1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_rts.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/ip_if.h> 80 #include <inet/ip_impl.h> 81 #include <inet/tun.h> 82 #include <inet/sctp_ip.h> 83 84 #include <net/pfkeyv2.h> 85 #include <inet/ipsec_info.h> 86 #include <inet/sadb.h> 87 #include <inet/ipsec_impl.h> 88 #include <sys/iphada.h> 89 90 91 #include <netinet/igmp.h> 92 #include <inet/ip_listutils.h> 93 #include <inet/ipclassifier.h> 94 #include <sys/mac.h> 95 96 #include <sys/systeminfo.h> 97 #include <sys/bootconf.h> 98 99 #include <sys/tsol/tndb.h> 100 #include <sys/tsol/tnet.h> 101 102 /* The character which tells where the ill_name ends */ 103 #define IPIF_SEPARATOR_CHAR ':' 104 105 /* IP ioctl function table entry */ 106 typedef struct ipft_s { 107 int ipft_cmd; 108 pfi_t ipft_pfi; 109 int ipft_min_size; 110 int ipft_flags; 111 } ipft_t; 112 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 113 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 114 115 typedef struct ip_sock_ar_s { 116 union { 117 area_t ip_sock_area; 118 ared_t ip_sock_ared; 119 areq_t ip_sock_areq; 120 } ip_sock_ar_u; 121 queue_t *ip_sock_ar_q; 122 } ip_sock_ar_t; 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 143 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 146 static void ipsq_flush(ill_t *ill); 147 static void ipsq_clean_all(ill_t *ill); 148 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize); 155 static void ipif_check_bcast_ires(ipif_t *test_ipif); 156 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 157 static void ipif_delete_cache_ire(ire_t *, char *); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_down_tail(ipif_t *ipif); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mask_reply(ipif_t *); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_dls_reset(ill_t *, mblk_t **); 240 static void ill_capability_dls_disable(ill_t *); 241 242 static void illgrp_cache_delete(ire_t *, char *); 243 static void illgrp_delete(ill_t *ill); 244 static void illgrp_reset_schednext(ill_t *ill); 245 246 static ill_t *ill_prev_usesrc(ill_t *); 247 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 248 static void ill_disband_usesrc_group(ill_t *); 249 250 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 251 252 /* 253 * if we go over the memory footprint limit more than once in this msec 254 * interval, we'll start pruning aggressively. 255 */ 256 int ip_min_frag_prune_time = 0; 257 258 /* 259 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 260 * and the IPsec DOI 261 */ 262 #define MAX_IPSEC_ALGS 256 263 264 #define BITSPERBYTE 8 265 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 266 267 #define IPSEC_ALG_ENABLE(algs, algid) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 typedef uint8_t ipsec_capab_elem_t; 276 277 /* 278 * Per-algorithm parameters. Note that at present, only encryption 279 * algorithms have variable keysize (IKE does not provide a way to negotiate 280 * auth algorithm keysize). 281 * 282 * All sizes here are in bits. 283 */ 284 typedef struct 285 { 286 uint16_t minkeylen; 287 uint16_t maxkeylen; 288 } ipsec_capab_algparm_t; 289 290 /* 291 * Per-ill capabilities. 292 */ 293 struct ill_ipsec_capab_s { 294 ipsec_capab_elem_t *encr_hw_algs; 295 ipsec_capab_elem_t *auth_hw_algs; 296 uint32_t algs_size; /* size of _hw_algs in bytes */ 297 /* algorithm key lengths */ 298 ipsec_capab_algparm_t *encr_algparm; 299 uint32_t encr_algparm_size; 300 uint32_t encr_algparm_end; 301 }; 302 303 /* 304 * List of AH and ESP IPsec acceleration capable ills 305 */ 306 typedef struct ipsec_capab_ill_s { 307 uint_t ill_index; 308 boolean_t ill_isv6; 309 struct ipsec_capab_ill_s *next; 310 } ipsec_capab_ill_t; 311 312 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 313 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 314 krwlock_t ipsec_capab_ills_lock; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 6, /* xmit_count */ 394 1000, /* (re)xmit_interval in milliseconds */ 395 4 /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_MIPRUNNING, "MIP" }, 487 { IPIF_NOFAILOVER, "NOFAILOVER" }, 488 { PHYI_FAILED, "FAILED" }, 489 { PHYI_STANDBY, "STANDBY" }, 490 { PHYI_INACTIVE, "INACTIVE" }, 491 { PHYI_OFFLINE, "OFFLINE" }, 492 }; 493 494 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 495 496 static ip_m_t ip_m_tbl[] = { 497 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_ether_v6intfid }, 507 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 508 ip_ib_v6intfid }, 509 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 510 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 511 ip_nodef_v6intfid } 512 }; 513 514 static ill_t ill_null; /* Empty ILL for init. */ 515 char ipif_loopback_name[] = "lo0"; 516 static char *ipv4_forward_suffix = ":ip_forwarding"; 517 static char *ipv6_forward_suffix = ":ip6_forwarding"; 518 static kstat_t *loopback_ksp = NULL; 519 static sin6_t sin6_null; /* Zero address for quick clears */ 520 static sin_t sin_null; /* Zero address for quick clears */ 521 static uint_t ill_index = 1; /* Used to assign interface indicies */ 522 /* When set search for unused index */ 523 static boolean_t ill_index_wrap = B_FALSE; 524 /* When set search for unused ipif_seqid */ 525 static ipif_t ipif_zero; 526 uint_t ipif_src_random; 527 528 /* 529 * For details on the protection offered by these locks please refer 530 * to the notes under the Synchronization section at the start of ip.c 531 */ 532 krwlock_t ill_g_lock; /* The global ill_g_lock */ 533 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 534 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 535 536 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 537 538 /* 539 * illgrp_head/ifgrp_head is protected by IP's perimeter. 540 */ 541 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 542 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 543 544 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 545 546 /* 547 * ppa arena is created after these many 548 * interfaces have been plumbed. 549 */ 550 uint_t ill_no_arena = 12; 551 552 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 553 static phyint_list_t phyint_g_list; /* start of phyint list */ 554 555 /* 556 * Reflects value of FAILBACK variable in IPMP config file 557 * /etc/default/mpathd. Default value is B_TRUE. 558 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 559 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 560 */ 561 static boolean_t ipmp_enable_failback = B_TRUE; 562 563 /* 564 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 565 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 566 * set through platform specific code (Niagara/Ontario). 567 */ 568 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 569 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 570 571 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 572 573 static uint_t 574 ipif_rand(void) 575 { 576 ipif_src_random = ipif_src_random * 1103515245 + 12345; 577 return ((ipif_src_random >> 16) & 0x7fff); 578 } 579 580 /* 581 * Allocate per-interface mibs. Only used for ipv6. 582 * Returns true if ok. False otherwise. 583 * ipsq may not yet be allocated (loopback case ). 584 */ 585 static boolean_t 586 ill_allocate_mibs(ill_t *ill) 587 { 588 ASSERT(ill->ill_isv6); 589 590 /* Already allocated? */ 591 if (ill->ill_ip6_mib != NULL) { 592 ASSERT(ill->ill_icmp6_mib != NULL); 593 return (B_TRUE); 594 } 595 596 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_ip6_mib == NULL) { 599 return (B_FALSE); 600 } 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 605 ill->ill_ip6_mib = NULL; 606 return (B_FALSE); 607 } 608 /* 609 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 /* 674 * Completely vaporize a lower level tap and all associated interfaces. 675 * ill_delete is called only out of ip_close when the device control 676 * stream is being closed. 677 */ 678 void 679 ill_delete(ill_t *ill) 680 { 681 ipif_t *ipif; 682 ill_t *prev_ill; 683 684 /* 685 * ill_delete may be forcibly entering the ipsq. The previous 686 * ioctl may not have completed and may need to be aborted. 687 * ipsq_flush takes care of it. If we don't need to enter the 688 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 689 * ill_delete_tail is sufficient. 690 */ 691 ipsq_flush(ill); 692 693 /* 694 * Nuke all interfaces. ipif_free will take down the interface, 695 * remove it from the list, and free the data structure. 696 * Walk down the ipif list and remove the logical interfaces 697 * first before removing the main ipif. We can't unplumb 698 * zeroth interface first in the case of IPv6 as reset_conn_ill 699 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 700 * POINTOPOINT. 701 * 702 * If ill_ipif was not properly initialized (i.e low on memory), 703 * then no interfaces to clean up. In this case just clean up the 704 * ill. 705 */ 706 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 707 ipif_free(ipif); 708 709 /* 710 * Used only by ill_arp_on and ill_arp_off, which are writers. 711 * So nobody can be using this mp now. Free the mp allocated for 712 * honoring ILLF_NOARP 713 */ 714 freemsg(ill->ill_arp_on_mp); 715 ill->ill_arp_on_mp = NULL; 716 717 /* Clean up msgs on pending upcalls for mrouted */ 718 reset_mrt_ill(ill); 719 720 /* 721 * ipif_free -> reset_conn_ipif will remove all multicast 722 * references for IPv4. For IPv6, we need to do it here as 723 * it points only at ills. 724 */ 725 reset_conn_ill(ill); 726 727 /* 728 * ill_down will arrange to blow off any IRE's dependent on this 729 * ILL, and shut down fragmentation reassembly. 730 */ 731 ill_down(ill); 732 733 /* Let SCTP know, so that it can remove this from its list. */ 734 sctp_update_ill(ill, SCTP_ILL_REMOVE); 735 736 /* 737 * If an address on this ILL is being used as a source address then 738 * clear out the pointers in other ILLs that point to this ILL. 739 */ 740 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 741 if (ill->ill_usesrc_grp_next != NULL) { 742 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 743 ill_disband_usesrc_group(ill); 744 } else { /* consumer of the usesrc ILL */ 745 prev_ill = ill_prev_usesrc(ill); 746 prev_ill->ill_usesrc_grp_next = 747 ill->ill_usesrc_grp_next; 748 } 749 } 750 rw_exit(&ill_g_usesrc_lock); 751 } 752 753 /* 754 * ill_delete_tail is called from ip_modclose after all references 755 * to the closing ill are gone. The wait is done in ip_modclose 756 */ 757 void 758 ill_delete_tail(ill_t *ill) 759 { 760 mblk_t **mpp; 761 ipif_t *ipif; 762 763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 764 ipif_down_tail(ipif); 765 766 /* 767 * If polling capability is enabled (which signifies direct 768 * upcall into IP and driver has ill saved as a handle), 769 * we need to make sure that unbind has completed before we 770 * let the ill disappear and driver no longer has any reference 771 * to this ill. 772 */ 773 mutex_enter(&ill->ill_lock); 774 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 775 cv_wait(&ill->ill_cv, &ill->ill_lock); 776 mutex_exit(&ill->ill_lock); 777 778 /* 779 * Clean up polling and soft ring capabilities 780 */ 781 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 782 ill_capability_dls_disable(ill); 783 784 /* 785 * Send the detach if there's one to send (i.e., if we're above a 786 * style 2 DLPI driver). 787 */ 788 if (ill->ill_detach_mp != NULL) { 789 ill_dlpi_send(ill, ill->ill_detach_mp); 790 ill->ill_detach_mp = NULL; 791 } 792 793 if (ill->ill_net_type != IRE_LOOPBACK) 794 qprocsoff(ill->ill_rq); 795 796 /* 797 * We do an ipsq_flush once again now. New messages could have 798 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 799 * could also have landed up if an ioctl thread had looked up 800 * the ill before we set the ILL_CONDEMNED flag, but not yet 801 * enqueued the ioctl when we did the ipsq_flush last time. 802 */ 803 ipsq_flush(ill); 804 805 /* 806 * Free capabilities. 807 */ 808 if (ill->ill_ipsec_capab_ah != NULL) { 809 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 810 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 811 ill->ill_ipsec_capab_ah = NULL; 812 } 813 814 if (ill->ill_ipsec_capab_esp != NULL) { 815 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 816 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 817 ill->ill_ipsec_capab_esp = NULL; 818 } 819 820 if (ill->ill_mdt_capab != NULL) { 821 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 822 ill->ill_mdt_capab = NULL; 823 } 824 825 if (ill->ill_hcksum_capab != NULL) { 826 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 827 ill->ill_hcksum_capab = NULL; 828 } 829 830 if (ill->ill_zerocopy_capab != NULL) { 831 kmem_free(ill->ill_zerocopy_capab, 832 sizeof (ill_zerocopy_capab_t)); 833 ill->ill_zerocopy_capab = NULL; 834 } 835 836 if (ill->ill_dls_capab != NULL) { 837 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 838 ill->ill_dls_capab->ill_unbind_conn = NULL; 839 kmem_free(ill->ill_dls_capab, 840 sizeof (ill_dls_capab_t) + 841 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 842 ill->ill_dls_capab = NULL; 843 } 844 845 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 846 847 while (ill->ill_ipif != NULL) 848 ipif_free_tail(ill->ill_ipif); 849 850 ill_down_tail(ill); 851 852 /* 853 * We have removed all references to ilm from conn and the ones joined 854 * within the kernel. 855 * 856 * We don't walk conns, mrts and ires because 857 * 858 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 859 * 2) ill_down ->ill_downi walks all the ires and cleans up 860 * ill references. 861 */ 862 ASSERT(ilm_walk_ill(ill) == 0); 863 /* 864 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 865 * could free the phyint. No more reference to the phyint after this 866 * point. 867 */ 868 (void) ill_glist_delete(ill); 869 870 rw_enter(&ip_g_nd_lock, RW_WRITER); 871 if (ill->ill_ndd_name != NULL) 872 nd_unload(&ip_g_nd, ill->ill_ndd_name); 873 rw_exit(&ip_g_nd_lock); 874 875 876 if (ill->ill_frag_ptr != NULL) { 877 uint_t count; 878 879 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 880 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 881 } 882 mi_free(ill->ill_frag_ptr); 883 ill->ill_frag_ptr = NULL; 884 ill->ill_frag_hash_tbl = NULL; 885 } 886 if (ill->ill_nd_lla_mp != NULL) 887 freemsg(ill->ill_nd_lla_mp); 888 /* Free all retained control messages. */ 889 mpp = &ill->ill_first_mp_to_free; 890 do { 891 while (mpp[0]) { 892 mblk_t *mp; 893 mblk_t *mp1; 894 895 mp = mpp[0]; 896 mpp[0] = mp->b_next; 897 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 898 mp1->b_next = NULL; 899 mp1->b_prev = NULL; 900 } 901 freemsg(mp); 902 } 903 } while (mpp++ != &ill->ill_last_mp_to_free); 904 905 ill_free_mib(ill); 906 ILL_TRACE_CLEANUP(ill); 907 } 908 909 static void 910 ill_free_mib(ill_t *ill) 911 { 912 if (ill->ill_ip6_mib != NULL) { 913 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 914 ill->ill_ip6_mib = NULL; 915 } 916 if (ill->ill_icmp6_mib != NULL) { 917 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 918 ill->ill_icmp6_mib = NULL; 919 } 920 } 921 922 /* 923 * Concatenate together a physical address and a sap. 924 * 925 * Sap_lengths are interpreted as follows: 926 * sap_length == 0 ==> no sap 927 * sap_length > 0 ==> sap is at the head of the dlpi address 928 * sap_length < 0 ==> sap is at the tail of the dlpi address 929 */ 930 static void 931 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 932 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 933 { 934 uint16_t sap_addr = (uint16_t)sap_src; 935 936 if (sap_length == 0) { 937 if (phys_src == NULL) 938 bzero(dst, phys_length); 939 else 940 bcopy(phys_src, dst, phys_length); 941 } else if (sap_length < 0) { 942 if (phys_src == NULL) 943 bzero(dst, phys_length); 944 else 945 bcopy(phys_src, dst, phys_length); 946 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 947 } else { 948 bcopy(&sap_addr, dst, sizeof (sap_addr)); 949 if (phys_src == NULL) 950 bzero((char *)dst + sap_length, phys_length); 951 else 952 bcopy(phys_src, (char *)dst + sap_length, phys_length); 953 } 954 } 955 956 /* 957 * Generate a dl_unitdata_req mblk for the device and address given. 958 * addr_length is the length of the physical portion of the address. 959 * If addr is NULL include an all zero address of the specified length. 960 * TRUE? In any case, addr_length is taken to be the entire length of the 961 * dlpi address, including the absolute value of sap_length. 962 */ 963 mblk_t * 964 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 965 t_scalar_t sap_length) 966 { 967 dl_unitdata_req_t *dlur; 968 mblk_t *mp; 969 t_scalar_t abs_sap_length; /* absolute value */ 970 971 abs_sap_length = ABS(sap_length); 972 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 973 DL_UNITDATA_REQ); 974 if (mp == NULL) 975 return (NULL); 976 dlur = (dl_unitdata_req_t *)mp->b_rptr; 977 /* HACK: accomodate incompatible DLPI drivers */ 978 if (addr_length == 8) 979 addr_length = 6; 980 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 981 dlur->dl_dest_addr_offset = sizeof (*dlur); 982 dlur->dl_priority.dl_min = 0; 983 dlur->dl_priority.dl_max = 0; 984 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 985 (uchar_t *)&dlur[1]); 986 return (mp); 987 } 988 989 /* 990 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 991 * Return an error if we already have 1 or more ioctls in progress. 992 * This is used only for non-exclusive ioctls. Currently this is used 993 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 994 * and thus need to use ipsq_pending_mp_add. 995 */ 996 boolean_t 997 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 998 { 999 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1000 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1001 /* 1002 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1003 */ 1004 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1005 (add_mp->b_datap->db_type == M_IOCTL)); 1006 1007 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1008 /* 1009 * Return error if the conn has started closing. The conn 1010 * could have finished cleaning up the pending mp list, 1011 * If so we should not add another mp to the list negating 1012 * the cleanup. 1013 */ 1014 if (connp->conn_state_flags & CONN_CLOSING) 1015 return (B_FALSE); 1016 /* 1017 * Add the pending mp to the head of the list, chained by b_next. 1018 * Note down the conn on which the ioctl request came, in b_prev. 1019 * This will be used to later get the conn, when we get a response 1020 * on the ill queue, from some other module (typically arp) 1021 */ 1022 add_mp->b_next = (void *)ill->ill_pending_mp; 1023 add_mp->b_queue = CONNP_TO_WQ(connp); 1024 ill->ill_pending_mp = add_mp; 1025 if (connp != NULL) 1026 connp->conn_oper_pending_ill = ill; 1027 return (B_TRUE); 1028 } 1029 1030 /* 1031 * Retrieve the ill_pending_mp and return it. We have to walk the list 1032 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1033 */ 1034 mblk_t * 1035 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1036 { 1037 mblk_t *prev = NULL; 1038 mblk_t *curr = NULL; 1039 uint_t id; 1040 conn_t *connp; 1041 1042 /* 1043 * When the conn closes, conn_ioctl_cleanup needs to clean 1044 * up the pending mp, but it does not know the ioc_id and 1045 * passes in a zero for it. 1046 */ 1047 mutex_enter(&ill->ill_lock); 1048 if (ioc_id != 0) 1049 *connpp = NULL; 1050 1051 /* Search the list for the appropriate ioctl based on ioc_id */ 1052 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1053 prev = curr, curr = curr->b_next) { 1054 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1055 connp = Q_TO_CONN(curr->b_queue); 1056 /* Match based on the ioc_id or based on the conn */ 1057 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1058 break; 1059 } 1060 1061 if (curr != NULL) { 1062 /* Unlink the mblk from the pending mp list */ 1063 if (prev != NULL) { 1064 prev->b_next = curr->b_next; 1065 } else { 1066 ASSERT(ill->ill_pending_mp == curr); 1067 ill->ill_pending_mp = curr->b_next; 1068 } 1069 1070 /* 1071 * conn refcnt must have been bumped up at the start of 1072 * the ioctl. So we can safely access the conn. 1073 */ 1074 ASSERT(CONN_Q(curr->b_queue)); 1075 *connpp = Q_TO_CONN(curr->b_queue); 1076 curr->b_next = NULL; 1077 curr->b_queue = NULL; 1078 } 1079 1080 mutex_exit(&ill->ill_lock); 1081 1082 return (curr); 1083 } 1084 1085 /* 1086 * Add the pending mp to the list. There can be only 1 pending mp 1087 * in the list. Any exclusive ioctl that needs to wait for a response 1088 * from another module or driver needs to use this function to set 1089 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1090 * the other module/driver. This is also used while waiting for the 1091 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1092 */ 1093 boolean_t 1094 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1095 int waitfor) 1096 { 1097 ipsq_t *ipsq; 1098 1099 ASSERT(IAM_WRITER_IPIF(ipif)); 1100 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1101 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1102 /* 1103 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1104 * M_ERROR/M_HANGUP from driver 1105 */ 1106 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1107 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1108 1109 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1110 if (connp != NULL) { 1111 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1112 /* 1113 * Return error if the conn has started closing. The conn 1114 * could have finished cleaning up the pending mp list, 1115 * If so we should not add another mp to the list negating 1116 * the cleanup. 1117 */ 1118 if (connp->conn_state_flags & CONN_CLOSING) 1119 return (B_FALSE); 1120 } 1121 mutex_enter(&ipsq->ipsq_lock); 1122 ipsq->ipsq_pending_ipif = ipif; 1123 /* 1124 * Note down the queue in b_queue. This will be returned by 1125 * ipsq_pending_mp_get. Caller will then use these values to restart 1126 * the processing 1127 */ 1128 add_mp->b_next = NULL; 1129 add_mp->b_queue = q; 1130 ipsq->ipsq_pending_mp = add_mp; 1131 ipsq->ipsq_waitfor = waitfor; 1132 /* 1133 * ipsq_current_ipif is needed to restart the operation from 1134 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1135 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1136 * been set until now. 1137 */ 1138 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1139 ASSERT(ipsq->ipsq_current_ipif == NULL); 1140 ipsq->ipsq_current_ipif = ipif; 1141 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1142 } 1143 if (connp != NULL) 1144 connp->conn_oper_pending_ill = ipif->ipif_ill; 1145 mutex_exit(&ipsq->ipsq_lock); 1146 return (B_TRUE); 1147 } 1148 1149 /* 1150 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1151 * queued in the list. 1152 */ 1153 mblk_t * 1154 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1155 { 1156 mblk_t *curr = NULL; 1157 1158 mutex_enter(&ipsq->ipsq_lock); 1159 *connpp = NULL; 1160 if (ipsq->ipsq_pending_mp == NULL) { 1161 mutex_exit(&ipsq->ipsq_lock); 1162 return (NULL); 1163 } 1164 1165 /* There can be only 1 such excl message */ 1166 curr = ipsq->ipsq_pending_mp; 1167 ASSERT(curr != NULL && curr->b_next == NULL); 1168 ipsq->ipsq_pending_ipif = NULL; 1169 ipsq->ipsq_pending_mp = NULL; 1170 ipsq->ipsq_waitfor = 0; 1171 mutex_exit(&ipsq->ipsq_lock); 1172 1173 if (CONN_Q(curr->b_queue)) { 1174 /* 1175 * This mp did a refhold on the conn, at the start of the ioctl. 1176 * So we can safely return a pointer to the conn to the caller. 1177 */ 1178 *connpp = Q_TO_CONN(curr->b_queue); 1179 } else { 1180 *connpp = NULL; 1181 } 1182 curr->b_next = NULL; 1183 curr->b_prev = NULL; 1184 return (curr); 1185 } 1186 1187 /* 1188 * Cleanup the ioctl mp queued in ipsq_pending_mp 1189 * - Called in the ill_delete path 1190 * - Called in the M_ERROR or M_HANGUP path on the ill. 1191 * - Called in the conn close path. 1192 */ 1193 boolean_t 1194 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1195 { 1196 mblk_t *mp; 1197 ipsq_t *ipsq; 1198 queue_t *q; 1199 ipif_t *ipif; 1200 1201 ASSERT(IAM_WRITER_ILL(ill)); 1202 ipsq = ill->ill_phyint->phyint_ipsq; 1203 mutex_enter(&ipsq->ipsq_lock); 1204 /* 1205 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1206 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1207 * even if it is meant for another ill, since we have to enqueue 1208 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1209 * If connp is non-null we are called from the conn close path. 1210 */ 1211 mp = ipsq->ipsq_pending_mp; 1212 if (mp == NULL || (connp != NULL && 1213 mp->b_queue != CONNP_TO_WQ(connp))) { 1214 mutex_exit(&ipsq->ipsq_lock); 1215 return (B_FALSE); 1216 } 1217 /* Now remove from the ipsq_pending_mp */ 1218 ipsq->ipsq_pending_mp = NULL; 1219 q = mp->b_queue; 1220 mp->b_next = NULL; 1221 mp->b_prev = NULL; 1222 mp->b_queue = NULL; 1223 1224 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1225 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1226 if (ill->ill_move_in_progress) { 1227 ILL_CLEAR_MOVE(ill); 1228 } else if (ill->ill_up_ipifs) { 1229 ill_group_cleanup(ill); 1230 } 1231 1232 ipif = ipsq->ipsq_pending_ipif; 1233 ipsq->ipsq_pending_ipif = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 ipsq->ipsq_current_ipif = NULL; 1236 mutex_exit(&ipsq->ipsq_lock); 1237 1238 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1239 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1240 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1241 } else { 1242 /* 1243 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1244 * be just inet_freemsg. we have to restart it 1245 * otherwise the thread will be stuck. 1246 */ 1247 inet_freemsg(mp); 1248 } 1249 return (B_TRUE); 1250 } 1251 1252 /* 1253 * The ill is closing. Cleanup all the pending mps. Called exclusively 1254 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1255 * knows this ill, and hence nobody can add an mp to this list 1256 */ 1257 static void 1258 ill_pending_mp_cleanup(ill_t *ill) 1259 { 1260 mblk_t *mp; 1261 queue_t *q; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 1265 mutex_enter(&ill->ill_lock); 1266 /* 1267 * Every mp on the pending mp list originating from an ioctl 1268 * added 1 to the conn refcnt, at the start of the ioctl. 1269 * So bump it down now. See comments in ip_wput_nondata() 1270 */ 1271 while (ill->ill_pending_mp != NULL) { 1272 mp = ill->ill_pending_mp; 1273 ill->ill_pending_mp = mp->b_next; 1274 mutex_exit(&ill->ill_lock); 1275 1276 q = mp->b_queue; 1277 ASSERT(CONN_Q(q)); 1278 mp->b_next = NULL; 1279 mp->b_prev = NULL; 1280 mp->b_queue = NULL; 1281 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1282 mutex_enter(&ill->ill_lock); 1283 } 1284 ill->ill_pending_ipif = NULL; 1285 1286 mutex_exit(&ill->ill_lock); 1287 } 1288 1289 /* 1290 * Called in the conn close path and ill delete path 1291 */ 1292 static void 1293 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1294 { 1295 ipsq_t *ipsq; 1296 mblk_t *prev; 1297 mblk_t *curr; 1298 mblk_t *next; 1299 queue_t *q; 1300 mblk_t *tmp_list = NULL; 1301 1302 ASSERT(IAM_WRITER_ILL(ill)); 1303 if (connp != NULL) 1304 q = CONNP_TO_WQ(connp); 1305 else 1306 q = ill->ill_wq; 1307 1308 ipsq = ill->ill_phyint->phyint_ipsq; 1309 /* 1310 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1311 * In the case of ioctl from a conn, there can be only 1 mp 1312 * queued on the ipsq. If an ill is being unplumbed, only messages 1313 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1314 * ioctls meant for this ill form conn's are not flushed. They will 1315 * be processed during ipsq_exit and will not find the ill and will 1316 * return error. 1317 */ 1318 mutex_enter(&ipsq->ipsq_lock); 1319 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1320 curr = next) { 1321 next = curr->b_next; 1322 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1323 /* Unlink the mblk from the pending mp list */ 1324 if (prev != NULL) { 1325 prev->b_next = curr->b_next; 1326 } else { 1327 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1328 ipsq->ipsq_xopq_mphead = curr->b_next; 1329 } 1330 if (ipsq->ipsq_xopq_mptail == curr) 1331 ipsq->ipsq_xopq_mptail = prev; 1332 /* 1333 * Create a temporary list and release the ipsq lock 1334 * New elements are added to the head of the tmp_list 1335 */ 1336 curr->b_next = tmp_list; 1337 tmp_list = curr; 1338 } else { 1339 prev = curr; 1340 } 1341 } 1342 mutex_exit(&ipsq->ipsq_lock); 1343 1344 while (tmp_list != NULL) { 1345 curr = tmp_list; 1346 tmp_list = curr->b_next; 1347 curr->b_next = NULL; 1348 curr->b_prev = NULL; 1349 curr->b_queue = NULL; 1350 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1351 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1352 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1353 } else { 1354 /* 1355 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1356 * this can't be just inet_freemsg. we have to 1357 * restart it otherwise the thread will be stuck. 1358 */ 1359 inet_freemsg(curr); 1360 } 1361 } 1362 } 1363 1364 /* 1365 * This conn has started closing. Cleanup any pending ioctl from this conn. 1366 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1367 */ 1368 void 1369 conn_ioctl_cleanup(conn_t *connp) 1370 { 1371 mblk_t *curr; 1372 ipsq_t *ipsq; 1373 ill_t *ill; 1374 boolean_t refheld; 1375 1376 /* 1377 * Is any exclusive ioctl pending ? If so clean it up. If the 1378 * ioctl has not yet started, the mp is pending in the list headed by 1379 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1380 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1381 * is currently executing now the mp is not queued anywhere but 1382 * conn_oper_pending_ill is null. The conn close will wait 1383 * till the conn_ref drops to zero. 1384 */ 1385 mutex_enter(&connp->conn_lock); 1386 ill = connp->conn_oper_pending_ill; 1387 if (ill == NULL) { 1388 mutex_exit(&connp->conn_lock); 1389 return; 1390 } 1391 1392 curr = ill_pending_mp_get(ill, &connp, 0); 1393 if (curr != NULL) { 1394 mutex_exit(&connp->conn_lock); 1395 CONN_DEC_REF(connp); 1396 inet_freemsg(curr); 1397 return; 1398 } 1399 /* 1400 * We may not be able to refhold the ill if the ill/ipif 1401 * is changing. But we need to make sure that the ill will 1402 * not vanish. So we just bump up the ill_waiter count. 1403 */ 1404 refheld = ill_waiter_inc(ill); 1405 mutex_exit(&connp->conn_lock); 1406 if (refheld) { 1407 if (ipsq_enter(ill, B_TRUE)) { 1408 ill_waiter_dcr(ill); 1409 /* 1410 * Check whether this ioctl has started and is 1411 * pending now in ipsq_pending_mp. If it is not 1412 * found there then check whether this ioctl has 1413 * not even started and is in the ipsq_xopq list. 1414 */ 1415 if (!ipsq_pending_mp_cleanup(ill, connp)) 1416 ipsq_xopq_mp_cleanup(ill, connp); 1417 ipsq = ill->ill_phyint->phyint_ipsq; 1418 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1419 return; 1420 } 1421 } 1422 1423 /* 1424 * The ill is also closing and we could not bump up the 1425 * ill_waiter_count or we could not enter the ipsq. Leave 1426 * the cleanup to ill_delete 1427 */ 1428 mutex_enter(&connp->conn_lock); 1429 while (connp->conn_oper_pending_ill != NULL) 1430 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1431 mutex_exit(&connp->conn_lock); 1432 if (refheld) 1433 ill_waiter_dcr(ill); 1434 } 1435 1436 /* 1437 * ipcl_walk function for cleaning up conn_*_ill fields. 1438 */ 1439 static void 1440 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1441 { 1442 ill_t *ill = (ill_t *)arg; 1443 ire_t *ire; 1444 1445 mutex_enter(&connp->conn_lock); 1446 if (connp->conn_multicast_ill == ill) { 1447 /* Revert to late binding */ 1448 connp->conn_multicast_ill = NULL; 1449 connp->conn_orig_multicast_ifindex = 0; 1450 } 1451 if (connp->conn_incoming_ill == ill) 1452 connp->conn_incoming_ill = NULL; 1453 if (connp->conn_outgoing_ill == ill) 1454 connp->conn_outgoing_ill = NULL; 1455 if (connp->conn_outgoing_pill == ill) 1456 connp->conn_outgoing_pill = NULL; 1457 if (connp->conn_nofailover_ill == ill) 1458 connp->conn_nofailover_ill = NULL; 1459 if (connp->conn_xmit_if_ill == ill) 1460 connp->conn_xmit_if_ill = NULL; 1461 if (connp->conn_ire_cache != NULL) { 1462 ire = connp->conn_ire_cache; 1463 /* 1464 * ip_newroute creates IRE_CACHE with ire_stq coming from 1465 * interface X and ipif coming from interface Y, if interface 1466 * X and Y are part of the same IPMPgroup. Thus whenever 1467 * interface X goes down, remove all references to it by 1468 * checking both on ire_ipif and ire_stq. 1469 */ 1470 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1471 (ire->ire_type == IRE_CACHE && 1472 ire->ire_stq == ill->ill_wq)) { 1473 connp->conn_ire_cache = NULL; 1474 mutex_exit(&connp->conn_lock); 1475 ire_refrele_notr(ire); 1476 return; 1477 } 1478 } 1479 mutex_exit(&connp->conn_lock); 1480 1481 } 1482 1483 /* ARGSUSED */ 1484 void 1485 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1486 { 1487 ill_t *ill = q->q_ptr; 1488 ipif_t *ipif; 1489 1490 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1491 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1492 ipif_down_tail(ipif); 1493 ill_down_tail(ill); 1494 freemsg(mp); 1495 ipsq->ipsq_current_ipif = NULL; 1496 } 1497 1498 /* 1499 * ill_down_start is called when we want to down this ill and bring it up again 1500 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1501 * all interfaces, but don't tear down any plumbing. 1502 */ 1503 boolean_t 1504 ill_down_start(queue_t *q, mblk_t *mp) 1505 { 1506 ill_t *ill; 1507 ipif_t *ipif; 1508 1509 ill = q->q_ptr; 1510 1511 ASSERT(IAM_WRITER_ILL(ill)); 1512 1513 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1514 (void) ipif_down(ipif, NULL, NULL); 1515 1516 ill_down(ill); 1517 1518 (void) ipsq_pending_mp_cleanup(ill, NULL); 1519 mutex_enter(&ill->ill_lock); 1520 /* 1521 * Atomically test and add the pending mp if references are 1522 * still active. 1523 */ 1524 if (!ill_is_quiescent(ill)) { 1525 /* 1526 * Get rid of any pending mps and cleanup. Call will 1527 * not fail since we are passing a null connp. 1528 */ 1529 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1530 mp, ILL_DOWN); 1531 mutex_exit(&ill->ill_lock); 1532 return (B_FALSE); 1533 } 1534 mutex_exit(&ill->ill_lock); 1535 return (B_TRUE); 1536 } 1537 1538 static void 1539 ill_down(ill_t *ill) 1540 { 1541 /* Blow off any IREs dependent on this ILL. */ 1542 ire_walk(ill_downi, (char *)ill); 1543 1544 mutex_enter(&ire_mrtun_lock); 1545 if (ire_mrtun_count != 0) { 1546 mutex_exit(&ire_mrtun_lock); 1547 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1548 (char *)ill, NULL); 1549 } else { 1550 mutex_exit(&ire_mrtun_lock); 1551 } 1552 1553 /* 1554 * If any interface based forwarding table exists 1555 * Blow off the ires there dependent on this ill 1556 */ 1557 mutex_enter(&ire_srcif_table_lock); 1558 if (ire_srcif_table_count > 0) { 1559 mutex_exit(&ire_srcif_table_lock); 1560 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1561 } else { 1562 mutex_exit(&ire_srcif_table_lock); 1563 } 1564 1565 /* Remove any conn_*_ill depending on this ill */ 1566 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1567 1568 if (ill->ill_group != NULL) { 1569 illgrp_delete(ill); 1570 } 1571 1572 } 1573 1574 static void 1575 ill_down_tail(ill_t *ill) 1576 { 1577 int i; 1578 1579 /* Destroy ill_srcif_table if it exists */ 1580 /* Lock not reqd really because nobody should be able to access */ 1581 mutex_enter(&ill->ill_lock); 1582 if (ill->ill_srcif_table != NULL) { 1583 ill->ill_srcif_refcnt = 0; 1584 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1585 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1586 } 1587 kmem_free(ill->ill_srcif_table, 1588 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1589 ill->ill_srcif_table = NULL; 1590 ill->ill_srcif_refcnt = 0; 1591 ill->ill_mrtun_refcnt = 0; 1592 } 1593 mutex_exit(&ill->ill_lock); 1594 } 1595 1596 /* 1597 * ire_walk routine used to delete every IRE that depends on queues 1598 * associated with 'ill'. (Always called as writer.) 1599 */ 1600 static void 1601 ill_downi(ire_t *ire, char *ill_arg) 1602 { 1603 ill_t *ill = (ill_t *)ill_arg; 1604 1605 /* 1606 * ip_newroute creates IRE_CACHE with ire_stq coming from 1607 * interface X and ipif coming from interface Y, if interface 1608 * X and Y are part of the same IPMP group. Thus whenever interface 1609 * X goes down, remove all references to it by checking both 1610 * on ire_ipif and ire_stq. 1611 */ 1612 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1613 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1614 ire_delete(ire); 1615 } 1616 } 1617 1618 /* 1619 * A seperate routine for deleting revtun and srcif based routes 1620 * are needed because the ires only deleted when the interface 1621 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1622 * we want to keep mobile IP specific code separate. 1623 */ 1624 static void 1625 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1626 { 1627 ill_t *ill = (ill_t *)ill_arg; 1628 1629 ASSERT(ire->ire_in_ill != NULL); 1630 1631 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1632 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1633 ire_delete(ire); 1634 } 1635 } 1636 1637 /* 1638 * Remove ire/nce from the fastpath list. 1639 */ 1640 void 1641 ill_fastpath_nack(ill_t *ill) 1642 { 1643 if (ill->ill_isv6) { 1644 nce_fastpath_list_dispatch(ill, NULL, NULL); 1645 } else { 1646 ire_fastpath_list_dispatch(ill, NULL, NULL); 1647 } 1648 } 1649 1650 /* Consume an M_IOCACK of the fastpath probe. */ 1651 void 1652 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1653 { 1654 mblk_t *mp1 = mp; 1655 1656 /* 1657 * If this was the first attempt turn on the fastpath probing. 1658 */ 1659 mutex_enter(&ill->ill_lock); 1660 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1661 ill->ill_dlpi_fastpath_state = IDMS_OK; 1662 mutex_exit(&ill->ill_lock); 1663 1664 /* Free the M_IOCACK mblk, hold on to the data */ 1665 mp = mp->b_cont; 1666 freeb(mp1); 1667 if (mp == NULL) 1668 return; 1669 if (mp->b_cont != NULL) { 1670 /* 1671 * Update all IRE's or NCE's that are waiting for 1672 * fastpath update. 1673 */ 1674 if (ill->ill_isv6) { 1675 /* 1676 * update nce's in the fastpath list. 1677 */ 1678 nce_fastpath_list_dispatch(ill, 1679 ndp_fastpath_update, mp); 1680 } else { 1681 1682 /* 1683 * update ire's in the fastpath list. 1684 */ 1685 ire_fastpath_list_dispatch(ill, 1686 ire_fastpath_update, mp); 1687 /* 1688 * Check if we need to traverse reverse tunnel table. 1689 * Since there is only single ire_type (IRE_MIPRTUN) 1690 * in the table, we don't need to match on ire_type. 1691 * We have to check ire_mrtun_count and not the 1692 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1693 * on the incoming ill and here we are dealing with 1694 * outgoing ill. 1695 */ 1696 mutex_enter(&ire_mrtun_lock); 1697 if (ire_mrtun_count != 0) { 1698 mutex_exit(&ire_mrtun_lock); 1699 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1700 (void (*)(ire_t *, void *)) 1701 ire_fastpath_update, mp, ill); 1702 } else { 1703 mutex_exit(&ire_mrtun_lock); 1704 } 1705 } 1706 mp1 = mp->b_cont; 1707 freeb(mp); 1708 mp = mp1; 1709 } else { 1710 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1711 } 1712 1713 freeb(mp); 1714 } 1715 1716 /* 1717 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1718 * The data portion of the request is a dl_unitdata_req_t template for 1719 * what we would send downstream in the absence of a fastpath confirmation. 1720 */ 1721 int 1722 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1723 { 1724 struct iocblk *ioc; 1725 mblk_t *mp; 1726 1727 if (dlur_mp == NULL) 1728 return (EINVAL); 1729 1730 mutex_enter(&ill->ill_lock); 1731 switch (ill->ill_dlpi_fastpath_state) { 1732 case IDMS_FAILED: 1733 /* 1734 * Driver NAKed the first fastpath ioctl - assume it doesn't 1735 * support it. 1736 */ 1737 mutex_exit(&ill->ill_lock); 1738 return (ENOTSUP); 1739 case IDMS_UNKNOWN: 1740 /* This is the first probe */ 1741 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1742 break; 1743 default: 1744 break; 1745 } 1746 mutex_exit(&ill->ill_lock); 1747 1748 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1749 return (EAGAIN); 1750 1751 mp->b_cont = copyb(dlur_mp); 1752 if (mp->b_cont == NULL) { 1753 freeb(mp); 1754 return (EAGAIN); 1755 } 1756 1757 ioc = (struct iocblk *)mp->b_rptr; 1758 ioc->ioc_count = msgdsize(mp->b_cont); 1759 1760 putnext(ill->ill_wq, mp); 1761 return (0); 1762 } 1763 1764 void 1765 ill_capability_probe(ill_t *ill) 1766 { 1767 /* 1768 * Do so only if negotiation is enabled, capabilities are unknown, 1769 * and a capability negotiation is not already in progress. 1770 */ 1771 if (ill->ill_capab_state != IDMS_UNKNOWN && 1772 ill->ill_capab_state != IDMS_RENEG) 1773 return; 1774 1775 ill->ill_capab_state = IDMS_INPROGRESS; 1776 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1777 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1778 } 1779 1780 void 1781 ill_capability_reset(ill_t *ill) 1782 { 1783 mblk_t *sc_mp = NULL; 1784 mblk_t *tmp; 1785 1786 /* 1787 * Note here that we reset the state to UNKNOWN, and later send 1788 * down the DL_CAPABILITY_REQ without first setting the state to 1789 * INPROGRESS. We do this in order to distinguish the 1790 * DL_CAPABILITY_ACK response which may come back in response to 1791 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1792 * also handle the case where the driver doesn't send us back 1793 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1794 * requires the state to be in UNKNOWN anyway. In any case, all 1795 * features are turned off until the state reaches IDMS_OK. 1796 */ 1797 ill->ill_capab_state = IDMS_UNKNOWN; 1798 1799 /* 1800 * Disable sub-capabilities and request a list of sub-capability 1801 * messages which will be sent down to the driver. Each handler 1802 * allocates the corresponding dl_capability_sub_t inside an 1803 * mblk, and links it to the existing sc_mp mblk, or return it 1804 * as sc_mp if it's the first sub-capability (the passed in 1805 * sc_mp is NULL). Upon returning from all capability handlers, 1806 * sc_mp will be pulled-up, before passing it downstream. 1807 */ 1808 ill_capability_mdt_reset(ill, &sc_mp); 1809 ill_capability_hcksum_reset(ill, &sc_mp); 1810 ill_capability_zerocopy_reset(ill, &sc_mp); 1811 ill_capability_ipsec_reset(ill, &sc_mp); 1812 ill_capability_dls_reset(ill, &sc_mp); 1813 1814 /* Nothing to send down in order to disable the capabilities? */ 1815 if (sc_mp == NULL) 1816 return; 1817 1818 tmp = msgpullup(sc_mp, -1); 1819 freemsg(sc_mp); 1820 if ((sc_mp = tmp) == NULL) { 1821 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1822 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1823 return; 1824 } 1825 1826 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1827 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1828 } 1829 1830 /* 1831 * Request or set new-style hardware capabilities supported by DLS provider. 1832 */ 1833 static void 1834 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1835 { 1836 mblk_t *mp; 1837 dl_capability_req_t *capb; 1838 size_t size = 0; 1839 uint8_t *ptr; 1840 1841 if (reqp != NULL) 1842 size = MBLKL(reqp); 1843 1844 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1845 if (mp == NULL) { 1846 freemsg(reqp); 1847 return; 1848 } 1849 ptr = mp->b_rptr; 1850 1851 capb = (dl_capability_req_t *)ptr; 1852 ptr += sizeof (dl_capability_req_t); 1853 1854 if (reqp != NULL) { 1855 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1856 capb->dl_sub_length = size; 1857 bcopy(reqp->b_rptr, ptr, size); 1858 ptr += size; 1859 mp->b_cont = reqp->b_cont; 1860 freeb(reqp); 1861 } 1862 ASSERT(ptr == mp->b_wptr); 1863 1864 ill_dlpi_send(ill, mp); 1865 } 1866 1867 static void 1868 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1869 { 1870 dl_capab_id_t *id_ic; 1871 uint_t sub_dl_cap = outers->dl_cap; 1872 dl_capability_sub_t *inners; 1873 uint8_t *capend; 1874 1875 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1876 1877 /* 1878 * Note: range checks here are not absolutely sufficient to 1879 * make us robust against malformed messages sent by drivers; 1880 * this is in keeping with the rest of IP's dlpi handling. 1881 * (Remember, it's coming from something else in the kernel 1882 * address space) 1883 */ 1884 1885 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1886 if (capend > mp->b_wptr) { 1887 cmn_err(CE_WARN, "ill_capability_id_ack: " 1888 "malformed sub-capability too long for mblk"); 1889 return; 1890 } 1891 1892 id_ic = (dl_capab_id_t *)(outers + 1); 1893 1894 if (outers->dl_length < sizeof (*id_ic) || 1895 (inners = &id_ic->id_subcap, 1896 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1897 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1898 "encapsulated capab type %d too long for mblk", 1899 inners->dl_cap); 1900 return; 1901 } 1902 1903 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1904 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1905 "isn't as expected; pass-thru module(s) detected, " 1906 "discarding capability\n", inners->dl_cap)); 1907 return; 1908 } 1909 1910 /* Process the encapsulated sub-capability */ 1911 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1912 } 1913 1914 /* 1915 * Process Multidata Transmit capability negotiation ack received from a 1916 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1917 * DL_CAPABILITY_ACK message. 1918 */ 1919 static void 1920 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1921 { 1922 mblk_t *nmp = NULL; 1923 dl_capability_req_t *oc; 1924 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1925 ill_mdt_capab_t **ill_mdt_capab; 1926 uint_t sub_dl_cap = isub->dl_cap; 1927 uint8_t *capend; 1928 1929 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1930 1931 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1932 1933 /* 1934 * Note: range checks here are not absolutely sufficient to 1935 * make us robust against malformed messages sent by drivers; 1936 * this is in keeping with the rest of IP's dlpi handling. 1937 * (Remember, it's coming from something else in the kernel 1938 * address space) 1939 */ 1940 1941 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1942 if (capend > mp->b_wptr) { 1943 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1944 "malformed sub-capability too long for mblk"); 1945 return; 1946 } 1947 1948 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1949 1950 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1951 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1952 "unsupported MDT sub-capability (version %d, expected %d)", 1953 mdt_ic->mdt_version, MDT_VERSION_2); 1954 return; 1955 } 1956 1957 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1958 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1959 "capability isn't as expected; pass-thru module(s) " 1960 "detected, discarding capability\n")); 1961 return; 1962 } 1963 1964 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1965 1966 if (*ill_mdt_capab == NULL) { 1967 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1968 KM_NOSLEEP); 1969 1970 if (*ill_mdt_capab == NULL) { 1971 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1972 "could not enable MDT version %d " 1973 "for %s (ENOMEM)\n", MDT_VERSION_2, 1974 ill->ill_name); 1975 return; 1976 } 1977 } 1978 1979 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1980 "MDT version %d (%d bytes leading, %d bytes trailing " 1981 "header spaces, %d max pld bufs, %d span limit)\n", 1982 ill->ill_name, MDT_VERSION_2, 1983 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1984 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1985 1986 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1987 (*ill_mdt_capab)->ill_mdt_on = 1; 1988 /* 1989 * Round the following values to the nearest 32-bit; ULP 1990 * may further adjust them to accomodate for additional 1991 * protocol headers. We pass these values to ULP during 1992 * bind time. 1993 */ 1994 (*ill_mdt_capab)->ill_mdt_hdr_head = 1995 roundup(mdt_ic->mdt_hdr_head, 4); 1996 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1997 roundup(mdt_ic->mdt_hdr_tail, 4); 1998 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1999 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2000 2001 ill->ill_capabilities |= ILL_CAPAB_MDT; 2002 } else { 2003 uint_t size; 2004 uchar_t *rptr; 2005 2006 size = sizeof (dl_capability_req_t) + 2007 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2008 2009 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2010 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2011 "could not enable MDT for %s (ENOMEM)\n", 2012 ill->ill_name); 2013 return; 2014 } 2015 2016 rptr = nmp->b_rptr; 2017 /* initialize dl_capability_req_t */ 2018 oc = (dl_capability_req_t *)nmp->b_rptr; 2019 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2020 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2021 sizeof (dl_capab_mdt_t); 2022 nmp->b_rptr += sizeof (dl_capability_req_t); 2023 2024 /* initialize dl_capability_sub_t */ 2025 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2026 nmp->b_rptr += sizeof (*isub); 2027 2028 /* initialize dl_capab_mdt_t */ 2029 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2030 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2031 2032 nmp->b_rptr = rptr; 2033 2034 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2035 "to enable MDT version %d\n", ill->ill_name, 2036 MDT_VERSION_2)); 2037 2038 /* set ENABLE flag */ 2039 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2040 2041 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2042 ill_dlpi_send(ill, nmp); 2043 } 2044 } 2045 2046 static void 2047 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2048 { 2049 mblk_t *mp; 2050 dl_capab_mdt_t *mdt_subcap; 2051 dl_capability_sub_t *dl_subcap; 2052 int size; 2053 2054 if (!ILL_MDT_CAPABLE(ill)) 2055 return; 2056 2057 ASSERT(ill->ill_mdt_capab != NULL); 2058 /* 2059 * Clear the capability flag for MDT but retain the ill_mdt_capab 2060 * structure since it's possible that another thread is still 2061 * referring to it. The structure only gets deallocated when 2062 * we destroy the ill. 2063 */ 2064 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2065 2066 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2067 2068 mp = allocb(size, BPRI_HI); 2069 if (mp == NULL) { 2070 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2071 "request to disable MDT\n")); 2072 return; 2073 } 2074 2075 mp->b_wptr = mp->b_rptr + size; 2076 2077 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2078 dl_subcap->dl_cap = DL_CAPAB_MDT; 2079 dl_subcap->dl_length = sizeof (*mdt_subcap); 2080 2081 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2082 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2083 mdt_subcap->mdt_flags = 0; 2084 mdt_subcap->mdt_hdr_head = 0; 2085 mdt_subcap->mdt_hdr_tail = 0; 2086 2087 if (*sc_mp != NULL) 2088 linkb(*sc_mp, mp); 2089 else 2090 *sc_mp = mp; 2091 } 2092 2093 /* 2094 * Send a DL_NOTIFY_REQ to the specified ill to enable 2095 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2096 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2097 * acceleration. 2098 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2099 */ 2100 static boolean_t 2101 ill_enable_promisc_notify(ill_t *ill) 2102 { 2103 mblk_t *mp; 2104 dl_notify_req_t *req; 2105 2106 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2107 2108 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2109 if (mp == NULL) 2110 return (B_FALSE); 2111 2112 req = (dl_notify_req_t *)mp->b_rptr; 2113 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2114 DL_NOTE_PROMISC_OFF_PHYS; 2115 2116 ill_dlpi_send(ill, mp); 2117 2118 return (B_TRUE); 2119 } 2120 2121 2122 /* 2123 * Allocate an IPsec capability request which will be filled by our 2124 * caller to turn on support for one or more algorithms. 2125 */ 2126 static mblk_t * 2127 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2128 { 2129 mblk_t *nmp; 2130 dl_capability_req_t *ocap; 2131 dl_capab_ipsec_t *ocip; 2132 dl_capab_ipsec_t *icip; 2133 uint8_t *ptr; 2134 icip = (dl_capab_ipsec_t *)(isub + 1); 2135 2136 /* 2137 * The first time around, we send a DL_NOTIFY_REQ to enable 2138 * PROMISC_ON/OFF notification from the provider. We need to 2139 * do this before enabling the algorithms to avoid leakage of 2140 * cleartext packets. 2141 */ 2142 2143 if (!ill_enable_promisc_notify(ill)) 2144 return (NULL); 2145 2146 /* 2147 * Allocate new mblk which will contain a new capability 2148 * request to enable the capabilities. 2149 */ 2150 2151 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2152 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2153 if (nmp == NULL) 2154 return (NULL); 2155 2156 ptr = nmp->b_rptr; 2157 2158 /* initialize dl_capability_req_t */ 2159 ocap = (dl_capability_req_t *)ptr; 2160 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2161 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2162 ptr += sizeof (dl_capability_req_t); 2163 2164 /* initialize dl_capability_sub_t */ 2165 bcopy(isub, ptr, sizeof (*isub)); 2166 ptr += sizeof (*isub); 2167 2168 /* initialize dl_capab_ipsec_t */ 2169 ocip = (dl_capab_ipsec_t *)ptr; 2170 bcopy(icip, ocip, sizeof (*icip)); 2171 2172 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2173 return (nmp); 2174 } 2175 2176 /* 2177 * Process an IPsec capability negotiation ack received from a DLS Provider. 2178 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2179 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2180 */ 2181 static void 2182 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2183 { 2184 dl_capab_ipsec_t *icip; 2185 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2186 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2187 uint_t cipher, nciphers; 2188 mblk_t *nmp; 2189 uint_t alg_len; 2190 boolean_t need_sadb_dump; 2191 uint_t sub_dl_cap = isub->dl_cap; 2192 ill_ipsec_capab_t **ill_capab; 2193 uint64_t ill_capab_flag; 2194 uint8_t *capend, *ciphend; 2195 boolean_t sadb_resync; 2196 2197 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2198 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2199 2200 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2201 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2202 ill_capab_flag = ILL_CAPAB_AH; 2203 } else { 2204 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2205 ill_capab_flag = ILL_CAPAB_ESP; 2206 } 2207 2208 /* 2209 * If the ill capability structure exists, then this incoming 2210 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2211 * If this is so, then we'd need to resynchronize the SADB 2212 * after re-enabling the offloaded ciphers. 2213 */ 2214 sadb_resync = (*ill_capab != NULL); 2215 2216 /* 2217 * Note: range checks here are not absolutely sufficient to 2218 * make us robust against malformed messages sent by drivers; 2219 * this is in keeping with the rest of IP's dlpi handling. 2220 * (Remember, it's coming from something else in the kernel 2221 * address space) 2222 */ 2223 2224 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2225 if (capend > mp->b_wptr) { 2226 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2227 "malformed sub-capability too long for mblk"); 2228 return; 2229 } 2230 2231 /* 2232 * There are two types of acks we process here: 2233 * 1. acks in reply to a (first form) generic capability req 2234 * (no ENABLE flag set) 2235 * 2. acks in reply to a ENABLE capability req. 2236 * (ENABLE flag set) 2237 * 2238 * We process the subcapability passed as argument as follows: 2239 * 1 do initializations 2240 * 1.1 initialize nmp = NULL 2241 * 1.2 set need_sadb_dump to B_FALSE 2242 * 2 for each cipher in subcapability: 2243 * 2.1 if ENABLE flag is set: 2244 * 2.1.1 update per-ill ipsec capabilities info 2245 * 2.1.2 set need_sadb_dump to B_TRUE 2246 * 2.2 if ENABLE flag is not set: 2247 * 2.2.1 if nmp is NULL: 2248 * 2.2.1.1 allocate and initialize nmp 2249 * 2.2.1.2 init current pos in nmp 2250 * 2.2.2 copy current cipher to current pos in nmp 2251 * 2.2.3 set ENABLE flag in nmp 2252 * 2.2.4 update current pos 2253 * 3 if nmp is not equal to NULL, send enable request 2254 * 3.1 send capability request 2255 * 4 if need_sadb_dump is B_TRUE 2256 * 4.1 enable promiscuous on/off notifications 2257 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2258 * AH or ESP SA's to interface. 2259 */ 2260 2261 nmp = NULL; 2262 oalg = NULL; 2263 need_sadb_dump = B_FALSE; 2264 icip = (dl_capab_ipsec_t *)(isub + 1); 2265 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2266 2267 nciphers = icip->cip_nciphers; 2268 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2269 2270 if (ciphend > capend) { 2271 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2272 "too many ciphers for sub-capability len"); 2273 return; 2274 } 2275 2276 for (cipher = 0; cipher < nciphers; cipher++) { 2277 alg_len = sizeof (dl_capab_ipsec_alg_t); 2278 2279 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2280 /* 2281 * TBD: when we provide a way to disable capabilities 2282 * from above, need to manage the request-pending state 2283 * and fail if we were not expecting this ACK. 2284 */ 2285 IPSECHW_DEBUG(IPSECHW_CAPAB, 2286 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2287 2288 /* 2289 * Update IPsec capabilities for this ill 2290 */ 2291 2292 if (*ill_capab == NULL) { 2293 IPSECHW_DEBUG(IPSECHW_CAPAB, 2294 ("ill_capability_ipsec_ack: " 2295 "allocating ipsec_capab for ill\n")); 2296 *ill_capab = ill_ipsec_capab_alloc(); 2297 2298 if (*ill_capab == NULL) { 2299 cmn_err(CE_WARN, 2300 "ill_capability_ipsec_ack: " 2301 "could not enable IPsec Hardware " 2302 "acceleration for %s (ENOMEM)\n", 2303 ill->ill_name); 2304 return; 2305 } 2306 } 2307 2308 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2309 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2310 2311 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2312 cmn_err(CE_WARN, 2313 "ill_capability_ipsec_ack: " 2314 "malformed IPsec algorithm id %d", 2315 ialg->alg_prim); 2316 continue; 2317 } 2318 2319 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2320 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2321 ialg->alg_prim); 2322 } else { 2323 ipsec_capab_algparm_t *alp; 2324 2325 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2326 ialg->alg_prim); 2327 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2328 ialg->alg_prim)) { 2329 cmn_err(CE_WARN, 2330 "ill_capability_ipsec_ack: " 2331 "no space for IPsec alg id %d", 2332 ialg->alg_prim); 2333 continue; 2334 } 2335 alp = &((*ill_capab)->encr_algparm[ 2336 ialg->alg_prim]); 2337 alp->minkeylen = ialg->alg_minbits; 2338 alp->maxkeylen = ialg->alg_maxbits; 2339 } 2340 ill->ill_capabilities |= ill_capab_flag; 2341 /* 2342 * indicate that a capability was enabled, which 2343 * will be used below to kick off a SADB dump 2344 * to the ill. 2345 */ 2346 need_sadb_dump = B_TRUE; 2347 } else { 2348 IPSECHW_DEBUG(IPSECHW_CAPAB, 2349 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2350 ialg->alg_prim)); 2351 2352 if (nmp == NULL) { 2353 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2354 if (nmp == NULL) { 2355 /* 2356 * Sending the PROMISC_ON/OFF 2357 * notification request failed. 2358 * We cannot enable the algorithms 2359 * since the Provider will not 2360 * notify IP of promiscous mode 2361 * changes, which could lead 2362 * to leakage of packets. 2363 */ 2364 cmn_err(CE_WARN, 2365 "ill_capability_ipsec_ack: " 2366 "could not enable IPsec Hardware " 2367 "acceleration for %s (ENOMEM)\n", 2368 ill->ill_name); 2369 return; 2370 } 2371 /* ptr to current output alg specifier */ 2372 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2373 } 2374 2375 /* 2376 * Copy current alg specifier, set ENABLE 2377 * flag, and advance to next output alg. 2378 * For now we enable all IPsec capabilities. 2379 */ 2380 ASSERT(oalg != NULL); 2381 bcopy(ialg, oalg, alg_len); 2382 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2383 nmp->b_wptr += alg_len; 2384 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2385 } 2386 2387 /* move to next input algorithm specifier */ 2388 ialg = (dl_capab_ipsec_alg_t *) 2389 ((char *)ialg + alg_len); 2390 } 2391 2392 if (nmp != NULL) 2393 /* 2394 * nmp points to a DL_CAPABILITY_REQ message to enable 2395 * IPsec hardware acceleration. 2396 */ 2397 ill_dlpi_send(ill, nmp); 2398 2399 if (need_sadb_dump) 2400 /* 2401 * An acknowledgement corresponding to a request to 2402 * enable acceleration was received, notify SADB. 2403 */ 2404 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2405 } 2406 2407 /* 2408 * Given an mblk with enough space in it, create sub-capability entries for 2409 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2410 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2411 * in preparation for the reset the DL_CAPABILITY_REQ message. 2412 */ 2413 static void 2414 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2415 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2416 { 2417 dl_capab_ipsec_t *oipsec; 2418 dl_capab_ipsec_alg_t *oalg; 2419 dl_capability_sub_t *dl_subcap; 2420 int i, k; 2421 2422 ASSERT(nciphers > 0); 2423 ASSERT(ill_cap != NULL); 2424 ASSERT(mp != NULL); 2425 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2426 2427 /* dl_capability_sub_t for "stype" */ 2428 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2429 dl_subcap->dl_cap = stype; 2430 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2431 mp->b_wptr += sizeof (dl_capability_sub_t); 2432 2433 /* dl_capab_ipsec_t for "stype" */ 2434 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2435 oipsec->cip_version = 1; 2436 oipsec->cip_nciphers = nciphers; 2437 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2438 2439 /* create entries for "stype" AUTH ciphers */ 2440 for (i = 0; i < ill_cap->algs_size; i++) { 2441 for (k = 0; k < BITSPERBYTE; k++) { 2442 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2443 continue; 2444 2445 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2446 bzero((void *)oalg, sizeof (*oalg)); 2447 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2448 oalg->alg_prim = k + (BITSPERBYTE * i); 2449 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2450 } 2451 } 2452 /* create entries for "stype" ENCR ciphers */ 2453 for (i = 0; i < ill_cap->algs_size; i++) { 2454 for (k = 0; k < BITSPERBYTE; k++) { 2455 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2456 continue; 2457 2458 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2459 bzero((void *)oalg, sizeof (*oalg)); 2460 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2461 oalg->alg_prim = k + (BITSPERBYTE * i); 2462 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Macro to count number of 1s in a byte (8-bit word). The total count is 2469 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2470 * POPC instruction, but our macro is more flexible for an arbitrary length 2471 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2472 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2473 * stays that way, we can reduce the number of iterations required. 2474 */ 2475 #define COUNT_1S(val, sum) { \ 2476 uint8_t x = val & 0xff; \ 2477 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2478 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2479 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2480 } 2481 2482 /* ARGSUSED */ 2483 static void 2484 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2485 { 2486 mblk_t *mp; 2487 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2488 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2489 uint64_t ill_capabilities = ill->ill_capabilities; 2490 int ah_cnt = 0, esp_cnt = 0; 2491 int ah_len = 0, esp_len = 0; 2492 int i, size = 0; 2493 2494 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2495 return; 2496 2497 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2498 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2499 2500 /* Find out the number of ciphers for AH */ 2501 if (cap_ah != NULL) { 2502 for (i = 0; i < cap_ah->algs_size; i++) { 2503 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2504 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2505 } 2506 if (ah_cnt > 0) { 2507 size += sizeof (dl_capability_sub_t) + 2508 sizeof (dl_capab_ipsec_t); 2509 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2510 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2511 size += ah_len; 2512 } 2513 } 2514 2515 /* Find out the number of ciphers for ESP */ 2516 if (cap_esp != NULL) { 2517 for (i = 0; i < cap_esp->algs_size; i++) { 2518 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2519 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2520 } 2521 if (esp_cnt > 0) { 2522 size += sizeof (dl_capability_sub_t) + 2523 sizeof (dl_capab_ipsec_t); 2524 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2525 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2526 size += esp_len; 2527 } 2528 } 2529 2530 if (size == 0) { 2531 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2532 "there's nothing to reset\n")); 2533 return; 2534 } 2535 2536 mp = allocb(size, BPRI_HI); 2537 if (mp == NULL) { 2538 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2539 "request to disable IPSEC Hardware Acceleration\n")); 2540 return; 2541 } 2542 2543 /* 2544 * Clear the capability flags for IPSec HA but retain the ill 2545 * capability structures since it's possible that another thread 2546 * is still referring to them. The structures only get deallocated 2547 * when we destroy the ill. 2548 * 2549 * Various places check the flags to see if the ill is capable of 2550 * hardware acceleration, and by clearing them we ensure that new 2551 * outbound IPSec packets are sent down encrypted. 2552 */ 2553 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2554 2555 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2556 if (ah_cnt > 0) { 2557 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2558 cap_ah, mp); 2559 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2560 } 2561 2562 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2563 if (esp_cnt > 0) { 2564 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2565 cap_esp, mp); 2566 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2567 } 2568 2569 /* 2570 * At this point we've composed a bunch of sub-capabilities to be 2571 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2572 * by the caller. Upon receiving this reset message, the driver 2573 * must stop inbound decryption (by destroying all inbound SAs) 2574 * and let the corresponding packets come in encrypted. 2575 */ 2576 2577 if (*sc_mp != NULL) 2578 linkb(*sc_mp, mp); 2579 else 2580 *sc_mp = mp; 2581 } 2582 2583 static void 2584 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2585 boolean_t encapsulated) 2586 { 2587 boolean_t legacy = B_FALSE; 2588 2589 /* 2590 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2591 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2592 * instructed the driver to disable its advertised capabilities, 2593 * so there's no point in accepting any response at this moment. 2594 */ 2595 if (ill->ill_capab_state == IDMS_UNKNOWN) 2596 return; 2597 2598 /* 2599 * Note that only the following two sub-capabilities may be 2600 * considered as "legacy", since their original definitions 2601 * do not incorporate the dl_mid_t module ID token, and hence 2602 * may require the use of the wrapper sub-capability. 2603 */ 2604 switch (subp->dl_cap) { 2605 case DL_CAPAB_IPSEC_AH: 2606 case DL_CAPAB_IPSEC_ESP: 2607 legacy = B_TRUE; 2608 break; 2609 } 2610 2611 /* 2612 * For legacy sub-capabilities which don't incorporate a queue_t 2613 * pointer in their structures, discard them if we detect that 2614 * there are intermediate modules in between IP and the driver. 2615 */ 2616 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2617 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2618 "%d discarded; %d module(s) present below IP\n", 2619 subp->dl_cap, ill->ill_lmod_cnt)); 2620 return; 2621 } 2622 2623 switch (subp->dl_cap) { 2624 case DL_CAPAB_IPSEC_AH: 2625 case DL_CAPAB_IPSEC_ESP: 2626 ill_capability_ipsec_ack(ill, mp, subp); 2627 break; 2628 case DL_CAPAB_MDT: 2629 ill_capability_mdt_ack(ill, mp, subp); 2630 break; 2631 case DL_CAPAB_HCKSUM: 2632 ill_capability_hcksum_ack(ill, mp, subp); 2633 break; 2634 case DL_CAPAB_ZEROCOPY: 2635 ill_capability_zerocopy_ack(ill, mp, subp); 2636 break; 2637 case DL_CAPAB_POLL: 2638 if (!SOFT_RINGS_ENABLED()) 2639 ill_capability_dls_ack(ill, mp, subp); 2640 break; 2641 case DL_CAPAB_SOFT_RING: 2642 if (SOFT_RINGS_ENABLED()) 2643 ill_capability_dls_ack(ill, mp, subp); 2644 break; 2645 default: 2646 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2647 subp->dl_cap)); 2648 } 2649 } 2650 2651 /* 2652 * As part of negotiating polling capability, the driver tells us 2653 * the default (or normal) blanking interval and packet threshold 2654 * (the receive timer fires if blanking interval is reached or 2655 * the packet threshold is reached). 2656 * 2657 * As part of manipulating the polling interval, we always use our 2658 * estimated interval (avg service time * number of packets queued 2659 * on the squeue) but we try to blank for a minimum of 2660 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2661 * packet threshold during this time. When we are not in polling mode 2662 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2663 * rr_min_blank_ratio but up the packet cnt by a ratio of 2664 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2665 * possible although for a shorter interval. 2666 */ 2667 #define RR_MAX_BLANK_RATIO 20 2668 #define RR_MIN_BLANK_RATIO 10 2669 #define RR_MAX_PKT_CNT_RATIO 3 2670 #define RR_MIN_PKT_CNT_RATIO 3 2671 2672 /* 2673 * These can be tuned via /etc/system. 2674 */ 2675 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2676 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2677 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2678 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2679 2680 static mac_resource_handle_t 2681 ill_ring_add(void *arg, mac_resource_t *mrp) 2682 { 2683 ill_t *ill = (ill_t *)arg; 2684 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2685 ill_rx_ring_t *rx_ring; 2686 int ip_rx_index; 2687 2688 ASSERT(mrp != NULL); 2689 if (mrp->mr_type != MAC_RX_FIFO) { 2690 return (NULL); 2691 } 2692 ASSERT(ill != NULL); 2693 ASSERT(ill->ill_dls_capab != NULL); 2694 2695 mutex_enter(&ill->ill_lock); 2696 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2697 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2698 ASSERT(rx_ring != NULL); 2699 2700 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2701 time_t normal_blank_time = 2702 mrfp->mrf_normal_blank_time; 2703 uint_t normal_pkt_cnt = 2704 mrfp->mrf_normal_pkt_count; 2705 2706 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2707 2708 rx_ring->rr_blank = mrfp->mrf_blank; 2709 rx_ring->rr_handle = mrfp->mrf_arg; 2710 rx_ring->rr_ill = ill; 2711 rx_ring->rr_normal_blank_time = normal_blank_time; 2712 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2713 2714 rx_ring->rr_max_blank_time = 2715 normal_blank_time * rr_max_blank_ratio; 2716 rx_ring->rr_min_blank_time = 2717 normal_blank_time * rr_min_blank_ratio; 2718 rx_ring->rr_max_pkt_cnt = 2719 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2720 rx_ring->rr_min_pkt_cnt = 2721 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2722 2723 rx_ring->rr_ring_state = ILL_RING_INUSE; 2724 mutex_exit(&ill->ill_lock); 2725 2726 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2727 (int), ip_rx_index); 2728 return ((mac_resource_handle_t)rx_ring); 2729 } 2730 } 2731 2732 /* 2733 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2734 * we have devices which can overwhelm this limit, ILL_MAX_RING 2735 * should be made configurable. Meanwhile it cause no panic because 2736 * driver will pass ip_input a NULL handle which will make 2737 * IP allocate the default squeue and Polling mode will not 2738 * be used for this ring. 2739 */ 2740 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2741 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2742 2743 mutex_exit(&ill->ill_lock); 2744 return (NULL); 2745 } 2746 2747 static boolean_t 2748 ill_capability_dls_init(ill_t *ill) 2749 { 2750 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2751 conn_t *connp; 2752 size_t sz; 2753 2754 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2755 if (ill_dls == NULL) { 2756 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2757 "soft_ring enabled for ill=%s (%p) but data " 2758 "structs uninitialized\n", ill->ill_name, 2759 (void *)ill); 2760 } 2761 return (B_TRUE); 2762 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2763 if (ill_dls == NULL) { 2764 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2765 "polling enabled for ill=%s (%p) but data " 2766 "structs uninitialized\n", ill->ill_name, 2767 (void *)ill); 2768 } 2769 return (B_TRUE); 2770 } 2771 2772 if (ill_dls != NULL) { 2773 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2774 /* Soft_Ring or polling is being re-enabled */ 2775 2776 connp = ill_dls->ill_unbind_conn; 2777 ASSERT(rx_ring != NULL); 2778 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2779 bzero((void *)rx_ring, 2780 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2781 ill_dls->ill_ring_tbl = rx_ring; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2787 return (B_FALSE); 2788 2789 sz = sizeof (ill_dls_capab_t); 2790 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2791 2792 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2793 if (ill_dls == NULL) { 2794 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2795 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2796 (void *)ill); 2797 CONN_DEC_REF(connp); 2798 return (B_FALSE); 2799 } 2800 2801 /* Allocate space to hold ring table */ 2802 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2803 ill->ill_dls_capab = ill_dls; 2804 ill_dls->ill_unbind_conn = connp; 2805 return (B_TRUE); 2806 } 2807 2808 /* 2809 * ill_capability_dls_disable: disable soft_ring and/or polling 2810 * capability. Since any of the rings might already be in use, need 2811 * to call ipsq_clean_all() which gets behind the squeue to disable 2812 * direct calls if necessary. 2813 */ 2814 static void 2815 ill_capability_dls_disable(ill_t *ill) 2816 { 2817 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2818 2819 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2820 ipsq_clean_all(ill); 2821 ill_dls->ill_tx = NULL; 2822 ill_dls->ill_tx_handle = NULL; 2823 ill_dls->ill_dls_change_status = NULL; 2824 ill_dls->ill_dls_bind = NULL; 2825 ill_dls->ill_dls_unbind = NULL; 2826 } 2827 2828 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2829 } 2830 2831 static void 2832 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2833 dl_capability_sub_t *isub) 2834 { 2835 uint_t size; 2836 uchar_t *rptr; 2837 dl_capab_dls_t dls, *odls; 2838 ill_dls_capab_t *ill_dls; 2839 mblk_t *nmp = NULL; 2840 dl_capability_req_t *ocap; 2841 uint_t sub_dl_cap = isub->dl_cap; 2842 2843 if (!ill_capability_dls_init(ill)) 2844 return; 2845 ill_dls = ill->ill_dls_capab; 2846 2847 /* Copy locally to get the members aligned */ 2848 bcopy((void *)idls, (void *)&dls, 2849 sizeof (dl_capab_dls_t)); 2850 2851 /* Get the tx function and handle from dld */ 2852 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2853 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2854 2855 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2856 ill_dls->ill_dls_change_status = 2857 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2858 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2859 ill_dls->ill_dls_unbind = 2860 (ip_dls_unbind_t)dls.dls_ring_unbind; 2861 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2862 } 2863 2864 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2865 isub->dl_length; 2866 2867 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2868 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2869 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2870 ill->ill_name, (void *)ill); 2871 return; 2872 } 2873 2874 /* initialize dl_capability_req_t */ 2875 rptr = nmp->b_rptr; 2876 ocap = (dl_capability_req_t *)rptr; 2877 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2878 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2879 rptr += sizeof (dl_capability_req_t); 2880 2881 /* initialize dl_capability_sub_t */ 2882 bcopy(isub, rptr, sizeof (*isub)); 2883 rptr += sizeof (*isub); 2884 2885 odls = (dl_capab_dls_t *)rptr; 2886 rptr += sizeof (dl_capab_dls_t); 2887 2888 /* initialize dl_capab_dls_t to be sent down */ 2889 dls.dls_rx_handle = (uintptr_t)ill; 2890 dls.dls_rx = (uintptr_t)ip_input; 2891 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2892 2893 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2894 dls.dls_ring_cnt = ip_soft_rings_cnt; 2895 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2896 dls.dls_flags = SOFT_RING_ENABLE; 2897 } else { 2898 dls.dls_flags = POLL_ENABLE; 2899 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2900 "to enable polling\n", ill->ill_name)); 2901 } 2902 bcopy((void *)&dls, (void *)odls, 2903 sizeof (dl_capab_dls_t)); 2904 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2905 /* 2906 * nmp points to a DL_CAPABILITY_REQ message to 2907 * enable either soft_ring or polling 2908 */ 2909 ill_dlpi_send(ill, nmp); 2910 } 2911 2912 static void 2913 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2914 { 2915 mblk_t *mp; 2916 dl_capab_dls_t *idls; 2917 dl_capability_sub_t *dl_subcap; 2918 int size; 2919 2920 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2921 return; 2922 2923 ASSERT(ill->ill_dls_capab != NULL); 2924 2925 size = sizeof (*dl_subcap) + sizeof (*idls); 2926 2927 mp = allocb(size, BPRI_HI); 2928 if (mp == NULL) { 2929 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2930 "request to disable soft_ring\n")); 2931 return; 2932 } 2933 2934 mp->b_wptr = mp->b_rptr + size; 2935 2936 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2937 dl_subcap->dl_length = sizeof (*idls); 2938 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2939 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2940 else 2941 dl_subcap->dl_cap = DL_CAPAB_POLL; 2942 2943 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2944 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2945 idls->dls_flags = SOFT_RING_DISABLE; 2946 else 2947 idls->dls_flags = POLL_DISABLE; 2948 2949 if (*sc_mp != NULL) 2950 linkb(*sc_mp, mp); 2951 else 2952 *sc_mp = mp; 2953 } 2954 2955 /* 2956 * Process a soft_ring/poll capability negotiation ack received 2957 * from a DLS Provider.isub must point to the sub-capability 2958 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2959 */ 2960 static void 2961 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2962 { 2963 dl_capab_dls_t *idls; 2964 uint_t sub_dl_cap = isub->dl_cap; 2965 uint8_t *capend; 2966 2967 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2968 sub_dl_cap == DL_CAPAB_POLL); 2969 2970 if (ill->ill_isv6) 2971 return; 2972 2973 /* 2974 * Note: range checks here are not absolutely sufficient to 2975 * make us robust against malformed messages sent by drivers; 2976 * this is in keeping with the rest of IP's dlpi handling. 2977 * (Remember, it's coming from something else in the kernel 2978 * address space) 2979 */ 2980 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2981 if (capend > mp->b_wptr) { 2982 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2983 "malformed sub-capability too long for mblk"); 2984 return; 2985 } 2986 2987 /* 2988 * There are two types of acks we process here: 2989 * 1. acks in reply to a (first form) generic capability req 2990 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2991 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2992 * capability req. 2993 */ 2994 idls = (dl_capab_dls_t *)(isub + 1); 2995 2996 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2997 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2998 "capability isn't as expected; pass-thru " 2999 "module(s) detected, discarding capability\n")); 3000 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3001 /* 3002 * This is a capability renegotitation case. 3003 * The interface better be unusable at this 3004 * point other wise bad things will happen 3005 * if we disable direct calls on a running 3006 * and up interface. 3007 */ 3008 ill_capability_dls_disable(ill); 3009 } 3010 return; 3011 } 3012 3013 switch (idls->dls_flags) { 3014 default: 3015 /* Disable if unknown flag */ 3016 case SOFT_RING_DISABLE: 3017 case POLL_DISABLE: 3018 ill_capability_dls_disable(ill); 3019 break; 3020 case SOFT_RING_CAPABLE: 3021 case POLL_CAPABLE: 3022 /* 3023 * If the capability was already enabled, its safe 3024 * to disable it first to get rid of stale information 3025 * and then start enabling it again. 3026 */ 3027 ill_capability_dls_disable(ill); 3028 ill_capability_dls_capable(ill, idls, isub); 3029 break; 3030 case SOFT_RING_ENABLE: 3031 case POLL_ENABLE: 3032 mutex_enter(&ill->ill_lock); 3033 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3034 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3035 ASSERT(ill->ill_dls_capab != NULL); 3036 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3037 } 3038 if (sub_dl_cap == DL_CAPAB_POLL && 3039 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3040 ASSERT(ill->ill_dls_capab != NULL); 3041 ill->ill_capabilities |= ILL_CAPAB_POLL; 3042 ip1dbg(("ill_capability_dls_ack: interface %s " 3043 "has enabled polling\n", ill->ill_name)); 3044 } 3045 mutex_exit(&ill->ill_lock); 3046 break; 3047 } 3048 } 3049 3050 /* 3051 * Process a hardware checksum offload capability negotiation ack received 3052 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3053 * of a DL_CAPABILITY_ACK message. 3054 */ 3055 static void 3056 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3057 { 3058 dl_capability_req_t *ocap; 3059 dl_capab_hcksum_t *ihck, *ohck; 3060 ill_hcksum_capab_t **ill_hcksum; 3061 mblk_t *nmp = NULL; 3062 uint_t sub_dl_cap = isub->dl_cap; 3063 uint8_t *capend; 3064 3065 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3066 3067 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3068 3069 /* 3070 * Note: range checks here are not absolutely sufficient to 3071 * make us robust against malformed messages sent by drivers; 3072 * this is in keeping with the rest of IP's dlpi handling. 3073 * (Remember, it's coming from something else in the kernel 3074 * address space) 3075 */ 3076 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3077 if (capend > mp->b_wptr) { 3078 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3079 "malformed sub-capability too long for mblk"); 3080 return; 3081 } 3082 3083 /* 3084 * There are two types of acks we process here: 3085 * 1. acks in reply to a (first form) generic capability req 3086 * (no ENABLE flag set) 3087 * 2. acks in reply to a ENABLE capability req. 3088 * (ENABLE flag set) 3089 */ 3090 ihck = (dl_capab_hcksum_t *)(isub + 1); 3091 3092 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3093 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3094 "unsupported hardware checksum " 3095 "sub-capability (version %d, expected %d)", 3096 ihck->hcksum_version, HCKSUM_VERSION_1); 3097 return; 3098 } 3099 3100 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3101 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3102 "checksum capability isn't as expected; pass-thru " 3103 "module(s) detected, discarding capability\n")); 3104 return; 3105 } 3106 3107 #define CURR_HCKSUM_CAPAB \ 3108 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3109 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3110 3111 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3112 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3113 /* do ENABLE processing */ 3114 if (*ill_hcksum == NULL) { 3115 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3116 KM_NOSLEEP); 3117 3118 if (*ill_hcksum == NULL) { 3119 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3120 "could not enable hcksum version %d " 3121 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3122 ill->ill_name); 3123 return; 3124 } 3125 } 3126 3127 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3128 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3129 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3130 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3131 "has enabled hardware checksumming\n ", 3132 ill->ill_name)); 3133 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3134 /* 3135 * Enabling hardware checksum offload 3136 * Currently IP supports {TCP,UDP}/IPv4 3137 * partial and full cksum offload and 3138 * IPv4 header checksum offload. 3139 * Allocate new mblk which will 3140 * contain a new capability request 3141 * to enable hardware checksum offload. 3142 */ 3143 uint_t size; 3144 uchar_t *rptr; 3145 3146 size = sizeof (dl_capability_req_t) + 3147 sizeof (dl_capability_sub_t) + isub->dl_length; 3148 3149 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3150 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3151 "could not enable hardware cksum for %s (ENOMEM)\n", 3152 ill->ill_name); 3153 return; 3154 } 3155 3156 rptr = nmp->b_rptr; 3157 /* initialize dl_capability_req_t */ 3158 ocap = (dl_capability_req_t *)nmp->b_rptr; 3159 ocap->dl_sub_offset = 3160 sizeof (dl_capability_req_t); 3161 ocap->dl_sub_length = 3162 sizeof (dl_capability_sub_t) + 3163 isub->dl_length; 3164 nmp->b_rptr += sizeof (dl_capability_req_t); 3165 3166 /* initialize dl_capability_sub_t */ 3167 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3168 nmp->b_rptr += sizeof (*isub); 3169 3170 /* initialize dl_capab_hcksum_t */ 3171 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3172 bcopy(ihck, ohck, sizeof (*ihck)); 3173 3174 nmp->b_rptr = rptr; 3175 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3176 3177 /* Set ENABLE flag */ 3178 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3179 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3180 3181 /* 3182 * nmp points to a DL_CAPABILITY_REQ message to enable 3183 * hardware checksum acceleration. 3184 */ 3185 ill_dlpi_send(ill, nmp); 3186 } else { 3187 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3188 "advertised %x hardware checksum capability flags\n", 3189 ill->ill_name, ihck->hcksum_txflags)); 3190 } 3191 } 3192 3193 static void 3194 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3195 { 3196 mblk_t *mp; 3197 dl_capab_hcksum_t *hck_subcap; 3198 dl_capability_sub_t *dl_subcap; 3199 int size; 3200 3201 if (!ILL_HCKSUM_CAPABLE(ill)) 3202 return; 3203 3204 ASSERT(ill->ill_hcksum_capab != NULL); 3205 /* 3206 * Clear the capability flag for hardware checksum offload but 3207 * retain the ill_hcksum_capab structure since it's possible that 3208 * another thread is still referring to it. The structure only 3209 * gets deallocated when we destroy the ill. 3210 */ 3211 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3212 3213 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3214 3215 mp = allocb(size, BPRI_HI); 3216 if (mp == NULL) { 3217 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3218 "request to disable hardware checksum offload\n")); 3219 return; 3220 } 3221 3222 mp->b_wptr = mp->b_rptr + size; 3223 3224 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3225 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3226 dl_subcap->dl_length = sizeof (*hck_subcap); 3227 3228 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3229 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3230 hck_subcap->hcksum_txflags = 0; 3231 3232 if (*sc_mp != NULL) 3233 linkb(*sc_mp, mp); 3234 else 3235 *sc_mp = mp; 3236 } 3237 3238 static void 3239 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3240 { 3241 mblk_t *nmp = NULL; 3242 dl_capability_req_t *oc; 3243 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3244 ill_zerocopy_capab_t **ill_zerocopy_capab; 3245 uint_t sub_dl_cap = isub->dl_cap; 3246 uint8_t *capend; 3247 3248 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3249 3250 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3251 3252 /* 3253 * Note: range checks here are not absolutely sufficient to 3254 * make us robust against malformed messages sent by drivers; 3255 * this is in keeping with the rest of IP's dlpi handling. 3256 * (Remember, it's coming from something else in the kernel 3257 * address space) 3258 */ 3259 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3260 if (capend > mp->b_wptr) { 3261 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3262 "malformed sub-capability too long for mblk"); 3263 return; 3264 } 3265 3266 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3267 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3268 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3269 "unsupported ZEROCOPY sub-capability (version %d, " 3270 "expected %d)", zc_ic->zerocopy_version, 3271 ZEROCOPY_VERSION_1); 3272 return; 3273 } 3274 3275 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3276 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3277 "capability isn't as expected; pass-thru module(s) " 3278 "detected, discarding capability\n")); 3279 return; 3280 } 3281 3282 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3283 if (*ill_zerocopy_capab == NULL) { 3284 *ill_zerocopy_capab = 3285 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3286 KM_NOSLEEP); 3287 3288 if (*ill_zerocopy_capab == NULL) { 3289 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3290 "could not enable Zero-copy version %d " 3291 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3292 ill->ill_name); 3293 return; 3294 } 3295 } 3296 3297 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3298 "supports Zero-copy version %d\n", ill->ill_name, 3299 ZEROCOPY_VERSION_1)); 3300 3301 (*ill_zerocopy_capab)->ill_zerocopy_version = 3302 zc_ic->zerocopy_version; 3303 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3304 zc_ic->zerocopy_flags; 3305 3306 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3307 } else { 3308 uint_t size; 3309 uchar_t *rptr; 3310 3311 size = sizeof (dl_capability_req_t) + 3312 sizeof (dl_capability_sub_t) + 3313 sizeof (dl_capab_zerocopy_t); 3314 3315 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3316 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3317 "could not enable zerocopy for %s (ENOMEM)\n", 3318 ill->ill_name); 3319 return; 3320 } 3321 3322 rptr = nmp->b_rptr; 3323 /* initialize dl_capability_req_t */ 3324 oc = (dl_capability_req_t *)rptr; 3325 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3326 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3327 sizeof (dl_capab_zerocopy_t); 3328 rptr += sizeof (dl_capability_req_t); 3329 3330 /* initialize dl_capability_sub_t */ 3331 bcopy(isub, rptr, sizeof (*isub)); 3332 rptr += sizeof (*isub); 3333 3334 /* initialize dl_capab_zerocopy_t */ 3335 zc_oc = (dl_capab_zerocopy_t *)rptr; 3336 *zc_oc = *zc_ic; 3337 3338 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3339 "to enable zero-copy version %d\n", ill->ill_name, 3340 ZEROCOPY_VERSION_1)); 3341 3342 /* set VMSAFE_MEM flag */ 3343 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3344 3345 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3346 ill_dlpi_send(ill, nmp); 3347 } 3348 } 3349 3350 static void 3351 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3352 { 3353 mblk_t *mp; 3354 dl_capab_zerocopy_t *zerocopy_subcap; 3355 dl_capability_sub_t *dl_subcap; 3356 int size; 3357 3358 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3359 return; 3360 3361 ASSERT(ill->ill_zerocopy_capab != NULL); 3362 /* 3363 * Clear the capability flag for Zero-copy but retain the 3364 * ill_zerocopy_capab structure since it's possible that another 3365 * thread is still referring to it. The structure only gets 3366 * deallocated when we destroy the ill. 3367 */ 3368 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3369 3370 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3371 3372 mp = allocb(size, BPRI_HI); 3373 if (mp == NULL) { 3374 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3375 "request to disable Zero-copy\n")); 3376 return; 3377 } 3378 3379 mp->b_wptr = mp->b_rptr + size; 3380 3381 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3382 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3383 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3384 3385 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3386 zerocopy_subcap->zerocopy_version = 3387 ill->ill_zerocopy_capab->ill_zerocopy_version; 3388 zerocopy_subcap->zerocopy_flags = 0; 3389 3390 if (*sc_mp != NULL) 3391 linkb(*sc_mp, mp); 3392 else 3393 *sc_mp = mp; 3394 } 3395 3396 /* 3397 * Consume a new-style hardware capabilities negotiation ack. 3398 * Called from ip_rput_dlpi_writer(). 3399 */ 3400 void 3401 ill_capability_ack(ill_t *ill, mblk_t *mp) 3402 { 3403 dl_capability_ack_t *capp; 3404 dl_capability_sub_t *subp, *endp; 3405 3406 if (ill->ill_capab_state == IDMS_INPROGRESS) 3407 ill->ill_capab_state = IDMS_OK; 3408 3409 capp = (dl_capability_ack_t *)mp->b_rptr; 3410 3411 if (capp->dl_sub_length == 0) 3412 /* no new-style capabilities */ 3413 return; 3414 3415 /* make sure the driver supplied correct dl_sub_length */ 3416 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3417 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3418 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3419 return; 3420 } 3421 3422 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3423 /* 3424 * There are sub-capabilities. Process the ones we know about. 3425 * Loop until we don't have room for another sub-cap header.. 3426 */ 3427 for (subp = SC(capp, capp->dl_sub_offset), 3428 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3429 subp <= endp; 3430 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3431 3432 switch (subp->dl_cap) { 3433 case DL_CAPAB_ID_WRAPPER: 3434 ill_capability_id_ack(ill, mp, subp); 3435 break; 3436 default: 3437 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3438 break; 3439 } 3440 } 3441 #undef SC 3442 } 3443 3444 /* 3445 * This routine is called to scan the fragmentation reassembly table for 3446 * the specified ILL for any packets that are starting to smell. 3447 * dead_interval is the maximum time in seconds that will be tolerated. It 3448 * will either be the value specified in ip_g_frag_timeout, or zero if the 3449 * ILL is shutting down and it is time to blow everything off. 3450 * 3451 * It returns the number of seconds (as a time_t) that the next frag timer 3452 * should be scheduled for, 0 meaning that the timer doesn't need to be 3453 * re-started. Note that the method of calculating next_timeout isn't 3454 * entirely accurate since time will flow between the time we grab 3455 * current_time and the time we schedule the next timeout. This isn't a 3456 * big problem since this is the timer for sending an ICMP reassembly time 3457 * exceeded messages, and it doesn't have to be exactly accurate. 3458 * 3459 * This function is 3460 * sometimes called as writer, although this is not required. 3461 */ 3462 time_t 3463 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3464 { 3465 ipfb_t *ipfb; 3466 ipfb_t *endp; 3467 ipf_t *ipf; 3468 ipf_t *ipfnext; 3469 mblk_t *mp; 3470 time_t current_time = gethrestime_sec(); 3471 time_t next_timeout = 0; 3472 uint32_t hdr_length; 3473 mblk_t *send_icmp_head; 3474 mblk_t *send_icmp_head_v6; 3475 3476 ipfb = ill->ill_frag_hash_tbl; 3477 if (ipfb == NULL) 3478 return (B_FALSE); 3479 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3480 /* Walk the frag hash table. */ 3481 for (; ipfb < endp; ipfb++) { 3482 send_icmp_head = NULL; 3483 send_icmp_head_v6 = NULL; 3484 mutex_enter(&ipfb->ipfb_lock); 3485 while ((ipf = ipfb->ipfb_ipf) != 0) { 3486 time_t frag_time = current_time - ipf->ipf_timestamp; 3487 time_t frag_timeout; 3488 3489 if (frag_time < dead_interval) { 3490 /* 3491 * There are some outstanding fragments 3492 * that will timeout later. Make note of 3493 * the time so that we can reschedule the 3494 * next timeout appropriately. 3495 */ 3496 frag_timeout = dead_interval - frag_time; 3497 if (next_timeout == 0 || 3498 frag_timeout < next_timeout) { 3499 next_timeout = frag_timeout; 3500 } 3501 break; 3502 } 3503 /* Time's up. Get it out of here. */ 3504 hdr_length = ipf->ipf_nf_hdr_len; 3505 ipfnext = ipf->ipf_hash_next; 3506 if (ipfnext) 3507 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3508 *ipf->ipf_ptphn = ipfnext; 3509 mp = ipf->ipf_mp->b_cont; 3510 for (; mp; mp = mp->b_cont) { 3511 /* Extra points for neatness. */ 3512 IP_REASS_SET_START(mp, 0); 3513 IP_REASS_SET_END(mp, 0); 3514 } 3515 mp = ipf->ipf_mp->b_cont; 3516 ill->ill_frag_count -= ipf->ipf_count; 3517 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3518 ipfb->ipfb_count -= ipf->ipf_count; 3519 ASSERT(ipfb->ipfb_frag_pkts > 0); 3520 ipfb->ipfb_frag_pkts--; 3521 /* 3522 * We do not send any icmp message from here because 3523 * we currently are holding the ipfb_lock for this 3524 * hash chain. If we try and send any icmp messages 3525 * from here we may end up via a put back into ip 3526 * trying to get the same lock, causing a recursive 3527 * mutex panic. Instead we build a list and send all 3528 * the icmp messages after we have dropped the lock. 3529 */ 3530 if (ill->ill_isv6) { 3531 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3532 if (hdr_length != 0) { 3533 mp->b_next = send_icmp_head_v6; 3534 send_icmp_head_v6 = mp; 3535 } else { 3536 freemsg(mp); 3537 } 3538 } else { 3539 BUMP_MIB(&ip_mib, ipReasmFails); 3540 if (hdr_length != 0) { 3541 mp->b_next = send_icmp_head; 3542 send_icmp_head = mp; 3543 } else { 3544 freemsg(mp); 3545 } 3546 } 3547 freeb(ipf->ipf_mp); 3548 } 3549 mutex_exit(&ipfb->ipfb_lock); 3550 /* 3551 * Now need to send any icmp messages that we delayed from 3552 * above. 3553 */ 3554 while (send_icmp_head_v6 != NULL) { 3555 mp = send_icmp_head_v6; 3556 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3557 mp->b_next = NULL; 3558 icmp_time_exceeded_v6(ill->ill_wq, mp, 3559 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3560 } 3561 while (send_icmp_head != NULL) { 3562 mp = send_icmp_head; 3563 send_icmp_head = send_icmp_head->b_next; 3564 mp->b_next = NULL; 3565 icmp_time_exceeded(ill->ill_wq, mp, 3566 ICMP_REASSEMBLY_TIME_EXCEEDED); 3567 } 3568 } 3569 /* 3570 * A non-dying ILL will use the return value to decide whether to 3571 * restart the frag timer, and for how long. 3572 */ 3573 return (next_timeout); 3574 } 3575 3576 /* 3577 * This routine is called when the approximate count of mblk memory used 3578 * for the specified ILL has exceeded max_count. 3579 */ 3580 void 3581 ill_frag_prune(ill_t *ill, uint_t max_count) 3582 { 3583 ipfb_t *ipfb; 3584 ipf_t *ipf; 3585 size_t count; 3586 3587 /* 3588 * If we are here within ip_min_frag_prune_time msecs remove 3589 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3590 * ill_frag_free_num_pkts. 3591 */ 3592 mutex_enter(&ill->ill_lock); 3593 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3594 (ip_min_frag_prune_time != 0 ? 3595 ip_min_frag_prune_time : msec_per_tick)) { 3596 3597 ill->ill_frag_free_num_pkts++; 3598 3599 } else { 3600 ill->ill_frag_free_num_pkts = 0; 3601 } 3602 ill->ill_last_frag_clean_time = lbolt; 3603 mutex_exit(&ill->ill_lock); 3604 3605 /* 3606 * free ill_frag_free_num_pkts oldest packets from each bucket. 3607 */ 3608 if (ill->ill_frag_free_num_pkts != 0) { 3609 int ix; 3610 3611 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3612 ipfb = &ill->ill_frag_hash_tbl[ix]; 3613 mutex_enter(&ipfb->ipfb_lock); 3614 if (ipfb->ipfb_ipf != NULL) { 3615 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3616 ill->ill_frag_free_num_pkts); 3617 } 3618 mutex_exit(&ipfb->ipfb_lock); 3619 } 3620 } 3621 /* 3622 * While the reassembly list for this ILL is too big, prune a fragment 3623 * queue by age, oldest first. Note that the per ILL count is 3624 * approximate, while the per frag hash bucket counts are accurate. 3625 */ 3626 while (ill->ill_frag_count > max_count) { 3627 int ix; 3628 ipfb_t *oipfb = NULL; 3629 uint_t oldest = UINT_MAX; 3630 3631 count = 0; 3632 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3633 ipfb = &ill->ill_frag_hash_tbl[ix]; 3634 mutex_enter(&ipfb->ipfb_lock); 3635 ipf = ipfb->ipfb_ipf; 3636 if (ipf != NULL && ipf->ipf_gen < oldest) { 3637 oldest = ipf->ipf_gen; 3638 oipfb = ipfb; 3639 } 3640 count += ipfb->ipfb_count; 3641 mutex_exit(&ipfb->ipfb_lock); 3642 } 3643 /* Refresh the per ILL count */ 3644 ill->ill_frag_count = count; 3645 if (oipfb == NULL) { 3646 ill->ill_frag_count = 0; 3647 break; 3648 } 3649 if (count <= max_count) 3650 return; /* Somebody beat us to it, nothing to do */ 3651 mutex_enter(&oipfb->ipfb_lock); 3652 ipf = oipfb->ipfb_ipf; 3653 if (ipf != NULL) { 3654 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3655 } 3656 mutex_exit(&oipfb->ipfb_lock); 3657 } 3658 } 3659 3660 /* 3661 * free 'free_cnt' fragmented packets starting at ipf. 3662 */ 3663 void 3664 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3665 { 3666 size_t count; 3667 mblk_t *mp; 3668 mblk_t *tmp; 3669 ipf_t **ipfp = ipf->ipf_ptphn; 3670 3671 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3672 ASSERT(ipfp != NULL); 3673 ASSERT(ipf != NULL); 3674 3675 while (ipf != NULL && free_cnt-- > 0) { 3676 count = ipf->ipf_count; 3677 mp = ipf->ipf_mp; 3678 ipf = ipf->ipf_hash_next; 3679 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3680 IP_REASS_SET_START(tmp, 0); 3681 IP_REASS_SET_END(tmp, 0); 3682 } 3683 ill->ill_frag_count -= count; 3684 ASSERT(ipfb->ipfb_count >= count); 3685 ipfb->ipfb_count -= count; 3686 ASSERT(ipfb->ipfb_frag_pkts > 0); 3687 ipfb->ipfb_frag_pkts--; 3688 freemsg(mp); 3689 BUMP_MIB(&ip_mib, ipReasmFails); 3690 } 3691 3692 if (ipf) 3693 ipf->ipf_ptphn = ipfp; 3694 ipfp[0] = ipf; 3695 } 3696 3697 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3698 "obsolete and may be removed in a future release of Solaris. Use " \ 3699 "ifconfig(1M) to manipulate the forwarding status of an interface." 3700 3701 /* 3702 * For obsolete per-interface forwarding configuration; 3703 * called in response to ND_GET. 3704 */ 3705 /* ARGSUSED */ 3706 static int 3707 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3708 { 3709 ill_t *ill = (ill_t *)cp; 3710 3711 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3712 3713 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3714 return (0); 3715 } 3716 3717 /* 3718 * For obsolete per-interface forwarding configuration; 3719 * called in response to ND_SET. 3720 */ 3721 /* ARGSUSED */ 3722 static int 3723 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3724 cred_t *ioc_cr) 3725 { 3726 long value; 3727 int retval; 3728 3729 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3730 3731 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3732 value < 0 || value > 1) { 3733 return (EINVAL); 3734 } 3735 3736 rw_enter(&ill_g_lock, RW_READER); 3737 retval = ill_forward_set(q, mp, (value != 0), cp); 3738 rw_exit(&ill_g_lock); 3739 return (retval); 3740 } 3741 3742 /* 3743 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3744 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3745 * up RTS_IFINFO routing socket messages for each interface whose flags we 3746 * change. 3747 */ 3748 /* ARGSUSED */ 3749 int 3750 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3751 { 3752 ill_t *ill = (ill_t *)cp; 3753 ill_group_t *illgrp; 3754 3755 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3756 3757 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3758 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3759 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3760 return (EINVAL); 3761 3762 /* 3763 * If the ill is in an IPMP group, set the forwarding policy on all 3764 * members of the group to the same value. 3765 */ 3766 illgrp = ill->ill_group; 3767 if (illgrp != NULL) { 3768 ill_t *tmp_ill; 3769 3770 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3771 tmp_ill = tmp_ill->ill_group_next) { 3772 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3773 (enable ? "Enabling" : "Disabling"), 3774 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3775 tmp_ill->ill_name)); 3776 mutex_enter(&tmp_ill->ill_lock); 3777 if (enable) 3778 tmp_ill->ill_flags |= ILLF_ROUTER; 3779 else 3780 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3781 mutex_exit(&tmp_ill->ill_lock); 3782 if (tmp_ill->ill_isv6) 3783 ill_set_nce_router_flags(tmp_ill, enable); 3784 /* Notify routing socket listeners of this change. */ 3785 ip_rts_ifmsg(tmp_ill->ill_ipif); 3786 } 3787 } else { 3788 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3789 (enable ? "Enabling" : "Disabling"), 3790 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3791 mutex_enter(&ill->ill_lock); 3792 if (enable) 3793 ill->ill_flags |= ILLF_ROUTER; 3794 else 3795 ill->ill_flags &= ~ILLF_ROUTER; 3796 mutex_exit(&ill->ill_lock); 3797 if (ill->ill_isv6) 3798 ill_set_nce_router_flags(ill, enable); 3799 /* Notify routing socket listeners of this change. */ 3800 ip_rts_ifmsg(ill->ill_ipif); 3801 } 3802 3803 return (0); 3804 } 3805 3806 /* 3807 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3808 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3809 * set or clear. 3810 */ 3811 static void 3812 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3813 { 3814 ipif_t *ipif; 3815 nce_t *nce; 3816 3817 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3818 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3819 if (nce != NULL) { 3820 mutex_enter(&nce->nce_lock); 3821 if (enable) 3822 nce->nce_flags |= NCE_F_ISROUTER; 3823 else 3824 nce->nce_flags &= ~NCE_F_ISROUTER; 3825 mutex_exit(&nce->nce_lock); 3826 NCE_REFRELE(nce); 3827 } 3828 } 3829 } 3830 3831 /* 3832 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3833 * for this ill. Make sure the v6/v4 question has been answered about this 3834 * ill. The creation of this ndd variable is only for backwards compatibility. 3835 * The preferred way to control per-interface IP forwarding is through the 3836 * ILLF_ROUTER interface flag. 3837 */ 3838 static int 3839 ill_set_ndd_name(ill_t *ill) 3840 { 3841 char *suffix; 3842 3843 ASSERT(IAM_WRITER_ILL(ill)); 3844 3845 if (ill->ill_isv6) 3846 suffix = ipv6_forward_suffix; 3847 else 3848 suffix = ipv4_forward_suffix; 3849 3850 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3851 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3852 /* 3853 * Copies over the '\0'. 3854 * Note that strlen(suffix) is always bounded. 3855 */ 3856 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3857 strlen(suffix) + 1); 3858 3859 /* 3860 * Use of the nd table requires holding the reader lock. 3861 * Modifying the nd table thru nd_load/nd_unload requires 3862 * the writer lock. 3863 */ 3864 rw_enter(&ip_g_nd_lock, RW_WRITER); 3865 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3866 nd_ill_forward_set, (caddr_t)ill)) { 3867 /* 3868 * If the nd_load failed, it only meant that it could not 3869 * allocate a new bunch of room for further NDD expansion. 3870 * Because of that, the ill_ndd_name will be set to 0, and 3871 * this interface is at the mercy of the global ip_forwarding 3872 * variable. 3873 */ 3874 rw_exit(&ip_g_nd_lock); 3875 ill->ill_ndd_name = NULL; 3876 return (ENOMEM); 3877 } 3878 rw_exit(&ip_g_nd_lock); 3879 return (0); 3880 } 3881 3882 /* 3883 * Intializes the context structure and returns the first ill in the list 3884 * cuurently start_list and end_list can have values: 3885 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3886 * IP_V4_G_HEAD Traverse IPV4 list only. 3887 * IP_V6_G_HEAD Traverse IPV6 list only. 3888 */ 3889 3890 /* 3891 * We don't check for CONDEMNED ills here. Caller must do that if 3892 * necessary under the ill lock. 3893 */ 3894 ill_t * 3895 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3896 { 3897 ill_if_t *ifp; 3898 ill_t *ill; 3899 avl_tree_t *avl_tree; 3900 3901 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3902 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3903 3904 /* 3905 * setup the lists to search 3906 */ 3907 if (end_list != MAX_G_HEADS) { 3908 ctx->ctx_current_list = start_list; 3909 ctx->ctx_last_list = end_list; 3910 } else { 3911 ctx->ctx_last_list = MAX_G_HEADS - 1; 3912 ctx->ctx_current_list = 0; 3913 } 3914 3915 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3916 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3917 if (ifp != (ill_if_t *) 3918 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3919 avl_tree = &ifp->illif_avl_by_ppa; 3920 ill = avl_first(avl_tree); 3921 /* 3922 * ill is guaranteed to be non NULL or ifp should have 3923 * not existed. 3924 */ 3925 ASSERT(ill != NULL); 3926 return (ill); 3927 } 3928 ctx->ctx_current_list++; 3929 } 3930 3931 return (NULL); 3932 } 3933 3934 /* 3935 * returns the next ill in the list. ill_first() must have been called 3936 * before calling ill_next() or bad things will happen. 3937 */ 3938 3939 /* 3940 * We don't check for CONDEMNED ills here. Caller must do that if 3941 * necessary under the ill lock. 3942 */ 3943 ill_t * 3944 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3945 { 3946 ill_if_t *ifp; 3947 ill_t *ill; 3948 3949 3950 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3951 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3952 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3953 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3954 AVL_AFTER)) != NULL) { 3955 return (ill); 3956 } 3957 3958 /* goto next ill_ifp in the list. */ 3959 ifp = lastill->ill_ifptr->illif_next; 3960 3961 /* make sure not at end of circular list */ 3962 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3963 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3964 return (NULL); 3965 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3966 } 3967 3968 return (avl_first(&ifp->illif_avl_by_ppa)); 3969 } 3970 3971 /* 3972 * Check interface name for correct format which is name+ppa. 3973 * name can contain characters and digits, the right most digits 3974 * make up the ppa number. use of octal is not allowed, name must contain 3975 * a ppa, return pointer to the start of ppa. 3976 * In case of error return NULL. 3977 */ 3978 static char * 3979 ill_get_ppa_ptr(char *name) 3980 { 3981 int namelen = mi_strlen(name); 3982 3983 int len = namelen; 3984 3985 name += len; 3986 while (len > 0) { 3987 name--; 3988 if (*name < '0' || *name > '9') 3989 break; 3990 len--; 3991 } 3992 3993 /* empty string, all digits, or no trailing digits */ 3994 if (len == 0 || len == (int)namelen) 3995 return (NULL); 3996 3997 name++; 3998 /* check for attempted use of octal */ 3999 if (*name == '0' && len != (int)namelen - 1) 4000 return (NULL); 4001 return (name); 4002 } 4003 4004 /* 4005 * use avl tree to locate the ill. 4006 */ 4007 static ill_t * 4008 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4009 ipsq_func_t func, int *error) 4010 { 4011 char *ppa_ptr = NULL; 4012 int len; 4013 uint_t ppa; 4014 ill_t *ill = NULL; 4015 ill_if_t *ifp; 4016 int list; 4017 ipsq_t *ipsq; 4018 4019 if (error != NULL) 4020 *error = 0; 4021 4022 /* 4023 * get ppa ptr 4024 */ 4025 if (isv6) 4026 list = IP_V6_G_HEAD; 4027 else 4028 list = IP_V4_G_HEAD; 4029 4030 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4031 if (error != NULL) 4032 *error = ENXIO; 4033 return (NULL); 4034 } 4035 4036 len = ppa_ptr - name + 1; 4037 4038 ppa = stoi(&ppa_ptr); 4039 4040 ifp = IP_VX_ILL_G_LIST(list); 4041 4042 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4043 /* 4044 * match is done on len - 1 as the name is not null 4045 * terminated it contains ppa in addition to the interface 4046 * name. 4047 */ 4048 if ((ifp->illif_name_len == len) && 4049 bcmp(ifp->illif_name, name, len - 1) == 0) { 4050 break; 4051 } else { 4052 ifp = ifp->illif_next; 4053 } 4054 } 4055 4056 4057 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4058 /* 4059 * Even the interface type does not exist. 4060 */ 4061 if (error != NULL) 4062 *error = ENXIO; 4063 return (NULL); 4064 } 4065 4066 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4067 if (ill != NULL) { 4068 /* 4069 * The block comment at the start of ipif_down 4070 * explains the use of the macros used below 4071 */ 4072 GRAB_CONN_LOCK(q); 4073 mutex_enter(&ill->ill_lock); 4074 if (ILL_CAN_LOOKUP(ill)) { 4075 ill_refhold_locked(ill); 4076 mutex_exit(&ill->ill_lock); 4077 RELEASE_CONN_LOCK(q); 4078 return (ill); 4079 } else if (ILL_CAN_WAIT(ill, q)) { 4080 ipsq = ill->ill_phyint->phyint_ipsq; 4081 mutex_enter(&ipsq->ipsq_lock); 4082 mutex_exit(&ill->ill_lock); 4083 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4084 mutex_exit(&ipsq->ipsq_lock); 4085 RELEASE_CONN_LOCK(q); 4086 *error = EINPROGRESS; 4087 return (NULL); 4088 } 4089 mutex_exit(&ill->ill_lock); 4090 RELEASE_CONN_LOCK(q); 4091 } 4092 if (error != NULL) 4093 *error = ENXIO; 4094 return (NULL); 4095 } 4096 4097 /* 4098 * comparison function for use with avl. 4099 */ 4100 static int 4101 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4102 { 4103 uint_t ppa; 4104 uint_t ill_ppa; 4105 4106 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4107 4108 ppa = *((uint_t *)ppa_ptr); 4109 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4110 /* 4111 * We want the ill with the lowest ppa to be on the 4112 * top. 4113 */ 4114 if (ill_ppa < ppa) 4115 return (1); 4116 if (ill_ppa > ppa) 4117 return (-1); 4118 return (0); 4119 } 4120 4121 /* 4122 * remove an interface type from the global list. 4123 */ 4124 static void 4125 ill_delete_interface_type(ill_if_t *interface) 4126 { 4127 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4128 4129 ASSERT(interface != NULL); 4130 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4131 4132 avl_destroy(&interface->illif_avl_by_ppa); 4133 if (interface->illif_ppa_arena != NULL) 4134 vmem_destroy(interface->illif_ppa_arena); 4135 4136 remque(interface); 4137 4138 mi_free(interface); 4139 } 4140 4141 /* 4142 * remove ill from the global list. 4143 */ 4144 static void 4145 ill_glist_delete(ill_t *ill) 4146 { 4147 if (ill == NULL) 4148 return; 4149 4150 rw_enter(&ill_g_lock, RW_WRITER); 4151 /* 4152 * If the ill was never inserted into the AVL tree 4153 * we skip the if branch. 4154 */ 4155 if (ill->ill_ifptr != NULL) { 4156 /* 4157 * remove from AVL tree and free ppa number 4158 */ 4159 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4160 4161 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4162 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4163 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4164 } 4165 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4166 ill_delete_interface_type(ill->ill_ifptr); 4167 } 4168 4169 /* 4170 * Indicate ill is no longer in the list. 4171 */ 4172 ill->ill_ifptr = NULL; 4173 ill->ill_name_length = 0; 4174 ill->ill_name[0] = '\0'; 4175 ill->ill_ppa = UINT_MAX; 4176 } 4177 ill_phyint_free(ill); 4178 rw_exit(&ill_g_lock); 4179 } 4180 4181 /* 4182 * allocate a ppa, if the number of plumbed interfaces of this type are 4183 * less than ill_no_arena do a linear search to find a unused ppa. 4184 * When the number goes beyond ill_no_arena switch to using an arena. 4185 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4186 * is the return value for an error condition, so allocation starts at one 4187 * and is decremented by one. 4188 */ 4189 static int 4190 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4191 { 4192 ill_t *tmp_ill; 4193 uint_t start, end; 4194 int ppa; 4195 4196 if (ifp->illif_ppa_arena == NULL && 4197 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4198 /* 4199 * Create an arena. 4200 */ 4201 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4202 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4203 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4204 /* allocate what has already been assigned */ 4205 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4206 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4207 tmp_ill, AVL_AFTER)) { 4208 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4209 1, /* size */ 4210 1, /* align/quantum */ 4211 0, /* phase */ 4212 0, /* nocross */ 4213 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4214 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4215 VM_NOSLEEP|VM_FIRSTFIT); 4216 if (ppa == 0) { 4217 ip1dbg(("ill_alloc_ppa: ppa allocation" 4218 " failed while switching")); 4219 vmem_destroy(ifp->illif_ppa_arena); 4220 ifp->illif_ppa_arena = NULL; 4221 break; 4222 } 4223 } 4224 } 4225 4226 if (ifp->illif_ppa_arena != NULL) { 4227 if (ill->ill_ppa == UINT_MAX) { 4228 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4229 1, VM_NOSLEEP|VM_FIRSTFIT); 4230 if (ppa == 0) 4231 return (EAGAIN); 4232 ill->ill_ppa = --ppa; 4233 } else { 4234 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4235 1, /* size */ 4236 1, /* align/quantum */ 4237 0, /* phase */ 4238 0, /* nocross */ 4239 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4240 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4241 VM_NOSLEEP|VM_FIRSTFIT); 4242 /* 4243 * Most likely the allocation failed because 4244 * the requested ppa was in use. 4245 */ 4246 if (ppa == 0) 4247 return (EEXIST); 4248 } 4249 return (0); 4250 } 4251 4252 /* 4253 * No arena is in use and not enough (>ill_no_arena) interfaces have 4254 * been plumbed to create one. Do a linear search to get a unused ppa. 4255 */ 4256 if (ill->ill_ppa == UINT_MAX) { 4257 end = UINT_MAX - 1; 4258 start = 0; 4259 } else { 4260 end = start = ill->ill_ppa; 4261 } 4262 4263 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4264 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4265 if (start++ >= end) { 4266 if (ill->ill_ppa == UINT_MAX) 4267 return (EAGAIN); 4268 else 4269 return (EEXIST); 4270 } 4271 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4272 } 4273 ill->ill_ppa = start; 4274 return (0); 4275 } 4276 4277 /* 4278 * Insert ill into the list of configured ill's. Once this function completes, 4279 * the ill is globally visible and is available through lookups. More precisely 4280 * this happens after the caller drops the ill_g_lock. 4281 */ 4282 static int 4283 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4284 { 4285 ill_if_t *ill_interface; 4286 avl_index_t where = 0; 4287 int error; 4288 int name_length; 4289 int index; 4290 boolean_t check_length = B_FALSE; 4291 4292 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4293 4294 name_length = mi_strlen(name) + 1; 4295 4296 if (isv6) 4297 index = IP_V6_G_HEAD; 4298 else 4299 index = IP_V4_G_HEAD; 4300 4301 ill_interface = IP_VX_ILL_G_LIST(index); 4302 /* 4303 * Search for interface type based on name 4304 */ 4305 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4306 if ((ill_interface->illif_name_len == name_length) && 4307 (strcmp(ill_interface->illif_name, name) == 0)) { 4308 break; 4309 } 4310 ill_interface = ill_interface->illif_next; 4311 } 4312 4313 /* 4314 * Interface type not found, create one. 4315 */ 4316 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4317 4318 ill_g_head_t ghead; 4319 4320 /* 4321 * allocate ill_if_t structure 4322 */ 4323 4324 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4325 if (ill_interface == NULL) { 4326 return (ENOMEM); 4327 } 4328 4329 4330 4331 (void) strcpy(ill_interface->illif_name, name); 4332 ill_interface->illif_name_len = name_length; 4333 4334 avl_create(&ill_interface->illif_avl_by_ppa, 4335 ill_compare_ppa, sizeof (ill_t), 4336 offsetof(struct ill_s, ill_avl_byppa)); 4337 4338 /* 4339 * link the structure in the back to maintain order 4340 * of configuration for ifconfig output. 4341 */ 4342 ghead = ill_g_heads[index]; 4343 insque(ill_interface, ghead.ill_g_list_tail); 4344 4345 } 4346 4347 if (ill->ill_ppa == UINT_MAX) 4348 check_length = B_TRUE; 4349 4350 error = ill_alloc_ppa(ill_interface, ill); 4351 if (error != 0) { 4352 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4353 ill_delete_interface_type(ill->ill_ifptr); 4354 return (error); 4355 } 4356 4357 /* 4358 * When the ppa is choosen by the system, check that there is 4359 * enough space to insert ppa. if a specific ppa was passed in this 4360 * check is not required as the interface name passed in will have 4361 * the right ppa in it. 4362 */ 4363 if (check_length) { 4364 /* 4365 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4366 */ 4367 char buf[sizeof (uint_t) * 3]; 4368 4369 /* 4370 * convert ppa to string to calculate the amount of space 4371 * required for it in the name. 4372 */ 4373 numtos(ill->ill_ppa, buf); 4374 4375 /* Do we have enough space to insert ppa ? */ 4376 4377 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4378 /* Free ppa and interface type struct */ 4379 if (ill_interface->illif_ppa_arena != NULL) { 4380 vmem_free(ill_interface->illif_ppa_arena, 4381 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4382 } 4383 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4384 0) { 4385 ill_delete_interface_type(ill->ill_ifptr); 4386 } 4387 4388 return (EINVAL); 4389 } 4390 } 4391 4392 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4393 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4394 4395 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4396 &where); 4397 ill->ill_ifptr = ill_interface; 4398 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4399 4400 ill_phyint_reinit(ill); 4401 return (0); 4402 } 4403 4404 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4405 static boolean_t 4406 ipsq_init(ill_t *ill) 4407 { 4408 ipsq_t *ipsq; 4409 4410 /* Init the ipsq and impicitly enter as writer */ 4411 ill->ill_phyint->phyint_ipsq = 4412 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4413 if (ill->ill_phyint->phyint_ipsq == NULL) 4414 return (B_FALSE); 4415 ipsq = ill->ill_phyint->phyint_ipsq; 4416 ipsq->ipsq_phyint_list = ill->ill_phyint; 4417 ill->ill_phyint->phyint_ipsq_next = NULL; 4418 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4419 ipsq->ipsq_refs = 1; 4420 ipsq->ipsq_writer = curthread; 4421 ipsq->ipsq_reentry_cnt = 1; 4422 #ifdef ILL_DEBUG 4423 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4424 #endif 4425 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4426 return (B_TRUE); 4427 } 4428 4429 /* 4430 * ill_init is called by ip_open when a device control stream is opened. 4431 * It does a few initializations, and shoots a DL_INFO_REQ message down 4432 * to the driver. The response is later picked up in ip_rput_dlpi and 4433 * used to set up default mechanisms for talking to the driver. (Always 4434 * called as writer.) 4435 * 4436 * If this function returns error, ip_open will call ip_close which in 4437 * turn will call ill_delete to clean up any memory allocated here that 4438 * is not yet freed. 4439 */ 4440 int 4441 ill_init(queue_t *q, ill_t *ill) 4442 { 4443 int count; 4444 dl_info_req_t *dlir; 4445 mblk_t *info_mp; 4446 uchar_t *frag_ptr; 4447 4448 /* 4449 * The ill is initialized to zero by mi_alloc*(). In addition 4450 * some fields already contain valid values, initialized in 4451 * ip_open(), before we reach here. 4452 */ 4453 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4454 4455 ill->ill_rq = q; 4456 ill->ill_wq = WR(q); 4457 4458 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4459 BPRI_HI); 4460 if (info_mp == NULL) 4461 return (ENOMEM); 4462 4463 /* 4464 * Allocate sufficient space to contain our fragment hash table and 4465 * the device name. 4466 */ 4467 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4468 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4469 if (frag_ptr == NULL) { 4470 freemsg(info_mp); 4471 return (ENOMEM); 4472 } 4473 ill->ill_frag_ptr = frag_ptr; 4474 ill->ill_frag_free_num_pkts = 0; 4475 ill->ill_last_frag_clean_time = 0; 4476 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4477 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4478 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4479 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4480 NULL, MUTEX_DEFAULT, NULL); 4481 } 4482 4483 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4484 if (ill->ill_phyint == NULL) { 4485 freemsg(info_mp); 4486 mi_free(frag_ptr); 4487 return (ENOMEM); 4488 } 4489 4490 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4491 /* 4492 * For now pretend this is a v4 ill. We need to set phyint_ill* 4493 * at this point because of the following reason. If we can't 4494 * enter the ipsq at some point and cv_wait, the writer that 4495 * wakes us up tries to locate us using the list of all phyints 4496 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4497 * If we don't set it now, we risk a missed wakeup. 4498 */ 4499 ill->ill_phyint->phyint_illv4 = ill; 4500 ill->ill_ppa = UINT_MAX; 4501 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4502 4503 if (!ipsq_init(ill)) { 4504 freemsg(info_mp); 4505 mi_free(frag_ptr); 4506 mi_free(ill->ill_phyint); 4507 return (ENOMEM); 4508 } 4509 4510 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4511 4512 4513 /* Frag queue limit stuff */ 4514 ill->ill_frag_count = 0; 4515 ill->ill_ipf_gen = 0; 4516 4517 ill->ill_global_timer = INFINITY; 4518 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4519 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4520 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4521 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4522 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4523 4524 /* 4525 * Initialize IPv6 configuration variables. The IP module is always 4526 * opened as an IPv4 module. Instead tracking down the cases where 4527 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4528 * here for convenience, this has no effect until the ill is set to do 4529 * IPv6. 4530 */ 4531 ill->ill_reachable_time = ND_REACHABLE_TIME; 4532 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4533 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4534 ill->ill_max_buf = ND_MAX_Q; 4535 ill->ill_refcnt = 0; 4536 4537 /* Send down the Info Request to the driver. */ 4538 info_mp->b_datap->db_type = M_PCPROTO; 4539 dlir = (dl_info_req_t *)info_mp->b_rptr; 4540 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4541 dlir->dl_primitive = DL_INFO_REQ; 4542 4543 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4544 4545 qprocson(q); 4546 ill_dlpi_send(ill, info_mp); 4547 4548 return (0); 4549 } 4550 4551 /* 4552 * ill_dls_info 4553 * creates datalink socket info from the device. 4554 */ 4555 int 4556 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4557 { 4558 size_t length; 4559 ill_t *ill = ipif->ipif_ill; 4560 4561 sdl->sdl_family = AF_LINK; 4562 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4563 sdl->sdl_type = ipif->ipif_type; 4564 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4565 length = mi_strlen(sdl->sdl_data); 4566 ASSERT(length < 256); 4567 sdl->sdl_nlen = (uchar_t)length; 4568 sdl->sdl_alen = ill->ill_phys_addr_length; 4569 mutex_enter(&ill->ill_lock); 4570 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4571 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4572 ill->ill_phys_addr_length); 4573 } 4574 mutex_exit(&ill->ill_lock); 4575 sdl->sdl_slen = 0; 4576 return (sizeof (struct sockaddr_dl)); 4577 } 4578 4579 /* 4580 * ill_xarp_info 4581 * creates xarp info from the device. 4582 */ 4583 static int 4584 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4585 { 4586 sdl->sdl_family = AF_LINK; 4587 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4588 sdl->sdl_type = ill->ill_type; 4589 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4590 sizeof (sdl->sdl_data)); 4591 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4592 sdl->sdl_alen = ill->ill_phys_addr_length; 4593 sdl->sdl_slen = 0; 4594 return (sdl->sdl_nlen); 4595 } 4596 4597 static int 4598 loopback_kstat_update(kstat_t *ksp, int rw) 4599 { 4600 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4601 4602 if (rw == KSTAT_WRITE) 4603 return (EACCES); 4604 kn[0].value.ui32 = loopback_packets; 4605 kn[1].value.ui32 = loopback_packets; 4606 return (0); 4607 } 4608 4609 4610 /* 4611 * Has ifindex been plumbed already. 4612 */ 4613 static boolean_t 4614 phyint_exists(uint_t index) 4615 { 4616 phyint_t *phyi; 4617 4618 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4619 /* 4620 * Indexes are stored in the phyint - a common structure 4621 * to both IPv4 and IPv6. 4622 */ 4623 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4624 (void *) &index, NULL); 4625 return (phyi != NULL); 4626 } 4627 4628 /* 4629 * Assign a unique interface index for the phyint. 4630 */ 4631 static boolean_t 4632 phyint_assign_ifindex(phyint_t *phyi) 4633 { 4634 uint_t starting_index; 4635 4636 ASSERT(phyi->phyint_ifindex == 0); 4637 if (!ill_index_wrap) { 4638 phyi->phyint_ifindex = ill_index++; 4639 if (ill_index == 0) { 4640 /* Reached the uint_t limit Next time wrap */ 4641 ill_index_wrap = B_TRUE; 4642 } 4643 return (B_TRUE); 4644 } 4645 4646 /* 4647 * Start reusing unused indexes. Note that we hold the ill_g_lock 4648 * at this point and don't want to call any function that attempts 4649 * to get the lock again. 4650 */ 4651 starting_index = ill_index++; 4652 for (; ill_index != starting_index; ill_index++) { 4653 if (ill_index != 0 && !phyint_exists(ill_index)) { 4654 /* found unused index - use it */ 4655 phyi->phyint_ifindex = ill_index; 4656 return (B_TRUE); 4657 } 4658 } 4659 4660 /* 4661 * all interface indicies are inuse. 4662 */ 4663 return (B_FALSE); 4664 } 4665 4666 /* 4667 * Return a pointer to the ill which matches the supplied name. Note that 4668 * the ill name length includes the null termination character. (May be 4669 * called as writer.) 4670 * If do_alloc and the interface is "lo0" it will be automatically created. 4671 * Cannot bump up reference on condemned ills. So dup detect can't be done 4672 * using this func. 4673 */ 4674 ill_t * 4675 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4676 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4677 { 4678 ill_t *ill; 4679 ipif_t *ipif; 4680 kstat_named_t *kn; 4681 boolean_t isloopback; 4682 ipsq_t *old_ipsq; 4683 4684 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4685 4686 rw_enter(&ill_g_lock, RW_READER); 4687 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4688 rw_exit(&ill_g_lock); 4689 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4690 return (ill); 4691 4692 /* 4693 * Couldn't find it. Does this happen to be a lookup for the 4694 * loopback device and are we allowed to allocate it? 4695 */ 4696 if (!isloopback || !do_alloc) 4697 return (NULL); 4698 4699 rw_enter(&ill_g_lock, RW_WRITER); 4700 4701 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4702 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4703 rw_exit(&ill_g_lock); 4704 return (ill); 4705 } 4706 4707 /* Create the loopback device on demand */ 4708 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4709 sizeof (ipif_loopback_name), BPRI_MED)); 4710 if (ill == NULL) 4711 goto done; 4712 4713 *ill = ill_null; 4714 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4715 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4716 if (ill->ill_phyint == NULL) 4717 goto done; 4718 4719 if (isv6) 4720 ill->ill_phyint->phyint_illv6 = ill; 4721 else 4722 ill->ill_phyint->phyint_illv4 = ill; 4723 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4724 ill->ill_max_frag = IP_LOOPBACK_MTU; 4725 /* Add room for tcp+ip headers */ 4726 if (isv6) { 4727 ill->ill_isv6 = B_TRUE; 4728 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4729 if (!ill_allocate_mibs(ill)) 4730 goto done; 4731 } else { 4732 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4733 } 4734 ill->ill_max_mtu = ill->ill_max_frag; 4735 /* 4736 * ipif_loopback_name can't be pointed at directly because its used 4737 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4738 * from the glist, ill_glist_delete() sets the first character of 4739 * ill_name to '\0'. 4740 */ 4741 ill->ill_name = (char *)ill + sizeof (*ill); 4742 (void) strcpy(ill->ill_name, ipif_loopback_name); 4743 ill->ill_name_length = sizeof (ipif_loopback_name); 4744 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4745 4746 ill->ill_global_timer = INFINITY; 4747 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4748 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4749 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4750 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4751 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4752 4753 /* No resolver here. */ 4754 ill->ill_net_type = IRE_LOOPBACK; 4755 4756 /* Initialize the ipsq */ 4757 if (!ipsq_init(ill)) 4758 goto done; 4759 4760 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4761 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4762 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4763 #ifdef ILL_DEBUG 4764 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4765 #endif 4766 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4767 if (ipif == NULL) 4768 goto done; 4769 4770 ill->ill_flags = ILLF_MULTICAST; 4771 4772 /* Set up default loopback address and mask. */ 4773 if (!isv6) { 4774 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4775 4776 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4777 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4778 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4779 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4780 ipif->ipif_v6subnet); 4781 ill->ill_flags |= ILLF_IPV4; 4782 } else { 4783 ipif->ipif_v6lcl_addr = ipv6_loopback; 4784 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4785 ipif->ipif_v6net_mask = ipv6_all_ones; 4786 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4787 ipif->ipif_v6subnet); 4788 ill->ill_flags |= ILLF_IPV6; 4789 } 4790 4791 /* 4792 * Chain us in at the end of the ill list. hold the ill 4793 * before we make it globally visible. 1 for the lookup. 4794 */ 4795 ill->ill_refcnt = 0; 4796 ill_refhold(ill); 4797 4798 ill->ill_frag_count = 0; 4799 ill->ill_frag_free_num_pkts = 0; 4800 ill->ill_last_frag_clean_time = 0; 4801 4802 old_ipsq = ill->ill_phyint->phyint_ipsq; 4803 4804 if (ill_glist_insert(ill, "lo", isv6) != 0) 4805 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4806 4807 /* Let SCTP know so that it can add this to its list */ 4808 sctp_update_ill(ill, SCTP_ILL_INSERT); 4809 4810 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4811 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4812 4813 /* 4814 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4815 */ 4816 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4817 /* Loopback ills aren't in any IPMP group */ 4818 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4819 ipsq_delete(old_ipsq); 4820 } 4821 4822 /* 4823 * Delay this till the ipif is allocated as ipif_allocate 4824 * de-references ill_phyint for getting the ifindex. We 4825 * can't do this before ipif_allocate because ill_phyint_reinit 4826 * -> phyint_assign_ifindex expects ipif to be present. 4827 */ 4828 mutex_enter(&ill->ill_phyint->phyint_lock); 4829 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4830 mutex_exit(&ill->ill_phyint->phyint_lock); 4831 4832 if (loopback_ksp == NULL) { 4833 /* Export loopback interface statistics */ 4834 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4835 KSTAT_TYPE_NAMED, 2, 0); 4836 if (loopback_ksp != NULL) { 4837 loopback_ksp->ks_update = loopback_kstat_update; 4838 kn = KSTAT_NAMED_PTR(loopback_ksp); 4839 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4840 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4841 kstat_install(loopback_ksp); 4842 } 4843 } 4844 4845 if (error != NULL) 4846 *error = 0; 4847 *did_alloc = B_TRUE; 4848 rw_exit(&ill_g_lock); 4849 return (ill); 4850 done: 4851 if (ill != NULL) { 4852 if (ill->ill_phyint != NULL) { 4853 ipsq_t *ipsq; 4854 4855 ipsq = ill->ill_phyint->phyint_ipsq; 4856 if (ipsq != NULL) 4857 kmem_free(ipsq, sizeof (ipsq_t)); 4858 mi_free(ill->ill_phyint); 4859 } 4860 ill_free_mib(ill); 4861 mi_free(ill); 4862 } 4863 rw_exit(&ill_g_lock); 4864 if (error != NULL) 4865 *error = ENOMEM; 4866 return (NULL); 4867 } 4868 4869 /* 4870 * Return a pointer to the ill which matches the index and IP version type. 4871 */ 4872 ill_t * 4873 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4874 ipsq_func_t func, int *err) 4875 { 4876 ill_t *ill; 4877 ipsq_t *ipsq; 4878 phyint_t *phyi; 4879 4880 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4881 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4882 4883 if (err != NULL) 4884 *err = 0; 4885 4886 /* 4887 * Indexes are stored in the phyint - a common structure 4888 * to both IPv4 and IPv6. 4889 */ 4890 rw_enter(&ill_g_lock, RW_READER); 4891 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4892 (void *) &index, NULL); 4893 if (phyi != NULL) { 4894 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4895 if (ill != NULL) { 4896 /* 4897 * The block comment at the start of ipif_down 4898 * explains the use of the macros used below 4899 */ 4900 GRAB_CONN_LOCK(q); 4901 mutex_enter(&ill->ill_lock); 4902 if (ILL_CAN_LOOKUP(ill)) { 4903 ill_refhold_locked(ill); 4904 mutex_exit(&ill->ill_lock); 4905 RELEASE_CONN_LOCK(q); 4906 rw_exit(&ill_g_lock); 4907 return (ill); 4908 } else if (ILL_CAN_WAIT(ill, q)) { 4909 ipsq = ill->ill_phyint->phyint_ipsq; 4910 mutex_enter(&ipsq->ipsq_lock); 4911 rw_exit(&ill_g_lock); 4912 mutex_exit(&ill->ill_lock); 4913 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4914 mutex_exit(&ipsq->ipsq_lock); 4915 RELEASE_CONN_LOCK(q); 4916 *err = EINPROGRESS; 4917 return (NULL); 4918 } 4919 RELEASE_CONN_LOCK(q); 4920 mutex_exit(&ill->ill_lock); 4921 } 4922 } 4923 rw_exit(&ill_g_lock); 4924 if (err != NULL) 4925 *err = ENXIO; 4926 return (NULL); 4927 } 4928 4929 /* 4930 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4931 * that gives a running thread a reference to the ill. This reference must be 4932 * released by the thread when it is done accessing the ill and related 4933 * objects. ill_refcnt can not be used to account for static references 4934 * such as other structures pointing to an ill. Callers must generally 4935 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4936 * or be sure that the ill is not being deleted or changing state before 4937 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4938 * ill won't change any of its critical state such as address, netmask etc. 4939 */ 4940 void 4941 ill_refhold(ill_t *ill) 4942 { 4943 mutex_enter(&ill->ill_lock); 4944 ill->ill_refcnt++; 4945 ILL_TRACE_REF(ill); 4946 mutex_exit(&ill->ill_lock); 4947 } 4948 4949 void 4950 ill_refhold_locked(ill_t *ill) 4951 { 4952 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4953 ill->ill_refcnt++; 4954 ILL_TRACE_REF(ill); 4955 } 4956 4957 int 4958 ill_check_and_refhold(ill_t *ill) 4959 { 4960 mutex_enter(&ill->ill_lock); 4961 if (ILL_CAN_LOOKUP(ill)) { 4962 ill_refhold_locked(ill); 4963 mutex_exit(&ill->ill_lock); 4964 return (0); 4965 } 4966 mutex_exit(&ill->ill_lock); 4967 return (ILL_LOOKUP_FAILED); 4968 } 4969 4970 /* 4971 * Must not be called while holding any locks. Otherwise if this is 4972 * the last reference to be released, there is a chance of recursive mutex 4973 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4974 * to restart an ioctl. 4975 */ 4976 void 4977 ill_refrele(ill_t *ill) 4978 { 4979 mutex_enter(&ill->ill_lock); 4980 ASSERT(ill->ill_refcnt != 0); 4981 ill->ill_refcnt--; 4982 ILL_UNTRACE_REF(ill); 4983 if (ill->ill_refcnt != 0) { 4984 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4985 mutex_exit(&ill->ill_lock); 4986 return; 4987 } 4988 4989 /* Drops the ill_lock */ 4990 ipif_ill_refrele_tail(ill); 4991 } 4992 4993 /* 4994 * Obtain a weak reference count on the ill. This reference ensures the 4995 * ill won't be freed, but the ill may change any of its critical state 4996 * such as netmask, address etc. Returns an error if the ill has started 4997 * closing. 4998 */ 4999 boolean_t 5000 ill_waiter_inc(ill_t *ill) 5001 { 5002 mutex_enter(&ill->ill_lock); 5003 if (ill->ill_state_flags & ILL_CONDEMNED) { 5004 mutex_exit(&ill->ill_lock); 5005 return (B_FALSE); 5006 } 5007 ill->ill_waiters++; 5008 mutex_exit(&ill->ill_lock); 5009 return (B_TRUE); 5010 } 5011 5012 void 5013 ill_waiter_dcr(ill_t *ill) 5014 { 5015 mutex_enter(&ill->ill_lock); 5016 ill->ill_waiters--; 5017 if (ill->ill_waiters == 0) 5018 cv_broadcast(&ill->ill_cv); 5019 mutex_exit(&ill->ill_lock); 5020 } 5021 5022 /* 5023 * Named Dispatch routine to produce a formatted report on all ILLs. 5024 * This report is accessed by using the ndd utility to "get" ND variable 5025 * "ip_ill_status". 5026 */ 5027 /* ARGSUSED */ 5028 int 5029 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5030 { 5031 ill_t *ill; 5032 ill_walk_context_t ctx; 5033 5034 (void) mi_mpprintf(mp, 5035 "ILL " MI_COL_HDRPAD_STR 5036 /* 01234567[89ABCDEF] */ 5037 "rq " MI_COL_HDRPAD_STR 5038 /* 01234567[89ABCDEF] */ 5039 "wq " MI_COL_HDRPAD_STR 5040 /* 01234567[89ABCDEF] */ 5041 "upcnt mxfrg err name"); 5042 /* 12345 12345 123 xxxxxxxx */ 5043 5044 rw_enter(&ill_g_lock, RW_READER); 5045 ill = ILL_START_WALK_ALL(&ctx); 5046 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5047 (void) mi_mpprintf(mp, 5048 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5049 "%05u %05u %03d %s", 5050 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5051 ill->ill_ipif_up_count, 5052 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5053 } 5054 rw_exit(&ill_g_lock); 5055 5056 return (0); 5057 } 5058 5059 /* 5060 * Named Dispatch routine to produce a formatted report on all IPIFs. 5061 * This report is accessed by using the ndd utility to "get" ND variable 5062 * "ip_ipif_status". 5063 */ 5064 /* ARGSUSED */ 5065 int 5066 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5067 { 5068 char buf1[INET6_ADDRSTRLEN]; 5069 char buf2[INET6_ADDRSTRLEN]; 5070 char buf3[INET6_ADDRSTRLEN]; 5071 char buf4[INET6_ADDRSTRLEN]; 5072 char buf5[INET6_ADDRSTRLEN]; 5073 char buf6[INET6_ADDRSTRLEN]; 5074 char buf[LIFNAMSIZ]; 5075 ill_t *ill; 5076 ipif_t *ipif; 5077 nv_t *nvp; 5078 uint64_t flags; 5079 zoneid_t zoneid; 5080 ill_walk_context_t ctx; 5081 5082 (void) mi_mpprintf(mp, 5083 "IPIF metric mtu in/out/forward name zone flags...\n" 5084 "\tlocal address\n" 5085 "\tsrc address\n" 5086 "\tsubnet\n" 5087 "\tmask\n" 5088 "\tbroadcast\n" 5089 "\tp-p-dst"); 5090 5091 ASSERT(q->q_next == NULL); 5092 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5093 5094 rw_enter(&ill_g_lock, RW_READER); 5095 ill = ILL_START_WALK_ALL(&ctx); 5096 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5097 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5098 if (zoneid != GLOBAL_ZONEID && 5099 zoneid != ipif->ipif_zoneid && 5100 ipif->ipif_zoneid != ALL_ZONES) 5101 continue; 5102 (void) mi_mpprintf(mp, 5103 MI_COL_PTRFMT_STR 5104 "%04u %05u %u/%u/%u %s %d", 5105 (void *)ipif, 5106 ipif->ipif_metric, ipif->ipif_mtu, 5107 ipif->ipif_ib_pkt_count, 5108 ipif->ipif_ob_pkt_count, 5109 ipif->ipif_fo_pkt_count, 5110 ipif_get_name(ipif, buf, sizeof (buf)), 5111 ipif->ipif_zoneid); 5112 5113 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5114 ipif->ipif_ill->ill_phyint->phyint_flags; 5115 5116 /* Tack on text strings for any flags. */ 5117 nvp = ipif_nv_tbl; 5118 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5119 if (nvp->nv_value & flags) 5120 (void) mi_mpprintf_nr(mp, " %s", 5121 nvp->nv_name); 5122 } 5123 (void) mi_mpprintf(mp, 5124 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5125 inet_ntop(AF_INET6, 5126 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5127 inet_ntop(AF_INET6, 5128 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5129 inet_ntop(AF_INET6, 5130 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5131 inet_ntop(AF_INET6, 5132 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5133 inet_ntop(AF_INET6, 5134 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5135 inet_ntop(AF_INET6, 5136 &ipif->ipif_v6pp_dst_addr, 5137 buf6, sizeof (buf6))); 5138 } 5139 } 5140 rw_exit(&ill_g_lock); 5141 return (0); 5142 } 5143 5144 /* 5145 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5146 * driver. We construct best guess defaults for lower level information that 5147 * we need. If an interface is brought up without injection of any overriding 5148 * information from outside, we have to be ready to go with these defaults. 5149 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5150 * we primarely want the dl_provider_style. 5151 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5152 * at which point we assume the other part of the information is valid. 5153 */ 5154 void 5155 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5156 { 5157 uchar_t *brdcst_addr; 5158 uint_t brdcst_addr_length, phys_addr_length; 5159 t_scalar_t sap_length; 5160 dl_info_ack_t *dlia; 5161 ip_m_t *ipm; 5162 dl_qos_cl_sel1_t *sel1; 5163 5164 ASSERT(IAM_WRITER_ILL(ill)); 5165 5166 /* 5167 * Till the ill is fully up ILL_CHANGING will be set and 5168 * the ill is not globally visible. So no need for a lock. 5169 */ 5170 dlia = (dl_info_ack_t *)mp->b_rptr; 5171 ill->ill_mactype = dlia->dl_mac_type; 5172 5173 ipm = ip_m_lookup(dlia->dl_mac_type); 5174 if (ipm == NULL) { 5175 ipm = ip_m_lookup(DL_OTHER); 5176 ASSERT(ipm != NULL); 5177 } 5178 ill->ill_media = ipm; 5179 5180 /* 5181 * When the new DLPI stuff is ready we'll pull lengths 5182 * from dlia. 5183 */ 5184 if (dlia->dl_version == DL_VERSION_2) { 5185 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5186 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5187 brdcst_addr_length); 5188 if (brdcst_addr == NULL) { 5189 brdcst_addr_length = 0; 5190 } 5191 sap_length = dlia->dl_sap_length; 5192 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5193 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5194 brdcst_addr_length, sap_length, phys_addr_length)); 5195 } else { 5196 brdcst_addr_length = 6; 5197 brdcst_addr = ip_six_byte_all_ones; 5198 sap_length = -2; 5199 phys_addr_length = brdcst_addr_length; 5200 } 5201 5202 ill->ill_bcast_addr_length = brdcst_addr_length; 5203 ill->ill_phys_addr_length = phys_addr_length; 5204 ill->ill_sap_length = sap_length; 5205 ill->ill_max_frag = dlia->dl_max_sdu; 5206 ill->ill_max_mtu = ill->ill_max_frag; 5207 5208 ill->ill_type = ipm->ip_m_type; 5209 5210 if (!ill->ill_dlpi_style_set) { 5211 if (dlia->dl_provider_style == DL_STYLE2) 5212 ill->ill_needs_attach = 1; 5213 5214 /* 5215 * Allocate the first ipif on this ill. We don't delay it 5216 * further as ioctl handling assumes atleast one ipif to 5217 * be present. 5218 * 5219 * At this point we don't know whether the ill is v4 or v6. 5220 * We will know this whan the SIOCSLIFNAME happens and 5221 * the correct value for ill_isv6 will be assigned in 5222 * ipif_set_values(). We need to hold the ill lock and 5223 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5224 * the wakeup. 5225 */ 5226 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5227 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5228 mutex_enter(&ill->ill_lock); 5229 ASSERT(ill->ill_dlpi_style_set == 0); 5230 ill->ill_dlpi_style_set = 1; 5231 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5232 cv_broadcast(&ill->ill_cv); 5233 mutex_exit(&ill->ill_lock); 5234 freemsg(mp); 5235 return; 5236 } 5237 ASSERT(ill->ill_ipif != NULL); 5238 /* 5239 * We know whether it is IPv4 or IPv6 now, as this is the 5240 * second DL_INFO_ACK we are recieving in response to the 5241 * DL_INFO_REQ sent in ipif_set_values. 5242 */ 5243 if (ill->ill_isv6) 5244 ill->ill_sap = IP6_DL_SAP; 5245 else 5246 ill->ill_sap = IP_DL_SAP; 5247 /* 5248 * Set ipif_mtu which is used to set the IRE's 5249 * ire_max_frag value. The driver could have sent 5250 * a different mtu from what it sent last time. No 5251 * need to call ipif_mtu_change because IREs have 5252 * not yet been created. 5253 */ 5254 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5255 /* 5256 * Clear all the flags that were set based on ill_bcast_addr_length 5257 * and ill_phys_addr_length (in ipif_set_values) as these could have 5258 * changed now and we need to re-evaluate. 5259 */ 5260 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5261 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5262 5263 /* 5264 * Free ill_resolver_mp and ill_bcast_mp as things could have 5265 * changed now. 5266 */ 5267 if (ill->ill_bcast_addr_length == 0) { 5268 if (ill->ill_resolver_mp != NULL) 5269 freemsg(ill->ill_resolver_mp); 5270 if (ill->ill_bcast_mp != NULL) 5271 freemsg(ill->ill_bcast_mp); 5272 if (ill->ill_flags & ILLF_XRESOLV) 5273 ill->ill_net_type = IRE_IF_RESOLVER; 5274 else 5275 ill->ill_net_type = IRE_IF_NORESOLVER; 5276 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5277 ill->ill_phys_addr_length, 5278 ill->ill_sap, 5279 ill->ill_sap_length); 5280 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5281 5282 if (ill->ill_isv6) 5283 /* 5284 * Note: xresolv interfaces will eventually need NOARP 5285 * set here as well, but that will require those 5286 * external resolvers to have some knowledge of 5287 * that flag and act appropriately. Not to be changed 5288 * at present. 5289 */ 5290 ill->ill_flags |= ILLF_NONUD; 5291 else 5292 ill->ill_flags |= ILLF_NOARP; 5293 5294 if (ill->ill_phys_addr_length == 0) { 5295 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5296 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5297 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5298 } else { 5299 /* pt-pt supports multicast. */ 5300 ill->ill_flags |= ILLF_MULTICAST; 5301 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5302 } 5303 } 5304 } else { 5305 ill->ill_net_type = IRE_IF_RESOLVER; 5306 if (ill->ill_bcast_mp != NULL) 5307 freemsg(ill->ill_bcast_mp); 5308 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5309 ill->ill_bcast_addr_length, ill->ill_sap, 5310 ill->ill_sap_length); 5311 /* 5312 * Later detect lack of DLPI driver multicast 5313 * capability by catching DL_ENABMULTI errors in 5314 * ip_rput_dlpi. 5315 */ 5316 ill->ill_flags |= ILLF_MULTICAST; 5317 if (!ill->ill_isv6) 5318 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5319 } 5320 /* By default an interface does not support any CoS marking */ 5321 ill->ill_flags &= ~ILLF_COS_ENABLED; 5322 5323 /* 5324 * If we get QoS information in DL_INFO_ACK, the device supports 5325 * some form of CoS marking, set ILLF_COS_ENABLED. 5326 */ 5327 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5328 dlia->dl_qos_length); 5329 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5330 ill->ill_flags |= ILLF_COS_ENABLED; 5331 } 5332 5333 /* Clear any previous error indication. */ 5334 ill->ill_error = 0; 5335 freemsg(mp); 5336 } 5337 5338 /* 5339 * Perform various checks to verify that an address would make sense as a 5340 * local, remote, or subnet interface address. 5341 */ 5342 static boolean_t 5343 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5344 { 5345 ipaddr_t net_mask; 5346 5347 /* 5348 * Don't allow all zeroes, all ones or experimental address, but allow 5349 * all ones netmask. 5350 */ 5351 if ((net_mask = ip_net_mask(addr)) == 0) 5352 return (B_FALSE); 5353 /* A given netmask overrides the "guess" netmask */ 5354 if (subnet_mask != 0) 5355 net_mask = subnet_mask; 5356 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5357 (addr == (addr | ~net_mask)))) { 5358 return (B_FALSE); 5359 } 5360 if (CLASSD(addr)) 5361 return (B_FALSE); 5362 5363 return (B_TRUE); 5364 } 5365 5366 /* 5367 * ipif_lookup_group 5368 * Returns held ipif 5369 */ 5370 ipif_t * 5371 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5372 { 5373 ire_t *ire; 5374 ipif_t *ipif; 5375 5376 ire = ire_lookup_multi(group, zoneid); 5377 if (ire == NULL) 5378 return (NULL); 5379 ipif = ire->ire_ipif; 5380 ipif_refhold(ipif); 5381 ire_refrele(ire); 5382 return (ipif); 5383 } 5384 5385 /* 5386 * Look for an ipif with the specified interface address and destination. 5387 * The destination address is used only for matching point-to-point interfaces. 5388 */ 5389 ipif_t * 5390 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5391 ipsq_func_t func, int *error) 5392 { 5393 ipif_t *ipif; 5394 ill_t *ill; 5395 ill_walk_context_t ctx; 5396 ipsq_t *ipsq; 5397 5398 if (error != NULL) 5399 *error = 0; 5400 5401 /* 5402 * First match all the point-to-point interfaces 5403 * before looking at non-point-to-point interfaces. 5404 * This is done to avoid returning non-point-to-point 5405 * ipif instead of unnumbered point-to-point ipif. 5406 */ 5407 rw_enter(&ill_g_lock, RW_READER); 5408 ill = ILL_START_WALK_V4(&ctx); 5409 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5410 GRAB_CONN_LOCK(q); 5411 mutex_enter(&ill->ill_lock); 5412 for (ipif = ill->ill_ipif; ipif != NULL; 5413 ipif = ipif->ipif_next) { 5414 /* Allow the ipif to be down */ 5415 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5416 (ipif->ipif_lcl_addr == if_addr) && 5417 (ipif->ipif_pp_dst_addr == dst)) { 5418 /* 5419 * The block comment at the start of ipif_down 5420 * explains the use of the macros used below 5421 */ 5422 if (IPIF_CAN_LOOKUP(ipif)) { 5423 ipif_refhold_locked(ipif); 5424 mutex_exit(&ill->ill_lock); 5425 RELEASE_CONN_LOCK(q); 5426 rw_exit(&ill_g_lock); 5427 return (ipif); 5428 } else if (IPIF_CAN_WAIT(ipif, q)) { 5429 ipsq = ill->ill_phyint->phyint_ipsq; 5430 mutex_enter(&ipsq->ipsq_lock); 5431 mutex_exit(&ill->ill_lock); 5432 rw_exit(&ill_g_lock); 5433 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5434 ill); 5435 mutex_exit(&ipsq->ipsq_lock); 5436 RELEASE_CONN_LOCK(q); 5437 *error = EINPROGRESS; 5438 return (NULL); 5439 } 5440 } 5441 } 5442 mutex_exit(&ill->ill_lock); 5443 RELEASE_CONN_LOCK(q); 5444 } 5445 rw_exit(&ill_g_lock); 5446 5447 /* lookup the ipif based on interface address */ 5448 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5449 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5450 return (ipif); 5451 } 5452 5453 /* 5454 * Look for an ipif with the specified address. For point-point links 5455 * we look for matches on either the destination address and the local 5456 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5457 * is set. 5458 * Matches on a specific ill if match_ill is set. 5459 */ 5460 ipif_t * 5461 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5462 mblk_t *mp, ipsq_func_t func, int *error) 5463 { 5464 ipif_t *ipif; 5465 ill_t *ill; 5466 boolean_t ptp = B_FALSE; 5467 ipsq_t *ipsq; 5468 ill_walk_context_t ctx; 5469 5470 if (error != NULL) 5471 *error = 0; 5472 5473 rw_enter(&ill_g_lock, RW_READER); 5474 /* 5475 * Repeat twice, first based on local addresses and 5476 * next time for pointopoint. 5477 */ 5478 repeat: 5479 ill = ILL_START_WALK_V4(&ctx); 5480 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5481 if (match_ill != NULL && ill != match_ill) { 5482 continue; 5483 } 5484 GRAB_CONN_LOCK(q); 5485 mutex_enter(&ill->ill_lock); 5486 for (ipif = ill->ill_ipif; ipif != NULL; 5487 ipif = ipif->ipif_next) { 5488 if (zoneid != ALL_ZONES && 5489 zoneid != ipif->ipif_zoneid && 5490 ipif->ipif_zoneid != ALL_ZONES) 5491 continue; 5492 /* Allow the ipif to be down */ 5493 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5494 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5495 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5496 (ipif->ipif_pp_dst_addr == addr))) { 5497 /* 5498 * The block comment at the start of ipif_down 5499 * explains the use of the macros used below 5500 */ 5501 if (IPIF_CAN_LOOKUP(ipif)) { 5502 ipif_refhold_locked(ipif); 5503 mutex_exit(&ill->ill_lock); 5504 RELEASE_CONN_LOCK(q); 5505 rw_exit(&ill_g_lock); 5506 return (ipif); 5507 } else if (IPIF_CAN_WAIT(ipif, q)) { 5508 ipsq = ill->ill_phyint->phyint_ipsq; 5509 mutex_enter(&ipsq->ipsq_lock); 5510 mutex_exit(&ill->ill_lock); 5511 rw_exit(&ill_g_lock); 5512 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5513 ill); 5514 mutex_exit(&ipsq->ipsq_lock); 5515 RELEASE_CONN_LOCK(q); 5516 *error = EINPROGRESS; 5517 return (NULL); 5518 } 5519 } 5520 } 5521 mutex_exit(&ill->ill_lock); 5522 RELEASE_CONN_LOCK(q); 5523 } 5524 5525 /* Now try the ptp case */ 5526 if (ptp) { 5527 rw_exit(&ill_g_lock); 5528 if (error != NULL) 5529 *error = ENXIO; 5530 return (NULL); 5531 } 5532 ptp = B_TRUE; 5533 goto repeat; 5534 } 5535 5536 /* 5537 * Look for an ipif that matches the specified remote address i.e. the 5538 * ipif that would receive the specified packet. 5539 * First look for directly connected interfaces and then do a recursive 5540 * IRE lookup and pick the first ipif corresponding to the source address in the 5541 * ire. 5542 * Returns: held ipif 5543 */ 5544 ipif_t * 5545 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5546 { 5547 ipif_t *ipif; 5548 ire_t *ire; 5549 5550 ASSERT(!ill->ill_isv6); 5551 5552 /* 5553 * Someone could be changing this ipif currently or change it 5554 * after we return this. Thus a few packets could use the old 5555 * old values. However structure updates/creates (ire, ilg, ilm etc) 5556 * will atomically be updated or cleaned up with the new value 5557 * Thus we don't need a lock to check the flags or other attrs below. 5558 */ 5559 mutex_enter(&ill->ill_lock); 5560 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5561 if (!IPIF_CAN_LOOKUP(ipif)) 5562 continue; 5563 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5564 ipif->ipif_zoneid != ALL_ZONES) 5565 continue; 5566 /* Allow the ipif to be down */ 5567 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5568 if ((ipif->ipif_pp_dst_addr == addr) || 5569 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5570 ipif->ipif_lcl_addr == addr)) { 5571 ipif_refhold_locked(ipif); 5572 mutex_exit(&ill->ill_lock); 5573 return (ipif); 5574 } 5575 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5576 ipif_refhold_locked(ipif); 5577 mutex_exit(&ill->ill_lock); 5578 return (ipif); 5579 } 5580 } 5581 mutex_exit(&ill->ill_lock); 5582 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5583 NULL, MATCH_IRE_RECURSIVE); 5584 if (ire != NULL) { 5585 /* 5586 * The callers of this function wants to know the 5587 * interface on which they have to send the replies 5588 * back. For IRE_CACHES that have ire_stq and ire_ipif 5589 * derived from different ills, we really don't care 5590 * what we return here. 5591 */ 5592 ipif = ire->ire_ipif; 5593 if (ipif != NULL) { 5594 ipif_refhold(ipif); 5595 ire_refrele(ire); 5596 return (ipif); 5597 } 5598 ire_refrele(ire); 5599 } 5600 /* Pick the first interface */ 5601 ipif = ipif_get_next_ipif(NULL, ill); 5602 return (ipif); 5603 } 5604 5605 /* 5606 * This func does not prevent refcnt from increasing. But if 5607 * the caller has taken steps to that effect, then this func 5608 * can be used to determine whether the ill has become quiescent 5609 */ 5610 boolean_t 5611 ill_is_quiescent(ill_t *ill) 5612 { 5613 ipif_t *ipif; 5614 5615 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5616 5617 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5618 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5619 return (B_FALSE); 5620 } 5621 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5622 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5623 ill->ill_mrtun_refcnt != 0) 5624 return (B_FALSE); 5625 return (B_TRUE); 5626 } 5627 5628 /* 5629 * This func does not prevent refcnt from increasing. But if 5630 * the caller has taken steps to that effect, then this func 5631 * can be used to determine whether the ipif has become quiescent 5632 */ 5633 static boolean_t 5634 ipif_is_quiescent(ipif_t *ipif) 5635 { 5636 ill_t *ill; 5637 5638 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5639 5640 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5641 return (B_FALSE); 5642 5643 ill = ipif->ipif_ill; 5644 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5645 return (B_TRUE); 5646 5647 /* This is the last ipif going down or being deleted on this ill */ 5648 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5649 return (B_FALSE); 5650 5651 return (B_TRUE); 5652 } 5653 5654 /* 5655 * This func does not prevent refcnt from increasing. But if 5656 * the caller has taken steps to that effect, then this func 5657 * can be used to determine whether the ipifs marked with IPIF_MOVING 5658 * have become quiescent and can be moved in a failover/failback. 5659 */ 5660 static ipif_t * 5661 ill_quiescent_to_move(ill_t *ill) 5662 { 5663 ipif_t *ipif; 5664 5665 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5666 5667 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5668 if (ipif->ipif_state_flags & IPIF_MOVING) { 5669 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5670 return (ipif); 5671 } 5672 } 5673 } 5674 return (NULL); 5675 } 5676 5677 /* 5678 * The ipif/ill/ire has been refreled. Do the tail processing. 5679 * Determine if the ipif or ill in question has become quiescent and if so 5680 * wakeup close and/or restart any queued pending ioctl that is waiting 5681 * for the ipif_down (or ill_down) 5682 */ 5683 void 5684 ipif_ill_refrele_tail(ill_t *ill) 5685 { 5686 mblk_t *mp; 5687 conn_t *connp; 5688 ipsq_t *ipsq; 5689 ipif_t *ipif; 5690 5691 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5692 5693 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5694 ill_is_quiescent(ill)) { 5695 /* ill_close may be waiting */ 5696 cv_broadcast(&ill->ill_cv); 5697 } 5698 5699 /* ipsq can't change because ill_lock is held */ 5700 ipsq = ill->ill_phyint->phyint_ipsq; 5701 if (ipsq->ipsq_waitfor == 0) { 5702 /* Not waiting for anything, just return. */ 5703 mutex_exit(&ill->ill_lock); 5704 return; 5705 } 5706 ASSERT(ipsq->ipsq_pending_mp != NULL && 5707 ipsq->ipsq_pending_ipif != NULL); 5708 /* 5709 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5710 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5711 * be zero for restarting an ioctl that ends up downing the ill. 5712 */ 5713 ipif = ipsq->ipsq_pending_ipif; 5714 if (ipif->ipif_ill != ill) { 5715 /* The ioctl is pending on some other ill. */ 5716 mutex_exit(&ill->ill_lock); 5717 return; 5718 } 5719 5720 switch (ipsq->ipsq_waitfor) { 5721 case IPIF_DOWN: 5722 case IPIF_FREE: 5723 if (!ipif_is_quiescent(ipif)) { 5724 mutex_exit(&ill->ill_lock); 5725 return; 5726 } 5727 break; 5728 5729 case ILL_DOWN: 5730 case ILL_FREE: 5731 /* 5732 * case ILL_FREE arises only for loopback. otherwise ill_delete 5733 * waits synchronously in ip_close, and no message is queued in 5734 * ipsq_pending_mp at all in this case 5735 */ 5736 if (!ill_is_quiescent(ill)) { 5737 mutex_exit(&ill->ill_lock); 5738 return; 5739 } 5740 5741 break; 5742 5743 case ILL_MOVE_OK: 5744 if (ill_quiescent_to_move(ill) != NULL) { 5745 mutex_exit(&ill->ill_lock); 5746 return; 5747 } 5748 5749 break; 5750 default: 5751 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5752 (void *)ipsq, ipsq->ipsq_waitfor); 5753 } 5754 5755 /* 5756 * Incr refcnt for the qwriter_ip call below which 5757 * does a refrele 5758 */ 5759 ill_refhold_locked(ill); 5760 mutex_exit(&ill->ill_lock); 5761 5762 mp = ipsq_pending_mp_get(ipsq, &connp); 5763 ASSERT(mp != NULL); 5764 5765 switch (mp->b_datap->db_type) { 5766 case M_ERROR: 5767 case M_HANGUP: 5768 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5769 ipif_all_down_tail, CUR_OP, B_TRUE); 5770 return; 5771 5772 case M_IOCTL: 5773 case M_IOCDATA: 5774 (void) qwriter_ip(NULL, ill, 5775 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5776 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5777 return; 5778 5779 default: 5780 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5781 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5782 } 5783 } 5784 5785 #ifdef ILL_DEBUG 5786 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5787 void 5788 th_trace_rrecord(th_trace_t *th_trace) 5789 { 5790 tr_buf_t *tr_buf; 5791 uint_t lastref; 5792 5793 lastref = th_trace->th_trace_lastref; 5794 lastref++; 5795 if (lastref == TR_BUF_MAX) 5796 lastref = 0; 5797 th_trace->th_trace_lastref = lastref; 5798 tr_buf = &th_trace->th_trbuf[lastref]; 5799 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5800 } 5801 5802 th_trace_t * 5803 th_trace_ipif_lookup(ipif_t *ipif) 5804 { 5805 int bucket_id; 5806 th_trace_t *th_trace; 5807 5808 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5809 5810 bucket_id = IP_TR_HASH(curthread); 5811 ASSERT(bucket_id < IP_TR_HASH_MAX); 5812 5813 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5814 th_trace = th_trace->th_next) { 5815 if (th_trace->th_id == curthread) 5816 return (th_trace); 5817 } 5818 return (NULL); 5819 } 5820 5821 void 5822 ipif_trace_ref(ipif_t *ipif) 5823 { 5824 int bucket_id; 5825 th_trace_t *th_trace; 5826 5827 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5828 5829 if (ipif->ipif_trace_disable) 5830 return; 5831 5832 /* 5833 * Attempt to locate the trace buffer for the curthread. 5834 * If it does not exist, then allocate a new trace buffer 5835 * and link it in list of trace bufs for this ipif, at the head 5836 */ 5837 th_trace = th_trace_ipif_lookup(ipif); 5838 if (th_trace == NULL) { 5839 bucket_id = IP_TR_HASH(curthread); 5840 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5841 KM_NOSLEEP); 5842 if (th_trace == NULL) { 5843 ipif->ipif_trace_disable = B_TRUE; 5844 ipif_trace_cleanup(ipif); 5845 return; 5846 } 5847 th_trace->th_id = curthread; 5848 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5849 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5850 if (th_trace->th_next != NULL) 5851 th_trace->th_next->th_prev = &th_trace->th_next; 5852 ipif->ipif_trace[bucket_id] = th_trace; 5853 } 5854 ASSERT(th_trace->th_refcnt >= 0 && 5855 th_trace->th_refcnt < TR_BUF_MAX -1); 5856 th_trace->th_refcnt++; 5857 th_trace_rrecord(th_trace); 5858 } 5859 5860 void 5861 ipif_untrace_ref(ipif_t *ipif) 5862 { 5863 th_trace_t *th_trace; 5864 5865 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5866 5867 if (ipif->ipif_trace_disable) 5868 return; 5869 th_trace = th_trace_ipif_lookup(ipif); 5870 ASSERT(th_trace != NULL); 5871 ASSERT(th_trace->th_refcnt > 0); 5872 5873 th_trace->th_refcnt--; 5874 th_trace_rrecord(th_trace); 5875 } 5876 5877 th_trace_t * 5878 th_trace_ill_lookup(ill_t *ill) 5879 { 5880 th_trace_t *th_trace; 5881 int bucket_id; 5882 5883 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5884 5885 bucket_id = IP_TR_HASH(curthread); 5886 ASSERT(bucket_id < IP_TR_HASH_MAX); 5887 5888 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5889 th_trace = th_trace->th_next) { 5890 if (th_trace->th_id == curthread) 5891 return (th_trace); 5892 } 5893 return (NULL); 5894 } 5895 5896 void 5897 ill_trace_ref(ill_t *ill) 5898 { 5899 int bucket_id; 5900 th_trace_t *th_trace; 5901 5902 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5903 if (ill->ill_trace_disable) 5904 return; 5905 /* 5906 * Attempt to locate the trace buffer for the curthread. 5907 * If it does not exist, then allocate a new trace buffer 5908 * and link it in list of trace bufs for this ill, at the head 5909 */ 5910 th_trace = th_trace_ill_lookup(ill); 5911 if (th_trace == NULL) { 5912 bucket_id = IP_TR_HASH(curthread); 5913 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5914 KM_NOSLEEP); 5915 if (th_trace == NULL) { 5916 ill->ill_trace_disable = B_TRUE; 5917 ill_trace_cleanup(ill); 5918 return; 5919 } 5920 th_trace->th_id = curthread; 5921 th_trace->th_next = ill->ill_trace[bucket_id]; 5922 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5923 if (th_trace->th_next != NULL) 5924 th_trace->th_next->th_prev = &th_trace->th_next; 5925 ill->ill_trace[bucket_id] = th_trace; 5926 } 5927 ASSERT(th_trace->th_refcnt >= 0 && 5928 th_trace->th_refcnt < TR_BUF_MAX - 1); 5929 5930 th_trace->th_refcnt++; 5931 th_trace_rrecord(th_trace); 5932 } 5933 5934 void 5935 ill_untrace_ref(ill_t *ill) 5936 { 5937 th_trace_t *th_trace; 5938 5939 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5940 5941 if (ill->ill_trace_disable) 5942 return; 5943 th_trace = th_trace_ill_lookup(ill); 5944 ASSERT(th_trace != NULL); 5945 ASSERT(th_trace->th_refcnt > 0); 5946 5947 th_trace->th_refcnt--; 5948 th_trace_rrecord(th_trace); 5949 } 5950 5951 /* 5952 * Verify that this thread has no refs to the ipif and free 5953 * the trace buffers 5954 */ 5955 /* ARGSUSED */ 5956 void 5957 ipif_thread_exit(ipif_t *ipif, void *dummy) 5958 { 5959 th_trace_t *th_trace; 5960 5961 mutex_enter(&ipif->ipif_ill->ill_lock); 5962 5963 th_trace = th_trace_ipif_lookup(ipif); 5964 if (th_trace == NULL) { 5965 mutex_exit(&ipif->ipif_ill->ill_lock); 5966 return; 5967 } 5968 ASSERT(th_trace->th_refcnt == 0); 5969 /* unlink th_trace and free it */ 5970 *th_trace->th_prev = th_trace->th_next; 5971 if (th_trace->th_next != NULL) 5972 th_trace->th_next->th_prev = th_trace->th_prev; 5973 th_trace->th_next = NULL; 5974 th_trace->th_prev = NULL; 5975 kmem_free(th_trace, sizeof (th_trace_t)); 5976 5977 mutex_exit(&ipif->ipif_ill->ill_lock); 5978 } 5979 5980 /* 5981 * Verify that this thread has no refs to the ill and free 5982 * the trace buffers 5983 */ 5984 /* ARGSUSED */ 5985 void 5986 ill_thread_exit(ill_t *ill, void *dummy) 5987 { 5988 th_trace_t *th_trace; 5989 5990 mutex_enter(&ill->ill_lock); 5991 5992 th_trace = th_trace_ill_lookup(ill); 5993 if (th_trace == NULL) { 5994 mutex_exit(&ill->ill_lock); 5995 return; 5996 } 5997 ASSERT(th_trace->th_refcnt == 0); 5998 /* unlink th_trace and free it */ 5999 *th_trace->th_prev = th_trace->th_next; 6000 if (th_trace->th_next != NULL) 6001 th_trace->th_next->th_prev = th_trace->th_prev; 6002 th_trace->th_next = NULL; 6003 th_trace->th_prev = NULL; 6004 kmem_free(th_trace, sizeof (th_trace_t)); 6005 6006 mutex_exit(&ill->ill_lock); 6007 } 6008 #endif 6009 6010 #ifdef ILL_DEBUG 6011 void 6012 ip_thread_exit(void) 6013 { 6014 ill_t *ill; 6015 ipif_t *ipif; 6016 ill_walk_context_t ctx; 6017 6018 rw_enter(&ill_g_lock, RW_READER); 6019 ill = ILL_START_WALK_ALL(&ctx); 6020 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6021 for (ipif = ill->ill_ipif; ipif != NULL; 6022 ipif = ipif->ipif_next) { 6023 ipif_thread_exit(ipif, NULL); 6024 } 6025 ill_thread_exit(ill, NULL); 6026 } 6027 rw_exit(&ill_g_lock); 6028 6029 ire_walk(ire_thread_exit, NULL); 6030 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 6031 } 6032 6033 /* 6034 * Called when ipif is unplumbed or when memory alloc fails 6035 */ 6036 void 6037 ipif_trace_cleanup(ipif_t *ipif) 6038 { 6039 int i; 6040 th_trace_t *th_trace; 6041 th_trace_t *th_trace_next; 6042 6043 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6044 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6045 th_trace = th_trace_next) { 6046 th_trace_next = th_trace->th_next; 6047 kmem_free(th_trace, sizeof (th_trace_t)); 6048 } 6049 ipif->ipif_trace[i] = NULL; 6050 } 6051 } 6052 6053 /* 6054 * Called when ill is unplumbed or when memory alloc fails 6055 */ 6056 void 6057 ill_trace_cleanup(ill_t *ill) 6058 { 6059 int i; 6060 th_trace_t *th_trace; 6061 th_trace_t *th_trace_next; 6062 6063 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6064 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6065 th_trace = th_trace_next) { 6066 th_trace_next = th_trace->th_next; 6067 kmem_free(th_trace, sizeof (th_trace_t)); 6068 } 6069 ill->ill_trace[i] = NULL; 6070 } 6071 } 6072 6073 #else 6074 void ip_thread_exit(void) {} 6075 #endif 6076 6077 void 6078 ipif_refhold_locked(ipif_t *ipif) 6079 { 6080 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6081 ipif->ipif_refcnt++; 6082 IPIF_TRACE_REF(ipif); 6083 } 6084 6085 void 6086 ipif_refhold(ipif_t *ipif) 6087 { 6088 ill_t *ill; 6089 6090 ill = ipif->ipif_ill; 6091 mutex_enter(&ill->ill_lock); 6092 ipif->ipif_refcnt++; 6093 IPIF_TRACE_REF(ipif); 6094 mutex_exit(&ill->ill_lock); 6095 } 6096 6097 /* 6098 * Must not be called while holding any locks. Otherwise if this is 6099 * the last reference to be released there is a chance of recursive mutex 6100 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6101 * to restart an ioctl. 6102 */ 6103 void 6104 ipif_refrele(ipif_t *ipif) 6105 { 6106 ill_t *ill; 6107 6108 ill = ipif->ipif_ill; 6109 6110 mutex_enter(&ill->ill_lock); 6111 ASSERT(ipif->ipif_refcnt != 0); 6112 ipif->ipif_refcnt--; 6113 IPIF_UNTRACE_REF(ipif); 6114 if (ipif->ipif_refcnt != 0) { 6115 mutex_exit(&ill->ill_lock); 6116 return; 6117 } 6118 6119 /* Drops the ill_lock */ 6120 ipif_ill_refrele_tail(ill); 6121 } 6122 6123 ipif_t * 6124 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6125 { 6126 ipif_t *ipif; 6127 6128 mutex_enter(&ill->ill_lock); 6129 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6130 ipif != NULL; ipif = ipif->ipif_next) { 6131 if (!IPIF_CAN_LOOKUP(ipif)) 6132 continue; 6133 ipif_refhold_locked(ipif); 6134 mutex_exit(&ill->ill_lock); 6135 return (ipif); 6136 } 6137 mutex_exit(&ill->ill_lock); 6138 return (NULL); 6139 } 6140 6141 /* 6142 * TODO: make this table extendible at run time 6143 * Return a pointer to the mac type info for 'mac_type' 6144 */ 6145 static ip_m_t * 6146 ip_m_lookup(t_uscalar_t mac_type) 6147 { 6148 ip_m_t *ipm; 6149 6150 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6151 if (ipm->ip_m_mac_type == mac_type) 6152 return (ipm); 6153 return (NULL); 6154 } 6155 6156 /* 6157 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6158 * ipif_arg is passed in to associate it with the correct interface. 6159 * We may need to restart this operation if the ipif cannot be looked up 6160 * due to an exclusive operation that is currently in progress. The restart 6161 * entry point is specified by 'func' 6162 */ 6163 int 6164 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6165 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6166 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6167 ipsq_func_t func, struct rtsa_s *sp) 6168 { 6169 ire_t *ire; 6170 ire_t *gw_ire = NULL; 6171 ipif_t *ipif = NULL; 6172 boolean_t ipif_refheld = B_FALSE; 6173 uint_t type; 6174 int match_flags = MATCH_IRE_TYPE; 6175 int error; 6176 tsol_gc_t *gc = NULL; 6177 tsol_gcgrp_t *gcgrp = NULL; 6178 boolean_t gcgrp_xtraref = B_FALSE; 6179 6180 ip1dbg(("ip_rt_add:")); 6181 6182 if (ire_arg != NULL) 6183 *ire_arg = NULL; 6184 6185 /* 6186 * If this is the case of RTF_HOST being set, then we set the netmask 6187 * to all ones (regardless if one was supplied). 6188 */ 6189 if (flags & RTF_HOST) 6190 mask = IP_HOST_MASK; 6191 6192 /* 6193 * Prevent routes with a zero gateway from being created (since 6194 * interfaces can currently be plumbed and brought up no assigned 6195 * address). 6196 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6197 */ 6198 if (gw_addr == 0 && src_ipif == NULL) 6199 return (ENETUNREACH); 6200 /* 6201 * Get the ipif, if any, corresponding to the gw_addr 6202 */ 6203 if (gw_addr != 0) { 6204 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6205 &error); 6206 if (ipif != NULL) { 6207 if (IS_VNI(ipif->ipif_ill)) { 6208 ipif_refrele(ipif); 6209 return (EINVAL); 6210 } 6211 ipif_refheld = B_TRUE; 6212 } else if (error == EINPROGRESS) { 6213 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6214 return (EINPROGRESS); 6215 } else { 6216 error = 0; 6217 } 6218 } 6219 6220 if (ipif != NULL) { 6221 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6222 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6223 } else { 6224 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6225 } 6226 6227 /* 6228 * GateD will attempt to create routes with a loopback interface 6229 * address as the gateway and with RTF_GATEWAY set. We allow 6230 * these routes to be added, but create them as interface routes 6231 * since the gateway is an interface address. 6232 */ 6233 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6234 flags &= ~RTF_GATEWAY; 6235 6236 /* 6237 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6238 * and the gateway address provided is one of the system's interface 6239 * addresses. By using the routing socket interface and supplying an 6240 * RTA_IFP sockaddr with an interface index, an alternate method of 6241 * specifying an interface route to be created is available which uses 6242 * the interface index that specifies the outgoing interface rather than 6243 * the address of an outgoing interface (which may not be able to 6244 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6245 * flag, routes can be specified which not only specify the next-hop to 6246 * be used when routing to a certain prefix, but also which outgoing 6247 * interface should be used. 6248 * 6249 * Previously, interfaces would have unique addresses assigned to them 6250 * and so the address assigned to a particular interface could be used 6251 * to identify a particular interface. One exception to this was the 6252 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6253 * 6254 * With the advent of IPv6 and its link-local addresses, this 6255 * restriction was relaxed and interfaces could share addresses between 6256 * themselves. In fact, typically all of the link-local interfaces on 6257 * an IPv6 node or router will have the same link-local address. In 6258 * order to differentiate between these interfaces, the use of an 6259 * interface index is necessary and this index can be carried inside a 6260 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6261 * of using the interface index, however, is that all of the ipif's that 6262 * are part of an ill have the same index and so the RTA_IFP sockaddr 6263 * cannot be used to differentiate between ipif's (or logical 6264 * interfaces) that belong to the same ill (physical interface). 6265 * 6266 * For example, in the following case involving IPv4 interfaces and 6267 * logical interfaces 6268 * 6269 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6270 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6271 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6272 * 6273 * the ipif's corresponding to each of these interface routes can be 6274 * uniquely identified by the "gateway" (actually interface address). 6275 * 6276 * In this case involving multiple IPv6 default routes to a particular 6277 * link-local gateway, the use of RTA_IFP is necessary to specify which 6278 * default route is of interest: 6279 * 6280 * default fe80::123:4567:89ab:cdef U if0 6281 * default fe80::123:4567:89ab:cdef U if1 6282 */ 6283 6284 /* RTF_GATEWAY not set */ 6285 if (!(flags & RTF_GATEWAY)) { 6286 queue_t *stq; 6287 queue_t *rfq = NULL; 6288 ill_t *in_ill = NULL; 6289 6290 if (sp != NULL) { 6291 ip2dbg(("ip_rt_add: gateway security attributes " 6292 "cannot be set with interface route\n")); 6293 if (ipif_refheld) 6294 ipif_refrele(ipif); 6295 return (EINVAL); 6296 } 6297 6298 /* 6299 * As the interface index specified with the RTA_IFP sockaddr is 6300 * the same for all ipif's off of an ill, the matching logic 6301 * below uses MATCH_IRE_ILL if such an index was specified. 6302 * This means that routes sharing the same prefix when added 6303 * using a RTA_IFP sockaddr must have distinct interface 6304 * indices (namely, they must be on distinct ill's). 6305 * 6306 * On the other hand, since the gateway address will usually be 6307 * different for each ipif on the system, the matching logic 6308 * uses MATCH_IRE_IPIF in the case of a traditional interface 6309 * route. This means that interface routes for the same prefix 6310 * can be created if they belong to distinct ipif's and if a 6311 * RTA_IFP sockaddr is not present. 6312 */ 6313 if (ipif_arg != NULL) { 6314 if (ipif_refheld) { 6315 ipif_refrele(ipif); 6316 ipif_refheld = B_FALSE; 6317 } 6318 ipif = ipif_arg; 6319 match_flags |= MATCH_IRE_ILL; 6320 } else { 6321 /* 6322 * Check the ipif corresponding to the gw_addr 6323 */ 6324 if (ipif == NULL) 6325 return (ENETUNREACH); 6326 match_flags |= MATCH_IRE_IPIF; 6327 } 6328 ASSERT(ipif != NULL); 6329 /* 6330 * If src_ipif is not NULL, we have to create 6331 * an ire with non-null ire_in_ill value 6332 */ 6333 if (src_ipif != NULL) { 6334 in_ill = src_ipif->ipif_ill; 6335 } 6336 6337 /* 6338 * We check for an existing entry at this point. 6339 * 6340 * Since a netmask isn't passed in via the ioctl interface 6341 * (SIOCADDRT), we don't check for a matching netmask in that 6342 * case. 6343 */ 6344 if (!ioctl_msg) 6345 match_flags |= MATCH_IRE_MASK; 6346 if (src_ipif != NULL) { 6347 /* Look up in the special table */ 6348 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6349 ipif, src_ipif->ipif_ill, match_flags); 6350 } else { 6351 ire = ire_ftable_lookup(dst_addr, mask, 0, 6352 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6353 NULL, match_flags); 6354 } 6355 if (ire != NULL) { 6356 ire_refrele(ire); 6357 if (ipif_refheld) 6358 ipif_refrele(ipif); 6359 return (EEXIST); 6360 } 6361 6362 if (src_ipif != NULL) { 6363 /* 6364 * Create the special ire for the IRE table 6365 * which hangs out of ire_in_ill. This ire 6366 * is in-between IRE_CACHE and IRE_INTERFACE. 6367 * Thus rfq is non-NULL. 6368 */ 6369 rfq = ipif->ipif_rq; 6370 } 6371 /* Create the usual interface ires */ 6372 6373 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6374 ? ipif->ipif_rq : ipif->ipif_wq; 6375 6376 /* 6377 * Create a copy of the IRE_LOOPBACK, 6378 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6379 * the modified address and netmask. 6380 */ 6381 ire = ire_create( 6382 (uchar_t *)&dst_addr, 6383 (uint8_t *)&mask, 6384 (uint8_t *)&ipif->ipif_src_addr, 6385 NULL, 6386 NULL, 6387 &ipif->ipif_mtu, 6388 NULL, 6389 rfq, 6390 stq, 6391 ipif->ipif_net_type, 6392 ipif->ipif_resolver_mp, 6393 ipif, 6394 in_ill, 6395 0, 6396 0, 6397 0, 6398 flags, 6399 &ire_uinfo_null, 6400 NULL, 6401 NULL); 6402 if (ire == NULL) { 6403 if (ipif_refheld) 6404 ipif_refrele(ipif); 6405 return (ENOMEM); 6406 } 6407 6408 /* 6409 * Some software (for example, GateD and Sun Cluster) attempts 6410 * to create (what amount to) IRE_PREFIX routes with the 6411 * loopback address as the gateway. This is primarily done to 6412 * set up prefixes with the RTF_REJECT flag set (for example, 6413 * when generating aggregate routes.) 6414 * 6415 * If the IRE type (as defined by ipif->ipif_net_type) is 6416 * IRE_LOOPBACK, then we map the request into a 6417 * IRE_IF_NORESOLVER. 6418 * 6419 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6420 * routine, but rather using ire_create() directly. 6421 */ 6422 if (ipif->ipif_net_type == IRE_LOOPBACK) 6423 ire->ire_type = IRE_IF_NORESOLVER; 6424 error = ire_add(&ire, q, mp, func); 6425 if (error == 0) 6426 goto save_ire; 6427 6428 /* 6429 * In the result of failure, ire_add() will have already 6430 * deleted the ire in question, so there is no need to 6431 * do that here. 6432 */ 6433 if (ipif_refheld) 6434 ipif_refrele(ipif); 6435 return (error); 6436 } 6437 if (ipif_refheld) { 6438 ipif_refrele(ipif); 6439 ipif_refheld = B_FALSE; 6440 } 6441 6442 if (src_ipif != NULL) { 6443 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6444 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6445 return (EINVAL); 6446 } 6447 /* 6448 * Get an interface IRE for the specified gateway. 6449 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6450 * gateway, it is currently unreachable and we fail the request 6451 * accordingly. 6452 */ 6453 ipif = ipif_arg; 6454 if (ipif_arg != NULL) 6455 match_flags |= MATCH_IRE_ILL; 6456 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6457 ALL_ZONES, 0, NULL, match_flags); 6458 if (gw_ire == NULL) 6459 return (ENETUNREACH); 6460 6461 /* 6462 * We create one of three types of IREs as a result of this request 6463 * based on the netmask. A netmask of all ones (which is automatically 6464 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6465 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6466 * created. Otherwise, an IRE_PREFIX route is created for the 6467 * destination prefix. 6468 */ 6469 if (mask == IP_HOST_MASK) 6470 type = IRE_HOST; 6471 else if (mask == 0) 6472 type = IRE_DEFAULT; 6473 else 6474 type = IRE_PREFIX; 6475 6476 /* check for a duplicate entry */ 6477 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6478 NULL, ALL_ZONES, 0, NULL, 6479 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6480 if (ire != NULL) { 6481 ire_refrele(gw_ire); 6482 ire_refrele(ire); 6483 return (EEXIST); 6484 } 6485 6486 /* Security attribute exists */ 6487 if (sp != NULL) { 6488 tsol_gcgrp_addr_t ga; 6489 6490 /* find or create the gateway credentials group */ 6491 ga.ga_af = AF_INET; 6492 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6493 6494 /* we hold reference to it upon success */ 6495 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6496 if (gcgrp == NULL) { 6497 ire_refrele(gw_ire); 6498 return (ENOMEM); 6499 } 6500 6501 /* 6502 * Create and add the security attribute to the group; a 6503 * reference to the group is made upon allocating a new 6504 * entry successfully. If it finds an already-existing 6505 * entry for the security attribute in the group, it simply 6506 * returns it and no new reference is made to the group. 6507 */ 6508 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6509 if (gc == NULL) { 6510 /* release reference held by gcgrp_lookup */ 6511 GCGRP_REFRELE(gcgrp); 6512 ire_refrele(gw_ire); 6513 return (ENOMEM); 6514 } 6515 } 6516 6517 /* Create the IRE. */ 6518 ire = ire_create( 6519 (uchar_t *)&dst_addr, /* dest address */ 6520 (uchar_t *)&mask, /* mask */ 6521 /* src address assigned by the caller? */ 6522 (uchar_t *)(((src_addr != INADDR_ANY) && 6523 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6524 (uchar_t *)&gw_addr, /* gateway address */ 6525 NULL, /* no in-srcaddress */ 6526 &gw_ire->ire_max_frag, 6527 NULL, /* no Fast Path header */ 6528 NULL, /* no recv-from queue */ 6529 NULL, /* no send-to queue */ 6530 (ushort_t)type, /* IRE type */ 6531 NULL, 6532 ipif_arg, 6533 NULL, 6534 0, 6535 0, 6536 0, 6537 flags, 6538 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6539 gc, /* security attribute */ 6540 NULL); 6541 /* 6542 * The ire holds a reference to the 'gc' and the 'gc' holds a 6543 * reference to the 'gcgrp'. We can now release the extra reference 6544 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6545 */ 6546 if (gcgrp_xtraref) 6547 GCGRP_REFRELE(gcgrp); 6548 if (ire == NULL) { 6549 if (gc != NULL) 6550 GC_REFRELE(gc); 6551 ire_refrele(gw_ire); 6552 return (ENOMEM); 6553 } 6554 6555 /* 6556 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6557 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6558 */ 6559 6560 /* Add the new IRE. */ 6561 error = ire_add(&ire, q, mp, func); 6562 if (error != 0) { 6563 /* 6564 * In the result of failure, ire_add() will have already 6565 * deleted the ire in question, so there is no need to 6566 * do that here. 6567 */ 6568 ire_refrele(gw_ire); 6569 return (error); 6570 } 6571 6572 if (flags & RTF_MULTIRT) { 6573 /* 6574 * Invoke the CGTP (multirouting) filtering module 6575 * to add the dst address in the filtering database. 6576 * Replicated inbound packets coming from that address 6577 * will be filtered to discard the duplicates. 6578 * It is not necessary to call the CGTP filter hook 6579 * when the dst address is a broadcast or multicast, 6580 * because an IP source address cannot be a broadcast 6581 * or a multicast. 6582 */ 6583 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6584 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 6585 if (ire_dst != NULL) { 6586 ip_cgtp_bcast_add(ire, ire_dst); 6587 ire_refrele(ire_dst); 6588 goto save_ire; 6589 } 6590 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6591 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6592 ire->ire_addr, 6593 ire->ire_gateway_addr, 6594 ire->ire_src_addr, 6595 gw_ire->ire_src_addr); 6596 if (res != 0) { 6597 ire_refrele(gw_ire); 6598 ire_delete(ire); 6599 return (res); 6600 } 6601 } 6602 } 6603 6604 /* 6605 * Now that the prefix IRE entry has been created, delete any 6606 * existing gateway IRE cache entries as well as any IRE caches 6607 * using the gateway, and force them to be created through 6608 * ip_newroute. 6609 */ 6610 if (gc != NULL) { 6611 ASSERT(gcgrp != NULL); 6612 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 6613 } 6614 6615 save_ire: 6616 if (gw_ire != NULL) { 6617 ire_refrele(gw_ire); 6618 } 6619 /* 6620 * We do not do save_ire for the routes added with RTA_SRCIFP 6621 * flag. This route is only added and deleted by mipagent. 6622 * So, for simplicity of design, we refrain from saving 6623 * ires that are created with srcif value. This may change 6624 * in future if we find more usage of srcifp feature. 6625 */ 6626 if (ipif != NULL && src_ipif == NULL) { 6627 /* 6628 * Save enough information so that we can recreate the IRE if 6629 * the interface goes down and then up. The metrics associated 6630 * with the route will be saved as well when rts_setmetrics() is 6631 * called after the IRE has been created. In the case where 6632 * memory cannot be allocated, none of this information will be 6633 * saved. 6634 */ 6635 ipif_save_ire(ipif, ire); 6636 } 6637 if (ioctl_msg) 6638 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6639 if (ire_arg != NULL) { 6640 /* 6641 * Store the ire that was successfully added into where ire_arg 6642 * points to so that callers don't have to look it up 6643 * themselves (but they are responsible for ire_refrele()ing 6644 * the ire when they are finished with it). 6645 */ 6646 *ire_arg = ire; 6647 } else { 6648 ire_refrele(ire); /* Held in ire_add */ 6649 } 6650 if (ipif_refheld) 6651 ipif_refrele(ipif); 6652 return (0); 6653 } 6654 6655 /* 6656 * ip_rt_delete is called to delete an IPv4 route. 6657 * ipif_arg is passed in to associate it with the correct interface. 6658 * src_ipif is passed to associate the incoming interface of the packet. 6659 * We may need to restart this operation if the ipif cannot be looked up 6660 * due to an exclusive operation that is currently in progress. The restart 6661 * entry point is specified by 'func' 6662 */ 6663 /* ARGSUSED4 */ 6664 int 6665 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6666 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6667 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6668 { 6669 ire_t *ire = NULL; 6670 ipif_t *ipif; 6671 boolean_t ipif_refheld = B_FALSE; 6672 uint_t type; 6673 uint_t match_flags = MATCH_IRE_TYPE; 6674 int err = 0; 6675 6676 ip1dbg(("ip_rt_delete:")); 6677 /* 6678 * If this is the case of RTF_HOST being set, then we set the netmask 6679 * to all ones. Otherwise, we use the netmask if one was supplied. 6680 */ 6681 if (flags & RTF_HOST) { 6682 mask = IP_HOST_MASK; 6683 match_flags |= MATCH_IRE_MASK; 6684 } else if (rtm_addrs & RTA_NETMASK) { 6685 match_flags |= MATCH_IRE_MASK; 6686 } 6687 6688 /* 6689 * Note that RTF_GATEWAY is never set on a delete, therefore 6690 * we check if the gateway address is one of our interfaces first, 6691 * and fall back on RTF_GATEWAY routes. 6692 * 6693 * This makes it possible to delete an original 6694 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6695 * 6696 * As the interface index specified with the RTA_IFP sockaddr is the 6697 * same for all ipif's off of an ill, the matching logic below uses 6698 * MATCH_IRE_ILL if such an index was specified. This means a route 6699 * sharing the same prefix and interface index as the the route 6700 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6701 * is specified in the request. 6702 * 6703 * On the other hand, since the gateway address will usually be 6704 * different for each ipif on the system, the matching logic 6705 * uses MATCH_IRE_IPIF in the case of a traditional interface 6706 * route. This means that interface routes for the same prefix can be 6707 * uniquely identified if they belong to distinct ipif's and if a 6708 * RTA_IFP sockaddr is not present. 6709 * 6710 * For more detail on specifying routes by gateway address and by 6711 * interface index, see the comments in ip_rt_add(). 6712 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6713 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6714 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6715 * succeed. 6716 */ 6717 if (src_ipif != NULL) { 6718 if (ipif_arg == NULL && gw_addr != 0) { 6719 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6720 q, mp, func, &err); 6721 if (ipif_arg != NULL) 6722 ipif_refheld = B_TRUE; 6723 } 6724 if (ipif_arg == NULL) { 6725 err = (err == EINPROGRESS) ? err : ESRCH; 6726 return (err); 6727 } 6728 ipif = ipif_arg; 6729 } else { 6730 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6731 q, mp, func, &err); 6732 if (ipif != NULL) 6733 ipif_refheld = B_TRUE; 6734 else if (err == EINPROGRESS) 6735 return (err); 6736 else 6737 err = 0; 6738 } 6739 if (ipif != NULL) { 6740 if (ipif_arg != NULL) { 6741 if (ipif_refheld) { 6742 ipif_refrele(ipif); 6743 ipif_refheld = B_FALSE; 6744 } 6745 ipif = ipif_arg; 6746 match_flags |= MATCH_IRE_ILL; 6747 } else { 6748 match_flags |= MATCH_IRE_IPIF; 6749 } 6750 if (src_ipif != NULL) { 6751 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6752 ipif, src_ipif->ipif_ill, match_flags); 6753 } else { 6754 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6755 ire = ire_ctable_lookup(dst_addr, 0, 6756 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 6757 match_flags); 6758 } 6759 if (ire == NULL) { 6760 ire = ire_ftable_lookup(dst_addr, mask, 0, 6761 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6762 NULL, match_flags); 6763 } 6764 } 6765 } 6766 6767 if (ire == NULL) { 6768 /* 6769 * At this point, the gateway address is not one of our own 6770 * addresses or a matching interface route was not found. We 6771 * set the IRE type to lookup based on whether 6772 * this is a host route, a default route or just a prefix. 6773 * 6774 * If an ipif_arg was passed in, then the lookup is based on an 6775 * interface index so MATCH_IRE_ILL is added to match_flags. 6776 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6777 * set as the route being looked up is not a traditional 6778 * interface route. 6779 * Since we do not add gateway route with srcipif, we don't 6780 * expect to find it either. 6781 */ 6782 if (src_ipif != NULL) { 6783 if (ipif_refheld) 6784 ipif_refrele(ipif); 6785 return (ESRCH); 6786 } else { 6787 match_flags &= ~MATCH_IRE_IPIF; 6788 match_flags |= MATCH_IRE_GW; 6789 if (ipif_arg != NULL) 6790 match_flags |= MATCH_IRE_ILL; 6791 if (mask == IP_HOST_MASK) 6792 type = IRE_HOST; 6793 else if (mask == 0) 6794 type = IRE_DEFAULT; 6795 else 6796 type = IRE_PREFIX; 6797 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6798 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 6799 if (ire == NULL && type == IRE_HOST) { 6800 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6801 IRE_HOST_REDIRECT, ipif_arg, NULL, 6802 ALL_ZONES, 0, NULL, match_flags); 6803 } 6804 } 6805 } 6806 6807 if (ipif_refheld) 6808 ipif_refrele(ipif); 6809 6810 /* ipif is not refheld anymore */ 6811 if (ire == NULL) 6812 return (ESRCH); 6813 6814 if (ire->ire_flags & RTF_MULTIRT) { 6815 /* 6816 * Invoke the CGTP (multirouting) filtering module 6817 * to remove the dst address from the filtering database. 6818 * Packets coming from that address will no longer be 6819 * filtered to remove duplicates. 6820 */ 6821 if (ip_cgtp_filter_ops != NULL) { 6822 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6823 ire->ire_gateway_addr); 6824 } 6825 ip_cgtp_bcast_delete(ire); 6826 } 6827 6828 ipif = ire->ire_ipif; 6829 /* 6830 * Removing from ipif_saved_ire_mp is not necessary 6831 * when src_ipif being non-NULL. ip_rt_add does not 6832 * save the ires which src_ipif being non-NULL. 6833 */ 6834 if (ipif != NULL && src_ipif == NULL) { 6835 ipif_remove_ire(ipif, ire); 6836 } 6837 if (ioctl_msg) 6838 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6839 ire_delete(ire); 6840 ire_refrele(ire); 6841 return (err); 6842 } 6843 6844 /* 6845 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6846 */ 6847 /* ARGSUSED */ 6848 int 6849 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6850 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6851 { 6852 ipaddr_t dst_addr; 6853 ipaddr_t gw_addr; 6854 ipaddr_t mask; 6855 int error = 0; 6856 mblk_t *mp1; 6857 struct rtentry *rt; 6858 ipif_t *ipif = NULL; 6859 6860 ip1dbg(("ip_siocaddrt:")); 6861 /* Existence of mp1 verified in ip_wput_nondata */ 6862 mp1 = mp->b_cont->b_cont; 6863 rt = (struct rtentry *)mp1->b_rptr; 6864 6865 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6866 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6867 6868 /* 6869 * If the RTF_HOST flag is on, this is a request to assign a gateway 6870 * to a particular host address. In this case, we set the netmask to 6871 * all ones for the particular destination address. Otherwise, 6872 * determine the netmask to be used based on dst_addr and the interfaces 6873 * in use. 6874 */ 6875 if (rt->rt_flags & RTF_HOST) { 6876 mask = IP_HOST_MASK; 6877 } else { 6878 /* 6879 * Note that ip_subnet_mask returns a zero mask in the case of 6880 * default (an all-zeroes address). 6881 */ 6882 mask = ip_subnet_mask(dst_addr, &ipif); 6883 } 6884 6885 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6886 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 6887 if (ipif != NULL) 6888 ipif_refrele(ipif); 6889 return (error); 6890 } 6891 6892 /* 6893 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6894 */ 6895 /* ARGSUSED */ 6896 int 6897 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6898 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6899 { 6900 ipaddr_t dst_addr; 6901 ipaddr_t gw_addr; 6902 ipaddr_t mask; 6903 int error; 6904 mblk_t *mp1; 6905 struct rtentry *rt; 6906 ipif_t *ipif = NULL; 6907 6908 ip1dbg(("ip_siocdelrt:")); 6909 /* Existence of mp1 verified in ip_wput_nondata */ 6910 mp1 = mp->b_cont->b_cont; 6911 rt = (struct rtentry *)mp1->b_rptr; 6912 6913 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6914 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6915 6916 /* 6917 * If the RTF_HOST flag is on, this is a request to delete a gateway 6918 * to a particular host address. In this case, we set the netmask to 6919 * all ones for the particular destination address. Otherwise, 6920 * determine the netmask to be used based on dst_addr and the interfaces 6921 * in use. 6922 */ 6923 if (rt->rt_flags & RTF_HOST) { 6924 mask = IP_HOST_MASK; 6925 } else { 6926 /* 6927 * Note that ip_subnet_mask returns a zero mask in the case of 6928 * default (an all-zeroes address). 6929 */ 6930 mask = ip_subnet_mask(dst_addr, &ipif); 6931 } 6932 6933 error = ip_rt_delete(dst_addr, mask, gw_addr, 6934 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6935 B_TRUE, q, mp, ip_process_ioctl); 6936 if (ipif != NULL) 6937 ipif_refrele(ipif); 6938 return (error); 6939 } 6940 6941 /* 6942 * Enqueue the mp onto the ipsq, chained by b_next. 6943 * b_prev stores the function to be executed later, and b_queue the queue 6944 * where this mp originated. 6945 */ 6946 void 6947 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6948 ill_t *pending_ill) 6949 { 6950 conn_t *connp = NULL; 6951 6952 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6953 ASSERT(func != NULL); 6954 6955 mp->b_queue = q; 6956 mp->b_prev = (void *)func; 6957 mp->b_next = NULL; 6958 6959 switch (type) { 6960 case CUR_OP: 6961 if (ipsq->ipsq_mptail != NULL) { 6962 ASSERT(ipsq->ipsq_mphead != NULL); 6963 ipsq->ipsq_mptail->b_next = mp; 6964 } else { 6965 ASSERT(ipsq->ipsq_mphead == NULL); 6966 ipsq->ipsq_mphead = mp; 6967 } 6968 ipsq->ipsq_mptail = mp; 6969 break; 6970 6971 case NEW_OP: 6972 if (ipsq->ipsq_xopq_mptail != NULL) { 6973 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6974 ipsq->ipsq_xopq_mptail->b_next = mp; 6975 } else { 6976 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6977 ipsq->ipsq_xopq_mphead = mp; 6978 } 6979 ipsq->ipsq_xopq_mptail = mp; 6980 break; 6981 default: 6982 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6983 } 6984 6985 if (CONN_Q(q) && pending_ill != NULL) { 6986 connp = Q_TO_CONN(q); 6987 6988 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6989 connp->conn_oper_pending_ill = pending_ill; 6990 } 6991 } 6992 6993 /* 6994 * Return the mp at the head of the ipsq. After emptying the ipsq 6995 * look at the next ioctl, if this ioctl is complete. Otherwise 6996 * return, we will resume when we complete the current ioctl. 6997 * The current ioctl will wait till it gets a response from the 6998 * driver below. 6999 */ 7000 static mblk_t * 7001 ipsq_dq(ipsq_t *ipsq) 7002 { 7003 mblk_t *mp; 7004 7005 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7006 7007 mp = ipsq->ipsq_mphead; 7008 if (mp != NULL) { 7009 ipsq->ipsq_mphead = mp->b_next; 7010 if (ipsq->ipsq_mphead == NULL) 7011 ipsq->ipsq_mptail = NULL; 7012 mp->b_next = NULL; 7013 return (mp); 7014 } 7015 if (ipsq->ipsq_current_ipif != NULL) 7016 return (NULL); 7017 mp = ipsq->ipsq_xopq_mphead; 7018 if (mp != NULL) { 7019 ipsq->ipsq_xopq_mphead = mp->b_next; 7020 if (ipsq->ipsq_xopq_mphead == NULL) 7021 ipsq->ipsq_xopq_mptail = NULL; 7022 mp->b_next = NULL; 7023 return (mp); 7024 } 7025 return (NULL); 7026 } 7027 7028 /* 7029 * Enter the ipsq corresponding to ill, by waiting synchronously till 7030 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7031 * will have to drain completely before ipsq_enter returns success. 7032 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7033 * and the ipsq_exit logic will start the next enqueued ioctl after 7034 * completion of the current ioctl. If 'force' is used, we don't wait 7035 * for the enqueued ioctls. This is needed when a conn_close wants to 7036 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7037 * of an ill can also use this option. But we dont' use it currently. 7038 */ 7039 #define ENTER_SQ_WAIT_TICKS 100 7040 boolean_t 7041 ipsq_enter(ill_t *ill, boolean_t force) 7042 { 7043 ipsq_t *ipsq; 7044 boolean_t waited_enough = B_FALSE; 7045 7046 /* 7047 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7048 * Since the <ill-ipsq> assocs could change while we wait for the 7049 * writer, it is easier to wait on a fixed global rather than try to 7050 * cv_wait on a changing ipsq. 7051 */ 7052 mutex_enter(&ill->ill_lock); 7053 for (;;) { 7054 if (ill->ill_state_flags & ILL_CONDEMNED) { 7055 mutex_exit(&ill->ill_lock); 7056 return (B_FALSE); 7057 } 7058 7059 ipsq = ill->ill_phyint->phyint_ipsq; 7060 mutex_enter(&ipsq->ipsq_lock); 7061 if (ipsq->ipsq_writer == NULL && 7062 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7063 break; 7064 } else if (ipsq->ipsq_writer != NULL) { 7065 mutex_exit(&ipsq->ipsq_lock); 7066 cv_wait(&ill->ill_cv, &ill->ill_lock); 7067 } else { 7068 mutex_exit(&ipsq->ipsq_lock); 7069 if (force) { 7070 (void) cv_timedwait(&ill->ill_cv, 7071 &ill->ill_lock, 7072 lbolt + ENTER_SQ_WAIT_TICKS); 7073 waited_enough = B_TRUE; 7074 continue; 7075 } else { 7076 cv_wait(&ill->ill_cv, &ill->ill_lock); 7077 } 7078 } 7079 } 7080 7081 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7082 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7083 ipsq->ipsq_writer = curthread; 7084 ipsq->ipsq_reentry_cnt++; 7085 #ifdef ILL_DEBUG 7086 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7087 #endif 7088 mutex_exit(&ipsq->ipsq_lock); 7089 mutex_exit(&ill->ill_lock); 7090 return (B_TRUE); 7091 } 7092 7093 /* 7094 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7095 * certain critical operations like plumbing (i.e. most set ioctls), 7096 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7097 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7098 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7099 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7100 * threads executing in the ipsq. Responses from the driver pertain to the 7101 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7102 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7103 * 7104 * If a thread does not want to reenter the ipsq when it is already writer, 7105 * it must make sure that the specified reentry point to be called later 7106 * when the ipsq is empty, nor any code path starting from the specified reentry 7107 * point must never ever try to enter the ipsq again. Otherwise it can lead 7108 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7109 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7110 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7111 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7112 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7113 * ioctl if the current ioctl has completed. If the current ioctl is still 7114 * in progress it simply returns. The current ioctl could be waiting for 7115 * a response from another module (arp_ or the driver or could be waiting for 7116 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7117 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7118 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7119 * ipsq_current_ipif is clear which happens only on ioctl completion. 7120 */ 7121 7122 /* 7123 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7124 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7125 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7126 * completion. 7127 */ 7128 ipsq_t * 7129 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7130 ipsq_func_t func, int type, boolean_t reentry_ok) 7131 { 7132 ipsq_t *ipsq; 7133 7134 /* Only 1 of ipif or ill can be specified */ 7135 ASSERT((ipif != NULL) ^ (ill != NULL)); 7136 if (ipif != NULL) 7137 ill = ipif->ipif_ill; 7138 7139 /* 7140 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7141 * ipsq of an ill can't change when ill_lock is held. 7142 */ 7143 GRAB_CONN_LOCK(q); 7144 mutex_enter(&ill->ill_lock); 7145 ipsq = ill->ill_phyint->phyint_ipsq; 7146 mutex_enter(&ipsq->ipsq_lock); 7147 7148 /* 7149 * 1. Enter the ipsq if we are already writer and reentry is ok. 7150 * (Note: If the caller does not specify reentry_ok then neither 7151 * 'func' nor any of its callees must ever attempt to enter the ipsq 7152 * again. Otherwise it can lead to an infinite loop 7153 * 2. Enter the ipsq if there is no current writer and this attempted 7154 * entry is part of the current ioctl or operation 7155 * 3. Enter the ipsq if there is no current writer and this is a new 7156 * ioctl (or operation) and the ioctl (or operation) queue is 7157 * empty and there is no ioctl (or operation) currently in progress 7158 */ 7159 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7160 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7161 ipsq->ipsq_current_ipif == NULL))) || 7162 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7163 /* Success. */ 7164 ipsq->ipsq_reentry_cnt++; 7165 ipsq->ipsq_writer = curthread; 7166 mutex_exit(&ipsq->ipsq_lock); 7167 mutex_exit(&ill->ill_lock); 7168 RELEASE_CONN_LOCK(q); 7169 #ifdef ILL_DEBUG 7170 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7171 #endif 7172 return (ipsq); 7173 } 7174 7175 ipsq_enq(ipsq, q, mp, func, type, ill); 7176 7177 mutex_exit(&ipsq->ipsq_lock); 7178 mutex_exit(&ill->ill_lock); 7179 RELEASE_CONN_LOCK(q); 7180 return (NULL); 7181 } 7182 7183 /* 7184 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7185 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7186 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7187 * completion. 7188 * 7189 * This function does a refrele on the ipif/ill. 7190 */ 7191 void 7192 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7193 ipsq_func_t func, int type, boolean_t reentry_ok) 7194 { 7195 ipsq_t *ipsq; 7196 7197 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7198 /* 7199 * Caller must have done a refhold on the ipif. ipif_refrele 7200 * happens on the passed ipif. We can do this since we are 7201 * already exclusive, or we won't access ipif henceforth, Both 7202 * this func and caller will just return if we ipsq_try_enter 7203 * fails above. This is needed because func needs to 7204 * see the correct refcount. Eg. removeif can work only then. 7205 */ 7206 if (ipif != NULL) 7207 ipif_refrele(ipif); 7208 else 7209 ill_refrele(ill); 7210 if (ipsq != NULL) { 7211 (*func)(ipsq, q, mp, NULL); 7212 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7213 } 7214 } 7215 7216 /* 7217 * If there are more than ILL_GRP_CNT ills in a group, 7218 * we use kmem alloc'd buffers, else use the stack 7219 */ 7220 #define ILL_GRP_CNT 14 7221 /* 7222 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7223 * Called by a thread that is currently exclusive on this ipsq. 7224 */ 7225 void 7226 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7227 { 7228 queue_t *q; 7229 mblk_t *mp; 7230 ipsq_func_t func; 7231 int next; 7232 ill_t **ill_list = NULL; 7233 size_t ill_list_size = 0; 7234 int cnt = 0; 7235 boolean_t need_ipsq_free = B_FALSE; 7236 7237 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7238 mutex_enter(&ipsq->ipsq_lock); 7239 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7240 if (ipsq->ipsq_reentry_cnt != 1) { 7241 ipsq->ipsq_reentry_cnt--; 7242 mutex_exit(&ipsq->ipsq_lock); 7243 return; 7244 } 7245 7246 mp = ipsq_dq(ipsq); 7247 while (mp != NULL) { 7248 again: 7249 mutex_exit(&ipsq->ipsq_lock); 7250 func = (ipsq_func_t)mp->b_prev; 7251 q = (queue_t *)mp->b_queue; 7252 mp->b_prev = NULL; 7253 mp->b_queue = NULL; 7254 7255 /* 7256 * If 'q' is an conn queue, it is valid, since we did a 7257 * a refhold on the connp, at the start of the ioctl. 7258 * If 'q' is an ill queue, it is valid, since close of an 7259 * ill will clean up the 'ipsq'. 7260 */ 7261 (*func)(ipsq, q, mp, NULL); 7262 7263 mutex_enter(&ipsq->ipsq_lock); 7264 mp = ipsq_dq(ipsq); 7265 } 7266 7267 mutex_exit(&ipsq->ipsq_lock); 7268 7269 /* 7270 * Need to grab the locks in the right order. Need to 7271 * atomically check (under ipsq_lock) that there are no 7272 * messages before relinquishing the ipsq. Also need to 7273 * atomically wakeup waiters on ill_cv while holding ill_lock. 7274 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7275 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7276 * to grab ill_g_lock as writer. 7277 */ 7278 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7279 7280 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7281 if (ipsq->ipsq_refs != 0) { 7282 /* At most 2 ills v4/v6 per phyint */ 7283 cnt = ipsq->ipsq_refs << 1; 7284 ill_list_size = cnt * sizeof (ill_t *); 7285 /* 7286 * If memory allocation fails, we will do the split 7287 * the next time ipsq_exit is called for whatever reason. 7288 * As long as the ipsq_split flag is set the need to 7289 * split is remembered. 7290 */ 7291 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7292 if (ill_list != NULL) 7293 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7294 } 7295 mutex_enter(&ipsq->ipsq_lock); 7296 mp = ipsq_dq(ipsq); 7297 if (mp != NULL) { 7298 /* oops, some message has landed up, we can't get out */ 7299 if (ill_list != NULL) 7300 ill_unlock_ills(ill_list, cnt); 7301 rw_exit(&ill_g_lock); 7302 if (ill_list != NULL) 7303 kmem_free(ill_list, ill_list_size); 7304 ill_list = NULL; 7305 ill_list_size = 0; 7306 cnt = 0; 7307 goto again; 7308 } 7309 7310 /* 7311 * Split only if no ioctl is pending and if memory alloc succeeded 7312 * above. 7313 */ 7314 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7315 ill_list != NULL) { 7316 /* 7317 * No new ill can join this ipsq since we are holding the 7318 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7319 * ipsq. ill_split_ipsq may fail due to memory shortage. 7320 * If so we will retry on the next ipsq_exit. 7321 */ 7322 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7323 } 7324 7325 /* 7326 * We are holding the ipsq lock, hence no new messages can 7327 * land up on the ipsq, and there are no messages currently. 7328 * Now safe to get out. Wake up waiters and relinquish ipsq 7329 * atomically while holding ill locks. 7330 */ 7331 ipsq->ipsq_writer = NULL; 7332 ipsq->ipsq_reentry_cnt--; 7333 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7334 #ifdef ILL_DEBUG 7335 ipsq->ipsq_depth = 0; 7336 #endif 7337 mutex_exit(&ipsq->ipsq_lock); 7338 /* 7339 * For IPMP this should wake up all ills in this ipsq. 7340 * We need to hold the ill_lock while waking up waiters to 7341 * avoid missed wakeups. But there is no need to acquire all 7342 * the ill locks and then wakeup. If we have not acquired all 7343 * the locks (due to memory failure above) ill_signal_ipsq_ills 7344 * wakes up ills one at a time after getting the right ill_lock 7345 */ 7346 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7347 if (ill_list != NULL) 7348 ill_unlock_ills(ill_list, cnt); 7349 if (ipsq->ipsq_refs == 0) 7350 need_ipsq_free = B_TRUE; 7351 rw_exit(&ill_g_lock); 7352 if (ill_list != 0) 7353 kmem_free(ill_list, ill_list_size); 7354 7355 if (need_ipsq_free) { 7356 /* 7357 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7358 * looked up. ipsq can be looked up only thru ill or phyint 7359 * and there are no ills/phyint on this ipsq. 7360 */ 7361 ipsq_delete(ipsq); 7362 } 7363 /* 7364 * Now start any igmp or mld timers that could not be started 7365 * while inside the ipsq. The timers can't be started while inside 7366 * the ipsq, since igmp_start_timers may need to call untimeout() 7367 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7368 * there could be a deadlock since the timeout handlers 7369 * mld_timeout_handler / igmp_timeout_handler also synchronously 7370 * wait in ipsq_enter() trying to get the ipsq. 7371 * 7372 * However there is one exception to the above. If this thread is 7373 * itself the igmp/mld timeout handler thread, then we don't want 7374 * to start any new timer until the current handler is done. The 7375 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7376 * all others pass B_TRUE. 7377 */ 7378 if (start_igmp_timer) { 7379 mutex_enter(&igmp_timer_lock); 7380 next = igmp_deferred_next; 7381 igmp_deferred_next = INFINITY; 7382 mutex_exit(&igmp_timer_lock); 7383 7384 if (next != INFINITY) 7385 igmp_start_timers(next); 7386 } 7387 7388 if (start_mld_timer) { 7389 mutex_enter(&mld_timer_lock); 7390 next = mld_deferred_next; 7391 mld_deferred_next = INFINITY; 7392 mutex_exit(&mld_timer_lock); 7393 7394 if (next != INFINITY) 7395 mld_start_timers(next); 7396 } 7397 } 7398 7399 /* 7400 * The ill is closing. Flush all messages on the ipsq that originated 7401 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7402 * for this ill since ipsq_enter could not have entered until then. 7403 * New messages can't be queued since the CONDEMNED flag is set. 7404 */ 7405 static void 7406 ipsq_flush(ill_t *ill) 7407 { 7408 queue_t *q; 7409 mblk_t *prev; 7410 mblk_t *mp; 7411 mblk_t *mp_next; 7412 ipsq_t *ipsq; 7413 7414 ASSERT(IAM_WRITER_ILL(ill)); 7415 ipsq = ill->ill_phyint->phyint_ipsq; 7416 /* 7417 * Flush any messages sent up by the driver. 7418 */ 7419 mutex_enter(&ipsq->ipsq_lock); 7420 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7421 mp_next = mp->b_next; 7422 q = mp->b_queue; 7423 if (q == ill->ill_rq || q == ill->ill_wq) { 7424 /* Remove the mp from the ipsq */ 7425 if (prev == NULL) 7426 ipsq->ipsq_mphead = mp->b_next; 7427 else 7428 prev->b_next = mp->b_next; 7429 if (ipsq->ipsq_mptail == mp) { 7430 ASSERT(mp_next == NULL); 7431 ipsq->ipsq_mptail = prev; 7432 } 7433 inet_freemsg(mp); 7434 } else { 7435 prev = mp; 7436 } 7437 } 7438 mutex_exit(&ipsq->ipsq_lock); 7439 (void) ipsq_pending_mp_cleanup(ill, NULL); 7440 ipsq_xopq_mp_cleanup(ill, NULL); 7441 ill_pending_mp_cleanup(ill); 7442 } 7443 7444 /* 7445 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7446 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7447 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7448 * time (possible with one port going down for aggr and someone tearing down the 7449 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7450 * to indicate when the cleanup has started (1 ref) and when the cleanup 7451 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7452 * putting 2 ref on ill_inuse_ref. 7453 */ 7454 static void 7455 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7456 { 7457 conn_t *connp; 7458 squeue_t *sqp; 7459 mblk_t *mp; 7460 7461 ASSERT(rx_ring != NULL); 7462 7463 /* Just clean one squeue */ 7464 mutex_enter(&ill->ill_lock); 7465 /* 7466 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7467 * ip_squeue_soft_ring_affinty() will not go 7468 * ahead with assigning rings. 7469 */ 7470 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7471 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7472 /* Some operations pending on the ring. Wait */ 7473 cv_wait(&ill->ill_cv, &ill->ill_lock); 7474 7475 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7476 /* 7477 * Someone already trying to clean 7478 * this squeue or its already been cleaned. 7479 */ 7480 mutex_exit(&ill->ill_lock); 7481 return; 7482 } 7483 sqp = rx_ring->rr_sqp; 7484 7485 if (sqp == NULL) { 7486 /* 7487 * The rx_ring never had a squeue assigned to it. 7488 * We are under ill_lock so we can clean it up 7489 * here itself since no one can get to it. 7490 */ 7491 rx_ring->rr_blank = NULL; 7492 rx_ring->rr_handle = NULL; 7493 rx_ring->rr_sqp = NULL; 7494 rx_ring->rr_ring_state = ILL_RING_FREE; 7495 mutex_exit(&ill->ill_lock); 7496 return; 7497 } 7498 7499 /* Set the state that its being cleaned */ 7500 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7501 ASSERT(sqp != NULL); 7502 mutex_exit(&ill->ill_lock); 7503 7504 /* 7505 * Use the preallocated ill_unbind_conn for this purpose 7506 */ 7507 connp = ill->ill_dls_capab->ill_unbind_conn; 7508 mp = &connp->conn_tcp->tcp_closemp; 7509 CONN_INC_REF(connp); 7510 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7511 7512 mutex_enter(&ill->ill_lock); 7513 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7514 cv_wait(&ill->ill_cv, &ill->ill_lock); 7515 7516 mutex_exit(&ill->ill_lock); 7517 } 7518 7519 static void 7520 ipsq_clean_all(ill_t *ill) 7521 { 7522 int idx; 7523 7524 /* 7525 * No need to clean if poll_capab isn't set for this ill 7526 */ 7527 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7528 return; 7529 7530 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7531 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7532 ipsq_clean_ring(ill, ipr); 7533 } 7534 7535 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7536 } 7537 7538 /* ARGSUSED */ 7539 int 7540 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7541 ip_ioctl_cmd_t *ipip, void *ifreq) 7542 { 7543 ill_t *ill; 7544 struct lifreq *lifr = (struct lifreq *)ifreq; 7545 boolean_t isv6; 7546 conn_t *connp; 7547 7548 connp = Q_TO_CONN(q); 7549 isv6 = connp->conn_af_isv6; 7550 /* 7551 * Set original index. 7552 * Failover and failback move logical interfaces 7553 * from one physical interface to another. The 7554 * original index indicates the parent of a logical 7555 * interface, in other words, the physical interface 7556 * the logical interface will be moved back to on 7557 * failback. 7558 */ 7559 7560 /* 7561 * Don't allow the original index to be changed 7562 * for non-failover addresses, autoconfigured 7563 * addresses, or IPv6 link local addresses. 7564 */ 7565 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7566 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7567 return (EINVAL); 7568 } 7569 /* 7570 * The new original index must be in use by some 7571 * physical interface. 7572 */ 7573 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7574 NULL, NULL); 7575 if (ill == NULL) 7576 return (ENXIO); 7577 ill_refrele(ill); 7578 7579 ipif->ipif_orig_ifindex = lifr->lifr_index; 7580 /* 7581 * When this ipif gets failed back, don't 7582 * preserve the original id, as it is no 7583 * longer applicable. 7584 */ 7585 ipif->ipif_orig_ipifid = 0; 7586 /* 7587 * For IPv4, change the original index of any 7588 * multicast addresses associated with the 7589 * ipif to the new value. 7590 */ 7591 if (!isv6) { 7592 ilm_t *ilm; 7593 7594 mutex_enter(&ipif->ipif_ill->ill_lock); 7595 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7596 ilm = ilm->ilm_next) { 7597 if (ilm->ilm_ipif == ipif) { 7598 ilm->ilm_orig_ifindex = lifr->lifr_index; 7599 } 7600 } 7601 mutex_exit(&ipif->ipif_ill->ill_lock); 7602 } 7603 return (0); 7604 } 7605 7606 /* ARGSUSED */ 7607 int 7608 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7609 ip_ioctl_cmd_t *ipip, void *ifreq) 7610 { 7611 struct lifreq *lifr = (struct lifreq *)ifreq; 7612 7613 /* 7614 * Get the original interface index i.e the one 7615 * before FAILOVER if it ever happened. 7616 */ 7617 lifr->lifr_index = ipif->ipif_orig_ifindex; 7618 return (0); 7619 } 7620 7621 /* 7622 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7623 * refhold and return the associated ipif 7624 */ 7625 int 7626 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7627 { 7628 boolean_t exists; 7629 struct iftun_req *ta; 7630 ipif_t *ipif; 7631 ill_t *ill; 7632 boolean_t isv6; 7633 mblk_t *mp1; 7634 int error; 7635 conn_t *connp; 7636 7637 /* Existence verified in ip_wput_nondata */ 7638 mp1 = mp->b_cont->b_cont; 7639 ta = (struct iftun_req *)mp1->b_rptr; 7640 /* 7641 * Null terminate the string to protect against buffer 7642 * overrun. String was generated by user code and may not 7643 * be trusted. 7644 */ 7645 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7646 7647 connp = Q_TO_CONN(q); 7648 isv6 = connp->conn_af_isv6; 7649 7650 /* Disallows implicit create */ 7651 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7652 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7653 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7654 if (ipif == NULL) 7655 return (error); 7656 7657 if (ipif->ipif_id != 0) { 7658 /* 7659 * We really don't want to set/get tunnel parameters 7660 * on virtual tunnel interfaces. Only allow the 7661 * base tunnel to do these. 7662 */ 7663 ipif_refrele(ipif); 7664 return (EINVAL); 7665 } 7666 7667 /* 7668 * Send down to tunnel mod for ioctl processing. 7669 * Will finish ioctl in ip_rput_other(). 7670 */ 7671 ill = ipif->ipif_ill; 7672 if (ill->ill_net_type == IRE_LOOPBACK) { 7673 ipif_refrele(ipif); 7674 return (EOPNOTSUPP); 7675 } 7676 7677 if (ill->ill_wq == NULL) { 7678 ipif_refrele(ipif); 7679 return (ENXIO); 7680 } 7681 /* 7682 * Mark the ioctl as coming from an IPv6 interface for 7683 * tun's convenience. 7684 */ 7685 if (ill->ill_isv6) 7686 ta->ifta_flags |= 0x80000000; 7687 *ipifp = ipif; 7688 return (0); 7689 } 7690 7691 /* 7692 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7693 * and return the associated ipif. 7694 * Return value: 7695 * Non zero: An error has occurred. ci may not be filled out. 7696 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7697 * a held ipif in ci.ci_ipif. 7698 */ 7699 int 7700 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7701 cmd_info_t *ci, ipsq_func_t func) 7702 { 7703 sin_t *sin; 7704 sin6_t *sin6; 7705 char *name; 7706 struct ifreq *ifr; 7707 struct lifreq *lifr; 7708 ipif_t *ipif = NULL; 7709 ill_t *ill; 7710 conn_t *connp; 7711 boolean_t isv6; 7712 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7713 boolean_t exists; 7714 int err; 7715 mblk_t *mp1; 7716 zoneid_t zoneid; 7717 7718 if (q->q_next != NULL) { 7719 ill = (ill_t *)q->q_ptr; 7720 isv6 = ill->ill_isv6; 7721 connp = NULL; 7722 zoneid = ALL_ZONES; 7723 } else { 7724 ill = NULL; 7725 connp = Q_TO_CONN(q); 7726 isv6 = connp->conn_af_isv6; 7727 zoneid = connp->conn_zoneid; 7728 if (zoneid == GLOBAL_ZONEID) { 7729 /* global zone can access ipifs in all zones */ 7730 zoneid = ALL_ZONES; 7731 } 7732 } 7733 7734 /* Has been checked in ip_wput_nondata */ 7735 mp1 = mp->b_cont->b_cont; 7736 7737 7738 if (cmd_type == IF_CMD) { 7739 /* This a old style SIOC[GS]IF* command */ 7740 ifr = (struct ifreq *)mp1->b_rptr; 7741 /* 7742 * Null terminate the string to protect against buffer 7743 * overrun. String was generated by user code and may not 7744 * be trusted. 7745 */ 7746 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7747 sin = (sin_t *)&ifr->ifr_addr; 7748 name = ifr->ifr_name; 7749 ci->ci_sin = sin; 7750 ci->ci_sin6 = NULL; 7751 ci->ci_lifr = (struct lifreq *)ifr; 7752 } else { 7753 /* This a new style SIOC[GS]LIF* command */ 7754 ASSERT(cmd_type == LIF_CMD); 7755 lifr = (struct lifreq *)mp1->b_rptr; 7756 /* 7757 * Null terminate the string to protect against buffer 7758 * overrun. String was generated by user code and may not 7759 * be trusted. 7760 */ 7761 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7762 name = lifr->lifr_name; 7763 sin = (sin_t *)&lifr->lifr_addr; 7764 sin6 = (sin6_t *)&lifr->lifr_addr; 7765 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7766 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7767 LIFNAMSIZ); 7768 } 7769 ci->ci_sin = sin; 7770 ci->ci_sin6 = sin6; 7771 ci->ci_lifr = lifr; 7772 } 7773 7774 7775 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7776 /* 7777 * The ioctl will be failed if the ioctl comes down 7778 * an conn stream 7779 */ 7780 if (ill == NULL) { 7781 /* 7782 * Not an ill queue, return EINVAL same as the 7783 * old error code. 7784 */ 7785 return (ENXIO); 7786 } 7787 ipif = ill->ill_ipif; 7788 ipif_refhold(ipif); 7789 } else { 7790 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7791 &exists, isv6, zoneid, 7792 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7793 if (ipif == NULL) { 7794 if (err == EINPROGRESS) 7795 return (err); 7796 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7797 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7798 /* 7799 * Need to try both v4 and v6 since this 7800 * ioctl can come down either v4 or v6 7801 * socket. The lifreq.lifr_family passed 7802 * down by this ioctl is AF_UNSPEC. 7803 */ 7804 ipif = ipif_lookup_on_name(name, 7805 mi_strlen(name), B_FALSE, &exists, !isv6, 7806 zoneid, (connp == NULL) ? q : 7807 CONNP_TO_WQ(connp), mp, func, &err); 7808 if (err == EINPROGRESS) 7809 return (err); 7810 } 7811 err = 0; /* Ensure we don't use it below */ 7812 } 7813 } 7814 7815 /* 7816 * Old style [GS]IFCMD does not admit IPv6 ipif 7817 */ 7818 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7819 ipif_refrele(ipif); 7820 return (ENXIO); 7821 } 7822 7823 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7824 name[0] == '\0') { 7825 /* 7826 * Handle a or a SIOC?IF* with a null name 7827 * during plumb (on the ill queue before the I_PLINK). 7828 */ 7829 ipif = ill->ill_ipif; 7830 ipif_refhold(ipif); 7831 } 7832 7833 if (ipif == NULL) 7834 return (ENXIO); 7835 7836 /* 7837 * Allow only GET operations if this ipif has been created 7838 * temporarily due to a MOVE operation. 7839 */ 7840 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7841 ipif_refrele(ipif); 7842 return (EINVAL); 7843 } 7844 7845 ci->ci_ipif = ipif; 7846 return (0); 7847 } 7848 7849 /* 7850 * Return the total number of ipifs. 7851 */ 7852 static uint_t 7853 ip_get_numifs(zoneid_t zoneid) 7854 { 7855 uint_t numifs = 0; 7856 ill_t *ill; 7857 ill_walk_context_t ctx; 7858 ipif_t *ipif; 7859 7860 rw_enter(&ill_g_lock, RW_READER); 7861 ill = ILL_START_WALK_V4(&ctx); 7862 7863 while (ill != NULL) { 7864 for (ipif = ill->ill_ipif; ipif != NULL; 7865 ipif = ipif->ipif_next) { 7866 if (ipif->ipif_zoneid == zoneid || 7867 ipif->ipif_zoneid == ALL_ZONES) 7868 numifs++; 7869 } 7870 ill = ill_next(&ctx, ill); 7871 } 7872 rw_exit(&ill_g_lock); 7873 return (numifs); 7874 } 7875 7876 /* 7877 * Return the total number of ipifs. 7878 */ 7879 static uint_t 7880 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7881 { 7882 uint_t numifs = 0; 7883 ill_t *ill; 7884 ipif_t *ipif; 7885 ill_walk_context_t ctx; 7886 7887 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7888 7889 rw_enter(&ill_g_lock, RW_READER); 7890 if (family == AF_INET) 7891 ill = ILL_START_WALK_V4(&ctx); 7892 else if (family == AF_INET6) 7893 ill = ILL_START_WALK_V6(&ctx); 7894 else 7895 ill = ILL_START_WALK_ALL(&ctx); 7896 7897 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7898 for (ipif = ill->ill_ipif; ipif != NULL; 7899 ipif = ipif->ipif_next) { 7900 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7901 !(lifn_flags & LIFC_NOXMIT)) 7902 continue; 7903 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7904 !(lifn_flags & LIFC_TEMPORARY)) 7905 continue; 7906 if (((ipif->ipif_flags & 7907 (IPIF_NOXMIT|IPIF_NOLOCAL| 7908 IPIF_DEPRECATED)) || 7909 (ill->ill_phyint->phyint_flags & 7910 PHYI_LOOPBACK) || 7911 !(ipif->ipif_flags & IPIF_UP)) && 7912 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7913 continue; 7914 7915 if (zoneid != ipif->ipif_zoneid && 7916 ipif->ipif_zoneid != ALL_ZONES && 7917 (zoneid != GLOBAL_ZONEID || 7918 !(lifn_flags & LIFC_ALLZONES))) 7919 continue; 7920 7921 numifs++; 7922 } 7923 } 7924 rw_exit(&ill_g_lock); 7925 return (numifs); 7926 } 7927 7928 uint_t 7929 ip_get_lifsrcofnum(ill_t *ill) 7930 { 7931 uint_t numifs = 0; 7932 ill_t *ill_head = ill; 7933 7934 /* 7935 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7936 * other thread may be trying to relink the ILLs in this usesrc group 7937 * and adjusting the ill_usesrc_grp_next pointers 7938 */ 7939 rw_enter(&ill_g_usesrc_lock, RW_READER); 7940 if ((ill->ill_usesrc_ifindex == 0) && 7941 (ill->ill_usesrc_grp_next != NULL)) { 7942 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7943 ill = ill->ill_usesrc_grp_next) 7944 numifs++; 7945 } 7946 rw_exit(&ill_g_usesrc_lock); 7947 7948 return (numifs); 7949 } 7950 7951 /* Null values are passed in for ipif, sin, and ifreq */ 7952 /* ARGSUSED */ 7953 int 7954 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7955 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7956 { 7957 int *nump; 7958 7959 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7960 7961 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7962 nump = (int *)mp->b_cont->b_cont->b_rptr; 7963 7964 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7965 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7966 return (0); 7967 } 7968 7969 /* Null values are passed in for ipif, sin, and ifreq */ 7970 /* ARGSUSED */ 7971 int 7972 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7973 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7974 { 7975 struct lifnum *lifn; 7976 mblk_t *mp1; 7977 7978 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7979 7980 /* Existence checked in ip_wput_nondata */ 7981 mp1 = mp->b_cont->b_cont; 7982 7983 lifn = (struct lifnum *)mp1->b_rptr; 7984 switch (lifn->lifn_family) { 7985 case AF_UNSPEC: 7986 case AF_INET: 7987 case AF_INET6: 7988 break; 7989 default: 7990 return (EAFNOSUPPORT); 7991 } 7992 7993 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7994 Q_TO_CONN(q)->conn_zoneid); 7995 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7996 return (0); 7997 } 7998 7999 /* ARGSUSED */ 8000 int 8001 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8002 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8003 { 8004 STRUCT_HANDLE(ifconf, ifc); 8005 mblk_t *mp1; 8006 struct iocblk *iocp; 8007 struct ifreq *ifr; 8008 ill_walk_context_t ctx; 8009 ill_t *ill; 8010 ipif_t *ipif; 8011 struct sockaddr_in *sin; 8012 int32_t ifclen; 8013 zoneid_t zoneid; 8014 8015 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8016 8017 ip1dbg(("ip_sioctl_get_ifconf")); 8018 /* Existence verified in ip_wput_nondata */ 8019 mp1 = mp->b_cont->b_cont; 8020 iocp = (struct iocblk *)mp->b_rptr; 8021 zoneid = Q_TO_CONN(q)->conn_zoneid; 8022 8023 /* 8024 * The original SIOCGIFCONF passed in a struct ifconf which specified 8025 * the user buffer address and length into which the list of struct 8026 * ifreqs was to be copied. Since AT&T Streams does not seem to 8027 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8028 * the SIOCGIFCONF operation was redefined to simply provide 8029 * a large output buffer into which we are supposed to jam the ifreq 8030 * array. The same ioctl command code was used, despite the fact that 8031 * both the applications and the kernel code had to change, thus making 8032 * it impossible to support both interfaces. 8033 * 8034 * For reasons not good enough to try to explain, the following 8035 * algorithm is used for deciding what to do with one of these: 8036 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8037 * form with the output buffer coming down as the continuation message. 8038 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8039 * and we have to copy in the ifconf structure to find out how big the 8040 * output buffer is and where to copy out to. Sure no problem... 8041 * 8042 */ 8043 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8044 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8045 int numifs = 0; 8046 size_t ifc_bufsize; 8047 8048 /* 8049 * Must be (better be!) continuation of a TRANSPARENT 8050 * IOCTL. We just copied in the ifconf structure. 8051 */ 8052 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8053 (struct ifconf *)mp1->b_rptr); 8054 8055 /* 8056 * Allocate a buffer to hold requested information. 8057 * 8058 * If ifc_len is larger than what is needed, we only 8059 * allocate what we will use. 8060 * 8061 * If ifc_len is smaller than what is needed, return 8062 * EINVAL. 8063 * 8064 * XXX: the ill_t structure can hava 2 counters, for 8065 * v4 and v6 (not just ill_ipif_up_count) to store the 8066 * number of interfaces for a device, so we don't need 8067 * to count them here... 8068 */ 8069 numifs = ip_get_numifs(zoneid); 8070 8071 ifclen = STRUCT_FGET(ifc, ifc_len); 8072 ifc_bufsize = numifs * sizeof (struct ifreq); 8073 if (ifc_bufsize > ifclen) { 8074 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8075 /* old behaviour */ 8076 return (EINVAL); 8077 } else { 8078 ifc_bufsize = ifclen; 8079 } 8080 } 8081 8082 mp1 = mi_copyout_alloc(q, mp, 8083 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8084 if (mp1 == NULL) 8085 return (ENOMEM); 8086 8087 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8088 } 8089 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8090 /* 8091 * the SIOCGIFCONF ioctl only knows about 8092 * IPv4 addresses, so don't try to tell 8093 * it about interfaces with IPv6-only 8094 * addresses. (Last parm 'isv6' is B_FALSE) 8095 */ 8096 8097 ifr = (struct ifreq *)mp1->b_rptr; 8098 8099 rw_enter(&ill_g_lock, RW_READER); 8100 ill = ILL_START_WALK_V4(&ctx); 8101 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8102 for (ipif = ill->ill_ipif; ipif; 8103 ipif = ipif->ipif_next) { 8104 if (zoneid != ipif->ipif_zoneid && 8105 ipif->ipif_zoneid != ALL_ZONES) 8106 continue; 8107 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8108 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8109 /* old behaviour */ 8110 rw_exit(&ill_g_lock); 8111 return (EINVAL); 8112 } else { 8113 goto if_copydone; 8114 } 8115 } 8116 (void) ipif_get_name(ipif, 8117 ifr->ifr_name, 8118 sizeof (ifr->ifr_name)); 8119 sin = (sin_t *)&ifr->ifr_addr; 8120 *sin = sin_null; 8121 sin->sin_family = AF_INET; 8122 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8123 ifr++; 8124 } 8125 } 8126 if_copydone: 8127 rw_exit(&ill_g_lock); 8128 mp1->b_wptr = (uchar_t *)ifr; 8129 8130 if (STRUCT_BUF(ifc) != NULL) { 8131 STRUCT_FSET(ifc, ifc_len, 8132 (int)((uchar_t *)ifr - mp1->b_rptr)); 8133 } 8134 return (0); 8135 } 8136 8137 /* 8138 * Get the interfaces using the address hosted on the interface passed in, 8139 * as a source adddress 8140 */ 8141 /* ARGSUSED */ 8142 int 8143 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8144 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8145 { 8146 mblk_t *mp1; 8147 ill_t *ill, *ill_head; 8148 ipif_t *ipif, *orig_ipif; 8149 int numlifs = 0; 8150 size_t lifs_bufsize, lifsmaxlen; 8151 struct lifreq *lifr; 8152 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8153 uint_t ifindex; 8154 zoneid_t zoneid; 8155 int err = 0; 8156 boolean_t isv6 = B_FALSE; 8157 struct sockaddr_in *sin; 8158 struct sockaddr_in6 *sin6; 8159 8160 STRUCT_HANDLE(lifsrcof, lifs); 8161 8162 ASSERT(q->q_next == NULL); 8163 8164 zoneid = Q_TO_CONN(q)->conn_zoneid; 8165 8166 /* Existence verified in ip_wput_nondata */ 8167 mp1 = mp->b_cont->b_cont; 8168 8169 /* 8170 * Must be (better be!) continuation of a TRANSPARENT 8171 * IOCTL. We just copied in the lifsrcof structure. 8172 */ 8173 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8174 (struct lifsrcof *)mp1->b_rptr); 8175 8176 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8177 return (EINVAL); 8178 8179 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8180 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8181 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8182 ip_process_ioctl, &err); 8183 if (ipif == NULL) { 8184 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8185 ifindex)); 8186 return (err); 8187 } 8188 8189 8190 /* Allocate a buffer to hold requested information */ 8191 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8192 lifs_bufsize = numlifs * sizeof (struct lifreq); 8193 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8194 /* The actual size needed is always returned in lifs_len */ 8195 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8196 8197 /* If the amount we need is more than what is passed in, abort */ 8198 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8199 ipif_refrele(ipif); 8200 return (0); 8201 } 8202 8203 mp1 = mi_copyout_alloc(q, mp, 8204 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8205 if (mp1 == NULL) { 8206 ipif_refrele(ipif); 8207 return (ENOMEM); 8208 } 8209 8210 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8211 bzero(mp1->b_rptr, lifs_bufsize); 8212 8213 lifr = (struct lifreq *)mp1->b_rptr; 8214 8215 ill = ill_head = ipif->ipif_ill; 8216 orig_ipif = ipif; 8217 8218 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8219 rw_enter(&ill_g_usesrc_lock, RW_READER); 8220 rw_enter(&ill_g_lock, RW_READER); 8221 8222 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8223 for (; (ill != NULL) && (ill != ill_head); 8224 ill = ill->ill_usesrc_grp_next) { 8225 8226 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8227 break; 8228 8229 ipif = ill->ill_ipif; 8230 (void) ipif_get_name(ipif, 8231 lifr->lifr_name, sizeof (lifr->lifr_name)); 8232 if (ipif->ipif_isv6) { 8233 sin6 = (sin6_t *)&lifr->lifr_addr; 8234 *sin6 = sin6_null; 8235 sin6->sin6_family = AF_INET6; 8236 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8237 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8238 &ipif->ipif_v6net_mask); 8239 } else { 8240 sin = (sin_t *)&lifr->lifr_addr; 8241 *sin = sin_null; 8242 sin->sin_family = AF_INET; 8243 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8244 lifr->lifr_addrlen = ip_mask_to_plen( 8245 ipif->ipif_net_mask); 8246 } 8247 lifr++; 8248 } 8249 rw_exit(&ill_g_usesrc_lock); 8250 rw_exit(&ill_g_lock); 8251 ipif_refrele(orig_ipif); 8252 mp1->b_wptr = (uchar_t *)lifr; 8253 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8254 8255 return (0); 8256 } 8257 8258 /* ARGSUSED */ 8259 int 8260 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8261 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8262 { 8263 mblk_t *mp1; 8264 int list; 8265 ill_t *ill; 8266 ipif_t *ipif; 8267 int flags; 8268 int numlifs = 0; 8269 size_t lifc_bufsize; 8270 struct lifreq *lifr; 8271 sa_family_t family; 8272 struct sockaddr_in *sin; 8273 struct sockaddr_in6 *sin6; 8274 ill_walk_context_t ctx; 8275 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8276 int32_t lifclen; 8277 zoneid_t zoneid; 8278 STRUCT_HANDLE(lifconf, lifc); 8279 8280 ip1dbg(("ip_sioctl_get_lifconf")); 8281 8282 ASSERT(q->q_next == NULL); 8283 8284 zoneid = Q_TO_CONN(q)->conn_zoneid; 8285 8286 /* Existence verified in ip_wput_nondata */ 8287 mp1 = mp->b_cont->b_cont; 8288 8289 /* 8290 * An extended version of SIOCGIFCONF that takes an 8291 * additional address family and flags field. 8292 * AF_UNSPEC retrieve both IPv4 and IPv6. 8293 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8294 * interfaces are omitted. 8295 * Similarly, IPIF_TEMPORARY interfaces are omitted 8296 * unless LIFC_TEMPORARY is specified. 8297 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8298 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8299 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8300 * has priority over LIFC_NOXMIT. 8301 */ 8302 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8303 8304 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8305 return (EINVAL); 8306 8307 /* 8308 * Must be (better be!) continuation of a TRANSPARENT 8309 * IOCTL. We just copied in the lifconf structure. 8310 */ 8311 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8312 8313 family = STRUCT_FGET(lifc, lifc_family); 8314 flags = STRUCT_FGET(lifc, lifc_flags); 8315 8316 switch (family) { 8317 case AF_UNSPEC: 8318 /* 8319 * walk all ILL's. 8320 */ 8321 list = MAX_G_HEADS; 8322 break; 8323 case AF_INET: 8324 /* 8325 * walk only IPV4 ILL's. 8326 */ 8327 list = IP_V4_G_HEAD; 8328 break; 8329 case AF_INET6: 8330 /* 8331 * walk only IPV6 ILL's. 8332 */ 8333 list = IP_V6_G_HEAD; 8334 break; 8335 default: 8336 return (EAFNOSUPPORT); 8337 } 8338 8339 /* 8340 * Allocate a buffer to hold requested information. 8341 * 8342 * If lifc_len is larger than what is needed, we only 8343 * allocate what we will use. 8344 * 8345 * If lifc_len is smaller than what is needed, return 8346 * EINVAL. 8347 */ 8348 numlifs = ip_get_numlifs(family, flags, zoneid); 8349 lifc_bufsize = numlifs * sizeof (struct lifreq); 8350 lifclen = STRUCT_FGET(lifc, lifc_len); 8351 if (lifc_bufsize > lifclen) { 8352 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8353 return (EINVAL); 8354 else 8355 lifc_bufsize = lifclen; 8356 } 8357 8358 mp1 = mi_copyout_alloc(q, mp, 8359 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8360 if (mp1 == NULL) 8361 return (ENOMEM); 8362 8363 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8364 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8365 8366 lifr = (struct lifreq *)mp1->b_rptr; 8367 8368 rw_enter(&ill_g_lock, RW_READER); 8369 ill = ill_first(list, list, &ctx); 8370 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8371 for (ipif = ill->ill_ipif; ipif != NULL; 8372 ipif = ipif->ipif_next) { 8373 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8374 !(flags & LIFC_NOXMIT)) 8375 continue; 8376 8377 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8378 !(flags & LIFC_TEMPORARY)) 8379 continue; 8380 8381 if (((ipif->ipif_flags & 8382 (IPIF_NOXMIT|IPIF_NOLOCAL| 8383 IPIF_DEPRECATED)) || 8384 (ill->ill_phyint->phyint_flags & 8385 PHYI_LOOPBACK) || 8386 !(ipif->ipif_flags & IPIF_UP)) && 8387 (flags & LIFC_EXTERNAL_SOURCE)) 8388 continue; 8389 8390 if (zoneid != ipif->ipif_zoneid && 8391 ipif->ipif_zoneid != ALL_ZONES && 8392 (zoneid != GLOBAL_ZONEID || 8393 !(flags & LIFC_ALLZONES))) 8394 continue; 8395 8396 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8397 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8398 rw_exit(&ill_g_lock); 8399 return (EINVAL); 8400 } else { 8401 goto lif_copydone; 8402 } 8403 } 8404 8405 (void) ipif_get_name(ipif, 8406 lifr->lifr_name, 8407 sizeof (lifr->lifr_name)); 8408 if (ipif->ipif_isv6) { 8409 sin6 = (sin6_t *)&lifr->lifr_addr; 8410 *sin6 = sin6_null; 8411 sin6->sin6_family = AF_INET6; 8412 sin6->sin6_addr = 8413 ipif->ipif_v6lcl_addr; 8414 lifr->lifr_addrlen = 8415 ip_mask_to_plen_v6( 8416 &ipif->ipif_v6net_mask); 8417 } else { 8418 sin = (sin_t *)&lifr->lifr_addr; 8419 *sin = sin_null; 8420 sin->sin_family = AF_INET; 8421 sin->sin_addr.s_addr = 8422 ipif->ipif_lcl_addr; 8423 lifr->lifr_addrlen = 8424 ip_mask_to_plen( 8425 ipif->ipif_net_mask); 8426 } 8427 lifr++; 8428 } 8429 } 8430 lif_copydone: 8431 rw_exit(&ill_g_lock); 8432 8433 mp1->b_wptr = (uchar_t *)lifr; 8434 if (STRUCT_BUF(lifc) != NULL) { 8435 STRUCT_FSET(lifc, lifc_len, 8436 (int)((uchar_t *)lifr - mp1->b_rptr)); 8437 } 8438 return (0); 8439 } 8440 8441 /* ARGSUSED */ 8442 int 8443 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8444 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8445 { 8446 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8447 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8448 return (0); 8449 } 8450 8451 static void 8452 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8453 { 8454 ip6_asp_t *table; 8455 size_t table_size; 8456 mblk_t *data_mp; 8457 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8458 8459 /* These two ioctls are I_STR only */ 8460 if (iocp->ioc_count == TRANSPARENT) { 8461 miocnak(q, mp, 0, EINVAL); 8462 return; 8463 } 8464 8465 data_mp = mp->b_cont; 8466 if (data_mp == NULL) { 8467 /* The user passed us a NULL argument */ 8468 table = NULL; 8469 table_size = iocp->ioc_count; 8470 } else { 8471 /* 8472 * The user provided a table. The stream head 8473 * may have copied in the user data in chunks, 8474 * so make sure everything is pulled up 8475 * properly. 8476 */ 8477 if (MBLKL(data_mp) < iocp->ioc_count) { 8478 mblk_t *new_data_mp; 8479 if ((new_data_mp = msgpullup(data_mp, -1)) == 8480 NULL) { 8481 miocnak(q, mp, 0, ENOMEM); 8482 return; 8483 } 8484 freemsg(data_mp); 8485 data_mp = new_data_mp; 8486 mp->b_cont = data_mp; 8487 } 8488 table = (ip6_asp_t *)data_mp->b_rptr; 8489 table_size = iocp->ioc_count; 8490 } 8491 8492 switch (iocp->ioc_cmd) { 8493 case SIOCGIP6ADDRPOLICY: 8494 iocp->ioc_rval = ip6_asp_get(table, table_size); 8495 if (iocp->ioc_rval == -1) 8496 iocp->ioc_error = EINVAL; 8497 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8498 else if (table != NULL && 8499 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8500 ip6_asp_t *src = table; 8501 ip6_asp32_t *dst = (void *)table; 8502 int count = table_size / sizeof (ip6_asp_t); 8503 int i; 8504 8505 /* 8506 * We need to do an in-place shrink of the array 8507 * to match the alignment attributes of the 8508 * 32-bit ABI looking at it. 8509 */ 8510 /* LINTED: logical expression always true: op "||" */ 8511 ASSERT(sizeof (*src) > sizeof (*dst)); 8512 for (i = 1; i < count; i++) 8513 bcopy(src + i, dst + i, sizeof (*dst)); 8514 } 8515 #endif 8516 break; 8517 8518 case SIOCSIP6ADDRPOLICY: 8519 ASSERT(mp->b_prev == NULL); 8520 mp->b_prev = (void *)q; 8521 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8522 /* 8523 * We pass in the datamodel here so that the ip6_asp_replace() 8524 * routine can handle converting from 32-bit to native formats 8525 * where necessary. 8526 * 8527 * A better way to handle this might be to convert the inbound 8528 * data structure here, and hang it off a new 'mp'; thus the 8529 * ip6_asp_replace() logic would always be dealing with native 8530 * format data structures.. 8531 * 8532 * (An even simpler way to handle these ioctls is to just 8533 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8534 * and just recompile everything that depends on it.) 8535 */ 8536 #endif 8537 ip6_asp_replace(mp, table, table_size, B_FALSE, 8538 iocp->ioc_flag & IOC_MODELS); 8539 return; 8540 } 8541 8542 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8543 qreply(q, mp); 8544 } 8545 8546 static void 8547 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8548 { 8549 mblk_t *data_mp; 8550 struct dstinforeq *dir; 8551 uint8_t *end, *cur; 8552 in6_addr_t *daddr, *saddr; 8553 ipaddr_t v4daddr; 8554 ire_t *ire; 8555 char *slabel, *dlabel; 8556 boolean_t isipv4; 8557 int match_ire; 8558 ill_t *dst_ill; 8559 ipif_t *src_ipif, *ire_ipif; 8560 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8561 zoneid_t zoneid; 8562 8563 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8564 zoneid = Q_TO_CONN(q)->conn_zoneid; 8565 8566 /* 8567 * This ioctl is I_STR only, and must have a 8568 * data mblk following the M_IOCTL mblk. 8569 */ 8570 data_mp = mp->b_cont; 8571 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8572 miocnak(q, mp, 0, EINVAL); 8573 return; 8574 } 8575 8576 if (MBLKL(data_mp) < iocp->ioc_count) { 8577 mblk_t *new_data_mp; 8578 8579 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8580 miocnak(q, mp, 0, ENOMEM); 8581 return; 8582 } 8583 freemsg(data_mp); 8584 data_mp = new_data_mp; 8585 mp->b_cont = data_mp; 8586 } 8587 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8588 8589 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8590 end - cur >= sizeof (struct dstinforeq); 8591 cur += sizeof (struct dstinforeq)) { 8592 dir = (struct dstinforeq *)cur; 8593 daddr = &dir->dir_daddr; 8594 saddr = &dir->dir_saddr; 8595 8596 /* 8597 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8598 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8599 * and ipif_select_source[_v6]() do not. 8600 */ 8601 dir->dir_dscope = ip_addr_scope_v6(daddr); 8602 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8603 8604 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8605 if (isipv4) { 8606 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8607 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8608 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8609 } else { 8610 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8611 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8612 } 8613 if (ire == NULL) { 8614 dir->dir_dreachable = 0; 8615 8616 /* move on to next dst addr */ 8617 continue; 8618 } 8619 dir->dir_dreachable = 1; 8620 8621 ire_ipif = ire->ire_ipif; 8622 if (ire_ipif == NULL) 8623 goto next_dst; 8624 8625 /* 8626 * We expect to get back an interface ire or a 8627 * gateway ire cache entry. For both types, the 8628 * output interface is ire_ipif->ipif_ill. 8629 */ 8630 dst_ill = ire_ipif->ipif_ill; 8631 dir->dir_dmactype = dst_ill->ill_mactype; 8632 8633 if (isipv4) { 8634 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8635 } else { 8636 src_ipif = ipif_select_source_v6(dst_ill, 8637 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8638 zoneid); 8639 } 8640 if (src_ipif == NULL) 8641 goto next_dst; 8642 8643 *saddr = src_ipif->ipif_v6lcl_addr; 8644 dir->dir_sscope = ip_addr_scope_v6(saddr); 8645 slabel = ip6_asp_lookup(saddr, NULL); 8646 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8647 dir->dir_sdeprecated = 8648 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8649 ipif_refrele(src_ipif); 8650 next_dst: 8651 ire_refrele(ire); 8652 } 8653 miocack(q, mp, iocp->ioc_count, 0); 8654 } 8655 8656 8657 /* 8658 * Check if this is an address assigned to this machine. 8659 * Skips interfaces that are down by using ire checks. 8660 * Translates mapped addresses to v4 addresses and then 8661 * treats them as such, returning true if the v4 address 8662 * associated with this mapped address is configured. 8663 * Note: Applications will have to be careful what they do 8664 * with the response; use of mapped addresses limits 8665 * what can be done with the socket, especially with 8666 * respect to socket options and ioctls - neither IPv4 8667 * options nor IPv6 sticky options/ancillary data options 8668 * may be used. 8669 */ 8670 /* ARGSUSED */ 8671 int 8672 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8673 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8674 { 8675 struct sioc_addrreq *sia; 8676 sin_t *sin; 8677 ire_t *ire; 8678 mblk_t *mp1; 8679 zoneid_t zoneid; 8680 8681 ip1dbg(("ip_sioctl_tmyaddr")); 8682 8683 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8684 zoneid = Q_TO_CONN(q)->conn_zoneid; 8685 8686 /* Existence verified in ip_wput_nondata */ 8687 mp1 = mp->b_cont->b_cont; 8688 sia = (struct sioc_addrreq *)mp1->b_rptr; 8689 sin = (sin_t *)&sia->sa_addr; 8690 switch (sin->sin_family) { 8691 case AF_INET6: { 8692 sin6_t *sin6 = (sin6_t *)sin; 8693 8694 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8695 ipaddr_t v4_addr; 8696 8697 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8698 v4_addr); 8699 ire = ire_ctable_lookup(v4_addr, 0, 8700 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8701 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8702 } else { 8703 in6_addr_t v6addr; 8704 8705 v6addr = sin6->sin6_addr; 8706 ire = ire_ctable_lookup_v6(&v6addr, 0, 8707 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8708 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8709 } 8710 break; 8711 } 8712 case AF_INET: { 8713 ipaddr_t v4addr; 8714 8715 v4addr = sin->sin_addr.s_addr; 8716 ire = ire_ctable_lookup(v4addr, 0, 8717 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8718 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8719 break; 8720 } 8721 default: 8722 return (EAFNOSUPPORT); 8723 } 8724 if (ire != NULL) { 8725 sia->sa_res = 1; 8726 ire_refrele(ire); 8727 } else { 8728 sia->sa_res = 0; 8729 } 8730 return (0); 8731 } 8732 8733 /* 8734 * Check if this is an address assigned on-link i.e. neighbor, 8735 * and makes sure it's reachable from the current zone. 8736 * Returns true for my addresses as well. 8737 * Translates mapped addresses to v4 addresses and then 8738 * treats them as such, returning true if the v4 address 8739 * associated with this mapped address is configured. 8740 * Note: Applications will have to be careful what they do 8741 * with the response; use of mapped addresses limits 8742 * what can be done with the socket, especially with 8743 * respect to socket options and ioctls - neither IPv4 8744 * options nor IPv6 sticky options/ancillary data options 8745 * may be used. 8746 */ 8747 /* ARGSUSED */ 8748 int 8749 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8750 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8751 { 8752 struct sioc_addrreq *sia; 8753 sin_t *sin; 8754 mblk_t *mp1; 8755 ire_t *ire = NULL; 8756 zoneid_t zoneid; 8757 8758 ip1dbg(("ip_sioctl_tonlink")); 8759 8760 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8761 zoneid = Q_TO_CONN(q)->conn_zoneid; 8762 8763 /* Existence verified in ip_wput_nondata */ 8764 mp1 = mp->b_cont->b_cont; 8765 sia = (struct sioc_addrreq *)mp1->b_rptr; 8766 sin = (sin_t *)&sia->sa_addr; 8767 8768 /* 8769 * Match addresses with a zero gateway field to avoid 8770 * routes going through a router. 8771 * Exclude broadcast and multicast addresses. 8772 */ 8773 switch (sin->sin_family) { 8774 case AF_INET6: { 8775 sin6_t *sin6 = (sin6_t *)sin; 8776 8777 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8778 ipaddr_t v4_addr; 8779 8780 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8781 v4_addr); 8782 if (!CLASSD(v4_addr)) { 8783 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8784 NULL, NULL, zoneid, NULL, 8785 MATCH_IRE_GW); 8786 } 8787 } else { 8788 in6_addr_t v6addr; 8789 in6_addr_t v6gw; 8790 8791 v6addr = sin6->sin6_addr; 8792 v6gw = ipv6_all_zeros; 8793 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8794 ire = ire_route_lookup_v6(&v6addr, 0, 8795 &v6gw, 0, NULL, NULL, zoneid, 8796 NULL, MATCH_IRE_GW); 8797 } 8798 } 8799 break; 8800 } 8801 case AF_INET: { 8802 ipaddr_t v4addr; 8803 8804 v4addr = sin->sin_addr.s_addr; 8805 if (!CLASSD(v4addr)) { 8806 ire = ire_route_lookup(v4addr, 0, 0, 0, 8807 NULL, NULL, zoneid, NULL, 8808 MATCH_IRE_GW); 8809 } 8810 break; 8811 } 8812 default: 8813 return (EAFNOSUPPORT); 8814 } 8815 sia->sa_res = 0; 8816 if (ire != NULL) { 8817 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8818 IRE_LOCAL|IRE_LOOPBACK)) { 8819 sia->sa_res = 1; 8820 } 8821 ire_refrele(ire); 8822 } 8823 return (0); 8824 } 8825 8826 /* 8827 * TBD: implement when kernel maintaines a list of site prefixes. 8828 */ 8829 /* ARGSUSED */ 8830 int 8831 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8832 ip_ioctl_cmd_t *ipip, void *ifreq) 8833 { 8834 return (ENXIO); 8835 } 8836 8837 /* ARGSUSED */ 8838 int 8839 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8840 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8841 { 8842 ill_t *ill; 8843 mblk_t *mp1; 8844 conn_t *connp; 8845 boolean_t success; 8846 8847 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8848 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8849 /* ioctl comes down on an conn */ 8850 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8851 connp = Q_TO_CONN(q); 8852 8853 mp->b_datap->db_type = M_IOCTL; 8854 8855 /* 8856 * Send down a copy. (copymsg does not copy b_next/b_prev). 8857 * The original mp contains contaminated b_next values due to 'mi', 8858 * which is needed to do the mi_copy_done. Unfortunately if we 8859 * send down the original mblk itself and if we are popped due to an 8860 * an unplumb before the response comes back from tunnel, 8861 * the streamhead (which does a freemsg) will see this contaminated 8862 * message and the assertion in freemsg about non-null b_next/b_prev 8863 * will panic a DEBUG kernel. 8864 */ 8865 mp1 = copymsg(mp); 8866 if (mp1 == NULL) 8867 return (ENOMEM); 8868 8869 ill = ipif->ipif_ill; 8870 mutex_enter(&connp->conn_lock); 8871 mutex_enter(&ill->ill_lock); 8872 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8873 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8874 mp, 0); 8875 } else { 8876 success = ill_pending_mp_add(ill, connp, mp); 8877 } 8878 mutex_exit(&ill->ill_lock); 8879 mutex_exit(&connp->conn_lock); 8880 8881 if (success) { 8882 ip1dbg(("sending down tunparam request ")); 8883 putnext(ill->ill_wq, mp1); 8884 return (EINPROGRESS); 8885 } else { 8886 /* The conn has started closing */ 8887 freemsg(mp1); 8888 return (EINTR); 8889 } 8890 } 8891 8892 static int 8893 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8894 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8895 { 8896 mblk_t *mp1; 8897 mblk_t *mp2; 8898 mblk_t *pending_mp; 8899 ipaddr_t ipaddr; 8900 area_t *area; 8901 struct iocblk *iocp; 8902 conn_t *connp; 8903 struct arpreq *ar; 8904 struct xarpreq *xar; 8905 boolean_t success; 8906 int flags, alength; 8907 char *lladdr; 8908 8909 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8910 connp = Q_TO_CONN(q); 8911 8912 iocp = (struct iocblk *)mp->b_rptr; 8913 /* 8914 * ill has already been set depending on whether 8915 * bsd style or interface style ioctl. 8916 */ 8917 ASSERT(ill != NULL); 8918 8919 /* 8920 * Is this one of the new SIOC*XARP ioctls? 8921 */ 8922 if (x_arp_ioctl) { 8923 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8924 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8925 ar = NULL; 8926 8927 flags = xar->xarp_flags; 8928 lladdr = LLADDR(&xar->xarp_ha); 8929 /* 8930 * Validate against user's link layer address length 8931 * input and name and addr length limits. 8932 */ 8933 alength = ill->ill_phys_addr_length; 8934 if (iocp->ioc_cmd == SIOCSXARP) { 8935 if (alength != xar->xarp_ha.sdl_alen || 8936 (alength + xar->xarp_ha.sdl_nlen > 8937 sizeof (xar->xarp_ha.sdl_data))) 8938 return (EINVAL); 8939 } 8940 } else { 8941 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8942 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8943 xar = NULL; 8944 8945 flags = ar->arp_flags; 8946 lladdr = ar->arp_ha.sa_data; 8947 /* 8948 * Theoretically, the sa_family could tell us what link 8949 * layer type this operation is trying to deal with. By 8950 * common usage AF_UNSPEC means ethernet. We'll assume 8951 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8952 * for now. Our new SIOC*XARP ioctls can be used more 8953 * generally. 8954 * 8955 * If the underlying media happens to have a non 6 byte 8956 * address, arp module will fail set/get, but the del 8957 * operation will succeed. 8958 */ 8959 alength = 6; 8960 if ((iocp->ioc_cmd != SIOCDARP) && 8961 (alength != ill->ill_phys_addr_length)) { 8962 return (EINVAL); 8963 } 8964 } 8965 8966 /* 8967 * We are going to pass up to ARP a packet chain that looks 8968 * like: 8969 * 8970 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8971 * 8972 * Get a copy of the original IOCTL mblk to head the chain, 8973 * to be sent up (in mp1). Also get another copy to store 8974 * in the ill_pending_mp list, for matching the response 8975 * when it comes back from ARP. 8976 */ 8977 mp1 = copyb(mp); 8978 pending_mp = copymsg(mp); 8979 if (mp1 == NULL || pending_mp == NULL) { 8980 if (mp1 != NULL) 8981 freeb(mp1); 8982 if (pending_mp != NULL) 8983 inet_freemsg(pending_mp); 8984 return (ENOMEM); 8985 } 8986 8987 ipaddr = sin->sin_addr.s_addr; 8988 8989 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8990 (caddr_t)&ipaddr); 8991 if (mp2 == NULL) { 8992 freeb(mp1); 8993 inet_freemsg(pending_mp); 8994 return (ENOMEM); 8995 } 8996 /* Put together the chain. */ 8997 mp1->b_cont = mp2; 8998 mp1->b_datap->db_type = M_IOCTL; 8999 mp2->b_cont = mp; 9000 mp2->b_datap->db_type = M_DATA; 9001 9002 iocp = (struct iocblk *)mp1->b_rptr; 9003 9004 /* 9005 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9006 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9007 * cp_private field (or cp_rval on 32-bit systems) in place of the 9008 * ioc_count field; set ioc_count to be correct. 9009 */ 9010 iocp->ioc_count = MBLKL(mp1->b_cont); 9011 9012 /* 9013 * Set the proper command in the ARP message. 9014 * Convert the SIOC{G|S|D}ARP calls into our 9015 * AR_ENTRY_xxx calls. 9016 */ 9017 area = (area_t *)mp2->b_rptr; 9018 switch (iocp->ioc_cmd) { 9019 case SIOCDARP: 9020 case SIOCDXARP: 9021 /* 9022 * We defer deleting the corresponding IRE until 9023 * we return from arp. 9024 */ 9025 area->area_cmd = AR_ENTRY_DELETE; 9026 area->area_proto_mask_offset = 0; 9027 break; 9028 case SIOCGARP: 9029 case SIOCGXARP: 9030 area->area_cmd = AR_ENTRY_SQUERY; 9031 area->area_proto_mask_offset = 0; 9032 break; 9033 case SIOCSARP: 9034 case SIOCSXARP: { 9035 /* 9036 * Delete the corresponding ire to make sure IP will 9037 * pick up any change from arp. 9038 */ 9039 if (!if_arp_ioctl) { 9040 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9041 break; 9042 } else { 9043 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9044 if (ipif != NULL) { 9045 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9046 ipif_refrele(ipif); 9047 } 9048 break; 9049 } 9050 } 9051 } 9052 iocp->ioc_cmd = area->area_cmd; 9053 9054 /* 9055 * Before sending 'mp' to ARP, we have to clear the b_next 9056 * and b_prev. Otherwise if STREAMS encounters such a message 9057 * in freemsg(), (because ARP can close any time) it can cause 9058 * a panic. But mi code needs the b_next and b_prev values of 9059 * mp->b_cont, to complete the ioctl. So we store it here 9060 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9061 * when the response comes down from ARP. 9062 */ 9063 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9064 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9065 mp->b_cont->b_next = NULL; 9066 mp->b_cont->b_prev = NULL; 9067 9068 mutex_enter(&connp->conn_lock); 9069 mutex_enter(&ill->ill_lock); 9070 /* conn has not yet started closing, hence this can't fail */ 9071 success = ill_pending_mp_add(ill, connp, pending_mp); 9072 ASSERT(success); 9073 mutex_exit(&ill->ill_lock); 9074 mutex_exit(&connp->conn_lock); 9075 9076 /* 9077 * Fill in the rest of the ARP operation fields. 9078 */ 9079 area->area_hw_addr_length = alength; 9080 bcopy(lladdr, 9081 (char *)area + area->area_hw_addr_offset, 9082 area->area_hw_addr_length); 9083 /* Translate the flags. */ 9084 if (flags & ATF_PERM) 9085 area->area_flags |= ACE_F_PERMANENT; 9086 if (flags & ATF_PUBL) 9087 area->area_flags |= ACE_F_PUBLISH; 9088 9089 /* 9090 * Up to ARP it goes. The response will come 9091 * back in ip_wput as an M_IOCACK message, and 9092 * will be handed to ip_sioctl_iocack for 9093 * completion. 9094 */ 9095 putnext(ill->ill_rq, mp1); 9096 return (EINPROGRESS); 9097 } 9098 9099 /* ARGSUSED */ 9100 int 9101 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9102 ip_ioctl_cmd_t *ipip, void *ifreq) 9103 { 9104 struct xarpreq *xar; 9105 boolean_t isv6; 9106 mblk_t *mp1; 9107 int err; 9108 conn_t *connp; 9109 int ifnamelen; 9110 ire_t *ire = NULL; 9111 ill_t *ill = NULL; 9112 struct sockaddr_in *sin; 9113 boolean_t if_arp_ioctl = B_FALSE; 9114 9115 /* ioctl comes down on an conn */ 9116 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9117 connp = Q_TO_CONN(q); 9118 isv6 = connp->conn_af_isv6; 9119 9120 /* Existance verified in ip_wput_nondata */ 9121 mp1 = mp->b_cont->b_cont; 9122 9123 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9124 xar = (struct xarpreq *)mp1->b_rptr; 9125 sin = (sin_t *)&xar->xarp_pa; 9126 9127 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9128 (xar->xarp_pa.ss_family != AF_INET)) 9129 return (ENXIO); 9130 9131 ifnamelen = xar->xarp_ha.sdl_nlen; 9132 if (ifnamelen != 0) { 9133 char *cptr, cval; 9134 9135 if (ifnamelen >= LIFNAMSIZ) 9136 return (EINVAL); 9137 9138 /* 9139 * Instead of bcopying a bunch of bytes, 9140 * null-terminate the string in-situ. 9141 */ 9142 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9143 cval = *cptr; 9144 *cptr = '\0'; 9145 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9146 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9147 &err, NULL); 9148 *cptr = cval; 9149 if (ill == NULL) 9150 return (err); 9151 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9152 ill_refrele(ill); 9153 return (ENXIO); 9154 } 9155 9156 if_arp_ioctl = B_TRUE; 9157 } else { 9158 /* 9159 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9160 * as an extended BSD ioctl. The kernel uses the IP address 9161 * to figure out the network interface. 9162 */ 9163 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9164 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9165 ((ill = ire_to_ill(ire)) == NULL) || 9166 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9167 if (ire != NULL) 9168 ire_refrele(ire); 9169 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9170 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9171 NULL, MATCH_IRE_TYPE); 9172 if ((ire == NULL) || 9173 ((ill = ire_to_ill(ire)) == NULL)) { 9174 if (ire != NULL) 9175 ire_refrele(ire); 9176 return (ENXIO); 9177 } 9178 } 9179 ASSERT(ire != NULL && ill != NULL); 9180 } 9181 9182 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9183 if (if_arp_ioctl) 9184 ill_refrele(ill); 9185 if (ire != NULL) 9186 ire_refrele(ire); 9187 9188 return (err); 9189 } 9190 9191 /* 9192 * ARP IOCTLs. 9193 * How does IP get in the business of fronting ARP configuration/queries? 9194 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9195 * are by tradition passed in through a datagram socket. That lands in IP. 9196 * As it happens, this is just as well since the interface is quite crude in 9197 * that it passes in no information about protocol or hardware types, or 9198 * interface association. After making the protocol assumption, IP is in 9199 * the position to look up the name of the ILL, which ARP will need, and 9200 * format a request that can be handled by ARP. The request is passed up 9201 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9202 * back a response. ARP supports its own set of more general IOCTLs, in 9203 * case anyone is interested. 9204 */ 9205 /* ARGSUSED */ 9206 int 9207 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9208 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9209 { 9210 struct arpreq *ar; 9211 struct sockaddr_in *sin; 9212 ire_t *ire; 9213 boolean_t isv6; 9214 mblk_t *mp1; 9215 int err; 9216 conn_t *connp; 9217 ill_t *ill; 9218 9219 /* ioctl comes down on an conn */ 9220 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9221 connp = Q_TO_CONN(q); 9222 isv6 = connp->conn_af_isv6; 9223 if (isv6) 9224 return (ENXIO); 9225 9226 /* Existance verified in ip_wput_nondata */ 9227 mp1 = mp->b_cont->b_cont; 9228 9229 ar = (struct arpreq *)mp1->b_rptr; 9230 sin = (sin_t *)&ar->arp_pa; 9231 9232 /* 9233 * We need to let ARP know on which interface the IP 9234 * address has an ARP mapping. In the IPMP case, a 9235 * simple forwarding table lookup will return the 9236 * IRE_IF_RESOLVER for the first interface in the group, 9237 * which might not be the interface on which the 9238 * requested IP address was resolved due to the ill 9239 * selection algorithm (see ip_newroute_get_dst_ill()). 9240 * So we do a cache table lookup first: if the IRE cache 9241 * entry for the IP address is still there, it will 9242 * contain the ill pointer for the right interface, so 9243 * we use that. If the cache entry has been flushed, we 9244 * fall back to the forwarding table lookup. This should 9245 * be rare enough since IRE cache entries have a longer 9246 * life expectancy than ARP cache entries. 9247 */ 9248 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9249 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9250 ((ill = ire_to_ill(ire)) == NULL)) { 9251 if (ire != NULL) 9252 ire_refrele(ire); 9253 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9254 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9255 NULL, MATCH_IRE_TYPE); 9256 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9257 if (ire != NULL) 9258 ire_refrele(ire); 9259 return (ENXIO); 9260 } 9261 } 9262 ASSERT(ire != NULL && ill != NULL); 9263 9264 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9265 ire_refrele(ire); 9266 return (err); 9267 } 9268 9269 /* 9270 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9271 * atomically set/clear the muxids. Also complete the ioctl by acking or 9272 * naking it. Note that the code is structured such that the link type, 9273 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9274 * its clones use the persistent link, while pppd(1M) and perhaps many 9275 * other daemons may use non-persistent link. When combined with some 9276 * ill_t states, linking and unlinking lower streams may be used as 9277 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9278 */ 9279 /* ARGSUSED */ 9280 void 9281 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9282 { 9283 mblk_t *mp1; 9284 mblk_t *mp2; 9285 struct linkblk *li; 9286 queue_t *ipwq; 9287 char *name; 9288 struct qinit *qinfo; 9289 struct ipmx_s *ipmxp; 9290 ill_t *ill = NULL; 9291 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9292 int err = 0; 9293 boolean_t entered_ipsq = B_FALSE; 9294 boolean_t islink; 9295 queue_t *dwq = NULL; 9296 9297 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9298 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9299 9300 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9301 B_TRUE : B_FALSE; 9302 9303 mp1 = mp->b_cont; /* This is the linkblk info */ 9304 li = (struct linkblk *)mp1->b_rptr; 9305 9306 /* 9307 * ARP has added this special mblk, and the utility is asking us 9308 * to perform consistency checks, and also atomically set the 9309 * muxid. Ifconfig is an example. It achieves this by using 9310 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9311 * to /dev/udp[6] stream for use as the mux when plinking the IP 9312 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9313 * and other comments in this routine for more details. 9314 */ 9315 mp2 = mp1->b_cont; /* This is added by ARP */ 9316 9317 /* 9318 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9319 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9320 * get the special mblk above. For backward compatibility, we just 9321 * return success. The utility will use SIOCSLIFMUXID to store 9322 * the muxids. This is not atomic, and can leave the streams 9323 * unplumbable if the utility is interrrupted, before it does the 9324 * SIOCSLIFMUXID. 9325 */ 9326 if (mp2 == NULL) { 9327 /* 9328 * At this point we don't know whether or not this is the 9329 * IP module stream or the ARP device stream. We need to 9330 * walk the lower stream in order to find this out, since 9331 * the capability negotiation is done only on the IP module 9332 * stream. IP module instance is identified by the module 9333 * name IP, non-null q_next, and it's wput not being ip_lwput. 9334 * STREAMS ensures that the lower stream (l_qbot) will not 9335 * vanish until this ioctl completes. So we can safely walk 9336 * the stream or refer to the q_ptr. 9337 */ 9338 ipwq = li->l_qbot; 9339 while (ipwq != NULL) { 9340 qinfo = ipwq->q_qinfo; 9341 name = qinfo->qi_minfo->mi_idname; 9342 if (name != NULL && name[0] != NULL && 9343 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9344 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9345 (ipwq->q_next != NULL)) { 9346 break; 9347 } 9348 ipwq = ipwq->q_next; 9349 } 9350 /* 9351 * This looks like an IP module stream, so trigger 9352 * the capability reset or re-negotiation if necessary. 9353 */ 9354 if (ipwq != NULL) { 9355 ill = ipwq->q_ptr; 9356 ASSERT(ill != NULL); 9357 9358 if (ipsq == NULL) { 9359 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9360 ip_sioctl_plink, NEW_OP, B_TRUE); 9361 if (ipsq == NULL) 9362 return; 9363 entered_ipsq = B_TRUE; 9364 } 9365 ASSERT(IAM_WRITER_ILL(ill)); 9366 /* 9367 * Store the upper read queue of the module 9368 * immediately below IP, and count the total 9369 * number of lower modules. Do this only 9370 * for I_PLINK or I_LINK event. 9371 */ 9372 ill->ill_lmod_rq = NULL; 9373 ill->ill_lmod_cnt = 0; 9374 if (islink && (dwq = ipwq->q_next) != NULL) { 9375 ill->ill_lmod_rq = RD(dwq); 9376 9377 while (dwq != NULL) { 9378 ill->ill_lmod_cnt++; 9379 dwq = dwq->q_next; 9380 } 9381 } 9382 /* 9383 * There's no point in resetting or re-negotiating if 9384 * we are not bound to the driver, so only do this if 9385 * the DLPI state is idle (up); we assume such state 9386 * since ill_ipif_up_count gets incremented in 9387 * ipif_up_done(), which is after we are bound to the 9388 * driver. Note that in the case of logical 9389 * interfaces, IP won't rebind to the driver unless 9390 * the ill_ipif_up_count is 0, meaning that all other 9391 * IP interfaces (including the main ipif) are in the 9392 * down state. Because of this, we use such counter 9393 * as an indicator, instead of relying on the IPIF_UP 9394 * flag, which is per ipif instance. 9395 */ 9396 if (ill->ill_ipif_up_count > 0) { 9397 if (islink) 9398 ill_capability_probe(ill); 9399 else 9400 ill_capability_reset(ill); 9401 } 9402 } 9403 goto done; 9404 } 9405 9406 /* 9407 * This is an I_{P}LINK sent down by ifconfig on 9408 * /dev/arp. ARP has appended this last (3rd) mblk, 9409 * giving more info. STREAMS ensures that the lower 9410 * stream (l_qbot) will not vanish until this ioctl 9411 * completes. So we can safely walk the stream or refer 9412 * to the q_ptr. 9413 */ 9414 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9415 if (ipmxp->ipmx_arpdev_stream) { 9416 /* 9417 * The operation is occuring on the arp-device 9418 * stream. 9419 */ 9420 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9421 q, mp, ip_sioctl_plink, &err, NULL); 9422 if (ill == NULL) { 9423 if (err == EINPROGRESS) { 9424 return; 9425 } else { 9426 err = EINVAL; 9427 goto done; 9428 } 9429 } 9430 9431 if (ipsq == NULL) { 9432 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9433 NEW_OP, B_TRUE); 9434 if (ipsq == NULL) { 9435 ill_refrele(ill); 9436 return; 9437 } 9438 entered_ipsq = B_TRUE; 9439 } 9440 ASSERT(IAM_WRITER_ILL(ill)); 9441 ill_refrele(ill); 9442 /* 9443 * To ensure consistency between IP and ARP, 9444 * the following LIFO scheme is used in 9445 * plink/punlink. (IP first, ARP last). 9446 * This is because the muxid's are stored 9447 * in the IP stream on the ill. 9448 * 9449 * I_{P}LINK: ifconfig plinks the IP stream before 9450 * plinking the ARP stream. On an arp-dev 9451 * stream, IP checks that it is not yet 9452 * plinked, and it also checks that the 9453 * corresponding IP stream is already plinked. 9454 * 9455 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9456 * before punlinking the IP stream. IP does 9457 * not allow punlink of the IP stream unless 9458 * the arp stream has been punlinked. 9459 * 9460 */ 9461 if ((islink && 9462 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9463 (!islink && 9464 ill->ill_arp_muxid != li->l_index)) { 9465 err = EINVAL; 9466 goto done; 9467 } 9468 if (islink) { 9469 ill->ill_arp_muxid = li->l_index; 9470 } else { 9471 ill->ill_arp_muxid = 0; 9472 } 9473 } else { 9474 /* 9475 * This must be the IP module stream with or 9476 * without arp. Walk the stream and locate the 9477 * IP module. An IP module instance is 9478 * identified by the module name IP, non-null 9479 * q_next, and it's wput not being ip_lwput. 9480 */ 9481 ipwq = li->l_qbot; 9482 while (ipwq != NULL) { 9483 qinfo = ipwq->q_qinfo; 9484 name = qinfo->qi_minfo->mi_idname; 9485 if (name != NULL && name[0] != NULL && 9486 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9487 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9488 (ipwq->q_next != NULL)) { 9489 break; 9490 } 9491 ipwq = ipwq->q_next; 9492 } 9493 if (ipwq != NULL) { 9494 ill = ipwq->q_ptr; 9495 ASSERT(ill != NULL); 9496 9497 if (ipsq == NULL) { 9498 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9499 ip_sioctl_plink, NEW_OP, B_TRUE); 9500 if (ipsq == NULL) 9501 return; 9502 entered_ipsq = B_TRUE; 9503 } 9504 ASSERT(IAM_WRITER_ILL(ill)); 9505 /* 9506 * Return error if the ip_mux_id is 9507 * non-zero and command is I_{P}LINK. 9508 * If command is I_{P}UNLINK, return 9509 * error if the arp-devstr is not 9510 * yet punlinked. 9511 */ 9512 if ((islink && ill->ill_ip_muxid != 0) || 9513 (!islink && ill->ill_arp_muxid != 0)) { 9514 err = EINVAL; 9515 goto done; 9516 } 9517 ill->ill_lmod_rq = NULL; 9518 ill->ill_lmod_cnt = 0; 9519 if (islink) { 9520 /* 9521 * Store the upper read queue of the module 9522 * immediately below IP, and count the total 9523 * number of lower modules. 9524 */ 9525 if ((dwq = ipwq->q_next) != NULL) { 9526 ill->ill_lmod_rq = RD(dwq); 9527 9528 while (dwq != NULL) { 9529 ill->ill_lmod_cnt++; 9530 dwq = dwq->q_next; 9531 } 9532 } 9533 ill->ill_ip_muxid = li->l_index; 9534 } else { 9535 ill->ill_ip_muxid = 0; 9536 } 9537 9538 /* 9539 * See comments above about resetting/re- 9540 * negotiating driver sub-capabilities. 9541 */ 9542 if (ill->ill_ipif_up_count > 0) { 9543 if (islink) 9544 ill_capability_probe(ill); 9545 else 9546 ill_capability_reset(ill); 9547 } 9548 } 9549 } 9550 done: 9551 iocp->ioc_count = 0; 9552 iocp->ioc_error = err; 9553 if (err == 0) 9554 mp->b_datap->db_type = M_IOCACK; 9555 else 9556 mp->b_datap->db_type = M_IOCNAK; 9557 qreply(q, mp); 9558 9559 /* Conn was refheld in ip_sioctl_copyin_setup */ 9560 if (CONN_Q(q)) 9561 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9562 if (entered_ipsq) 9563 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9564 } 9565 9566 /* 9567 * Search the ioctl command in the ioctl tables and return a pointer 9568 * to the ioctl command information. The ioctl command tables are 9569 * static and fully populated at compile time. 9570 */ 9571 ip_ioctl_cmd_t * 9572 ip_sioctl_lookup(int ioc_cmd) 9573 { 9574 int index; 9575 ip_ioctl_cmd_t *ipip; 9576 ip_ioctl_cmd_t *ipip_end; 9577 9578 if (ioc_cmd == IPI_DONTCARE) 9579 return (NULL); 9580 9581 /* 9582 * Do a 2 step search. First search the indexed table 9583 * based on the least significant byte of the ioctl cmd. 9584 * If we don't find a match, then search the misc table 9585 * serially. 9586 */ 9587 index = ioc_cmd & 0xFF; 9588 if (index < ip_ndx_ioctl_count) { 9589 ipip = &ip_ndx_ioctl_table[index]; 9590 if (ipip->ipi_cmd == ioc_cmd) { 9591 /* Found a match in the ndx table */ 9592 return (ipip); 9593 } 9594 } 9595 9596 /* Search the misc table */ 9597 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9598 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9599 if (ipip->ipi_cmd == ioc_cmd) 9600 /* Found a match in the misc table */ 9601 return (ipip); 9602 } 9603 9604 return (NULL); 9605 } 9606 9607 /* 9608 * Wrapper function for resuming deferred ioctl processing 9609 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9610 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9611 */ 9612 /* ARGSUSED */ 9613 void 9614 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9615 void *dummy_arg) 9616 { 9617 ip_sioctl_copyin_setup(q, mp); 9618 } 9619 9620 /* 9621 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9622 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9623 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9624 * We establish here the size of the block to be copied in. mi_copyin 9625 * arranges for this to happen, an processing continues in ip_wput with 9626 * an M_IOCDATA message. 9627 */ 9628 void 9629 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9630 { 9631 int copyin_size; 9632 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9633 ip_ioctl_cmd_t *ipip; 9634 cred_t *cr; 9635 9636 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9637 if (ipip == NULL) { 9638 /* 9639 * The ioctl is not one we understand or own. 9640 * Pass it along to be processed down stream, 9641 * if this is a module instance of IP, else nak 9642 * the ioctl. 9643 */ 9644 if (q->q_next == NULL) { 9645 goto nak; 9646 } else { 9647 putnext(q, mp); 9648 return; 9649 } 9650 } 9651 9652 /* 9653 * If this is deferred, then we will do all the checks when we 9654 * come back. 9655 */ 9656 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9657 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9658 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9659 return; 9660 } 9661 9662 /* 9663 * Only allow a very small subset of IP ioctls on this stream if 9664 * IP is a module and not a driver. Allowing ioctls to be processed 9665 * in this case may cause assert failures or data corruption. 9666 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9667 * ioctls allowed on an IP module stream, after which this stream 9668 * normally becomes a multiplexor (at which time the stream head 9669 * will fail all ioctls). 9670 */ 9671 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9672 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9673 /* 9674 * Pass common Streams ioctls which the IP 9675 * module does not own or consume along to 9676 * be processed down stream. 9677 */ 9678 putnext(q, mp); 9679 return; 9680 } else { 9681 goto nak; 9682 } 9683 } 9684 9685 /* Make sure we have ioctl data to process. */ 9686 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9687 goto nak; 9688 9689 /* 9690 * Prefer dblk credential over ioctl credential; some synthesized 9691 * ioctls have kcred set because there's no way to crhold() 9692 * a credential in some contexts. (ioc_cr is not crfree() by 9693 * the framework; the caller of ioctl needs to hold the reference 9694 * for the duration of the call). 9695 */ 9696 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9697 9698 /* Make sure normal users don't send down privileged ioctls */ 9699 if ((ipip->ipi_flags & IPI_PRIV) && 9700 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9701 /* We checked the privilege earlier but log it here */ 9702 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9703 return; 9704 } 9705 9706 /* 9707 * The ioctl command tables can only encode fixed length 9708 * ioctl data. If the length is variable, the table will 9709 * encode the length as zero. Such special cases are handled 9710 * below in the switch. 9711 */ 9712 if (ipip->ipi_copyin_size != 0) { 9713 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9714 return; 9715 } 9716 9717 switch (iocp->ioc_cmd) { 9718 case O_SIOCGIFCONF: 9719 case SIOCGIFCONF: 9720 /* 9721 * This IOCTL is hilarious. See comments in 9722 * ip_sioctl_get_ifconf for the story. 9723 */ 9724 if (iocp->ioc_count == TRANSPARENT) 9725 copyin_size = SIZEOF_STRUCT(ifconf, 9726 iocp->ioc_flag); 9727 else 9728 copyin_size = iocp->ioc_count; 9729 mi_copyin(q, mp, NULL, copyin_size); 9730 return; 9731 9732 case O_SIOCGLIFCONF: 9733 case SIOCGLIFCONF: 9734 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9735 mi_copyin(q, mp, NULL, copyin_size); 9736 return; 9737 9738 case SIOCGLIFSRCOF: 9739 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9740 mi_copyin(q, mp, NULL, copyin_size); 9741 return; 9742 case SIOCGIP6ADDRPOLICY: 9743 ip_sioctl_ip6addrpolicy(q, mp); 9744 ip6_asp_table_refrele(); 9745 return; 9746 9747 case SIOCSIP6ADDRPOLICY: 9748 ip_sioctl_ip6addrpolicy(q, mp); 9749 return; 9750 9751 case SIOCGDSTINFO: 9752 ip_sioctl_dstinfo(q, mp); 9753 ip6_asp_table_refrele(); 9754 return; 9755 9756 case I_PLINK: 9757 case I_PUNLINK: 9758 case I_LINK: 9759 case I_UNLINK: 9760 /* 9761 * We treat non-persistent link similarly as the persistent 9762 * link case, in terms of plumbing/unplumbing, as well as 9763 * dynamic re-plumbing events indicator. See comments 9764 * in ip_sioctl_plink() for more. 9765 * 9766 * Request can be enqueued in the 'ipsq' while waiting 9767 * to become exclusive. So bump up the conn ref. 9768 */ 9769 if (CONN_Q(q)) 9770 CONN_INC_REF(Q_TO_CONN(q)); 9771 ip_sioctl_plink(NULL, q, mp, NULL); 9772 return; 9773 9774 case ND_GET: 9775 case ND_SET: 9776 /* 9777 * Use of the nd table requires holding the reader lock. 9778 * Modifying the nd table thru nd_load/nd_unload requires 9779 * the writer lock. 9780 */ 9781 rw_enter(&ip_g_nd_lock, RW_READER); 9782 if (nd_getset(q, ip_g_nd, mp)) { 9783 rw_exit(&ip_g_nd_lock); 9784 9785 if (iocp->ioc_error) 9786 iocp->ioc_count = 0; 9787 mp->b_datap->db_type = M_IOCACK; 9788 qreply(q, mp); 9789 return; 9790 } 9791 rw_exit(&ip_g_nd_lock); 9792 /* 9793 * We don't understand this subioctl of ND_GET / ND_SET. 9794 * Maybe intended for some driver / module below us 9795 */ 9796 if (q->q_next) { 9797 putnext(q, mp); 9798 } else { 9799 iocp->ioc_error = ENOENT; 9800 mp->b_datap->db_type = M_IOCNAK; 9801 iocp->ioc_count = 0; 9802 qreply(q, mp); 9803 } 9804 return; 9805 9806 case IP_IOCTL: 9807 ip_wput_ioctl(q, mp); 9808 return; 9809 default: 9810 cmn_err(CE_PANIC, "should not happen "); 9811 } 9812 nak: 9813 if (mp->b_cont != NULL) { 9814 freemsg(mp->b_cont); 9815 mp->b_cont = NULL; 9816 } 9817 iocp->ioc_error = EINVAL; 9818 mp->b_datap->db_type = M_IOCNAK; 9819 iocp->ioc_count = 0; 9820 qreply(q, mp); 9821 } 9822 9823 /* ip_wput hands off ARP IOCTL responses to us */ 9824 void 9825 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9826 { 9827 struct arpreq *ar; 9828 struct xarpreq *xar; 9829 area_t *area; 9830 mblk_t *area_mp; 9831 struct iocblk *iocp; 9832 mblk_t *orig_ioc_mp, *tmp; 9833 struct iocblk *orig_iocp; 9834 ill_t *ill; 9835 conn_t *connp = NULL; 9836 uint_t ioc_id; 9837 mblk_t *pending_mp; 9838 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9839 int *flagsp; 9840 char *storage = NULL; 9841 sin_t *sin; 9842 ipaddr_t addr; 9843 int err; 9844 9845 ill = q->q_ptr; 9846 ASSERT(ill != NULL); 9847 9848 /* 9849 * We should get back from ARP a packet chain that looks like: 9850 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9851 */ 9852 if (!(area_mp = mp->b_cont) || 9853 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9854 !(orig_ioc_mp = area_mp->b_cont) || 9855 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9856 freemsg(mp); 9857 return; 9858 } 9859 9860 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9861 9862 tmp = (orig_ioc_mp->b_cont)->b_cont; 9863 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9864 (orig_iocp->ioc_cmd == SIOCSXARP) || 9865 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9866 x_arp_ioctl = B_TRUE; 9867 xar = (struct xarpreq *)tmp->b_rptr; 9868 sin = (sin_t *)&xar->xarp_pa; 9869 flagsp = &xar->xarp_flags; 9870 storage = xar->xarp_ha.sdl_data; 9871 if (xar->xarp_ha.sdl_nlen != 0) 9872 ifx_arp_ioctl = B_TRUE; 9873 } else { 9874 ar = (struct arpreq *)tmp->b_rptr; 9875 sin = (sin_t *)&ar->arp_pa; 9876 flagsp = &ar->arp_flags; 9877 storage = ar->arp_ha.sa_data; 9878 } 9879 9880 iocp = (struct iocblk *)mp->b_rptr; 9881 9882 /* 9883 * Pick out the originating queue based on the ioc_id. 9884 */ 9885 ioc_id = iocp->ioc_id; 9886 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9887 if (pending_mp == NULL) { 9888 ASSERT(connp == NULL); 9889 inet_freemsg(mp); 9890 return; 9891 } 9892 ASSERT(connp != NULL); 9893 q = CONNP_TO_WQ(connp); 9894 9895 /* Uncouple the internally generated IOCTL from the original one */ 9896 area = (area_t *)area_mp->b_rptr; 9897 area_mp->b_cont = NULL; 9898 9899 /* 9900 * Restore the b_next and b_prev used by mi code. This is needed 9901 * to complete the ioctl using mi* functions. We stored them in 9902 * the pending mp prior to sending the request to ARP. 9903 */ 9904 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9905 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9906 inet_freemsg(pending_mp); 9907 9908 /* 9909 * We're done if there was an error or if this is not an SIOCG{X}ARP 9910 * Catch the case where there is an IRE_CACHE by no entry in the 9911 * arp table. 9912 */ 9913 addr = sin->sin_addr.s_addr; 9914 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9915 ire_t *ire; 9916 dl_unitdata_req_t *dlup; 9917 mblk_t *llmp; 9918 int addr_len; 9919 ill_t *ipsqill = NULL; 9920 9921 if (ifx_arp_ioctl) { 9922 /* 9923 * There's no need to lookup the ill, since 9924 * we've already done that when we started 9925 * processing the ioctl and sent the message 9926 * to ARP on that ill. So use the ill that 9927 * is stored in q->q_ptr. 9928 */ 9929 ipsqill = ill; 9930 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9931 ipsqill->ill_ipif, ALL_ZONES, 9932 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 9933 } else { 9934 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9935 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 9936 if (ire != NULL) 9937 ipsqill = ire_to_ill(ire); 9938 } 9939 9940 if ((x_arp_ioctl) && (ipsqill != NULL)) 9941 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9942 9943 if (ire != NULL) { 9944 *flagsp = ATF_INUSE; 9945 llmp = ire->ire_dlureq_mp; 9946 if (llmp != NULL && ipsqill != NULL) { 9947 uchar_t *macaddr; 9948 9949 addr_len = ipsqill->ill_phys_addr_length; 9950 if (x_arp_ioctl && ((addr_len + 9951 ipsqill->ill_name_length) > 9952 sizeof (xar->xarp_ha.sdl_data))) { 9953 ire_refrele(ire); 9954 freemsg(mp); 9955 ip_ioctl_finish(q, orig_ioc_mp, 9956 EINVAL, NO_COPYOUT, NULL, NULL); 9957 return; 9958 } 9959 *flagsp |= ATF_COM; 9960 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9961 if (ipsqill->ill_sap_length < 0) 9962 macaddr = llmp->b_rptr + 9963 dlup->dl_dest_addr_offset; 9964 else 9965 macaddr = llmp->b_rptr + 9966 dlup->dl_dest_addr_offset + 9967 ipsqill->ill_sap_length; 9968 /* 9969 * For SIOCGARP, MAC address length 9970 * validation has already been done 9971 * before the ioctl was issued to ARP to 9972 * allow it to progress only on 6 byte 9973 * addressable (ethernet like) media. Thus 9974 * the mac address copying can not overwrite 9975 * the sa_data area below. 9976 */ 9977 bcopy(macaddr, storage, addr_len); 9978 } 9979 /* Ditch the internal IOCTL. */ 9980 freemsg(mp); 9981 ire_refrele(ire); 9982 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9983 return; 9984 } 9985 } 9986 9987 /* 9988 * Delete the coresponding IRE_CACHE if any. 9989 * Reset the error if there was one (in case there was no entry 9990 * in arp.) 9991 */ 9992 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9993 ipif_t *ipintf = NULL; 9994 9995 if (ifx_arp_ioctl) { 9996 /* 9997 * There's no need to lookup the ill, since 9998 * we've already done that when we started 9999 * processing the ioctl and sent the message 10000 * to ARP on that ill. So use the ill that 10001 * is stored in q->q_ptr. 10002 */ 10003 ipintf = ill->ill_ipif; 10004 } 10005 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10006 /* 10007 * The address in "addr" may be an entry for a 10008 * router. If that's true, then any off-net 10009 * IRE_CACHE entries that go through the router 10010 * with address "addr" must be clobbered. Use 10011 * ire_walk to achieve this goal. 10012 */ 10013 if (ifx_arp_ioctl) 10014 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10015 ire_delete_cache_gw, (char *)&addr, ill); 10016 else 10017 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10018 ALL_ZONES); 10019 iocp->ioc_error = 0; 10020 } 10021 } 10022 10023 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10024 err = iocp->ioc_error; 10025 freemsg(mp); 10026 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10027 return; 10028 } 10029 10030 /* 10031 * Completion of an SIOCG{X}ARP. Translate the information from 10032 * the area_t into the struct {x}arpreq. 10033 */ 10034 if (x_arp_ioctl) { 10035 storage += ill_xarp_info(&xar->xarp_ha, ill); 10036 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10037 sizeof (xar->xarp_ha.sdl_data)) { 10038 freemsg(mp); 10039 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10040 NO_COPYOUT, NULL, NULL); 10041 return; 10042 } 10043 } 10044 *flagsp = ATF_INUSE; 10045 if (area->area_flags & ACE_F_PERMANENT) 10046 *flagsp |= ATF_PERM; 10047 if (area->area_flags & ACE_F_PUBLISH) 10048 *flagsp |= ATF_PUBL; 10049 if (area->area_hw_addr_length != 0) { 10050 *flagsp |= ATF_COM; 10051 /* 10052 * For SIOCGARP, MAC address length validation has 10053 * already been done before the ioctl was issued to ARP 10054 * to allow it to progress only on 6 byte addressable 10055 * (ethernet like) media. Thus the mac address copying 10056 * can not overwrite the sa_data area below. 10057 */ 10058 bcopy((char *)area + area->area_hw_addr_offset, 10059 storage, area->area_hw_addr_length); 10060 } 10061 10062 /* Ditch the internal IOCTL. */ 10063 freemsg(mp); 10064 /* Complete the original. */ 10065 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10066 } 10067 10068 /* 10069 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10070 * interface) create the next available logical interface for this 10071 * physical interface. 10072 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10073 * ipif with the specified name. 10074 * 10075 * If the address family is not AF_UNSPEC then set the address as well. 10076 * 10077 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10078 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10079 * 10080 * Executed as a writer on the ill or ill group. 10081 * So no lock is needed to traverse the ipif chain, or examine the 10082 * phyint flags. 10083 */ 10084 /* ARGSUSED */ 10085 int 10086 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10087 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10088 { 10089 mblk_t *mp1; 10090 struct lifreq *lifr; 10091 boolean_t isv6; 10092 boolean_t exists; 10093 char *name; 10094 char *endp; 10095 char *cp; 10096 int namelen; 10097 ipif_t *ipif; 10098 long id; 10099 ipsq_t *ipsq; 10100 ill_t *ill; 10101 sin_t *sin; 10102 int err = 0; 10103 boolean_t found_sep = B_FALSE; 10104 conn_t *connp; 10105 zoneid_t zoneid; 10106 int orig_ifindex = 0; 10107 10108 ip1dbg(("ip_sioctl_addif\n")); 10109 /* Existence of mp1 has been checked in ip_wput_nondata */ 10110 mp1 = mp->b_cont->b_cont; 10111 /* 10112 * Null terminate the string to protect against buffer 10113 * overrun. String was generated by user code and may not 10114 * be trusted. 10115 */ 10116 lifr = (struct lifreq *)mp1->b_rptr; 10117 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10118 name = lifr->lifr_name; 10119 ASSERT(CONN_Q(q)); 10120 connp = Q_TO_CONN(q); 10121 isv6 = connp->conn_af_isv6; 10122 zoneid = connp->conn_zoneid; 10123 namelen = mi_strlen(name); 10124 if (namelen == 0) 10125 return (EINVAL); 10126 10127 exists = B_FALSE; 10128 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10129 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10130 /* 10131 * Allow creating lo0 using SIOCLIFADDIF. 10132 * can't be any other writer thread. So can pass null below 10133 * for the last 4 args to ipif_lookup_name. 10134 */ 10135 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10136 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10137 /* Prevent any further action */ 10138 if (ipif == NULL) { 10139 return (ENOBUFS); 10140 } else if (!exists) { 10141 /* We created the ipif now and as writer */ 10142 ipif_refrele(ipif); 10143 return (0); 10144 } else { 10145 ill = ipif->ipif_ill; 10146 ill_refhold(ill); 10147 ipif_refrele(ipif); 10148 } 10149 } else { 10150 /* Look for a colon in the name. */ 10151 endp = &name[namelen]; 10152 for (cp = endp; --cp > name; ) { 10153 if (*cp == IPIF_SEPARATOR_CHAR) { 10154 found_sep = B_TRUE; 10155 /* 10156 * Reject any non-decimal aliases for plumbing 10157 * of logical interfaces. Aliases with leading 10158 * zeroes are also rejected as they introduce 10159 * ambiguity in the naming of the interfaces. 10160 * Comparing with "0" takes care of all such 10161 * cases. 10162 */ 10163 if ((strncmp("0", cp+1, 1)) == 0) 10164 return (EINVAL); 10165 10166 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10167 id <= 0 || *endp != '\0') { 10168 return (EINVAL); 10169 } 10170 *cp = '\0'; 10171 break; 10172 } 10173 } 10174 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10175 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10176 if (found_sep) 10177 *cp = IPIF_SEPARATOR_CHAR; 10178 if (ill == NULL) 10179 return (err); 10180 } 10181 10182 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10183 B_TRUE); 10184 10185 /* 10186 * Release the refhold due to the lookup, now that we are excl 10187 * or we are just returning 10188 */ 10189 ill_refrele(ill); 10190 10191 if (ipsq == NULL) 10192 return (EINPROGRESS); 10193 10194 /* 10195 * If the interface is failed, inactive or offlined, look for a working 10196 * interface in the ill group and create the ipif there. If we can't 10197 * find a good interface, create the ipif anyway so that in.mpathd can 10198 * move it to the first repaired interface. 10199 */ 10200 if ((ill->ill_phyint->phyint_flags & 10201 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10202 ill->ill_phyint->phyint_groupname_len != 0) { 10203 phyint_t *phyi; 10204 char *groupname = ill->ill_phyint->phyint_groupname; 10205 10206 /* 10207 * We're looking for a working interface, but it doesn't matter 10208 * if it's up or down; so instead of following the group lists, 10209 * we look at each physical interface and compare the groupname. 10210 * We're only interested in interfaces with IPv4 (resp. IPv6) 10211 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10212 * Otherwise we create the ipif on the failed interface. 10213 */ 10214 rw_enter(&ill_g_lock, RW_READER); 10215 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10216 for (; phyi != NULL; 10217 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10218 phyi, AVL_AFTER)) { 10219 if (phyi->phyint_groupname_len == 0) 10220 continue; 10221 ASSERT(phyi->phyint_groupname != NULL); 10222 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10223 !(phyi->phyint_flags & 10224 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10225 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10226 (phyi->phyint_illv4 != NULL))) { 10227 break; 10228 } 10229 } 10230 rw_exit(&ill_g_lock); 10231 10232 if (phyi != NULL) { 10233 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10234 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10235 phyi->phyint_illv4); 10236 } 10237 } 10238 10239 /* 10240 * We are now exclusive on the ipsq, so an ill move will be serialized 10241 * before or after us. 10242 */ 10243 ASSERT(IAM_WRITER_ILL(ill)); 10244 ASSERT(ill->ill_move_in_progress == B_FALSE); 10245 10246 if (found_sep && orig_ifindex == 0) { 10247 /* Now see if there is an IPIF with this unit number. */ 10248 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10249 if (ipif->ipif_id == id) { 10250 err = EEXIST; 10251 goto done; 10252 } 10253 } 10254 } 10255 10256 /* 10257 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10258 * of lo0. We never come here when we plumb lo0:0. It 10259 * happens in ipif_lookup_on_name. 10260 * The specified unit number is ignored when we create the ipif on a 10261 * different interface. However, we save it in ipif_orig_ipifid below so 10262 * that the ipif fails back to the right position. 10263 */ 10264 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10265 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10266 err = ENOBUFS; 10267 goto done; 10268 } 10269 10270 /* Return created name with ioctl */ 10271 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10272 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10273 ip1dbg(("created %s\n", lifr->lifr_name)); 10274 10275 /* Set address */ 10276 sin = (sin_t *)&lifr->lifr_addr; 10277 if (sin->sin_family != AF_UNSPEC) { 10278 err = ip_sioctl_addr(ipif, sin, q, mp, 10279 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10280 } 10281 10282 /* Set ifindex and unit number for failback */ 10283 if (err == 0 && orig_ifindex != 0) { 10284 ipif->ipif_orig_ifindex = orig_ifindex; 10285 if (found_sep) { 10286 ipif->ipif_orig_ipifid = id; 10287 } 10288 } 10289 10290 done: 10291 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10292 return (err); 10293 } 10294 10295 /* 10296 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10297 * interface) delete it based on the IP address (on this physical interface). 10298 * Otherwise delete it based on the ipif_id. 10299 * Also, special handling to allow a removeif of lo0. 10300 */ 10301 /* ARGSUSED */ 10302 int 10303 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10304 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10305 { 10306 conn_t *connp; 10307 ill_t *ill = ipif->ipif_ill; 10308 boolean_t success; 10309 10310 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10311 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10312 ASSERT(IAM_WRITER_IPIF(ipif)); 10313 10314 connp = Q_TO_CONN(q); 10315 /* 10316 * Special case for unplumbing lo0 (the loopback physical interface). 10317 * If unplumbing lo0, the incoming address structure has been 10318 * initialized to all zeros. When unplumbing lo0, all its logical 10319 * interfaces must be removed too. 10320 * 10321 * Note that this interface may be called to remove a specific 10322 * loopback logical interface (eg, lo0:1). But in that case 10323 * ipif->ipif_id != 0 so that the code path for that case is the 10324 * same as any other interface (meaning it skips the code directly 10325 * below). 10326 */ 10327 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10328 if (sin->sin_family == AF_UNSPEC && 10329 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10330 /* 10331 * Mark it condemned. No new ref. will be made to ill. 10332 */ 10333 mutex_enter(&ill->ill_lock); 10334 ill->ill_state_flags |= ILL_CONDEMNED; 10335 for (ipif = ill->ill_ipif; ipif != NULL; 10336 ipif = ipif->ipif_next) { 10337 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10338 } 10339 mutex_exit(&ill->ill_lock); 10340 10341 ipif = ill->ill_ipif; 10342 /* unplumb the loopback interface */ 10343 ill_delete(ill); 10344 mutex_enter(&connp->conn_lock); 10345 mutex_enter(&ill->ill_lock); 10346 ASSERT(ill->ill_group == NULL); 10347 10348 /* Are any references to this ill active */ 10349 if (ill_is_quiescent(ill)) { 10350 mutex_exit(&ill->ill_lock); 10351 mutex_exit(&connp->conn_lock); 10352 ill_delete_tail(ill); 10353 mi_free(ill); 10354 return (0); 10355 } 10356 success = ipsq_pending_mp_add(connp, ipif, 10357 CONNP_TO_WQ(connp), mp, ILL_FREE); 10358 mutex_exit(&connp->conn_lock); 10359 mutex_exit(&ill->ill_lock); 10360 if (success) 10361 return (EINPROGRESS); 10362 else 10363 return (EINTR); 10364 } 10365 } 10366 10367 /* 10368 * We are exclusive on the ipsq, so an ill move will be serialized 10369 * before or after us. 10370 */ 10371 ASSERT(ill->ill_move_in_progress == B_FALSE); 10372 10373 if (ipif->ipif_id == 0) { 10374 /* Find based on address */ 10375 if (ipif->ipif_isv6) { 10376 sin6_t *sin6; 10377 10378 if (sin->sin_family != AF_INET6) 10379 return (EAFNOSUPPORT); 10380 10381 sin6 = (sin6_t *)sin; 10382 /* We are a writer, so we should be able to lookup */ 10383 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10384 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10385 if (ipif == NULL) { 10386 /* 10387 * Maybe the address in on another interface in 10388 * the same IPMP group? We check this below. 10389 */ 10390 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10391 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10392 } 10393 } else { 10394 ipaddr_t addr; 10395 10396 if (sin->sin_family != AF_INET) 10397 return (EAFNOSUPPORT); 10398 10399 addr = sin->sin_addr.s_addr; 10400 /* We are a writer, so we should be able to lookup */ 10401 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10402 NULL, NULL, NULL); 10403 if (ipif == NULL) { 10404 /* 10405 * Maybe the address in on another interface in 10406 * the same IPMP group? We check this below. 10407 */ 10408 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10409 NULL, NULL, NULL, NULL); 10410 } 10411 } 10412 if (ipif == NULL) { 10413 return (EADDRNOTAVAIL); 10414 } 10415 /* 10416 * When the address to be removed is hosted on a different 10417 * interface, we check if the interface is in the same IPMP 10418 * group as the specified one; if so we proceed with the 10419 * removal. 10420 * ill->ill_group is NULL when the ill is down, so we have to 10421 * compare the group names instead. 10422 */ 10423 if (ipif->ipif_ill != ill && 10424 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10425 ill->ill_phyint->phyint_groupname_len == 0 || 10426 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10427 ill->ill_phyint->phyint_groupname) != 0)) { 10428 ipif_refrele(ipif); 10429 return (EADDRNOTAVAIL); 10430 } 10431 10432 /* This is a writer */ 10433 ipif_refrele(ipif); 10434 } 10435 10436 /* 10437 * Can not delete instance zero since it is tied to the ill. 10438 */ 10439 if (ipif->ipif_id == 0) 10440 return (EBUSY); 10441 10442 mutex_enter(&ill->ill_lock); 10443 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10444 mutex_exit(&ill->ill_lock); 10445 10446 ipif_free(ipif); 10447 10448 mutex_enter(&connp->conn_lock); 10449 mutex_enter(&ill->ill_lock); 10450 10451 /* Are any references to this ipif active */ 10452 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10453 mutex_exit(&ill->ill_lock); 10454 mutex_exit(&connp->conn_lock); 10455 ipif_down_tail(ipif); 10456 ipif_free_tail(ipif); 10457 return (0); 10458 } 10459 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10460 IPIF_FREE); 10461 mutex_exit(&ill->ill_lock); 10462 mutex_exit(&connp->conn_lock); 10463 if (success) 10464 return (EINPROGRESS); 10465 else 10466 return (EINTR); 10467 } 10468 10469 /* 10470 * Restart the removeif ioctl. The refcnt has gone down to 0. 10471 * The ipif is already condemned. So can't find it thru lookups. 10472 */ 10473 /* ARGSUSED */ 10474 int 10475 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10476 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10477 { 10478 ill_t *ill; 10479 10480 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10481 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10482 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10483 ill = ipif->ipif_ill; 10484 ASSERT(IAM_WRITER_ILL(ill)); 10485 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10486 (ill->ill_state_flags & IPIF_CONDEMNED)); 10487 ill_delete_tail(ill); 10488 mi_free(ill); 10489 return (0); 10490 } 10491 10492 ill = ipif->ipif_ill; 10493 ASSERT(IAM_WRITER_IPIF(ipif)); 10494 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10495 10496 ipif_down_tail(ipif); 10497 ipif_free_tail(ipif); 10498 10499 ILL_UNMARK_CHANGING(ill); 10500 return (0); 10501 } 10502 10503 /* 10504 * Set the local interface address. 10505 * Allow an address of all zero when the interface is down. 10506 */ 10507 /* ARGSUSED */ 10508 int 10509 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10510 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10511 { 10512 int err = 0; 10513 in6_addr_t v6addr; 10514 boolean_t need_up = B_FALSE; 10515 10516 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10517 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10518 10519 ASSERT(IAM_WRITER_IPIF(ipif)); 10520 10521 if (ipif->ipif_isv6) { 10522 sin6_t *sin6; 10523 ill_t *ill; 10524 phyint_t *phyi; 10525 10526 if (sin->sin_family != AF_INET6) 10527 return (EAFNOSUPPORT); 10528 10529 sin6 = (sin6_t *)sin; 10530 v6addr = sin6->sin6_addr; 10531 ill = ipif->ipif_ill; 10532 phyi = ill->ill_phyint; 10533 10534 /* 10535 * Enforce that true multicast interfaces have a link-local 10536 * address for logical unit 0. 10537 */ 10538 if (ipif->ipif_id == 0 && 10539 (ill->ill_flags & ILLF_MULTICAST) && 10540 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10541 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10542 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10543 return (EADDRNOTAVAIL); 10544 } 10545 10546 /* 10547 * up interfaces shouldn't have the unspecified address 10548 * unless they also have the IPIF_NOLOCAL flags set and 10549 * have a subnet assigned. 10550 */ 10551 if ((ipif->ipif_flags & IPIF_UP) && 10552 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10553 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10554 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10555 return (EADDRNOTAVAIL); 10556 } 10557 10558 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10559 return (EADDRNOTAVAIL); 10560 } else { 10561 ipaddr_t addr; 10562 10563 if (sin->sin_family != AF_INET) 10564 return (EAFNOSUPPORT); 10565 10566 addr = sin->sin_addr.s_addr; 10567 10568 /* Allow 0 as the local address. */ 10569 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10570 return (EADDRNOTAVAIL); 10571 10572 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10573 } 10574 10575 10576 /* 10577 * Even if there is no change we redo things just to rerun 10578 * ipif_set_default. 10579 */ 10580 if (ipif->ipif_flags & IPIF_UP) { 10581 /* 10582 * Setting a new local address, make sure 10583 * we have net and subnet bcast ire's for 10584 * the old address if we need them. 10585 */ 10586 if (!ipif->ipif_isv6) 10587 ipif_check_bcast_ires(ipif); 10588 /* 10589 * If the interface is already marked up, 10590 * we call ipif_down which will take care 10591 * of ditching any IREs that have been set 10592 * up based on the old interface address. 10593 */ 10594 err = ipif_logical_down(ipif, q, mp); 10595 if (err == EINPROGRESS) 10596 return (err); 10597 ipif_down_tail(ipif); 10598 need_up = 1; 10599 } 10600 10601 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10602 return (err); 10603 } 10604 10605 int 10606 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10607 boolean_t need_up) 10608 { 10609 in6_addr_t v6addr; 10610 ipaddr_t addr; 10611 sin6_t *sin6; 10612 int err = 0; 10613 10614 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10615 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10616 ASSERT(IAM_WRITER_IPIF(ipif)); 10617 if (ipif->ipif_isv6) { 10618 sin6 = (sin6_t *)sin; 10619 v6addr = sin6->sin6_addr; 10620 } else { 10621 addr = sin->sin_addr.s_addr; 10622 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10623 } 10624 mutex_enter(&ipif->ipif_ill->ill_lock); 10625 ipif->ipif_v6lcl_addr = v6addr; 10626 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10627 ipif->ipif_v6src_addr = ipv6_all_zeros; 10628 } else { 10629 ipif->ipif_v6src_addr = v6addr; 10630 } 10631 10632 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10633 (!ipif->ipif_ill->ill_is_6to4tun)) { 10634 queue_t *wqp = ipif->ipif_ill->ill_wq; 10635 10636 /* 10637 * The local address of this interface is a 6to4 address, 10638 * check if this interface is in fact a 6to4 tunnel or just 10639 * an interface configured with a 6to4 address. We are only 10640 * interested in the former. 10641 */ 10642 if (wqp != NULL) { 10643 while ((wqp->q_next != NULL) && 10644 (wqp->q_next->q_qinfo != NULL) && 10645 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10646 10647 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10648 == TUN6TO4_MODID) { 10649 /* set for use in IP */ 10650 ipif->ipif_ill->ill_is_6to4tun = 1; 10651 break; 10652 } 10653 wqp = wqp->q_next; 10654 } 10655 } 10656 } 10657 10658 ipif_set_default(ipif); 10659 mutex_exit(&ipif->ipif_ill->ill_lock); 10660 10661 if (need_up) { 10662 /* 10663 * Now bring the interface back up. If this 10664 * is the only IPIF for the ILL, ipif_up 10665 * will have to re-bind to the device, so 10666 * we may get back EINPROGRESS, in which 10667 * case, this IOCTL will get completed in 10668 * ip_rput_dlpi when we see the DL_BIND_ACK. 10669 */ 10670 err = ipif_up(ipif, q, mp); 10671 } else { 10672 /* 10673 * Update the IPIF list in SCTP, ipif_up_done() will do it 10674 * if need_up is true. 10675 */ 10676 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10677 } 10678 10679 return (err); 10680 } 10681 10682 10683 /* 10684 * Restart entry point to restart the address set operation after the 10685 * refcounts have dropped to zero. 10686 */ 10687 /* ARGSUSED */ 10688 int 10689 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10690 ip_ioctl_cmd_t *ipip, void *ifreq) 10691 { 10692 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10693 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10694 ASSERT(IAM_WRITER_IPIF(ipif)); 10695 ipif_down_tail(ipif); 10696 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10697 } 10698 10699 /* ARGSUSED */ 10700 int 10701 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10702 ip_ioctl_cmd_t *ipip, void *if_req) 10703 { 10704 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10705 struct lifreq *lifr = (struct lifreq *)if_req; 10706 10707 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10708 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10709 /* 10710 * The net mask and address can't change since we have a 10711 * reference to the ipif. So no lock is necessary. 10712 */ 10713 if (ipif->ipif_isv6) { 10714 *sin6 = sin6_null; 10715 sin6->sin6_family = AF_INET6; 10716 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10717 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10718 lifr->lifr_addrlen = 10719 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10720 } else { 10721 *sin = sin_null; 10722 sin->sin_family = AF_INET; 10723 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10724 if (ipip->ipi_cmd_type == LIF_CMD) { 10725 lifr->lifr_addrlen = 10726 ip_mask_to_plen(ipif->ipif_net_mask); 10727 } 10728 } 10729 return (0); 10730 } 10731 10732 /* 10733 * Set the destination address for a pt-pt interface. 10734 */ 10735 /* ARGSUSED */ 10736 int 10737 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10738 ip_ioctl_cmd_t *ipip, void *if_req) 10739 { 10740 int err = 0; 10741 in6_addr_t v6addr; 10742 boolean_t need_up = B_FALSE; 10743 10744 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10745 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10746 ASSERT(IAM_WRITER_IPIF(ipif)); 10747 10748 if (ipif->ipif_isv6) { 10749 sin6_t *sin6; 10750 10751 if (sin->sin_family != AF_INET6) 10752 return (EAFNOSUPPORT); 10753 10754 sin6 = (sin6_t *)sin; 10755 v6addr = sin6->sin6_addr; 10756 10757 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10758 return (EADDRNOTAVAIL); 10759 } else { 10760 ipaddr_t addr; 10761 10762 if (sin->sin_family != AF_INET) 10763 return (EAFNOSUPPORT); 10764 10765 addr = sin->sin_addr.s_addr; 10766 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10767 return (EADDRNOTAVAIL); 10768 10769 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10770 } 10771 10772 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10773 return (0); /* No change */ 10774 10775 if (ipif->ipif_flags & IPIF_UP) { 10776 /* 10777 * If the interface is already marked up, 10778 * we call ipif_down which will take care 10779 * of ditching any IREs that have been set 10780 * up based on the old pp dst address. 10781 */ 10782 err = ipif_logical_down(ipif, q, mp); 10783 if (err == EINPROGRESS) 10784 return (err); 10785 ipif_down_tail(ipif); 10786 need_up = B_TRUE; 10787 } 10788 /* 10789 * could return EINPROGRESS. If so ioctl will complete in 10790 * ip_rput_dlpi_writer 10791 */ 10792 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10793 return (err); 10794 } 10795 10796 static int 10797 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10798 boolean_t need_up) 10799 { 10800 in6_addr_t v6addr; 10801 ill_t *ill = ipif->ipif_ill; 10802 int err = 0; 10803 10804 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10805 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10806 if (ipif->ipif_isv6) { 10807 sin6_t *sin6; 10808 10809 sin6 = (sin6_t *)sin; 10810 v6addr = sin6->sin6_addr; 10811 } else { 10812 ipaddr_t addr; 10813 10814 addr = sin->sin_addr.s_addr; 10815 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10816 } 10817 mutex_enter(&ill->ill_lock); 10818 /* Set point to point destination address. */ 10819 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10820 /* 10821 * Allow this as a means of creating logical 10822 * pt-pt interfaces on top of e.g. an Ethernet. 10823 * XXX Undocumented HACK for testing. 10824 * pt-pt interfaces are created with NUD disabled. 10825 */ 10826 ipif->ipif_flags |= IPIF_POINTOPOINT; 10827 ipif->ipif_flags &= ~IPIF_BROADCAST; 10828 if (ipif->ipif_isv6) 10829 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10830 } 10831 10832 /* Set the new address. */ 10833 ipif->ipif_v6pp_dst_addr = v6addr; 10834 /* Make sure subnet tracks pp_dst */ 10835 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10836 mutex_exit(&ill->ill_lock); 10837 10838 if (need_up) { 10839 /* 10840 * Now bring the interface back up. If this 10841 * is the only IPIF for the ILL, ipif_up 10842 * will have to re-bind to the device, so 10843 * we may get back EINPROGRESS, in which 10844 * case, this IOCTL will get completed in 10845 * ip_rput_dlpi when we see the DL_BIND_ACK. 10846 */ 10847 err = ipif_up(ipif, q, mp); 10848 } 10849 return (err); 10850 } 10851 10852 /* 10853 * Restart entry point to restart the dstaddress set operation after the 10854 * refcounts have dropped to zero. 10855 */ 10856 /* ARGSUSED */ 10857 int 10858 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10859 ip_ioctl_cmd_t *ipip, void *ifreq) 10860 { 10861 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10862 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10863 ipif_down_tail(ipif); 10864 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10865 } 10866 10867 /* ARGSUSED */ 10868 int 10869 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10870 ip_ioctl_cmd_t *ipip, void *if_req) 10871 { 10872 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10873 10874 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10875 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10876 /* 10877 * Get point to point destination address. The addresses can't 10878 * change since we hold a reference to the ipif. 10879 */ 10880 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10881 return (EADDRNOTAVAIL); 10882 10883 if (ipif->ipif_isv6) { 10884 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10885 *sin6 = sin6_null; 10886 sin6->sin6_family = AF_INET6; 10887 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10888 } else { 10889 *sin = sin_null; 10890 sin->sin_family = AF_INET; 10891 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10892 } 10893 return (0); 10894 } 10895 10896 /* 10897 * part of ipmp, make this func return the active/inactive state and 10898 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10899 */ 10900 /* 10901 * This function either sets or clears the IFF_INACTIVE flag. 10902 * 10903 * As long as there are some addresses or multicast memberships on the 10904 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10905 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10906 * will be used for outbound packets. 10907 * 10908 * Caller needs to verify the validity of setting IFF_INACTIVE. 10909 */ 10910 static void 10911 phyint_inactive(phyint_t *phyi) 10912 { 10913 ill_t *ill_v4; 10914 ill_t *ill_v6; 10915 ipif_t *ipif; 10916 ilm_t *ilm; 10917 10918 ill_v4 = phyi->phyint_illv4; 10919 ill_v6 = phyi->phyint_illv6; 10920 10921 /* 10922 * No need for a lock while traversing the list since iam 10923 * a writer 10924 */ 10925 if (ill_v4 != NULL) { 10926 ASSERT(IAM_WRITER_ILL(ill_v4)); 10927 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10928 ipif = ipif->ipif_next) { 10929 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10930 mutex_enter(&phyi->phyint_lock); 10931 phyi->phyint_flags &= ~PHYI_INACTIVE; 10932 mutex_exit(&phyi->phyint_lock); 10933 return; 10934 } 10935 } 10936 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10937 ilm = ilm->ilm_next) { 10938 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10939 mutex_enter(&phyi->phyint_lock); 10940 phyi->phyint_flags &= ~PHYI_INACTIVE; 10941 mutex_exit(&phyi->phyint_lock); 10942 return; 10943 } 10944 } 10945 } 10946 if (ill_v6 != NULL) { 10947 ill_v6 = phyi->phyint_illv6; 10948 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10949 ipif = ipif->ipif_next) { 10950 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10951 mutex_enter(&phyi->phyint_lock); 10952 phyi->phyint_flags &= ~PHYI_INACTIVE; 10953 mutex_exit(&phyi->phyint_lock); 10954 return; 10955 } 10956 } 10957 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10958 ilm = ilm->ilm_next) { 10959 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10960 mutex_enter(&phyi->phyint_lock); 10961 phyi->phyint_flags &= ~PHYI_INACTIVE; 10962 mutex_exit(&phyi->phyint_lock); 10963 return; 10964 } 10965 } 10966 } 10967 mutex_enter(&phyi->phyint_lock); 10968 phyi->phyint_flags |= PHYI_INACTIVE; 10969 mutex_exit(&phyi->phyint_lock); 10970 } 10971 10972 /* 10973 * This function is called only when the phyint flags change. Currently 10974 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10975 * that we can select a good ill. 10976 */ 10977 static void 10978 ip_redo_nomination(phyint_t *phyi) 10979 { 10980 ill_t *ill_v4; 10981 10982 ill_v4 = phyi->phyint_illv4; 10983 10984 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10985 ASSERT(IAM_WRITER_ILL(ill_v4)); 10986 if (ill_v4->ill_group->illgrp_ill_count > 1) 10987 ill_nominate_bcast_rcv(ill_v4->ill_group); 10988 } 10989 } 10990 10991 /* 10992 * Heuristic to check if ill is INACTIVE. 10993 * Checks if ill has an ipif with an usable ip address. 10994 * 10995 * Return values: 10996 * B_TRUE - ill is INACTIVE; has no usable ipif 10997 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 10998 */ 10999 static boolean_t 11000 ill_is_inactive(ill_t *ill) 11001 { 11002 ipif_t *ipif; 11003 11004 /* Check whether it is in an IPMP group */ 11005 if (ill->ill_phyint->phyint_groupname == NULL) 11006 return (B_FALSE); 11007 11008 if (ill->ill_ipif_up_count == 0) 11009 return (B_TRUE); 11010 11011 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11012 uint64_t flags = ipif->ipif_flags; 11013 11014 /* 11015 * This ipif is usable if it is IPIF_UP and not a 11016 * dedicated test address. A dedicated test address 11017 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11018 * (note in particular that V6 test addresses are 11019 * link-local data addresses and thus are marked 11020 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11021 */ 11022 if ((flags & IPIF_UP) && 11023 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11024 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11025 return (B_FALSE); 11026 } 11027 return (B_TRUE); 11028 } 11029 11030 /* 11031 * Set interface flags. 11032 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11033 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11034 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11035 * 11036 * NOTE : We really don't enforce that ipif_id zero should be used 11037 * for setting any flags other than IFF_LOGINT_FLAGS. This 11038 * is because applications generally does SICGLIFFLAGS and 11039 * ORs in the new flags (that affects the logical) and does a 11040 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11041 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11042 * flags that will be turned on is correct with respect to 11043 * ipif_id 0. For backward compatibility reasons, it is not done. 11044 */ 11045 /* ARGSUSED */ 11046 int 11047 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11048 ip_ioctl_cmd_t *ipip, void *if_req) 11049 { 11050 uint64_t turn_on; 11051 uint64_t turn_off; 11052 int err; 11053 boolean_t need_up = B_FALSE; 11054 phyint_t *phyi; 11055 ill_t *ill; 11056 uint64_t intf_flags; 11057 boolean_t phyint_flags_modified = B_FALSE; 11058 uint64_t flags; 11059 struct ifreq *ifr; 11060 struct lifreq *lifr; 11061 boolean_t set_linklocal = B_FALSE; 11062 boolean_t zero_source = B_FALSE; 11063 11064 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11065 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11066 11067 ASSERT(IAM_WRITER_IPIF(ipif)); 11068 11069 ill = ipif->ipif_ill; 11070 phyi = ill->ill_phyint; 11071 11072 if (ipip->ipi_cmd_type == IF_CMD) { 11073 ifr = (struct ifreq *)if_req; 11074 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11075 } else { 11076 lifr = (struct lifreq *)if_req; 11077 flags = lifr->lifr_flags; 11078 } 11079 11080 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11081 11082 /* 11083 * Has the flags been set correctly till now ? 11084 */ 11085 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11086 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11087 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11088 /* 11089 * Compare the new flags to the old, and partition 11090 * into those coming on and those going off. 11091 * For the 16 bit command keep the bits above bit 16 unchanged. 11092 */ 11093 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11094 flags |= intf_flags & ~0xFFFF; 11095 11096 /* 11097 * First check which bits will change and then which will 11098 * go on and off 11099 */ 11100 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11101 if (!turn_on) 11102 return (0); /* No change */ 11103 11104 turn_off = intf_flags & turn_on; 11105 turn_on ^= turn_off; 11106 err = 0; 11107 11108 /* 11109 * Don't allow any bits belonging to the logical interface 11110 * to be set or cleared on the replacement ipif that was 11111 * created temporarily during a MOVE. 11112 */ 11113 if (ipif->ipif_replace_zero && 11114 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11115 return (EINVAL); 11116 } 11117 11118 /* 11119 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11120 * IPv6 interfaces. 11121 */ 11122 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11123 return (EINVAL); 11124 11125 /* 11126 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11127 * interfaces. It makes no sense in that context. 11128 */ 11129 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11130 return (EINVAL); 11131 11132 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11133 zero_source = B_TRUE; 11134 11135 /* 11136 * For IPv6 ipif_id 0, don't allow the interface to be up without 11137 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11138 * If the link local address isn't set, and can be set, it will get 11139 * set later on in this function. 11140 */ 11141 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11142 (flags & IFF_UP) && !zero_source && 11143 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11144 if (ipif_cant_setlinklocal(ipif)) 11145 return (EINVAL); 11146 set_linklocal = B_TRUE; 11147 } 11148 11149 /* 11150 * ILL cannot be part of a usesrc group and and IPMP group at the 11151 * same time. No need to grab ill_g_usesrc_lock here, see 11152 * synchronization notes in ip.c 11153 */ 11154 if (turn_on & PHYI_STANDBY && 11155 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11156 return (EINVAL); 11157 } 11158 11159 /* 11160 * If we modify physical interface flags, we'll potentially need to 11161 * send up two routing socket messages for the changes (one for the 11162 * IPv4 ill, and another for the IPv6 ill). Note that here. 11163 */ 11164 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11165 phyint_flags_modified = B_TRUE; 11166 11167 /* 11168 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11169 * we need to flush the IRE_CACHES belonging to this ill. 11170 * We handle this case here without doing the DOWN/UP dance 11171 * like it is done for other flags. If some other flags are 11172 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11173 * below will handle it by bringing it down and then 11174 * bringing it UP. 11175 */ 11176 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11177 ill_t *ill_v4, *ill_v6; 11178 11179 ill_v4 = phyi->phyint_illv4; 11180 ill_v6 = phyi->phyint_illv6; 11181 11182 /* 11183 * First set the INACTIVE flag if needed. Then delete the ires. 11184 * ire_add will atomically prevent creating new IRE_CACHEs 11185 * unless hidden flag is set. 11186 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11187 */ 11188 if ((turn_on & PHYI_FAILED) && 11189 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11190 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11191 phyi->phyint_flags &= ~PHYI_INACTIVE; 11192 } 11193 if ((turn_off & PHYI_FAILED) && 11194 ((intf_flags & PHYI_STANDBY) || 11195 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11196 phyint_inactive(phyi); 11197 } 11198 11199 if (turn_on & PHYI_STANDBY) { 11200 /* 11201 * We implicitly set INACTIVE only when STANDBY is set. 11202 * INACTIVE is also set on non-STANDBY phyint when user 11203 * disables FAILBACK using configuration file. 11204 * Do not allow STANDBY to be set on such INACTIVE 11205 * phyint 11206 */ 11207 if (phyi->phyint_flags & PHYI_INACTIVE) 11208 return (EINVAL); 11209 if (!(phyi->phyint_flags & PHYI_FAILED)) 11210 phyint_inactive(phyi); 11211 } 11212 if (turn_off & PHYI_STANDBY) { 11213 if (ipmp_enable_failback) { 11214 /* 11215 * Reset PHYI_INACTIVE. 11216 */ 11217 phyi->phyint_flags &= ~PHYI_INACTIVE; 11218 } else if (ill_is_inactive(ill) && 11219 !(phyi->phyint_flags & PHYI_FAILED)) { 11220 /* 11221 * Need to set INACTIVE, when user sets 11222 * STANDBY on a non-STANDBY phyint and 11223 * later resets STANDBY 11224 */ 11225 phyint_inactive(phyi); 11226 } 11227 } 11228 /* 11229 * We should always send up a message so that the 11230 * daemons come to know of it. Note that the zeroth 11231 * interface can be down and the check below for IPIF_UP 11232 * will not make sense as we are actually setting 11233 * a phyint flag here. We assume that the ipif used 11234 * is always the zeroth ipif. (ip_rts_ifmsg does not 11235 * send up any message for non-zero ipifs). 11236 */ 11237 phyint_flags_modified = B_TRUE; 11238 11239 if (ill_v4 != NULL) { 11240 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11241 IRE_CACHE, ill_stq_cache_delete, 11242 (char *)ill_v4, ill_v4); 11243 illgrp_reset_schednext(ill_v4); 11244 } 11245 if (ill_v6 != NULL) { 11246 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11247 IRE_CACHE, ill_stq_cache_delete, 11248 (char *)ill_v6, ill_v6); 11249 illgrp_reset_schednext(ill_v6); 11250 } 11251 } 11252 11253 /* 11254 * If ILLF_ROUTER changes, we need to change the ip forwarding 11255 * status of the interface and, if the interface is part of an IPMP 11256 * group, all other interfaces that are part of the same IPMP 11257 * group. 11258 */ 11259 if ((turn_on | turn_off) & ILLF_ROUTER) { 11260 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11261 (caddr_t)ill); 11262 } 11263 11264 /* 11265 * If the interface is not UP and we are not going to 11266 * bring it UP, record the flags and return. When the 11267 * interface comes UP later, the right actions will be 11268 * taken. 11269 */ 11270 if (!(ipif->ipif_flags & IPIF_UP) && 11271 !(turn_on & IPIF_UP)) { 11272 /* Record new flags in their respective places. */ 11273 mutex_enter(&ill->ill_lock); 11274 mutex_enter(&ill->ill_phyint->phyint_lock); 11275 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11276 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11277 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11278 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11279 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11280 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11281 mutex_exit(&ill->ill_lock); 11282 mutex_exit(&ill->ill_phyint->phyint_lock); 11283 11284 /* 11285 * We do the broadcast and nomination here rather 11286 * than waiting for a FAILOVER/FAILBACK to happen. In 11287 * the case of FAILBACK from INACTIVE standby to the 11288 * interface that has been repaired, PHYI_FAILED has not 11289 * been cleared yet. If there are only two interfaces in 11290 * that group, all we have is a FAILED and INACTIVE 11291 * interface. If we do the nomination soon after a failback, 11292 * the broadcast nomination code would select the 11293 * INACTIVE interface for receiving broadcasts as FAILED is 11294 * not yet cleared. As we don't want STANDBY/INACTIVE to 11295 * receive broadcast packets, we need to redo nomination 11296 * when the FAILED is cleared here. Thus, in general we 11297 * always do the nomination here for FAILED, STANDBY 11298 * and OFFLINE. 11299 */ 11300 if (((turn_on | turn_off) & 11301 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11302 ip_redo_nomination(phyi); 11303 } 11304 if (phyint_flags_modified) { 11305 if (phyi->phyint_illv4 != NULL) { 11306 ip_rts_ifmsg(phyi->phyint_illv4-> 11307 ill_ipif); 11308 } 11309 if (phyi->phyint_illv6 != NULL) { 11310 ip_rts_ifmsg(phyi->phyint_illv6-> 11311 ill_ipif); 11312 } 11313 } 11314 return (0); 11315 } else if (set_linklocal || zero_source) { 11316 mutex_enter(&ill->ill_lock); 11317 if (set_linklocal) 11318 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11319 if (zero_source) 11320 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11321 mutex_exit(&ill->ill_lock); 11322 } 11323 11324 /* 11325 * Disallow IPv6 interfaces coming up that have the unspecified address, 11326 * or point-to-point interfaces with an unspecified destination. We do 11327 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11328 * have a subnet assigned, which is how in.ndpd currently manages its 11329 * onlink prefix list when no addresses are configured with those 11330 * prefixes. 11331 */ 11332 if (ipif->ipif_isv6 && 11333 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11334 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11335 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11336 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11337 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11338 return (EINVAL); 11339 } 11340 11341 /* 11342 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11343 * from being brought up. 11344 */ 11345 if (!ipif->ipif_isv6 && 11346 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11347 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11348 return (EINVAL); 11349 } 11350 11351 /* 11352 * The only flag changes that we currently take specific action on 11353 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11354 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11355 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11356 * the flags and bringing it back up again. 11357 */ 11358 if ((turn_on|turn_off) & 11359 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11360 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11361 /* 11362 * Taking this ipif down, make sure we have 11363 * valid net and subnet bcast ire's for other 11364 * logical interfaces, if we need them. 11365 */ 11366 if (!ipif->ipif_isv6) 11367 ipif_check_bcast_ires(ipif); 11368 11369 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11370 !(turn_off & IPIF_UP)) { 11371 need_up = B_TRUE; 11372 if (ipif->ipif_flags & IPIF_UP) 11373 ill->ill_logical_down = 1; 11374 turn_on &= ~IPIF_UP; 11375 } 11376 err = ipif_down(ipif, q, mp); 11377 ip1dbg(("ipif_down returns %d err ", err)); 11378 if (err == EINPROGRESS) 11379 return (err); 11380 ipif_down_tail(ipif); 11381 } 11382 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11383 } 11384 11385 static int 11386 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11387 boolean_t need_up) 11388 { 11389 ill_t *ill; 11390 phyint_t *phyi; 11391 uint64_t turn_on; 11392 uint64_t turn_off; 11393 uint64_t intf_flags; 11394 boolean_t phyint_flags_modified = B_FALSE; 11395 int err = 0; 11396 boolean_t set_linklocal = B_FALSE; 11397 boolean_t zero_source = B_FALSE; 11398 11399 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11400 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11401 11402 ASSERT(IAM_WRITER_IPIF(ipif)); 11403 11404 ill = ipif->ipif_ill; 11405 phyi = ill->ill_phyint; 11406 11407 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11408 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11409 11410 turn_off = intf_flags & turn_on; 11411 turn_on ^= turn_off; 11412 11413 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11414 phyint_flags_modified = B_TRUE; 11415 11416 /* 11417 * Now we change the flags. Track current value of 11418 * other flags in their respective places. 11419 */ 11420 mutex_enter(&ill->ill_lock); 11421 mutex_enter(&phyi->phyint_lock); 11422 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11423 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11424 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11425 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11426 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11427 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11428 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11429 set_linklocal = B_TRUE; 11430 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11431 } 11432 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11433 zero_source = B_TRUE; 11434 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11435 } 11436 mutex_exit(&ill->ill_lock); 11437 mutex_exit(&phyi->phyint_lock); 11438 11439 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11440 ip_redo_nomination(phyi); 11441 11442 if (set_linklocal) 11443 (void) ipif_setlinklocal(ipif); 11444 11445 if (zero_source) 11446 ipif->ipif_v6src_addr = ipv6_all_zeros; 11447 else 11448 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11449 11450 if (need_up) { 11451 /* 11452 * XXX ipif_up really does not know whether a phyint flags 11453 * was modified or not. So, it sends up information on 11454 * only one routing sockets message. As we don't bring up 11455 * the interface and also set STANDBY/FAILED simultaneously 11456 * it should be okay. 11457 */ 11458 err = ipif_up(ipif, q, mp); 11459 } else { 11460 /* 11461 * Make sure routing socket sees all changes to the flags. 11462 * ipif_up_done* handles this when we use ipif_up. 11463 */ 11464 if (phyint_flags_modified) { 11465 if (phyi->phyint_illv4 != NULL) { 11466 ip_rts_ifmsg(phyi->phyint_illv4-> 11467 ill_ipif); 11468 } 11469 if (phyi->phyint_illv6 != NULL) { 11470 ip_rts_ifmsg(phyi->phyint_illv6-> 11471 ill_ipif); 11472 } 11473 } else { 11474 ip_rts_ifmsg(ipif); 11475 } 11476 } 11477 return (err); 11478 } 11479 11480 /* 11481 * Restart entry point to restart the flags restart operation after the 11482 * refcounts have dropped to zero. 11483 */ 11484 /* ARGSUSED */ 11485 int 11486 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11487 ip_ioctl_cmd_t *ipip, void *if_req) 11488 { 11489 int err; 11490 struct ifreq *ifr = (struct ifreq *)if_req; 11491 struct lifreq *lifr = (struct lifreq *)if_req; 11492 11493 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11494 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11495 11496 ipif_down_tail(ipif); 11497 if (ipip->ipi_cmd_type == IF_CMD) { 11498 /* 11499 * Since ip_sioctl_flags expects an int and ifr_flags 11500 * is a short we need to cast ifr_flags into an int 11501 * to avoid having sign extension cause bits to get 11502 * set that should not be. 11503 */ 11504 err = ip_sioctl_flags_tail(ipif, 11505 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11506 q, mp, B_TRUE); 11507 } else { 11508 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11509 q, mp, B_TRUE); 11510 } 11511 return (err); 11512 } 11513 11514 /* ARGSUSED */ 11515 int 11516 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11517 ip_ioctl_cmd_t *ipip, void *if_req) 11518 { 11519 /* 11520 * Has the flags been set correctly till now ? 11521 */ 11522 ill_t *ill = ipif->ipif_ill; 11523 phyint_t *phyi = ill->ill_phyint; 11524 11525 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11526 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11527 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11528 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11529 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11530 11531 /* 11532 * Need a lock since some flags can be set even when there are 11533 * references to the ipif. 11534 */ 11535 mutex_enter(&ill->ill_lock); 11536 if (ipip->ipi_cmd_type == IF_CMD) { 11537 struct ifreq *ifr = (struct ifreq *)if_req; 11538 11539 /* Get interface flags (low 16 only). */ 11540 ifr->ifr_flags = ((ipif->ipif_flags | 11541 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11542 } else { 11543 struct lifreq *lifr = (struct lifreq *)if_req; 11544 11545 /* Get interface flags. */ 11546 lifr->lifr_flags = ipif->ipif_flags | 11547 ill->ill_flags | phyi->phyint_flags; 11548 } 11549 mutex_exit(&ill->ill_lock); 11550 return (0); 11551 } 11552 11553 /* ARGSUSED */ 11554 int 11555 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11556 ip_ioctl_cmd_t *ipip, void *if_req) 11557 { 11558 int mtu; 11559 int ip_min_mtu; 11560 struct ifreq *ifr; 11561 struct lifreq *lifr; 11562 ire_t *ire; 11563 11564 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11565 ipif->ipif_id, (void *)ipif)); 11566 if (ipip->ipi_cmd_type == IF_CMD) { 11567 ifr = (struct ifreq *)if_req; 11568 mtu = ifr->ifr_metric; 11569 } else { 11570 lifr = (struct lifreq *)if_req; 11571 mtu = lifr->lifr_mtu; 11572 } 11573 11574 if (ipif->ipif_isv6) 11575 ip_min_mtu = IPV6_MIN_MTU; 11576 else 11577 ip_min_mtu = IP_MIN_MTU; 11578 11579 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11580 return (EINVAL); 11581 11582 /* 11583 * Change the MTU size in all relevant ire's. 11584 * Mtu change Vs. new ire creation - protocol below. 11585 * First change ipif_mtu and the ire_max_frag of the 11586 * interface ire. Then do an ire walk and change the 11587 * ire_max_frag of all affected ires. During ire_add 11588 * under the bucket lock, set the ire_max_frag of the 11589 * new ire being created from the ipif/ire from which 11590 * it is being derived. If an mtu change happens after 11591 * the ire is added, the new ire will be cleaned up. 11592 * Conversely if the mtu change happens before the ire 11593 * is added, ire_add will see the new value of the mtu. 11594 */ 11595 ipif->ipif_mtu = mtu; 11596 ipif->ipif_flags |= IPIF_FIXEDMTU; 11597 11598 if (ipif->ipif_isv6) 11599 ire = ipif_to_ire_v6(ipif); 11600 else 11601 ire = ipif_to_ire(ipif); 11602 if (ire != NULL) { 11603 ire->ire_max_frag = ipif->ipif_mtu; 11604 ire_refrele(ire); 11605 } 11606 if (ipif->ipif_flags & IPIF_UP) { 11607 if (ipif->ipif_isv6) 11608 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11609 else 11610 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11611 } 11612 /* Update the MTU in SCTP's list */ 11613 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11614 return (0); 11615 } 11616 11617 /* Get interface MTU. */ 11618 /* ARGSUSED */ 11619 int 11620 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11621 ip_ioctl_cmd_t *ipip, void *if_req) 11622 { 11623 struct ifreq *ifr; 11624 struct lifreq *lifr; 11625 11626 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11627 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11628 if (ipip->ipi_cmd_type == IF_CMD) { 11629 ifr = (struct ifreq *)if_req; 11630 ifr->ifr_metric = ipif->ipif_mtu; 11631 } else { 11632 lifr = (struct lifreq *)if_req; 11633 lifr->lifr_mtu = ipif->ipif_mtu; 11634 } 11635 return (0); 11636 } 11637 11638 /* Set interface broadcast address. */ 11639 /* ARGSUSED2 */ 11640 int 11641 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11642 ip_ioctl_cmd_t *ipip, void *if_req) 11643 { 11644 ipaddr_t addr; 11645 ire_t *ire; 11646 11647 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11648 ipif->ipif_id)); 11649 11650 ASSERT(IAM_WRITER_IPIF(ipif)); 11651 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11652 return (EADDRNOTAVAIL); 11653 11654 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11655 11656 if (sin->sin_family != AF_INET) 11657 return (EAFNOSUPPORT); 11658 11659 addr = sin->sin_addr.s_addr; 11660 if (ipif->ipif_flags & IPIF_UP) { 11661 /* 11662 * If we are already up, make sure the new 11663 * broadcast address makes sense. If it does, 11664 * there should be an IRE for it already. 11665 * Don't match on ipif, only on the ill 11666 * since we are sharing these now. Don't use 11667 * MATCH_IRE_ILL_GROUP as we are looking for 11668 * the broadcast ire on this ill and each ill 11669 * in the group has its own broadcast ire. 11670 */ 11671 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11672 ipif, ALL_ZONES, NULL, 11673 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11674 if (ire == NULL) { 11675 return (EINVAL); 11676 } else { 11677 ire_refrele(ire); 11678 } 11679 } 11680 /* 11681 * Changing the broadcast addr for this ipif. 11682 * Make sure we have valid net and subnet bcast 11683 * ire's for other logical interfaces, if needed. 11684 */ 11685 if (addr != ipif->ipif_brd_addr) 11686 ipif_check_bcast_ires(ipif); 11687 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11688 return (0); 11689 } 11690 11691 /* Get interface broadcast address. */ 11692 /* ARGSUSED */ 11693 int 11694 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11695 ip_ioctl_cmd_t *ipip, void *if_req) 11696 { 11697 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11698 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11699 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11700 return (EADDRNOTAVAIL); 11701 11702 /* IPIF_BROADCAST not possible with IPv6 */ 11703 ASSERT(!ipif->ipif_isv6); 11704 *sin = sin_null; 11705 sin->sin_family = AF_INET; 11706 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11707 return (0); 11708 } 11709 11710 /* 11711 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11712 */ 11713 /* ARGSUSED */ 11714 int 11715 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11716 ip_ioctl_cmd_t *ipip, void *if_req) 11717 { 11718 int err = 0; 11719 in6_addr_t v6mask; 11720 11721 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11722 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11723 11724 ASSERT(IAM_WRITER_IPIF(ipif)); 11725 11726 if (ipif->ipif_isv6) { 11727 sin6_t *sin6; 11728 11729 if (sin->sin_family != AF_INET6) 11730 return (EAFNOSUPPORT); 11731 11732 sin6 = (sin6_t *)sin; 11733 v6mask = sin6->sin6_addr; 11734 } else { 11735 ipaddr_t mask; 11736 11737 if (sin->sin_family != AF_INET) 11738 return (EAFNOSUPPORT); 11739 11740 mask = sin->sin_addr.s_addr; 11741 V4MASK_TO_V6(mask, v6mask); 11742 } 11743 11744 /* 11745 * No big deal if the interface isn't already up, or the mask 11746 * isn't really changing, or this is pt-pt. 11747 */ 11748 if (!(ipif->ipif_flags & IPIF_UP) || 11749 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11750 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11751 ipif->ipif_v6net_mask = v6mask; 11752 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11753 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11754 ipif->ipif_v6net_mask, 11755 ipif->ipif_v6subnet); 11756 } 11757 return (0); 11758 } 11759 /* 11760 * Make sure we have valid net and subnet broadcast ire's 11761 * for the old netmask, if needed by other logical interfaces. 11762 */ 11763 if (!ipif->ipif_isv6) 11764 ipif_check_bcast_ires(ipif); 11765 11766 err = ipif_logical_down(ipif, q, mp); 11767 if (err == EINPROGRESS) 11768 return (err); 11769 ipif_down_tail(ipif); 11770 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11771 return (err); 11772 } 11773 11774 static int 11775 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11776 { 11777 in6_addr_t v6mask; 11778 int err = 0; 11779 11780 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11781 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11782 11783 if (ipif->ipif_isv6) { 11784 sin6_t *sin6; 11785 11786 sin6 = (sin6_t *)sin; 11787 v6mask = sin6->sin6_addr; 11788 } else { 11789 ipaddr_t mask; 11790 11791 mask = sin->sin_addr.s_addr; 11792 V4MASK_TO_V6(mask, v6mask); 11793 } 11794 11795 ipif->ipif_v6net_mask = v6mask; 11796 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11797 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11798 ipif->ipif_v6subnet); 11799 } 11800 err = ipif_up(ipif, q, mp); 11801 11802 if (err == 0 || err == EINPROGRESS) { 11803 /* 11804 * The interface must be DL_BOUND if this packet has to 11805 * go out on the wire. Since we only go through a logical 11806 * down and are bound with the driver during an internal 11807 * down/up that is satisfied. 11808 */ 11809 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11810 /* Potentially broadcast an address mask reply. */ 11811 ipif_mask_reply(ipif); 11812 } 11813 } 11814 return (err); 11815 } 11816 11817 /* ARGSUSED */ 11818 int 11819 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11820 ip_ioctl_cmd_t *ipip, void *if_req) 11821 { 11822 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11823 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11824 ipif_down_tail(ipif); 11825 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11826 } 11827 11828 /* Get interface net mask. */ 11829 /* ARGSUSED */ 11830 int 11831 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11832 ip_ioctl_cmd_t *ipip, void *if_req) 11833 { 11834 struct lifreq *lifr = (struct lifreq *)if_req; 11835 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11836 11837 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11838 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11839 11840 /* 11841 * net mask can't change since we have a reference to the ipif. 11842 */ 11843 if (ipif->ipif_isv6) { 11844 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11845 *sin6 = sin6_null; 11846 sin6->sin6_family = AF_INET6; 11847 sin6->sin6_addr = ipif->ipif_v6net_mask; 11848 lifr->lifr_addrlen = 11849 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11850 } else { 11851 *sin = sin_null; 11852 sin->sin_family = AF_INET; 11853 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11854 if (ipip->ipi_cmd_type == LIF_CMD) { 11855 lifr->lifr_addrlen = 11856 ip_mask_to_plen(ipif->ipif_net_mask); 11857 } 11858 } 11859 return (0); 11860 } 11861 11862 /* ARGSUSED */ 11863 int 11864 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11865 ip_ioctl_cmd_t *ipip, void *if_req) 11866 { 11867 11868 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11869 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11870 /* 11871 * Set interface metric. We don't use this for 11872 * anything but we keep track of it in case it is 11873 * important to routing applications or such. 11874 */ 11875 if (ipip->ipi_cmd_type == IF_CMD) { 11876 struct ifreq *ifr; 11877 11878 ifr = (struct ifreq *)if_req; 11879 ipif->ipif_metric = ifr->ifr_metric; 11880 } else { 11881 struct lifreq *lifr; 11882 11883 lifr = (struct lifreq *)if_req; 11884 ipif->ipif_metric = lifr->lifr_metric; 11885 } 11886 return (0); 11887 } 11888 11889 11890 /* ARGSUSED */ 11891 int 11892 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11893 ip_ioctl_cmd_t *ipip, void *if_req) 11894 { 11895 11896 /* Get interface metric. */ 11897 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11898 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11899 if (ipip->ipi_cmd_type == IF_CMD) { 11900 struct ifreq *ifr; 11901 11902 ifr = (struct ifreq *)if_req; 11903 ifr->ifr_metric = ipif->ipif_metric; 11904 } else { 11905 struct lifreq *lifr; 11906 11907 lifr = (struct lifreq *)if_req; 11908 lifr->lifr_metric = ipif->ipif_metric; 11909 } 11910 11911 return (0); 11912 } 11913 11914 /* ARGSUSED */ 11915 int 11916 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11917 ip_ioctl_cmd_t *ipip, void *if_req) 11918 { 11919 11920 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11921 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11922 /* 11923 * Set the muxid returned from I_PLINK. 11924 */ 11925 if (ipip->ipi_cmd_type == IF_CMD) { 11926 struct ifreq *ifr = (struct ifreq *)if_req; 11927 11928 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11929 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11930 } else { 11931 struct lifreq *lifr = (struct lifreq *)if_req; 11932 11933 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11934 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11935 } 11936 return (0); 11937 } 11938 11939 /* ARGSUSED */ 11940 int 11941 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11942 ip_ioctl_cmd_t *ipip, void *if_req) 11943 { 11944 11945 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11946 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11947 /* 11948 * Get the muxid saved in ill for I_PUNLINK. 11949 */ 11950 if (ipip->ipi_cmd_type == IF_CMD) { 11951 struct ifreq *ifr = (struct ifreq *)if_req; 11952 11953 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11954 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11955 } else { 11956 struct lifreq *lifr = (struct lifreq *)if_req; 11957 11958 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11959 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11960 } 11961 return (0); 11962 } 11963 11964 /* 11965 * Set the subnet prefix. Does not modify the broadcast address. 11966 */ 11967 /* ARGSUSED */ 11968 int 11969 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11970 ip_ioctl_cmd_t *ipip, void *if_req) 11971 { 11972 int err = 0; 11973 in6_addr_t v6addr; 11974 in6_addr_t v6mask; 11975 boolean_t need_up = B_FALSE; 11976 int addrlen; 11977 11978 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11979 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11980 11981 ASSERT(IAM_WRITER_IPIF(ipif)); 11982 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11983 11984 if (ipif->ipif_isv6) { 11985 sin6_t *sin6; 11986 11987 if (sin->sin_family != AF_INET6) 11988 return (EAFNOSUPPORT); 11989 11990 sin6 = (sin6_t *)sin; 11991 v6addr = sin6->sin6_addr; 11992 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11993 return (EADDRNOTAVAIL); 11994 } else { 11995 ipaddr_t addr; 11996 11997 if (sin->sin_family != AF_INET) 11998 return (EAFNOSUPPORT); 11999 12000 addr = sin->sin_addr.s_addr; 12001 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12002 return (EADDRNOTAVAIL); 12003 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12004 /* Add 96 bits */ 12005 addrlen += IPV6_ABITS - IP_ABITS; 12006 } 12007 12008 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12009 return (EINVAL); 12010 12011 /* Check if bits in the address is set past the mask */ 12012 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12013 return (EINVAL); 12014 12015 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12016 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12017 return (0); /* No change */ 12018 12019 if (ipif->ipif_flags & IPIF_UP) { 12020 /* 12021 * If the interface is already marked up, 12022 * we call ipif_down which will take care 12023 * of ditching any IREs that have been set 12024 * up based on the old interface address. 12025 */ 12026 err = ipif_logical_down(ipif, q, mp); 12027 if (err == EINPROGRESS) 12028 return (err); 12029 ipif_down_tail(ipif); 12030 need_up = B_TRUE; 12031 } 12032 12033 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12034 return (err); 12035 } 12036 12037 static int 12038 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12039 queue_t *q, mblk_t *mp, boolean_t need_up) 12040 { 12041 ill_t *ill = ipif->ipif_ill; 12042 int err = 0; 12043 12044 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12045 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12046 12047 /* Set the new address. */ 12048 mutex_enter(&ill->ill_lock); 12049 ipif->ipif_v6net_mask = v6mask; 12050 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12051 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12052 ipif->ipif_v6subnet); 12053 } 12054 mutex_exit(&ill->ill_lock); 12055 12056 if (need_up) { 12057 /* 12058 * Now bring the interface back up. If this 12059 * is the only IPIF for the ILL, ipif_up 12060 * will have to re-bind to the device, so 12061 * we may get back EINPROGRESS, in which 12062 * case, this IOCTL will get completed in 12063 * ip_rput_dlpi when we see the DL_BIND_ACK. 12064 */ 12065 err = ipif_up(ipif, q, mp); 12066 if (err == EINPROGRESS) 12067 return (err); 12068 } 12069 return (err); 12070 } 12071 12072 /* ARGSUSED */ 12073 int 12074 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12075 ip_ioctl_cmd_t *ipip, void *if_req) 12076 { 12077 int addrlen; 12078 in6_addr_t v6addr; 12079 in6_addr_t v6mask; 12080 struct lifreq *lifr = (struct lifreq *)if_req; 12081 12082 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12083 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12084 ipif_down_tail(ipif); 12085 12086 addrlen = lifr->lifr_addrlen; 12087 if (ipif->ipif_isv6) { 12088 sin6_t *sin6; 12089 12090 sin6 = (sin6_t *)sin; 12091 v6addr = sin6->sin6_addr; 12092 } else { 12093 ipaddr_t addr; 12094 12095 addr = sin->sin_addr.s_addr; 12096 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12097 addrlen += IPV6_ABITS - IP_ABITS; 12098 } 12099 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12100 12101 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12102 } 12103 12104 /* ARGSUSED */ 12105 int 12106 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12107 ip_ioctl_cmd_t *ipip, void *if_req) 12108 { 12109 struct lifreq *lifr = (struct lifreq *)if_req; 12110 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12111 12112 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12113 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12114 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12115 12116 if (ipif->ipif_isv6) { 12117 *sin6 = sin6_null; 12118 sin6->sin6_family = AF_INET6; 12119 sin6->sin6_addr = ipif->ipif_v6subnet; 12120 lifr->lifr_addrlen = 12121 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12122 } else { 12123 *sin = sin_null; 12124 sin->sin_family = AF_INET; 12125 sin->sin_addr.s_addr = ipif->ipif_subnet; 12126 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12127 } 12128 return (0); 12129 } 12130 12131 /* 12132 * Set the IPv6 address token. 12133 */ 12134 /* ARGSUSED */ 12135 int 12136 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12137 ip_ioctl_cmd_t *ipi, void *if_req) 12138 { 12139 ill_t *ill = ipif->ipif_ill; 12140 int err; 12141 in6_addr_t v6addr; 12142 in6_addr_t v6mask; 12143 boolean_t need_up = B_FALSE; 12144 int i; 12145 sin6_t *sin6 = (sin6_t *)sin; 12146 struct lifreq *lifr = (struct lifreq *)if_req; 12147 int addrlen; 12148 12149 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12151 ASSERT(IAM_WRITER_IPIF(ipif)); 12152 12153 addrlen = lifr->lifr_addrlen; 12154 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12155 if (ipif->ipif_id != 0) 12156 return (EINVAL); 12157 12158 if (!ipif->ipif_isv6) 12159 return (EINVAL); 12160 12161 if (addrlen > IPV6_ABITS) 12162 return (EINVAL); 12163 12164 v6addr = sin6->sin6_addr; 12165 12166 /* 12167 * The length of the token is the length from the end. To get 12168 * the proper mask for this, compute the mask of the bits not 12169 * in the token; ie. the prefix, and then xor to get the mask. 12170 */ 12171 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12172 return (EINVAL); 12173 for (i = 0; i < 4; i++) { 12174 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12175 } 12176 12177 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12178 ill->ill_token_length == addrlen) 12179 return (0); /* No change */ 12180 12181 if (ipif->ipif_flags & IPIF_UP) { 12182 err = ipif_logical_down(ipif, q, mp); 12183 if (err == EINPROGRESS) 12184 return (err); 12185 ipif_down_tail(ipif); 12186 need_up = B_TRUE; 12187 } 12188 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12189 return (err); 12190 } 12191 12192 static int 12193 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12194 mblk_t *mp, boolean_t need_up) 12195 { 12196 in6_addr_t v6addr; 12197 in6_addr_t v6mask; 12198 ill_t *ill = ipif->ipif_ill; 12199 int i; 12200 int err = 0; 12201 12202 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12203 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12204 v6addr = sin6->sin6_addr; 12205 /* 12206 * The length of the token is the length from the end. To get 12207 * the proper mask for this, compute the mask of the bits not 12208 * in the token; ie. the prefix, and then xor to get the mask. 12209 */ 12210 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12211 for (i = 0; i < 4; i++) 12212 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12213 12214 mutex_enter(&ill->ill_lock); 12215 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12216 ill->ill_token_length = addrlen; 12217 mutex_exit(&ill->ill_lock); 12218 12219 if (need_up) { 12220 /* 12221 * Now bring the interface back up. If this 12222 * is the only IPIF for the ILL, ipif_up 12223 * will have to re-bind to the device, so 12224 * we may get back EINPROGRESS, in which 12225 * case, this IOCTL will get completed in 12226 * ip_rput_dlpi when we see the DL_BIND_ACK. 12227 */ 12228 err = ipif_up(ipif, q, mp); 12229 if (err == EINPROGRESS) 12230 return (err); 12231 } 12232 return (err); 12233 } 12234 12235 /* ARGSUSED */ 12236 int 12237 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12238 ip_ioctl_cmd_t *ipi, void *if_req) 12239 { 12240 ill_t *ill; 12241 sin6_t *sin6 = (sin6_t *)sin; 12242 struct lifreq *lifr = (struct lifreq *)if_req; 12243 12244 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12245 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12246 if (ipif->ipif_id != 0) 12247 return (EINVAL); 12248 12249 ill = ipif->ipif_ill; 12250 if (!ill->ill_isv6) 12251 return (ENXIO); 12252 12253 *sin6 = sin6_null; 12254 sin6->sin6_family = AF_INET6; 12255 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12256 sin6->sin6_addr = ill->ill_token; 12257 lifr->lifr_addrlen = ill->ill_token_length; 12258 return (0); 12259 } 12260 12261 /* 12262 * Set (hardware) link specific information that might override 12263 * what was acquired through the DL_INFO_ACK. 12264 * The logic is as follows. 12265 * 12266 * become exclusive 12267 * set CHANGING flag 12268 * change mtu on affected IREs 12269 * clear CHANGING flag 12270 * 12271 * An ire add that occurs before the CHANGING flag is set will have its mtu 12272 * changed by the ip_sioctl_lnkinfo. 12273 * 12274 * During the time the CHANGING flag is set, no new ires will be added to the 12275 * bucket, and ire add will fail (due the CHANGING flag). 12276 * 12277 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12278 * before it is added to the bucket. 12279 * 12280 * Obviously only 1 thread can set the CHANGING flag and we need to become 12281 * exclusive to set the flag. 12282 */ 12283 /* ARGSUSED */ 12284 int 12285 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12286 ip_ioctl_cmd_t *ipi, void *if_req) 12287 { 12288 ill_t *ill = ipif->ipif_ill; 12289 ipif_t *nipif; 12290 int ip_min_mtu; 12291 boolean_t mtu_walk = B_FALSE; 12292 struct lifreq *lifr = (struct lifreq *)if_req; 12293 lif_ifinfo_req_t *lir; 12294 ire_t *ire; 12295 12296 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12297 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12298 lir = &lifr->lifr_ifinfo; 12299 ASSERT(IAM_WRITER_IPIF(ipif)); 12300 12301 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12302 if (ipif->ipif_id != 0) 12303 return (EINVAL); 12304 12305 /* Set interface MTU. */ 12306 if (ipif->ipif_isv6) 12307 ip_min_mtu = IPV6_MIN_MTU; 12308 else 12309 ip_min_mtu = IP_MIN_MTU; 12310 12311 /* 12312 * Verify values before we set anything. Allow zero to 12313 * mean unspecified. 12314 */ 12315 if (lir->lir_maxmtu != 0 && 12316 (lir->lir_maxmtu > ill->ill_max_frag || 12317 lir->lir_maxmtu < ip_min_mtu)) 12318 return (EINVAL); 12319 if (lir->lir_reachtime != 0 && 12320 lir->lir_reachtime > ND_MAX_REACHTIME) 12321 return (EINVAL); 12322 if (lir->lir_reachretrans != 0 && 12323 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12324 return (EINVAL); 12325 12326 mutex_enter(&ill->ill_lock); 12327 ill->ill_state_flags |= ILL_CHANGING; 12328 for (nipif = ill->ill_ipif; nipif != NULL; 12329 nipif = nipif->ipif_next) { 12330 nipif->ipif_state_flags |= IPIF_CHANGING; 12331 } 12332 12333 mutex_exit(&ill->ill_lock); 12334 12335 if (lir->lir_maxmtu != 0) { 12336 ill->ill_max_mtu = lir->lir_maxmtu; 12337 ill->ill_mtu_userspecified = 1; 12338 mtu_walk = B_TRUE; 12339 } 12340 12341 if (lir->lir_reachtime != 0) 12342 ill->ill_reachable_time = lir->lir_reachtime; 12343 12344 if (lir->lir_reachretrans != 0) 12345 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12346 12347 ill->ill_max_hops = lir->lir_maxhops; 12348 12349 ill->ill_max_buf = ND_MAX_Q; 12350 12351 if (mtu_walk) { 12352 /* 12353 * Set the MTU on all ipifs associated with this ill except 12354 * for those whose MTU was fixed via SIOCSLIFMTU. 12355 */ 12356 for (nipif = ill->ill_ipif; nipif != NULL; 12357 nipif = nipif->ipif_next) { 12358 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12359 continue; 12360 12361 nipif->ipif_mtu = ill->ill_max_mtu; 12362 12363 if (!(nipif->ipif_flags & IPIF_UP)) 12364 continue; 12365 12366 if (nipif->ipif_isv6) 12367 ire = ipif_to_ire_v6(nipif); 12368 else 12369 ire = ipif_to_ire(nipif); 12370 if (ire != NULL) { 12371 ire->ire_max_frag = ipif->ipif_mtu; 12372 ire_refrele(ire); 12373 } 12374 if (ill->ill_isv6) { 12375 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12376 ipif_mtu_change, (char *)nipif, 12377 ill); 12378 } else { 12379 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12380 ipif_mtu_change, (char *)nipif, 12381 ill); 12382 } 12383 } 12384 } 12385 12386 mutex_enter(&ill->ill_lock); 12387 for (nipif = ill->ill_ipif; nipif != NULL; 12388 nipif = nipif->ipif_next) { 12389 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12390 } 12391 ILL_UNMARK_CHANGING(ill); 12392 mutex_exit(&ill->ill_lock); 12393 12394 return (0); 12395 } 12396 12397 /* ARGSUSED */ 12398 int 12399 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12400 ip_ioctl_cmd_t *ipi, void *if_req) 12401 { 12402 struct lif_ifinfo_req *lir; 12403 ill_t *ill = ipif->ipif_ill; 12404 12405 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12406 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12407 if (ipif->ipif_id != 0) 12408 return (EINVAL); 12409 12410 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12411 lir->lir_maxhops = ill->ill_max_hops; 12412 lir->lir_reachtime = ill->ill_reachable_time; 12413 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12414 lir->lir_maxmtu = ill->ill_max_mtu; 12415 12416 return (0); 12417 } 12418 12419 /* 12420 * Return best guess as to the subnet mask for the specified address. 12421 * Based on the subnet masks for all the configured interfaces. 12422 * 12423 * We end up returning a zero mask in the case of default, multicast or 12424 * experimental. 12425 */ 12426 static ipaddr_t 12427 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12428 { 12429 ipaddr_t net_mask; 12430 ill_t *ill; 12431 ipif_t *ipif; 12432 ill_walk_context_t ctx; 12433 ipif_t *fallback_ipif = NULL; 12434 12435 net_mask = ip_net_mask(addr); 12436 if (net_mask == 0) { 12437 *ipifp = NULL; 12438 return (0); 12439 } 12440 12441 /* Let's check to see if this is maybe a local subnet route. */ 12442 /* this function only applies to IPv4 interfaces */ 12443 rw_enter(&ill_g_lock, RW_READER); 12444 ill = ILL_START_WALK_V4(&ctx); 12445 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12446 mutex_enter(&ill->ill_lock); 12447 for (ipif = ill->ill_ipif; ipif != NULL; 12448 ipif = ipif->ipif_next) { 12449 if (!IPIF_CAN_LOOKUP(ipif)) 12450 continue; 12451 if (!(ipif->ipif_flags & IPIF_UP)) 12452 continue; 12453 if ((ipif->ipif_subnet & net_mask) == 12454 (addr & net_mask)) { 12455 /* 12456 * Don't trust pt-pt interfaces if there are 12457 * other interfaces. 12458 */ 12459 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12460 if (fallback_ipif == NULL) { 12461 ipif_refhold_locked(ipif); 12462 fallback_ipif = ipif; 12463 } 12464 continue; 12465 } 12466 12467 /* 12468 * Fine. Just assume the same net mask as the 12469 * directly attached subnet interface is using. 12470 */ 12471 ipif_refhold_locked(ipif); 12472 mutex_exit(&ill->ill_lock); 12473 rw_exit(&ill_g_lock); 12474 if (fallback_ipif != NULL) 12475 ipif_refrele(fallback_ipif); 12476 *ipifp = ipif; 12477 return (ipif->ipif_net_mask); 12478 } 12479 } 12480 mutex_exit(&ill->ill_lock); 12481 } 12482 rw_exit(&ill_g_lock); 12483 12484 *ipifp = fallback_ipif; 12485 return ((fallback_ipif != NULL) ? 12486 fallback_ipif->ipif_net_mask : net_mask); 12487 } 12488 12489 /* 12490 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12491 */ 12492 static void 12493 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12494 { 12495 IOCP iocp; 12496 ipft_t *ipft; 12497 ipllc_t *ipllc; 12498 mblk_t *mp1; 12499 cred_t *cr; 12500 int error = 0; 12501 conn_t *connp; 12502 12503 ip1dbg(("ip_wput_ioctl")); 12504 iocp = (IOCP)mp->b_rptr; 12505 mp1 = mp->b_cont; 12506 if (mp1 == NULL) { 12507 iocp->ioc_error = EINVAL; 12508 mp->b_datap->db_type = M_IOCNAK; 12509 iocp->ioc_count = 0; 12510 qreply(q, mp); 12511 return; 12512 } 12513 12514 /* 12515 * These IOCTLs provide various control capabilities to 12516 * upstream agents such as ULPs and processes. There 12517 * are currently two such IOCTLs implemented. They 12518 * are used by TCP to provide update information for 12519 * existing IREs and to forcibly delete an IRE for a 12520 * host that is not responding, thereby forcing an 12521 * attempt at a new route. 12522 */ 12523 iocp->ioc_error = EINVAL; 12524 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12525 goto done; 12526 12527 ipllc = (ipllc_t *)mp1->b_rptr; 12528 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12529 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12530 break; 12531 } 12532 /* 12533 * prefer credential from mblk over ioctl; 12534 * see ip_sioctl_copyin_setup 12535 */ 12536 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12537 12538 /* 12539 * Refhold the conn in case the request gets queued up in some lookup 12540 */ 12541 ASSERT(CONN_Q(q)); 12542 connp = Q_TO_CONN(q); 12543 CONN_INC_REF(connp); 12544 if (ipft->ipft_pfi && 12545 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12546 pullupmsg(mp1, ipft->ipft_min_size))) { 12547 error = (*ipft->ipft_pfi)(q, 12548 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12549 } 12550 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12551 /* 12552 * CONN_OPER_PENDING_DONE happens in the function called 12553 * through ipft_pfi above. 12554 */ 12555 return; 12556 } 12557 12558 CONN_OPER_PENDING_DONE(connp); 12559 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12560 freemsg(mp); 12561 return; 12562 } 12563 iocp->ioc_error = error; 12564 12565 done: 12566 mp->b_datap->db_type = M_IOCACK; 12567 if (iocp->ioc_error) 12568 iocp->ioc_count = 0; 12569 qreply(q, mp); 12570 } 12571 12572 /* 12573 * Lookup an ipif using the sequence id (ipif_seqid) 12574 */ 12575 ipif_t * 12576 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12577 { 12578 ipif_t *ipif; 12579 12580 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12581 12582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12583 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12584 return (ipif); 12585 } 12586 return (NULL); 12587 } 12588 12589 uint64_t ipif_g_seqid; 12590 12591 /* 12592 * Assign a unique id for the ipif. This is used later when we send 12593 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12594 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12595 * IRE is added, we verify that ipif has not disappeared. 12596 */ 12597 12598 static void 12599 ipif_assign_seqid(ipif_t *ipif) 12600 { 12601 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12602 } 12603 12604 /* 12605 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12606 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12607 * be inserted into the first space available in the list. The value of 12608 * ipif_id will then be set to the appropriate value for its position. 12609 */ 12610 static int 12611 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12612 { 12613 ill_t *ill; 12614 ipif_t *tipif; 12615 ipif_t **tipifp; 12616 int id; 12617 12618 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12619 IAM_WRITER_IPIF(ipif)); 12620 12621 ill = ipif->ipif_ill; 12622 ASSERT(ill != NULL); 12623 12624 /* 12625 * In the case of lo0:0 we already hold the ill_g_lock. 12626 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12627 * ipif_insert. Another such caller is ipif_move. 12628 */ 12629 if (acquire_g_lock) 12630 rw_enter(&ill_g_lock, RW_WRITER); 12631 if (acquire_ill_lock) 12632 mutex_enter(&ill->ill_lock); 12633 id = ipif->ipif_id; 12634 tipifp = &(ill->ill_ipif); 12635 if (id == -1) { /* need to find a real id */ 12636 id = 0; 12637 while ((tipif = *tipifp) != NULL) { 12638 ASSERT(tipif->ipif_id >= id); 12639 if (tipif->ipif_id != id) 12640 break; /* non-consecutive id */ 12641 id++; 12642 tipifp = &(tipif->ipif_next); 12643 } 12644 /* limit number of logical interfaces */ 12645 if (id >= ip_addrs_per_if) { 12646 if (acquire_ill_lock) 12647 mutex_exit(&ill->ill_lock); 12648 if (acquire_g_lock) 12649 rw_exit(&ill_g_lock); 12650 return (-1); 12651 } 12652 ipif->ipif_id = id; /* assign new id */ 12653 } else if (id < ip_addrs_per_if) { 12654 /* we have a real id; insert ipif in the right place */ 12655 while ((tipif = *tipifp) != NULL) { 12656 ASSERT(tipif->ipif_id != id); 12657 if (tipif->ipif_id > id) 12658 break; /* found correct location */ 12659 tipifp = &(tipif->ipif_next); 12660 } 12661 } else { 12662 if (acquire_ill_lock) 12663 mutex_exit(&ill->ill_lock); 12664 if (acquire_g_lock) 12665 rw_exit(&ill_g_lock); 12666 return (-1); 12667 } 12668 12669 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12670 12671 ipif->ipif_next = tipif; 12672 *tipifp = ipif; 12673 if (acquire_ill_lock) 12674 mutex_exit(&ill->ill_lock); 12675 if (acquire_g_lock) 12676 rw_exit(&ill_g_lock); 12677 return (0); 12678 } 12679 12680 /* 12681 * Allocate and initialize a new interface control structure. (Always 12682 * called as writer.) 12683 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12684 * is not part of the global linked list of ills. ipif_seqid is unique 12685 * in the system and to preserve the uniqueness, it is assigned only 12686 * when ill becomes part of the global list. At that point ill will 12687 * have a name. If it doesn't get assigned here, it will get assigned 12688 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12689 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12690 * the interface flags or any other information from the DL_INFO_ACK for 12691 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12692 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12693 * second DL_INFO_ACK comes in from the driver. 12694 */ 12695 static ipif_t * 12696 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12697 { 12698 ipif_t *ipif; 12699 phyint_t *phyi; 12700 12701 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12702 ill->ill_name, id, (void *)ill)); 12703 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12704 12705 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12706 return (NULL); 12707 *ipif = ipif_zero; /* start clean */ 12708 12709 ipif->ipif_ill = ill; 12710 ipif->ipif_id = id; /* could be -1 */ 12711 ipif->ipif_zoneid = GLOBAL_ZONEID; 12712 12713 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12714 12715 ipif->ipif_refcnt = 0; 12716 ipif->ipif_saved_ire_cnt = 0; 12717 12718 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12719 mi_free(ipif); 12720 return (NULL); 12721 } 12722 /* -1 id should have been replaced by real id */ 12723 id = ipif->ipif_id; 12724 ASSERT(id >= 0); 12725 12726 if (ill->ill_name[0] != '\0') { 12727 ipif_assign_seqid(ipif); 12728 if (ill->ill_phyint->phyint_ifindex != 0) 12729 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12730 } 12731 /* 12732 * Keep a copy of original id in ipif_orig_ipifid. Failback 12733 * will attempt to restore the original id. The SIOCSLIFOINDEX 12734 * ioctl sets ipif_orig_ipifid to zero. 12735 */ 12736 ipif->ipif_orig_ipifid = id; 12737 12738 /* 12739 * We grab the ill_lock and phyint_lock to protect the flag changes. 12740 * The ipif is still not up and can't be looked up until the 12741 * ioctl completes and the IPIF_CHANGING flag is cleared. 12742 */ 12743 mutex_enter(&ill->ill_lock); 12744 mutex_enter(&ill->ill_phyint->phyint_lock); 12745 /* 12746 * Set the running flag when logical interface zero is created. 12747 * For subsequent logical interfaces, a DLPI link down 12748 * notification message may have cleared the running flag to 12749 * indicate the link is down, so we shouldn't just blindly set it. 12750 */ 12751 if (id == 0) 12752 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12753 ipif->ipif_ire_type = ire_type; 12754 phyi = ill->ill_phyint; 12755 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12756 12757 if (ipif->ipif_isv6) { 12758 ill->ill_flags |= ILLF_IPV6; 12759 } else { 12760 ipaddr_t inaddr_any = INADDR_ANY; 12761 12762 ill->ill_flags |= ILLF_IPV4; 12763 12764 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12765 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12766 &ipif->ipif_v6lcl_addr); 12767 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12768 &ipif->ipif_v6src_addr); 12769 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12770 &ipif->ipif_v6subnet); 12771 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12772 &ipif->ipif_v6net_mask); 12773 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12774 &ipif->ipif_v6brd_addr); 12775 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12776 &ipif->ipif_v6pp_dst_addr); 12777 } 12778 12779 /* 12780 * Don't set the interface flags etc. now, will do it in 12781 * ip_ll_subnet_defaults. 12782 */ 12783 if (!initialize) { 12784 mutex_exit(&ill->ill_lock); 12785 mutex_exit(&ill->ill_phyint->phyint_lock); 12786 return (ipif); 12787 } 12788 ipif->ipif_mtu = ill->ill_max_mtu; 12789 12790 if (ill->ill_bcast_addr_length != 0) { 12791 /* 12792 * Later detect lack of DLPI driver multicast 12793 * capability by catching DL_ENABMULTI errors in 12794 * ip_rput_dlpi. 12795 */ 12796 ill->ill_flags |= ILLF_MULTICAST; 12797 if (!ipif->ipif_isv6) 12798 ipif->ipif_flags |= IPIF_BROADCAST; 12799 } else { 12800 if (ill->ill_net_type != IRE_LOOPBACK) { 12801 if (ipif->ipif_isv6) 12802 /* 12803 * Note: xresolv interfaces will eventually need 12804 * NOARP set here as well, but that will require 12805 * those external resolvers to have some 12806 * knowledge of that flag and act appropriately. 12807 * Not to be changed at present. 12808 */ 12809 ill->ill_flags |= ILLF_NONUD; 12810 else 12811 ill->ill_flags |= ILLF_NOARP; 12812 } 12813 if (ill->ill_phys_addr_length == 0) { 12814 if (ill->ill_media && 12815 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12816 ipif->ipif_flags |= IPIF_NOXMIT; 12817 phyi->phyint_flags |= PHYI_VIRTUAL; 12818 } else { 12819 /* pt-pt supports multicast. */ 12820 ill->ill_flags |= ILLF_MULTICAST; 12821 if (ill->ill_net_type == IRE_LOOPBACK) { 12822 phyi->phyint_flags |= 12823 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12824 } else { 12825 ipif->ipif_flags |= IPIF_POINTOPOINT; 12826 } 12827 } 12828 } 12829 } 12830 mutex_exit(&ill->ill_lock); 12831 mutex_exit(&ill->ill_phyint->phyint_lock); 12832 return (ipif); 12833 } 12834 12835 /* 12836 * If appropriate, send a message up to the resolver delete the entry 12837 * for the address of this interface which is going out of business. 12838 * (Always called as writer). 12839 * 12840 * NOTE : We need to check for NULL mps as some of the fields are 12841 * initialized only for some interface types. See ipif_resolver_up() 12842 * for details. 12843 */ 12844 void 12845 ipif_arp_down(ipif_t *ipif) 12846 { 12847 mblk_t *mp; 12848 12849 ip1dbg(("ipif_arp_down(%s:%u)\n", 12850 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12851 ASSERT(IAM_WRITER_IPIF(ipif)); 12852 12853 /* Delete the mapping for the local address */ 12854 mp = ipif->ipif_arp_del_mp; 12855 if (mp != NULL) { 12856 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12857 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12858 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12859 putnext(ipif->ipif_ill->ill_rq, mp); 12860 ipif->ipif_arp_del_mp = NULL; 12861 } 12862 12863 /* 12864 * If this is the last ipif that is going down, we need 12865 * to clean up ARP completely. 12866 */ 12867 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12868 12869 /* Send up AR_INTERFACE_DOWN message */ 12870 mp = ipif->ipif_ill->ill_arp_down_mp; 12871 if (mp != NULL) { 12872 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12873 dlpi_prim_str(*(int *)mp->b_rptr), 12874 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12875 ipif->ipif_id)); 12876 putnext(ipif->ipif_ill->ill_rq, mp); 12877 ipif->ipif_ill->ill_arp_down_mp = NULL; 12878 } 12879 12880 /* Tell ARP to delete the multicast mappings */ 12881 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12882 if (mp != NULL) { 12883 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12884 dlpi_prim_str(*(int *)mp->b_rptr), 12885 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12886 ipif->ipif_id)); 12887 putnext(ipif->ipif_ill->ill_rq, mp); 12888 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12889 } 12890 } 12891 } 12892 12893 /* 12894 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12895 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12896 * that it wants the add_mp allocated in this function to be returned 12897 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12898 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12899 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12900 * as it does a ipif_arp_down after calling this function - which will 12901 * remove what we add here. 12902 * 12903 * Returns -1 on failures and 0 on success. 12904 */ 12905 int 12906 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12907 { 12908 mblk_t *del_mp = NULL; 12909 mblk_t *add_mp = NULL; 12910 mblk_t *mp; 12911 ill_t *ill = ipif->ipif_ill; 12912 phyint_t *phyi = ill->ill_phyint; 12913 ipaddr_t addr, mask, extract_mask = 0; 12914 arma_t *arma; 12915 uint8_t *maddr, *bphys_addr; 12916 uint32_t hw_start; 12917 dl_unitdata_req_t *dlur; 12918 12919 ASSERT(IAM_WRITER_IPIF(ipif)); 12920 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12921 return (0); 12922 12923 /* 12924 * Delete the existing mapping from ARP. Normally ipif_down 12925 * -> ipif_arp_down should send this up to ARP. The only 12926 * reason we would find this when we are switching from 12927 * Multicast to Broadcast where we did not do a down. 12928 */ 12929 mp = ill->ill_arp_del_mapping_mp; 12930 if (mp != NULL) { 12931 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12932 dlpi_prim_str(*(int *)mp->b_rptr), 12933 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12934 putnext(ill->ill_rq, mp); 12935 ill->ill_arp_del_mapping_mp = NULL; 12936 } 12937 12938 if (arp_add_mapping_mp != NULL) 12939 *arp_add_mapping_mp = NULL; 12940 12941 /* 12942 * Check that the address is not to long for the constant 12943 * length reserved in the template arma_t. 12944 */ 12945 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12946 return (-1); 12947 12948 /* Add mapping mblk */ 12949 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12950 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12951 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12952 (caddr_t)&addr); 12953 if (add_mp == NULL) 12954 return (-1); 12955 arma = (arma_t *)add_mp->b_rptr; 12956 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12957 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12958 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12959 12960 /* 12961 * Determine the broadcast address. 12962 */ 12963 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12964 if (ill->ill_sap_length < 0) 12965 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12966 else 12967 bphys_addr = (uchar_t *)dlur + 12968 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12969 /* 12970 * Check PHYI_MULTI_BCAST and length of physical 12971 * address to determine if we use the mapping or the 12972 * broadcast address. 12973 */ 12974 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12975 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12976 bphys_addr, maddr, &hw_start, &extract_mask)) 12977 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12978 12979 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12980 (ill->ill_flags & ILLF_MULTICAST)) { 12981 /* Make sure this will not match the "exact" entry. */ 12982 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12983 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12984 (caddr_t)&addr); 12985 if (del_mp == NULL) { 12986 freemsg(add_mp); 12987 return (-1); 12988 } 12989 bcopy(&extract_mask, (char *)arma + 12990 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12991 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12992 /* Use link-layer broadcast address for MULTI_BCAST */ 12993 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12994 ip2dbg(("ipif_arp_setup_multicast: adding" 12995 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12996 } else { 12997 arma->arma_hw_mapping_start = hw_start; 12998 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12999 " ARP setup for %s\n", ill->ill_name)); 13000 } 13001 } else { 13002 freemsg(add_mp); 13003 ASSERT(del_mp == NULL); 13004 /* It is neither MULTICAST nor MULTI_BCAST */ 13005 return (0); 13006 } 13007 ASSERT(add_mp != NULL && del_mp != NULL); 13008 ill->ill_arp_del_mapping_mp = del_mp; 13009 if (arp_add_mapping_mp != NULL) { 13010 /* The caller just wants the mblks allocated */ 13011 *arp_add_mapping_mp = add_mp; 13012 } else { 13013 /* The caller wants us to send it to arp */ 13014 putnext(ill->ill_rq, add_mp); 13015 } 13016 return (0); 13017 } 13018 13019 /* 13020 * Get the resolver set up for a new interface address. 13021 * (Always called as writer.) 13022 * Called both for IPv4 and IPv6 interfaces, 13023 * though it only sets up the resolver for v6 13024 * if it's an xresolv interface (one using an external resolver). 13025 * Honors ILLF_NOARP. 13026 * The boolean value arp_just_publish, if B_TRUE, indicates that 13027 * it only needs to send an AR_ENTRY_ADD message up to ARP for 13028 * IPv4 interfaces. Currently, B_TRUE is only set when this 13029 * function is called by ip_rput_dlpi_writer() to handle 13030 * asynchronous hardware address change notification. 13031 * Returns error on failure. 13032 */ 13033 int 13034 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 13035 { 13036 caddr_t addr; 13037 mblk_t *arp_up_mp = NULL; 13038 mblk_t *arp_down_mp = NULL; 13039 mblk_t *arp_add_mp = NULL; 13040 mblk_t *arp_del_mp = NULL; 13041 mblk_t *arp_add_mapping_mp = NULL; 13042 mblk_t *arp_del_mapping_mp = NULL; 13043 ill_t *ill = ipif->ipif_ill; 13044 uchar_t *area_p = NULL; 13045 uchar_t *ared_p = NULL; 13046 int err = ENOMEM; 13047 13048 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13049 ipif->ipif_ill->ill_name, ipif->ipif_id, 13050 (uint_t)ipif->ipif_flags)); 13051 ASSERT(IAM_WRITER_IPIF(ipif)); 13052 13053 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 13054 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 13055 return (0); 13056 } 13057 13058 if (ill->ill_isv6) { 13059 /* 13060 * External resolver for IPv6 13061 */ 13062 ASSERT(!arp_just_publish); 13063 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13064 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13065 area_p = (uchar_t *)&ip6_area_template; 13066 ared_p = (uchar_t *)&ip6_ared_template; 13067 } 13068 } else { 13069 /* 13070 * IPv4 arp case. If the ARP stream has already started 13071 * closing, fail this request for ARP bringup. Else 13072 * record the fact that an ARP bringup is pending. 13073 */ 13074 mutex_enter(&ill->ill_lock); 13075 if (ill->ill_arp_closing) { 13076 mutex_exit(&ill->ill_lock); 13077 err = EINVAL; 13078 goto failed; 13079 } else { 13080 if (ill->ill_ipif_up_count == 0) 13081 ill->ill_arp_bringup_pending = 1; 13082 mutex_exit(&ill->ill_lock); 13083 } 13084 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13085 addr = (caddr_t)&ipif->ipif_lcl_addr; 13086 area_p = (uchar_t *)&ip_area_template; 13087 ared_p = (uchar_t *)&ip_ared_template; 13088 } 13089 } 13090 13091 /* 13092 * Add an entry for the local address in ARP only if it 13093 * is not UNNUMBERED and the address is not INADDR_ANY. 13094 */ 13095 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 13096 /* Now ask ARP to publish our address. */ 13097 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13098 if (arp_add_mp == NULL) 13099 goto failed; 13100 if (arp_just_publish) { 13101 /* 13102 * Copy the new hardware address and length into 13103 * arp_add_mp to be sent to ARP. 13104 */ 13105 area_t *area = (area_t *)arp_add_mp->b_rptr; 13106 area->area_hw_addr_length = 13107 ill->ill_phys_addr_length; 13108 bcopy((char *)ill->ill_phys_addr, 13109 ((char *)area + area->area_hw_addr_offset), 13110 area->area_hw_addr_length); 13111 } 13112 13113 ((area_t *)arp_add_mp->b_rptr)->area_flags = 13114 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 13115 13116 if (arp_just_publish) 13117 goto arp_setup_multicast; 13118 13119 /* 13120 * Allocate an ARP deletion message so we know we can tell ARP 13121 * when the interface goes down. 13122 */ 13123 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13124 if (arp_del_mp == NULL) 13125 goto failed; 13126 13127 } else { 13128 if (arp_just_publish) 13129 goto done; 13130 } 13131 /* 13132 * Need to bring up ARP or setup multicast mapping only 13133 * when the first interface is coming UP. 13134 */ 13135 if (ill->ill_ipif_up_count != 0) 13136 goto done; 13137 13138 /* 13139 * Allocate an ARP down message (to be saved) and an ARP up 13140 * message. 13141 */ 13142 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13143 if (arp_down_mp == NULL) 13144 goto failed; 13145 13146 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13147 if (arp_up_mp == NULL) 13148 goto failed; 13149 13150 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13151 goto done; 13152 13153 arp_setup_multicast: 13154 /* 13155 * Setup the multicast mappings. This function initializes 13156 * ill_arp_del_mapping_mp also. This does not need to be done for 13157 * IPv6. 13158 */ 13159 if (!ill->ill_isv6) { 13160 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13161 if (err != 0) 13162 goto failed; 13163 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13164 ASSERT(arp_add_mapping_mp != NULL); 13165 } 13166 13167 done:; 13168 if (arp_del_mp != NULL) { 13169 ASSERT(ipif->ipif_arp_del_mp == NULL); 13170 ipif->ipif_arp_del_mp = arp_del_mp; 13171 } 13172 if (arp_down_mp != NULL) { 13173 ASSERT(ill->ill_arp_down_mp == NULL); 13174 ill->ill_arp_down_mp = arp_down_mp; 13175 } 13176 if (arp_del_mapping_mp != NULL) { 13177 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13178 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13179 } 13180 if (arp_up_mp != NULL) { 13181 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13182 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13183 putnext(ill->ill_rq, arp_up_mp); 13184 } 13185 if (arp_add_mp != NULL) { 13186 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13187 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13188 putnext(ill->ill_rq, arp_add_mp); 13189 } 13190 if (arp_add_mapping_mp != NULL) { 13191 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13192 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13193 putnext(ill->ill_rq, arp_add_mapping_mp); 13194 } 13195 if (arp_just_publish) 13196 return (0); 13197 13198 if (ill->ill_flags & ILLF_NOARP) 13199 err = ill_arp_off(ill); 13200 else 13201 err = ill_arp_on(ill); 13202 if (err) { 13203 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13204 freemsg(ipif->ipif_arp_del_mp); 13205 if (arp_down_mp != NULL) 13206 freemsg(ill->ill_arp_down_mp); 13207 if (ill->ill_arp_del_mapping_mp != NULL) 13208 freemsg(ill->ill_arp_del_mapping_mp); 13209 ipif->ipif_arp_del_mp = NULL; 13210 ill->ill_arp_down_mp = NULL; 13211 ill->ill_arp_del_mapping_mp = NULL; 13212 return (err); 13213 } 13214 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 13215 13216 failed:; 13217 ip1dbg(("ipif_resolver_up: FAILED\n")); 13218 freemsg(arp_add_mp); 13219 freemsg(arp_del_mp); 13220 freemsg(arp_add_mapping_mp); 13221 freemsg(arp_up_mp); 13222 freemsg(arp_down_mp); 13223 ill->ill_arp_bringup_pending = 0; 13224 return (err); 13225 } 13226 13227 /* 13228 * Wakeup all threads waiting to enter the ipsq, and sleeping 13229 * on any of the ills in this ipsq. The ill_lock of the ill 13230 * must be held so that waiters don't miss wakeups 13231 */ 13232 static void 13233 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13234 { 13235 phyint_t *phyint; 13236 13237 phyint = ipsq->ipsq_phyint_list; 13238 while (phyint != NULL) { 13239 if (phyint->phyint_illv4) { 13240 if (!caller_holds_lock) 13241 mutex_enter(&phyint->phyint_illv4->ill_lock); 13242 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13243 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13244 if (!caller_holds_lock) 13245 mutex_exit(&phyint->phyint_illv4->ill_lock); 13246 } 13247 if (phyint->phyint_illv6) { 13248 if (!caller_holds_lock) 13249 mutex_enter(&phyint->phyint_illv6->ill_lock); 13250 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13251 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13252 if (!caller_holds_lock) 13253 mutex_exit(&phyint->phyint_illv6->ill_lock); 13254 } 13255 phyint = phyint->phyint_ipsq_next; 13256 } 13257 } 13258 13259 static ipsq_t * 13260 ipsq_create(char *groupname) 13261 { 13262 ipsq_t *ipsq; 13263 13264 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13265 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13266 if (ipsq == NULL) { 13267 return (NULL); 13268 } 13269 13270 if (groupname != NULL) 13271 (void) strcpy(ipsq->ipsq_name, groupname); 13272 else 13273 ipsq->ipsq_name[0] = '\0'; 13274 13275 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13276 ipsq->ipsq_flags |= IPSQ_GROUP; 13277 ipsq->ipsq_next = ipsq_g_head; 13278 ipsq_g_head = ipsq; 13279 return (ipsq); 13280 } 13281 13282 /* 13283 * Return an ipsq correspoding to the groupname. If 'create' is true 13284 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13285 * uniquely with an IPMP group. However during IPMP groupname operations, 13286 * multiple IPMP groups may be associated with a single ipsq. But no 13287 * IPMP group can be associated with more than 1 ipsq at any time. 13288 * For example 13289 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13290 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13291 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13292 * 13293 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13294 * status shown below during the execution of the above command. 13295 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13296 * 13297 * After the completion of the above groupname command we return to the stable 13298 * state shown below. 13299 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13300 * hme4 mpk17-85 ipsq2 mpk17-85 1 13301 * 13302 * Because of the above, we don't search based on the ipsq_name since that 13303 * would miss the correct ipsq during certain windows as shown above. 13304 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13305 * natural state. 13306 */ 13307 static ipsq_t * 13308 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13309 { 13310 ipsq_t *ipsq; 13311 int group_len; 13312 phyint_t *phyint; 13313 13314 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13315 13316 group_len = strlen(groupname); 13317 ASSERT(group_len != 0); 13318 group_len++; 13319 13320 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13321 /* 13322 * When an ipsq is being split, and ill_split_ipsq 13323 * calls this function, we exclude it from being considered. 13324 */ 13325 if (ipsq == exclude_ipsq) 13326 continue; 13327 13328 /* 13329 * Compare against the ipsq_name. The groupname change happens 13330 * in 2 phases. The 1st phase merges the from group into 13331 * the to group's ipsq, by calling ill_merge_groups and restarts 13332 * the ioctl. The 2nd phase then locates the ipsq again thru 13333 * ipsq_name. At this point the phyint_groupname has not been 13334 * updated. 13335 */ 13336 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13337 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13338 /* 13339 * Verify that an ipmp groupname is exactly 13340 * part of 1 ipsq and is not found in any other 13341 * ipsq. 13342 */ 13343 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13344 NULL); 13345 return (ipsq); 13346 } 13347 13348 /* 13349 * Comparison against ipsq_name alone is not sufficient. 13350 * In the case when groups are currently being 13351 * merged, the ipsq could hold other IPMP groups temporarily. 13352 * so we walk the phyint list and compare against the 13353 * phyint_groupname as well. 13354 */ 13355 phyint = ipsq->ipsq_phyint_list; 13356 while (phyint != NULL) { 13357 if ((group_len == phyint->phyint_groupname_len) && 13358 (bcmp(phyint->phyint_groupname, groupname, 13359 group_len) == 0)) { 13360 /* 13361 * Verify that an ipmp groupname is exactly 13362 * part of 1 ipsq and is not found in any other 13363 * ipsq. 13364 */ 13365 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13366 == NULL); 13367 return (ipsq); 13368 } 13369 phyint = phyint->phyint_ipsq_next; 13370 } 13371 } 13372 if (create) 13373 ipsq = ipsq_create(groupname); 13374 return (ipsq); 13375 } 13376 13377 static void 13378 ipsq_delete(ipsq_t *ipsq) 13379 { 13380 ipsq_t *nipsq; 13381 ipsq_t *pipsq = NULL; 13382 13383 /* 13384 * We don't hold the ipsq lock, but we are sure no new 13385 * messages can land up, since the ipsq_refs is zero. 13386 * i.e. this ipsq is unnamed and no phyint or phyint group 13387 * is associated with this ipsq. (Lookups are based on ill_name 13388 * or phyint_group_name) 13389 */ 13390 ASSERT(ipsq->ipsq_refs == 0); 13391 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13392 ASSERT(ipsq->ipsq_pending_mp == NULL); 13393 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13394 /* 13395 * This is not the ipsq of an IPMP group. 13396 */ 13397 kmem_free(ipsq, sizeof (ipsq_t)); 13398 return; 13399 } 13400 13401 rw_enter(&ill_g_lock, RW_WRITER); 13402 13403 /* 13404 * Locate the ipsq before we can remove it from 13405 * the singly linked list of ipsq's. 13406 */ 13407 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13408 if (nipsq == ipsq) { 13409 break; 13410 } 13411 pipsq = nipsq; 13412 } 13413 13414 ASSERT(nipsq == ipsq); 13415 13416 /* unlink ipsq from the list */ 13417 if (pipsq != NULL) 13418 pipsq->ipsq_next = ipsq->ipsq_next; 13419 else 13420 ipsq_g_head = ipsq->ipsq_next; 13421 kmem_free(ipsq, sizeof (ipsq_t)); 13422 rw_exit(&ill_g_lock); 13423 } 13424 13425 static void 13426 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13427 queue_t *q) 13428 13429 { 13430 13431 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13432 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13433 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13434 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13435 ASSERT(current_mp != NULL); 13436 13437 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13438 NEW_OP, NULL); 13439 13440 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13441 new_ipsq->ipsq_xopq_mphead != NULL); 13442 13443 /* 13444 * move from old ipsq to the new ipsq. 13445 */ 13446 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13447 if (old_ipsq->ipsq_xopq_mphead != NULL) 13448 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13449 13450 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13451 } 13452 13453 void 13454 ill_group_cleanup(ill_t *ill) 13455 { 13456 ill_t *ill_v4; 13457 ill_t *ill_v6; 13458 ipif_t *ipif; 13459 13460 ill_v4 = ill->ill_phyint->phyint_illv4; 13461 ill_v6 = ill->ill_phyint->phyint_illv6; 13462 13463 if (ill_v4 != NULL) { 13464 mutex_enter(&ill_v4->ill_lock); 13465 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13466 ipif = ipif->ipif_next) { 13467 IPIF_UNMARK_MOVING(ipif); 13468 } 13469 ill_v4->ill_up_ipifs = B_FALSE; 13470 mutex_exit(&ill_v4->ill_lock); 13471 } 13472 13473 if (ill_v6 != NULL) { 13474 mutex_enter(&ill_v6->ill_lock); 13475 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13476 ipif = ipif->ipif_next) { 13477 IPIF_UNMARK_MOVING(ipif); 13478 } 13479 ill_v6->ill_up_ipifs = B_FALSE; 13480 mutex_exit(&ill_v6->ill_lock); 13481 } 13482 } 13483 /* 13484 * This function is called when an ill has had a change in its group status 13485 * to bring up all the ipifs that were up before the change. 13486 */ 13487 int 13488 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13489 { 13490 ipif_t *ipif; 13491 ill_t *ill_v4; 13492 ill_t *ill_v6; 13493 ill_t *from_ill; 13494 int err = 0; 13495 13496 13497 ASSERT(IAM_WRITER_ILL(ill)); 13498 13499 /* 13500 * Except for ipif_state_flags and ill_state_flags the other 13501 * fields of the ipif/ill that are modified below are protected 13502 * implicitly since we are a writer. We would have tried to down 13503 * even an ipif that was already down, in ill_down_ipifs. So we 13504 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13505 */ 13506 ill_v4 = ill->ill_phyint->phyint_illv4; 13507 ill_v6 = ill->ill_phyint->phyint_illv6; 13508 if (ill_v4 != NULL) { 13509 ill_v4->ill_up_ipifs = B_TRUE; 13510 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13511 ipif = ipif->ipif_next) { 13512 mutex_enter(&ill_v4->ill_lock); 13513 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13514 IPIF_UNMARK_MOVING(ipif); 13515 mutex_exit(&ill_v4->ill_lock); 13516 if (ipif->ipif_was_up) { 13517 if (!(ipif->ipif_flags & IPIF_UP)) 13518 err = ipif_up(ipif, q, mp); 13519 ipif->ipif_was_up = B_FALSE; 13520 if (err != 0) { 13521 /* 13522 * Can there be any other error ? 13523 */ 13524 ASSERT(err == EINPROGRESS); 13525 return (err); 13526 } 13527 } 13528 } 13529 mutex_enter(&ill_v4->ill_lock); 13530 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13531 mutex_exit(&ill_v4->ill_lock); 13532 ill_v4->ill_up_ipifs = B_FALSE; 13533 if (ill_v4->ill_move_in_progress) { 13534 ASSERT(ill_v4->ill_move_peer != NULL); 13535 ill_v4->ill_move_in_progress = B_FALSE; 13536 from_ill = ill_v4->ill_move_peer; 13537 from_ill->ill_move_in_progress = B_FALSE; 13538 from_ill->ill_move_peer = NULL; 13539 mutex_enter(&from_ill->ill_lock); 13540 from_ill->ill_state_flags &= ~ILL_CHANGING; 13541 mutex_exit(&from_ill->ill_lock); 13542 if (ill_v6 == NULL) { 13543 if (from_ill->ill_phyint->phyint_flags & 13544 PHYI_STANDBY) { 13545 phyint_inactive(from_ill->ill_phyint); 13546 } 13547 if (ill_v4->ill_phyint->phyint_flags & 13548 PHYI_STANDBY) { 13549 phyint_inactive(ill_v4->ill_phyint); 13550 } 13551 } 13552 ill_v4->ill_move_peer = NULL; 13553 } 13554 } 13555 13556 if (ill_v6 != NULL) { 13557 ill_v6->ill_up_ipifs = B_TRUE; 13558 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13559 ipif = ipif->ipif_next) { 13560 mutex_enter(&ill_v6->ill_lock); 13561 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13562 IPIF_UNMARK_MOVING(ipif); 13563 mutex_exit(&ill_v6->ill_lock); 13564 if (ipif->ipif_was_up) { 13565 if (!(ipif->ipif_flags & IPIF_UP)) 13566 err = ipif_up(ipif, q, mp); 13567 ipif->ipif_was_up = B_FALSE; 13568 if (err != 0) { 13569 /* 13570 * Can there be any other error ? 13571 */ 13572 ASSERT(err == EINPROGRESS); 13573 return (err); 13574 } 13575 } 13576 } 13577 mutex_enter(&ill_v6->ill_lock); 13578 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13579 mutex_exit(&ill_v6->ill_lock); 13580 ill_v6->ill_up_ipifs = B_FALSE; 13581 if (ill_v6->ill_move_in_progress) { 13582 ASSERT(ill_v6->ill_move_peer != NULL); 13583 ill_v6->ill_move_in_progress = B_FALSE; 13584 from_ill = ill_v6->ill_move_peer; 13585 from_ill->ill_move_in_progress = B_FALSE; 13586 from_ill->ill_move_peer = NULL; 13587 mutex_enter(&from_ill->ill_lock); 13588 from_ill->ill_state_flags &= ~ILL_CHANGING; 13589 mutex_exit(&from_ill->ill_lock); 13590 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13591 phyint_inactive(from_ill->ill_phyint); 13592 } 13593 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13594 phyint_inactive(ill_v6->ill_phyint); 13595 } 13596 ill_v6->ill_move_peer = NULL; 13597 } 13598 } 13599 return (0); 13600 } 13601 13602 /* 13603 * bring down all the approriate ipifs. 13604 */ 13605 /* ARGSUSED */ 13606 static void 13607 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13608 { 13609 ipif_t *ipif; 13610 13611 ASSERT(IAM_WRITER_ILL(ill)); 13612 13613 /* 13614 * Except for ipif_state_flags the other fields of the ipif/ill that 13615 * are modified below are protected implicitly since we are a writer 13616 */ 13617 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13618 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13619 continue; 13620 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13621 /* 13622 * We go through the ipif_down logic even if the ipif 13623 * is already down, since routes can be added based 13624 * on down ipifs. Going through ipif_down once again 13625 * will delete any IREs created based on these routes. 13626 */ 13627 if (ipif->ipif_flags & IPIF_UP) 13628 ipif->ipif_was_up = B_TRUE; 13629 /* 13630 * If called with chk_nofailover true ipif is moving. 13631 */ 13632 mutex_enter(&ill->ill_lock); 13633 if (chk_nofailover) { 13634 ipif->ipif_state_flags |= 13635 IPIF_MOVING | IPIF_CHANGING; 13636 } else { 13637 ipif->ipif_state_flags |= IPIF_CHANGING; 13638 } 13639 mutex_exit(&ill->ill_lock); 13640 /* 13641 * Need to re-create net/subnet bcast ires if 13642 * they are dependent on ipif. 13643 */ 13644 if (!ipif->ipif_isv6) 13645 ipif_check_bcast_ires(ipif); 13646 (void) ipif_logical_down(ipif, NULL, NULL); 13647 ipif_down_tail(ipif); 13648 /* 13649 * We don't do ipif_multicast_down for IPv4 in 13650 * ipif_down. We need to set this so that 13651 * ipif_multicast_up will join the 13652 * ALLHOSTS_GROUP on to_ill. 13653 */ 13654 ipif->ipif_multicast_up = B_FALSE; 13655 } 13656 } 13657 } 13658 13659 #define IPSQ_INC_REF(ipsq) { \ 13660 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13661 (ipsq)->ipsq_refs++; \ 13662 } 13663 13664 #define IPSQ_DEC_REF(ipsq) { \ 13665 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13666 (ipsq)->ipsq_refs--; \ 13667 if ((ipsq)->ipsq_refs == 0) \ 13668 (ipsq)->ipsq_name[0] = '\0'; \ 13669 } 13670 13671 /* 13672 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13673 * new_ipsq. 13674 */ 13675 static void 13676 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13677 { 13678 phyint_t *phyint; 13679 phyint_t *next_phyint; 13680 13681 /* 13682 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13683 * writer and the ill_lock of the ill in question. Also the dest 13684 * ipsq can't vanish while we hold the ill_g_lock as writer. 13685 */ 13686 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13687 13688 phyint = cur_ipsq->ipsq_phyint_list; 13689 cur_ipsq->ipsq_phyint_list = NULL; 13690 while (phyint != NULL) { 13691 next_phyint = phyint->phyint_ipsq_next; 13692 IPSQ_DEC_REF(cur_ipsq); 13693 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13694 new_ipsq->ipsq_phyint_list = phyint; 13695 IPSQ_INC_REF(new_ipsq); 13696 phyint->phyint_ipsq = new_ipsq; 13697 phyint = next_phyint; 13698 } 13699 } 13700 13701 #define SPLIT_SUCCESS 0 13702 #define SPLIT_NOT_NEEDED 1 13703 #define SPLIT_FAILED 2 13704 13705 int 13706 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13707 { 13708 ipsq_t *newipsq = NULL; 13709 13710 /* 13711 * Assertions denote pre-requisites for changing the ipsq of 13712 * a phyint 13713 */ 13714 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13715 /* 13716 * <ill-phyint> assocs can't change while ill_g_lock 13717 * is held as writer. See ill_phyint_reinit() 13718 */ 13719 ASSERT(phyint->phyint_illv4 == NULL || 13720 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13721 ASSERT(phyint->phyint_illv6 == NULL || 13722 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13723 13724 if ((phyint->phyint_groupname_len != 13725 (strlen(cur_ipsq->ipsq_name) + 1) || 13726 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13727 phyint->phyint_groupname_len) != 0)) { 13728 /* 13729 * Once we fail in creating a new ipsq due to memory shortage, 13730 * don't attempt to create new ipsq again, based on another 13731 * phyint, since we want all phyints belonging to an IPMP group 13732 * to be in the same ipsq even in the event of mem alloc fails. 13733 */ 13734 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13735 cur_ipsq); 13736 if (newipsq == NULL) { 13737 /* Memory allocation failure */ 13738 return (SPLIT_FAILED); 13739 } else { 13740 /* ipsq_refs protected by ill_g_lock (writer) */ 13741 IPSQ_DEC_REF(cur_ipsq); 13742 phyint->phyint_ipsq = newipsq; 13743 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13744 newipsq->ipsq_phyint_list = phyint; 13745 IPSQ_INC_REF(newipsq); 13746 return (SPLIT_SUCCESS); 13747 } 13748 } 13749 return (SPLIT_NOT_NEEDED); 13750 } 13751 13752 /* 13753 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13754 * to do this split 13755 */ 13756 static int 13757 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13758 { 13759 ipsq_t *newipsq; 13760 13761 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13762 /* 13763 * <ill-phyint> assocs can't change while ill_g_lock 13764 * is held as writer. See ill_phyint_reinit() 13765 */ 13766 13767 ASSERT(phyint->phyint_illv4 == NULL || 13768 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13769 ASSERT(phyint->phyint_illv6 == NULL || 13770 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13771 13772 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13773 phyint->phyint_illv4: phyint->phyint_illv6)) { 13774 /* 13775 * ipsq_init failed due to no memory 13776 * caller will use the same ipsq 13777 */ 13778 return (SPLIT_FAILED); 13779 } 13780 13781 /* ipsq_ref is protected by ill_g_lock (writer) */ 13782 IPSQ_DEC_REF(cur_ipsq); 13783 13784 /* 13785 * This is a new ipsq that is unknown to the world. 13786 * So we don't need to hold ipsq_lock, 13787 */ 13788 newipsq = phyint->phyint_ipsq; 13789 newipsq->ipsq_writer = NULL; 13790 newipsq->ipsq_reentry_cnt--; 13791 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13792 #ifdef ILL_DEBUG 13793 newipsq->ipsq_depth = 0; 13794 #endif 13795 13796 return (SPLIT_SUCCESS); 13797 } 13798 13799 /* 13800 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13801 * ipsq's representing their individual groups or themselves. Return 13802 * whether split needs to be retried again later. 13803 */ 13804 static boolean_t 13805 ill_split_ipsq(ipsq_t *cur_ipsq) 13806 { 13807 phyint_t *phyint; 13808 phyint_t *next_phyint; 13809 int error; 13810 boolean_t need_retry = B_FALSE; 13811 13812 phyint = cur_ipsq->ipsq_phyint_list; 13813 cur_ipsq->ipsq_phyint_list = NULL; 13814 while (phyint != NULL) { 13815 next_phyint = phyint->phyint_ipsq_next; 13816 /* 13817 * 'created' will tell us whether the callee actually 13818 * created an ipsq. Lack of memory may force the callee 13819 * to return without creating an ipsq. 13820 */ 13821 if (phyint->phyint_groupname == NULL) { 13822 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13823 } else { 13824 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13825 need_retry); 13826 } 13827 13828 switch (error) { 13829 case SPLIT_FAILED: 13830 need_retry = B_TRUE; 13831 /* FALLTHRU */ 13832 case SPLIT_NOT_NEEDED: 13833 /* 13834 * Keep it on the list. 13835 */ 13836 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13837 cur_ipsq->ipsq_phyint_list = phyint; 13838 break; 13839 case SPLIT_SUCCESS: 13840 break; 13841 default: 13842 ASSERT(0); 13843 } 13844 13845 phyint = next_phyint; 13846 } 13847 return (need_retry); 13848 } 13849 13850 /* 13851 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13852 * and return the ills in the list. This list will be 13853 * needed to unlock all the ills later on by the caller. 13854 * The <ill-ipsq> associations could change between the 13855 * lock and unlock. Hence the unlock can't traverse the 13856 * ipsq to get the list of ills. 13857 */ 13858 static int 13859 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13860 { 13861 int cnt = 0; 13862 phyint_t *phyint; 13863 13864 /* 13865 * The caller holds ill_g_lock to ensure that the ill memberships 13866 * of the ipsq don't change 13867 */ 13868 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13869 13870 phyint = ipsq->ipsq_phyint_list; 13871 while (phyint != NULL) { 13872 if (phyint->phyint_illv4 != NULL) { 13873 ASSERT(cnt < list_max); 13874 list[cnt++] = phyint->phyint_illv4; 13875 } 13876 if (phyint->phyint_illv6 != NULL) { 13877 ASSERT(cnt < list_max); 13878 list[cnt++] = phyint->phyint_illv6; 13879 } 13880 phyint = phyint->phyint_ipsq_next; 13881 } 13882 ill_lock_ills(list, cnt); 13883 return (cnt); 13884 } 13885 13886 void 13887 ill_lock_ills(ill_t **list, int cnt) 13888 { 13889 int i; 13890 13891 if (cnt > 1) { 13892 boolean_t try_again; 13893 do { 13894 try_again = B_FALSE; 13895 for (i = 0; i < cnt - 1; i++) { 13896 if (list[i] < list[i + 1]) { 13897 ill_t *tmp; 13898 13899 /* swap the elements */ 13900 tmp = list[i]; 13901 list[i] = list[i + 1]; 13902 list[i + 1] = tmp; 13903 try_again = B_TRUE; 13904 } 13905 } 13906 } while (try_again); 13907 } 13908 13909 for (i = 0; i < cnt; i++) { 13910 if (i == 0) { 13911 if (list[i] != NULL) 13912 mutex_enter(&list[i]->ill_lock); 13913 else 13914 return; 13915 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13916 mutex_enter(&list[i]->ill_lock); 13917 } 13918 } 13919 } 13920 13921 void 13922 ill_unlock_ills(ill_t **list, int cnt) 13923 { 13924 int i; 13925 13926 for (i = 0; i < cnt; i++) { 13927 if ((i == 0) && (list[i] != NULL)) { 13928 mutex_exit(&list[i]->ill_lock); 13929 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13930 mutex_exit(&list[i]->ill_lock); 13931 } 13932 } 13933 } 13934 13935 /* 13936 * Merge all the ills from 1 ipsq group into another ipsq group. 13937 * The source ipsq group is specified by the ipsq associated with 13938 * 'from_ill'. The destination ipsq group is specified by the ipsq 13939 * associated with 'to_ill' or 'groupname' respectively. 13940 * Note that ipsq itself does not have a reference count mechanism 13941 * and functions don't look up an ipsq and pass it around. Instead 13942 * functions pass around an ill or groupname, and the ipsq is looked 13943 * up from the ill or groupname and the required operation performed 13944 * atomically with the lookup on the ipsq. 13945 */ 13946 static int 13947 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13948 queue_t *q) 13949 { 13950 ipsq_t *old_ipsq; 13951 ipsq_t *new_ipsq; 13952 ill_t **ill_list; 13953 int cnt; 13954 size_t ill_list_size; 13955 boolean_t became_writer_on_new_sq = B_FALSE; 13956 13957 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13958 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13959 13960 /* 13961 * Need to hold ill_g_lock as writer and also the ill_lock to 13962 * change the <ill-ipsq> assoc of an ill. Need to hold the 13963 * ipsq_lock to prevent new messages from landing on an ipsq. 13964 */ 13965 rw_enter(&ill_g_lock, RW_WRITER); 13966 13967 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13968 if (groupname != NULL) 13969 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13970 else { 13971 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13972 } 13973 13974 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13975 13976 /* 13977 * both groups are on the same ipsq. 13978 */ 13979 if (old_ipsq == new_ipsq) { 13980 rw_exit(&ill_g_lock); 13981 return (0); 13982 } 13983 13984 cnt = old_ipsq->ipsq_refs << 1; 13985 ill_list_size = cnt * sizeof (ill_t *); 13986 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13987 if (ill_list == NULL) { 13988 rw_exit(&ill_g_lock); 13989 return (ENOMEM); 13990 } 13991 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13992 13993 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13994 mutex_enter(&new_ipsq->ipsq_lock); 13995 if ((new_ipsq->ipsq_writer == NULL && 13996 new_ipsq->ipsq_current_ipif == NULL) || 13997 (new_ipsq->ipsq_writer == curthread)) { 13998 new_ipsq->ipsq_writer = curthread; 13999 new_ipsq->ipsq_reentry_cnt++; 14000 became_writer_on_new_sq = B_TRUE; 14001 } 14002 14003 /* 14004 * We are holding ill_g_lock as writer and all the ill locks of 14005 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14006 * message can land up on the old ipsq even though we don't hold the 14007 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14008 */ 14009 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14010 14011 /* 14012 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14013 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14014 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14015 */ 14016 ill_merge_ipsq(old_ipsq, new_ipsq); 14017 14018 /* 14019 * Mark the new ipsq as needing a split since it is currently 14020 * being shared by more than 1 IPMP group. The split will 14021 * occur at the end of ipsq_exit 14022 */ 14023 new_ipsq->ipsq_split = B_TRUE; 14024 14025 /* Now release all the locks */ 14026 mutex_exit(&new_ipsq->ipsq_lock); 14027 ill_unlock_ills(ill_list, cnt); 14028 rw_exit(&ill_g_lock); 14029 14030 kmem_free(ill_list, ill_list_size); 14031 14032 /* 14033 * If we succeeded in becoming writer on the new ipsq, then 14034 * drain the new ipsq and start processing all enqueued messages 14035 * including the current ioctl we are processing which is either 14036 * a set groupname or failover/failback. 14037 */ 14038 if (became_writer_on_new_sq) 14039 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14040 14041 /* 14042 * syncq has been changed and all the messages have been moved. 14043 */ 14044 mutex_enter(&old_ipsq->ipsq_lock); 14045 old_ipsq->ipsq_current_ipif = NULL; 14046 mutex_exit(&old_ipsq->ipsq_lock); 14047 return (EINPROGRESS); 14048 } 14049 14050 /* 14051 * Delete and add the loopback copy and non-loopback copy of 14052 * the BROADCAST ire corresponding to ill and addr. Used to 14053 * group broadcast ires together when ill becomes part of 14054 * a group. 14055 * 14056 * This function is also called when ill is leaving the group 14057 * so that the ires belonging to the group gets re-grouped. 14058 */ 14059 static void 14060 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14061 { 14062 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14063 ire_t **ire_ptpn = &ire_head; 14064 14065 /* 14066 * The loopback and non-loopback IREs are inserted in the order in which 14067 * they're found, on the basis that they are correctly ordered (loopback 14068 * first). 14069 */ 14070 for (;;) { 14071 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14072 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14073 if (ire == NULL) 14074 break; 14075 14076 /* 14077 * we are passing in KM_SLEEP because it is not easy to 14078 * go back to a sane state in case of memory failure. 14079 */ 14080 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14081 ASSERT(nire != NULL); 14082 bzero(nire, sizeof (ire_t)); 14083 /* 14084 * Don't use ire_max_frag directly since we don't 14085 * hold on to 'ire' until we add the new ire 'nire' and 14086 * we don't want the new ire to have a dangling reference 14087 * to 'ire'. The ire_max_frag of a broadcast ire must 14088 * be in sync with the ipif_mtu of the associate ipif. 14089 * For eg. this happens as a result of SIOCSLIFNAME, 14090 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14091 * the driver. A change in ire_max_frag triggered as 14092 * as a result of path mtu discovery, or due to an 14093 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14094 * route change -mtu command does not apply to broadcast ires. 14095 * 14096 * XXX We need a recovery strategy here if ire_init fails 14097 */ 14098 if (ire_init(nire, 14099 (uchar_t *)&ire->ire_addr, 14100 (uchar_t *)&ire->ire_mask, 14101 (uchar_t *)&ire->ire_src_addr, 14102 (uchar_t *)&ire->ire_gateway_addr, 14103 (uchar_t *)&ire->ire_in_src_addr, 14104 ire->ire_stq == NULL ? &ip_loopback_mtu : 14105 &ire->ire_ipif->ipif_mtu, 14106 ire->ire_fp_mp, 14107 ire->ire_rfq, 14108 ire->ire_stq, 14109 ire->ire_type, 14110 ire->ire_dlureq_mp, 14111 ire->ire_ipif, 14112 ire->ire_in_ill, 14113 ire->ire_cmask, 14114 ire->ire_phandle, 14115 ire->ire_ihandle, 14116 ire->ire_flags, 14117 &ire->ire_uinfo, 14118 NULL, 14119 NULL) == NULL) { 14120 cmn_err(CE_PANIC, "ire_init() failed"); 14121 } 14122 ire_delete(ire); 14123 ire_refrele(ire); 14124 14125 /* 14126 * The newly created IREs are inserted at the tail of the list 14127 * starting with ire_head. As we've just allocated them no one 14128 * knows about them so it's safe. 14129 */ 14130 *ire_ptpn = nire; 14131 ire_ptpn = &nire->ire_next; 14132 } 14133 14134 for (nire = ire_head; nire != NULL; nire = nire_next) { 14135 int error; 14136 ire_t *oire; 14137 /* unlink the IRE from our list before calling ire_add() */ 14138 nire_next = nire->ire_next; 14139 nire->ire_next = NULL; 14140 14141 /* ire_add adds the ire at the right place in the list */ 14142 oire = nire; 14143 error = ire_add(&nire, NULL, NULL, NULL); 14144 ASSERT(error == 0); 14145 ASSERT(oire == nire); 14146 ire_refrele(nire); /* Held in ire_add */ 14147 } 14148 } 14149 14150 /* 14151 * This function is usually called when an ill is inserted in 14152 * a group and all the ipifs are already UP. As all the ipifs 14153 * are already UP, the broadcast ires have already been created 14154 * and been inserted. But, ire_add_v4 would not have grouped properly. 14155 * We need to re-group for the benefit of ip_wput_ire which 14156 * expects BROADCAST ires to be grouped properly to avoid sending 14157 * more than one copy of the broadcast packet per group. 14158 * 14159 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14160 * because when ipif_up_done ends up calling this, ires have 14161 * already been added before illgrp_insert i.e before ill_group 14162 * has been initialized. 14163 */ 14164 static void 14165 ill_group_bcast_for_xmit(ill_t *ill) 14166 { 14167 ill_group_t *illgrp; 14168 ipif_t *ipif; 14169 ipaddr_t addr; 14170 ipaddr_t net_mask; 14171 ipaddr_t subnet_netmask; 14172 14173 illgrp = ill->ill_group; 14174 14175 /* 14176 * This function is called even when an ill is deleted from 14177 * the group. Hence, illgrp could be null. 14178 */ 14179 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14180 return; 14181 14182 /* 14183 * Delete all the BROADCAST ires matching this ill and add 14184 * them back. This time, ire_add_v4 should take care of 14185 * grouping them with others because ill is part of the 14186 * group. 14187 */ 14188 ill_bcast_delete_and_add(ill, 0); 14189 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14190 14191 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14192 14193 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14194 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14195 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14196 } else { 14197 net_mask = htonl(IN_CLASSA_NET); 14198 } 14199 addr = net_mask & ipif->ipif_subnet; 14200 ill_bcast_delete_and_add(ill, addr); 14201 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14202 14203 subnet_netmask = ipif->ipif_net_mask; 14204 addr = ipif->ipif_subnet; 14205 ill_bcast_delete_and_add(ill, addr); 14206 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14207 } 14208 } 14209 14210 /* 14211 * This function is called from illgrp_delete when ill is being deleted 14212 * from the group. 14213 * 14214 * As ill is not there in the group anymore, any address belonging 14215 * to this ill should be cleared of IRE_MARK_NORECV. 14216 */ 14217 static void 14218 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14219 { 14220 ire_t *ire; 14221 irb_t *irb; 14222 14223 ASSERT(ill->ill_group == NULL); 14224 14225 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14226 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14227 14228 if (ire != NULL) { 14229 /* 14230 * IPMP and plumbing operations are serialized on the ipsq, so 14231 * no one will insert or delete a broadcast ire under our feet. 14232 */ 14233 irb = ire->ire_bucket; 14234 rw_enter(&irb->irb_lock, RW_READER); 14235 ire_refrele(ire); 14236 14237 for (; ire != NULL; ire = ire->ire_next) { 14238 if (ire->ire_addr != addr) 14239 break; 14240 if (ire_to_ill(ire) != ill) 14241 continue; 14242 14243 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14244 ire->ire_marks &= ~IRE_MARK_NORECV; 14245 } 14246 rw_exit(&irb->irb_lock); 14247 } 14248 } 14249 14250 /* 14251 * This function must be called only after the broadcast ires 14252 * have been grouped together. For a given address addr, nominate 14253 * only one of the ires whose interface is not FAILED or OFFLINE. 14254 * 14255 * This is also called when an ipif goes down, so that we can nominate 14256 * a different ire with the same address for receiving. 14257 */ 14258 static void 14259 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14260 { 14261 irb_t *irb; 14262 ire_t *ire; 14263 ire_t *ire1; 14264 ire_t *save_ire; 14265 ire_t **irep = NULL; 14266 boolean_t first = B_TRUE; 14267 ire_t *clear_ire = NULL; 14268 ire_t *start_ire = NULL; 14269 ire_t *new_lb_ire; 14270 ire_t *new_nlb_ire; 14271 boolean_t new_lb_ire_used = B_FALSE; 14272 boolean_t new_nlb_ire_used = B_FALSE; 14273 uint64_t match_flags; 14274 uint64_t phyi_flags; 14275 boolean_t fallback = B_FALSE; 14276 14277 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14278 NULL, MATCH_IRE_TYPE); 14279 /* 14280 * We may not be able to find some ires if a previous 14281 * ire_create failed. This happens when an ipif goes 14282 * down and we are unable to create BROADCAST ires due 14283 * to memory failure. Thus, we have to check for NULL 14284 * below. This should handle the case for LOOPBACK, 14285 * POINTOPOINT and interfaces with some POINTOPOINT 14286 * logicals for which there are no BROADCAST ires. 14287 */ 14288 if (ire == NULL) 14289 return; 14290 /* 14291 * Currently IRE_BROADCASTS are deleted when an ipif 14292 * goes down which runs exclusively. Thus, setting 14293 * IRE_MARK_RCVD should not race with ire_delete marking 14294 * IRE_MARK_CONDEMNED. We grab the lock below just to 14295 * be consistent with other parts of the code that walks 14296 * a given bucket. 14297 */ 14298 save_ire = ire; 14299 irb = ire->ire_bucket; 14300 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14301 if (new_lb_ire == NULL) { 14302 ire_refrele(ire); 14303 return; 14304 } 14305 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14306 if (new_nlb_ire == NULL) { 14307 ire_refrele(ire); 14308 kmem_cache_free(ire_cache, new_lb_ire); 14309 return; 14310 } 14311 IRB_REFHOLD(irb); 14312 rw_enter(&irb->irb_lock, RW_WRITER); 14313 /* 14314 * Get to the first ire matching the address and the 14315 * group. If the address does not match we are done 14316 * as we could not find the IRE. If the address matches 14317 * we should get to the first one matching the group. 14318 */ 14319 while (ire != NULL) { 14320 if (ire->ire_addr != addr || 14321 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14322 break; 14323 } 14324 ire = ire->ire_next; 14325 } 14326 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14327 start_ire = ire; 14328 redo: 14329 while (ire != NULL && ire->ire_addr == addr && 14330 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14331 /* 14332 * The first ire for any address within a group 14333 * should always be the one with IRE_MARK_NORECV cleared 14334 * so that ip_wput_ire can avoid searching for one. 14335 * Note down the insertion point which will be used 14336 * later. 14337 */ 14338 if (first && (irep == NULL)) 14339 irep = ire->ire_ptpn; 14340 /* 14341 * PHYI_FAILED is set when the interface fails. 14342 * This interface might have become good, but the 14343 * daemon has not yet detected. We should still 14344 * not receive on this. PHYI_OFFLINE should never 14345 * be picked as this has been offlined and soon 14346 * be removed. 14347 */ 14348 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14349 if (phyi_flags & PHYI_OFFLINE) { 14350 ire->ire_marks |= IRE_MARK_NORECV; 14351 ire = ire->ire_next; 14352 continue; 14353 } 14354 if (phyi_flags & match_flags) { 14355 ire->ire_marks |= IRE_MARK_NORECV; 14356 ire = ire->ire_next; 14357 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14358 PHYI_INACTIVE) { 14359 fallback = B_TRUE; 14360 } 14361 continue; 14362 } 14363 if (first) { 14364 /* 14365 * We will move this to the front of the list later 14366 * on. 14367 */ 14368 clear_ire = ire; 14369 ire->ire_marks &= ~IRE_MARK_NORECV; 14370 } else { 14371 ire->ire_marks |= IRE_MARK_NORECV; 14372 } 14373 first = B_FALSE; 14374 ire = ire->ire_next; 14375 } 14376 /* 14377 * If we never nominated anybody, try nominating at least 14378 * an INACTIVE, if we found one. Do it only once though. 14379 */ 14380 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14381 fallback) { 14382 match_flags = PHYI_FAILED; 14383 ire = start_ire; 14384 irep = NULL; 14385 goto redo; 14386 } 14387 ire_refrele(save_ire); 14388 14389 /* 14390 * irep non-NULL indicates that we entered the while loop 14391 * above. If clear_ire is at the insertion point, we don't 14392 * have to do anything. clear_ire will be NULL if all the 14393 * interfaces are failed. 14394 * 14395 * We cannot unlink and reinsert the ire at the right place 14396 * in the list since there can be other walkers of this bucket. 14397 * Instead we delete and recreate the ire 14398 */ 14399 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14400 ire_t *clear_ire_stq = NULL; 14401 bzero(new_lb_ire, sizeof (ire_t)); 14402 /* XXX We need a recovery strategy here. */ 14403 if (ire_init(new_lb_ire, 14404 (uchar_t *)&clear_ire->ire_addr, 14405 (uchar_t *)&clear_ire->ire_mask, 14406 (uchar_t *)&clear_ire->ire_src_addr, 14407 (uchar_t *)&clear_ire->ire_gateway_addr, 14408 (uchar_t *)&clear_ire->ire_in_src_addr, 14409 &clear_ire->ire_max_frag, 14410 clear_ire->ire_fp_mp, 14411 clear_ire->ire_rfq, 14412 clear_ire->ire_stq, 14413 clear_ire->ire_type, 14414 clear_ire->ire_dlureq_mp, 14415 clear_ire->ire_ipif, 14416 clear_ire->ire_in_ill, 14417 clear_ire->ire_cmask, 14418 clear_ire->ire_phandle, 14419 clear_ire->ire_ihandle, 14420 clear_ire->ire_flags, 14421 &clear_ire->ire_uinfo, 14422 NULL, 14423 NULL) == NULL) 14424 cmn_err(CE_PANIC, "ire_init() failed"); 14425 if (clear_ire->ire_stq == NULL) { 14426 ire_t *ire_next = clear_ire->ire_next; 14427 if (ire_next != NULL && 14428 ire_next->ire_stq != NULL && 14429 ire_next->ire_addr == clear_ire->ire_addr && 14430 ire_next->ire_ipif->ipif_ill == 14431 clear_ire->ire_ipif->ipif_ill) { 14432 clear_ire_stq = ire_next; 14433 14434 bzero(new_nlb_ire, sizeof (ire_t)); 14435 /* XXX We need a recovery strategy here. */ 14436 if (ire_init(new_nlb_ire, 14437 (uchar_t *)&clear_ire_stq->ire_addr, 14438 (uchar_t *)&clear_ire_stq->ire_mask, 14439 (uchar_t *)&clear_ire_stq->ire_src_addr, 14440 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14441 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14442 &clear_ire_stq->ire_max_frag, 14443 clear_ire_stq->ire_fp_mp, 14444 clear_ire_stq->ire_rfq, 14445 clear_ire_stq->ire_stq, 14446 clear_ire_stq->ire_type, 14447 clear_ire_stq->ire_dlureq_mp, 14448 clear_ire_stq->ire_ipif, 14449 clear_ire_stq->ire_in_ill, 14450 clear_ire_stq->ire_cmask, 14451 clear_ire_stq->ire_phandle, 14452 clear_ire_stq->ire_ihandle, 14453 clear_ire_stq->ire_flags, 14454 &clear_ire_stq->ire_uinfo, 14455 NULL, 14456 NULL) == NULL) 14457 cmn_err(CE_PANIC, "ire_init() failed"); 14458 } 14459 } 14460 14461 /* 14462 * Delete the ire. We can't call ire_delete() since 14463 * we are holding the bucket lock. We can't release the 14464 * bucket lock since we can't allow irep to change. So just 14465 * mark it CONDEMNED. The IRB_REFRELE will delete the 14466 * ire from the list and do the refrele. 14467 */ 14468 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14469 irb->irb_marks |= IRE_MARK_CONDEMNED; 14470 14471 if (clear_ire_stq != NULL) { 14472 ire_fastpath_list_delete( 14473 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14474 clear_ire_stq); 14475 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14476 } 14477 14478 /* 14479 * Also take care of otherfields like ib/ob pkt count 14480 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14481 */ 14482 14483 /* Add the new ire's. Insert at *irep */ 14484 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14485 ire1 = *irep; 14486 if (ire1 != NULL) 14487 ire1->ire_ptpn = &new_lb_ire->ire_next; 14488 new_lb_ire->ire_next = ire1; 14489 /* Link the new one in. */ 14490 new_lb_ire->ire_ptpn = irep; 14491 membar_producer(); 14492 *irep = new_lb_ire; 14493 new_lb_ire_used = B_TRUE; 14494 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14495 new_lb_ire->ire_bucket->irb_ire_cnt++; 14496 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14497 14498 if (clear_ire_stq != NULL) { 14499 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14500 irep = &new_lb_ire->ire_next; 14501 /* Add the new ire. Insert at *irep */ 14502 ire1 = *irep; 14503 if (ire1 != NULL) 14504 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14505 new_nlb_ire->ire_next = ire1; 14506 /* Link the new one in. */ 14507 new_nlb_ire->ire_ptpn = irep; 14508 membar_producer(); 14509 *irep = new_nlb_ire; 14510 new_nlb_ire_used = B_TRUE; 14511 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14512 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14513 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14514 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14515 } 14516 } 14517 rw_exit(&irb->irb_lock); 14518 if (!new_lb_ire_used) 14519 kmem_cache_free(ire_cache, new_lb_ire); 14520 if (!new_nlb_ire_used) 14521 kmem_cache_free(ire_cache, new_nlb_ire); 14522 IRB_REFRELE(irb); 14523 } 14524 14525 /* 14526 * Whenever an ipif goes down we have to renominate a different 14527 * broadcast ire to receive. Whenever an ipif comes up, we need 14528 * to make sure that we have only one nominated to receive. 14529 */ 14530 static void 14531 ipif_renominate_bcast(ipif_t *ipif) 14532 { 14533 ill_t *ill = ipif->ipif_ill; 14534 ipaddr_t subnet_addr; 14535 ipaddr_t net_addr; 14536 ipaddr_t net_mask = 0; 14537 ipaddr_t subnet_netmask; 14538 ipaddr_t addr; 14539 ill_group_t *illgrp; 14540 14541 illgrp = ill->ill_group; 14542 /* 14543 * If this is the last ipif going down, it might take 14544 * the ill out of the group. In that case ipif_down -> 14545 * illgrp_delete takes care of doing the nomination. 14546 * ipif_down does not call for this case. 14547 */ 14548 ASSERT(illgrp != NULL); 14549 14550 /* There could not have been any ires associated with this */ 14551 if (ipif->ipif_subnet == 0) 14552 return; 14553 14554 ill_mark_bcast(illgrp, 0); 14555 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14556 14557 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14558 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14559 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14560 } else { 14561 net_mask = htonl(IN_CLASSA_NET); 14562 } 14563 addr = net_mask & ipif->ipif_subnet; 14564 ill_mark_bcast(illgrp, addr); 14565 14566 net_addr = ~net_mask | addr; 14567 ill_mark_bcast(illgrp, net_addr); 14568 14569 subnet_netmask = ipif->ipif_net_mask; 14570 addr = ipif->ipif_subnet; 14571 ill_mark_bcast(illgrp, addr); 14572 14573 subnet_addr = ~subnet_netmask | addr; 14574 ill_mark_bcast(illgrp, subnet_addr); 14575 } 14576 14577 /* 14578 * Whenever we form or delete ill groups, we need to nominate one set of 14579 * BROADCAST ires for receiving in the group. 14580 * 14581 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14582 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14583 * for ill_ipif_up_count to be non-zero. This is the only case where 14584 * ill_ipif_up_count is zero and we would still find the ires. 14585 * 14586 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14587 * ipif is UP and we just have to do the nomination. 14588 * 14589 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14590 * from the group. So, we have to do the nomination. 14591 * 14592 * Because of (3), there could be just one ill in the group. But we have 14593 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14594 * Thus, this function does not optimize when there is only one ill as 14595 * it is not correct for (3). 14596 */ 14597 static void 14598 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14599 { 14600 ill_t *ill; 14601 ipif_t *ipif; 14602 ipaddr_t subnet_addr; 14603 ipaddr_t prev_subnet_addr = 0; 14604 ipaddr_t net_addr; 14605 ipaddr_t prev_net_addr = 0; 14606 ipaddr_t net_mask = 0; 14607 ipaddr_t subnet_netmask; 14608 ipaddr_t addr; 14609 14610 /* 14611 * When the last memeber is leaving, there is nothing to 14612 * nominate. 14613 */ 14614 if (illgrp->illgrp_ill_count == 0) { 14615 ASSERT(illgrp->illgrp_ill == NULL); 14616 return; 14617 } 14618 14619 ill = illgrp->illgrp_ill; 14620 ASSERT(!ill->ill_isv6); 14621 /* 14622 * We assume that ires with same address and belonging to the 14623 * same group, has been grouped together. Nominating a *single* 14624 * ill in the group for sending and receiving broadcast is done 14625 * by making sure that the first BROADCAST ire (which will be 14626 * the one returned by ire_ctable_lookup for ip_rput and the 14627 * one that will be used in ip_wput_ire) will be the one that 14628 * will not have IRE_MARK_NORECV set. 14629 * 14630 * 1) ip_rput checks and discards packets received on ires marked 14631 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14632 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14633 * first ire in the group for every broadcast address in the group. 14634 * ip_rput will accept packets only on the first ire i.e only 14635 * one copy of the ill. 14636 * 14637 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14638 * packet for the whole group. It needs to send out on the ill 14639 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14640 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14641 * the copy echoed back on other port where the ire is not marked 14642 * with IRE_MARK_NORECV. 14643 * 14644 * Note that we just need to have the first IRE either loopback or 14645 * non-loopback (either of them may not exist if ire_create failed 14646 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14647 * always hit the first one and hence will always accept one copy. 14648 * 14649 * We have a broadcast ire per ill for all the unique prefixes 14650 * hosted on that ill. As we don't have a way of knowing the 14651 * unique prefixes on a given ill and hence in the whole group, 14652 * we just call ill_mark_bcast on all the prefixes that exist 14653 * in the group. For the common case of one prefix, the code 14654 * below optimizes by remebering the last address used for 14655 * markng. In the case of multiple prefixes, this will still 14656 * optimize depending the order of prefixes. 14657 * 14658 * The only unique address across the whole group is 0.0.0.0 and 14659 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14660 * the first ire in the bucket for receiving and disables the 14661 * others. 14662 */ 14663 ill_mark_bcast(illgrp, 0); 14664 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14665 for (; ill != NULL; ill = ill->ill_group_next) { 14666 14667 for (ipif = ill->ill_ipif; ipif != NULL; 14668 ipif = ipif->ipif_next) { 14669 14670 if (!(ipif->ipif_flags & IPIF_UP) || 14671 ipif->ipif_subnet == 0) { 14672 continue; 14673 } 14674 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14675 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14676 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14677 } else { 14678 net_mask = htonl(IN_CLASSA_NET); 14679 } 14680 addr = net_mask & ipif->ipif_subnet; 14681 if (prev_net_addr == 0 || prev_net_addr != addr) { 14682 ill_mark_bcast(illgrp, addr); 14683 net_addr = ~net_mask | addr; 14684 ill_mark_bcast(illgrp, net_addr); 14685 } 14686 prev_net_addr = addr; 14687 14688 subnet_netmask = ipif->ipif_net_mask; 14689 addr = ipif->ipif_subnet; 14690 if (prev_subnet_addr == 0 || 14691 prev_subnet_addr != addr) { 14692 ill_mark_bcast(illgrp, addr); 14693 subnet_addr = ~subnet_netmask | addr; 14694 ill_mark_bcast(illgrp, subnet_addr); 14695 } 14696 prev_subnet_addr = addr; 14697 } 14698 } 14699 } 14700 14701 /* 14702 * This function is called while forming ill groups. 14703 * 14704 * Currently, we handle only allmulti groups. We want to join 14705 * allmulti on only one of the ills in the groups. In future, 14706 * when we have link aggregation, we may have to join normal 14707 * multicast groups on multiple ills as switch does inbound load 14708 * balancing. Following are the functions that calls this 14709 * function : 14710 * 14711 * 1) ill_recover_multicast : Interface is coming back UP. 14712 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14713 * will call ill_recover_multicast to recover all the multicast 14714 * groups. We need to make sure that only one member is joined 14715 * in the ill group. 14716 * 14717 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14718 * Somebody is joining allmulti. We need to make sure that only one 14719 * member is joined in the group. 14720 * 14721 * 3) illgrp_insert : If allmulti has already joined, we need to make 14722 * sure that only one member is joined in the group. 14723 * 14724 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14725 * allmulti who we have nominated. We need to pick someother ill. 14726 * 14727 * 5) illgrp_delete : The ill we nominated is leaving the group, 14728 * we need to pick a new ill to join the group. 14729 * 14730 * For (1), (2), (5) - we just have to check whether there is 14731 * a good ill joined in the group. If we could not find any ills 14732 * joined the group, we should join. 14733 * 14734 * For (4), the one that was nominated to receive, left the group. 14735 * There could be nobody joined in the group when this function is 14736 * called. 14737 * 14738 * For (3) - we need to explicitly check whether there are multiple 14739 * ills joined in the group. 14740 * 14741 * For simplicity, we don't differentiate any of the above cases. We 14742 * just leave the group if it is joined on any of them and join on 14743 * the first good ill. 14744 */ 14745 int 14746 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14747 { 14748 ilm_t *ilm; 14749 ill_t *ill; 14750 ill_t *fallback_inactive_ill = NULL; 14751 ill_t *fallback_failed_ill = NULL; 14752 int ret = 0; 14753 14754 /* 14755 * Leave the allmulti on all the ills and start fresh. 14756 */ 14757 for (ill = illgrp->illgrp_ill; ill != NULL; 14758 ill = ill->ill_group_next) { 14759 if (ill->ill_join_allmulti) 14760 (void) ip_leave_allmulti(ill->ill_ipif); 14761 } 14762 14763 /* 14764 * Choose a good ill. Fallback to inactive or failed if 14765 * none available. We need to fallback to FAILED in the 14766 * case where we have 2 interfaces in a group - where 14767 * one of them is failed and another is a good one and 14768 * the good one (not marked inactive) is leaving the group. 14769 */ 14770 ret = 0; 14771 for (ill = illgrp->illgrp_ill; ill != NULL; 14772 ill = ill->ill_group_next) { 14773 /* Never pick an offline interface */ 14774 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14775 continue; 14776 14777 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14778 fallback_failed_ill = ill; 14779 continue; 14780 } 14781 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14782 fallback_inactive_ill = ill; 14783 continue; 14784 } 14785 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14786 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14787 ret = ip_join_allmulti(ill->ill_ipif); 14788 /* 14789 * ip_join_allmulti can fail because of memory 14790 * failures. So, make sure we join at least 14791 * on one ill. 14792 */ 14793 if (ill->ill_join_allmulti) 14794 return (0); 14795 } 14796 } 14797 } 14798 if (ret != 0) { 14799 /* 14800 * If we tried nominating above and failed to do so, 14801 * return error. We might have tried multiple times. 14802 * But, return the latest error. 14803 */ 14804 return (ret); 14805 } 14806 if ((ill = fallback_inactive_ill) != NULL) { 14807 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14808 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14809 ret = ip_join_allmulti(ill->ill_ipif); 14810 return (ret); 14811 } 14812 } 14813 } else if ((ill = fallback_failed_ill) != NULL) { 14814 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14815 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14816 ret = ip_join_allmulti(ill->ill_ipif); 14817 return (ret); 14818 } 14819 } 14820 } 14821 return (0); 14822 } 14823 14824 /* 14825 * This function is called from illgrp_delete after it is 14826 * deleted from the group to reschedule responsibilities 14827 * to a different ill. 14828 */ 14829 static void 14830 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14831 { 14832 ilm_t *ilm; 14833 ipif_t *ipif; 14834 ipaddr_t subnet_addr; 14835 ipaddr_t net_addr; 14836 ipaddr_t net_mask = 0; 14837 ipaddr_t subnet_netmask; 14838 ipaddr_t addr; 14839 14840 ASSERT(ill->ill_group == NULL); 14841 /* 14842 * Broadcast Responsibility: 14843 * 14844 * 1. If this ill has been nominated for receiving broadcast 14845 * packets, we need to find a new one. Before we find a new 14846 * one, we need to re-group the ires that are part of this new 14847 * group (assumed by ill_nominate_bcast_rcv). We do this by 14848 * calling ill_group_bcast_for_xmit(ill) which will do the right 14849 * thing for us. 14850 * 14851 * 2. If this ill was not nominated for receiving broadcast 14852 * packets, we need to clear the IRE_MARK_NORECV flag 14853 * so that we continue to send up broadcast packets. 14854 */ 14855 if (!ill->ill_isv6) { 14856 /* 14857 * Case 1 above : No optimization here. Just redo the 14858 * nomination. 14859 */ 14860 ill_group_bcast_for_xmit(ill); 14861 ill_nominate_bcast_rcv(illgrp); 14862 14863 /* 14864 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14865 */ 14866 ill_clear_bcast_mark(ill, 0); 14867 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14868 14869 for (ipif = ill->ill_ipif; ipif != NULL; 14870 ipif = ipif->ipif_next) { 14871 14872 if (!(ipif->ipif_flags & IPIF_UP) || 14873 ipif->ipif_subnet == 0) { 14874 continue; 14875 } 14876 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14877 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14878 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14879 } else { 14880 net_mask = htonl(IN_CLASSA_NET); 14881 } 14882 addr = net_mask & ipif->ipif_subnet; 14883 ill_clear_bcast_mark(ill, addr); 14884 14885 net_addr = ~net_mask | addr; 14886 ill_clear_bcast_mark(ill, net_addr); 14887 14888 subnet_netmask = ipif->ipif_net_mask; 14889 addr = ipif->ipif_subnet; 14890 ill_clear_bcast_mark(ill, addr); 14891 14892 subnet_addr = ~subnet_netmask | addr; 14893 ill_clear_bcast_mark(ill, subnet_addr); 14894 } 14895 } 14896 14897 /* 14898 * Multicast Responsibility. 14899 * 14900 * If we have joined allmulti on this one, find a new member 14901 * in the group to join allmulti. As this ill is already part 14902 * of allmulti, we don't have to join on this one. 14903 * 14904 * If we have not joined allmulti on this one, there is no 14905 * responsibility to handoff. But we need to take new 14906 * responsibility i.e, join allmulti on this one if we need 14907 * to. 14908 */ 14909 if (ill->ill_join_allmulti) { 14910 (void) ill_nominate_mcast_rcv(illgrp); 14911 } else { 14912 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14913 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14914 (void) ip_join_allmulti(ill->ill_ipif); 14915 break; 14916 } 14917 } 14918 } 14919 14920 /* 14921 * We intentionally do the flushing of IRE_CACHES only matching 14922 * on the ill and not on groups. Note that we are already deleted 14923 * from the group. 14924 * 14925 * This will make sure that all IRE_CACHES whose stq is pointing 14926 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14927 * deleted and IRE_CACHES that are not pointing at this ill will 14928 * be left alone. 14929 */ 14930 if (ill->ill_isv6) { 14931 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14932 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14933 } else { 14934 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14935 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14936 } 14937 14938 /* 14939 * Some conn may have cached one of the IREs deleted above. By removing 14940 * the ire reference, we clean up the extra reference to the ill held in 14941 * ire->ire_stq. 14942 */ 14943 ipcl_walk(conn_cleanup_stale_ire, NULL); 14944 14945 /* 14946 * Re-do source address selection for all the members in the 14947 * group, if they borrowed source address from one of the ipifs 14948 * in this ill. 14949 */ 14950 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14951 if (ill->ill_isv6) { 14952 ipif_update_other_ipifs_v6(ipif, illgrp); 14953 } else { 14954 ipif_update_other_ipifs(ipif, illgrp); 14955 } 14956 } 14957 } 14958 14959 /* 14960 * Delete the ill from the group. The caller makes sure that it is 14961 * in a group and it okay to delete from the group. So, we always 14962 * delete here. 14963 */ 14964 static void 14965 illgrp_delete(ill_t *ill) 14966 { 14967 ill_group_t *illgrp; 14968 ill_group_t *tmpg; 14969 ill_t *tmp_ill; 14970 14971 /* 14972 * Reset illgrp_ill_schednext if it was pointing at us. 14973 * We need to do this before we set ill_group to NULL. 14974 */ 14975 rw_enter(&ill_g_lock, RW_WRITER); 14976 mutex_enter(&ill->ill_lock); 14977 14978 illgrp_reset_schednext(ill); 14979 14980 illgrp = ill->ill_group; 14981 14982 /* Delete the ill from illgrp. */ 14983 if (illgrp->illgrp_ill == ill) { 14984 illgrp->illgrp_ill = ill->ill_group_next; 14985 } else { 14986 tmp_ill = illgrp->illgrp_ill; 14987 while (tmp_ill->ill_group_next != ill) { 14988 tmp_ill = tmp_ill->ill_group_next; 14989 ASSERT(tmp_ill != NULL); 14990 } 14991 tmp_ill->ill_group_next = ill->ill_group_next; 14992 } 14993 ill->ill_group = NULL; 14994 ill->ill_group_next = NULL; 14995 14996 illgrp->illgrp_ill_count--; 14997 mutex_exit(&ill->ill_lock); 14998 rw_exit(&ill_g_lock); 14999 15000 /* 15001 * As this ill is leaving the group, we need to hand off 15002 * the responsibilities to the other ills in the group, if 15003 * this ill had some responsibilities. 15004 */ 15005 15006 ill_handoff_responsibility(ill, illgrp); 15007 15008 rw_enter(&ill_g_lock, RW_WRITER); 15009 15010 if (illgrp->illgrp_ill_count == 0) { 15011 15012 ASSERT(illgrp->illgrp_ill == NULL); 15013 if (ill->ill_isv6) { 15014 if (illgrp == illgrp_head_v6) { 15015 illgrp_head_v6 = illgrp->illgrp_next; 15016 } else { 15017 tmpg = illgrp_head_v6; 15018 while (tmpg->illgrp_next != illgrp) { 15019 tmpg = tmpg->illgrp_next; 15020 ASSERT(tmpg != NULL); 15021 } 15022 tmpg->illgrp_next = illgrp->illgrp_next; 15023 } 15024 } else { 15025 if (illgrp == illgrp_head_v4) { 15026 illgrp_head_v4 = illgrp->illgrp_next; 15027 } else { 15028 tmpg = illgrp_head_v4; 15029 while (tmpg->illgrp_next != illgrp) { 15030 tmpg = tmpg->illgrp_next; 15031 ASSERT(tmpg != NULL); 15032 } 15033 tmpg->illgrp_next = illgrp->illgrp_next; 15034 } 15035 } 15036 mutex_destroy(&illgrp->illgrp_lock); 15037 mi_free(illgrp); 15038 } 15039 rw_exit(&ill_g_lock); 15040 15041 /* 15042 * Even though the ill is out of the group its not necessary 15043 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15044 * We will split the ipsq when phyint_groupname is set to NULL. 15045 */ 15046 15047 /* 15048 * Send a routing sockets message if we are deleting from 15049 * groups with names. 15050 */ 15051 if (ill->ill_phyint->phyint_groupname_len != 0) 15052 ip_rts_ifmsg(ill->ill_ipif); 15053 } 15054 15055 /* 15056 * Re-do source address selection. This is normally called when 15057 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15058 * ipif comes up. 15059 */ 15060 void 15061 ill_update_source_selection(ill_t *ill) 15062 { 15063 ipif_t *ipif; 15064 15065 ASSERT(IAM_WRITER_ILL(ill)); 15066 15067 if (ill->ill_group != NULL) 15068 ill = ill->ill_group->illgrp_ill; 15069 15070 for (; ill != NULL; ill = ill->ill_group_next) { 15071 for (ipif = ill->ill_ipif; ipif != NULL; 15072 ipif = ipif->ipif_next) { 15073 if (ill->ill_isv6) 15074 ipif_recreate_interface_routes_v6(NULL, ipif); 15075 else 15076 ipif_recreate_interface_routes(NULL, ipif); 15077 } 15078 } 15079 } 15080 15081 /* 15082 * Insert ill in a group headed by illgrp_head. The caller can either 15083 * pass a groupname in which case we search for a group with the 15084 * same name to insert in or pass a group to insert in. This function 15085 * would only search groups with names. 15086 * 15087 * NOTE : The caller should make sure that there is at least one ipif 15088 * UP on this ill so that illgrp_scheduler can pick this ill 15089 * for outbound packets. If ill_ipif_up_count is zero, we have 15090 * already sent a DL_UNBIND to the driver and we don't want to 15091 * send anymore packets. We don't assert for ipif_up_count 15092 * to be greater than zero, because ipif_up_done wants to call 15093 * this function before bumping up the ipif_up_count. See 15094 * ipif_up_done() for details. 15095 */ 15096 int 15097 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15098 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15099 { 15100 ill_group_t *illgrp; 15101 ill_t *prev_ill; 15102 phyint_t *phyi; 15103 15104 ASSERT(ill->ill_group == NULL); 15105 15106 rw_enter(&ill_g_lock, RW_WRITER); 15107 mutex_enter(&ill->ill_lock); 15108 15109 if (groupname != NULL) { 15110 /* 15111 * Look for a group with a matching groupname to insert. 15112 */ 15113 for (illgrp = *illgrp_head; illgrp != NULL; 15114 illgrp = illgrp->illgrp_next) { 15115 15116 ill_t *tmp_ill; 15117 15118 /* 15119 * If we have an ill_group_t in the list which has 15120 * no ill_t assigned then we must be in the process of 15121 * removing this group. We skip this as illgrp_delete() 15122 * will remove it from the list. 15123 */ 15124 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15125 ASSERT(illgrp->illgrp_ill_count == 0); 15126 continue; 15127 } 15128 15129 ASSERT(tmp_ill->ill_phyint != NULL); 15130 phyi = tmp_ill->ill_phyint; 15131 /* 15132 * Look at groups which has names only. 15133 */ 15134 if (phyi->phyint_groupname_len == 0) 15135 continue; 15136 /* 15137 * Names are stored in the phyint common to both 15138 * IPv4 and IPv6. 15139 */ 15140 if (mi_strcmp(phyi->phyint_groupname, 15141 groupname) == 0) { 15142 break; 15143 } 15144 } 15145 } else { 15146 /* 15147 * If the caller passes in a NULL "grp_to_insert", we 15148 * allocate one below and insert this singleton. 15149 */ 15150 illgrp = grp_to_insert; 15151 } 15152 15153 ill->ill_group_next = NULL; 15154 15155 if (illgrp == NULL) { 15156 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15157 if (illgrp == NULL) { 15158 return (ENOMEM); 15159 } 15160 illgrp->illgrp_next = *illgrp_head; 15161 *illgrp_head = illgrp; 15162 illgrp->illgrp_ill = ill; 15163 illgrp->illgrp_ill_count = 1; 15164 ill->ill_group = illgrp; 15165 /* 15166 * Used in illgrp_scheduler to protect multiple threads 15167 * from traversing the list. 15168 */ 15169 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15170 } else { 15171 ASSERT(ill->ill_net_type == 15172 illgrp->illgrp_ill->ill_net_type); 15173 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15174 15175 /* Insert ill at tail of this group */ 15176 prev_ill = illgrp->illgrp_ill; 15177 while (prev_ill->ill_group_next != NULL) 15178 prev_ill = prev_ill->ill_group_next; 15179 prev_ill->ill_group_next = ill; 15180 ill->ill_group = illgrp; 15181 illgrp->illgrp_ill_count++; 15182 /* 15183 * Inherit group properties. Currently only forwarding 15184 * is the property we try to keep the same with all the 15185 * ills. When there are more, we will abstract this into 15186 * a function. 15187 */ 15188 ill->ill_flags &= ~ILLF_ROUTER; 15189 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15190 } 15191 mutex_exit(&ill->ill_lock); 15192 rw_exit(&ill_g_lock); 15193 15194 /* 15195 * 1) When ipif_up_done() calls this function, ipif_up_count 15196 * may be zero as it has not yet been bumped. But the ires 15197 * have already been added. So, we do the nomination here 15198 * itself. But, when ip_sioctl_groupname calls this, it checks 15199 * for ill_ipif_up_count != 0. Thus we don't check for 15200 * ill_ipif_up_count here while nominating broadcast ires for 15201 * receive. 15202 * 15203 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15204 * to group them properly as ire_add() has already happened 15205 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15206 * case, we need to do it here anyway. 15207 */ 15208 if (!ill->ill_isv6) { 15209 ill_group_bcast_for_xmit(ill); 15210 ill_nominate_bcast_rcv(illgrp); 15211 } 15212 15213 if (!ipif_is_coming_up) { 15214 /* 15215 * When ipif_up_done() calls this function, the multicast 15216 * groups have not been joined yet. So, there is no point in 15217 * nomination. ip_join_allmulti will handle groups when 15218 * ill_recover_multicast is called from ipif_up_done() later. 15219 */ 15220 (void) ill_nominate_mcast_rcv(illgrp); 15221 /* 15222 * ipif_up_done calls ill_update_source_selection 15223 * anyway. Moreover, we don't want to re-create 15224 * interface routes while ipif_up_done() still has reference 15225 * to them. Refer to ipif_up_done() for more details. 15226 */ 15227 ill_update_source_selection(ill); 15228 } 15229 15230 /* 15231 * Send a routing sockets message if we are inserting into 15232 * groups with names. 15233 */ 15234 if (groupname != NULL) 15235 ip_rts_ifmsg(ill->ill_ipif); 15236 return (0); 15237 } 15238 15239 /* 15240 * Return the first phyint matching the groupname. There could 15241 * be more than one when there are ill groups. 15242 * 15243 * Needs work: called only from ip_sioctl_groupname 15244 */ 15245 static phyint_t * 15246 phyint_lookup_group(char *groupname) 15247 { 15248 phyint_t *phyi; 15249 15250 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15251 /* 15252 * Group names are stored in the phyint - a common structure 15253 * to both IPv4 and IPv6. 15254 */ 15255 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15256 for (; phyi != NULL; 15257 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15258 phyi, AVL_AFTER)) { 15259 if (phyi->phyint_groupname_len == 0) 15260 continue; 15261 ASSERT(phyi->phyint_groupname != NULL); 15262 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15263 return (phyi); 15264 } 15265 return (NULL); 15266 } 15267 15268 15269 15270 /* 15271 * MT notes on creation and deletion of IPMP groups 15272 * 15273 * Creation and deletion of IPMP groups introduce the need to merge or 15274 * split the associated serialization objects i.e the ipsq's. Normally all 15275 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15276 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15277 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15278 * is a need to change the <ill-ipsq> association and we have to operate on both 15279 * the source and destination IPMP groups. For eg. attempting to set the 15280 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15281 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15282 * source or destination IPMP group are mapped to a single ipsq for executing 15283 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15284 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15285 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15286 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15287 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15288 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15289 * 15290 * In the above example the ioctl handling code locates the current ipsq of hme0 15291 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15292 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15293 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15294 * the destination ipsq. If the destination ipsq is not busy, it also enters 15295 * the destination ipsq exclusively. Now the actual groupname setting operation 15296 * can proceed. If the destination ipsq is busy, the operation is enqueued 15297 * on the destination (merged) ipsq and will be handled in the unwind from 15298 * ipsq_exit. 15299 * 15300 * To prevent other threads accessing the ill while the group name change is 15301 * in progres, we bring down the ipifs which also removes the ill from the 15302 * group. The group is changed in phyint and when the first ipif on the ill 15303 * is brought up, the ill is inserted into the right IPMP group by 15304 * illgrp_insert. 15305 */ 15306 /* ARGSUSED */ 15307 int 15308 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15309 ip_ioctl_cmd_t *ipip, void *ifreq) 15310 { 15311 int i; 15312 char *tmp; 15313 int namelen; 15314 ill_t *ill = ipif->ipif_ill; 15315 ill_t *ill_v4, *ill_v6; 15316 int err = 0; 15317 phyint_t *phyi; 15318 phyint_t *phyi_tmp; 15319 struct lifreq *lifr; 15320 mblk_t *mp1; 15321 char *groupname; 15322 ipsq_t *ipsq; 15323 15324 ASSERT(IAM_WRITER_IPIF(ipif)); 15325 15326 /* Existance verified in ip_wput_nondata */ 15327 mp1 = mp->b_cont->b_cont; 15328 lifr = (struct lifreq *)mp1->b_rptr; 15329 groupname = lifr->lifr_groupname; 15330 15331 if (ipif->ipif_id != 0) 15332 return (EINVAL); 15333 15334 phyi = ill->ill_phyint; 15335 ASSERT(phyi != NULL); 15336 15337 if (phyi->phyint_flags & PHYI_VIRTUAL) 15338 return (EINVAL); 15339 15340 tmp = groupname; 15341 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15342 ; 15343 15344 if (i == LIFNAMSIZ) { 15345 /* no null termination */ 15346 return (EINVAL); 15347 } 15348 15349 /* 15350 * Calculate the namelen exclusive of the null 15351 * termination character. 15352 */ 15353 namelen = tmp - groupname; 15354 15355 ill_v4 = phyi->phyint_illv4; 15356 ill_v6 = phyi->phyint_illv6; 15357 15358 /* 15359 * ILL cannot be part of a usesrc group and and IPMP group at the 15360 * same time. No need to grab the ill_g_usesrc_lock here, see 15361 * synchronization notes in ip.c 15362 */ 15363 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15364 return (EINVAL); 15365 } 15366 15367 /* 15368 * mark the ill as changing. 15369 * this should queue all new requests on the syncq. 15370 */ 15371 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15372 15373 if (ill_v4 != NULL) 15374 ill_v4->ill_state_flags |= ILL_CHANGING; 15375 if (ill_v6 != NULL) 15376 ill_v6->ill_state_flags |= ILL_CHANGING; 15377 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15378 15379 if (namelen == 0) { 15380 /* 15381 * Null string means remove this interface from the 15382 * existing group. 15383 */ 15384 if (phyi->phyint_groupname_len == 0) { 15385 /* 15386 * Never was in a group. 15387 */ 15388 err = 0; 15389 goto done; 15390 } 15391 15392 /* 15393 * IPv4 or IPv6 may be temporarily out of the group when all 15394 * the ipifs are down. Thus, we need to check for ill_group to 15395 * be non-NULL. 15396 */ 15397 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15398 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15399 mutex_enter(&ill_v4->ill_lock); 15400 if (!ill_is_quiescent(ill_v4)) { 15401 /* 15402 * ipsq_pending_mp_add will not fail since 15403 * connp is NULL 15404 */ 15405 (void) ipsq_pending_mp_add(NULL, 15406 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15407 mutex_exit(&ill_v4->ill_lock); 15408 err = EINPROGRESS; 15409 goto done; 15410 } 15411 mutex_exit(&ill_v4->ill_lock); 15412 } 15413 15414 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15415 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15416 mutex_enter(&ill_v6->ill_lock); 15417 if (!ill_is_quiescent(ill_v6)) { 15418 (void) ipsq_pending_mp_add(NULL, 15419 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15420 mutex_exit(&ill_v6->ill_lock); 15421 err = EINPROGRESS; 15422 goto done; 15423 } 15424 mutex_exit(&ill_v6->ill_lock); 15425 } 15426 15427 rw_enter(&ill_g_lock, RW_WRITER); 15428 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15429 mutex_enter(&phyi->phyint_lock); 15430 ASSERT(phyi->phyint_groupname != NULL); 15431 mi_free(phyi->phyint_groupname); 15432 phyi->phyint_groupname = NULL; 15433 phyi->phyint_groupname_len = 0; 15434 mutex_exit(&phyi->phyint_lock); 15435 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15436 rw_exit(&ill_g_lock); 15437 err = ill_up_ipifs(ill, q, mp); 15438 15439 /* 15440 * set the split flag so that the ipsq can be split 15441 */ 15442 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15443 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15444 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15445 15446 } else { 15447 if (phyi->phyint_groupname_len != 0) { 15448 ASSERT(phyi->phyint_groupname != NULL); 15449 /* Are we inserting in the same group ? */ 15450 if (mi_strcmp(groupname, 15451 phyi->phyint_groupname) == 0) { 15452 err = 0; 15453 goto done; 15454 } 15455 } 15456 15457 rw_enter(&ill_g_lock, RW_READER); 15458 /* 15459 * Merge ipsq for the group's. 15460 * This check is here as multiple groups/ills might be 15461 * sharing the same ipsq. 15462 * If we have to merege than the operation is restarted 15463 * on the new ipsq. 15464 */ 15465 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15466 if (phyi->phyint_ipsq != ipsq) { 15467 rw_exit(&ill_g_lock); 15468 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15469 goto done; 15470 } 15471 /* 15472 * Running exclusive on new ipsq. 15473 */ 15474 15475 ASSERT(ipsq != NULL); 15476 ASSERT(ipsq->ipsq_writer == curthread); 15477 15478 /* 15479 * Check whether the ill_type and ill_net_type matches before 15480 * we allocate any memory so that the cleanup is easier. 15481 * 15482 * We can't group dissimilar ones as we can't load spread 15483 * packets across the group because of potential link-level 15484 * header differences. 15485 */ 15486 phyi_tmp = phyint_lookup_group(groupname); 15487 if (phyi_tmp != NULL) { 15488 if ((ill_v4 != NULL && 15489 phyi_tmp->phyint_illv4 != NULL) && 15490 ((ill_v4->ill_net_type != 15491 phyi_tmp->phyint_illv4->ill_net_type) || 15492 (ill_v4->ill_type != 15493 phyi_tmp->phyint_illv4->ill_type))) { 15494 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15495 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15496 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15497 rw_exit(&ill_g_lock); 15498 return (EINVAL); 15499 } 15500 if ((ill_v6 != NULL && 15501 phyi_tmp->phyint_illv6 != NULL) && 15502 ((ill_v6->ill_net_type != 15503 phyi_tmp->phyint_illv6->ill_net_type) || 15504 (ill_v6->ill_type != 15505 phyi_tmp->phyint_illv6->ill_type))) { 15506 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15507 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15508 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15509 rw_exit(&ill_g_lock); 15510 return (EINVAL); 15511 } 15512 } 15513 15514 rw_exit(&ill_g_lock); 15515 15516 /* 15517 * bring down all v4 ipifs. 15518 */ 15519 if (ill_v4 != NULL) { 15520 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15521 } 15522 15523 /* 15524 * bring down all v6 ipifs. 15525 */ 15526 if (ill_v6 != NULL) { 15527 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15528 } 15529 15530 /* 15531 * make sure all ipifs are down and there are no active 15532 * references. Call to ipsq_pending_mp_add will not fail 15533 * since connp is NULL. 15534 */ 15535 if (ill_v4 != NULL) { 15536 mutex_enter(&ill_v4->ill_lock); 15537 if (!ill_is_quiescent(ill_v4)) { 15538 (void) ipsq_pending_mp_add(NULL, 15539 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15540 mutex_exit(&ill_v4->ill_lock); 15541 err = EINPROGRESS; 15542 goto done; 15543 } 15544 mutex_exit(&ill_v4->ill_lock); 15545 } 15546 15547 if (ill_v6 != NULL) { 15548 mutex_enter(&ill_v6->ill_lock); 15549 if (!ill_is_quiescent(ill_v6)) { 15550 (void) ipsq_pending_mp_add(NULL, 15551 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15552 mutex_exit(&ill_v6->ill_lock); 15553 err = EINPROGRESS; 15554 goto done; 15555 } 15556 mutex_exit(&ill_v6->ill_lock); 15557 } 15558 15559 /* 15560 * allocate including space for null terminator 15561 * before we insert. 15562 */ 15563 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15564 if (tmp == NULL) 15565 return (ENOMEM); 15566 15567 rw_enter(&ill_g_lock, RW_WRITER); 15568 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15569 mutex_enter(&phyi->phyint_lock); 15570 if (phyi->phyint_groupname_len != 0) { 15571 ASSERT(phyi->phyint_groupname != NULL); 15572 mi_free(phyi->phyint_groupname); 15573 } 15574 15575 /* 15576 * setup the new group name. 15577 */ 15578 phyi->phyint_groupname = tmp; 15579 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15580 phyi->phyint_groupname_len = namelen + 1; 15581 mutex_exit(&phyi->phyint_lock); 15582 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15583 rw_exit(&ill_g_lock); 15584 15585 err = ill_up_ipifs(ill, q, mp); 15586 } 15587 15588 done: 15589 /* 15590 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15591 */ 15592 if (err != EINPROGRESS) { 15593 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15594 if (ill_v4 != NULL) 15595 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15596 if (ill_v6 != NULL) 15597 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15598 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15599 } 15600 return (err); 15601 } 15602 15603 /* ARGSUSED */ 15604 int 15605 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15606 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15607 { 15608 ill_t *ill; 15609 phyint_t *phyi; 15610 struct lifreq *lifr; 15611 mblk_t *mp1; 15612 15613 /* Existence verified in ip_wput_nondata */ 15614 mp1 = mp->b_cont->b_cont; 15615 lifr = (struct lifreq *)mp1->b_rptr; 15616 ill = ipif->ipif_ill; 15617 phyi = ill->ill_phyint; 15618 15619 lifr->lifr_groupname[0] = '\0'; 15620 /* 15621 * ill_group may be null if all the interfaces 15622 * are down. But still, the phyint should always 15623 * hold the name. 15624 */ 15625 if (phyi->phyint_groupname_len != 0) { 15626 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15627 phyi->phyint_groupname_len); 15628 } 15629 15630 return (0); 15631 } 15632 15633 15634 typedef struct conn_move_s { 15635 ill_t *cm_from_ill; 15636 ill_t *cm_to_ill; 15637 int cm_ifindex; 15638 } conn_move_t; 15639 15640 /* 15641 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15642 */ 15643 static void 15644 conn_move(conn_t *connp, caddr_t arg) 15645 { 15646 conn_move_t *connm; 15647 int ifindex; 15648 int i; 15649 ill_t *from_ill; 15650 ill_t *to_ill; 15651 ilg_t *ilg; 15652 ilm_t *ret_ilm; 15653 15654 connm = (conn_move_t *)arg; 15655 ifindex = connm->cm_ifindex; 15656 from_ill = connm->cm_from_ill; 15657 to_ill = connm->cm_to_ill; 15658 15659 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15660 15661 /* All multicast fields protected by conn_lock */ 15662 mutex_enter(&connp->conn_lock); 15663 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15664 if ((connp->conn_outgoing_ill == from_ill) && 15665 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15666 connp->conn_outgoing_ill = to_ill; 15667 connp->conn_incoming_ill = to_ill; 15668 } 15669 15670 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15671 15672 if ((connp->conn_multicast_ill == from_ill) && 15673 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15674 connp->conn_multicast_ill = connm->cm_to_ill; 15675 } 15676 15677 /* Change IP_XMIT_IF associations */ 15678 if ((connp->conn_xmit_if_ill == from_ill) && 15679 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15680 connp->conn_xmit_if_ill = to_ill; 15681 } 15682 /* 15683 * Change the ilg_ill to point to the new one. This assumes 15684 * ilm_move_v6 has moved the ilms to new_ill and the driver 15685 * has been told to receive packets on this interface. 15686 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15687 * But when doing a FAILOVER, it might fail with ENOMEM and so 15688 * some ilms may not have moved. We check to see whether 15689 * the ilms have moved to to_ill. We can't check on from_ill 15690 * as in the process of moving, we could have split an ilm 15691 * in to two - which has the same orig_ifindex and v6group. 15692 * 15693 * For IPv4, ilg_ipif moves implicitly. The code below really 15694 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15695 */ 15696 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15697 ilg = &connp->conn_ilg[i]; 15698 if ((ilg->ilg_ill == from_ill) && 15699 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15700 /* ifindex != 0 indicates failback */ 15701 if (ifindex != 0) { 15702 connp->conn_ilg[i].ilg_ill = to_ill; 15703 continue; 15704 } 15705 15706 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15707 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15708 connp->conn_zoneid); 15709 15710 if (ret_ilm != NULL) 15711 connp->conn_ilg[i].ilg_ill = to_ill; 15712 } 15713 } 15714 mutex_exit(&connp->conn_lock); 15715 } 15716 15717 static void 15718 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15719 { 15720 conn_move_t connm; 15721 15722 connm.cm_from_ill = from_ill; 15723 connm.cm_to_ill = to_ill; 15724 connm.cm_ifindex = ifindex; 15725 15726 ipcl_walk(conn_move, (caddr_t)&connm); 15727 } 15728 15729 /* 15730 * ilm has been moved from from_ill to to_ill. 15731 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15732 * appropriately. 15733 * 15734 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15735 * the code there de-references ipif_ill to get the ill to 15736 * send multicast requests. It does not work as ipif is on its 15737 * move and already moved when this function is called. 15738 * Thus, we need to use from_ill and to_ill send down multicast 15739 * requests. 15740 */ 15741 static void 15742 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15743 { 15744 ipif_t *ipif; 15745 ilm_t *ilm; 15746 15747 /* 15748 * See whether we need to send down DL_ENABMULTI_REQ on 15749 * to_ill as ilm has just been added. 15750 */ 15751 ASSERT(IAM_WRITER_ILL(to_ill)); 15752 ASSERT(IAM_WRITER_ILL(from_ill)); 15753 15754 ILM_WALKER_HOLD(to_ill); 15755 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15756 15757 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 15758 continue; 15759 /* 15760 * no locks held, ill/ipif cannot dissappear as long 15761 * as we are writer. 15762 */ 15763 ipif = to_ill->ill_ipif; 15764 /* 15765 * No need to hold any lock as we are the writer and this 15766 * can only be changed by a writer. 15767 */ 15768 ilm->ilm_is_new = B_FALSE; 15769 15770 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15771 ipif->ipif_flags & IPIF_POINTOPOINT) { 15772 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15773 "resolver\n")); 15774 continue; /* Must be IRE_IF_NORESOLVER */ 15775 } 15776 15777 15778 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15779 ip1dbg(("ilm_send_multicast_reqs: " 15780 "to_ill MULTI_BCAST\n")); 15781 goto from; 15782 } 15783 15784 if (to_ill->ill_isv6) 15785 mld_joingroup(ilm); 15786 else 15787 igmp_joingroup(ilm); 15788 15789 if (to_ill->ill_ipif_up_count == 0) { 15790 /* 15791 * Nobody there. All multicast addresses will be 15792 * re-joined when we get the DL_BIND_ACK bringing the 15793 * interface up. 15794 */ 15795 ilm->ilm_notify_driver = B_FALSE; 15796 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15797 goto from; 15798 } 15799 15800 /* 15801 * For allmulti address, we want to join on only one interface. 15802 * Checking for ilm_numentries_v6 is not correct as you may 15803 * find an ilm with zero address on to_ill, but we may not 15804 * have nominated to_ill for receiving. Thus, if we have 15805 * nominated from_ill (ill_join_allmulti is set), nominate 15806 * only if to_ill is not already nominated (to_ill normally 15807 * should not have been nominated if "from_ill" has already 15808 * been nominated. As we don't prevent failovers from happening 15809 * across groups, we don't assert). 15810 */ 15811 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15812 /* 15813 * There is no need to hold ill locks as we are 15814 * writer on both ills and when ill_join_allmulti 15815 * is changed the thread is always a writer. 15816 */ 15817 if (from_ill->ill_join_allmulti && 15818 !to_ill->ill_join_allmulti) { 15819 (void) ip_join_allmulti(to_ill->ill_ipif); 15820 } 15821 } else if (ilm->ilm_notify_driver) { 15822 15823 /* 15824 * This is a newly moved ilm so we need to tell the 15825 * driver about the new group. There can be more than 15826 * one ilm's for the same group in the list each with a 15827 * different orig_ifindex. We have to inform the driver 15828 * once. In ilm_move_v[4,6] we only set the flag 15829 * ilm_notify_driver for the first ilm. 15830 */ 15831 15832 (void) ip_ll_send_enabmulti_req(to_ill, 15833 &ilm->ilm_v6addr); 15834 } 15835 15836 ilm->ilm_notify_driver = B_FALSE; 15837 15838 /* 15839 * See whether we need to send down DL_DISABMULTI_REQ on 15840 * from_ill as ilm has just been removed. 15841 */ 15842 from: 15843 ipif = from_ill->ill_ipif; 15844 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15845 ipif->ipif_flags & IPIF_POINTOPOINT) { 15846 ip1dbg(("ilm_send_multicast_reqs: " 15847 "from_ill not resolver\n")); 15848 continue; /* Must be IRE_IF_NORESOLVER */ 15849 } 15850 15851 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15852 ip1dbg(("ilm_send_multicast_reqs: " 15853 "from_ill MULTI_BCAST\n")); 15854 continue; 15855 } 15856 15857 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15858 if (from_ill->ill_join_allmulti) 15859 (void) ip_leave_allmulti(from_ill->ill_ipif); 15860 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15861 (void) ip_ll_send_disabmulti_req(from_ill, 15862 &ilm->ilm_v6addr); 15863 } 15864 } 15865 ILM_WALKER_RELE(to_ill); 15866 } 15867 15868 /* 15869 * This function is called when all multicast memberships needs 15870 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15871 * called only once unlike the IPv4 counterpart where it is called after 15872 * every logical interface is moved. The reason is due to multicast 15873 * memberships are joined using an interface address in IPv4 while in 15874 * IPv6, interface index is used. 15875 */ 15876 static void 15877 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15878 { 15879 ilm_t *ilm; 15880 ilm_t *ilm_next; 15881 ilm_t *new_ilm; 15882 ilm_t **ilmp; 15883 int count; 15884 char buf[INET6_ADDRSTRLEN]; 15885 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15886 15887 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15888 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15889 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15890 15891 if (ifindex == 0) { 15892 /* 15893 * Form the solicited node mcast address which is used later. 15894 */ 15895 ipif_t *ipif; 15896 15897 ipif = from_ill->ill_ipif; 15898 ASSERT(ipif->ipif_id == 0); 15899 15900 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15901 } 15902 15903 ilmp = &from_ill->ill_ilm; 15904 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 15905 ilm_next = ilm->ilm_next; 15906 15907 if (ilm->ilm_flags & ILM_DELETED) { 15908 ilmp = &ilm->ilm_next; 15909 continue; 15910 } 15911 15912 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15913 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15914 ASSERT(ilm->ilm_orig_ifindex != 0); 15915 if (ilm->ilm_orig_ifindex == ifindex) { 15916 /* 15917 * We are failing back multicast memberships. 15918 * If the same ilm exists in to_ill, it means somebody 15919 * has joined the same group there e.g. ff02::1 15920 * is joined within the kernel when the interfaces 15921 * came UP. 15922 */ 15923 ASSERT(ilm->ilm_ipif == NULL); 15924 if (new_ilm != NULL) { 15925 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15926 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15927 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15928 new_ilm->ilm_is_new = B_TRUE; 15929 } 15930 } else { 15931 /* 15932 * check if we can just move the ilm 15933 */ 15934 if (from_ill->ill_ilm_walker_cnt != 0) { 15935 /* 15936 * We have walkers we cannot move 15937 * the ilm, so allocate a new ilm, 15938 * this (old) ilm will be marked 15939 * ILM_DELETED at the end of the loop 15940 * and will be freed when the 15941 * last walker exits. 15942 */ 15943 new_ilm = (ilm_t *)mi_zalloc 15944 (sizeof (ilm_t)); 15945 if (new_ilm == NULL) { 15946 ip0dbg(("ilm_move_v6: " 15947 "FAILBACK of IPv6" 15948 " multicast address %s : " 15949 "from %s to" 15950 " %s failed : ENOMEM \n", 15951 inet_ntop(AF_INET6, 15952 &ilm->ilm_v6addr, buf, 15953 sizeof (buf)), 15954 from_ill->ill_name, 15955 to_ill->ill_name)); 15956 15957 ilmp = &ilm->ilm_next; 15958 continue; 15959 } 15960 *new_ilm = *ilm; 15961 /* 15962 * we don't want new_ilm linked to 15963 * ilm's filter list. 15964 */ 15965 new_ilm->ilm_filter = NULL; 15966 } else { 15967 /* 15968 * No walkers we can move the ilm. 15969 * lets take it out of the list. 15970 */ 15971 *ilmp = ilm->ilm_next; 15972 ilm->ilm_next = NULL; 15973 new_ilm = ilm; 15974 } 15975 15976 /* 15977 * if this is the first ilm for the group 15978 * set ilm_notify_driver so that we notify the 15979 * driver in ilm_send_multicast_reqs. 15980 */ 15981 if (ilm_lookup_ill_v6(to_ill, 15982 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15983 new_ilm->ilm_notify_driver = B_TRUE; 15984 15985 new_ilm->ilm_ill = to_ill; 15986 /* Add to the to_ill's list */ 15987 new_ilm->ilm_next = to_ill->ill_ilm; 15988 to_ill->ill_ilm = new_ilm; 15989 /* 15990 * set the flag so that mld_joingroup is 15991 * called in ilm_send_multicast_reqs(). 15992 */ 15993 new_ilm->ilm_is_new = B_TRUE; 15994 } 15995 goto bottom; 15996 } else if (ifindex != 0) { 15997 /* 15998 * If this is FAILBACK (ifindex != 0) and the ifindex 15999 * has not matched above, look at the next ilm. 16000 */ 16001 ilmp = &ilm->ilm_next; 16002 continue; 16003 } 16004 /* 16005 * If we are here, it means ifindex is 0. Failover 16006 * everything. 16007 * 16008 * We need to handle solicited node mcast address 16009 * and all_nodes mcast address differently as they 16010 * are joined witin the kenrel (ipif_multicast_up) 16011 * and potentially from the userland. We are called 16012 * after the ipifs of from_ill has been moved. 16013 * If we still find ilms on ill with solicited node 16014 * mcast address or all_nodes mcast address, it must 16015 * belong to the UP interface that has not moved e.g. 16016 * ipif_id 0 with the link local prefix does not move. 16017 * We join this on the new ill accounting for all the 16018 * userland memberships so that applications don't 16019 * see any failure. 16020 * 16021 * We need to make sure that we account only for the 16022 * solicited node and all node multicast addresses 16023 * that was brought UP on these. In the case of 16024 * a failover from A to B, we might have ilms belonging 16025 * to A (ilm_orig_ifindex pointing at A) on B accounting 16026 * for the membership from the userland. If we are failing 16027 * over from B to C now, we will find the ones belonging 16028 * to A on B. These don't account for the ill_ipif_up_count. 16029 * They just move from B to C. The check below on 16030 * ilm_orig_ifindex ensures that. 16031 */ 16032 if ((ilm->ilm_orig_ifindex == 16033 from_ill->ill_phyint->phyint_ifindex) && 16034 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16035 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16036 &ilm->ilm_v6addr))) { 16037 ASSERT(ilm->ilm_refcnt > 0); 16038 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16039 /* 16040 * For indentation reasons, we are not using a 16041 * "else" here. 16042 */ 16043 if (count == 0) { 16044 ilmp = &ilm->ilm_next; 16045 continue; 16046 } 16047 ilm->ilm_refcnt -= count; 16048 if (new_ilm != NULL) { 16049 /* 16050 * Can find one with the same 16051 * ilm_orig_ifindex, if we are failing 16052 * over to a STANDBY. This happens 16053 * when somebody wants to join a group 16054 * on a STANDBY interface and we 16055 * internally join on a different one. 16056 * If we had joined on from_ill then, a 16057 * failover now will find a new ilm 16058 * with this index. 16059 */ 16060 ip1dbg(("ilm_move_v6: FAILOVER, found" 16061 " new ilm on %s, group address %s\n", 16062 to_ill->ill_name, 16063 inet_ntop(AF_INET6, 16064 &ilm->ilm_v6addr, buf, 16065 sizeof (buf)))); 16066 new_ilm->ilm_refcnt += count; 16067 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16068 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16069 new_ilm->ilm_is_new = B_TRUE; 16070 } 16071 } else { 16072 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16073 if (new_ilm == NULL) { 16074 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16075 " multicast address %s : from %s to" 16076 " %s failed : ENOMEM \n", 16077 inet_ntop(AF_INET6, 16078 &ilm->ilm_v6addr, buf, 16079 sizeof (buf)), from_ill->ill_name, 16080 to_ill->ill_name)); 16081 ilmp = &ilm->ilm_next; 16082 continue; 16083 } 16084 *new_ilm = *ilm; 16085 new_ilm->ilm_filter = NULL; 16086 new_ilm->ilm_refcnt = count; 16087 new_ilm->ilm_timer = INFINITY; 16088 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16089 new_ilm->ilm_is_new = B_TRUE; 16090 /* 16091 * If the to_ill has not joined this 16092 * group we need to tell the driver in 16093 * ill_send_multicast_reqs. 16094 */ 16095 if (ilm_lookup_ill_v6(to_ill, 16096 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16097 new_ilm->ilm_notify_driver = B_TRUE; 16098 16099 new_ilm->ilm_ill = to_ill; 16100 /* Add to the to_ill's list */ 16101 new_ilm->ilm_next = to_ill->ill_ilm; 16102 to_ill->ill_ilm = new_ilm; 16103 ASSERT(new_ilm->ilm_ipif == NULL); 16104 } 16105 if (ilm->ilm_refcnt == 0) { 16106 goto bottom; 16107 } else { 16108 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16109 CLEAR_SLIST(new_ilm->ilm_filter); 16110 ilmp = &ilm->ilm_next; 16111 } 16112 continue; 16113 } else { 16114 /* 16115 * ifindex = 0 means, move everything pointing at 16116 * from_ill. We are doing this becuase ill has 16117 * either FAILED or became INACTIVE. 16118 * 16119 * As we would like to move things later back to 16120 * from_ill, we want to retain the identity of this 16121 * ilm. Thus, we don't blindly increment the reference 16122 * count on the ilms matching the address alone. We 16123 * need to match on the ilm_orig_index also. new_ilm 16124 * was obtained by matching ilm_orig_index also. 16125 */ 16126 if (new_ilm != NULL) { 16127 /* 16128 * This is possible only if a previous restore 16129 * was incomplete i.e restore to 16130 * ilm_orig_ifindex left some ilms because 16131 * of some failures. Thus when we are failing 16132 * again, we might find our old friends there. 16133 */ 16134 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16135 " on %s, group address %s\n", 16136 to_ill->ill_name, 16137 inet_ntop(AF_INET6, 16138 &ilm->ilm_v6addr, buf, 16139 sizeof (buf)))); 16140 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16141 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16142 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16143 new_ilm->ilm_is_new = B_TRUE; 16144 } 16145 } else { 16146 if (from_ill->ill_ilm_walker_cnt != 0) { 16147 new_ilm = (ilm_t *) 16148 mi_zalloc(sizeof (ilm_t)); 16149 if (new_ilm == NULL) { 16150 ip0dbg(("ilm_move_v6: " 16151 "FAILOVER of IPv6" 16152 " multicast address %s : " 16153 "from %s to" 16154 " %s failed : ENOMEM \n", 16155 inet_ntop(AF_INET6, 16156 &ilm->ilm_v6addr, buf, 16157 sizeof (buf)), 16158 from_ill->ill_name, 16159 to_ill->ill_name)); 16160 16161 ilmp = &ilm->ilm_next; 16162 continue; 16163 } 16164 *new_ilm = *ilm; 16165 new_ilm->ilm_filter = NULL; 16166 } else { 16167 *ilmp = ilm->ilm_next; 16168 new_ilm = ilm; 16169 } 16170 /* 16171 * If the to_ill has not joined this 16172 * group we need to tell the driver in 16173 * ill_send_multicast_reqs. 16174 */ 16175 if (ilm_lookup_ill_v6(to_ill, 16176 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16177 new_ilm->ilm_notify_driver = B_TRUE; 16178 16179 /* Add to the to_ill's list */ 16180 new_ilm->ilm_next = to_ill->ill_ilm; 16181 to_ill->ill_ilm = new_ilm; 16182 ASSERT(ilm->ilm_ipif == NULL); 16183 new_ilm->ilm_ill = to_ill; 16184 new_ilm->ilm_is_new = B_TRUE; 16185 } 16186 16187 } 16188 16189 bottom: 16190 /* 16191 * Revert multicast filter state to (EXCLUDE, NULL). 16192 * new_ilm->ilm_is_new should already be set if needed. 16193 */ 16194 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16195 CLEAR_SLIST(new_ilm->ilm_filter); 16196 /* 16197 * We allocated/got a new ilm, free the old one. 16198 */ 16199 if (new_ilm != ilm) { 16200 if (from_ill->ill_ilm_walker_cnt == 0) { 16201 *ilmp = ilm->ilm_next; 16202 ilm->ilm_next = NULL; 16203 FREE_SLIST(ilm->ilm_filter); 16204 FREE_SLIST(ilm->ilm_pendsrcs); 16205 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16206 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16207 mi_free((char *)ilm); 16208 } else { 16209 ilm->ilm_flags |= ILM_DELETED; 16210 from_ill->ill_ilm_cleanup_reqd = 1; 16211 ilmp = &ilm->ilm_next; 16212 } 16213 } 16214 } 16215 } 16216 16217 /* 16218 * Move all the multicast memberships to to_ill. Called when 16219 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16220 * different from IPv6 counterpart as multicast memberships are associated 16221 * with ills in IPv6. This function is called after every ipif is moved 16222 * unlike IPv6, where it is moved only once. 16223 */ 16224 static void 16225 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16226 { 16227 ilm_t *ilm; 16228 ilm_t *ilm_next; 16229 ilm_t *new_ilm; 16230 ilm_t **ilmp; 16231 16232 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16233 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16234 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16235 16236 ilmp = &from_ill->ill_ilm; 16237 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16238 ilm_next = ilm->ilm_next; 16239 16240 if (ilm->ilm_flags & ILM_DELETED) { 16241 ilmp = &ilm->ilm_next; 16242 continue; 16243 } 16244 16245 ASSERT(ilm->ilm_ipif != NULL); 16246 16247 if (ilm->ilm_ipif != ipif) { 16248 ilmp = &ilm->ilm_next; 16249 continue; 16250 } 16251 16252 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16253 htonl(INADDR_ALLHOSTS_GROUP)) { 16254 /* 16255 * We joined this in ipif_multicast_up 16256 * and we never did an ipif_multicast_down 16257 * for IPv4. If nobody else from the userland 16258 * has reference, we free the ilm, and later 16259 * when this ipif comes up on the new ill, 16260 * we will join this again. 16261 */ 16262 if (--ilm->ilm_refcnt == 0) 16263 goto delete_ilm; 16264 16265 new_ilm = ilm_lookup_ipif(ipif, 16266 V4_PART_OF_V6(ilm->ilm_v6addr)); 16267 if (new_ilm != NULL) { 16268 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16269 /* 16270 * We still need to deal with the from_ill. 16271 */ 16272 new_ilm->ilm_is_new = B_TRUE; 16273 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16274 CLEAR_SLIST(new_ilm->ilm_filter); 16275 goto delete_ilm; 16276 } 16277 /* 16278 * If we could not find one e.g. ipif is 16279 * still down on to_ill, we add this ilm 16280 * on ill_new to preserve the reference 16281 * count. 16282 */ 16283 } 16284 /* 16285 * When ipifs move, ilms always move with it 16286 * to the NEW ill. Thus we should never be 16287 * able to find ilm till we really move it here. 16288 */ 16289 ASSERT(ilm_lookup_ipif(ipif, 16290 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16291 16292 if (from_ill->ill_ilm_walker_cnt != 0) { 16293 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16294 if (new_ilm == NULL) { 16295 char buf[INET6_ADDRSTRLEN]; 16296 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16297 " multicast address %s : " 16298 "from %s to" 16299 " %s failed : ENOMEM \n", 16300 inet_ntop(AF_INET, 16301 &ilm->ilm_v6addr, buf, 16302 sizeof (buf)), 16303 from_ill->ill_name, 16304 to_ill->ill_name)); 16305 16306 ilmp = &ilm->ilm_next; 16307 continue; 16308 } 16309 *new_ilm = *ilm; 16310 /* We don't want new_ilm linked to ilm's filter list */ 16311 new_ilm->ilm_filter = NULL; 16312 } else { 16313 /* Remove from the list */ 16314 *ilmp = ilm->ilm_next; 16315 new_ilm = ilm; 16316 } 16317 16318 /* 16319 * If we have never joined this group on the to_ill 16320 * make sure we tell the driver. 16321 */ 16322 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16323 ALL_ZONES) == NULL) 16324 new_ilm->ilm_notify_driver = B_TRUE; 16325 16326 /* Add to the to_ill's list */ 16327 new_ilm->ilm_next = to_ill->ill_ilm; 16328 to_ill->ill_ilm = new_ilm; 16329 new_ilm->ilm_is_new = B_TRUE; 16330 16331 /* 16332 * Revert multicast filter state to (EXCLUDE, NULL) 16333 */ 16334 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16335 CLEAR_SLIST(new_ilm->ilm_filter); 16336 16337 /* 16338 * Delete only if we have allocated a new ilm. 16339 */ 16340 if (new_ilm != ilm) { 16341 delete_ilm: 16342 if (from_ill->ill_ilm_walker_cnt == 0) { 16343 /* Remove from the list */ 16344 *ilmp = ilm->ilm_next; 16345 ilm->ilm_next = NULL; 16346 FREE_SLIST(ilm->ilm_filter); 16347 FREE_SLIST(ilm->ilm_pendsrcs); 16348 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16349 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16350 mi_free((char *)ilm); 16351 } else { 16352 ilm->ilm_flags |= ILM_DELETED; 16353 from_ill->ill_ilm_cleanup_reqd = 1; 16354 ilmp = &ilm->ilm_next; 16355 } 16356 } 16357 } 16358 } 16359 16360 static uint_t 16361 ipif_get_id(ill_t *ill, uint_t id) 16362 { 16363 uint_t unit; 16364 ipif_t *tipif; 16365 boolean_t found = B_FALSE; 16366 16367 /* 16368 * During failback, we want to go back to the same id 16369 * instead of the smallest id so that the original 16370 * configuration is maintained. id is non-zero in that 16371 * case. 16372 */ 16373 if (id != 0) { 16374 /* 16375 * While failing back, if we still have an ipif with 16376 * MAX_ADDRS_PER_IF, it means this will be replaced 16377 * as soon as we return from this function. It was 16378 * to set to MAX_ADDRS_PER_IF by the caller so that 16379 * we can choose the smallest id. Thus we return zero 16380 * in that case ignoring the hint. 16381 */ 16382 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16383 return (0); 16384 for (tipif = ill->ill_ipif; tipif != NULL; 16385 tipif = tipif->ipif_next) { 16386 if (tipif->ipif_id == id) { 16387 found = B_TRUE; 16388 break; 16389 } 16390 } 16391 /* 16392 * If somebody already plumbed another logical 16393 * with the same id, we won't be able to find it. 16394 */ 16395 if (!found) 16396 return (id); 16397 } 16398 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16399 found = B_FALSE; 16400 for (tipif = ill->ill_ipif; tipif != NULL; 16401 tipif = tipif->ipif_next) { 16402 if (tipif->ipif_id == unit) { 16403 found = B_TRUE; 16404 break; 16405 } 16406 } 16407 if (!found) 16408 break; 16409 } 16410 return (unit); 16411 } 16412 16413 /* ARGSUSED */ 16414 static int 16415 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16416 ipif_t **rep_ipif_ptr) 16417 { 16418 ill_t *from_ill; 16419 ipif_t *rep_ipif; 16420 ipif_t **ipifp; 16421 uint_t unit; 16422 int err = 0; 16423 ipif_t *to_ipif; 16424 struct iocblk *iocp; 16425 boolean_t failback_cmd; 16426 boolean_t remove_ipif; 16427 int rc; 16428 16429 ASSERT(IAM_WRITER_ILL(to_ill)); 16430 ASSERT(IAM_WRITER_IPIF(ipif)); 16431 16432 iocp = (struct iocblk *)mp->b_rptr; 16433 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16434 remove_ipif = B_FALSE; 16435 16436 from_ill = ipif->ipif_ill; 16437 16438 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16439 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16440 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16441 16442 /* 16443 * Don't move LINK LOCAL addresses as they are tied to 16444 * physical interface. 16445 */ 16446 if (from_ill->ill_isv6 && 16447 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16448 ipif->ipif_was_up = B_FALSE; 16449 IPIF_UNMARK_MOVING(ipif); 16450 return (0); 16451 } 16452 16453 /* 16454 * We set the ipif_id to maximum so that the search for 16455 * ipif_id will pick the lowest number i.e 0 in the 16456 * following 2 cases : 16457 * 16458 * 1) We have a replacement ipif at the head of to_ill. 16459 * We can't remove it yet as we can exceed ip_addrs_per_if 16460 * on to_ill and hence the MOVE might fail. We want to 16461 * remove it only if we could move the ipif. Thus, by 16462 * setting it to the MAX value, we make the search in 16463 * ipif_get_id return the zeroth id. 16464 * 16465 * 2) When DR pulls out the NIC and re-plumbs the interface, 16466 * we might just have a zero address plumbed on the ipif 16467 * with zero id in the case of IPv4. We remove that while 16468 * doing the failback. We want to remove it only if we 16469 * could move the ipif. Thus, by setting it to the MAX 16470 * value, we make the search in ipif_get_id return the 16471 * zeroth id. 16472 * 16473 * Both (1) and (2) are done only when when we are moving 16474 * an ipif (either due to failover/failback) which originally 16475 * belonged to this interface i.e the ipif_orig_ifindex is 16476 * the same as to_ill's ifindex. This is needed so that 16477 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16478 * from B -> A (B is being removed from the group) and 16479 * FAILBACK from A -> B restores the original configuration. 16480 * Without the check for orig_ifindex, the second FAILOVER 16481 * could make the ipif belonging to B replace the A's zeroth 16482 * ipif and the subsequent failback re-creating the replacement 16483 * ipif again. 16484 * 16485 * NOTE : We created the replacement ipif when we did a 16486 * FAILOVER (See below). We could check for FAILBACK and 16487 * then look for replacement ipif to be removed. But we don't 16488 * want to do that because we wan't to allow the possibility 16489 * of a FAILOVER from A -> B (which creates the replacement ipif), 16490 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16491 * from B -> A. 16492 */ 16493 to_ipif = to_ill->ill_ipif; 16494 if ((to_ill->ill_phyint->phyint_ifindex == 16495 ipif->ipif_orig_ifindex) && 16496 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16497 ASSERT(to_ipif->ipif_id == 0); 16498 remove_ipif = B_TRUE; 16499 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16500 } 16501 /* 16502 * Find the lowest logical unit number on the to_ill. 16503 * If we are failing back, try to get the original id 16504 * rather than the lowest one so that the original 16505 * configuration is maintained. 16506 * 16507 * XXX need a better scheme for this. 16508 */ 16509 if (failback_cmd) { 16510 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16511 } else { 16512 unit = ipif_get_id(to_ill, 0); 16513 } 16514 16515 /* Reset back to zero in case we fail below */ 16516 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16517 to_ipif->ipif_id = 0; 16518 16519 if (unit == ip_addrs_per_if) { 16520 ipif->ipif_was_up = B_FALSE; 16521 IPIF_UNMARK_MOVING(ipif); 16522 return (EINVAL); 16523 } 16524 16525 /* 16526 * ipif is ready to move from "from_ill" to "to_ill". 16527 * 16528 * 1) If we are moving ipif with id zero, create a 16529 * replacement ipif for this ipif on from_ill. If this fails 16530 * fail the MOVE operation. 16531 * 16532 * 2) Remove the replacement ipif on to_ill if any. 16533 * We could remove the replacement ipif when we are moving 16534 * the ipif with id zero. But what if somebody already 16535 * unplumbed it ? Thus we always remove it if it is present. 16536 * We want to do it only if we are sure we are going to 16537 * move the ipif to to_ill which is why there are no 16538 * returns due to error till ipif is linked to to_ill. 16539 * Note that the first ipif that we failback will always 16540 * be zero if it is present. 16541 */ 16542 if (ipif->ipif_id == 0) { 16543 ipaddr_t inaddr_any = INADDR_ANY; 16544 16545 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16546 if (rep_ipif == NULL) { 16547 ipif->ipif_was_up = B_FALSE; 16548 IPIF_UNMARK_MOVING(ipif); 16549 return (ENOMEM); 16550 } 16551 *rep_ipif = ipif_zero; 16552 /* 16553 * Before we put the ipif on the list, store the addresses 16554 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16555 * assumes so. This logic is not any different from what 16556 * ipif_allocate does. 16557 */ 16558 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16559 &rep_ipif->ipif_v6lcl_addr); 16560 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16561 &rep_ipif->ipif_v6src_addr); 16562 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16563 &rep_ipif->ipif_v6subnet); 16564 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16565 &rep_ipif->ipif_v6net_mask); 16566 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16567 &rep_ipif->ipif_v6brd_addr); 16568 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16569 &rep_ipif->ipif_v6pp_dst_addr); 16570 /* 16571 * We mark IPIF_NOFAILOVER so that this can never 16572 * move. 16573 */ 16574 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16575 rep_ipif->ipif_flags &= ~IPIF_UP; 16576 rep_ipif->ipif_replace_zero = B_TRUE; 16577 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16578 MUTEX_DEFAULT, NULL); 16579 rep_ipif->ipif_id = 0; 16580 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16581 rep_ipif->ipif_ill = from_ill; 16582 rep_ipif->ipif_orig_ifindex = 16583 from_ill->ill_phyint->phyint_ifindex; 16584 /* Insert at head */ 16585 rep_ipif->ipif_next = from_ill->ill_ipif; 16586 from_ill->ill_ipif = rep_ipif; 16587 /* 16588 * We don't really care to let apps know about 16589 * this interface. 16590 */ 16591 } 16592 16593 if (remove_ipif) { 16594 /* 16595 * We set to a max value above for this case to get 16596 * id zero. ASSERT that we did get one. 16597 */ 16598 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16599 rep_ipif = to_ipif; 16600 to_ill->ill_ipif = rep_ipif->ipif_next; 16601 rep_ipif->ipif_next = NULL; 16602 /* 16603 * If some apps scanned and find this interface, 16604 * it is time to let them know, so that they can 16605 * delete it. 16606 */ 16607 16608 *rep_ipif_ptr = rep_ipif; 16609 } 16610 16611 /* Get it out of the ILL interface list. */ 16612 ipifp = &ipif->ipif_ill->ill_ipif; 16613 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16614 if (*ipifp == ipif) { 16615 *ipifp = ipif->ipif_next; 16616 break; 16617 } 16618 } 16619 16620 /* Assign the new ill */ 16621 ipif->ipif_ill = to_ill; 16622 ipif->ipif_id = unit; 16623 /* id has already been checked */ 16624 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16625 ASSERT(rc == 0); 16626 /* Let SCTP update its list */ 16627 sctp_move_ipif(ipif, from_ill, to_ill); 16628 /* 16629 * Handle the failover and failback of ipif_t between 16630 * ill_t that have differing maximum mtu values. 16631 */ 16632 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16633 if (ipif->ipif_saved_mtu == 0) { 16634 /* 16635 * As this ipif_t is moving to an ill_t 16636 * that has a lower ill_max_mtu, its 16637 * ipif_mtu needs to be saved so it can 16638 * be restored during failback or during 16639 * failover to an ill_t which has a 16640 * higher ill_max_mtu. 16641 */ 16642 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16643 ipif->ipif_mtu = to_ill->ill_max_mtu; 16644 } else { 16645 /* 16646 * The ipif_t is, once again, moving to 16647 * an ill_t that has a lower maximum mtu 16648 * value. 16649 */ 16650 ipif->ipif_mtu = to_ill->ill_max_mtu; 16651 } 16652 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16653 ipif->ipif_saved_mtu != 0) { 16654 /* 16655 * The mtu of this ipif_t had to be reduced 16656 * during an earlier failover; this is an 16657 * opportunity for it to be increased (either as 16658 * part of another failover or a failback). 16659 */ 16660 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16661 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16662 ipif->ipif_saved_mtu = 0; 16663 } else { 16664 ipif->ipif_mtu = to_ill->ill_max_mtu; 16665 } 16666 } 16667 16668 /* 16669 * We preserve all the other fields of the ipif including 16670 * ipif_saved_ire_mp. The routes that are saved here will 16671 * be recreated on the new interface and back on the old 16672 * interface when we move back. 16673 */ 16674 ASSERT(ipif->ipif_arp_del_mp == NULL); 16675 16676 return (err); 16677 } 16678 16679 static int 16680 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16681 int ifindex, ipif_t **rep_ipif_ptr) 16682 { 16683 ipif_t *mipif; 16684 ipif_t *ipif_next; 16685 int err; 16686 16687 /* 16688 * We don't really try to MOVE back things if some of the 16689 * operations fail. The daemon will take care of moving again 16690 * later on. 16691 */ 16692 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16693 ipif_next = mipif->ipif_next; 16694 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16695 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16696 16697 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16698 16699 /* 16700 * When the MOVE fails, it is the job of the 16701 * application to take care of this properly 16702 * i.e try again if it is ENOMEM. 16703 */ 16704 if (mipif->ipif_ill != from_ill) { 16705 /* 16706 * ipif has moved. 16707 * 16708 * Move the multicast memberships associated 16709 * with this ipif to the new ill. For IPv6, we 16710 * do it once after all the ipifs are moved 16711 * (in ill_move) as they are not associated 16712 * with ipifs. 16713 * 16714 * We need to move the ilms as the ipif has 16715 * already been moved to a new ill even 16716 * in the case of errors. Neither 16717 * ilm_free(ipif) will find the ilm 16718 * when somebody unplumbs this ipif nor 16719 * ilm_delete(ilm) will be able to find the 16720 * ilm, if we don't move now. 16721 */ 16722 if (!from_ill->ill_isv6) 16723 ilm_move_v4(from_ill, to_ill, mipif); 16724 } 16725 16726 if (err != 0) 16727 return (err); 16728 } 16729 } 16730 return (0); 16731 } 16732 16733 static int 16734 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16735 { 16736 int ifindex; 16737 int err; 16738 struct iocblk *iocp; 16739 ipif_t *ipif; 16740 ipif_t *rep_ipif_ptr = NULL; 16741 ipif_t *from_ipif = NULL; 16742 boolean_t check_rep_if = B_FALSE; 16743 16744 iocp = (struct iocblk *)mp->b_rptr; 16745 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16746 /* 16747 * Move everything pointing at from_ill to to_ill. 16748 * We acheive this by passing in 0 as ifindex. 16749 */ 16750 ifindex = 0; 16751 } else { 16752 /* 16753 * Move everything pointing at from_ill whose original 16754 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16755 * We acheive this by passing in ifindex rather than 0. 16756 * Multicast vifs, ilgs move implicitly because ipifs move. 16757 */ 16758 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16759 ifindex = to_ill->ill_phyint->phyint_ifindex; 16760 } 16761 16762 /* 16763 * Determine if there is at least one ipif that would move from 16764 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16765 * ipif (if it exists) on the to_ill would be consumed as a result of 16766 * the move, in which case we need to quiesce the replacement ipif also. 16767 */ 16768 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16769 from_ipif = from_ipif->ipif_next) { 16770 if (((ifindex == 0) || 16771 (ifindex == from_ipif->ipif_orig_ifindex)) && 16772 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16773 check_rep_if = B_TRUE; 16774 break; 16775 } 16776 } 16777 16778 16779 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16780 16781 GRAB_ILL_LOCKS(from_ill, to_ill); 16782 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16783 (void) ipsq_pending_mp_add(NULL, ipif, q, 16784 mp, ILL_MOVE_OK); 16785 RELEASE_ILL_LOCKS(from_ill, to_ill); 16786 return (EINPROGRESS); 16787 } 16788 16789 /* Check if the replacement ipif is quiescent to delete */ 16790 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16791 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16792 to_ill->ill_ipif->ipif_state_flags |= 16793 IPIF_MOVING | IPIF_CHANGING; 16794 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16795 (void) ipsq_pending_mp_add(NULL, ipif, q, 16796 mp, ILL_MOVE_OK); 16797 RELEASE_ILL_LOCKS(from_ill, to_ill); 16798 return (EINPROGRESS); 16799 } 16800 } 16801 RELEASE_ILL_LOCKS(from_ill, to_ill); 16802 16803 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16804 rw_enter(&ill_g_lock, RW_WRITER); 16805 GRAB_ILL_LOCKS(from_ill, to_ill); 16806 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16807 16808 /* ilm_move is done inside ipif_move for IPv4 */ 16809 if (err == 0 && from_ill->ill_isv6) 16810 ilm_move_v6(from_ill, to_ill, ifindex); 16811 16812 RELEASE_ILL_LOCKS(from_ill, to_ill); 16813 rw_exit(&ill_g_lock); 16814 16815 /* 16816 * send rts messages and multicast messages. 16817 */ 16818 if (rep_ipif_ptr != NULL) { 16819 ip_rts_ifmsg(rep_ipif_ptr); 16820 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16821 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16822 mi_free(rep_ipif_ptr); 16823 } 16824 16825 ilm_send_multicast_reqs(from_ill, to_ill); 16826 16827 conn_move_ill(from_ill, to_ill, ifindex); 16828 16829 return (err); 16830 } 16831 16832 /* 16833 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16834 * Also checks for the validity of the arguments. 16835 * Note: We are already exclusive inside the from group. 16836 * It is upto the caller to release refcnt on the to_ill's. 16837 */ 16838 static int 16839 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16840 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16841 { 16842 int dst_index; 16843 ipif_t *ipif_v4, *ipif_v6; 16844 struct lifreq *lifr; 16845 mblk_t *mp1; 16846 boolean_t exists; 16847 sin_t *sin; 16848 int err = 0; 16849 16850 if ((mp1 = mp->b_cont) == NULL) 16851 return (EPROTO); 16852 16853 if ((mp1 = mp1->b_cont) == NULL) 16854 return (EPROTO); 16855 16856 lifr = (struct lifreq *)mp1->b_rptr; 16857 sin = (sin_t *)&lifr->lifr_addr; 16858 16859 /* 16860 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16861 * specific operations. 16862 */ 16863 if (sin->sin_family != AF_UNSPEC) 16864 return (EINVAL); 16865 16866 /* 16867 * Get ipif with id 0. We are writer on the from ill. So we can pass 16868 * NULLs for the last 4 args and we know the lookup won't fail 16869 * with EINPROGRESS. 16870 */ 16871 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16872 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16873 ALL_ZONES, NULL, NULL, NULL, NULL); 16874 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16875 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16876 ALL_ZONES, NULL, NULL, NULL, NULL); 16877 16878 if (ipif_v4 == NULL && ipif_v6 == NULL) 16879 return (ENXIO); 16880 16881 if (ipif_v4 != NULL) { 16882 ASSERT(ipif_v4->ipif_refcnt != 0); 16883 if (ipif_v4->ipif_id != 0) { 16884 err = EINVAL; 16885 goto done; 16886 } 16887 16888 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16889 *ill_from_v4 = ipif_v4->ipif_ill; 16890 } 16891 16892 if (ipif_v6 != NULL) { 16893 ASSERT(ipif_v6->ipif_refcnt != 0); 16894 if (ipif_v6->ipif_id != 0) { 16895 err = EINVAL; 16896 goto done; 16897 } 16898 16899 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16900 *ill_from_v6 = ipif_v6->ipif_ill; 16901 } 16902 16903 err = 0; 16904 dst_index = lifr->lifr_movetoindex; 16905 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16906 q, mp, ip_process_ioctl, &err); 16907 if (err != 0) { 16908 /* 16909 * There could be only v6. 16910 */ 16911 if (err != ENXIO) 16912 goto done; 16913 err = 0; 16914 } 16915 16916 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16917 q, mp, ip_process_ioctl, &err); 16918 if (err != 0) { 16919 if (err != ENXIO) 16920 goto done; 16921 if (*ill_to_v4 == NULL) { 16922 err = ENXIO; 16923 goto done; 16924 } 16925 err = 0; 16926 } 16927 16928 /* 16929 * If we have something to MOVE i.e "from" not NULL, 16930 * "to" should be non-NULL. 16931 */ 16932 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16933 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16934 err = EINVAL; 16935 } 16936 16937 done: 16938 if (ipif_v4 != NULL) 16939 ipif_refrele(ipif_v4); 16940 if (ipif_v6 != NULL) 16941 ipif_refrele(ipif_v6); 16942 return (err); 16943 } 16944 16945 /* 16946 * FAILOVER and FAILBACK are modelled as MOVE operations. 16947 * 16948 * We don't check whether the MOVE is within the same group or 16949 * not, because this ioctl can be used as a generic mechanism 16950 * to failover from interface A to B, though things will function 16951 * only if they are really part of the same group. Moreover, 16952 * all ipifs may be down and hence temporarily out of the group. 16953 * 16954 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16955 * down first and then V6. For each we wait for the ipif's to become quiescent. 16956 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16957 * have been deleted and there are no active references. Once quiescent the 16958 * ipif's are moved and brought up on the new ill. 16959 * 16960 * Normally the source ill and destination ill belong to the same IPMP group 16961 * and hence the same ipsq_t. In the event they don't belong to the same 16962 * same group the two ipsq's are first merged into one ipsq - that of the 16963 * to_ill. The multicast memberships on the source and destination ill cannot 16964 * change during the move operation since multicast joins/leaves also have to 16965 * execute on the same ipsq and are hence serialized. 16966 */ 16967 /* ARGSUSED */ 16968 int 16969 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16970 ip_ioctl_cmd_t *ipip, void *ifreq) 16971 { 16972 ill_t *ill_to_v4 = NULL; 16973 ill_t *ill_to_v6 = NULL; 16974 ill_t *ill_from_v4 = NULL; 16975 ill_t *ill_from_v6 = NULL; 16976 int err = 0; 16977 16978 /* 16979 * setup from and to ill's, we can get EINPROGRESS only for 16980 * to_ill's. 16981 */ 16982 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16983 &ill_to_v4, &ill_to_v6); 16984 16985 if (err != 0) { 16986 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16987 goto done; 16988 } 16989 16990 /* 16991 * nothing to do. 16992 */ 16993 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16994 goto done; 16995 } 16996 16997 /* 16998 * nothing to do. 16999 */ 17000 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17001 goto done; 17002 } 17003 17004 /* 17005 * Mark the ill as changing. 17006 * ILL_CHANGING flag is cleared when the ipif's are brought up 17007 * in ill_up_ipifs in case of error they are cleared below. 17008 */ 17009 17010 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17011 if (ill_from_v4 != NULL) 17012 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17013 if (ill_from_v6 != NULL) 17014 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17015 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17016 17017 /* 17018 * Make sure that both src and dst are 17019 * in the same syncq group. If not make it happen. 17020 * We are not holding any locks because we are the writer 17021 * on the from_ipsq and we will hold locks in ill_merge_groups 17022 * to protect to_ipsq against changing. 17023 */ 17024 if (ill_from_v4 != NULL) { 17025 if (ill_from_v4->ill_phyint->phyint_ipsq != 17026 ill_to_v4->ill_phyint->phyint_ipsq) { 17027 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17028 NULL, mp, q); 17029 goto err_ret; 17030 17031 } 17032 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17033 } else { 17034 17035 if (ill_from_v6->ill_phyint->phyint_ipsq != 17036 ill_to_v6->ill_phyint->phyint_ipsq) { 17037 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17038 NULL, mp, q); 17039 goto err_ret; 17040 17041 } 17042 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17043 } 17044 17045 /* 17046 * Now that the ipsq's have been merged and we are the writer 17047 * lets mark to_ill as changing as well. 17048 */ 17049 17050 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17051 if (ill_to_v4 != NULL) 17052 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17053 if (ill_to_v6 != NULL) 17054 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17055 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17056 17057 /* 17058 * Its ok for us to proceed with the move even if 17059 * ill_pending_mp is non null on one of the from ill's as the reply 17060 * should not be looking at the ipif, it should only care about the 17061 * ill itself. 17062 */ 17063 17064 /* 17065 * lets move ipv4 first. 17066 */ 17067 if (ill_from_v4 != NULL) { 17068 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17069 ill_from_v4->ill_move_in_progress = B_TRUE; 17070 ill_to_v4->ill_move_in_progress = B_TRUE; 17071 ill_to_v4->ill_move_peer = ill_from_v4; 17072 ill_from_v4->ill_move_peer = ill_to_v4; 17073 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17074 } 17075 17076 /* 17077 * Now lets move ipv6. 17078 */ 17079 if (err == 0 && ill_from_v6 != NULL) { 17080 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17081 ill_from_v6->ill_move_in_progress = B_TRUE; 17082 ill_to_v6->ill_move_in_progress = B_TRUE; 17083 ill_to_v6->ill_move_peer = ill_from_v6; 17084 ill_from_v6->ill_move_peer = ill_to_v6; 17085 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17086 } 17087 17088 err_ret: 17089 /* 17090 * EINPROGRESS means we are waiting for the ipif's that need to be 17091 * moved to become quiescent. 17092 */ 17093 if (err == EINPROGRESS) { 17094 goto done; 17095 } 17096 17097 /* 17098 * if err is set ill_up_ipifs will not be called 17099 * lets clear the flags. 17100 */ 17101 17102 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17103 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17104 /* 17105 * Some of the clearing may be redundant. But it is simple 17106 * not making any extra checks. 17107 */ 17108 if (ill_from_v6 != NULL) { 17109 ill_from_v6->ill_move_in_progress = B_FALSE; 17110 ill_from_v6->ill_move_peer = NULL; 17111 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17112 } 17113 if (ill_from_v4 != NULL) { 17114 ill_from_v4->ill_move_in_progress = B_FALSE; 17115 ill_from_v4->ill_move_peer = NULL; 17116 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17117 } 17118 if (ill_to_v6 != NULL) { 17119 ill_to_v6->ill_move_in_progress = B_FALSE; 17120 ill_to_v6->ill_move_peer = NULL; 17121 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17122 } 17123 if (ill_to_v4 != NULL) { 17124 ill_to_v4->ill_move_in_progress = B_FALSE; 17125 ill_to_v4->ill_move_peer = NULL; 17126 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17127 } 17128 17129 /* 17130 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17131 * Do this always to maintain proper state i.e even in case of errors. 17132 * As phyint_inactive looks at both v4 and v6 interfaces, 17133 * we need not call on both v4 and v6 interfaces. 17134 */ 17135 if (ill_from_v4 != NULL) { 17136 if ((ill_from_v4->ill_phyint->phyint_flags & 17137 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17138 phyint_inactive(ill_from_v4->ill_phyint); 17139 } 17140 } else if (ill_from_v6 != NULL) { 17141 if ((ill_from_v6->ill_phyint->phyint_flags & 17142 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17143 phyint_inactive(ill_from_v6->ill_phyint); 17144 } 17145 } 17146 17147 if (ill_to_v4 != NULL) { 17148 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17149 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17150 } 17151 } else if (ill_to_v6 != NULL) { 17152 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17153 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17154 } 17155 } 17156 17157 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17158 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17159 17160 no_err: 17161 /* 17162 * lets bring the interfaces up on the to_ill. 17163 */ 17164 if (err == 0) { 17165 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17166 q, mp); 17167 } 17168 done: 17169 17170 if (ill_to_v4 != NULL) { 17171 ill_refrele(ill_to_v4); 17172 } 17173 if (ill_to_v6 != NULL) { 17174 ill_refrele(ill_to_v6); 17175 } 17176 17177 return (err); 17178 } 17179 17180 static void 17181 ill_dl_down(ill_t *ill) 17182 { 17183 /* 17184 * The ill is down; unbind but stay attached since we're still 17185 * associated with a PPA. 17186 */ 17187 mblk_t *mp = ill->ill_unbind_mp; 17188 17189 ill->ill_unbind_mp = NULL; 17190 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17191 if (mp != NULL) { 17192 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17193 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17194 ill->ill_name)); 17195 mutex_enter(&ill->ill_lock); 17196 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 17197 mutex_exit(&ill->ill_lock); 17198 ill_dlpi_send(ill, mp); 17199 } 17200 17201 /* 17202 * Toss all of our multicast memberships. We could keep them, but 17203 * then we'd have to do bookkeeping of any joins and leaves performed 17204 * by the application while the the interface is down (we can't just 17205 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17206 * on a downed interface). 17207 */ 17208 ill_leave_multicast(ill); 17209 17210 mutex_enter(&ill->ill_lock); 17211 ill->ill_dl_up = 0; 17212 mutex_exit(&ill->ill_lock); 17213 } 17214 17215 void 17216 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17217 { 17218 union DL_primitives *dlp; 17219 t_uscalar_t prim; 17220 17221 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17222 17223 dlp = (union DL_primitives *)mp->b_rptr; 17224 prim = dlp->dl_primitive; 17225 17226 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17227 dlpi_prim_str(prim), prim, ill->ill_name)); 17228 17229 switch (prim) { 17230 case DL_PHYS_ADDR_REQ: 17231 { 17232 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17233 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17234 break; 17235 } 17236 case DL_BIND_REQ: 17237 mutex_enter(&ill->ill_lock); 17238 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 17239 mutex_exit(&ill->ill_lock); 17240 break; 17241 } 17242 17243 ill->ill_dlpi_pending = prim; 17244 17245 /* 17246 * Some drivers send M_FLUSH up to IP as part of unbind 17247 * request. When this M_FLUSH is sent back to the driver, 17248 * this can go after we send the detach request if the 17249 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17250 * to the M_FLUSH in ip_rput and locally generate another 17251 * M_FLUSH for the correctness. This will get freed in 17252 * ip_wput_nondata. 17253 */ 17254 if (prim == DL_UNBIND_REQ) 17255 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17256 17257 putnext(ill->ill_wq, mp); 17258 } 17259 17260 /* 17261 * Send a DLPI control message to the driver but make sure there 17262 * is only one outstanding message. Uses ill_dlpi_pending to tell 17263 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17264 * when an ACK or a NAK is received to process the next queued message. 17265 * 17266 * We don't protect ill_dlpi_pending with any lock. This is okay as 17267 * every place where its accessed, ip is exclusive while accessing 17268 * ill_dlpi_pending except when this function is called from ill_init() 17269 */ 17270 void 17271 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17272 { 17273 mblk_t **mpp; 17274 17275 ASSERT(IAM_WRITER_ILL(ill)); 17276 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17277 17278 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17279 /* Must queue message. Tail insertion */ 17280 mpp = &ill->ill_dlpi_deferred; 17281 while (*mpp != NULL) 17282 mpp = &((*mpp)->b_next); 17283 17284 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17285 ill->ill_name)); 17286 17287 *mpp = mp; 17288 return; 17289 } 17290 17291 ill_dlpi_dispatch(ill, mp); 17292 } 17293 17294 /* 17295 * Called when an DLPI control message has been acked or nacked to 17296 * send down the next queued message (if any). 17297 */ 17298 void 17299 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17300 { 17301 mblk_t *mp; 17302 17303 ASSERT(IAM_WRITER_ILL(ill)); 17304 17305 ASSERT(prim != DL_PRIM_INVAL); 17306 if (ill->ill_dlpi_pending != prim) { 17307 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17308 (void) mi_strlog(ill->ill_rq, 1, 17309 SL_CONSOLE|SL_ERROR|SL_TRACE, 17310 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17311 dlpi_prim_str(prim), ill->ill_name); 17312 } else { 17313 (void) mi_strlog(ill->ill_rq, 1, 17314 SL_CONSOLE|SL_ERROR|SL_TRACE, 17315 "ill_dlpi_done: unexpected ack for %s from %s " 17316 "(expecting ack for %s)\n", 17317 dlpi_prim_str(prim), ill->ill_name, 17318 dlpi_prim_str(ill->ill_dlpi_pending)); 17319 } 17320 return; 17321 } 17322 17323 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17324 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17325 17326 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17327 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17328 return; 17329 } 17330 17331 ill->ill_dlpi_deferred = mp->b_next; 17332 mp->b_next = NULL; 17333 17334 ill_dlpi_dispatch(ill, mp); 17335 } 17336 17337 void 17338 conn_delete_ire(conn_t *connp, caddr_t arg) 17339 { 17340 ipif_t *ipif = (ipif_t *)arg; 17341 ire_t *ire; 17342 17343 /* 17344 * Look at the cached ires on conns which has pointers to ipifs. 17345 * We just call ire_refrele which clears up the reference 17346 * to ire. Called when a conn closes. Also called from ipif_free 17347 * to cleanup indirect references to the stale ipif via the cached ire. 17348 */ 17349 mutex_enter(&connp->conn_lock); 17350 ire = connp->conn_ire_cache; 17351 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17352 connp->conn_ire_cache = NULL; 17353 mutex_exit(&connp->conn_lock); 17354 IRE_REFRELE_NOTR(ire); 17355 return; 17356 } 17357 mutex_exit(&connp->conn_lock); 17358 17359 } 17360 17361 /* 17362 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17363 * of IREs. Those IREs may have been previously cached in the conn structure. 17364 * This ipcl_walk() walker function releases all references to such IREs based 17365 * on the condemned flag. 17366 */ 17367 /* ARGSUSED */ 17368 void 17369 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17370 { 17371 ire_t *ire; 17372 17373 mutex_enter(&connp->conn_lock); 17374 ire = connp->conn_ire_cache; 17375 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17376 connp->conn_ire_cache = NULL; 17377 mutex_exit(&connp->conn_lock); 17378 IRE_REFRELE_NOTR(ire); 17379 return; 17380 } 17381 mutex_exit(&connp->conn_lock); 17382 } 17383 17384 /* 17385 * Take down a specific interface, but don't lose any information about it. 17386 * Also delete interface from its interface group (ifgrp). 17387 * (Always called as writer.) 17388 * This function goes through the down sequence even if the interface is 17389 * already down. There are 2 reasons. 17390 * a. Currently we permit interface routes that depend on down interfaces 17391 * to be added. This behaviour itself is questionable. However it appears 17392 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17393 * time. We go thru the cleanup in order to remove these routes. 17394 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17395 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17396 * down, but we need to cleanup i.e. do ill_dl_down and 17397 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17398 * 17399 * IP-MT notes: 17400 * 17401 * Model of reference to interfaces. 17402 * 17403 * The following members in ipif_t track references to the ipif. 17404 * int ipif_refcnt; Active reference count 17405 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17406 * The following members in ill_t track references to the ill. 17407 * int ill_refcnt; active refcnt 17408 * uint_t ill_ire_cnt; Number of ires referencing ill 17409 * uint_t ill_nce_cnt; Number of nces referencing ill 17410 * 17411 * Reference to an ipif or ill can be obtained in any of the following ways. 17412 * 17413 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17414 * Pointers to ipif / ill from other data structures viz ire and conn. 17415 * Implicit reference to the ipif / ill by holding a reference to the ire. 17416 * 17417 * The ipif/ill lookup functions return a reference held ipif / ill. 17418 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17419 * This is a purely dynamic reference count associated with threads holding 17420 * references to the ipif / ill. Pointers from other structures do not 17421 * count towards this reference count. 17422 * 17423 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17424 * ipif/ill. This is incremented whenever a new ire is created referencing the 17425 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17426 * actually added to the ire hash table. The count is decremented in 17427 * ire_inactive where the ire is destroyed. 17428 * 17429 * nce's reference ill's thru nce_ill and the count of nce's associated with 17430 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17431 * ndp_add() where the nce is actually added to the table. Similarly it is 17432 * decremented in ndp_inactive where the nce is destroyed. 17433 * 17434 * Flow of ioctls involving interface down/up 17435 * 17436 * The following is the sequence of an attempt to set some critical flags on an 17437 * up interface. 17438 * ip_sioctl_flags 17439 * ipif_down 17440 * wait for ipif to be quiescent 17441 * ipif_down_tail 17442 * ip_sioctl_flags_tail 17443 * 17444 * All set ioctls that involve down/up sequence would have a skeleton similar 17445 * to the above. All the *tail functions are called after the refcounts have 17446 * dropped to the appropriate values. 17447 * 17448 * The mechanism to quiesce an ipif is as follows. 17449 * 17450 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17451 * on the ipif. Callers either pass a flag requesting wait or the lookup 17452 * functions will return NULL. 17453 * 17454 * Delete all ires referencing this ipif 17455 * 17456 * Any thread attempting to do an ipif_refhold on an ipif that has been 17457 * obtained thru a cached pointer will first make sure that 17458 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17459 * increment the refcount. 17460 * 17461 * The above guarantees that the ipif refcount will eventually come down to 17462 * zero and the ipif will quiesce, once all threads that currently hold a 17463 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17464 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17465 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17466 * drop to zero. 17467 * 17468 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17469 * 17470 * Threads trying to lookup an ipif or ill can pass a flag requesting 17471 * wait and restart if the ipif / ill cannot be looked up currently. 17472 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17473 * failure if the ipif is currently undergoing an exclusive operation, and 17474 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17475 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17476 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17477 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17478 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17479 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17480 * until we release the ipsq_lock, even though the the ill/ipif state flags 17481 * can change after we drop the ill_lock. 17482 * 17483 * An attempt to send out a packet using an ipif that is currently 17484 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17485 * operation and restart it later when the exclusive condition on the ipif ends. 17486 * This is an example of not passing the wait flag to the lookup functions. For 17487 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17488 * out a multicast packet on that ipif will fail while the ipif is 17489 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17490 * currently IPIF_CHANGING will also fail. 17491 */ 17492 int 17493 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17494 { 17495 ill_t *ill = ipif->ipif_ill; 17496 phyint_t *phyi; 17497 conn_t *connp; 17498 boolean_t success; 17499 boolean_t ipif_was_up = B_FALSE; 17500 17501 ASSERT(IAM_WRITER_IPIF(ipif)); 17502 17503 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17504 17505 if (ipif->ipif_flags & IPIF_UP) { 17506 mutex_enter(&ill->ill_lock); 17507 ipif->ipif_flags &= ~IPIF_UP; 17508 ASSERT(ill->ill_ipif_up_count > 0); 17509 --ill->ill_ipif_up_count; 17510 mutex_exit(&ill->ill_lock); 17511 ipif_was_up = B_TRUE; 17512 /* Update status in SCTP's list */ 17513 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17514 } 17515 17516 /* 17517 * Blow away v6 memberships we established in ipif_multicast_up(); the 17518 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17519 * know not to rejoin when the interface is brought back up). 17520 */ 17521 if (ipif->ipif_isv6) 17522 ipif_multicast_down(ipif); 17523 /* 17524 * Remove from the mapping for __sin6_src_id. We insert only 17525 * when the address is not INADDR_ANY. As IPv4 addresses are 17526 * stored as mapped addresses, we need to check for mapped 17527 * INADDR_ANY also. 17528 */ 17529 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17530 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17531 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17532 int err; 17533 17534 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17535 ipif->ipif_zoneid); 17536 if (err != 0) { 17537 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17538 } 17539 } 17540 17541 /* 17542 * Before we delete the ill from the group (if any), we need 17543 * to make sure that we delete all the routes dependent on 17544 * this and also any ipifs dependent on this ipif for 17545 * source address. We need to do before we delete from 17546 * the group because 17547 * 17548 * 1) ipif_down_delete_ire de-references ill->ill_group. 17549 * 17550 * 2) ipif_update_other_ipifs needs to walk the whole group 17551 * for re-doing source address selection. Note that 17552 * ipif_select_source[_v6] called from 17553 * ipif_update_other_ipifs[_v6] will not pick this ipif 17554 * because we have already marked down here i.e cleared 17555 * IPIF_UP. 17556 */ 17557 if (ipif->ipif_isv6) 17558 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17559 else 17560 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17561 17562 /* 17563 * Need to add these also to be saved and restored when the 17564 * ipif is brought down and up 17565 */ 17566 mutex_enter(&ire_mrtun_lock); 17567 if (ire_mrtun_count != 0) { 17568 mutex_exit(&ire_mrtun_lock); 17569 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17570 (char *)ipif, NULL); 17571 } else { 17572 mutex_exit(&ire_mrtun_lock); 17573 } 17574 17575 mutex_enter(&ire_srcif_table_lock); 17576 if (ire_srcif_table_count > 0) { 17577 mutex_exit(&ire_srcif_table_lock); 17578 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17579 } else { 17580 mutex_exit(&ire_srcif_table_lock); 17581 } 17582 17583 /* 17584 * Cleaning up the conn_ire_cache or conns must be done only after the 17585 * ires have been deleted above. Otherwise a thread could end up 17586 * caching an ire in a conn after we have finished the cleanup of the 17587 * conn. The caching is done after making sure that the ire is not yet 17588 * condemned. Also documented in the block comment above ip_output 17589 */ 17590 ipcl_walk(conn_cleanup_stale_ire, NULL); 17591 /* Also, delete the ires cached in SCTP */ 17592 sctp_ire_cache_flush(ipif); 17593 17594 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17595 nattymod_clean_ipif(ipif); 17596 17597 /* 17598 * Update any other ipifs which have used "our" local address as 17599 * a source address. This entails removing and recreating IRE_INTERFACE 17600 * entries for such ipifs. 17601 */ 17602 if (ipif->ipif_isv6) 17603 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17604 else 17605 ipif_update_other_ipifs(ipif, ill->ill_group); 17606 17607 if (ipif_was_up) { 17608 /* 17609 * Check whether it is last ipif to leave this group. 17610 * If this is the last ipif to leave, we should remove 17611 * this ill from the group as ipif_select_source will not 17612 * be able to find any useful ipifs if this ill is selected 17613 * for load balancing. 17614 * 17615 * For nameless groups, we should call ifgrp_delete if this 17616 * belongs to some group. As this ipif is going down, we may 17617 * need to reconstruct groups. 17618 */ 17619 phyi = ill->ill_phyint; 17620 /* 17621 * If the phyint_groupname_len is 0, it may or may not 17622 * be in the nameless group. If the phyint_groupname_len is 17623 * not 0, then this ill should be part of some group. 17624 * As we always insert this ill in the group if 17625 * phyint_groupname_len is not zero when the first ipif 17626 * comes up (in ipif_up_done), it should be in a group 17627 * when the namelen is not 0. 17628 * 17629 * NOTE : When we delete the ill from the group,it will 17630 * blow away all the IRE_CACHES pointing either at this ipif or 17631 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17632 * should be pointing at this ill. 17633 */ 17634 ASSERT(phyi->phyint_groupname_len == 0 || 17635 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17636 17637 if (phyi->phyint_groupname_len != 0) { 17638 if (ill->ill_ipif_up_count == 0) 17639 illgrp_delete(ill); 17640 } 17641 17642 /* 17643 * If we have deleted some of the broadcast ires associated 17644 * with this ipif, we need to re-nominate somebody else if 17645 * the ires that we deleted were the nominated ones. 17646 */ 17647 if (ill->ill_group != NULL && !ill->ill_isv6) 17648 ipif_renominate_bcast(ipif); 17649 } 17650 17651 if (ipif->ipif_isv6) 17652 ipif_ndp_down(ipif); 17653 17654 /* 17655 * If mp is NULL the caller will wait for the appropriate refcnt. 17656 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17657 * and ill_delete -> ipif_free -> ipif_down 17658 */ 17659 if (mp == NULL) { 17660 ASSERT(q == NULL); 17661 return (0); 17662 } 17663 17664 if (CONN_Q(q)) { 17665 connp = Q_TO_CONN(q); 17666 mutex_enter(&connp->conn_lock); 17667 } else { 17668 connp = NULL; 17669 } 17670 mutex_enter(&ill->ill_lock); 17671 /* 17672 * Are there any ire's pointing to this ipif that are still active ? 17673 * If this is the last ipif going down, are there any ire's pointing 17674 * to this ill that are still active ? 17675 */ 17676 if (ipif_is_quiescent(ipif)) { 17677 mutex_exit(&ill->ill_lock); 17678 if (connp != NULL) 17679 mutex_exit(&connp->conn_lock); 17680 return (0); 17681 } 17682 17683 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17684 ill->ill_name, (void *)ill)); 17685 /* 17686 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17687 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17688 * which in turn is called by the last refrele on the ipif/ill/ire. 17689 */ 17690 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17691 if (!success) { 17692 /* The conn is closing. So just return */ 17693 ASSERT(connp != NULL); 17694 mutex_exit(&ill->ill_lock); 17695 mutex_exit(&connp->conn_lock); 17696 return (EINTR); 17697 } 17698 17699 mutex_exit(&ill->ill_lock); 17700 if (connp != NULL) 17701 mutex_exit(&connp->conn_lock); 17702 return (EINPROGRESS); 17703 } 17704 17705 static void 17706 ipif_down_tail(ipif_t *ipif) 17707 { 17708 ill_t *ill = ipif->ipif_ill; 17709 17710 /* 17711 * Skip any loopback interface (null wq). 17712 * If this is the last logical interface on the ill 17713 * have ill_dl_down tell the driver we are gone (unbind) 17714 * Note that lun 0 can ipif_down even though 17715 * there are other logical units that are up. 17716 * This occurs e.g. when we change a "significant" IFF_ flag. 17717 */ 17718 if (ipif->ipif_ill->ill_wq != NULL) { 17719 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17720 ill->ill_dl_up) { 17721 ill_dl_down(ill); 17722 } 17723 } 17724 ill->ill_logical_down = 0; 17725 17726 /* 17727 * Have to be after removing the routes in ipif_down_delete_ire. 17728 */ 17729 if (ipif->ipif_isv6) { 17730 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17731 ipif_arp_down(ipif); 17732 } else { 17733 ipif_arp_down(ipif); 17734 } 17735 17736 ip_rts_ifmsg(ipif); 17737 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17738 } 17739 17740 /* 17741 * Bring interface logically down without bringing the physical interface 17742 * down e.g. when the netmask is changed. This avoids long lasting link 17743 * negotiations between an ethernet interface and a certain switches. 17744 */ 17745 static int 17746 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17747 { 17748 /* 17749 * The ill_logical_down flag is a transient flag. It is set here 17750 * and is cleared once the down has completed in ipif_down_tail. 17751 * This flag does not indicate whether the ill stream is in the 17752 * DL_BOUND state with the driver. Instead this flag is used by 17753 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17754 * the driver. The state of the ill stream i.e. whether it is 17755 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17756 */ 17757 ipif->ipif_ill->ill_logical_down = 1; 17758 return (ipif_down(ipif, q, mp)); 17759 } 17760 17761 /* 17762 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17763 * If the usesrc client ILL is already part of a usesrc group or not, 17764 * in either case a ire_stq with the matching usesrc client ILL will 17765 * locate the IRE's that need to be deleted. We want IREs to be created 17766 * with the new source address. 17767 */ 17768 static void 17769 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17770 { 17771 ill_t *ucill = (ill_t *)ill_arg; 17772 17773 ASSERT(IAM_WRITER_ILL(ucill)); 17774 17775 if (ire->ire_stq == NULL) 17776 return; 17777 17778 if ((ire->ire_type == IRE_CACHE) && 17779 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17780 ire_delete(ire); 17781 } 17782 17783 /* 17784 * ire_walk routine to delete every IRE dependent on the interface 17785 * address that is going down. (Always called as writer.) 17786 * Works for both v4 and v6. 17787 * In addition for checking for ire_ipif matches it also checks for 17788 * IRE_CACHE entries which have the same source address as the 17789 * disappearing ipif since ipif_select_source might have picked 17790 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17791 * care of any IRE_INTERFACE with the disappearing source address. 17792 */ 17793 static void 17794 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17795 { 17796 ipif_t *ipif = (ipif_t *)ipif_arg; 17797 ill_t *ire_ill; 17798 ill_t *ipif_ill; 17799 17800 ASSERT(IAM_WRITER_IPIF(ipif)); 17801 if (ire->ire_ipif == NULL) 17802 return; 17803 17804 /* 17805 * For IPv4, we derive source addresses for an IRE from ipif's 17806 * belonging to the same IPMP group as the IRE's outgoing 17807 * interface. If an IRE's outgoing interface isn't in the 17808 * same IPMP group as a particular ipif, then that ipif 17809 * couldn't have been used as a source address for this IRE. 17810 * 17811 * For IPv6, source addresses are only restricted to the IPMP group 17812 * if the IRE is for a link-local address or a multicast address. 17813 * Otherwise, source addresses for an IRE can be chosen from 17814 * interfaces other than the the outgoing interface for that IRE. 17815 * 17816 * For source address selection details, see ipif_select_source() 17817 * and ipif_select_source_v6(). 17818 */ 17819 if (ire->ire_ipversion == IPV4_VERSION || 17820 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17821 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17822 ire_ill = ire->ire_ipif->ipif_ill; 17823 ipif_ill = ipif->ipif_ill; 17824 17825 if (ire_ill->ill_group != ipif_ill->ill_group) { 17826 return; 17827 } 17828 } 17829 17830 17831 if (ire->ire_ipif != ipif) { 17832 /* 17833 * Look for a matching source address. 17834 */ 17835 if (ire->ire_type != IRE_CACHE) 17836 return; 17837 if (ipif->ipif_flags & IPIF_NOLOCAL) 17838 return; 17839 17840 if (ire->ire_ipversion == IPV4_VERSION) { 17841 if (ire->ire_src_addr != ipif->ipif_src_addr) 17842 return; 17843 } else { 17844 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17845 &ipif->ipif_v6lcl_addr)) 17846 return; 17847 } 17848 ire_delete(ire); 17849 return; 17850 } 17851 /* 17852 * ire_delete() will do an ire_flush_cache which will delete 17853 * all ire_ipif matches 17854 */ 17855 ire_delete(ire); 17856 } 17857 17858 /* 17859 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17860 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17861 * 2) when an interface is brought up or down (on that ill). 17862 * This ensures that the IRE_CACHE entries don't retain stale source 17863 * address selection results. 17864 */ 17865 void 17866 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17867 { 17868 ill_t *ill = (ill_t *)ill_arg; 17869 ill_t *ipif_ill; 17870 17871 ASSERT(IAM_WRITER_ILL(ill)); 17872 /* 17873 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17874 * Hence this should be IRE_CACHE. 17875 */ 17876 ASSERT(ire->ire_type == IRE_CACHE); 17877 17878 /* 17879 * We are called for IRE_CACHES whose ire_ipif matches ill. 17880 * We are only interested in IRE_CACHES that has borrowed 17881 * the source address from ill_arg e.g. ipif_up_done[_v6] 17882 * for which we need to look at ire_ipif->ipif_ill match 17883 * with ill. 17884 */ 17885 ASSERT(ire->ire_ipif != NULL); 17886 ipif_ill = ire->ire_ipif->ipif_ill; 17887 if (ipif_ill == ill || (ill->ill_group != NULL && 17888 ipif_ill->ill_group == ill->ill_group)) { 17889 ire_delete(ire); 17890 } 17891 } 17892 17893 /* 17894 * Delete all the ire whose stq references ill_arg. 17895 */ 17896 static void 17897 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17898 { 17899 ill_t *ill = (ill_t *)ill_arg; 17900 ill_t *ire_ill; 17901 17902 ASSERT(IAM_WRITER_ILL(ill)); 17903 /* 17904 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17905 * Hence this should be IRE_CACHE. 17906 */ 17907 ASSERT(ire->ire_type == IRE_CACHE); 17908 17909 /* 17910 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17911 * matches ill. We are only interested in IRE_CACHES that 17912 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17913 * filtering here. 17914 */ 17915 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17916 17917 if (ire_ill == ill) 17918 ire_delete(ire); 17919 } 17920 17921 /* 17922 * This is called when an ill leaves the group. We want to delete 17923 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17924 * pointing at ill. 17925 */ 17926 static void 17927 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17928 { 17929 ill_t *ill = (ill_t *)ill_arg; 17930 17931 ASSERT(IAM_WRITER_ILL(ill)); 17932 ASSERT(ill->ill_group == NULL); 17933 /* 17934 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17935 * Hence this should be IRE_CACHE. 17936 */ 17937 ASSERT(ire->ire_type == IRE_CACHE); 17938 /* 17939 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17940 * matches ill. We are interested in both. 17941 */ 17942 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17943 (ire->ire_ipif->ipif_ill == ill)); 17944 17945 ire_delete(ire); 17946 } 17947 17948 /* 17949 * Initiate deallocate of an IPIF. Always called as writer. Called by 17950 * ill_delete or ip_sioctl_removeif. 17951 */ 17952 static void 17953 ipif_free(ipif_t *ipif) 17954 { 17955 ASSERT(IAM_WRITER_IPIF(ipif)); 17956 17957 /* Remove conn references */ 17958 reset_conn_ipif(ipif); 17959 17960 /* 17961 * Make sure we have valid net and subnet broadcast ire's for the 17962 * other ipif's which share them with this ipif. 17963 */ 17964 if (!ipif->ipif_isv6) 17965 ipif_check_bcast_ires(ipif); 17966 17967 /* 17968 * Take down the interface. We can be called either from ill_delete 17969 * or from ip_sioctl_removeif. 17970 */ 17971 (void) ipif_down(ipif, NULL, NULL); 17972 17973 rw_enter(&ill_g_lock, RW_WRITER); 17974 /* Remove pointers to this ill in the multicast routing tables */ 17975 reset_mrt_vif_ipif(ipif); 17976 rw_exit(&ill_g_lock); 17977 } 17978 17979 static void 17980 ipif_free_tail(ipif_t *ipif) 17981 { 17982 mblk_t *mp; 17983 ipif_t **ipifp; 17984 17985 /* 17986 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17987 */ 17988 mutex_enter(&ipif->ipif_saved_ire_lock); 17989 mp = ipif->ipif_saved_ire_mp; 17990 ipif->ipif_saved_ire_mp = NULL; 17991 mutex_exit(&ipif->ipif_saved_ire_lock); 17992 freemsg(mp); 17993 17994 /* 17995 * Need to hold both ill_g_lock and ill_lock while 17996 * inserting or removing an ipif from the linked list 17997 * of ipifs hanging off the ill. 17998 */ 17999 rw_enter(&ill_g_lock, RW_WRITER); 18000 /* 18001 * Remove all multicast memberships on the interface now. 18002 * This removes IPv4 multicast memberships joined within 18003 * the kernel as ipif_down does not do ipif_multicast_down 18004 * for IPv4. IPv6 is not handled here as the multicast memberships 18005 * are based on ill and not on ipif. 18006 */ 18007 ilm_free(ipif); 18008 18009 /* 18010 * Since we held the ill_g_lock while doing the ilm_free above, 18011 * we can assert the ilms were really deleted and not just marked 18012 * ILM_DELETED. 18013 */ 18014 ASSERT(ilm_walk_ipif(ipif) == 0); 18015 18016 18017 IPIF_TRACE_CLEANUP(ipif); 18018 18019 /* Ask SCTP to take it out of it list */ 18020 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18021 18022 mutex_enter(&ipif->ipif_ill->ill_lock); 18023 /* Get it out of the ILL interface list. */ 18024 ipifp = &ipif->ipif_ill->ill_ipif; 18025 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18026 if (*ipifp == ipif) { 18027 *ipifp = ipif->ipif_next; 18028 break; 18029 } 18030 } 18031 18032 mutex_exit(&ipif->ipif_ill->ill_lock); 18033 rw_exit(&ill_g_lock); 18034 18035 mutex_destroy(&ipif->ipif_saved_ire_lock); 18036 /* Free the memory. */ 18037 mi_free((char *)ipif); 18038 } 18039 18040 /* 18041 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18042 * "ill_name" otherwise. 18043 */ 18044 char * 18045 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18046 { 18047 char lbuf[32]; 18048 char *name; 18049 size_t name_len; 18050 18051 buf[0] = '\0'; 18052 if (!ipif) 18053 return (buf); 18054 name = ipif->ipif_ill->ill_name; 18055 name_len = ipif->ipif_ill->ill_name_length; 18056 if (ipif->ipif_id != 0) { 18057 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18058 ipif->ipif_id); 18059 name = lbuf; 18060 name_len = mi_strlen(name) + 1; 18061 } 18062 len -= 1; 18063 buf[len] = '\0'; 18064 len = MIN(len, name_len); 18065 bcopy(name, buf, len); 18066 return (buf); 18067 } 18068 18069 /* 18070 * Find an IPIF based on the name passed in. Names can be of the 18071 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 18072 * The <phys> string can have forms like <dev><#> (e.g., le0), 18073 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 18074 * When there is no colon, the implied unit id is zero. <phys> must 18075 * correspond to the name of an ILL. (May be called as writer.) 18076 */ 18077 static ipif_t * 18078 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 18079 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 18080 mblk_t *mp, ipsq_func_t func, int *error) 18081 { 18082 char *cp; 18083 char *endp; 18084 long id; 18085 ill_t *ill; 18086 ipif_t *ipif; 18087 uint_t ire_type; 18088 boolean_t did_alloc = B_FALSE; 18089 ipsq_t *ipsq; 18090 18091 if (error != NULL) 18092 *error = 0; 18093 18094 /* 18095 * If the caller wants to us to create the ipif, make sure we have a 18096 * valid zoneid 18097 */ 18098 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18099 18100 if (namelen == 0) { 18101 if (error != NULL) 18102 *error = ENXIO; 18103 return (NULL); 18104 } 18105 18106 *exists = B_FALSE; 18107 /* Look for a colon in the name. */ 18108 endp = &name[namelen]; 18109 for (cp = endp; --cp > name; ) { 18110 if (*cp == IPIF_SEPARATOR_CHAR) 18111 break; 18112 } 18113 18114 if (*cp == IPIF_SEPARATOR_CHAR) { 18115 /* 18116 * Reject any non-decimal aliases for logical 18117 * interfaces. Aliases with leading zeroes 18118 * are also rejected as they introduce ambiguity 18119 * in the naming of the interfaces. 18120 * In order to confirm with existing semantics, 18121 * and to not break any programs/script relying 18122 * on that behaviour, if<0>:0 is considered to be 18123 * a valid interface. 18124 * 18125 * If alias has two or more digits and the first 18126 * is zero, fail. 18127 */ 18128 if (&cp[2] < endp && cp[1] == '0') 18129 return (NULL); 18130 } 18131 18132 if (cp <= name) { 18133 cp = endp; 18134 } else { 18135 *cp = '\0'; 18136 } 18137 18138 /* 18139 * Look up the ILL, based on the portion of the name 18140 * before the slash. ill_lookup_on_name returns a held ill. 18141 * Temporary to check whether ill exists already. If so 18142 * ill_lookup_on_name will clear it. 18143 */ 18144 ill = ill_lookup_on_name(name, do_alloc, isv6, 18145 q, mp, func, error, &did_alloc); 18146 if (cp != endp) 18147 *cp = IPIF_SEPARATOR_CHAR; 18148 if (ill == NULL) 18149 return (NULL); 18150 18151 /* Establish the unit number in the name. */ 18152 id = 0; 18153 if (cp < endp && *endp == '\0') { 18154 /* If there was a colon, the unit number follows. */ 18155 cp++; 18156 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18157 ill_refrele(ill); 18158 if (error != NULL) 18159 *error = ENXIO; 18160 return (NULL); 18161 } 18162 } 18163 18164 GRAB_CONN_LOCK(q); 18165 mutex_enter(&ill->ill_lock); 18166 /* Now see if there is an IPIF with this unit number. */ 18167 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 18168 if (ipif->ipif_id == id) { 18169 if (zoneid != ALL_ZONES && 18170 zoneid != ipif->ipif_zoneid && 18171 ipif->ipif_zoneid != ALL_ZONES) { 18172 mutex_exit(&ill->ill_lock); 18173 RELEASE_CONN_LOCK(q); 18174 ill_refrele(ill); 18175 if (error != NULL) 18176 *error = ENXIO; 18177 return (NULL); 18178 } 18179 /* 18180 * The block comment at the start of ipif_down 18181 * explains the use of the macros used below 18182 */ 18183 if (IPIF_CAN_LOOKUP(ipif)) { 18184 ipif_refhold_locked(ipif); 18185 mutex_exit(&ill->ill_lock); 18186 if (!did_alloc) 18187 *exists = B_TRUE; 18188 /* 18189 * Drop locks before calling ill_refrele 18190 * since it can potentially call into 18191 * ipif_ill_refrele_tail which can end up 18192 * in trying to acquire any lock. 18193 */ 18194 RELEASE_CONN_LOCK(q); 18195 ill_refrele(ill); 18196 return (ipif); 18197 } else if (IPIF_CAN_WAIT(ipif, q)) { 18198 ipsq = ill->ill_phyint->phyint_ipsq; 18199 mutex_enter(&ipsq->ipsq_lock); 18200 mutex_exit(&ill->ill_lock); 18201 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18202 mutex_exit(&ipsq->ipsq_lock); 18203 RELEASE_CONN_LOCK(q); 18204 ill_refrele(ill); 18205 *error = EINPROGRESS; 18206 return (NULL); 18207 } 18208 } 18209 } 18210 RELEASE_CONN_LOCK(q); 18211 18212 if (!do_alloc) { 18213 mutex_exit(&ill->ill_lock); 18214 ill_refrele(ill); 18215 if (error != NULL) 18216 *error = ENXIO; 18217 return (NULL); 18218 } 18219 18220 /* 18221 * If none found, atomically allocate and return a new one. 18222 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18223 * to support "receive only" use of lo0:1 etc. as is still done 18224 * below as an initial guess. 18225 * However, this is now likely to be overriden later in ipif_up_done() 18226 * when we know for sure what address has been configured on the 18227 * interface, since we might have more than one loopback interface 18228 * with a loopback address, e.g. in the case of zones, and all the 18229 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18230 */ 18231 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18232 ire_type = IRE_LOOPBACK; 18233 else 18234 ire_type = IRE_LOCAL; 18235 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18236 if (ipif != NULL) 18237 ipif_refhold_locked(ipif); 18238 else if (error != NULL) 18239 *error = ENOMEM; 18240 mutex_exit(&ill->ill_lock); 18241 ill_refrele(ill); 18242 return (ipif); 18243 } 18244 18245 /* 18246 * This routine is called whenever a new address comes up on an ipif. If 18247 * we are configured to respond to address mask requests, then we are supposed 18248 * to broadcast an address mask reply at this time. This routine is also 18249 * called if we are already up, but a netmask change is made. This is legal 18250 * but might not make the system manager very popular. (May be called 18251 * as writer.) 18252 */ 18253 static void 18254 ipif_mask_reply(ipif_t *ipif) 18255 { 18256 icmph_t *icmph; 18257 ipha_t *ipha; 18258 mblk_t *mp; 18259 18260 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18261 18262 if (!ip_respond_to_address_mask_broadcast) 18263 return; 18264 18265 /* ICMP mask reply is IPv4 only */ 18266 ASSERT(!ipif->ipif_isv6); 18267 /* ICMP mask reply is not for a loopback interface */ 18268 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18269 18270 mp = allocb(REPLY_LEN, BPRI_HI); 18271 if (mp == NULL) 18272 return; 18273 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18274 18275 ipha = (ipha_t *)mp->b_rptr; 18276 bzero(ipha, REPLY_LEN); 18277 *ipha = icmp_ipha; 18278 ipha->ipha_ttl = ip_broadcast_ttl; 18279 ipha->ipha_src = ipif->ipif_src_addr; 18280 ipha->ipha_dst = ipif->ipif_brd_addr; 18281 ipha->ipha_length = htons(REPLY_LEN); 18282 ipha->ipha_ident = 0; 18283 18284 icmph = (icmph_t *)&ipha[1]; 18285 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18286 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18287 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18288 if (icmph->icmph_checksum == 0) 18289 icmph->icmph_checksum = 0xffff; 18290 18291 put(ipif->ipif_wq, mp); 18292 18293 #undef REPLY_LEN 18294 } 18295 18296 /* 18297 * When the mtu in the ipif changes, we call this routine through ire_walk 18298 * to update all the relevant IREs. 18299 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18300 */ 18301 static void 18302 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18303 { 18304 ipif_t *ipif = (ipif_t *)ipif_arg; 18305 18306 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18307 return; 18308 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18309 } 18310 18311 /* 18312 * When the mtu in the ill changes, we call this routine through ire_walk 18313 * to update all the relevant IREs. 18314 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18315 */ 18316 void 18317 ill_mtu_change(ire_t *ire, char *ill_arg) 18318 { 18319 ill_t *ill = (ill_t *)ill_arg; 18320 18321 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18322 return; 18323 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18324 } 18325 18326 /* 18327 * Join the ipif specific multicast groups. 18328 * Must be called after a mapping has been set up in the resolver. (Always 18329 * called as writer.) 18330 */ 18331 void 18332 ipif_multicast_up(ipif_t *ipif) 18333 { 18334 int err, index; 18335 ill_t *ill; 18336 18337 ASSERT(IAM_WRITER_IPIF(ipif)); 18338 18339 ill = ipif->ipif_ill; 18340 index = ill->ill_phyint->phyint_ifindex; 18341 18342 ip1dbg(("ipif_multicast_up\n")); 18343 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18344 return; 18345 18346 if (ipif->ipif_isv6) { 18347 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18348 return; 18349 18350 /* Join the all hosts multicast address */ 18351 ip1dbg(("ipif_multicast_up - addmulti\n")); 18352 /* 18353 * Passing B_TRUE means we have to join the multicast 18354 * membership on this interface even though this is 18355 * FAILED. If we join on a different one in the group, 18356 * we will not be able to delete the membership later 18357 * as we currently don't track where we join when we 18358 * join within the kernel unlike applications where 18359 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18360 * for more on this. 18361 */ 18362 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18363 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18364 if (err != 0) { 18365 ip0dbg(("ipif_multicast_up: " 18366 "all_hosts_mcast failed %d\n", 18367 err)); 18368 return; 18369 } 18370 /* 18371 * Enable multicast for the solicited node multicast address 18372 */ 18373 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18374 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18375 18376 ipv6_multi.s6_addr32[3] |= 18377 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18378 18379 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18380 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18381 NULL); 18382 if (err != 0) { 18383 ip0dbg(("ipif_multicast_up: solicited MC" 18384 " failed %d\n", err)); 18385 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18386 ill, ill->ill_phyint->phyint_ifindex, 18387 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18388 return; 18389 } 18390 } 18391 } else { 18392 if (ipif->ipif_lcl_addr == INADDR_ANY) 18393 return; 18394 18395 /* Join the all hosts multicast address */ 18396 ip1dbg(("ipif_multicast_up - addmulti\n")); 18397 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18398 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18399 if (err) { 18400 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18401 return; 18402 } 18403 } 18404 ipif->ipif_multicast_up = 1; 18405 } 18406 18407 /* 18408 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18409 * any explicit memberships are blown away in ill_leave_multicast() when the 18410 * ill is brought down. 18411 */ 18412 static void 18413 ipif_multicast_down(ipif_t *ipif) 18414 { 18415 int err; 18416 18417 ASSERT(IAM_WRITER_IPIF(ipif)); 18418 18419 ip1dbg(("ipif_multicast_down\n")); 18420 if (!ipif->ipif_multicast_up) 18421 return; 18422 18423 ASSERT(ipif->ipif_isv6); 18424 18425 ip1dbg(("ipif_multicast_down - delmulti\n")); 18426 18427 /* 18428 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18429 * we should look for ilms on this ill rather than the ones that have 18430 * been failed over here. They are here temporarily. As 18431 * ipif_multicast_up has joined on this ill, we should delete only 18432 * from this ill. 18433 */ 18434 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18435 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18436 B_TRUE, B_TRUE); 18437 if (err != 0) { 18438 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18439 err)); 18440 } 18441 /* 18442 * Disable multicast for the solicited node multicast address 18443 */ 18444 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18445 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18446 18447 ipv6_multi.s6_addr32[3] |= 18448 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18449 18450 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18451 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18452 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18453 18454 if (err != 0) { 18455 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18456 err)); 18457 } 18458 } 18459 18460 ipif->ipif_multicast_up = 0; 18461 } 18462 18463 /* 18464 * Used when an interface comes up to recreate any extra routes on this 18465 * interface. 18466 */ 18467 static ire_t ** 18468 ipif_recover_ire(ipif_t *ipif) 18469 { 18470 mblk_t *mp; 18471 ire_t **ipif_saved_irep; 18472 ire_t **irep; 18473 18474 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18475 ipif->ipif_id)); 18476 18477 mutex_enter(&ipif->ipif_saved_ire_lock); 18478 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18479 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18480 if (ipif_saved_irep == NULL) { 18481 mutex_exit(&ipif->ipif_saved_ire_lock); 18482 return (NULL); 18483 } 18484 18485 irep = ipif_saved_irep; 18486 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18487 ire_t *ire; 18488 queue_t *rfq; 18489 queue_t *stq; 18490 ifrt_t *ifrt; 18491 uchar_t *src_addr; 18492 uchar_t *gateway_addr; 18493 mblk_t *resolver_mp; 18494 ushort_t type; 18495 18496 /* 18497 * When the ire was initially created and then added in 18498 * ip_rt_add(), it was created either using ipif->ipif_net_type 18499 * in the case of a traditional interface route, or as one of 18500 * the IRE_OFFSUBNET types (with the exception of 18501 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18502 * which we don't need to save or recover). In the case where 18503 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18504 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18505 * to satisfy software like GateD and Sun Cluster which creates 18506 * routes using the the loopback interface's address as a 18507 * gateway. 18508 * 18509 * As ifrt->ifrt_type reflects the already updated ire_type and 18510 * since ire_create() expects that IRE_IF_NORESOLVER will have 18511 * a valid ire_dlureq_mp field (which doesn't make sense for a 18512 * IRE_LOOPBACK), ire_create() will be called in the same way 18513 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18514 * the route looks like a traditional interface route (where 18515 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18516 * the saved ifrt->ifrt_type. This means that in the case where 18517 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18518 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18519 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18520 */ 18521 ifrt = (ifrt_t *)mp->b_rptr; 18522 if (ifrt->ifrt_type & IRE_INTERFACE) { 18523 rfq = NULL; 18524 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18525 ? ipif->ipif_rq : ipif->ipif_wq; 18526 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18527 ? (uint8_t *)&ifrt->ifrt_src_addr 18528 : (uint8_t *)&ipif->ipif_src_addr; 18529 gateway_addr = NULL; 18530 resolver_mp = ipif->ipif_resolver_mp; 18531 type = ipif->ipif_net_type; 18532 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18533 /* Recover multiroute broadcast IRE. */ 18534 rfq = ipif->ipif_rq; 18535 stq = ipif->ipif_wq; 18536 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18537 ? (uint8_t *)&ifrt->ifrt_src_addr 18538 : (uint8_t *)&ipif->ipif_src_addr; 18539 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18540 resolver_mp = ipif->ipif_bcast_mp; 18541 type = ifrt->ifrt_type; 18542 } else { 18543 rfq = NULL; 18544 stq = NULL; 18545 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18546 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18547 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18548 resolver_mp = NULL; 18549 type = ifrt->ifrt_type; 18550 } 18551 18552 /* 18553 * Create a copy of the IRE with the saved address and netmask. 18554 */ 18555 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18556 "0x%x/0x%x\n", 18557 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18558 ntohl(ifrt->ifrt_addr), 18559 ntohl(ifrt->ifrt_mask))); 18560 ire = ire_create( 18561 (uint8_t *)&ifrt->ifrt_addr, 18562 (uint8_t *)&ifrt->ifrt_mask, 18563 src_addr, 18564 gateway_addr, 18565 NULL, 18566 &ifrt->ifrt_max_frag, 18567 NULL, 18568 rfq, 18569 stq, 18570 type, 18571 resolver_mp, 18572 ipif, 18573 NULL, 18574 0, 18575 0, 18576 0, 18577 ifrt->ifrt_flags, 18578 &ifrt->ifrt_iulp_info, 18579 NULL, 18580 NULL); 18581 18582 if (ire == NULL) { 18583 mutex_exit(&ipif->ipif_saved_ire_lock); 18584 kmem_free(ipif_saved_irep, 18585 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18586 return (NULL); 18587 } 18588 18589 /* 18590 * Some software (for example, GateD and Sun Cluster) attempts 18591 * to create (what amount to) IRE_PREFIX routes with the 18592 * loopback address as the gateway. This is primarily done to 18593 * set up prefixes with the RTF_REJECT flag set (for example, 18594 * when generating aggregate routes.) 18595 * 18596 * If the IRE type (as defined by ipif->ipif_net_type) is 18597 * IRE_LOOPBACK, then we map the request into a 18598 * IRE_IF_NORESOLVER. 18599 */ 18600 if (ipif->ipif_net_type == IRE_LOOPBACK) 18601 ire->ire_type = IRE_IF_NORESOLVER; 18602 /* 18603 * ire held by ire_add, will be refreled' towards the 18604 * the end of ipif_up_done 18605 */ 18606 (void) ire_add(&ire, NULL, NULL, NULL); 18607 *irep = ire; 18608 irep++; 18609 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18610 } 18611 mutex_exit(&ipif->ipif_saved_ire_lock); 18612 return (ipif_saved_irep); 18613 } 18614 18615 /* 18616 * Used to set the netmask and broadcast address to default values when the 18617 * interface is brought up. (Always called as writer.) 18618 */ 18619 static void 18620 ipif_set_default(ipif_t *ipif) 18621 { 18622 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18623 18624 if (!ipif->ipif_isv6) { 18625 /* 18626 * Interface holds an IPv4 address. Default 18627 * mask is the natural netmask. 18628 */ 18629 if (!ipif->ipif_net_mask) { 18630 ipaddr_t v4mask; 18631 18632 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18633 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18634 } 18635 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18636 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18637 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18638 } else { 18639 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18640 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18641 } 18642 /* 18643 * NOTE: SunOS 4.X does this even if the broadcast address 18644 * has been already set thus we do the same here. 18645 */ 18646 if (ipif->ipif_flags & IPIF_BROADCAST) { 18647 ipaddr_t v4addr; 18648 18649 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18650 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18651 } 18652 } else { 18653 /* 18654 * Interface holds an IPv6-only address. Default 18655 * mask is all-ones. 18656 */ 18657 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18658 ipif->ipif_v6net_mask = ipv6_all_ones; 18659 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18660 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18661 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18662 } else { 18663 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18664 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18665 } 18666 } 18667 } 18668 18669 /* 18670 * Return 0 if this address can be used as local address without causing 18671 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18672 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18673 * Special checks are needed to allow the same IPv6 link-local address 18674 * on different ills. 18675 * TODO: allowing the same site-local address on different ill's. 18676 */ 18677 int 18678 ip_addr_availability_check(ipif_t *new_ipif) 18679 { 18680 in6_addr_t our_v6addr; 18681 ill_t *ill; 18682 ipif_t *ipif; 18683 ill_walk_context_t ctx; 18684 18685 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18686 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18687 ASSERT(RW_READ_HELD(&ill_g_lock)); 18688 18689 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18690 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18691 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18692 return (0); 18693 18694 our_v6addr = new_ipif->ipif_v6lcl_addr; 18695 18696 if (new_ipif->ipif_isv6) 18697 ill = ILL_START_WALK_V6(&ctx); 18698 else 18699 ill = ILL_START_WALK_V4(&ctx); 18700 18701 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18702 for (ipif = ill->ill_ipif; ipif != NULL; 18703 ipif = ipif->ipif_next) { 18704 if ((ipif == new_ipif) || 18705 !(ipif->ipif_flags & IPIF_UP) || 18706 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18707 continue; 18708 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18709 &our_v6addr)) { 18710 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18711 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18712 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18713 ipif->ipif_flags |= IPIF_UNNUMBERED; 18714 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18715 new_ipif->ipif_ill != ill) 18716 continue; 18717 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18718 new_ipif->ipif_ill != ill) 18719 continue; 18720 else if (new_ipif->ipif_zoneid != 18721 ipif->ipif_zoneid && 18722 ipif->ipif_zoneid != ALL_ZONES && 18723 (ill->ill_phyint->phyint_flags & 18724 PHYI_LOOPBACK)) 18725 continue; 18726 else if (new_ipif->ipif_ill == ill) 18727 return (EADDRINUSE); 18728 else 18729 return (EADDRNOTAVAIL); 18730 } 18731 } 18732 } 18733 18734 return (0); 18735 } 18736 18737 /* 18738 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18739 * IREs for the ipif. 18740 * When the routine returns EINPROGRESS then mp has been consumed and 18741 * the ioctl will be acked from ip_rput_dlpi. 18742 */ 18743 static int 18744 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18745 { 18746 ill_t *ill = ipif->ipif_ill; 18747 boolean_t isv6 = ipif->ipif_isv6; 18748 int err = 0; 18749 boolean_t success; 18750 18751 ASSERT(IAM_WRITER_IPIF(ipif)); 18752 18753 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18754 18755 /* Shouldn't get here if it is already up. */ 18756 if (ipif->ipif_flags & IPIF_UP) 18757 return (EALREADY); 18758 18759 /* Skip arp/ndp for any loopback interface. */ 18760 if (ill->ill_wq != NULL) { 18761 conn_t *connp = Q_TO_CONN(q); 18762 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18763 18764 if (!ill->ill_dl_up) { 18765 /* 18766 * ill_dl_up is not yet set. i.e. we are yet to 18767 * DL_BIND with the driver and this is the first 18768 * logical interface on the ill to become "up". 18769 * Tell the driver to get going (via DL_BIND_REQ). 18770 * Note that changing "significant" IFF_ flags 18771 * address/netmask etc cause a down/up dance, but 18772 * does not cause an unbind (DL_UNBIND) with the driver 18773 */ 18774 return (ill_dl_up(ill, ipif, mp, q)); 18775 } 18776 18777 /* 18778 * ipif_resolver_up may end up sending an 18779 * AR_INTERFACE_UP message to ARP, which would, in 18780 * turn send a DLPI message to the driver. ioctls are 18781 * serialized and so we cannot send more than one 18782 * interface up message at a time. If ipif_resolver_up 18783 * does send an interface up message to ARP, we get 18784 * EINPROGRESS and we will complete in ip_arp_done. 18785 */ 18786 18787 ASSERT(connp != NULL); 18788 ASSERT(ipsq->ipsq_pending_mp == NULL); 18789 mutex_enter(&connp->conn_lock); 18790 mutex_enter(&ill->ill_lock); 18791 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18792 mutex_exit(&ill->ill_lock); 18793 mutex_exit(&connp->conn_lock); 18794 if (!success) 18795 return (EINTR); 18796 18797 /* 18798 * Crank up IPv6 neighbor discovery 18799 * Unlike ARP, this should complete when 18800 * ipif_ndp_up returns. However, for 18801 * ILLF_XRESOLV interfaces we also send a 18802 * AR_INTERFACE_UP to the external resolver. 18803 * That ioctl will complete in ip_rput. 18804 */ 18805 if (isv6) { 18806 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18807 B_FALSE); 18808 if (err != 0) { 18809 mp = ipsq_pending_mp_get(ipsq, &connp); 18810 return (err); 18811 } 18812 } 18813 /* Now, ARP */ 18814 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18815 EINPROGRESS) { 18816 /* We will complete it in ip_arp_done */ 18817 return (err); 18818 } 18819 mp = ipsq_pending_mp_get(ipsq, &connp); 18820 ASSERT(mp != NULL); 18821 if (err != 0) 18822 return (err); 18823 } 18824 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18825 } 18826 18827 /* 18828 * Perform a bind for the physical device. 18829 * When the routine returns EINPROGRESS then mp has been consumed and 18830 * the ioctl will be acked from ip_rput_dlpi. 18831 * Allocate an unbind message and save it until ipif_down. 18832 */ 18833 static int 18834 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18835 { 18836 mblk_t *areq_mp = NULL; 18837 mblk_t *bind_mp = NULL; 18838 mblk_t *unbind_mp = NULL; 18839 conn_t *connp; 18840 boolean_t success; 18841 18842 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18843 ASSERT(IAM_WRITER_ILL(ill)); 18844 18845 ASSERT(mp != NULL); 18846 18847 /* Create a resolver cookie for ARP */ 18848 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18849 areq_t *areq; 18850 uint16_t sap_addr; 18851 18852 areq_mp = ill_arp_alloc(ill, 18853 (uchar_t *)&ip_areq_template, 0); 18854 if (areq_mp == NULL) { 18855 return (ENOMEM); 18856 } 18857 freemsg(ill->ill_resolver_mp); 18858 ill->ill_resolver_mp = areq_mp; 18859 areq = (areq_t *)areq_mp->b_rptr; 18860 sap_addr = ill->ill_sap; 18861 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18862 /* 18863 * Wait till we call ill_pending_mp_add to determine 18864 * the success before we free the ill_resolver_mp and 18865 * attach areq_mp in it's place. 18866 */ 18867 } 18868 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18869 DL_BIND_REQ); 18870 if (bind_mp == NULL) 18871 goto bad; 18872 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18873 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18874 18875 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18876 if (unbind_mp == NULL) 18877 goto bad; 18878 18879 /* 18880 * Record state needed to complete this operation when the 18881 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18882 */ 18883 if (WR(q)->q_next == NULL) { 18884 connp = Q_TO_CONN(q); 18885 mutex_enter(&connp->conn_lock); 18886 } else { 18887 connp = NULL; 18888 } 18889 mutex_enter(&ipif->ipif_ill->ill_lock); 18890 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18891 mutex_exit(&ipif->ipif_ill->ill_lock); 18892 if (connp != NULL) 18893 mutex_exit(&connp->conn_lock); 18894 if (!success) 18895 goto bad; 18896 18897 /* 18898 * Save the unbind message for ill_dl_down(); it will be consumed when 18899 * the interface goes down. 18900 */ 18901 ASSERT(ill->ill_unbind_mp == NULL); 18902 ill->ill_unbind_mp = unbind_mp; 18903 18904 ill_dlpi_send(ill, bind_mp); 18905 /* Send down link-layer capabilities probe if not already done. */ 18906 ill_capability_probe(ill); 18907 18908 /* 18909 * Sysid used to rely on the fact that netboots set domainname 18910 * and the like. Now that miniroot boots aren't strictly netboots 18911 * and miniroot network configuration is driven from userland 18912 * these things still need to be set. This situation can be detected 18913 * by comparing the interface being configured here to the one 18914 * dhcack was set to reference by the boot loader. Once sysid is 18915 * converted to use dhcp_ipc_getinfo() this call can go away. 18916 */ 18917 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18918 (strcmp(ill->ill_name, dhcack) == 0) && 18919 (strlen(srpc_domain) == 0)) { 18920 if (dhcpinit() != 0) 18921 cmn_err(CE_WARN, "no cached dhcp response"); 18922 } 18923 18924 /* 18925 * This operation will complete in ip_rput_dlpi with either 18926 * a DL_BIND_ACK or DL_ERROR_ACK. 18927 */ 18928 return (EINPROGRESS); 18929 bad: 18930 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18931 /* 18932 * We don't have to check for possible removal from illgrp 18933 * as we have not yet inserted in illgrp. For groups 18934 * without names, this ipif is still not UP and hence 18935 * this could not have possibly had any influence in forming 18936 * groups. 18937 */ 18938 18939 if (bind_mp != NULL) 18940 freemsg(bind_mp); 18941 if (unbind_mp != NULL) 18942 freemsg(unbind_mp); 18943 return (ENOMEM); 18944 } 18945 18946 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18947 18948 /* 18949 * DLPI and ARP is up. 18950 * Create all the IREs associated with an interface bring up multicast. 18951 * Set the interface flag and finish other initialization 18952 * that potentially had to be differed to after DL_BIND_ACK. 18953 */ 18954 int 18955 ipif_up_done(ipif_t *ipif) 18956 { 18957 ire_t *ire_array[20]; 18958 ire_t **irep = ire_array; 18959 ire_t **irep1; 18960 ipaddr_t net_mask = 0; 18961 ipaddr_t subnet_mask, route_mask; 18962 ill_t *ill = ipif->ipif_ill; 18963 queue_t *stq; 18964 ipif_t *src_ipif; 18965 ipif_t *tmp_ipif; 18966 boolean_t flush_ire_cache = B_TRUE; 18967 int err = 0; 18968 phyint_t *phyi; 18969 ire_t **ipif_saved_irep = NULL; 18970 int ipif_saved_ire_cnt; 18971 int cnt; 18972 boolean_t src_ipif_held = B_FALSE; 18973 boolean_t ire_added = B_FALSE; 18974 boolean_t loopback = B_FALSE; 18975 18976 ip1dbg(("ipif_up_done(%s:%u)\n", 18977 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18978 /* Check if this is a loopback interface */ 18979 if (ipif->ipif_ill->ill_wq == NULL) 18980 loopback = B_TRUE; 18981 18982 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18983 /* 18984 * If all other interfaces for this ill are down or DEPRECATED, 18985 * or otherwise unsuitable for source address selection, remove 18986 * any IRE_CACHE entries for this ill to make sure source 18987 * address selection gets to take this new ipif into account. 18988 * No need to hold ill_lock while traversing the ipif list since 18989 * we are writer 18990 */ 18991 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18992 tmp_ipif = tmp_ipif->ipif_next) { 18993 if (((tmp_ipif->ipif_flags & 18994 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18995 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18996 (tmp_ipif == ipif)) 18997 continue; 18998 /* first useable pre-existing interface */ 18999 flush_ire_cache = B_FALSE; 19000 break; 19001 } 19002 if (flush_ire_cache) 19003 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19004 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19005 19006 /* 19007 * Figure out which way the send-to queue should go. Only 19008 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19009 * should show up here. 19010 */ 19011 switch (ill->ill_net_type) { 19012 case IRE_IF_RESOLVER: 19013 stq = ill->ill_rq; 19014 break; 19015 case IRE_IF_NORESOLVER: 19016 case IRE_LOOPBACK: 19017 stq = ill->ill_wq; 19018 break; 19019 default: 19020 return (EINVAL); 19021 } 19022 19023 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19024 /* 19025 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19026 * ipif_lookup_on_name(), but in the case of zones we can have 19027 * several loopback addresses on lo0. So all the interfaces with 19028 * loopback addresses need to be marked IRE_LOOPBACK. 19029 */ 19030 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19031 htonl(INADDR_LOOPBACK)) 19032 ipif->ipif_ire_type = IRE_LOOPBACK; 19033 else 19034 ipif->ipif_ire_type = IRE_LOCAL; 19035 } 19036 19037 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19038 /* 19039 * Can't use our source address. Select a different 19040 * source address for the IRE_INTERFACE and IRE_LOCAL 19041 */ 19042 src_ipif = ipif_select_source(ipif->ipif_ill, 19043 ipif->ipif_subnet, ipif->ipif_zoneid); 19044 if (src_ipif == NULL) 19045 src_ipif = ipif; /* Last resort */ 19046 else 19047 src_ipif_held = B_TRUE; 19048 } else { 19049 src_ipif = ipif; 19050 } 19051 19052 /* Create all the IREs associated with this interface */ 19053 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19054 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19055 19056 /* 19057 * If we're on a labeled system then make sure that zone- 19058 * private addresses have proper remote host database entries. 19059 */ 19060 if (is_system_labeled() && 19061 ipif->ipif_ire_type != IRE_LOOPBACK && 19062 !tsol_check_interface_address(ipif)) 19063 return (EINVAL); 19064 19065 /* Register the source address for __sin6_src_id */ 19066 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 19067 ipif->ipif_zoneid); 19068 if (err != 0) { 19069 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 19070 return (err); 19071 } 19072 19073 /* If the interface address is set, create the local IRE. */ 19074 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 19075 (void *)ipif, 19076 ipif->ipif_ire_type, 19077 ntohl(ipif->ipif_lcl_addr))); 19078 *irep++ = ire_create( 19079 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 19080 (uchar_t *)&ip_g_all_ones, /* mask */ 19081 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 19082 NULL, /* no gateway */ 19083 NULL, 19084 &ip_loopback_mtuplus, /* max frag size */ 19085 NULL, 19086 ipif->ipif_rq, /* recv-from queue */ 19087 NULL, /* no send-to queue */ 19088 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 19089 NULL, 19090 ipif, 19091 NULL, 19092 0, 19093 0, 19094 0, 19095 (ipif->ipif_flags & IPIF_PRIVATE) ? 19096 RTF_PRIVATE : 0, 19097 &ire_uinfo_null, 19098 NULL, 19099 NULL); 19100 } else { 19101 ip1dbg(( 19102 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 19103 ipif->ipif_ire_type, 19104 ntohl(ipif->ipif_lcl_addr), 19105 (uint_t)ipif->ipif_flags)); 19106 } 19107 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19108 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19109 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 19110 } else { 19111 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 19112 } 19113 19114 subnet_mask = ipif->ipif_net_mask; 19115 19116 /* 19117 * If mask was not specified, use natural netmask of 19118 * interface address. Also, store this mask back into the 19119 * ipif struct. 19120 */ 19121 if (subnet_mask == 0) { 19122 subnet_mask = net_mask; 19123 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19124 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19125 ipif->ipif_v6subnet); 19126 } 19127 19128 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19129 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19130 ipif->ipif_subnet != INADDR_ANY) { 19131 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19132 19133 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19134 route_mask = IP_HOST_MASK; 19135 } else { 19136 route_mask = subnet_mask; 19137 } 19138 19139 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19140 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19141 (void *)ipif, (void *)ill, 19142 ill->ill_net_type, 19143 ntohl(ipif->ipif_subnet))); 19144 *irep++ = ire_create( 19145 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19146 (uchar_t *)&route_mask, /* mask */ 19147 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19148 NULL, /* no gateway */ 19149 NULL, 19150 &ipif->ipif_mtu, /* max frag */ 19151 NULL, 19152 NULL, /* no recv queue */ 19153 stq, /* send-to queue */ 19154 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19155 ill->ill_resolver_mp, /* xmit header */ 19156 ipif, 19157 NULL, 19158 0, 19159 0, 19160 0, 19161 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19162 &ire_uinfo_null, 19163 NULL, 19164 NULL); 19165 } 19166 19167 /* 19168 * If the interface address is set, create the broadcast IREs. 19169 * 19170 * ire_create_bcast checks if the proposed new IRE matches 19171 * any existing IRE's with the same physical interface (ILL). 19172 * This should get rid of duplicates. 19173 * ire_create_bcast also check IPIF_NOXMIT and does not create 19174 * any broadcast ires. 19175 */ 19176 if ((ipif->ipif_subnet != INADDR_ANY) && 19177 (ipif->ipif_flags & IPIF_BROADCAST)) { 19178 ipaddr_t addr; 19179 19180 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19181 irep = ire_check_and_create_bcast(ipif, 0, irep, 19182 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19183 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19184 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19185 19186 /* 19187 * For backward compatibility, we need to create net 19188 * broadcast ire's based on the old "IP address class 19189 * system." The reason is that some old machines only 19190 * respond to these class derived net broadcast. 19191 * 19192 * But we should not create these net broadcast ire's if 19193 * the subnet_mask is shorter than the IP address class based 19194 * derived netmask. Otherwise, we may create a net 19195 * broadcast address which is the same as an IP address 19196 * on the subnet. Then TCP will refuse to talk to that 19197 * address. 19198 * 19199 * Nor do we need IRE_BROADCAST ire's for the interface 19200 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19201 * interface is already created. Creating these broadcast 19202 * ire's will only create confusion as the "addr" is going 19203 * to be same as that of the IP address of the interface. 19204 */ 19205 if (net_mask < subnet_mask) { 19206 addr = net_mask & ipif->ipif_subnet; 19207 irep = ire_check_and_create_bcast(ipif, addr, irep, 19208 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19209 irep = ire_check_and_create_bcast(ipif, 19210 ~net_mask | addr, irep, 19211 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19212 } 19213 19214 if (subnet_mask != 0xFFFFFFFF) { 19215 addr = ipif->ipif_subnet; 19216 irep = ire_check_and_create_bcast(ipif, addr, irep, 19217 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19218 irep = ire_check_and_create_bcast(ipif, 19219 ~subnet_mask|addr, irep, 19220 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19221 } 19222 } 19223 19224 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19225 19226 /* If an earlier ire_create failed, get out now */ 19227 for (irep1 = irep; irep1 > ire_array; ) { 19228 irep1--; 19229 if (*irep1 == NULL) { 19230 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19231 err = ENOMEM; 19232 goto bad; 19233 } 19234 } 19235 19236 /* 19237 * Need to atomically check for ip_addr_availablity_check 19238 * under ip_addr_avail_lock, and if it fails got bad, and remove 19239 * from group also.The ill_g_lock is grabbed as reader 19240 * just to make sure no new ills or new ipifs are being added 19241 * to the system while we are checking the uniqueness of addresses. 19242 */ 19243 rw_enter(&ill_g_lock, RW_READER); 19244 mutex_enter(&ip_addr_avail_lock); 19245 /* Mark it up, and increment counters. */ 19246 ill->ill_ipif_up_count++; 19247 ipif->ipif_flags |= IPIF_UP; 19248 err = ip_addr_availability_check(ipif); 19249 mutex_exit(&ip_addr_avail_lock); 19250 rw_exit(&ill_g_lock); 19251 19252 if (err != 0) { 19253 /* 19254 * Our address may already be up on the same ill. In this case, 19255 * the ARP entry for our ipif replaced the one for the other 19256 * ipif. So we don't want to delete it (otherwise the other ipif 19257 * would be unable to send packets). 19258 * ip_addr_availability_check() identifies this case for us and 19259 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19260 * which is the expected error code. 19261 */ 19262 if (err == EADDRINUSE) { 19263 freemsg(ipif->ipif_arp_del_mp); 19264 ipif->ipif_arp_del_mp = NULL; 19265 err = EADDRNOTAVAIL; 19266 } 19267 ill->ill_ipif_up_count--; 19268 ipif->ipif_flags &= ~IPIF_UP; 19269 goto bad; 19270 } 19271 19272 /* 19273 * Add in all newly created IREs. ire_create_bcast() has 19274 * already checked for duplicates of the IRE_BROADCAST type. 19275 * We want to add before we call ifgrp_insert which wants 19276 * to know whether IRE_IF_RESOLVER exists or not. 19277 * 19278 * NOTE : We refrele the ire though we may branch to "bad" 19279 * later on where we do ire_delete. This is okay 19280 * because nobody can delete it as we are running 19281 * exclusively. 19282 */ 19283 for (irep1 = irep; irep1 > ire_array; ) { 19284 irep1--; 19285 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19286 /* 19287 * refheld by ire_add. refele towards the end of the func 19288 */ 19289 (void) ire_add(irep1, NULL, NULL, NULL); 19290 } 19291 ire_added = B_TRUE; 19292 /* 19293 * Form groups if possible. 19294 * 19295 * If we are supposed to be in a ill_group with a name, insert it 19296 * now as we know that at least one ipif is UP. Otherwise form 19297 * nameless groups. 19298 * 19299 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19300 * this ipif into the appropriate interface group, or create a 19301 * new one. If this is already in a nameless group, we try to form 19302 * a bigger group looking at other ills potentially sharing this 19303 * ipif's prefix. 19304 */ 19305 phyi = ill->ill_phyint; 19306 if (phyi->phyint_groupname_len != 0) { 19307 ASSERT(phyi->phyint_groupname != NULL); 19308 if (ill->ill_ipif_up_count == 1) { 19309 ASSERT(ill->ill_group == NULL); 19310 err = illgrp_insert(&illgrp_head_v4, ill, 19311 phyi->phyint_groupname, NULL, B_TRUE); 19312 if (err != 0) { 19313 ip1dbg(("ipif_up_done: illgrp allocation " 19314 "failed, error %d\n", err)); 19315 goto bad; 19316 } 19317 } 19318 ASSERT(ill->ill_group != NULL); 19319 } 19320 19321 /* 19322 * When this is part of group, we need to make sure that 19323 * any broadcast ires created because of this ipif coming 19324 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19325 * so that we don't receive duplicate broadcast packets. 19326 */ 19327 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19328 ipif_renominate_bcast(ipif); 19329 19330 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19331 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19332 ipif_saved_irep = ipif_recover_ire(ipif); 19333 19334 if (!loopback) { 19335 /* 19336 * If the broadcast address has been set, make sure it makes 19337 * sense based on the interface address. 19338 * Only match on ill since we are sharing broadcast addresses. 19339 */ 19340 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19341 (ipif->ipif_flags & IPIF_BROADCAST)) { 19342 ire_t *ire; 19343 19344 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19345 IRE_BROADCAST, ipif, ALL_ZONES, 19346 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19347 19348 if (ire == NULL) { 19349 /* 19350 * If there isn't a matching broadcast IRE, 19351 * revert to the default for this netmask. 19352 */ 19353 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19354 mutex_enter(&ipif->ipif_ill->ill_lock); 19355 ipif_set_default(ipif); 19356 mutex_exit(&ipif->ipif_ill->ill_lock); 19357 } else { 19358 ire_refrele(ire); 19359 } 19360 } 19361 19362 } 19363 19364 19365 /* This is the first interface on this ill */ 19366 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19367 /* 19368 * Need to recover all multicast memberships in the driver. 19369 * This had to be deferred until we had attached. 19370 */ 19371 ill_recover_multicast(ill); 19372 } 19373 /* Join the allhosts multicast address */ 19374 ipif_multicast_up(ipif); 19375 19376 if (!loopback) { 19377 /* 19378 * See whether anybody else would benefit from the 19379 * new ipif that we added. We call this always rather 19380 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19381 * ipif is for the benefit of illgrp_insert (done above) 19382 * which does not do source address selection as it does 19383 * not want to re-create interface routes that we are 19384 * having reference to it here. 19385 */ 19386 ill_update_source_selection(ill); 19387 } 19388 19389 for (irep1 = irep; irep1 > ire_array; ) { 19390 irep1--; 19391 if (*irep1 != NULL) { 19392 /* was held in ire_add */ 19393 ire_refrele(*irep1); 19394 } 19395 } 19396 19397 cnt = ipif_saved_ire_cnt; 19398 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19399 if (*irep1 != NULL) { 19400 /* was held in ire_add */ 19401 ire_refrele(*irep1); 19402 } 19403 } 19404 19405 /* 19406 * This had to be deferred until we had bound. 19407 * tell routing sockets that this interface is up 19408 */ 19409 ip_rts_ifmsg(ipif); 19410 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19411 19412 if (!loopback) { 19413 /* Broadcast an address mask reply. */ 19414 ipif_mask_reply(ipif); 19415 } 19416 if (ipif_saved_irep != NULL) { 19417 kmem_free(ipif_saved_irep, 19418 ipif_saved_ire_cnt * sizeof (ire_t *)); 19419 } 19420 if (src_ipif_held) 19421 ipif_refrele(src_ipif); 19422 /* Let SCTP update the status for this ipif */ 19423 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19424 return (0); 19425 19426 bad: 19427 ip1dbg(("ipif_up_done: FAILED \n")); 19428 /* 19429 * We don't have to bother removing from ill groups because 19430 * 19431 * 1) For groups with names, we insert only when the first ipif 19432 * comes up. In that case if it fails, it will not be in any 19433 * group. So, we need not try to remove for that case. 19434 * 19435 * 2) For groups without names, either we tried to insert ipif_ill 19436 * in a group as singleton or found some other group to become 19437 * a bigger group. For the former, if it fails we don't have 19438 * anything to do as ipif_ill is not in the group and for the 19439 * latter, there are no failures in illgrp_insert/illgrp_delete 19440 * (ENOMEM can't occur for this. Check ifgrp_insert). 19441 */ 19442 while (irep > ire_array) { 19443 irep--; 19444 if (*irep != NULL) { 19445 ire_delete(*irep); 19446 if (ire_added) 19447 ire_refrele(*irep); 19448 } 19449 } 19450 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19451 19452 if (ipif_saved_irep != NULL) { 19453 kmem_free(ipif_saved_irep, 19454 ipif_saved_ire_cnt * sizeof (ire_t *)); 19455 } 19456 if (src_ipif_held) 19457 ipif_refrele(src_ipif); 19458 19459 ipif_arp_down(ipif); 19460 return (err); 19461 } 19462 19463 /* 19464 * Turn off the ARP with the ILLF_NOARP flag. 19465 */ 19466 static int 19467 ill_arp_off(ill_t *ill) 19468 { 19469 mblk_t *arp_off_mp = NULL; 19470 mblk_t *arp_on_mp = NULL; 19471 19472 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19473 19474 ASSERT(IAM_WRITER_ILL(ill)); 19475 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19476 19477 /* 19478 * If the on message is still around we've already done 19479 * an arp_off without doing an arp_on thus there is no 19480 * work needed. 19481 */ 19482 if (ill->ill_arp_on_mp != NULL) 19483 return (0); 19484 19485 /* 19486 * Allocate an ARP on message (to be saved) and an ARP off message 19487 */ 19488 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19489 if (!arp_off_mp) 19490 return (ENOMEM); 19491 19492 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19493 if (!arp_on_mp) 19494 goto failed; 19495 19496 ASSERT(ill->ill_arp_on_mp == NULL); 19497 ill->ill_arp_on_mp = arp_on_mp; 19498 19499 /* Send an AR_INTERFACE_OFF request */ 19500 putnext(ill->ill_rq, arp_off_mp); 19501 return (0); 19502 failed: 19503 19504 if (arp_off_mp) 19505 freemsg(arp_off_mp); 19506 return (ENOMEM); 19507 } 19508 19509 /* 19510 * Turn on ARP by turning off the ILLF_NOARP flag. 19511 */ 19512 static int 19513 ill_arp_on(ill_t *ill) 19514 { 19515 mblk_t *mp; 19516 19517 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19518 19519 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19520 19521 ASSERT(IAM_WRITER_ILL(ill)); 19522 /* 19523 * Send an AR_INTERFACE_ON request if we have already done 19524 * an arp_off (which allocated the message). 19525 */ 19526 if (ill->ill_arp_on_mp != NULL) { 19527 mp = ill->ill_arp_on_mp; 19528 ill->ill_arp_on_mp = NULL; 19529 putnext(ill->ill_rq, mp); 19530 } 19531 return (0); 19532 } 19533 19534 /* 19535 * Called after either deleting ill from the group or when setting 19536 * FAILED or STANDBY on the interface. 19537 */ 19538 static void 19539 illgrp_reset_schednext(ill_t *ill) 19540 { 19541 ill_group_t *illgrp; 19542 ill_t *save_ill; 19543 19544 ASSERT(IAM_WRITER_ILL(ill)); 19545 /* 19546 * When called from illgrp_delete, ill_group will be non-NULL. 19547 * But when called from ip_sioctl_flags, it could be NULL if 19548 * somebody is setting FAILED/INACTIVE on some interface which 19549 * is not part of a group. 19550 */ 19551 illgrp = ill->ill_group; 19552 if (illgrp == NULL) 19553 return; 19554 if (illgrp->illgrp_ill_schednext != ill) 19555 return; 19556 19557 illgrp->illgrp_ill_schednext = NULL; 19558 save_ill = ill; 19559 /* 19560 * Choose a good ill to be the next one for 19561 * outbound traffic. As the flags FAILED/STANDBY is 19562 * not yet marked when called from ip_sioctl_flags, 19563 * we check for ill separately. 19564 */ 19565 for (ill = illgrp->illgrp_ill; ill != NULL; 19566 ill = ill->ill_group_next) { 19567 if ((ill != save_ill) && 19568 !(ill->ill_phyint->phyint_flags & 19569 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19570 illgrp->illgrp_ill_schednext = ill; 19571 return; 19572 } 19573 } 19574 } 19575 19576 /* 19577 * Given an ill, find the next ill in the group to be scheduled. 19578 * (This should be called by ip_newroute() before ire_create().) 19579 * The passed in ill may be pulled out of the group, after we have picked 19580 * up a different outgoing ill from the same group. However ire add will 19581 * atomically check this. 19582 */ 19583 ill_t * 19584 illgrp_scheduler(ill_t *ill) 19585 { 19586 ill_t *retill; 19587 ill_group_t *illgrp; 19588 int illcnt; 19589 int i; 19590 uint64_t flags; 19591 19592 /* 19593 * We don't use a lock to check for the ill_group. If this ill 19594 * is currently being inserted we may end up just returning this 19595 * ill itself. That is ok. 19596 */ 19597 if (ill->ill_group == NULL) { 19598 ill_refhold(ill); 19599 return (ill); 19600 } 19601 19602 /* 19603 * Grab the ill_g_lock as reader to make sure we are dealing with 19604 * a set of stable ills. No ill can be added or deleted or change 19605 * group while we hold the reader lock. 19606 */ 19607 rw_enter(&ill_g_lock, RW_READER); 19608 if ((illgrp = ill->ill_group) == NULL) { 19609 rw_exit(&ill_g_lock); 19610 ill_refhold(ill); 19611 return (ill); 19612 } 19613 19614 illcnt = illgrp->illgrp_ill_count; 19615 mutex_enter(&illgrp->illgrp_lock); 19616 retill = illgrp->illgrp_ill_schednext; 19617 19618 if (retill == NULL) 19619 retill = illgrp->illgrp_ill; 19620 19621 /* 19622 * We do a circular search beginning at illgrp_ill_schednext 19623 * or illgrp_ill. We don't check the flags against the ill lock 19624 * since it can change anytime. The ire creation will be atomic 19625 * and will fail if the ill is FAILED or OFFLINE. 19626 */ 19627 for (i = 0; i < illcnt; i++) { 19628 flags = retill->ill_phyint->phyint_flags; 19629 19630 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19631 ILL_CAN_LOOKUP(retill)) { 19632 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19633 ill_refhold(retill); 19634 break; 19635 } 19636 retill = retill->ill_group_next; 19637 if (retill == NULL) 19638 retill = illgrp->illgrp_ill; 19639 } 19640 mutex_exit(&illgrp->illgrp_lock); 19641 rw_exit(&ill_g_lock); 19642 19643 return (i == illcnt ? NULL : retill); 19644 } 19645 19646 /* 19647 * Checks for availbility of a usable source address (if there is one) when the 19648 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19649 * this selection is done regardless of the destination. 19650 */ 19651 boolean_t 19652 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19653 { 19654 uint_t ifindex; 19655 ipif_t *ipif = NULL; 19656 ill_t *uill; 19657 boolean_t isv6; 19658 19659 ASSERT(ill != NULL); 19660 19661 isv6 = ill->ill_isv6; 19662 ifindex = ill->ill_usesrc_ifindex; 19663 if (ifindex != 0) { 19664 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19665 NULL); 19666 if (uill == NULL) 19667 return (NULL); 19668 mutex_enter(&uill->ill_lock); 19669 for (ipif = uill->ill_ipif; ipif != NULL; 19670 ipif = ipif->ipif_next) { 19671 if (!IPIF_CAN_LOOKUP(ipif)) 19672 continue; 19673 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19674 continue; 19675 if (!(ipif->ipif_flags & IPIF_UP)) 19676 continue; 19677 if (ipif->ipif_zoneid != zoneid) 19678 continue; 19679 if ((isv6 && 19680 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19681 (ipif->ipif_lcl_addr == INADDR_ANY)) 19682 continue; 19683 mutex_exit(&uill->ill_lock); 19684 ill_refrele(uill); 19685 return (B_TRUE); 19686 } 19687 mutex_exit(&uill->ill_lock); 19688 ill_refrele(uill); 19689 } 19690 return (B_FALSE); 19691 } 19692 19693 /* 19694 * Determine the best source address given a destination address and an ill. 19695 * Prefers non-deprecated over deprecated but will return a deprecated 19696 * address if there is no other choice. If there is a usable source address 19697 * on the interface pointed to by ill_usesrc_ifindex then that is given 19698 * first preference. 19699 * 19700 * Returns NULL if there is no suitable source address for the ill. 19701 * This only occurs when there is no valid source address for the ill. 19702 */ 19703 ipif_t * 19704 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19705 { 19706 ipif_t *ipif; 19707 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19708 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19709 int index = 0; 19710 boolean_t wrapped = B_FALSE; 19711 boolean_t same_subnet_only = B_FALSE; 19712 boolean_t ipif_same_found, ipif_other_found; 19713 boolean_t specific_found; 19714 ill_t *till, *usill = NULL; 19715 tsol_tpc_t *src_rhtp, *dst_rhtp; 19716 19717 if (ill->ill_usesrc_ifindex != 0) { 19718 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19719 NULL, NULL, NULL, NULL); 19720 if (usill != NULL) 19721 ill = usill; /* Select source from usesrc ILL */ 19722 else 19723 return (NULL); 19724 } 19725 19726 /* 19727 * If we're dealing with an unlabeled destination on a labeled system, 19728 * make sure that we ignore source addresses that are incompatible with 19729 * the destination's default label. That destination's default label 19730 * must dominate the minimum label on the source address. 19731 */ 19732 dst_rhtp = NULL; 19733 if (is_system_labeled()) { 19734 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 19735 if (dst_rhtp == NULL) 19736 return (NULL); 19737 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 19738 TPC_RELE(dst_rhtp); 19739 dst_rhtp = NULL; 19740 } 19741 } 19742 19743 /* 19744 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19745 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19746 * After selecting the right ipif, under ill_lock make sure ipif is 19747 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19748 * we retry. Inside the loop we still need to check for CONDEMNED, 19749 * but not under a lock. 19750 */ 19751 rw_enter(&ill_g_lock, RW_READER); 19752 19753 retry: 19754 till = ill; 19755 ipif_arr[0] = NULL; 19756 19757 if (till->ill_group != NULL) 19758 till = till->ill_group->illgrp_ill; 19759 19760 /* 19761 * Choose one good source address from each ill across the group. 19762 * If possible choose a source address in the same subnet as 19763 * the destination address. 19764 * 19765 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19766 * This is okay because of the following. 19767 * 19768 * If PHYI_FAILED is set and we still have non-deprecated 19769 * addresses, it means the addresses have not yet been 19770 * failed over to a different interface. We potentially 19771 * select them to create IRE_CACHES, which will be later 19772 * flushed when the addresses move over. 19773 * 19774 * If PHYI_INACTIVE is set and we still have non-deprecated 19775 * addresses, it means either the user has configured them 19776 * or PHYI_INACTIVE has not been cleared after the addresses 19777 * been moved over. For the former, in.mpathd does a failover 19778 * when the interface becomes INACTIVE and hence we should 19779 * not find them. Once INACTIVE is set, we don't allow them 19780 * to create logical interfaces anymore. For the latter, a 19781 * flush will happen when INACTIVE is cleared which will 19782 * flush the IRE_CACHES. 19783 * 19784 * If PHYI_OFFLINE is set, all the addresses will be failed 19785 * over soon. We potentially select them to create IRE_CACHEs, 19786 * which will be later flushed when the addresses move over. 19787 * 19788 * NOTE : As ipif_select_source is called to borrow source address 19789 * for an ipif that is part of a group, source address selection 19790 * will be re-done whenever the group changes i.e either an 19791 * insertion/deletion in the group. 19792 * 19793 * Fill ipif_arr[] with source addresses, using these rules: 19794 * 19795 * 1. At most one source address from a given ill ends up 19796 * in ipif_arr[] -- that is, at most one of the ipif's 19797 * associated with a given ill ends up in ipif_arr[]. 19798 * 19799 * 2. If there is at least one non-deprecated ipif in the 19800 * IPMP group with a source address on the same subnet as 19801 * our destination, then fill ipif_arr[] only with 19802 * source addresses on the same subnet as our destination. 19803 * Note that because of (1), only the first 19804 * non-deprecated ipif found with a source address 19805 * matching the destination ends up in ipif_arr[]. 19806 * 19807 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19808 * addresses not in the same subnet as our destination. 19809 * Again, because of (1), only the first off-subnet source 19810 * address will be chosen. 19811 * 19812 * 4. If there are no non-deprecated ipifs, then just use 19813 * the source address associated with the last deprecated 19814 * one we find that happens to be on the same subnet, 19815 * otherwise the first one not in the same subnet. 19816 */ 19817 specific_found = B_FALSE; 19818 for (; till != NULL; till = till->ill_group_next) { 19819 ipif_same_found = B_FALSE; 19820 ipif_other_found = B_FALSE; 19821 for (ipif = till->ill_ipif; ipif != NULL; 19822 ipif = ipif->ipif_next) { 19823 if (!IPIF_CAN_LOOKUP(ipif)) 19824 continue; 19825 /* Always skip NOLOCAL and ANYCAST interfaces */ 19826 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19827 continue; 19828 if (!(ipif->ipif_flags & IPIF_UP)) 19829 continue; 19830 if (ipif->ipif_zoneid != zoneid && 19831 ipif->ipif_zoneid != ALL_ZONES) 19832 continue; 19833 /* 19834 * Interfaces with 0.0.0.0 address are allowed to be UP, 19835 * but are not valid as source addresses. 19836 */ 19837 if (ipif->ipif_lcl_addr == INADDR_ANY) 19838 continue; 19839 19840 /* 19841 * Check compatibility of local address for 19842 * destination's default label if we're on a labeled 19843 * system. Incompatible addresses can't be used at 19844 * all. 19845 */ 19846 if (dst_rhtp != NULL) { 19847 boolean_t incompat; 19848 19849 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 19850 IPV4_VERSION, B_FALSE); 19851 if (src_rhtp == NULL) 19852 continue; 19853 incompat = 19854 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 19855 src_rhtp->tpc_tp.tp_doi != 19856 dst_rhtp->tpc_tp.tp_doi || 19857 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 19858 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 19859 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 19860 src_rhtp->tpc_tp.tp_sl_set_cipso)); 19861 TPC_RELE(src_rhtp); 19862 if (incompat) 19863 continue; 19864 } 19865 19866 /* 19867 * We prefer not to use all all-zones addresses, if we 19868 * can avoid it, as they pose problems with unlabeled 19869 * destinations. 19870 */ 19871 if (ipif->ipif_zoneid != ALL_ZONES) { 19872 if (!specific_found && 19873 (!same_subnet_only || 19874 (ipif->ipif_net_mask & dst) == 19875 ipif->ipif_subnet)) { 19876 index = 0; 19877 specific_found = B_TRUE; 19878 ipif_other_found = B_FALSE; 19879 } 19880 } else { 19881 if (specific_found) 19882 continue; 19883 } 19884 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19885 if (ipif_dep == NULL || 19886 (ipif->ipif_net_mask & dst) == 19887 ipif->ipif_subnet) 19888 ipif_dep = ipif; 19889 continue; 19890 } 19891 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19892 /* found a source address in the same subnet */ 19893 if (!same_subnet_only) { 19894 same_subnet_only = B_TRUE; 19895 index = 0; 19896 } 19897 ipif_same_found = B_TRUE; 19898 } else { 19899 if (same_subnet_only || ipif_other_found) 19900 continue; 19901 ipif_other_found = B_TRUE; 19902 } 19903 ipif_arr[index++] = ipif; 19904 if (index == MAX_IPIF_SELECT_SOURCE) { 19905 wrapped = B_TRUE; 19906 index = 0; 19907 } 19908 if (ipif_same_found) 19909 break; 19910 } 19911 } 19912 19913 if (ipif_arr[0] == NULL) { 19914 ipif = ipif_dep; 19915 } else { 19916 if (wrapped) 19917 index = MAX_IPIF_SELECT_SOURCE; 19918 ipif = ipif_arr[ipif_rand() % index]; 19919 ASSERT(ipif != NULL); 19920 } 19921 19922 if (ipif != NULL) { 19923 mutex_enter(&ipif->ipif_ill->ill_lock); 19924 if (!IPIF_CAN_LOOKUP(ipif)) { 19925 mutex_exit(&ipif->ipif_ill->ill_lock); 19926 goto retry; 19927 } 19928 ipif_refhold_locked(ipif); 19929 mutex_exit(&ipif->ipif_ill->ill_lock); 19930 } 19931 19932 rw_exit(&ill_g_lock); 19933 if (usill != NULL) 19934 ill_refrele(usill); 19935 if (dst_rhtp != NULL) 19936 TPC_RELE(dst_rhtp); 19937 19938 #ifdef DEBUG 19939 if (ipif == NULL) { 19940 char buf1[INET6_ADDRSTRLEN]; 19941 19942 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19943 ill->ill_name, 19944 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19945 } else { 19946 char buf1[INET6_ADDRSTRLEN]; 19947 char buf2[INET6_ADDRSTRLEN]; 19948 19949 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19950 ipif->ipif_ill->ill_name, 19951 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19952 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19953 buf2, sizeof (buf2)))); 19954 } 19955 #endif /* DEBUG */ 19956 return (ipif); 19957 } 19958 19959 19960 /* 19961 * If old_ipif is not NULL, see if ipif was derived from old 19962 * ipif and if so, recreate the interface route by re-doing 19963 * source address selection. This happens when ipif_down -> 19964 * ipif_update_other_ipifs calls us. 19965 * 19966 * If old_ipif is NULL, just redo the source address selection 19967 * if needed. This happens when illgrp_insert or ipif_up_done 19968 * calls us. 19969 */ 19970 static void 19971 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19972 { 19973 ire_t *ire; 19974 ire_t *ipif_ire; 19975 queue_t *stq; 19976 ipif_t *nipif; 19977 ill_t *ill; 19978 boolean_t need_rele = B_FALSE; 19979 19980 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19981 ASSERT(IAM_WRITER_IPIF(ipif)); 19982 19983 ill = ipif->ipif_ill; 19984 if (!(ipif->ipif_flags & 19985 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19986 /* 19987 * Can't possibly have borrowed the source 19988 * from old_ipif. 19989 */ 19990 return; 19991 } 19992 19993 /* 19994 * Is there any work to be done? No work if the address 19995 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19996 * ipif_select_source() does not borrow addresses from 19997 * NOLOCAL and ANYCAST interfaces). 19998 */ 19999 if ((old_ipif != NULL) && 20000 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20001 (old_ipif->ipif_ill->ill_wq == NULL) || 20002 (old_ipif->ipif_flags & 20003 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20004 return; 20005 } 20006 20007 /* 20008 * Perform the same checks as when creating the 20009 * IRE_INTERFACE in ipif_up_done. 20010 */ 20011 if (!(ipif->ipif_flags & IPIF_UP)) 20012 return; 20013 20014 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20015 (ipif->ipif_subnet == INADDR_ANY)) 20016 return; 20017 20018 ipif_ire = ipif_to_ire(ipif); 20019 if (ipif_ire == NULL) 20020 return; 20021 20022 /* 20023 * We know that ipif uses some other source for its 20024 * IRE_INTERFACE. Is it using the source of this 20025 * old_ipif? 20026 */ 20027 if (old_ipif != NULL && 20028 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20029 ire_refrele(ipif_ire); 20030 return; 20031 } 20032 if (ip_debug > 2) { 20033 /* ip1dbg */ 20034 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20035 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20036 } 20037 20038 stq = ipif_ire->ire_stq; 20039 20040 /* 20041 * Can't use our source address. Select a different 20042 * source address for the IRE_INTERFACE. 20043 */ 20044 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20045 if (nipif == NULL) { 20046 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20047 nipif = ipif; 20048 } else { 20049 need_rele = B_TRUE; 20050 } 20051 20052 ire = ire_create( 20053 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20054 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20055 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20056 NULL, /* no gateway */ 20057 NULL, 20058 &ipif->ipif_mtu, /* max frag */ 20059 NULL, /* fast path header */ 20060 NULL, /* no recv from queue */ 20061 stq, /* send-to queue */ 20062 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20063 ill->ill_resolver_mp, /* xmit header */ 20064 ipif, 20065 NULL, 20066 0, 20067 0, 20068 0, 20069 0, 20070 &ire_uinfo_null, 20071 NULL, 20072 NULL); 20073 20074 if (ire != NULL) { 20075 ire_t *ret_ire; 20076 int error; 20077 20078 /* 20079 * We don't need ipif_ire anymore. We need to delete 20080 * before we add so that ire_add does not detect 20081 * duplicates. 20082 */ 20083 ire_delete(ipif_ire); 20084 ret_ire = ire; 20085 error = ire_add(&ret_ire, NULL, NULL, NULL); 20086 ASSERT(error == 0); 20087 ASSERT(ire == ret_ire); 20088 /* Held in ire_add */ 20089 ire_refrele(ret_ire); 20090 } 20091 /* 20092 * Either we are falling through from above or could not 20093 * allocate a replacement. 20094 */ 20095 ire_refrele(ipif_ire); 20096 if (need_rele) 20097 ipif_refrele(nipif); 20098 } 20099 20100 /* 20101 * This old_ipif is going away. 20102 * 20103 * Determine if any other ipif's is using our address as 20104 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 20105 * IPIF_DEPRECATED). 20106 * Find the IRE_INTERFACE for such ipifs and recreate them 20107 * to use an different source address following the rules in 20108 * ipif_up_done. 20109 * 20110 * This function takes an illgrp as an argument so that illgrp_delete 20111 * can call this to update source address even after deleting the 20112 * old_ipif->ipif_ill from the ill group. 20113 */ 20114 static void 20115 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 20116 { 20117 ipif_t *ipif; 20118 ill_t *ill; 20119 char buf[INET6_ADDRSTRLEN]; 20120 20121 ASSERT(IAM_WRITER_IPIF(old_ipif)); 20122 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 20123 20124 ill = old_ipif->ipif_ill; 20125 20126 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 20127 ill->ill_name, 20128 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 20129 buf, sizeof (buf)))); 20130 /* 20131 * If this part of a group, look at all ills as ipif_select_source 20132 * borrows source address across all the ills in the group. 20133 */ 20134 if (illgrp != NULL) 20135 ill = illgrp->illgrp_ill; 20136 20137 for (; ill != NULL; ill = ill->ill_group_next) { 20138 for (ipif = ill->ill_ipif; ipif != NULL; 20139 ipif = ipif->ipif_next) { 20140 20141 if (ipif == old_ipif) 20142 continue; 20143 20144 ipif_recreate_interface_routes(old_ipif, ipif); 20145 } 20146 } 20147 } 20148 20149 /* ARGSUSED */ 20150 int 20151 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20152 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20153 { 20154 /* 20155 * ill_phyint_reinit merged the v4 and v6 into a single 20156 * ipsq. Could also have become part of a ipmp group in the 20157 * process, and we might not have been able to complete the 20158 * operation in ipif_set_values, if we could not become 20159 * exclusive. If so restart it here. 20160 */ 20161 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20162 } 20163 20164 20165 /* ARGSUSED */ 20166 int 20167 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20168 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20169 { 20170 queue_t *q1 = q; 20171 char *cp; 20172 char interf_name[LIFNAMSIZ]; 20173 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 20174 20175 if (!q->q_next) { 20176 ip1dbg(( 20177 "if_unitsel: IF_UNITSEL: no q_next\n")); 20178 return (EINVAL); 20179 } 20180 20181 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 20182 return (EALREADY); 20183 20184 do { 20185 q1 = q1->q_next; 20186 } while (q1->q_next); 20187 cp = q1->q_qinfo->qi_minfo->mi_idname; 20188 (void) sprintf(interf_name, "%s%d", cp, ppa); 20189 20190 /* 20191 * Here we are not going to delay the ioack until after 20192 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20193 * original ioctl message before sending the requests. 20194 */ 20195 return (ipif_set_values(q, mp, interf_name, &ppa)); 20196 } 20197 20198 /* ARGSUSED */ 20199 int 20200 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20201 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20202 { 20203 return (ENXIO); 20204 } 20205 20206 /* 20207 * Net and subnet broadcast ire's are now specific to the particular 20208 * physical interface (ill) and not to any one locigal interface (ipif). 20209 * However, if a particular logical interface is being taken down, it's 20210 * associated ire's will be taken down as well. Hence, when we go to 20211 * take down or change the local address, broadcast address or netmask 20212 * of a specific logical interface, we must check to make sure that we 20213 * have valid net and subnet broadcast ire's for the other logical 20214 * interfaces which may have been shared with the logical interface 20215 * being brought down or changed. 20216 * 20217 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20218 * is tied to the first interface coming UP. If that ipif is going down, 20219 * we need to recreate them on the next valid ipif. 20220 * 20221 * Note: assume that the ipif passed in is still up so that it's IRE 20222 * entries are still valid. 20223 */ 20224 static void 20225 ipif_check_bcast_ires(ipif_t *test_ipif) 20226 { 20227 ipif_t *ipif; 20228 ire_t *test_subnet_ire, *test_net_ire; 20229 ire_t *test_allzero_ire, *test_allone_ire; 20230 ire_t *ire_array[12]; 20231 ire_t **irep = &ire_array[0]; 20232 ire_t **irep1; 20233 20234 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20235 ipaddr_t test_net_addr, test_subnet_addr; 20236 ipaddr_t test_net_mask, test_subnet_mask; 20237 boolean_t need_net_bcast_ire = B_FALSE; 20238 boolean_t need_subnet_bcast_ire = B_FALSE; 20239 boolean_t allzero_bcast_ire_created = B_FALSE; 20240 boolean_t allone_bcast_ire_created = B_FALSE; 20241 boolean_t net_bcast_ire_created = B_FALSE; 20242 boolean_t subnet_bcast_ire_created = B_FALSE; 20243 20244 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20245 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20246 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20247 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20248 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20249 20250 ASSERT(!test_ipif->ipif_isv6); 20251 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20252 20253 /* 20254 * No broadcast IREs for the LOOPBACK interface 20255 * or others such as point to point and IPIF_NOXMIT. 20256 */ 20257 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20258 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20259 return; 20260 20261 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20262 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20263 20264 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20265 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20266 20267 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20268 test_subnet_mask = test_ipif->ipif_net_mask; 20269 20270 /* 20271 * If no net mask set, assume the default based on net class. 20272 */ 20273 if (test_subnet_mask == 0) 20274 test_subnet_mask = test_net_mask; 20275 20276 /* 20277 * Check if there is a network broadcast ire associated with this ipif 20278 */ 20279 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20280 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20281 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20282 20283 /* 20284 * Check if there is a subnet broadcast IRE associated with this ipif 20285 */ 20286 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20287 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20288 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20289 20290 /* 20291 * No broadcast ire's associated with this ipif. 20292 */ 20293 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20294 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20295 return; 20296 } 20297 20298 /* 20299 * We have established which bcast ires have to be replaced. 20300 * Next we try to locate ipifs that match there ires. 20301 * The rules are simple: If we find an ipif that matches on the subnet 20302 * address it will also match on the net address, the allzeros and 20303 * allones address. Any ipif that matches only on the net address will 20304 * also match the allzeros and allones addresses. 20305 * The other criterion is the ipif_flags. We look for non-deprecated 20306 * (and non-anycast and non-nolocal) ipifs as the best choice. 20307 * ipifs with check_flags matching (deprecated, etc) are used only 20308 * if good ipifs are not available. While looping, we save existing 20309 * deprecated ipifs as backup_ipif. 20310 * We loop through all the ipifs for this ill looking for ipifs 20311 * whose broadcast addr match the ipif passed in, but do not have 20312 * their own broadcast ires. For creating 0.0.0.0 and 20313 * 255.255.255.255 we just need an ipif on this ill to create. 20314 */ 20315 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20316 ipif = ipif->ipif_next) { 20317 20318 ASSERT(!ipif->ipif_isv6); 20319 /* 20320 * Already checked the ipif passed in. 20321 */ 20322 if (ipif == test_ipif) { 20323 continue; 20324 } 20325 20326 /* 20327 * We only need to recreate broadcast ires if another ipif in 20328 * the same zone uses them. The new ires must be created in the 20329 * same zone. 20330 */ 20331 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20332 continue; 20333 } 20334 20335 /* 20336 * Only interested in logical interfaces with valid local 20337 * addresses or with the ability to broadcast. 20338 */ 20339 if ((ipif->ipif_subnet == 0) || 20340 !(ipif->ipif_flags & IPIF_BROADCAST) || 20341 (ipif->ipif_flags & IPIF_NOXMIT) || 20342 !(ipif->ipif_flags & IPIF_UP)) { 20343 continue; 20344 } 20345 /* 20346 * Check if there is a net broadcast ire for this 20347 * net address. If it turns out that the ipif we are 20348 * about to take down owns this ire, we must make a 20349 * new one because it is potentially going away. 20350 */ 20351 if (test_net_ire && (!net_bcast_ire_created)) { 20352 net_mask = ip_net_mask(ipif->ipif_subnet); 20353 net_addr = net_mask & ipif->ipif_subnet; 20354 if (net_addr == test_net_addr) { 20355 need_net_bcast_ire = B_TRUE; 20356 /* 20357 * Use DEPRECATED ipif only if no good 20358 * ires are available. subnet_addr is 20359 * a better match than net_addr. 20360 */ 20361 if ((ipif->ipif_flags & check_flags) && 20362 (backup_ipif_net == NULL)) { 20363 backup_ipif_net = ipif; 20364 } 20365 } 20366 } 20367 /* 20368 * Check if there is a subnet broadcast ire for this 20369 * net address. If it turns out that the ipif we are 20370 * about to take down owns this ire, we must make a 20371 * new one because it is potentially going away. 20372 */ 20373 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20374 subnet_mask = ipif->ipif_net_mask; 20375 subnet_addr = ipif->ipif_subnet; 20376 if (subnet_addr == test_subnet_addr) { 20377 need_subnet_bcast_ire = B_TRUE; 20378 if ((ipif->ipif_flags & check_flags) && 20379 (backup_ipif_subnet == NULL)) { 20380 backup_ipif_subnet = ipif; 20381 } 20382 } 20383 } 20384 20385 20386 /* Short circuit here if this ipif is deprecated */ 20387 if (ipif->ipif_flags & check_flags) { 20388 if ((test_allzero_ire != NULL) && 20389 (!allzero_bcast_ire_created) && 20390 (backup_ipif_allzeros == NULL)) { 20391 backup_ipif_allzeros = ipif; 20392 } 20393 if ((test_allone_ire != NULL) && 20394 (!allone_bcast_ire_created) && 20395 (backup_ipif_allones == NULL)) { 20396 backup_ipif_allones = ipif; 20397 } 20398 continue; 20399 } 20400 20401 /* 20402 * Found an ipif which has the same broadcast ire as the 20403 * ipif passed in and the ipif passed in "owns" the ire. 20404 * Create new broadcast ire's for this broadcast addr. 20405 */ 20406 if (need_net_bcast_ire && !net_bcast_ire_created) { 20407 irep = ire_create_bcast(ipif, net_addr, irep); 20408 irep = ire_create_bcast(ipif, 20409 ~net_mask | net_addr, irep); 20410 net_bcast_ire_created = B_TRUE; 20411 } 20412 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20413 irep = ire_create_bcast(ipif, subnet_addr, irep); 20414 irep = ire_create_bcast(ipif, 20415 ~subnet_mask | subnet_addr, irep); 20416 subnet_bcast_ire_created = B_TRUE; 20417 } 20418 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20419 irep = ire_create_bcast(ipif, 0, irep); 20420 allzero_bcast_ire_created = B_TRUE; 20421 } 20422 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20423 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20424 allone_bcast_ire_created = B_TRUE; 20425 } 20426 /* 20427 * Once we have created all the appropriate ires, we 20428 * just break out of this loop to add what we have created. 20429 * This has been indented similar to ire_match_args for 20430 * readability. 20431 */ 20432 if (((test_net_ire == NULL) || 20433 (net_bcast_ire_created)) && 20434 ((test_subnet_ire == NULL) || 20435 (subnet_bcast_ire_created)) && 20436 ((test_allzero_ire == NULL) || 20437 (allzero_bcast_ire_created)) && 20438 ((test_allone_ire == NULL) || 20439 (allone_bcast_ire_created))) { 20440 break; 20441 } 20442 } 20443 20444 /* 20445 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20446 * exist. 6 pairs of bcast ires are needed. 20447 * Note - the old ires are deleted in ipif_down. 20448 */ 20449 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20450 ipif = backup_ipif_net; 20451 irep = ire_create_bcast(ipif, net_addr, irep); 20452 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20453 net_bcast_ire_created = B_TRUE; 20454 } 20455 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20456 backup_ipif_subnet) { 20457 ipif = backup_ipif_subnet; 20458 irep = ire_create_bcast(ipif, subnet_addr, irep); 20459 irep = ire_create_bcast(ipif, 20460 ~subnet_mask | subnet_addr, irep); 20461 subnet_bcast_ire_created = B_TRUE; 20462 } 20463 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20464 backup_ipif_allzeros) { 20465 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20466 allzero_bcast_ire_created = B_TRUE; 20467 } 20468 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20469 backup_ipif_allones) { 20470 irep = ire_create_bcast(backup_ipif_allones, 20471 INADDR_BROADCAST, irep); 20472 allone_bcast_ire_created = B_TRUE; 20473 } 20474 20475 /* 20476 * If we can't create all of them, don't add any of them. 20477 * Code in ip_wput_ire and ire_to_ill assumes that we 20478 * always have a non-loopback copy and loopback copy 20479 * for a given address. 20480 */ 20481 for (irep1 = irep; irep1 > ire_array; ) { 20482 irep1--; 20483 if (*irep1 == NULL) { 20484 ip0dbg(("ipif_check_bcast_ires: can't create " 20485 "IRE_BROADCAST, memory allocation failure\n")); 20486 while (irep > ire_array) { 20487 irep--; 20488 if (*irep != NULL) 20489 ire_delete(*irep); 20490 } 20491 goto bad; 20492 } 20493 } 20494 for (irep1 = irep; irep1 > ire_array; ) { 20495 int error; 20496 20497 irep1--; 20498 error = ire_add(irep1, NULL, NULL, NULL); 20499 if (error == 0) { 20500 ire_refrele(*irep1); /* Held in ire_add */ 20501 } 20502 } 20503 bad: 20504 if (test_allzero_ire != NULL) 20505 ire_refrele(test_allzero_ire); 20506 if (test_allone_ire != NULL) 20507 ire_refrele(test_allone_ire); 20508 if (test_net_ire != NULL) 20509 ire_refrele(test_net_ire); 20510 if (test_subnet_ire != NULL) 20511 ire_refrele(test_subnet_ire); 20512 } 20513 20514 /* 20515 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20516 * from lifr_flags and the name from lifr_name. 20517 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20518 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20519 * Returns EINPROGRESS when mp has been consumed by queueing it on 20520 * ill_pending_mp and the ioctl will complete in ip_rput. 20521 */ 20522 /* ARGSUSED */ 20523 int 20524 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20525 ip_ioctl_cmd_t *ipip, void *if_req) 20526 { 20527 int err; 20528 ill_t *ill; 20529 struct lifreq *lifr = (struct lifreq *)if_req; 20530 20531 ASSERT(ipif != NULL); 20532 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20533 ASSERT(q->q_next != NULL); 20534 20535 ill = (ill_t *)q->q_ptr; 20536 /* 20537 * If we are not writer on 'q' then this interface exists already 20538 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20539 * So return EALREADY 20540 */ 20541 if (ill != ipif->ipif_ill) 20542 return (EALREADY); 20543 20544 if (ill->ill_name[0] != '\0') 20545 return (EALREADY); 20546 20547 /* 20548 * Set all the flags. Allows all kinds of override. Provide some 20549 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20550 * unless there is either multicast/broadcast support in the driver 20551 * or it is a pt-pt link. 20552 */ 20553 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20554 /* Meaningless to IP thus don't allow them to be set. */ 20555 ip1dbg(("ip_setname: EINVAL 1\n")); 20556 return (EINVAL); 20557 } 20558 /* 20559 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20560 * ill_bcast_addr_length info. 20561 */ 20562 if (!ill->ill_needs_attach && 20563 ((lifr->lifr_flags & IFF_MULTICAST) && 20564 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20565 ill->ill_bcast_addr_length == 0)) { 20566 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20567 ip1dbg(("ip_setname: EINVAL 2\n")); 20568 return (EINVAL); 20569 } 20570 if ((lifr->lifr_flags & IFF_BROADCAST) && 20571 ((lifr->lifr_flags & IFF_IPV6) || 20572 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20573 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20574 ip1dbg(("ip_setname: EINVAL 3\n")); 20575 return (EINVAL); 20576 } 20577 if (lifr->lifr_flags & IFF_UP) { 20578 /* Can only be set with SIOCSLIFFLAGS */ 20579 ip1dbg(("ip_setname: EINVAL 4\n")); 20580 return (EINVAL); 20581 } 20582 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20583 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20584 ip1dbg(("ip_setname: EINVAL 5\n")); 20585 return (EINVAL); 20586 } 20587 /* 20588 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20589 */ 20590 if ((lifr->lifr_flags & IFF_XRESOLV) && 20591 !(lifr->lifr_flags & IFF_IPV6) && 20592 !(ipif->ipif_isv6)) { 20593 ip1dbg(("ip_setname: EINVAL 6\n")); 20594 return (EINVAL); 20595 } 20596 20597 /* 20598 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20599 * we have all the flags here. So, we assign rather than we OR. 20600 * We can't OR the flags here because we don't want to set 20601 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20602 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20603 * on lifr_flags value here. 20604 */ 20605 /* 20606 * This ill has not been inserted into the global list. 20607 * So we are still single threaded and don't need any lock 20608 */ 20609 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20610 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20611 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20612 20613 /* We started off as V4. */ 20614 if (ill->ill_flags & ILLF_IPV6) { 20615 ill->ill_phyint->phyint_illv6 = ill; 20616 ill->ill_phyint->phyint_illv4 = NULL; 20617 } 20618 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20619 return (err); 20620 } 20621 20622 /* ARGSUSED */ 20623 int 20624 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20625 ip_ioctl_cmd_t *ipip, void *if_req) 20626 { 20627 /* 20628 * ill_phyint_reinit merged the v4 and v6 into a single 20629 * ipsq. Could also have become part of a ipmp group in the 20630 * process, and we might not have been able to complete the 20631 * slifname in ipif_set_values, if we could not become 20632 * exclusive. If so restart it here 20633 */ 20634 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20635 } 20636 20637 /* 20638 * Return a pointer to the ipif which matches the index, IP version type and 20639 * zoneid. 20640 */ 20641 ipif_t * 20642 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20643 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20644 { 20645 ill_t *ill; 20646 ipsq_t *ipsq; 20647 phyint_t *phyi; 20648 ipif_t *ipif; 20649 20650 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20651 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20652 20653 if (err != NULL) 20654 *err = 0; 20655 20656 /* 20657 * Indexes are stored in the phyint - a common structure 20658 * to both IPv4 and IPv6. 20659 */ 20660 20661 rw_enter(&ill_g_lock, RW_READER); 20662 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20663 (void *) &index, NULL); 20664 if (phyi != NULL) { 20665 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20666 if (ill == NULL) { 20667 rw_exit(&ill_g_lock); 20668 if (err != NULL) 20669 *err = ENXIO; 20670 return (NULL); 20671 } 20672 GRAB_CONN_LOCK(q); 20673 mutex_enter(&ill->ill_lock); 20674 if (ILL_CAN_LOOKUP(ill)) { 20675 for (ipif = ill->ill_ipif; ipif != NULL; 20676 ipif = ipif->ipif_next) { 20677 if (IPIF_CAN_LOOKUP(ipif) && 20678 (zoneid == ALL_ZONES || 20679 zoneid == ipif->ipif_zoneid || 20680 ipif->ipif_zoneid == ALL_ZONES)) { 20681 ipif_refhold_locked(ipif); 20682 mutex_exit(&ill->ill_lock); 20683 RELEASE_CONN_LOCK(q); 20684 rw_exit(&ill_g_lock); 20685 return (ipif); 20686 } 20687 } 20688 } else if (ILL_CAN_WAIT(ill, q)) { 20689 ipsq = ill->ill_phyint->phyint_ipsq; 20690 mutex_enter(&ipsq->ipsq_lock); 20691 rw_exit(&ill_g_lock); 20692 mutex_exit(&ill->ill_lock); 20693 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20694 mutex_exit(&ipsq->ipsq_lock); 20695 RELEASE_CONN_LOCK(q); 20696 *err = EINPROGRESS; 20697 return (NULL); 20698 } 20699 mutex_exit(&ill->ill_lock); 20700 RELEASE_CONN_LOCK(q); 20701 } 20702 rw_exit(&ill_g_lock); 20703 if (err != NULL) 20704 *err = ENXIO; 20705 return (NULL); 20706 } 20707 20708 typedef struct conn_change_s { 20709 uint_t cc_old_ifindex; 20710 uint_t cc_new_ifindex; 20711 } conn_change_t; 20712 20713 /* 20714 * ipcl_walk function for changing interface index. 20715 */ 20716 static void 20717 conn_change_ifindex(conn_t *connp, caddr_t arg) 20718 { 20719 conn_change_t *connc; 20720 uint_t old_ifindex; 20721 uint_t new_ifindex; 20722 int i; 20723 ilg_t *ilg; 20724 20725 connc = (conn_change_t *)arg; 20726 old_ifindex = connc->cc_old_ifindex; 20727 new_ifindex = connc->cc_new_ifindex; 20728 20729 if (connp->conn_orig_bound_ifindex == old_ifindex) 20730 connp->conn_orig_bound_ifindex = new_ifindex; 20731 20732 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20733 connp->conn_orig_multicast_ifindex = new_ifindex; 20734 20735 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20736 connp->conn_orig_xmit_ifindex = new_ifindex; 20737 20738 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20739 ilg = &connp->conn_ilg[i]; 20740 if (ilg->ilg_orig_ifindex == old_ifindex) 20741 ilg->ilg_orig_ifindex = new_ifindex; 20742 } 20743 } 20744 20745 /* 20746 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20747 * to new_index if it matches the old_index. 20748 * 20749 * Failovers typically happen within a group of ills. But somebody 20750 * can remove an ill from the group after a failover happened. If 20751 * we are setting the ifindex after this, we potentially need to 20752 * look at all the ills rather than just the ones in the group. 20753 * We cut down the work by looking at matching ill_net_types 20754 * and ill_types as we could not possibly grouped them together. 20755 */ 20756 static void 20757 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20758 { 20759 ill_t *ill; 20760 ipif_t *ipif; 20761 uint_t old_ifindex; 20762 uint_t new_ifindex; 20763 ilm_t *ilm; 20764 ill_walk_context_t ctx; 20765 20766 old_ifindex = connc->cc_old_ifindex; 20767 new_ifindex = connc->cc_new_ifindex; 20768 20769 rw_enter(&ill_g_lock, RW_READER); 20770 ill = ILL_START_WALK_ALL(&ctx); 20771 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20772 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20773 (ill_orig->ill_type != ill->ill_type)) { 20774 continue; 20775 } 20776 for (ipif = ill->ill_ipif; ipif != NULL; 20777 ipif = ipif->ipif_next) { 20778 if (ipif->ipif_orig_ifindex == old_ifindex) 20779 ipif->ipif_orig_ifindex = new_ifindex; 20780 } 20781 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20782 if (ilm->ilm_orig_ifindex == old_ifindex) 20783 ilm->ilm_orig_ifindex = new_ifindex; 20784 } 20785 } 20786 rw_exit(&ill_g_lock); 20787 } 20788 20789 /* 20790 * We first need to ensure that the new index is unique, and 20791 * then carry the change across both v4 and v6 ill representation 20792 * of the physical interface. 20793 */ 20794 /* ARGSUSED */ 20795 int 20796 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20797 ip_ioctl_cmd_t *ipip, void *ifreq) 20798 { 20799 ill_t *ill; 20800 ill_t *ill_other; 20801 phyint_t *phyi; 20802 int old_index; 20803 conn_change_t connc; 20804 struct ifreq *ifr = (struct ifreq *)ifreq; 20805 struct lifreq *lifr = (struct lifreq *)ifreq; 20806 uint_t index; 20807 ill_t *ill_v4; 20808 ill_t *ill_v6; 20809 20810 if (ipip->ipi_cmd_type == IF_CMD) 20811 index = ifr->ifr_index; 20812 else 20813 index = lifr->lifr_index; 20814 20815 /* 20816 * Only allow on physical interface. Also, index zero is illegal. 20817 * 20818 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20819 * 20820 * 1) If PHYI_FAILED is set, a failover could have happened which 20821 * implies a possible failback might have to happen. As failback 20822 * depends on the old index, we should fail setting the index. 20823 * 20824 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20825 * any addresses or multicast memberships are failed over to 20826 * a non-STANDBY interface. As failback depends on the old 20827 * index, we should fail setting the index for this case also. 20828 * 20829 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20830 * Be consistent with PHYI_FAILED and fail the ioctl. 20831 */ 20832 ill = ipif->ipif_ill; 20833 phyi = ill->ill_phyint; 20834 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20835 ipif->ipif_id != 0 || index == 0) { 20836 return (EINVAL); 20837 } 20838 old_index = phyi->phyint_ifindex; 20839 20840 /* If the index is not changing, no work to do */ 20841 if (old_index == index) 20842 return (0); 20843 20844 /* 20845 * Use ill_lookup_on_ifindex to determine if the 20846 * new index is unused and if so allow the change. 20847 */ 20848 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20849 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20850 if (ill_v6 != NULL || ill_v4 != NULL) { 20851 if (ill_v4 != NULL) 20852 ill_refrele(ill_v4); 20853 if (ill_v6 != NULL) 20854 ill_refrele(ill_v6); 20855 return (EBUSY); 20856 } 20857 20858 /* 20859 * The new index is unused. Set it in the phyint. 20860 * Locate the other ill so that we can send a routing 20861 * sockets message. 20862 */ 20863 if (ill->ill_isv6) { 20864 ill_other = phyi->phyint_illv4; 20865 } else { 20866 ill_other = phyi->phyint_illv6; 20867 } 20868 20869 phyi->phyint_ifindex = index; 20870 20871 connc.cc_old_ifindex = old_index; 20872 connc.cc_new_ifindex = index; 20873 ip_change_ifindex(ill, &connc); 20874 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20875 20876 /* Send the routing sockets message */ 20877 ip_rts_ifmsg(ipif); 20878 if (ill_other != NULL) 20879 ip_rts_ifmsg(ill_other->ill_ipif); 20880 20881 return (0); 20882 } 20883 20884 /* ARGSUSED */ 20885 int 20886 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20887 ip_ioctl_cmd_t *ipip, void *ifreq) 20888 { 20889 struct ifreq *ifr = (struct ifreq *)ifreq; 20890 struct lifreq *lifr = (struct lifreq *)ifreq; 20891 20892 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20893 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20894 /* Get the interface index */ 20895 if (ipip->ipi_cmd_type == IF_CMD) { 20896 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20897 } else { 20898 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20899 } 20900 return (0); 20901 } 20902 20903 /* ARGSUSED */ 20904 int 20905 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20906 ip_ioctl_cmd_t *ipip, void *ifreq) 20907 { 20908 struct lifreq *lifr = (struct lifreq *)ifreq; 20909 20910 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20912 /* Get the interface zone */ 20913 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20914 lifr->lifr_zoneid = ipif->ipif_zoneid; 20915 return (0); 20916 } 20917 20918 /* 20919 * Set the zoneid of an interface. 20920 */ 20921 /* ARGSUSED */ 20922 int 20923 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20924 ip_ioctl_cmd_t *ipip, void *ifreq) 20925 { 20926 struct lifreq *lifr = (struct lifreq *)ifreq; 20927 int err = 0; 20928 boolean_t need_up = B_FALSE; 20929 zone_t *zptr; 20930 zone_status_t status; 20931 zoneid_t zoneid; 20932 20933 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20934 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 20935 if (!is_system_labeled()) 20936 return (ENOTSUP); 20937 zoneid = GLOBAL_ZONEID; 20938 } 20939 20940 /* cannot assign instance zero to a non-global zone */ 20941 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 20942 return (ENOTSUP); 20943 20944 /* 20945 * Cannot assign to a zone that doesn't exist or is shutting down. In 20946 * the event of a race with the zone shutdown processing, since IP 20947 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20948 * interface will be cleaned up even if the zone is shut down 20949 * immediately after the status check. If the interface can't be brought 20950 * down right away, and the zone is shut down before the restart 20951 * function is called, we resolve the possible races by rechecking the 20952 * zone status in the restart function. 20953 */ 20954 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20955 return (EINVAL); 20956 status = zone_status_get(zptr); 20957 zone_rele(zptr); 20958 20959 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20960 return (EINVAL); 20961 20962 if (ipif->ipif_flags & IPIF_UP) { 20963 /* 20964 * If the interface is already marked up, 20965 * we call ipif_down which will take care 20966 * of ditching any IREs that have been set 20967 * up based on the old interface address. 20968 */ 20969 err = ipif_logical_down(ipif, q, mp); 20970 if (err == EINPROGRESS) 20971 return (err); 20972 ipif_down_tail(ipif); 20973 need_up = B_TRUE; 20974 } 20975 20976 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 20977 return (err); 20978 } 20979 20980 static int 20981 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20982 queue_t *q, mblk_t *mp, boolean_t need_up) 20983 { 20984 int err = 0; 20985 20986 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20987 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20988 20989 /* Set the new zone id. */ 20990 ipif->ipif_zoneid = zoneid; 20991 20992 /* Update sctp list */ 20993 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20994 20995 if (need_up) { 20996 /* 20997 * Now bring the interface back up. If this 20998 * is the only IPIF for the ILL, ipif_up 20999 * will have to re-bind to the device, so 21000 * we may get back EINPROGRESS, in which 21001 * case, this IOCTL will get completed in 21002 * ip_rput_dlpi when we see the DL_BIND_ACK. 21003 */ 21004 err = ipif_up(ipif, q, mp); 21005 } 21006 return (err); 21007 } 21008 21009 /* ARGSUSED */ 21010 int 21011 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21012 ip_ioctl_cmd_t *ipip, void *if_req) 21013 { 21014 struct lifreq *lifr = (struct lifreq *)if_req; 21015 zoneid_t zoneid; 21016 zone_t *zptr; 21017 zone_status_t status; 21018 21019 ASSERT(ipif->ipif_id != 0); 21020 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21021 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21022 zoneid = GLOBAL_ZONEID; 21023 21024 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21026 21027 /* 21028 * We recheck the zone status to resolve the following race condition: 21029 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21030 * 2) hme0:1 is up and can't be brought down right away; 21031 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21032 * 3) zone "myzone" is halted; the zone status switches to 21033 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21034 * the interfaces to remove - hme0:1 is not returned because it's not 21035 * yet in "myzone", so it won't be removed; 21036 * 4) the restart function for SIOCSLIFZONE is called; without the 21037 * status check here, we would have hme0:1 in "myzone" after it's been 21038 * destroyed. 21039 * Note that if the status check fails, we need to bring the interface 21040 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21041 * ipif_up_done[_v6](). 21042 */ 21043 status = ZONE_IS_UNINITIALIZED; 21044 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21045 status = zone_status_get(zptr); 21046 zone_rele(zptr); 21047 } 21048 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21049 if (ipif->ipif_isv6) { 21050 (void) ipif_up_done_v6(ipif); 21051 } else { 21052 (void) ipif_up_done(ipif); 21053 } 21054 return (EINVAL); 21055 } 21056 21057 ipif_down_tail(ipif); 21058 21059 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21060 B_TRUE)); 21061 } 21062 21063 /* ARGSUSED */ 21064 int 21065 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21066 ip_ioctl_cmd_t *ipip, void *ifreq) 21067 { 21068 struct lifreq *lifr = ifreq; 21069 21070 ASSERT(q->q_next == NULL); 21071 ASSERT(CONN_Q(q)); 21072 21073 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 21074 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21075 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 21076 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 21077 21078 return (0); 21079 } 21080 21081 21082 /* Find the previous ILL in this usesrc group */ 21083 static ill_t * 21084 ill_prev_usesrc(ill_t *uill) 21085 { 21086 ill_t *ill; 21087 21088 for (ill = uill->ill_usesrc_grp_next; 21089 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 21090 ill = ill->ill_usesrc_grp_next) 21091 /* do nothing */; 21092 return (ill); 21093 } 21094 21095 /* 21096 * Release all members of the usesrc group. This routine is called 21097 * from ill_delete when the interface being unplumbed is the 21098 * group head. 21099 */ 21100 static void 21101 ill_disband_usesrc_group(ill_t *uill) 21102 { 21103 ill_t *next_ill, *tmp_ill; 21104 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 21105 next_ill = uill->ill_usesrc_grp_next; 21106 21107 do { 21108 ASSERT(next_ill != NULL); 21109 tmp_ill = next_ill->ill_usesrc_grp_next; 21110 ASSERT(tmp_ill != NULL); 21111 next_ill->ill_usesrc_grp_next = NULL; 21112 next_ill->ill_usesrc_ifindex = 0; 21113 next_ill = tmp_ill; 21114 } while (next_ill->ill_usesrc_ifindex != 0); 21115 uill->ill_usesrc_grp_next = NULL; 21116 } 21117 21118 /* 21119 * Remove the client usesrc ILL from the list and relink to a new list 21120 */ 21121 int 21122 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 21123 { 21124 ill_t *ill, *tmp_ill; 21125 21126 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 21127 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 21128 21129 /* 21130 * Check if the usesrc client ILL passed in is not already 21131 * in use as a usesrc ILL i.e one whose source address is 21132 * in use OR a usesrc ILL is not already in use as a usesrc 21133 * client ILL 21134 */ 21135 if ((ucill->ill_usesrc_ifindex == 0) || 21136 (uill->ill_usesrc_ifindex != 0)) { 21137 return (-1); 21138 } 21139 21140 ill = ill_prev_usesrc(ucill); 21141 ASSERT(ill->ill_usesrc_grp_next != NULL); 21142 21143 /* Remove from the current list */ 21144 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 21145 /* Only two elements in the list */ 21146 ASSERT(ill->ill_usesrc_ifindex == 0); 21147 ill->ill_usesrc_grp_next = NULL; 21148 } else { 21149 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 21150 } 21151 21152 if (ifindex == 0) { 21153 ucill->ill_usesrc_ifindex = 0; 21154 ucill->ill_usesrc_grp_next = NULL; 21155 return (0); 21156 } 21157 21158 ucill->ill_usesrc_ifindex = ifindex; 21159 tmp_ill = uill->ill_usesrc_grp_next; 21160 uill->ill_usesrc_grp_next = ucill; 21161 ucill->ill_usesrc_grp_next = 21162 (tmp_ill != NULL) ? tmp_ill : uill; 21163 return (0); 21164 } 21165 21166 /* 21167 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 21168 * ip.c for locking details. 21169 */ 21170 /* ARGSUSED */ 21171 int 21172 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21173 ip_ioctl_cmd_t *ipip, void *ifreq) 21174 { 21175 struct lifreq *lifr = (struct lifreq *)ifreq; 21176 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 21177 ill_flag_changed = B_FALSE; 21178 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 21179 int err = 0, ret; 21180 uint_t ifindex; 21181 phyint_t *us_phyint, *us_cli_phyint; 21182 ipsq_t *ipsq = NULL; 21183 21184 ASSERT(IAM_WRITER_IPIF(ipif)); 21185 ASSERT(q->q_next == NULL); 21186 ASSERT(CONN_Q(q)); 21187 21188 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 21189 us_cli_phyint = usesrc_cli_ill->ill_phyint; 21190 21191 ASSERT(us_cli_phyint != NULL); 21192 21193 /* 21194 * If the client ILL is being used for IPMP, abort. 21195 * Note, this can be done before ipsq_try_enter since we are already 21196 * exclusive on this ILL 21197 */ 21198 if ((us_cli_phyint->phyint_groupname != NULL) || 21199 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21200 return (EINVAL); 21201 } 21202 21203 ifindex = lifr->lifr_index; 21204 if (ifindex == 0) { 21205 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21206 /* non usesrc group interface, nothing to reset */ 21207 return (0); 21208 } 21209 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21210 /* valid reset request */ 21211 reset_flg = B_TRUE; 21212 } 21213 21214 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21215 ip_process_ioctl, &err); 21216 21217 if (usesrc_ill == NULL) { 21218 return (err); 21219 } 21220 21221 /* 21222 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21223 * group nor can either of the interfaces be used for standy. So 21224 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21225 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21226 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21227 * We are already exlusive on this ipsq i.e ipsq corresponding to 21228 * the usesrc_cli_ill 21229 */ 21230 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21231 NEW_OP, B_TRUE); 21232 if (ipsq == NULL) { 21233 err = EINPROGRESS; 21234 /* Operation enqueued on the ipsq of the usesrc ILL */ 21235 goto done; 21236 } 21237 21238 /* Check if the usesrc_ill is used for IPMP */ 21239 us_phyint = usesrc_ill->ill_phyint; 21240 if ((us_phyint->phyint_groupname != NULL) || 21241 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21242 err = EINVAL; 21243 goto done; 21244 } 21245 21246 /* 21247 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21248 * already a client then return EINVAL 21249 */ 21250 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21251 err = EINVAL; 21252 goto done; 21253 } 21254 21255 /* 21256 * If the ill_usesrc_ifindex field is already set to what it needs to 21257 * be then this is a duplicate operation. 21258 */ 21259 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21260 err = 0; 21261 goto done; 21262 } 21263 21264 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21265 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21266 usesrc_ill->ill_isv6)); 21267 21268 /* 21269 * The next step ensures that no new ires will be created referencing 21270 * the client ill, until the ILL_CHANGING flag is cleared. Then 21271 * we go through an ire walk deleting all ire caches that reference 21272 * the client ill. New ires referencing the client ill that are added 21273 * to the ire table before the ILL_CHANGING flag is set, will be 21274 * cleaned up by the ire walk below. Attempt to add new ires referencing 21275 * the client ill while the ILL_CHANGING flag is set will be failed 21276 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21277 * checks (under the ill_g_usesrc_lock) that the ire being added 21278 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21279 * belong to the same usesrc group. 21280 */ 21281 mutex_enter(&usesrc_cli_ill->ill_lock); 21282 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21283 mutex_exit(&usesrc_cli_ill->ill_lock); 21284 ill_flag_changed = B_TRUE; 21285 21286 if (ipif->ipif_isv6) 21287 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21288 ALL_ZONES); 21289 else 21290 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21291 ALL_ZONES); 21292 21293 /* 21294 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21295 * and the ill_usesrc_ifindex fields 21296 */ 21297 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21298 21299 if (reset_flg) { 21300 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21301 if (ret != 0) { 21302 err = EINVAL; 21303 } 21304 rw_exit(&ill_g_usesrc_lock); 21305 goto done; 21306 } 21307 21308 /* 21309 * Four possibilities to consider: 21310 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21311 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21312 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21313 * 4. Both are part of their respective usesrc groups 21314 */ 21315 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21316 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21317 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21318 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21319 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21320 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21321 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21322 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21323 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21324 /* Insert at head of list */ 21325 usesrc_cli_ill->ill_usesrc_grp_next = 21326 usesrc_ill->ill_usesrc_grp_next; 21327 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21328 } else { 21329 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21330 ifindex); 21331 if (ret != 0) 21332 err = EINVAL; 21333 } 21334 rw_exit(&ill_g_usesrc_lock); 21335 21336 done: 21337 if (ill_flag_changed) { 21338 mutex_enter(&usesrc_cli_ill->ill_lock); 21339 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21340 mutex_exit(&usesrc_cli_ill->ill_lock); 21341 } 21342 if (ipsq != NULL) 21343 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21344 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21345 ill_refrele(usesrc_ill); 21346 return (err); 21347 } 21348 21349 /* 21350 * comparison function used by avl. 21351 */ 21352 static int 21353 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21354 { 21355 21356 uint_t index; 21357 21358 ASSERT(phyip != NULL && index_ptr != NULL); 21359 21360 index = *((uint_t *)index_ptr); 21361 /* 21362 * let the phyint with the lowest index be on top. 21363 */ 21364 if (((phyint_t *)phyip)->phyint_ifindex < index) 21365 return (1); 21366 if (((phyint_t *)phyip)->phyint_ifindex > index) 21367 return (-1); 21368 return (0); 21369 } 21370 21371 /* 21372 * comparison function used by avl. 21373 */ 21374 static int 21375 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21376 { 21377 ill_t *ill; 21378 int res = 0; 21379 21380 ASSERT(phyip != NULL && name_ptr != NULL); 21381 21382 if (((phyint_t *)phyip)->phyint_illv4) 21383 ill = ((phyint_t *)phyip)->phyint_illv4; 21384 else 21385 ill = ((phyint_t *)phyip)->phyint_illv6; 21386 ASSERT(ill != NULL); 21387 21388 res = strcmp(ill->ill_name, (char *)name_ptr); 21389 if (res > 0) 21390 return (1); 21391 else if (res < 0) 21392 return (-1); 21393 return (0); 21394 } 21395 /* 21396 * This function is called from ill_delete when the ill is being 21397 * unplumbed. We remove the reference from the phyint and we also 21398 * free the phyint when there are no more references to it. 21399 */ 21400 static void 21401 ill_phyint_free(ill_t *ill) 21402 { 21403 phyint_t *phyi; 21404 phyint_t *next_phyint; 21405 ipsq_t *cur_ipsq; 21406 21407 ASSERT(ill->ill_phyint != NULL); 21408 21409 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21410 phyi = ill->ill_phyint; 21411 ill->ill_phyint = NULL; 21412 /* 21413 * ill_init allocates a phyint always to store the copy 21414 * of flags relevant to phyint. At that point in time, we could 21415 * not assign the name and hence phyint_illv4/v6 could not be 21416 * initialized. Later in ipif_set_values, we assign the name to 21417 * the ill, at which point in time we assign phyint_illv4/v6. 21418 * Thus we don't rely on phyint_illv6 to be initialized always. 21419 */ 21420 if (ill->ill_flags & ILLF_IPV6) { 21421 phyi->phyint_illv6 = NULL; 21422 } else { 21423 phyi->phyint_illv4 = NULL; 21424 } 21425 /* 21426 * ipif_down removes it from the group when the last ipif goes 21427 * down. 21428 */ 21429 ASSERT(ill->ill_group == NULL); 21430 21431 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21432 return; 21433 21434 /* 21435 * Make sure this phyint was put in the list. 21436 */ 21437 if (phyi->phyint_ifindex > 0) { 21438 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21439 phyi); 21440 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21441 phyi); 21442 } 21443 /* 21444 * remove phyint from the ipsq list. 21445 */ 21446 cur_ipsq = phyi->phyint_ipsq; 21447 if (phyi == cur_ipsq->ipsq_phyint_list) { 21448 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21449 } else { 21450 next_phyint = cur_ipsq->ipsq_phyint_list; 21451 while (next_phyint != NULL) { 21452 if (next_phyint->phyint_ipsq_next == phyi) { 21453 next_phyint->phyint_ipsq_next = 21454 phyi->phyint_ipsq_next; 21455 break; 21456 } 21457 next_phyint = next_phyint->phyint_ipsq_next; 21458 } 21459 ASSERT(next_phyint != NULL); 21460 } 21461 IPSQ_DEC_REF(cur_ipsq); 21462 21463 if (phyi->phyint_groupname_len != 0) { 21464 ASSERT(phyi->phyint_groupname != NULL); 21465 mi_free(phyi->phyint_groupname); 21466 } 21467 mi_free(phyi); 21468 } 21469 21470 /* 21471 * Attach the ill to the phyint structure which can be shared by both 21472 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21473 * function is called from ipif_set_values and ill_lookup_on_name (for 21474 * loopback) where we know the name of the ill. We lookup the ill and if 21475 * there is one present already with the name use that phyint. Otherwise 21476 * reuse the one allocated by ill_init. 21477 */ 21478 static void 21479 ill_phyint_reinit(ill_t *ill) 21480 { 21481 boolean_t isv6 = ill->ill_isv6; 21482 phyint_t *phyi_old; 21483 phyint_t *phyi; 21484 avl_index_t where = 0; 21485 ill_t *ill_other = NULL; 21486 ipsq_t *ipsq; 21487 21488 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21489 21490 phyi_old = ill->ill_phyint; 21491 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21492 phyi_old->phyint_illv6 == NULL)); 21493 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21494 phyi_old->phyint_illv4 == NULL)); 21495 ASSERT(phyi_old->phyint_ifindex == 0); 21496 21497 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21498 ill->ill_name, &where); 21499 21500 /* 21501 * 1. We grabbed the ill_g_lock before inserting this ill into 21502 * the global list of ills. So no other thread could have located 21503 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21504 * 2. Now locate the other protocol instance of this ill. 21505 * 3. Now grab both ill locks in the right order, and the phyint lock of 21506 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21507 * of neither ill can change. 21508 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21509 * other ill. 21510 * 5. Release all locks. 21511 */ 21512 21513 /* 21514 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21515 * we are initializing IPv4. 21516 */ 21517 if (phyi != NULL) { 21518 ill_other = (isv6) ? phyi->phyint_illv4 : 21519 phyi->phyint_illv6; 21520 ASSERT(ill_other->ill_phyint != NULL); 21521 ASSERT((isv6 && !ill_other->ill_isv6) || 21522 (!isv6 && ill_other->ill_isv6)); 21523 GRAB_ILL_LOCKS(ill, ill_other); 21524 /* 21525 * We are potentially throwing away phyint_flags which 21526 * could be different from the one that we obtain from 21527 * ill_other->ill_phyint. But it is okay as we are assuming 21528 * that the state maintained within IP is correct. 21529 */ 21530 mutex_enter(&phyi->phyint_lock); 21531 if (isv6) { 21532 ASSERT(phyi->phyint_illv6 == NULL); 21533 phyi->phyint_illv6 = ill; 21534 } else { 21535 ASSERT(phyi->phyint_illv4 == NULL); 21536 phyi->phyint_illv4 = ill; 21537 } 21538 /* 21539 * This is a new ill, currently undergoing SLIFNAME 21540 * So we could not have joined an IPMP group until now. 21541 */ 21542 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21543 phyi_old->phyint_groupname == NULL); 21544 21545 /* 21546 * This phyi_old is going away. Decref ipsq_refs and 21547 * assert it is zero. The ipsq itself will be freed in 21548 * ipsq_exit 21549 */ 21550 ipsq = phyi_old->phyint_ipsq; 21551 IPSQ_DEC_REF(ipsq); 21552 ASSERT(ipsq->ipsq_refs == 0); 21553 /* Get the singleton phyint out of the ipsq list */ 21554 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21555 ipsq->ipsq_phyint_list = NULL; 21556 phyi_old->phyint_illv4 = NULL; 21557 phyi_old->phyint_illv6 = NULL; 21558 mi_free(phyi_old); 21559 } else { 21560 mutex_enter(&ill->ill_lock); 21561 /* 21562 * We don't need to acquire any lock, since 21563 * the ill is not yet visible globally and we 21564 * have not yet released the ill_g_lock. 21565 */ 21566 phyi = phyi_old; 21567 mutex_enter(&phyi->phyint_lock); 21568 /* XXX We need a recovery strategy here. */ 21569 if (!phyint_assign_ifindex(phyi)) 21570 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21571 21572 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21573 (void *)phyi, where); 21574 21575 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21576 &phyi->phyint_ifindex, &where); 21577 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21578 (void *)phyi, where); 21579 } 21580 21581 /* 21582 * Reassigning ill_phyint automatically reassigns the ipsq also. 21583 * pending mp is not affected because that is per ill basis. 21584 */ 21585 ill->ill_phyint = phyi; 21586 21587 /* 21588 * Keep the index on ipif_orig_index to be used by FAILOVER. 21589 * We do this here as when the first ipif was allocated, 21590 * ipif_allocate does not know the right interface index. 21591 */ 21592 21593 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21594 /* 21595 * Now that the phyint's ifindex has been assigned, complete the 21596 * remaining 21597 */ 21598 if (ill->ill_isv6) { 21599 ill->ill_ip6_mib->ipv6IfIndex = 21600 ill->ill_phyint->phyint_ifindex; 21601 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21602 ill->ill_phyint->phyint_ifindex; 21603 } 21604 21605 RELEASE_ILL_LOCKS(ill, ill_other); 21606 mutex_exit(&phyi->phyint_lock); 21607 } 21608 21609 /* 21610 * Notify any downstream modules of the name of this interface. 21611 * An M_IOCTL is used even though we don't expect a successful reply. 21612 * Any reply message from the driver (presumably an M_IOCNAK) will 21613 * eventually get discarded somewhere upstream. The message format is 21614 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21615 * to IP. 21616 */ 21617 static void 21618 ip_ifname_notify(ill_t *ill, queue_t *q) 21619 { 21620 mblk_t *mp1, *mp2; 21621 struct iocblk *iocp; 21622 struct lifreq *lifr; 21623 21624 mp1 = mkiocb(SIOCSLIFNAME); 21625 if (mp1 == NULL) 21626 return; 21627 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21628 if (mp2 == NULL) { 21629 freeb(mp1); 21630 return; 21631 } 21632 21633 mp1->b_cont = mp2; 21634 iocp = (struct iocblk *)mp1->b_rptr; 21635 iocp->ioc_count = sizeof (struct lifreq); 21636 21637 lifr = (struct lifreq *)mp2->b_rptr; 21638 mp2->b_wptr += sizeof (struct lifreq); 21639 bzero(lifr, sizeof (struct lifreq)); 21640 21641 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21642 lifr->lifr_ppa = ill->ill_ppa; 21643 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21644 21645 putnext(q, mp1); 21646 } 21647 21648 static boolean_t ip_trash_timer_started = B_FALSE; 21649 21650 static int 21651 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21652 { 21653 int err; 21654 21655 /* Set the obsolete NDD per-interface forwarding name. */ 21656 err = ill_set_ndd_name(ill); 21657 if (err != 0) { 21658 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21659 err); 21660 } 21661 21662 /* Tell downstream modules where they are. */ 21663 ip_ifname_notify(ill, q); 21664 21665 /* 21666 * ill_dl_phys returns EINPROGRESS in the usual case. 21667 * Error cases are ENOMEM ... 21668 */ 21669 err = ill_dl_phys(ill, ipif, mp, q); 21670 21671 /* 21672 * If there is no IRE expiration timer running, get one started. 21673 * igmp and mld timers will be triggered by the first multicast 21674 */ 21675 if (!ip_trash_timer_started) { 21676 /* 21677 * acquire the lock and check again. 21678 */ 21679 mutex_enter(&ip_trash_timer_lock); 21680 if (!ip_trash_timer_started) { 21681 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21682 MSEC_TO_TICK(ip_timer_interval)); 21683 ip_trash_timer_started = B_TRUE; 21684 } 21685 mutex_exit(&ip_trash_timer_lock); 21686 } 21687 21688 if (ill->ill_isv6) { 21689 mutex_enter(&mld_slowtimeout_lock); 21690 if (mld_slowtimeout_id == 0) { 21691 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21692 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21693 } 21694 mutex_exit(&mld_slowtimeout_lock); 21695 } else { 21696 mutex_enter(&igmp_slowtimeout_lock); 21697 if (igmp_slowtimeout_id == 0) { 21698 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21699 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21700 } 21701 mutex_exit(&igmp_slowtimeout_lock); 21702 } 21703 21704 return (err); 21705 } 21706 21707 /* 21708 * Common routine for ppa and ifname setting. Should be called exclusive. 21709 * 21710 * Returns EINPROGRESS when mp has been consumed by queueing it on 21711 * ill_pending_mp and the ioctl will complete in ip_rput. 21712 * 21713 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21714 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21715 * For SLIFNAME, we pass these values back to the userland. 21716 */ 21717 static int 21718 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21719 { 21720 ill_t *ill; 21721 ipif_t *ipif; 21722 ipsq_t *ipsq; 21723 char *ppa_ptr; 21724 char *old_ptr; 21725 char old_char; 21726 int error; 21727 21728 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21729 ASSERT(q->q_next != NULL); 21730 ASSERT(interf_name != NULL); 21731 21732 ill = (ill_t *)q->q_ptr; 21733 21734 ASSERT(ill->ill_name[0] == '\0'); 21735 ASSERT(IAM_WRITER_ILL(ill)); 21736 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21737 ASSERT(ill->ill_ppa == UINT_MAX); 21738 21739 /* The ppa is sent down by ifconfig or is chosen */ 21740 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21741 return (EINVAL); 21742 } 21743 21744 /* 21745 * make sure ppa passed in is same as ppa in the name. 21746 * This check is not made when ppa == UINT_MAX in that case ppa 21747 * in the name could be anything. System will choose a ppa and 21748 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21749 */ 21750 if (*new_ppa_ptr != UINT_MAX) { 21751 /* stoi changes the pointer */ 21752 old_ptr = ppa_ptr; 21753 /* 21754 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21755 * (they don't have an externally visible ppa). We assign one 21756 * here so that we can manage the interface. Note that in 21757 * the past this value was always 0 for DLPI 1 drivers. 21758 */ 21759 if (*new_ppa_ptr == 0) 21760 *new_ppa_ptr = stoi(&old_ptr); 21761 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21762 return (EINVAL); 21763 } 21764 /* 21765 * terminate string before ppa 21766 * save char at that location. 21767 */ 21768 old_char = ppa_ptr[0]; 21769 ppa_ptr[0] = '\0'; 21770 21771 ill->ill_ppa = *new_ppa_ptr; 21772 /* 21773 * Finish as much work now as possible before calling ill_glist_insert 21774 * which makes the ill globally visible and also merges it with the 21775 * other protocol instance of this phyint. The remaining work is 21776 * done after entering the ipsq which may happen sometime later. 21777 * ill_set_ndd_name occurs after the ill has been made globally visible. 21778 */ 21779 ipif = ill->ill_ipif; 21780 21781 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21782 ipif_assign_seqid(ipif); 21783 21784 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21785 ill->ill_flags |= ILLF_IPV4; 21786 21787 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21788 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21789 21790 if (ill->ill_flags & ILLF_IPV6) { 21791 21792 ill->ill_isv6 = B_TRUE; 21793 if (ill->ill_rq != NULL) { 21794 ill->ill_rq->q_qinfo = &rinit_ipv6; 21795 ill->ill_wq->q_qinfo = &winit_ipv6; 21796 } 21797 21798 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21799 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21800 ipif->ipif_v6src_addr = ipv6_all_zeros; 21801 ipif->ipif_v6subnet = ipv6_all_zeros; 21802 ipif->ipif_v6net_mask = ipv6_all_zeros; 21803 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21804 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21805 /* 21806 * point-to-point or Non-mulicast capable 21807 * interfaces won't do NUD unless explicitly 21808 * configured to do so. 21809 */ 21810 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21811 !(ill->ill_flags & ILLF_MULTICAST)) { 21812 ill->ill_flags |= ILLF_NONUD; 21813 } 21814 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21815 if (ill->ill_flags & ILLF_NOARP) { 21816 /* 21817 * Note: xresolv interfaces will eventually need 21818 * NOARP set here as well, but that will require 21819 * those external resolvers to have some 21820 * knowledge of that flag and act appropriately. 21821 * Not to be changed at present. 21822 */ 21823 ill->ill_flags &= ~ILLF_NOARP; 21824 } 21825 /* 21826 * Set the ILLF_ROUTER flag according to the global 21827 * IPv6 forwarding policy. 21828 */ 21829 if (ipv6_forward != 0) 21830 ill->ill_flags |= ILLF_ROUTER; 21831 } else if (ill->ill_flags & ILLF_IPV4) { 21832 ill->ill_isv6 = B_FALSE; 21833 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21834 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21835 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21836 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21837 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21838 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21839 /* 21840 * Set the ILLF_ROUTER flag according to the global 21841 * IPv4 forwarding policy. 21842 */ 21843 if (ip_g_forward != 0) 21844 ill->ill_flags |= ILLF_ROUTER; 21845 } 21846 21847 ASSERT(ill->ill_phyint != NULL); 21848 21849 /* 21850 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21851 * be completed in ill_glist_insert -> ill_phyint_reinit 21852 */ 21853 if (ill->ill_isv6) { 21854 /* allocate v6 mib */ 21855 if (!ill_allocate_mibs(ill)) 21856 return (ENOMEM); 21857 } 21858 21859 /* 21860 * Pick a default sap until we get the DL_INFO_ACK back from 21861 * the driver. 21862 */ 21863 if (ill->ill_sap == 0) { 21864 if (ill->ill_isv6) 21865 ill->ill_sap = IP6_DL_SAP; 21866 else 21867 ill->ill_sap = IP_DL_SAP; 21868 } 21869 21870 ill->ill_ifname_pending = 1; 21871 ill->ill_ifname_pending_err = 0; 21872 21873 ill_refhold(ill); 21874 rw_enter(&ill_g_lock, RW_WRITER); 21875 if ((error = ill_glist_insert(ill, interf_name, 21876 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21877 ill->ill_ppa = UINT_MAX; 21878 ill->ill_name[0] = '\0'; 21879 /* 21880 * undo null termination done above. 21881 */ 21882 ppa_ptr[0] = old_char; 21883 rw_exit(&ill_g_lock); 21884 ill_refrele(ill); 21885 return (error); 21886 } 21887 21888 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21889 21890 /* 21891 * When we return the buffer pointed to by interf_name should contain 21892 * the same name as in ill_name. 21893 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21894 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21895 * so copy full name and update the ppa ptr. 21896 * When ppa passed in != UINT_MAX all values are correct just undo 21897 * null termination, this saves a bcopy. 21898 */ 21899 if (*new_ppa_ptr == UINT_MAX) { 21900 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21901 *new_ppa_ptr = ill->ill_ppa; 21902 } else { 21903 /* 21904 * undo null termination done above. 21905 */ 21906 ppa_ptr[0] = old_char; 21907 } 21908 21909 /* Let SCTP know about this ILL */ 21910 sctp_update_ill(ill, SCTP_ILL_INSERT); 21911 21912 /* and also about the first ipif */ 21913 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21914 21915 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21916 B_TRUE); 21917 21918 rw_exit(&ill_g_lock); 21919 ill_refrele(ill); 21920 if (ipsq == NULL) 21921 return (EINPROGRESS); 21922 21923 /* 21924 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21925 * due to the phyint merge in ill_phyint_reinit. 21926 */ 21927 ASSERT(ipsq->ipsq_current_ipif == NULL || 21928 ipsq->ipsq_current_ipif == ipif); 21929 ipsq->ipsq_current_ipif = ipif; 21930 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21931 error = ipif_set_values_tail(ill, ipif, mp, q); 21932 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21933 if (error != 0 && error != EINPROGRESS) { 21934 /* 21935 * restore previous values 21936 */ 21937 ill->ill_isv6 = B_FALSE; 21938 } 21939 return (error); 21940 } 21941 21942 21943 extern void (*ip_cleanup_func)(void); 21944 21945 void 21946 ipif_init(void) 21947 { 21948 hrtime_t hrt; 21949 int i; 21950 21951 /* 21952 * Can't call drv_getparm here as it is too early in the boot. 21953 * As we use ipif_src_random just for picking a different 21954 * source address everytime, this need not be really random. 21955 */ 21956 hrt = gethrtime(); 21957 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21958 21959 for (i = 0; i < MAX_G_HEADS; i++) { 21960 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21961 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21962 } 21963 21964 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21965 ill_phyint_compare_index, 21966 sizeof (phyint_t), 21967 offsetof(struct phyint, phyint_avl_by_index)); 21968 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21969 ill_phyint_compare_name, 21970 sizeof (phyint_t), 21971 offsetof(struct phyint, phyint_avl_by_name)); 21972 21973 ip_cleanup_func = ip_thread_exit; 21974 } 21975 21976 /* 21977 * This is called by ip_rt_add when src_addr value is other than zero. 21978 * src_addr signifies the source address of the incoming packet. For 21979 * reverse tunnel route we need to create a source addr based routing 21980 * table. This routine creates ip_mrtun_table if it's empty and then 21981 * it adds the route entry hashed by source address. It verifies that 21982 * the outgoing interface is always a non-resolver interface (tunnel). 21983 */ 21984 int 21985 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21986 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21987 { 21988 ire_t *ire; 21989 ire_t *save_ire; 21990 ipif_t *ipif; 21991 ill_t *in_ill = NULL; 21992 ill_t *out_ill; 21993 queue_t *stq; 21994 mblk_t *dlureq_mp; 21995 int error; 21996 21997 if (ire_arg != NULL) 21998 *ire_arg = NULL; 21999 ASSERT(in_src_addr != INADDR_ANY); 22000 22001 ipif = ipif_arg; 22002 if (ipif != NULL) { 22003 out_ill = ipif->ipif_ill; 22004 } else { 22005 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 22006 return (EINVAL); 22007 } 22008 22009 if (src_ipif == NULL) { 22010 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 22011 return (EINVAL); 22012 } 22013 in_ill = src_ipif->ipif_ill; 22014 22015 /* 22016 * Check for duplicates. We don't need to 22017 * match out_ill, because the uniqueness of 22018 * a route is only dependent on src_addr and 22019 * in_ill. 22020 */ 22021 ire = ire_mrtun_lookup(in_src_addr, in_ill); 22022 if (ire != NULL) { 22023 ire_refrele(ire); 22024 return (EEXIST); 22025 } 22026 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 22027 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 22028 ipif->ipif_net_type)); 22029 return (EINVAL); 22030 } 22031 22032 stq = ipif->ipif_wq; 22033 ASSERT(stq != NULL); 22034 22035 /* 22036 * The outgoing interface must be non-resolver 22037 * interface. 22038 */ 22039 dlureq_mp = ill_dlur_gen(NULL, 22040 out_ill->ill_phys_addr_length, out_ill->ill_sap, 22041 out_ill->ill_sap_length); 22042 22043 if (dlureq_mp == NULL) { 22044 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 22045 return (ENOMEM); 22046 } 22047 22048 /* Create the IRE. */ 22049 22050 ire = ire_create( 22051 NULL, /* Zero dst addr */ 22052 NULL, /* Zero mask */ 22053 NULL, /* Zero gateway addr */ 22054 NULL, /* Zero ipif_src addr */ 22055 (uint8_t *)&in_src_addr, /* in_src-addr */ 22056 &ipif->ipif_mtu, 22057 NULL, 22058 NULL, /* rfq */ 22059 stq, 22060 IRE_MIPRTUN, 22061 dlureq_mp, 22062 ipif, 22063 in_ill, 22064 0, 22065 0, 22066 0, 22067 flags, 22068 &ire_uinfo_null, 22069 NULL, 22070 NULL); 22071 22072 if (ire == NULL) 22073 return (ENOMEM); 22074 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 22075 ire->ire_type)); 22076 save_ire = ire; 22077 ASSERT(save_ire != NULL); 22078 error = ire_add_mrtun(&ire, q, mp, func); 22079 /* 22080 * If ire_add_mrtun() failed, the ire passed in was freed 22081 * so there is no need to do so here. 22082 */ 22083 if (error != 0) { 22084 return (error); 22085 } 22086 22087 /* Duplicate check */ 22088 if (ire != save_ire) { 22089 /* route already exists by now */ 22090 ire_refrele(ire); 22091 return (EEXIST); 22092 } 22093 22094 if (ire_arg != NULL) { 22095 /* 22096 * Store the ire that was just added. the caller 22097 * ip_rts_request responsible for doing ire_refrele() 22098 * on it. 22099 */ 22100 *ire_arg = ire; 22101 } else { 22102 ire_refrele(ire); /* held in ire_add_mrtun */ 22103 } 22104 22105 return (0); 22106 } 22107 22108 /* 22109 * It is called by ip_rt_delete() only when mipagent requests to delete 22110 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 22111 */ 22112 22113 int 22114 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 22115 { 22116 ire_t *ire = NULL; 22117 22118 if (in_src_addr == INADDR_ANY) 22119 return (EINVAL); 22120 if (src_ipif == NULL) 22121 return (EINVAL); 22122 22123 /* search if this route exists in the ip_mrtun_table */ 22124 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 22125 if (ire == NULL) { 22126 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 22127 return (ESRCH); 22128 } 22129 ire_delete(ire); 22130 ire_refrele(ire); 22131 return (0); 22132 } 22133 22134 /* 22135 * Lookup the ipif corresponding to the onlink destination address. For 22136 * point-to-point interfaces, it matches with remote endpoint destination 22137 * address. For point-to-multipoint interfaces it only tries to match the 22138 * destination with the interface's subnet address. The longest, most specific 22139 * match is found to take care of such rare network configurations like - 22140 * le0: 129.146.1.1/16 22141 * le1: 129.146.2.2/24 22142 * It is used only by SO_DONTROUTE at the moment. 22143 */ 22144 ipif_t * 22145 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 22146 { 22147 ipif_t *ipif, *best_ipif; 22148 ill_t *ill; 22149 ill_walk_context_t ctx; 22150 22151 ASSERT(zoneid != ALL_ZONES); 22152 best_ipif = NULL; 22153 22154 rw_enter(&ill_g_lock, RW_READER); 22155 ill = ILL_START_WALK_V4(&ctx); 22156 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22157 mutex_enter(&ill->ill_lock); 22158 for (ipif = ill->ill_ipif; ipif != NULL; 22159 ipif = ipif->ipif_next) { 22160 if (!IPIF_CAN_LOOKUP(ipif)) 22161 continue; 22162 if (ipif->ipif_zoneid != zoneid && 22163 ipif->ipif_zoneid != ALL_ZONES) 22164 continue; 22165 /* 22166 * Point-to-point case. Look for exact match with 22167 * destination address. 22168 */ 22169 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 22170 if (ipif->ipif_pp_dst_addr == addr) { 22171 ipif_refhold_locked(ipif); 22172 mutex_exit(&ill->ill_lock); 22173 rw_exit(&ill_g_lock); 22174 if (best_ipif != NULL) 22175 ipif_refrele(best_ipif); 22176 return (ipif); 22177 } 22178 } else if (ipif->ipif_subnet == (addr & 22179 ipif->ipif_net_mask)) { 22180 /* 22181 * Point-to-multipoint case. Looping through to 22182 * find the most specific match. If there are 22183 * multiple best match ipif's then prefer ipif's 22184 * that are UP. If there is only one best match 22185 * ipif and it is DOWN we must still return it. 22186 */ 22187 if ((best_ipif == NULL) || 22188 (ipif->ipif_net_mask > 22189 best_ipif->ipif_net_mask) || 22190 ((ipif->ipif_net_mask == 22191 best_ipif->ipif_net_mask) && 22192 ((ipif->ipif_flags & IPIF_UP) && 22193 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22194 ipif_refhold_locked(ipif); 22195 mutex_exit(&ill->ill_lock); 22196 rw_exit(&ill_g_lock); 22197 if (best_ipif != NULL) 22198 ipif_refrele(best_ipif); 22199 best_ipif = ipif; 22200 rw_enter(&ill_g_lock, RW_READER); 22201 mutex_enter(&ill->ill_lock); 22202 } 22203 } 22204 } 22205 mutex_exit(&ill->ill_lock); 22206 } 22207 rw_exit(&ill_g_lock); 22208 return (best_ipif); 22209 } 22210 22211 22212 /* 22213 * Save enough information so that we can recreate the IRE if 22214 * the interface goes down and then up. 22215 */ 22216 static void 22217 ipif_save_ire(ipif_t *ipif, ire_t *ire) 22218 { 22219 mblk_t *save_mp; 22220 22221 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 22222 if (save_mp != NULL) { 22223 ifrt_t *ifrt; 22224 22225 save_mp->b_wptr += sizeof (ifrt_t); 22226 ifrt = (ifrt_t *)save_mp->b_rptr; 22227 bzero(ifrt, sizeof (ifrt_t)); 22228 ifrt->ifrt_type = ire->ire_type; 22229 ifrt->ifrt_addr = ire->ire_addr; 22230 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 22231 ifrt->ifrt_src_addr = ire->ire_src_addr; 22232 ifrt->ifrt_mask = ire->ire_mask; 22233 ifrt->ifrt_flags = ire->ire_flags; 22234 ifrt->ifrt_max_frag = ire->ire_max_frag; 22235 mutex_enter(&ipif->ipif_saved_ire_lock); 22236 save_mp->b_cont = ipif->ipif_saved_ire_mp; 22237 ipif->ipif_saved_ire_mp = save_mp; 22238 ipif->ipif_saved_ire_cnt++; 22239 mutex_exit(&ipif->ipif_saved_ire_lock); 22240 } 22241 } 22242 22243 22244 static void 22245 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 22246 { 22247 mblk_t **mpp; 22248 mblk_t *mp; 22249 ifrt_t *ifrt; 22250 22251 /* Remove from ipif_saved_ire_mp list if it is there */ 22252 mutex_enter(&ipif->ipif_saved_ire_lock); 22253 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 22254 mpp = &(*mpp)->b_cont) { 22255 /* 22256 * On a given ipif, the triple of address, gateway and 22257 * mask is unique for each saved IRE (in the case of 22258 * ordinary interface routes, the gateway address is 22259 * all-zeroes). 22260 */ 22261 mp = *mpp; 22262 ifrt = (ifrt_t *)mp->b_rptr; 22263 if (ifrt->ifrt_addr == ire->ire_addr && 22264 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22265 ifrt->ifrt_mask == ire->ire_mask) { 22266 *mpp = mp->b_cont; 22267 ipif->ipif_saved_ire_cnt--; 22268 freeb(mp); 22269 break; 22270 } 22271 } 22272 mutex_exit(&ipif->ipif_saved_ire_lock); 22273 } 22274 22275 22276 /* 22277 * IP multirouting broadcast routes handling 22278 * Append CGTP broadcast IREs to regular ones created 22279 * at ifconfig time. 22280 */ 22281 static void 22282 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22283 { 22284 ire_t *ire_prim; 22285 22286 ASSERT(ire != NULL); 22287 ASSERT(ire_dst != NULL); 22288 22289 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22290 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22291 if (ire_prim != NULL) { 22292 /* 22293 * We are in the special case of broadcasts for 22294 * CGTP. We add an IRE_BROADCAST that holds 22295 * the RTF_MULTIRT flag, the destination 22296 * address of ire_dst and the low level 22297 * info of ire_prim. In other words, CGTP 22298 * broadcast is added to the redundant ipif. 22299 */ 22300 ipif_t *ipif_prim; 22301 ire_t *bcast_ire; 22302 22303 ipif_prim = ire_prim->ire_ipif; 22304 22305 ip2dbg(("ip_cgtp_filter_bcast_add: " 22306 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22307 (void *)ire_dst, (void *)ire_prim, 22308 (void *)ipif_prim)); 22309 22310 bcast_ire = ire_create( 22311 (uchar_t *)&ire->ire_addr, 22312 (uchar_t *)&ip_g_all_ones, 22313 (uchar_t *)&ire_dst->ire_src_addr, 22314 (uchar_t *)&ire->ire_gateway_addr, 22315 NULL, 22316 &ipif_prim->ipif_mtu, 22317 NULL, 22318 ipif_prim->ipif_rq, 22319 ipif_prim->ipif_wq, 22320 IRE_BROADCAST, 22321 ipif_prim->ipif_bcast_mp, 22322 ipif_prim, 22323 NULL, 22324 0, 22325 0, 22326 0, 22327 ire->ire_flags, 22328 &ire_uinfo_null, 22329 NULL, 22330 NULL); 22331 22332 if (bcast_ire != NULL) { 22333 22334 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 22335 ip2dbg(("ip_cgtp_filter_bcast_add: " 22336 "added bcast_ire %p\n", 22337 (void *)bcast_ire)); 22338 22339 ipif_save_ire(bcast_ire->ire_ipif, 22340 bcast_ire); 22341 ire_refrele(bcast_ire); 22342 } 22343 } 22344 ire_refrele(ire_prim); 22345 } 22346 } 22347 22348 22349 /* 22350 * IP multirouting broadcast routes handling 22351 * Remove the broadcast ire 22352 */ 22353 static void 22354 ip_cgtp_bcast_delete(ire_t *ire) 22355 { 22356 ire_t *ire_dst; 22357 22358 ASSERT(ire != NULL); 22359 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22360 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22361 if (ire_dst != NULL) { 22362 ire_t *ire_prim; 22363 22364 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22365 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22366 if (ire_prim != NULL) { 22367 ipif_t *ipif_prim; 22368 ire_t *bcast_ire; 22369 22370 ipif_prim = ire_prim->ire_ipif; 22371 22372 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22373 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22374 (void *)ire_dst, (void *)ire_prim, 22375 (void *)ipif_prim)); 22376 22377 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22378 ire->ire_gateway_addr, 22379 IRE_BROADCAST, 22380 ipif_prim, ALL_ZONES, 22381 NULL, 22382 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22383 MATCH_IRE_MASK); 22384 22385 if (bcast_ire != NULL) { 22386 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22387 "looked up bcast_ire %p\n", 22388 (void *)bcast_ire)); 22389 ipif_remove_ire(bcast_ire->ire_ipif, 22390 bcast_ire); 22391 ire_delete(bcast_ire); 22392 } 22393 ire_refrele(ire_prim); 22394 } 22395 ire_refrele(ire_dst); 22396 } 22397 } 22398 22399 /* 22400 * IPsec hardware acceleration capabilities related functions. 22401 */ 22402 22403 /* 22404 * Free a per-ill IPsec capabilities structure. 22405 */ 22406 static void 22407 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22408 { 22409 if (capab->auth_hw_algs != NULL) 22410 kmem_free(capab->auth_hw_algs, capab->algs_size); 22411 if (capab->encr_hw_algs != NULL) 22412 kmem_free(capab->encr_hw_algs, capab->algs_size); 22413 if (capab->encr_algparm != NULL) 22414 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22415 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22416 } 22417 22418 /* 22419 * Allocate a new per-ill IPsec capabilities structure. This structure 22420 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22421 * an array which specifies, for each algorithm, whether this algorithm 22422 * is supported by the ill or not. 22423 */ 22424 static ill_ipsec_capab_t * 22425 ill_ipsec_capab_alloc(void) 22426 { 22427 ill_ipsec_capab_t *capab; 22428 uint_t nelems; 22429 22430 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22431 if (capab == NULL) 22432 return (NULL); 22433 22434 /* we need one bit per algorithm */ 22435 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22436 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22437 22438 /* allocate memory to store algorithm flags */ 22439 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22440 if (capab->encr_hw_algs == NULL) 22441 goto nomem; 22442 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22443 if (capab->auth_hw_algs == NULL) 22444 goto nomem; 22445 /* 22446 * Leave encr_algparm NULL for now since we won't need it half 22447 * the time 22448 */ 22449 return (capab); 22450 22451 nomem: 22452 ill_ipsec_capab_free(capab); 22453 return (NULL); 22454 } 22455 22456 /* 22457 * Resize capability array. Since we're exclusive, this is OK. 22458 */ 22459 static boolean_t 22460 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22461 { 22462 ipsec_capab_algparm_t *nalp, *oalp; 22463 uint32_t olen, nlen; 22464 22465 oalp = capab->encr_algparm; 22466 olen = capab->encr_algparm_size; 22467 22468 if (oalp != NULL) { 22469 if (algid < capab->encr_algparm_end) 22470 return (B_TRUE); 22471 } 22472 22473 nlen = (algid + 1) * sizeof (*nalp); 22474 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22475 if (nalp == NULL) 22476 return (B_FALSE); 22477 22478 if (oalp != NULL) { 22479 bcopy(oalp, nalp, olen); 22480 kmem_free(oalp, olen); 22481 } 22482 capab->encr_algparm = nalp; 22483 capab->encr_algparm_size = nlen; 22484 capab->encr_algparm_end = algid + 1; 22485 22486 return (B_TRUE); 22487 } 22488 22489 /* 22490 * Compare the capabilities of the specified ill with the protocol 22491 * and algorithms specified by the SA passed as argument. 22492 * If they match, returns B_TRUE, B_FALSE if they do not match. 22493 * 22494 * The ill can be passed as a pointer to it, or by specifying its index 22495 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22496 * 22497 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22498 * packet is eligible for hardware acceleration, and by 22499 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22500 * to a particular ill. 22501 */ 22502 boolean_t 22503 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22504 ipsa_t *sa) 22505 { 22506 boolean_t sa_isv6; 22507 uint_t algid; 22508 struct ill_ipsec_capab_s *cpp; 22509 boolean_t need_refrele = B_FALSE; 22510 22511 if (ill == NULL) { 22512 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22513 NULL, NULL, NULL); 22514 if (ill == NULL) { 22515 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22516 return (B_FALSE); 22517 } 22518 need_refrele = B_TRUE; 22519 } 22520 22521 /* 22522 * Use the address length specified by the SA to determine 22523 * if it corresponds to a IPv6 address, and fail the matching 22524 * if the isv6 flag passed as argument does not match. 22525 * Note: this check is used for SADB capability checking before 22526 * sending SA information to an ill. 22527 */ 22528 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22529 if (sa_isv6 != ill_isv6) 22530 /* protocol mismatch */ 22531 goto done; 22532 22533 /* 22534 * Check if the ill supports the protocol, algorithm(s) and 22535 * key size(s) specified by the SA, and get the pointers to 22536 * the algorithms supported by the ill. 22537 */ 22538 switch (sa->ipsa_type) { 22539 22540 case SADB_SATYPE_ESP: 22541 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22542 /* ill does not support ESP acceleration */ 22543 goto done; 22544 cpp = ill->ill_ipsec_capab_esp; 22545 algid = sa->ipsa_auth_alg; 22546 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22547 goto done; 22548 algid = sa->ipsa_encr_alg; 22549 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22550 goto done; 22551 if (algid < cpp->encr_algparm_end) { 22552 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22553 if (sa->ipsa_encrkeybits < alp->minkeylen) 22554 goto done; 22555 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22556 goto done; 22557 } 22558 break; 22559 22560 case SADB_SATYPE_AH: 22561 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22562 /* ill does not support AH acceleration */ 22563 goto done; 22564 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22565 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22566 goto done; 22567 break; 22568 } 22569 22570 if (need_refrele) 22571 ill_refrele(ill); 22572 return (B_TRUE); 22573 done: 22574 if (need_refrele) 22575 ill_refrele(ill); 22576 return (B_FALSE); 22577 } 22578 22579 22580 /* 22581 * Add a new ill to the list of IPsec capable ills. 22582 * Called from ill_capability_ipsec_ack() when an ACK was received 22583 * indicating that IPsec hardware processing was enabled for an ill. 22584 * 22585 * ill must point to the ill for which acceleration was enabled. 22586 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22587 */ 22588 static void 22589 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22590 { 22591 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22592 uint_t sa_type; 22593 uint_t ipproto; 22594 22595 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22596 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22597 22598 switch (dl_cap) { 22599 case DL_CAPAB_IPSEC_AH: 22600 sa_type = SADB_SATYPE_AH; 22601 ills = &ipsec_capab_ills_ah; 22602 ipproto = IPPROTO_AH; 22603 break; 22604 case DL_CAPAB_IPSEC_ESP: 22605 sa_type = SADB_SATYPE_ESP; 22606 ills = &ipsec_capab_ills_esp; 22607 ipproto = IPPROTO_ESP; 22608 break; 22609 } 22610 22611 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22612 22613 /* 22614 * Add ill index to list of hardware accelerators. If 22615 * already in list, do nothing. 22616 */ 22617 for (cur_ill = *ills; cur_ill != NULL && 22618 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22619 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22620 ; 22621 22622 if (cur_ill == NULL) { 22623 /* if this is a new entry for this ill */ 22624 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22625 if (new_ill == NULL) { 22626 rw_exit(&ipsec_capab_ills_lock); 22627 return; 22628 } 22629 22630 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22631 new_ill->ill_isv6 = ill->ill_isv6; 22632 new_ill->next = *ills; 22633 *ills = new_ill; 22634 } else if (!sadb_resync) { 22635 /* not resync'ing SADB and an entry exists for this ill */ 22636 rw_exit(&ipsec_capab_ills_lock); 22637 return; 22638 } 22639 22640 rw_exit(&ipsec_capab_ills_lock); 22641 22642 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22643 /* 22644 * IPsec module for protocol loaded, initiate dump 22645 * of the SADB to this ill. 22646 */ 22647 sadb_ill_download(ill, sa_type); 22648 } 22649 22650 /* 22651 * Remove an ill from the list of IPsec capable ills. 22652 */ 22653 static void 22654 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22655 { 22656 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22657 22658 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22659 dl_cap == DL_CAPAB_IPSEC_ESP); 22660 22661 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22662 &ipsec_capab_ills_esp; 22663 22664 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22665 22666 prev_ill = NULL; 22667 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22668 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22669 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22670 ; 22671 if (cur_ill == NULL) { 22672 /* entry not found */ 22673 rw_exit(&ipsec_capab_ills_lock); 22674 return; 22675 } 22676 if (prev_ill == NULL) { 22677 /* entry at front of list */ 22678 *ills = NULL; 22679 } else { 22680 prev_ill->next = cur_ill->next; 22681 } 22682 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22683 rw_exit(&ipsec_capab_ills_lock); 22684 } 22685 22686 22687 /* 22688 * Handling of DL_CONTROL_REQ messages that must be sent down to 22689 * an ill while having exclusive access. 22690 */ 22691 /* ARGSUSED */ 22692 static void 22693 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22694 { 22695 ill_t *ill = (ill_t *)q->q_ptr; 22696 22697 ill_dlpi_send(ill, mp); 22698 } 22699 22700 22701 /* 22702 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22703 * supporting the specified IPsec protocol acceleration. 22704 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22705 * We free the mblk and, if sa is non-null, release the held referece. 22706 */ 22707 void 22708 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22709 { 22710 ipsec_capab_ill_t *ici, *cur_ici; 22711 ill_t *ill; 22712 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22713 22714 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22715 ipsec_capab_ills_esp; 22716 22717 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22718 22719 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22720 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22721 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22722 22723 /* 22724 * Handle the case where the ill goes away while the SADB is 22725 * attempting to send messages. If it's going away, it's 22726 * nuking its shadow SADB, so we don't care.. 22727 */ 22728 22729 if (ill == NULL) 22730 continue; 22731 22732 if (sa != NULL) { 22733 /* 22734 * Make sure capabilities match before 22735 * sending SA to ill. 22736 */ 22737 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22738 cur_ici->ill_isv6, sa)) { 22739 ill_refrele(ill); 22740 continue; 22741 } 22742 22743 mutex_enter(&sa->ipsa_lock); 22744 sa->ipsa_flags |= IPSA_F_HW; 22745 mutex_exit(&sa->ipsa_lock); 22746 } 22747 22748 /* 22749 * Copy template message, and add it to the front 22750 * of the mblk ship list. We want to avoid holding 22751 * the ipsec_capab_ills_lock while sending the 22752 * message to the ills. 22753 * 22754 * The b_next and b_prev are temporarily used 22755 * to build a list of mblks to be sent down, and to 22756 * save the ill to which they must be sent. 22757 */ 22758 nmp = copymsg(mp); 22759 if (nmp == NULL) { 22760 ill_refrele(ill); 22761 continue; 22762 } 22763 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22764 nmp->b_next = mp_ship_list; 22765 mp_ship_list = nmp; 22766 nmp->b_prev = (mblk_t *)ill; 22767 } 22768 22769 rw_exit(&ipsec_capab_ills_lock); 22770 22771 nmp = mp_ship_list; 22772 while (nmp != NULL) { 22773 /* restore the mblk to a sane state */ 22774 next_mp = nmp->b_next; 22775 nmp->b_next = NULL; 22776 ill = (ill_t *)nmp->b_prev; 22777 nmp->b_prev = NULL; 22778 22779 /* 22780 * Ship the mblk to the ill, must be exclusive. Keep the 22781 * reference to the ill as qwriter_ip() does a ill_referele(). 22782 */ 22783 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22784 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22785 22786 nmp = next_mp; 22787 } 22788 22789 if (sa != NULL) 22790 IPSA_REFRELE(sa); 22791 freemsg(mp); 22792 } 22793 22794 22795 /* 22796 * Derive an interface id from the link layer address. 22797 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22798 */ 22799 static boolean_t 22800 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22801 { 22802 char *addr; 22803 22804 if (phys_length != ETHERADDRL) 22805 return (B_FALSE); 22806 22807 /* Form EUI-64 like address */ 22808 addr = (char *)&v6addr->s6_addr32[2]; 22809 bcopy((char *)phys_addr, addr, 3); 22810 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22811 addr[3] = (char)0xff; 22812 addr[4] = (char)0xfe; 22813 bcopy((char *)phys_addr + 3, addr + 5, 3); 22814 return (B_TRUE); 22815 } 22816 22817 /* ARGSUSED */ 22818 static boolean_t 22819 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22820 { 22821 return (B_FALSE); 22822 } 22823 22824 /* ARGSUSED */ 22825 static boolean_t 22826 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22827 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22828 { 22829 /* 22830 * Multicast address mappings used over Ethernet/802.X. 22831 * This address is used as a base for mappings. 22832 */ 22833 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22834 0x00, 0x00, 0x00}; 22835 22836 /* 22837 * Extract low order 32 bits from IPv6 multicast address. 22838 * Or that into the link layer address, starting from the 22839 * second byte. 22840 */ 22841 *hw_start = 2; 22842 v6_extract_mask->s6_addr32[0] = 0; 22843 v6_extract_mask->s6_addr32[1] = 0; 22844 v6_extract_mask->s6_addr32[2] = 0; 22845 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22846 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22847 return (B_TRUE); 22848 } 22849 22850 /* 22851 * Indicate by return value whether multicast is supported. If not, 22852 * this code should not touch/change any parameters. 22853 */ 22854 /* ARGSUSED */ 22855 static boolean_t 22856 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22857 uint32_t *hw_start, ipaddr_t *extract_mask) 22858 { 22859 /* 22860 * Multicast address mappings used over Ethernet/802.X. 22861 * This address is used as a base for mappings. 22862 */ 22863 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22864 0x00, 0x00, 0x00 }; 22865 22866 if (phys_length != ETHERADDRL) 22867 return (B_FALSE); 22868 22869 *extract_mask = htonl(0x007fffff); 22870 *hw_start = 2; 22871 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22872 return (B_TRUE); 22873 } 22874 22875 /* 22876 * Derive IPoIB interface id from the link layer address. 22877 */ 22878 static boolean_t 22879 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22880 { 22881 char *addr; 22882 22883 if (phys_length != 20) 22884 return (B_FALSE); 22885 addr = (char *)&v6addr->s6_addr32[2]; 22886 bcopy(phys_addr + 12, addr, 8); 22887 /* 22888 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22889 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22890 * rules. In these cases, the IBA considers these GUIDs to be in 22891 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22892 * required; vendors are required not to assign global EUI-64's 22893 * that differ only in u/l bit values, thus guaranteeing uniqueness 22894 * of the interface identifier. Whether the GUID is in modified 22895 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22896 * bit set to 1. 22897 */ 22898 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22899 return (B_TRUE); 22900 } 22901 22902 /* 22903 * Note on mapping from multicast IP addresses to IPoIB multicast link 22904 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22905 * The format of an IPoIB multicast address is: 22906 * 22907 * 4 byte QPN Scope Sign. Pkey 22908 * +--------------------------------------------+ 22909 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22910 * +--------------------------------------------+ 22911 * 22912 * The Scope and Pkey components are properties of the IBA port and 22913 * network interface. They can be ascertained from the broadcast address. 22914 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22915 */ 22916 22917 static boolean_t 22918 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22919 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22920 { 22921 /* 22922 * Base IPoIB IPv6 multicast address used for mappings. 22923 * Does not contain the IBA scope/Pkey values. 22924 */ 22925 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22926 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22927 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22928 22929 /* 22930 * Extract low order 80 bits from IPv6 multicast address. 22931 * Or that into the link layer address, starting from the 22932 * sixth byte. 22933 */ 22934 *hw_start = 6; 22935 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22936 22937 /* 22938 * Now fill in the IBA scope/Pkey values from the broadcast address. 22939 */ 22940 *(maddr + 5) = *(bphys_addr + 5); 22941 *(maddr + 8) = *(bphys_addr + 8); 22942 *(maddr + 9) = *(bphys_addr + 9); 22943 22944 v6_extract_mask->s6_addr32[0] = 0; 22945 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22946 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22947 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22948 return (B_TRUE); 22949 } 22950 22951 static boolean_t 22952 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22953 uint32_t *hw_start, ipaddr_t *extract_mask) 22954 { 22955 /* 22956 * Base IPoIB IPv4 multicast address used for mappings. 22957 * Does not contain the IBA scope/Pkey values. 22958 */ 22959 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22960 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22961 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22962 22963 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22964 return (B_FALSE); 22965 22966 /* 22967 * Extract low order 28 bits from IPv4 multicast address. 22968 * Or that into the link layer address, starting from the 22969 * sixteenth byte. 22970 */ 22971 *extract_mask = htonl(0x0fffffff); 22972 *hw_start = 16; 22973 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22974 22975 /* 22976 * Now fill in the IBA scope/Pkey values from the broadcast address. 22977 */ 22978 *(maddr + 5) = *(bphys_addr + 5); 22979 *(maddr + 8) = *(bphys_addr + 8); 22980 *(maddr + 9) = *(bphys_addr + 9); 22981 return (B_TRUE); 22982 } 22983 22984 /* 22985 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22986 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22987 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22988 * the link-local address is preferred. 22989 */ 22990 boolean_t 22991 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22992 { 22993 ipif_t *ipif; 22994 ipif_t *maybe_ipif = NULL; 22995 22996 mutex_enter(&ill->ill_lock); 22997 if (ill->ill_state_flags & ILL_CONDEMNED) { 22998 mutex_exit(&ill->ill_lock); 22999 if (ipifp != NULL) 23000 *ipifp = NULL; 23001 return (B_FALSE); 23002 } 23003 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23004 if (!IPIF_CAN_LOOKUP(ipif)) 23005 continue; 23006 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23007 ipif->ipif_zoneid != ALL_ZONES) 23008 continue; 23009 if ((ipif->ipif_flags & flags) != flags) 23010 continue; 23011 23012 if (ipifp == NULL) { 23013 mutex_exit(&ill->ill_lock); 23014 ASSERT(maybe_ipif == NULL); 23015 return (B_TRUE); 23016 } 23017 if (!ill->ill_isv6 || 23018 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23019 ipif_refhold_locked(ipif); 23020 mutex_exit(&ill->ill_lock); 23021 *ipifp = ipif; 23022 return (B_TRUE); 23023 } 23024 if (maybe_ipif == NULL) 23025 maybe_ipif = ipif; 23026 } 23027 if (ipifp != NULL) { 23028 if (maybe_ipif != NULL) 23029 ipif_refhold_locked(maybe_ipif); 23030 *ipifp = maybe_ipif; 23031 } 23032 mutex_exit(&ill->ill_lock); 23033 return (maybe_ipif != NULL); 23034 } 23035 23036 /* 23037 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23038 */ 23039 boolean_t 23040 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23041 { 23042 ill_t *illg; 23043 23044 /* 23045 * We look at the passed-in ill first without grabbing ill_g_lock. 23046 */ 23047 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23048 return (B_TRUE); 23049 } 23050 rw_enter(&ill_g_lock, RW_READER); 23051 if (ill->ill_group == NULL) { 23052 /* ill not in a group */ 23053 rw_exit(&ill_g_lock); 23054 return (B_FALSE); 23055 } 23056 23057 /* 23058 * There's no ipif in the zone on ill, however ill is part of an IPMP 23059 * group. We need to look for an ipif in the zone on all the ills in the 23060 * group. 23061 */ 23062 illg = ill->ill_group->illgrp_ill; 23063 do { 23064 /* 23065 * We don't call ipif_lookup_zoneid() on ill as we already know 23066 * that it's not there. 23067 */ 23068 if (illg != ill && 23069 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23070 break; 23071 } 23072 } while ((illg = illg->ill_group_next) != NULL); 23073 rw_exit(&ill_g_lock); 23074 return (illg != NULL); 23075 } 23076 23077 /* 23078 * Check if this ill is only being used to send ICMP probes for IPMP 23079 */ 23080 boolean_t 23081 ill_is_probeonly(ill_t *ill) 23082 { 23083 /* 23084 * Check if the interface is FAILED, or INACTIVE 23085 */ 23086 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23087 return (B_TRUE); 23088 23089 return (B_FALSE); 23090 } 23091