyint->phyint_ipsq; 4255 mutex_enter(&ipsq->ipsq_lock); 4256 mutex_exit(&ill->ill_lock); 4257 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4258 mutex_exit(&ipsq->ipsq_lock); 4259 RELEASE_CONN_LOCK(q); 4260 if (error != NULL) 4261 *error = EINPROGRESS; 4262 return (NULL); 4263 } 4264 mutex_exit(&ill->ill_lock); 4265 RELEASE_CONN_LOCK(q); 4266 } 4267 if (error != NULL) 4268 *error = ENXIO; 4269 return (NULL); 4270 } 4271 4272 /* 4273 * comparison function for use with avl. 4274 */ 4275 static int 4276 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4277 { 4278 uint_t ppa; 4279 uint_t ill_ppa; 4280 4281 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4282 4283 ppa = *((uint_t *)ppa_ptr); 4284 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4285 /* 4286 * We want the ill with the lowest ppa to be on the 4287 * top. 4288 */ 4289 if (ill_ppa < ppa) 4290 return (1); 4291 if (ill_ppa > ppa) 4292 return (-1); 4293 return (0); 4294 } 4295 4296 /* 4297 * remove an interface type from the global list. 4298 */ 4299 static void 4300 ill_delete_interface_type(ill_if_t *interface) 4301 { 4302 ASSERT(interface != NULL); 4303 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4304 4305 avl_destroy(&interface->illif_avl_by_ppa); 4306 if (interface->illif_ppa_arena != NULL) 4307 vmem_destroy(interface->illif_ppa_arena); 4308 4309 remque(interface); 4310 4311 mi_free(interface); 4312 } 4313 4314 /* 4315 * remove ill from the global list. 4316 */ 4317 static void 4318 ill_glist_delete(ill_t *ill) 4319 { 4320 hook_nic_event_t *info; 4321 ip_stack_t *ipst; 4322 4323 if (ill == NULL) 4324 return; 4325 ipst = ill->ill_ipst; 4326 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4327 4328 /* 4329 * If the ill was never inserted into the AVL tree 4330 * we skip the if branch. 4331 */ 4332 if (ill->ill_ifptr != NULL) { 4333 /* 4334 * remove from AVL tree and free ppa number 4335 */ 4336 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4337 4338 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4339 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4340 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4341 } 4342 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4343 ill_delete_interface_type(ill->ill_ifptr); 4344 } 4345 4346 /* 4347 * Indicate ill is no longer in the list. 4348 */ 4349 ill->ill_ifptr = NULL; 4350 ill->ill_name_length = 0; 4351 ill->ill_name[0] = '\0'; 4352 ill->ill_ppa = UINT_MAX; 4353 } 4354 4355 /* 4356 * Run the unplumb hook after the NIC has disappeared from being 4357 * visible so that attempts to revalidate its existance will fail. 4358 * 4359 * This needs to be run inside the ill_g_lock perimeter to ensure 4360 * that the ordering of delivered events to listeners matches the 4361 * order of them in the kernel. 4362 */ 4363 info = ill->ill_nic_event_info; 4364 if (info != NULL && info->hne_event == NE_DOWN) { 4365 mutex_enter(&ill->ill_lock); 4366 ill_nic_info_dispatch(ill); 4367 mutex_exit(&ill->ill_lock); 4368 } 4369 4370 /* Generate NE_UNPLUMB event for ill_name. */ 4371 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4372 ill->ill_name_length); 4373 4374 ill_phyint_free(ill); 4375 rw_exit(&ipst->ips_ill_g_lock); 4376 } 4377 4378 /* 4379 * allocate a ppa, if the number of plumbed interfaces of this type are 4380 * less than ill_no_arena do a linear search to find a unused ppa. 4381 * When the number goes beyond ill_no_arena switch to using an arena. 4382 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4383 * is the return value for an error condition, so allocation starts at one 4384 * and is decremented by one. 4385 */ 4386 static int 4387 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4388 { 4389 ill_t *tmp_ill; 4390 uint_t start, end; 4391 int ppa; 4392 4393 if (ifp->illif_ppa_arena == NULL && 4394 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4395 /* 4396 * Create an arena. 4397 */ 4398 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4399 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4400 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4401 /* allocate what has already been assigned */ 4402 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4403 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4404 tmp_ill, AVL_AFTER)) { 4405 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4406 1, /* size */ 4407 1, /* align/quantum */ 4408 0, /* phase */ 4409 0, /* nocross */ 4410 /* minaddr */ 4411 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4412 /* maxaddr */ 4413 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4414 VM_NOSLEEP|VM_FIRSTFIT); 4415 if (ppa == 0) { 4416 ip1dbg(("ill_alloc_ppa: ppa allocation" 4417 " failed while switching")); 4418 vmem_destroy(ifp->illif_ppa_arena); 4419 ifp->illif_ppa_arena = NULL; 4420 break; 4421 } 4422 } 4423 } 4424 4425 if (ifp->illif_ppa_arena != NULL) { 4426 if (ill->ill_ppa == UINT_MAX) { 4427 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4428 1, VM_NOSLEEP|VM_FIRSTFIT); 4429 if (ppa == 0) 4430 return (EAGAIN); 4431 ill->ill_ppa = --ppa; 4432 } else { 4433 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4434 1, /* size */ 4435 1, /* align/quantum */ 4436 0, /* phase */ 4437 0, /* nocross */ 4438 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4439 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4440 VM_NOSLEEP|VM_FIRSTFIT); 4441 /* 4442 * Most likely the allocation failed because 4443 * the requested ppa was in use. 4444 */ 4445 if (ppa == 0) 4446 return (EEXIST); 4447 } 4448 return (0); 4449 } 4450 4451 /* 4452 * No arena is in use and not enough (>ill_no_arena) interfaces have 4453 * been plumbed to create one. Do a linear search to get a unused ppa. 4454 */ 4455 if (ill->ill_ppa == UINT_MAX) { 4456 end = UINT_MAX - 1; 4457 start = 0; 4458 } else { 4459 end = start = ill->ill_ppa; 4460 } 4461 4462 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4463 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4464 if (start++ >= end) { 4465 if (ill->ill_ppa == UINT_MAX) 4466 return (EAGAIN); 4467 else 4468 return (EEXIST); 4469 } 4470 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4471 } 4472 ill->ill_ppa = start; 4473 return (0); 4474 } 4475 4476 /* 4477 * Insert ill into the list of configured ill's. Once this function completes, 4478 * the ill is globally visible and is available through lookups. More precisely 4479 * this happens after the caller drops the ill_g_lock. 4480 */ 4481 static int 4482 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4483 { 4484 ill_if_t *ill_interface; 4485 avl_index_t where = 0; 4486 int error; 4487 int name_length; 4488 int index; 4489 boolean_t check_length = B_FALSE; 4490 ip_stack_t *ipst = ill->ill_ipst; 4491 4492 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4493 4494 name_length = mi_strlen(name) + 1; 4495 4496 if (isv6) 4497 index = IP_V6_G_HEAD; 4498 else 4499 index = IP_V4_G_HEAD; 4500 4501 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4502 /* 4503 * Search for interface type based on name 4504 */ 4505 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4506 if ((ill_interface->illif_name_len == name_length) && 4507 (strcmp(ill_interface->illif_name, name) == 0)) { 4508 break; 4509 } 4510 ill_interface = ill_interface->illif_next; 4511 } 4512 4513 /* 4514 * Interface type not found, create one. 4515 */ 4516 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4517 4518 ill_g_head_t ghead; 4519 4520 /* 4521 * allocate ill_if_t structure 4522 */ 4523 4524 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4525 if (ill_interface == NULL) { 4526 return (ENOMEM); 4527 } 4528 4529 4530 4531 (void) strcpy(ill_interface->illif_name, name); 4532 ill_interface->illif_name_len = name_length; 4533 4534 avl_create(&ill_interface->illif_avl_by_ppa, 4535 ill_compare_ppa, sizeof (ill_t), 4536 offsetof(struct ill_s, ill_avl_byppa)); 4537 4538 /* 4539 * link the structure in the back to maintain order 4540 * of configuration for ifconfig output. 4541 */ 4542 ghead = ipst->ips_ill_g_heads[index]; 4543 insque(ill_interface, ghead.ill_g_list_tail); 4544 4545 } 4546 4547 if (ill->ill_ppa == UINT_MAX) 4548 check_length = B_TRUE; 4549 4550 error = ill_alloc_ppa(ill_interface, ill); 4551 if (error != 0) { 4552 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4553 ill_delete_interface_type(ill->ill_ifptr); 4554 return (error); 4555 } 4556 4557 /* 4558 * When the ppa is choosen by the system, check that there is 4559 * enough space to insert ppa. if a specific ppa was passed in this 4560 * check is not required as the interface name passed in will have 4561 * the right ppa in it. 4562 */ 4563 if (check_length) { 4564 /* 4565 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4566 */ 4567 char buf[sizeof (uint_t) * 3]; 4568 4569 /* 4570 * convert ppa to string to calculate the amount of space 4571 * required for it in the name. 4572 */ 4573 numtos(ill->ill_ppa, buf); 4574 4575 /* Do we have enough space to insert ppa ? */ 4576 4577 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4578 /* Free ppa and interface type struct */ 4579 if (ill_interface->illif_ppa_arena != NULL) { 4580 vmem_free(ill_interface->illif_ppa_arena, 4581 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4582 } 4583 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4584 0) { 4585 ill_delete_interface_type(ill->ill_ifptr); 4586 } 4587 4588 return (EINVAL); 4589 } 4590 } 4591 4592 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4593 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4594 4595 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4596 &where); 4597 ill->ill_ifptr = ill_interface; 4598 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4599 4600 ill_phyint_reinit(ill); 4601 return (0); 4602 } 4603 4604 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4605 static boolean_t 4606 ipsq_init(ill_t *ill) 4607 { 4608 ipsq_t *ipsq; 4609 4610 /* Init the ipsq and impicitly enter as writer */ 4611 ill->ill_phyint->phyint_ipsq = 4612 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4613 if (ill->ill_phyint->phyint_ipsq == NULL) 4614 return (B_FALSE); 4615 ipsq = ill->ill_phyint->phyint_ipsq; 4616 ipsq->ipsq_phyint_list = ill->ill_phyint; 4617 ill->ill_phyint->phyint_ipsq_next = NULL; 4618 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4619 ipsq->ipsq_refs = 1; 4620 ipsq->ipsq_writer = curthread; 4621 ipsq->ipsq_reentry_cnt = 1; 4622 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4623 #ifdef DEBUG 4624 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4625 IPSQ_STACK_DEPTH); 4626 #endif 4627 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4628 return (B_TRUE); 4629 } 4630 4631 /* 4632 * ill_init is called by ip_open when a device control stream is opened. 4633 * It does a few initializations, and shoots a DL_INFO_REQ message down 4634 * to the driver. The response is later picked up in ip_rput_dlpi and 4635 * used to set up default mechanisms for talking to the driver. (Always 4636 * called as writer.) 4637 * 4638 * If this function returns error, ip_open will call ip_close which in 4639 * turn will call ill_delete to clean up any memory allocated here that 4640 * is not yet freed. 4641 */ 4642 int 4643 ill_init(queue_t *q, ill_t *ill) 4644 { 4645 int count; 4646 dl_info_req_t *dlir; 4647 mblk_t *info_mp; 4648 uchar_t *frag_ptr; 4649 4650 /* 4651 * The ill is initialized to zero by mi_alloc*(). In addition 4652 * some fields already contain valid values, initialized in 4653 * ip_open(), before we reach here. 4654 */ 4655 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4656 4657 ill->ill_rq = q; 4658 ill->ill_wq = WR(q); 4659 4660 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4661 BPRI_HI); 4662 if (info_mp == NULL) 4663 return (ENOMEM); 4664 4665 /* 4666 * Allocate sufficient space to contain our fragment hash table and 4667 * the device name. 4668 */ 4669 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4670 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4671 if (frag_ptr == NULL) { 4672 freemsg(info_mp); 4673 return (ENOMEM); 4674 } 4675 ill->ill_frag_ptr = frag_ptr; 4676 ill->ill_frag_free_num_pkts = 0; 4677 ill->ill_last_frag_clean_time = 0; 4678 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4679 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4680 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4681 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4682 NULL, MUTEX_DEFAULT, NULL); 4683 } 4684 4685 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4686 if (ill->ill_phyint == NULL) { 4687 freemsg(info_mp); 4688 mi_free(frag_ptr); 4689 return (ENOMEM); 4690 } 4691 4692 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4693 /* 4694 * For now pretend this is a v4 ill. We need to set phyint_ill* 4695 * at this point because of the following reason. If we can't 4696 * enter the ipsq at some point and cv_wait, the writer that 4697 * wakes us up tries to locate us using the list of all phyints 4698 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4699 * If we don't set it now, we risk a missed wakeup. 4700 */ 4701 ill->ill_phyint->phyint_illv4 = ill; 4702 ill->ill_ppa = UINT_MAX; 4703 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4704 4705 if (!ipsq_init(ill)) { 4706 freemsg(info_mp); 4707 mi_free(frag_ptr); 4708 mi_free(ill->ill_phyint); 4709 return (ENOMEM); 4710 } 4711 4712 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4713 4714 4715 /* Frag queue limit stuff */ 4716 ill->ill_frag_count = 0; 4717 ill->ill_ipf_gen = 0; 4718 4719 ill->ill_global_timer = INFINITY; 4720 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4721 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4722 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4723 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4724 4725 /* 4726 * Initialize IPv6 configuration variables. The IP module is always 4727 * opened as an IPv4 module. Instead tracking down the cases where 4728 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4729 * here for convenience, this has no effect until the ill is set to do 4730 * IPv6. 4731 */ 4732 ill->ill_reachable_time = ND_REACHABLE_TIME; 4733 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4734 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4735 ill->ill_max_buf = ND_MAX_Q; 4736 ill->ill_refcnt = 0; 4737 4738 /* Send down the Info Request to the driver. */ 4739 info_mp->b_datap->db_type = M_PCPROTO; 4740 dlir = (dl_info_req_t *)info_mp->b_rptr; 4741 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4742 dlir->dl_primitive = DL_INFO_REQ; 4743 4744 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4745 4746 qprocson(q); 4747 ill_dlpi_send(ill, info_mp); 4748 4749 return (0); 4750 } 4751 4752 /* 4753 * ill_dls_info 4754 * creates datalink socket info from the device. 4755 */ 4756 int 4757 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4758 { 4759 size_t len; 4760 ill_t *ill = ipif->ipif_ill; 4761 4762 sdl->sdl_family = AF_LINK; 4763 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4764 sdl->sdl_type = ill->ill_type; 4765 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4766 len = strlen(sdl->sdl_data); 4767 ASSERT(len < 256); 4768 sdl->sdl_nlen = (uchar_t)len; 4769 sdl->sdl_alen = ill->ill_phys_addr_length; 4770 sdl->sdl_slen = 0; 4771 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4772 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4773 4774 return (sizeof (struct sockaddr_dl)); 4775 } 4776 4777 /* 4778 * ill_xarp_info 4779 * creates xarp info from the device. 4780 */ 4781 static int 4782 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4783 { 4784 sdl->sdl_family = AF_LINK; 4785 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4786 sdl->sdl_type = ill->ill_type; 4787 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4788 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4789 sdl->sdl_alen = ill->ill_phys_addr_length; 4790 sdl->sdl_slen = 0; 4791 return (sdl->sdl_nlen); 4792 } 4793 4794 static int 4795 loopback_kstat_update(kstat_t *ksp, int rw) 4796 { 4797 kstat_named_t *kn; 4798 netstackid_t stackid; 4799 netstack_t *ns; 4800 ip_stack_t *ipst; 4801 4802 if (ksp == NULL || ksp->ks_data == NULL) 4803 return (EIO); 4804 4805 if (rw == KSTAT_WRITE) 4806 return (EACCES); 4807 4808 kn = KSTAT_NAMED_PTR(ksp); 4809 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4810 4811 ns = netstack_find_by_stackid(stackid); 4812 if (ns == NULL) 4813 return (-1); 4814 4815 ipst = ns->netstack_ip; 4816 if (ipst == NULL) { 4817 netstack_rele(ns); 4818 return (-1); 4819 } 4820 kn[0].value.ui32 = ipst->ips_loopback_packets; 4821 kn[1].value.ui32 = ipst->ips_loopback_packets; 4822 netstack_rele(ns); 4823 return (0); 4824 } 4825 4826 4827 /* 4828 * Has ifindex been plumbed already. 4829 * Compares both phyint_ifindex and phyint_group_ifindex. 4830 */ 4831 static boolean_t 4832 phyint_exists(uint_t index, ip_stack_t *ipst) 4833 { 4834 phyint_t *phyi; 4835 4836 ASSERT(index != 0); 4837 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4838 /* 4839 * Indexes are stored in the phyint - a common structure 4840 * to both IPv4 and IPv6. 4841 */ 4842 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4843 for (; phyi != NULL; 4844 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4845 phyi, AVL_AFTER)) { 4846 if (phyi->phyint_ifindex == index || 4847 phyi->phyint_group_ifindex == index) 4848 return (B_TRUE); 4849 } 4850 return (B_FALSE); 4851 } 4852 4853 /* Pick a unique ifindex */ 4854 boolean_t 4855 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4856 { 4857 uint_t starting_index; 4858 4859 if (!ipst->ips_ill_index_wrap) { 4860 *indexp = ipst->ips_ill_index++; 4861 if (ipst->ips_ill_index == 0) { 4862 /* Reached the uint_t limit Next time wrap */ 4863 ipst->ips_ill_index_wrap = B_TRUE; 4864 } 4865 return (B_TRUE); 4866 } 4867 4868 /* 4869 * Start reusing unused indexes. Note that we hold the ill_g_lock 4870 * at this point and don't want to call any function that attempts 4871 * to get the lock again. 4872 */ 4873 starting_index = ipst->ips_ill_index++; 4874 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4875 if (ipst->ips_ill_index != 0 && 4876 !phyint_exists(ipst->ips_ill_index, ipst)) { 4877 /* found unused index - use it */ 4878 *indexp = ipst->ips_ill_index; 4879 return (B_TRUE); 4880 } 4881 } 4882 4883 /* 4884 * all interface indicies are inuse. 4885 */ 4886 return (B_FALSE); 4887 } 4888 4889 /* 4890 * Assign a unique interface index for the phyint. 4891 */ 4892 static boolean_t 4893 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4894 { 4895 ASSERT(phyi->phyint_ifindex == 0); 4896 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4897 } 4898 4899 /* 4900 * Return a pointer to the ill which matches the supplied name. Note that 4901 * the ill name length includes the null termination character. (May be 4902 * called as writer.) 4903 * If do_alloc and the interface is "lo0" it will be automatically created. 4904 * Cannot bump up reference on condemned ills. So dup detect can't be done 4905 * using this func. 4906 */ 4907 ill_t * 4908 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4909 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4910 ip_stack_t *ipst) 4911 { 4912 ill_t *ill; 4913 ipif_t *ipif; 4914 kstat_named_t *kn; 4915 boolean_t isloopback; 4916 ipsq_t *old_ipsq; 4917 in6_addr_t ov6addr; 4918 4919 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4920 4921 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4922 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4923 rw_exit(&ipst->ips_ill_g_lock); 4924 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4925 return (ill); 4926 4927 /* 4928 * Couldn't find it. Does this happen to be a lookup for the 4929 * loopback device and are we allowed to allocate it? 4930 */ 4931 if (!isloopback || !do_alloc) 4932 return (NULL); 4933 4934 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4935 4936 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4937 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4938 rw_exit(&ipst->ips_ill_g_lock); 4939 return (ill); 4940 } 4941 4942 /* Create the loopback device on demand */ 4943 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4944 sizeof (ipif_loopback_name), BPRI_MED)); 4945 if (ill == NULL) 4946 goto done; 4947 4948 *ill = ill_null; 4949 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4950 ill->ill_ipst = ipst; 4951 netstack_hold(ipst->ips_netstack); 4952 /* 4953 * For exclusive stacks we set the zoneid to zero 4954 * to make IP operate as if in the global zone. 4955 */ 4956 ill->ill_zoneid = GLOBAL_ZONEID; 4957 4958 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4959 if (ill->ill_phyint == NULL) 4960 goto done; 4961 4962 if (isv6) 4963 ill->ill_phyint->phyint_illv6 = ill; 4964 else 4965 ill->ill_phyint->phyint_illv4 = ill; 4966 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4967 ill->ill_max_frag = IP_LOOPBACK_MTU; 4968 /* Add room for tcp+ip headers */ 4969 if (isv6) { 4970 ill->ill_isv6 = B_TRUE; 4971 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4972 } else { 4973 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4974 } 4975 if (!ill_allocate_mibs(ill)) 4976 goto done; 4977 ill->ill_max_mtu = ill->ill_max_frag; 4978 /* 4979 * ipif_loopback_name can't be pointed at directly because its used 4980 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4981 * from the glist, ill_glist_delete() sets the first character of 4982 * ill_name to '\0'. 4983 */ 4984 ill->ill_name = (char *)ill + sizeof (*ill); 4985 (void) strcpy(ill->ill_name, ipif_loopback_name); 4986 ill->ill_name_length = sizeof (ipif_loopback_name); 4987 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4988 4989 ill->ill_global_timer = INFINITY; 4990 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4991 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4992 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4993 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4994 4995 /* No resolver here. */ 4996 ill->ill_net_type = IRE_LOOPBACK; 4997 4998 /* Initialize the ipsq */ 4999 if (!ipsq_init(ill)) 5000 goto done; 5001 5002 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5003 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5004 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5005 #ifdef DEBUG 5006 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5007 #endif 5008 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5009 if (ipif == NULL) 5010 goto done; 5011 5012 ill->ill_flags = ILLF_MULTICAST; 5013 5014 ov6addr = ipif->ipif_v6lcl_addr; 5015 /* Set up default loopback address and mask. */ 5016 if (!isv6) { 5017 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5018 5019 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5020 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5021 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5022 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5023 ipif->ipif_v6subnet); 5024 ill->ill_flags |= ILLF_IPV4; 5025 } else { 5026 ipif->ipif_v6lcl_addr = ipv6_loopback; 5027 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5028 ipif->ipif_v6net_mask = ipv6_all_ones; 5029 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5030 ipif->ipif_v6subnet); 5031 ill->ill_flags |= ILLF_IPV6; 5032 } 5033 5034 /* 5035 * Chain us in at the end of the ill list. hold the ill 5036 * before we make it globally visible. 1 for the lookup. 5037 */ 5038 ill->ill_refcnt = 0; 5039 ill_refhold(ill); 5040 5041 ill->ill_frag_count = 0; 5042 ill->ill_frag_free_num_pkts = 0; 5043 ill->ill_last_frag_clean_time = 0; 5044 5045 old_ipsq = ill->ill_phyint->phyint_ipsq; 5046 5047 if (ill_glist_insert(ill, "lo", isv6) != 0) 5048 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5049 5050 /* Let SCTP know so that it can add this to its list */ 5051 sctp_update_ill(ill, SCTP_ILL_INSERT); 5052 5053 /* 5054 * We have already assigned ipif_v6lcl_addr above, but we need to 5055 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5056 * requires to be after ill_glist_insert() since we need the 5057 * ill_index set. Pass on ipv6_loopback as the old address. 5058 */ 5059 sctp_update_ipif_addr(ipif, ov6addr); 5060 5061 /* 5062 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5063 */ 5064 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5065 /* Loopback ills aren't in any IPMP group */ 5066 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5067 ipsq_delete(old_ipsq); 5068 } 5069 5070 /* 5071 * Delay this till the ipif is allocated as ipif_allocate 5072 * de-references ill_phyint for getting the ifindex. We 5073 * can't do this before ipif_allocate because ill_phyint_reinit 5074 * -> phyint_assign_ifindex expects ipif to be present. 5075 */ 5076 mutex_enter(&ill->ill_phyint->phyint_lock); 5077 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5078 mutex_exit(&ill->ill_phyint->phyint_lock); 5079 5080 if (ipst->ips_loopback_ksp == NULL) { 5081 /* Export loopback interface statistics */ 5082 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5083 ipif_loopback_name, "net", 5084 KSTAT_TYPE_NAMED, 2, 0, 5085 ipst->ips_netstack->netstack_stackid); 5086 if (ipst->ips_loopback_ksp != NULL) { 5087 ipst->ips_loopback_ksp->ks_update = 5088 loopback_kstat_update; 5089 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5090 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5091 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5092 ipst->ips_loopback_ksp->ks_private = 5093 (void *)(uintptr_t)ipst->ips_netstack-> 5094 netstack_stackid; 5095 kstat_install(ipst->ips_loopback_ksp); 5096 } 5097 } 5098 5099 if (error != NULL) 5100 *error = 0; 5101 *did_alloc = B_TRUE; 5102 rw_exit(&ipst->ips_ill_g_lock); 5103 return (ill); 5104 done: 5105 if (ill != NULL) { 5106 if (ill->ill_phyint != NULL) { 5107 ipsq_t *ipsq; 5108 5109 ipsq = ill->ill_phyint->phyint_ipsq; 5110 if (ipsq != NULL) { 5111 ipsq->ipsq_ipst = NULL; 5112 kmem_free(ipsq, sizeof (ipsq_t)); 5113 } 5114 mi_free(ill->ill_phyint); 5115 } 5116 ill_free_mib(ill); 5117 if (ill->ill_ipst != NULL) 5118 netstack_rele(ill->ill_ipst->ips_netstack); 5119 mi_free(ill); 5120 } 5121 rw_exit(&ipst->ips_ill_g_lock); 5122 if (error != NULL) 5123 *error = ENOMEM; 5124 return (NULL); 5125 } 5126 5127 /* 5128 * For IPP calls - use the ip_stack_t for global stack. 5129 */ 5130 ill_t * 5131 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5132 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5133 { 5134 ip_stack_t *ipst; 5135 ill_t *ill; 5136 5137 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5138 if (ipst == NULL) { 5139 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5140 return (NULL); 5141 } 5142 5143 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5144 netstack_rele(ipst->ips_netstack); 5145 return (ill); 5146 } 5147 5148 /* 5149 * Return a pointer to the ill which matches the index and IP version type. 5150 */ 5151 ill_t * 5152 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5153 ipsq_func_t func, int *err, ip_stack_t *ipst) 5154 { 5155 ill_t *ill; 5156 ipsq_t *ipsq; 5157 phyint_t *phyi; 5158 5159 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5160 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5161 5162 if (err != NULL) 5163 *err = 0; 5164 5165 /* 5166 * Indexes are stored in the phyint - a common structure 5167 * to both IPv4 and IPv6. 5168 */ 5169 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5170 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5171 (void *) &index, NULL); 5172 if (phyi != NULL) { 5173 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5174 if (ill != NULL) { 5175 /* 5176 * The block comment at the start of ipif_down 5177 * explains the use of the macros used below 5178 */ 5179 GRAB_CONN_LOCK(q); 5180 mutex_enter(&ill->ill_lock); 5181 if (ILL_CAN_LOOKUP(ill)) { 5182 ill_refhold_locked(ill); 5183 mutex_exit(&ill->ill_lock); 5184 RELEASE_CONN_LOCK(q); 5185 rw_exit(&ipst->ips_ill_g_lock); 5186 return (ill); 5187 } else if (ILL_CAN_WAIT(ill, q)) { 5188 ipsq = ill->ill_phyint->phyint_ipsq; 5189 mutex_enter(&ipsq->ipsq_lock); 5190 rw_exit(&ipst->ips_ill_g_lock); 5191 mutex_exit(&ill->ill_lock); 5192 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5193 mutex_exit(&ipsq->ipsq_lock); 5194 RELEASE_CONN_LOCK(q); 5195 if (err != NULL) 5196 *err = EINPROGRESS; 5197 return (NULL); 5198 } 5199 RELEASE_CONN_LOCK(q); 5200 mutex_exit(&ill->ill_lock); 5201 } 5202 } 5203 rw_exit(&ipst->ips_ill_g_lock); 5204 if (err != NULL) 5205 *err = ENXIO; 5206 return (NULL); 5207 } 5208 5209 /* 5210 * Return the ifindex next in sequence after the passed in ifindex. 5211 * If there is no next ifindex for the given protocol, return 0. 5212 */ 5213 uint_t 5214 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5215 { 5216 phyint_t *phyi; 5217 phyint_t *phyi_initial; 5218 uint_t ifindex; 5219 5220 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5221 5222 if (index == 0) { 5223 phyi = avl_first( 5224 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5225 } else { 5226 phyi = phyi_initial = avl_find( 5227 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5228 (void *) &index, NULL); 5229 } 5230 5231 for (; phyi != NULL; 5232 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5233 phyi, AVL_AFTER)) { 5234 /* 5235 * If we're not returning the first interface in the tree 5236 * and we still haven't moved past the phyint_t that 5237 * corresponds to index, avl_walk needs to be called again 5238 */ 5239 if (!((index != 0) && (phyi == phyi_initial))) { 5240 if (isv6) { 5241 if ((phyi->phyint_illv6) && 5242 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5243 (phyi->phyint_illv6->ill_isv6 == 1)) 5244 break; 5245 } else { 5246 if ((phyi->phyint_illv4) && 5247 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5248 (phyi->phyint_illv4->ill_isv6 == 0)) 5249 break; 5250 } 5251 } 5252 } 5253 5254 rw_exit(&ipst->ips_ill_g_lock); 5255 5256 if (phyi != NULL) 5257 ifindex = phyi->phyint_ifindex; 5258 else 5259 ifindex = 0; 5260 5261 return (ifindex); 5262 } 5263 5264 5265 /* 5266 * Return the ifindex for the named interface. 5267 * If there is no next ifindex for the interface, return 0. 5268 */ 5269 uint_t 5270 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5271 { 5272 phyint_t *phyi; 5273 avl_index_t where = 0; 5274 uint_t ifindex; 5275 5276 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5277 5278 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5279 name, &where)) == NULL) { 5280 rw_exit(&ipst->ips_ill_g_lock); 5281 return (0); 5282 } 5283 5284 ifindex = phyi->phyint_ifindex; 5285 5286 rw_exit(&ipst->ips_ill_g_lock); 5287 5288 return (ifindex); 5289 } 5290 5291 5292 /* 5293 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5294 * that gives a running thread a reference to the ill. This reference must be 5295 * released by the thread when it is done accessing the ill and related 5296 * objects. ill_refcnt can not be used to account for static references 5297 * such as other structures pointing to an ill. Callers must generally 5298 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5299 * or be sure that the ill is not being deleted or changing state before 5300 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5301 * ill won't change any of its critical state such as address, netmask etc. 5302 */ 5303 void 5304 ill_refhold(ill_t *ill) 5305 { 5306 mutex_enter(&ill->ill_lock); 5307 ill->ill_refcnt++; 5308 ILL_TRACE_REF(ill); 5309 mutex_exit(&ill->ill_lock); 5310 } 5311 5312 void 5313 ill_refhold_locked(ill_t *ill) 5314 { 5315 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5316 ill->ill_refcnt++; 5317 ILL_TRACE_REF(ill); 5318 } 5319 5320 int 5321 ill_check_and_refhold(ill_t *ill) 5322 { 5323 mutex_enter(&ill->ill_lock); 5324 if (ILL_CAN_LOOKUP(ill)) { 5325 ill_refhold_locked(ill); 5326 mutex_exit(&ill->ill_lock); 5327 return (0); 5328 } 5329 mutex_exit(&ill->ill_lock); 5330 return (ILL_LOOKUP_FAILED); 5331 } 5332 5333 /* 5334 * Must not be called while holding any locks. Otherwise if this is 5335 * the last reference to be released, there is a chance of recursive mutex 5336 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5337 * to restart an ioctl. 5338 */ 5339 void 5340 ill_refrele(ill_t *ill) 5341 { 5342 mutex_enter(&ill->ill_lock); 5343 ASSERT(ill->ill_refcnt != 0); 5344 ill->ill_refcnt--; 5345 ILL_UNTRACE_REF(ill); 5346 if (ill->ill_refcnt != 0) { 5347 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5348 mutex_exit(&ill->ill_lock); 5349 return; 5350 } 5351 5352 /* Drops the ill_lock */ 5353 ipif_ill_refrele_tail(ill); 5354 } 5355 5356 /* 5357 * Obtain a weak reference count on the ill. This reference ensures the 5358 * ill won't be freed, but the ill may change any of its critical state 5359 * such as netmask, address etc. Returns an error if the ill has started 5360 * closing. 5361 */ 5362 boolean_t 5363 ill_waiter_inc(ill_t *ill) 5364 { 5365 mutex_enter(&ill->ill_lock); 5366 if (ill->ill_state_flags & ILL_CONDEMNED) { 5367 mutex_exit(&ill->ill_lock); 5368 return (B_FALSE); 5369 } 5370 ill->ill_waiters++; 5371 mutex_exit(&ill->ill_lock); 5372 return (B_TRUE); 5373 } 5374 5375 void 5376 ill_waiter_dcr(ill_t *ill) 5377 { 5378 mutex_enter(&ill->ill_lock); 5379 ill->ill_waiters--; 5380 if (ill->ill_waiters == 0) 5381 cv_broadcast(&ill->ill_cv); 5382 mutex_exit(&ill->ill_lock); 5383 } 5384 5385 /* 5386 * Named Dispatch routine to produce a formatted report on all ILLs. 5387 * This report is accessed by using the ndd utility to "get" ND variable 5388 * "ip_ill_status". 5389 */ 5390 /* ARGSUSED */ 5391 int 5392 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5393 { 5394 ill_t *ill; 5395 ill_walk_context_t ctx; 5396 ip_stack_t *ipst; 5397 5398 ipst = CONNQ_TO_IPST(q); 5399 5400 (void) mi_mpprintf(mp, 5401 "ILL " MI_COL_HDRPAD_STR 5402 /* 01234567[89ABCDEF] */ 5403 "rq " MI_COL_HDRPAD_STR 5404 /* 01234567[89ABCDEF] */ 5405 "wq " MI_COL_HDRPAD_STR 5406 /* 01234567[89ABCDEF] */ 5407 "upcnt mxfrg err name"); 5408 /* 12345 12345 123 xxxxxxxx */ 5409 5410 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5411 ill = ILL_START_WALK_ALL(&ctx, ipst); 5412 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5413 (void) mi_mpprintf(mp, 5414 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5415 "%05u %05u %03d %s", 5416 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5417 ill->ill_ipif_up_count, 5418 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5419 } 5420 rw_exit(&ipst->ips_ill_g_lock); 5421 5422 return (0); 5423 } 5424 5425 /* 5426 * Named Dispatch routine to produce a formatted report on all IPIFs. 5427 * This report is accessed by using the ndd utility to "get" ND variable 5428 * "ip_ipif_status". 5429 */ 5430 /* ARGSUSED */ 5431 int 5432 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5433 { 5434 char buf1[INET6_ADDRSTRLEN]; 5435 char buf2[INET6_ADDRSTRLEN]; 5436 char buf3[INET6_ADDRSTRLEN]; 5437 char buf4[INET6_ADDRSTRLEN]; 5438 char buf5[INET6_ADDRSTRLEN]; 5439 char buf6[INET6_ADDRSTRLEN]; 5440 char buf[LIFNAMSIZ]; 5441 ill_t *ill; 5442 ipif_t *ipif; 5443 nv_t *nvp; 5444 uint64_t flags; 5445 zoneid_t zoneid; 5446 ill_walk_context_t ctx; 5447 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5448 5449 (void) mi_mpprintf(mp, 5450 "IPIF metric mtu in/out/forward name zone flags...\n" 5451 "\tlocal address\n" 5452 "\tsrc address\n" 5453 "\tsubnet\n" 5454 "\tmask\n" 5455 "\tbroadcast\n" 5456 "\tp-p-dst"); 5457 5458 ASSERT(q->q_next == NULL); 5459 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5460 5461 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5462 ill = ILL_START_WALK_ALL(&ctx, ipst); 5463 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5464 for (ipif = ill->ill_ipif; ipif != NULL; 5465 ipif = ipif->ipif_next) { 5466 if (zoneid != GLOBAL_ZONEID && 5467 zoneid != ipif->ipif_zoneid && 5468 ipif->ipif_zoneid != ALL_ZONES) 5469 continue; 5470 5471 ipif_get_name(ipif, buf, sizeof (buf)); 5472 (void) mi_mpprintf(mp, 5473 MI_COL_PTRFMT_STR 5474 "%04u %05u %u/%u/%u %s %d", 5475 (void *)ipif, 5476 ipif->ipif_metric, ipif->ipif_mtu, 5477 ipif->ipif_ib_pkt_count, 5478 ipif->ipif_ob_pkt_count, 5479 ipif->ipif_fo_pkt_count, 5480 buf, 5481 ipif->ipif_zoneid); 5482 5483 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5484 ipif->ipif_ill->ill_phyint->phyint_flags; 5485 5486 /* Tack on text strings for any flags. */ 5487 nvp = ipif_nv_tbl; 5488 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5489 if (nvp->nv_value & flags) 5490 (void) mi_mpprintf_nr(mp, " %s", 5491 nvp->nv_name); 5492 } 5493 (void) mi_mpprintf(mp, 5494 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5495 inet_ntop(AF_INET6, 5496 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5497 inet_ntop(AF_INET6, 5498 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5499 inet_ntop(AF_INET6, 5500 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5501 inet_ntop(AF_INET6, 5502 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5503 inet_ntop(AF_INET6, 5504 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5505 inet_ntop(AF_INET6, 5506 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5507 } 5508 } 5509 rw_exit(&ipst->ips_ill_g_lock); 5510 return (0); 5511 } 5512 5513 /* 5514 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5515 * driver. We construct best guess defaults for lower level information that 5516 * we need. If an interface is brought up without injection of any overriding 5517 * information from outside, we have to be ready to go with these defaults. 5518 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5519 * we primarely want the dl_provider_style. 5520 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5521 * at which point we assume the other part of the information is valid. 5522 */ 5523 void 5524 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5525 { 5526 uchar_t *brdcst_addr; 5527 uint_t brdcst_addr_length, phys_addr_length; 5528 t_scalar_t sap_length; 5529 dl_info_ack_t *dlia; 5530 ip_m_t *ipm; 5531 dl_qos_cl_sel1_t *sel1; 5532 5533 ASSERT(IAM_WRITER_ILL(ill)); 5534 5535 /* 5536 * Till the ill is fully up ILL_CHANGING will be set and 5537 * the ill is not globally visible. So no need for a lock. 5538 */ 5539 dlia = (dl_info_ack_t *)mp->b_rptr; 5540 ill->ill_mactype = dlia->dl_mac_type; 5541 5542 ipm = ip_m_lookup(dlia->dl_mac_type); 5543 if (ipm == NULL) { 5544 ipm = ip_m_lookup(DL_OTHER); 5545 ASSERT(ipm != NULL); 5546 } 5547 ill->ill_media = ipm; 5548 5549 /* 5550 * When the new DLPI stuff is ready we'll pull lengths 5551 * from dlia. 5552 */ 5553 if (dlia->dl_version == DL_VERSION_2) { 5554 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5555 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5556 brdcst_addr_length); 5557 if (brdcst_addr == NULL) { 5558 brdcst_addr_length = 0; 5559 } 5560 sap_length = dlia->dl_sap_length; 5561 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5562 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5563 brdcst_addr_length, sap_length, phys_addr_length)); 5564 } else { 5565 brdcst_addr_length = 6; 5566 brdcst_addr = ip_six_byte_all_ones; 5567 sap_length = -2; 5568 phys_addr_length = brdcst_addr_length; 5569 } 5570 5571 ill->ill_bcast_addr_length = brdcst_addr_length; 5572 ill->ill_phys_addr_length = phys_addr_length; 5573 ill->ill_sap_length = sap_length; 5574 ill->ill_max_frag = dlia->dl_max_sdu; 5575 ill->ill_max_mtu = ill->ill_max_frag; 5576 5577 ill->ill_type = ipm->ip_m_type; 5578 5579 if (!ill->ill_dlpi_style_set) { 5580 if (dlia->dl_provider_style == DL_STYLE2) 5581 ill->ill_needs_attach = 1; 5582 5583 /* 5584 * Allocate the first ipif on this ill. We don't delay it 5585 * further as ioctl handling assumes atleast one ipif to 5586 * be present. 5587 * 5588 * At this point we don't know whether the ill is v4 or v6. 5589 * We will know this whan the SIOCSLIFNAME happens and 5590 * the correct value for ill_isv6 will be assigned in 5591 * ipif_set_values(). We need to hold the ill lock and 5592 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5593 * the wakeup. 5594 */ 5595 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5596 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5597 mutex_enter(&ill->ill_lock); 5598 ASSERT(ill->ill_dlpi_style_set == 0); 5599 ill->ill_dlpi_style_set = 1; 5600 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5601 cv_broadcast(&ill->ill_cv); 5602 mutex_exit(&ill->ill_lock); 5603 freemsg(mp); 5604 return; 5605 } 5606 ASSERT(ill->ill_ipif != NULL); 5607 /* 5608 * We know whether it is IPv4 or IPv6 now, as this is the 5609 * second DL_INFO_ACK we are recieving in response to the 5610 * DL_INFO_REQ sent in ipif_set_values. 5611 */ 5612 if (ill->ill_isv6) 5613 ill->ill_sap = IP6_DL_SAP; 5614 else 5615 ill->ill_sap = IP_DL_SAP; 5616 /* 5617 * Set ipif_mtu which is used to set the IRE's 5618 * ire_max_frag value. The driver could have sent 5619 * a different mtu from what it sent last time. No 5620 * need to call ipif_mtu_change because IREs have 5621 * not yet been created. 5622 */ 5623 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5624 /* 5625 * Clear all the flags that were set based on ill_bcast_addr_length 5626 * and ill_phys_addr_length (in ipif_set_values) as these could have 5627 * changed now and we need to re-evaluate. 5628 */ 5629 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5630 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5631 5632 /* 5633 * Free ill_resolver_mp and ill_bcast_mp as things could have 5634 * changed now. 5635 */ 5636 if (ill->ill_bcast_addr_length == 0) { 5637 if (ill->ill_resolver_mp != NULL) 5638 freemsg(ill->ill_resolver_mp); 5639 if (ill->ill_bcast_mp != NULL) 5640 freemsg(ill->ill_bcast_mp); 5641 if (ill->ill_flags & ILLF_XRESOLV) 5642 ill->ill_net_type = IRE_IF_RESOLVER; 5643 else 5644 ill->ill_net_type = IRE_IF_NORESOLVER; 5645 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5646 ill->ill_phys_addr_length, 5647 ill->ill_sap, 5648 ill->ill_sap_length); 5649 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5650 5651 if (ill->ill_isv6) 5652 /* 5653 * Note: xresolv interfaces will eventually need NOARP 5654 * set here as well, but that will require those 5655 * external resolvers to have some knowledge of 5656 * that flag and act appropriately. Not to be changed 5657 * at present. 5658 */ 5659 ill->ill_flags |= ILLF_NONUD; 5660 else 5661 ill->ill_flags |= ILLF_NOARP; 5662 5663 if (ill->ill_phys_addr_length == 0) { 5664 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5665 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5666 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5667 } else { 5668 /* pt-pt supports multicast. */ 5669 ill->ill_flags |= ILLF_MULTICAST; 5670 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5671 } 5672 } 5673 } else { 5674 ill->ill_net_type = IRE_IF_RESOLVER; 5675 if (ill->ill_bcast_mp != NULL) 5676 freemsg(ill->ill_bcast_mp); 5677 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5678 ill->ill_bcast_addr_length, ill->ill_sap, 5679 ill->ill_sap_length); 5680 /* 5681 * Later detect lack of DLPI driver multicast 5682 * capability by catching DL_ENABMULTI errors in 5683 * ip_rput_dlpi. 5684 */ 5685 ill->ill_flags |= ILLF_MULTICAST; 5686 if (!ill->ill_isv6) 5687 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5688 } 5689 /* By default an interface does not support any CoS marking */ 5690 ill->ill_flags &= ~ILLF_COS_ENABLED; 5691 5692 /* 5693 * If we get QoS information in DL_INFO_ACK, the device supports 5694 * some form of CoS marking, set ILLF_COS_ENABLED. 5695 */ 5696 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5697 dlia->dl_qos_length); 5698 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5699 ill->ill_flags |= ILLF_COS_ENABLED; 5700 } 5701 5702 /* Clear any previous error indication. */ 5703 ill->ill_error = 0; 5704 freemsg(mp); 5705 } 5706 5707 /* 5708 * Perform various checks to verify that an address would make sense as a 5709 * local, remote, or subnet interface address. 5710 */ 5711 static boolean_t 5712 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5713 { 5714 ipaddr_t net_mask; 5715 5716 /* 5717 * Don't allow all zeroes, or all ones, but allow 5718 * all ones netmask. 5719 */ 5720 if ((net_mask = ip_net_mask(addr)) == 0) 5721 return (B_FALSE); 5722 /* A given netmask overrides the "guess" netmask */ 5723 if (subnet_mask != 0) 5724 net_mask = subnet_mask; 5725 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5726 (addr == (addr | ~net_mask)))) { 5727 return (B_FALSE); 5728 } 5729 5730 /* 5731 * Even if the netmask is all ones, we do not allow address to be 5732 * 255.255.255.255 5733 */ 5734 if (addr == INADDR_BROADCAST) 5735 return (B_FALSE); 5736 5737 if (CLASSD(addr)) 5738 return (B_FALSE); 5739 5740 return (B_TRUE); 5741 } 5742 5743 #define V6_IPIF_LINKLOCAL(p) \ 5744 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5745 5746 /* 5747 * Compare two given ipifs and check if the second one is better than 5748 * the first one using the order of preference (not taking deprecated 5749 * into acount) specified in ipif_lookup_multicast(). 5750 */ 5751 static boolean_t 5752 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5753 { 5754 /* Check the least preferred first. */ 5755 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5756 /* If both ipifs are the same, use the first one. */ 5757 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5758 return (B_FALSE); 5759 else 5760 return (B_TRUE); 5761 } 5762 5763 /* For IPv6, check for link local address. */ 5764 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5765 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5766 V6_IPIF_LINKLOCAL(new_ipif)) { 5767 /* The second one is equal or less preferred. */ 5768 return (B_FALSE); 5769 } else { 5770 return (B_TRUE); 5771 } 5772 } 5773 5774 /* Then check for point to point interface. */ 5775 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5776 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5777 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5778 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5779 return (B_FALSE); 5780 } else { 5781 return (B_TRUE); 5782 } 5783 } 5784 5785 /* old_ipif is a normal interface, so no need to use the new one. */ 5786 return (B_FALSE); 5787 } 5788 5789 /* 5790 * Find any non-virtual, not condemned, and up multicast capable interface 5791 * given an IP instance and zoneid. Order of preference is: 5792 * 5793 * 1. normal 5794 * 1.1 normal, but deprecated 5795 * 2. point to point 5796 * 2.1 point to point, but deprecated 5797 * 3. link local 5798 * 3.1 link local, but deprecated 5799 * 4. loopback. 5800 */ 5801 ipif_t * 5802 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5803 { 5804 ill_t *ill; 5805 ill_walk_context_t ctx; 5806 ipif_t *ipif; 5807 ipif_t *saved_ipif = NULL; 5808 ipif_t *dep_ipif = NULL; 5809 5810 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5811 if (isv6) 5812 ill = ILL_START_WALK_V6(&ctx, ipst); 5813 else 5814 ill = ILL_START_WALK_V4(&ctx, ipst); 5815 5816 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5817 mutex_enter(&ill->ill_lock); 5818 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5819 !(ill->ill_flags & ILLF_MULTICAST)) { 5820 mutex_exit(&ill->ill_lock); 5821 continue; 5822 } 5823 for (ipif = ill->ill_ipif; ipif != NULL; 5824 ipif = ipif->ipif_next) { 5825 if (zoneid != ipif->ipif_zoneid && 5826 zoneid != ALL_ZONES && 5827 ipif->ipif_zoneid != ALL_ZONES) { 5828 continue; 5829 } 5830 if (!(ipif->ipif_flags & IPIF_UP) || 5831 !IPIF_CAN_LOOKUP(ipif)) { 5832 continue; 5833 } 5834 5835 /* 5836 * Found one candidate. If it is deprecated, 5837 * remember it in dep_ipif. If it is not deprecated, 5838 * remember it in saved_ipif. 5839 */ 5840 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5841 if (dep_ipif == NULL) { 5842 dep_ipif = ipif; 5843 } else if (ipif_comp_multi(dep_ipif, ipif, 5844 isv6)) { 5845 /* 5846 * If the previous dep_ipif does not 5847 * belong to the same ill, we've done 5848 * a ipif_refhold() on it. So we need 5849 * to release it. 5850 */ 5851 if (dep_ipif->ipif_ill != ill) 5852 ipif_refrele(dep_ipif); 5853 dep_ipif = ipif; 5854 } 5855 continue; 5856 } 5857 if (saved_ipif == NULL) { 5858 saved_ipif = ipif; 5859 } else { 5860 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5861 if (saved_ipif->ipif_ill != ill) 5862 ipif_refrele(saved_ipif); 5863 saved_ipif = ipif; 5864 } 5865 } 5866 } 5867 /* 5868 * Before going to the next ill, do a ipif_refhold() on the 5869 * saved ones. 5870 */ 5871 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5872 ipif_refhold_locked(saved_ipif); 5873 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5874 ipif_refhold_locked(dep_ipif); 5875 mutex_exit(&ill->ill_lock); 5876 } 5877 rw_exit(&ipst->ips_ill_g_lock); 5878 5879 /* 5880 * If we have only the saved_ipif, return it. But if we have both 5881 * saved_ipif and dep_ipif, check to see which one is better. 5882 */ 5883 if (saved_ipif != NULL) { 5884 if (dep_ipif != NULL) { 5885 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5886 ipif_refrele(saved_ipif); 5887 return (dep_ipif); 5888 } else { 5889 ipif_refrele(dep_ipif); 5890 return (saved_ipif); 5891 } 5892 } 5893 return (saved_ipif); 5894 } else { 5895 return (dep_ipif); 5896 } 5897 } 5898 5899 /* 5900 * This function is called when an application does not specify an interface 5901 * to be used for multicast traffic (joining a group/sending data). It 5902 * calls ire_lookup_multi() to look for an interface route for the 5903 * specified multicast group. Doing this allows the administrator to add 5904 * prefix routes for multicast to indicate which interface to be used for 5905 * multicast traffic in the above scenario. The route could be for all 5906 * multicast (224.0/4), for a single multicast group (a /32 route) or 5907 * anything in between. If there is no such multicast route, we just find 5908 * any multicast capable interface and return it. The returned ipif 5909 * is refhold'ed. 5910 */ 5911 ipif_t * 5912 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5913 { 5914 ire_t *ire; 5915 ipif_t *ipif; 5916 5917 ire = ire_lookup_multi(group, zoneid, ipst); 5918 if (ire != NULL) { 5919 ipif = ire->ire_ipif; 5920 ipif_refhold(ipif); 5921 ire_refrele(ire); 5922 return (ipif); 5923 } 5924 5925 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5926 } 5927 5928 /* 5929 * Look for an ipif with the specified interface address and destination. 5930 * The destination address is used only for matching point-to-point interfaces. 5931 */ 5932 ipif_t * 5933 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5934 ipsq_func_t func, int *error, ip_stack_t *ipst) 5935 { 5936 ipif_t *ipif; 5937 ill_t *ill; 5938 ill_walk_context_t ctx; 5939 ipsq_t *ipsq; 5940 5941 if (error != NULL) 5942 *error = 0; 5943 5944 /* 5945 * First match all the point-to-point interfaces 5946 * before looking at non-point-to-point interfaces. 5947 * This is done to avoid returning non-point-to-point 5948 * ipif instead of unnumbered point-to-point ipif. 5949 */ 5950 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5951 ill = ILL_START_WALK_V4(&ctx, ipst); 5952 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5953 GRAB_CONN_LOCK(q); 5954 mutex_enter(&ill->ill_lock); 5955 for (ipif = ill->ill_ipif; ipif != NULL; 5956 ipif = ipif->ipif_next) { 5957 /* Allow the ipif to be down */ 5958 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5959 (ipif->ipif_lcl_addr == if_addr) && 5960 (ipif->ipif_pp_dst_addr == dst)) { 5961 /* 5962 * The block comment at the start of ipif_down 5963 * explains the use of the macros used below 5964 */ 5965 if (IPIF_CAN_LOOKUP(ipif)) { 5966 ipif_refhold_locked(ipif); 5967 mutex_exit(&ill->ill_lock); 5968 RELEASE_CONN_LOCK(q); 5969 rw_exit(&ipst->ips_ill_g_lock); 5970 return (ipif); 5971 } else if (IPIF_CAN_WAIT(ipif, q)) { 5972 ipsq = ill->ill_phyint->phyint_ipsq; 5973 mutex_enter(&ipsq->ipsq_lock); 5974 mutex_exit(&ill->ill_lock); 5975 rw_exit(&ipst->ips_ill_g_lock); 5976 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5977 ill); 5978 mutex_exit(&ipsq->ipsq_lock); 5979 RELEASE_CONN_LOCK(q); 5980 if (error != NULL) 5981 *error = EINPROGRESS; 5982 return (NULL); 5983 } 5984 } 5985 } 5986 mutex_exit(&ill->ill_lock); 5987 RELEASE_CONN_LOCK(q); 5988 } 5989 rw_exit(&ipst->ips_ill_g_lock); 5990 5991 /* lookup the ipif based on interface address */ 5992 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5993 ipst); 5994 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5995 return (ipif); 5996 } 5997 5998 /* 5999 * Look for an ipif with the specified address. For point-point links 6000 * we look for matches on either the destination address and the local 6001 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6002 * is set. 6003 * Matches on a specific ill if match_ill is set. 6004 */ 6005 ipif_t * 6006 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6007 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6008 { 6009 ipif_t *ipif; 6010 ill_t *ill; 6011 boolean_t ptp = B_FALSE; 6012 ipsq_t *ipsq; 6013 ill_walk_context_t ctx; 6014 6015 if (error != NULL) 6016 *error = 0; 6017 6018 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6019 /* 6020 * Repeat twice, first based on local addresses and 6021 * next time for pointopoint. 6022 */ 6023 repeat: 6024 ill = ILL_START_WALK_V4(&ctx, ipst); 6025 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6026 if (match_ill != NULL && ill != match_ill) { 6027 continue; 6028 } 6029 GRAB_CONN_LOCK(q); 6030 mutex_enter(&ill->ill_lock); 6031 for (ipif = ill->ill_ipif; ipif != NULL; 6032 ipif = ipif->ipif_next) { 6033 if (zoneid != ALL_ZONES && 6034 zoneid != ipif->ipif_zoneid && 6035 ipif->ipif_zoneid != ALL_ZONES) 6036 continue; 6037 /* Allow the ipif to be down */ 6038 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6039 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6040 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6041 (ipif->ipif_pp_dst_addr == addr))) { 6042 /* 6043 * The block comment at the start of ipif_down 6044 * explains the use of the macros used below 6045 */ 6046 if (IPIF_CAN_LOOKUP(ipif)) { 6047 ipif_refhold_locked(ipif); 6048 mutex_exit(&ill->ill_lock); 6049 RELEASE_CONN_LOCK(q); 6050 rw_exit(&ipst->ips_ill_g_lock); 6051 return (ipif); 6052 } else if (IPIF_CAN_WAIT(ipif, q)) { 6053 ipsq = ill->ill_phyint->phyint_ipsq; 6054 mutex_enter(&ipsq->ipsq_lock); 6055 mutex_exit(&ill->ill_lock); 6056 rw_exit(&ipst->ips_ill_g_lock); 6057 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6058 ill); 6059 mutex_exit(&ipsq->ipsq_lock); 6060 RELEASE_CONN_LOCK(q); 6061 if (error != NULL) 6062 *error = EINPROGRESS; 6063 return (NULL); 6064 } 6065 } 6066 } 6067 mutex_exit(&ill->ill_lock); 6068 RELEASE_CONN_LOCK(q); 6069 } 6070 6071 /* If we already did the ptp case, then we are done */ 6072 if (ptp) { 6073 rw_exit(&ipst->ips_ill_g_lock); 6074 if (error != NULL) 6075 *error = ENXIO; 6076 return (NULL); 6077 } 6078 ptp = B_TRUE; 6079 goto repeat; 6080 } 6081 6082 /* 6083 * Look for an ipif with the specified address. For point-point links 6084 * we look for matches on either the destination address and the local 6085 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6086 * is set. 6087 * Matches on a specific ill if match_ill is set. 6088 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6089 */ 6090 zoneid_t 6091 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6092 { 6093 zoneid_t zoneid; 6094 ipif_t *ipif; 6095 ill_t *ill; 6096 boolean_t ptp = B_FALSE; 6097 ill_walk_context_t ctx; 6098 6099 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6100 /* 6101 * Repeat twice, first based on local addresses and 6102 * next time for pointopoint. 6103 */ 6104 repeat: 6105 ill = ILL_START_WALK_V4(&ctx, ipst); 6106 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6107 if (match_ill != NULL && ill != match_ill) { 6108 continue; 6109 } 6110 mutex_enter(&ill->ill_lock); 6111 for (ipif = ill->ill_ipif; ipif != NULL; 6112 ipif = ipif->ipif_next) { 6113 /* Allow the ipif to be down */ 6114 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6115 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6116 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6117 (ipif->ipif_pp_dst_addr == addr)) && 6118 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6119 zoneid = ipif->ipif_zoneid; 6120 mutex_exit(&ill->ill_lock); 6121 rw_exit(&ipst->ips_ill_g_lock); 6122 /* 6123 * If ipif_zoneid was ALL_ZONES then we have 6124 * a trusted extensions shared IP address. 6125 * In that case GLOBAL_ZONEID works to send. 6126 */ 6127 if (zoneid == ALL_ZONES) 6128 zoneid = GLOBAL_ZONEID; 6129 return (zoneid); 6130 } 6131 } 6132 mutex_exit(&ill->ill_lock); 6133 } 6134 6135 /* If we already did the ptp case, then we are done */ 6136 if (ptp) { 6137 rw_exit(&ipst->ips_ill_g_lock); 6138 return (ALL_ZONES); 6139 } 6140 ptp = B_TRUE; 6141 goto repeat; 6142 } 6143 6144 /* 6145 * Look for an ipif that matches the specified remote address i.e. the 6146 * ipif that would receive the specified packet. 6147 * First look for directly connected interfaces and then do a recursive 6148 * IRE lookup and pick the first ipif corresponding to the source address in the 6149 * ire. 6150 * Returns: held ipif 6151 */ 6152 ipif_t * 6153 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6154 { 6155 ipif_t *ipif; 6156 ire_t *ire; 6157 ip_stack_t *ipst = ill->ill_ipst; 6158 6159 ASSERT(!ill->ill_isv6); 6160 6161 /* 6162 * Someone could be changing this ipif currently or change it 6163 * after we return this. Thus a few packets could use the old 6164 * old values. However structure updates/creates (ire, ilg, ilm etc) 6165 * will atomically be updated or cleaned up with the new value 6166 * Thus we don't need a lock to check the flags or other attrs below. 6167 */ 6168 mutex_enter(&ill->ill_lock); 6169 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6170 if (!IPIF_CAN_LOOKUP(ipif)) 6171 continue; 6172 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6173 ipif->ipif_zoneid != ALL_ZONES) 6174 continue; 6175 /* Allow the ipif to be down */ 6176 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6177 if ((ipif->ipif_pp_dst_addr == addr) || 6178 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6179 ipif->ipif_lcl_addr == addr)) { 6180 ipif_refhold_locked(ipif); 6181 mutex_exit(&ill->ill_lock); 6182 return (ipif); 6183 } 6184 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6185 ipif_refhold_locked(ipif); 6186 mutex_exit(&ill->ill_lock); 6187 return (ipif); 6188 } 6189 } 6190 mutex_exit(&ill->ill_lock); 6191 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6192 NULL, MATCH_IRE_RECURSIVE, ipst); 6193 if (ire != NULL) { 6194 /* 6195 * The callers of this function wants to know the 6196 * interface on which they have to send the replies 6197 * back. For IRE_CACHES that have ire_stq and ire_ipif 6198 * derived from different ills, we really don't care 6199 * what we return here. 6200 */ 6201 ipif = ire->ire_ipif; 6202 if (ipif != NULL) { 6203 ipif_refhold(ipif); 6204 ire_refrele(ire); 6205 return (ipif); 6206 } 6207 ire_refrele(ire); 6208 } 6209 /* Pick the first interface */ 6210 ipif = ipif_get_next_ipif(NULL, ill); 6211 return (ipif); 6212 } 6213 6214 /* 6215 * This func does not prevent refcnt from increasing. But if 6216 * the caller has taken steps to that effect, then this func 6217 * can be used to determine whether the ill has become quiescent 6218 */ 6219 boolean_t 6220 ill_is_quiescent(ill_t *ill) 6221 { 6222 ipif_t *ipif; 6223 6224 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6225 6226 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6227 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6228 return (B_FALSE); 6229 } 6230 } 6231 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6232 ill->ill_nce_cnt != 0) { 6233 return (B_FALSE); 6234 } 6235 return (B_TRUE); 6236 } 6237 6238 /* 6239 * This func does not prevent refcnt from increasing. But if 6240 * the caller has taken steps to that effect, then this func 6241 * can be used to determine whether the ipif has become quiescent 6242 */ 6243 static boolean_t 6244 ipif_is_quiescent(ipif_t *ipif) 6245 { 6246 ill_t *ill; 6247 6248 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6249 6250 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6251 return (B_FALSE); 6252 } 6253 6254 ill = ipif->ipif_ill; 6255 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6256 ill->ill_logical_down) { 6257 return (B_TRUE); 6258 } 6259 6260 /* This is the last ipif going down or being deleted on this ill */ 6261 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6262 return (B_FALSE); 6263 } 6264 6265 return (B_TRUE); 6266 } 6267 6268 /* 6269 * This func does not prevent refcnt from increasing. But if 6270 * the caller has taken steps to that effect, then this func 6271 * can be used to determine whether the ipifs marked with IPIF_MOVING 6272 * have become quiescent and can be moved in a failover/failback. 6273 */ 6274 static ipif_t * 6275 ill_quiescent_to_move(ill_t *ill) 6276 { 6277 ipif_t *ipif; 6278 6279 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6280 6281 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6282 if (ipif->ipif_state_flags & IPIF_MOVING) { 6283 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6284 return (ipif); 6285 } 6286 } 6287 } 6288 return (NULL); 6289 } 6290 6291 /* 6292 * The ipif/ill/ire has been refreled. Do the tail processing. 6293 * Determine if the ipif or ill in question has become quiescent and if so 6294 * wakeup close and/or restart any queued pending ioctl that is waiting 6295 * for the ipif_down (or ill_down) 6296 */ 6297 void 6298 ipif_ill_refrele_tail(ill_t *ill) 6299 { 6300 mblk_t *mp; 6301 conn_t *connp; 6302 ipsq_t *ipsq; 6303 ipif_t *ipif; 6304 dl_notify_ind_t *dlindp; 6305 6306 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6307 6308 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6309 ill_is_quiescent(ill)) { 6310 /* ill_close may be waiting */ 6311 cv_broadcast(&ill->ill_cv); 6312 } 6313 6314 /* ipsq can't change because ill_lock is held */ 6315 ipsq = ill->ill_phyint->phyint_ipsq; 6316 if (ipsq->ipsq_waitfor == 0) { 6317 /* Not waiting for anything, just return. */ 6318 mutex_exit(&ill->ill_lock); 6319 return; 6320 } 6321 ASSERT(ipsq->ipsq_pending_mp != NULL && 6322 ipsq->ipsq_pending_ipif != NULL); 6323 /* 6324 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6325 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6326 * be zero for restarting an ioctl that ends up downing the ill. 6327 */ 6328 ipif = ipsq->ipsq_pending_ipif; 6329 if (ipif->ipif_ill != ill) { 6330 /* The ioctl is pending on some other ill. */ 6331 mutex_exit(&ill->ill_lock); 6332 return; 6333 } 6334 6335 switch (ipsq->ipsq_waitfor) { 6336 case IPIF_DOWN: 6337 case IPIF_FREE: 6338 if (!ipif_is_quiescent(ipif)) { 6339 mutex_exit(&ill->ill_lock); 6340 return; 6341 } 6342 break; 6343 6344 case ILL_DOWN: 6345 case ILL_FREE: 6346 /* 6347 * case ILL_FREE arises only for loopback. otherwise ill_delete 6348 * waits synchronously in ip_close, and no message is queued in 6349 * ipsq_pending_mp at all in this case 6350 */ 6351 if (!ill_is_quiescent(ill)) { 6352 mutex_exit(&ill->ill_lock); 6353 return; 6354 } 6355 6356 break; 6357 6358 case ILL_MOVE_OK: 6359 if (ill_quiescent_to_move(ill) != NULL) { 6360 mutex_exit(&ill->ill_lock); 6361 return; 6362 } 6363 6364 break; 6365 default: 6366 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6367 (void *)ipsq, ipsq->ipsq_waitfor); 6368 } 6369 6370 /* 6371 * Incr refcnt for the qwriter_ip call below which 6372 * does a refrele 6373 */ 6374 ill_refhold_locked(ill); 6375 mutex_exit(&ill->ill_lock); 6376 6377 mp = ipsq_pending_mp_get(ipsq, &connp); 6378 ASSERT(mp != NULL); 6379 6380 /* 6381 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6382 * we can only get here when the current operation decides it 6383 * it needs to quiesce via ipsq_pending_mp_add(). 6384 */ 6385 switch (mp->b_datap->db_type) { 6386 case M_PCPROTO: 6387 case M_PROTO: 6388 /* 6389 * For now, only DL_NOTIFY_IND messages can use this facility. 6390 */ 6391 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6392 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6393 6394 switch (dlindp->dl_notification) { 6395 case DL_NOTE_PHYS_ADDR: 6396 qwriter_ip(ill, ill->ill_rq, mp, 6397 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6398 return; 6399 default: 6400 ASSERT(0); 6401 } 6402 break; 6403 6404 case M_ERROR: 6405 case M_HANGUP: 6406 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6407 B_TRUE); 6408 return; 6409 6410 case M_IOCTL: 6411 case M_IOCDATA: 6412 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6413 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6414 return; 6415 6416 default: 6417 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6418 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6419 } 6420 } 6421 6422 #ifdef DEBUG 6423 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6424 static void 6425 th_trace_rrecord(th_trace_t *th_trace) 6426 { 6427 tr_buf_t *tr_buf; 6428 uint_t lastref; 6429 6430 lastref = th_trace->th_trace_lastref; 6431 lastref++; 6432 if (lastref == TR_BUF_MAX) 6433 lastref = 0; 6434 th_trace->th_trace_lastref = lastref; 6435 tr_buf = &th_trace->th_trbuf[lastref]; 6436 tr_buf->tr_time = lbolt; 6437 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6438 } 6439 6440 static void 6441 th_trace_free(void *value) 6442 { 6443 th_trace_t *th_trace = value; 6444 6445 ASSERT(th_trace->th_refcnt == 0); 6446 kmem_free(th_trace, sizeof (*th_trace)); 6447 } 6448 6449 /* 6450 * Find or create the per-thread hash table used to track object references. 6451 * The ipst argument is NULL if we shouldn't allocate. 6452 * 6453 * Accesses per-thread data, so there's no need to lock here. 6454 */ 6455 static mod_hash_t * 6456 th_trace_gethash(ip_stack_t *ipst) 6457 { 6458 th_hash_t *thh; 6459 6460 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6461 mod_hash_t *mh; 6462 char name[256]; 6463 size_t objsize, rshift; 6464 int retv; 6465 6466 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6467 return (NULL); 6468 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6469 6470 /* 6471 * We use mod_hash_create_extended here rather than the more 6472 * obvious mod_hash_create_ptrhash because the latter has a 6473 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6474 * block. 6475 */ 6476 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6477 MAX(sizeof (ire_t), sizeof (nce_t))); 6478 rshift = highbit(objsize); 6479 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6480 th_trace_free, mod_hash_byptr, (void *)rshift, 6481 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6482 if (mh == NULL) { 6483 kmem_free(thh, sizeof (*thh)); 6484 return (NULL); 6485 } 6486 thh->thh_hash = mh; 6487 thh->thh_ipst = ipst; 6488 /* 6489 * We trace ills, ipifs, ires, and nces. All of these are 6490 * per-IP-stack, so the lock on the thread list is as well. 6491 */ 6492 rw_enter(&ip_thread_rwlock, RW_WRITER); 6493 list_insert_tail(&ip_thread_list, thh); 6494 rw_exit(&ip_thread_rwlock); 6495 retv = tsd_set(ip_thread_data, thh); 6496 ASSERT(retv == 0); 6497 } 6498 return (thh != NULL ? thh->thh_hash : NULL); 6499 } 6500 6501 boolean_t 6502 th_trace_ref(const void *obj, ip_stack_t *ipst) 6503 { 6504 th_trace_t *th_trace; 6505 mod_hash_t *mh; 6506 mod_hash_val_t val; 6507 6508 if ((mh = th_trace_gethash(ipst)) == NULL) 6509 return (B_FALSE); 6510 6511 /* 6512 * Attempt to locate the trace buffer for this obj and thread. 6513 * If it does not exist, then allocate a new trace buffer and 6514 * insert into the hash. 6515 */ 6516 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6517 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6518 if (th_trace == NULL) 6519 return (B_FALSE); 6520 6521 th_trace->th_id = curthread; 6522 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6523 (mod_hash_val_t)th_trace) != 0) { 6524 kmem_free(th_trace, sizeof (th_trace_t)); 6525 return (B_FALSE); 6526 } 6527 } else { 6528 th_trace = (th_trace_t *)val; 6529 } 6530 6531 ASSERT(th_trace->th_refcnt >= 0 && 6532 th_trace->th_refcnt < TR_BUF_MAX - 1); 6533 6534 th_trace->th_refcnt++; 6535 th_trace_rrecord(th_trace); 6536 return (B_TRUE); 6537 } 6538 6539 /* 6540 * For the purpose of tracing a reference release, we assume that global 6541 * tracing is always on and that the same thread initiated the reference hold 6542 * is releasing. 6543 */ 6544 void 6545 th_trace_unref(const void *obj) 6546 { 6547 int retv; 6548 mod_hash_t *mh; 6549 th_trace_t *th_trace; 6550 mod_hash_val_t val; 6551 6552 mh = th_trace_gethash(NULL); 6553 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6554 ASSERT(retv == 0); 6555 th_trace = (th_trace_t *)val; 6556 6557 ASSERT(th_trace->th_refcnt > 0); 6558 th_trace->th_refcnt--; 6559 th_trace_rrecord(th_trace); 6560 } 6561 6562 /* 6563 * If tracing has been disabled, then we assume that the reference counts are 6564 * now useless, and we clear them out before destroying the entries. 6565 */ 6566 void 6567 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6568 { 6569 th_hash_t *thh; 6570 mod_hash_t *mh; 6571 mod_hash_val_t val; 6572 th_trace_t *th_trace; 6573 int retv; 6574 6575 rw_enter(&ip_thread_rwlock, RW_READER); 6576 for (thh = list_head(&ip_thread_list); thh != NULL; 6577 thh = list_next(&ip_thread_list, thh)) { 6578 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6579 &val) == 0) { 6580 th_trace = (th_trace_t *)val; 6581 if (trace_disable) 6582 th_trace->th_refcnt = 0; 6583 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6584 ASSERT(retv == 0); 6585 } 6586 } 6587 rw_exit(&ip_thread_rwlock); 6588 } 6589 6590 void 6591 ipif_trace_ref(ipif_t *ipif) 6592 { 6593 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6594 6595 if (ipif->ipif_trace_disable) 6596 return; 6597 6598 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6599 ipif->ipif_trace_disable = B_TRUE; 6600 ipif_trace_cleanup(ipif); 6601 } 6602 } 6603 6604 void 6605 ipif_untrace_ref(ipif_t *ipif) 6606 { 6607 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6608 6609 if (!ipif->ipif_trace_disable) 6610 th_trace_unref(ipif); 6611 } 6612 6613 void 6614 ill_trace_ref(ill_t *ill) 6615 { 6616 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6617 6618 if (ill->ill_trace_disable) 6619 return; 6620 6621 if (!th_trace_ref(ill, ill->ill_ipst)) { 6622 ill->ill_trace_disable = B_TRUE; 6623 ill_trace_cleanup(ill); 6624 } 6625 } 6626 6627 void 6628 ill_untrace_ref(ill_t *ill) 6629 { 6630 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6631 6632 if (!ill->ill_trace_disable) 6633 th_trace_unref(ill); 6634 } 6635 6636 /* 6637 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6638 * failure, ipif_trace_disable is set. 6639 */ 6640 static void 6641 ipif_trace_cleanup(const ipif_t *ipif) 6642 { 6643 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6644 } 6645 6646 /* 6647 * Called when ill is unplumbed or when memory alloc fails. Note that on 6648 * failure, ill_trace_disable is set. 6649 */ 6650 static void 6651 ill_trace_cleanup(const ill_t *ill) 6652 { 6653 th_trace_cleanup(ill, ill->ill_trace_disable); 6654 } 6655 #endif /* DEBUG */ 6656 6657 void 6658 ipif_refhold_locked(ipif_t *ipif) 6659 { 6660 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6661 ipif->ipif_refcnt++; 6662 IPIF_TRACE_REF(ipif); 6663 } 6664 6665 void 6666 ipif_refhold(ipif_t *ipif) 6667 { 6668 ill_t *ill; 6669 6670 ill = ipif->ipif_ill; 6671 mutex_enter(&ill->ill_lock); 6672 ipif->ipif_refcnt++; 6673 IPIF_TRACE_REF(ipif); 6674 mutex_exit(&ill->ill_lock); 6675 } 6676 6677 /* 6678 * Must not be called while holding any locks. Otherwise if this is 6679 * the last reference to be released there is a chance of recursive mutex 6680 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6681 * to restart an ioctl. 6682 */ 6683 void 6684 ipif_refrele(ipif_t *ipif) 6685 { 6686 ill_t *ill; 6687 6688 ill = ipif->ipif_ill; 6689 6690 mutex_enter(&ill->ill_lock); 6691 ASSERT(ipif->ipif_refcnt != 0); 6692 ipif->ipif_refcnt--; 6693 IPIF_UNTRACE_REF(ipif); 6694 if (ipif->ipif_refcnt != 0) { 6695 mutex_exit(&ill->ill_lock); 6696 return; 6697 } 6698 6699 /* Drops the ill_lock */ 6700 ipif_ill_refrele_tail(ill); 6701 } 6702 6703 ipif_t * 6704 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6705 { 6706 ipif_t *ipif; 6707 6708 mutex_enter(&ill->ill_lock); 6709 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6710 ipif != NULL; ipif = ipif->ipif_next) { 6711 if (!IPIF_CAN_LOOKUP(ipif)) 6712 continue; 6713 ipif_refhold_locked(ipif); 6714 mutex_exit(&ill->ill_lock); 6715 return (ipif); 6716 } 6717 mutex_exit(&ill->ill_lock); 6718 return (NULL); 6719 } 6720 6721 /* 6722 * TODO: make this table extendible at run time 6723 * Return a pointer to the mac type info for 'mac_type' 6724 */ 6725 static ip_m_t * 6726 ip_m_lookup(t_uscalar_t mac_type) 6727 { 6728 ip_m_t *ipm; 6729 6730 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6731 if (ipm->ip_m_mac_type == mac_type) 6732 return (ipm); 6733 return (NULL); 6734 } 6735 6736 /* 6737 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6738 * ipif_arg is passed in to associate it with the correct interface. 6739 * We may need to restart this operation if the ipif cannot be looked up 6740 * due to an exclusive operation that is currently in progress. The restart 6741 * entry point is specified by 'func' 6742 */ 6743 int 6744 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6745 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6746 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6747 struct rtsa_s *sp, ip_stack_t *ipst) 6748 { 6749 ire_t *ire; 6750 ire_t *gw_ire = NULL; 6751 ipif_t *ipif = NULL; 6752 boolean_t ipif_refheld = B_FALSE; 6753 uint_t type; 6754 int match_flags = MATCH_IRE_TYPE; 6755 int error; 6756 tsol_gc_t *gc = NULL; 6757 tsol_gcgrp_t *gcgrp = NULL; 6758 boolean_t gcgrp_xtraref = B_FALSE; 6759 6760 ip1dbg(("ip_rt_add:")); 6761 6762 if (ire_arg != NULL) 6763 *ire_arg = NULL; 6764 6765 /* 6766 * If this is the case of RTF_HOST being set, then we set the netmask 6767 * to all ones (regardless if one was supplied). 6768 */ 6769 if (flags & RTF_HOST) 6770 mask = IP_HOST_MASK; 6771 6772 /* 6773 * Prevent routes with a zero gateway from being created (since 6774 * interfaces can currently be plumbed and brought up no assigned 6775 * address). 6776 */ 6777 if (gw_addr == 0) 6778 return (ENETUNREACH); 6779 /* 6780 * Get the ipif, if any, corresponding to the gw_addr 6781 */ 6782 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6783 ipst); 6784 if (ipif != NULL) { 6785 if (IS_VNI(ipif->ipif_ill)) { 6786 ipif_refrele(ipif); 6787 return (EINVAL); 6788 } 6789 ipif_refheld = B_TRUE; 6790 } else if (error == EINPROGRESS) { 6791 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6792 return (EINPROGRESS); 6793 } else { 6794 error = 0; 6795 } 6796 6797 if (ipif != NULL) { 6798 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6799 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6800 } else { 6801 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6802 } 6803 6804 /* 6805 * GateD will attempt to create routes with a loopback interface 6806 * address as the gateway and with RTF_GATEWAY set. We allow 6807 * these routes to be added, but create them as interface routes 6808 * since the gateway is an interface address. 6809 */ 6810 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6811 flags &= ~RTF_GATEWAY; 6812 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6813 mask == IP_HOST_MASK) { 6814 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6815 ALL_ZONES, NULL, match_flags, ipst); 6816 if (ire != NULL) { 6817 ire_refrele(ire); 6818 if (ipif_refheld) 6819 ipif_refrele(ipif); 6820 return (EEXIST); 6821 } 6822 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6823 "for 0x%x\n", (void *)ipif, 6824 ipif->ipif_ire_type, 6825 ntohl(ipif->ipif_lcl_addr))); 6826 ire = ire_create( 6827 (uchar_t *)&dst_addr, /* dest address */ 6828 (uchar_t *)&mask, /* mask */ 6829 (uchar_t *)&ipif->ipif_src_addr, 6830 NULL, /* no gateway */ 6831 &ipif->ipif_mtu, 6832 NULL, 6833 ipif->ipif_rq, /* recv-from queue */ 6834 NULL, /* no send-to queue */ 6835 ipif->ipif_ire_type, /* LOOPBACK */ 6836 ipif, 6837 0, 6838 0, 6839 0, 6840 (ipif->ipif_flags & IPIF_PRIVATE) ? 6841 RTF_PRIVATE : 0, 6842 &ire_uinfo_null, 6843 NULL, 6844 NULL, 6845 ipst); 6846 6847 if (ire == NULL) { 6848 if (ipif_refheld) 6849 ipif_refrele(ipif); 6850 return (ENOMEM); 6851 } 6852 error = ire_add(&ire, q, mp, func, B_FALSE); 6853 if (error == 0) 6854 goto save_ire; 6855 if (ipif_refheld) 6856 ipif_refrele(ipif); 6857 return (error); 6858 6859 } 6860 } 6861 6862 /* 6863 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6864 * and the gateway address provided is one of the system's interface 6865 * addresses. By using the routing socket interface and supplying an 6866 * RTA_IFP sockaddr with an interface index, an alternate method of 6867 * specifying an interface route to be created is available which uses 6868 * the interface index that specifies the outgoing interface rather than 6869 * the address of an outgoing interface (which may not be able to 6870 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6871 * flag, routes can be specified which not only specify the next-hop to 6872 * be used when routing to a certain prefix, but also which outgoing 6873 * interface should be used. 6874 * 6875 * Previously, interfaces would have unique addresses assigned to them 6876 * and so the address assigned to a particular interface could be used 6877 * to identify a particular interface. One exception to this was the 6878 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6879 * 6880 * With the advent of IPv6 and its link-local addresses, this 6881 * restriction was relaxed and interfaces could share addresses between 6882 * themselves. In fact, typically all of the link-local interfaces on 6883 * an IPv6 node or router will have the same link-local address. In 6884 * order to differentiate between these interfaces, the use of an 6885 * interface index is necessary and this index can be carried inside a 6886 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6887 * of using the interface index, however, is that all of the ipif's that 6888 * are part of an ill have the same index and so the RTA_IFP sockaddr 6889 * cannot be used to differentiate between ipif's (or logical 6890 * interfaces) that belong to the same ill (physical interface). 6891 * 6892 * For example, in the following case involving IPv4 interfaces and 6893 * logical interfaces 6894 * 6895 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6896 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6897 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6898 * 6899 * the ipif's corresponding to each of these interface routes can be 6900 * uniquely identified by the "gateway" (actually interface address). 6901 * 6902 * In this case involving multiple IPv6 default routes to a particular 6903 * link-local gateway, the use of RTA_IFP is necessary to specify which 6904 * default route is of interest: 6905 * 6906 * default fe80::123:4567:89ab:cdef U if0 6907 * default fe80::123:4567:89ab:cdef U if1 6908 */ 6909 6910 /* RTF_GATEWAY not set */ 6911 if (!(flags & RTF_GATEWAY)) { 6912 queue_t *stq; 6913 6914 if (sp != NULL) { 6915 ip2dbg(("ip_rt_add: gateway security attributes " 6916 "cannot be set with interface route\n")); 6917 if (ipif_refheld) 6918 ipif_refrele(ipif); 6919 return (EINVAL); 6920 } 6921 6922 /* 6923 * As the interface index specified with the RTA_IFP sockaddr is 6924 * the same for all ipif's off of an ill, the matching logic 6925 * below uses MATCH_IRE_ILL if such an index was specified. 6926 * This means that routes sharing the same prefix when added 6927 * using a RTA_IFP sockaddr must have distinct interface 6928 * indices (namely, they must be on distinct ill's). 6929 * 6930 * On the other hand, since the gateway address will usually be 6931 * different for each ipif on the system, the matching logic 6932 * uses MATCH_IRE_IPIF in the case of a traditional interface 6933 * route. This means that interface routes for the same prefix 6934 * can be created if they belong to distinct ipif's and if a 6935 * RTA_IFP sockaddr is not present. 6936 */ 6937 if (ipif_arg != NULL) { 6938 if (ipif_refheld) { 6939 ipif_refrele(ipif); 6940 ipif_refheld = B_FALSE; 6941 } 6942 ipif = ipif_arg; 6943 match_flags |= MATCH_IRE_ILL; 6944 } else { 6945 /* 6946 * Check the ipif corresponding to the gw_addr 6947 */ 6948 if (ipif == NULL) 6949 return (ENETUNREACH); 6950 match_flags |= MATCH_IRE_IPIF; 6951 } 6952 ASSERT(ipif != NULL); 6953 6954 /* 6955 * We check for an existing entry at this point. 6956 * 6957 * Since a netmask isn't passed in via the ioctl interface 6958 * (SIOCADDRT), we don't check for a matching netmask in that 6959 * case. 6960 */ 6961 if (!ioctl_msg) 6962 match_flags |= MATCH_IRE_MASK; 6963 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6964 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6965 if (ire != NULL) { 6966 ire_refrele(ire); 6967 if (ipif_refheld) 6968 ipif_refrele(ipif); 6969 return (EEXIST); 6970 } 6971 6972 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6973 ? ipif->ipif_rq : ipif->ipif_wq; 6974 6975 /* 6976 * Create a copy of the IRE_LOOPBACK, 6977 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6978 * the modified address and netmask. 6979 */ 6980 ire = ire_create( 6981 (uchar_t *)&dst_addr, 6982 (uint8_t *)&mask, 6983 (uint8_t *)&ipif->ipif_src_addr, 6984 NULL, 6985 &ipif->ipif_mtu, 6986 NULL, 6987 NULL, 6988 stq, 6989 ipif->ipif_net_type, 6990 ipif, 6991 0, 6992 0, 6993 0, 6994 flags, 6995 &ire_uinfo_null, 6996 NULL, 6997 NULL, 6998 ipst); 6999 if (ire == NULL) { 7000 if (ipif_refheld) 7001 ipif_refrele(ipif); 7002 return (ENOMEM); 7003 } 7004 7005 /* 7006 * Some software (for example, GateD and Sun Cluster) attempts 7007 * to create (what amount to) IRE_PREFIX routes with the 7008 * loopback address as the gateway. This is primarily done to 7009 * set up prefixes with the RTF_REJECT flag set (for example, 7010 * when generating aggregate routes.) 7011 * 7012 * If the IRE type (as defined by ipif->ipif_net_type) is 7013 * IRE_LOOPBACK, then we map the request into a 7014 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7015 * these interface routes, by definition, can only be that. 7016 * 7017 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7018 * routine, but rather using ire_create() directly. 7019 * 7020 */ 7021 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7022 ire->ire_type = IRE_IF_NORESOLVER; 7023 ire->ire_flags |= RTF_BLACKHOLE; 7024 } 7025 7026 error = ire_add(&ire, q, mp, func, B_FALSE); 7027 if (error == 0) 7028 goto save_ire; 7029 7030 /* 7031 * In the result of failure, ire_add() will have already 7032 * deleted the ire in question, so there is no need to 7033 * do that here. 7034 */ 7035 if (ipif_refheld) 7036 ipif_refrele(ipif); 7037 return (error); 7038 } 7039 if (ipif_refheld) { 7040 ipif_refrele(ipif); 7041 ipif_refheld = B_FALSE; 7042 } 7043 7044 /* 7045 * Get an interface IRE for the specified gateway. 7046 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7047 * gateway, it is currently unreachable and we fail the request 7048 * accordingly. 7049 */ 7050 ipif = ipif_arg; 7051 if (ipif_arg != NULL) 7052 match_flags |= MATCH_IRE_ILL; 7053 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7054 ALL_ZONES, 0, NULL, match_flags, ipst); 7055 if (gw_ire == NULL) 7056 return (ENETUNREACH); 7057 7058 /* 7059 * We create one of three types of IREs as a result of this request 7060 * based on the netmask. A netmask of all ones (which is automatically 7061 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7062 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7063 * created. Otherwise, an IRE_PREFIX route is created for the 7064 * destination prefix. 7065 */ 7066 if (mask == IP_HOST_MASK) 7067 type = IRE_HOST; 7068 else if (mask == 0) 7069 type = IRE_DEFAULT; 7070 else 7071 type = IRE_PREFIX; 7072 7073 /* check for a duplicate entry */ 7074 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7075 NULL, ALL_ZONES, 0, NULL, 7076 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7077 if (ire != NULL) { 7078 ire_refrele(gw_ire); 7079 ire_refrele(ire); 7080 return (EEXIST); 7081 } 7082 7083 /* Security attribute exists */ 7084 if (sp != NULL) { 7085 tsol_gcgrp_addr_t ga; 7086 7087 /* find or create the gateway credentials group */ 7088 ga.ga_af = AF_INET; 7089 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7090 7091 /* we hold reference to it upon success */ 7092 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7093 if (gcgrp == NULL) { 7094 ire_refrele(gw_ire); 7095 return (ENOMEM); 7096 } 7097 7098 /* 7099 * Create and add the security attribute to the group; a 7100 * reference to the group is made upon allocating a new 7101 * entry successfully. If it finds an already-existing 7102 * entry for the security attribute in the group, it simply 7103 * returns it and no new reference is made to the group. 7104 */ 7105 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7106 if (gc == NULL) { 7107 /* release reference held by gcgrp_lookup */ 7108 GCGRP_REFRELE(gcgrp); 7109 ire_refrele(gw_ire); 7110 return (ENOMEM); 7111 } 7112 } 7113 7114 /* Create the IRE. */ 7115 ire = ire_create( 7116 (uchar_t *)&dst_addr, /* dest address */ 7117 (uchar_t *)&mask, /* mask */ 7118 /* src address assigned by the caller? */ 7119 (uchar_t *)(((src_addr != INADDR_ANY) && 7120 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7121 (uchar_t *)&gw_addr, /* gateway address */ 7122 &gw_ire->ire_max_frag, 7123 NULL, /* no src nce */ 7124 NULL, /* no recv-from queue */ 7125 NULL, /* no send-to queue */ 7126 (ushort_t)type, /* IRE type */ 7127 ipif_arg, 7128 0, 7129 0, 7130 0, 7131 flags, 7132 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7133 gc, /* security attribute */ 7134 NULL, 7135 ipst); 7136 7137 /* 7138 * The ire holds a reference to the 'gc' and the 'gc' holds a 7139 * reference to the 'gcgrp'. We can now release the extra reference 7140 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7141 */ 7142 if (gcgrp_xtraref) 7143 GCGRP_REFRELE(gcgrp); 7144 if (ire == NULL) { 7145 if (gc != NULL) 7146 GC_REFRELE(gc); 7147 ire_refrele(gw_ire); 7148 return (ENOMEM); 7149 } 7150 7151 /* 7152 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7153 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7154 */ 7155 7156 /* Add the new IRE. */ 7157 error = ire_add(&ire, q, mp, func, B_FALSE); 7158 if (error != 0) { 7159 /* 7160 * In the result of failure, ire_add() will have already 7161 * deleted the ire in question, so there is no need to 7162 * do that here. 7163 */ 7164 ire_refrele(gw_ire); 7165 return (error); 7166 } 7167 7168 if (flags & RTF_MULTIRT) { 7169 /* 7170 * Invoke the CGTP (multirouting) filtering module 7171 * to add the dst address in the filtering database. 7172 * Replicated inbound packets coming from that address 7173 * will be filtered to discard the duplicates. 7174 * It is not necessary to call the CGTP filter hook 7175 * when the dst address is a broadcast or multicast, 7176 * because an IP source address cannot be a broadcast 7177 * or a multicast. 7178 */ 7179 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7180 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7181 if (ire_dst != NULL) { 7182 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7183 ire_refrele(ire_dst); 7184 goto save_ire; 7185 } 7186 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7187 !CLASSD(ire->ire_addr)) { 7188 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7189 ipst->ips_netstack->netstack_stackid, 7190 ire->ire_addr, 7191 ire->ire_gateway_addr, 7192 ire->ire_src_addr, 7193 gw_ire->ire_src_addr); 7194 if (res != 0) { 7195 ire_refrele(gw_ire); 7196 ire_delete(ire); 7197 return (res); 7198 } 7199 } 7200 } 7201 7202 /* 7203 * Now that the prefix IRE entry has been created, delete any 7204 * existing gateway IRE cache entries as well as any IRE caches 7205 * using the gateway, and force them to be created through 7206 * ip_newroute. 7207 */ 7208 if (gc != NULL) { 7209 ASSERT(gcgrp != NULL); 7210 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7211 } 7212 7213 save_ire: 7214 if (gw_ire != NULL) { 7215 ire_refrele(gw_ire); 7216 } 7217 if (ipif != NULL) { 7218 /* 7219 * Save enough information so that we can recreate the IRE if 7220 * the interface goes down and then up. The metrics associated 7221 * with the route will be saved as well when rts_setmetrics() is 7222 * called after the IRE has been created. In the case where 7223 * memory cannot be allocated, none of this information will be 7224 * saved. 7225 */ 7226 ipif_save_ire(ipif, ire); 7227 } 7228 if (ioctl_msg) 7229 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7230 if (ire_arg != NULL) { 7231 /* 7232 * Store the ire that was successfully added into where ire_arg 7233 * points to so that callers don't have to look it up 7234 * themselves (but they are responsible for ire_refrele()ing 7235 * the ire when they are finished with it). 7236 */ 7237 *ire_arg = ire; 7238 } else { 7239 ire_refrele(ire); /* Held in ire_add */ 7240 } 7241 if (ipif_refheld) 7242 ipif_refrele(ipif); 7243 return (0); 7244 } 7245 7246 /* 7247 * ip_rt_delete is called to delete an IPv4 route. 7248 * ipif_arg is passed in to associate it with the correct interface. 7249 * We may need to restart this operation if the ipif cannot be looked up 7250 * due to an exclusive operation that is currently in progress. The restart 7251 * entry point is specified by 'func' 7252 */ 7253 /* ARGSUSED4 */ 7254 int 7255 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7256 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7257 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7258 { 7259 ire_t *ire = NULL; 7260 ipif_t *ipif; 7261 boolean_t ipif_refheld = B_FALSE; 7262 uint_t type; 7263 uint_t match_flags = MATCH_IRE_TYPE; 7264 int err = 0; 7265 7266 ip1dbg(("ip_rt_delete:")); 7267 /* 7268 * If this is the case of RTF_HOST being set, then we set the netmask 7269 * to all ones. Otherwise, we use the netmask if one was supplied. 7270 */ 7271 if (flags & RTF_HOST) { 7272 mask = IP_HOST_MASK; 7273 match_flags |= MATCH_IRE_MASK; 7274 } else if (rtm_addrs & RTA_NETMASK) { 7275 match_flags |= MATCH_IRE_MASK; 7276 } 7277 7278 /* 7279 * Note that RTF_GATEWAY is never set on a delete, therefore 7280 * we check if the gateway address is one of our interfaces first, 7281 * and fall back on RTF_GATEWAY routes. 7282 * 7283 * This makes it possible to delete an original 7284 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7285 * 7286 * As the interface index specified with the RTA_IFP sockaddr is the 7287 * same for all ipif's off of an ill, the matching logic below uses 7288 * MATCH_IRE_ILL if such an index was specified. This means a route 7289 * sharing the same prefix and interface index as the the route 7290 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7291 * is specified in the request. 7292 * 7293 * On the other hand, since the gateway address will usually be 7294 * different for each ipif on the system, the matching logic 7295 * uses MATCH_IRE_IPIF in the case of a traditional interface 7296 * route. This means that interface routes for the same prefix can be 7297 * uniquely identified if they belong to distinct ipif's and if a 7298 * RTA_IFP sockaddr is not present. 7299 * 7300 * For more detail on specifying routes by gateway address and by 7301 * interface index, see the comments in ip_rt_add(). 7302 */ 7303 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7304 ipst); 7305 if (ipif != NULL) 7306 ipif_refheld = B_TRUE; 7307 else if (err == EINPROGRESS) 7308 return (err); 7309 else 7310 err = 0; 7311 if (ipif != NULL) { 7312 if (ipif_arg != NULL) { 7313 if (ipif_refheld) { 7314 ipif_refrele(ipif); 7315 ipif_refheld = B_FALSE; 7316 } 7317 ipif = ipif_arg; 7318 match_flags |= MATCH_IRE_ILL; 7319 } else { 7320 match_flags |= MATCH_IRE_IPIF; 7321 } 7322 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7323 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7324 ALL_ZONES, NULL, match_flags, ipst); 7325 } 7326 if (ire == NULL) { 7327 ire = ire_ftable_lookup(dst_addr, mask, 0, 7328 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7329 match_flags, ipst); 7330 } 7331 } 7332 7333 if (ire == NULL) { 7334 /* 7335 * At this point, the gateway address is not one of our own 7336 * addresses or a matching interface route was not found. We 7337 * set the IRE type to lookup based on whether 7338 * this is a host route, a default route or just a prefix. 7339 * 7340 * If an ipif_arg was passed in, then the lookup is based on an 7341 * interface index so MATCH_IRE_ILL is added to match_flags. 7342 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7343 * set as the route being looked up is not a traditional 7344 * interface route. 7345 */ 7346 match_flags &= ~MATCH_IRE_IPIF; 7347 match_flags |= MATCH_IRE_GW; 7348 if (ipif_arg != NULL) 7349 match_flags |= MATCH_IRE_ILL; 7350 if (mask == IP_HOST_MASK) 7351 type = IRE_HOST; 7352 else if (mask == 0) 7353 type = IRE_DEFAULT; 7354 else 7355 type = IRE_PREFIX; 7356 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7357 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7358 } 7359 7360 if (ipif_refheld) 7361 ipif_refrele(ipif); 7362 7363 /* ipif is not refheld anymore */ 7364 if (ire == NULL) 7365 return (ESRCH); 7366 7367 if (ire->ire_flags & RTF_MULTIRT) { 7368 /* 7369 * Invoke the CGTP (multirouting) filtering module 7370 * to remove the dst address from the filtering database. 7371 * Packets coming from that address will no longer be 7372 * filtered to remove duplicates. 7373 */ 7374 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7375 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7376 ipst->ips_netstack->netstack_stackid, 7377 ire->ire_addr, ire->ire_gateway_addr); 7378 } 7379 ip_cgtp_bcast_delete(ire, ipst); 7380 } 7381 7382 ipif = ire->ire_ipif; 7383 if (ipif != NULL) 7384 ipif_remove_ire(ipif, ire); 7385 if (ioctl_msg) 7386 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7387 ire_delete(ire); 7388 ire_refrele(ire); 7389 return (err); 7390 } 7391 7392 /* 7393 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7394 */ 7395 /* ARGSUSED */ 7396 int 7397 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7398 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7399 { 7400 ipaddr_t dst_addr; 7401 ipaddr_t gw_addr; 7402 ipaddr_t mask; 7403 int error = 0; 7404 mblk_t *mp1; 7405 struct rtentry *rt; 7406 ipif_t *ipif = NULL; 7407 ip_stack_t *ipst; 7408 7409 ASSERT(q->q_next == NULL); 7410 ipst = CONNQ_TO_IPST(q); 7411 7412 ip1dbg(("ip_siocaddrt:")); 7413 /* Existence of mp1 verified in ip_wput_nondata */ 7414 mp1 = mp->b_cont->b_cont; 7415 rt = (struct rtentry *)mp1->b_rptr; 7416 7417 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7418 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7419 7420 /* 7421 * If the RTF_HOST flag is on, this is a request to assign a gateway 7422 * to a particular host address. In this case, we set the netmask to 7423 * all ones for the particular destination address. Otherwise, 7424 * determine the netmask to be used based on dst_addr and the interfaces 7425 * in use. 7426 */ 7427 if (rt->rt_flags & RTF_HOST) { 7428 mask = IP_HOST_MASK; 7429 } else { 7430 /* 7431 * Note that ip_subnet_mask returns a zero mask in the case of 7432 * default (an all-zeroes address). 7433 */ 7434 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7435 } 7436 7437 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7438 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7439 if (ipif != NULL) 7440 ipif_refrele(ipif); 7441 return (error); 7442 } 7443 7444 /* 7445 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7446 */ 7447 /* ARGSUSED */ 7448 int 7449 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7450 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7451 { 7452 ipaddr_t dst_addr; 7453 ipaddr_t gw_addr; 7454 ipaddr_t mask; 7455 int error; 7456 mblk_t *mp1; 7457 struct rtentry *rt; 7458 ipif_t *ipif = NULL; 7459 ip_stack_t *ipst; 7460 7461 ASSERT(q->q_next == NULL); 7462 ipst = CONNQ_TO_IPST(q); 7463 7464 ip1dbg(("ip_siocdelrt:")); 7465 /* Existence of mp1 verified in ip_wput_nondata */ 7466 mp1 = mp->b_cont->b_cont; 7467 rt = (struct rtentry *)mp1->b_rptr; 7468 7469 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7470 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7471 7472 /* 7473 * If the RTF_HOST flag is on, this is a request to delete a gateway 7474 * to a particular host address. In this case, we set the netmask to 7475 * all ones for the particular destination address. Otherwise, 7476 * determine the netmask to be used based on dst_addr and the interfaces 7477 * in use. 7478 */ 7479 if (rt->rt_flags & RTF_HOST) { 7480 mask = IP_HOST_MASK; 7481 } else { 7482 /* 7483 * Note that ip_subnet_mask returns a zero mask in the case of 7484 * default (an all-zeroes address). 7485 */ 7486 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7487 } 7488 7489 error = ip_rt_delete(dst_addr, mask, gw_addr, 7490 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7491 mp, ip_process_ioctl, ipst); 7492 if (ipif != NULL) 7493 ipif_refrele(ipif); 7494 return (error); 7495 } 7496 7497 /* 7498 * Enqueue the mp onto the ipsq, chained by b_next. 7499 * b_prev stores the function to be executed later, and b_queue the queue 7500 * where this mp originated. 7501 */ 7502 void 7503 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7504 ill_t *pending_ill) 7505 { 7506 conn_t *connp = NULL; 7507 7508 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7509 ASSERT(func != NULL); 7510 7511 mp->b_queue = q; 7512 mp->b_prev = (void *)func; 7513 mp->b_next = NULL; 7514 7515 switch (type) { 7516 case CUR_OP: 7517 if (ipsq->ipsq_mptail != NULL) { 7518 ASSERT(ipsq->ipsq_mphead != NULL); 7519 ipsq->ipsq_mptail->b_next = mp; 7520 } else { 7521 ASSERT(ipsq->ipsq_mphead == NULL); 7522 ipsq->ipsq_mphead = mp; 7523 } 7524 ipsq->ipsq_mptail = mp; 7525 break; 7526 7527 case NEW_OP: 7528 if (ipsq->ipsq_xopq_mptail != NULL) { 7529 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7530 ipsq->ipsq_xopq_mptail->b_next = mp; 7531 } else { 7532 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7533 ipsq->ipsq_xopq_mphead = mp; 7534 } 7535 ipsq->ipsq_xopq_mptail = mp; 7536 break; 7537 default: 7538 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7539 } 7540 7541 if (CONN_Q(q) && pending_ill != NULL) { 7542 connp = Q_TO_CONN(q); 7543 7544 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7545 connp->conn_oper_pending_ill = pending_ill; 7546 } 7547 } 7548 7549 /* 7550 * Return the mp at the head of the ipsq. After emptying the ipsq 7551 * look at the next ioctl, if this ioctl is complete. Otherwise 7552 * return, we will resume when we complete the current ioctl. 7553 * The current ioctl will wait till it gets a response from the 7554 * driver below. 7555 */ 7556 static mblk_t * 7557 ipsq_dq(ipsq_t *ipsq) 7558 { 7559 mblk_t *mp; 7560 7561 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7562 7563 mp = ipsq->ipsq_mphead; 7564 if (mp != NULL) { 7565 ipsq->ipsq_mphead = mp->b_next; 7566 if (ipsq->ipsq_mphead == NULL) 7567 ipsq->ipsq_mptail = NULL; 7568 mp->b_next = NULL; 7569 return (mp); 7570 } 7571 if (ipsq->ipsq_current_ipif != NULL) 7572 return (NULL); 7573 mp = ipsq->ipsq_xopq_mphead; 7574 if (mp != NULL) { 7575 ipsq->ipsq_xopq_mphead = mp->b_next; 7576 if (ipsq->ipsq_xopq_mphead == NULL) 7577 ipsq->ipsq_xopq_mptail = NULL; 7578 mp->b_next = NULL; 7579 return (mp); 7580 } 7581 return (NULL); 7582 } 7583 7584 /* 7585 * Enter the ipsq corresponding to ill, by waiting synchronously till 7586 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7587 * will have to drain completely before ipsq_enter returns success. 7588 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7589 * and the ipsq_exit logic will start the next enqueued ioctl after 7590 * completion of the current ioctl. If 'force' is used, we don't wait 7591 * for the enqueued ioctls. This is needed when a conn_close wants to 7592 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7593 * of an ill can also use this option. But we dont' use it currently. 7594 */ 7595 #define ENTER_SQ_WAIT_TICKS 100 7596 boolean_t 7597 ipsq_enter(ill_t *ill, boolean_t force) 7598 { 7599 ipsq_t *ipsq; 7600 boolean_t waited_enough = B_FALSE; 7601 7602 /* 7603 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7604 * Since the <ill-ipsq> assocs could change while we wait for the 7605 * writer, it is easier to wait on a fixed global rather than try to 7606 * cv_wait on a changing ipsq. 7607 */ 7608 mutex_enter(&ill->ill_lock); 7609 for (;;) { 7610 if (ill->ill_state_flags & ILL_CONDEMNED) { 7611 mutex_exit(&ill->ill_lock); 7612 return (B_FALSE); 7613 } 7614 7615 ipsq = ill->ill_phyint->phyint_ipsq; 7616 mutex_enter(&ipsq->ipsq_lock); 7617 if (ipsq->ipsq_writer == NULL && 7618 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7619 break; 7620 } else if (ipsq->ipsq_writer != NULL) { 7621 mutex_exit(&ipsq->ipsq_lock); 7622 cv_wait(&ill->ill_cv, &ill->ill_lock); 7623 } else { 7624 mutex_exit(&ipsq->ipsq_lock); 7625 if (force) { 7626 (void) cv_timedwait(&ill->ill_cv, 7627 &ill->ill_lock, 7628 lbolt + ENTER_SQ_WAIT_TICKS); 7629 waited_enough = B_TRUE; 7630 continue; 7631 } else { 7632 cv_wait(&ill->ill_cv, &ill->ill_lock); 7633 } 7634 } 7635 } 7636 7637 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7638 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7639 ipsq->ipsq_writer = curthread; 7640 ipsq->ipsq_reentry_cnt++; 7641 #ifdef DEBUG 7642 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7643 #endif 7644 mutex_exit(&ipsq->ipsq_lock); 7645 mutex_exit(&ill->ill_lock); 7646 return (B_TRUE); 7647 } 7648 7649 /* 7650 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7651 * certain critical operations like plumbing (i.e. most set ioctls), 7652 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7653 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7654 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7655 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7656 * threads executing in the ipsq. Responses from the driver pertain to the 7657 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7658 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7659 * 7660 * If a thread does not want to reenter the ipsq when it is already writer, 7661 * it must make sure that the specified reentry point to be called later 7662 * when the ipsq is empty, nor any code path starting from the specified reentry 7663 * point must never ever try to enter the ipsq again. Otherwise it can lead 7664 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7665 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7666 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7667 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7668 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7669 * ioctl if the current ioctl has completed. If the current ioctl is still 7670 * in progress it simply returns. The current ioctl could be waiting for 7671 * a response from another module (arp_ or the driver or could be waiting for 7672 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7673 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7674 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7675 * ipsq_current_ipif is clear which happens only on ioctl completion. 7676 */ 7677 7678 /* 7679 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7680 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7681 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7682 * completion. 7683 */ 7684 ipsq_t * 7685 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7686 ipsq_func_t func, int type, boolean_t reentry_ok) 7687 { 7688 ipsq_t *ipsq; 7689 7690 /* Only 1 of ipif or ill can be specified */ 7691 ASSERT((ipif != NULL) ^ (ill != NULL)); 7692 if (ipif != NULL) 7693 ill = ipif->ipif_ill; 7694 7695 /* 7696 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7697 * ipsq of an ill can't change when ill_lock is held. 7698 */ 7699 GRAB_CONN_LOCK(q); 7700 mutex_enter(&ill->ill_lock); 7701 ipsq = ill->ill_phyint->phyint_ipsq; 7702 mutex_enter(&ipsq->ipsq_lock); 7703 7704 /* 7705 * 1. Enter the ipsq if we are already writer and reentry is ok. 7706 * (Note: If the caller does not specify reentry_ok then neither 7707 * 'func' nor any of its callees must ever attempt to enter the ipsq 7708 * again. Otherwise it can lead to an infinite loop 7709 * 2. Enter the ipsq if there is no current writer and this attempted 7710 * entry is part of the current ioctl or operation 7711 * 3. Enter the ipsq if there is no current writer and this is a new 7712 * ioctl (or operation) and the ioctl (or operation) queue is 7713 * empty and there is no ioctl (or operation) currently in progress 7714 */ 7715 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7716 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7717 ipsq->ipsq_current_ipif == NULL))) || 7718 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7719 /* Success. */ 7720 ipsq->ipsq_reentry_cnt++; 7721 ipsq->ipsq_writer = curthread; 7722 mutex_exit(&ipsq->ipsq_lock); 7723 mutex_exit(&ill->ill_lock); 7724 RELEASE_CONN_LOCK(q); 7725 #ifdef DEBUG 7726 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7727 IPSQ_STACK_DEPTH); 7728 #endif 7729 return (ipsq); 7730 } 7731 7732 ipsq_enq(ipsq, q, mp, func, type, ill); 7733 7734 mutex_exit(&ipsq->ipsq_lock); 7735 mutex_exit(&ill->ill_lock); 7736 RELEASE_CONN_LOCK(q); 7737 return (NULL); 7738 } 7739 7740 /* 7741 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7742 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7743 * cannot be entered, the mp is queued for completion. 7744 */ 7745 void 7746 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7747 boolean_t reentry_ok) 7748 { 7749 ipsq_t *ipsq; 7750 7751 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7752 7753 /* 7754 * Drop the caller's refhold on the ill. This is safe since we either 7755 * entered the IPSQ (and thus are exclusive), or failed to enter the 7756 * IPSQ, in which case we return without accessing ill anymore. This 7757 * is needed because func needs to see the correct refcount. 7758 * e.g. removeif can work only then. 7759 */ 7760 ill_refrele(ill); 7761 if (ipsq != NULL) { 7762 (*func)(ipsq, q, mp, NULL); 7763 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7764 } 7765 } 7766 7767 /* 7768 * If there are more than ILL_GRP_CNT ills in a group, 7769 * we use kmem alloc'd buffers, else use the stack 7770 */ 7771 #define ILL_GRP_CNT 14 7772 /* 7773 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7774 * Called by a thread that is currently exclusive on this ipsq. 7775 */ 7776 void 7777 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7778 { 7779 queue_t *q; 7780 mblk_t *mp; 7781 ipsq_func_t func; 7782 int next; 7783 ill_t **ill_list = NULL; 7784 size_t ill_list_size = 0; 7785 int cnt = 0; 7786 boolean_t need_ipsq_free = B_FALSE; 7787 ip_stack_t *ipst = ipsq->ipsq_ipst; 7788 7789 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7790 mutex_enter(&ipsq->ipsq_lock); 7791 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7792 if (ipsq->ipsq_reentry_cnt != 1) { 7793 ipsq->ipsq_reentry_cnt--; 7794 mutex_exit(&ipsq->ipsq_lock); 7795 return; 7796 } 7797 7798 mp = ipsq_dq(ipsq); 7799 while (mp != NULL) { 7800 again: 7801 mutex_exit(&ipsq->ipsq_lock); 7802 func = (ipsq_func_t)mp->b_prev; 7803 q = (queue_t *)mp->b_queue; 7804 mp->b_prev = NULL; 7805 mp->b_queue = NULL; 7806 7807 /* 7808 * If 'q' is an conn queue, it is valid, since we did a 7809 * a refhold on the connp, at the start of the ioctl. 7810 * If 'q' is an ill queue, it is valid, since close of an 7811 * ill will clean up the 'ipsq'. 7812 */ 7813 (*func)(ipsq, q, mp, NULL); 7814 7815 mutex_enter(&ipsq->ipsq_lock); 7816 mp = ipsq_dq(ipsq); 7817 } 7818 7819 mutex_exit(&ipsq->ipsq_lock); 7820 7821 /* 7822 * Need to grab the locks in the right order. Need to 7823 * atomically check (under ipsq_lock) that there are no 7824 * messages before relinquishing the ipsq. Also need to 7825 * atomically wakeup waiters on ill_cv while holding ill_lock. 7826 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7827 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7828 * to grab ill_g_lock as writer. 7829 */ 7830 rw_enter(&ipst->ips_ill_g_lock, 7831 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7832 7833 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7834 if (ipsq->ipsq_refs != 0) { 7835 /* At most 2 ills v4/v6 per phyint */ 7836 cnt = ipsq->ipsq_refs << 1; 7837 ill_list_size = cnt * sizeof (ill_t *); 7838 /* 7839 * If memory allocation fails, we will do the split 7840 * the next time ipsq_exit is called for whatever reason. 7841 * As long as the ipsq_split flag is set the need to 7842 * split is remembered. 7843 */ 7844 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7845 if (ill_list != NULL) 7846 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7847 } 7848 mutex_enter(&ipsq->ipsq_lock); 7849 mp = ipsq_dq(ipsq); 7850 if (mp != NULL) { 7851 /* oops, some message has landed up, we can't get out */ 7852 if (ill_list != NULL) 7853 ill_unlock_ills(ill_list, cnt); 7854 rw_exit(&ipst->ips_ill_g_lock); 7855 if (ill_list != NULL) 7856 kmem_free(ill_list, ill_list_size); 7857 ill_list = NULL; 7858 ill_list_size = 0; 7859 cnt = 0; 7860 goto again; 7861 } 7862 7863 /* 7864 * Split only if no ioctl is pending and if memory alloc succeeded 7865 * above. 7866 */ 7867 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7868 ill_list != NULL) { 7869 /* 7870 * No new ill can join this ipsq since we are holding the 7871 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7872 * ipsq. ill_split_ipsq may fail due to memory shortage. 7873 * If so we will retry on the next ipsq_exit. 7874 */ 7875 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7876 } 7877 7878 /* 7879 * We are holding the ipsq lock, hence no new messages can 7880 * land up on the ipsq, and there are no messages currently. 7881 * Now safe to get out. Wake up waiters and relinquish ipsq 7882 * atomically while holding ill locks. 7883 */ 7884 ipsq->ipsq_writer = NULL; 7885 ipsq->ipsq_reentry_cnt--; 7886 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7887 #ifdef DEBUG 7888 ipsq->ipsq_depth = 0; 7889 #endif 7890 mutex_exit(&ipsq->ipsq_lock); 7891 /* 7892 * For IPMP this should wake up all ills in this ipsq. 7893 * We need to hold the ill_lock while waking up waiters to 7894 * avoid missed wakeups. But there is no need to acquire all 7895 * the ill locks and then wakeup. If we have not acquired all 7896 * the locks (due to memory failure above) ill_signal_ipsq_ills 7897 * wakes up ills one at a time after getting the right ill_lock 7898 */ 7899 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7900 if (ill_list != NULL) 7901 ill_unlock_ills(ill_list, cnt); 7902 if (ipsq->ipsq_refs == 0) 7903 need_ipsq_free = B_TRUE; 7904 rw_exit(&ipst->ips_ill_g_lock); 7905 if (ill_list != 0) 7906 kmem_free(ill_list, ill_list_size); 7907 7908 if (need_ipsq_free) { 7909 /* 7910 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7911 * looked up. ipsq can be looked up only thru ill or phyint 7912 * and there are no ills/phyint on this ipsq. 7913 */ 7914 ipsq_delete(ipsq); 7915 } 7916 /* 7917 * Now start any igmp or mld timers that could not be started 7918 * while inside the ipsq. The timers can't be started while inside 7919 * the ipsq, since igmp_start_timers may need to call untimeout() 7920 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7921 * there could be a deadlock since the timeout handlers 7922 * mld_timeout_handler / igmp_timeout_handler also synchronously 7923 * wait in ipsq_enter() trying to get the ipsq. 7924 * 7925 * However there is one exception to the above. If this thread is 7926 * itself the igmp/mld timeout handler thread, then we don't want 7927 * to start any new timer until the current handler is done. The 7928 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7929 * all others pass B_TRUE. 7930 */ 7931 if (start_igmp_timer) { 7932 mutex_enter(&ipst->ips_igmp_timer_lock); 7933 next = ipst->ips_igmp_deferred_next; 7934 ipst->ips_igmp_deferred_next = INFINITY; 7935 mutex_exit(&ipst->ips_igmp_timer_lock); 7936 7937 if (next != INFINITY) 7938 igmp_start_timers(next, ipst); 7939 } 7940 7941 if (start_mld_timer) { 7942 mutex_enter(&ipst->ips_mld_timer_lock); 7943 next = ipst->ips_mld_deferred_next; 7944 ipst->ips_mld_deferred_next = INFINITY; 7945 mutex_exit(&ipst->ips_mld_timer_lock); 7946 7947 if (next != INFINITY) 7948 mld_start_timers(next, ipst); 7949 } 7950 } 7951 7952 /* 7953 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7954 * and `ioccmd'. 7955 */ 7956 void 7957 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7958 { 7959 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7960 7961 mutex_enter(&ipsq->ipsq_lock); 7962 ASSERT(ipsq->ipsq_current_ipif == NULL); 7963 ASSERT(ipsq->ipsq_current_ioctl == 0); 7964 ipsq->ipsq_current_ipif = ipif; 7965 ipsq->ipsq_current_ioctl = ioccmd; 7966 mutex_exit(&ipsq->ipsq_lock); 7967 } 7968 7969 /* 7970 * Finish the current exclusive operation on `ipsq'. Note that other 7971 * operations will not be able to proceed until an ipsq_exit() is done. 7972 */ 7973 void 7974 ipsq_current_finish(ipsq_t *ipsq) 7975 { 7976 ipif_t *ipif = ipsq->ipsq_current_ipif; 7977 7978 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7979 7980 /* 7981 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 7982 * (but we're careful to never set IPIF_CHANGING in that case). 7983 */ 7984 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 7985 mutex_enter(&ipif->ipif_ill->ill_lock); 7986 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7987 7988 /* Send any queued event */ 7989 ill_nic_info_dispatch(ipif->ipif_ill); 7990 mutex_exit(&ipif->ipif_ill->ill_lock); 7991 } 7992 7993 mutex_enter(&ipsq->ipsq_lock); 7994 ASSERT(ipsq->ipsq_current_ipif != NULL); 7995 ipsq->ipsq_current_ipif = NULL; 7996 ipsq->ipsq_current_ioctl = 0; 7997 mutex_exit(&ipsq->ipsq_lock); 7998 } 7999 8000 /* 8001 * The ill is closing. Flush all messages on the ipsq that originated 8002 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8003 * for this ill since ipsq_enter could not have entered until then. 8004 * New messages can't be queued since the CONDEMNED flag is set. 8005 */ 8006 static void 8007 ipsq_flush(ill_t *ill) 8008 { 8009 queue_t *q; 8010 mblk_t *prev; 8011 mblk_t *mp; 8012 mblk_t *mp_next; 8013 ipsq_t *ipsq; 8014 8015 ASSERT(IAM_WRITER_ILL(ill)); 8016 ipsq = ill->ill_phyint->phyint_ipsq; 8017 /* 8018 * Flush any messages sent up by the driver. 8019 */ 8020 mutex_enter(&ipsq->ipsq_lock); 8021 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8022 mp_next = mp->b_next; 8023 q = mp->b_queue; 8024 if (q == ill->ill_rq || q == ill->ill_wq) { 8025 /* Remove the mp from the ipsq */ 8026 if (prev == NULL) 8027 ipsq->ipsq_mphead = mp->b_next; 8028 else 8029 prev->b_next = mp->b_next; 8030 if (ipsq->ipsq_mptail == mp) { 8031 ASSERT(mp_next == NULL); 8032 ipsq->ipsq_mptail = prev; 8033 } 8034 inet_freemsg(mp); 8035 } else { 8036 prev = mp; 8037 } 8038 } 8039 mutex_exit(&ipsq->ipsq_lock); 8040 (void) ipsq_pending_mp_cleanup(ill, NULL); 8041 ipsq_xopq_mp_cleanup(ill, NULL); 8042 ill_pending_mp_cleanup(ill); 8043 } 8044 8045 /* ARGSUSED */ 8046 int 8047 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8048 ip_ioctl_cmd_t *ipip, void *ifreq) 8049 { 8050 ill_t *ill; 8051 struct lifreq *lifr = (struct lifreq *)ifreq; 8052 boolean_t isv6; 8053 conn_t *connp; 8054 ip_stack_t *ipst; 8055 8056 connp = Q_TO_CONN(q); 8057 ipst = connp->conn_netstack->netstack_ip; 8058 isv6 = connp->conn_af_isv6; 8059 /* 8060 * Set original index. 8061 * Failover and failback move logical interfaces 8062 * from one physical interface to another. The 8063 * original index indicates the parent of a logical 8064 * interface, in other words, the physical interface 8065 * the logical interface will be moved back to on 8066 * failback. 8067 */ 8068 8069 /* 8070 * Don't allow the original index to be changed 8071 * for non-failover addresses, autoconfigured 8072 * addresses, or IPv6 link local addresses. 8073 */ 8074 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8075 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8076 return (EINVAL); 8077 } 8078 /* 8079 * The new original index must be in use by some 8080 * physical interface. 8081 */ 8082 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8083 NULL, NULL, ipst); 8084 if (ill == NULL) 8085 return (ENXIO); 8086 ill_refrele(ill); 8087 8088 ipif->ipif_orig_ifindex = lifr->lifr_index; 8089 /* 8090 * When this ipif gets failed back, don't 8091 * preserve the original id, as it is no 8092 * longer applicable. 8093 */ 8094 ipif->ipif_orig_ipifid = 0; 8095 /* 8096 * For IPv4, change the original index of any 8097 * multicast addresses associated with the 8098 * ipif to the new value. 8099 */ 8100 if (!isv6) { 8101 ilm_t *ilm; 8102 8103 mutex_enter(&ipif->ipif_ill->ill_lock); 8104 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8105 ilm = ilm->ilm_next) { 8106 if (ilm->ilm_ipif == ipif) { 8107 ilm->ilm_orig_ifindex = lifr->lifr_index; 8108 } 8109 } 8110 mutex_exit(&ipif->ipif_ill->ill_lock); 8111 } 8112 return (0); 8113 } 8114 8115 /* ARGSUSED */ 8116 int 8117 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8118 ip_ioctl_cmd_t *ipip, void *ifreq) 8119 { 8120 struct lifreq *lifr = (struct lifreq *)ifreq; 8121 8122 /* 8123 * Get the original interface index i.e the one 8124 * before FAILOVER if it ever happened. 8125 */ 8126 lifr->lifr_index = ipif->ipif_orig_ifindex; 8127 return (0); 8128 } 8129 8130 /* 8131 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8132 * refhold and return the associated ipif 8133 */ 8134 /* ARGSUSED */ 8135 int 8136 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8137 cmd_info_t *ci, ipsq_func_t func) 8138 { 8139 boolean_t exists; 8140 struct iftun_req *ta; 8141 ipif_t *ipif; 8142 ill_t *ill; 8143 boolean_t isv6; 8144 mblk_t *mp1; 8145 int error; 8146 conn_t *connp; 8147 ip_stack_t *ipst; 8148 8149 /* Existence verified in ip_wput_nondata */ 8150 mp1 = mp->b_cont->b_cont; 8151 ta = (struct iftun_req *)mp1->b_rptr; 8152 /* 8153 * Null terminate the string to protect against buffer 8154 * overrun. String was generated by user code and may not 8155 * be trusted. 8156 */ 8157 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8158 8159 connp = Q_TO_CONN(q); 8160 isv6 = connp->conn_af_isv6; 8161 ipst = connp->conn_netstack->netstack_ip; 8162 8163 /* Disallows implicit create */ 8164 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8165 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8166 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8167 if (ipif == NULL) 8168 return (error); 8169 8170 if (ipif->ipif_id != 0) { 8171 /* 8172 * We really don't want to set/get tunnel parameters 8173 * on virtual tunnel interfaces. Only allow the 8174 * base tunnel to do these. 8175 */ 8176 ipif_refrele(ipif); 8177 return (EINVAL); 8178 } 8179 8180 /* 8181 * Send down to tunnel mod for ioctl processing. 8182 * Will finish ioctl in ip_rput_other(). 8183 */ 8184 ill = ipif->ipif_ill; 8185 if (ill->ill_net_type == IRE_LOOPBACK) { 8186 ipif_refrele(ipif); 8187 return (EOPNOTSUPP); 8188 } 8189 8190 if (ill->ill_wq == NULL) { 8191 ipif_refrele(ipif); 8192 return (ENXIO); 8193 } 8194 /* 8195 * Mark the ioctl as coming from an IPv6 interface for 8196 * tun's convenience. 8197 */ 8198 if (ill->ill_isv6) 8199 ta->ifta_flags |= 0x80000000; 8200 ci->ci_ipif = ipif; 8201 return (0); 8202 } 8203 8204 /* 8205 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8206 * and return the associated ipif. 8207 * Return value: 8208 * Non zero: An error has occurred. ci may not be filled out. 8209 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8210 * a held ipif in ci.ci_ipif. 8211 */ 8212 int 8213 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8214 cmd_info_t *ci, ipsq_func_t func) 8215 { 8216 sin_t *sin; 8217 sin6_t *sin6; 8218 char *name; 8219 struct ifreq *ifr; 8220 struct lifreq *lifr; 8221 ipif_t *ipif = NULL; 8222 ill_t *ill; 8223 conn_t *connp; 8224 boolean_t isv6; 8225 boolean_t exists; 8226 int err; 8227 mblk_t *mp1; 8228 zoneid_t zoneid; 8229 ip_stack_t *ipst; 8230 8231 if (q->q_next != NULL) { 8232 ill = (ill_t *)q->q_ptr; 8233 isv6 = ill->ill_isv6; 8234 connp = NULL; 8235 zoneid = ALL_ZONES; 8236 ipst = ill->ill_ipst; 8237 } else { 8238 ill = NULL; 8239 connp = Q_TO_CONN(q); 8240 isv6 = connp->conn_af_isv6; 8241 zoneid = connp->conn_zoneid; 8242 if (zoneid == GLOBAL_ZONEID) { 8243 /* global zone can access ipifs in all zones */ 8244 zoneid = ALL_ZONES; 8245 } 8246 ipst = connp->conn_netstack->netstack_ip; 8247 } 8248 8249 /* Has been checked in ip_wput_nondata */ 8250 mp1 = mp->b_cont->b_cont; 8251 8252 if (ipip->ipi_cmd_type == IF_CMD) { 8253 /* This a old style SIOC[GS]IF* command */ 8254 ifr = (struct ifreq *)mp1->b_rptr; 8255 /* 8256 * Null terminate the string to protect against buffer 8257 * overrun. String was generated by user code and may not 8258 * be trusted. 8259 */ 8260 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8261 sin = (sin_t *)&ifr->ifr_addr; 8262 name = ifr->ifr_name; 8263 ci->ci_sin = sin; 8264 ci->ci_sin6 = NULL; 8265 ci->ci_lifr = (struct lifreq *)ifr; 8266 } else { 8267 /* This a new style SIOC[GS]LIF* command */ 8268 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8269 lifr = (struct lifreq *)mp1->b_rptr; 8270 /* 8271 * Null terminate the string to protect against buffer 8272 * overrun. String was generated by user code and may not 8273 * be trusted. 8274 */ 8275 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8276 name = lifr->lifr_name; 8277 sin = (sin_t *)&lifr->lifr_addr; 8278 sin6 = (sin6_t *)&lifr->lifr_addr; 8279 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8280 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8281 LIFNAMSIZ); 8282 } 8283 ci->ci_sin = sin; 8284 ci->ci_sin6 = sin6; 8285 ci->ci_lifr = lifr; 8286 } 8287 8288 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8289 /* 8290 * The ioctl will be failed if the ioctl comes down 8291 * an conn stream 8292 */ 8293 if (ill == NULL) { 8294 /* 8295 * Not an ill queue, return EINVAL same as the 8296 * old error code. 8297 */ 8298 return (ENXIO); 8299 } 8300 ipif = ill->ill_ipif; 8301 ipif_refhold(ipif); 8302 } else { 8303 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8304 &exists, isv6, zoneid, 8305 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8306 ipst); 8307 if (ipif == NULL) { 8308 if (err == EINPROGRESS) 8309 return (err); 8310 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8311 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8312 /* 8313 * Need to try both v4 and v6 since this 8314 * ioctl can come down either v4 or v6 8315 * socket. The lifreq.lifr_family passed 8316 * down by this ioctl is AF_UNSPEC. 8317 */ 8318 ipif = ipif_lookup_on_name(name, 8319 mi_strlen(name), B_FALSE, &exists, !isv6, 8320 zoneid, (connp == NULL) ? q : 8321 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8322 if (err == EINPROGRESS) 8323 return (err); 8324 } 8325 err = 0; /* Ensure we don't use it below */ 8326 } 8327 } 8328 8329 /* 8330 * Old style [GS]IFCMD does not admit IPv6 ipif 8331 */ 8332 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8333 ipif_refrele(ipif); 8334 return (ENXIO); 8335 } 8336 8337 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8338 name[0] == '\0') { 8339 /* 8340 * Handle a or a SIOC?IF* with a null name 8341 * during plumb (on the ill queue before the I_PLINK). 8342 */ 8343 ipif = ill->ill_ipif; 8344 ipif_refhold(ipif); 8345 } 8346 8347 if (ipif == NULL) 8348 return (ENXIO); 8349 8350 /* 8351 * Allow only GET operations if this ipif has been created 8352 * temporarily due to a MOVE operation. 8353 */ 8354 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8355 ipif_refrele(ipif); 8356 return (EINVAL); 8357 } 8358 8359 ci->ci_ipif = ipif; 8360 return (0); 8361 } 8362 8363 /* 8364 * Return the total number of ipifs. 8365 */ 8366 static uint_t 8367 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8368 { 8369 uint_t numifs = 0; 8370 ill_t *ill; 8371 ill_walk_context_t ctx; 8372 ipif_t *ipif; 8373 8374 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8375 ill = ILL_START_WALK_V4(&ctx, ipst); 8376 8377 while (ill != NULL) { 8378 for (ipif = ill->ill_ipif; ipif != NULL; 8379 ipif = ipif->ipif_next) { 8380 if (ipif->ipif_zoneid == zoneid || 8381 ipif->ipif_zoneid == ALL_ZONES) 8382 numifs++; 8383 } 8384 ill = ill_next(&ctx, ill); 8385 } 8386 rw_exit(&ipst->ips_ill_g_lock); 8387 return (numifs); 8388 } 8389 8390 /* 8391 * Return the total number of ipifs. 8392 */ 8393 static uint_t 8394 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8395 { 8396 uint_t numifs = 0; 8397 ill_t *ill; 8398 ipif_t *ipif; 8399 ill_walk_context_t ctx; 8400 8401 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8402 8403 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8404 if (family == AF_INET) 8405 ill = ILL_START_WALK_V4(&ctx, ipst); 8406 else if (family == AF_INET6) 8407 ill = ILL_START_WALK_V6(&ctx, ipst); 8408 else 8409 ill = ILL_START_WALK_ALL(&ctx, ipst); 8410 8411 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8412 for (ipif = ill->ill_ipif; ipif != NULL; 8413 ipif = ipif->ipif_next) { 8414 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8415 !(lifn_flags & LIFC_NOXMIT)) 8416 continue; 8417 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8418 !(lifn_flags & LIFC_TEMPORARY)) 8419 continue; 8420 if (((ipif->ipif_flags & 8421 (IPIF_NOXMIT|IPIF_NOLOCAL| 8422 IPIF_DEPRECATED)) || 8423 IS_LOOPBACK(ill) || 8424 !(ipif->ipif_flags & IPIF_UP)) && 8425 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8426 continue; 8427 8428 if (zoneid != ipif->ipif_zoneid && 8429 ipif->ipif_zoneid != ALL_ZONES && 8430 (zoneid != GLOBAL_ZONEID || 8431 !(lifn_flags & LIFC_ALLZONES))) 8432 continue; 8433 8434 numifs++; 8435 } 8436 } 8437 rw_exit(&ipst->ips_ill_g_lock); 8438 return (numifs); 8439 } 8440 8441 uint_t 8442 ip_get_lifsrcofnum(ill_t *ill) 8443 { 8444 uint_t numifs = 0; 8445 ill_t *ill_head = ill; 8446 ip_stack_t *ipst = ill->ill_ipst; 8447 8448 /* 8449 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8450 * other thread may be trying to relink the ILLs in this usesrc group 8451 * and adjusting the ill_usesrc_grp_next pointers 8452 */ 8453 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8454 if ((ill->ill_usesrc_ifindex == 0) && 8455 (ill->ill_usesrc_grp_next != NULL)) { 8456 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8457 ill = ill->ill_usesrc_grp_next) 8458 numifs++; 8459 } 8460 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8461 8462 return (numifs); 8463 } 8464 8465 /* Null values are passed in for ipif, sin, and ifreq */ 8466 /* ARGSUSED */ 8467 int 8468 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8469 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8470 { 8471 int *nump; 8472 conn_t *connp = Q_TO_CONN(q); 8473 8474 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8475 8476 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8477 nump = (int *)mp->b_cont->b_cont->b_rptr; 8478 8479 *nump = ip_get_numifs(connp->conn_zoneid, 8480 connp->conn_netstack->netstack_ip); 8481 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8482 return (0); 8483 } 8484 8485 /* Null values are passed in for ipif, sin, and ifreq */ 8486 /* ARGSUSED */ 8487 int 8488 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8489 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8490 { 8491 struct lifnum *lifn; 8492 mblk_t *mp1; 8493 conn_t *connp = Q_TO_CONN(q); 8494 8495 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8496 8497 /* Existence checked in ip_wput_nondata */ 8498 mp1 = mp->b_cont->b_cont; 8499 8500 lifn = (struct lifnum *)mp1->b_rptr; 8501 switch (lifn->lifn_family) { 8502 case AF_UNSPEC: 8503 case AF_INET: 8504 case AF_INET6: 8505 break; 8506 default: 8507 return (EAFNOSUPPORT); 8508 } 8509 8510 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8511 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8512 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8513 return (0); 8514 } 8515 8516 /* ARGSUSED */ 8517 int 8518 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8519 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8520 { 8521 STRUCT_HANDLE(ifconf, ifc); 8522 mblk_t *mp1; 8523 struct iocblk *iocp; 8524 struct ifreq *ifr; 8525 ill_walk_context_t ctx; 8526 ill_t *ill; 8527 ipif_t *ipif; 8528 struct sockaddr_in *sin; 8529 int32_t ifclen; 8530 zoneid_t zoneid; 8531 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8532 8533 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8534 8535 ip1dbg(("ip_sioctl_get_ifconf")); 8536 /* Existence verified in ip_wput_nondata */ 8537 mp1 = mp->b_cont->b_cont; 8538 iocp = (struct iocblk *)mp->b_rptr; 8539 zoneid = Q_TO_CONN(q)->conn_zoneid; 8540 8541 /* 8542 * The original SIOCGIFCONF passed in a struct ifconf which specified 8543 * the user buffer address and length into which the list of struct 8544 * ifreqs was to be copied. Since AT&T Streams does not seem to 8545 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8546 * the SIOCGIFCONF operation was redefined to simply provide 8547 * a large output buffer into which we are supposed to jam the ifreq 8548 * array. The same ioctl command code was used, despite the fact that 8549 * both the applications and the kernel code had to change, thus making 8550 * it impossible to support both interfaces. 8551 * 8552 * For reasons not good enough to try to explain, the following 8553 * algorithm is used for deciding what to do with one of these: 8554 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8555 * form with the output buffer coming down as the continuation message. 8556 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8557 * and we have to copy in the ifconf structure to find out how big the 8558 * output buffer is and where to copy out to. Sure no problem... 8559 * 8560 */ 8561 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8562 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8563 int numifs = 0; 8564 size_t ifc_bufsize; 8565 8566 /* 8567 * Must be (better be!) continuation of a TRANSPARENT 8568 * IOCTL. We just copied in the ifconf structure. 8569 */ 8570 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8571 (struct ifconf *)mp1->b_rptr); 8572 8573 /* 8574 * Allocate a buffer to hold requested information. 8575 * 8576 * If ifc_len is larger than what is needed, we only 8577 * allocate what we will use. 8578 * 8579 * If ifc_len is smaller than what is needed, return 8580 * EINVAL. 8581 * 8582 * XXX: the ill_t structure can hava 2 counters, for 8583 * v4 and v6 (not just ill_ipif_up_count) to store the 8584 * number of interfaces for a device, so we don't need 8585 * to count them here... 8586 */ 8587 numifs = ip_get_numifs(zoneid, ipst); 8588 8589 ifclen = STRUCT_FGET(ifc, ifc_len); 8590 ifc_bufsize = numifs * sizeof (struct ifreq); 8591 if (ifc_bufsize > ifclen) { 8592 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8593 /* old behaviour */ 8594 return (EINVAL); 8595 } else { 8596 ifc_bufsize = ifclen; 8597 } 8598 } 8599 8600 mp1 = mi_copyout_alloc(q, mp, 8601 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8602 if (mp1 == NULL) 8603 return (ENOMEM); 8604 8605 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8606 } 8607 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8608 /* 8609 * the SIOCGIFCONF ioctl only knows about 8610 * IPv4 addresses, so don't try to tell 8611 * it about interfaces with IPv6-only 8612 * addresses. (Last parm 'isv6' is B_FALSE) 8613 */ 8614 8615 ifr = (struct ifreq *)mp1->b_rptr; 8616 8617 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8618 ill = ILL_START_WALK_V4(&ctx, ipst); 8619 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8620 for (ipif = ill->ill_ipif; ipif != NULL; 8621 ipif = ipif->ipif_next) { 8622 if (zoneid != ipif->ipif_zoneid && 8623 ipif->ipif_zoneid != ALL_ZONES) 8624 continue; 8625 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8626 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8627 /* old behaviour */ 8628 rw_exit(&ipst->ips_ill_g_lock); 8629 return (EINVAL); 8630 } else { 8631 goto if_copydone; 8632 } 8633 } 8634 ipif_get_name(ipif, ifr->ifr_name, 8635 sizeof (ifr->ifr_name)); 8636 sin = (sin_t *)&ifr->ifr_addr; 8637 *sin = sin_null; 8638 sin->sin_family = AF_INET; 8639 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8640 ifr++; 8641 } 8642 } 8643 if_copydone: 8644 rw_exit(&ipst->ips_ill_g_lock); 8645 mp1->b_wptr = (uchar_t *)ifr; 8646 8647 if (STRUCT_BUF(ifc) != NULL) { 8648 STRUCT_FSET(ifc, ifc_len, 8649 (int)((uchar_t *)ifr - mp1->b_rptr)); 8650 } 8651 return (0); 8652 } 8653 8654 /* 8655 * Get the interfaces using the address hosted on the interface passed in, 8656 * as a source adddress 8657 */ 8658 /* ARGSUSED */ 8659 int 8660 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8661 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8662 { 8663 mblk_t *mp1; 8664 ill_t *ill, *ill_head; 8665 ipif_t *ipif, *orig_ipif; 8666 int numlifs = 0; 8667 size_t lifs_bufsize, lifsmaxlen; 8668 struct lifreq *lifr; 8669 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8670 uint_t ifindex; 8671 zoneid_t zoneid; 8672 int err = 0; 8673 boolean_t isv6 = B_FALSE; 8674 struct sockaddr_in *sin; 8675 struct sockaddr_in6 *sin6; 8676 STRUCT_HANDLE(lifsrcof, lifs); 8677 ip_stack_t *ipst; 8678 8679 ipst = CONNQ_TO_IPST(q); 8680 8681 ASSERT(q->q_next == NULL); 8682 8683 zoneid = Q_TO_CONN(q)->conn_zoneid; 8684 8685 /* Existence verified in ip_wput_nondata */ 8686 mp1 = mp->b_cont->b_cont; 8687 8688 /* 8689 * Must be (better be!) continuation of a TRANSPARENT 8690 * IOCTL. We just copied in the lifsrcof structure. 8691 */ 8692 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8693 (struct lifsrcof *)mp1->b_rptr); 8694 8695 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8696 return (EINVAL); 8697 8698 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8699 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8700 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8701 ip_process_ioctl, &err, ipst); 8702 if (ipif == NULL) { 8703 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8704 ifindex)); 8705 return (err); 8706 } 8707 8708 8709 /* Allocate a buffer to hold requested information */ 8710 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8711 lifs_bufsize = numlifs * sizeof (struct lifreq); 8712 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8713 /* The actual size needed is always returned in lifs_len */ 8714 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8715 8716 /* If the amount we need is more than what is passed in, abort */ 8717 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8718 ipif_refrele(ipif); 8719 return (0); 8720 } 8721 8722 mp1 = mi_copyout_alloc(q, mp, 8723 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8724 if (mp1 == NULL) { 8725 ipif_refrele(ipif); 8726 return (ENOMEM); 8727 } 8728 8729 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8730 bzero(mp1->b_rptr, lifs_bufsize); 8731 8732 lifr = (struct lifreq *)mp1->b_rptr; 8733 8734 ill = ill_head = ipif->ipif_ill; 8735 orig_ipif = ipif; 8736 8737 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8738 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8739 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8740 8741 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8742 for (; (ill != NULL) && (ill != ill_head); 8743 ill = ill->ill_usesrc_grp_next) { 8744 8745 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8746 break; 8747 8748 ipif = ill->ill_ipif; 8749 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8750 if (ipif->ipif_isv6) { 8751 sin6 = (sin6_t *)&lifr->lifr_addr; 8752 *sin6 = sin6_null; 8753 sin6->sin6_family = AF_INET6; 8754 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8755 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8756 &ipif->ipif_v6net_mask); 8757 } else { 8758 sin = (sin_t *)&lifr->lifr_addr; 8759 *sin = sin_null; 8760 sin->sin_family = AF_INET; 8761 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8762 lifr->lifr_addrlen = ip_mask_to_plen( 8763 ipif->ipif_net_mask); 8764 } 8765 lifr++; 8766 } 8767 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8768 rw_exit(&ipst->ips_ill_g_lock); 8769 ipif_refrele(orig_ipif); 8770 mp1->b_wptr = (uchar_t *)lifr; 8771 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8772 8773 return (0); 8774 } 8775 8776 /* ARGSUSED */ 8777 int 8778 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8779 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8780 { 8781 mblk_t *mp1; 8782 int list; 8783 ill_t *ill; 8784 ipif_t *ipif; 8785 int flags; 8786 int numlifs = 0; 8787 size_t lifc_bufsize; 8788 struct lifreq *lifr; 8789 sa_family_t family; 8790 struct sockaddr_in *sin; 8791 struct sockaddr_in6 *sin6; 8792 ill_walk_context_t ctx; 8793 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8794 int32_t lifclen; 8795 zoneid_t zoneid; 8796 STRUCT_HANDLE(lifconf, lifc); 8797 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8798 8799 ip1dbg(("ip_sioctl_get_lifconf")); 8800 8801 ASSERT(q->q_next == NULL); 8802 8803 zoneid = Q_TO_CONN(q)->conn_zoneid; 8804 8805 /* Existence verified in ip_wput_nondata */ 8806 mp1 = mp->b_cont->b_cont; 8807 8808 /* 8809 * An extended version of SIOCGIFCONF that takes an 8810 * additional address family and flags field. 8811 * AF_UNSPEC retrieve both IPv4 and IPv6. 8812 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8813 * interfaces are omitted. 8814 * Similarly, IPIF_TEMPORARY interfaces are omitted 8815 * unless LIFC_TEMPORARY is specified. 8816 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8817 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8818 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8819 * has priority over LIFC_NOXMIT. 8820 */ 8821 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8822 8823 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8824 return (EINVAL); 8825 8826 /* 8827 * Must be (better be!) continuation of a TRANSPARENT 8828 * IOCTL. We just copied in the lifconf structure. 8829 */ 8830 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8831 8832 family = STRUCT_FGET(lifc, lifc_family); 8833 flags = STRUCT_FGET(lifc, lifc_flags); 8834 8835 switch (family) { 8836 case AF_UNSPEC: 8837 /* 8838 * walk all ILL's. 8839 */ 8840 list = MAX_G_HEADS; 8841 break; 8842 case AF_INET: 8843 /* 8844 * walk only IPV4 ILL's. 8845 */ 8846 list = IP_V4_G_HEAD; 8847 break; 8848 case AF_INET6: 8849 /* 8850 * walk only IPV6 ILL's. 8851 */ 8852 list = IP_V6_G_HEAD; 8853 break; 8854 default: 8855 return (EAFNOSUPPORT); 8856 } 8857 8858 /* 8859 * Allocate a buffer to hold requested information. 8860 * 8861 * If lifc_len is larger than what is needed, we only 8862 * allocate what we will use. 8863 * 8864 * If lifc_len is smaller than what is needed, return 8865 * EINVAL. 8866 */ 8867 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8868 lifc_bufsize = numlifs * sizeof (struct lifreq); 8869 lifclen = STRUCT_FGET(lifc, lifc_len); 8870 if (lifc_bufsize > lifclen) { 8871 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8872 return (EINVAL); 8873 else 8874 lifc_bufsize = lifclen; 8875 } 8876 8877 mp1 = mi_copyout_alloc(q, mp, 8878 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8879 if (mp1 == NULL) 8880 return (ENOMEM); 8881 8882 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8883 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8884 8885 lifr = (struct lifreq *)mp1->b_rptr; 8886 8887 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8888 ill = ill_first(list, list, &ctx, ipst); 8889 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8890 for (ipif = ill->ill_ipif; ipif != NULL; 8891 ipif = ipif->ipif_next) { 8892 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8893 !(flags & LIFC_NOXMIT)) 8894 continue; 8895 8896 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8897 !(flags & LIFC_TEMPORARY)) 8898 continue; 8899 8900 if (((ipif->ipif_flags & 8901 (IPIF_NOXMIT|IPIF_NOLOCAL| 8902 IPIF_DEPRECATED)) || 8903 IS_LOOPBACK(ill) || 8904 !(ipif->ipif_flags & IPIF_UP)) && 8905 (flags & LIFC_EXTERNAL_SOURCE)) 8906 continue; 8907 8908 if (zoneid != ipif->ipif_zoneid && 8909 ipif->ipif_zoneid != ALL_ZONES && 8910 (zoneid != GLOBAL_ZONEID || 8911 !(flags & LIFC_ALLZONES))) 8912 continue; 8913 8914 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8915 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8916 rw_exit(&ipst->ips_ill_g_lock); 8917 return (EINVAL); 8918 } else { 8919 goto lif_copydone; 8920 } 8921 } 8922 8923 ipif_get_name(ipif, lifr->lifr_name, 8924 sizeof (lifr->lifr_name)); 8925 if (ipif->ipif_isv6) { 8926 sin6 = (sin6_t *)&lifr->lifr_addr; 8927 *sin6 = sin6_null; 8928 sin6->sin6_family = AF_INET6; 8929 sin6->sin6_addr = 8930 ipif->ipif_v6lcl_addr; 8931 lifr->lifr_addrlen = 8932 ip_mask_to_plen_v6( 8933 &ipif->ipif_v6net_mask); 8934 } else { 8935 sin = (sin_t *)&lifr->lifr_addr; 8936 *sin = sin_null; 8937 sin->sin_family = AF_INET; 8938 sin->sin_addr.s_addr = 8939 ipif->ipif_lcl_addr; 8940 lifr->lifr_addrlen = 8941 ip_mask_to_plen( 8942 ipif->ipif_net_mask); 8943 } 8944 lifr++; 8945 } 8946 } 8947 lif_copydone: 8948 rw_exit(&ipst->ips_ill_g_lock); 8949 8950 mp1->b_wptr = (uchar_t *)lifr; 8951 if (STRUCT_BUF(lifc) != NULL) { 8952 STRUCT_FSET(lifc, lifc_len, 8953 (int)((uchar_t *)lifr - mp1->b_rptr)); 8954 } 8955 return (0); 8956 } 8957 8958 /* ARGSUSED */ 8959 int 8960 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8961 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8962 { 8963 ip_stack_t *ipst; 8964 8965 if (q->q_next == NULL) 8966 ipst = CONNQ_TO_IPST(q); 8967 else 8968 ipst = ILLQ_TO_IPST(q); 8969 8970 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8971 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8972 return (0); 8973 } 8974 8975 static void 8976 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8977 { 8978 ip6_asp_t *table; 8979 size_t table_size; 8980 mblk_t *data_mp; 8981 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8982 ip_stack_t *ipst; 8983 8984 if (q->q_next == NULL) 8985 ipst = CONNQ_TO_IPST(q); 8986 else 8987 ipst = ILLQ_TO_IPST(q); 8988 8989 /* These two ioctls are I_STR only */ 8990 if (iocp->ioc_count == TRANSPARENT) { 8991 miocnak(q, mp, 0, EINVAL); 8992 return; 8993 } 8994 8995 data_mp = mp->b_cont; 8996 if (data_mp == NULL) { 8997 /* The user passed us a NULL argument */ 8998 table = NULL; 8999 table_size = iocp->ioc_count; 9000 } else { 9001 /* 9002 * The user provided a table. The stream head 9003 * may have copied in the user data in chunks, 9004 * so make sure everything is pulled up 9005 * properly. 9006 */ 9007 if (MBLKL(data_mp) < iocp->ioc_count) { 9008 mblk_t *new_data_mp; 9009 if ((new_data_mp = msgpullup(data_mp, -1)) == 9010 NULL) { 9011 miocnak(q, mp, 0, ENOMEM); 9012 return; 9013 } 9014 freemsg(data_mp); 9015 data_mp = new_data_mp; 9016 mp->b_cont = data_mp; 9017 } 9018 table = (ip6_asp_t *)data_mp->b_rptr; 9019 table_size = iocp->ioc_count; 9020 } 9021 9022 switch (iocp->ioc_cmd) { 9023 case SIOCGIP6ADDRPOLICY: 9024 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9025 if (iocp->ioc_rval == -1) 9026 iocp->ioc_error = EINVAL; 9027 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9028 else if (table != NULL && 9029 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9030 ip6_asp_t *src = table; 9031 ip6_asp32_t *dst = (void *)table; 9032 int count = table_size / sizeof (ip6_asp_t); 9033 int i; 9034 9035 /* 9036 * We need to do an in-place shrink of the array 9037 * to match the alignment attributes of the 9038 * 32-bit ABI looking at it. 9039 */ 9040 /* LINTED: logical expression always true: op "||" */ 9041 ASSERT(sizeof (*src) > sizeof (*dst)); 9042 for (i = 1; i < count; i++) 9043 bcopy(src + i, dst + i, sizeof (*dst)); 9044 } 9045 #endif 9046 break; 9047 9048 case SIOCSIP6ADDRPOLICY: 9049 ASSERT(mp->b_prev == NULL); 9050 mp->b_prev = (void *)q; 9051 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9052 /* 9053 * We pass in the datamodel here so that the ip6_asp_replace() 9054 * routine can handle converting from 32-bit to native formats 9055 * where necessary. 9056 * 9057 * A better way to handle this might be to convert the inbound 9058 * data structure here, and hang it off a new 'mp'; thus the 9059 * ip6_asp_replace() logic would always be dealing with native 9060 * format data structures.. 9061 * 9062 * (An even simpler way to handle these ioctls is to just 9063 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9064 * and just recompile everything that depends on it.) 9065 */ 9066 #endif 9067 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9068 iocp->ioc_flag & IOC_MODELS); 9069 return; 9070 } 9071 9072 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9073 qreply(q, mp); 9074 } 9075 9076 static void 9077 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9078 { 9079 mblk_t *data_mp; 9080 struct dstinforeq *dir; 9081 uint8_t *end, *cur; 9082 in6_addr_t *daddr, *saddr; 9083 ipaddr_t v4daddr; 9084 ire_t *ire; 9085 char *slabel, *dlabel; 9086 boolean_t isipv4; 9087 int match_ire; 9088 ill_t *dst_ill; 9089 ipif_t *src_ipif, *ire_ipif; 9090 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9091 zoneid_t zoneid; 9092 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9093 9094 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9095 zoneid = Q_TO_CONN(q)->conn_zoneid; 9096 9097 /* 9098 * This ioctl is I_STR only, and must have a 9099 * data mblk following the M_IOCTL mblk. 9100 */ 9101 data_mp = mp->b_cont; 9102 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9103 miocnak(q, mp, 0, EINVAL); 9104 return; 9105 } 9106 9107 if (MBLKL(data_mp) < iocp->ioc_count) { 9108 mblk_t *new_data_mp; 9109 9110 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9111 miocnak(q, mp, 0, ENOMEM); 9112 return; 9113 } 9114 freemsg(data_mp); 9115 data_mp = new_data_mp; 9116 mp->b_cont = data_mp; 9117 } 9118 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9119 9120 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9121 end - cur >= sizeof (struct dstinforeq); 9122 cur += sizeof (struct dstinforeq)) { 9123 dir = (struct dstinforeq *)cur; 9124 daddr = &dir->dir_daddr; 9125 saddr = &dir->dir_saddr; 9126 9127 /* 9128 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9129 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9130 * and ipif_select_source[_v6]() do not. 9131 */ 9132 dir->dir_dscope = ip_addr_scope_v6(daddr); 9133 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9134 9135 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9136 if (isipv4) { 9137 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9138 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9139 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9140 } else { 9141 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9142 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9143 } 9144 if (ire == NULL) { 9145 dir->dir_dreachable = 0; 9146 9147 /* move on to next dst addr */ 9148 continue; 9149 } 9150 dir->dir_dreachable = 1; 9151 9152 ire_ipif = ire->ire_ipif; 9153 if (ire_ipif == NULL) 9154 goto next_dst; 9155 9156 /* 9157 * We expect to get back an interface ire or a 9158 * gateway ire cache entry. For both types, the 9159 * output interface is ire_ipif->ipif_ill. 9160 */ 9161 dst_ill = ire_ipif->ipif_ill; 9162 dir->dir_dmactype = dst_ill->ill_mactype; 9163 9164 if (isipv4) { 9165 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9166 } else { 9167 src_ipif = ipif_select_source_v6(dst_ill, 9168 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9169 zoneid); 9170 } 9171 if (src_ipif == NULL) 9172 goto next_dst; 9173 9174 *saddr = src_ipif->ipif_v6lcl_addr; 9175 dir->dir_sscope = ip_addr_scope_v6(saddr); 9176 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9177 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9178 dir->dir_sdeprecated = 9179 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9180 ipif_refrele(src_ipif); 9181 next_dst: 9182 ire_refrele(ire); 9183 } 9184 miocack(q, mp, iocp->ioc_count, 0); 9185 } 9186 9187 9188 /* 9189 * Check if this is an address assigned to this machine. 9190 * Skips interfaces that are down by using ire checks. 9191 * Translates mapped addresses to v4 addresses and then 9192 * treats them as such, returning true if the v4 address 9193 * associated with this mapped address is configured. 9194 * Note: Applications will have to be careful what they do 9195 * with the response; use of mapped addresses limits 9196 * what can be done with the socket, especially with 9197 * respect to socket options and ioctls - neither IPv4 9198 * options nor IPv6 sticky options/ancillary data options 9199 * may be used. 9200 */ 9201 /* ARGSUSED */ 9202 int 9203 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9204 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9205 { 9206 struct sioc_addrreq *sia; 9207 sin_t *sin; 9208 ire_t *ire; 9209 mblk_t *mp1; 9210 zoneid_t zoneid; 9211 ip_stack_t *ipst; 9212 9213 ip1dbg(("ip_sioctl_tmyaddr")); 9214 9215 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9216 zoneid = Q_TO_CONN(q)->conn_zoneid; 9217 ipst = CONNQ_TO_IPST(q); 9218 9219 /* Existence verified in ip_wput_nondata */ 9220 mp1 = mp->b_cont->b_cont; 9221 sia = (struct sioc_addrreq *)mp1->b_rptr; 9222 sin = (sin_t *)&sia->sa_addr; 9223 switch (sin->sin_family) { 9224 case AF_INET6: { 9225 sin6_t *sin6 = (sin6_t *)sin; 9226 9227 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9228 ipaddr_t v4_addr; 9229 9230 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9231 v4_addr); 9232 ire = ire_ctable_lookup(v4_addr, 0, 9233 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9234 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9235 } else { 9236 in6_addr_t v6addr; 9237 9238 v6addr = sin6->sin6_addr; 9239 ire = ire_ctable_lookup_v6(&v6addr, 0, 9240 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9241 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9242 } 9243 break; 9244 } 9245 case AF_INET: { 9246 ipaddr_t v4addr; 9247 9248 v4addr = sin->sin_addr.s_addr; 9249 ire = ire_ctable_lookup(v4addr, 0, 9250 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9251 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9252 break; 9253 } 9254 default: 9255 return (EAFNOSUPPORT); 9256 } 9257 if (ire != NULL) { 9258 sia->sa_res = 1; 9259 ire_refrele(ire); 9260 } else { 9261 sia->sa_res = 0; 9262 } 9263 return (0); 9264 } 9265 9266 /* 9267 * Check if this is an address assigned on-link i.e. neighbor, 9268 * and makes sure it's reachable from the current zone. 9269 * Returns true for my addresses as well. 9270 * Translates mapped addresses to v4 addresses and then 9271 * treats them as such, returning true if the v4 address 9272 * associated with this mapped address is configured. 9273 * Note: Applications will have to be careful what they do 9274 * with the response; use of mapped addresses limits 9275 * what can be done with the socket, especially with 9276 * respect to socket options and ioctls - neither IPv4 9277 * options nor IPv6 sticky options/ancillary data options 9278 * may be used. 9279 */ 9280 /* ARGSUSED */ 9281 int 9282 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9283 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9284 { 9285 struct sioc_addrreq *sia; 9286 sin_t *sin; 9287 mblk_t *mp1; 9288 ire_t *ire = NULL; 9289 zoneid_t zoneid; 9290 ip_stack_t *ipst; 9291 9292 ip1dbg(("ip_sioctl_tonlink")); 9293 9294 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9295 zoneid = Q_TO_CONN(q)->conn_zoneid; 9296 ipst = CONNQ_TO_IPST(q); 9297 9298 /* Existence verified in ip_wput_nondata */ 9299 mp1 = mp->b_cont->b_cont; 9300 sia = (struct sioc_addrreq *)mp1->b_rptr; 9301 sin = (sin_t *)&sia->sa_addr; 9302 9303 /* 9304 * Match addresses with a zero gateway field to avoid 9305 * routes going through a router. 9306 * Exclude broadcast and multicast addresses. 9307 */ 9308 switch (sin->sin_family) { 9309 case AF_INET6: { 9310 sin6_t *sin6 = (sin6_t *)sin; 9311 9312 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9313 ipaddr_t v4_addr; 9314 9315 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9316 v4_addr); 9317 if (!CLASSD(v4_addr)) { 9318 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9319 NULL, NULL, zoneid, NULL, 9320 MATCH_IRE_GW, ipst); 9321 } 9322 } else { 9323 in6_addr_t v6addr; 9324 in6_addr_t v6gw; 9325 9326 v6addr = sin6->sin6_addr; 9327 v6gw = ipv6_all_zeros; 9328 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9329 ire = ire_route_lookup_v6(&v6addr, 0, 9330 &v6gw, 0, NULL, NULL, zoneid, 9331 NULL, MATCH_IRE_GW, ipst); 9332 } 9333 } 9334 break; 9335 } 9336 case AF_INET: { 9337 ipaddr_t v4addr; 9338 9339 v4addr = sin->sin_addr.s_addr; 9340 if (!CLASSD(v4addr)) { 9341 ire = ire_route_lookup(v4addr, 0, 0, 0, 9342 NULL, NULL, zoneid, NULL, 9343 MATCH_IRE_GW, ipst); 9344 } 9345 break; 9346 } 9347 default: 9348 return (EAFNOSUPPORT); 9349 } 9350 sia->sa_res = 0; 9351 if (ire != NULL) { 9352 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9353 IRE_LOCAL|IRE_LOOPBACK)) { 9354 sia->sa_res = 1; 9355 } 9356 ire_refrele(ire); 9357 } 9358 return (0); 9359 } 9360 9361 /* 9362 * TBD: implement when kernel maintaines a list of site prefixes. 9363 */ 9364 /* ARGSUSED */ 9365 int 9366 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9367 ip_ioctl_cmd_t *ipip, void *ifreq) 9368 { 9369 return (ENXIO); 9370 } 9371 9372 /* ARGSUSED */ 9373 int 9374 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9375 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9376 { 9377 ill_t *ill; 9378 mblk_t *mp1; 9379 conn_t *connp; 9380 boolean_t success; 9381 9382 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9383 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9384 /* ioctl comes down on an conn */ 9385 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9386 connp = Q_TO_CONN(q); 9387 9388 mp->b_datap->db_type = M_IOCTL; 9389 9390 /* 9391 * Send down a copy. (copymsg does not copy b_next/b_prev). 9392 * The original mp contains contaminated b_next values due to 'mi', 9393 * which is needed to do the mi_copy_done. Unfortunately if we 9394 * send down the original mblk itself and if we are popped due to an 9395 * an unplumb before the response comes back from tunnel, 9396 * the streamhead (which does a freemsg) will see this contaminated 9397 * message and the assertion in freemsg about non-null b_next/b_prev 9398 * will panic a DEBUG kernel. 9399 */ 9400 mp1 = copymsg(mp); 9401 if (mp1 == NULL) 9402 return (ENOMEM); 9403 9404 ill = ipif->ipif_ill; 9405 mutex_enter(&connp->conn_lock); 9406 mutex_enter(&ill->ill_lock); 9407 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9408 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9409 mp, 0); 9410 } else { 9411 success = ill_pending_mp_add(ill, connp, mp); 9412 } 9413 mutex_exit(&ill->ill_lock); 9414 mutex_exit(&connp->conn_lock); 9415 9416 if (success) { 9417 ip1dbg(("sending down tunparam request ")); 9418 putnext(ill->ill_wq, mp1); 9419 return (EINPROGRESS); 9420 } else { 9421 /* The conn has started closing */ 9422 freemsg(mp1); 9423 return (EINTR); 9424 } 9425 } 9426 9427 /* 9428 * ARP IOCTLs. 9429 * How does IP get in the business of fronting ARP configuration/queries? 9430 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9431 * are by tradition passed in through a datagram socket. That lands in IP. 9432 * As it happens, this is just as well since the interface is quite crude in 9433 * that it passes in no information about protocol or hardware types, or 9434 * interface association. After making the protocol assumption, IP is in 9435 * the position to look up the name of the ILL, which ARP will need, and 9436 * format a request that can be handled by ARP. The request is passed up 9437 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9438 * back a response. ARP supports its own set of more general IOCTLs, in 9439 * case anyone is interested. 9440 */ 9441 /* ARGSUSED */ 9442 int 9443 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9444 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9445 { 9446 mblk_t *mp1; 9447 mblk_t *mp2; 9448 mblk_t *pending_mp; 9449 ipaddr_t ipaddr; 9450 area_t *area; 9451 struct iocblk *iocp; 9452 conn_t *connp; 9453 struct arpreq *ar; 9454 struct xarpreq *xar; 9455 int flags, alength; 9456 char *lladdr; 9457 ip_stack_t *ipst; 9458 ill_t *ill = ipif->ipif_ill; 9459 boolean_t if_arp_ioctl = B_FALSE; 9460 9461 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9462 connp = Q_TO_CONN(q); 9463 ipst = connp->conn_netstack->netstack_ip; 9464 9465 if (ipip->ipi_cmd_type == XARP_CMD) { 9466 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9467 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9468 ar = NULL; 9469 9470 flags = xar->xarp_flags; 9471 lladdr = LLADDR(&xar->xarp_ha); 9472 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9473 /* 9474 * Validate against user's link layer address length 9475 * input and name and addr length limits. 9476 */ 9477 alength = ill->ill_phys_addr_length; 9478 if (ipip->ipi_cmd == SIOCSXARP) { 9479 if (alength != xar->xarp_ha.sdl_alen || 9480 (alength + xar->xarp_ha.sdl_nlen > 9481 sizeof (xar->xarp_ha.sdl_data))) 9482 return (EINVAL); 9483 } 9484 } else { 9485 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9486 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9487 xar = NULL; 9488 9489 flags = ar->arp_flags; 9490 lladdr = ar->arp_ha.sa_data; 9491 /* 9492 * Theoretically, the sa_family could tell us what link 9493 * layer type this operation is trying to deal with. By 9494 * common usage AF_UNSPEC means ethernet. We'll assume 9495 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9496 * for now. Our new SIOC*XARP ioctls can be used more 9497 * generally. 9498 * 9499 * If the underlying media happens to have a non 6 byte 9500 * address, arp module will fail set/get, but the del 9501 * operation will succeed. 9502 */ 9503 alength = 6; 9504 if ((ipip->ipi_cmd != SIOCDARP) && 9505 (alength != ill->ill_phys_addr_length)) { 9506 return (EINVAL); 9507 } 9508 } 9509 9510 /* 9511 * We are going to pass up to ARP a packet chain that looks 9512 * like: 9513 * 9514 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9515 * 9516 * Get a copy of the original IOCTL mblk to head the chain, 9517 * to be sent up (in mp1). Also get another copy to store 9518 * in the ill_pending_mp list, for matching the response 9519 * when it comes back from ARP. 9520 */ 9521 mp1 = copyb(mp); 9522 pending_mp = copymsg(mp); 9523 if (mp1 == NULL || pending_mp == NULL) { 9524 if (mp1 != NULL) 9525 freeb(mp1); 9526 if (pending_mp != NULL) 9527 inet_freemsg(pending_mp); 9528 return (ENOMEM); 9529 } 9530 9531 ipaddr = sin->sin_addr.s_addr; 9532 9533 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9534 (caddr_t)&ipaddr); 9535 if (mp2 == NULL) { 9536 freeb(mp1); 9537 inet_freemsg(pending_mp); 9538 return (ENOMEM); 9539 } 9540 /* Put together the chain. */ 9541 mp1->b_cont = mp2; 9542 mp1->b_datap->db_type = M_IOCTL; 9543 mp2->b_cont = mp; 9544 mp2->b_datap->db_type = M_DATA; 9545 9546 iocp = (struct iocblk *)mp1->b_rptr; 9547 9548 /* 9549 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9550 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9551 * cp_private field (or cp_rval on 32-bit systems) in place of the 9552 * ioc_count field; set ioc_count to be correct. 9553 */ 9554 iocp->ioc_count = MBLKL(mp1->b_cont); 9555 9556 /* 9557 * Set the proper command in the ARP message. 9558 * Convert the SIOC{G|S|D}ARP calls into our 9559 * AR_ENTRY_xxx calls. 9560 */ 9561 area = (area_t *)mp2->b_rptr; 9562 switch (iocp->ioc_cmd) { 9563 case SIOCDARP: 9564 case SIOCDXARP: 9565 /* 9566 * We defer deleting the corresponding IRE until 9567 * we return from arp. 9568 */ 9569 area->area_cmd = AR_ENTRY_DELETE; 9570 area->area_proto_mask_offset = 0; 9571 break; 9572 case SIOCGARP: 9573 case SIOCGXARP: 9574 area->area_cmd = AR_ENTRY_SQUERY; 9575 area->area_proto_mask_offset = 0; 9576 break; 9577 case SIOCSARP: 9578 case SIOCSXARP: 9579 /* 9580 * Delete the corresponding ire to make sure IP will 9581 * pick up any change from arp. 9582 */ 9583 if (!if_arp_ioctl) { 9584 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9585 } else { 9586 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9587 if (ipif != NULL) { 9588 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9589 ipst); 9590 ipif_refrele(ipif); 9591 } 9592 } 9593 break; 9594 } 9595 iocp->ioc_cmd = area->area_cmd; 9596 9597 /* 9598 * Fill in the rest of the ARP operation fields. 9599 */ 9600 area->area_hw_addr_length = alength; 9601 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9602 9603 /* Translate the flags. */ 9604 if (flags & ATF_PERM) 9605 area->area_flags |= ACE_F_PERMANENT; 9606 if (flags & ATF_PUBL) 9607 area->area_flags |= ACE_F_PUBLISH; 9608 if (flags & ATF_AUTHORITY) 9609 area->area_flags |= ACE_F_AUTHORITY; 9610 9611 /* 9612 * Before sending 'mp' to ARP, we have to clear the b_next 9613 * and b_prev. Otherwise if STREAMS encounters such a message 9614 * in freemsg(), (because ARP can close any time) it can cause 9615 * a panic. But mi code needs the b_next and b_prev values of 9616 * mp->b_cont, to complete the ioctl. So we store it here 9617 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9618 * when the response comes down from ARP. 9619 */ 9620 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9621 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9622 mp->b_cont->b_next = NULL; 9623 mp->b_cont->b_prev = NULL; 9624 9625 mutex_enter(&connp->conn_lock); 9626 mutex_enter(&ill->ill_lock); 9627 /* conn has not yet started closing, hence this can't fail */ 9628 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9629 mutex_exit(&ill->ill_lock); 9630 mutex_exit(&connp->conn_lock); 9631 9632 /* 9633 * Up to ARP it goes. The response will come back in ip_wput() as an 9634 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9635 */ 9636 putnext(ill->ill_rq, mp1); 9637 return (EINPROGRESS); 9638 } 9639 9640 /* 9641 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9642 * the associated sin and refhold and return the associated ipif via `ci'. 9643 */ 9644 int 9645 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9646 cmd_info_t *ci, ipsq_func_t func) 9647 { 9648 mblk_t *mp1; 9649 int err; 9650 sin_t *sin; 9651 conn_t *connp; 9652 ipif_t *ipif; 9653 ire_t *ire = NULL; 9654 ill_t *ill = NULL; 9655 boolean_t exists; 9656 ip_stack_t *ipst; 9657 struct arpreq *ar; 9658 struct xarpreq *xar; 9659 struct sockaddr_dl *sdl; 9660 9661 /* ioctl comes down on a conn */ 9662 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9663 connp = Q_TO_CONN(q); 9664 if (connp->conn_af_isv6) 9665 return (ENXIO); 9666 9667 ipst = connp->conn_netstack->netstack_ip; 9668 9669 /* Verified in ip_wput_nondata */ 9670 mp1 = mp->b_cont->b_cont; 9671 9672 if (ipip->ipi_cmd_type == XARP_CMD) { 9673 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9674 xar = (struct xarpreq *)mp1->b_rptr; 9675 sin = (sin_t *)&xar->xarp_pa; 9676 sdl = &xar->xarp_ha; 9677 9678 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9679 return (ENXIO); 9680 if (sdl->sdl_nlen >= LIFNAMSIZ) 9681 return (EINVAL); 9682 } else { 9683 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9684 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9685 ar = (struct arpreq *)mp1->b_rptr; 9686 sin = (sin_t *)&ar->arp_pa; 9687 } 9688 9689 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9690 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9691 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9692 mp, func, &err, ipst); 9693 if (ipif == NULL) 9694 return (err); 9695 if (ipif->ipif_id != 0 || 9696 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9697 ipif_refrele(ipif); 9698 return (ENXIO); 9699 } 9700 } else { 9701 /* 9702 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9703 * 0: use the IP address to figure out the ill. In the IPMP 9704 * case, a simple forwarding table lookup will return the 9705 * IRE_IF_RESOLVER for the first interface in the group, which 9706 * might not be the interface on which the requested IP 9707 * address was resolved due to the ill selection algorithm 9708 * (see ip_newroute_get_dst_ill()). So we do a cache table 9709 * lookup first: if the IRE cache entry for the IP address is 9710 * still there, it will contain the ill pointer for the right 9711 * interface, so we use that. If the cache entry has been 9712 * flushed, we fall back to the forwarding table lookup. This 9713 * should be rare enough since IRE cache entries have a longer 9714 * life expectancy than ARP cache entries. 9715 */ 9716 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9717 ipst); 9718 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9719 ((ill = ire_to_ill(ire)) == NULL) || 9720 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9721 if (ire != NULL) 9722 ire_refrele(ire); 9723 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9724 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9725 NULL, MATCH_IRE_TYPE, ipst); 9726 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9727 9728 if (ire != NULL) 9729 ire_refrele(ire); 9730 return (ENXIO); 9731 } 9732 } 9733 ASSERT(ire != NULL && ill != NULL); 9734 ipif = ill->ill_ipif; 9735 ipif_refhold(ipif); 9736 ire_refrele(ire); 9737 } 9738 ci->ci_sin = sin; 9739 ci->ci_ipif = ipif; 9740 return (0); 9741 } 9742 9743 /* 9744 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9745 * atomically set/clear the muxids. Also complete the ioctl by acking or 9746 * naking it. Note that the code is structured such that the link type, 9747 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9748 * its clones use the persistent link, while pppd(1M) and perhaps many 9749 * other daemons may use non-persistent link. When combined with some 9750 * ill_t states, linking and unlinking lower streams may be used as 9751 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9752 */ 9753 /* ARGSUSED */ 9754 void 9755 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9756 { 9757 mblk_t *mp1, *mp2; 9758 struct linkblk *li; 9759 struct ipmx_s *ipmxp; 9760 ill_t *ill; 9761 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9762 int err = 0; 9763 boolean_t entered_ipsq = B_FALSE; 9764 boolean_t islink; 9765 ip_stack_t *ipst; 9766 9767 if (CONN_Q(q)) 9768 ipst = CONNQ_TO_IPST(q); 9769 else 9770 ipst = ILLQ_TO_IPST(q); 9771 9772 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9773 ioccmd == I_LINK || ioccmd == I_UNLINK); 9774 9775 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9776 9777 mp1 = mp->b_cont; /* This is the linkblk info */ 9778 li = (struct linkblk *)mp1->b_rptr; 9779 9780 /* 9781 * ARP has added this special mblk, and the utility is asking us 9782 * to perform consistency checks, and also atomically set the 9783 * muxid. Ifconfig is an example. It achieves this by using 9784 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9785 * to /dev/udp[6] stream for use as the mux when plinking the IP 9786 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9787 * and other comments in this routine for more details. 9788 */ 9789 mp2 = mp1->b_cont; /* This is added by ARP */ 9790 9791 /* 9792 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9793 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9794 * get the special mblk above. For backward compatibility, we 9795 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9796 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9797 * not atomic, and can leave the streams unplumbable if the utility 9798 * is interrupted before it does the SIOCSLIFMUXID. 9799 */ 9800 if (mp2 == NULL) { 9801 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9802 if (err == EINPROGRESS) 9803 return; 9804 goto done; 9805 } 9806 9807 /* 9808 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9809 * ARP has appended this last mblk to tell us whether the lower stream 9810 * is an arp-dev stream or an IP module stream. 9811 */ 9812 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9813 if (ipmxp->ipmx_arpdev_stream) { 9814 /* 9815 * The lower stream is the arp-dev stream. 9816 */ 9817 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9818 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9819 if (ill == NULL) { 9820 if (err == EINPROGRESS) 9821 return; 9822 err = EINVAL; 9823 goto done; 9824 } 9825 9826 if (ipsq == NULL) { 9827 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9828 NEW_OP, B_TRUE); 9829 if (ipsq == NULL) { 9830 ill_refrele(ill); 9831 return; 9832 } 9833 entered_ipsq = B_TRUE; 9834 } 9835 ASSERT(IAM_WRITER_ILL(ill)); 9836 ill_refrele(ill); 9837 9838 /* 9839 * To ensure consistency between IP and ARP, the following 9840 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9841 * This is because the muxid's are stored in the IP stream on 9842 * the ill. 9843 * 9844 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9845 * the ARP stream. On an arp-dev stream, IP checks that it is 9846 * not yet plinked, and it also checks that the corresponding 9847 * IP stream is already plinked. 9848 * 9849 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9850 * punlinking the IP stream. IP does not allow punlink of the 9851 * IP stream unless the arp stream has been punlinked. 9852 */ 9853 if ((islink && 9854 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9855 (!islink && ill->ill_arp_muxid != li->l_index)) { 9856 err = EINVAL; 9857 goto done; 9858 } 9859 ill->ill_arp_muxid = islink ? li->l_index : 0; 9860 } else { 9861 /* 9862 * The lower stream is probably an IP module stream. Do 9863 * consistency checking. 9864 */ 9865 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9866 if (err == EINPROGRESS) 9867 return; 9868 } 9869 done: 9870 if (err == 0) 9871 miocack(q, mp, 0, 0); 9872 else 9873 miocnak(q, mp, 0, err); 9874 9875 /* Conn was refheld in ip_sioctl_copyin_setup */ 9876 if (CONN_Q(q)) 9877 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9878 if (entered_ipsq) 9879 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9880 } 9881 9882 /* 9883 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9884 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9885 * module stream). If `doconsist' is set, then do the extended consistency 9886 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9887 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9888 * an error code on failure. 9889 */ 9890 static int 9891 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9892 struct linkblk *li, boolean_t doconsist) 9893 { 9894 ill_t *ill; 9895 queue_t *ipwq, *dwq; 9896 const char *name; 9897 struct qinit *qinfo; 9898 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9899 boolean_t entered_ipsq = B_FALSE; 9900 9901 /* 9902 * Walk the lower stream to verify it's the IP module stream. 9903 * The IP module is identified by its name, wput function, 9904 * and non-NULL q_next. STREAMS ensures that the lower stream 9905 * (li->l_qbot) will not vanish until this ioctl completes. 9906 */ 9907 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9908 qinfo = ipwq->q_qinfo; 9909 name = qinfo->qi_minfo->mi_idname; 9910 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9911 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9912 break; 9913 } 9914 } 9915 9916 /* 9917 * If this isn't an IP module stream, bail. 9918 */ 9919 if (ipwq == NULL) 9920 return (0); 9921 9922 ill = ipwq->q_ptr; 9923 ASSERT(ill != NULL); 9924 9925 if (ipsq == NULL) { 9926 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9927 NEW_OP, B_TRUE); 9928 if (ipsq == NULL) 9929 return (EINPROGRESS); 9930 entered_ipsq = B_TRUE; 9931 } 9932 ASSERT(IAM_WRITER_ILL(ill)); 9933 9934 if (doconsist) { 9935 /* 9936 * Consistency checking requires that I_{P}LINK occurs 9937 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9938 * occurs prior to clearing ill_arp_muxid. 9939 */ 9940 if ((islink && ill->ill_ip_muxid != 0) || 9941 (!islink && ill->ill_arp_muxid != 0)) { 9942 if (entered_ipsq) 9943 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9944 return (EINVAL); 9945 } 9946 } 9947 9948 /* 9949 * As part of I_{P}LINKing, stash the number of downstream modules and 9950 * the read queue of the module immediately below IP in the ill. 9951 * These are used during the capability negotiation below. 9952 */ 9953 ill->ill_lmod_rq = NULL; 9954 ill->ill_lmod_cnt = 0; 9955 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9956 ill->ill_lmod_rq = RD(dwq); 9957 for (; dwq != NULL; dwq = dwq->q_next) 9958 ill->ill_lmod_cnt++; 9959 } 9960 9961 if (doconsist) 9962 ill->ill_ip_muxid = islink ? li->l_index : 0; 9963 9964 /* 9965 * If there's at least one up ipif on this ill, then we're bound to 9966 * the underlying driver via DLPI. In that case, renegotiate 9967 * capabilities to account for any possible change in modules 9968 * interposed between IP and the driver. 9969 */ 9970 if (ill->ill_ipif_up_count > 0) { 9971 if (islink) 9972 ill_capability_probe(ill); 9973 else 9974 ill_capability_reset(ill); 9975 } 9976 9977 if (entered_ipsq) 9978 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9979 9980 return (0); 9981 } 9982 9983 /* 9984 * Search the ioctl command in the ioctl tables and return a pointer 9985 * to the ioctl command information. The ioctl command tables are 9986 * static and fully populated at compile time. 9987 */ 9988 ip_ioctl_cmd_t * 9989 ip_sioctl_lookup(int ioc_cmd) 9990 { 9991 int index; 9992 ip_ioctl_cmd_t *ipip; 9993 ip_ioctl_cmd_t *ipip_end; 9994 9995 if (ioc_cmd == IPI_DONTCARE) 9996 return (NULL); 9997 9998 /* 9999 * Do a 2 step search. First search the indexed table 10000 * based on the least significant byte of the ioctl cmd. 10001 * If we don't find a match, then search the misc table 10002 * serially. 10003 */ 10004 index = ioc_cmd & 0xFF; 10005 if (index < ip_ndx_ioctl_count) { 10006 ipip = &ip_ndx_ioctl_table[index]; 10007 if (ipip->ipi_cmd == ioc_cmd) { 10008 /* Found a match in the ndx table */ 10009 return (ipip); 10010 } 10011 } 10012 10013 /* Search the misc table */ 10014 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10015 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10016 if (ipip->ipi_cmd == ioc_cmd) 10017 /* Found a match in the misc table */ 10018 return (ipip); 10019 } 10020 10021 return (NULL); 10022 } 10023 10024 /* 10025 * Wrapper function for resuming deferred ioctl processing 10026 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10027 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10028 */ 10029 /* ARGSUSED */ 10030 void 10031 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10032 void *dummy_arg) 10033 { 10034 ip_sioctl_copyin_setup(q, mp); 10035 } 10036 10037 /* 10038 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10039 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10040 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10041 * We establish here the size of the block to be copied in. mi_copyin 10042 * arranges for this to happen, an processing continues in ip_wput with 10043 * an M_IOCDATA message. 10044 */ 10045 void 10046 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10047 { 10048 int copyin_size; 10049 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10050 ip_ioctl_cmd_t *ipip; 10051 cred_t *cr; 10052 ip_stack_t *ipst; 10053 10054 if (CONN_Q(q)) 10055 ipst = CONNQ_TO_IPST(q); 10056 else 10057 ipst = ILLQ_TO_IPST(q); 10058 10059 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10060 if (ipip == NULL) { 10061 /* 10062 * The ioctl is not one we understand or own. 10063 * Pass it along to be processed down stream, 10064 * if this is a module instance of IP, else nak 10065 * the ioctl. 10066 */ 10067 if (q->q_next == NULL) { 10068 goto nak; 10069 } else { 10070 putnext(q, mp); 10071 return; 10072 } 10073 } 10074 10075 /* 10076 * If this is deferred, then we will do all the checks when we 10077 * come back. 10078 */ 10079 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10080 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10081 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10082 return; 10083 } 10084 10085 /* 10086 * Only allow a very small subset of IP ioctls on this stream if 10087 * IP is a module and not a driver. Allowing ioctls to be processed 10088 * in this case may cause assert failures or data corruption. 10089 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10090 * ioctls allowed on an IP module stream, after which this stream 10091 * normally becomes a multiplexor (at which time the stream head 10092 * will fail all ioctls). 10093 */ 10094 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10095 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10096 /* 10097 * Pass common Streams ioctls which the IP 10098 * module does not own or consume along to 10099 * be processed down stream. 10100 */ 10101 putnext(q, mp); 10102 return; 10103 } else { 10104 goto nak; 10105 } 10106 } 10107 10108 /* Make sure we have ioctl data to process. */ 10109 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10110 goto nak; 10111 10112 /* 10113 * Prefer dblk credential over ioctl credential; some synthesized 10114 * ioctls have kcred set because there's no way to crhold() 10115 * a credential in some contexts. (ioc_cr is not crfree() by 10116 * the framework; the caller of ioctl needs to hold the reference 10117 * for the duration of the call). 10118 */ 10119 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10120 10121 /* Make sure normal users don't send down privileged ioctls */ 10122 if ((ipip->ipi_flags & IPI_PRIV) && 10123 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10124 /* We checked the privilege earlier but log it here */ 10125 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10126 return; 10127 } 10128 10129 /* 10130 * The ioctl command tables can only encode fixed length 10131 * ioctl data. If the length is variable, the table will 10132 * encode the length as zero. Such special cases are handled 10133 * below in the switch. 10134 */ 10135 if (ipip->ipi_copyin_size != 0) { 10136 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10137 return; 10138 } 10139 10140 switch (iocp->ioc_cmd) { 10141 case O_SIOCGIFCONF: 10142 case SIOCGIFCONF: 10143 /* 10144 * This IOCTL is hilarious. See comments in 10145 * ip_sioctl_get_ifconf for the story. 10146 */ 10147 if (iocp->ioc_count == TRANSPARENT) 10148 copyin_size = SIZEOF_STRUCT(ifconf, 10149 iocp->ioc_flag); 10150 else 10151 copyin_size = iocp->ioc_count; 10152 mi_copyin(q, mp, NULL, copyin_size); 10153 return; 10154 10155 case O_SIOCGLIFCONF: 10156 case SIOCGLIFCONF: 10157 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10158 mi_copyin(q, mp, NULL, copyin_size); 10159 return; 10160 10161 case SIOCGLIFSRCOF: 10162 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10163 mi_copyin(q, mp, NULL, copyin_size); 10164 return; 10165 case SIOCGIP6ADDRPOLICY: 10166 ip_sioctl_ip6addrpolicy(q, mp); 10167 ip6_asp_table_refrele(ipst); 10168 return; 10169 10170 case SIOCSIP6ADDRPOLICY: 10171 ip_sioctl_ip6addrpolicy(q, mp); 10172 return; 10173 10174 case SIOCGDSTINFO: 10175 ip_sioctl_dstinfo(q, mp); 10176 ip6_asp_table_refrele(ipst); 10177 return; 10178 10179 case I_PLINK: 10180 case I_PUNLINK: 10181 case I_LINK: 10182 case I_UNLINK: 10183 /* 10184 * We treat non-persistent link similarly as the persistent 10185 * link case, in terms of plumbing/unplumbing, as well as 10186 * dynamic re-plumbing events indicator. See comments 10187 * in ip_sioctl_plink() for more. 10188 * 10189 * Request can be enqueued in the 'ipsq' while waiting 10190 * to become exclusive. So bump up the conn ref. 10191 */ 10192 if (CONN_Q(q)) 10193 CONN_INC_REF(Q_TO_CONN(q)); 10194 ip_sioctl_plink(NULL, q, mp, NULL); 10195 return; 10196 10197 case ND_GET: 10198 case ND_SET: 10199 /* 10200 * Use of the nd table requires holding the reader lock. 10201 * Modifying the nd table thru nd_load/nd_unload requires 10202 * the writer lock. 10203 */ 10204 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10205 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10206 rw_exit(&ipst->ips_ip_g_nd_lock); 10207 10208 if (iocp->ioc_error) 10209 iocp->ioc_count = 0; 10210 mp->b_datap->db_type = M_IOCACK; 10211 qreply(q, mp); 10212 return; 10213 } 10214 rw_exit(&ipst->ips_ip_g_nd_lock); 10215 /* 10216 * We don't understand this subioctl of ND_GET / ND_SET. 10217 * Maybe intended for some driver / module below us 10218 */ 10219 if (q->q_next) { 10220 putnext(q, mp); 10221 } else { 10222 iocp->ioc_error = ENOENT; 10223 mp->b_datap->db_type = M_IOCNAK; 10224 iocp->ioc_count = 0; 10225 qreply(q, mp); 10226 } 10227 return; 10228 10229 case IP_IOCTL: 10230 ip_wput_ioctl(q, mp); 10231 return; 10232 default: 10233 cmn_err(CE_PANIC, "should not happen "); 10234 } 10235 nak: 10236 if (mp->b_cont != NULL) { 10237 freemsg(mp->b_cont); 10238 mp->b_cont = NULL; 10239 } 10240 iocp->ioc_error = EINVAL; 10241 mp->b_datap->db_type = M_IOCNAK; 10242 iocp->ioc_count = 0; 10243 qreply(q, mp); 10244 } 10245 10246 /* ip_wput hands off ARP IOCTL responses to us */ 10247 void 10248 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10249 { 10250 struct arpreq *ar; 10251 struct xarpreq *xar; 10252 area_t *area; 10253 mblk_t *area_mp; 10254 struct iocblk *iocp; 10255 mblk_t *orig_ioc_mp, *tmp; 10256 struct iocblk *orig_iocp; 10257 ill_t *ill; 10258 conn_t *connp = NULL; 10259 uint_t ioc_id; 10260 mblk_t *pending_mp; 10261 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10262 int *flagsp; 10263 char *storage = NULL; 10264 sin_t *sin; 10265 ipaddr_t addr; 10266 int err; 10267 ip_stack_t *ipst; 10268 10269 ill = q->q_ptr; 10270 ASSERT(ill != NULL); 10271 ipst = ill->ill_ipst; 10272 10273 /* 10274 * We should get back from ARP a packet chain that looks like: 10275 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10276 */ 10277 if (!(area_mp = mp->b_cont) || 10278 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10279 !(orig_ioc_mp = area_mp->b_cont) || 10280 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10281 freemsg(mp); 10282 return; 10283 } 10284 10285 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10286 10287 tmp = (orig_ioc_mp->b_cont)->b_cont; 10288 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10289 (orig_iocp->ioc_cmd == SIOCSXARP) || 10290 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10291 x_arp_ioctl = B_TRUE; 10292 xar = (struct xarpreq *)tmp->b_rptr; 10293 sin = (sin_t *)&xar->xarp_pa; 10294 flagsp = &xar->xarp_flags; 10295 storage = xar->xarp_ha.sdl_data; 10296 if (xar->xarp_ha.sdl_nlen != 0) 10297 ifx_arp_ioctl = B_TRUE; 10298 } else { 10299 ar = (struct arpreq *)tmp->b_rptr; 10300 sin = (sin_t *)&ar->arp_pa; 10301 flagsp = &ar->arp_flags; 10302 storage = ar->arp_ha.sa_data; 10303 } 10304 10305 iocp = (struct iocblk *)mp->b_rptr; 10306 10307 /* 10308 * Pick out the originating queue based on the ioc_id. 10309 */ 10310 ioc_id = iocp->ioc_id; 10311 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10312 if (pending_mp == NULL) { 10313 ASSERT(connp == NULL); 10314 inet_freemsg(mp); 10315 return; 10316 } 10317 ASSERT(connp != NULL); 10318 q = CONNP_TO_WQ(connp); 10319 10320 /* Uncouple the internally generated IOCTL from the original one */ 10321 area = (area_t *)area_mp->b_rptr; 10322 area_mp->b_cont = NULL; 10323 10324 /* 10325 * Restore the b_next and b_prev used by mi code. This is needed 10326 * to complete the ioctl using mi* functions. We stored them in 10327 * the pending mp prior to sending the request to ARP. 10328 */ 10329 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10330 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10331 inet_freemsg(pending_mp); 10332 10333 /* 10334 * We're done if there was an error or if this is not an SIOCG{X}ARP 10335 * Catch the case where there is an IRE_CACHE by no entry in the 10336 * arp table. 10337 */ 10338 addr = sin->sin_addr.s_addr; 10339 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10340 ire_t *ire; 10341 dl_unitdata_req_t *dlup; 10342 mblk_t *llmp; 10343 int addr_len; 10344 ill_t *ipsqill = NULL; 10345 10346 if (ifx_arp_ioctl) { 10347 /* 10348 * There's no need to lookup the ill, since 10349 * we've already done that when we started 10350 * processing the ioctl and sent the message 10351 * to ARP on that ill. So use the ill that 10352 * is stored in q->q_ptr. 10353 */ 10354 ipsqill = ill; 10355 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10356 ipsqill->ill_ipif, ALL_ZONES, 10357 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10358 } else { 10359 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10360 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10361 if (ire != NULL) 10362 ipsqill = ire_to_ill(ire); 10363 } 10364 10365 if ((x_arp_ioctl) && (ipsqill != NULL)) 10366 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10367 10368 if (ire != NULL) { 10369 /* 10370 * Since the ire obtained from cachetable is used for 10371 * mac addr copying below, treat an incomplete ire as if 10372 * as if we never found it. 10373 */ 10374 if (ire->ire_nce != NULL && 10375 ire->ire_nce->nce_state != ND_REACHABLE) { 10376 ire_refrele(ire); 10377 ire = NULL; 10378 ipsqill = NULL; 10379 goto errack; 10380 } 10381 *flagsp = ATF_INUSE; 10382 llmp = (ire->ire_nce != NULL ? 10383 ire->ire_nce->nce_res_mp : NULL); 10384 if (llmp != NULL && ipsqill != NULL) { 10385 uchar_t *macaddr; 10386 10387 addr_len = ipsqill->ill_phys_addr_length; 10388 if (x_arp_ioctl && ((addr_len + 10389 ipsqill->ill_name_length) > 10390 sizeof (xar->xarp_ha.sdl_data))) { 10391 ire_refrele(ire); 10392 freemsg(mp); 10393 ip_ioctl_finish(q, orig_ioc_mp, 10394 EINVAL, NO_COPYOUT, NULL); 10395 return; 10396 } 10397 *flagsp |= ATF_COM; 10398 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10399 if (ipsqill->ill_sap_length < 0) 10400 macaddr = llmp->b_rptr + 10401 dlup->dl_dest_addr_offset; 10402 else 10403 macaddr = llmp->b_rptr + 10404 dlup->dl_dest_addr_offset + 10405 ipsqill->ill_sap_length; 10406 /* 10407 * For SIOCGARP, MAC address length 10408 * validation has already been done 10409 * before the ioctl was issued to ARP to 10410 * allow it to progress only on 6 byte 10411 * addressable (ethernet like) media. Thus 10412 * the mac address copying can not overwrite 10413 * the sa_data area below. 10414 */ 10415 bcopy(macaddr, storage, addr_len); 10416 } 10417 /* Ditch the internal IOCTL. */ 10418 freemsg(mp); 10419 ire_refrele(ire); 10420 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10421 return; 10422 } 10423 } 10424 10425 /* 10426 * Delete the coresponding IRE_CACHE if any. 10427 * Reset the error if there was one (in case there was no entry 10428 * in arp.) 10429 */ 10430 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10431 ipif_t *ipintf = NULL; 10432 10433 if (ifx_arp_ioctl) { 10434 /* 10435 * There's no need to lookup the ill, since 10436 * we've already done that when we started 10437 * processing the ioctl and sent the message 10438 * to ARP on that ill. So use the ill that 10439 * is stored in q->q_ptr. 10440 */ 10441 ipintf = ill->ill_ipif; 10442 } 10443 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10444 /* 10445 * The address in "addr" may be an entry for a 10446 * router. If that's true, then any off-net 10447 * IRE_CACHE entries that go through the router 10448 * with address "addr" must be clobbered. Use 10449 * ire_walk to achieve this goal. 10450 */ 10451 if (ifx_arp_ioctl) 10452 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10453 ire_delete_cache_gw, (char *)&addr, ill); 10454 else 10455 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10456 ALL_ZONES, ipst); 10457 iocp->ioc_error = 0; 10458 } 10459 } 10460 errack: 10461 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10462 err = iocp->ioc_error; 10463 freemsg(mp); 10464 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10465 return; 10466 } 10467 10468 /* 10469 * Completion of an SIOCG{X}ARP. Translate the information from 10470 * the area_t into the struct {x}arpreq. 10471 */ 10472 if (x_arp_ioctl) { 10473 storage += ill_xarp_info(&xar->xarp_ha, ill); 10474 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10475 sizeof (xar->xarp_ha.sdl_data)) { 10476 freemsg(mp); 10477 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10478 NULL); 10479 return; 10480 } 10481 } 10482 *flagsp = ATF_INUSE; 10483 if (area->area_flags & ACE_F_PERMANENT) 10484 *flagsp |= ATF_PERM; 10485 if (area->area_flags & ACE_F_PUBLISH) 10486 *flagsp |= ATF_PUBL; 10487 if (area->area_flags & ACE_F_AUTHORITY) 10488 *flagsp |= ATF_AUTHORITY; 10489 if (area->area_hw_addr_length != 0) { 10490 *flagsp |= ATF_COM; 10491 /* 10492 * For SIOCGARP, MAC address length validation has 10493 * already been done before the ioctl was issued to ARP 10494 * to allow it to progress only on 6 byte addressable 10495 * (ethernet like) media. Thus the mac address copying 10496 * can not overwrite the sa_data area below. 10497 */ 10498 bcopy((char *)area + area->area_hw_addr_offset, 10499 storage, area->area_hw_addr_length); 10500 } 10501 10502 /* Ditch the internal IOCTL. */ 10503 freemsg(mp); 10504 /* Complete the original. */ 10505 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10506 } 10507 10508 /* 10509 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10510 * interface) create the next available logical interface for this 10511 * physical interface. 10512 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10513 * ipif with the specified name. 10514 * 10515 * If the address family is not AF_UNSPEC then set the address as well. 10516 * 10517 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10518 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10519 * 10520 * Executed as a writer on the ill or ill group. 10521 * So no lock is needed to traverse the ipif chain, or examine the 10522 * phyint flags. 10523 */ 10524 /* ARGSUSED */ 10525 int 10526 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10527 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10528 { 10529 mblk_t *mp1; 10530 struct lifreq *lifr; 10531 boolean_t isv6; 10532 boolean_t exists; 10533 char *name; 10534 char *endp; 10535 char *cp; 10536 int namelen; 10537 ipif_t *ipif; 10538 long id; 10539 ipsq_t *ipsq; 10540 ill_t *ill; 10541 sin_t *sin; 10542 int err = 0; 10543 boolean_t found_sep = B_FALSE; 10544 conn_t *connp; 10545 zoneid_t zoneid; 10546 int orig_ifindex = 0; 10547 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10548 10549 ASSERT(q->q_next == NULL); 10550 ip1dbg(("ip_sioctl_addif\n")); 10551 /* Existence of mp1 has been checked in ip_wput_nondata */ 10552 mp1 = mp->b_cont->b_cont; 10553 /* 10554 * Null terminate the string to protect against buffer 10555 * overrun. String was generated by user code and may not 10556 * be trusted. 10557 */ 10558 lifr = (struct lifreq *)mp1->b_rptr; 10559 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10560 name = lifr->lifr_name; 10561 ASSERT(CONN_Q(q)); 10562 connp = Q_TO_CONN(q); 10563 isv6 = connp->conn_af_isv6; 10564 zoneid = connp->conn_zoneid; 10565 namelen = mi_strlen(name); 10566 if (namelen == 0) 10567 return (EINVAL); 10568 10569 exists = B_FALSE; 10570 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10571 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10572 /* 10573 * Allow creating lo0 using SIOCLIFADDIF. 10574 * can't be any other writer thread. So can pass null below 10575 * for the last 4 args to ipif_lookup_name. 10576 */ 10577 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10578 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10579 /* Prevent any further action */ 10580 if (ipif == NULL) { 10581 return (ENOBUFS); 10582 } else if (!exists) { 10583 /* We created the ipif now and as writer */ 10584 ipif_refrele(ipif); 10585 return (0); 10586 } else { 10587 ill = ipif->ipif_ill; 10588 ill_refhold(ill); 10589 ipif_refrele(ipif); 10590 } 10591 } else { 10592 /* Look for a colon in the name. */ 10593 endp = &name[namelen]; 10594 for (cp = endp; --cp > name; ) { 10595 if (*cp == IPIF_SEPARATOR_CHAR) { 10596 found_sep = B_TRUE; 10597 /* 10598 * Reject any non-decimal aliases for plumbing 10599 * of logical interfaces. Aliases with leading 10600 * zeroes are also rejected as they introduce 10601 * ambiguity in the naming of the interfaces. 10602 * Comparing with "0" takes care of all such 10603 * cases. 10604 */ 10605 if ((strncmp("0", cp+1, 1)) == 0) 10606 return (EINVAL); 10607 10608 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10609 id <= 0 || *endp != '\0') { 10610 return (EINVAL); 10611 } 10612 *cp = '\0'; 10613 break; 10614 } 10615 } 10616 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10617 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10618 if (found_sep) 10619 *cp = IPIF_SEPARATOR_CHAR; 10620 if (ill == NULL) 10621 return (err); 10622 } 10623 10624 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10625 B_TRUE); 10626 10627 /* 10628 * Release the refhold due to the lookup, now that we are excl 10629 * or we are just returning 10630 */ 10631 ill_refrele(ill); 10632 10633 if (ipsq == NULL) 10634 return (EINPROGRESS); 10635 10636 /* 10637 * If the interface is failed, inactive or offlined, look for a working 10638 * interface in the ill group and create the ipif there. If we can't 10639 * find a good interface, create the ipif anyway so that in.mpathd can 10640 * move it to the first repaired interface. 10641 */ 10642 if ((ill->ill_phyint->phyint_flags & 10643 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10644 ill->ill_phyint->phyint_groupname_len != 0) { 10645 phyint_t *phyi; 10646 char *groupname = ill->ill_phyint->phyint_groupname; 10647 10648 /* 10649 * We're looking for a working interface, but it doesn't matter 10650 * if it's up or down; so instead of following the group lists, 10651 * we look at each physical interface and compare the groupname. 10652 * We're only interested in interfaces with IPv4 (resp. IPv6) 10653 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10654 * Otherwise we create the ipif on the failed interface. 10655 */ 10656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10657 phyi = avl_first(&ipst->ips_phyint_g_list-> 10658 phyint_list_avl_by_index); 10659 for (; phyi != NULL; 10660 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10661 phyint_list_avl_by_index, 10662 phyi, AVL_AFTER)) { 10663 if (phyi->phyint_groupname_len == 0) 10664 continue; 10665 ASSERT(phyi->phyint_groupname != NULL); 10666 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10667 !(phyi->phyint_flags & 10668 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10669 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10670 (phyi->phyint_illv4 != NULL))) { 10671 break; 10672 } 10673 } 10674 rw_exit(&ipst->ips_ill_g_lock); 10675 10676 if (phyi != NULL) { 10677 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10678 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10679 phyi->phyint_illv4); 10680 } 10681 } 10682 10683 /* 10684 * We are now exclusive on the ipsq, so an ill move will be serialized 10685 * before or after us. 10686 */ 10687 ASSERT(IAM_WRITER_ILL(ill)); 10688 ASSERT(ill->ill_move_in_progress == B_FALSE); 10689 10690 if (found_sep && orig_ifindex == 0) { 10691 /* Now see if there is an IPIF with this unit number. */ 10692 for (ipif = ill->ill_ipif; ipif != NULL; 10693 ipif = ipif->ipif_next) { 10694 if (ipif->ipif_id == id) { 10695 err = EEXIST; 10696 goto done; 10697 } 10698 } 10699 } 10700 10701 /* 10702 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10703 * of lo0. We never come here when we plumb lo0:0. It 10704 * happens in ipif_lookup_on_name. 10705 * The specified unit number is ignored when we create the ipif on a 10706 * different interface. However, we save it in ipif_orig_ipifid below so 10707 * that the ipif fails back to the right position. 10708 */ 10709 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10710 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10711 err = ENOBUFS; 10712 goto done; 10713 } 10714 10715 /* Return created name with ioctl */ 10716 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10717 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10718 ip1dbg(("created %s\n", lifr->lifr_name)); 10719 10720 /* Set address */ 10721 sin = (sin_t *)&lifr->lifr_addr; 10722 if (sin->sin_family != AF_UNSPEC) { 10723 err = ip_sioctl_addr(ipif, sin, q, mp, 10724 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10725 } 10726 10727 /* Set ifindex and unit number for failback */ 10728 if (err == 0 && orig_ifindex != 0) { 10729 ipif->ipif_orig_ifindex = orig_ifindex; 10730 if (found_sep) { 10731 ipif->ipif_orig_ipifid = id; 10732 } 10733 } 10734 10735 done: 10736 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10737 return (err); 10738 } 10739 10740 /* 10741 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10742 * interface) delete it based on the IP address (on this physical interface). 10743 * Otherwise delete it based on the ipif_id. 10744 * Also, special handling to allow a removeif of lo0. 10745 */ 10746 /* ARGSUSED */ 10747 int 10748 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10749 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10750 { 10751 conn_t *connp; 10752 ill_t *ill = ipif->ipif_ill; 10753 boolean_t success; 10754 ip_stack_t *ipst; 10755 10756 ipst = CONNQ_TO_IPST(q); 10757 10758 ASSERT(q->q_next == NULL); 10759 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10760 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10761 ASSERT(IAM_WRITER_IPIF(ipif)); 10762 10763 connp = Q_TO_CONN(q); 10764 /* 10765 * Special case for unplumbing lo0 (the loopback physical interface). 10766 * If unplumbing lo0, the incoming address structure has been 10767 * initialized to all zeros. When unplumbing lo0, all its logical 10768 * interfaces must be removed too. 10769 * 10770 * Note that this interface may be called to remove a specific 10771 * loopback logical interface (eg, lo0:1). But in that case 10772 * ipif->ipif_id != 0 so that the code path for that case is the 10773 * same as any other interface (meaning it skips the code directly 10774 * below). 10775 */ 10776 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10777 if (sin->sin_family == AF_UNSPEC && 10778 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10779 /* 10780 * Mark it condemned. No new ref. will be made to ill. 10781 */ 10782 mutex_enter(&ill->ill_lock); 10783 ill->ill_state_flags |= ILL_CONDEMNED; 10784 for (ipif = ill->ill_ipif; ipif != NULL; 10785 ipif = ipif->ipif_next) { 10786 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10787 } 10788 mutex_exit(&ill->ill_lock); 10789 10790 ipif = ill->ill_ipif; 10791 /* unplumb the loopback interface */ 10792 ill_delete(ill); 10793 mutex_enter(&connp->conn_lock); 10794 mutex_enter(&ill->ill_lock); 10795 ASSERT(ill->ill_group == NULL); 10796 10797 /* Are any references to this ill active */ 10798 if (ill_is_quiescent(ill)) { 10799 mutex_exit(&ill->ill_lock); 10800 mutex_exit(&connp->conn_lock); 10801 ill_delete_tail(ill); 10802 mutex_enter(&ill->ill_lock); 10803 ill_nic_info_dispatch(ill); 10804 mutex_exit(&ill->ill_lock); 10805 mi_free(ill); 10806 return (0); 10807 } 10808 success = ipsq_pending_mp_add(connp, ipif, 10809 CONNP_TO_WQ(connp), mp, ILL_FREE); 10810 mutex_exit(&connp->conn_lock); 10811 mutex_exit(&ill->ill_lock); 10812 if (success) 10813 return (EINPROGRESS); 10814 else 10815 return (EINTR); 10816 } 10817 } 10818 10819 /* 10820 * We are exclusive on the ipsq, so an ill move will be serialized 10821 * before or after us. 10822 */ 10823 ASSERT(ill->ill_move_in_progress == B_FALSE); 10824 10825 if (ipif->ipif_id == 0) { 10826 /* Find based on address */ 10827 if (ipif->ipif_isv6) { 10828 sin6_t *sin6; 10829 10830 if (sin->sin_family != AF_INET6) 10831 return (EAFNOSUPPORT); 10832 10833 sin6 = (sin6_t *)sin; 10834 /* We are a writer, so we should be able to lookup */ 10835 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10836 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10837 if (ipif == NULL) { 10838 /* 10839 * Maybe the address in on another interface in 10840 * the same IPMP group? We check this below. 10841 */ 10842 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10843 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10844 ipst); 10845 } 10846 } else { 10847 ipaddr_t addr; 10848 10849 if (sin->sin_family != AF_INET) 10850 return (EAFNOSUPPORT); 10851 10852 addr = sin->sin_addr.s_addr; 10853 /* We are a writer, so we should be able to lookup */ 10854 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10855 NULL, NULL, NULL, ipst); 10856 if (ipif == NULL) { 10857 /* 10858 * Maybe the address in on another interface in 10859 * the same IPMP group? We check this below. 10860 */ 10861 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10862 NULL, NULL, NULL, NULL, ipst); 10863 } 10864 } 10865 if (ipif == NULL) { 10866 return (EADDRNOTAVAIL); 10867 } 10868 /* 10869 * When the address to be removed is hosted on a different 10870 * interface, we check if the interface is in the same IPMP 10871 * group as the specified one; if so we proceed with the 10872 * removal. 10873 * ill->ill_group is NULL when the ill is down, so we have to 10874 * compare the group names instead. 10875 */ 10876 if (ipif->ipif_ill != ill && 10877 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10878 ill->ill_phyint->phyint_groupname_len == 0 || 10879 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10880 ill->ill_phyint->phyint_groupname) != 0)) { 10881 ipif_refrele(ipif); 10882 return (EADDRNOTAVAIL); 10883 } 10884 10885 /* This is a writer */ 10886 ipif_refrele(ipif); 10887 } 10888 10889 /* 10890 * Can not delete instance zero since it is tied to the ill. 10891 */ 10892 if (ipif->ipif_id == 0) 10893 return (EBUSY); 10894 10895 mutex_enter(&ill->ill_lock); 10896 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10897 mutex_exit(&ill->ill_lock); 10898 10899 ipif_free(ipif); 10900 10901 mutex_enter(&connp->conn_lock); 10902 mutex_enter(&ill->ill_lock); 10903 10904 /* Are any references to this ipif active */ 10905 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10906 mutex_exit(&ill->ill_lock); 10907 mutex_exit(&connp->conn_lock); 10908 ipif_non_duplicate(ipif); 10909 ipif_down_tail(ipif); 10910 ipif_free_tail(ipif); 10911 return (0); 10912 } 10913 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10914 IPIF_FREE); 10915 mutex_exit(&ill->ill_lock); 10916 mutex_exit(&connp->conn_lock); 10917 if (success) 10918 return (EINPROGRESS); 10919 else 10920 return (EINTR); 10921 } 10922 10923 /* 10924 * Restart the removeif ioctl. The refcnt has gone down to 0. 10925 * The ipif is already condemned. So can't find it thru lookups. 10926 */ 10927 /* ARGSUSED */ 10928 int 10929 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10930 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10931 { 10932 ill_t *ill = ipif->ipif_ill; 10933 10934 ASSERT(IAM_WRITER_IPIF(ipif)); 10935 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10936 10937 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10938 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10939 10940 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10941 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10942 ill_delete_tail(ill); 10943 mutex_enter(&ill->ill_lock); 10944 ill_nic_info_dispatch(ill); 10945 mutex_exit(&ill->ill_lock); 10946 mi_free(ill); 10947 return (0); 10948 } 10949 10950 ipif_non_duplicate(ipif); 10951 ipif_down_tail(ipif); 10952 ipif_free_tail(ipif); 10953 10954 ILL_UNMARK_CHANGING(ill); 10955 return (0); 10956 } 10957 10958 /* 10959 * Set the local interface address. 10960 * Allow an address of all zero when the interface is down. 10961 */ 10962 /* ARGSUSED */ 10963 int 10964 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10965 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10966 { 10967 int err = 0; 10968 in6_addr_t v6addr; 10969 boolean_t need_up = B_FALSE; 10970 10971 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10973 10974 ASSERT(IAM_WRITER_IPIF(ipif)); 10975 10976 if (ipif->ipif_isv6) { 10977 sin6_t *sin6; 10978 ill_t *ill; 10979 phyint_t *phyi; 10980 10981 if (sin->sin_family != AF_INET6) 10982 return (EAFNOSUPPORT); 10983 10984 sin6 = (sin6_t *)sin; 10985 v6addr = sin6->sin6_addr; 10986 ill = ipif->ipif_ill; 10987 phyi = ill->ill_phyint; 10988 10989 /* 10990 * Enforce that true multicast interfaces have a link-local 10991 * address for logical unit 0. 10992 */ 10993 if (ipif->ipif_id == 0 && 10994 (ill->ill_flags & ILLF_MULTICAST) && 10995 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10996 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10997 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10998 return (EADDRNOTAVAIL); 10999 } 11000 11001 /* 11002 * up interfaces shouldn't have the unspecified address 11003 * unless they also have the IPIF_NOLOCAL flags set and 11004 * have a subnet assigned. 11005 */ 11006 if ((ipif->ipif_flags & IPIF_UP) && 11007 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11008 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11009 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11010 return (EADDRNOTAVAIL); 11011 } 11012 11013 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11014 return (EADDRNOTAVAIL); 11015 } else { 11016 ipaddr_t addr; 11017 11018 if (sin->sin_family != AF_INET) 11019 return (EAFNOSUPPORT); 11020 11021 addr = sin->sin_addr.s_addr; 11022 11023 /* Allow 0 as the local address. */ 11024 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11025 return (EADDRNOTAVAIL); 11026 11027 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11028 } 11029 11030 11031 /* 11032 * Even if there is no change we redo things just to rerun 11033 * ipif_set_default. 11034 */ 11035 if (ipif->ipif_flags & IPIF_UP) { 11036 /* 11037 * Setting a new local address, make sure 11038 * we have net and subnet bcast ire's for 11039 * the old address if we need them. 11040 */ 11041 if (!ipif->ipif_isv6) 11042 ipif_check_bcast_ires(ipif); 11043 /* 11044 * If the interface is already marked up, 11045 * we call ipif_down which will take care 11046 * of ditching any IREs that have been set 11047 * up based on the old interface address. 11048 */ 11049 err = ipif_logical_down(ipif, q, mp); 11050 if (err == EINPROGRESS) 11051 return (err); 11052 ipif_down_tail(ipif); 11053 need_up = 1; 11054 } 11055 11056 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11057 return (err); 11058 } 11059 11060 int 11061 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11062 boolean_t need_up) 11063 { 11064 in6_addr_t v6addr; 11065 in6_addr_t ov6addr; 11066 ipaddr_t addr; 11067 sin6_t *sin6; 11068 int sinlen; 11069 int err = 0; 11070 ill_t *ill = ipif->ipif_ill; 11071 boolean_t need_dl_down; 11072 boolean_t need_arp_down; 11073 struct iocblk *iocp; 11074 11075 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11076 11077 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11078 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11079 ASSERT(IAM_WRITER_IPIF(ipif)); 11080 11081 /* Must cancel any pending timer before taking the ill_lock */ 11082 if (ipif->ipif_recovery_id != 0) 11083 (void) untimeout(ipif->ipif_recovery_id); 11084 ipif->ipif_recovery_id = 0; 11085 11086 if (ipif->ipif_isv6) { 11087 sin6 = (sin6_t *)sin; 11088 v6addr = sin6->sin6_addr; 11089 sinlen = sizeof (struct sockaddr_in6); 11090 } else { 11091 addr = sin->sin_addr.s_addr; 11092 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11093 sinlen = sizeof (struct sockaddr_in); 11094 } 11095 mutex_enter(&ill->ill_lock); 11096 ov6addr = ipif->ipif_v6lcl_addr; 11097 ipif->ipif_v6lcl_addr = v6addr; 11098 sctp_update_ipif_addr(ipif, ov6addr); 11099 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11100 ipif->ipif_v6src_addr = ipv6_all_zeros; 11101 } else { 11102 ipif->ipif_v6src_addr = v6addr; 11103 } 11104 ipif->ipif_addr_ready = 0; 11105 11106 /* 11107 * If the interface was previously marked as a duplicate, then since 11108 * we've now got a "new" address, it should no longer be considered a 11109 * duplicate -- even if the "new" address is the same as the old one. 11110 * Note that if all ipifs are down, we may have a pending ARP down 11111 * event to handle. This is because we want to recover from duplicates 11112 * and thus delay tearing down ARP until the duplicates have been 11113 * removed or disabled. 11114 */ 11115 need_dl_down = need_arp_down = B_FALSE; 11116 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11117 need_arp_down = !need_up; 11118 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11119 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11120 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11121 need_dl_down = B_TRUE; 11122 } 11123 } 11124 11125 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11126 !ill->ill_is_6to4tun) { 11127 queue_t *wqp = ill->ill_wq; 11128 11129 /* 11130 * The local address of this interface is a 6to4 address, 11131 * check if this interface is in fact a 6to4 tunnel or just 11132 * an interface configured with a 6to4 address. We are only 11133 * interested in the former. 11134 */ 11135 if (wqp != NULL) { 11136 while ((wqp->q_next != NULL) && 11137 (wqp->q_next->q_qinfo != NULL) && 11138 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11139 11140 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11141 == TUN6TO4_MODID) { 11142 /* set for use in IP */ 11143 ill->ill_is_6to4tun = 1; 11144 break; 11145 } 11146 wqp = wqp->q_next; 11147 } 11148 } 11149 } 11150 11151 ipif_set_default(ipif); 11152 11153 /* 11154 * When publishing an interface address change event, we only notify 11155 * the event listeners of the new address. It is assumed that if they 11156 * actively care about the addresses assigned that they will have 11157 * already discovered the previous address assigned (if there was one.) 11158 * 11159 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11160 */ 11161 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11162 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11163 NE_ADDRESS_CHANGE, sin, sinlen); 11164 } 11165 11166 mutex_exit(&ill->ill_lock); 11167 11168 if (need_up) { 11169 /* 11170 * Now bring the interface back up. If this 11171 * is the only IPIF for the ILL, ipif_up 11172 * will have to re-bind to the device, so 11173 * we may get back EINPROGRESS, in which 11174 * case, this IOCTL will get completed in 11175 * ip_rput_dlpi when we see the DL_BIND_ACK. 11176 */ 11177 err = ipif_up(ipif, q, mp); 11178 } 11179 11180 if (need_dl_down) 11181 ill_dl_down(ill); 11182 if (need_arp_down) 11183 ipif_arp_down(ipif); 11184 11185 return (err); 11186 } 11187 11188 11189 /* 11190 * Restart entry point to restart the address set operation after the 11191 * refcounts have dropped to zero. 11192 */ 11193 /* ARGSUSED */ 11194 int 11195 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11196 ip_ioctl_cmd_t *ipip, void *ifreq) 11197 { 11198 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11199 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11200 ASSERT(IAM_WRITER_IPIF(ipif)); 11201 ipif_down_tail(ipif); 11202 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11203 } 11204 11205 /* ARGSUSED */ 11206 int 11207 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11208 ip_ioctl_cmd_t *ipip, void *if_req) 11209 { 11210 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11211 struct lifreq *lifr = (struct lifreq *)if_req; 11212 11213 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11214 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11215 /* 11216 * The net mask and address can't change since we have a 11217 * reference to the ipif. So no lock is necessary. 11218 */ 11219 if (ipif->ipif_isv6) { 11220 *sin6 = sin6_null; 11221 sin6->sin6_family = AF_INET6; 11222 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11223 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11224 lifr->lifr_addrlen = 11225 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11226 } else { 11227 *sin = sin_null; 11228 sin->sin_family = AF_INET; 11229 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11230 if (ipip->ipi_cmd_type == LIF_CMD) { 11231 lifr->lifr_addrlen = 11232 ip_mask_to_plen(ipif->ipif_net_mask); 11233 } 11234 } 11235 return (0); 11236 } 11237 11238 /* 11239 * Set the destination address for a pt-pt interface. 11240 */ 11241 /* ARGSUSED */ 11242 int 11243 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11244 ip_ioctl_cmd_t *ipip, void *if_req) 11245 { 11246 int err = 0; 11247 in6_addr_t v6addr; 11248 boolean_t need_up = B_FALSE; 11249 11250 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11251 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11252 ASSERT(IAM_WRITER_IPIF(ipif)); 11253 11254 if (ipif->ipif_isv6) { 11255 sin6_t *sin6; 11256 11257 if (sin->sin_family != AF_INET6) 11258 return (EAFNOSUPPORT); 11259 11260 sin6 = (sin6_t *)sin; 11261 v6addr = sin6->sin6_addr; 11262 11263 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11264 return (EADDRNOTAVAIL); 11265 } else { 11266 ipaddr_t addr; 11267 11268 if (sin->sin_family != AF_INET) 11269 return (EAFNOSUPPORT); 11270 11271 addr = sin->sin_addr.s_addr; 11272 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11273 return (EADDRNOTAVAIL); 11274 11275 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11276 } 11277 11278 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11279 return (0); /* No change */ 11280 11281 if (ipif->ipif_flags & IPIF_UP) { 11282 /* 11283 * If the interface is already marked up, 11284 * we call ipif_down which will take care 11285 * of ditching any IREs that have been set 11286 * up based on the old pp dst address. 11287 */ 11288 err = ipif_logical_down(ipif, q, mp); 11289 if (err == EINPROGRESS) 11290 return (err); 11291 ipif_down_tail(ipif); 11292 need_up = B_TRUE; 11293 } 11294 /* 11295 * could return EINPROGRESS. If so ioctl will complete in 11296 * ip_rput_dlpi_writer 11297 */ 11298 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11299 return (err); 11300 } 11301 11302 static int 11303 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11304 boolean_t need_up) 11305 { 11306 in6_addr_t v6addr; 11307 ill_t *ill = ipif->ipif_ill; 11308 int err = 0; 11309 boolean_t need_dl_down; 11310 boolean_t need_arp_down; 11311 11312 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11313 ipif->ipif_id, (void *)ipif)); 11314 11315 /* Must cancel any pending timer before taking the ill_lock */ 11316 if (ipif->ipif_recovery_id != 0) 11317 (void) untimeout(ipif->ipif_recovery_id); 11318 ipif->ipif_recovery_id = 0; 11319 11320 if (ipif->ipif_isv6) { 11321 sin6_t *sin6; 11322 11323 sin6 = (sin6_t *)sin; 11324 v6addr = sin6->sin6_addr; 11325 } else { 11326 ipaddr_t addr; 11327 11328 addr = sin->sin_addr.s_addr; 11329 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11330 } 11331 mutex_enter(&ill->ill_lock); 11332 /* Set point to point destination address. */ 11333 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11334 /* 11335 * Allow this as a means of creating logical 11336 * pt-pt interfaces on top of e.g. an Ethernet. 11337 * XXX Undocumented HACK for testing. 11338 * pt-pt interfaces are created with NUD disabled. 11339 */ 11340 ipif->ipif_flags |= IPIF_POINTOPOINT; 11341 ipif->ipif_flags &= ~IPIF_BROADCAST; 11342 if (ipif->ipif_isv6) 11343 ill->ill_flags |= ILLF_NONUD; 11344 } 11345 11346 /* 11347 * If the interface was previously marked as a duplicate, then since 11348 * we've now got a "new" address, it should no longer be considered a 11349 * duplicate -- even if the "new" address is the same as the old one. 11350 * Note that if all ipifs are down, we may have a pending ARP down 11351 * event to handle. 11352 */ 11353 need_dl_down = need_arp_down = B_FALSE; 11354 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11355 need_arp_down = !need_up; 11356 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11357 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11358 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11359 need_dl_down = B_TRUE; 11360 } 11361 } 11362 11363 /* Set the new address. */ 11364 ipif->ipif_v6pp_dst_addr = v6addr; 11365 /* Make sure subnet tracks pp_dst */ 11366 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11367 mutex_exit(&ill->ill_lock); 11368 11369 if (need_up) { 11370 /* 11371 * Now bring the interface back up. If this 11372 * is the only IPIF for the ILL, ipif_up 11373 * will have to re-bind to the device, so 11374 * we may get back EINPROGRESS, in which 11375 * case, this IOCTL will get completed in 11376 * ip_rput_dlpi when we see the DL_BIND_ACK. 11377 */ 11378 err = ipif_up(ipif, q, mp); 11379 } 11380 11381 if (need_dl_down) 11382 ill_dl_down(ill); 11383 11384 if (need_arp_down) 11385 ipif_arp_down(ipif); 11386 return (err); 11387 } 11388 11389 /* 11390 * Restart entry point to restart the dstaddress set operation after the 11391 * refcounts have dropped to zero. 11392 */ 11393 /* ARGSUSED */ 11394 int 11395 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11396 ip_ioctl_cmd_t *ipip, void *ifreq) 11397 { 11398 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11399 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11400 ipif_down_tail(ipif); 11401 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11402 } 11403 11404 /* ARGSUSED */ 11405 int 11406 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11407 ip_ioctl_cmd_t *ipip, void *if_req) 11408 { 11409 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11410 11411 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11412 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11413 /* 11414 * Get point to point destination address. The addresses can't 11415 * change since we hold a reference to the ipif. 11416 */ 11417 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11418 return (EADDRNOTAVAIL); 11419 11420 if (ipif->ipif_isv6) { 11421 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11422 *sin6 = sin6_null; 11423 sin6->sin6_family = AF_INET6; 11424 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11425 } else { 11426 *sin = sin_null; 11427 sin->sin_family = AF_INET; 11428 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11429 } 11430 return (0); 11431 } 11432 11433 /* 11434 * part of ipmp, make this func return the active/inactive state and 11435 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11436 */ 11437 /* 11438 * This function either sets or clears the IFF_INACTIVE flag. 11439 * 11440 * As long as there are some addresses or multicast memberships on the 11441 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11442 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11443 * will be used for outbound packets. 11444 * 11445 * Caller needs to verify the validity of setting IFF_INACTIVE. 11446 */ 11447 static void 11448 phyint_inactive(phyint_t *phyi) 11449 { 11450 ill_t *ill_v4; 11451 ill_t *ill_v6; 11452 ipif_t *ipif; 11453 ilm_t *ilm; 11454 11455 ill_v4 = phyi->phyint_illv4; 11456 ill_v6 = phyi->phyint_illv6; 11457 11458 /* 11459 * No need for a lock while traversing the list since iam 11460 * a writer 11461 */ 11462 if (ill_v4 != NULL) { 11463 ASSERT(IAM_WRITER_ILL(ill_v4)); 11464 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11465 ipif = ipif->ipif_next) { 11466 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11467 mutex_enter(&phyi->phyint_lock); 11468 phyi->phyint_flags &= ~PHYI_INACTIVE; 11469 mutex_exit(&phyi->phyint_lock); 11470 return; 11471 } 11472 } 11473 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11474 ilm = ilm->ilm_next) { 11475 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11476 mutex_enter(&phyi->phyint_lock); 11477 phyi->phyint_flags &= ~PHYI_INACTIVE; 11478 mutex_exit(&phyi->phyint_lock); 11479 return; 11480 } 11481 } 11482 } 11483 if (ill_v6 != NULL) { 11484 ill_v6 = phyi->phyint_illv6; 11485 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11486 ipif = ipif->ipif_next) { 11487 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11488 mutex_enter(&phyi->phyint_lock); 11489 phyi->phyint_flags &= ~PHYI_INACTIVE; 11490 mutex_exit(&phyi->phyint_lock); 11491 return; 11492 } 11493 } 11494 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11495 ilm = ilm->ilm_next) { 11496 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11497 mutex_enter(&phyi->phyint_lock); 11498 phyi->phyint_flags &= ~PHYI_INACTIVE; 11499 mutex_exit(&phyi->phyint_lock); 11500 return; 11501 } 11502 } 11503 } 11504 mutex_enter(&phyi->phyint_lock); 11505 phyi->phyint_flags |= PHYI_INACTIVE; 11506 mutex_exit(&phyi->phyint_lock); 11507 } 11508 11509 /* 11510 * This function is called only when the phyint flags change. Currently 11511 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11512 * that we can select a good ill. 11513 */ 11514 static void 11515 ip_redo_nomination(phyint_t *phyi) 11516 { 11517 ill_t *ill_v4; 11518 11519 ill_v4 = phyi->phyint_illv4; 11520 11521 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11522 ASSERT(IAM_WRITER_ILL(ill_v4)); 11523 if (ill_v4->ill_group->illgrp_ill_count > 1) 11524 ill_nominate_bcast_rcv(ill_v4->ill_group); 11525 } 11526 } 11527 11528 /* 11529 * Heuristic to check if ill is INACTIVE. 11530 * Checks if ill has an ipif with an usable ip address. 11531 * 11532 * Return values: 11533 * B_TRUE - ill is INACTIVE; has no usable ipif 11534 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11535 */ 11536 static boolean_t 11537 ill_is_inactive(ill_t *ill) 11538 { 11539 ipif_t *ipif; 11540 11541 /* Check whether it is in an IPMP group */ 11542 if (ill->ill_phyint->phyint_groupname == NULL) 11543 return (B_FALSE); 11544 11545 if (ill->ill_ipif_up_count == 0) 11546 return (B_TRUE); 11547 11548 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11549 uint64_t flags = ipif->ipif_flags; 11550 11551 /* 11552 * This ipif is usable if it is IPIF_UP and not a 11553 * dedicated test address. A dedicated test address 11554 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11555 * (note in particular that V6 test addresses are 11556 * link-local data addresses and thus are marked 11557 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11558 */ 11559 if ((flags & IPIF_UP) && 11560 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11561 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11562 return (B_FALSE); 11563 } 11564 return (B_TRUE); 11565 } 11566 11567 /* 11568 * Set interface flags. 11569 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11570 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11571 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11572 * 11573 * NOTE : We really don't enforce that ipif_id zero should be used 11574 * for setting any flags other than IFF_LOGINT_FLAGS. This 11575 * is because applications generally does SICGLIFFLAGS and 11576 * ORs in the new flags (that affects the logical) and does a 11577 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11578 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11579 * flags that will be turned on is correct with respect to 11580 * ipif_id 0. For backward compatibility reasons, it is not done. 11581 */ 11582 /* ARGSUSED */ 11583 int 11584 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11585 ip_ioctl_cmd_t *ipip, void *if_req) 11586 { 11587 uint64_t turn_on; 11588 uint64_t turn_off; 11589 int err; 11590 boolean_t need_up = B_FALSE; 11591 phyint_t *phyi; 11592 ill_t *ill; 11593 uint64_t intf_flags; 11594 boolean_t phyint_flags_modified = B_FALSE; 11595 uint64_t flags; 11596 struct ifreq *ifr; 11597 struct lifreq *lifr; 11598 boolean_t set_linklocal = B_FALSE; 11599 boolean_t zero_source = B_FALSE; 11600 ip_stack_t *ipst; 11601 11602 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11603 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11604 11605 ASSERT(IAM_WRITER_IPIF(ipif)); 11606 11607 ill = ipif->ipif_ill; 11608 phyi = ill->ill_phyint; 11609 ipst = ill->ill_ipst; 11610 11611 if (ipip->ipi_cmd_type == IF_CMD) { 11612 ifr = (struct ifreq *)if_req; 11613 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11614 } else { 11615 lifr = (struct lifreq *)if_req; 11616 flags = lifr->lifr_flags; 11617 } 11618 11619 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11620 11621 /* 11622 * Has the flags been set correctly till now ? 11623 */ 11624 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11625 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11626 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11627 /* 11628 * Compare the new flags to the old, and partition 11629 * into those coming on and those going off. 11630 * For the 16 bit command keep the bits above bit 16 unchanged. 11631 */ 11632 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11633 flags |= intf_flags & ~0xFFFF; 11634 11635 /* 11636 * First check which bits will change and then which will 11637 * go on and off 11638 */ 11639 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11640 if (!turn_on) 11641 return (0); /* No change */ 11642 11643 turn_off = intf_flags & turn_on; 11644 turn_on ^= turn_off; 11645 err = 0; 11646 11647 /* 11648 * Don't allow any bits belonging to the logical interface 11649 * to be set or cleared on the replacement ipif that was 11650 * created temporarily during a MOVE. 11651 */ 11652 if (ipif->ipif_replace_zero && 11653 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11654 return (EINVAL); 11655 } 11656 11657 /* 11658 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11659 * IPv6 interfaces. 11660 */ 11661 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11662 return (EINVAL); 11663 11664 /* 11665 * cannot turn off IFF_NOXMIT on VNI interfaces. 11666 */ 11667 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11668 return (EINVAL); 11669 11670 /* 11671 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11672 * interfaces. It makes no sense in that context. 11673 */ 11674 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11675 return (EINVAL); 11676 11677 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11678 zero_source = B_TRUE; 11679 11680 /* 11681 * For IPv6 ipif_id 0, don't allow the interface to be up without 11682 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11683 * If the link local address isn't set, and can be set, it will get 11684 * set later on in this function. 11685 */ 11686 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11687 (flags & IFF_UP) && !zero_source && 11688 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11689 if (ipif_cant_setlinklocal(ipif)) 11690 return (EINVAL); 11691 set_linklocal = B_TRUE; 11692 } 11693 11694 /* 11695 * ILL cannot be part of a usesrc group and and IPMP group at the 11696 * same time. No need to grab ill_g_usesrc_lock here, see 11697 * synchronization notes in ip.c 11698 */ 11699 if (turn_on & PHYI_STANDBY && 11700 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11701 return (EINVAL); 11702 } 11703 11704 /* 11705 * If we modify physical interface flags, we'll potentially need to 11706 * send up two routing socket messages for the changes (one for the 11707 * IPv4 ill, and another for the IPv6 ill). Note that here. 11708 */ 11709 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11710 phyint_flags_modified = B_TRUE; 11711 11712 /* 11713 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11714 * we need to flush the IRE_CACHES belonging to this ill. 11715 * We handle this case here without doing the DOWN/UP dance 11716 * like it is done for other flags. If some other flags are 11717 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11718 * below will handle it by bringing it down and then 11719 * bringing it UP. 11720 */ 11721 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11722 ill_t *ill_v4, *ill_v6; 11723 11724 ill_v4 = phyi->phyint_illv4; 11725 ill_v6 = phyi->phyint_illv6; 11726 11727 /* 11728 * First set the INACTIVE flag if needed. Then delete the ires. 11729 * ire_add will atomically prevent creating new IRE_CACHEs 11730 * unless hidden flag is set. 11731 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11732 */ 11733 if ((turn_on & PHYI_FAILED) && 11734 ((intf_flags & PHYI_STANDBY) || 11735 !ipst->ips_ipmp_enable_failback)) { 11736 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11737 phyi->phyint_flags &= ~PHYI_INACTIVE; 11738 } 11739 if ((turn_off & PHYI_FAILED) && 11740 ((intf_flags & PHYI_STANDBY) || 11741 (!ipst->ips_ipmp_enable_failback && 11742 ill_is_inactive(ill)))) { 11743 phyint_inactive(phyi); 11744 } 11745 11746 if (turn_on & PHYI_STANDBY) { 11747 /* 11748 * We implicitly set INACTIVE only when STANDBY is set. 11749 * INACTIVE is also set on non-STANDBY phyint when user 11750 * disables FAILBACK using configuration file. 11751 * Do not allow STANDBY to be set on such INACTIVE 11752 * phyint 11753 */ 11754 if (phyi->phyint_flags & PHYI_INACTIVE) 11755 return (EINVAL); 11756 if (!(phyi->phyint_flags & PHYI_FAILED)) 11757 phyint_inactive(phyi); 11758 } 11759 if (turn_off & PHYI_STANDBY) { 11760 if (ipst->ips_ipmp_enable_failback) { 11761 /* 11762 * Reset PHYI_INACTIVE. 11763 */ 11764 phyi->phyint_flags &= ~PHYI_INACTIVE; 11765 } else if (ill_is_inactive(ill) && 11766 !(phyi->phyint_flags & PHYI_FAILED)) { 11767 /* 11768 * Need to set INACTIVE, when user sets 11769 * STANDBY on a non-STANDBY phyint and 11770 * later resets STANDBY 11771 */ 11772 phyint_inactive(phyi); 11773 } 11774 } 11775 /* 11776 * We should always send up a message so that the 11777 * daemons come to know of it. Note that the zeroth 11778 * interface can be down and the check below for IPIF_UP 11779 * will not make sense as we are actually setting 11780 * a phyint flag here. We assume that the ipif used 11781 * is always the zeroth ipif. (ip_rts_ifmsg does not 11782 * send up any message for non-zero ipifs). 11783 */ 11784 phyint_flags_modified = B_TRUE; 11785 11786 if (ill_v4 != NULL) { 11787 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11788 IRE_CACHE, ill_stq_cache_delete, 11789 (char *)ill_v4, ill_v4); 11790 illgrp_reset_schednext(ill_v4); 11791 } 11792 if (ill_v6 != NULL) { 11793 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11794 IRE_CACHE, ill_stq_cache_delete, 11795 (char *)ill_v6, ill_v6); 11796 illgrp_reset_schednext(ill_v6); 11797 } 11798 } 11799 11800 /* 11801 * If ILLF_ROUTER changes, we need to change the ip forwarding 11802 * status of the interface and, if the interface is part of an IPMP 11803 * group, all other interfaces that are part of the same IPMP 11804 * group. 11805 */ 11806 if ((turn_on | turn_off) & ILLF_ROUTER) 11807 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11808 11809 /* 11810 * If the interface is not UP and we are not going to 11811 * bring it UP, record the flags and return. When the 11812 * interface comes UP later, the right actions will be 11813 * taken. 11814 */ 11815 if (!(ipif->ipif_flags & IPIF_UP) && 11816 !(turn_on & IPIF_UP)) { 11817 /* Record new flags in their respective places. */ 11818 mutex_enter(&ill->ill_lock); 11819 mutex_enter(&ill->ill_phyint->phyint_lock); 11820 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11821 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11822 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11823 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11824 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11825 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11826 mutex_exit(&ill->ill_lock); 11827 mutex_exit(&ill->ill_phyint->phyint_lock); 11828 11829 /* 11830 * We do the broadcast and nomination here rather 11831 * than waiting for a FAILOVER/FAILBACK to happen. In 11832 * the case of FAILBACK from INACTIVE standby to the 11833 * interface that has been repaired, PHYI_FAILED has not 11834 * been cleared yet. If there are only two interfaces in 11835 * that group, all we have is a FAILED and INACTIVE 11836 * interface. If we do the nomination soon after a failback, 11837 * the broadcast nomination code would select the 11838 * INACTIVE interface for receiving broadcasts as FAILED is 11839 * not yet cleared. As we don't want STANDBY/INACTIVE to 11840 * receive broadcast packets, we need to redo nomination 11841 * when the FAILED is cleared here. Thus, in general we 11842 * always do the nomination here for FAILED, STANDBY 11843 * and OFFLINE. 11844 */ 11845 if (((turn_on | turn_off) & 11846 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11847 ip_redo_nomination(phyi); 11848 } 11849 if (phyint_flags_modified) { 11850 if (phyi->phyint_illv4 != NULL) { 11851 ip_rts_ifmsg(phyi->phyint_illv4-> 11852 ill_ipif); 11853 } 11854 if (phyi->phyint_illv6 != NULL) { 11855 ip_rts_ifmsg(phyi->phyint_illv6-> 11856 ill_ipif); 11857 } 11858 } 11859 return (0); 11860 } else if (set_linklocal || zero_source) { 11861 mutex_enter(&ill->ill_lock); 11862 if (set_linklocal) 11863 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11864 if (zero_source) 11865 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11866 mutex_exit(&ill->ill_lock); 11867 } 11868 11869 /* 11870 * Disallow IPv6 interfaces coming up that have the unspecified address, 11871 * or point-to-point interfaces with an unspecified destination. We do 11872 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11873 * have a subnet assigned, which is how in.ndpd currently manages its 11874 * onlink prefix list when no addresses are configured with those 11875 * prefixes. 11876 */ 11877 if (ipif->ipif_isv6 && 11878 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11879 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11880 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11881 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11882 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11883 return (EINVAL); 11884 } 11885 11886 /* 11887 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11888 * from being brought up. 11889 */ 11890 if (!ipif->ipif_isv6 && 11891 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11892 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11893 return (EINVAL); 11894 } 11895 11896 /* 11897 * The only flag changes that we currently take specific action on 11898 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11899 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11900 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11901 * the flags and bringing it back up again. 11902 */ 11903 if ((turn_on|turn_off) & 11904 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11905 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11906 /* 11907 * Taking this ipif down, make sure we have 11908 * valid net and subnet bcast ire's for other 11909 * logical interfaces, if we need them. 11910 */ 11911 if (!ipif->ipif_isv6) 11912 ipif_check_bcast_ires(ipif); 11913 11914 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11915 !(turn_off & IPIF_UP)) { 11916 need_up = B_TRUE; 11917 if (ipif->ipif_flags & IPIF_UP) 11918 ill->ill_logical_down = 1; 11919 turn_on &= ~IPIF_UP; 11920 } 11921 err = ipif_down(ipif, q, mp); 11922 ip1dbg(("ipif_down returns %d err ", err)); 11923 if (err == EINPROGRESS) 11924 return (err); 11925 ipif_down_tail(ipif); 11926 } 11927 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11928 } 11929 11930 static int 11931 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11932 boolean_t need_up) 11933 { 11934 ill_t *ill; 11935 phyint_t *phyi; 11936 uint64_t turn_on; 11937 uint64_t turn_off; 11938 uint64_t intf_flags; 11939 boolean_t phyint_flags_modified = B_FALSE; 11940 int err = 0; 11941 boolean_t set_linklocal = B_FALSE; 11942 boolean_t zero_source = B_FALSE; 11943 11944 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11945 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11946 11947 ASSERT(IAM_WRITER_IPIF(ipif)); 11948 11949 ill = ipif->ipif_ill; 11950 phyi = ill->ill_phyint; 11951 11952 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11953 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11954 11955 turn_off = intf_flags & turn_on; 11956 turn_on ^= turn_off; 11957 11958 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11959 phyint_flags_modified = B_TRUE; 11960 11961 /* 11962 * Now we change the flags. Track current value of 11963 * other flags in their respective places. 11964 */ 11965 mutex_enter(&ill->ill_lock); 11966 mutex_enter(&phyi->phyint_lock); 11967 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11968 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11969 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11970 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11971 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11972 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11973 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11974 set_linklocal = B_TRUE; 11975 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11976 } 11977 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11978 zero_source = B_TRUE; 11979 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11980 } 11981 mutex_exit(&ill->ill_lock); 11982 mutex_exit(&phyi->phyint_lock); 11983 11984 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11985 ip_redo_nomination(phyi); 11986 11987 if (set_linklocal) 11988 (void) ipif_setlinklocal(ipif); 11989 11990 if (zero_source) 11991 ipif->ipif_v6src_addr = ipv6_all_zeros; 11992 else 11993 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11994 11995 if (need_up) { 11996 /* 11997 * XXX ipif_up really does not know whether a phyint flags 11998 * was modified or not. So, it sends up information on 11999 * only one routing sockets message. As we don't bring up 12000 * the interface and also set STANDBY/FAILED simultaneously 12001 * it should be okay. 12002 */ 12003 err = ipif_up(ipif, q, mp); 12004 } else { 12005 /* 12006 * Make sure routing socket sees all changes to the flags. 12007 * ipif_up_done* handles this when we use ipif_up. 12008 */ 12009 if (phyint_flags_modified) { 12010 if (phyi->phyint_illv4 != NULL) { 12011 ip_rts_ifmsg(phyi->phyint_illv4-> 12012 ill_ipif); 12013 } 12014 if (phyi->phyint_illv6 != NULL) { 12015 ip_rts_ifmsg(phyi->phyint_illv6-> 12016 ill_ipif); 12017 } 12018 } else { 12019 ip_rts_ifmsg(ipif); 12020 } 12021 /* 12022 * Update the flags in SCTP's IPIF list, ipif_up() will do 12023 * this in need_up case. 12024 */ 12025 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12026 } 12027 return (err); 12028 } 12029 12030 /* 12031 * Restart entry point to restart the flags restart operation after the 12032 * refcounts have dropped to zero. 12033 */ 12034 /* ARGSUSED */ 12035 int 12036 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12037 ip_ioctl_cmd_t *ipip, void *if_req) 12038 { 12039 int err; 12040 struct ifreq *ifr = (struct ifreq *)if_req; 12041 struct lifreq *lifr = (struct lifreq *)if_req; 12042 12043 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12044 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12045 12046 ipif_down_tail(ipif); 12047 if (ipip->ipi_cmd_type == IF_CMD) { 12048 /* 12049 * Since ip_sioctl_flags expects an int and ifr_flags 12050 * is a short we need to cast ifr_flags into an int 12051 * to avoid having sign extension cause bits to get 12052 * set that should not be. 12053 */ 12054 err = ip_sioctl_flags_tail(ipif, 12055 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12056 q, mp, B_TRUE); 12057 } else { 12058 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12059 q, mp, B_TRUE); 12060 } 12061 return (err); 12062 } 12063 12064 /* 12065 * Can operate on either a module or a driver queue. 12066 */ 12067 /* ARGSUSED */ 12068 int 12069 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12070 ip_ioctl_cmd_t *ipip, void *if_req) 12071 { 12072 /* 12073 * Has the flags been set correctly till now ? 12074 */ 12075 ill_t *ill = ipif->ipif_ill; 12076 phyint_t *phyi = ill->ill_phyint; 12077 12078 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12079 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12080 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12081 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12082 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12083 12084 /* 12085 * Need a lock since some flags can be set even when there are 12086 * references to the ipif. 12087 */ 12088 mutex_enter(&ill->ill_lock); 12089 if (ipip->ipi_cmd_type == IF_CMD) { 12090 struct ifreq *ifr = (struct ifreq *)if_req; 12091 12092 /* Get interface flags (low 16 only). */ 12093 ifr->ifr_flags = ((ipif->ipif_flags | 12094 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12095 } else { 12096 struct lifreq *lifr = (struct lifreq *)if_req; 12097 12098 /* Get interface flags. */ 12099 lifr->lifr_flags = ipif->ipif_flags | 12100 ill->ill_flags | phyi->phyint_flags; 12101 } 12102 mutex_exit(&ill->ill_lock); 12103 return (0); 12104 } 12105 12106 /* ARGSUSED */ 12107 int 12108 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12109 ip_ioctl_cmd_t *ipip, void *if_req) 12110 { 12111 int mtu; 12112 int ip_min_mtu; 12113 struct ifreq *ifr; 12114 struct lifreq *lifr; 12115 ire_t *ire; 12116 ip_stack_t *ipst; 12117 12118 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12119 ipif->ipif_id, (void *)ipif)); 12120 if (ipip->ipi_cmd_type == IF_CMD) { 12121 ifr = (struct ifreq *)if_req; 12122 mtu = ifr->ifr_metric; 12123 } else { 12124 lifr = (struct lifreq *)if_req; 12125 mtu = lifr->lifr_mtu; 12126 } 12127 12128 if (ipif->ipif_isv6) 12129 ip_min_mtu = IPV6_MIN_MTU; 12130 else 12131 ip_min_mtu = IP_MIN_MTU; 12132 12133 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12134 return (EINVAL); 12135 12136 /* 12137 * Change the MTU size in all relevant ire's. 12138 * Mtu change Vs. new ire creation - protocol below. 12139 * First change ipif_mtu and the ire_max_frag of the 12140 * interface ire. Then do an ire walk and change the 12141 * ire_max_frag of all affected ires. During ire_add 12142 * under the bucket lock, set the ire_max_frag of the 12143 * new ire being created from the ipif/ire from which 12144 * it is being derived. If an mtu change happens after 12145 * the ire is added, the new ire will be cleaned up. 12146 * Conversely if the mtu change happens before the ire 12147 * is added, ire_add will see the new value of the mtu. 12148 */ 12149 ipif->ipif_mtu = mtu; 12150 ipif->ipif_flags |= IPIF_FIXEDMTU; 12151 12152 if (ipif->ipif_isv6) 12153 ire = ipif_to_ire_v6(ipif); 12154 else 12155 ire = ipif_to_ire(ipif); 12156 if (ire != NULL) { 12157 ire->ire_max_frag = ipif->ipif_mtu; 12158 ire_refrele(ire); 12159 } 12160 ipst = ipif->ipif_ill->ill_ipst; 12161 if (ipif->ipif_flags & IPIF_UP) { 12162 if (ipif->ipif_isv6) 12163 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12164 ipst); 12165 else 12166 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12167 ipst); 12168 } 12169 /* Update the MTU in SCTP's list */ 12170 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12171 return (0); 12172 } 12173 12174 /* Get interface MTU. */ 12175 /* ARGSUSED */ 12176 int 12177 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12178 ip_ioctl_cmd_t *ipip, void *if_req) 12179 { 12180 struct ifreq *ifr; 12181 struct lifreq *lifr; 12182 12183 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12184 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12185 if (ipip->ipi_cmd_type == IF_CMD) { 12186 ifr = (struct ifreq *)if_req; 12187 ifr->ifr_metric = ipif->ipif_mtu; 12188 } else { 12189 lifr = (struct lifreq *)if_req; 12190 lifr->lifr_mtu = ipif->ipif_mtu; 12191 } 12192 return (0); 12193 } 12194 12195 /* Set interface broadcast address. */ 12196 /* ARGSUSED2 */ 12197 int 12198 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12199 ip_ioctl_cmd_t *ipip, void *if_req) 12200 { 12201 ipaddr_t addr; 12202 ire_t *ire; 12203 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12204 12205 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12206 ipif->ipif_id)); 12207 12208 ASSERT(IAM_WRITER_IPIF(ipif)); 12209 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12210 return (EADDRNOTAVAIL); 12211 12212 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12213 12214 if (sin->sin_family != AF_INET) 12215 return (EAFNOSUPPORT); 12216 12217 addr = sin->sin_addr.s_addr; 12218 if (ipif->ipif_flags & IPIF_UP) { 12219 /* 12220 * If we are already up, make sure the new 12221 * broadcast address makes sense. If it does, 12222 * there should be an IRE for it already. 12223 * Don't match on ipif, only on the ill 12224 * since we are sharing these now. Don't use 12225 * MATCH_IRE_ILL_GROUP as we are looking for 12226 * the broadcast ire on this ill and each ill 12227 * in the group has its own broadcast ire. 12228 */ 12229 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12230 ipif, ALL_ZONES, NULL, 12231 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12232 if (ire == NULL) { 12233 return (EINVAL); 12234 } else { 12235 ire_refrele(ire); 12236 } 12237 } 12238 /* 12239 * Changing the broadcast addr for this ipif. 12240 * Make sure we have valid net and subnet bcast 12241 * ire's for other logical interfaces, if needed. 12242 */ 12243 if (addr != ipif->ipif_brd_addr) 12244 ipif_check_bcast_ires(ipif); 12245 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12246 return (0); 12247 } 12248 12249 /* Get interface broadcast address. */ 12250 /* ARGSUSED */ 12251 int 12252 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12253 ip_ioctl_cmd_t *ipip, void *if_req) 12254 { 12255 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12257 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12258 return (EADDRNOTAVAIL); 12259 12260 /* IPIF_BROADCAST not possible with IPv6 */ 12261 ASSERT(!ipif->ipif_isv6); 12262 *sin = sin_null; 12263 sin->sin_family = AF_INET; 12264 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12265 return (0); 12266 } 12267 12268 /* 12269 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12270 */ 12271 /* ARGSUSED */ 12272 int 12273 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12274 ip_ioctl_cmd_t *ipip, void *if_req) 12275 { 12276 int err = 0; 12277 in6_addr_t v6mask; 12278 12279 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12280 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12281 12282 ASSERT(IAM_WRITER_IPIF(ipif)); 12283 12284 if (ipif->ipif_isv6) { 12285 sin6_t *sin6; 12286 12287 if (sin->sin_family != AF_INET6) 12288 return (EAFNOSUPPORT); 12289 12290 sin6 = (sin6_t *)sin; 12291 v6mask = sin6->sin6_addr; 12292 } else { 12293 ipaddr_t mask; 12294 12295 if (sin->sin_family != AF_INET) 12296 return (EAFNOSUPPORT); 12297 12298 mask = sin->sin_addr.s_addr; 12299 V4MASK_TO_V6(mask, v6mask); 12300 } 12301 12302 /* 12303 * No big deal if the interface isn't already up, or the mask 12304 * isn't really changing, or this is pt-pt. 12305 */ 12306 if (!(ipif->ipif_flags & IPIF_UP) || 12307 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12308 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12309 ipif->ipif_v6net_mask = v6mask; 12310 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12311 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12312 ipif->ipif_v6net_mask, 12313 ipif->ipif_v6subnet); 12314 } 12315 return (0); 12316 } 12317 /* 12318 * Make sure we have valid net and subnet broadcast ire's 12319 * for the old netmask, if needed by other logical interfaces. 12320 */ 12321 if (!ipif->ipif_isv6) 12322 ipif_check_bcast_ires(ipif); 12323 12324 err = ipif_logical_down(ipif, q, mp); 12325 if (err == EINPROGRESS) 12326 return (err); 12327 ipif_down_tail(ipif); 12328 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12329 return (err); 12330 } 12331 12332 static int 12333 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12334 { 12335 in6_addr_t v6mask; 12336 int err = 0; 12337 12338 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12339 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12340 12341 if (ipif->ipif_isv6) { 12342 sin6_t *sin6; 12343 12344 sin6 = (sin6_t *)sin; 12345 v6mask = sin6->sin6_addr; 12346 } else { 12347 ipaddr_t mask; 12348 12349 mask = sin->sin_addr.s_addr; 12350 V4MASK_TO_V6(mask, v6mask); 12351 } 12352 12353 ipif->ipif_v6net_mask = v6mask; 12354 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12355 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12356 ipif->ipif_v6subnet); 12357 } 12358 err = ipif_up(ipif, q, mp); 12359 12360 if (err == 0 || err == EINPROGRESS) { 12361 /* 12362 * The interface must be DL_BOUND if this packet has to 12363 * go out on the wire. Since we only go through a logical 12364 * down and are bound with the driver during an internal 12365 * down/up that is satisfied. 12366 */ 12367 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12368 /* Potentially broadcast an address mask reply. */ 12369 ipif_mask_reply(ipif); 12370 } 12371 } 12372 return (err); 12373 } 12374 12375 /* ARGSUSED */ 12376 int 12377 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12378 ip_ioctl_cmd_t *ipip, void *if_req) 12379 { 12380 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12381 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12382 ipif_down_tail(ipif); 12383 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12384 } 12385 12386 /* Get interface net mask. */ 12387 /* ARGSUSED */ 12388 int 12389 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12390 ip_ioctl_cmd_t *ipip, void *if_req) 12391 { 12392 struct lifreq *lifr = (struct lifreq *)if_req; 12393 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12394 12395 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12397 12398 /* 12399 * net mask can't change since we have a reference to the ipif. 12400 */ 12401 if (ipif->ipif_isv6) { 12402 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12403 *sin6 = sin6_null; 12404 sin6->sin6_family = AF_INET6; 12405 sin6->sin6_addr = ipif->ipif_v6net_mask; 12406 lifr->lifr_addrlen = 12407 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12408 } else { 12409 *sin = sin_null; 12410 sin->sin_family = AF_INET; 12411 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12412 if (ipip->ipi_cmd_type == LIF_CMD) { 12413 lifr->lifr_addrlen = 12414 ip_mask_to_plen(ipif->ipif_net_mask); 12415 } 12416 } 12417 return (0); 12418 } 12419 12420 /* ARGSUSED */ 12421 int 12422 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12423 ip_ioctl_cmd_t *ipip, void *if_req) 12424 { 12425 12426 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12427 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12428 /* 12429 * Set interface metric. We don't use this for 12430 * anything but we keep track of it in case it is 12431 * important to routing applications or such. 12432 */ 12433 if (ipip->ipi_cmd_type == IF_CMD) { 12434 struct ifreq *ifr; 12435 12436 ifr = (struct ifreq *)if_req; 12437 ipif->ipif_metric = ifr->ifr_metric; 12438 } else { 12439 struct lifreq *lifr; 12440 12441 lifr = (struct lifreq *)if_req; 12442 ipif->ipif_metric = lifr->lifr_metric; 12443 } 12444 return (0); 12445 } 12446 12447 12448 /* ARGSUSED */ 12449 int 12450 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12451 ip_ioctl_cmd_t *ipip, void *if_req) 12452 { 12453 12454 /* Get interface metric. */ 12455 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12456 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12457 if (ipip->ipi_cmd_type == IF_CMD) { 12458 struct ifreq *ifr; 12459 12460 ifr = (struct ifreq *)if_req; 12461 ifr->ifr_metric = ipif->ipif_metric; 12462 } else { 12463 struct lifreq *lifr; 12464 12465 lifr = (struct lifreq *)if_req; 12466 lifr->lifr_metric = ipif->ipif_metric; 12467 } 12468 12469 return (0); 12470 } 12471 12472 /* ARGSUSED */ 12473 int 12474 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12475 ip_ioctl_cmd_t *ipip, void *if_req) 12476 { 12477 12478 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12479 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12480 /* 12481 * Set the muxid returned from I_PLINK. 12482 */ 12483 if (ipip->ipi_cmd_type == IF_CMD) { 12484 struct ifreq *ifr = (struct ifreq *)if_req; 12485 12486 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12487 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12488 } else { 12489 struct lifreq *lifr = (struct lifreq *)if_req; 12490 12491 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12492 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12493 } 12494 return (0); 12495 } 12496 12497 /* ARGSUSED */ 12498 int 12499 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12500 ip_ioctl_cmd_t *ipip, void *if_req) 12501 { 12502 12503 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12504 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12505 /* 12506 * Get the muxid saved in ill for I_PUNLINK. 12507 */ 12508 if (ipip->ipi_cmd_type == IF_CMD) { 12509 struct ifreq *ifr = (struct ifreq *)if_req; 12510 12511 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12512 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12513 } else { 12514 struct lifreq *lifr = (struct lifreq *)if_req; 12515 12516 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12517 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12518 } 12519 return (0); 12520 } 12521 12522 /* 12523 * Set the subnet prefix. Does not modify the broadcast address. 12524 */ 12525 /* ARGSUSED */ 12526 int 12527 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12528 ip_ioctl_cmd_t *ipip, void *if_req) 12529 { 12530 int err = 0; 12531 in6_addr_t v6addr; 12532 in6_addr_t v6mask; 12533 boolean_t need_up = B_FALSE; 12534 int addrlen; 12535 12536 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12537 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12538 12539 ASSERT(IAM_WRITER_IPIF(ipif)); 12540 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12541 12542 if (ipif->ipif_isv6) { 12543 sin6_t *sin6; 12544 12545 if (sin->sin_family != AF_INET6) 12546 return (EAFNOSUPPORT); 12547 12548 sin6 = (sin6_t *)sin; 12549 v6addr = sin6->sin6_addr; 12550 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12551 return (EADDRNOTAVAIL); 12552 } else { 12553 ipaddr_t addr; 12554 12555 if (sin->sin_family != AF_INET) 12556 return (EAFNOSUPPORT); 12557 12558 addr = sin->sin_addr.s_addr; 12559 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12560 return (EADDRNOTAVAIL); 12561 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12562 /* Add 96 bits */ 12563 addrlen += IPV6_ABITS - IP_ABITS; 12564 } 12565 12566 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12567 return (EINVAL); 12568 12569 /* Check if bits in the address is set past the mask */ 12570 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12571 return (EINVAL); 12572 12573 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12574 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12575 return (0); /* No change */ 12576 12577 if (ipif->ipif_flags & IPIF_UP) { 12578 /* 12579 * If the interface is already marked up, 12580 * we call ipif_down which will take care 12581 * of ditching any IREs that have been set 12582 * up based on the old interface address. 12583 */ 12584 err = ipif_logical_down(ipif, q, mp); 12585 if (err == EINPROGRESS) 12586 return (err); 12587 ipif_down_tail(ipif); 12588 need_up = B_TRUE; 12589 } 12590 12591 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12592 return (err); 12593 } 12594 12595 static int 12596 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12597 queue_t *q, mblk_t *mp, boolean_t need_up) 12598 { 12599 ill_t *ill = ipif->ipif_ill; 12600 int err = 0; 12601 12602 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12603 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12604 12605 /* Set the new address. */ 12606 mutex_enter(&ill->ill_lock); 12607 ipif->ipif_v6net_mask = v6mask; 12608 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12609 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12610 ipif->ipif_v6subnet); 12611 } 12612 mutex_exit(&ill->ill_lock); 12613 12614 if (need_up) { 12615 /* 12616 * Now bring the interface back up. If this 12617 * is the only IPIF for the ILL, ipif_up 12618 * will have to re-bind to the device, so 12619 * we may get back EINPROGRESS, in which 12620 * case, this IOCTL will get completed in 12621 * ip_rput_dlpi when we see the DL_BIND_ACK. 12622 */ 12623 err = ipif_up(ipif, q, mp); 12624 if (err == EINPROGRESS) 12625 return (err); 12626 } 12627 return (err); 12628 } 12629 12630 /* ARGSUSED */ 12631 int 12632 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12633 ip_ioctl_cmd_t *ipip, void *if_req) 12634 { 12635 int addrlen; 12636 in6_addr_t v6addr; 12637 in6_addr_t v6mask; 12638 struct lifreq *lifr = (struct lifreq *)if_req; 12639 12640 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12641 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12642 ipif_down_tail(ipif); 12643 12644 addrlen = lifr->lifr_addrlen; 12645 if (ipif->ipif_isv6) { 12646 sin6_t *sin6; 12647 12648 sin6 = (sin6_t *)sin; 12649 v6addr = sin6->sin6_addr; 12650 } else { 12651 ipaddr_t addr; 12652 12653 addr = sin->sin_addr.s_addr; 12654 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12655 addrlen += IPV6_ABITS - IP_ABITS; 12656 } 12657 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12658 12659 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12660 } 12661 12662 /* ARGSUSED */ 12663 int 12664 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12665 ip_ioctl_cmd_t *ipip, void *if_req) 12666 { 12667 struct lifreq *lifr = (struct lifreq *)if_req; 12668 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12669 12670 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12671 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12672 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12673 12674 if (ipif->ipif_isv6) { 12675 *sin6 = sin6_null; 12676 sin6->sin6_family = AF_INET6; 12677 sin6->sin6_addr = ipif->ipif_v6subnet; 12678 lifr->lifr_addrlen = 12679 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12680 } else { 12681 *sin = sin_null; 12682 sin->sin_family = AF_INET; 12683 sin->sin_addr.s_addr = ipif->ipif_subnet; 12684 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12685 } 12686 return (0); 12687 } 12688 12689 /* 12690 * Set the IPv6 address token. 12691 */ 12692 /* ARGSUSED */ 12693 int 12694 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12695 ip_ioctl_cmd_t *ipi, void *if_req) 12696 { 12697 ill_t *ill = ipif->ipif_ill; 12698 int err; 12699 in6_addr_t v6addr; 12700 in6_addr_t v6mask; 12701 boolean_t need_up = B_FALSE; 12702 int i; 12703 sin6_t *sin6 = (sin6_t *)sin; 12704 struct lifreq *lifr = (struct lifreq *)if_req; 12705 int addrlen; 12706 12707 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12708 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12709 ASSERT(IAM_WRITER_IPIF(ipif)); 12710 12711 addrlen = lifr->lifr_addrlen; 12712 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12713 if (ipif->ipif_id != 0) 12714 return (EINVAL); 12715 12716 if (!ipif->ipif_isv6) 12717 return (EINVAL); 12718 12719 if (addrlen > IPV6_ABITS) 12720 return (EINVAL); 12721 12722 v6addr = sin6->sin6_addr; 12723 12724 /* 12725 * The length of the token is the length from the end. To get 12726 * the proper mask for this, compute the mask of the bits not 12727 * in the token; ie. the prefix, and then xor to get the mask. 12728 */ 12729 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12730 return (EINVAL); 12731 for (i = 0; i < 4; i++) { 12732 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12733 } 12734 12735 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12736 ill->ill_token_length == addrlen) 12737 return (0); /* No change */ 12738 12739 if (ipif->ipif_flags & IPIF_UP) { 12740 err = ipif_logical_down(ipif, q, mp); 12741 if (err == EINPROGRESS) 12742 return (err); 12743 ipif_down_tail(ipif); 12744 need_up = B_TRUE; 12745 } 12746 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12747 return (err); 12748 } 12749 12750 static int 12751 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12752 mblk_t *mp, boolean_t need_up) 12753 { 12754 in6_addr_t v6addr; 12755 in6_addr_t v6mask; 12756 ill_t *ill = ipif->ipif_ill; 12757 int i; 12758 int err = 0; 12759 12760 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12761 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12762 v6addr = sin6->sin6_addr; 12763 /* 12764 * The length of the token is the length from the end. To get 12765 * the proper mask for this, compute the mask of the bits not 12766 * in the token; ie. the prefix, and then xor to get the mask. 12767 */ 12768 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12769 for (i = 0; i < 4; i++) 12770 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12771 12772 mutex_enter(&ill->ill_lock); 12773 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12774 ill->ill_token_length = addrlen; 12775 mutex_exit(&ill->ill_lock); 12776 12777 if (need_up) { 12778 /* 12779 * Now bring the interface back up. If this 12780 * is the only IPIF for the ILL, ipif_up 12781 * will have to re-bind to the device, so 12782 * we may get back EINPROGRESS, in which 12783 * case, this IOCTL will get completed in 12784 * ip_rput_dlpi when we see the DL_BIND_ACK. 12785 */ 12786 err = ipif_up(ipif, q, mp); 12787 if (err == EINPROGRESS) 12788 return (err); 12789 } 12790 return (err); 12791 } 12792 12793 /* ARGSUSED */ 12794 int 12795 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12796 ip_ioctl_cmd_t *ipi, void *if_req) 12797 { 12798 ill_t *ill; 12799 sin6_t *sin6 = (sin6_t *)sin; 12800 struct lifreq *lifr = (struct lifreq *)if_req; 12801 12802 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12803 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12804 if (ipif->ipif_id != 0) 12805 return (EINVAL); 12806 12807 ill = ipif->ipif_ill; 12808 if (!ill->ill_isv6) 12809 return (ENXIO); 12810 12811 *sin6 = sin6_null; 12812 sin6->sin6_family = AF_INET6; 12813 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12814 sin6->sin6_addr = ill->ill_token; 12815 lifr->lifr_addrlen = ill->ill_token_length; 12816 return (0); 12817 } 12818 12819 /* 12820 * Set (hardware) link specific information that might override 12821 * what was acquired through the DL_INFO_ACK. 12822 * The logic is as follows. 12823 * 12824 * become exclusive 12825 * set CHANGING flag 12826 * change mtu on affected IREs 12827 * clear CHANGING flag 12828 * 12829 * An ire add that occurs before the CHANGING flag is set will have its mtu 12830 * changed by the ip_sioctl_lnkinfo. 12831 * 12832 * During the time the CHANGING flag is set, no new ires will be added to the 12833 * bucket, and ire add will fail (due the CHANGING flag). 12834 * 12835 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12836 * before it is added to the bucket. 12837 * 12838 * Obviously only 1 thread can set the CHANGING flag and we need to become 12839 * exclusive to set the flag. 12840 */ 12841 /* ARGSUSED */ 12842 int 12843 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12844 ip_ioctl_cmd_t *ipi, void *if_req) 12845 { 12846 ill_t *ill = ipif->ipif_ill; 12847 ipif_t *nipif; 12848 int ip_min_mtu; 12849 boolean_t mtu_walk = B_FALSE; 12850 struct lifreq *lifr = (struct lifreq *)if_req; 12851 lif_ifinfo_req_t *lir; 12852 ire_t *ire; 12853 12854 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12855 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12856 lir = &lifr->lifr_ifinfo; 12857 ASSERT(IAM_WRITER_IPIF(ipif)); 12858 12859 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12860 if (ipif->ipif_id != 0) 12861 return (EINVAL); 12862 12863 /* Set interface MTU. */ 12864 if (ipif->ipif_isv6) 12865 ip_min_mtu = IPV6_MIN_MTU; 12866 else 12867 ip_min_mtu = IP_MIN_MTU; 12868 12869 /* 12870 * Verify values before we set anything. Allow zero to 12871 * mean unspecified. 12872 */ 12873 if (lir->lir_maxmtu != 0 && 12874 (lir->lir_maxmtu > ill->ill_max_frag || 12875 lir->lir_maxmtu < ip_min_mtu)) 12876 return (EINVAL); 12877 if (lir->lir_reachtime != 0 && 12878 lir->lir_reachtime > ND_MAX_REACHTIME) 12879 return (EINVAL); 12880 if (lir->lir_reachretrans != 0 && 12881 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12882 return (EINVAL); 12883 12884 mutex_enter(&ill->ill_lock); 12885 ill->ill_state_flags |= ILL_CHANGING; 12886 for (nipif = ill->ill_ipif; nipif != NULL; 12887 nipif = nipif->ipif_next) { 12888 nipif->ipif_state_flags |= IPIF_CHANGING; 12889 } 12890 12891 mutex_exit(&ill->ill_lock); 12892 12893 if (lir->lir_maxmtu != 0) { 12894 ill->ill_max_mtu = lir->lir_maxmtu; 12895 ill->ill_mtu_userspecified = 1; 12896 mtu_walk = B_TRUE; 12897 } 12898 12899 if (lir->lir_reachtime != 0) 12900 ill->ill_reachable_time = lir->lir_reachtime; 12901 12902 if (lir->lir_reachretrans != 0) 12903 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12904 12905 ill->ill_max_hops = lir->lir_maxhops; 12906 12907 ill->ill_max_buf = ND_MAX_Q; 12908 12909 if (mtu_walk) { 12910 /* 12911 * Set the MTU on all ipifs associated with this ill except 12912 * for those whose MTU was fixed via SIOCSLIFMTU. 12913 */ 12914 for (nipif = ill->ill_ipif; nipif != NULL; 12915 nipif = nipif->ipif_next) { 12916 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12917 continue; 12918 12919 nipif->ipif_mtu = ill->ill_max_mtu; 12920 12921 if (!(nipif->ipif_flags & IPIF_UP)) 12922 continue; 12923 12924 if (nipif->ipif_isv6) 12925 ire = ipif_to_ire_v6(nipif); 12926 else 12927 ire = ipif_to_ire(nipif); 12928 if (ire != NULL) { 12929 ire->ire_max_frag = ipif->ipif_mtu; 12930 ire_refrele(ire); 12931 } 12932 if (ill->ill_isv6) { 12933 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12934 ipif_mtu_change, (char *)nipif, 12935 ill); 12936 } else { 12937 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12938 ipif_mtu_change, (char *)nipif, 12939 ill); 12940 } 12941 } 12942 } 12943 12944 mutex_enter(&ill->ill_lock); 12945 for (nipif = ill->ill_ipif; nipif != NULL; 12946 nipif = nipif->ipif_next) { 12947 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12948 } 12949 ILL_UNMARK_CHANGING(ill); 12950 mutex_exit(&ill->ill_lock); 12951 12952 return (0); 12953 } 12954 12955 /* ARGSUSED */ 12956 int 12957 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12958 ip_ioctl_cmd_t *ipi, void *if_req) 12959 { 12960 struct lif_ifinfo_req *lir; 12961 ill_t *ill = ipif->ipif_ill; 12962 12963 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12964 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12965 if (ipif->ipif_id != 0) 12966 return (EINVAL); 12967 12968 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12969 lir->lir_maxhops = ill->ill_max_hops; 12970 lir->lir_reachtime = ill->ill_reachable_time; 12971 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12972 lir->lir_maxmtu = ill->ill_max_mtu; 12973 12974 return (0); 12975 } 12976 12977 /* 12978 * Return best guess as to the subnet mask for the specified address. 12979 * Based on the subnet masks for all the configured interfaces. 12980 * 12981 * We end up returning a zero mask in the case of default, multicast or 12982 * experimental. 12983 */ 12984 static ipaddr_t 12985 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12986 { 12987 ipaddr_t net_mask; 12988 ill_t *ill; 12989 ipif_t *ipif; 12990 ill_walk_context_t ctx; 12991 ipif_t *fallback_ipif = NULL; 12992 12993 net_mask = ip_net_mask(addr); 12994 if (net_mask == 0) { 12995 *ipifp = NULL; 12996 return (0); 12997 } 12998 12999 /* Let's check to see if this is maybe a local subnet route. */ 13000 /* this function only applies to IPv4 interfaces */ 13001 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13002 ill = ILL_START_WALK_V4(&ctx, ipst); 13003 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13004 mutex_enter(&ill->ill_lock); 13005 for (ipif = ill->ill_ipif; ipif != NULL; 13006 ipif = ipif->ipif_next) { 13007 if (!IPIF_CAN_LOOKUP(ipif)) 13008 continue; 13009 if (!(ipif->ipif_flags & IPIF_UP)) 13010 continue; 13011 if ((ipif->ipif_subnet & net_mask) == 13012 (addr & net_mask)) { 13013 /* 13014 * Don't trust pt-pt interfaces if there are 13015 * other interfaces. 13016 */ 13017 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13018 if (fallback_ipif == NULL) { 13019 ipif_refhold_locked(ipif); 13020 fallback_ipif = ipif; 13021 } 13022 continue; 13023 } 13024 13025 /* 13026 * Fine. Just assume the same net mask as the 13027 * directly attached subnet interface is using. 13028 */ 13029 ipif_refhold_locked(ipif); 13030 mutex_exit(&ill->ill_lock); 13031 rw_exit(&ipst->ips_ill_g_lock); 13032 if (fallback_ipif != NULL) 13033 ipif_refrele(fallback_ipif); 13034 *ipifp = ipif; 13035 return (ipif->ipif_net_mask); 13036 } 13037 } 13038 mutex_exit(&ill->ill_lock); 13039 } 13040 rw_exit(&ipst->ips_ill_g_lock); 13041 13042 *ipifp = fallback_ipif; 13043 return ((fallback_ipif != NULL) ? 13044 fallback_ipif->ipif_net_mask : net_mask); 13045 } 13046 13047 /* 13048 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13049 */ 13050 static void 13051 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13052 { 13053 IOCP iocp; 13054 ipft_t *ipft; 13055 ipllc_t *ipllc; 13056 mblk_t *mp1; 13057 cred_t *cr; 13058 int error = 0; 13059 conn_t *connp; 13060 13061 ip1dbg(("ip_wput_ioctl")); 13062 iocp = (IOCP)mp->b_rptr; 13063 mp1 = mp->b_cont; 13064 if (mp1 == NULL) { 13065 iocp->ioc_error = EINVAL; 13066 mp->b_datap->db_type = M_IOCNAK; 13067 iocp->ioc_count = 0; 13068 qreply(q, mp); 13069 return; 13070 } 13071 13072 /* 13073 * These IOCTLs provide various control capabilities to 13074 * upstream agents such as ULPs and processes. There 13075 * are currently two such IOCTLs implemented. They 13076 * are used by TCP to provide update information for 13077 * existing IREs and to forcibly delete an IRE for a 13078 * host that is not responding, thereby forcing an 13079 * attempt at a new route. 13080 */ 13081 iocp->ioc_error = EINVAL; 13082 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13083 goto done; 13084 13085 ipllc = (ipllc_t *)mp1->b_rptr; 13086 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13087 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13088 break; 13089 } 13090 /* 13091 * prefer credential from mblk over ioctl; 13092 * see ip_sioctl_copyin_setup 13093 */ 13094 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13095 13096 /* 13097 * Refhold the conn in case the request gets queued up in some lookup 13098 */ 13099 ASSERT(CONN_Q(q)); 13100 connp = Q_TO_CONN(q); 13101 CONN_INC_REF(connp); 13102 if (ipft->ipft_pfi && 13103 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13104 pullupmsg(mp1, ipft->ipft_min_size))) { 13105 error = (*ipft->ipft_pfi)(q, 13106 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13107 } 13108 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13109 /* 13110 * CONN_OPER_PENDING_DONE happens in the function called 13111 * through ipft_pfi above. 13112 */ 13113 return; 13114 } 13115 13116 CONN_OPER_PENDING_DONE(connp); 13117 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13118 freemsg(mp); 13119 return; 13120 } 13121 iocp->ioc_error = error; 13122 13123 done: 13124 mp->b_datap->db_type = M_IOCACK; 13125 if (iocp->ioc_error) 13126 iocp->ioc_count = 0; 13127 qreply(q, mp); 13128 } 13129 13130 /* 13131 * Lookup an ipif using the sequence id (ipif_seqid) 13132 */ 13133 ipif_t * 13134 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13135 { 13136 ipif_t *ipif; 13137 13138 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13139 13140 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13141 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13142 return (ipif); 13143 } 13144 return (NULL); 13145 } 13146 13147 /* 13148 * Assign a unique id for the ipif. This is used later when we send 13149 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13150 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13151 * IRE is added, we verify that ipif has not disappeared. 13152 */ 13153 13154 static void 13155 ipif_assign_seqid(ipif_t *ipif) 13156 { 13157 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13158 13159 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13160 } 13161 13162 /* 13163 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13164 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13165 * be inserted into the first space available in the list. The value of 13166 * ipif_id will then be set to the appropriate value for its position. 13167 */ 13168 static int 13169 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13170 { 13171 ill_t *ill; 13172 ipif_t *tipif; 13173 ipif_t **tipifp; 13174 int id; 13175 ip_stack_t *ipst; 13176 13177 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13178 IAM_WRITER_IPIF(ipif)); 13179 13180 ill = ipif->ipif_ill; 13181 ASSERT(ill != NULL); 13182 ipst = ill->ill_ipst; 13183 13184 /* 13185 * In the case of lo0:0 we already hold the ill_g_lock. 13186 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13187 * ipif_insert. Another such caller is ipif_move. 13188 */ 13189 if (acquire_g_lock) 13190 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13191 if (acquire_ill_lock) 13192 mutex_enter(&ill->ill_lock); 13193 id = ipif->ipif_id; 13194 tipifp = &(ill->ill_ipif); 13195 if (id == -1) { /* need to find a real id */ 13196 id = 0; 13197 while ((tipif = *tipifp) != NULL) { 13198 ASSERT(tipif->ipif_id >= id); 13199 if (tipif->ipif_id != id) 13200 break; /* non-consecutive id */ 13201 id++; 13202 tipifp = &(tipif->ipif_next); 13203 } 13204 /* limit number of logical interfaces */ 13205 if (id >= ipst->ips_ip_addrs_per_if) { 13206 if (acquire_ill_lock) 13207 mutex_exit(&ill->ill_lock); 13208 if (acquire_g_lock) 13209 rw_exit(&ipst->ips_ill_g_lock); 13210 return (-1); 13211 } 13212 ipif->ipif_id = id; /* assign new id */ 13213 } else if (id < ipst->ips_ip_addrs_per_if) { 13214 /* we have a real id; insert ipif in the right place */ 13215 while ((tipif = *tipifp) != NULL) { 13216 ASSERT(tipif->ipif_id != id); 13217 if (tipif->ipif_id > id) 13218 break; /* found correct location */ 13219 tipifp = &(tipif->ipif_next); 13220 } 13221 } else { 13222 if (acquire_ill_lock) 13223 mutex_exit(&ill->ill_lock); 13224 if (acquire_g_lock) 13225 rw_exit(&ipst->ips_ill_g_lock); 13226 return (-1); 13227 } 13228 13229 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13230 13231 ipif->ipif_next = tipif; 13232 *tipifp = ipif; 13233 if (acquire_ill_lock) 13234 mutex_exit(&ill->ill_lock); 13235 if (acquire_g_lock) 13236 rw_exit(&ipst->ips_ill_g_lock); 13237 return (0); 13238 } 13239 13240 static void 13241 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13242 { 13243 ipif_t **ipifp; 13244 ill_t *ill = ipif->ipif_ill; 13245 13246 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13247 if (acquire_ill_lock) 13248 mutex_enter(&ill->ill_lock); 13249 else 13250 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13251 13252 ipifp = &ill->ill_ipif; 13253 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13254 if (*ipifp == ipif) { 13255 *ipifp = ipif->ipif_next; 13256 break; 13257 } 13258 } 13259 13260 if (acquire_ill_lock) 13261 mutex_exit(&ill->ill_lock); 13262 } 13263 13264 /* 13265 * Allocate and initialize a new interface control structure. (Always 13266 * called as writer.) 13267 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13268 * is not part of the global linked list of ills. ipif_seqid is unique 13269 * in the system and to preserve the uniqueness, it is assigned only 13270 * when ill becomes part of the global list. At that point ill will 13271 * have a name. If it doesn't get assigned here, it will get assigned 13272 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13273 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13274 * the interface flags or any other information from the DL_INFO_ACK for 13275 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13276 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13277 * second DL_INFO_ACK comes in from the driver. 13278 */ 13279 static ipif_t * 13280 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13281 { 13282 ipif_t *ipif; 13283 phyint_t *phyi; 13284 13285 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13286 ill->ill_name, id, (void *)ill)); 13287 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13288 13289 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13290 return (NULL); 13291 *ipif = ipif_zero; /* start clean */ 13292 13293 ipif->ipif_ill = ill; 13294 ipif->ipif_id = id; /* could be -1 */ 13295 /* 13296 * Inherit the zoneid from the ill; for the shared stack instance 13297 * this is always the global zone 13298 */ 13299 ipif->ipif_zoneid = ill->ill_zoneid; 13300 13301 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13302 13303 ipif->ipif_refcnt = 0; 13304 ipif->ipif_saved_ire_cnt = 0; 13305 13306 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13307 mi_free(ipif); 13308 return (NULL); 13309 } 13310 /* -1 id should have been replaced by real id */ 13311 id = ipif->ipif_id; 13312 ASSERT(id >= 0); 13313 13314 if (ill->ill_name[0] != '\0') 13315 ipif_assign_seqid(ipif); 13316 13317 /* 13318 * Keep a copy of original id in ipif_orig_ipifid. Failback 13319 * will attempt to restore the original id. The SIOCSLIFOINDEX 13320 * ioctl sets ipif_orig_ipifid to zero. 13321 */ 13322 ipif->ipif_orig_ipifid = id; 13323 13324 /* 13325 * We grab the ill_lock and phyint_lock to protect the flag changes. 13326 * The ipif is still not up and can't be looked up until the 13327 * ioctl completes and the IPIF_CHANGING flag is cleared. 13328 */ 13329 mutex_enter(&ill->ill_lock); 13330 mutex_enter(&ill->ill_phyint->phyint_lock); 13331 /* 13332 * Set the running flag when logical interface zero is created. 13333 * For subsequent logical interfaces, a DLPI link down 13334 * notification message may have cleared the running flag to 13335 * indicate the link is down, so we shouldn't just blindly set it. 13336 */ 13337 if (id == 0) 13338 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13339 ipif->ipif_ire_type = ire_type; 13340 phyi = ill->ill_phyint; 13341 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13342 13343 if (ipif->ipif_isv6) { 13344 ill->ill_flags |= ILLF_IPV6; 13345 } else { 13346 ipaddr_t inaddr_any = INADDR_ANY; 13347 13348 ill->ill_flags |= ILLF_IPV4; 13349 13350 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13351 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13352 &ipif->ipif_v6lcl_addr); 13353 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13354 &ipif->ipif_v6src_addr); 13355 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13356 &ipif->ipif_v6subnet); 13357 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13358 &ipif->ipif_v6net_mask); 13359 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13360 &ipif->ipif_v6brd_addr); 13361 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13362 &ipif->ipif_v6pp_dst_addr); 13363 } 13364 13365 /* 13366 * Don't set the interface flags etc. now, will do it in 13367 * ip_ll_subnet_defaults. 13368 */ 13369 if (!initialize) { 13370 mutex_exit(&ill->ill_lock); 13371 mutex_exit(&ill->ill_phyint->phyint_lock); 13372 return (ipif); 13373 } 13374 ipif->ipif_mtu = ill->ill_max_mtu; 13375 13376 if (ill->ill_bcast_addr_length != 0) { 13377 /* 13378 * Later detect lack of DLPI driver multicast 13379 * capability by catching DL_ENABMULTI errors in 13380 * ip_rput_dlpi. 13381 */ 13382 ill->ill_flags |= ILLF_MULTICAST; 13383 if (!ipif->ipif_isv6) 13384 ipif->ipif_flags |= IPIF_BROADCAST; 13385 } else { 13386 if (ill->ill_net_type != IRE_LOOPBACK) { 13387 if (ipif->ipif_isv6) 13388 /* 13389 * Note: xresolv interfaces will eventually need 13390 * NOARP set here as well, but that will require 13391 * those external resolvers to have some 13392 * knowledge of that flag and act appropriately. 13393 * Not to be changed at present. 13394 */ 13395 ill->ill_flags |= ILLF_NONUD; 13396 else 13397 ill->ill_flags |= ILLF_NOARP; 13398 } 13399 if (ill->ill_phys_addr_length == 0) { 13400 if (ill->ill_media && 13401 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13402 ipif->ipif_flags |= IPIF_NOXMIT; 13403 phyi->phyint_flags |= PHYI_VIRTUAL; 13404 } else { 13405 /* pt-pt supports multicast. */ 13406 ill->ill_flags |= ILLF_MULTICAST; 13407 if (ill->ill_net_type == IRE_LOOPBACK) { 13408 phyi->phyint_flags |= 13409 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13410 } else { 13411 ipif->ipif_flags |= IPIF_POINTOPOINT; 13412 } 13413 } 13414 } 13415 } 13416 mutex_exit(&ill->ill_lock); 13417 mutex_exit(&ill->ill_phyint->phyint_lock); 13418 return (ipif); 13419 } 13420 13421 /* 13422 * If appropriate, send a message up to the resolver delete the entry 13423 * for the address of this interface which is going out of business. 13424 * (Always called as writer). 13425 * 13426 * NOTE : We need to check for NULL mps as some of the fields are 13427 * initialized only for some interface types. See ipif_resolver_up() 13428 * for details. 13429 */ 13430 void 13431 ipif_arp_down(ipif_t *ipif) 13432 { 13433 mblk_t *mp; 13434 ill_t *ill = ipif->ipif_ill; 13435 13436 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13437 ASSERT(IAM_WRITER_IPIF(ipif)); 13438 13439 /* Delete the mapping for the local address */ 13440 mp = ipif->ipif_arp_del_mp; 13441 if (mp != NULL) { 13442 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13443 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13444 putnext(ill->ill_rq, mp); 13445 ipif->ipif_arp_del_mp = NULL; 13446 } 13447 13448 /* 13449 * If this is the last ipif that is going down and there are no 13450 * duplicate addresses we may yet attempt to re-probe, then we need to 13451 * clean up ARP completely. 13452 */ 13453 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13454 13455 /* Send up AR_INTERFACE_DOWN message */ 13456 mp = ill->ill_arp_down_mp; 13457 if (mp != NULL) { 13458 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13459 *(unsigned *)mp->b_rptr, ill->ill_name, 13460 ipif->ipif_id)); 13461 putnext(ill->ill_rq, mp); 13462 ill->ill_arp_down_mp = NULL; 13463 } 13464 13465 /* Tell ARP to delete the multicast mappings */ 13466 mp = ill->ill_arp_del_mapping_mp; 13467 if (mp != NULL) { 13468 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13469 *(unsigned *)mp->b_rptr, ill->ill_name, 13470 ipif->ipif_id)); 13471 putnext(ill->ill_rq, mp); 13472 ill->ill_arp_del_mapping_mp = NULL; 13473 } 13474 } 13475 } 13476 13477 /* 13478 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13479 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13480 * that it wants the add_mp allocated in this function to be returned 13481 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13482 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13483 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13484 * as it does a ipif_arp_down after calling this function - which will 13485 * remove what we add here. 13486 * 13487 * Returns -1 on failures and 0 on success. 13488 */ 13489 int 13490 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13491 { 13492 mblk_t *del_mp = NULL; 13493 mblk_t *add_mp = NULL; 13494 mblk_t *mp; 13495 ill_t *ill = ipif->ipif_ill; 13496 phyint_t *phyi = ill->ill_phyint; 13497 ipaddr_t addr, mask, extract_mask = 0; 13498 arma_t *arma; 13499 uint8_t *maddr, *bphys_addr; 13500 uint32_t hw_start; 13501 dl_unitdata_req_t *dlur; 13502 13503 ASSERT(IAM_WRITER_IPIF(ipif)); 13504 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13505 return (0); 13506 13507 /* 13508 * Delete the existing mapping from ARP. Normally ipif_down 13509 * -> ipif_arp_down should send this up to ARP. The only 13510 * reason we would find this when we are switching from 13511 * Multicast to Broadcast where we did not do a down. 13512 */ 13513 mp = ill->ill_arp_del_mapping_mp; 13514 if (mp != NULL) { 13515 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13516 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13517 putnext(ill->ill_rq, mp); 13518 ill->ill_arp_del_mapping_mp = NULL; 13519 } 13520 13521 if (arp_add_mapping_mp != NULL) 13522 *arp_add_mapping_mp = NULL; 13523 13524 /* 13525 * Check that the address is not to long for the constant 13526 * length reserved in the template arma_t. 13527 */ 13528 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13529 return (-1); 13530 13531 /* Add mapping mblk */ 13532 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13533 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13534 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13535 (caddr_t)&addr); 13536 if (add_mp == NULL) 13537 return (-1); 13538 arma = (arma_t *)add_mp->b_rptr; 13539 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13540 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13541 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13542 13543 /* 13544 * Determine the broadcast address. 13545 */ 13546 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13547 if (ill->ill_sap_length < 0) 13548 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13549 else 13550 bphys_addr = (uchar_t *)dlur + 13551 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13552 /* 13553 * Check PHYI_MULTI_BCAST and length of physical 13554 * address to determine if we use the mapping or the 13555 * broadcast address. 13556 */ 13557 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13558 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13559 bphys_addr, maddr, &hw_start, &extract_mask)) 13560 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13561 13562 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13563 (ill->ill_flags & ILLF_MULTICAST)) { 13564 /* Make sure this will not match the "exact" entry. */ 13565 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13566 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13567 (caddr_t)&addr); 13568 if (del_mp == NULL) { 13569 freemsg(add_mp); 13570 return (-1); 13571 } 13572 bcopy(&extract_mask, (char *)arma + 13573 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13574 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13575 /* Use link-layer broadcast address for MULTI_BCAST */ 13576 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13577 ip2dbg(("ipif_arp_setup_multicast: adding" 13578 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13579 } else { 13580 arma->arma_hw_mapping_start = hw_start; 13581 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13582 " ARP setup for %s\n", ill->ill_name)); 13583 } 13584 } else { 13585 freemsg(add_mp); 13586 ASSERT(del_mp == NULL); 13587 /* It is neither MULTICAST nor MULTI_BCAST */ 13588 return (0); 13589 } 13590 ASSERT(add_mp != NULL && del_mp != NULL); 13591 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13592 ill->ill_arp_del_mapping_mp = del_mp; 13593 if (arp_add_mapping_mp != NULL) { 13594 /* The caller just wants the mblks allocated */ 13595 *arp_add_mapping_mp = add_mp; 13596 } else { 13597 /* The caller wants us to send it to arp */ 13598 putnext(ill->ill_rq, add_mp); 13599 } 13600 return (0); 13601 } 13602 13603 /* 13604 * Get the resolver set up for a new interface address. 13605 * (Always called as writer.) 13606 * Called both for IPv4 and IPv6 interfaces, 13607 * though it only sets up the resolver for v6 13608 * if it's an xresolv interface (one using an external resolver). 13609 * Honors ILLF_NOARP. 13610 * The enumerated value res_act is used to tune the behavior. 13611 * If set to Res_act_initial, then we set up all the resolver 13612 * structures for a new interface. If set to Res_act_move, then 13613 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13614 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13615 * asynchronous hardware address change notification. If set to 13616 * Res_act_defend, then we tell ARP that it needs to send a single 13617 * gratuitous message in defense of the address. 13618 * Returns error on failure. 13619 */ 13620 int 13621 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13622 { 13623 caddr_t addr; 13624 mblk_t *arp_up_mp = NULL; 13625 mblk_t *arp_down_mp = NULL; 13626 mblk_t *arp_add_mp = NULL; 13627 mblk_t *arp_del_mp = NULL; 13628 mblk_t *arp_add_mapping_mp = NULL; 13629 mblk_t *arp_del_mapping_mp = NULL; 13630 ill_t *ill = ipif->ipif_ill; 13631 uchar_t *area_p = NULL; 13632 uchar_t *ared_p = NULL; 13633 int err = ENOMEM; 13634 boolean_t was_dup; 13635 13636 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13637 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13638 ASSERT(IAM_WRITER_IPIF(ipif)); 13639 13640 was_dup = B_FALSE; 13641 if (res_act == Res_act_initial) { 13642 ipif->ipif_addr_ready = 0; 13643 /* 13644 * We're bringing an interface up here. There's no way that we 13645 * should need to shut down ARP now. 13646 */ 13647 mutex_enter(&ill->ill_lock); 13648 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13649 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13650 ill->ill_ipif_dup_count--; 13651 was_dup = B_TRUE; 13652 } 13653 mutex_exit(&ill->ill_lock); 13654 } 13655 if (ipif->ipif_recovery_id != 0) 13656 (void) untimeout(ipif->ipif_recovery_id); 13657 ipif->ipif_recovery_id = 0; 13658 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13659 ipif->ipif_addr_ready = 1; 13660 return (0); 13661 } 13662 /* NDP will set the ipif_addr_ready flag when it's ready */ 13663 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13664 return (0); 13665 13666 if (ill->ill_isv6) { 13667 /* 13668 * External resolver for IPv6 13669 */ 13670 ASSERT(res_act == Res_act_initial); 13671 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13672 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13673 area_p = (uchar_t *)&ip6_area_template; 13674 ared_p = (uchar_t *)&ip6_ared_template; 13675 } 13676 } else { 13677 /* 13678 * IPv4 arp case. If the ARP stream has already started 13679 * closing, fail this request for ARP bringup. Else 13680 * record the fact that an ARP bringup is pending. 13681 */ 13682 mutex_enter(&ill->ill_lock); 13683 if (ill->ill_arp_closing) { 13684 mutex_exit(&ill->ill_lock); 13685 err = EINVAL; 13686 goto failed; 13687 } else { 13688 if (ill->ill_ipif_up_count == 0 && 13689 ill->ill_ipif_dup_count == 0 && !was_dup) 13690 ill->ill_arp_bringup_pending = 1; 13691 mutex_exit(&ill->ill_lock); 13692 } 13693 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13694 addr = (caddr_t)&ipif->ipif_lcl_addr; 13695 area_p = (uchar_t *)&ip_area_template; 13696 ared_p = (uchar_t *)&ip_ared_template; 13697 } 13698 } 13699 13700 /* 13701 * Add an entry for the local address in ARP only if it 13702 * is not UNNUMBERED and the address is not INADDR_ANY. 13703 */ 13704 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13705 area_t *area; 13706 13707 /* Now ask ARP to publish our address. */ 13708 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13709 if (arp_add_mp == NULL) 13710 goto failed; 13711 area = (area_t *)arp_add_mp->b_rptr; 13712 if (res_act != Res_act_initial) { 13713 /* 13714 * Copy the new hardware address and length into 13715 * arp_add_mp to be sent to ARP. 13716 */ 13717 area->area_hw_addr_length = ill->ill_phys_addr_length; 13718 bcopy(ill->ill_phys_addr, 13719 ((char *)area + area->area_hw_addr_offset), 13720 area->area_hw_addr_length); 13721 } 13722 13723 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13724 ACE_F_MYADDR; 13725 13726 if (res_act == Res_act_defend) { 13727 area->area_flags |= ACE_F_DEFEND; 13728 /* 13729 * If we're just defending our address now, then 13730 * there's no need to set up ARP multicast mappings. 13731 * The publish command is enough. 13732 */ 13733 goto done; 13734 } 13735 13736 if (res_act != Res_act_initial) 13737 goto arp_setup_multicast; 13738 13739 /* 13740 * Allocate an ARP deletion message so we know we can tell ARP 13741 * when the interface goes down. 13742 */ 13743 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13744 if (arp_del_mp == NULL) 13745 goto failed; 13746 13747 } else { 13748 if (res_act != Res_act_initial) 13749 goto done; 13750 } 13751 /* 13752 * Need to bring up ARP or setup multicast mapping only 13753 * when the first interface is coming UP. 13754 */ 13755 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13756 was_dup) { 13757 goto done; 13758 } 13759 13760 /* 13761 * Allocate an ARP down message (to be saved) and an ARP up 13762 * message. 13763 */ 13764 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13765 if (arp_down_mp == NULL) 13766 goto failed; 13767 13768 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13769 if (arp_up_mp == NULL) 13770 goto failed; 13771 13772 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13773 goto done; 13774 13775 arp_setup_multicast: 13776 /* 13777 * Setup the multicast mappings. This function initializes 13778 * ill_arp_del_mapping_mp also. This does not need to be done for 13779 * IPv6. 13780 */ 13781 if (!ill->ill_isv6) { 13782 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13783 if (err != 0) 13784 goto failed; 13785 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13786 ASSERT(arp_add_mapping_mp != NULL); 13787 } 13788 13789 done: 13790 if (arp_del_mp != NULL) { 13791 ASSERT(ipif->ipif_arp_del_mp == NULL); 13792 ipif->ipif_arp_del_mp = arp_del_mp; 13793 } 13794 if (arp_down_mp != NULL) { 13795 ASSERT(ill->ill_arp_down_mp == NULL); 13796 ill->ill_arp_down_mp = arp_down_mp; 13797 } 13798 if (arp_del_mapping_mp != NULL) { 13799 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13800 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13801 } 13802 if (arp_up_mp != NULL) { 13803 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13804 ill->ill_name, ipif->ipif_id)); 13805 putnext(ill->ill_rq, arp_up_mp); 13806 } 13807 if (arp_add_mp != NULL) { 13808 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13809 ill->ill_name, ipif->ipif_id)); 13810 /* 13811 * If it's an extended ARP implementation, then we'll wait to 13812 * hear that DAD has finished before using the interface. 13813 */ 13814 if (!ill->ill_arp_extend) 13815 ipif->ipif_addr_ready = 1; 13816 putnext(ill->ill_rq, arp_add_mp); 13817 } else { 13818 ipif->ipif_addr_ready = 1; 13819 } 13820 if (arp_add_mapping_mp != NULL) { 13821 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13822 ill->ill_name, ipif->ipif_id)); 13823 putnext(ill->ill_rq, arp_add_mapping_mp); 13824 } 13825 if (res_act != Res_act_initial) 13826 return (0); 13827 13828 if (ill->ill_flags & ILLF_NOARP) 13829 err = ill_arp_off(ill); 13830 else 13831 err = ill_arp_on(ill); 13832 if (err != 0) { 13833 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13834 freemsg(ipif->ipif_arp_del_mp); 13835 freemsg(ill->ill_arp_down_mp); 13836 freemsg(ill->ill_arp_del_mapping_mp); 13837 ipif->ipif_arp_del_mp = NULL; 13838 ill->ill_arp_down_mp = NULL; 13839 ill->ill_arp_del_mapping_mp = NULL; 13840 return (err); 13841 } 13842 return ((ill->ill_ipif_up_count != 0 || was_dup || 13843 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13844 13845 failed: 13846 ip1dbg(("ipif_resolver_up: FAILED\n")); 13847 freemsg(arp_add_mp); 13848 freemsg(arp_del_mp); 13849 freemsg(arp_add_mapping_mp); 13850 freemsg(arp_up_mp); 13851 freemsg(arp_down_mp); 13852 ill->ill_arp_bringup_pending = 0; 13853 return (err); 13854 } 13855 13856 /* 13857 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13858 * just gone back up. 13859 */ 13860 static void 13861 ipif_arp_start_dad(ipif_t *ipif) 13862 { 13863 ill_t *ill = ipif->ipif_ill; 13864 mblk_t *arp_add_mp; 13865 area_t *area; 13866 13867 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13868 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13869 ipif->ipif_lcl_addr == INADDR_ANY || 13870 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13871 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13872 /* 13873 * If we can't contact ARP for some reason, that's not really a 13874 * problem. Just send out the routing socket notification that 13875 * DAD completion would have done, and continue. 13876 */ 13877 ipif_mask_reply(ipif); 13878 ip_rts_ifmsg(ipif); 13879 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13880 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13881 ipif->ipif_addr_ready = 1; 13882 return; 13883 } 13884 13885 /* Setting the 'unverified' flag restarts DAD */ 13886 area = (area_t *)arp_add_mp->b_rptr; 13887 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13888 ACE_F_UNVERIFIED; 13889 putnext(ill->ill_rq, arp_add_mp); 13890 } 13891 13892 static void 13893 ipif_ndp_start_dad(ipif_t *ipif) 13894 { 13895 nce_t *nce; 13896 13897 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13898 if (nce == NULL) 13899 return; 13900 13901 if (!ndp_restart_dad(nce)) { 13902 /* 13903 * If we can't restart DAD for some reason, that's not really a 13904 * problem. Just send out the routing socket notification that 13905 * DAD completion would have done, and continue. 13906 */ 13907 ip_rts_ifmsg(ipif); 13908 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13909 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13910 ipif->ipif_addr_ready = 1; 13911 } 13912 NCE_REFRELE(nce); 13913 } 13914 13915 /* 13916 * Restart duplicate address detection on all interfaces on the given ill. 13917 * 13918 * This is called when an interface transitions from down to up 13919 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13920 * 13921 * Note that since the underlying physical link has transitioned, we must cause 13922 * at least one routing socket message to be sent here, either via DAD 13923 * completion or just by default on the first ipif. (If we don't do this, then 13924 * in.mpathd will see long delays when doing link-based failure recovery.) 13925 */ 13926 void 13927 ill_restart_dad(ill_t *ill, boolean_t went_up) 13928 { 13929 ipif_t *ipif; 13930 13931 if (ill == NULL) 13932 return; 13933 13934 /* 13935 * If layer two doesn't support duplicate address detection, then just 13936 * send the routing socket message now and be done with it. 13937 */ 13938 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13939 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13940 ip_rts_ifmsg(ill->ill_ipif); 13941 return; 13942 } 13943 13944 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13945 if (went_up) { 13946 if (ipif->ipif_flags & IPIF_UP) { 13947 if (ill->ill_isv6) 13948 ipif_ndp_start_dad(ipif); 13949 else 13950 ipif_arp_start_dad(ipif); 13951 } else if (ill->ill_isv6 && 13952 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13953 /* 13954 * For IPv4, the ARP module itself will 13955 * automatically start the DAD process when it 13956 * sees DL_NOTE_LINK_UP. We respond to the 13957 * AR_CN_READY at the completion of that task. 13958 * For IPv6, we must kick off the bring-up 13959 * process now. 13960 */ 13961 ndp_do_recovery(ipif); 13962 } else { 13963 /* 13964 * Unfortunately, the first ipif is "special" 13965 * and represents the underlying ill in the 13966 * routing socket messages. Thus, when this 13967 * one ipif is down, we must still notify so 13968 * that the user knows the IFF_RUNNING status 13969 * change. (If the first ipif is up, then 13970 * we'll handle eventual routing socket 13971 * notification via DAD completion.) 13972 */ 13973 if (ipif == ill->ill_ipif) 13974 ip_rts_ifmsg(ill->ill_ipif); 13975 } 13976 } else { 13977 /* 13978 * After link down, we'll need to send a new routing 13979 * message when the link comes back, so clear 13980 * ipif_addr_ready. 13981 */ 13982 ipif->ipif_addr_ready = 0; 13983 } 13984 } 13985 13986 /* 13987 * If we've torn down links, then notify the user right away. 13988 */ 13989 if (!went_up) 13990 ip_rts_ifmsg(ill->ill_ipif); 13991 } 13992 13993 /* 13994 * Wakeup all threads waiting to enter the ipsq, and sleeping 13995 * on any of the ills in this ipsq. The ill_lock of the ill 13996 * must be held so that waiters don't miss wakeups 13997 */ 13998 static void 13999 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14000 { 14001 phyint_t *phyint; 14002 14003 phyint = ipsq->ipsq_phyint_list; 14004 while (phyint != NULL) { 14005 if (phyint->phyint_illv4) { 14006 if (!caller_holds_lock) 14007 mutex_enter(&phyint->phyint_illv4->ill_lock); 14008 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14009 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14010 if (!caller_holds_lock) 14011 mutex_exit(&phyint->phyint_illv4->ill_lock); 14012 } 14013 if (phyint->phyint_illv6) { 14014 if (!caller_holds_lock) 14015 mutex_enter(&phyint->phyint_illv6->ill_lock); 14016 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14017 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14018 if (!caller_holds_lock) 14019 mutex_exit(&phyint->phyint_illv6->ill_lock); 14020 } 14021 phyint = phyint->phyint_ipsq_next; 14022 } 14023 } 14024 14025 static ipsq_t * 14026 ipsq_create(char *groupname, ip_stack_t *ipst) 14027 { 14028 ipsq_t *ipsq; 14029 14030 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14031 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14032 if (ipsq == NULL) { 14033 return (NULL); 14034 } 14035 14036 if (groupname != NULL) 14037 (void) strcpy(ipsq->ipsq_name, groupname); 14038 else 14039 ipsq->ipsq_name[0] = '\0'; 14040 14041 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14042 ipsq->ipsq_flags |= IPSQ_GROUP; 14043 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14044 ipst->ips_ipsq_g_head = ipsq; 14045 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14046 return (ipsq); 14047 } 14048 14049 /* 14050 * Return an ipsq correspoding to the groupname. If 'create' is true 14051 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14052 * uniquely with an IPMP group. However during IPMP groupname operations, 14053 * multiple IPMP groups may be associated with a single ipsq. But no 14054 * IPMP group can be associated with more than 1 ipsq at any time. 14055 * For example 14056 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14057 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14058 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14059 * 14060 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14061 * status shown below during the execution of the above command. 14062 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14063 * 14064 * After the completion of the above groupname command we return to the stable 14065 * state shown below. 14066 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14067 * hme4 mpk17-85 ipsq2 mpk17-85 1 14068 * 14069 * Because of the above, we don't search based on the ipsq_name since that 14070 * would miss the correct ipsq during certain windows as shown above. 14071 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14072 * natural state. 14073 */ 14074 static ipsq_t * 14075 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14076 ip_stack_t *ipst) 14077 { 14078 ipsq_t *ipsq; 14079 int group_len; 14080 phyint_t *phyint; 14081 14082 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14083 14084 group_len = strlen(groupname); 14085 ASSERT(group_len != 0); 14086 group_len++; 14087 14088 for (ipsq = ipst->ips_ipsq_g_head; 14089 ipsq != NULL; 14090 ipsq = ipsq->ipsq_next) { 14091 /* 14092 * When an ipsq is being split, and ill_split_ipsq 14093 * calls this function, we exclude it from being considered. 14094 */ 14095 if (ipsq == exclude_ipsq) 14096 continue; 14097 14098 /* 14099 * Compare against the ipsq_name. The groupname change happens 14100 * in 2 phases. The 1st phase merges the from group into 14101 * the to group's ipsq, by calling ill_merge_groups and restarts 14102 * the ioctl. The 2nd phase then locates the ipsq again thru 14103 * ipsq_name. At this point the phyint_groupname has not been 14104 * updated. 14105 */ 14106 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14107 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14108 /* 14109 * Verify that an ipmp groupname is exactly 14110 * part of 1 ipsq and is not found in any other 14111 * ipsq. 14112 */ 14113 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14114 NULL); 14115 return (ipsq); 14116 } 14117 14118 /* 14119 * Comparison against ipsq_name alone is not sufficient. 14120 * In the case when groups are currently being 14121 * merged, the ipsq could hold other IPMP groups temporarily. 14122 * so we walk the phyint list and compare against the 14123 * phyint_groupname as well. 14124 */ 14125 phyint = ipsq->ipsq_phyint_list; 14126 while (phyint != NULL) { 14127 if ((group_len == phyint->phyint_groupname_len) && 14128 (bcmp(phyint->phyint_groupname, groupname, 14129 group_len) == 0)) { 14130 /* 14131 * Verify that an ipmp groupname is exactly 14132 * part of 1 ipsq and is not found in any other 14133 * ipsq. 14134 */ 14135 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14136 ipst) == NULL); 14137 return (ipsq); 14138 } 14139 phyint = phyint->phyint_ipsq_next; 14140 } 14141 } 14142 if (create) 14143 ipsq = ipsq_create(groupname, ipst); 14144 return (ipsq); 14145 } 14146 14147 static void 14148 ipsq_delete(ipsq_t *ipsq) 14149 { 14150 ipsq_t *nipsq; 14151 ipsq_t *pipsq = NULL; 14152 ip_stack_t *ipst = ipsq->ipsq_ipst; 14153 14154 /* 14155 * We don't hold the ipsq lock, but we are sure no new 14156 * messages can land up, since the ipsq_refs is zero. 14157 * i.e. this ipsq is unnamed and no phyint or phyint group 14158 * is associated with this ipsq. (Lookups are based on ill_name 14159 * or phyint_groupname) 14160 */ 14161 ASSERT(ipsq->ipsq_refs == 0); 14162 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14163 ASSERT(ipsq->ipsq_pending_mp == NULL); 14164 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14165 /* 14166 * This is not the ipsq of an IPMP group. 14167 */ 14168 ipsq->ipsq_ipst = NULL; 14169 kmem_free(ipsq, sizeof (ipsq_t)); 14170 return; 14171 } 14172 14173 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14174 14175 /* 14176 * Locate the ipsq before we can remove it from 14177 * the singly linked list of ipsq's. 14178 */ 14179 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14180 nipsq = nipsq->ipsq_next) { 14181 if (nipsq == ipsq) { 14182 break; 14183 } 14184 pipsq = nipsq; 14185 } 14186 14187 ASSERT(nipsq == ipsq); 14188 14189 /* unlink ipsq from the list */ 14190 if (pipsq != NULL) 14191 pipsq->ipsq_next = ipsq->ipsq_next; 14192 else 14193 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14194 ipsq->ipsq_ipst = NULL; 14195 kmem_free(ipsq, sizeof (ipsq_t)); 14196 rw_exit(&ipst->ips_ill_g_lock); 14197 } 14198 14199 static void 14200 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14201 queue_t *q) 14202 { 14203 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14204 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14205 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14206 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14207 ASSERT(current_mp != NULL); 14208 14209 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14210 NEW_OP, NULL); 14211 14212 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14213 new_ipsq->ipsq_xopq_mphead != NULL); 14214 14215 /* 14216 * move from old ipsq to the new ipsq. 14217 */ 14218 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14219 if (old_ipsq->ipsq_xopq_mphead != NULL) 14220 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14221 14222 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14223 } 14224 14225 void 14226 ill_group_cleanup(ill_t *ill) 14227 { 14228 ill_t *ill_v4; 14229 ill_t *ill_v6; 14230 ipif_t *ipif; 14231 14232 ill_v4 = ill->ill_phyint->phyint_illv4; 14233 ill_v6 = ill->ill_phyint->phyint_illv6; 14234 14235 if (ill_v4 != NULL) { 14236 mutex_enter(&ill_v4->ill_lock); 14237 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14238 ipif = ipif->ipif_next) { 14239 IPIF_UNMARK_MOVING(ipif); 14240 } 14241 ill_v4->ill_up_ipifs = B_FALSE; 14242 mutex_exit(&ill_v4->ill_lock); 14243 } 14244 14245 if (ill_v6 != NULL) { 14246 mutex_enter(&ill_v6->ill_lock); 14247 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14248 ipif = ipif->ipif_next) { 14249 IPIF_UNMARK_MOVING(ipif); 14250 } 14251 ill_v6->ill_up_ipifs = B_FALSE; 14252 mutex_exit(&ill_v6->ill_lock); 14253 } 14254 } 14255 /* 14256 * This function is called when an ill has had a change in its group status 14257 * to bring up all the ipifs that were up before the change. 14258 */ 14259 int 14260 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14261 { 14262 ipif_t *ipif; 14263 ill_t *ill_v4; 14264 ill_t *ill_v6; 14265 ill_t *from_ill; 14266 int err = 0; 14267 14268 14269 ASSERT(IAM_WRITER_ILL(ill)); 14270 14271 /* 14272 * Except for ipif_state_flags and ill_state_flags the other 14273 * fields of the ipif/ill that are modified below are protected 14274 * implicitly since we are a writer. We would have tried to down 14275 * even an ipif that was already down, in ill_down_ipifs. So we 14276 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14277 */ 14278 ill_v4 = ill->ill_phyint->phyint_illv4; 14279 ill_v6 = ill->ill_phyint->phyint_illv6; 14280 if (ill_v4 != NULL) { 14281 ill_v4->ill_up_ipifs = B_TRUE; 14282 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14283 ipif = ipif->ipif_next) { 14284 mutex_enter(&ill_v4->ill_lock); 14285 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14286 IPIF_UNMARK_MOVING(ipif); 14287 mutex_exit(&ill_v4->ill_lock); 14288 if (ipif->ipif_was_up) { 14289 if (!(ipif->ipif_flags & IPIF_UP)) 14290 err = ipif_up(ipif, q, mp); 14291 ipif->ipif_was_up = B_FALSE; 14292 if (err != 0) { 14293 /* 14294 * Can there be any other error ? 14295 */ 14296 ASSERT(err == EINPROGRESS); 14297 return (err); 14298 } 14299 } 14300 } 14301 mutex_enter(&ill_v4->ill_lock); 14302 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14303 mutex_exit(&ill_v4->ill_lock); 14304 ill_v4->ill_up_ipifs = B_FALSE; 14305 if (ill_v4->ill_move_in_progress) { 14306 ASSERT(ill_v4->ill_move_peer != NULL); 14307 ill_v4->ill_move_in_progress = B_FALSE; 14308 from_ill = ill_v4->ill_move_peer; 14309 from_ill->ill_move_in_progress = B_FALSE; 14310 from_ill->ill_move_peer = NULL; 14311 mutex_enter(&from_ill->ill_lock); 14312 from_ill->ill_state_flags &= ~ILL_CHANGING; 14313 mutex_exit(&from_ill->ill_lock); 14314 if (ill_v6 == NULL) { 14315 if (from_ill->ill_phyint->phyint_flags & 14316 PHYI_STANDBY) { 14317 phyint_inactive(from_ill->ill_phyint); 14318 } 14319 if (ill_v4->ill_phyint->phyint_flags & 14320 PHYI_STANDBY) { 14321 phyint_inactive(ill_v4->ill_phyint); 14322 } 14323 } 14324 ill_v4->ill_move_peer = NULL; 14325 } 14326 } 14327 14328 if (ill_v6 != NULL) { 14329 ill_v6->ill_up_ipifs = B_TRUE; 14330 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14331 ipif = ipif->ipif_next) { 14332 mutex_enter(&ill_v6->ill_lock); 14333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14334 IPIF_UNMARK_MOVING(ipif); 14335 mutex_exit(&ill_v6->ill_lock); 14336 if (ipif->ipif_was_up) { 14337 if (!(ipif->ipif_flags & IPIF_UP)) 14338 err = ipif_up(ipif, q, mp); 14339 ipif->ipif_was_up = B_FALSE; 14340 if (err != 0) { 14341 /* 14342 * Can there be any other error ? 14343 */ 14344 ASSERT(err == EINPROGRESS); 14345 return (err); 14346 } 14347 } 14348 } 14349 mutex_enter(&ill_v6->ill_lock); 14350 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14351 mutex_exit(&ill_v6->ill_lock); 14352 ill_v6->ill_up_ipifs = B_FALSE; 14353 if (ill_v6->ill_move_in_progress) { 14354 ASSERT(ill_v6->ill_move_peer != NULL); 14355 ill_v6->ill_move_in_progress = B_FALSE; 14356 from_ill = ill_v6->ill_move_peer; 14357 from_ill->ill_move_in_progress = B_FALSE; 14358 from_ill->ill_move_peer = NULL; 14359 mutex_enter(&from_ill->ill_lock); 14360 from_ill->ill_state_flags &= ~ILL_CHANGING; 14361 mutex_exit(&from_ill->ill_lock); 14362 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14363 phyint_inactive(from_ill->ill_phyint); 14364 } 14365 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14366 phyint_inactive(ill_v6->ill_phyint); 14367 } 14368 ill_v6->ill_move_peer = NULL; 14369 } 14370 } 14371 return (0); 14372 } 14373 14374 /* 14375 * bring down all the approriate ipifs. 14376 */ 14377 /* ARGSUSED */ 14378 static void 14379 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14380 { 14381 ipif_t *ipif; 14382 14383 ASSERT(IAM_WRITER_ILL(ill)); 14384 14385 /* 14386 * Except for ipif_state_flags the other fields of the ipif/ill that 14387 * are modified below are protected implicitly since we are a writer 14388 */ 14389 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14390 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14391 continue; 14392 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14393 /* 14394 * We go through the ipif_down logic even if the ipif 14395 * is already down, since routes can be added based 14396 * on down ipifs. Going through ipif_down once again 14397 * will delete any IREs created based on these routes. 14398 */ 14399 if (ipif->ipif_flags & IPIF_UP) 14400 ipif->ipif_was_up = B_TRUE; 14401 /* 14402 * If called with chk_nofailover true ipif is moving. 14403 */ 14404 mutex_enter(&ill->ill_lock); 14405 if (chk_nofailover) { 14406 ipif->ipif_state_flags |= 14407 IPIF_MOVING | IPIF_CHANGING; 14408 } else { 14409 ipif->ipif_state_flags |= IPIF_CHANGING; 14410 } 14411 mutex_exit(&ill->ill_lock); 14412 /* 14413 * Need to re-create net/subnet bcast ires if 14414 * they are dependent on ipif. 14415 */ 14416 if (!ipif->ipif_isv6) 14417 ipif_check_bcast_ires(ipif); 14418 (void) ipif_logical_down(ipif, NULL, NULL); 14419 ipif_non_duplicate(ipif); 14420 ipif_down_tail(ipif); 14421 } 14422 } 14423 } 14424 14425 #define IPSQ_INC_REF(ipsq, ipst) { \ 14426 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14427 (ipsq)->ipsq_refs++; \ 14428 } 14429 14430 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14431 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14432 (ipsq)->ipsq_refs--; \ 14433 if ((ipsq)->ipsq_refs == 0) \ 14434 (ipsq)->ipsq_name[0] = '\0'; \ 14435 } 14436 14437 /* 14438 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14439 * new_ipsq. 14440 */ 14441 static void 14442 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14443 { 14444 phyint_t *phyint; 14445 phyint_t *next_phyint; 14446 14447 /* 14448 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14449 * writer and the ill_lock of the ill in question. Also the dest 14450 * ipsq can't vanish while we hold the ill_g_lock as writer. 14451 */ 14452 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14453 14454 phyint = cur_ipsq->ipsq_phyint_list; 14455 cur_ipsq->ipsq_phyint_list = NULL; 14456 while (phyint != NULL) { 14457 next_phyint = phyint->phyint_ipsq_next; 14458 IPSQ_DEC_REF(cur_ipsq, ipst); 14459 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14460 new_ipsq->ipsq_phyint_list = phyint; 14461 IPSQ_INC_REF(new_ipsq, ipst); 14462 phyint->phyint_ipsq = new_ipsq; 14463 phyint = next_phyint; 14464 } 14465 } 14466 14467 #define SPLIT_SUCCESS 0 14468 #define SPLIT_NOT_NEEDED 1 14469 #define SPLIT_FAILED 2 14470 14471 int 14472 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14473 ip_stack_t *ipst) 14474 { 14475 ipsq_t *newipsq = NULL; 14476 14477 /* 14478 * Assertions denote pre-requisites for changing the ipsq of 14479 * a phyint 14480 */ 14481 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14482 /* 14483 * <ill-phyint> assocs can't change while ill_g_lock 14484 * is held as writer. See ill_phyint_reinit() 14485 */ 14486 ASSERT(phyint->phyint_illv4 == NULL || 14487 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14488 ASSERT(phyint->phyint_illv6 == NULL || 14489 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14490 14491 if ((phyint->phyint_groupname_len != 14492 (strlen(cur_ipsq->ipsq_name) + 1) || 14493 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14494 phyint->phyint_groupname_len) != 0)) { 14495 /* 14496 * Once we fail in creating a new ipsq due to memory shortage, 14497 * don't attempt to create new ipsq again, based on another 14498 * phyint, since we want all phyints belonging to an IPMP group 14499 * to be in the same ipsq even in the event of mem alloc fails. 14500 */ 14501 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14502 cur_ipsq, ipst); 14503 if (newipsq == NULL) { 14504 /* Memory allocation failure */ 14505 return (SPLIT_FAILED); 14506 } else { 14507 /* ipsq_refs protected by ill_g_lock (writer) */ 14508 IPSQ_DEC_REF(cur_ipsq, ipst); 14509 phyint->phyint_ipsq = newipsq; 14510 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14511 newipsq->ipsq_phyint_list = phyint; 14512 IPSQ_INC_REF(newipsq, ipst); 14513 return (SPLIT_SUCCESS); 14514 } 14515 } 14516 return (SPLIT_NOT_NEEDED); 14517 } 14518 14519 /* 14520 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14521 * to do this split 14522 */ 14523 static int 14524 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14525 { 14526 ipsq_t *newipsq; 14527 14528 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14529 /* 14530 * <ill-phyint> assocs can't change while ill_g_lock 14531 * is held as writer. See ill_phyint_reinit() 14532 */ 14533 14534 ASSERT(phyint->phyint_illv4 == NULL || 14535 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14536 ASSERT(phyint->phyint_illv6 == NULL || 14537 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14538 14539 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14540 phyint->phyint_illv4: phyint->phyint_illv6)) { 14541 /* 14542 * ipsq_init failed due to no memory 14543 * caller will use the same ipsq 14544 */ 14545 return (SPLIT_FAILED); 14546 } 14547 14548 /* ipsq_ref is protected by ill_g_lock (writer) */ 14549 IPSQ_DEC_REF(cur_ipsq, ipst); 14550 14551 /* 14552 * This is a new ipsq that is unknown to the world. 14553 * So we don't need to hold ipsq_lock, 14554 */ 14555 newipsq = phyint->phyint_ipsq; 14556 newipsq->ipsq_writer = NULL; 14557 newipsq->ipsq_reentry_cnt--; 14558 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14559 #ifdef DEBUG 14560 newipsq->ipsq_depth = 0; 14561 #endif 14562 14563 return (SPLIT_SUCCESS); 14564 } 14565 14566 /* 14567 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14568 * ipsq's representing their individual groups or themselves. Return 14569 * whether split needs to be retried again later. 14570 */ 14571 static boolean_t 14572 ill_split_ipsq(ipsq_t *cur_ipsq) 14573 { 14574 phyint_t *phyint; 14575 phyint_t *next_phyint; 14576 int error; 14577 boolean_t need_retry = B_FALSE; 14578 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14579 14580 phyint = cur_ipsq->ipsq_phyint_list; 14581 cur_ipsq->ipsq_phyint_list = NULL; 14582 while (phyint != NULL) { 14583 next_phyint = phyint->phyint_ipsq_next; 14584 /* 14585 * 'created' will tell us whether the callee actually 14586 * created an ipsq. Lack of memory may force the callee 14587 * to return without creating an ipsq. 14588 */ 14589 if (phyint->phyint_groupname == NULL) { 14590 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14591 } else { 14592 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14593 need_retry, ipst); 14594 } 14595 14596 switch (error) { 14597 case SPLIT_FAILED: 14598 need_retry = B_TRUE; 14599 /* FALLTHRU */ 14600 case SPLIT_NOT_NEEDED: 14601 /* 14602 * Keep it on the list. 14603 */ 14604 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14605 cur_ipsq->ipsq_phyint_list = phyint; 14606 break; 14607 case SPLIT_SUCCESS: 14608 break; 14609 default: 14610 ASSERT(0); 14611 } 14612 14613 phyint = next_phyint; 14614 } 14615 return (need_retry); 14616 } 14617 14618 /* 14619 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14620 * and return the ills in the list. This list will be 14621 * needed to unlock all the ills later on by the caller. 14622 * The <ill-ipsq> associations could change between the 14623 * lock and unlock. Hence the unlock can't traverse the 14624 * ipsq to get the list of ills. 14625 */ 14626 static int 14627 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14628 { 14629 int cnt = 0; 14630 phyint_t *phyint; 14631 ip_stack_t *ipst = ipsq->ipsq_ipst; 14632 14633 /* 14634 * The caller holds ill_g_lock to ensure that the ill memberships 14635 * of the ipsq don't change 14636 */ 14637 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14638 14639 phyint = ipsq->ipsq_phyint_list; 14640 while (phyint != NULL) { 14641 if (phyint->phyint_illv4 != NULL) { 14642 ASSERT(cnt < list_max); 14643 list[cnt++] = phyint->phyint_illv4; 14644 } 14645 if (phyint->phyint_illv6 != NULL) { 14646 ASSERT(cnt < list_max); 14647 list[cnt++] = phyint->phyint_illv6; 14648 } 14649 phyint = phyint->phyint_ipsq_next; 14650 } 14651 ill_lock_ills(list, cnt); 14652 return (cnt); 14653 } 14654 14655 void 14656 ill_lock_ills(ill_t **list, int cnt) 14657 { 14658 int i; 14659 14660 if (cnt > 1) { 14661 boolean_t try_again; 14662 do { 14663 try_again = B_FALSE; 14664 for (i = 0; i < cnt - 1; i++) { 14665 if (list[i] < list[i + 1]) { 14666 ill_t *tmp; 14667 14668 /* swap the elements */ 14669 tmp = list[i]; 14670 list[i] = list[i + 1]; 14671 list[i + 1] = tmp; 14672 try_again = B_TRUE; 14673 } 14674 } 14675 } while (try_again); 14676 } 14677 14678 for (i = 0; i < cnt; i++) { 14679 if (i == 0) { 14680 if (list[i] != NULL) 14681 mutex_enter(&list[i]->ill_lock); 14682 else 14683 return; 14684 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14685 mutex_enter(&list[i]->ill_lock); 14686 } 14687 } 14688 } 14689 14690 void 14691 ill_unlock_ills(ill_t **list, int cnt) 14692 { 14693 int i; 14694 14695 for (i = 0; i < cnt; i++) { 14696 if ((i == 0) && (list[i] != NULL)) { 14697 mutex_exit(&list[i]->ill_lock); 14698 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14699 mutex_exit(&list[i]->ill_lock); 14700 } 14701 } 14702 } 14703 14704 /* 14705 * Merge all the ills from 1 ipsq group into another ipsq group. 14706 * The source ipsq group is specified by the ipsq associated with 14707 * 'from_ill'. The destination ipsq group is specified by the ipsq 14708 * associated with 'to_ill' or 'groupname' respectively. 14709 * Note that ipsq itself does not have a reference count mechanism 14710 * and functions don't look up an ipsq and pass it around. Instead 14711 * functions pass around an ill or groupname, and the ipsq is looked 14712 * up from the ill or groupname and the required operation performed 14713 * atomically with the lookup on the ipsq. 14714 */ 14715 static int 14716 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14717 queue_t *q) 14718 { 14719 ipsq_t *old_ipsq; 14720 ipsq_t *new_ipsq; 14721 ill_t **ill_list; 14722 int cnt; 14723 size_t ill_list_size; 14724 boolean_t became_writer_on_new_sq = B_FALSE; 14725 ip_stack_t *ipst = from_ill->ill_ipst; 14726 14727 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14728 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14729 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14730 14731 /* 14732 * Need to hold ill_g_lock as writer and also the ill_lock to 14733 * change the <ill-ipsq> assoc of an ill. Need to hold the 14734 * ipsq_lock to prevent new messages from landing on an ipsq. 14735 */ 14736 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14737 14738 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14739 if (groupname != NULL) 14740 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14741 else { 14742 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14743 } 14744 14745 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14746 14747 /* 14748 * both groups are on the same ipsq. 14749 */ 14750 if (old_ipsq == new_ipsq) { 14751 rw_exit(&ipst->ips_ill_g_lock); 14752 return (0); 14753 } 14754 14755 cnt = old_ipsq->ipsq_refs << 1; 14756 ill_list_size = cnt * sizeof (ill_t *); 14757 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14758 if (ill_list == NULL) { 14759 rw_exit(&ipst->ips_ill_g_lock); 14760 return (ENOMEM); 14761 } 14762 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14763 14764 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14765 mutex_enter(&new_ipsq->ipsq_lock); 14766 if ((new_ipsq->ipsq_writer == NULL && 14767 new_ipsq->ipsq_current_ipif == NULL) || 14768 (new_ipsq->ipsq_writer == curthread)) { 14769 new_ipsq->ipsq_writer = curthread; 14770 new_ipsq->ipsq_reentry_cnt++; 14771 became_writer_on_new_sq = B_TRUE; 14772 } 14773 14774 /* 14775 * We are holding ill_g_lock as writer and all the ill locks of 14776 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14777 * message can land up on the old ipsq even though we don't hold the 14778 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14779 */ 14780 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14781 14782 /* 14783 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14784 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14785 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14786 */ 14787 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14788 14789 /* 14790 * Mark the new ipsq as needing a split since it is currently 14791 * being shared by more than 1 IPMP group. The split will 14792 * occur at the end of ipsq_exit 14793 */ 14794 new_ipsq->ipsq_split = B_TRUE; 14795 14796 /* Now release all the locks */ 14797 mutex_exit(&new_ipsq->ipsq_lock); 14798 ill_unlock_ills(ill_list, cnt); 14799 rw_exit(&ipst->ips_ill_g_lock); 14800 14801 kmem_free(ill_list, ill_list_size); 14802 14803 /* 14804 * If we succeeded in becoming writer on the new ipsq, then 14805 * drain the new ipsq and start processing all enqueued messages 14806 * including the current ioctl we are processing which is either 14807 * a set groupname or failover/failback. 14808 */ 14809 if (became_writer_on_new_sq) 14810 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14811 14812 /* 14813 * syncq has been changed and all the messages have been moved. 14814 */ 14815 mutex_enter(&old_ipsq->ipsq_lock); 14816 old_ipsq->ipsq_current_ipif = NULL; 14817 old_ipsq->ipsq_current_ioctl = 0; 14818 mutex_exit(&old_ipsq->ipsq_lock); 14819 return (EINPROGRESS); 14820 } 14821 14822 /* 14823 * Delete and add the loopback copy and non-loopback copy of 14824 * the BROADCAST ire corresponding to ill and addr. Used to 14825 * group broadcast ires together when ill becomes part of 14826 * a group. 14827 * 14828 * This function is also called when ill is leaving the group 14829 * so that the ires belonging to the group gets re-grouped. 14830 */ 14831 static void 14832 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14833 { 14834 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14835 ire_t **ire_ptpn = &ire_head; 14836 ip_stack_t *ipst = ill->ill_ipst; 14837 14838 /* 14839 * The loopback and non-loopback IREs are inserted in the order in which 14840 * they're found, on the basis that they are correctly ordered (loopback 14841 * first). 14842 */ 14843 for (;;) { 14844 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14845 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14846 if (ire == NULL) 14847 break; 14848 14849 /* 14850 * we are passing in KM_SLEEP because it is not easy to 14851 * go back to a sane state in case of memory failure. 14852 */ 14853 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14854 ASSERT(nire != NULL); 14855 bzero(nire, sizeof (ire_t)); 14856 /* 14857 * Don't use ire_max_frag directly since we don't 14858 * hold on to 'ire' until we add the new ire 'nire' and 14859 * we don't want the new ire to have a dangling reference 14860 * to 'ire'. The ire_max_frag of a broadcast ire must 14861 * be in sync with the ipif_mtu of the associate ipif. 14862 * For eg. this happens as a result of SIOCSLIFNAME, 14863 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14864 * the driver. A change in ire_max_frag triggered as 14865 * as a result of path mtu discovery, or due to an 14866 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14867 * route change -mtu command does not apply to broadcast ires. 14868 * 14869 * XXX We need a recovery strategy here if ire_init fails 14870 */ 14871 if (ire_init(nire, 14872 (uchar_t *)&ire->ire_addr, 14873 (uchar_t *)&ire->ire_mask, 14874 (uchar_t *)&ire->ire_src_addr, 14875 (uchar_t *)&ire->ire_gateway_addr, 14876 ire->ire_stq == NULL ? &ip_loopback_mtu : 14877 &ire->ire_ipif->ipif_mtu, 14878 ire->ire_nce, 14879 ire->ire_rfq, 14880 ire->ire_stq, 14881 ire->ire_type, 14882 ire->ire_ipif, 14883 ire->ire_cmask, 14884 ire->ire_phandle, 14885 ire->ire_ihandle, 14886 ire->ire_flags, 14887 &ire->ire_uinfo, 14888 NULL, 14889 NULL, 14890 ipst) == NULL) { 14891 cmn_err(CE_PANIC, "ire_init() failed"); 14892 } 14893 ire_delete(ire); 14894 ire_refrele(ire); 14895 14896 /* 14897 * The newly created IREs are inserted at the tail of the list 14898 * starting with ire_head. As we've just allocated them no one 14899 * knows about them so it's safe. 14900 */ 14901 *ire_ptpn = nire; 14902 ire_ptpn = &nire->ire_next; 14903 } 14904 14905 for (nire = ire_head; nire != NULL; nire = nire_next) { 14906 int error; 14907 ire_t *oire; 14908 /* unlink the IRE from our list before calling ire_add() */ 14909 nire_next = nire->ire_next; 14910 nire->ire_next = NULL; 14911 14912 /* ire_add adds the ire at the right place in the list */ 14913 oire = nire; 14914 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14915 ASSERT(error == 0); 14916 ASSERT(oire == nire); 14917 ire_refrele(nire); /* Held in ire_add */ 14918 } 14919 } 14920 14921 /* 14922 * This function is usually called when an ill is inserted in 14923 * a group and all the ipifs are already UP. As all the ipifs 14924 * are already UP, the broadcast ires have already been created 14925 * and been inserted. But, ire_add_v4 would not have grouped properly. 14926 * We need to re-group for the benefit of ip_wput_ire which 14927 * expects BROADCAST ires to be grouped properly to avoid sending 14928 * more than one copy of the broadcast packet per group. 14929 * 14930 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14931 * because when ipif_up_done ends up calling this, ires have 14932 * already been added before illgrp_insert i.e before ill_group 14933 * has been initialized. 14934 */ 14935 static void 14936 ill_group_bcast_for_xmit(ill_t *ill) 14937 { 14938 ill_group_t *illgrp; 14939 ipif_t *ipif; 14940 ipaddr_t addr; 14941 ipaddr_t net_mask; 14942 ipaddr_t subnet_netmask; 14943 14944 illgrp = ill->ill_group; 14945 14946 /* 14947 * This function is called even when an ill is deleted from 14948 * the group. Hence, illgrp could be null. 14949 */ 14950 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14951 return; 14952 14953 /* 14954 * Delete all the BROADCAST ires matching this ill and add 14955 * them back. This time, ire_add_v4 should take care of 14956 * grouping them with others because ill is part of the 14957 * group. 14958 */ 14959 ill_bcast_delete_and_add(ill, 0); 14960 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14961 14962 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14963 14964 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14965 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14966 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14967 } else { 14968 net_mask = htonl(IN_CLASSA_NET); 14969 } 14970 addr = net_mask & ipif->ipif_subnet; 14971 ill_bcast_delete_and_add(ill, addr); 14972 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14973 14974 subnet_netmask = ipif->ipif_net_mask; 14975 addr = ipif->ipif_subnet; 14976 ill_bcast_delete_and_add(ill, addr); 14977 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14978 } 14979 } 14980 14981 /* 14982 * This function is called from illgrp_delete when ill is being deleted 14983 * from the group. 14984 * 14985 * As ill is not there in the group anymore, any address belonging 14986 * to this ill should be cleared of IRE_MARK_NORECV. 14987 */ 14988 static void 14989 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14990 { 14991 ire_t *ire; 14992 irb_t *irb; 14993 ip_stack_t *ipst = ill->ill_ipst; 14994 14995 ASSERT(ill->ill_group == NULL); 14996 14997 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14998 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14999 15000 if (ire != NULL) { 15001 /* 15002 * IPMP and plumbing operations are serialized on the ipsq, so 15003 * no one will insert or delete a broadcast ire under our feet. 15004 */ 15005 irb = ire->ire_bucket; 15006 rw_enter(&irb->irb_lock, RW_READER); 15007 ire_refrele(ire); 15008 15009 for (; ire != NULL; ire = ire->ire_next) { 15010 if (ire->ire_addr != addr) 15011 break; 15012 if (ire_to_ill(ire) != ill) 15013 continue; 15014 15015 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15016 ire->ire_marks &= ~IRE_MARK_NORECV; 15017 } 15018 rw_exit(&irb->irb_lock); 15019 } 15020 } 15021 15022 /* 15023 * This function must be called only after the broadcast ires 15024 * have been grouped together. For a given address addr, nominate 15025 * only one of the ires whose interface is not FAILED or OFFLINE. 15026 * 15027 * This is also called when an ipif goes down, so that we can nominate 15028 * a different ire with the same address for receiving. 15029 */ 15030 static void 15031 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15032 { 15033 irb_t *irb; 15034 ire_t *ire; 15035 ire_t *ire1; 15036 ire_t *save_ire; 15037 ire_t **irep = NULL; 15038 boolean_t first = B_TRUE; 15039 ire_t *clear_ire = NULL; 15040 ire_t *start_ire = NULL; 15041 ire_t *new_lb_ire; 15042 ire_t *new_nlb_ire; 15043 boolean_t new_lb_ire_used = B_FALSE; 15044 boolean_t new_nlb_ire_used = B_FALSE; 15045 uint64_t match_flags; 15046 uint64_t phyi_flags; 15047 boolean_t fallback = B_FALSE; 15048 uint_t max_frag; 15049 15050 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15051 NULL, MATCH_IRE_TYPE, ipst); 15052 /* 15053 * We may not be able to find some ires if a previous 15054 * ire_create failed. This happens when an ipif goes 15055 * down and we are unable to create BROADCAST ires due 15056 * to memory failure. Thus, we have to check for NULL 15057 * below. This should handle the case for LOOPBACK, 15058 * POINTOPOINT and interfaces with some POINTOPOINT 15059 * logicals for which there are no BROADCAST ires. 15060 */ 15061 if (ire == NULL) 15062 return; 15063 /* 15064 * Currently IRE_BROADCASTS are deleted when an ipif 15065 * goes down which runs exclusively. Thus, setting 15066 * IRE_MARK_RCVD should not race with ire_delete marking 15067 * IRE_MARK_CONDEMNED. We grab the lock below just to 15068 * be consistent with other parts of the code that walks 15069 * a given bucket. 15070 */ 15071 save_ire = ire; 15072 irb = ire->ire_bucket; 15073 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15074 if (new_lb_ire == NULL) { 15075 ire_refrele(ire); 15076 return; 15077 } 15078 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15079 if (new_nlb_ire == NULL) { 15080 ire_refrele(ire); 15081 kmem_cache_free(ire_cache, new_lb_ire); 15082 return; 15083 } 15084 IRB_REFHOLD(irb); 15085 rw_enter(&irb->irb_lock, RW_WRITER); 15086 /* 15087 * Get to the first ire matching the address and the 15088 * group. If the address does not match we are done 15089 * as we could not find the IRE. If the address matches 15090 * we should get to the first one matching the group. 15091 */ 15092 while (ire != NULL) { 15093 if (ire->ire_addr != addr || 15094 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15095 break; 15096 } 15097 ire = ire->ire_next; 15098 } 15099 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15100 start_ire = ire; 15101 redo: 15102 while (ire != NULL && ire->ire_addr == addr && 15103 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15104 /* 15105 * The first ire for any address within a group 15106 * should always be the one with IRE_MARK_NORECV cleared 15107 * so that ip_wput_ire can avoid searching for one. 15108 * Note down the insertion point which will be used 15109 * later. 15110 */ 15111 if (first && (irep == NULL)) 15112 irep = ire->ire_ptpn; 15113 /* 15114 * PHYI_FAILED is set when the interface fails. 15115 * This interface might have become good, but the 15116 * daemon has not yet detected. We should still 15117 * not receive on this. PHYI_OFFLINE should never 15118 * be picked as this has been offlined and soon 15119 * be removed. 15120 */ 15121 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15122 if (phyi_flags & PHYI_OFFLINE) { 15123 ire->ire_marks |= IRE_MARK_NORECV; 15124 ire = ire->ire_next; 15125 continue; 15126 } 15127 if (phyi_flags & match_flags) { 15128 ire->ire_marks |= IRE_MARK_NORECV; 15129 ire = ire->ire_next; 15130 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15131 PHYI_INACTIVE) { 15132 fallback = B_TRUE; 15133 } 15134 continue; 15135 } 15136 if (first) { 15137 /* 15138 * We will move this to the front of the list later 15139 * on. 15140 */ 15141 clear_ire = ire; 15142 ire->ire_marks &= ~IRE_MARK_NORECV; 15143 } else { 15144 ire->ire_marks |= IRE_MARK_NORECV; 15145 } 15146 first = B_FALSE; 15147 ire = ire->ire_next; 15148 } 15149 /* 15150 * If we never nominated anybody, try nominating at least 15151 * an INACTIVE, if we found one. Do it only once though. 15152 */ 15153 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15154 fallback) { 15155 match_flags = PHYI_FAILED; 15156 ire = start_ire; 15157 irep = NULL; 15158 goto redo; 15159 } 15160 ire_refrele(save_ire); 15161 15162 /* 15163 * irep non-NULL indicates that we entered the while loop 15164 * above. If clear_ire is at the insertion point, we don't 15165 * have to do anything. clear_ire will be NULL if all the 15166 * interfaces are failed. 15167 * 15168 * We cannot unlink and reinsert the ire at the right place 15169 * in the list since there can be other walkers of this bucket. 15170 * Instead we delete and recreate the ire 15171 */ 15172 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15173 ire_t *clear_ire_stq = NULL; 15174 15175 bzero(new_lb_ire, sizeof (ire_t)); 15176 /* XXX We need a recovery strategy here. */ 15177 if (ire_init(new_lb_ire, 15178 (uchar_t *)&clear_ire->ire_addr, 15179 (uchar_t *)&clear_ire->ire_mask, 15180 (uchar_t *)&clear_ire->ire_src_addr, 15181 (uchar_t *)&clear_ire->ire_gateway_addr, 15182 &clear_ire->ire_max_frag, 15183 NULL, /* let ire_nce_init derive the resolver info */ 15184 clear_ire->ire_rfq, 15185 clear_ire->ire_stq, 15186 clear_ire->ire_type, 15187 clear_ire->ire_ipif, 15188 clear_ire->ire_cmask, 15189 clear_ire->ire_phandle, 15190 clear_ire->ire_ihandle, 15191 clear_ire->ire_flags, 15192 &clear_ire->ire_uinfo, 15193 NULL, 15194 NULL, 15195 ipst) == NULL) 15196 cmn_err(CE_PANIC, "ire_init() failed"); 15197 if (clear_ire->ire_stq == NULL) { 15198 ire_t *ire_next = clear_ire->ire_next; 15199 if (ire_next != NULL && 15200 ire_next->ire_stq != NULL && 15201 ire_next->ire_addr == clear_ire->ire_addr && 15202 ire_next->ire_ipif->ipif_ill == 15203 clear_ire->ire_ipif->ipif_ill) { 15204 clear_ire_stq = ire_next; 15205 15206 bzero(new_nlb_ire, sizeof (ire_t)); 15207 /* XXX We need a recovery strategy here. */ 15208 if (ire_init(new_nlb_ire, 15209 (uchar_t *)&clear_ire_stq->ire_addr, 15210 (uchar_t *)&clear_ire_stq->ire_mask, 15211 (uchar_t *)&clear_ire_stq->ire_src_addr, 15212 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15213 &clear_ire_stq->ire_max_frag, 15214 NULL, 15215 clear_ire_stq->ire_rfq, 15216 clear_ire_stq->ire_stq, 15217 clear_ire_stq->ire_type, 15218 clear_ire_stq->ire_ipif, 15219 clear_ire_stq->ire_cmask, 15220 clear_ire_stq->ire_phandle, 15221 clear_ire_stq->ire_ihandle, 15222 clear_ire_stq->ire_flags, 15223 &clear_ire_stq->ire_uinfo, 15224 NULL, 15225 NULL, 15226 ipst) == NULL) 15227 cmn_err(CE_PANIC, "ire_init() failed"); 15228 } 15229 } 15230 15231 /* 15232 * Delete the ire. We can't call ire_delete() since 15233 * we are holding the bucket lock. We can't release the 15234 * bucket lock since we can't allow irep to change. So just 15235 * mark it CONDEMNED. The IRB_REFRELE will delete the 15236 * ire from the list and do the refrele. 15237 */ 15238 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15239 irb->irb_marks |= IRB_MARK_CONDEMNED; 15240 15241 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15242 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15243 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15244 } 15245 15246 /* 15247 * Also take care of otherfields like ib/ob pkt count 15248 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15249 */ 15250 15251 /* Set the max_frag before adding the ire */ 15252 max_frag = *new_lb_ire->ire_max_fragp; 15253 new_lb_ire->ire_max_fragp = NULL; 15254 new_lb_ire->ire_max_frag = max_frag; 15255 15256 /* Add the new ire's. Insert at *irep */ 15257 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15258 ire1 = *irep; 15259 if (ire1 != NULL) 15260 ire1->ire_ptpn = &new_lb_ire->ire_next; 15261 new_lb_ire->ire_next = ire1; 15262 /* Link the new one in. */ 15263 new_lb_ire->ire_ptpn = irep; 15264 membar_producer(); 15265 *irep = new_lb_ire; 15266 new_lb_ire_used = B_TRUE; 15267 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15268 new_lb_ire->ire_bucket->irb_ire_cnt++; 15269 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15270 15271 if (clear_ire_stq != NULL) { 15272 /* Set the max_frag before adding the ire */ 15273 max_frag = *new_nlb_ire->ire_max_fragp; 15274 new_nlb_ire->ire_max_fragp = NULL; 15275 new_nlb_ire->ire_max_frag = max_frag; 15276 15277 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15278 irep = &new_lb_ire->ire_next; 15279 /* Add the new ire. Insert at *irep */ 15280 ire1 = *irep; 15281 if (ire1 != NULL) 15282 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15283 new_nlb_ire->ire_next = ire1; 15284 /* Link the new one in. */ 15285 new_nlb_ire->ire_ptpn = irep; 15286 membar_producer(); 15287 *irep = new_nlb_ire; 15288 new_nlb_ire_used = B_TRUE; 15289 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15290 ire_stats_inserted); 15291 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15292 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15293 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15294 } 15295 } 15296 rw_exit(&irb->irb_lock); 15297 if (!new_lb_ire_used) 15298 kmem_cache_free(ire_cache, new_lb_ire); 15299 if (!new_nlb_ire_used) 15300 kmem_cache_free(ire_cache, new_nlb_ire); 15301 IRB_REFRELE(irb); 15302 } 15303 15304 /* 15305 * Whenever an ipif goes down we have to renominate a different 15306 * broadcast ire to receive. Whenever an ipif comes up, we need 15307 * to make sure that we have only one nominated to receive. 15308 */ 15309 static void 15310 ipif_renominate_bcast(ipif_t *ipif) 15311 { 15312 ill_t *ill = ipif->ipif_ill; 15313 ipaddr_t subnet_addr; 15314 ipaddr_t net_addr; 15315 ipaddr_t net_mask = 0; 15316 ipaddr_t subnet_netmask; 15317 ipaddr_t addr; 15318 ill_group_t *illgrp; 15319 ip_stack_t *ipst = ill->ill_ipst; 15320 15321 illgrp = ill->ill_group; 15322 /* 15323 * If this is the last ipif going down, it might take 15324 * the ill out of the group. In that case ipif_down -> 15325 * illgrp_delete takes care of doing the nomination. 15326 * ipif_down does not call for this case. 15327 */ 15328 ASSERT(illgrp != NULL); 15329 15330 /* There could not have been any ires associated with this */ 15331 if (ipif->ipif_subnet == 0) 15332 return; 15333 15334 ill_mark_bcast(illgrp, 0, ipst); 15335 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15336 15337 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15338 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15339 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15340 } else { 15341 net_mask = htonl(IN_CLASSA_NET); 15342 } 15343 addr = net_mask & ipif->ipif_subnet; 15344 ill_mark_bcast(illgrp, addr, ipst); 15345 15346 net_addr = ~net_mask | addr; 15347 ill_mark_bcast(illgrp, net_addr, ipst); 15348 15349 subnet_netmask = ipif->ipif_net_mask; 15350 addr = ipif->ipif_subnet; 15351 ill_mark_bcast(illgrp, addr, ipst); 15352 15353 subnet_addr = ~subnet_netmask | addr; 15354 ill_mark_bcast(illgrp, subnet_addr, ipst); 15355 } 15356 15357 /* 15358 * Whenever we form or delete ill groups, we need to nominate one set of 15359 * BROADCAST ires for receiving in the group. 15360 * 15361 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15362 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15363 * for ill_ipif_up_count to be non-zero. This is the only case where 15364 * ill_ipif_up_count is zero and we would still find the ires. 15365 * 15366 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15367 * ipif is UP and we just have to do the nomination. 15368 * 15369 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15370 * from the group. So, we have to do the nomination. 15371 * 15372 * Because of (3), there could be just one ill in the group. But we have 15373 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15374 * Thus, this function does not optimize when there is only one ill as 15375 * it is not correct for (3). 15376 */ 15377 static void 15378 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15379 { 15380 ill_t *ill; 15381 ipif_t *ipif; 15382 ipaddr_t subnet_addr; 15383 ipaddr_t prev_subnet_addr = 0; 15384 ipaddr_t net_addr; 15385 ipaddr_t prev_net_addr = 0; 15386 ipaddr_t net_mask = 0; 15387 ipaddr_t subnet_netmask; 15388 ipaddr_t addr; 15389 ip_stack_t *ipst; 15390 15391 /* 15392 * When the last memeber is leaving, there is nothing to 15393 * nominate. 15394 */ 15395 if (illgrp->illgrp_ill_count == 0) { 15396 ASSERT(illgrp->illgrp_ill == NULL); 15397 return; 15398 } 15399 15400 ill = illgrp->illgrp_ill; 15401 ASSERT(!ill->ill_isv6); 15402 ipst = ill->ill_ipst; 15403 /* 15404 * We assume that ires with same address and belonging to the 15405 * same group, has been grouped together. Nominating a *single* 15406 * ill in the group for sending and receiving broadcast is done 15407 * by making sure that the first BROADCAST ire (which will be 15408 * the one returned by ire_ctable_lookup for ip_rput and the 15409 * one that will be used in ip_wput_ire) will be the one that 15410 * will not have IRE_MARK_NORECV set. 15411 * 15412 * 1) ip_rput checks and discards packets received on ires marked 15413 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15414 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15415 * first ire in the group for every broadcast address in the group. 15416 * ip_rput will accept packets only on the first ire i.e only 15417 * one copy of the ill. 15418 * 15419 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15420 * packet for the whole group. It needs to send out on the ill 15421 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15422 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15423 * the copy echoed back on other port where the ire is not marked 15424 * with IRE_MARK_NORECV. 15425 * 15426 * Note that we just need to have the first IRE either loopback or 15427 * non-loopback (either of them may not exist if ire_create failed 15428 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15429 * always hit the first one and hence will always accept one copy. 15430 * 15431 * We have a broadcast ire per ill for all the unique prefixes 15432 * hosted on that ill. As we don't have a way of knowing the 15433 * unique prefixes on a given ill and hence in the whole group, 15434 * we just call ill_mark_bcast on all the prefixes that exist 15435 * in the group. For the common case of one prefix, the code 15436 * below optimizes by remebering the last address used for 15437 * markng. In the case of multiple prefixes, this will still 15438 * optimize depending the order of prefixes. 15439 * 15440 * The only unique address across the whole group is 0.0.0.0 and 15441 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15442 * the first ire in the bucket for receiving and disables the 15443 * others. 15444 */ 15445 ill_mark_bcast(illgrp, 0, ipst); 15446 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15447 for (; ill != NULL; ill = ill->ill_group_next) { 15448 15449 for (ipif = ill->ill_ipif; ipif != NULL; 15450 ipif = ipif->ipif_next) { 15451 15452 if (!(ipif->ipif_flags & IPIF_UP) || 15453 ipif->ipif_subnet == 0) { 15454 continue; 15455 } 15456 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15457 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15458 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15459 } else { 15460 net_mask = htonl(IN_CLASSA_NET); 15461 } 15462 addr = net_mask & ipif->ipif_subnet; 15463 if (prev_net_addr == 0 || prev_net_addr != addr) { 15464 ill_mark_bcast(illgrp, addr, ipst); 15465 net_addr = ~net_mask | addr; 15466 ill_mark_bcast(illgrp, net_addr, ipst); 15467 } 15468 prev_net_addr = addr; 15469 15470 subnet_netmask = ipif->ipif_net_mask; 15471 addr = ipif->ipif_subnet; 15472 if (prev_subnet_addr == 0 || 15473 prev_subnet_addr != addr) { 15474 ill_mark_bcast(illgrp, addr, ipst); 15475 subnet_addr = ~subnet_netmask | addr; 15476 ill_mark_bcast(illgrp, subnet_addr, ipst); 15477 } 15478 prev_subnet_addr = addr; 15479 } 15480 } 15481 } 15482 15483 /* 15484 * This function is called while forming ill groups. 15485 * 15486 * Currently, we handle only allmulti groups. We want to join 15487 * allmulti on only one of the ills in the groups. In future, 15488 * when we have link aggregation, we may have to join normal 15489 * multicast groups on multiple ills as switch does inbound load 15490 * balancing. Following are the functions that calls this 15491 * function : 15492 * 15493 * 1) ill_recover_multicast : Interface is coming back UP. 15494 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15495 * will call ill_recover_multicast to recover all the multicast 15496 * groups. We need to make sure that only one member is joined 15497 * in the ill group. 15498 * 15499 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15500 * Somebody is joining allmulti. We need to make sure that only one 15501 * member is joined in the group. 15502 * 15503 * 3) illgrp_insert : If allmulti has already joined, we need to make 15504 * sure that only one member is joined in the group. 15505 * 15506 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15507 * allmulti who we have nominated. We need to pick someother ill. 15508 * 15509 * 5) illgrp_delete : The ill we nominated is leaving the group, 15510 * we need to pick a new ill to join the group. 15511 * 15512 * For (1), (2), (5) - we just have to check whether there is 15513 * a good ill joined in the group. If we could not find any ills 15514 * joined the group, we should join. 15515 * 15516 * For (4), the one that was nominated to receive, left the group. 15517 * There could be nobody joined in the group when this function is 15518 * called. 15519 * 15520 * For (3) - we need to explicitly check whether there are multiple 15521 * ills joined in the group. 15522 * 15523 * For simplicity, we don't differentiate any of the above cases. We 15524 * just leave the group if it is joined on any of them and join on 15525 * the first good ill. 15526 */ 15527 int 15528 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15529 { 15530 ilm_t *ilm; 15531 ill_t *ill; 15532 ill_t *fallback_inactive_ill = NULL; 15533 ill_t *fallback_failed_ill = NULL; 15534 int ret = 0; 15535 15536 /* 15537 * Leave the allmulti on all the ills and start fresh. 15538 */ 15539 for (ill = illgrp->illgrp_ill; ill != NULL; 15540 ill = ill->ill_group_next) { 15541 if (ill->ill_join_allmulti) 15542 (void) ip_leave_allmulti(ill->ill_ipif); 15543 } 15544 15545 /* 15546 * Choose a good ill. Fallback to inactive or failed if 15547 * none available. We need to fallback to FAILED in the 15548 * case where we have 2 interfaces in a group - where 15549 * one of them is failed and another is a good one and 15550 * the good one (not marked inactive) is leaving the group. 15551 */ 15552 ret = 0; 15553 for (ill = illgrp->illgrp_ill; ill != NULL; 15554 ill = ill->ill_group_next) { 15555 /* Never pick an offline interface */ 15556 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15557 continue; 15558 15559 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15560 fallback_failed_ill = ill; 15561 continue; 15562 } 15563 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15564 fallback_inactive_ill = ill; 15565 continue; 15566 } 15567 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15568 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15569 ret = ip_join_allmulti(ill->ill_ipif); 15570 /* 15571 * ip_join_allmulti can fail because of memory 15572 * failures. So, make sure we join at least 15573 * on one ill. 15574 */ 15575 if (ill->ill_join_allmulti) 15576 return (0); 15577 } 15578 } 15579 } 15580 if (ret != 0) { 15581 /* 15582 * If we tried nominating above and failed to do so, 15583 * return error. We might have tried multiple times. 15584 * But, return the latest error. 15585 */ 15586 return (ret); 15587 } 15588 if ((ill = fallback_inactive_ill) != NULL) { 15589 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15590 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15591 ret = ip_join_allmulti(ill->ill_ipif); 15592 return (ret); 15593 } 15594 } 15595 } else if ((ill = fallback_failed_ill) != NULL) { 15596 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15597 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15598 ret = ip_join_allmulti(ill->ill_ipif); 15599 return (ret); 15600 } 15601 } 15602 } 15603 return (0); 15604 } 15605 15606 /* 15607 * This function is called from illgrp_delete after it is 15608 * deleted from the group to reschedule responsibilities 15609 * to a different ill. 15610 */ 15611 static void 15612 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15613 { 15614 ilm_t *ilm; 15615 ipif_t *ipif; 15616 ipaddr_t subnet_addr; 15617 ipaddr_t net_addr; 15618 ipaddr_t net_mask = 0; 15619 ipaddr_t subnet_netmask; 15620 ipaddr_t addr; 15621 ip_stack_t *ipst = ill->ill_ipst; 15622 15623 ASSERT(ill->ill_group == NULL); 15624 /* 15625 * Broadcast Responsibility: 15626 * 15627 * 1. If this ill has been nominated for receiving broadcast 15628 * packets, we need to find a new one. Before we find a new 15629 * one, we need to re-group the ires that are part of this new 15630 * group (assumed by ill_nominate_bcast_rcv). We do this by 15631 * calling ill_group_bcast_for_xmit(ill) which will do the right 15632 * thing for us. 15633 * 15634 * 2. If this ill was not nominated for receiving broadcast 15635 * packets, we need to clear the IRE_MARK_NORECV flag 15636 * so that we continue to send up broadcast packets. 15637 */ 15638 if (!ill->ill_isv6) { 15639 /* 15640 * Case 1 above : No optimization here. Just redo the 15641 * nomination. 15642 */ 15643 ill_group_bcast_for_xmit(ill); 15644 ill_nominate_bcast_rcv(illgrp); 15645 15646 /* 15647 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15648 */ 15649 ill_clear_bcast_mark(ill, 0); 15650 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15651 15652 for (ipif = ill->ill_ipif; ipif != NULL; 15653 ipif = ipif->ipif_next) { 15654 15655 if (!(ipif->ipif_flags & IPIF_UP) || 15656 ipif->ipif_subnet == 0) { 15657 continue; 15658 } 15659 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15660 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15661 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15662 } else { 15663 net_mask = htonl(IN_CLASSA_NET); 15664 } 15665 addr = net_mask & ipif->ipif_subnet; 15666 ill_clear_bcast_mark(ill, addr); 15667 15668 net_addr = ~net_mask | addr; 15669 ill_clear_bcast_mark(ill, net_addr); 15670 15671 subnet_netmask = ipif->ipif_net_mask; 15672 addr = ipif->ipif_subnet; 15673 ill_clear_bcast_mark(ill, addr); 15674 15675 subnet_addr = ~subnet_netmask | addr; 15676 ill_clear_bcast_mark(ill, subnet_addr); 15677 } 15678 } 15679 15680 /* 15681 * Multicast Responsibility. 15682 * 15683 * If we have joined allmulti on this one, find a new member 15684 * in the group to join allmulti. As this ill is already part 15685 * of allmulti, we don't have to join on this one. 15686 * 15687 * If we have not joined allmulti on this one, there is no 15688 * responsibility to handoff. But we need to take new 15689 * responsibility i.e, join allmulti on this one if we need 15690 * to. 15691 */ 15692 if (ill->ill_join_allmulti) { 15693 (void) ill_nominate_mcast_rcv(illgrp); 15694 } else { 15695 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15696 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15697 (void) ip_join_allmulti(ill->ill_ipif); 15698 break; 15699 } 15700 } 15701 } 15702 15703 /* 15704 * We intentionally do the flushing of IRE_CACHES only matching 15705 * on the ill and not on groups. Note that we are already deleted 15706 * from the group. 15707 * 15708 * This will make sure that all IRE_CACHES whose stq is pointing 15709 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15710 * deleted and IRE_CACHES that are not pointing at this ill will 15711 * be left alone. 15712 */ 15713 if (ill->ill_isv6) { 15714 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15715 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15716 } else { 15717 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15718 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15719 } 15720 15721 /* 15722 * Some conn may have cached one of the IREs deleted above. By removing 15723 * the ire reference, we clean up the extra reference to the ill held in 15724 * ire->ire_stq. 15725 */ 15726 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15727 15728 /* 15729 * Re-do source address selection for all the members in the 15730 * group, if they borrowed source address from one of the ipifs 15731 * in this ill. 15732 */ 15733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15734 if (ill->ill_isv6) { 15735 ipif_update_other_ipifs_v6(ipif, illgrp); 15736 } else { 15737 ipif_update_other_ipifs(ipif, illgrp); 15738 } 15739 } 15740 } 15741 15742 /* 15743 * Delete the ill from the group. The caller makes sure that it is 15744 * in a group and it okay to delete from the group. So, we always 15745 * delete here. 15746 */ 15747 static void 15748 illgrp_delete(ill_t *ill) 15749 { 15750 ill_group_t *illgrp; 15751 ill_group_t *tmpg; 15752 ill_t *tmp_ill; 15753 ip_stack_t *ipst = ill->ill_ipst; 15754 15755 /* 15756 * Reset illgrp_ill_schednext if it was pointing at us. 15757 * We need to do this before we set ill_group to NULL. 15758 */ 15759 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15760 mutex_enter(&ill->ill_lock); 15761 15762 illgrp_reset_schednext(ill); 15763 15764 illgrp = ill->ill_group; 15765 15766 /* Delete the ill from illgrp. */ 15767 if (illgrp->illgrp_ill == ill) { 15768 illgrp->illgrp_ill = ill->ill_group_next; 15769 } else { 15770 tmp_ill = illgrp->illgrp_ill; 15771 while (tmp_ill->ill_group_next != ill) { 15772 tmp_ill = tmp_ill->ill_group_next; 15773 ASSERT(tmp_ill != NULL); 15774 } 15775 tmp_ill->ill_group_next = ill->ill_group_next; 15776 } 15777 ill->ill_group = NULL; 15778 ill->ill_group_next = NULL; 15779 15780 illgrp->illgrp_ill_count--; 15781 mutex_exit(&ill->ill_lock); 15782 rw_exit(&ipst->ips_ill_g_lock); 15783 15784 /* 15785 * As this ill is leaving the group, we need to hand off 15786 * the responsibilities to the other ills in the group, if 15787 * this ill had some responsibilities. 15788 */ 15789 15790 ill_handoff_responsibility(ill, illgrp); 15791 15792 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15793 15794 if (illgrp->illgrp_ill_count == 0) { 15795 15796 ASSERT(illgrp->illgrp_ill == NULL); 15797 if (ill->ill_isv6) { 15798 if (illgrp == ipst->ips_illgrp_head_v6) { 15799 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15800 } else { 15801 tmpg = ipst->ips_illgrp_head_v6; 15802 while (tmpg->illgrp_next != illgrp) { 15803 tmpg = tmpg->illgrp_next; 15804 ASSERT(tmpg != NULL); 15805 } 15806 tmpg->illgrp_next = illgrp->illgrp_next; 15807 } 15808 } else { 15809 if (illgrp == ipst->ips_illgrp_head_v4) { 15810 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15811 } else { 15812 tmpg = ipst->ips_illgrp_head_v4; 15813 while (tmpg->illgrp_next != illgrp) { 15814 tmpg = tmpg->illgrp_next; 15815 ASSERT(tmpg != NULL); 15816 } 15817 tmpg->illgrp_next = illgrp->illgrp_next; 15818 } 15819 } 15820 mutex_destroy(&illgrp->illgrp_lock); 15821 mi_free(illgrp); 15822 } 15823 rw_exit(&ipst->ips_ill_g_lock); 15824 15825 /* 15826 * Even though the ill is out of the group its not necessary 15827 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15828 * We will split the ipsq when phyint_groupname is set to NULL. 15829 */ 15830 15831 /* 15832 * Send a routing sockets message if we are deleting from 15833 * groups with names. 15834 */ 15835 if (ill->ill_phyint->phyint_groupname_len != 0) 15836 ip_rts_ifmsg(ill->ill_ipif); 15837 } 15838 15839 /* 15840 * Re-do source address selection. This is normally called when 15841 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15842 * ipif comes up. 15843 */ 15844 void 15845 ill_update_source_selection(ill_t *ill) 15846 { 15847 ipif_t *ipif; 15848 15849 ASSERT(IAM_WRITER_ILL(ill)); 15850 15851 if (ill->ill_group != NULL) 15852 ill = ill->ill_group->illgrp_ill; 15853 15854 for (; ill != NULL; ill = ill->ill_group_next) { 15855 for (ipif = ill->ill_ipif; ipif != NULL; 15856 ipif = ipif->ipif_next) { 15857 if (ill->ill_isv6) 15858 ipif_recreate_interface_routes_v6(NULL, ipif); 15859 else 15860 ipif_recreate_interface_routes(NULL, ipif); 15861 } 15862 } 15863 } 15864 15865 /* 15866 * Insert ill in a group headed by illgrp_head. The caller can either 15867 * pass a groupname in which case we search for a group with the 15868 * same name to insert in or pass a group to insert in. This function 15869 * would only search groups with names. 15870 * 15871 * NOTE : The caller should make sure that there is at least one ipif 15872 * UP on this ill so that illgrp_scheduler can pick this ill 15873 * for outbound packets. If ill_ipif_up_count is zero, we have 15874 * already sent a DL_UNBIND to the driver and we don't want to 15875 * send anymore packets. We don't assert for ipif_up_count 15876 * to be greater than zero, because ipif_up_done wants to call 15877 * this function before bumping up the ipif_up_count. See 15878 * ipif_up_done() for details. 15879 */ 15880 int 15881 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15882 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15883 { 15884 ill_group_t *illgrp; 15885 ill_t *prev_ill; 15886 phyint_t *phyi; 15887 ip_stack_t *ipst = ill->ill_ipst; 15888 15889 ASSERT(ill->ill_group == NULL); 15890 15891 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15892 mutex_enter(&ill->ill_lock); 15893 15894 if (groupname != NULL) { 15895 /* 15896 * Look for a group with a matching groupname to insert. 15897 */ 15898 for (illgrp = *illgrp_head; illgrp != NULL; 15899 illgrp = illgrp->illgrp_next) { 15900 15901 ill_t *tmp_ill; 15902 15903 /* 15904 * If we have an ill_group_t in the list which has 15905 * no ill_t assigned then we must be in the process of 15906 * removing this group. We skip this as illgrp_delete() 15907 * will remove it from the list. 15908 */ 15909 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15910 ASSERT(illgrp->illgrp_ill_count == 0); 15911 continue; 15912 } 15913 15914 ASSERT(tmp_ill->ill_phyint != NULL); 15915 phyi = tmp_ill->ill_phyint; 15916 /* 15917 * Look at groups which has names only. 15918 */ 15919 if (phyi->phyint_groupname_len == 0) 15920 continue; 15921 /* 15922 * Names are stored in the phyint common to both 15923 * IPv4 and IPv6. 15924 */ 15925 if (mi_strcmp(phyi->phyint_groupname, 15926 groupname) == 0) { 15927 break; 15928 } 15929 } 15930 } else { 15931 /* 15932 * If the caller passes in a NULL "grp_to_insert", we 15933 * allocate one below and insert this singleton. 15934 */ 15935 illgrp = grp_to_insert; 15936 } 15937 15938 ill->ill_group_next = NULL; 15939 15940 if (illgrp == NULL) { 15941 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15942 if (illgrp == NULL) { 15943 return (ENOMEM); 15944 } 15945 illgrp->illgrp_next = *illgrp_head; 15946 *illgrp_head = illgrp; 15947 illgrp->illgrp_ill = ill; 15948 illgrp->illgrp_ill_count = 1; 15949 ill->ill_group = illgrp; 15950 /* 15951 * Used in illgrp_scheduler to protect multiple threads 15952 * from traversing the list. 15953 */ 15954 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15955 } else { 15956 ASSERT(ill->ill_net_type == 15957 illgrp->illgrp_ill->ill_net_type); 15958 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15959 15960 /* Insert ill at tail of this group */ 15961 prev_ill = illgrp->illgrp_ill; 15962 while (prev_ill->ill_group_next != NULL) 15963 prev_ill = prev_ill->ill_group_next; 15964 prev_ill->ill_group_next = ill; 15965 ill->ill_group = illgrp; 15966 illgrp->illgrp_ill_count++; 15967 /* 15968 * Inherit group properties. Currently only forwarding 15969 * is the property we try to keep the same with all the 15970 * ills. When there are more, we will abstract this into 15971 * a function. 15972 */ 15973 ill->ill_flags &= ~ILLF_ROUTER; 15974 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15975 } 15976 mutex_exit(&ill->ill_lock); 15977 rw_exit(&ipst->ips_ill_g_lock); 15978 15979 /* 15980 * 1) When ipif_up_done() calls this function, ipif_up_count 15981 * may be zero as it has not yet been bumped. But the ires 15982 * have already been added. So, we do the nomination here 15983 * itself. But, when ip_sioctl_groupname calls this, it checks 15984 * for ill_ipif_up_count != 0. Thus we don't check for 15985 * ill_ipif_up_count here while nominating broadcast ires for 15986 * receive. 15987 * 15988 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15989 * to group them properly as ire_add() has already happened 15990 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15991 * case, we need to do it here anyway. 15992 */ 15993 if (!ill->ill_isv6) { 15994 ill_group_bcast_for_xmit(ill); 15995 ill_nominate_bcast_rcv(illgrp); 15996 } 15997 15998 if (!ipif_is_coming_up) { 15999 /* 16000 * When ipif_up_done() calls this function, the multicast 16001 * groups have not been joined yet. So, there is no point in 16002 * nomination. ip_join_allmulti will handle groups when 16003 * ill_recover_multicast is called from ipif_up_done() later. 16004 */ 16005 (void) ill_nominate_mcast_rcv(illgrp); 16006 /* 16007 * ipif_up_done calls ill_update_source_selection 16008 * anyway. Moreover, we don't want to re-create 16009 * interface routes while ipif_up_done() still has reference 16010 * to them. Refer to ipif_up_done() for more details. 16011 */ 16012 ill_update_source_selection(ill); 16013 } 16014 16015 /* 16016 * Send a routing sockets message if we are inserting into 16017 * groups with names. 16018 */ 16019 if (groupname != NULL) 16020 ip_rts_ifmsg(ill->ill_ipif); 16021 return (0); 16022 } 16023 16024 /* 16025 * Return the first phyint matching the groupname. There could 16026 * be more than one when there are ill groups. 16027 * 16028 * If 'usable' is set, then we exclude ones that are marked with any of 16029 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16030 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16031 * emulation of ipmp. 16032 */ 16033 phyint_t * 16034 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16035 { 16036 phyint_t *phyi; 16037 16038 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16039 /* 16040 * Group names are stored in the phyint - a common structure 16041 * to both IPv4 and IPv6. 16042 */ 16043 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16044 for (; phyi != NULL; 16045 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16046 phyi, AVL_AFTER)) { 16047 if (phyi->phyint_groupname_len == 0) 16048 continue; 16049 /* 16050 * Skip the ones that should not be used since the callers 16051 * sometime use this for sending packets. 16052 */ 16053 if (usable && (phyi->phyint_flags & 16054 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16055 continue; 16056 16057 ASSERT(phyi->phyint_groupname != NULL); 16058 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16059 return (phyi); 16060 } 16061 return (NULL); 16062 } 16063 16064 16065 /* 16066 * Return the first usable phyint matching the group index. By 'usable' 16067 * we exclude ones that are marked ununsable with any of 16068 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16069 * 16070 * Used only for the ipmp/netinfo emulation of ipmp. 16071 */ 16072 phyint_t * 16073 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16074 { 16075 phyint_t *phyi; 16076 16077 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16078 16079 if (!ipst->ips_ipmp_hook_emulation) 16080 return (NULL); 16081 16082 /* 16083 * Group indicies are stored in the phyint - a common structure 16084 * to both IPv4 and IPv6. 16085 */ 16086 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16087 for (; phyi != NULL; 16088 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16089 phyi, AVL_AFTER)) { 16090 /* Ignore the ones that do not have a group */ 16091 if (phyi->phyint_groupname_len == 0) 16092 continue; 16093 16094 ASSERT(phyi->phyint_group_ifindex != 0); 16095 /* 16096 * Skip the ones that should not be used since the callers 16097 * sometime use this for sending packets. 16098 */ 16099 if (phyi->phyint_flags & 16100 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16101 continue; 16102 if (phyi->phyint_group_ifindex == group_ifindex) 16103 return (phyi); 16104 } 16105 return (NULL); 16106 } 16107 16108 16109 /* 16110 * MT notes on creation and deletion of IPMP groups 16111 * 16112 * Creation and deletion of IPMP groups introduce the need to merge or 16113 * split the associated serialization objects i.e the ipsq's. Normally all 16114 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16115 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16116 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16117 * is a need to change the <ill-ipsq> association and we have to operate on both 16118 * the source and destination IPMP groups. For eg. attempting to set the 16119 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16120 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16121 * source or destination IPMP group are mapped to a single ipsq for executing 16122 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16123 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16124 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16125 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16126 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16127 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16128 * 16129 * In the above example the ioctl handling code locates the current ipsq of hme0 16130 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16131 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16132 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16133 * the destination ipsq. If the destination ipsq is not busy, it also enters 16134 * the destination ipsq exclusively. Now the actual groupname setting operation 16135 * can proceed. If the destination ipsq is busy, the operation is enqueued 16136 * on the destination (merged) ipsq and will be handled in the unwind from 16137 * ipsq_exit. 16138 * 16139 * To prevent other threads accessing the ill while the group name change is 16140 * in progres, we bring down the ipifs which also removes the ill from the 16141 * group. The group is changed in phyint and when the first ipif on the ill 16142 * is brought up, the ill is inserted into the right IPMP group by 16143 * illgrp_insert. 16144 */ 16145 /* ARGSUSED */ 16146 int 16147 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16148 ip_ioctl_cmd_t *ipip, void *ifreq) 16149 { 16150 int i; 16151 char *tmp; 16152 int namelen; 16153 ill_t *ill = ipif->ipif_ill; 16154 ill_t *ill_v4, *ill_v6; 16155 int err = 0; 16156 phyint_t *phyi; 16157 phyint_t *phyi_tmp; 16158 struct lifreq *lifr; 16159 mblk_t *mp1; 16160 char *groupname; 16161 ipsq_t *ipsq; 16162 ip_stack_t *ipst = ill->ill_ipst; 16163 16164 ASSERT(IAM_WRITER_IPIF(ipif)); 16165 16166 /* Existance verified in ip_wput_nondata */ 16167 mp1 = mp->b_cont->b_cont; 16168 lifr = (struct lifreq *)mp1->b_rptr; 16169 groupname = lifr->lifr_groupname; 16170 16171 if (ipif->ipif_id != 0) 16172 return (EINVAL); 16173 16174 phyi = ill->ill_phyint; 16175 ASSERT(phyi != NULL); 16176 16177 if (phyi->phyint_flags & PHYI_VIRTUAL) 16178 return (EINVAL); 16179 16180 tmp = groupname; 16181 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16182 ; 16183 16184 if (i == LIFNAMSIZ) { 16185 /* no null termination */ 16186 return (EINVAL); 16187 } 16188 16189 /* 16190 * Calculate the namelen exclusive of the null 16191 * termination character. 16192 */ 16193 namelen = tmp - groupname; 16194 16195 ill_v4 = phyi->phyint_illv4; 16196 ill_v6 = phyi->phyint_illv6; 16197 16198 /* 16199 * ILL cannot be part of a usesrc group and and IPMP group at the 16200 * same time. No need to grab the ill_g_usesrc_lock here, see 16201 * synchronization notes in ip.c 16202 */ 16203 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16204 return (EINVAL); 16205 } 16206 16207 /* 16208 * mark the ill as changing. 16209 * this should queue all new requests on the syncq. 16210 */ 16211 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16212 16213 if (ill_v4 != NULL) 16214 ill_v4->ill_state_flags |= ILL_CHANGING; 16215 if (ill_v6 != NULL) 16216 ill_v6->ill_state_flags |= ILL_CHANGING; 16217 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16218 16219 if (namelen == 0) { 16220 /* 16221 * Null string means remove this interface from the 16222 * existing group. 16223 */ 16224 if (phyi->phyint_groupname_len == 0) { 16225 /* 16226 * Never was in a group. 16227 */ 16228 err = 0; 16229 goto done; 16230 } 16231 16232 /* 16233 * IPv4 or IPv6 may be temporarily out of the group when all 16234 * the ipifs are down. Thus, we need to check for ill_group to 16235 * be non-NULL. 16236 */ 16237 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16238 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16239 mutex_enter(&ill_v4->ill_lock); 16240 if (!ill_is_quiescent(ill_v4)) { 16241 /* 16242 * ipsq_pending_mp_add will not fail since 16243 * connp is NULL 16244 */ 16245 (void) ipsq_pending_mp_add(NULL, 16246 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16247 mutex_exit(&ill_v4->ill_lock); 16248 err = EINPROGRESS; 16249 goto done; 16250 } 16251 mutex_exit(&ill_v4->ill_lock); 16252 } 16253 16254 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16255 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16256 mutex_enter(&ill_v6->ill_lock); 16257 if (!ill_is_quiescent(ill_v6)) { 16258 (void) ipsq_pending_mp_add(NULL, 16259 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16260 mutex_exit(&ill_v6->ill_lock); 16261 err = EINPROGRESS; 16262 goto done; 16263 } 16264 mutex_exit(&ill_v6->ill_lock); 16265 } 16266 16267 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16268 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16269 mutex_enter(&phyi->phyint_lock); 16270 ASSERT(phyi->phyint_groupname != NULL); 16271 mi_free(phyi->phyint_groupname); 16272 phyi->phyint_groupname = NULL; 16273 phyi->phyint_groupname_len = 0; 16274 16275 /* Restore the ifindex used to be the per interface one */ 16276 phyi->phyint_group_ifindex = 0; 16277 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16278 mutex_exit(&phyi->phyint_lock); 16279 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16280 rw_exit(&ipst->ips_ill_g_lock); 16281 err = ill_up_ipifs(ill, q, mp); 16282 16283 /* 16284 * set the split flag so that the ipsq can be split 16285 */ 16286 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16287 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16288 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16289 16290 } else { 16291 if (phyi->phyint_groupname_len != 0) { 16292 ASSERT(phyi->phyint_groupname != NULL); 16293 /* Are we inserting in the same group ? */ 16294 if (mi_strcmp(groupname, 16295 phyi->phyint_groupname) == 0) { 16296 err = 0; 16297 goto done; 16298 } 16299 } 16300 16301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16302 /* 16303 * Merge ipsq for the group's. 16304 * This check is here as multiple groups/ills might be 16305 * sharing the same ipsq. 16306 * If we have to merege than the operation is restarted 16307 * on the new ipsq. 16308 */ 16309 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16310 if (phyi->phyint_ipsq != ipsq) { 16311 rw_exit(&ipst->ips_ill_g_lock); 16312 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16313 goto done; 16314 } 16315 /* 16316 * Running exclusive on new ipsq. 16317 */ 16318 16319 ASSERT(ipsq != NULL); 16320 ASSERT(ipsq->ipsq_writer == curthread); 16321 16322 /* 16323 * Check whether the ill_type and ill_net_type matches before 16324 * we allocate any memory so that the cleanup is easier. 16325 * 16326 * We can't group dissimilar ones as we can't load spread 16327 * packets across the group because of potential link-level 16328 * header differences. 16329 */ 16330 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16331 if (phyi_tmp != NULL) { 16332 if ((ill_v4 != NULL && 16333 phyi_tmp->phyint_illv4 != NULL) && 16334 ((ill_v4->ill_net_type != 16335 phyi_tmp->phyint_illv4->ill_net_type) || 16336 (ill_v4->ill_type != 16337 phyi_tmp->phyint_illv4->ill_type))) { 16338 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16339 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16340 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16341 rw_exit(&ipst->ips_ill_g_lock); 16342 return (EINVAL); 16343 } 16344 if ((ill_v6 != NULL && 16345 phyi_tmp->phyint_illv6 != NULL) && 16346 ((ill_v6->ill_net_type != 16347 phyi_tmp->phyint_illv6->ill_net_type) || 16348 (ill_v6->ill_type != 16349 phyi_tmp->phyint_illv6->ill_type))) { 16350 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16351 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16352 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16353 rw_exit(&ipst->ips_ill_g_lock); 16354 return (EINVAL); 16355 } 16356 } 16357 16358 rw_exit(&ipst->ips_ill_g_lock); 16359 16360 /* 16361 * bring down all v4 ipifs. 16362 */ 16363 if (ill_v4 != NULL) { 16364 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16365 } 16366 16367 /* 16368 * bring down all v6 ipifs. 16369 */ 16370 if (ill_v6 != NULL) { 16371 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16372 } 16373 16374 /* 16375 * make sure all ipifs are down and there are no active 16376 * references. Call to ipsq_pending_mp_add will not fail 16377 * since connp is NULL. 16378 */ 16379 if (ill_v4 != NULL) { 16380 mutex_enter(&ill_v4->ill_lock); 16381 if (!ill_is_quiescent(ill_v4)) { 16382 (void) ipsq_pending_mp_add(NULL, 16383 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16384 mutex_exit(&ill_v4->ill_lock); 16385 err = EINPROGRESS; 16386 goto done; 16387 } 16388 mutex_exit(&ill_v4->ill_lock); 16389 } 16390 16391 if (ill_v6 != NULL) { 16392 mutex_enter(&ill_v6->ill_lock); 16393 if (!ill_is_quiescent(ill_v6)) { 16394 (void) ipsq_pending_mp_add(NULL, 16395 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16396 mutex_exit(&ill_v6->ill_lock); 16397 err = EINPROGRESS; 16398 goto done; 16399 } 16400 mutex_exit(&ill_v6->ill_lock); 16401 } 16402 16403 /* 16404 * allocate including space for null terminator 16405 * before we insert. 16406 */ 16407 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16408 if (tmp == NULL) 16409 return (ENOMEM); 16410 16411 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16412 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16413 mutex_enter(&phyi->phyint_lock); 16414 if (phyi->phyint_groupname_len != 0) { 16415 ASSERT(phyi->phyint_groupname != NULL); 16416 mi_free(phyi->phyint_groupname); 16417 } 16418 16419 /* 16420 * setup the new group name. 16421 */ 16422 phyi->phyint_groupname = tmp; 16423 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16424 phyi->phyint_groupname_len = namelen + 1; 16425 16426 if (ipst->ips_ipmp_hook_emulation) { 16427 /* 16428 * If the group already exists we use the existing 16429 * group_ifindex, otherwise we pick a new index here. 16430 */ 16431 if (phyi_tmp != NULL) { 16432 phyi->phyint_group_ifindex = 16433 phyi_tmp->phyint_group_ifindex; 16434 } else { 16435 /* XXX We need a recovery strategy here. */ 16436 if (!ip_assign_ifindex( 16437 &phyi->phyint_group_ifindex, ipst)) 16438 cmn_err(CE_PANIC, 16439 "ip_assign_ifindex() failed"); 16440 } 16441 } 16442 /* 16443 * Select whether the netinfo and hook use the per-interface 16444 * or per-group ifindex. 16445 */ 16446 if (ipst->ips_ipmp_hook_emulation) 16447 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16448 else 16449 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16450 16451 if (ipst->ips_ipmp_hook_emulation && 16452 phyi_tmp != NULL) { 16453 /* First phyint in group - group PLUMB event */ 16454 ill_nic_info_plumb(ill, B_TRUE); 16455 } 16456 mutex_exit(&phyi->phyint_lock); 16457 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16458 rw_exit(&ipst->ips_ill_g_lock); 16459 16460 err = ill_up_ipifs(ill, q, mp); 16461 } 16462 16463 done: 16464 /* 16465 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16466 */ 16467 if (err != EINPROGRESS) { 16468 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16469 if (ill_v4 != NULL) 16470 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16471 if (ill_v6 != NULL) 16472 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16473 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16474 } 16475 return (err); 16476 } 16477 16478 /* ARGSUSED */ 16479 int 16480 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16481 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16482 { 16483 ill_t *ill; 16484 phyint_t *phyi; 16485 struct lifreq *lifr; 16486 mblk_t *mp1; 16487 16488 /* Existence verified in ip_wput_nondata */ 16489 mp1 = mp->b_cont->b_cont; 16490 lifr = (struct lifreq *)mp1->b_rptr; 16491 ill = ipif->ipif_ill; 16492 phyi = ill->ill_phyint; 16493 16494 lifr->lifr_groupname[0] = '\0'; 16495 /* 16496 * ill_group may be null if all the interfaces 16497 * are down. But still, the phyint should always 16498 * hold the name. 16499 */ 16500 if (phyi->phyint_groupname_len != 0) { 16501 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16502 phyi->phyint_groupname_len); 16503 } 16504 16505 return (0); 16506 } 16507 16508 16509 typedef struct conn_move_s { 16510 ill_t *cm_from_ill; 16511 ill_t *cm_to_ill; 16512 int cm_ifindex; 16513 } conn_move_t; 16514 16515 /* 16516 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16517 */ 16518 static void 16519 conn_move(conn_t *connp, caddr_t arg) 16520 { 16521 conn_move_t *connm; 16522 int ifindex; 16523 int i; 16524 ill_t *from_ill; 16525 ill_t *to_ill; 16526 ilg_t *ilg; 16527 ilm_t *ret_ilm; 16528 16529 connm = (conn_move_t *)arg; 16530 ifindex = connm->cm_ifindex; 16531 from_ill = connm->cm_from_ill; 16532 to_ill = connm->cm_to_ill; 16533 16534 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16535 16536 /* All multicast fields protected by conn_lock */ 16537 mutex_enter(&connp->conn_lock); 16538 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16539 if ((connp->conn_outgoing_ill == from_ill) && 16540 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16541 connp->conn_outgoing_ill = to_ill; 16542 connp->conn_incoming_ill = to_ill; 16543 } 16544 16545 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16546 16547 if ((connp->conn_multicast_ill == from_ill) && 16548 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16549 connp->conn_multicast_ill = connm->cm_to_ill; 16550 } 16551 16552 /* 16553 * Change the ilg_ill to point to the new one. This assumes 16554 * ilm_move_v6 has moved the ilms to new_ill and the driver 16555 * has been told to receive packets on this interface. 16556 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16557 * But when doing a FAILOVER, it might fail with ENOMEM and so 16558 * some ilms may not have moved. We check to see whether 16559 * the ilms have moved to to_ill. We can't check on from_ill 16560 * as in the process of moving, we could have split an ilm 16561 * in to two - which has the same orig_ifindex and v6group. 16562 * 16563 * For IPv4, ilg_ipif moves implicitly. The code below really 16564 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16565 */ 16566 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16567 ilg = &connp->conn_ilg[i]; 16568 if ((ilg->ilg_ill == from_ill) && 16569 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16570 /* ifindex != 0 indicates failback */ 16571 if (ifindex != 0) { 16572 connp->conn_ilg[i].ilg_ill = to_ill; 16573 continue; 16574 } 16575 16576 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16577 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16578 connp->conn_zoneid); 16579 16580 if (ret_ilm != NULL) 16581 connp->conn_ilg[i].ilg_ill = to_ill; 16582 } 16583 } 16584 mutex_exit(&connp->conn_lock); 16585 } 16586 16587 static void 16588 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16589 { 16590 conn_move_t connm; 16591 ip_stack_t *ipst = from_ill->ill_ipst; 16592 16593 connm.cm_from_ill = from_ill; 16594 connm.cm_to_ill = to_ill; 16595 connm.cm_ifindex = ifindex; 16596 16597 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16598 } 16599 16600 /* 16601 * ilm has been moved from from_ill to to_ill. 16602 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16603 * appropriately. 16604 * 16605 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16606 * the code there de-references ipif_ill to get the ill to 16607 * send multicast requests. It does not work as ipif is on its 16608 * move and already moved when this function is called. 16609 * Thus, we need to use from_ill and to_ill send down multicast 16610 * requests. 16611 */ 16612 static void 16613 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16614 { 16615 ipif_t *ipif; 16616 ilm_t *ilm; 16617 16618 /* 16619 * See whether we need to send down DL_ENABMULTI_REQ on 16620 * to_ill as ilm has just been added. 16621 */ 16622 ASSERT(IAM_WRITER_ILL(to_ill)); 16623 ASSERT(IAM_WRITER_ILL(from_ill)); 16624 16625 ILM_WALKER_HOLD(to_ill); 16626 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16627 16628 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16629 continue; 16630 /* 16631 * no locks held, ill/ipif cannot dissappear as long 16632 * as we are writer. 16633 */ 16634 ipif = to_ill->ill_ipif; 16635 /* 16636 * No need to hold any lock as we are the writer and this 16637 * can only be changed by a writer. 16638 */ 16639 ilm->ilm_is_new = B_FALSE; 16640 16641 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16642 ipif->ipif_flags & IPIF_POINTOPOINT) { 16643 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16644 "resolver\n")); 16645 continue; /* Must be IRE_IF_NORESOLVER */ 16646 } 16647 16648 16649 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16650 ip1dbg(("ilm_send_multicast_reqs: " 16651 "to_ill MULTI_BCAST\n")); 16652 goto from; 16653 } 16654 16655 if (to_ill->ill_isv6) 16656 mld_joingroup(ilm); 16657 else 16658 igmp_joingroup(ilm); 16659 16660 if (to_ill->ill_ipif_up_count == 0) { 16661 /* 16662 * Nobody there. All multicast addresses will be 16663 * re-joined when we get the DL_BIND_ACK bringing the 16664 * interface up. 16665 */ 16666 ilm->ilm_notify_driver = B_FALSE; 16667 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16668 goto from; 16669 } 16670 16671 /* 16672 * For allmulti address, we want to join on only one interface. 16673 * Checking for ilm_numentries_v6 is not correct as you may 16674 * find an ilm with zero address on to_ill, but we may not 16675 * have nominated to_ill for receiving. Thus, if we have 16676 * nominated from_ill (ill_join_allmulti is set), nominate 16677 * only if to_ill is not already nominated (to_ill normally 16678 * should not have been nominated if "from_ill" has already 16679 * been nominated. As we don't prevent failovers from happening 16680 * across groups, we don't assert). 16681 */ 16682 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16683 /* 16684 * There is no need to hold ill locks as we are 16685 * writer on both ills and when ill_join_allmulti 16686 * is changed the thread is always a writer. 16687 */ 16688 if (from_ill->ill_join_allmulti && 16689 !to_ill->ill_join_allmulti) { 16690 (void) ip_join_allmulti(to_ill->ill_ipif); 16691 } 16692 } else if (ilm->ilm_notify_driver) { 16693 16694 /* 16695 * This is a newly moved ilm so we need to tell the 16696 * driver about the new group. There can be more than 16697 * one ilm's for the same group in the list each with a 16698 * different orig_ifindex. We have to inform the driver 16699 * once. In ilm_move_v[4,6] we only set the flag 16700 * ilm_notify_driver for the first ilm. 16701 */ 16702 16703 (void) ip_ll_send_enabmulti_req(to_ill, 16704 &ilm->ilm_v6addr); 16705 } 16706 16707 ilm->ilm_notify_driver = B_FALSE; 16708 16709 /* 16710 * See whether we need to send down DL_DISABMULTI_REQ on 16711 * from_ill as ilm has just been removed. 16712 */ 16713 from: 16714 ipif = from_ill->ill_ipif; 16715 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16716 ipif->ipif_flags & IPIF_POINTOPOINT) { 16717 ip1dbg(("ilm_send_multicast_reqs: " 16718 "from_ill not resolver\n")); 16719 continue; /* Must be IRE_IF_NORESOLVER */ 16720 } 16721 16722 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16723 ip1dbg(("ilm_send_multicast_reqs: " 16724 "from_ill MULTI_BCAST\n")); 16725 continue; 16726 } 16727 16728 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16729 if (from_ill->ill_join_allmulti) 16730 (void) ip_leave_allmulti(from_ill->ill_ipif); 16731 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16732 (void) ip_ll_send_disabmulti_req(from_ill, 16733 &ilm->ilm_v6addr); 16734 } 16735 } 16736 ILM_WALKER_RELE(to_ill); 16737 } 16738 16739 /* 16740 * This function is called when all multicast memberships needs 16741 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16742 * called only once unlike the IPv4 counterpart where it is called after 16743 * every logical interface is moved. The reason is due to multicast 16744 * memberships are joined using an interface address in IPv4 while in 16745 * IPv6, interface index is used. 16746 */ 16747 static void 16748 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16749 { 16750 ilm_t *ilm; 16751 ilm_t *ilm_next; 16752 ilm_t *new_ilm; 16753 ilm_t **ilmp; 16754 int count; 16755 char buf[INET6_ADDRSTRLEN]; 16756 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16757 ip_stack_t *ipst = from_ill->ill_ipst; 16758 16759 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16760 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16761 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16762 16763 if (ifindex == 0) { 16764 /* 16765 * Form the solicited node mcast address which is used later. 16766 */ 16767 ipif_t *ipif; 16768 16769 ipif = from_ill->ill_ipif; 16770 ASSERT(ipif->ipif_id == 0); 16771 16772 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16773 } 16774 16775 ilmp = &from_ill->ill_ilm; 16776 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16777 ilm_next = ilm->ilm_next; 16778 16779 if (ilm->ilm_flags & ILM_DELETED) { 16780 ilmp = &ilm->ilm_next; 16781 continue; 16782 } 16783 16784 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16785 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16786 ASSERT(ilm->ilm_orig_ifindex != 0); 16787 if (ilm->ilm_orig_ifindex == ifindex) { 16788 /* 16789 * We are failing back multicast memberships. 16790 * If the same ilm exists in to_ill, it means somebody 16791 * has joined the same group there e.g. ff02::1 16792 * is joined within the kernel when the interfaces 16793 * came UP. 16794 */ 16795 ASSERT(ilm->ilm_ipif == NULL); 16796 if (new_ilm != NULL) { 16797 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16798 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16799 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16800 new_ilm->ilm_is_new = B_TRUE; 16801 } 16802 } else { 16803 /* 16804 * check if we can just move the ilm 16805 */ 16806 if (from_ill->ill_ilm_walker_cnt != 0) { 16807 /* 16808 * We have walkers we cannot move 16809 * the ilm, so allocate a new ilm, 16810 * this (old) ilm will be marked 16811 * ILM_DELETED at the end of the loop 16812 * and will be freed when the 16813 * last walker exits. 16814 */ 16815 new_ilm = (ilm_t *)mi_zalloc 16816 (sizeof (ilm_t)); 16817 if (new_ilm == NULL) { 16818 ip0dbg(("ilm_move_v6: " 16819 "FAILBACK of IPv6" 16820 " multicast address %s : " 16821 "from %s to" 16822 " %s failed : ENOMEM \n", 16823 inet_ntop(AF_INET6, 16824 &ilm->ilm_v6addr, buf, 16825 sizeof (buf)), 16826 from_ill->ill_name, 16827 to_ill->ill_name)); 16828 16829 ilmp = &ilm->ilm_next; 16830 continue; 16831 } 16832 *new_ilm = *ilm; 16833 /* 16834 * we don't want new_ilm linked to 16835 * ilm's filter list. 16836 */ 16837 new_ilm->ilm_filter = NULL; 16838 } else { 16839 /* 16840 * No walkers we can move the ilm. 16841 * lets take it out of the list. 16842 */ 16843 *ilmp = ilm->ilm_next; 16844 ilm->ilm_next = NULL; 16845 new_ilm = ilm; 16846 } 16847 16848 /* 16849 * if this is the first ilm for the group 16850 * set ilm_notify_driver so that we notify the 16851 * driver in ilm_send_multicast_reqs. 16852 */ 16853 if (ilm_lookup_ill_v6(to_ill, 16854 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16855 new_ilm->ilm_notify_driver = B_TRUE; 16856 16857 new_ilm->ilm_ill = to_ill; 16858 /* Add to the to_ill's list */ 16859 new_ilm->ilm_next = to_ill->ill_ilm; 16860 to_ill->ill_ilm = new_ilm; 16861 /* 16862 * set the flag so that mld_joingroup is 16863 * called in ilm_send_multicast_reqs(). 16864 */ 16865 new_ilm->ilm_is_new = B_TRUE; 16866 } 16867 goto bottom; 16868 } else if (ifindex != 0) { 16869 /* 16870 * If this is FAILBACK (ifindex != 0) and the ifindex 16871 * has not matched above, look at the next ilm. 16872 */ 16873 ilmp = &ilm->ilm_next; 16874 continue; 16875 } 16876 /* 16877 * If we are here, it means ifindex is 0. Failover 16878 * everything. 16879 * 16880 * We need to handle solicited node mcast address 16881 * and all_nodes mcast address differently as they 16882 * are joined witin the kenrel (ipif_multicast_up) 16883 * and potentially from the userland. We are called 16884 * after the ipifs of from_ill has been moved. 16885 * If we still find ilms on ill with solicited node 16886 * mcast address or all_nodes mcast address, it must 16887 * belong to the UP interface that has not moved e.g. 16888 * ipif_id 0 with the link local prefix does not move. 16889 * We join this on the new ill accounting for all the 16890 * userland memberships so that applications don't 16891 * see any failure. 16892 * 16893 * We need to make sure that we account only for the 16894 * solicited node and all node multicast addresses 16895 * that was brought UP on these. In the case of 16896 * a failover from A to B, we might have ilms belonging 16897 * to A (ilm_orig_ifindex pointing at A) on B accounting 16898 * for the membership from the userland. If we are failing 16899 * over from B to C now, we will find the ones belonging 16900 * to A on B. These don't account for the ill_ipif_up_count. 16901 * They just move from B to C. The check below on 16902 * ilm_orig_ifindex ensures that. 16903 */ 16904 if ((ilm->ilm_orig_ifindex == 16905 from_ill->ill_phyint->phyint_ifindex) && 16906 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16907 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16908 &ilm->ilm_v6addr))) { 16909 ASSERT(ilm->ilm_refcnt > 0); 16910 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16911 /* 16912 * For indentation reasons, we are not using a 16913 * "else" here. 16914 */ 16915 if (count == 0) { 16916 ilmp = &ilm->ilm_next; 16917 continue; 16918 } 16919 ilm->ilm_refcnt -= count; 16920 if (new_ilm != NULL) { 16921 /* 16922 * Can find one with the same 16923 * ilm_orig_ifindex, if we are failing 16924 * over to a STANDBY. This happens 16925 * when somebody wants to join a group 16926 * on a STANDBY interface and we 16927 * internally join on a different one. 16928 * If we had joined on from_ill then, a 16929 * failover now will find a new ilm 16930 * with this index. 16931 */ 16932 ip1dbg(("ilm_move_v6: FAILOVER, found" 16933 " new ilm on %s, group address %s\n", 16934 to_ill->ill_name, 16935 inet_ntop(AF_INET6, 16936 &ilm->ilm_v6addr, buf, 16937 sizeof (buf)))); 16938 new_ilm->ilm_refcnt += count; 16939 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16940 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16941 new_ilm->ilm_is_new = B_TRUE; 16942 } 16943 } else { 16944 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16945 if (new_ilm == NULL) { 16946 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16947 " multicast address %s : from %s to" 16948 " %s failed : ENOMEM \n", 16949 inet_ntop(AF_INET6, 16950 &ilm->ilm_v6addr, buf, 16951 sizeof (buf)), from_ill->ill_name, 16952 to_ill->ill_name)); 16953 ilmp = &ilm->ilm_next; 16954 continue; 16955 } 16956 *new_ilm = *ilm; 16957 new_ilm->ilm_filter = NULL; 16958 new_ilm->ilm_refcnt = count; 16959 new_ilm->ilm_timer = INFINITY; 16960 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16961 new_ilm->ilm_is_new = B_TRUE; 16962 /* 16963 * If the to_ill has not joined this 16964 * group we need to tell the driver in 16965 * ill_send_multicast_reqs. 16966 */ 16967 if (ilm_lookup_ill_v6(to_ill, 16968 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16969 new_ilm->ilm_notify_driver = B_TRUE; 16970 16971 new_ilm->ilm_ill = to_ill; 16972 /* Add to the to_ill's list */ 16973 new_ilm->ilm_next = to_ill->ill_ilm; 16974 to_ill->ill_ilm = new_ilm; 16975 ASSERT(new_ilm->ilm_ipif == NULL); 16976 } 16977 if (ilm->ilm_refcnt == 0) { 16978 goto bottom; 16979 } else { 16980 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16981 CLEAR_SLIST(new_ilm->ilm_filter); 16982 ilmp = &ilm->ilm_next; 16983 } 16984 continue; 16985 } else { 16986 /* 16987 * ifindex = 0 means, move everything pointing at 16988 * from_ill. We are doing this becuase ill has 16989 * either FAILED or became INACTIVE. 16990 * 16991 * As we would like to move things later back to 16992 * from_ill, we want to retain the identity of this 16993 * ilm. Thus, we don't blindly increment the reference 16994 * count on the ilms matching the address alone. We 16995 * need to match on the ilm_orig_index also. new_ilm 16996 * was obtained by matching ilm_orig_index also. 16997 */ 16998 if (new_ilm != NULL) { 16999 /* 17000 * This is possible only if a previous restore 17001 * was incomplete i.e restore to 17002 * ilm_orig_ifindex left some ilms because 17003 * of some failures. Thus when we are failing 17004 * again, we might find our old friends there. 17005 */ 17006 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17007 " on %s, group address %s\n", 17008 to_ill->ill_name, 17009 inet_ntop(AF_INET6, 17010 &ilm->ilm_v6addr, buf, 17011 sizeof (buf)))); 17012 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17013 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17014 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17015 new_ilm->ilm_is_new = B_TRUE; 17016 } 17017 } else { 17018 if (from_ill->ill_ilm_walker_cnt != 0) { 17019 new_ilm = (ilm_t *) 17020 mi_zalloc(sizeof (ilm_t)); 17021 if (new_ilm == NULL) { 17022 ip0dbg(("ilm_move_v6: " 17023 "FAILOVER of IPv6" 17024 " multicast address %s : " 17025 "from %s to" 17026 " %s failed : ENOMEM \n", 17027 inet_ntop(AF_INET6, 17028 &ilm->ilm_v6addr, buf, 17029 sizeof (buf)), 17030 from_ill->ill_name, 17031 to_ill->ill_name)); 17032 17033 ilmp = &ilm->ilm_next; 17034 continue; 17035 } 17036 *new_ilm = *ilm; 17037 new_ilm->ilm_filter = NULL; 17038 } else { 17039 *ilmp = ilm->ilm_next; 17040 new_ilm = ilm; 17041 } 17042 /* 17043 * If the to_ill has not joined this 17044 * group we need to tell the driver in 17045 * ill_send_multicast_reqs. 17046 */ 17047 if (ilm_lookup_ill_v6(to_ill, 17048 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17049 new_ilm->ilm_notify_driver = B_TRUE; 17050 17051 /* Add to the to_ill's list */ 17052 new_ilm->ilm_next = to_ill->ill_ilm; 17053 to_ill->ill_ilm = new_ilm; 17054 ASSERT(ilm->ilm_ipif == NULL); 17055 new_ilm->ilm_ill = to_ill; 17056 new_ilm->ilm_is_new = B_TRUE; 17057 } 17058 17059 } 17060 17061 bottom: 17062 /* 17063 * Revert multicast filter state to (EXCLUDE, NULL). 17064 * new_ilm->ilm_is_new should already be set if needed. 17065 */ 17066 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17067 CLEAR_SLIST(new_ilm->ilm_filter); 17068 /* 17069 * We allocated/got a new ilm, free the old one. 17070 */ 17071 if (new_ilm != ilm) { 17072 if (from_ill->ill_ilm_walker_cnt == 0) { 17073 *ilmp = ilm->ilm_next; 17074 ilm->ilm_next = NULL; 17075 FREE_SLIST(ilm->ilm_filter); 17076 FREE_SLIST(ilm->ilm_pendsrcs); 17077 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17078 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17079 mi_free((char *)ilm); 17080 } else { 17081 ilm->ilm_flags |= ILM_DELETED; 17082 from_ill->ill_ilm_cleanup_reqd = 1; 17083 ilmp = &ilm->ilm_next; 17084 } 17085 } 17086 } 17087 } 17088 17089 /* 17090 * Move all the multicast memberships to to_ill. Called when 17091 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17092 * different from IPv6 counterpart as multicast memberships are associated 17093 * with ills in IPv6. This function is called after every ipif is moved 17094 * unlike IPv6, where it is moved only once. 17095 */ 17096 static void 17097 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17098 { 17099 ilm_t *ilm; 17100 ilm_t *ilm_next; 17101 ilm_t *new_ilm; 17102 ilm_t **ilmp; 17103 ip_stack_t *ipst = from_ill->ill_ipst; 17104 17105 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17106 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17107 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17108 17109 ilmp = &from_ill->ill_ilm; 17110 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17111 ilm_next = ilm->ilm_next; 17112 17113 if (ilm->ilm_flags & ILM_DELETED) { 17114 ilmp = &ilm->ilm_next; 17115 continue; 17116 } 17117 17118 ASSERT(ilm->ilm_ipif != NULL); 17119 17120 if (ilm->ilm_ipif != ipif) { 17121 ilmp = &ilm->ilm_next; 17122 continue; 17123 } 17124 17125 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17126 htonl(INADDR_ALLHOSTS_GROUP)) { 17127 new_ilm = ilm_lookup_ipif(ipif, 17128 V4_PART_OF_V6(ilm->ilm_v6addr)); 17129 if (new_ilm != NULL) { 17130 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17131 /* 17132 * We still need to deal with the from_ill. 17133 */ 17134 new_ilm->ilm_is_new = B_TRUE; 17135 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17136 CLEAR_SLIST(new_ilm->ilm_filter); 17137 goto delete_ilm; 17138 } 17139 /* 17140 * If we could not find one e.g. ipif is 17141 * still down on to_ill, we add this ilm 17142 * on ill_new to preserve the reference 17143 * count. 17144 */ 17145 } 17146 /* 17147 * When ipifs move, ilms always move with it 17148 * to the NEW ill. Thus we should never be 17149 * able to find ilm till we really move it here. 17150 */ 17151 ASSERT(ilm_lookup_ipif(ipif, 17152 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17153 17154 if (from_ill->ill_ilm_walker_cnt != 0) { 17155 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17156 if (new_ilm == NULL) { 17157 char buf[INET6_ADDRSTRLEN]; 17158 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17159 " multicast address %s : " 17160 "from %s to" 17161 " %s failed : ENOMEM \n", 17162 inet_ntop(AF_INET, 17163 &ilm->ilm_v6addr, buf, 17164 sizeof (buf)), 17165 from_ill->ill_name, 17166 to_ill->ill_name)); 17167 17168 ilmp = &ilm->ilm_next; 17169 continue; 17170 } 17171 *new_ilm = *ilm; 17172 /* We don't want new_ilm linked to ilm's filter list */ 17173 new_ilm->ilm_filter = NULL; 17174 } else { 17175 /* Remove from the list */ 17176 *ilmp = ilm->ilm_next; 17177 new_ilm = ilm; 17178 } 17179 17180 /* 17181 * If we have never joined this group on the to_ill 17182 * make sure we tell the driver. 17183 */ 17184 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17185 ALL_ZONES) == NULL) 17186 new_ilm->ilm_notify_driver = B_TRUE; 17187 17188 /* Add to the to_ill's list */ 17189 new_ilm->ilm_next = to_ill->ill_ilm; 17190 to_ill->ill_ilm = new_ilm; 17191 new_ilm->ilm_is_new = B_TRUE; 17192 17193 /* 17194 * Revert multicast filter state to (EXCLUDE, NULL) 17195 */ 17196 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17197 CLEAR_SLIST(new_ilm->ilm_filter); 17198 17199 /* 17200 * Delete only if we have allocated a new ilm. 17201 */ 17202 if (new_ilm != ilm) { 17203 delete_ilm: 17204 if (from_ill->ill_ilm_walker_cnt == 0) { 17205 /* Remove from the list */ 17206 *ilmp = ilm->ilm_next; 17207 ilm->ilm_next = NULL; 17208 FREE_SLIST(ilm->ilm_filter); 17209 FREE_SLIST(ilm->ilm_pendsrcs); 17210 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17211 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17212 mi_free((char *)ilm); 17213 } else { 17214 ilm->ilm_flags |= ILM_DELETED; 17215 from_ill->ill_ilm_cleanup_reqd = 1; 17216 ilmp = &ilm->ilm_next; 17217 } 17218 } 17219 } 17220 } 17221 17222 static uint_t 17223 ipif_get_id(ill_t *ill, uint_t id) 17224 { 17225 uint_t unit; 17226 ipif_t *tipif; 17227 boolean_t found = B_FALSE; 17228 ip_stack_t *ipst = ill->ill_ipst; 17229 17230 /* 17231 * During failback, we want to go back to the same id 17232 * instead of the smallest id so that the original 17233 * configuration is maintained. id is non-zero in that 17234 * case. 17235 */ 17236 if (id != 0) { 17237 /* 17238 * While failing back, if we still have an ipif with 17239 * MAX_ADDRS_PER_IF, it means this will be replaced 17240 * as soon as we return from this function. It was 17241 * to set to MAX_ADDRS_PER_IF by the caller so that 17242 * we can choose the smallest id. Thus we return zero 17243 * in that case ignoring the hint. 17244 */ 17245 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17246 return (0); 17247 for (tipif = ill->ill_ipif; tipif != NULL; 17248 tipif = tipif->ipif_next) { 17249 if (tipif->ipif_id == id) { 17250 found = B_TRUE; 17251 break; 17252 } 17253 } 17254 /* 17255 * If somebody already plumbed another logical 17256 * with the same id, we won't be able to find it. 17257 */ 17258 if (!found) 17259 return (id); 17260 } 17261 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17262 found = B_FALSE; 17263 for (tipif = ill->ill_ipif; tipif != NULL; 17264 tipif = tipif->ipif_next) { 17265 if (tipif->ipif_id == unit) { 17266 found = B_TRUE; 17267 break; 17268 } 17269 } 17270 if (!found) 17271 break; 17272 } 17273 return (unit); 17274 } 17275 17276 /* ARGSUSED */ 17277 static int 17278 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17279 ipif_t **rep_ipif_ptr) 17280 { 17281 ill_t *from_ill; 17282 ipif_t *rep_ipif; 17283 uint_t unit; 17284 int err = 0; 17285 ipif_t *to_ipif; 17286 struct iocblk *iocp; 17287 boolean_t failback_cmd; 17288 boolean_t remove_ipif; 17289 int rc; 17290 ip_stack_t *ipst; 17291 17292 ASSERT(IAM_WRITER_ILL(to_ill)); 17293 ASSERT(IAM_WRITER_IPIF(ipif)); 17294 17295 iocp = (struct iocblk *)mp->b_rptr; 17296 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17297 remove_ipif = B_FALSE; 17298 17299 from_ill = ipif->ipif_ill; 17300 ipst = from_ill->ill_ipst; 17301 17302 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17303 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17304 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17305 17306 /* 17307 * Don't move LINK LOCAL addresses as they are tied to 17308 * physical interface. 17309 */ 17310 if (from_ill->ill_isv6 && 17311 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17312 ipif->ipif_was_up = B_FALSE; 17313 IPIF_UNMARK_MOVING(ipif); 17314 return (0); 17315 } 17316 17317 /* 17318 * We set the ipif_id to maximum so that the search for 17319 * ipif_id will pick the lowest number i.e 0 in the 17320 * following 2 cases : 17321 * 17322 * 1) We have a replacement ipif at the head of to_ill. 17323 * We can't remove it yet as we can exceed ip_addrs_per_if 17324 * on to_ill and hence the MOVE might fail. We want to 17325 * remove it only if we could move the ipif. Thus, by 17326 * setting it to the MAX value, we make the search in 17327 * ipif_get_id return the zeroth id. 17328 * 17329 * 2) When DR pulls out the NIC and re-plumbs the interface, 17330 * we might just have a zero address plumbed on the ipif 17331 * with zero id in the case of IPv4. We remove that while 17332 * doing the failback. We want to remove it only if we 17333 * could move the ipif. Thus, by setting it to the MAX 17334 * value, we make the search in ipif_get_id return the 17335 * zeroth id. 17336 * 17337 * Both (1) and (2) are done only when when we are moving 17338 * an ipif (either due to failover/failback) which originally 17339 * belonged to this interface i.e the ipif_orig_ifindex is 17340 * the same as to_ill's ifindex. This is needed so that 17341 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17342 * from B -> A (B is being removed from the group) and 17343 * FAILBACK from A -> B restores the original configuration. 17344 * Without the check for orig_ifindex, the second FAILOVER 17345 * could make the ipif belonging to B replace the A's zeroth 17346 * ipif and the subsequent failback re-creating the replacement 17347 * ipif again. 17348 * 17349 * NOTE : We created the replacement ipif when we did a 17350 * FAILOVER (See below). We could check for FAILBACK and 17351 * then look for replacement ipif to be removed. But we don't 17352 * want to do that because we wan't to allow the possibility 17353 * of a FAILOVER from A -> B (which creates the replacement ipif), 17354 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17355 * from B -> A. 17356 */ 17357 to_ipif = to_ill->ill_ipif; 17358 if ((to_ill->ill_phyint->phyint_ifindex == 17359 ipif->ipif_orig_ifindex) && 17360 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17361 ASSERT(to_ipif->ipif_id == 0); 17362 remove_ipif = B_TRUE; 17363 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17364 } 17365 /* 17366 * Find the lowest logical unit number on the to_ill. 17367 * If we are failing back, try to get the original id 17368 * rather than the lowest one so that the original 17369 * configuration is maintained. 17370 * 17371 * XXX need a better scheme for this. 17372 */ 17373 if (failback_cmd) { 17374 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17375 } else { 17376 unit = ipif_get_id(to_ill, 0); 17377 } 17378 17379 /* Reset back to zero in case we fail below */ 17380 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17381 to_ipif->ipif_id = 0; 17382 17383 if (unit == ipst->ips_ip_addrs_per_if) { 17384 ipif->ipif_was_up = B_FALSE; 17385 IPIF_UNMARK_MOVING(ipif); 17386 return (EINVAL); 17387 } 17388 17389 /* 17390 * ipif is ready to move from "from_ill" to "to_ill". 17391 * 17392 * 1) If we are moving ipif with id zero, create a 17393 * replacement ipif for this ipif on from_ill. If this fails 17394 * fail the MOVE operation. 17395 * 17396 * 2) Remove the replacement ipif on to_ill if any. 17397 * We could remove the replacement ipif when we are moving 17398 * the ipif with id zero. But what if somebody already 17399 * unplumbed it ? Thus we always remove it if it is present. 17400 * We want to do it only if we are sure we are going to 17401 * move the ipif to to_ill which is why there are no 17402 * returns due to error till ipif is linked to to_ill. 17403 * Note that the first ipif that we failback will always 17404 * be zero if it is present. 17405 */ 17406 if (ipif->ipif_id == 0) { 17407 ipaddr_t inaddr_any = INADDR_ANY; 17408 17409 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17410 if (rep_ipif == NULL) { 17411 ipif->ipif_was_up = B_FALSE; 17412 IPIF_UNMARK_MOVING(ipif); 17413 return (ENOMEM); 17414 } 17415 *rep_ipif = ipif_zero; 17416 /* 17417 * Before we put the ipif on the list, store the addresses 17418 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17419 * assumes so. This logic is not any different from what 17420 * ipif_allocate does. 17421 */ 17422 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17423 &rep_ipif->ipif_v6lcl_addr); 17424 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17425 &rep_ipif->ipif_v6src_addr); 17426 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17427 &rep_ipif->ipif_v6subnet); 17428 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17429 &rep_ipif->ipif_v6net_mask); 17430 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17431 &rep_ipif->ipif_v6brd_addr); 17432 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17433 &rep_ipif->ipif_v6pp_dst_addr); 17434 /* 17435 * We mark IPIF_NOFAILOVER so that this can never 17436 * move. 17437 */ 17438 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17439 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17440 rep_ipif->ipif_replace_zero = B_TRUE; 17441 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17442 MUTEX_DEFAULT, NULL); 17443 rep_ipif->ipif_id = 0; 17444 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17445 rep_ipif->ipif_ill = from_ill; 17446 rep_ipif->ipif_orig_ifindex = 17447 from_ill->ill_phyint->phyint_ifindex; 17448 /* Insert at head */ 17449 rep_ipif->ipif_next = from_ill->ill_ipif; 17450 from_ill->ill_ipif = rep_ipif; 17451 /* 17452 * We don't really care to let apps know about 17453 * this interface. 17454 */ 17455 } 17456 17457 if (remove_ipif) { 17458 /* 17459 * We set to a max value above for this case to get 17460 * id zero. ASSERT that we did get one. 17461 */ 17462 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17463 rep_ipif = to_ipif; 17464 to_ill->ill_ipif = rep_ipif->ipif_next; 17465 rep_ipif->ipif_next = NULL; 17466 /* 17467 * If some apps scanned and find this interface, 17468 * it is time to let them know, so that they can 17469 * delete it. 17470 */ 17471 17472 *rep_ipif_ptr = rep_ipif; 17473 } 17474 17475 /* Get it out of the ILL interface list. */ 17476 ipif_remove(ipif, B_FALSE); 17477 17478 /* Assign the new ill */ 17479 ipif->ipif_ill = to_ill; 17480 ipif->ipif_id = unit; 17481 /* id has already been checked */ 17482 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17483 ASSERT(rc == 0); 17484 /* Let SCTP update its list */ 17485 sctp_move_ipif(ipif, from_ill, to_ill); 17486 /* 17487 * Handle the failover and failback of ipif_t between 17488 * ill_t that have differing maximum mtu values. 17489 */ 17490 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17491 if (ipif->ipif_saved_mtu == 0) { 17492 /* 17493 * As this ipif_t is moving to an ill_t 17494 * that has a lower ill_max_mtu, its 17495 * ipif_mtu needs to be saved so it can 17496 * be restored during failback or during 17497 * failover to an ill_t which has a 17498 * higher ill_max_mtu. 17499 */ 17500 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17501 ipif->ipif_mtu = to_ill->ill_max_mtu; 17502 } else { 17503 /* 17504 * The ipif_t is, once again, moving to 17505 * an ill_t that has a lower maximum mtu 17506 * value. 17507 */ 17508 ipif->ipif_mtu = to_ill->ill_max_mtu; 17509 } 17510 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17511 ipif->ipif_saved_mtu != 0) { 17512 /* 17513 * The mtu of this ipif_t had to be reduced 17514 * during an earlier failover; this is an 17515 * opportunity for it to be increased (either as 17516 * part of another failover or a failback). 17517 */ 17518 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17519 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17520 ipif->ipif_saved_mtu = 0; 17521 } else { 17522 ipif->ipif_mtu = to_ill->ill_max_mtu; 17523 } 17524 } 17525 17526 /* 17527 * We preserve all the other fields of the ipif including 17528 * ipif_saved_ire_mp. The routes that are saved here will 17529 * be recreated on the new interface and back on the old 17530 * interface when we move back. 17531 */ 17532 ASSERT(ipif->ipif_arp_del_mp == NULL); 17533 17534 return (err); 17535 } 17536 17537 static int 17538 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17539 int ifindex, ipif_t **rep_ipif_ptr) 17540 { 17541 ipif_t *mipif; 17542 ipif_t *ipif_next; 17543 int err; 17544 17545 /* 17546 * We don't really try to MOVE back things if some of the 17547 * operations fail. The daemon will take care of moving again 17548 * later on. 17549 */ 17550 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17551 ipif_next = mipif->ipif_next; 17552 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17553 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17554 17555 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17556 17557 /* 17558 * When the MOVE fails, it is the job of the 17559 * application to take care of this properly 17560 * i.e try again if it is ENOMEM. 17561 */ 17562 if (mipif->ipif_ill != from_ill) { 17563 /* 17564 * ipif has moved. 17565 * 17566 * Move the multicast memberships associated 17567 * with this ipif to the new ill. For IPv6, we 17568 * do it once after all the ipifs are moved 17569 * (in ill_move) as they are not associated 17570 * with ipifs. 17571 * 17572 * We need to move the ilms as the ipif has 17573 * already been moved to a new ill even 17574 * in the case of errors. Neither 17575 * ilm_free(ipif) will find the ilm 17576 * when somebody unplumbs this ipif nor 17577 * ilm_delete(ilm) will be able to find the 17578 * ilm, if we don't move now. 17579 */ 17580 if (!from_ill->ill_isv6) 17581 ilm_move_v4(from_ill, to_ill, mipif); 17582 } 17583 17584 if (err != 0) 17585 return (err); 17586 } 17587 } 17588 return (0); 17589 } 17590 17591 static int 17592 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17593 { 17594 int ifindex; 17595 int err; 17596 struct iocblk *iocp; 17597 ipif_t *ipif; 17598 ipif_t *rep_ipif_ptr = NULL; 17599 ipif_t *from_ipif = NULL; 17600 boolean_t check_rep_if = B_FALSE; 17601 ip_stack_t *ipst = from_ill->ill_ipst; 17602 17603 iocp = (struct iocblk *)mp->b_rptr; 17604 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17605 /* 17606 * Move everything pointing at from_ill to to_ill. 17607 * We acheive this by passing in 0 as ifindex. 17608 */ 17609 ifindex = 0; 17610 } else { 17611 /* 17612 * Move everything pointing at from_ill whose original 17613 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17614 * We acheive this by passing in ifindex rather than 0. 17615 * Multicast vifs, ilgs move implicitly because ipifs move. 17616 */ 17617 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17618 ifindex = to_ill->ill_phyint->phyint_ifindex; 17619 } 17620 17621 /* 17622 * Determine if there is at least one ipif that would move from 17623 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17624 * ipif (if it exists) on the to_ill would be consumed as a result of 17625 * the move, in which case we need to quiesce the replacement ipif also. 17626 */ 17627 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17628 from_ipif = from_ipif->ipif_next) { 17629 if (((ifindex == 0) || 17630 (ifindex == from_ipif->ipif_orig_ifindex)) && 17631 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17632 check_rep_if = B_TRUE; 17633 break; 17634 } 17635 } 17636 17637 17638 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17639 17640 GRAB_ILL_LOCKS(from_ill, to_ill); 17641 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17642 (void) ipsq_pending_mp_add(NULL, ipif, q, 17643 mp, ILL_MOVE_OK); 17644 RELEASE_ILL_LOCKS(from_ill, to_ill); 17645 return (EINPROGRESS); 17646 } 17647 17648 /* Check if the replacement ipif is quiescent to delete */ 17649 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17650 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17651 to_ill->ill_ipif->ipif_state_flags |= 17652 IPIF_MOVING | IPIF_CHANGING; 17653 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17654 (void) ipsq_pending_mp_add(NULL, ipif, q, 17655 mp, ILL_MOVE_OK); 17656 RELEASE_ILL_LOCKS(from_ill, to_ill); 17657 return (EINPROGRESS); 17658 } 17659 } 17660 RELEASE_ILL_LOCKS(from_ill, to_ill); 17661 17662 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17663 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17664 GRAB_ILL_LOCKS(from_ill, to_ill); 17665 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17666 17667 /* ilm_move is done inside ipif_move for IPv4 */ 17668 if (err == 0 && from_ill->ill_isv6) 17669 ilm_move_v6(from_ill, to_ill, ifindex); 17670 17671 RELEASE_ILL_LOCKS(from_ill, to_ill); 17672 rw_exit(&ipst->ips_ill_g_lock); 17673 17674 /* 17675 * send rts messages and multicast messages. 17676 */ 17677 if (rep_ipif_ptr != NULL) { 17678 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17679 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17680 rep_ipif_ptr->ipif_recovery_id = 0; 17681 } 17682 ip_rts_ifmsg(rep_ipif_ptr); 17683 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17684 #ifdef DEBUG 17685 ipif_trace_cleanup(rep_ipif_ptr); 17686 #endif 17687 mi_free(rep_ipif_ptr); 17688 } 17689 17690 conn_move_ill(from_ill, to_ill, ifindex); 17691 17692 return (err); 17693 } 17694 17695 /* 17696 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17697 * Also checks for the validity of the arguments. 17698 * Note: We are already exclusive inside the from group. 17699 * It is upto the caller to release refcnt on the to_ill's. 17700 */ 17701 static int 17702 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17703 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17704 { 17705 int dst_index; 17706 ipif_t *ipif_v4, *ipif_v6; 17707 struct lifreq *lifr; 17708 mblk_t *mp1; 17709 boolean_t exists; 17710 sin_t *sin; 17711 int err = 0; 17712 ip_stack_t *ipst; 17713 17714 if (CONN_Q(q)) 17715 ipst = CONNQ_TO_IPST(q); 17716 else 17717 ipst = ILLQ_TO_IPST(q); 17718 17719 17720 if ((mp1 = mp->b_cont) == NULL) 17721 return (EPROTO); 17722 17723 if ((mp1 = mp1->b_cont) == NULL) 17724 return (EPROTO); 17725 17726 lifr = (struct lifreq *)mp1->b_rptr; 17727 sin = (sin_t *)&lifr->lifr_addr; 17728 17729 /* 17730 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17731 * specific operations. 17732 */ 17733 if (sin->sin_family != AF_UNSPEC) 17734 return (EINVAL); 17735 17736 /* 17737 * Get ipif with id 0. We are writer on the from ill. So we can pass 17738 * NULLs for the last 4 args and we know the lookup won't fail 17739 * with EINPROGRESS. 17740 */ 17741 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17742 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17743 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17744 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17745 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17746 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17747 17748 if (ipif_v4 == NULL && ipif_v6 == NULL) 17749 return (ENXIO); 17750 17751 if (ipif_v4 != NULL) { 17752 ASSERT(ipif_v4->ipif_refcnt != 0); 17753 if (ipif_v4->ipif_id != 0) { 17754 err = EINVAL; 17755 goto done; 17756 } 17757 17758 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17759 *ill_from_v4 = ipif_v4->ipif_ill; 17760 } 17761 17762 if (ipif_v6 != NULL) { 17763 ASSERT(ipif_v6->ipif_refcnt != 0); 17764 if (ipif_v6->ipif_id != 0) { 17765 err = EINVAL; 17766 goto done; 17767 } 17768 17769 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17770 *ill_from_v6 = ipif_v6->ipif_ill; 17771 } 17772 17773 err = 0; 17774 dst_index = lifr->lifr_movetoindex; 17775 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17776 q, mp, ip_process_ioctl, &err, ipst); 17777 if (err != 0) { 17778 /* 17779 * There could be only v6. 17780 */ 17781 if (err != ENXIO) 17782 goto done; 17783 err = 0; 17784 } 17785 17786 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17787 q, mp, ip_process_ioctl, &err, ipst); 17788 if (err != 0) { 17789 if (err != ENXIO) 17790 goto done; 17791 if (*ill_to_v4 == NULL) { 17792 err = ENXIO; 17793 goto done; 17794 } 17795 err = 0; 17796 } 17797 17798 /* 17799 * If we have something to MOVE i.e "from" not NULL, 17800 * "to" should be non-NULL. 17801 */ 17802 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17803 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17804 err = EINVAL; 17805 } 17806 17807 done: 17808 if (ipif_v4 != NULL) 17809 ipif_refrele(ipif_v4); 17810 if (ipif_v6 != NULL) 17811 ipif_refrele(ipif_v6); 17812 return (err); 17813 } 17814 17815 /* 17816 * FAILOVER and FAILBACK are modelled as MOVE operations. 17817 * 17818 * We don't check whether the MOVE is within the same group or 17819 * not, because this ioctl can be used as a generic mechanism 17820 * to failover from interface A to B, though things will function 17821 * only if they are really part of the same group. Moreover, 17822 * all ipifs may be down and hence temporarily out of the group. 17823 * 17824 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17825 * down first and then V6. For each we wait for the ipif's to become quiescent. 17826 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17827 * have been deleted and there are no active references. Once quiescent the 17828 * ipif's are moved and brought up on the new ill. 17829 * 17830 * Normally the source ill and destination ill belong to the same IPMP group 17831 * and hence the same ipsq_t. In the event they don't belong to the same 17832 * same group the two ipsq's are first merged into one ipsq - that of the 17833 * to_ill. The multicast memberships on the source and destination ill cannot 17834 * change during the move operation since multicast joins/leaves also have to 17835 * execute on the same ipsq and are hence serialized. 17836 */ 17837 /* ARGSUSED */ 17838 int 17839 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17840 ip_ioctl_cmd_t *ipip, void *ifreq) 17841 { 17842 ill_t *ill_to_v4 = NULL; 17843 ill_t *ill_to_v6 = NULL; 17844 ill_t *ill_from_v4 = NULL; 17845 ill_t *ill_from_v6 = NULL; 17846 int err = 0; 17847 17848 /* 17849 * setup from and to ill's, we can get EINPROGRESS only for 17850 * to_ill's. 17851 */ 17852 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17853 &ill_to_v4, &ill_to_v6); 17854 17855 if (err != 0) { 17856 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17857 goto done; 17858 } 17859 17860 /* 17861 * nothing to do. 17862 */ 17863 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17864 goto done; 17865 } 17866 17867 /* 17868 * nothing to do. 17869 */ 17870 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17871 goto done; 17872 } 17873 17874 /* 17875 * Mark the ill as changing. 17876 * ILL_CHANGING flag is cleared when the ipif's are brought up 17877 * in ill_up_ipifs in case of error they are cleared below. 17878 */ 17879 17880 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17881 if (ill_from_v4 != NULL) 17882 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17883 if (ill_from_v6 != NULL) 17884 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17885 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17886 17887 /* 17888 * Make sure that both src and dst are 17889 * in the same syncq group. If not make it happen. 17890 * We are not holding any locks because we are the writer 17891 * on the from_ipsq and we will hold locks in ill_merge_groups 17892 * to protect to_ipsq against changing. 17893 */ 17894 if (ill_from_v4 != NULL) { 17895 if (ill_from_v4->ill_phyint->phyint_ipsq != 17896 ill_to_v4->ill_phyint->phyint_ipsq) { 17897 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17898 NULL, mp, q); 17899 goto err_ret; 17900 17901 } 17902 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17903 } else { 17904 17905 if (ill_from_v6->ill_phyint->phyint_ipsq != 17906 ill_to_v6->ill_phyint->phyint_ipsq) { 17907 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17908 NULL, mp, q); 17909 goto err_ret; 17910 17911 } 17912 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17913 } 17914 17915 /* 17916 * Now that the ipsq's have been merged and we are the writer 17917 * lets mark to_ill as changing as well. 17918 */ 17919 17920 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17921 if (ill_to_v4 != NULL) 17922 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17923 if (ill_to_v6 != NULL) 17924 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17925 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17926 17927 /* 17928 * Its ok for us to proceed with the move even if 17929 * ill_pending_mp is non null on one of the from ill's as the reply 17930 * should not be looking at the ipif, it should only care about the 17931 * ill itself. 17932 */ 17933 17934 /* 17935 * lets move ipv4 first. 17936 */ 17937 if (ill_from_v4 != NULL) { 17938 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17939 ill_from_v4->ill_move_in_progress = B_TRUE; 17940 ill_to_v4->ill_move_in_progress = B_TRUE; 17941 ill_to_v4->ill_move_peer = ill_from_v4; 17942 ill_from_v4->ill_move_peer = ill_to_v4; 17943 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17944 } 17945 17946 /* 17947 * Now lets move ipv6. 17948 */ 17949 if (err == 0 && ill_from_v6 != NULL) { 17950 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17951 ill_from_v6->ill_move_in_progress = B_TRUE; 17952 ill_to_v6->ill_move_in_progress = B_TRUE; 17953 ill_to_v6->ill_move_peer = ill_from_v6; 17954 ill_from_v6->ill_move_peer = ill_to_v6; 17955 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17956 } 17957 17958 err_ret: 17959 /* 17960 * EINPROGRESS means we are waiting for the ipif's that need to be 17961 * moved to become quiescent. 17962 */ 17963 if (err == EINPROGRESS) { 17964 goto done; 17965 } 17966 17967 /* 17968 * if err is set ill_up_ipifs will not be called 17969 * lets clear the flags. 17970 */ 17971 17972 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17973 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17974 /* 17975 * Some of the clearing may be redundant. But it is simple 17976 * not making any extra checks. 17977 */ 17978 if (ill_from_v6 != NULL) { 17979 ill_from_v6->ill_move_in_progress = B_FALSE; 17980 ill_from_v6->ill_move_peer = NULL; 17981 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17982 } 17983 if (ill_from_v4 != NULL) { 17984 ill_from_v4->ill_move_in_progress = B_FALSE; 17985 ill_from_v4->ill_move_peer = NULL; 17986 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17987 } 17988 if (ill_to_v6 != NULL) { 17989 ill_to_v6->ill_move_in_progress = B_FALSE; 17990 ill_to_v6->ill_move_peer = NULL; 17991 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17992 } 17993 if (ill_to_v4 != NULL) { 17994 ill_to_v4->ill_move_in_progress = B_FALSE; 17995 ill_to_v4->ill_move_peer = NULL; 17996 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17997 } 17998 17999 /* 18000 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18001 * Do this always to maintain proper state i.e even in case of errors. 18002 * As phyint_inactive looks at both v4 and v6 interfaces, 18003 * we need not call on both v4 and v6 interfaces. 18004 */ 18005 if (ill_from_v4 != NULL) { 18006 if ((ill_from_v4->ill_phyint->phyint_flags & 18007 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18008 phyint_inactive(ill_from_v4->ill_phyint); 18009 } 18010 } else if (ill_from_v6 != NULL) { 18011 if ((ill_from_v6->ill_phyint->phyint_flags & 18012 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18013 phyint_inactive(ill_from_v6->ill_phyint); 18014 } 18015 } 18016 18017 if (ill_to_v4 != NULL) { 18018 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18019 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18020 } 18021 } else if (ill_to_v6 != NULL) { 18022 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18023 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18024 } 18025 } 18026 18027 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18028 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18029 18030 no_err: 18031 /* 18032 * lets bring the interfaces up on the to_ill. 18033 */ 18034 if (err == 0) { 18035 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18036 q, mp); 18037 } 18038 18039 if (err == 0) { 18040 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18041 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18042 18043 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18044 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18045 } 18046 done: 18047 18048 if (ill_to_v4 != NULL) { 18049 ill_refrele(ill_to_v4); 18050 } 18051 if (ill_to_v6 != NULL) { 18052 ill_refrele(ill_to_v6); 18053 } 18054 18055 return (err); 18056 } 18057 18058 static void 18059 ill_dl_down(ill_t *ill) 18060 { 18061 /* 18062 * The ill is down; unbind but stay attached since we're still 18063 * associated with a PPA. If we have negotiated DLPI capabilites 18064 * with the data link service provider (IDS_OK) then reset them. 18065 * The interval between unbinding and rebinding is potentially 18066 * unbounded hence we cannot assume things will be the same. 18067 * The DLPI capabilities will be probed again when the data link 18068 * is brought up. 18069 */ 18070 mblk_t *mp = ill->ill_unbind_mp; 18071 18072 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18073 18074 ill->ill_unbind_mp = NULL; 18075 if (mp != NULL) { 18076 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18077 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18078 ill->ill_name)); 18079 mutex_enter(&ill->ill_lock); 18080 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18081 mutex_exit(&ill->ill_lock); 18082 /* 18083 * Reset the capabilities if the negotiation is done or is 18084 * still in progress. Note that ill_capability_reset() will 18085 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18086 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18087 * 18088 * Further, reset ill_capab_reneg to be B_FALSE so that the 18089 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18090 * the capabilities renegotiation from happening. 18091 */ 18092 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18093 ill_capability_reset(ill); 18094 ill->ill_capab_reneg = B_FALSE; 18095 18096 ill_dlpi_send(ill, mp); 18097 } 18098 18099 /* 18100 * Toss all of our multicast memberships. We could keep them, but 18101 * then we'd have to do bookkeeping of any joins and leaves performed 18102 * by the application while the the interface is down (we can't just 18103 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18104 * on a downed interface). 18105 */ 18106 ill_leave_multicast(ill); 18107 18108 mutex_enter(&ill->ill_lock); 18109 ill->ill_dl_up = 0; 18110 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18111 mutex_exit(&ill->ill_lock); 18112 } 18113 18114 static void 18115 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18116 { 18117 union DL_primitives *dlp; 18118 t_uscalar_t prim; 18119 18120 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18121 18122 dlp = (union DL_primitives *)mp->b_rptr; 18123 prim = dlp->dl_primitive; 18124 18125 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18126 dl_primstr(prim), prim, ill->ill_name)); 18127 18128 switch (prim) { 18129 case DL_PHYS_ADDR_REQ: 18130 { 18131 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18132 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18133 break; 18134 } 18135 case DL_BIND_REQ: 18136 mutex_enter(&ill->ill_lock); 18137 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18138 mutex_exit(&ill->ill_lock); 18139 break; 18140 } 18141 18142 /* 18143 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18144 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18145 * we only wait for the ACK of the DL_UNBIND_REQ. 18146 */ 18147 mutex_enter(&ill->ill_lock); 18148 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18149 (prim == DL_UNBIND_REQ)) { 18150 ill->ill_dlpi_pending = prim; 18151 } 18152 mutex_exit(&ill->ill_lock); 18153 18154 putnext(ill->ill_wq, mp); 18155 } 18156 18157 /* 18158 * Helper function for ill_dlpi_send(). 18159 */ 18160 /* ARGSUSED */ 18161 static void 18162 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18163 { 18164 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18165 } 18166 18167 /* 18168 * Send a DLPI control message to the driver but make sure there 18169 * is only one outstanding message. Uses ill_dlpi_pending to tell 18170 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18171 * when an ACK or a NAK is received to process the next queued message. 18172 */ 18173 void 18174 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18175 { 18176 mblk_t **mpp; 18177 18178 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18179 18180 /* 18181 * To ensure that any DLPI requests for current exclusive operation 18182 * are always completely sent before any DLPI messages for other 18183 * operations, require writer access before enqueuing. 18184 */ 18185 if (!IAM_WRITER_ILL(ill)) { 18186 ill_refhold(ill); 18187 /* qwriter_ip() does the ill_refrele() */ 18188 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18189 NEW_OP, B_TRUE); 18190 return; 18191 } 18192 18193 mutex_enter(&ill->ill_lock); 18194 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18195 /* Must queue message. Tail insertion */ 18196 mpp = &ill->ill_dlpi_deferred; 18197 while (*mpp != NULL) 18198 mpp = &((*mpp)->b_next); 18199 18200 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18201 ill->ill_name)); 18202 18203 *mpp = mp; 18204 mutex_exit(&ill->ill_lock); 18205 return; 18206 } 18207 mutex_exit(&ill->ill_lock); 18208 ill_dlpi_dispatch(ill, mp); 18209 } 18210 18211 /* 18212 * Send all deferred DLPI messages without waiting for their ACKs. 18213 */ 18214 void 18215 ill_dlpi_send_deferred(ill_t *ill) 18216 { 18217 mblk_t *mp, *nextmp; 18218 18219 /* 18220 * Clear ill_dlpi_pending so that the message is not queued in 18221 * ill_dlpi_send(). 18222 */ 18223 mutex_enter(&ill->ill_lock); 18224 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18225 mp = ill->ill_dlpi_deferred; 18226 ill->ill_dlpi_deferred = NULL; 18227 mutex_exit(&ill->ill_lock); 18228 18229 for (; mp != NULL; mp = nextmp) { 18230 nextmp = mp->b_next; 18231 mp->b_next = NULL; 18232 ill_dlpi_send(ill, mp); 18233 } 18234 } 18235 18236 /* 18237 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18238 */ 18239 boolean_t 18240 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18241 { 18242 t_uscalar_t pending; 18243 18244 mutex_enter(&ill->ill_lock); 18245 if (ill->ill_dlpi_pending == prim) { 18246 mutex_exit(&ill->ill_lock); 18247 return (B_TRUE); 18248 } 18249 18250 /* 18251 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18252 * without waiting, so don't print any warnings in that case. 18253 */ 18254 if (ill->ill_state_flags & ILL_CONDEMNED) { 18255 mutex_exit(&ill->ill_lock); 18256 return (B_FALSE); 18257 } 18258 pending = ill->ill_dlpi_pending; 18259 mutex_exit(&ill->ill_lock); 18260 18261 if (pending == DL_PRIM_INVAL) { 18262 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18263 "received unsolicited ack for %s on %s\n", 18264 dl_primstr(prim), ill->ill_name); 18265 } else { 18266 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18267 "received unexpected ack for %s on %s (expecting %s)\n", 18268 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18269 } 18270 return (B_FALSE); 18271 } 18272 18273 /* 18274 * Called when an DLPI control message has been acked or nacked to 18275 * send down the next queued message (if any). 18276 */ 18277 void 18278 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18279 { 18280 mblk_t *mp; 18281 18282 ASSERT(IAM_WRITER_ILL(ill)); 18283 mutex_enter(&ill->ill_lock); 18284 18285 ASSERT(prim != DL_PRIM_INVAL); 18286 ASSERT(ill->ill_dlpi_pending == prim); 18287 18288 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18289 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18290 18291 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18292 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18293 cv_signal(&ill->ill_cv); 18294 mutex_exit(&ill->ill_lock); 18295 return; 18296 } 18297 18298 ill->ill_dlpi_deferred = mp->b_next; 18299 mp->b_next = NULL; 18300 mutex_exit(&ill->ill_lock); 18301 18302 ill_dlpi_dispatch(ill, mp); 18303 } 18304 18305 void 18306 conn_delete_ire(conn_t *connp, caddr_t arg) 18307 { 18308 ipif_t *ipif = (ipif_t *)arg; 18309 ire_t *ire; 18310 18311 /* 18312 * Look at the cached ires on conns which has pointers to ipifs. 18313 * We just call ire_refrele which clears up the reference 18314 * to ire. Called when a conn closes. Also called from ipif_free 18315 * to cleanup indirect references to the stale ipif via the cached ire. 18316 */ 18317 mutex_enter(&connp->conn_lock); 18318 ire = connp->conn_ire_cache; 18319 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18320 connp->conn_ire_cache = NULL; 18321 mutex_exit(&connp->conn_lock); 18322 IRE_REFRELE_NOTR(ire); 18323 return; 18324 } 18325 mutex_exit(&connp->conn_lock); 18326 18327 } 18328 18329 /* 18330 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18331 * of IREs. Those IREs may have been previously cached in the conn structure. 18332 * This ipcl_walk() walker function releases all references to such IREs based 18333 * on the condemned flag. 18334 */ 18335 /* ARGSUSED */ 18336 void 18337 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18338 { 18339 ire_t *ire; 18340 18341 mutex_enter(&connp->conn_lock); 18342 ire = connp->conn_ire_cache; 18343 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18344 connp->conn_ire_cache = NULL; 18345 mutex_exit(&connp->conn_lock); 18346 IRE_REFRELE_NOTR(ire); 18347 return; 18348 } 18349 mutex_exit(&connp->conn_lock); 18350 } 18351 18352 /* 18353 * Take down a specific interface, but don't lose any information about it. 18354 * Also delete interface from its interface group (ifgrp). 18355 * (Always called as writer.) 18356 * This function goes through the down sequence even if the interface is 18357 * already down. There are 2 reasons. 18358 * a. Currently we permit interface routes that depend on down interfaces 18359 * to be added. This behaviour itself is questionable. However it appears 18360 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18361 * time. We go thru the cleanup in order to remove these routes. 18362 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18363 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18364 * down, but we need to cleanup i.e. do ill_dl_down and 18365 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18366 * 18367 * IP-MT notes: 18368 * 18369 * Model of reference to interfaces. 18370 * 18371 * The following members in ipif_t track references to the ipif. 18372 * int ipif_refcnt; Active reference count 18373 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18374 * The following members in ill_t track references to the ill. 18375 * int ill_refcnt; active refcnt 18376 * uint_t ill_ire_cnt; Number of ires referencing ill 18377 * uint_t ill_nce_cnt; Number of nces referencing ill 18378 * 18379 * Reference to an ipif or ill can be obtained in any of the following ways. 18380 * 18381 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18382 * Pointers to ipif / ill from other data structures viz ire and conn. 18383 * Implicit reference to the ipif / ill by holding a reference to the ire. 18384 * 18385 * The ipif/ill lookup functions return a reference held ipif / ill. 18386 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18387 * This is a purely dynamic reference count associated with threads holding 18388 * references to the ipif / ill. Pointers from other structures do not 18389 * count towards this reference count. 18390 * 18391 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18392 * ipif/ill. This is incremented whenever a new ire is created referencing the 18393 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18394 * actually added to the ire hash table. The count is decremented in 18395 * ire_inactive where the ire is destroyed. 18396 * 18397 * nce's reference ill's thru nce_ill and the count of nce's associated with 18398 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18399 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18400 * table. Similarly it is decremented in ndp_inactive() where the nce 18401 * is destroyed. 18402 * 18403 * Flow of ioctls involving interface down/up 18404 * 18405 * The following is the sequence of an attempt to set some critical flags on an 18406 * up interface. 18407 * ip_sioctl_flags 18408 * ipif_down 18409 * wait for ipif to be quiescent 18410 * ipif_down_tail 18411 * ip_sioctl_flags_tail 18412 * 18413 * All set ioctls that involve down/up sequence would have a skeleton similar 18414 * to the above. All the *tail functions are called after the refcounts have 18415 * dropped to the appropriate values. 18416 * 18417 * The mechanism to quiesce an ipif is as follows. 18418 * 18419 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18420 * on the ipif. Callers either pass a flag requesting wait or the lookup 18421 * functions will return NULL. 18422 * 18423 * Delete all ires referencing this ipif 18424 * 18425 * Any thread attempting to do an ipif_refhold on an ipif that has been 18426 * obtained thru a cached pointer will first make sure that 18427 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18428 * increment the refcount. 18429 * 18430 * The above guarantees that the ipif refcount will eventually come down to 18431 * zero and the ipif will quiesce, once all threads that currently hold a 18432 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18433 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18434 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18435 * drop to zero. 18436 * 18437 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18438 * 18439 * Threads trying to lookup an ipif or ill can pass a flag requesting 18440 * wait and restart if the ipif / ill cannot be looked up currently. 18441 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18442 * failure if the ipif is currently undergoing an exclusive operation, and 18443 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18444 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18445 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18446 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18447 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18448 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18449 * until we release the ipsq_lock, even though the the ill/ipif state flags 18450 * can change after we drop the ill_lock. 18451 * 18452 * An attempt to send out a packet using an ipif that is currently 18453 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18454 * operation and restart it later when the exclusive condition on the ipif ends. 18455 * This is an example of not passing the wait flag to the lookup functions. For 18456 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18457 * out a multicast packet on that ipif will fail while the ipif is 18458 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18459 * currently IPIF_CHANGING will also fail. 18460 */ 18461 int 18462 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18463 { 18464 ill_t *ill = ipif->ipif_ill; 18465 phyint_t *phyi; 18466 conn_t *connp; 18467 boolean_t success; 18468 boolean_t ipif_was_up = B_FALSE; 18469 ip_stack_t *ipst = ill->ill_ipst; 18470 18471 ASSERT(IAM_WRITER_IPIF(ipif)); 18472 18473 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18474 18475 if (ipif->ipif_flags & IPIF_UP) { 18476 mutex_enter(&ill->ill_lock); 18477 ipif->ipif_flags &= ~IPIF_UP; 18478 ASSERT(ill->ill_ipif_up_count > 0); 18479 --ill->ill_ipif_up_count; 18480 mutex_exit(&ill->ill_lock); 18481 ipif_was_up = B_TRUE; 18482 /* Update status in SCTP's list */ 18483 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18484 } 18485 18486 /* 18487 * Blow away memberships we established in ipif_multicast_up(). 18488 */ 18489 ipif_multicast_down(ipif); 18490 18491 /* 18492 * Remove from the mapping for __sin6_src_id. We insert only 18493 * when the address is not INADDR_ANY. As IPv4 addresses are 18494 * stored as mapped addresses, we need to check for mapped 18495 * INADDR_ANY also. 18496 */ 18497 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18498 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18499 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18500 int err; 18501 18502 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18503 ipif->ipif_zoneid, ipst); 18504 if (err != 0) { 18505 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18506 } 18507 } 18508 18509 /* 18510 * Before we delete the ill from the group (if any), we need 18511 * to make sure that we delete all the routes dependent on 18512 * this and also any ipifs dependent on this ipif for 18513 * source address. We need to do before we delete from 18514 * the group because 18515 * 18516 * 1) ipif_down_delete_ire de-references ill->ill_group. 18517 * 18518 * 2) ipif_update_other_ipifs needs to walk the whole group 18519 * for re-doing source address selection. Note that 18520 * ipif_select_source[_v6] called from 18521 * ipif_update_other_ipifs[_v6] will not pick this ipif 18522 * because we have already marked down here i.e cleared 18523 * IPIF_UP. 18524 */ 18525 if (ipif->ipif_isv6) { 18526 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18527 ipst); 18528 } else { 18529 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18530 ipst); 18531 } 18532 18533 /* 18534 * Cleaning up the conn_ire_cache or conns must be done only after the 18535 * ires have been deleted above. Otherwise a thread could end up 18536 * caching an ire in a conn after we have finished the cleanup of the 18537 * conn. The caching is done after making sure that the ire is not yet 18538 * condemned. Also documented in the block comment above ip_output 18539 */ 18540 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18541 /* Also, delete the ires cached in SCTP */ 18542 sctp_ire_cache_flush(ipif); 18543 18544 /* 18545 * Update any other ipifs which have used "our" local address as 18546 * a source address. This entails removing and recreating IRE_INTERFACE 18547 * entries for such ipifs. 18548 */ 18549 if (ipif->ipif_isv6) 18550 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18551 else 18552 ipif_update_other_ipifs(ipif, ill->ill_group); 18553 18554 if (ipif_was_up) { 18555 /* 18556 * Check whether it is last ipif to leave this group. 18557 * If this is the last ipif to leave, we should remove 18558 * this ill from the group as ipif_select_source will not 18559 * be able to find any useful ipifs if this ill is selected 18560 * for load balancing. 18561 * 18562 * For nameless groups, we should call ifgrp_delete if this 18563 * belongs to some group. As this ipif is going down, we may 18564 * need to reconstruct groups. 18565 */ 18566 phyi = ill->ill_phyint; 18567 /* 18568 * If the phyint_groupname_len is 0, it may or may not 18569 * be in the nameless group. If the phyint_groupname_len is 18570 * not 0, then this ill should be part of some group. 18571 * As we always insert this ill in the group if 18572 * phyint_groupname_len is not zero when the first ipif 18573 * comes up (in ipif_up_done), it should be in a group 18574 * when the namelen is not 0. 18575 * 18576 * NOTE : When we delete the ill from the group,it will 18577 * blow away all the IRE_CACHES pointing either at this ipif or 18578 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18579 * should be pointing at this ill. 18580 */ 18581 ASSERT(phyi->phyint_groupname_len == 0 || 18582 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18583 18584 if (phyi->phyint_groupname_len != 0) { 18585 if (ill->ill_ipif_up_count == 0) 18586 illgrp_delete(ill); 18587 } 18588 18589 /* 18590 * If we have deleted some of the broadcast ires associated 18591 * with this ipif, we need to re-nominate somebody else if 18592 * the ires that we deleted were the nominated ones. 18593 */ 18594 if (ill->ill_group != NULL && !ill->ill_isv6) 18595 ipif_renominate_bcast(ipif); 18596 } 18597 18598 /* 18599 * neighbor-discovery or arp entries for this interface. 18600 */ 18601 ipif_ndp_down(ipif); 18602 18603 /* 18604 * If mp is NULL the caller will wait for the appropriate refcnt. 18605 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18606 * and ill_delete -> ipif_free -> ipif_down 18607 */ 18608 if (mp == NULL) { 18609 ASSERT(q == NULL); 18610 return (0); 18611 } 18612 18613 if (CONN_Q(q)) { 18614 connp = Q_TO_CONN(q); 18615 mutex_enter(&connp->conn_lock); 18616 } else { 18617 connp = NULL; 18618 } 18619 mutex_enter(&ill->ill_lock); 18620 /* 18621 * Are there any ire's pointing to this ipif that are still active ? 18622 * If this is the last ipif going down, are there any ire's pointing 18623 * to this ill that are still active ? 18624 */ 18625 if (ipif_is_quiescent(ipif)) { 18626 mutex_exit(&ill->ill_lock); 18627 if (connp != NULL) 18628 mutex_exit(&connp->conn_lock); 18629 return (0); 18630 } 18631 18632 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18633 ill->ill_name, (void *)ill)); 18634 /* 18635 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18636 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18637 * which in turn is called by the last refrele on the ipif/ill/ire. 18638 */ 18639 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18640 if (!success) { 18641 /* The conn is closing. So just return */ 18642 ASSERT(connp != NULL); 18643 mutex_exit(&ill->ill_lock); 18644 mutex_exit(&connp->conn_lock); 18645 return (EINTR); 18646 } 18647 18648 mutex_exit(&ill->ill_lock); 18649 if (connp != NULL) 18650 mutex_exit(&connp->conn_lock); 18651 return (EINPROGRESS); 18652 } 18653 18654 void 18655 ipif_down_tail(ipif_t *ipif) 18656 { 18657 ill_t *ill = ipif->ipif_ill; 18658 18659 /* 18660 * Skip any loopback interface (null wq). 18661 * If this is the last logical interface on the ill 18662 * have ill_dl_down tell the driver we are gone (unbind) 18663 * Note that lun 0 can ipif_down even though 18664 * there are other logical units that are up. 18665 * This occurs e.g. when we change a "significant" IFF_ flag. 18666 */ 18667 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18668 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18669 ill->ill_dl_up) { 18670 ill_dl_down(ill); 18671 } 18672 ill->ill_logical_down = 0; 18673 18674 /* 18675 * Have to be after removing the routes in ipif_down_delete_ire. 18676 */ 18677 if (ipif->ipif_isv6) { 18678 if (ill->ill_flags & ILLF_XRESOLV) 18679 ipif_arp_down(ipif); 18680 } else { 18681 ipif_arp_down(ipif); 18682 } 18683 18684 ip_rts_ifmsg(ipif); 18685 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18686 } 18687 18688 /* 18689 * Bring interface logically down without bringing the physical interface 18690 * down e.g. when the netmask is changed. This avoids long lasting link 18691 * negotiations between an ethernet interface and a certain switches. 18692 */ 18693 static int 18694 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18695 { 18696 /* 18697 * The ill_logical_down flag is a transient flag. It is set here 18698 * and is cleared once the down has completed in ipif_down_tail. 18699 * This flag does not indicate whether the ill stream is in the 18700 * DL_BOUND state with the driver. Instead this flag is used by 18701 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18702 * the driver. The state of the ill stream i.e. whether it is 18703 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18704 */ 18705 ipif->ipif_ill->ill_logical_down = 1; 18706 return (ipif_down(ipif, q, mp)); 18707 } 18708 18709 /* 18710 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18711 * If the usesrc client ILL is already part of a usesrc group or not, 18712 * in either case a ire_stq with the matching usesrc client ILL will 18713 * locate the IRE's that need to be deleted. We want IREs to be created 18714 * with the new source address. 18715 */ 18716 static void 18717 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18718 { 18719 ill_t *ucill = (ill_t *)ill_arg; 18720 18721 ASSERT(IAM_WRITER_ILL(ucill)); 18722 18723 if (ire->ire_stq == NULL) 18724 return; 18725 18726 if ((ire->ire_type == IRE_CACHE) && 18727 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18728 ire_delete(ire); 18729 } 18730 18731 /* 18732 * ire_walk routine to delete every IRE dependent on the interface 18733 * address that is going down. (Always called as writer.) 18734 * Works for both v4 and v6. 18735 * In addition for checking for ire_ipif matches it also checks for 18736 * IRE_CACHE entries which have the same source address as the 18737 * disappearing ipif since ipif_select_source might have picked 18738 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18739 * care of any IRE_INTERFACE with the disappearing source address. 18740 */ 18741 static void 18742 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18743 { 18744 ipif_t *ipif = (ipif_t *)ipif_arg; 18745 ill_t *ire_ill; 18746 ill_t *ipif_ill; 18747 18748 ASSERT(IAM_WRITER_IPIF(ipif)); 18749 if (ire->ire_ipif == NULL) 18750 return; 18751 18752 /* 18753 * For IPv4, we derive source addresses for an IRE from ipif's 18754 * belonging to the same IPMP group as the IRE's outgoing 18755 * interface. If an IRE's outgoing interface isn't in the 18756 * same IPMP group as a particular ipif, then that ipif 18757 * couldn't have been used as a source address for this IRE. 18758 * 18759 * For IPv6, source addresses are only restricted to the IPMP group 18760 * if the IRE is for a link-local address or a multicast address. 18761 * Otherwise, source addresses for an IRE can be chosen from 18762 * interfaces other than the the outgoing interface for that IRE. 18763 * 18764 * For source address selection details, see ipif_select_source() 18765 * and ipif_select_source_v6(). 18766 */ 18767 if (ire->ire_ipversion == IPV4_VERSION || 18768 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18769 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18770 ire_ill = ire->ire_ipif->ipif_ill; 18771 ipif_ill = ipif->ipif_ill; 18772 18773 if (ire_ill->ill_group != ipif_ill->ill_group) { 18774 return; 18775 } 18776 } 18777 18778 18779 if (ire->ire_ipif != ipif) { 18780 /* 18781 * Look for a matching source address. 18782 */ 18783 if (ire->ire_type != IRE_CACHE) 18784 return; 18785 if (ipif->ipif_flags & IPIF_NOLOCAL) 18786 return; 18787 18788 if (ire->ire_ipversion == IPV4_VERSION) { 18789 if (ire->ire_src_addr != ipif->ipif_src_addr) 18790 return; 18791 } else { 18792 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18793 &ipif->ipif_v6lcl_addr)) 18794 return; 18795 } 18796 ire_delete(ire); 18797 return; 18798 } 18799 /* 18800 * ire_delete() will do an ire_flush_cache which will delete 18801 * all ire_ipif matches 18802 */ 18803 ire_delete(ire); 18804 } 18805 18806 /* 18807 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18808 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18809 * 2) when an interface is brought up or down (on that ill). 18810 * This ensures that the IRE_CACHE entries don't retain stale source 18811 * address selection results. 18812 */ 18813 void 18814 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18815 { 18816 ill_t *ill = (ill_t *)ill_arg; 18817 ill_t *ipif_ill; 18818 18819 ASSERT(IAM_WRITER_ILL(ill)); 18820 /* 18821 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18822 * Hence this should be IRE_CACHE. 18823 */ 18824 ASSERT(ire->ire_type == IRE_CACHE); 18825 18826 /* 18827 * We are called for IRE_CACHES whose ire_ipif matches ill. 18828 * We are only interested in IRE_CACHES that has borrowed 18829 * the source address from ill_arg e.g. ipif_up_done[_v6] 18830 * for which we need to look at ire_ipif->ipif_ill match 18831 * with ill. 18832 */ 18833 ASSERT(ire->ire_ipif != NULL); 18834 ipif_ill = ire->ire_ipif->ipif_ill; 18835 if (ipif_ill == ill || (ill->ill_group != NULL && 18836 ipif_ill->ill_group == ill->ill_group)) { 18837 ire_delete(ire); 18838 } 18839 } 18840 18841 /* 18842 * Delete all the ire whose stq references ill_arg. 18843 */ 18844 static void 18845 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18846 { 18847 ill_t *ill = (ill_t *)ill_arg; 18848 ill_t *ire_ill; 18849 18850 ASSERT(IAM_WRITER_ILL(ill)); 18851 /* 18852 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18853 * Hence this should be IRE_CACHE. 18854 */ 18855 ASSERT(ire->ire_type == IRE_CACHE); 18856 18857 /* 18858 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18859 * matches ill. We are only interested in IRE_CACHES that 18860 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18861 * filtering here. 18862 */ 18863 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18864 18865 if (ire_ill == ill) 18866 ire_delete(ire); 18867 } 18868 18869 /* 18870 * This is called when an ill leaves the group. We want to delete 18871 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18872 * pointing at ill. 18873 */ 18874 static void 18875 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18876 { 18877 ill_t *ill = (ill_t *)ill_arg; 18878 18879 ASSERT(IAM_WRITER_ILL(ill)); 18880 ASSERT(ill->ill_group == NULL); 18881 /* 18882 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18883 * Hence this should be IRE_CACHE. 18884 */ 18885 ASSERT(ire->ire_type == IRE_CACHE); 18886 /* 18887 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18888 * matches ill. We are interested in both. 18889 */ 18890 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18891 (ire->ire_ipif->ipif_ill == ill)); 18892 18893 ire_delete(ire); 18894 } 18895 18896 /* 18897 * Initiate deallocate of an IPIF. Always called as writer. Called by 18898 * ill_delete or ip_sioctl_removeif. 18899 */ 18900 static void 18901 ipif_free(ipif_t *ipif) 18902 { 18903 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18904 18905 ASSERT(IAM_WRITER_IPIF(ipif)); 18906 18907 if (ipif->ipif_recovery_id != 0) 18908 (void) untimeout(ipif->ipif_recovery_id); 18909 ipif->ipif_recovery_id = 0; 18910 18911 /* Remove conn references */ 18912 reset_conn_ipif(ipif); 18913 18914 /* 18915 * Make sure we have valid net and subnet broadcast ire's for the 18916 * other ipif's which share them with this ipif. 18917 */ 18918 if (!ipif->ipif_isv6) 18919 ipif_check_bcast_ires(ipif); 18920 18921 /* 18922 * Take down the interface. We can be called either from ill_delete 18923 * or from ip_sioctl_removeif. 18924 */ 18925 (void) ipif_down(ipif, NULL, NULL); 18926 18927 /* 18928 * Now that the interface is down, there's no chance it can still 18929 * become a duplicate. Cancel any timer that may have been set while 18930 * tearing down. 18931 */ 18932 if (ipif->ipif_recovery_id != 0) 18933 (void) untimeout(ipif->ipif_recovery_id); 18934 ipif->ipif_recovery_id = 0; 18935 18936 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18937 /* Remove pointers to this ill in the multicast routing tables */ 18938 reset_mrt_vif_ipif(ipif); 18939 rw_exit(&ipst->ips_ill_g_lock); 18940 } 18941 18942 /* 18943 * Warning: this is not the only function that calls mi_free on an ipif_t. See 18944 * also ill_move(). 18945 */ 18946 static void 18947 ipif_free_tail(ipif_t *ipif) 18948 { 18949 mblk_t *mp; 18950 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18951 18952 /* 18953 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18954 */ 18955 mutex_enter(&ipif->ipif_saved_ire_lock); 18956 mp = ipif->ipif_saved_ire_mp; 18957 ipif->ipif_saved_ire_mp = NULL; 18958 mutex_exit(&ipif->ipif_saved_ire_lock); 18959 freemsg(mp); 18960 18961 /* 18962 * Need to hold both ill_g_lock and ill_lock while 18963 * inserting or removing an ipif from the linked list 18964 * of ipifs hanging off the ill. 18965 */ 18966 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18967 /* 18968 * Remove all IPv4 multicast memberships on the interface now. 18969 * IPv6 is not handled here as the multicast memberships are 18970 * tied to the ill rather than the ipif. 18971 */ 18972 ilm_free(ipif); 18973 18974 /* 18975 * Since we held the ill_g_lock while doing the ilm_free above, 18976 * we can assert the ilms were really deleted and not just marked 18977 * ILM_DELETED. 18978 */ 18979 ASSERT(ilm_walk_ipif(ipif) == 0); 18980 18981 #ifdef DEBUG 18982 ipif_trace_cleanup(ipif); 18983 #endif 18984 18985 /* Ask SCTP to take it out of it list */ 18986 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18987 18988 /* Get it out of the ILL interface list. */ 18989 ipif_remove(ipif, B_TRUE); 18990 rw_exit(&ipst->ips_ill_g_lock); 18991 18992 mutex_destroy(&ipif->ipif_saved_ire_lock); 18993 18994 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18995 ASSERT(ipif->ipif_recovery_id == 0); 18996 18997 /* Free the memory. */ 18998 mi_free(ipif); 18999 } 19000 19001 /* 19002 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19003 * is zero. 19004 */ 19005 void 19006 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19007 { 19008 char lbuf[LIFNAMSIZ]; 19009 char *name; 19010 size_t name_len; 19011 19012 buf[0] = '\0'; 19013 name = ipif->ipif_ill->ill_name; 19014 name_len = ipif->ipif_ill->ill_name_length; 19015 if (ipif->ipif_id != 0) { 19016 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19017 ipif->ipif_id); 19018 name = lbuf; 19019 name_len = mi_strlen(name) + 1; 19020 } 19021 len -= 1; 19022 buf[len] = '\0'; 19023 len = MIN(len, name_len); 19024 bcopy(name, buf, len); 19025 } 19026 19027 /* 19028 * Find an IPIF based on the name passed in. Names can be of the 19029 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19030 * The <phys> string can have forms like <dev><#> (e.g., le0), 19031 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19032 * When there is no colon, the implied unit id is zero. <phys> must 19033 * correspond to the name of an ILL. (May be called as writer.) 19034 */ 19035 static ipif_t * 19036 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19037 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19038 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19039 { 19040 char *cp; 19041 char *endp; 19042 long id; 19043 ill_t *ill; 19044 ipif_t *ipif; 19045 uint_t ire_type; 19046 boolean_t did_alloc = B_FALSE; 19047 ipsq_t *ipsq; 19048 19049 if (error != NULL) 19050 *error = 0; 19051 19052 /* 19053 * If the caller wants to us to create the ipif, make sure we have a 19054 * valid zoneid 19055 */ 19056 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19057 19058 if (namelen == 0) { 19059 if (error != NULL) 19060 *error = ENXIO; 19061 return (NULL); 19062 } 19063 19064 *exists = B_FALSE; 19065 /* Look for a colon in the name. */ 19066 endp = &name[namelen]; 19067 for (cp = endp; --cp > name; ) { 19068 if (*cp == IPIF_SEPARATOR_CHAR) 19069 break; 19070 } 19071 19072 if (*cp == IPIF_SEPARATOR_CHAR) { 19073 /* 19074 * Reject any non-decimal aliases for logical 19075 * interfaces. Aliases with leading zeroes 19076 * are also rejected as they introduce ambiguity 19077 * in the naming of the interfaces. 19078 * In order to confirm with existing semantics, 19079 * and to not break any programs/script relying 19080 * on that behaviour, if<0>:0 is considered to be 19081 * a valid interface. 19082 * 19083 * If alias has two or more digits and the first 19084 * is zero, fail. 19085 */ 19086 if (&cp[2] < endp && cp[1] == '0') { 19087 if (error != NULL) 19088 *error = EINVAL; 19089 return (NULL); 19090 } 19091 } 19092 19093 if (cp <= name) { 19094 cp = endp; 19095 } else { 19096 *cp = '\0'; 19097 } 19098 19099 /* 19100 * Look up the ILL, based on the portion of the name 19101 * before the slash. ill_lookup_on_name returns a held ill. 19102 * Temporary to check whether ill exists already. If so 19103 * ill_lookup_on_name will clear it. 19104 */ 19105 ill = ill_lookup_on_name(name, do_alloc, isv6, 19106 q, mp, func, error, &did_alloc, ipst); 19107 if (cp != endp) 19108 *cp = IPIF_SEPARATOR_CHAR; 19109 if (ill == NULL) 19110 return (NULL); 19111 19112 /* Establish the unit number in the name. */ 19113 id = 0; 19114 if (cp < endp && *endp == '\0') { 19115 /* If there was a colon, the unit number follows. */ 19116 cp++; 19117 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19118 ill_refrele(ill); 19119 if (error != NULL) 19120 *error = ENXIO; 19121 return (NULL); 19122 } 19123 } 19124 19125 GRAB_CONN_LOCK(q); 19126 mutex_enter(&ill->ill_lock); 19127 /* Now see if there is an IPIF with this unit number. */ 19128 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19129 if (ipif->ipif_id == id) { 19130 if (zoneid != ALL_ZONES && 19131 zoneid != ipif->ipif_zoneid && 19132 ipif->ipif_zoneid != ALL_ZONES) { 19133 mutex_exit(&ill->ill_lock); 19134 RELEASE_CONN_LOCK(q); 19135 ill_refrele(ill); 19136 if (error != NULL) 19137 *error = ENXIO; 19138 return (NULL); 19139 } 19140 /* 19141 * The block comment at the start of ipif_down 19142 * explains the use of the macros used below 19143 */ 19144 if (IPIF_CAN_LOOKUP(ipif)) { 19145 ipif_refhold_locked(ipif); 19146 mutex_exit(&ill->ill_lock); 19147 if (!did_alloc) 19148 *exists = B_TRUE; 19149 /* 19150 * Drop locks before calling ill_refrele 19151 * since it can potentially call into 19152 * ipif_ill_refrele_tail which can end up 19153 * in trying to acquire any lock. 19154 */ 19155 RELEASE_CONN_LOCK(q); 19156 ill_refrele(ill); 19157 return (ipif); 19158 } else if (IPIF_CAN_WAIT(ipif, q)) { 19159 ipsq = ill->ill_phyint->phyint_ipsq; 19160 mutex_enter(&ipsq->ipsq_lock); 19161 mutex_exit(&ill->ill_lock); 19162 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19163 mutex_exit(&ipsq->ipsq_lock); 19164 RELEASE_CONN_LOCK(q); 19165 ill_refrele(ill); 19166 if (error != NULL) 19167 *error = EINPROGRESS; 19168 return (NULL); 19169 } 19170 } 19171 } 19172 RELEASE_CONN_LOCK(q); 19173 19174 if (!do_alloc) { 19175 mutex_exit(&ill->ill_lock); 19176 ill_refrele(ill); 19177 if (error != NULL) 19178 *error = ENXIO; 19179 return (NULL); 19180 } 19181 19182 /* 19183 * If none found, atomically allocate and return a new one. 19184 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19185 * to support "receive only" use of lo0:1 etc. as is still done 19186 * below as an initial guess. 19187 * However, this is now likely to be overriden later in ipif_up_done() 19188 * when we know for sure what address has been configured on the 19189 * interface, since we might have more than one loopback interface 19190 * with a loopback address, e.g. in the case of zones, and all the 19191 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19192 */ 19193 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19194 ire_type = IRE_LOOPBACK; 19195 else 19196 ire_type = IRE_LOCAL; 19197 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19198 if (ipif != NULL) 19199 ipif_refhold_locked(ipif); 19200 else if (error != NULL) 19201 *error = ENOMEM; 19202 mutex_exit(&ill->ill_lock); 19203 ill_refrele(ill); 19204 return (ipif); 19205 } 19206 19207 /* 19208 * This routine is called whenever a new address comes up on an ipif. If 19209 * we are configured to respond to address mask requests, then we are supposed 19210 * to broadcast an address mask reply at this time. This routine is also 19211 * called if we are already up, but a netmask change is made. This is legal 19212 * but might not make the system manager very popular. (May be called 19213 * as writer.) 19214 */ 19215 void 19216 ipif_mask_reply(ipif_t *ipif) 19217 { 19218 icmph_t *icmph; 19219 ipha_t *ipha; 19220 mblk_t *mp; 19221 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19222 19223 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19224 19225 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19226 return; 19227 19228 /* ICMP mask reply is IPv4 only */ 19229 ASSERT(!ipif->ipif_isv6); 19230 /* ICMP mask reply is not for a loopback interface */ 19231 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19232 19233 mp = allocb(REPLY_LEN, BPRI_HI); 19234 if (mp == NULL) 19235 return; 19236 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19237 19238 ipha = (ipha_t *)mp->b_rptr; 19239 bzero(ipha, REPLY_LEN); 19240 *ipha = icmp_ipha; 19241 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19242 ipha->ipha_src = ipif->ipif_src_addr; 19243 ipha->ipha_dst = ipif->ipif_brd_addr; 19244 ipha->ipha_length = htons(REPLY_LEN); 19245 ipha->ipha_ident = 0; 19246 19247 icmph = (icmph_t *)&ipha[1]; 19248 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19249 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19250 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19251 19252 put(ipif->ipif_wq, mp); 19253 19254 #undef REPLY_LEN 19255 } 19256 19257 /* 19258 * When the mtu in the ipif changes, we call this routine through ire_walk 19259 * to update all the relevant IREs. 19260 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19261 */ 19262 static void 19263 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19264 { 19265 ipif_t *ipif = (ipif_t *)ipif_arg; 19266 19267 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19268 return; 19269 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19270 } 19271 19272 /* 19273 * When the mtu in the ill changes, we call this routine through ire_walk 19274 * to update all the relevant IREs. 19275 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19276 */ 19277 void 19278 ill_mtu_change(ire_t *ire, char *ill_arg) 19279 { 19280 ill_t *ill = (ill_t *)ill_arg; 19281 19282 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19283 return; 19284 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19285 } 19286 19287 /* 19288 * Join the ipif specific multicast groups. 19289 * Must be called after a mapping has been set up in the resolver. (Always 19290 * called as writer.) 19291 */ 19292 void 19293 ipif_multicast_up(ipif_t *ipif) 19294 { 19295 int err, index; 19296 ill_t *ill; 19297 19298 ASSERT(IAM_WRITER_IPIF(ipif)); 19299 19300 ill = ipif->ipif_ill; 19301 index = ill->ill_phyint->phyint_ifindex; 19302 19303 ip1dbg(("ipif_multicast_up\n")); 19304 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19305 return; 19306 19307 if (ipif->ipif_isv6) { 19308 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19309 return; 19310 19311 /* Join the all hosts multicast address */ 19312 ip1dbg(("ipif_multicast_up - addmulti\n")); 19313 /* 19314 * Passing B_TRUE means we have to join the multicast 19315 * membership on this interface even though this is 19316 * FAILED. If we join on a different one in the group, 19317 * we will not be able to delete the membership later 19318 * as we currently don't track where we join when we 19319 * join within the kernel unlike applications where 19320 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19321 * for more on this. 19322 */ 19323 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19324 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19325 if (err != 0) { 19326 ip0dbg(("ipif_multicast_up: " 19327 "all_hosts_mcast failed %d\n", 19328 err)); 19329 return; 19330 } 19331 /* 19332 * Enable multicast for the solicited node multicast address 19333 */ 19334 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19335 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19336 19337 ipv6_multi.s6_addr32[3] |= 19338 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19339 19340 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19341 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19342 NULL); 19343 if (err != 0) { 19344 ip0dbg(("ipif_multicast_up: solicited MC" 19345 " failed %d\n", err)); 19346 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19347 ill, ill->ill_phyint->phyint_ifindex, 19348 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19349 return; 19350 } 19351 } 19352 } else { 19353 if (ipif->ipif_lcl_addr == INADDR_ANY) 19354 return; 19355 19356 /* Join the all hosts multicast address */ 19357 ip1dbg(("ipif_multicast_up - addmulti\n")); 19358 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19359 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19360 if (err) { 19361 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19362 return; 19363 } 19364 } 19365 ipif->ipif_multicast_up = 1; 19366 } 19367 19368 /* 19369 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19370 * (Explicit memberships are blown away in ill_leave_multicast() when the 19371 * ill is brought down.) 19372 */ 19373 static void 19374 ipif_multicast_down(ipif_t *ipif) 19375 { 19376 int err; 19377 19378 ASSERT(IAM_WRITER_IPIF(ipif)); 19379 19380 ip1dbg(("ipif_multicast_down\n")); 19381 if (!ipif->ipif_multicast_up) 19382 return; 19383 19384 ip1dbg(("ipif_multicast_down - delmulti\n")); 19385 19386 if (!ipif->ipif_isv6) { 19387 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19388 B_TRUE); 19389 if (err != 0) 19390 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19391 19392 ipif->ipif_multicast_up = 0; 19393 return; 19394 } 19395 19396 /* 19397 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19398 * we should look for ilms on this ill rather than the ones that have 19399 * been failed over here. They are here temporarily. As 19400 * ipif_multicast_up has joined on this ill, we should delete only 19401 * from this ill. 19402 */ 19403 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19404 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19405 B_TRUE, B_TRUE); 19406 if (err != 0) { 19407 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19408 err)); 19409 } 19410 /* 19411 * Disable multicast for the solicited node multicast address 19412 */ 19413 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19414 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19415 19416 ipv6_multi.s6_addr32[3] |= 19417 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19418 19419 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19420 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19421 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19422 19423 if (err != 0) { 19424 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19425 err)); 19426 } 19427 } 19428 19429 ipif->ipif_multicast_up = 0; 19430 } 19431 19432 /* 19433 * Used when an interface comes up to recreate any extra routes on this 19434 * interface. 19435 */ 19436 static ire_t ** 19437 ipif_recover_ire(ipif_t *ipif) 19438 { 19439 mblk_t *mp; 19440 ire_t **ipif_saved_irep; 19441 ire_t **irep; 19442 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19443 19444 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19445 ipif->ipif_id)); 19446 19447 mutex_enter(&ipif->ipif_saved_ire_lock); 19448 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19449 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19450 if (ipif_saved_irep == NULL) { 19451 mutex_exit(&ipif->ipif_saved_ire_lock); 19452 return (NULL); 19453 } 19454 19455 irep = ipif_saved_irep; 19456 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19457 ire_t *ire; 19458 queue_t *rfq; 19459 queue_t *stq; 19460 ifrt_t *ifrt; 19461 uchar_t *src_addr; 19462 uchar_t *gateway_addr; 19463 ushort_t type; 19464 19465 /* 19466 * When the ire was initially created and then added in 19467 * ip_rt_add(), it was created either using ipif->ipif_net_type 19468 * in the case of a traditional interface route, or as one of 19469 * the IRE_OFFSUBNET types (with the exception of 19470 * IRE_HOST types ire which is created by icmp_redirect() and 19471 * which we don't need to save or recover). In the case where 19472 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19473 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19474 * to satisfy software like GateD and Sun Cluster which creates 19475 * routes using the the loopback interface's address as a 19476 * gateway. 19477 * 19478 * As ifrt->ifrt_type reflects the already updated ire_type, 19479 * ire_create() will be called in the same way here as 19480 * in ip_rt_add(), namely using ipif->ipif_net_type when 19481 * the route looks like a traditional interface route (where 19482 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19483 * the saved ifrt->ifrt_type. This means that in the case where 19484 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19485 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19486 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19487 */ 19488 ifrt = (ifrt_t *)mp->b_rptr; 19489 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19490 if (ifrt->ifrt_type & IRE_INTERFACE) { 19491 rfq = NULL; 19492 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19493 ? ipif->ipif_rq : ipif->ipif_wq; 19494 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19495 ? (uint8_t *)&ifrt->ifrt_src_addr 19496 : (uint8_t *)&ipif->ipif_src_addr; 19497 gateway_addr = NULL; 19498 type = ipif->ipif_net_type; 19499 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19500 /* Recover multiroute broadcast IRE. */ 19501 rfq = ipif->ipif_rq; 19502 stq = ipif->ipif_wq; 19503 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19504 ? (uint8_t *)&ifrt->ifrt_src_addr 19505 : (uint8_t *)&ipif->ipif_src_addr; 19506 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19507 type = ifrt->ifrt_type; 19508 } else { 19509 rfq = NULL; 19510 stq = NULL; 19511 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19512 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19513 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19514 type = ifrt->ifrt_type; 19515 } 19516 19517 /* 19518 * Create a copy of the IRE with the saved address and netmask. 19519 */ 19520 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19521 "0x%x/0x%x\n", 19522 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19523 ntohl(ifrt->ifrt_addr), 19524 ntohl(ifrt->ifrt_mask))); 19525 ire = ire_create( 19526 (uint8_t *)&ifrt->ifrt_addr, 19527 (uint8_t *)&ifrt->ifrt_mask, 19528 src_addr, 19529 gateway_addr, 19530 &ifrt->ifrt_max_frag, 19531 NULL, 19532 rfq, 19533 stq, 19534 type, 19535 ipif, 19536 0, 19537 0, 19538 0, 19539 ifrt->ifrt_flags, 19540 &ifrt->ifrt_iulp_info, 19541 NULL, 19542 NULL, 19543 ipst); 19544 19545 if (ire == NULL) { 19546 mutex_exit(&ipif->ipif_saved_ire_lock); 19547 kmem_free(ipif_saved_irep, 19548 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19549 return (NULL); 19550 } 19551 19552 /* 19553 * Some software (for example, GateD and Sun Cluster) attempts 19554 * to create (what amount to) IRE_PREFIX routes with the 19555 * loopback address as the gateway. This is primarily done to 19556 * set up prefixes with the RTF_REJECT flag set (for example, 19557 * when generating aggregate routes.) 19558 * 19559 * If the IRE type (as defined by ipif->ipif_net_type) is 19560 * IRE_LOOPBACK, then we map the request into a 19561 * IRE_IF_NORESOLVER. 19562 */ 19563 if (ipif->ipif_net_type == IRE_LOOPBACK) 19564 ire->ire_type = IRE_IF_NORESOLVER; 19565 /* 19566 * ire held by ire_add, will be refreled' towards the 19567 * the end of ipif_up_done 19568 */ 19569 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19570 *irep = ire; 19571 irep++; 19572 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19573 } 19574 mutex_exit(&ipif->ipif_saved_ire_lock); 19575 return (ipif_saved_irep); 19576 } 19577 19578 /* 19579 * Used to set the netmask and broadcast address to default values when the 19580 * interface is brought up. (Always called as writer.) 19581 */ 19582 static void 19583 ipif_set_default(ipif_t *ipif) 19584 { 19585 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19586 19587 if (!ipif->ipif_isv6) { 19588 /* 19589 * Interface holds an IPv4 address. Default 19590 * mask is the natural netmask. 19591 */ 19592 if (!ipif->ipif_net_mask) { 19593 ipaddr_t v4mask; 19594 19595 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19596 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19597 } 19598 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19599 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19600 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19601 } else { 19602 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19603 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19604 } 19605 /* 19606 * NOTE: SunOS 4.X does this even if the broadcast address 19607 * has been already set thus we do the same here. 19608 */ 19609 if (ipif->ipif_flags & IPIF_BROADCAST) { 19610 ipaddr_t v4addr; 19611 19612 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19613 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19614 } 19615 } else { 19616 /* 19617 * Interface holds an IPv6-only address. Default 19618 * mask is all-ones. 19619 */ 19620 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19621 ipif->ipif_v6net_mask = ipv6_all_ones; 19622 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19623 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19624 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19625 } else { 19626 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19627 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19628 } 19629 } 19630 } 19631 19632 /* 19633 * Return 0 if this address can be used as local address without causing 19634 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19635 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19636 * Special checks are needed to allow the same IPv6 link-local address 19637 * on different ills. 19638 * TODO: allowing the same site-local address on different ill's. 19639 */ 19640 int 19641 ip_addr_availability_check(ipif_t *new_ipif) 19642 { 19643 in6_addr_t our_v6addr; 19644 ill_t *ill; 19645 ipif_t *ipif; 19646 ill_walk_context_t ctx; 19647 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19648 19649 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19650 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19651 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19652 19653 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19654 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19655 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19656 return (0); 19657 19658 our_v6addr = new_ipif->ipif_v6lcl_addr; 19659 19660 if (new_ipif->ipif_isv6) 19661 ill = ILL_START_WALK_V6(&ctx, ipst); 19662 else 19663 ill = ILL_START_WALK_V4(&ctx, ipst); 19664 19665 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19666 for (ipif = ill->ill_ipif; ipif != NULL; 19667 ipif = ipif->ipif_next) { 19668 if ((ipif == new_ipif) || 19669 !(ipif->ipif_flags & IPIF_UP) || 19670 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19671 continue; 19672 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19673 &our_v6addr)) { 19674 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19675 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19676 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19677 ipif->ipif_flags |= IPIF_UNNUMBERED; 19678 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19679 new_ipif->ipif_ill != ill) 19680 continue; 19681 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19682 new_ipif->ipif_ill != ill) 19683 continue; 19684 else if (new_ipif->ipif_zoneid != 19685 ipif->ipif_zoneid && 19686 ipif->ipif_zoneid != ALL_ZONES && 19687 IS_LOOPBACK(ill)) 19688 continue; 19689 else if (new_ipif->ipif_ill == ill) 19690 return (EADDRINUSE); 19691 else 19692 return (EADDRNOTAVAIL); 19693 } 19694 } 19695 } 19696 19697 return (0); 19698 } 19699 19700 /* 19701 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19702 * IREs for the ipif. 19703 * When the routine returns EINPROGRESS then mp has been consumed and 19704 * the ioctl will be acked from ip_rput_dlpi. 19705 */ 19706 static int 19707 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19708 { 19709 ill_t *ill = ipif->ipif_ill; 19710 boolean_t isv6 = ipif->ipif_isv6; 19711 int err = 0; 19712 boolean_t success; 19713 19714 ASSERT(IAM_WRITER_IPIF(ipif)); 19715 19716 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19717 19718 /* Shouldn't get here if it is already up. */ 19719 if (ipif->ipif_flags & IPIF_UP) 19720 return (EALREADY); 19721 19722 /* Skip arp/ndp for any loopback interface. */ 19723 if (ill->ill_wq != NULL) { 19724 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19725 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19726 19727 if (!ill->ill_dl_up) { 19728 /* 19729 * ill_dl_up is not yet set. i.e. we are yet to 19730 * DL_BIND with the driver and this is the first 19731 * logical interface on the ill to become "up". 19732 * Tell the driver to get going (via DL_BIND_REQ). 19733 * Note that changing "significant" IFF_ flags 19734 * address/netmask etc cause a down/up dance, but 19735 * does not cause an unbind (DL_UNBIND) with the driver 19736 */ 19737 return (ill_dl_up(ill, ipif, mp, q)); 19738 } 19739 19740 /* 19741 * ipif_resolver_up may end up sending an 19742 * AR_INTERFACE_UP message to ARP, which would, in 19743 * turn send a DLPI message to the driver. ioctls are 19744 * serialized and so we cannot send more than one 19745 * interface up message at a time. If ipif_resolver_up 19746 * does send an interface up message to ARP, we get 19747 * EINPROGRESS and we will complete in ip_arp_done. 19748 */ 19749 19750 ASSERT(connp != NULL || !CONN_Q(q)); 19751 ASSERT(ipsq->ipsq_pending_mp == NULL); 19752 if (connp != NULL) 19753 mutex_enter(&connp->conn_lock); 19754 mutex_enter(&ill->ill_lock); 19755 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19756 mutex_exit(&ill->ill_lock); 19757 if (connp != NULL) 19758 mutex_exit(&connp->conn_lock); 19759 if (!success) 19760 return (EINTR); 19761 19762 /* 19763 * Crank up IPv6 neighbor discovery 19764 * Unlike ARP, this should complete when 19765 * ipif_ndp_up returns. However, for 19766 * ILLF_XRESOLV interfaces we also send a 19767 * AR_INTERFACE_UP to the external resolver. 19768 * That ioctl will complete in ip_rput. 19769 */ 19770 if (isv6) { 19771 err = ipif_ndp_up(ipif); 19772 if (err != 0) { 19773 if (err != EINPROGRESS) 19774 mp = ipsq_pending_mp_get(ipsq, &connp); 19775 return (err); 19776 } 19777 } 19778 /* Now, ARP */ 19779 err = ipif_resolver_up(ipif, Res_act_initial); 19780 if (err == EINPROGRESS) { 19781 /* We will complete it in ip_arp_done */ 19782 return (err); 19783 } 19784 mp = ipsq_pending_mp_get(ipsq, &connp); 19785 ASSERT(mp != NULL); 19786 if (err != 0) 19787 return (err); 19788 } else { 19789 /* 19790 * Interfaces without underlying hardware don't do duplicate 19791 * address detection. 19792 */ 19793 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19794 ipif->ipif_addr_ready = 1; 19795 } 19796 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19797 } 19798 19799 /* 19800 * Perform a bind for the physical device. 19801 * When the routine returns EINPROGRESS then mp has been consumed and 19802 * the ioctl will be acked from ip_rput_dlpi. 19803 * Allocate an unbind message and save it until ipif_down. 19804 */ 19805 static int 19806 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19807 { 19808 areq_t *areq; 19809 mblk_t *areq_mp = NULL; 19810 mblk_t *bind_mp = NULL; 19811 mblk_t *unbind_mp = NULL; 19812 conn_t *connp; 19813 boolean_t success; 19814 uint16_t sap_addr; 19815 19816 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19817 ASSERT(IAM_WRITER_ILL(ill)); 19818 ASSERT(mp != NULL); 19819 19820 /* Create a resolver cookie for ARP */ 19821 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19822 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19823 if (areq_mp == NULL) 19824 return (ENOMEM); 19825 19826 freemsg(ill->ill_resolver_mp); 19827 ill->ill_resolver_mp = areq_mp; 19828 areq = (areq_t *)areq_mp->b_rptr; 19829 sap_addr = ill->ill_sap; 19830 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19831 } 19832 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19833 DL_BIND_REQ); 19834 if (bind_mp == NULL) 19835 goto bad; 19836 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19837 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19838 19839 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19840 if (unbind_mp == NULL) 19841 goto bad; 19842 19843 /* 19844 * Record state needed to complete this operation when the 19845 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19846 */ 19847 ASSERT(WR(q)->q_next == NULL); 19848 connp = Q_TO_CONN(q); 19849 19850 mutex_enter(&connp->conn_lock); 19851 mutex_enter(&ipif->ipif_ill->ill_lock); 19852 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19853 mutex_exit(&ipif->ipif_ill->ill_lock); 19854 mutex_exit(&connp->conn_lock); 19855 if (!success) 19856 goto bad; 19857 19858 /* 19859 * Save the unbind message for ill_dl_down(); it will be consumed when 19860 * the interface goes down. 19861 */ 19862 ASSERT(ill->ill_unbind_mp == NULL); 19863 ill->ill_unbind_mp = unbind_mp; 19864 19865 ill_dlpi_send(ill, bind_mp); 19866 /* Send down link-layer capabilities probe if not already done. */ 19867 ill_capability_probe(ill); 19868 19869 /* 19870 * Sysid used to rely on the fact that netboots set domainname 19871 * and the like. Now that miniroot boots aren't strictly netboots 19872 * and miniroot network configuration is driven from userland 19873 * these things still need to be set. This situation can be detected 19874 * by comparing the interface being configured here to the one 19875 * dhcifname was set to reference by the boot loader. Once sysid is 19876 * converted to use dhcp_ipc_getinfo() this call can go away. 19877 */ 19878 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19879 (strcmp(ill->ill_name, dhcifname) == 0) && 19880 (strlen(srpc_domain) == 0)) { 19881 if (dhcpinit() != 0) 19882 cmn_err(CE_WARN, "no cached dhcp response"); 19883 } 19884 19885 /* 19886 * This operation will complete in ip_rput_dlpi with either 19887 * a DL_BIND_ACK or DL_ERROR_ACK. 19888 */ 19889 return (EINPROGRESS); 19890 bad: 19891 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19892 /* 19893 * We don't have to check for possible removal from illgrp 19894 * as we have not yet inserted in illgrp. For groups 19895 * without names, this ipif is still not UP and hence 19896 * this could not have possibly had any influence in forming 19897 * groups. 19898 */ 19899 19900 freemsg(bind_mp); 19901 freemsg(unbind_mp); 19902 return (ENOMEM); 19903 } 19904 19905 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19906 19907 /* 19908 * DLPI and ARP is up. 19909 * Create all the IREs associated with an interface bring up multicast. 19910 * Set the interface flag and finish other initialization 19911 * that potentially had to be differed to after DL_BIND_ACK. 19912 */ 19913 int 19914 ipif_up_done(ipif_t *ipif) 19915 { 19916 ire_t *ire_array[20]; 19917 ire_t **irep = ire_array; 19918 ire_t **irep1; 19919 ipaddr_t net_mask = 0; 19920 ipaddr_t subnet_mask, route_mask; 19921 ill_t *ill = ipif->ipif_ill; 19922 queue_t *stq; 19923 ipif_t *src_ipif; 19924 ipif_t *tmp_ipif; 19925 boolean_t flush_ire_cache = B_TRUE; 19926 int err = 0; 19927 phyint_t *phyi; 19928 ire_t **ipif_saved_irep = NULL; 19929 int ipif_saved_ire_cnt; 19930 int cnt; 19931 boolean_t src_ipif_held = B_FALSE; 19932 boolean_t ire_added = B_FALSE; 19933 boolean_t loopback = B_FALSE; 19934 ip_stack_t *ipst = ill->ill_ipst; 19935 19936 ip1dbg(("ipif_up_done(%s:%u)\n", 19937 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19938 /* Check if this is a loopback interface */ 19939 if (ipif->ipif_ill->ill_wq == NULL) 19940 loopback = B_TRUE; 19941 19942 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19943 /* 19944 * If all other interfaces for this ill are down or DEPRECATED, 19945 * or otherwise unsuitable for source address selection, remove 19946 * any IRE_CACHE entries for this ill to make sure source 19947 * address selection gets to take this new ipif into account. 19948 * No need to hold ill_lock while traversing the ipif list since 19949 * we are writer 19950 */ 19951 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19952 tmp_ipif = tmp_ipif->ipif_next) { 19953 if (((tmp_ipif->ipif_flags & 19954 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19955 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19956 (tmp_ipif == ipif)) 19957 continue; 19958 /* first useable pre-existing interface */ 19959 flush_ire_cache = B_FALSE; 19960 break; 19961 } 19962 if (flush_ire_cache) 19963 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19964 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19965 19966 /* 19967 * Figure out which way the send-to queue should go. Only 19968 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19969 * should show up here. 19970 */ 19971 switch (ill->ill_net_type) { 19972 case IRE_IF_RESOLVER: 19973 stq = ill->ill_rq; 19974 break; 19975 case IRE_IF_NORESOLVER: 19976 case IRE_LOOPBACK: 19977 stq = ill->ill_wq; 19978 break; 19979 default: 19980 return (EINVAL); 19981 } 19982 19983 if (IS_LOOPBACK(ill)) { 19984 /* 19985 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19986 * ipif_lookup_on_name(), but in the case of zones we can have 19987 * several loopback addresses on lo0. So all the interfaces with 19988 * loopback addresses need to be marked IRE_LOOPBACK. 19989 */ 19990 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19991 htonl(INADDR_LOOPBACK)) 19992 ipif->ipif_ire_type = IRE_LOOPBACK; 19993 else 19994 ipif->ipif_ire_type = IRE_LOCAL; 19995 } 19996 19997 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19998 /* 19999 * Can't use our source address. Select a different 20000 * source address for the IRE_INTERFACE and IRE_LOCAL 20001 */ 20002 src_ipif = ipif_select_source(ipif->ipif_ill, 20003 ipif->ipif_subnet, ipif->ipif_zoneid); 20004 if (src_ipif == NULL) 20005 src_ipif = ipif; /* Last resort */ 20006 else 20007 src_ipif_held = B_TRUE; 20008 } else { 20009 src_ipif = ipif; 20010 } 20011 20012 /* Create all the IREs associated with this interface */ 20013 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20014 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20015 20016 /* 20017 * If we're on a labeled system then make sure that zone- 20018 * private addresses have proper remote host database entries. 20019 */ 20020 if (is_system_labeled() && 20021 ipif->ipif_ire_type != IRE_LOOPBACK && 20022 !tsol_check_interface_address(ipif)) 20023 return (EINVAL); 20024 20025 /* Register the source address for __sin6_src_id */ 20026 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20027 ipif->ipif_zoneid, ipst); 20028 if (err != 0) { 20029 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20030 return (err); 20031 } 20032 20033 /* If the interface address is set, create the local IRE. */ 20034 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20035 (void *)ipif, 20036 ipif->ipif_ire_type, 20037 ntohl(ipif->ipif_lcl_addr))); 20038 *irep++ = ire_create( 20039 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20040 (uchar_t *)&ip_g_all_ones, /* mask */ 20041 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20042 NULL, /* no gateway */ 20043 &ip_loopback_mtuplus, /* max frag size */ 20044 NULL, 20045 ipif->ipif_rq, /* recv-from queue */ 20046 NULL, /* no send-to queue */ 20047 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20048 ipif, 20049 0, 20050 0, 20051 0, 20052 (ipif->ipif_flags & IPIF_PRIVATE) ? 20053 RTF_PRIVATE : 0, 20054 &ire_uinfo_null, 20055 NULL, 20056 NULL, 20057 ipst); 20058 } else { 20059 ip1dbg(( 20060 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20061 ipif->ipif_ire_type, 20062 ntohl(ipif->ipif_lcl_addr), 20063 (uint_t)ipif->ipif_flags)); 20064 } 20065 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20066 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20067 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20068 } else { 20069 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20070 } 20071 20072 subnet_mask = ipif->ipif_net_mask; 20073 20074 /* 20075 * If mask was not specified, use natural netmask of 20076 * interface address. Also, store this mask back into the 20077 * ipif struct. 20078 */ 20079 if (subnet_mask == 0) { 20080 subnet_mask = net_mask; 20081 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20082 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20083 ipif->ipif_v6subnet); 20084 } 20085 20086 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20087 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20088 ipif->ipif_subnet != INADDR_ANY) { 20089 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20090 20091 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20092 route_mask = IP_HOST_MASK; 20093 } else { 20094 route_mask = subnet_mask; 20095 } 20096 20097 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20098 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20099 (void *)ipif, (void *)ill, 20100 ill->ill_net_type, 20101 ntohl(ipif->ipif_subnet))); 20102 *irep++ = ire_create( 20103 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20104 (uchar_t *)&route_mask, /* mask */ 20105 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20106 NULL, /* no gateway */ 20107 &ipif->ipif_mtu, /* max frag */ 20108 NULL, 20109 NULL, /* no recv queue */ 20110 stq, /* send-to queue */ 20111 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20112 ipif, 20113 0, 20114 0, 20115 0, 20116 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20117 &ire_uinfo_null, 20118 NULL, 20119 NULL, 20120 ipst); 20121 } 20122 20123 /* 20124 * Create any necessary broadcast IREs. 20125 */ 20126 if (ipif->ipif_flags & IPIF_BROADCAST) 20127 irep = ipif_create_bcast_ires(ipif, irep); 20128 20129 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20130 20131 /* If an earlier ire_create failed, get out now */ 20132 for (irep1 = irep; irep1 > ire_array; ) { 20133 irep1--; 20134 if (*irep1 == NULL) { 20135 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20136 err = ENOMEM; 20137 goto bad; 20138 } 20139 } 20140 20141 /* 20142 * Need to atomically check for ip_addr_availablity_check 20143 * under ip_addr_avail_lock, and if it fails got bad, and remove 20144 * from group also.The ill_g_lock is grabbed as reader 20145 * just to make sure no new ills or new ipifs are being added 20146 * to the system while we are checking the uniqueness of addresses. 20147 */ 20148 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20149 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20150 /* Mark it up, and increment counters. */ 20151 ipif->ipif_flags |= IPIF_UP; 20152 ill->ill_ipif_up_count++; 20153 err = ip_addr_availability_check(ipif); 20154 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20155 rw_exit(&ipst->ips_ill_g_lock); 20156 20157 if (err != 0) { 20158 /* 20159 * Our address may already be up on the same ill. In this case, 20160 * the ARP entry for our ipif replaced the one for the other 20161 * ipif. So we don't want to delete it (otherwise the other ipif 20162 * would be unable to send packets). 20163 * ip_addr_availability_check() identifies this case for us and 20164 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20165 * which is the expected error code. 20166 */ 20167 if (err == EADDRINUSE) { 20168 freemsg(ipif->ipif_arp_del_mp); 20169 ipif->ipif_arp_del_mp = NULL; 20170 err = EADDRNOTAVAIL; 20171 } 20172 ill->ill_ipif_up_count--; 20173 ipif->ipif_flags &= ~IPIF_UP; 20174 goto bad; 20175 } 20176 20177 /* 20178 * Add in all newly created IREs. ire_create_bcast() has 20179 * already checked for duplicates of the IRE_BROADCAST type. 20180 * We want to add before we call ifgrp_insert which wants 20181 * to know whether IRE_IF_RESOLVER exists or not. 20182 * 20183 * NOTE : We refrele the ire though we may branch to "bad" 20184 * later on where we do ire_delete. This is okay 20185 * because nobody can delete it as we are running 20186 * exclusively. 20187 */ 20188 for (irep1 = irep; irep1 > ire_array; ) { 20189 irep1--; 20190 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20191 /* 20192 * refheld by ire_add. refele towards the end of the func 20193 */ 20194 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20195 } 20196 ire_added = B_TRUE; 20197 /* 20198 * Form groups if possible. 20199 * 20200 * If we are supposed to be in a ill_group with a name, insert it 20201 * now as we know that at least one ipif is UP. Otherwise form 20202 * nameless groups. 20203 * 20204 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20205 * this ipif into the appropriate interface group, or create a 20206 * new one. If this is already in a nameless group, we try to form 20207 * a bigger group looking at other ills potentially sharing this 20208 * ipif's prefix. 20209 */ 20210 phyi = ill->ill_phyint; 20211 if (phyi->phyint_groupname_len != 0) { 20212 ASSERT(phyi->phyint_groupname != NULL); 20213 if (ill->ill_ipif_up_count == 1) { 20214 ASSERT(ill->ill_group == NULL); 20215 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20216 phyi->phyint_groupname, NULL, B_TRUE); 20217 if (err != 0) { 20218 ip1dbg(("ipif_up_done: illgrp allocation " 20219 "failed, error %d\n", err)); 20220 goto bad; 20221 } 20222 } 20223 ASSERT(ill->ill_group != NULL); 20224 } 20225 20226 /* 20227 * When this is part of group, we need to make sure that 20228 * any broadcast ires created because of this ipif coming 20229 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20230 * so that we don't receive duplicate broadcast packets. 20231 */ 20232 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20233 ipif_renominate_bcast(ipif); 20234 20235 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20236 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20237 ipif_saved_irep = ipif_recover_ire(ipif); 20238 20239 if (!loopback) { 20240 /* 20241 * If the broadcast address has been set, make sure it makes 20242 * sense based on the interface address. 20243 * Only match on ill since we are sharing broadcast addresses. 20244 */ 20245 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20246 (ipif->ipif_flags & IPIF_BROADCAST)) { 20247 ire_t *ire; 20248 20249 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20250 IRE_BROADCAST, ipif, ALL_ZONES, 20251 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20252 20253 if (ire == NULL) { 20254 /* 20255 * If there isn't a matching broadcast IRE, 20256 * revert to the default for this netmask. 20257 */ 20258 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20259 mutex_enter(&ipif->ipif_ill->ill_lock); 20260 ipif_set_default(ipif); 20261 mutex_exit(&ipif->ipif_ill->ill_lock); 20262 } else { 20263 ire_refrele(ire); 20264 } 20265 } 20266 20267 } 20268 20269 /* This is the first interface on this ill */ 20270 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20271 /* 20272 * Need to recover all multicast memberships in the driver. 20273 * This had to be deferred until we had attached. 20274 */ 20275 ill_recover_multicast(ill); 20276 } 20277 /* Join the allhosts multicast address */ 20278 ipif_multicast_up(ipif); 20279 20280 if (!loopback) { 20281 /* 20282 * See whether anybody else would benefit from the 20283 * new ipif that we added. We call this always rather 20284 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20285 * ipif is for the benefit of illgrp_insert (done above) 20286 * which does not do source address selection as it does 20287 * not want to re-create interface routes that we are 20288 * having reference to it here. 20289 */ 20290 ill_update_source_selection(ill); 20291 } 20292 20293 for (irep1 = irep; irep1 > ire_array; ) { 20294 irep1--; 20295 if (*irep1 != NULL) { 20296 /* was held in ire_add */ 20297 ire_refrele(*irep1); 20298 } 20299 } 20300 20301 cnt = ipif_saved_ire_cnt; 20302 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20303 if (*irep1 != NULL) { 20304 /* was held in ire_add */ 20305 ire_refrele(*irep1); 20306 } 20307 } 20308 20309 if (!loopback && ipif->ipif_addr_ready) { 20310 /* Broadcast an address mask reply. */ 20311 ipif_mask_reply(ipif); 20312 } 20313 if (ipif_saved_irep != NULL) { 20314 kmem_free(ipif_saved_irep, 20315 ipif_saved_ire_cnt * sizeof (ire_t *)); 20316 } 20317 if (src_ipif_held) 20318 ipif_refrele(src_ipif); 20319 20320 /* 20321 * This had to be deferred until we had bound. Tell routing sockets and 20322 * others that this interface is up if it looks like the address has 20323 * been validated. Otherwise, if it isn't ready yet, wait for 20324 * duplicate address detection to do its thing. 20325 */ 20326 if (ipif->ipif_addr_ready) { 20327 ip_rts_ifmsg(ipif); 20328 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20329 /* Let SCTP update the status for this ipif */ 20330 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20331 } 20332 return (0); 20333 20334 bad: 20335 ip1dbg(("ipif_up_done: FAILED \n")); 20336 /* 20337 * We don't have to bother removing from ill groups because 20338 * 20339 * 1) For groups with names, we insert only when the first ipif 20340 * comes up. In that case if it fails, it will not be in any 20341 * group. So, we need not try to remove for that case. 20342 * 20343 * 2) For groups without names, either we tried to insert ipif_ill 20344 * in a group as singleton or found some other group to become 20345 * a bigger group. For the former, if it fails we don't have 20346 * anything to do as ipif_ill is not in the group and for the 20347 * latter, there are no failures in illgrp_insert/illgrp_delete 20348 * (ENOMEM can't occur for this. Check ifgrp_insert). 20349 */ 20350 while (irep > ire_array) { 20351 irep--; 20352 if (*irep != NULL) { 20353 ire_delete(*irep); 20354 if (ire_added) 20355 ire_refrele(*irep); 20356 } 20357 } 20358 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20359 20360 if (ipif_saved_irep != NULL) { 20361 kmem_free(ipif_saved_irep, 20362 ipif_saved_ire_cnt * sizeof (ire_t *)); 20363 } 20364 if (src_ipif_held) 20365 ipif_refrele(src_ipif); 20366 20367 ipif_arp_down(ipif); 20368 return (err); 20369 } 20370 20371 /* 20372 * Turn off the ARP with the ILLF_NOARP flag. 20373 */ 20374 static int 20375 ill_arp_off(ill_t *ill) 20376 { 20377 mblk_t *arp_off_mp = NULL; 20378 mblk_t *arp_on_mp = NULL; 20379 20380 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20381 20382 ASSERT(IAM_WRITER_ILL(ill)); 20383 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20384 20385 /* 20386 * If the on message is still around we've already done 20387 * an arp_off without doing an arp_on thus there is no 20388 * work needed. 20389 */ 20390 if (ill->ill_arp_on_mp != NULL) 20391 return (0); 20392 20393 /* 20394 * Allocate an ARP on message (to be saved) and an ARP off message 20395 */ 20396 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20397 if (!arp_off_mp) 20398 return (ENOMEM); 20399 20400 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20401 if (!arp_on_mp) 20402 goto failed; 20403 20404 ASSERT(ill->ill_arp_on_mp == NULL); 20405 ill->ill_arp_on_mp = arp_on_mp; 20406 20407 /* Send an AR_INTERFACE_OFF request */ 20408 putnext(ill->ill_rq, arp_off_mp); 20409 return (0); 20410 failed: 20411 20412 if (arp_off_mp) 20413 freemsg(arp_off_mp); 20414 return (ENOMEM); 20415 } 20416 20417 /* 20418 * Turn on ARP by turning off the ILLF_NOARP flag. 20419 */ 20420 static int 20421 ill_arp_on(ill_t *ill) 20422 { 20423 mblk_t *mp; 20424 20425 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20426 20427 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20428 20429 ASSERT(IAM_WRITER_ILL(ill)); 20430 /* 20431 * Send an AR_INTERFACE_ON request if we have already done 20432 * an arp_off (which allocated the message). 20433 */ 20434 if (ill->ill_arp_on_mp != NULL) { 20435 mp = ill->ill_arp_on_mp; 20436 ill->ill_arp_on_mp = NULL; 20437 putnext(ill->ill_rq, mp); 20438 } 20439 return (0); 20440 } 20441 20442 /* 20443 * Called after either deleting ill from the group or when setting 20444 * FAILED or STANDBY on the interface. 20445 */ 20446 static void 20447 illgrp_reset_schednext(ill_t *ill) 20448 { 20449 ill_group_t *illgrp; 20450 ill_t *save_ill; 20451 20452 ASSERT(IAM_WRITER_ILL(ill)); 20453 /* 20454 * When called from illgrp_delete, ill_group will be non-NULL. 20455 * But when called from ip_sioctl_flags, it could be NULL if 20456 * somebody is setting FAILED/INACTIVE on some interface which 20457 * is not part of a group. 20458 */ 20459 illgrp = ill->ill_group; 20460 if (illgrp == NULL) 20461 return; 20462 if (illgrp->illgrp_ill_schednext != ill) 20463 return; 20464 20465 illgrp->illgrp_ill_schednext = NULL; 20466 save_ill = ill; 20467 /* 20468 * Choose a good ill to be the next one for 20469 * outbound traffic. As the flags FAILED/STANDBY is 20470 * not yet marked when called from ip_sioctl_flags, 20471 * we check for ill separately. 20472 */ 20473 for (ill = illgrp->illgrp_ill; ill != NULL; 20474 ill = ill->ill_group_next) { 20475 if ((ill != save_ill) && 20476 !(ill->ill_phyint->phyint_flags & 20477 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20478 illgrp->illgrp_ill_schednext = ill; 20479 return; 20480 } 20481 } 20482 } 20483 20484 /* 20485 * Given an ill, find the next ill in the group to be scheduled. 20486 * (This should be called by ip_newroute() before ire_create().) 20487 * The passed in ill may be pulled out of the group, after we have picked 20488 * up a different outgoing ill from the same group. However ire add will 20489 * atomically check this. 20490 */ 20491 ill_t * 20492 illgrp_scheduler(ill_t *ill) 20493 { 20494 ill_t *retill; 20495 ill_group_t *illgrp; 20496 int illcnt; 20497 int i; 20498 uint64_t flags; 20499 ip_stack_t *ipst = ill->ill_ipst; 20500 20501 /* 20502 * We don't use a lock to check for the ill_group. If this ill 20503 * is currently being inserted we may end up just returning this 20504 * ill itself. That is ok. 20505 */ 20506 if (ill->ill_group == NULL) { 20507 ill_refhold(ill); 20508 return (ill); 20509 } 20510 20511 /* 20512 * Grab the ill_g_lock as reader to make sure we are dealing with 20513 * a set of stable ills. No ill can be added or deleted or change 20514 * group while we hold the reader lock. 20515 */ 20516 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20517 if ((illgrp = ill->ill_group) == NULL) { 20518 rw_exit(&ipst->ips_ill_g_lock); 20519 ill_refhold(ill); 20520 return (ill); 20521 } 20522 20523 illcnt = illgrp->illgrp_ill_count; 20524 mutex_enter(&illgrp->illgrp_lock); 20525 retill = illgrp->illgrp_ill_schednext; 20526 20527 if (retill == NULL) 20528 retill = illgrp->illgrp_ill; 20529 20530 /* 20531 * We do a circular search beginning at illgrp_ill_schednext 20532 * or illgrp_ill. We don't check the flags against the ill lock 20533 * since it can change anytime. The ire creation will be atomic 20534 * and will fail if the ill is FAILED or OFFLINE. 20535 */ 20536 for (i = 0; i < illcnt; i++) { 20537 flags = retill->ill_phyint->phyint_flags; 20538 20539 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20540 ILL_CAN_LOOKUP(retill)) { 20541 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20542 ill_refhold(retill); 20543 break; 20544 } 20545 retill = retill->ill_group_next; 20546 if (retill == NULL) 20547 retill = illgrp->illgrp_ill; 20548 } 20549 mutex_exit(&illgrp->illgrp_lock); 20550 rw_exit(&ipst->ips_ill_g_lock); 20551 20552 return (i == illcnt ? NULL : retill); 20553 } 20554 20555 /* 20556 * Checks for availbility of a usable source address (if there is one) when the 20557 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20558 * this selection is done regardless of the destination. 20559 */ 20560 boolean_t 20561 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20562 { 20563 uint_t ifindex; 20564 ipif_t *ipif = NULL; 20565 ill_t *uill; 20566 boolean_t isv6; 20567 ip_stack_t *ipst = ill->ill_ipst; 20568 20569 ASSERT(ill != NULL); 20570 20571 isv6 = ill->ill_isv6; 20572 ifindex = ill->ill_usesrc_ifindex; 20573 if (ifindex != 0) { 20574 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20575 NULL, ipst); 20576 if (uill == NULL) 20577 return (NULL); 20578 mutex_enter(&uill->ill_lock); 20579 for (ipif = uill->ill_ipif; ipif != NULL; 20580 ipif = ipif->ipif_next) { 20581 if (!IPIF_CAN_LOOKUP(ipif)) 20582 continue; 20583 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20584 continue; 20585 if (!(ipif->ipif_flags & IPIF_UP)) 20586 continue; 20587 if (ipif->ipif_zoneid != zoneid) 20588 continue; 20589 if ((isv6 && 20590 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20591 (ipif->ipif_lcl_addr == INADDR_ANY)) 20592 continue; 20593 mutex_exit(&uill->ill_lock); 20594 ill_refrele(uill); 20595 return (B_TRUE); 20596 } 20597 mutex_exit(&uill->ill_lock); 20598 ill_refrele(uill); 20599 } 20600 return (B_FALSE); 20601 } 20602 20603 /* 20604 * Determine the best source address given a destination address and an ill. 20605 * Prefers non-deprecated over deprecated but will return a deprecated 20606 * address if there is no other choice. If there is a usable source address 20607 * on the interface pointed to by ill_usesrc_ifindex then that is given 20608 * first preference. 20609 * 20610 * Returns NULL if there is no suitable source address for the ill. 20611 * This only occurs when there is no valid source address for the ill. 20612 */ 20613 ipif_t * 20614 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20615 { 20616 ipif_t *ipif; 20617 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20618 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20619 int index = 0; 20620 boolean_t wrapped = B_FALSE; 20621 boolean_t same_subnet_only = B_FALSE; 20622 boolean_t ipif_same_found, ipif_other_found; 20623 boolean_t specific_found; 20624 ill_t *till, *usill = NULL; 20625 tsol_tpc_t *src_rhtp, *dst_rhtp; 20626 ip_stack_t *ipst = ill->ill_ipst; 20627 20628 if (ill->ill_usesrc_ifindex != 0) { 20629 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20630 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20631 if (usill != NULL) 20632 ill = usill; /* Select source from usesrc ILL */ 20633 else 20634 return (NULL); 20635 } 20636 20637 /* 20638 * If we're dealing with an unlabeled destination on a labeled system, 20639 * make sure that we ignore source addresses that are incompatible with 20640 * the destination's default label. That destination's default label 20641 * must dominate the minimum label on the source address. 20642 */ 20643 dst_rhtp = NULL; 20644 if (is_system_labeled()) { 20645 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20646 if (dst_rhtp == NULL) 20647 return (NULL); 20648 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20649 TPC_RELE(dst_rhtp); 20650 dst_rhtp = NULL; 20651 } 20652 } 20653 20654 /* 20655 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20656 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20657 * After selecting the right ipif, under ill_lock make sure ipif is 20658 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20659 * we retry. Inside the loop we still need to check for CONDEMNED, 20660 * but not under a lock. 20661 */ 20662 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20663 20664 retry: 20665 till = ill; 20666 ipif_arr[0] = NULL; 20667 20668 if (till->ill_group != NULL) 20669 till = till->ill_group->illgrp_ill; 20670 20671 /* 20672 * Choose one good source address from each ill across the group. 20673 * If possible choose a source address in the same subnet as 20674 * the destination address. 20675 * 20676 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20677 * This is okay because of the following. 20678 * 20679 * If PHYI_FAILED is set and we still have non-deprecated 20680 * addresses, it means the addresses have not yet been 20681 * failed over to a different interface. We potentially 20682 * select them to create IRE_CACHES, which will be later 20683 * flushed when the addresses move over. 20684 * 20685 * If PHYI_INACTIVE is set and we still have non-deprecated 20686 * addresses, it means either the user has configured them 20687 * or PHYI_INACTIVE has not been cleared after the addresses 20688 * been moved over. For the former, in.mpathd does a failover 20689 * when the interface becomes INACTIVE and hence we should 20690 * not find them. Once INACTIVE is set, we don't allow them 20691 * to create logical interfaces anymore. For the latter, a 20692 * flush will happen when INACTIVE is cleared which will 20693 * flush the IRE_CACHES. 20694 * 20695 * If PHYI_OFFLINE is set, all the addresses will be failed 20696 * over soon. We potentially select them to create IRE_CACHEs, 20697 * which will be later flushed when the addresses move over. 20698 * 20699 * NOTE : As ipif_select_source is called to borrow source address 20700 * for an ipif that is part of a group, source address selection 20701 * will be re-done whenever the group changes i.e either an 20702 * insertion/deletion in the group. 20703 * 20704 * Fill ipif_arr[] with source addresses, using these rules: 20705 * 20706 * 1. At most one source address from a given ill ends up 20707 * in ipif_arr[] -- that is, at most one of the ipif's 20708 * associated with a given ill ends up in ipif_arr[]. 20709 * 20710 * 2. If there is at least one non-deprecated ipif in the 20711 * IPMP group with a source address on the same subnet as 20712 * our destination, then fill ipif_arr[] only with 20713 * source addresses on the same subnet as our destination. 20714 * Note that because of (1), only the first 20715 * non-deprecated ipif found with a source address 20716 * matching the destination ends up in ipif_arr[]. 20717 * 20718 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20719 * addresses not in the same subnet as our destination. 20720 * Again, because of (1), only the first off-subnet source 20721 * address will be chosen. 20722 * 20723 * 4. If there are no non-deprecated ipifs, then just use 20724 * the source address associated with the last deprecated 20725 * one we find that happens to be on the same subnet, 20726 * otherwise the first one not in the same subnet. 20727 */ 20728 specific_found = B_FALSE; 20729 for (; till != NULL; till = till->ill_group_next) { 20730 ipif_same_found = B_FALSE; 20731 ipif_other_found = B_FALSE; 20732 for (ipif = till->ill_ipif; ipif != NULL; 20733 ipif = ipif->ipif_next) { 20734 if (!IPIF_CAN_LOOKUP(ipif)) 20735 continue; 20736 /* Always skip NOLOCAL and ANYCAST interfaces */ 20737 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20738 continue; 20739 if (!(ipif->ipif_flags & IPIF_UP) || 20740 !ipif->ipif_addr_ready) 20741 continue; 20742 if (ipif->ipif_zoneid != zoneid && 20743 ipif->ipif_zoneid != ALL_ZONES) 20744 continue; 20745 /* 20746 * Interfaces with 0.0.0.0 address are allowed to be UP, 20747 * but are not valid as source addresses. 20748 */ 20749 if (ipif->ipif_lcl_addr == INADDR_ANY) 20750 continue; 20751 20752 /* 20753 * Check compatibility of local address for 20754 * destination's default label if we're on a labeled 20755 * system. Incompatible addresses can't be used at 20756 * all. 20757 */ 20758 if (dst_rhtp != NULL) { 20759 boolean_t incompat; 20760 20761 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20762 IPV4_VERSION, B_FALSE); 20763 if (src_rhtp == NULL) 20764 continue; 20765 incompat = 20766 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20767 src_rhtp->tpc_tp.tp_doi != 20768 dst_rhtp->tpc_tp.tp_doi || 20769 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20770 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20771 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20772 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20773 TPC_RELE(src_rhtp); 20774 if (incompat) 20775 continue; 20776 } 20777 20778 /* 20779 * We prefer not to use all all-zones addresses, if we 20780 * can avoid it, as they pose problems with unlabeled 20781 * destinations. 20782 */ 20783 if (ipif->ipif_zoneid != ALL_ZONES) { 20784 if (!specific_found && 20785 (!same_subnet_only || 20786 (ipif->ipif_net_mask & dst) == 20787 ipif->ipif_subnet)) { 20788 index = 0; 20789 specific_found = B_TRUE; 20790 ipif_other_found = B_FALSE; 20791 } 20792 } else { 20793 if (specific_found) 20794 continue; 20795 } 20796 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20797 if (ipif_dep == NULL || 20798 (ipif->ipif_net_mask & dst) == 20799 ipif->ipif_subnet) 20800 ipif_dep = ipif; 20801 continue; 20802 } 20803 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20804 /* found a source address in the same subnet */ 20805 if (!same_subnet_only) { 20806 same_subnet_only = B_TRUE; 20807 index = 0; 20808 } 20809 ipif_same_found = B_TRUE; 20810 } else { 20811 if (same_subnet_only || ipif_other_found) 20812 continue; 20813 ipif_other_found = B_TRUE; 20814 } 20815 ipif_arr[index++] = ipif; 20816 if (index == MAX_IPIF_SELECT_SOURCE) { 20817 wrapped = B_TRUE; 20818 index = 0; 20819 } 20820 if (ipif_same_found) 20821 break; 20822 } 20823 } 20824 20825 if (ipif_arr[0] == NULL) { 20826 ipif = ipif_dep; 20827 } else { 20828 if (wrapped) 20829 index = MAX_IPIF_SELECT_SOURCE; 20830 ipif = ipif_arr[ipif_rand(ipst) % index]; 20831 ASSERT(ipif != NULL); 20832 } 20833 20834 if (ipif != NULL) { 20835 mutex_enter(&ipif->ipif_ill->ill_lock); 20836 if (!IPIF_CAN_LOOKUP(ipif)) { 20837 mutex_exit(&ipif->ipif_ill->ill_lock); 20838 goto retry; 20839 } 20840 ipif_refhold_locked(ipif); 20841 mutex_exit(&ipif->ipif_ill->ill_lock); 20842 } 20843 20844 rw_exit(&ipst->ips_ill_g_lock); 20845 if (usill != NULL) 20846 ill_refrele(usill); 20847 if (dst_rhtp != NULL) 20848 TPC_RELE(dst_rhtp); 20849 20850 #ifdef DEBUG 20851 if (ipif == NULL) { 20852 char buf1[INET6_ADDRSTRLEN]; 20853 20854 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20855 ill->ill_name, 20856 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20857 } else { 20858 char buf1[INET6_ADDRSTRLEN]; 20859 char buf2[INET6_ADDRSTRLEN]; 20860 20861 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20862 ipif->ipif_ill->ill_name, 20863 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20864 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20865 buf2, sizeof (buf2)))); 20866 } 20867 #endif /* DEBUG */ 20868 return (ipif); 20869 } 20870 20871 20872 /* 20873 * If old_ipif is not NULL, see if ipif was derived from old 20874 * ipif and if so, recreate the interface route by re-doing 20875 * source address selection. This happens when ipif_down -> 20876 * ipif_update_other_ipifs calls us. 20877 * 20878 * If old_ipif is NULL, just redo the source address selection 20879 * if needed. This happens when illgrp_insert or ipif_up_done 20880 * calls us. 20881 */ 20882 static void 20883 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20884 { 20885 ire_t *ire; 20886 ire_t *ipif_ire; 20887 queue_t *stq; 20888 ipif_t *nipif; 20889 ill_t *ill; 20890 boolean_t need_rele = B_FALSE; 20891 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20892 20893 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20894 ASSERT(IAM_WRITER_IPIF(ipif)); 20895 20896 ill = ipif->ipif_ill; 20897 if (!(ipif->ipif_flags & 20898 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20899 /* 20900 * Can't possibly have borrowed the source 20901 * from old_ipif. 20902 */ 20903 return; 20904 } 20905 20906 /* 20907 * Is there any work to be done? No work if the address 20908 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20909 * ipif_select_source() does not borrow addresses from 20910 * NOLOCAL and ANYCAST interfaces). 20911 */ 20912 if ((old_ipif != NULL) && 20913 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20914 (old_ipif->ipif_ill->ill_wq == NULL) || 20915 (old_ipif->ipif_flags & 20916 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20917 return; 20918 } 20919 20920 /* 20921 * Perform the same checks as when creating the 20922 * IRE_INTERFACE in ipif_up_done. 20923 */ 20924 if (!(ipif->ipif_flags & IPIF_UP)) 20925 return; 20926 20927 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20928 (ipif->ipif_subnet == INADDR_ANY)) 20929 return; 20930 20931 ipif_ire = ipif_to_ire(ipif); 20932 if (ipif_ire == NULL) 20933 return; 20934 20935 /* 20936 * We know that ipif uses some other source for its 20937 * IRE_INTERFACE. Is it using the source of this 20938 * old_ipif? 20939 */ 20940 if (old_ipif != NULL && 20941 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20942 ire_refrele(ipif_ire); 20943 return; 20944 } 20945 if (ip_debug > 2) { 20946 /* ip1dbg */ 20947 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20948 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20949 } 20950 20951 stq = ipif_ire->ire_stq; 20952 20953 /* 20954 * Can't use our source address. Select a different 20955 * source address for the IRE_INTERFACE. 20956 */ 20957 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20958 if (nipif == NULL) { 20959 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20960 nipif = ipif; 20961 } else { 20962 need_rele = B_TRUE; 20963 } 20964 20965 ire = ire_create( 20966 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20967 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20968 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20969 NULL, /* no gateway */ 20970 &ipif->ipif_mtu, /* max frag */ 20971 NULL, /* no src nce */ 20972 NULL, /* no recv from queue */ 20973 stq, /* send-to queue */ 20974 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20975 ipif, 20976 0, 20977 0, 20978 0, 20979 0, 20980 &ire_uinfo_null, 20981 NULL, 20982 NULL, 20983 ipst); 20984 20985 if (ire != NULL) { 20986 ire_t *ret_ire; 20987 int error; 20988 20989 /* 20990 * We don't need ipif_ire anymore. We need to delete 20991 * before we add so that ire_add does not detect 20992 * duplicates. 20993 */ 20994 ire_delete(ipif_ire); 20995 ret_ire = ire; 20996 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 20997 ASSERT(error == 0); 20998 ASSERT(ire == ret_ire); 20999 /* Held in ire_add */ 21000 ire_refrele(ret_ire); 21001 } 21002 /* 21003 * Either we are falling through from above or could not 21004 * allocate a replacement. 21005 */ 21006 ire_refrele(ipif_ire); 21007 if (need_rele) 21008 ipif_refrele(nipif); 21009 } 21010 21011 /* 21012 * This old_ipif is going away. 21013 * 21014 * Determine if any other ipif's is using our address as 21015 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21016 * IPIF_DEPRECATED). 21017 * Find the IRE_INTERFACE for such ipifs and recreate them 21018 * to use an different source address following the rules in 21019 * ipif_up_done. 21020 * 21021 * This function takes an illgrp as an argument so that illgrp_delete 21022 * can call this to update source address even after deleting the 21023 * old_ipif->ipif_ill from the ill group. 21024 */ 21025 static void 21026 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21027 { 21028 ipif_t *ipif; 21029 ill_t *ill; 21030 char buf[INET6_ADDRSTRLEN]; 21031 21032 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21033 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21034 21035 ill = old_ipif->ipif_ill; 21036 21037 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21038 ill->ill_name, 21039 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21040 buf, sizeof (buf)))); 21041 /* 21042 * If this part of a group, look at all ills as ipif_select_source 21043 * borrows source address across all the ills in the group. 21044 */ 21045 if (illgrp != NULL) 21046 ill = illgrp->illgrp_ill; 21047 21048 for (; ill != NULL; ill = ill->ill_group_next) { 21049 for (ipif = ill->ill_ipif; ipif != NULL; 21050 ipif = ipif->ipif_next) { 21051 21052 if (ipif == old_ipif) 21053 continue; 21054 21055 ipif_recreate_interface_routes(old_ipif, ipif); 21056 } 21057 } 21058 } 21059 21060 /* ARGSUSED */ 21061 int 21062 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21063 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21064 { 21065 /* 21066 * ill_phyint_reinit merged the v4 and v6 into a single 21067 * ipsq. Could also have become part of a ipmp group in the 21068 * process, and we might not have been able to complete the 21069 * operation in ipif_set_values, if we could not become 21070 * exclusive. If so restart it here. 21071 */ 21072 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21073 } 21074 21075 21076 /* 21077 * Can operate on either a module or a driver queue. 21078 * Returns an error if not a module queue. 21079 */ 21080 /* ARGSUSED */ 21081 int 21082 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21083 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21084 { 21085 queue_t *q1 = q; 21086 char *cp; 21087 char interf_name[LIFNAMSIZ]; 21088 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21089 21090 if (q->q_next == NULL) { 21091 ip1dbg(( 21092 "if_unitsel: IF_UNITSEL: no q_next\n")); 21093 return (EINVAL); 21094 } 21095 21096 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21097 return (EALREADY); 21098 21099 do { 21100 q1 = q1->q_next; 21101 } while (q1->q_next); 21102 cp = q1->q_qinfo->qi_minfo->mi_idname; 21103 (void) sprintf(interf_name, "%s%d", cp, ppa); 21104 21105 /* 21106 * Here we are not going to delay the ioack until after 21107 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21108 * original ioctl message before sending the requests. 21109 */ 21110 return (ipif_set_values(q, mp, interf_name, &ppa)); 21111 } 21112 21113 /* ARGSUSED */ 21114 int 21115 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21116 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21117 { 21118 return (ENXIO); 21119 } 21120 21121 /* 21122 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21123 * `irep'. Returns a pointer to the next free `irep' entry (just like 21124 * ire_check_and_create_bcast()). 21125 */ 21126 static ire_t ** 21127 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21128 { 21129 ipaddr_t addr; 21130 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21131 ipaddr_t subnetmask = ipif->ipif_net_mask; 21132 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21133 21134 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21135 21136 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21137 21138 if (ipif->ipif_lcl_addr == INADDR_ANY || 21139 (ipif->ipif_flags & IPIF_NOLOCAL)) 21140 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21141 21142 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21143 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21144 21145 /* 21146 * For backward compatibility, we create net broadcast IREs based on 21147 * the old "IP address class system", since some old machines only 21148 * respond to these class derived net broadcast. However, we must not 21149 * create these net broadcast IREs if the subnetmask is shorter than 21150 * the IP address class based derived netmask. Otherwise, we may 21151 * create a net broadcast address which is the same as an IP address 21152 * on the subnet -- and then TCP will refuse to talk to that address. 21153 */ 21154 if (netmask < subnetmask) { 21155 addr = netmask & ipif->ipif_subnet; 21156 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21157 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21158 flags); 21159 } 21160 21161 /* 21162 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21163 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21164 * created. Creating these broadcast IREs will only create confusion 21165 * as `addr' will be the same as the IP address. 21166 */ 21167 if (subnetmask != 0xFFFFFFFF) { 21168 addr = ipif->ipif_subnet; 21169 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21170 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21171 irep, flags); 21172 } 21173 21174 return (irep); 21175 } 21176 21177 /* 21178 * Broadcast IRE info structure used in the functions below. Since we 21179 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21180 */ 21181 typedef struct bcast_ireinfo { 21182 uchar_t bi_type; /* BCAST_* value from below */ 21183 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21184 bi_needrep:1, /* do we need to replace it? */ 21185 bi_haverep:1, /* have we replaced it? */ 21186 bi_pad:5; 21187 ipaddr_t bi_addr; /* IRE address */ 21188 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21189 } bcast_ireinfo_t; 21190 21191 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21192 21193 /* 21194 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21195 * return B_TRUE if it should immediately be used to recreate the IRE. 21196 */ 21197 static boolean_t 21198 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21199 { 21200 ipaddr_t addr; 21201 21202 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21203 21204 switch (bireinfop->bi_type) { 21205 case BCAST_NET: 21206 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21207 if (addr != bireinfop->bi_addr) 21208 return (B_FALSE); 21209 break; 21210 case BCAST_SUBNET: 21211 if (ipif->ipif_subnet != bireinfop->bi_addr) 21212 return (B_FALSE); 21213 break; 21214 } 21215 21216 bireinfop->bi_needrep = 1; 21217 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21218 if (bireinfop->bi_backup == NULL) 21219 bireinfop->bi_backup = ipif; 21220 return (B_FALSE); 21221 } 21222 return (B_TRUE); 21223 } 21224 21225 /* 21226 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21227 * them ala ire_check_and_create_bcast(). 21228 */ 21229 static ire_t ** 21230 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21231 { 21232 ipaddr_t mask, addr; 21233 21234 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21235 21236 addr = bireinfop->bi_addr; 21237 irep = ire_create_bcast(ipif, addr, irep); 21238 21239 switch (bireinfop->bi_type) { 21240 case BCAST_NET: 21241 mask = ip_net_mask(ipif->ipif_subnet); 21242 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21243 break; 21244 case BCAST_SUBNET: 21245 mask = ipif->ipif_net_mask; 21246 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21247 break; 21248 } 21249 21250 bireinfop->bi_haverep = 1; 21251 return (irep); 21252 } 21253 21254 /* 21255 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21256 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21257 * that are going away are still needed. If so, have ipif_create_bcast() 21258 * recreate them (except for the deprecated case, as explained below). 21259 */ 21260 static ire_t ** 21261 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21262 ire_t **irep) 21263 { 21264 int i; 21265 ipif_t *ipif; 21266 21267 ASSERT(!ill->ill_isv6); 21268 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21269 /* 21270 * Skip this ipif if it's (a) the one being taken down, (b) 21271 * not in the same zone, or (c) has no valid local address. 21272 */ 21273 if (ipif == test_ipif || 21274 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21275 ipif->ipif_subnet == 0 || 21276 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21277 (IPIF_UP|IPIF_BROADCAST)) 21278 continue; 21279 21280 /* 21281 * For each dying IRE that hasn't yet been replaced, see if 21282 * `ipif' needs it and whether the IRE should be recreated on 21283 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21284 * will return B_FALSE even if `ipif' needs the IRE on the 21285 * hopes that we'll later find a needy non-deprecated ipif. 21286 * However, the ipif is recorded in bi_backup for possible 21287 * subsequent use by ipif_check_bcast_ires(). 21288 */ 21289 for (i = 0; i < BCAST_COUNT; i++) { 21290 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21291 continue; 21292 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21293 continue; 21294 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21295 } 21296 21297 /* 21298 * If we've replaced all of the broadcast IREs that are going 21299 * to be taken down, we know we're done. 21300 */ 21301 for (i = 0; i < BCAST_COUNT; i++) { 21302 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21303 break; 21304 } 21305 if (i == BCAST_COUNT) 21306 break; 21307 } 21308 return (irep); 21309 } 21310 21311 /* 21312 * Check if `test_ipif' (which is going away) is associated with any existing 21313 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21314 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21315 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21316 * 21317 * This is necessary because broadcast IREs are shared. In particular, a 21318 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21319 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21320 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21321 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21322 * same zone, they will share the same set of broadcast IREs. 21323 * 21324 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21325 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21326 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21327 */ 21328 static void 21329 ipif_check_bcast_ires(ipif_t *test_ipif) 21330 { 21331 ill_t *ill = test_ipif->ipif_ill; 21332 ire_t *ire, *ire_array[12]; /* see note above */ 21333 ire_t **irep1, **irep = &ire_array[0]; 21334 uint_t i, willdie; 21335 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21336 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21337 21338 ASSERT(!test_ipif->ipif_isv6); 21339 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21340 21341 /* 21342 * No broadcast IREs for the LOOPBACK interface 21343 * or others such as point to point and IPIF_NOXMIT. 21344 */ 21345 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21346 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21347 return; 21348 21349 bzero(bireinfo, sizeof (bireinfo)); 21350 bireinfo[0].bi_type = BCAST_ALLZEROES; 21351 bireinfo[0].bi_addr = 0; 21352 21353 bireinfo[1].bi_type = BCAST_ALLONES; 21354 bireinfo[1].bi_addr = INADDR_BROADCAST; 21355 21356 bireinfo[2].bi_type = BCAST_NET; 21357 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21358 21359 if (test_ipif->ipif_net_mask != 0) 21360 mask = test_ipif->ipif_net_mask; 21361 bireinfo[3].bi_type = BCAST_SUBNET; 21362 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21363 21364 /* 21365 * Figure out what (if any) broadcast IREs will die as a result of 21366 * `test_ipif' going away. If none will die, we're done. 21367 */ 21368 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21369 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21370 test_ipif, ALL_ZONES, NULL, 21371 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21372 if (ire != NULL) { 21373 willdie++; 21374 bireinfo[i].bi_willdie = 1; 21375 ire_refrele(ire); 21376 } 21377 } 21378 21379 if (willdie == 0) 21380 return; 21381 21382 /* 21383 * Walk through all the ipifs that will be affected by the dying IREs, 21384 * and recreate the IREs as necessary. 21385 */ 21386 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21387 21388 /* 21389 * Scan through the set of broadcast IREs and see if there are any 21390 * that we need to replace that have not yet been replaced. If so, 21391 * replace them using the appropriate backup ipif. 21392 */ 21393 for (i = 0; i < BCAST_COUNT; i++) { 21394 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21395 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21396 &bireinfo[i], irep); 21397 } 21398 21399 /* 21400 * If we can't create all of them, don't add any of them. (Code in 21401 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21402 * non-loopback copy and loopback copy for a given address.) 21403 */ 21404 for (irep1 = irep; irep1 > ire_array; ) { 21405 irep1--; 21406 if (*irep1 == NULL) { 21407 ip0dbg(("ipif_check_bcast_ires: can't create " 21408 "IRE_BROADCAST, memory allocation failure\n")); 21409 while (irep > ire_array) { 21410 irep--; 21411 if (*irep != NULL) 21412 ire_delete(*irep); 21413 } 21414 return; 21415 } 21416 } 21417 21418 for (irep1 = irep; irep1 > ire_array; ) { 21419 irep1--; 21420 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21421 ire_refrele(*irep1); /* Held in ire_add */ 21422 } 21423 } 21424 21425 /* 21426 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21427 * from lifr_flags and the name from lifr_name. 21428 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21429 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21430 * Returns EINPROGRESS when mp has been consumed by queueing it on 21431 * ill_pending_mp and the ioctl will complete in ip_rput. 21432 * 21433 * Can operate on either a module or a driver queue. 21434 * Returns an error if not a module queue. 21435 */ 21436 /* ARGSUSED */ 21437 int 21438 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21439 ip_ioctl_cmd_t *ipip, void *if_req) 21440 { 21441 ill_t *ill = q->q_ptr; 21442 phyint_t *phyi; 21443 ip_stack_t *ipst; 21444 struct lifreq *lifr = if_req; 21445 21446 ASSERT(ipif != NULL); 21447 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21448 21449 if (q->q_next == NULL) { 21450 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21451 return (EINVAL); 21452 } 21453 21454 /* 21455 * If we are not writer on 'q' then this interface exists already 21456 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21457 * so return EALREADY. 21458 */ 21459 if (ill != ipif->ipif_ill) 21460 return (EALREADY); 21461 21462 if (ill->ill_name[0] != '\0') 21463 return (EALREADY); 21464 21465 /* 21466 * Set all the flags. Allows all kinds of override. Provide some 21467 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21468 * unless there is either multicast/broadcast support in the driver 21469 * or it is a pt-pt link. 21470 */ 21471 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21472 /* Meaningless to IP thus don't allow them to be set. */ 21473 ip1dbg(("ip_setname: EINVAL 1\n")); 21474 return (EINVAL); 21475 } 21476 21477 /* 21478 * If there's another ill already with the requested name, ensure 21479 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21480 * fuse together two unrelated ills, which will cause chaos. 21481 */ 21482 ipst = ill->ill_ipst; 21483 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21484 lifr->lifr_name, NULL); 21485 if (phyi != NULL) { 21486 ill_t *ill_mate = phyi->phyint_illv4; 21487 21488 if (ill_mate == NULL) 21489 ill_mate = phyi->phyint_illv6; 21490 ASSERT(ill_mate != NULL); 21491 21492 if (ill_mate->ill_media->ip_m_mac_type != 21493 ill->ill_media->ip_m_mac_type) { 21494 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21495 "use the same ill name on differing media\n")); 21496 return (EINVAL); 21497 } 21498 } 21499 21500 /* 21501 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21502 * ill_bcast_addr_length info. 21503 */ 21504 if (!ill->ill_needs_attach && 21505 ((lifr->lifr_flags & IFF_MULTICAST) && 21506 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21507 ill->ill_bcast_addr_length == 0)) { 21508 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21509 ip1dbg(("ip_setname: EINVAL 2\n")); 21510 return (EINVAL); 21511 } 21512 if ((lifr->lifr_flags & IFF_BROADCAST) && 21513 ((lifr->lifr_flags & IFF_IPV6) || 21514 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21515 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21516 ip1dbg(("ip_setname: EINVAL 3\n")); 21517 return (EINVAL); 21518 } 21519 if (lifr->lifr_flags & IFF_UP) { 21520 /* Can only be set with SIOCSLIFFLAGS */ 21521 ip1dbg(("ip_setname: EINVAL 4\n")); 21522 return (EINVAL); 21523 } 21524 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21525 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21526 ip1dbg(("ip_setname: EINVAL 5\n")); 21527 return (EINVAL); 21528 } 21529 /* 21530 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21531 */ 21532 if ((lifr->lifr_flags & IFF_XRESOLV) && 21533 !(lifr->lifr_flags & IFF_IPV6) && 21534 !(ipif->ipif_isv6)) { 21535 ip1dbg(("ip_setname: EINVAL 6\n")); 21536 return (EINVAL); 21537 } 21538 21539 /* 21540 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21541 * we have all the flags here. So, we assign rather than we OR. 21542 * We can't OR the flags here because we don't want to set 21543 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21544 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21545 * on lifr_flags value here. 21546 */ 21547 /* 21548 * This ill has not been inserted into the global list. 21549 * So we are still single threaded and don't need any lock 21550 */ 21551 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21552 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21553 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21554 21555 /* We started off as V4. */ 21556 if (ill->ill_flags & ILLF_IPV6) { 21557 ill->ill_phyint->phyint_illv6 = ill; 21558 ill->ill_phyint->phyint_illv4 = NULL; 21559 } 21560 21561 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21562 } 21563 21564 /* ARGSUSED */ 21565 int 21566 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21567 ip_ioctl_cmd_t *ipip, void *if_req) 21568 { 21569 /* 21570 * ill_phyint_reinit merged the v4 and v6 into a single 21571 * ipsq. Could also have become part of a ipmp group in the 21572 * process, and we might not have been able to complete the 21573 * slifname in ipif_set_values, if we could not become 21574 * exclusive. If so restart it here 21575 */ 21576 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21577 } 21578 21579 /* 21580 * Return a pointer to the ipif which matches the index, IP version type and 21581 * zoneid. 21582 */ 21583 ipif_t * 21584 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21585 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21586 { 21587 ill_t *ill; 21588 ipif_t *ipif = NULL; 21589 21590 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21591 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21592 21593 if (err != NULL) 21594 *err = 0; 21595 21596 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21597 if (ill != NULL) { 21598 mutex_enter(&ill->ill_lock); 21599 for (ipif = ill->ill_ipif; ipif != NULL; 21600 ipif = ipif->ipif_next) { 21601 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21602 zoneid == ipif->ipif_zoneid || 21603 ipif->ipif_zoneid == ALL_ZONES)) { 21604 ipif_refhold_locked(ipif); 21605 break; 21606 } 21607 } 21608 mutex_exit(&ill->ill_lock); 21609 ill_refrele(ill); 21610 if (ipif == NULL && err != NULL) 21611 *err = ENXIO; 21612 } 21613 return (ipif); 21614 } 21615 21616 typedef struct conn_change_s { 21617 uint_t cc_old_ifindex; 21618 uint_t cc_new_ifindex; 21619 } conn_change_t; 21620 21621 /* 21622 * ipcl_walk function for changing interface index. 21623 */ 21624 static void 21625 conn_change_ifindex(conn_t *connp, caddr_t arg) 21626 { 21627 conn_change_t *connc; 21628 uint_t old_ifindex; 21629 uint_t new_ifindex; 21630 int i; 21631 ilg_t *ilg; 21632 21633 connc = (conn_change_t *)arg; 21634 old_ifindex = connc->cc_old_ifindex; 21635 new_ifindex = connc->cc_new_ifindex; 21636 21637 if (connp->conn_orig_bound_ifindex == old_ifindex) 21638 connp->conn_orig_bound_ifindex = new_ifindex; 21639 21640 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21641 connp->conn_orig_multicast_ifindex = new_ifindex; 21642 21643 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21644 ilg = &connp->conn_ilg[i]; 21645 if (ilg->ilg_orig_ifindex == old_ifindex) 21646 ilg->ilg_orig_ifindex = new_ifindex; 21647 } 21648 } 21649 21650 /* 21651 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21652 * to new_index if it matches the old_index. 21653 * 21654 * Failovers typically happen within a group of ills. But somebody 21655 * can remove an ill from the group after a failover happened. If 21656 * we are setting the ifindex after this, we potentially need to 21657 * look at all the ills rather than just the ones in the group. 21658 * We cut down the work by looking at matching ill_net_types 21659 * and ill_types as we could not possibly grouped them together. 21660 */ 21661 static void 21662 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21663 { 21664 ill_t *ill; 21665 ipif_t *ipif; 21666 uint_t old_ifindex; 21667 uint_t new_ifindex; 21668 ilm_t *ilm; 21669 ill_walk_context_t ctx; 21670 ip_stack_t *ipst = ill_orig->ill_ipst; 21671 21672 old_ifindex = connc->cc_old_ifindex; 21673 new_ifindex = connc->cc_new_ifindex; 21674 21675 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21676 ill = ILL_START_WALK_ALL(&ctx, ipst); 21677 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21678 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21679 (ill_orig->ill_type != ill->ill_type)) { 21680 continue; 21681 } 21682 for (ipif = ill->ill_ipif; ipif != NULL; 21683 ipif = ipif->ipif_next) { 21684 if (ipif->ipif_orig_ifindex == old_ifindex) 21685 ipif->ipif_orig_ifindex = new_ifindex; 21686 } 21687 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21688 if (ilm->ilm_orig_ifindex == old_ifindex) 21689 ilm->ilm_orig_ifindex = new_ifindex; 21690 } 21691 } 21692 rw_exit(&ipst->ips_ill_g_lock); 21693 } 21694 21695 /* 21696 * We first need to ensure that the new index is unique, and 21697 * then carry the change across both v4 and v6 ill representation 21698 * of the physical interface. 21699 */ 21700 /* ARGSUSED */ 21701 int 21702 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21703 ip_ioctl_cmd_t *ipip, void *ifreq) 21704 { 21705 ill_t *ill; 21706 ill_t *ill_other; 21707 phyint_t *phyi; 21708 int old_index; 21709 conn_change_t connc; 21710 struct ifreq *ifr = (struct ifreq *)ifreq; 21711 struct lifreq *lifr = (struct lifreq *)ifreq; 21712 uint_t index; 21713 ill_t *ill_v4; 21714 ill_t *ill_v6; 21715 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21716 21717 if (ipip->ipi_cmd_type == IF_CMD) 21718 index = ifr->ifr_index; 21719 else 21720 index = lifr->lifr_index; 21721 21722 /* 21723 * Only allow on physical interface. Also, index zero is illegal. 21724 * 21725 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21726 * 21727 * 1) If PHYI_FAILED is set, a failover could have happened which 21728 * implies a possible failback might have to happen. As failback 21729 * depends on the old index, we should fail setting the index. 21730 * 21731 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21732 * any addresses or multicast memberships are failed over to 21733 * a non-STANDBY interface. As failback depends on the old 21734 * index, we should fail setting the index for this case also. 21735 * 21736 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21737 * Be consistent with PHYI_FAILED and fail the ioctl. 21738 */ 21739 ill = ipif->ipif_ill; 21740 phyi = ill->ill_phyint; 21741 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21742 ipif->ipif_id != 0 || index == 0) { 21743 return (EINVAL); 21744 } 21745 old_index = phyi->phyint_ifindex; 21746 21747 /* If the index is not changing, no work to do */ 21748 if (old_index == index) 21749 return (0); 21750 21751 /* 21752 * Use ill_lookup_on_ifindex to determine if the 21753 * new index is unused and if so allow the change. 21754 */ 21755 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21756 ipst); 21757 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21758 ipst); 21759 if (ill_v6 != NULL || ill_v4 != NULL) { 21760 if (ill_v4 != NULL) 21761 ill_refrele(ill_v4); 21762 if (ill_v6 != NULL) 21763 ill_refrele(ill_v6); 21764 return (EBUSY); 21765 } 21766 21767 /* 21768 * The new index is unused. Set it in the phyint. 21769 * Locate the other ill so that we can send a routing 21770 * sockets message. 21771 */ 21772 if (ill->ill_isv6) { 21773 ill_other = phyi->phyint_illv4; 21774 } else { 21775 ill_other = phyi->phyint_illv6; 21776 } 21777 21778 phyi->phyint_ifindex = index; 21779 21780 /* Update SCTP's ILL list */ 21781 sctp_ill_reindex(ill, old_index); 21782 21783 connc.cc_old_ifindex = old_index; 21784 connc.cc_new_ifindex = index; 21785 ip_change_ifindex(ill, &connc); 21786 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21787 21788 /* Send the routing sockets message */ 21789 ip_rts_ifmsg(ipif); 21790 if (ill_other != NULL) 21791 ip_rts_ifmsg(ill_other->ill_ipif); 21792 21793 return (0); 21794 } 21795 21796 /* ARGSUSED */ 21797 int 21798 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21799 ip_ioctl_cmd_t *ipip, void *ifreq) 21800 { 21801 struct ifreq *ifr = (struct ifreq *)ifreq; 21802 struct lifreq *lifr = (struct lifreq *)ifreq; 21803 21804 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21805 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21806 /* Get the interface index */ 21807 if (ipip->ipi_cmd_type == IF_CMD) { 21808 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21809 } else { 21810 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21811 } 21812 return (0); 21813 } 21814 21815 /* ARGSUSED */ 21816 int 21817 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21818 ip_ioctl_cmd_t *ipip, void *ifreq) 21819 { 21820 struct lifreq *lifr = (struct lifreq *)ifreq; 21821 21822 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21823 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21824 /* Get the interface zone */ 21825 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21826 lifr->lifr_zoneid = ipif->ipif_zoneid; 21827 return (0); 21828 } 21829 21830 /* 21831 * Set the zoneid of an interface. 21832 */ 21833 /* ARGSUSED */ 21834 int 21835 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21836 ip_ioctl_cmd_t *ipip, void *ifreq) 21837 { 21838 struct lifreq *lifr = (struct lifreq *)ifreq; 21839 int err = 0; 21840 boolean_t need_up = B_FALSE; 21841 zone_t *zptr; 21842 zone_status_t status; 21843 zoneid_t zoneid; 21844 21845 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21846 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21847 if (!is_system_labeled()) 21848 return (ENOTSUP); 21849 zoneid = GLOBAL_ZONEID; 21850 } 21851 21852 /* cannot assign instance zero to a non-global zone */ 21853 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21854 return (ENOTSUP); 21855 21856 /* 21857 * Cannot assign to a zone that doesn't exist or is shutting down. In 21858 * the event of a race with the zone shutdown processing, since IP 21859 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21860 * interface will be cleaned up even if the zone is shut down 21861 * immediately after the status check. If the interface can't be brought 21862 * down right away, and the zone is shut down before the restart 21863 * function is called, we resolve the possible races by rechecking the 21864 * zone status in the restart function. 21865 */ 21866 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21867 return (EINVAL); 21868 status = zone_status_get(zptr); 21869 zone_rele(zptr); 21870 21871 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21872 return (EINVAL); 21873 21874 if (ipif->ipif_flags & IPIF_UP) { 21875 /* 21876 * If the interface is already marked up, 21877 * we call ipif_down which will take care 21878 * of ditching any IREs that have been set 21879 * up based on the old interface address. 21880 */ 21881 err = ipif_logical_down(ipif, q, mp); 21882 if (err == EINPROGRESS) 21883 return (err); 21884 ipif_down_tail(ipif); 21885 need_up = B_TRUE; 21886 } 21887 21888 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21889 return (err); 21890 } 21891 21892 static int 21893 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21894 queue_t *q, mblk_t *mp, boolean_t need_up) 21895 { 21896 int err = 0; 21897 ip_stack_t *ipst; 21898 21899 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21900 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21901 21902 if (CONN_Q(q)) 21903 ipst = CONNQ_TO_IPST(q); 21904 else 21905 ipst = ILLQ_TO_IPST(q); 21906 21907 /* 21908 * For exclusive stacks we don't allow a different zoneid than 21909 * global. 21910 */ 21911 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21912 zoneid != GLOBAL_ZONEID) 21913 return (EINVAL); 21914 21915 /* Set the new zone id. */ 21916 ipif->ipif_zoneid = zoneid; 21917 21918 /* Update sctp list */ 21919 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21920 21921 if (need_up) { 21922 /* 21923 * Now bring the interface back up. If this 21924 * is the only IPIF for the ILL, ipif_up 21925 * will have to re-bind to the device, so 21926 * we may get back EINPROGRESS, in which 21927 * case, this IOCTL will get completed in 21928 * ip_rput_dlpi when we see the DL_BIND_ACK. 21929 */ 21930 err = ipif_up(ipif, q, mp); 21931 } 21932 return (err); 21933 } 21934 21935 /* ARGSUSED */ 21936 int 21937 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21938 ip_ioctl_cmd_t *ipip, void *if_req) 21939 { 21940 struct lifreq *lifr = (struct lifreq *)if_req; 21941 zoneid_t zoneid; 21942 zone_t *zptr; 21943 zone_status_t status; 21944 21945 ASSERT(ipif->ipif_id != 0); 21946 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21947 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21948 zoneid = GLOBAL_ZONEID; 21949 21950 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21951 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21952 21953 /* 21954 * We recheck the zone status to resolve the following race condition: 21955 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21956 * 2) hme0:1 is up and can't be brought down right away; 21957 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21958 * 3) zone "myzone" is halted; the zone status switches to 21959 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21960 * the interfaces to remove - hme0:1 is not returned because it's not 21961 * yet in "myzone", so it won't be removed; 21962 * 4) the restart function for SIOCSLIFZONE is called; without the 21963 * status check here, we would have hme0:1 in "myzone" after it's been 21964 * destroyed. 21965 * Note that if the status check fails, we need to bring the interface 21966 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21967 * ipif_up_done[_v6](). 21968 */ 21969 status = ZONE_IS_UNINITIALIZED; 21970 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21971 status = zone_status_get(zptr); 21972 zone_rele(zptr); 21973 } 21974 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21975 if (ipif->ipif_isv6) { 21976 (void) ipif_up_done_v6(ipif); 21977 } else { 21978 (void) ipif_up_done(ipif); 21979 } 21980 return (EINVAL); 21981 } 21982 21983 ipif_down_tail(ipif); 21984 21985 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21986 B_TRUE)); 21987 } 21988 21989 /* ARGSUSED */ 21990 int 21991 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21992 ip_ioctl_cmd_t *ipip, void *ifreq) 21993 { 21994 struct lifreq *lifr = ifreq; 21995 21996 ASSERT(q->q_next == NULL); 21997 ASSERT(CONN_Q(q)); 21998 21999 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22000 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22001 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22002 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22003 22004 return (0); 22005 } 22006 22007 22008 /* Find the previous ILL in this usesrc group */ 22009 static ill_t * 22010 ill_prev_usesrc(ill_t *uill) 22011 { 22012 ill_t *ill; 22013 22014 for (ill = uill->ill_usesrc_grp_next; 22015 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22016 ill = ill->ill_usesrc_grp_next) 22017 /* do nothing */; 22018 return (ill); 22019 } 22020 22021 /* 22022 * Release all members of the usesrc group. This routine is called 22023 * from ill_delete when the interface being unplumbed is the 22024 * group head. 22025 */ 22026 static void 22027 ill_disband_usesrc_group(ill_t *uill) 22028 { 22029 ill_t *next_ill, *tmp_ill; 22030 ip_stack_t *ipst = uill->ill_ipst; 22031 22032 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22033 next_ill = uill->ill_usesrc_grp_next; 22034 22035 do { 22036 ASSERT(next_ill != NULL); 22037 tmp_ill = next_ill->ill_usesrc_grp_next; 22038 ASSERT(tmp_ill != NULL); 22039 next_ill->ill_usesrc_grp_next = NULL; 22040 next_ill->ill_usesrc_ifindex = 0; 22041 next_ill = tmp_ill; 22042 } while (next_ill->ill_usesrc_ifindex != 0); 22043 uill->ill_usesrc_grp_next = NULL; 22044 } 22045 22046 /* 22047 * Remove the client usesrc ILL from the list and relink to a new list 22048 */ 22049 int 22050 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22051 { 22052 ill_t *ill, *tmp_ill; 22053 ip_stack_t *ipst = ucill->ill_ipst; 22054 22055 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22056 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22057 22058 /* 22059 * Check if the usesrc client ILL passed in is not already 22060 * in use as a usesrc ILL i.e one whose source address is 22061 * in use OR a usesrc ILL is not already in use as a usesrc 22062 * client ILL 22063 */ 22064 if ((ucill->ill_usesrc_ifindex == 0) || 22065 (uill->ill_usesrc_ifindex != 0)) { 22066 return (-1); 22067 } 22068 22069 ill = ill_prev_usesrc(ucill); 22070 ASSERT(ill->ill_usesrc_grp_next != NULL); 22071 22072 /* Remove from the current list */ 22073 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22074 /* Only two elements in the list */ 22075 ASSERT(ill->ill_usesrc_ifindex == 0); 22076 ill->ill_usesrc_grp_next = NULL; 22077 } else { 22078 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22079 } 22080 22081 if (ifindex == 0) { 22082 ucill->ill_usesrc_ifindex = 0; 22083 ucill->ill_usesrc_grp_next = NULL; 22084 return (0); 22085 } 22086 22087 ucill->ill_usesrc_ifindex = ifindex; 22088 tmp_ill = uill->ill_usesrc_grp_next; 22089 uill->ill_usesrc_grp_next = ucill; 22090 ucill->ill_usesrc_grp_next = 22091 (tmp_ill != NULL) ? tmp_ill : uill; 22092 return (0); 22093 } 22094 22095 /* 22096 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22097 * ip.c for locking details. 22098 */ 22099 /* ARGSUSED */ 22100 int 22101 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22102 ip_ioctl_cmd_t *ipip, void *ifreq) 22103 { 22104 struct lifreq *lifr = (struct lifreq *)ifreq; 22105 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22106 ill_flag_changed = B_FALSE; 22107 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22108 int err = 0, ret; 22109 uint_t ifindex; 22110 phyint_t *us_phyint, *us_cli_phyint; 22111 ipsq_t *ipsq = NULL; 22112 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22113 22114 ASSERT(IAM_WRITER_IPIF(ipif)); 22115 ASSERT(q->q_next == NULL); 22116 ASSERT(CONN_Q(q)); 22117 22118 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22119 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22120 22121 ASSERT(us_cli_phyint != NULL); 22122 22123 /* 22124 * If the client ILL is being used for IPMP, abort. 22125 * Note, this can be done before ipsq_try_enter since we are already 22126 * exclusive on this ILL 22127 */ 22128 if ((us_cli_phyint->phyint_groupname != NULL) || 22129 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22130 return (EINVAL); 22131 } 22132 22133 ifindex = lifr->lifr_index; 22134 if (ifindex == 0) { 22135 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22136 /* non usesrc group interface, nothing to reset */ 22137 return (0); 22138 } 22139 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22140 /* valid reset request */ 22141 reset_flg = B_TRUE; 22142 } 22143 22144 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22145 ip_process_ioctl, &err, ipst); 22146 22147 if (usesrc_ill == NULL) { 22148 return (err); 22149 } 22150 22151 /* 22152 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22153 * group nor can either of the interfaces be used for standy. So 22154 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22155 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22156 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22157 * We are already exlusive on this ipsq i.e ipsq corresponding to 22158 * the usesrc_cli_ill 22159 */ 22160 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22161 NEW_OP, B_TRUE); 22162 if (ipsq == NULL) { 22163 err = EINPROGRESS; 22164 /* Operation enqueued on the ipsq of the usesrc ILL */ 22165 goto done; 22166 } 22167 22168 /* Check if the usesrc_ill is used for IPMP */ 22169 us_phyint = usesrc_ill->ill_phyint; 22170 if ((us_phyint->phyint_groupname != NULL) || 22171 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22172 err = EINVAL; 22173 goto done; 22174 } 22175 22176 /* 22177 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22178 * already a client then return EINVAL 22179 */ 22180 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22181 err = EINVAL; 22182 goto done; 22183 } 22184 22185 /* 22186 * If the ill_usesrc_ifindex field is already set to what it needs to 22187 * be then this is a duplicate operation. 22188 */ 22189 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22190 err = 0; 22191 goto done; 22192 } 22193 22194 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22195 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22196 usesrc_ill->ill_isv6)); 22197 22198 /* 22199 * The next step ensures that no new ires will be created referencing 22200 * the client ill, until the ILL_CHANGING flag is cleared. Then 22201 * we go through an ire walk deleting all ire caches that reference 22202 * the client ill. New ires referencing the client ill that are added 22203 * to the ire table before the ILL_CHANGING flag is set, will be 22204 * cleaned up by the ire walk below. Attempt to add new ires referencing 22205 * the client ill while the ILL_CHANGING flag is set will be failed 22206 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22207 * checks (under the ill_g_usesrc_lock) that the ire being added 22208 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22209 * belong to the same usesrc group. 22210 */ 22211 mutex_enter(&usesrc_cli_ill->ill_lock); 22212 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22213 mutex_exit(&usesrc_cli_ill->ill_lock); 22214 ill_flag_changed = B_TRUE; 22215 22216 if (ipif->ipif_isv6) 22217 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22218 ALL_ZONES, ipst); 22219 else 22220 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22221 ALL_ZONES, ipst); 22222 22223 /* 22224 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22225 * and the ill_usesrc_ifindex fields 22226 */ 22227 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22228 22229 if (reset_flg) { 22230 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22231 if (ret != 0) { 22232 err = EINVAL; 22233 } 22234 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22235 goto done; 22236 } 22237 22238 /* 22239 * Four possibilities to consider: 22240 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22241 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22242 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22243 * 4. Both are part of their respective usesrc groups 22244 */ 22245 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22246 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22247 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22248 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22249 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22250 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22251 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22252 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22253 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22254 /* Insert at head of list */ 22255 usesrc_cli_ill->ill_usesrc_grp_next = 22256 usesrc_ill->ill_usesrc_grp_next; 22257 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22258 } else { 22259 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22260 ifindex); 22261 if (ret != 0) 22262 err = EINVAL; 22263 } 22264 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22265 22266 done: 22267 if (ill_flag_changed) { 22268 mutex_enter(&usesrc_cli_ill->ill_lock); 22269 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22270 mutex_exit(&usesrc_cli_ill->ill_lock); 22271 } 22272 if (ipsq != NULL) 22273 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22274 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22275 ill_refrele(usesrc_ill); 22276 return (err); 22277 } 22278 22279 /* 22280 * comparison function used by avl. 22281 */ 22282 static int 22283 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22284 { 22285 22286 uint_t index; 22287 22288 ASSERT(phyip != NULL && index_ptr != NULL); 22289 22290 index = *((uint_t *)index_ptr); 22291 /* 22292 * let the phyint with the lowest index be on top. 22293 */ 22294 if (((phyint_t *)phyip)->phyint_ifindex < index) 22295 return (1); 22296 if (((phyint_t *)phyip)->phyint_ifindex > index) 22297 return (-1); 22298 return (0); 22299 } 22300 22301 /* 22302 * comparison function used by avl. 22303 */ 22304 static int 22305 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22306 { 22307 ill_t *ill; 22308 int res = 0; 22309 22310 ASSERT(phyip != NULL && name_ptr != NULL); 22311 22312 if (((phyint_t *)phyip)->phyint_illv4) 22313 ill = ((phyint_t *)phyip)->phyint_illv4; 22314 else 22315 ill = ((phyint_t *)phyip)->phyint_illv6; 22316 ASSERT(ill != NULL); 22317 22318 res = strcmp(ill->ill_name, (char *)name_ptr); 22319 if (res > 0) 22320 return (1); 22321 else if (res < 0) 22322 return (-1); 22323 return (0); 22324 } 22325 /* 22326 * This function is called from ill_delete when the ill is being 22327 * unplumbed. We remove the reference from the phyint and we also 22328 * free the phyint when there are no more references to it. 22329 */ 22330 static void 22331 ill_phyint_free(ill_t *ill) 22332 { 22333 phyint_t *phyi; 22334 phyint_t *next_phyint; 22335 ipsq_t *cur_ipsq; 22336 ip_stack_t *ipst = ill->ill_ipst; 22337 22338 ASSERT(ill->ill_phyint != NULL); 22339 22340 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22341 phyi = ill->ill_phyint; 22342 ill->ill_phyint = NULL; 22343 /* 22344 * ill_init allocates a phyint always to store the copy 22345 * of flags relevant to phyint. At that point in time, we could 22346 * not assign the name and hence phyint_illv4/v6 could not be 22347 * initialized. Later in ipif_set_values, we assign the name to 22348 * the ill, at which point in time we assign phyint_illv4/v6. 22349 * Thus we don't rely on phyint_illv6 to be initialized always. 22350 */ 22351 if (ill->ill_flags & ILLF_IPV6) { 22352 phyi->phyint_illv6 = NULL; 22353 } else { 22354 phyi->phyint_illv4 = NULL; 22355 } 22356 /* 22357 * ipif_down removes it from the group when the last ipif goes 22358 * down. 22359 */ 22360 ASSERT(ill->ill_group == NULL); 22361 22362 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22363 return; 22364 22365 /* 22366 * Make sure this phyint was put in the list. 22367 */ 22368 if (phyi->phyint_ifindex > 0) { 22369 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22370 phyi); 22371 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22372 phyi); 22373 } 22374 /* 22375 * remove phyint from the ipsq list. 22376 */ 22377 cur_ipsq = phyi->phyint_ipsq; 22378 if (phyi == cur_ipsq->ipsq_phyint_list) { 22379 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22380 } else { 22381 next_phyint = cur_ipsq->ipsq_phyint_list; 22382 while (next_phyint != NULL) { 22383 if (next_phyint->phyint_ipsq_next == phyi) { 22384 next_phyint->phyint_ipsq_next = 22385 phyi->phyint_ipsq_next; 22386 break; 22387 } 22388 next_phyint = next_phyint->phyint_ipsq_next; 22389 } 22390 ASSERT(next_phyint != NULL); 22391 } 22392 IPSQ_DEC_REF(cur_ipsq, ipst); 22393 22394 if (phyi->phyint_groupname_len != 0) { 22395 ASSERT(phyi->phyint_groupname != NULL); 22396 mi_free(phyi->phyint_groupname); 22397 } 22398 mi_free(phyi); 22399 } 22400 22401 /* 22402 * Attach the ill to the phyint structure which can be shared by both 22403 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22404 * function is called from ipif_set_values and ill_lookup_on_name (for 22405 * loopback) where we know the name of the ill. We lookup the ill and if 22406 * there is one present already with the name use that phyint. Otherwise 22407 * reuse the one allocated by ill_init. 22408 */ 22409 static void 22410 ill_phyint_reinit(ill_t *ill) 22411 { 22412 boolean_t isv6 = ill->ill_isv6; 22413 phyint_t *phyi_old; 22414 phyint_t *phyi; 22415 avl_index_t where = 0; 22416 ill_t *ill_other = NULL; 22417 ipsq_t *ipsq; 22418 ip_stack_t *ipst = ill->ill_ipst; 22419 22420 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22421 22422 phyi_old = ill->ill_phyint; 22423 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22424 phyi_old->phyint_illv6 == NULL)); 22425 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22426 phyi_old->phyint_illv4 == NULL)); 22427 ASSERT(phyi_old->phyint_ifindex == 0); 22428 22429 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22430 ill->ill_name, &where); 22431 22432 /* 22433 * 1. We grabbed the ill_g_lock before inserting this ill into 22434 * the global list of ills. So no other thread could have located 22435 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22436 * 2. Now locate the other protocol instance of this ill. 22437 * 3. Now grab both ill locks in the right order, and the phyint lock of 22438 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22439 * of neither ill can change. 22440 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22441 * other ill. 22442 * 5. Release all locks. 22443 */ 22444 22445 /* 22446 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22447 * we are initializing IPv4. 22448 */ 22449 if (phyi != NULL) { 22450 ill_other = (isv6) ? phyi->phyint_illv4 : 22451 phyi->phyint_illv6; 22452 ASSERT(ill_other->ill_phyint != NULL); 22453 ASSERT((isv6 && !ill_other->ill_isv6) || 22454 (!isv6 && ill_other->ill_isv6)); 22455 GRAB_ILL_LOCKS(ill, ill_other); 22456 /* 22457 * We are potentially throwing away phyint_flags which 22458 * could be different from the one that we obtain from 22459 * ill_other->ill_phyint. But it is okay as we are assuming 22460 * that the state maintained within IP is correct. 22461 */ 22462 mutex_enter(&phyi->phyint_lock); 22463 if (isv6) { 22464 ASSERT(phyi->phyint_illv6 == NULL); 22465 phyi->phyint_illv6 = ill; 22466 } else { 22467 ASSERT(phyi->phyint_illv4 == NULL); 22468 phyi->phyint_illv4 = ill; 22469 } 22470 /* 22471 * This is a new ill, currently undergoing SLIFNAME 22472 * So we could not have joined an IPMP group until now. 22473 */ 22474 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22475 phyi_old->phyint_groupname == NULL); 22476 22477 /* 22478 * This phyi_old is going away. Decref ipsq_refs and 22479 * assert it is zero. The ipsq itself will be freed in 22480 * ipsq_exit 22481 */ 22482 ipsq = phyi_old->phyint_ipsq; 22483 IPSQ_DEC_REF(ipsq, ipst); 22484 ASSERT(ipsq->ipsq_refs == 0); 22485 /* Get the singleton phyint out of the ipsq list */ 22486 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22487 ipsq->ipsq_phyint_list = NULL; 22488 phyi_old->phyint_illv4 = NULL; 22489 phyi_old->phyint_illv6 = NULL; 22490 mi_free(phyi_old); 22491 } else { 22492 mutex_enter(&ill->ill_lock); 22493 /* 22494 * We don't need to acquire any lock, since 22495 * the ill is not yet visible globally and we 22496 * have not yet released the ill_g_lock. 22497 */ 22498 phyi = phyi_old; 22499 mutex_enter(&phyi->phyint_lock); 22500 /* XXX We need a recovery strategy here. */ 22501 if (!phyint_assign_ifindex(phyi, ipst)) 22502 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22503 22504 /* No IPMP group yet, thus the hook uses the ifindex */ 22505 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22506 22507 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22508 (void *)phyi, where); 22509 22510 (void) avl_find(&ipst->ips_phyint_g_list-> 22511 phyint_list_avl_by_index, 22512 &phyi->phyint_ifindex, &where); 22513 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22514 (void *)phyi, where); 22515 } 22516 22517 /* 22518 * Reassigning ill_phyint automatically reassigns the ipsq also. 22519 * pending mp is not affected because that is per ill basis. 22520 */ 22521 ill->ill_phyint = phyi; 22522 22523 /* 22524 * Keep the index on ipif_orig_index to be used by FAILOVER. 22525 * We do this here as when the first ipif was allocated, 22526 * ipif_allocate does not know the right interface index. 22527 */ 22528 22529 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22530 /* 22531 * Now that the phyint's ifindex has been assigned, complete the 22532 * remaining 22533 */ 22534 22535 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22536 if (ill->ill_isv6) { 22537 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22538 ill->ill_phyint->phyint_ifindex; 22539 ill->ill_mcast_type = ipst->ips_mld_max_version; 22540 } else { 22541 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22542 } 22543 22544 /* 22545 * Generate an event within the hooks framework to indicate that 22546 * a new interface has just been added to IP. For this event to 22547 * be generated, the network interface must, at least, have an 22548 * ifindex assigned to it. 22549 * 22550 * This needs to be run inside the ill_g_lock perimeter to ensure 22551 * that the ordering of delivered events to listeners matches the 22552 * order of them in the kernel. 22553 * 22554 * This function could be called from ill_lookup_on_name. In that case 22555 * the interface is loopback "lo", which will not generate a NIC event. 22556 */ 22557 if (ill->ill_name_length <= 2 || 22558 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22559 /* 22560 * Generate nic plumb event for ill_name even if 22561 * ipmp_hook_emulation is set. That avoids generating events 22562 * for the ill_names should ipmp_hook_emulation be turned on 22563 * later. 22564 */ 22565 ill_nic_info_plumb(ill, B_FALSE); 22566 } 22567 RELEASE_ILL_LOCKS(ill, ill_other); 22568 mutex_exit(&phyi->phyint_lock); 22569 } 22570 22571 /* 22572 * Allocate a NE_PLUMB nic info event and store in the ill. 22573 * If 'group' is set we do it for the group name, otherwise the ill name. 22574 * It will be sent when we leave the ipsq. 22575 */ 22576 void 22577 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22578 { 22579 phyint_t *phyi = ill->ill_phyint; 22580 char *name; 22581 int namelen; 22582 22583 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22584 22585 if (group) { 22586 ASSERT(phyi->phyint_groupname_len != 0); 22587 namelen = phyi->phyint_groupname_len; 22588 name = phyi->phyint_groupname; 22589 } else { 22590 namelen = ill->ill_name_length; 22591 name = ill->ill_name; 22592 } 22593 22594 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22595 } 22596 22597 /* 22598 * Unhook the nic event message from the ill and enqueue it 22599 * into the nic event taskq. 22600 */ 22601 void 22602 ill_nic_info_dispatch(ill_t *ill) 22603 { 22604 hook_nic_event_t *info; 22605 22606 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22607 22608 if ((info = ill->ill_nic_event_info) != NULL) { 22609 if (ddi_taskq_dispatch(eventq_queue_nic, 22610 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22611 ip2dbg(("ill_nic_info_dispatch: " 22612 "ddi_taskq_dispatch failed\n")); 22613 if (info->hne_data != NULL) 22614 kmem_free(info->hne_data, info->hne_datalen); 22615 kmem_free(info, sizeof (hook_nic_event_t)); 22616 } 22617 ill->ill_nic_event_info = NULL; 22618 } 22619 } 22620 22621 /* 22622 * Notify any downstream modules of the name of this interface. 22623 * An M_IOCTL is used even though we don't expect a successful reply. 22624 * Any reply message from the driver (presumably an M_IOCNAK) will 22625 * eventually get discarded somewhere upstream. The message format is 22626 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22627 * to IP. 22628 */ 22629 static void 22630 ip_ifname_notify(ill_t *ill, queue_t *q) 22631 { 22632 mblk_t *mp1, *mp2; 22633 struct iocblk *iocp; 22634 struct lifreq *lifr; 22635 22636 mp1 = mkiocb(SIOCSLIFNAME); 22637 if (mp1 == NULL) 22638 return; 22639 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22640 if (mp2 == NULL) { 22641 freeb(mp1); 22642 return; 22643 } 22644 22645 mp1->b_cont = mp2; 22646 iocp = (struct iocblk *)mp1->b_rptr; 22647 iocp->ioc_count = sizeof (struct lifreq); 22648 22649 lifr = (struct lifreq *)mp2->b_rptr; 22650 mp2->b_wptr += sizeof (struct lifreq); 22651 bzero(lifr, sizeof (struct lifreq)); 22652 22653 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22654 lifr->lifr_ppa = ill->ill_ppa; 22655 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22656 22657 putnext(q, mp1); 22658 } 22659 22660 static int 22661 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22662 { 22663 int err; 22664 ip_stack_t *ipst = ill->ill_ipst; 22665 22666 /* Set the obsolete NDD per-interface forwarding name. */ 22667 err = ill_set_ndd_name(ill); 22668 if (err != 0) { 22669 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22670 err); 22671 } 22672 22673 /* Tell downstream modules where they are. */ 22674 ip_ifname_notify(ill, q); 22675 22676 /* 22677 * ill_dl_phys returns EINPROGRESS in the usual case. 22678 * Error cases are ENOMEM ... 22679 */ 22680 err = ill_dl_phys(ill, ipif, mp, q); 22681 22682 /* 22683 * If there is no IRE expiration timer running, get one started. 22684 * igmp and mld timers will be triggered by the first multicast 22685 */ 22686 if (ipst->ips_ip_ire_expire_id == 0) { 22687 /* 22688 * acquire the lock and check again. 22689 */ 22690 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22691 if (ipst->ips_ip_ire_expire_id == 0) { 22692 ipst->ips_ip_ire_expire_id = timeout( 22693 ip_trash_timer_expire, ipst, 22694 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22695 } 22696 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22697 } 22698 22699 if (ill->ill_isv6) { 22700 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22701 if (ipst->ips_mld_slowtimeout_id == 0) { 22702 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22703 (void *)ipst, 22704 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22705 } 22706 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22707 } else { 22708 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22709 if (ipst->ips_igmp_slowtimeout_id == 0) { 22710 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22711 (void *)ipst, 22712 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22713 } 22714 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22715 } 22716 22717 return (err); 22718 } 22719 22720 /* 22721 * Common routine for ppa and ifname setting. Should be called exclusive. 22722 * 22723 * Returns EINPROGRESS when mp has been consumed by queueing it on 22724 * ill_pending_mp and the ioctl will complete in ip_rput. 22725 * 22726 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22727 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22728 * For SLIFNAME, we pass these values back to the userland. 22729 */ 22730 static int 22731 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22732 { 22733 ill_t *ill; 22734 ipif_t *ipif; 22735 ipsq_t *ipsq; 22736 char *ppa_ptr; 22737 char *old_ptr; 22738 char old_char; 22739 int error; 22740 ip_stack_t *ipst; 22741 22742 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22743 ASSERT(q->q_next != NULL); 22744 ASSERT(interf_name != NULL); 22745 22746 ill = (ill_t *)q->q_ptr; 22747 ipst = ill->ill_ipst; 22748 22749 ASSERT(ill->ill_ipst != NULL); 22750 ASSERT(ill->ill_name[0] == '\0'); 22751 ASSERT(IAM_WRITER_ILL(ill)); 22752 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22753 ASSERT(ill->ill_ppa == UINT_MAX); 22754 22755 /* The ppa is sent down by ifconfig or is chosen */ 22756 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22757 return (EINVAL); 22758 } 22759 22760 /* 22761 * make sure ppa passed in is same as ppa in the name. 22762 * This check is not made when ppa == UINT_MAX in that case ppa 22763 * in the name could be anything. System will choose a ppa and 22764 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22765 */ 22766 if (*new_ppa_ptr != UINT_MAX) { 22767 /* stoi changes the pointer */ 22768 old_ptr = ppa_ptr; 22769 /* 22770 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22771 * (they don't have an externally visible ppa). We assign one 22772 * here so that we can manage the interface. Note that in 22773 * the past this value was always 0 for DLPI 1 drivers. 22774 */ 22775 if (*new_ppa_ptr == 0) 22776 *new_ppa_ptr = stoi(&old_ptr); 22777 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22778 return (EINVAL); 22779 } 22780 /* 22781 * terminate string before ppa 22782 * save char at that location. 22783 */ 22784 old_char = ppa_ptr[0]; 22785 ppa_ptr[0] = '\0'; 22786 22787 ill->ill_ppa = *new_ppa_ptr; 22788 /* 22789 * Finish as much work now as possible before calling ill_glist_insert 22790 * which makes the ill globally visible and also merges it with the 22791 * other protocol instance of this phyint. The remaining work is 22792 * done after entering the ipsq which may happen sometime later. 22793 * ill_set_ndd_name occurs after the ill has been made globally visible. 22794 */ 22795 ipif = ill->ill_ipif; 22796 22797 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22798 ipif_assign_seqid(ipif); 22799 22800 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22801 ill->ill_flags |= ILLF_IPV4; 22802 22803 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22804 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22805 22806 if (ill->ill_flags & ILLF_IPV6) { 22807 22808 ill->ill_isv6 = B_TRUE; 22809 if (ill->ill_rq != NULL) { 22810 ill->ill_rq->q_qinfo = &iprinitv6; 22811 ill->ill_wq->q_qinfo = &ipwinitv6; 22812 } 22813 22814 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22815 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22816 ipif->ipif_v6src_addr = ipv6_all_zeros; 22817 ipif->ipif_v6subnet = ipv6_all_zeros; 22818 ipif->ipif_v6net_mask = ipv6_all_zeros; 22819 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22820 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22821 /* 22822 * point-to-point or Non-mulicast capable 22823 * interfaces won't do NUD unless explicitly 22824 * configured to do so. 22825 */ 22826 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22827 !(ill->ill_flags & ILLF_MULTICAST)) { 22828 ill->ill_flags |= ILLF_NONUD; 22829 } 22830 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22831 if (ill->ill_flags & ILLF_NOARP) { 22832 /* 22833 * Note: xresolv interfaces will eventually need 22834 * NOARP set here as well, but that will require 22835 * those external resolvers to have some 22836 * knowledge of that flag and act appropriately. 22837 * Not to be changed at present. 22838 */ 22839 ill->ill_flags &= ~ILLF_NOARP; 22840 } 22841 /* 22842 * Set the ILLF_ROUTER flag according to the global 22843 * IPv6 forwarding policy. 22844 */ 22845 if (ipst->ips_ipv6_forward != 0) 22846 ill->ill_flags |= ILLF_ROUTER; 22847 } else if (ill->ill_flags & ILLF_IPV4) { 22848 ill->ill_isv6 = B_FALSE; 22849 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22850 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22851 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22852 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22853 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22854 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22855 /* 22856 * Set the ILLF_ROUTER flag according to the global 22857 * IPv4 forwarding policy. 22858 */ 22859 if (ipst->ips_ip_g_forward != 0) 22860 ill->ill_flags |= ILLF_ROUTER; 22861 } 22862 22863 ASSERT(ill->ill_phyint != NULL); 22864 22865 /* 22866 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22867 * be completed in ill_glist_insert -> ill_phyint_reinit 22868 */ 22869 if (!ill_allocate_mibs(ill)) 22870 return (ENOMEM); 22871 22872 /* 22873 * Pick a default sap until we get the DL_INFO_ACK back from 22874 * the driver. 22875 */ 22876 if (ill->ill_sap == 0) { 22877 if (ill->ill_isv6) 22878 ill->ill_sap = IP6_DL_SAP; 22879 else 22880 ill->ill_sap = IP_DL_SAP; 22881 } 22882 22883 ill->ill_ifname_pending = 1; 22884 ill->ill_ifname_pending_err = 0; 22885 22886 ill_refhold(ill); 22887 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22888 if ((error = ill_glist_insert(ill, interf_name, 22889 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22890 ill->ill_ppa = UINT_MAX; 22891 ill->ill_name[0] = '\0'; 22892 /* 22893 * undo null termination done above. 22894 */ 22895 ppa_ptr[0] = old_char; 22896 rw_exit(&ipst->ips_ill_g_lock); 22897 ill_refrele(ill); 22898 return (error); 22899 } 22900 22901 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22902 22903 /* 22904 * When we return the buffer pointed to by interf_name should contain 22905 * the same name as in ill_name. 22906 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22907 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22908 * so copy full name and update the ppa ptr. 22909 * When ppa passed in != UINT_MAX all values are correct just undo 22910 * null termination, this saves a bcopy. 22911 */ 22912 if (*new_ppa_ptr == UINT_MAX) { 22913 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22914 *new_ppa_ptr = ill->ill_ppa; 22915 } else { 22916 /* 22917 * undo null termination done above. 22918 */ 22919 ppa_ptr[0] = old_char; 22920 } 22921 22922 /* Let SCTP know about this ILL */ 22923 sctp_update_ill(ill, SCTP_ILL_INSERT); 22924 22925 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22926 B_TRUE); 22927 22928 rw_exit(&ipst->ips_ill_g_lock); 22929 ill_refrele(ill); 22930 if (ipsq == NULL) 22931 return (EINPROGRESS); 22932 22933 /* 22934 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 22935 */ 22936 if (ipsq->ipsq_current_ipif == NULL) 22937 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 22938 else 22939 ASSERT(ipsq->ipsq_current_ipif == ipif); 22940 22941 error = ipif_set_values_tail(ill, ipif, mp, q); 22942 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22943 if (error != 0 && error != EINPROGRESS) { 22944 /* 22945 * restore previous values 22946 */ 22947 ill->ill_isv6 = B_FALSE; 22948 } 22949 return (error); 22950 } 22951 22952 22953 void 22954 ipif_init(ip_stack_t *ipst) 22955 { 22956 hrtime_t hrt; 22957 int i; 22958 22959 /* 22960 * Can't call drv_getparm here as it is too early in the boot. 22961 * As we use ipif_src_random just for picking a different 22962 * source address everytime, this need not be really random. 22963 */ 22964 hrt = gethrtime(); 22965 ipst->ips_ipif_src_random = 22966 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22967 22968 for (i = 0; i < MAX_G_HEADS; i++) { 22969 ipst->ips_ill_g_heads[i].ill_g_list_head = 22970 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 22971 ipst->ips_ill_g_heads[i].ill_g_list_tail = 22972 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 22973 } 22974 22975 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22976 ill_phyint_compare_index, 22977 sizeof (phyint_t), 22978 offsetof(struct phyint, phyint_avl_by_index)); 22979 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22980 ill_phyint_compare_name, 22981 sizeof (phyint_t), 22982 offsetof(struct phyint, phyint_avl_by_name)); 22983 } 22984 22985 /* 22986 * Lookup the ipif corresponding to the onlink destination address. For 22987 * point-to-point interfaces, it matches with remote endpoint destination 22988 * address. For point-to-multipoint interfaces it only tries to match the 22989 * destination with the interface's subnet address. The longest, most specific 22990 * match is found to take care of such rare network configurations like - 22991 * le0: 129.146.1.1/16 22992 * le1: 129.146.2.2/24 22993 * It is used only by SO_DONTROUTE at the moment. 22994 */ 22995 ipif_t * 22996 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 22997 { 22998 ipif_t *ipif, *best_ipif; 22999 ill_t *ill; 23000 ill_walk_context_t ctx; 23001 23002 ASSERT(zoneid != ALL_ZONES); 23003 best_ipif = NULL; 23004 23005 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23006 ill = ILL_START_WALK_V4(&ctx, ipst); 23007 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23008 mutex_enter(&ill->ill_lock); 23009 for (ipif = ill->ill_ipif; ipif != NULL; 23010 ipif = ipif->ipif_next) { 23011 if (!IPIF_CAN_LOOKUP(ipif)) 23012 continue; 23013 if (ipif->ipif_zoneid != zoneid && 23014 ipif->ipif_zoneid != ALL_ZONES) 23015 continue; 23016 /* 23017 * Point-to-point case. Look for exact match with 23018 * destination address. 23019 */ 23020 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23021 if (ipif->ipif_pp_dst_addr == addr) { 23022 ipif_refhold_locked(ipif); 23023 mutex_exit(&ill->ill_lock); 23024 rw_exit(&ipst->ips_ill_g_lock); 23025 if (best_ipif != NULL) 23026 ipif_refrele(best_ipif); 23027 return (ipif); 23028 } 23029 } else if (ipif->ipif_subnet == (addr & 23030 ipif->ipif_net_mask)) { 23031 /* 23032 * Point-to-multipoint case. Looping through to 23033 * find the most specific match. If there are 23034 * multiple best match ipif's then prefer ipif's 23035 * that are UP. If there is only one best match 23036 * ipif and it is DOWN we must still return it. 23037 */ 23038 if ((best_ipif == NULL) || 23039 (ipif->ipif_net_mask > 23040 best_ipif->ipif_net_mask) || 23041 ((ipif->ipif_net_mask == 23042 best_ipif->ipif_net_mask) && 23043 ((ipif->ipif_flags & IPIF_UP) && 23044 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23045 ipif_refhold_locked(ipif); 23046 mutex_exit(&ill->ill_lock); 23047 rw_exit(&ipst->ips_ill_g_lock); 23048 if (best_ipif != NULL) 23049 ipif_refrele(best_ipif); 23050 best_ipif = ipif; 23051 rw_enter(&ipst->ips_ill_g_lock, 23052 RW_READER); 23053 mutex_enter(&ill->ill_lock); 23054 } 23055 } 23056 } 23057 mutex_exit(&ill->ill_lock); 23058 } 23059 rw_exit(&ipst->ips_ill_g_lock); 23060 return (best_ipif); 23061 } 23062 23063 23064 /* 23065 * Save enough information so that we can recreate the IRE if 23066 * the interface goes down and then up. 23067 */ 23068 static void 23069 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23070 { 23071 mblk_t *save_mp; 23072 23073 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23074 if (save_mp != NULL) { 23075 ifrt_t *ifrt; 23076 23077 save_mp->b_wptr += sizeof (ifrt_t); 23078 ifrt = (ifrt_t *)save_mp->b_rptr; 23079 bzero(ifrt, sizeof (ifrt_t)); 23080 ifrt->ifrt_type = ire->ire_type; 23081 ifrt->ifrt_addr = ire->ire_addr; 23082 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23083 ifrt->ifrt_src_addr = ire->ire_src_addr; 23084 ifrt->ifrt_mask = ire->ire_mask; 23085 ifrt->ifrt_flags = ire->ire_flags; 23086 ifrt->ifrt_max_frag = ire->ire_max_frag; 23087 mutex_enter(&ipif->ipif_saved_ire_lock); 23088 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23089 ipif->ipif_saved_ire_mp = save_mp; 23090 ipif->ipif_saved_ire_cnt++; 23091 mutex_exit(&ipif->ipif_saved_ire_lock); 23092 } 23093 } 23094 23095 23096 static void 23097 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23098 { 23099 mblk_t **mpp; 23100 mblk_t *mp; 23101 ifrt_t *ifrt; 23102 23103 /* Remove from ipif_saved_ire_mp list if it is there */ 23104 mutex_enter(&ipif->ipif_saved_ire_lock); 23105 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23106 mpp = &(*mpp)->b_cont) { 23107 /* 23108 * On a given ipif, the triple of address, gateway and 23109 * mask is unique for each saved IRE (in the case of 23110 * ordinary interface routes, the gateway address is 23111 * all-zeroes). 23112 */ 23113 mp = *mpp; 23114 ifrt = (ifrt_t *)mp->b_rptr; 23115 if (ifrt->ifrt_addr == ire->ire_addr && 23116 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23117 ifrt->ifrt_mask == ire->ire_mask) { 23118 *mpp = mp->b_cont; 23119 ipif->ipif_saved_ire_cnt--; 23120 freeb(mp); 23121 break; 23122 } 23123 } 23124 mutex_exit(&ipif->ipif_saved_ire_lock); 23125 } 23126 23127 23128 /* 23129 * IP multirouting broadcast routes handling 23130 * Append CGTP broadcast IREs to regular ones created 23131 * at ifconfig time. 23132 */ 23133 static void 23134 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23135 { 23136 ire_t *ire_prim; 23137 23138 ASSERT(ire != NULL); 23139 ASSERT(ire_dst != NULL); 23140 23141 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23142 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23143 if (ire_prim != NULL) { 23144 /* 23145 * We are in the special case of broadcasts for 23146 * CGTP. We add an IRE_BROADCAST that holds 23147 * the RTF_MULTIRT flag, the destination 23148 * address of ire_dst and the low level 23149 * info of ire_prim. In other words, CGTP 23150 * broadcast is added to the redundant ipif. 23151 */ 23152 ipif_t *ipif_prim; 23153 ire_t *bcast_ire; 23154 23155 ipif_prim = ire_prim->ire_ipif; 23156 23157 ip2dbg(("ip_cgtp_filter_bcast_add: " 23158 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23159 (void *)ire_dst, (void *)ire_prim, 23160 (void *)ipif_prim)); 23161 23162 bcast_ire = ire_create( 23163 (uchar_t *)&ire->ire_addr, 23164 (uchar_t *)&ip_g_all_ones, 23165 (uchar_t *)&ire_dst->ire_src_addr, 23166 (uchar_t *)&ire->ire_gateway_addr, 23167 &ipif_prim->ipif_mtu, 23168 NULL, 23169 ipif_prim->ipif_rq, 23170 ipif_prim->ipif_wq, 23171 IRE_BROADCAST, 23172 ipif_prim, 23173 0, 23174 0, 23175 0, 23176 ire->ire_flags, 23177 &ire_uinfo_null, 23178 NULL, 23179 NULL, 23180 ipst); 23181 23182 if (bcast_ire != NULL) { 23183 23184 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23185 B_FALSE) == 0) { 23186 ip2dbg(("ip_cgtp_filter_bcast_add: " 23187 "added bcast_ire %p\n", 23188 (void *)bcast_ire)); 23189 23190 ipif_save_ire(bcast_ire->ire_ipif, 23191 bcast_ire); 23192 ire_refrele(bcast_ire); 23193 } 23194 } 23195 ire_refrele(ire_prim); 23196 } 23197 } 23198 23199 23200 /* 23201 * IP multirouting broadcast routes handling 23202 * Remove the broadcast ire 23203 */ 23204 static void 23205 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23206 { 23207 ire_t *ire_dst; 23208 23209 ASSERT(ire != NULL); 23210 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23211 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23212 if (ire_dst != NULL) { 23213 ire_t *ire_prim; 23214 23215 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23216 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23217 if (ire_prim != NULL) { 23218 ipif_t *ipif_prim; 23219 ire_t *bcast_ire; 23220 23221 ipif_prim = ire_prim->ire_ipif; 23222 23223 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23224 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23225 (void *)ire_dst, (void *)ire_prim, 23226 (void *)ipif_prim)); 23227 23228 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23229 ire->ire_gateway_addr, 23230 IRE_BROADCAST, 23231 ipif_prim, ALL_ZONES, 23232 NULL, 23233 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23234 MATCH_IRE_MASK, ipst); 23235 23236 if (bcast_ire != NULL) { 23237 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23238 "looked up bcast_ire %p\n", 23239 (void *)bcast_ire)); 23240 ipif_remove_ire(bcast_ire->ire_ipif, 23241 bcast_ire); 23242 ire_delete(bcast_ire); 23243 ire_refrele(bcast_ire); 23244 } 23245 ire_refrele(ire_prim); 23246 } 23247 ire_refrele(ire_dst); 23248 } 23249 } 23250 23251 /* 23252 * IPsec hardware acceleration capabilities related functions. 23253 */ 23254 23255 /* 23256 * Free a per-ill IPsec capabilities structure. 23257 */ 23258 static void 23259 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23260 { 23261 if (capab->auth_hw_algs != NULL) 23262 kmem_free(capab->auth_hw_algs, capab->algs_size); 23263 if (capab->encr_hw_algs != NULL) 23264 kmem_free(capab->encr_hw_algs, capab->algs_size); 23265 if (capab->encr_algparm != NULL) 23266 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23267 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23268 } 23269 23270 /* 23271 * Allocate a new per-ill IPsec capabilities structure. This structure 23272 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23273 * an array which specifies, for each algorithm, whether this algorithm 23274 * is supported by the ill or not. 23275 */ 23276 static ill_ipsec_capab_t * 23277 ill_ipsec_capab_alloc(void) 23278 { 23279 ill_ipsec_capab_t *capab; 23280 uint_t nelems; 23281 23282 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23283 if (capab == NULL) 23284 return (NULL); 23285 23286 /* we need one bit per algorithm */ 23287 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23288 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23289 23290 /* allocate memory to store algorithm flags */ 23291 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23292 if (capab->encr_hw_algs == NULL) 23293 goto nomem; 23294 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23295 if (capab->auth_hw_algs == NULL) 23296 goto nomem; 23297 /* 23298 * Leave encr_algparm NULL for now since we won't need it half 23299 * the time 23300 */ 23301 return (capab); 23302 23303 nomem: 23304 ill_ipsec_capab_free(capab); 23305 return (NULL); 23306 } 23307 23308 /* 23309 * Resize capability array. Since we're exclusive, this is OK. 23310 */ 23311 static boolean_t 23312 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23313 { 23314 ipsec_capab_algparm_t *nalp, *oalp; 23315 uint32_t olen, nlen; 23316 23317 oalp = capab->encr_algparm; 23318 olen = capab->encr_algparm_size; 23319 23320 if (oalp != NULL) { 23321 if (algid < capab->encr_algparm_end) 23322 return (B_TRUE); 23323 } 23324 23325 nlen = (algid + 1) * sizeof (*nalp); 23326 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23327 if (nalp == NULL) 23328 return (B_FALSE); 23329 23330 if (oalp != NULL) { 23331 bcopy(oalp, nalp, olen); 23332 kmem_free(oalp, olen); 23333 } 23334 capab->encr_algparm = nalp; 23335 capab->encr_algparm_size = nlen; 23336 capab->encr_algparm_end = algid + 1; 23337 23338 return (B_TRUE); 23339 } 23340 23341 /* 23342 * Compare the capabilities of the specified ill with the protocol 23343 * and algorithms specified by the SA passed as argument. 23344 * If they match, returns B_TRUE, B_FALSE if they do not match. 23345 * 23346 * The ill can be passed as a pointer to it, or by specifying its index 23347 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23348 * 23349 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23350 * packet is eligible for hardware acceleration, and by 23351 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23352 * to a particular ill. 23353 */ 23354 boolean_t 23355 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23356 ipsa_t *sa, netstack_t *ns) 23357 { 23358 boolean_t sa_isv6; 23359 uint_t algid; 23360 struct ill_ipsec_capab_s *cpp; 23361 boolean_t need_refrele = B_FALSE; 23362 ip_stack_t *ipst = ns->netstack_ip; 23363 23364 if (ill == NULL) { 23365 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23366 NULL, NULL, NULL, ipst); 23367 if (ill == NULL) { 23368 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23369 return (B_FALSE); 23370 } 23371 need_refrele = B_TRUE; 23372 } 23373 23374 /* 23375 * Use the address length specified by the SA to determine 23376 * if it corresponds to a IPv6 address, and fail the matching 23377 * if the isv6 flag passed as argument does not match. 23378 * Note: this check is used for SADB capability checking before 23379 * sending SA information to an ill. 23380 */ 23381 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23382 if (sa_isv6 != ill_isv6) 23383 /* protocol mismatch */ 23384 goto done; 23385 23386 /* 23387 * Check if the ill supports the protocol, algorithm(s) and 23388 * key size(s) specified by the SA, and get the pointers to 23389 * the algorithms supported by the ill. 23390 */ 23391 switch (sa->ipsa_type) { 23392 23393 case SADB_SATYPE_ESP: 23394 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23395 /* ill does not support ESP acceleration */ 23396 goto done; 23397 cpp = ill->ill_ipsec_capab_esp; 23398 algid = sa->ipsa_auth_alg; 23399 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23400 goto done; 23401 algid = sa->ipsa_encr_alg; 23402 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23403 goto done; 23404 if (algid < cpp->encr_algparm_end) { 23405 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23406 if (sa->ipsa_encrkeybits < alp->minkeylen) 23407 goto done; 23408 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23409 goto done; 23410 } 23411 break; 23412 23413 case SADB_SATYPE_AH: 23414 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23415 /* ill does not support AH acceleration */ 23416 goto done; 23417 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23418 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23419 goto done; 23420 break; 23421 } 23422 23423 if (need_refrele) 23424 ill_refrele(ill); 23425 return (B_TRUE); 23426 done: 23427 if (need_refrele) 23428 ill_refrele(ill); 23429 return (B_FALSE); 23430 } 23431 23432 23433 /* 23434 * Add a new ill to the list of IPsec capable ills. 23435 * Called from ill_capability_ipsec_ack() when an ACK was received 23436 * indicating that IPsec hardware processing was enabled for an ill. 23437 * 23438 * ill must point to the ill for which acceleration was enabled. 23439 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23440 */ 23441 static void 23442 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23443 { 23444 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23445 uint_t sa_type; 23446 uint_t ipproto; 23447 ip_stack_t *ipst = ill->ill_ipst; 23448 23449 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23450 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23451 23452 switch (dl_cap) { 23453 case DL_CAPAB_IPSEC_AH: 23454 sa_type = SADB_SATYPE_AH; 23455 ills = &ipst->ips_ipsec_capab_ills_ah; 23456 ipproto = IPPROTO_AH; 23457 break; 23458 case DL_CAPAB_IPSEC_ESP: 23459 sa_type = SADB_SATYPE_ESP; 23460 ills = &ipst->ips_ipsec_capab_ills_esp; 23461 ipproto = IPPROTO_ESP; 23462 break; 23463 } 23464 23465 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23466 23467 /* 23468 * Add ill index to list of hardware accelerators. If 23469 * already in list, do nothing. 23470 */ 23471 for (cur_ill = *ills; cur_ill != NULL && 23472 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23473 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23474 ; 23475 23476 if (cur_ill == NULL) { 23477 /* if this is a new entry for this ill */ 23478 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23479 if (new_ill == NULL) { 23480 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23481 return; 23482 } 23483 23484 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23485 new_ill->ill_isv6 = ill->ill_isv6; 23486 new_ill->next = *ills; 23487 *ills = new_ill; 23488 } else if (!sadb_resync) { 23489 /* not resync'ing SADB and an entry exists for this ill */ 23490 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23491 return; 23492 } 23493 23494 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23495 23496 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23497 /* 23498 * IPsec module for protocol loaded, initiate dump 23499 * of the SADB to this ill. 23500 */ 23501 sadb_ill_download(ill, sa_type); 23502 } 23503 23504 /* 23505 * Remove an ill from the list of IPsec capable ills. 23506 */ 23507 static void 23508 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23509 { 23510 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23511 ip_stack_t *ipst = ill->ill_ipst; 23512 23513 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23514 dl_cap == DL_CAPAB_IPSEC_ESP); 23515 23516 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23517 &ipst->ips_ipsec_capab_ills_esp; 23518 23519 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23520 23521 prev_ill = NULL; 23522 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23523 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23524 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23525 ; 23526 if (cur_ill == NULL) { 23527 /* entry not found */ 23528 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23529 return; 23530 } 23531 if (prev_ill == NULL) { 23532 /* entry at front of list */ 23533 *ills = NULL; 23534 } else { 23535 prev_ill->next = cur_ill->next; 23536 } 23537 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23538 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23539 } 23540 23541 /* 23542 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23543 * supporting the specified IPsec protocol acceleration. 23544 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23545 * We free the mblk and, if sa is non-null, release the held referece. 23546 */ 23547 void 23548 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23549 netstack_t *ns) 23550 { 23551 ipsec_capab_ill_t *ici, *cur_ici; 23552 ill_t *ill; 23553 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23554 ip_stack_t *ipst = ns->netstack_ip; 23555 23556 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23557 ipst->ips_ipsec_capab_ills_esp; 23558 23559 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23560 23561 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23562 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23563 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23564 23565 /* 23566 * Handle the case where the ill goes away while the SADB is 23567 * attempting to send messages. If it's going away, it's 23568 * nuking its shadow SADB, so we don't care.. 23569 */ 23570 23571 if (ill == NULL) 23572 continue; 23573 23574 if (sa != NULL) { 23575 /* 23576 * Make sure capabilities match before 23577 * sending SA to ill. 23578 */ 23579 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23580 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23581 ill_refrele(ill); 23582 continue; 23583 } 23584 23585 mutex_enter(&sa->ipsa_lock); 23586 sa->ipsa_flags |= IPSA_F_HW; 23587 mutex_exit(&sa->ipsa_lock); 23588 } 23589 23590 /* 23591 * Copy template message, and add it to the front 23592 * of the mblk ship list. We want to avoid holding 23593 * the ipsec_capab_ills_lock while sending the 23594 * message to the ills. 23595 * 23596 * The b_next and b_prev are temporarily used 23597 * to build a list of mblks to be sent down, and to 23598 * save the ill to which they must be sent. 23599 */ 23600 nmp = copymsg(mp); 23601 if (nmp == NULL) { 23602 ill_refrele(ill); 23603 continue; 23604 } 23605 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23606 nmp->b_next = mp_ship_list; 23607 mp_ship_list = nmp; 23608 nmp->b_prev = (mblk_t *)ill; 23609 } 23610 23611 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23612 23613 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23614 /* restore the mblk to a sane state */ 23615 next_mp = nmp->b_next; 23616 nmp->b_next = NULL; 23617 ill = (ill_t *)nmp->b_prev; 23618 nmp->b_prev = NULL; 23619 23620 ill_dlpi_send(ill, nmp); 23621 ill_refrele(ill); 23622 } 23623 23624 if (sa != NULL) 23625 IPSA_REFRELE(sa); 23626 freemsg(mp); 23627 } 23628 23629 /* 23630 * Derive an interface id from the link layer address. 23631 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23632 */ 23633 static boolean_t 23634 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23635 { 23636 char *addr; 23637 23638 if (phys_length != ETHERADDRL) 23639 return (B_FALSE); 23640 23641 /* Form EUI-64 like address */ 23642 addr = (char *)&v6addr->s6_addr32[2]; 23643 bcopy((char *)phys_addr, addr, 3); 23644 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23645 addr[3] = (char)0xff; 23646 addr[4] = (char)0xfe; 23647 bcopy((char *)phys_addr + 3, addr + 5, 3); 23648 return (B_TRUE); 23649 } 23650 23651 /* ARGSUSED */ 23652 static boolean_t 23653 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23654 { 23655 return (B_FALSE); 23656 } 23657 23658 /* ARGSUSED */ 23659 static boolean_t 23660 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23661 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23662 { 23663 /* 23664 * Multicast address mappings used over Ethernet/802.X. 23665 * This address is used as a base for mappings. 23666 */ 23667 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23668 0x00, 0x00, 0x00}; 23669 23670 /* 23671 * Extract low order 32 bits from IPv6 multicast address. 23672 * Or that into the link layer address, starting from the 23673 * second byte. 23674 */ 23675 *hw_start = 2; 23676 v6_extract_mask->s6_addr32[0] = 0; 23677 v6_extract_mask->s6_addr32[1] = 0; 23678 v6_extract_mask->s6_addr32[2] = 0; 23679 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23680 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23681 return (B_TRUE); 23682 } 23683 23684 /* 23685 * Indicate by return value whether multicast is supported. If not, 23686 * this code should not touch/change any parameters. 23687 */ 23688 /* ARGSUSED */ 23689 static boolean_t 23690 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23691 uint32_t *hw_start, ipaddr_t *extract_mask) 23692 { 23693 /* 23694 * Multicast address mappings used over Ethernet/802.X. 23695 * This address is used as a base for mappings. 23696 */ 23697 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23698 0x00, 0x00, 0x00 }; 23699 23700 if (phys_length != ETHERADDRL) 23701 return (B_FALSE); 23702 23703 *extract_mask = htonl(0x007fffff); 23704 *hw_start = 2; 23705 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23706 return (B_TRUE); 23707 } 23708 23709 /* 23710 * Derive IPoIB interface id from the link layer address. 23711 */ 23712 static boolean_t 23713 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23714 { 23715 char *addr; 23716 23717 if (phys_length != 20) 23718 return (B_FALSE); 23719 addr = (char *)&v6addr->s6_addr32[2]; 23720 bcopy(phys_addr + 12, addr, 8); 23721 /* 23722 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23723 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23724 * rules. In these cases, the IBA considers these GUIDs to be in 23725 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23726 * required; vendors are required not to assign global EUI-64's 23727 * that differ only in u/l bit values, thus guaranteeing uniqueness 23728 * of the interface identifier. Whether the GUID is in modified 23729 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23730 * bit set to 1. 23731 */ 23732 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23733 return (B_TRUE); 23734 } 23735 23736 /* 23737 * Note on mapping from multicast IP addresses to IPoIB multicast link 23738 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23739 * The format of an IPoIB multicast address is: 23740 * 23741 * 4 byte QPN Scope Sign. Pkey 23742 * +--------------------------------------------+ 23743 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23744 * +--------------------------------------------+ 23745 * 23746 * The Scope and Pkey components are properties of the IBA port and 23747 * network interface. They can be ascertained from the broadcast address. 23748 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23749 */ 23750 23751 static boolean_t 23752 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23753 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23754 { 23755 /* 23756 * Base IPoIB IPv6 multicast address used for mappings. 23757 * Does not contain the IBA scope/Pkey values. 23758 */ 23759 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23760 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23761 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23762 23763 /* 23764 * Extract low order 80 bits from IPv6 multicast address. 23765 * Or that into the link layer address, starting from the 23766 * sixth byte. 23767 */ 23768 *hw_start = 6; 23769 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23770 23771 /* 23772 * Now fill in the IBA scope/Pkey values from the broadcast address. 23773 */ 23774 *(maddr + 5) = *(bphys_addr + 5); 23775 *(maddr + 8) = *(bphys_addr + 8); 23776 *(maddr + 9) = *(bphys_addr + 9); 23777 23778 v6_extract_mask->s6_addr32[0] = 0; 23779 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23780 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23781 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23782 return (B_TRUE); 23783 } 23784 23785 static boolean_t 23786 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23787 uint32_t *hw_start, ipaddr_t *extract_mask) 23788 { 23789 /* 23790 * Base IPoIB IPv4 multicast address used for mappings. 23791 * Does not contain the IBA scope/Pkey values. 23792 */ 23793 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23794 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23795 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23796 23797 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23798 return (B_FALSE); 23799 23800 /* 23801 * Extract low order 28 bits from IPv4 multicast address. 23802 * Or that into the link layer address, starting from the 23803 * sixteenth byte. 23804 */ 23805 *extract_mask = htonl(0x0fffffff); 23806 *hw_start = 16; 23807 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23808 23809 /* 23810 * Now fill in the IBA scope/Pkey values from the broadcast address. 23811 */ 23812 *(maddr + 5) = *(bphys_addr + 5); 23813 *(maddr + 8) = *(bphys_addr + 8); 23814 *(maddr + 9) = *(bphys_addr + 9); 23815 return (B_TRUE); 23816 } 23817 23818 /* 23819 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23820 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23821 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23822 * the link-local address is preferred. 23823 */ 23824 boolean_t 23825 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23826 { 23827 ipif_t *ipif; 23828 ipif_t *maybe_ipif = NULL; 23829 23830 mutex_enter(&ill->ill_lock); 23831 if (ill->ill_state_flags & ILL_CONDEMNED) { 23832 mutex_exit(&ill->ill_lock); 23833 if (ipifp != NULL) 23834 *ipifp = NULL; 23835 return (B_FALSE); 23836 } 23837 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23838 if (!IPIF_CAN_LOOKUP(ipif)) 23839 continue; 23840 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23841 ipif->ipif_zoneid != ALL_ZONES) 23842 continue; 23843 if ((ipif->ipif_flags & flags) != flags) 23844 continue; 23845 23846 if (ipifp == NULL) { 23847 mutex_exit(&ill->ill_lock); 23848 ASSERT(maybe_ipif == NULL); 23849 return (B_TRUE); 23850 } 23851 if (!ill->ill_isv6 || 23852 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23853 ipif_refhold_locked(ipif); 23854 mutex_exit(&ill->ill_lock); 23855 *ipifp = ipif; 23856 return (B_TRUE); 23857 } 23858 if (maybe_ipif == NULL) 23859 maybe_ipif = ipif; 23860 } 23861 if (ipifp != NULL) { 23862 if (maybe_ipif != NULL) 23863 ipif_refhold_locked(maybe_ipif); 23864 *ipifp = maybe_ipif; 23865 } 23866 mutex_exit(&ill->ill_lock); 23867 return (maybe_ipif != NULL); 23868 } 23869 23870 /* 23871 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23872 */ 23873 boolean_t 23874 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23875 { 23876 ill_t *illg; 23877 ip_stack_t *ipst = ill->ill_ipst; 23878 23879 /* 23880 * We look at the passed-in ill first without grabbing ill_g_lock. 23881 */ 23882 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23883 return (B_TRUE); 23884 } 23885 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23886 if (ill->ill_group == NULL) { 23887 /* ill not in a group */ 23888 rw_exit(&ipst->ips_ill_g_lock); 23889 return (B_FALSE); 23890 } 23891 23892 /* 23893 * There's no ipif in the zone on ill, however ill is part of an IPMP 23894 * group. We need to look for an ipif in the zone on all the ills in the 23895 * group. 23896 */ 23897 illg = ill->ill_group->illgrp_ill; 23898 do { 23899 /* 23900 * We don't call ipif_lookup_zoneid() on ill as we already know 23901 * that it's not there. 23902 */ 23903 if (illg != ill && 23904 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23905 break; 23906 } 23907 } while ((illg = illg->ill_group_next) != NULL); 23908 rw_exit(&ipst->ips_ill_g_lock); 23909 return (illg != NULL); 23910 } 23911 23912 /* 23913 * Check if this ill is only being used to send ICMP probes for IPMP 23914 */ 23915 boolean_t 23916 ill_is_probeonly(ill_t *ill) 23917 { 23918 /* 23919 * Check if the interface is FAILED, or INACTIVE 23920 */ 23921 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23922 return (B_TRUE); 23923 23924 return (B_FALSE); 23925 } 23926 23927 /* 23928 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 23929 * If a pointer to an ipif_t is returned then the caller will need to do 23930 * an ill_refrele(). 23931 * 23932 * If there is no real interface which matches the ifindex, then it looks 23933 * for a group that has a matching index. In the case of a group match the 23934 * lifidx must be zero. We don't need emulate the logical interfaces 23935 * since IP Filter's use of netinfo doesn't use that. 23936 */ 23937 ipif_t * 23938 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 23939 ip_stack_t *ipst) 23940 { 23941 ipif_t *ipif; 23942 ill_t *ill; 23943 23944 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 23945 ipst); 23946 23947 if (ill == NULL) { 23948 /* Fallback to group names only if hook_emulation set */ 23949 if (!ipst->ips_ipmp_hook_emulation) 23950 return (NULL); 23951 23952 if (lifidx != 0) 23953 return (NULL); 23954 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 23955 if (ill == NULL) 23956 return (NULL); 23957 } 23958 23959 mutex_enter(&ill->ill_lock); 23960 if (ill->ill_state_flags & ILL_CONDEMNED) { 23961 mutex_exit(&ill->ill_lock); 23962 ill_refrele(ill); 23963 return (NULL); 23964 } 23965 23966 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23967 if (!IPIF_CAN_LOOKUP(ipif)) 23968 continue; 23969 if (lifidx == ipif->ipif_id) { 23970 ipif_refhold_locked(ipif); 23971 break; 23972 } 23973 } 23974 23975 mutex_exit(&ill->ill_lock); 23976 ill_refrele(ill); 23977 return (ipif); 23978 } 23979 23980 /* 23981 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 23982 * There is one exceptions IRE_BROADCAST are difficult to recreate, 23983 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 23984 * for details. 23985 */ 23986 void 23987 ill_fastpath_flush(ill_t *ill) 23988 { 23989 ip_stack_t *ipst = ill->ill_ipst; 23990 23991 nce_fastpath_list_dispatch(ill, NULL, NULL); 23992 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 23993 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 23994 } 23995 23996 /* 23997 * Set the physical address information for `ill' to the contents of the 23998 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 23999 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24000 * EINPROGRESS will be returned. 24001 */ 24002 int 24003 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24004 { 24005 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24006 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24007 24008 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24009 24010 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24011 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24012 /* Changing DL_IPV6_TOKEN is not yet supported */ 24013 return (0); 24014 } 24015 24016 /* 24017 * We need to store up to two copies of `mp' in `ill'. Due to the 24018 * design of ipsq_pending_mp_add(), we can't pass them as separate 24019 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24020 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24021 */ 24022 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24023 freemsg(mp); 24024 return (ENOMEM); 24025 } 24026 24027 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24028 24029 /* 24030 * If we can quiesce the ill, then set the address. If not, then 24031 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24032 */ 24033 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24034 mutex_enter(&ill->ill_lock); 24035 if (!ill_is_quiescent(ill)) { 24036 /* call cannot fail since `conn_t *' argument is NULL */ 24037 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24038 mp, ILL_DOWN); 24039 mutex_exit(&ill->ill_lock); 24040 return (EINPROGRESS); 24041 } 24042 mutex_exit(&ill->ill_lock); 24043 24044 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24045 return (0); 24046 } 24047 24048 /* 24049 * Once the ill associated with `q' has quiesced, set its physical address 24050 * information to the values in `addrmp'. Note that two copies of `addrmp' 24051 * are passed (linked by b_cont), since we sometimes need to save two distinct 24052 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24053 * failure (we'll free the other copy if it's not needed). Since the ill_t 24054 * is quiesced, we know any stale IREs with the old address information have 24055 * already been removed, so we don't need to call ill_fastpath_flush(). 24056 */ 24057 /* ARGSUSED */ 24058 static void 24059 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24060 { 24061 ill_t *ill = q->q_ptr; 24062 mblk_t *addrmp2 = unlinkb(addrmp); 24063 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24064 uint_t addrlen, addroff; 24065 24066 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24067 24068 addroff = dlindp->dl_addr_offset; 24069 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24070 24071 switch (dlindp->dl_data) { 24072 case DL_IPV6_LINK_LAYER_ADDR: 24073 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24074 freemsg(addrmp2); 24075 break; 24076 24077 case DL_CURR_PHYS_ADDR: 24078 freemsg(ill->ill_phys_addr_mp); 24079 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24080 ill->ill_phys_addr_mp = addrmp; 24081 ill->ill_phys_addr_length = addrlen; 24082 24083 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24084 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24085 else 24086 freemsg(addrmp2); 24087 break; 24088 default: 24089 ASSERT(0); 24090 } 24091 24092 /* 24093 * If there are ipifs to bring up, ill_up_ipifs() will return 24094 * EINPROGRESS, and ipsq_current_finish() will be called by 24095 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24096 * brought up. 24097 */ 24098 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24099 ipsq_current_finish(ipsq); 24100 } 24101 24102 /* 24103 * Helper routine for setting the ill_nd_lla fields. 24104 */ 24105 void 24106 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24107 { 24108 freemsg(ill->ill_nd_lla_mp); 24109 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24110 ill->ill_nd_lla_mp = ndmp; 24111 ill->ill_nd_lla_len = addrlen; 24112 } 24113 24114 major_t IP_MAJ; 24115 #define IP "ip" 24116 24117 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24118 #define UDPDEV "/devices/pseudo/udp@0:udp" 24119 24120 /* 24121 * Issue REMOVEIF ioctls to have the loopback interfaces 24122 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24123 * the former going away when the user-level processes in the zone 24124 * are killed * and the latter are cleaned up by the stream head 24125 * str_stack_shutdown callback that undoes all I_PLINKs. 24126 */ 24127 void 24128 ip_loopback_cleanup(ip_stack_t *ipst) 24129 { 24130 int error; 24131 ldi_handle_t lh = NULL; 24132 ldi_ident_t li = NULL; 24133 int rval; 24134 cred_t *cr; 24135 struct strioctl iocb; 24136 struct lifreq lifreq; 24137 24138 IP_MAJ = ddi_name_to_major(IP); 24139 24140 #ifdef NS_DEBUG 24141 (void) printf("ip_loopback_cleanup() stackid %d\n", 24142 ipst->ips_netstack->netstack_stackid); 24143 #endif 24144 24145 bzero(&lifreq, sizeof (lifreq)); 24146 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24147 24148 error = ldi_ident_from_major(IP_MAJ, &li); 24149 if (error) { 24150 #ifdef DEBUG 24151 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24152 error); 24153 #endif 24154 return; 24155 } 24156 24157 cr = zone_get_kcred(netstackid_to_zoneid( 24158 ipst->ips_netstack->netstack_stackid)); 24159 ASSERT(cr != NULL); 24160 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24161 if (error) { 24162 #ifdef DEBUG 24163 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24164 error); 24165 #endif 24166 goto out; 24167 } 24168 iocb.ic_cmd = SIOCLIFREMOVEIF; 24169 iocb.ic_timout = 15; 24170 iocb.ic_len = sizeof (lifreq); 24171 iocb.ic_dp = (char *)&lifreq; 24172 24173 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24174 /* LINTED - statement has no consequent */ 24175 if (error) { 24176 #ifdef NS_DEBUG 24177 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24178 "UDP6 error %d\n", error); 24179 #endif 24180 } 24181 (void) ldi_close(lh, FREAD|FWRITE, cr); 24182 lh = NULL; 24183 24184 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24185 if (error) { 24186 #ifdef NS_DEBUG 24187 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24188 error); 24189 #endif 24190 goto out; 24191 } 24192 24193 iocb.ic_cmd = SIOCLIFREMOVEIF; 24194 iocb.ic_timout = 15; 24195 iocb.ic_len = sizeof (lifreq); 24196 iocb.ic_dp = (char *)&lifreq; 24197 24198 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24199 /* LINTED - statement has no consequent */ 24200 if (error) { 24201 #ifdef NS_DEBUG 24202 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24203 "UDP error %d\n", error); 24204 #endif 24205 } 24206 (void) ldi_close(lh, FREAD|FWRITE, cr); 24207 lh = NULL; 24208 24209 out: 24210 /* Close layered handles */ 24211 if (lh) 24212 (void) ldi_close(lh, FREAD|FWRITE, cr); 24213 if (li) 24214 ldi_ident_release(li); 24215 24216 crfree(cr); 24217 } 24218 24219 /* 24220 * This needs to be in-sync with nic_event_t definition 24221 */ 24222 static const char * 24223 ill_hook_event2str(nic_event_t event) 24224 { 24225 switch (event) { 24226 case NE_PLUMB: 24227 return ("PLUMB"); 24228 case NE_UNPLUMB: 24229 return ("UNPLUMB"); 24230 case NE_UP: 24231 return ("UP"); 24232 case NE_DOWN: 24233 return ("DOWN"); 24234 case NE_ADDRESS_CHANGE: 24235 return ("ADDRESS_CHANGE"); 24236 default: 24237 return ("UNKNOWN"); 24238 } 24239 } 24240 24241 static void 24242 ill_hook_event_destroy(ill_t *ill) 24243 { 24244 hook_nic_event_t *info; 24245 24246 if ((info = ill->ill_nic_event_info) != NULL) { 24247 if (info->hne_data != NULL) 24248 kmem_free(info->hne_data, info->hne_datalen); 24249 kmem_free(info, sizeof (hook_nic_event_t)); 24250 24251 ill->ill_nic_event_info = NULL; 24252 } 24253 24254 } 24255 24256 boolean_t 24257 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24258 nic_event_data_t data, size_t datalen) 24259 { 24260 ip_stack_t *ipst = ill->ill_ipst; 24261 hook_nic_event_t *info; 24262 const char *str = NULL; 24263 24264 /* destroy nic event info if it exists */ 24265 if ((info = ill->ill_nic_event_info) != NULL) { 24266 str = ill_hook_event2str(info->hne_event); 24267 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24268 "attached for %s\n", str, ill->ill_name)); 24269 ill_hook_event_destroy(ill); 24270 } 24271 24272 /* create a new nic event info */ 24273 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24274 goto fail; 24275 24276 ill->ill_nic_event_info = info; 24277 24278 if (event == NE_UNPLUMB) 24279 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24280 else 24281 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24282 info->hne_lif = lif; 24283 info->hne_event = event; 24284 info->hne_family = ill->ill_isv6 ? 24285 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24286 info->hne_data = NULL; 24287 info->hne_datalen = 0; 24288 24289 if (data != NULL && datalen != 0) { 24290 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24291 if (info->hne_data != NULL) { 24292 bcopy(data, info->hne_data, datalen); 24293 info->hne_datalen = datalen; 24294 } else { 24295 ill_hook_event_destroy(ill); 24296 goto fail; 24297 } 24298 } 24299 24300 return (B_TRUE); 24301 fail: 24302 str = ill_hook_event2str(event); 24303 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24304 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24305 return (B_FALSE); 24306 } 24307