1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 193 static void ill_down_tail(ill_t *ill); 194 static void ill_free_mib(ill_t *ill); 195 static void ill_glist_delete(ill_t *); 196 static boolean_t ill_has_usable_ipif(ill_t *); 197 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 198 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 199 static void ill_phyint_free(ill_t *ill); 200 static void ill_phyint_reinit(ill_t *ill); 201 static void ill_set_nce_router_flags(ill_t *, boolean_t); 202 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 203 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 204 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 205 static void ill_stq_cache_delete(ire_t *, char *); 206 207 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 208 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 209 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 in6_addr_t *); 211 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 ipaddr_t *); 213 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 214 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 in6_addr_t *); 216 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 217 ipaddr_t *); 218 219 static void ipif_save_ire(ipif_t *, ire_t *); 220 static void ipif_remove_ire(ipif_t *, ire_t *); 221 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 222 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 223 224 /* 225 * Per-ill IPsec capabilities management. 226 */ 227 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 228 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 229 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 230 static void ill_ipsec_capab_delete(ill_t *, uint_t); 231 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 232 static void ill_capability_proto(ill_t *, int, mblk_t *); 233 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 234 boolean_t); 235 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 238 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 240 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 241 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 242 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 243 dl_capability_sub_t *); 244 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 245 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static void ill_capability_lso_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 248 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 249 static void ill_capability_dls_reset(ill_t *, mblk_t **); 250 static void ill_capability_dls_disable(ill_t *); 251 252 static void illgrp_cache_delete(ire_t *, char *); 253 static void illgrp_delete(ill_t *ill); 254 static void illgrp_reset_schednext(ill_t *ill); 255 256 static ill_t *ill_prev_usesrc(ill_t *); 257 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 258 static void ill_disband_usesrc_group(ill_t *); 259 260 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 261 262 /* 263 * if we go over the memory footprint limit more than once in this msec 264 * interval, we'll start pruning aggressively. 265 */ 266 int ip_min_frag_prune_time = 0; 267 268 /* 269 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 270 * and the IPsec DOI 271 */ 272 #define MAX_IPSEC_ALGS 256 273 274 #define BITSPERBYTE 8 275 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 276 277 #define IPSEC_ALG_ENABLE(algs, algid) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 282 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 283 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 284 285 typedef uint8_t ipsec_capab_elem_t; 286 287 /* 288 * Per-algorithm parameters. Note that at present, only encryption 289 * algorithms have variable keysize (IKE does not provide a way to negotiate 290 * auth algorithm keysize). 291 * 292 * All sizes here are in bits. 293 */ 294 typedef struct 295 { 296 uint16_t minkeylen; 297 uint16_t maxkeylen; 298 } ipsec_capab_algparm_t; 299 300 /* 301 * Per-ill capabilities. 302 */ 303 struct ill_ipsec_capab_s { 304 ipsec_capab_elem_t *encr_hw_algs; 305 ipsec_capab_elem_t *auth_hw_algs; 306 uint32_t algs_size; /* size of _hw_algs in bytes */ 307 /* algorithm key lengths */ 308 ipsec_capab_algparm_t *encr_algparm; 309 uint32_t encr_algparm_size; 310 uint32_t encr_algparm_end; 311 }; 312 313 /* 314 * The field values are larger than strictly necessary for simple 315 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 316 */ 317 static area_t ip_area_template = { 318 AR_ENTRY_ADD, /* area_cmd */ 319 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 320 /* area_name_offset */ 321 /* area_name_length temporarily holds this structure length */ 322 sizeof (area_t), /* area_name_length */ 323 IP_ARP_PROTO_TYPE, /* area_proto */ 324 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 325 IP_ADDR_LEN, /* area_proto_addr_length */ 326 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 327 /* area_proto_mask_offset */ 328 0, /* area_flags */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 330 /* area_hw_addr_offset */ 331 /* Zero length hw_addr_length means 'use your idea of the address' */ 332 0 /* area_hw_addr_length */ 333 }; 334 335 /* 336 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 337 * support 338 */ 339 static area_t ip6_area_template = { 340 AR_ENTRY_ADD, /* area_cmd */ 341 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 342 /* area_name_offset */ 343 /* area_name_length temporarily holds this structure length */ 344 sizeof (area_t), /* area_name_length */ 345 IP_ARP_PROTO_TYPE, /* area_proto */ 346 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 347 IPV6_ADDR_LEN, /* area_proto_addr_length */ 348 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 349 /* area_proto_mask_offset */ 350 0, /* area_flags */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 352 /* area_hw_addr_offset */ 353 /* Zero length hw_addr_length means 'use your idea of the address' */ 354 0 /* area_hw_addr_length */ 355 }; 356 357 static ared_t ip_ared_template = { 358 AR_ENTRY_DELETE, 359 sizeof (ared_t) + IP_ADDR_LEN, 360 sizeof (ared_t), 361 IP_ARP_PROTO_TYPE, 362 sizeof (ared_t), 363 IP_ADDR_LEN 364 }; 365 366 static ared_t ip6_ared_template = { 367 AR_ENTRY_DELETE, 368 sizeof (ared_t) + IPV6_ADDR_LEN, 369 sizeof (ared_t), 370 IP_ARP_PROTO_TYPE, 371 sizeof (ared_t), 372 IPV6_ADDR_LEN 373 }; 374 375 /* 376 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 377 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 378 * areq is used). 379 */ 380 static areq_t ip_areq_template = { 381 AR_ENTRY_QUERY, /* cmd */ 382 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 383 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 384 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 385 sizeof (areq_t), /* target addr offset */ 386 IP_ADDR_LEN, /* target addr_length */ 387 0, /* flags */ 388 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 389 IP_ADDR_LEN, /* sender addr length */ 390 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 391 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 392 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 393 /* anything else filled in by the code */ 394 }; 395 396 static arc_t ip_aru_template = { 397 AR_INTERFACE_UP, 398 sizeof (arc_t), /* Name offset */ 399 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 400 }; 401 402 static arc_t ip_ard_template = { 403 AR_INTERFACE_DOWN, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arc_t ip_aron_template = { 409 AR_INTERFACE_ON, 410 sizeof (arc_t), /* Name offset */ 411 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 412 }; 413 414 static arc_t ip_aroff_template = { 415 AR_INTERFACE_OFF, 416 sizeof (arc_t), /* Name offset */ 417 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 418 }; 419 420 421 static arma_t ip_arma_multi_template = { 422 AR_MAPPING_ADD, 423 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 424 /* Name offset */ 425 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 426 IP_ARP_PROTO_TYPE, 427 sizeof (arma_t), /* proto_addr_offset */ 428 IP_ADDR_LEN, /* proto_addr_length */ 429 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 430 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 431 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 432 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 433 IP_MAX_HW_LEN, /* hw_addr_length */ 434 0, /* hw_mapping_start */ 435 }; 436 437 static ipft_t ip_ioctl_ftbl[] = { 438 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 439 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 440 IPFT_F_NO_REPLY }, 441 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 444 { 0 } 445 }; 446 447 /* Simple ICMP IP Header Template */ 448 static ipha_t icmp_ipha = { 449 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 450 }; 451 452 /* Flag descriptors for ip_ipif_report */ 453 static nv_t ipif_nv_tbl[] = { 454 { IPIF_UP, "UP" }, 455 { IPIF_BROADCAST, "BROADCAST" }, 456 { ILLF_DEBUG, "DEBUG" }, 457 { PHYI_LOOPBACK, "LOOPBACK" }, 458 { IPIF_POINTOPOINT, "POINTOPOINT" }, 459 { ILLF_NOTRAILERS, "NOTRAILERS" }, 460 { PHYI_RUNNING, "RUNNING" }, 461 { ILLF_NOARP, "NOARP" }, 462 { PHYI_PROMISC, "PROMISC" }, 463 { PHYI_ALLMULTI, "ALLMULTI" }, 464 { PHYI_INTELLIGENT, "INTELLIGENT" }, 465 { ILLF_MULTICAST, "MULTICAST" }, 466 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 467 { IPIF_UNNUMBERED, "UNNUMBERED" }, 468 { IPIF_DHCPRUNNING, "DHCP" }, 469 { IPIF_PRIVATE, "PRIVATE" }, 470 { IPIF_NOXMIT, "NOXMIT" }, 471 { IPIF_NOLOCAL, "NOLOCAL" }, 472 { IPIF_DEPRECATED, "DEPRECATED" }, 473 { IPIF_PREFERRED, "PREFERRED" }, 474 { IPIF_TEMPORARY, "TEMPORARY" }, 475 { IPIF_ADDRCONF, "ADDRCONF" }, 476 { PHYI_VIRTUAL, "VIRTUAL" }, 477 { ILLF_ROUTER, "ROUTER" }, 478 { ILLF_NONUD, "NONUD" }, 479 { IPIF_ANYCAST, "ANYCAST" }, 480 { ILLF_NORTEXCH, "NORTEXCH" }, 481 { ILLF_IPV4, "IPV4" }, 482 { ILLF_IPV6, "IPV6" }, 483 { IPIF_MIPRUNNING, "MIP" }, 484 { IPIF_NOFAILOVER, "NOFAILOVER" }, 485 { PHYI_FAILED, "FAILED" }, 486 { PHYI_STANDBY, "STANDBY" }, 487 { PHYI_INACTIVE, "INACTIVE" }, 488 { PHYI_OFFLINE, "OFFLINE" }, 489 }; 490 491 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 492 493 static ip_m_t ip_m_tbl[] = { 494 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_ether_v6intfid }, 496 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_ether_v6intfid }, 504 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 505 ip_ib_v6intfid }, 506 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 507 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_nodef_v6intfid } 509 }; 510 511 static ill_t ill_null; /* Empty ILL for init. */ 512 char ipif_loopback_name[] = "lo0"; 513 static char *ipv4_forward_suffix = ":ip_forwarding"; 514 static char *ipv6_forward_suffix = ":ip6_forwarding"; 515 static sin6_t sin6_null; /* Zero address for quick clears */ 516 static sin_t sin_null; /* Zero address for quick clears */ 517 518 /* When set search for unused ipif_seqid */ 519 static ipif_t ipif_zero; 520 521 /* 522 * ppa arena is created after these many 523 * interfaces have been plumbed. 524 */ 525 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 526 527 /* 528 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 529 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 530 * set through platform specific code (Niagara/Ontario). 531 */ 532 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 533 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 534 535 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 536 537 static uint_t 538 ipif_rand(ip_stack_t *ipst) 539 { 540 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 541 12345; 542 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 543 } 544 545 /* 546 * Allocate per-interface mibs. 547 * Returns true if ok. False otherwise. 548 * ipsq may not yet be allocated (loopback case ). 549 */ 550 static boolean_t 551 ill_allocate_mibs(ill_t *ill) 552 { 553 /* Already allocated? */ 554 if (ill->ill_ip_mib != NULL) { 555 if (ill->ill_isv6) 556 ASSERT(ill->ill_icmp6_mib != NULL); 557 return (B_TRUE); 558 } 559 560 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 561 KM_NOSLEEP); 562 if (ill->ill_ip_mib == NULL) { 563 return (B_FALSE); 564 } 565 566 /* Setup static information */ 567 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 568 sizeof (mib2_ipIfStatsEntry_t)); 569 if (ill->ill_isv6) { 570 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 571 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 572 sizeof (mib2_ipv6AddrEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 574 sizeof (mib2_ipv6RouteEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 576 sizeof (mib2_ipv6NetToMediaEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 578 sizeof (ipv6_member_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 580 sizeof (ipv6_grpsrc_t)); 581 } else { 582 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 583 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 584 sizeof (mib2_ipAddrEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 586 sizeof (mib2_ipRouteEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 588 sizeof (mib2_ipNetToMediaEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 590 sizeof (ip_member_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 592 sizeof (ip_grpsrc_t)); 593 594 /* 595 * For a v4 ill, we are done at this point, because per ill 596 * icmp mibs are only used for v6. 597 */ 598 return (B_TRUE); 599 } 600 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 605 ill->ill_ip_mib = NULL; 606 return (B_FALSE); 607 } 608 /* static icmp info */ 609 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 610 sizeof (mib2_ipv6IfIcmpEntry_t); 611 /* 612 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 613 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 614 * -> ill_phyint_reinit 615 */ 616 return (B_TRUE); 617 } 618 619 /* 620 * Common code for preparation of ARP commands. Two points to remember: 621 * 1) The ill_name is tacked on at the end of the allocated space so 622 * the templates name_offset field must contain the total space 623 * to allocate less the name length. 624 * 625 * 2) The templates name_length field should contain the *template* 626 * length. We use it as a parameter to bcopy() and then write 627 * the real ill_name_length into the name_length field of the copy. 628 * (Always called as writer.) 629 */ 630 mblk_t * 631 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 632 { 633 arc_t *arc = (arc_t *)template; 634 char *cp; 635 int len; 636 mblk_t *mp; 637 uint_t name_length = ill->ill_name_length; 638 uint_t template_len = arc->arc_name_length; 639 640 len = arc->arc_name_offset + name_length; 641 mp = allocb(len, BPRI_HI); 642 if (mp == NULL) 643 return (NULL); 644 cp = (char *)mp->b_rptr; 645 mp->b_wptr = (uchar_t *)&cp[len]; 646 if (template_len) 647 bcopy(template, cp, template_len); 648 if (len > template_len) 649 bzero(&cp[template_len], len - template_len); 650 mp->b_datap->db_type = M_PROTO; 651 652 arc = (arc_t *)cp; 653 arc->arc_name_length = name_length; 654 cp = (char *)arc + arc->arc_name_offset; 655 bcopy(ill->ill_name, cp, name_length); 656 657 if (addr) { 658 area_t *area = (area_t *)mp->b_rptr; 659 660 cp = (char *)area + area->area_proto_addr_offset; 661 bcopy(addr, cp, area->area_proto_addr_length); 662 if (area->area_cmd == AR_ENTRY_ADD) { 663 cp = (char *)area; 664 len = area->area_proto_addr_length; 665 if (area->area_proto_mask_offset) 666 cp += area->area_proto_mask_offset; 667 else 668 cp += area->area_proto_addr_offset + len; 669 while (len-- > 0) 670 *cp++ = (char)~0; 671 } 672 } 673 return (mp); 674 } 675 676 mblk_t * 677 ipif_area_alloc(ipif_t *ipif) 678 { 679 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 680 (char *)&ipif->ipif_lcl_addr)); 681 } 682 683 mblk_t * 684 ipif_ared_alloc(ipif_t *ipif) 685 { 686 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 687 (char *)&ipif->ipif_lcl_addr)); 688 } 689 690 mblk_t * 691 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 692 { 693 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 694 (char *)&addr)); 695 } 696 697 /* 698 * Completely vaporize a lower level tap and all associated interfaces. 699 * ill_delete is called only out of ip_close when the device control 700 * stream is being closed. 701 */ 702 void 703 ill_delete(ill_t *ill) 704 { 705 ipif_t *ipif; 706 ill_t *prev_ill; 707 ip_stack_t *ipst = ill->ill_ipst; 708 709 /* 710 * ill_delete may be forcibly entering the ipsq. The previous 711 * ioctl may not have completed and may need to be aborted. 712 * ipsq_flush takes care of it. If we don't need to enter the 713 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 714 * ill_delete_tail is sufficient. 715 */ 716 ipsq_flush(ill); 717 718 /* 719 * Nuke all interfaces. ipif_free will take down the interface, 720 * remove it from the list, and free the data structure. 721 * Walk down the ipif list and remove the logical interfaces 722 * first before removing the main ipif. We can't unplumb 723 * zeroth interface first in the case of IPv6 as reset_conn_ill 724 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 725 * POINTOPOINT. 726 * 727 * If ill_ipif was not properly initialized (i.e low on memory), 728 * then no interfaces to clean up. In this case just clean up the 729 * ill. 730 */ 731 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 732 ipif_free(ipif); 733 734 /* 735 * Used only by ill_arp_on and ill_arp_off, which are writers. 736 * So nobody can be using this mp now. Free the mp allocated for 737 * honoring ILLF_NOARP 738 */ 739 freemsg(ill->ill_arp_on_mp); 740 ill->ill_arp_on_mp = NULL; 741 742 /* Clean up msgs on pending upcalls for mrouted */ 743 reset_mrt_ill(ill); 744 745 /* 746 * ipif_free -> reset_conn_ipif will remove all multicast 747 * references for IPv4. For IPv6, we need to do it here as 748 * it points only at ills. 749 */ 750 reset_conn_ill(ill); 751 752 /* 753 * ill_down will arrange to blow off any IRE's dependent on this 754 * ILL, and shut down fragmentation reassembly. 755 */ 756 ill_down(ill); 757 758 /* Let SCTP know, so that it can remove this from its list. */ 759 sctp_update_ill(ill, SCTP_ILL_REMOVE); 760 761 /* 762 * If an address on this ILL is being used as a source address then 763 * clear out the pointers in other ILLs that point to this ILL. 764 */ 765 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 766 if (ill->ill_usesrc_grp_next != NULL) { 767 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 768 ill_disband_usesrc_group(ill); 769 } else { /* consumer of the usesrc ILL */ 770 prev_ill = ill_prev_usesrc(ill); 771 prev_ill->ill_usesrc_grp_next = 772 ill->ill_usesrc_grp_next; 773 } 774 } 775 rw_exit(&ipst->ips_ill_g_usesrc_lock); 776 } 777 778 static void 779 ipif_non_duplicate(ipif_t *ipif) 780 { 781 ill_t *ill = ipif->ipif_ill; 782 mutex_enter(&ill->ill_lock); 783 if (ipif->ipif_flags & IPIF_DUPLICATE) { 784 ipif->ipif_flags &= ~IPIF_DUPLICATE; 785 ASSERT(ill->ill_ipif_dup_count > 0); 786 ill->ill_ipif_dup_count--; 787 } 788 mutex_exit(&ill->ill_lock); 789 } 790 791 /* 792 * ill_delete_tail is called from ip_modclose after all references 793 * to the closing ill are gone. The wait is done in ip_modclose 794 */ 795 void 796 ill_delete_tail(ill_t *ill) 797 { 798 mblk_t **mpp; 799 ipif_t *ipif; 800 ip_stack_t *ipst = ill->ill_ipst; 801 802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 803 ipif_non_duplicate(ipif); 804 ipif_down_tail(ipif); 805 } 806 807 ASSERT(ill->ill_ipif_dup_count == 0 && 808 ill->ill_arp_down_mp == NULL && 809 ill->ill_arp_del_mapping_mp == NULL); 810 811 /* 812 * If polling capability is enabled (which signifies direct 813 * upcall into IP and driver has ill saved as a handle), 814 * we need to make sure that unbind has completed before we 815 * let the ill disappear and driver no longer has any reference 816 * to this ill. 817 */ 818 mutex_enter(&ill->ill_lock); 819 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 820 cv_wait(&ill->ill_cv, &ill->ill_lock); 821 mutex_exit(&ill->ill_lock); 822 823 /* 824 * Clean up polling and soft ring capabilities 825 */ 826 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 827 ill_capability_dls_disable(ill); 828 829 if (ill->ill_net_type != IRE_LOOPBACK) 830 qprocsoff(ill->ill_rq); 831 832 /* 833 * We do an ipsq_flush once again now. New messages could have 834 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 835 * could also have landed up if an ioctl thread had looked up 836 * the ill before we set the ILL_CONDEMNED flag, but not yet 837 * enqueued the ioctl when we did the ipsq_flush last time. 838 */ 839 ipsq_flush(ill); 840 841 /* 842 * Free capabilities. 843 */ 844 if (ill->ill_ipsec_capab_ah != NULL) { 845 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 846 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 847 ill->ill_ipsec_capab_ah = NULL; 848 } 849 850 if (ill->ill_ipsec_capab_esp != NULL) { 851 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 852 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 853 ill->ill_ipsec_capab_esp = NULL; 854 } 855 856 if (ill->ill_mdt_capab != NULL) { 857 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 858 ill->ill_mdt_capab = NULL; 859 } 860 861 if (ill->ill_hcksum_capab != NULL) { 862 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 863 ill->ill_hcksum_capab = NULL; 864 } 865 866 if (ill->ill_zerocopy_capab != NULL) { 867 kmem_free(ill->ill_zerocopy_capab, 868 sizeof (ill_zerocopy_capab_t)); 869 ill->ill_zerocopy_capab = NULL; 870 } 871 872 if (ill->ill_lso_capab != NULL) { 873 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 874 ill->ill_lso_capab = NULL; 875 } 876 877 if (ill->ill_dls_capab != NULL) { 878 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 879 ill->ill_dls_capab->ill_unbind_conn = NULL; 880 kmem_free(ill->ill_dls_capab, 881 sizeof (ill_dls_capab_t) + 882 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 883 ill->ill_dls_capab = NULL; 884 } 885 886 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 887 888 while (ill->ill_ipif != NULL) 889 ipif_free_tail(ill->ill_ipif); 890 891 ill_down_tail(ill); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 /* Drop refcnt here */ 948 netstack_rele(ill->ill_ipst->ips_netstack); 949 ill->ill_ipst = NULL; 950 951 ILL_TRACE_CLEANUP(ill); 952 } 953 954 static void 955 ill_free_mib(ill_t *ill) 956 { 957 ip_stack_t *ipst = ill->ill_ipst; 958 959 /* 960 * MIB statistics must not be lost, so when an interface 961 * goes away the counter values will be added to the global 962 * MIBs. 963 */ 964 if (ill->ill_ip_mib != NULL) { 965 if (ill->ill_isv6) { 966 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 967 ill->ill_ip_mib); 968 } else { 969 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 970 ill->ill_ip_mib); 971 } 972 973 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 974 ill->ill_ip_mib = NULL; 975 } 976 if (ill->ill_icmp6_mib != NULL) { 977 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 978 ill->ill_icmp6_mib); 979 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 980 ill->ill_icmp6_mib = NULL; 981 } 982 } 983 984 /* 985 * Concatenate together a physical address and a sap. 986 * 987 * Sap_lengths are interpreted as follows: 988 * sap_length == 0 ==> no sap 989 * sap_length > 0 ==> sap is at the head of the dlpi address 990 * sap_length < 0 ==> sap is at the tail of the dlpi address 991 */ 992 static void 993 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 994 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 995 { 996 uint16_t sap_addr = (uint16_t)sap_src; 997 998 if (sap_length == 0) { 999 if (phys_src == NULL) 1000 bzero(dst, phys_length); 1001 else 1002 bcopy(phys_src, dst, phys_length); 1003 } else if (sap_length < 0) { 1004 if (phys_src == NULL) 1005 bzero(dst, phys_length); 1006 else 1007 bcopy(phys_src, dst, phys_length); 1008 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1009 } else { 1010 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1011 if (phys_src == NULL) 1012 bzero((char *)dst + sap_length, phys_length); 1013 else 1014 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1015 } 1016 } 1017 1018 /* 1019 * Generate a dl_unitdata_req mblk for the device and address given. 1020 * addr_length is the length of the physical portion of the address. 1021 * If addr is NULL include an all zero address of the specified length. 1022 * TRUE? In any case, addr_length is taken to be the entire length of the 1023 * dlpi address, including the absolute value of sap_length. 1024 */ 1025 mblk_t * 1026 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1027 t_scalar_t sap_length) 1028 { 1029 dl_unitdata_req_t *dlur; 1030 mblk_t *mp; 1031 t_scalar_t abs_sap_length; /* absolute value */ 1032 1033 abs_sap_length = ABS(sap_length); 1034 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1035 DL_UNITDATA_REQ); 1036 if (mp == NULL) 1037 return (NULL); 1038 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1039 /* HACK: accomodate incompatible DLPI drivers */ 1040 if (addr_length == 8) 1041 addr_length = 6; 1042 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1043 dlur->dl_dest_addr_offset = sizeof (*dlur); 1044 dlur->dl_priority.dl_min = 0; 1045 dlur->dl_priority.dl_max = 0; 1046 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1047 (uchar_t *)&dlur[1]); 1048 return (mp); 1049 } 1050 1051 /* 1052 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1053 * Return an error if we already have 1 or more ioctls in progress. 1054 * This is used only for non-exclusive ioctls. Currently this is used 1055 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1056 * and thus need to use ipsq_pending_mp_add. 1057 */ 1058 boolean_t 1059 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1060 { 1061 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1062 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1063 /* 1064 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1065 */ 1066 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1067 (add_mp->b_datap->db_type == M_IOCTL)); 1068 1069 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1070 /* 1071 * Return error if the conn has started closing. The conn 1072 * could have finished cleaning up the pending mp list, 1073 * If so we should not add another mp to the list negating 1074 * the cleanup. 1075 */ 1076 if (connp->conn_state_flags & CONN_CLOSING) 1077 return (B_FALSE); 1078 /* 1079 * Add the pending mp to the head of the list, chained by b_next. 1080 * Note down the conn on which the ioctl request came, in b_prev. 1081 * This will be used to later get the conn, when we get a response 1082 * on the ill queue, from some other module (typically arp) 1083 */ 1084 add_mp->b_next = (void *)ill->ill_pending_mp; 1085 add_mp->b_queue = CONNP_TO_WQ(connp); 1086 ill->ill_pending_mp = add_mp; 1087 if (connp != NULL) 1088 connp->conn_oper_pending_ill = ill; 1089 return (B_TRUE); 1090 } 1091 1092 /* 1093 * Retrieve the ill_pending_mp and return it. We have to walk the list 1094 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1095 */ 1096 mblk_t * 1097 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1098 { 1099 mblk_t *prev = NULL; 1100 mblk_t *curr = NULL; 1101 uint_t id; 1102 conn_t *connp; 1103 1104 /* 1105 * When the conn closes, conn_ioctl_cleanup needs to clean 1106 * up the pending mp, but it does not know the ioc_id and 1107 * passes in a zero for it. 1108 */ 1109 mutex_enter(&ill->ill_lock); 1110 if (ioc_id != 0) 1111 *connpp = NULL; 1112 1113 /* Search the list for the appropriate ioctl based on ioc_id */ 1114 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1115 prev = curr, curr = curr->b_next) { 1116 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1117 connp = Q_TO_CONN(curr->b_queue); 1118 /* Match based on the ioc_id or based on the conn */ 1119 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1120 break; 1121 } 1122 1123 if (curr != NULL) { 1124 /* Unlink the mblk from the pending mp list */ 1125 if (prev != NULL) { 1126 prev->b_next = curr->b_next; 1127 } else { 1128 ASSERT(ill->ill_pending_mp == curr); 1129 ill->ill_pending_mp = curr->b_next; 1130 } 1131 1132 /* 1133 * conn refcnt must have been bumped up at the start of 1134 * the ioctl. So we can safely access the conn. 1135 */ 1136 ASSERT(CONN_Q(curr->b_queue)); 1137 *connpp = Q_TO_CONN(curr->b_queue); 1138 curr->b_next = NULL; 1139 curr->b_queue = NULL; 1140 } 1141 1142 mutex_exit(&ill->ill_lock); 1143 1144 return (curr); 1145 } 1146 1147 /* 1148 * Add the pending mp to the list. There can be only 1 pending mp 1149 * in the list. Any exclusive ioctl that needs to wait for a response 1150 * from another module or driver needs to use this function to set 1151 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1152 * the other module/driver. This is also used while waiting for the 1153 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1154 */ 1155 boolean_t 1156 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1157 int waitfor) 1158 { 1159 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1160 1161 ASSERT(IAM_WRITER_IPIF(ipif)); 1162 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1163 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1164 ASSERT(ipsq->ipsq_pending_mp == NULL); 1165 /* 1166 * The caller may be using a different ipif than the one passed into 1167 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1168 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1169 * that `ipsq_current_ipif == ipif'. 1170 */ 1171 ASSERT(ipsq->ipsq_current_ipif != NULL); 1172 1173 /* 1174 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1175 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1176 */ 1177 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1178 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1179 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1180 1181 if (connp != NULL) { 1182 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1183 /* 1184 * Return error if the conn has started closing. The conn 1185 * could have finished cleaning up the pending mp list, 1186 * If so we should not add another mp to the list negating 1187 * the cleanup. 1188 */ 1189 if (connp->conn_state_flags & CONN_CLOSING) 1190 return (B_FALSE); 1191 } 1192 mutex_enter(&ipsq->ipsq_lock); 1193 ipsq->ipsq_pending_ipif = ipif; 1194 /* 1195 * Note down the queue in b_queue. This will be returned by 1196 * ipsq_pending_mp_get. Caller will then use these values to restart 1197 * the processing 1198 */ 1199 add_mp->b_next = NULL; 1200 add_mp->b_queue = q; 1201 ipsq->ipsq_pending_mp = add_mp; 1202 ipsq->ipsq_waitfor = waitfor; 1203 1204 if (connp != NULL) 1205 connp->conn_oper_pending_ill = ipif->ipif_ill; 1206 mutex_exit(&ipsq->ipsq_lock); 1207 return (B_TRUE); 1208 } 1209 1210 /* 1211 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1212 * queued in the list. 1213 */ 1214 mblk_t * 1215 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1216 { 1217 mblk_t *curr = NULL; 1218 1219 mutex_enter(&ipsq->ipsq_lock); 1220 *connpp = NULL; 1221 if (ipsq->ipsq_pending_mp == NULL) { 1222 mutex_exit(&ipsq->ipsq_lock); 1223 return (NULL); 1224 } 1225 1226 /* There can be only 1 such excl message */ 1227 curr = ipsq->ipsq_pending_mp; 1228 ASSERT(curr != NULL && curr->b_next == NULL); 1229 ipsq->ipsq_pending_ipif = NULL; 1230 ipsq->ipsq_pending_mp = NULL; 1231 ipsq->ipsq_waitfor = 0; 1232 mutex_exit(&ipsq->ipsq_lock); 1233 1234 if (CONN_Q(curr->b_queue)) { 1235 /* 1236 * This mp did a refhold on the conn, at the start of the ioctl. 1237 * So we can safely return a pointer to the conn to the caller. 1238 */ 1239 *connpp = Q_TO_CONN(curr->b_queue); 1240 } else { 1241 *connpp = NULL; 1242 } 1243 curr->b_next = NULL; 1244 curr->b_prev = NULL; 1245 return (curr); 1246 } 1247 1248 /* 1249 * Cleanup the ioctl mp queued in ipsq_pending_mp 1250 * - Called in the ill_delete path 1251 * - Called in the M_ERROR or M_HANGUP path on the ill. 1252 * - Called in the conn close path. 1253 */ 1254 boolean_t 1255 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1256 { 1257 mblk_t *mp; 1258 ipsq_t *ipsq; 1259 queue_t *q; 1260 ipif_t *ipif; 1261 1262 ASSERT(IAM_WRITER_ILL(ill)); 1263 ipsq = ill->ill_phyint->phyint_ipsq; 1264 mutex_enter(&ipsq->ipsq_lock); 1265 /* 1266 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1267 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1268 * even if it is meant for another ill, since we have to enqueue 1269 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1270 * If connp is non-null we are called from the conn close path. 1271 */ 1272 mp = ipsq->ipsq_pending_mp; 1273 if (mp == NULL || (connp != NULL && 1274 mp->b_queue != CONNP_TO_WQ(connp))) { 1275 mutex_exit(&ipsq->ipsq_lock); 1276 return (B_FALSE); 1277 } 1278 /* Now remove from the ipsq_pending_mp */ 1279 ipsq->ipsq_pending_mp = NULL; 1280 q = mp->b_queue; 1281 mp->b_next = NULL; 1282 mp->b_prev = NULL; 1283 mp->b_queue = NULL; 1284 1285 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1286 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1287 if (ill->ill_move_in_progress) { 1288 ILL_CLEAR_MOVE(ill); 1289 } else if (ill->ill_up_ipifs) { 1290 ill_group_cleanup(ill); 1291 } 1292 1293 ipif = ipsq->ipsq_pending_ipif; 1294 ipsq->ipsq_pending_ipif = NULL; 1295 ipsq->ipsq_waitfor = 0; 1296 ipsq->ipsq_current_ipif = NULL; 1297 ipsq->ipsq_current_ioctl = 0; 1298 mutex_exit(&ipsq->ipsq_lock); 1299 1300 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1301 if (connp == NULL) { 1302 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1303 } else { 1304 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1305 mutex_enter(&ipif->ipif_ill->ill_lock); 1306 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1307 mutex_exit(&ipif->ipif_ill->ill_lock); 1308 } 1309 } else { 1310 /* 1311 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1312 * be just inet_freemsg. we have to restart it 1313 * otherwise the thread will be stuck. 1314 */ 1315 inet_freemsg(mp); 1316 } 1317 return (B_TRUE); 1318 } 1319 1320 /* 1321 * The ill is closing. Cleanup all the pending mps. Called exclusively 1322 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1323 * knows this ill, and hence nobody can add an mp to this list 1324 */ 1325 static void 1326 ill_pending_mp_cleanup(ill_t *ill) 1327 { 1328 mblk_t *mp; 1329 queue_t *q; 1330 1331 ASSERT(IAM_WRITER_ILL(ill)); 1332 1333 mutex_enter(&ill->ill_lock); 1334 /* 1335 * Every mp on the pending mp list originating from an ioctl 1336 * added 1 to the conn refcnt, at the start of the ioctl. 1337 * So bump it down now. See comments in ip_wput_nondata() 1338 */ 1339 while (ill->ill_pending_mp != NULL) { 1340 mp = ill->ill_pending_mp; 1341 ill->ill_pending_mp = mp->b_next; 1342 mutex_exit(&ill->ill_lock); 1343 1344 q = mp->b_queue; 1345 ASSERT(CONN_Q(q)); 1346 mp->b_next = NULL; 1347 mp->b_prev = NULL; 1348 mp->b_queue = NULL; 1349 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1350 mutex_enter(&ill->ill_lock); 1351 } 1352 ill->ill_pending_ipif = NULL; 1353 1354 mutex_exit(&ill->ill_lock); 1355 } 1356 1357 /* 1358 * Called in the conn close path and ill delete path 1359 */ 1360 static void 1361 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1362 { 1363 ipsq_t *ipsq; 1364 mblk_t *prev; 1365 mblk_t *curr; 1366 mblk_t *next; 1367 queue_t *q; 1368 mblk_t *tmp_list = NULL; 1369 1370 ASSERT(IAM_WRITER_ILL(ill)); 1371 if (connp != NULL) 1372 q = CONNP_TO_WQ(connp); 1373 else 1374 q = ill->ill_wq; 1375 1376 ipsq = ill->ill_phyint->phyint_ipsq; 1377 /* 1378 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1379 * In the case of ioctl from a conn, there can be only 1 mp 1380 * queued on the ipsq. If an ill is being unplumbed, only messages 1381 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1382 * ioctls meant for this ill form conn's are not flushed. They will 1383 * be processed during ipsq_exit and will not find the ill and will 1384 * return error. 1385 */ 1386 mutex_enter(&ipsq->ipsq_lock); 1387 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1388 curr = next) { 1389 next = curr->b_next; 1390 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1391 /* Unlink the mblk from the pending mp list */ 1392 if (prev != NULL) { 1393 prev->b_next = curr->b_next; 1394 } else { 1395 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1396 ipsq->ipsq_xopq_mphead = curr->b_next; 1397 } 1398 if (ipsq->ipsq_xopq_mptail == curr) 1399 ipsq->ipsq_xopq_mptail = prev; 1400 /* 1401 * Create a temporary list and release the ipsq lock 1402 * New elements are added to the head of the tmp_list 1403 */ 1404 curr->b_next = tmp_list; 1405 tmp_list = curr; 1406 } else { 1407 prev = curr; 1408 } 1409 } 1410 mutex_exit(&ipsq->ipsq_lock); 1411 1412 while (tmp_list != NULL) { 1413 curr = tmp_list; 1414 tmp_list = curr->b_next; 1415 curr->b_next = NULL; 1416 curr->b_prev = NULL; 1417 curr->b_queue = NULL; 1418 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1419 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1420 CONN_CLOSE : NO_COPYOUT, NULL); 1421 } else { 1422 /* 1423 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1424 * this can't be just inet_freemsg. we have to 1425 * restart it otherwise the thread will be stuck. 1426 */ 1427 inet_freemsg(curr); 1428 } 1429 } 1430 } 1431 1432 /* 1433 * This conn has started closing. Cleanup any pending ioctl from this conn. 1434 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1435 */ 1436 void 1437 conn_ioctl_cleanup(conn_t *connp) 1438 { 1439 mblk_t *curr; 1440 ipsq_t *ipsq; 1441 ill_t *ill; 1442 boolean_t refheld; 1443 1444 /* 1445 * Is any exclusive ioctl pending ? If so clean it up. If the 1446 * ioctl has not yet started, the mp is pending in the list headed by 1447 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1448 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1449 * is currently executing now the mp is not queued anywhere but 1450 * conn_oper_pending_ill is null. The conn close will wait 1451 * till the conn_ref drops to zero. 1452 */ 1453 mutex_enter(&connp->conn_lock); 1454 ill = connp->conn_oper_pending_ill; 1455 if (ill == NULL) { 1456 mutex_exit(&connp->conn_lock); 1457 return; 1458 } 1459 1460 curr = ill_pending_mp_get(ill, &connp, 0); 1461 if (curr != NULL) { 1462 mutex_exit(&connp->conn_lock); 1463 CONN_DEC_REF(connp); 1464 inet_freemsg(curr); 1465 return; 1466 } 1467 /* 1468 * We may not be able to refhold the ill if the ill/ipif 1469 * is changing. But we need to make sure that the ill will 1470 * not vanish. So we just bump up the ill_waiter count. 1471 */ 1472 refheld = ill_waiter_inc(ill); 1473 mutex_exit(&connp->conn_lock); 1474 if (refheld) { 1475 if (ipsq_enter(ill, B_TRUE)) { 1476 ill_waiter_dcr(ill); 1477 /* 1478 * Check whether this ioctl has started and is 1479 * pending now in ipsq_pending_mp. If it is not 1480 * found there then check whether this ioctl has 1481 * not even started and is in the ipsq_xopq list. 1482 */ 1483 if (!ipsq_pending_mp_cleanup(ill, connp)) 1484 ipsq_xopq_mp_cleanup(ill, connp); 1485 ipsq = ill->ill_phyint->phyint_ipsq; 1486 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1487 return; 1488 } 1489 } 1490 1491 /* 1492 * The ill is also closing and we could not bump up the 1493 * ill_waiter_count or we could not enter the ipsq. Leave 1494 * the cleanup to ill_delete 1495 */ 1496 mutex_enter(&connp->conn_lock); 1497 while (connp->conn_oper_pending_ill != NULL) 1498 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1499 mutex_exit(&connp->conn_lock); 1500 if (refheld) 1501 ill_waiter_dcr(ill); 1502 } 1503 1504 /* 1505 * ipcl_walk function for cleaning up conn_*_ill fields. 1506 */ 1507 static void 1508 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1509 { 1510 ill_t *ill = (ill_t *)arg; 1511 ire_t *ire; 1512 1513 mutex_enter(&connp->conn_lock); 1514 if (connp->conn_multicast_ill == ill) { 1515 /* Revert to late binding */ 1516 connp->conn_multicast_ill = NULL; 1517 connp->conn_orig_multicast_ifindex = 0; 1518 } 1519 if (connp->conn_incoming_ill == ill) 1520 connp->conn_incoming_ill = NULL; 1521 if (connp->conn_outgoing_ill == ill) 1522 connp->conn_outgoing_ill = NULL; 1523 if (connp->conn_outgoing_pill == ill) 1524 connp->conn_outgoing_pill = NULL; 1525 if (connp->conn_nofailover_ill == ill) 1526 connp->conn_nofailover_ill = NULL; 1527 if (connp->conn_xmit_if_ill == ill) 1528 connp->conn_xmit_if_ill = NULL; 1529 if (connp->conn_ire_cache != NULL) { 1530 ire = connp->conn_ire_cache; 1531 /* 1532 * ip_newroute creates IRE_CACHE with ire_stq coming from 1533 * interface X and ipif coming from interface Y, if interface 1534 * X and Y are part of the same IPMPgroup. Thus whenever 1535 * interface X goes down, remove all references to it by 1536 * checking both on ire_ipif and ire_stq. 1537 */ 1538 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1539 (ire->ire_type == IRE_CACHE && 1540 ire->ire_stq == ill->ill_wq)) { 1541 connp->conn_ire_cache = NULL; 1542 mutex_exit(&connp->conn_lock); 1543 ire_refrele_notr(ire); 1544 return; 1545 } 1546 } 1547 mutex_exit(&connp->conn_lock); 1548 1549 } 1550 1551 /* ARGSUSED */ 1552 void 1553 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1554 { 1555 ill_t *ill = q->q_ptr; 1556 ipif_t *ipif; 1557 1558 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1560 ipif_non_duplicate(ipif); 1561 ipif_down_tail(ipif); 1562 } 1563 ill_down_tail(ill); 1564 freemsg(mp); 1565 ipsq_current_finish(ipsq); 1566 } 1567 1568 /* 1569 * ill_down_start is called when we want to down this ill and bring it up again 1570 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1571 * all interfaces, but don't tear down any plumbing. 1572 */ 1573 boolean_t 1574 ill_down_start(queue_t *q, mblk_t *mp) 1575 { 1576 ill_t *ill = q->q_ptr; 1577 ipif_t *ipif; 1578 1579 ASSERT(IAM_WRITER_ILL(ill)); 1580 1581 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1582 (void) ipif_down(ipif, NULL, NULL); 1583 1584 ill_down(ill); 1585 1586 (void) ipsq_pending_mp_cleanup(ill, NULL); 1587 1588 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1589 1590 /* 1591 * Atomically test and add the pending mp if references are active. 1592 */ 1593 mutex_enter(&ill->ill_lock); 1594 if (!ill_is_quiescent(ill)) { 1595 /* call cannot fail since `conn_t *' argument is NULL */ 1596 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1597 mp, ILL_DOWN); 1598 mutex_exit(&ill->ill_lock); 1599 return (B_FALSE); 1600 } 1601 mutex_exit(&ill->ill_lock); 1602 return (B_TRUE); 1603 } 1604 1605 static void 1606 ill_down(ill_t *ill) 1607 { 1608 ip_stack_t *ipst = ill->ill_ipst; 1609 1610 /* Blow off any IREs dependent on this ILL. */ 1611 ire_walk(ill_downi, (char *)ill, ipst); 1612 1613 mutex_enter(&ipst->ips_ire_mrtun_lock); 1614 if (ipst->ips_ire_mrtun_count != 0) { 1615 mutex_exit(&ipst->ips_ire_mrtun_lock); 1616 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1617 (char *)ill, NULL, ipst); 1618 } else { 1619 mutex_exit(&ipst->ips_ire_mrtun_lock); 1620 } 1621 1622 /* 1623 * If any interface based forwarding table exists 1624 * Blow off the ires there dependent on this ill 1625 */ 1626 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1627 if (ipst->ips_ire_srcif_table_count > 0) { 1628 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1629 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1630 ipst); 1631 } else { 1632 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1633 } 1634 1635 /* Remove any conn_*_ill depending on this ill */ 1636 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1637 1638 if (ill->ill_group != NULL) { 1639 illgrp_delete(ill); 1640 } 1641 } 1642 1643 static void 1644 ill_down_tail(ill_t *ill) 1645 { 1646 int i; 1647 1648 /* Destroy ill_srcif_table if it exists */ 1649 /* Lock not reqd really because nobody should be able to access */ 1650 mutex_enter(&ill->ill_lock); 1651 if (ill->ill_srcif_table != NULL) { 1652 ill->ill_srcif_refcnt = 0; 1653 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1654 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1655 } 1656 kmem_free(ill->ill_srcif_table, 1657 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1658 ill->ill_srcif_table = NULL; 1659 ill->ill_srcif_refcnt = 0; 1660 ill->ill_mrtun_refcnt = 0; 1661 } 1662 mutex_exit(&ill->ill_lock); 1663 } 1664 1665 /* 1666 * ire_walk routine used to delete every IRE that depends on queues 1667 * associated with 'ill'. (Always called as writer.) 1668 */ 1669 static void 1670 ill_downi(ire_t *ire, char *ill_arg) 1671 { 1672 ill_t *ill = (ill_t *)ill_arg; 1673 1674 /* 1675 * ip_newroute creates IRE_CACHE with ire_stq coming from 1676 * interface X and ipif coming from interface Y, if interface 1677 * X and Y are part of the same IPMP group. Thus whenever interface 1678 * X goes down, remove all references to it by checking both 1679 * on ire_ipif and ire_stq. 1680 */ 1681 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1682 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1683 ire_delete(ire); 1684 } 1685 } 1686 1687 /* 1688 * A seperate routine for deleting revtun and srcif based routes 1689 * are needed because the ires only deleted when the interface 1690 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1691 * we want to keep mobile IP specific code separate. 1692 */ 1693 static void 1694 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1695 { 1696 ill_t *ill = (ill_t *)ill_arg; 1697 1698 ASSERT(ire->ire_in_ill != NULL); 1699 1700 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1701 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1702 ire_delete(ire); 1703 } 1704 } 1705 1706 /* 1707 * Remove ire/nce from the fastpath list. 1708 */ 1709 void 1710 ill_fastpath_nack(ill_t *ill) 1711 { 1712 nce_fastpath_list_dispatch(ill, NULL, NULL); 1713 } 1714 1715 /* Consume an M_IOCACK of the fastpath probe. */ 1716 void 1717 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1718 { 1719 mblk_t *mp1 = mp; 1720 1721 /* 1722 * If this was the first attempt turn on the fastpath probing. 1723 */ 1724 mutex_enter(&ill->ill_lock); 1725 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1726 ill->ill_dlpi_fastpath_state = IDS_OK; 1727 mutex_exit(&ill->ill_lock); 1728 1729 /* Free the M_IOCACK mblk, hold on to the data */ 1730 mp = mp->b_cont; 1731 freeb(mp1); 1732 if (mp == NULL) 1733 return; 1734 if (mp->b_cont != NULL) { 1735 /* 1736 * Update all IRE's or NCE's that are waiting for 1737 * fastpath update. 1738 */ 1739 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1740 mp1 = mp->b_cont; 1741 freeb(mp); 1742 mp = mp1; 1743 } else { 1744 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1745 } 1746 1747 freeb(mp); 1748 } 1749 1750 /* 1751 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1752 * The data portion of the request is a dl_unitdata_req_t template for 1753 * what we would send downstream in the absence of a fastpath confirmation. 1754 */ 1755 int 1756 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1757 { 1758 struct iocblk *ioc; 1759 mblk_t *mp; 1760 1761 if (dlur_mp == NULL) 1762 return (EINVAL); 1763 1764 mutex_enter(&ill->ill_lock); 1765 switch (ill->ill_dlpi_fastpath_state) { 1766 case IDS_FAILED: 1767 /* 1768 * Driver NAKed the first fastpath ioctl - assume it doesn't 1769 * support it. 1770 */ 1771 mutex_exit(&ill->ill_lock); 1772 return (ENOTSUP); 1773 case IDS_UNKNOWN: 1774 /* This is the first probe */ 1775 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1776 break; 1777 default: 1778 break; 1779 } 1780 mutex_exit(&ill->ill_lock); 1781 1782 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1783 return (EAGAIN); 1784 1785 mp->b_cont = copyb(dlur_mp); 1786 if (mp->b_cont == NULL) { 1787 freeb(mp); 1788 return (EAGAIN); 1789 } 1790 1791 ioc = (struct iocblk *)mp->b_rptr; 1792 ioc->ioc_count = msgdsize(mp->b_cont); 1793 1794 putnext(ill->ill_wq, mp); 1795 return (0); 1796 } 1797 1798 void 1799 ill_capability_probe(ill_t *ill) 1800 { 1801 /* 1802 * Do so only if negotiation is enabled, capabilities are unknown, 1803 * and a capability negotiation is not already in progress. 1804 */ 1805 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1806 ill->ill_dlpi_capab_state != IDS_RENEG) 1807 return; 1808 1809 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1810 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1811 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1812 } 1813 1814 void 1815 ill_capability_reset(ill_t *ill) 1816 { 1817 mblk_t *sc_mp = NULL; 1818 mblk_t *tmp; 1819 1820 /* 1821 * Note here that we reset the state to UNKNOWN, and later send 1822 * down the DL_CAPABILITY_REQ without first setting the state to 1823 * INPROGRESS. We do this in order to distinguish the 1824 * DL_CAPABILITY_ACK response which may come back in response to 1825 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1826 * also handle the case where the driver doesn't send us back 1827 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1828 * requires the state to be in UNKNOWN anyway. In any case, all 1829 * features are turned off until the state reaches IDS_OK. 1830 */ 1831 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1832 1833 /* 1834 * Disable sub-capabilities and request a list of sub-capability 1835 * messages which will be sent down to the driver. Each handler 1836 * allocates the corresponding dl_capability_sub_t inside an 1837 * mblk, and links it to the existing sc_mp mblk, or return it 1838 * as sc_mp if it's the first sub-capability (the passed in 1839 * sc_mp is NULL). Upon returning from all capability handlers, 1840 * sc_mp will be pulled-up, before passing it downstream. 1841 */ 1842 ill_capability_mdt_reset(ill, &sc_mp); 1843 ill_capability_hcksum_reset(ill, &sc_mp); 1844 ill_capability_zerocopy_reset(ill, &sc_mp); 1845 ill_capability_ipsec_reset(ill, &sc_mp); 1846 ill_capability_dls_reset(ill, &sc_mp); 1847 ill_capability_lso_reset(ill, &sc_mp); 1848 1849 /* Nothing to send down in order to disable the capabilities? */ 1850 if (sc_mp == NULL) 1851 return; 1852 1853 tmp = msgpullup(sc_mp, -1); 1854 freemsg(sc_mp); 1855 if ((sc_mp = tmp) == NULL) { 1856 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1857 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1858 return; 1859 } 1860 1861 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1862 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1863 } 1864 1865 /* 1866 * Request or set new-style hardware capabilities supported by DLS provider. 1867 */ 1868 static void 1869 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1870 { 1871 mblk_t *mp; 1872 dl_capability_req_t *capb; 1873 size_t size = 0; 1874 uint8_t *ptr; 1875 1876 if (reqp != NULL) 1877 size = MBLKL(reqp); 1878 1879 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1880 if (mp == NULL) { 1881 freemsg(reqp); 1882 return; 1883 } 1884 ptr = mp->b_rptr; 1885 1886 capb = (dl_capability_req_t *)ptr; 1887 ptr += sizeof (dl_capability_req_t); 1888 1889 if (reqp != NULL) { 1890 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1891 capb->dl_sub_length = size; 1892 bcopy(reqp->b_rptr, ptr, size); 1893 ptr += size; 1894 mp->b_cont = reqp->b_cont; 1895 freeb(reqp); 1896 } 1897 ASSERT(ptr == mp->b_wptr); 1898 1899 ill_dlpi_send(ill, mp); 1900 } 1901 1902 static void 1903 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1904 { 1905 dl_capab_id_t *id_ic; 1906 uint_t sub_dl_cap = outers->dl_cap; 1907 dl_capability_sub_t *inners; 1908 uint8_t *capend; 1909 1910 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1911 1912 /* 1913 * Note: range checks here are not absolutely sufficient to 1914 * make us robust against malformed messages sent by drivers; 1915 * this is in keeping with the rest of IP's dlpi handling. 1916 * (Remember, it's coming from something else in the kernel 1917 * address space) 1918 */ 1919 1920 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1921 if (capend > mp->b_wptr) { 1922 cmn_err(CE_WARN, "ill_capability_id_ack: " 1923 "malformed sub-capability too long for mblk"); 1924 return; 1925 } 1926 1927 id_ic = (dl_capab_id_t *)(outers + 1); 1928 1929 if (outers->dl_length < sizeof (*id_ic) || 1930 (inners = &id_ic->id_subcap, 1931 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1932 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1933 "encapsulated capab type %d too long for mblk", 1934 inners->dl_cap); 1935 return; 1936 } 1937 1938 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1939 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1940 "isn't as expected; pass-thru module(s) detected, " 1941 "discarding capability\n", inners->dl_cap)); 1942 return; 1943 } 1944 1945 /* Process the encapsulated sub-capability */ 1946 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1947 } 1948 1949 /* 1950 * Process Multidata Transmit capability negotiation ack received from a 1951 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1952 * DL_CAPABILITY_ACK message. 1953 */ 1954 static void 1955 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1956 { 1957 mblk_t *nmp = NULL; 1958 dl_capability_req_t *oc; 1959 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1960 ill_mdt_capab_t **ill_mdt_capab; 1961 uint_t sub_dl_cap = isub->dl_cap; 1962 uint8_t *capend; 1963 1964 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1965 1966 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1967 1968 /* 1969 * Note: range checks here are not absolutely sufficient to 1970 * make us robust against malformed messages sent by drivers; 1971 * this is in keeping with the rest of IP's dlpi handling. 1972 * (Remember, it's coming from something else in the kernel 1973 * address space) 1974 */ 1975 1976 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1977 if (capend > mp->b_wptr) { 1978 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1979 "malformed sub-capability too long for mblk"); 1980 return; 1981 } 1982 1983 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1984 1985 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1986 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1987 "unsupported MDT sub-capability (version %d, expected %d)", 1988 mdt_ic->mdt_version, MDT_VERSION_2); 1989 return; 1990 } 1991 1992 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1993 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1994 "capability isn't as expected; pass-thru module(s) " 1995 "detected, discarding capability\n")); 1996 return; 1997 } 1998 1999 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2000 2001 if (*ill_mdt_capab == NULL) { 2002 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2003 KM_NOSLEEP); 2004 2005 if (*ill_mdt_capab == NULL) { 2006 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2007 "could not enable MDT version %d " 2008 "for %s (ENOMEM)\n", MDT_VERSION_2, 2009 ill->ill_name); 2010 return; 2011 } 2012 } 2013 2014 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2015 "MDT version %d (%d bytes leading, %d bytes trailing " 2016 "header spaces, %d max pld bufs, %d span limit)\n", 2017 ill->ill_name, MDT_VERSION_2, 2018 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2019 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2020 2021 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2022 (*ill_mdt_capab)->ill_mdt_on = 1; 2023 /* 2024 * Round the following values to the nearest 32-bit; ULP 2025 * may further adjust them to accomodate for additional 2026 * protocol headers. We pass these values to ULP during 2027 * bind time. 2028 */ 2029 (*ill_mdt_capab)->ill_mdt_hdr_head = 2030 roundup(mdt_ic->mdt_hdr_head, 4); 2031 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2032 roundup(mdt_ic->mdt_hdr_tail, 4); 2033 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2034 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2035 2036 ill->ill_capabilities |= ILL_CAPAB_MDT; 2037 } else { 2038 uint_t size; 2039 uchar_t *rptr; 2040 2041 size = sizeof (dl_capability_req_t) + 2042 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2043 2044 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2045 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2046 "could not enable MDT for %s (ENOMEM)\n", 2047 ill->ill_name); 2048 return; 2049 } 2050 2051 rptr = nmp->b_rptr; 2052 /* initialize dl_capability_req_t */ 2053 oc = (dl_capability_req_t *)nmp->b_rptr; 2054 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2055 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2056 sizeof (dl_capab_mdt_t); 2057 nmp->b_rptr += sizeof (dl_capability_req_t); 2058 2059 /* initialize dl_capability_sub_t */ 2060 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2061 nmp->b_rptr += sizeof (*isub); 2062 2063 /* initialize dl_capab_mdt_t */ 2064 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2065 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2066 2067 nmp->b_rptr = rptr; 2068 2069 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2070 "to enable MDT version %d\n", ill->ill_name, 2071 MDT_VERSION_2)); 2072 2073 /* set ENABLE flag */ 2074 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2075 2076 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2077 ill_dlpi_send(ill, nmp); 2078 } 2079 } 2080 2081 static void 2082 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2083 { 2084 mblk_t *mp; 2085 dl_capab_mdt_t *mdt_subcap; 2086 dl_capability_sub_t *dl_subcap; 2087 int size; 2088 2089 if (!ILL_MDT_CAPABLE(ill)) 2090 return; 2091 2092 ASSERT(ill->ill_mdt_capab != NULL); 2093 /* 2094 * Clear the capability flag for MDT but retain the ill_mdt_capab 2095 * structure since it's possible that another thread is still 2096 * referring to it. The structure only gets deallocated when 2097 * we destroy the ill. 2098 */ 2099 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2100 2101 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2102 2103 mp = allocb(size, BPRI_HI); 2104 if (mp == NULL) { 2105 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2106 "request to disable MDT\n")); 2107 return; 2108 } 2109 2110 mp->b_wptr = mp->b_rptr + size; 2111 2112 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2113 dl_subcap->dl_cap = DL_CAPAB_MDT; 2114 dl_subcap->dl_length = sizeof (*mdt_subcap); 2115 2116 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2117 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2118 mdt_subcap->mdt_flags = 0; 2119 mdt_subcap->mdt_hdr_head = 0; 2120 mdt_subcap->mdt_hdr_tail = 0; 2121 2122 if (*sc_mp != NULL) 2123 linkb(*sc_mp, mp); 2124 else 2125 *sc_mp = mp; 2126 } 2127 2128 /* 2129 * Send a DL_NOTIFY_REQ to the specified ill to enable 2130 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2131 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2132 * acceleration. 2133 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2134 */ 2135 static boolean_t 2136 ill_enable_promisc_notify(ill_t *ill) 2137 { 2138 mblk_t *mp; 2139 dl_notify_req_t *req; 2140 2141 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2142 2143 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2144 if (mp == NULL) 2145 return (B_FALSE); 2146 2147 req = (dl_notify_req_t *)mp->b_rptr; 2148 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2149 DL_NOTE_PROMISC_OFF_PHYS; 2150 2151 ill_dlpi_send(ill, mp); 2152 2153 return (B_TRUE); 2154 } 2155 2156 2157 /* 2158 * Allocate an IPsec capability request which will be filled by our 2159 * caller to turn on support for one or more algorithms. 2160 */ 2161 static mblk_t * 2162 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2163 { 2164 mblk_t *nmp; 2165 dl_capability_req_t *ocap; 2166 dl_capab_ipsec_t *ocip; 2167 dl_capab_ipsec_t *icip; 2168 uint8_t *ptr; 2169 icip = (dl_capab_ipsec_t *)(isub + 1); 2170 2171 /* 2172 * The first time around, we send a DL_NOTIFY_REQ to enable 2173 * PROMISC_ON/OFF notification from the provider. We need to 2174 * do this before enabling the algorithms to avoid leakage of 2175 * cleartext packets. 2176 */ 2177 2178 if (!ill_enable_promisc_notify(ill)) 2179 return (NULL); 2180 2181 /* 2182 * Allocate new mblk which will contain a new capability 2183 * request to enable the capabilities. 2184 */ 2185 2186 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2187 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2188 if (nmp == NULL) 2189 return (NULL); 2190 2191 ptr = nmp->b_rptr; 2192 2193 /* initialize dl_capability_req_t */ 2194 ocap = (dl_capability_req_t *)ptr; 2195 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2196 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2197 ptr += sizeof (dl_capability_req_t); 2198 2199 /* initialize dl_capability_sub_t */ 2200 bcopy(isub, ptr, sizeof (*isub)); 2201 ptr += sizeof (*isub); 2202 2203 /* initialize dl_capab_ipsec_t */ 2204 ocip = (dl_capab_ipsec_t *)ptr; 2205 bcopy(icip, ocip, sizeof (*icip)); 2206 2207 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2208 return (nmp); 2209 } 2210 2211 /* 2212 * Process an IPsec capability negotiation ack received from a DLS Provider. 2213 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2214 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2215 */ 2216 static void 2217 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2218 { 2219 dl_capab_ipsec_t *icip; 2220 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2221 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2222 uint_t cipher, nciphers; 2223 mblk_t *nmp; 2224 uint_t alg_len; 2225 boolean_t need_sadb_dump; 2226 uint_t sub_dl_cap = isub->dl_cap; 2227 ill_ipsec_capab_t **ill_capab; 2228 uint64_t ill_capab_flag; 2229 uint8_t *capend, *ciphend; 2230 boolean_t sadb_resync; 2231 2232 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2233 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2234 2235 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2236 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2237 ill_capab_flag = ILL_CAPAB_AH; 2238 } else { 2239 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2240 ill_capab_flag = ILL_CAPAB_ESP; 2241 } 2242 2243 /* 2244 * If the ill capability structure exists, then this incoming 2245 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2246 * If this is so, then we'd need to resynchronize the SADB 2247 * after re-enabling the offloaded ciphers. 2248 */ 2249 sadb_resync = (*ill_capab != NULL); 2250 2251 /* 2252 * Note: range checks here are not absolutely sufficient to 2253 * make us robust against malformed messages sent by drivers; 2254 * this is in keeping with the rest of IP's dlpi handling. 2255 * (Remember, it's coming from something else in the kernel 2256 * address space) 2257 */ 2258 2259 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2260 if (capend > mp->b_wptr) { 2261 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2262 "malformed sub-capability too long for mblk"); 2263 return; 2264 } 2265 2266 /* 2267 * There are two types of acks we process here: 2268 * 1. acks in reply to a (first form) generic capability req 2269 * (no ENABLE flag set) 2270 * 2. acks in reply to a ENABLE capability req. 2271 * (ENABLE flag set) 2272 * 2273 * We process the subcapability passed as argument as follows: 2274 * 1 do initializations 2275 * 1.1 initialize nmp = NULL 2276 * 1.2 set need_sadb_dump to B_FALSE 2277 * 2 for each cipher in subcapability: 2278 * 2.1 if ENABLE flag is set: 2279 * 2.1.1 update per-ill ipsec capabilities info 2280 * 2.1.2 set need_sadb_dump to B_TRUE 2281 * 2.2 if ENABLE flag is not set: 2282 * 2.2.1 if nmp is NULL: 2283 * 2.2.1.1 allocate and initialize nmp 2284 * 2.2.1.2 init current pos in nmp 2285 * 2.2.2 copy current cipher to current pos in nmp 2286 * 2.2.3 set ENABLE flag in nmp 2287 * 2.2.4 update current pos 2288 * 3 if nmp is not equal to NULL, send enable request 2289 * 3.1 send capability request 2290 * 4 if need_sadb_dump is B_TRUE 2291 * 4.1 enable promiscuous on/off notifications 2292 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2293 * AH or ESP SA's to interface. 2294 */ 2295 2296 nmp = NULL; 2297 oalg = NULL; 2298 need_sadb_dump = B_FALSE; 2299 icip = (dl_capab_ipsec_t *)(isub + 1); 2300 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2301 2302 nciphers = icip->cip_nciphers; 2303 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2304 2305 if (ciphend > capend) { 2306 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2307 "too many ciphers for sub-capability len"); 2308 return; 2309 } 2310 2311 for (cipher = 0; cipher < nciphers; cipher++) { 2312 alg_len = sizeof (dl_capab_ipsec_alg_t); 2313 2314 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2315 /* 2316 * TBD: when we provide a way to disable capabilities 2317 * from above, need to manage the request-pending state 2318 * and fail if we were not expecting this ACK. 2319 */ 2320 IPSECHW_DEBUG(IPSECHW_CAPAB, 2321 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2322 2323 /* 2324 * Update IPsec capabilities for this ill 2325 */ 2326 2327 if (*ill_capab == NULL) { 2328 IPSECHW_DEBUG(IPSECHW_CAPAB, 2329 ("ill_capability_ipsec_ack: " 2330 "allocating ipsec_capab for ill\n")); 2331 *ill_capab = ill_ipsec_capab_alloc(); 2332 2333 if (*ill_capab == NULL) { 2334 cmn_err(CE_WARN, 2335 "ill_capability_ipsec_ack: " 2336 "could not enable IPsec Hardware " 2337 "acceleration for %s (ENOMEM)\n", 2338 ill->ill_name); 2339 return; 2340 } 2341 } 2342 2343 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2344 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2345 2346 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2347 cmn_err(CE_WARN, 2348 "ill_capability_ipsec_ack: " 2349 "malformed IPsec algorithm id %d", 2350 ialg->alg_prim); 2351 continue; 2352 } 2353 2354 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2355 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2356 ialg->alg_prim); 2357 } else { 2358 ipsec_capab_algparm_t *alp; 2359 2360 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2361 ialg->alg_prim); 2362 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2363 ialg->alg_prim)) { 2364 cmn_err(CE_WARN, 2365 "ill_capability_ipsec_ack: " 2366 "no space for IPsec alg id %d", 2367 ialg->alg_prim); 2368 continue; 2369 } 2370 alp = &((*ill_capab)->encr_algparm[ 2371 ialg->alg_prim]); 2372 alp->minkeylen = ialg->alg_minbits; 2373 alp->maxkeylen = ialg->alg_maxbits; 2374 } 2375 ill->ill_capabilities |= ill_capab_flag; 2376 /* 2377 * indicate that a capability was enabled, which 2378 * will be used below to kick off a SADB dump 2379 * to the ill. 2380 */ 2381 need_sadb_dump = B_TRUE; 2382 } else { 2383 IPSECHW_DEBUG(IPSECHW_CAPAB, 2384 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2385 ialg->alg_prim)); 2386 2387 if (nmp == NULL) { 2388 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2389 if (nmp == NULL) { 2390 /* 2391 * Sending the PROMISC_ON/OFF 2392 * notification request failed. 2393 * We cannot enable the algorithms 2394 * since the Provider will not 2395 * notify IP of promiscous mode 2396 * changes, which could lead 2397 * to leakage of packets. 2398 */ 2399 cmn_err(CE_WARN, 2400 "ill_capability_ipsec_ack: " 2401 "could not enable IPsec Hardware " 2402 "acceleration for %s (ENOMEM)\n", 2403 ill->ill_name); 2404 return; 2405 } 2406 /* ptr to current output alg specifier */ 2407 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2408 } 2409 2410 /* 2411 * Copy current alg specifier, set ENABLE 2412 * flag, and advance to next output alg. 2413 * For now we enable all IPsec capabilities. 2414 */ 2415 ASSERT(oalg != NULL); 2416 bcopy(ialg, oalg, alg_len); 2417 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2418 nmp->b_wptr += alg_len; 2419 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2420 } 2421 2422 /* move to next input algorithm specifier */ 2423 ialg = (dl_capab_ipsec_alg_t *) 2424 ((char *)ialg + alg_len); 2425 } 2426 2427 if (nmp != NULL) 2428 /* 2429 * nmp points to a DL_CAPABILITY_REQ message to enable 2430 * IPsec hardware acceleration. 2431 */ 2432 ill_dlpi_send(ill, nmp); 2433 2434 if (need_sadb_dump) 2435 /* 2436 * An acknowledgement corresponding to a request to 2437 * enable acceleration was received, notify SADB. 2438 */ 2439 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2440 } 2441 2442 /* 2443 * Given an mblk with enough space in it, create sub-capability entries for 2444 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2445 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2446 * in preparation for the reset the DL_CAPABILITY_REQ message. 2447 */ 2448 static void 2449 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2450 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2451 { 2452 dl_capab_ipsec_t *oipsec; 2453 dl_capab_ipsec_alg_t *oalg; 2454 dl_capability_sub_t *dl_subcap; 2455 int i, k; 2456 2457 ASSERT(nciphers > 0); 2458 ASSERT(ill_cap != NULL); 2459 ASSERT(mp != NULL); 2460 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2461 2462 /* dl_capability_sub_t for "stype" */ 2463 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2464 dl_subcap->dl_cap = stype; 2465 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2466 mp->b_wptr += sizeof (dl_capability_sub_t); 2467 2468 /* dl_capab_ipsec_t for "stype" */ 2469 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2470 oipsec->cip_version = 1; 2471 oipsec->cip_nciphers = nciphers; 2472 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2473 2474 /* create entries for "stype" AUTH ciphers */ 2475 for (i = 0; i < ill_cap->algs_size; i++) { 2476 for (k = 0; k < BITSPERBYTE; k++) { 2477 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2478 continue; 2479 2480 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2481 bzero((void *)oalg, sizeof (*oalg)); 2482 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2483 oalg->alg_prim = k + (BITSPERBYTE * i); 2484 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2485 } 2486 } 2487 /* create entries for "stype" ENCR ciphers */ 2488 for (i = 0; i < ill_cap->algs_size; i++) { 2489 for (k = 0; k < BITSPERBYTE; k++) { 2490 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2491 continue; 2492 2493 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2494 bzero((void *)oalg, sizeof (*oalg)); 2495 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2496 oalg->alg_prim = k + (BITSPERBYTE * i); 2497 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2498 } 2499 } 2500 } 2501 2502 /* 2503 * Macro to count number of 1s in a byte (8-bit word). The total count is 2504 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2505 * POPC instruction, but our macro is more flexible for an arbitrary length 2506 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2507 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2508 * stays that way, we can reduce the number of iterations required. 2509 */ 2510 #define COUNT_1S(val, sum) { \ 2511 uint8_t x = val & 0xff; \ 2512 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2513 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2514 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2515 } 2516 2517 /* ARGSUSED */ 2518 static void 2519 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2520 { 2521 mblk_t *mp; 2522 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2523 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2524 uint64_t ill_capabilities = ill->ill_capabilities; 2525 int ah_cnt = 0, esp_cnt = 0; 2526 int ah_len = 0, esp_len = 0; 2527 int i, size = 0; 2528 2529 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2530 return; 2531 2532 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2533 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2534 2535 /* Find out the number of ciphers for AH */ 2536 if (cap_ah != NULL) { 2537 for (i = 0; i < cap_ah->algs_size; i++) { 2538 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2539 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2540 } 2541 if (ah_cnt > 0) { 2542 size += sizeof (dl_capability_sub_t) + 2543 sizeof (dl_capab_ipsec_t); 2544 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2545 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2546 size += ah_len; 2547 } 2548 } 2549 2550 /* Find out the number of ciphers for ESP */ 2551 if (cap_esp != NULL) { 2552 for (i = 0; i < cap_esp->algs_size; i++) { 2553 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2554 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2555 } 2556 if (esp_cnt > 0) { 2557 size += sizeof (dl_capability_sub_t) + 2558 sizeof (dl_capab_ipsec_t); 2559 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2560 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2561 size += esp_len; 2562 } 2563 } 2564 2565 if (size == 0) { 2566 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2567 "there's nothing to reset\n")); 2568 return; 2569 } 2570 2571 mp = allocb(size, BPRI_HI); 2572 if (mp == NULL) { 2573 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2574 "request to disable IPSEC Hardware Acceleration\n")); 2575 return; 2576 } 2577 2578 /* 2579 * Clear the capability flags for IPSec HA but retain the ill 2580 * capability structures since it's possible that another thread 2581 * is still referring to them. The structures only get deallocated 2582 * when we destroy the ill. 2583 * 2584 * Various places check the flags to see if the ill is capable of 2585 * hardware acceleration, and by clearing them we ensure that new 2586 * outbound IPSec packets are sent down encrypted. 2587 */ 2588 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2589 2590 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2591 if (ah_cnt > 0) { 2592 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2593 cap_ah, mp); 2594 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2595 } 2596 2597 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2598 if (esp_cnt > 0) { 2599 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2600 cap_esp, mp); 2601 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2602 } 2603 2604 /* 2605 * At this point we've composed a bunch of sub-capabilities to be 2606 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2607 * by the caller. Upon receiving this reset message, the driver 2608 * must stop inbound decryption (by destroying all inbound SAs) 2609 * and let the corresponding packets come in encrypted. 2610 */ 2611 2612 if (*sc_mp != NULL) 2613 linkb(*sc_mp, mp); 2614 else 2615 *sc_mp = mp; 2616 } 2617 2618 static void 2619 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2620 boolean_t encapsulated) 2621 { 2622 boolean_t legacy = B_FALSE; 2623 2624 /* 2625 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2626 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2627 * instructed the driver to disable its advertised capabilities, 2628 * so there's no point in accepting any response at this moment. 2629 */ 2630 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2631 return; 2632 2633 /* 2634 * Note that only the following two sub-capabilities may be 2635 * considered as "legacy", since their original definitions 2636 * do not incorporate the dl_mid_t module ID token, and hence 2637 * may require the use of the wrapper sub-capability. 2638 */ 2639 switch (subp->dl_cap) { 2640 case DL_CAPAB_IPSEC_AH: 2641 case DL_CAPAB_IPSEC_ESP: 2642 legacy = B_TRUE; 2643 break; 2644 } 2645 2646 /* 2647 * For legacy sub-capabilities which don't incorporate a queue_t 2648 * pointer in their structures, discard them if we detect that 2649 * there are intermediate modules in between IP and the driver. 2650 */ 2651 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2652 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2653 "%d discarded; %d module(s) present below IP\n", 2654 subp->dl_cap, ill->ill_lmod_cnt)); 2655 return; 2656 } 2657 2658 switch (subp->dl_cap) { 2659 case DL_CAPAB_IPSEC_AH: 2660 case DL_CAPAB_IPSEC_ESP: 2661 ill_capability_ipsec_ack(ill, mp, subp); 2662 break; 2663 case DL_CAPAB_MDT: 2664 ill_capability_mdt_ack(ill, mp, subp); 2665 break; 2666 case DL_CAPAB_HCKSUM: 2667 ill_capability_hcksum_ack(ill, mp, subp); 2668 break; 2669 case DL_CAPAB_ZEROCOPY: 2670 ill_capability_zerocopy_ack(ill, mp, subp); 2671 break; 2672 case DL_CAPAB_POLL: 2673 if (!SOFT_RINGS_ENABLED()) 2674 ill_capability_dls_ack(ill, mp, subp); 2675 break; 2676 case DL_CAPAB_SOFT_RING: 2677 if (SOFT_RINGS_ENABLED()) 2678 ill_capability_dls_ack(ill, mp, subp); 2679 break; 2680 case DL_CAPAB_LSO: 2681 ill_capability_lso_ack(ill, mp, subp); 2682 break; 2683 default: 2684 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2685 subp->dl_cap)); 2686 } 2687 } 2688 2689 /* 2690 * As part of negotiating polling capability, the driver tells us 2691 * the default (or normal) blanking interval and packet threshold 2692 * (the receive timer fires if blanking interval is reached or 2693 * the packet threshold is reached). 2694 * 2695 * As part of manipulating the polling interval, we always use our 2696 * estimated interval (avg service time * number of packets queued 2697 * on the squeue) but we try to blank for a minimum of 2698 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2699 * packet threshold during this time. When we are not in polling mode 2700 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2701 * rr_min_blank_ratio but up the packet cnt by a ratio of 2702 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2703 * possible although for a shorter interval. 2704 */ 2705 #define RR_MAX_BLANK_RATIO 20 2706 #define RR_MIN_BLANK_RATIO 10 2707 #define RR_MAX_PKT_CNT_RATIO 3 2708 #define RR_MIN_PKT_CNT_RATIO 3 2709 2710 /* 2711 * These can be tuned via /etc/system. 2712 */ 2713 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2714 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2715 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2716 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2717 2718 static mac_resource_handle_t 2719 ill_ring_add(void *arg, mac_resource_t *mrp) 2720 { 2721 ill_t *ill = (ill_t *)arg; 2722 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2723 ill_rx_ring_t *rx_ring; 2724 int ip_rx_index; 2725 2726 ASSERT(mrp != NULL); 2727 if (mrp->mr_type != MAC_RX_FIFO) { 2728 return (NULL); 2729 } 2730 ASSERT(ill != NULL); 2731 ASSERT(ill->ill_dls_capab != NULL); 2732 2733 mutex_enter(&ill->ill_lock); 2734 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2735 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2736 ASSERT(rx_ring != NULL); 2737 2738 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2739 time_t normal_blank_time = 2740 mrfp->mrf_normal_blank_time; 2741 uint_t normal_pkt_cnt = 2742 mrfp->mrf_normal_pkt_count; 2743 2744 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2745 2746 rx_ring->rr_blank = mrfp->mrf_blank; 2747 rx_ring->rr_handle = mrfp->mrf_arg; 2748 rx_ring->rr_ill = ill; 2749 rx_ring->rr_normal_blank_time = normal_blank_time; 2750 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2751 2752 rx_ring->rr_max_blank_time = 2753 normal_blank_time * rr_max_blank_ratio; 2754 rx_ring->rr_min_blank_time = 2755 normal_blank_time * rr_min_blank_ratio; 2756 rx_ring->rr_max_pkt_cnt = 2757 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2758 rx_ring->rr_min_pkt_cnt = 2759 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2760 2761 rx_ring->rr_ring_state = ILL_RING_INUSE; 2762 mutex_exit(&ill->ill_lock); 2763 2764 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2765 (int), ip_rx_index); 2766 return ((mac_resource_handle_t)rx_ring); 2767 } 2768 } 2769 2770 /* 2771 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2772 * we have devices which can overwhelm this limit, ILL_MAX_RING 2773 * should be made configurable. Meanwhile it cause no panic because 2774 * driver will pass ip_input a NULL handle which will make 2775 * IP allocate the default squeue and Polling mode will not 2776 * be used for this ring. 2777 */ 2778 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2779 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2780 2781 mutex_exit(&ill->ill_lock); 2782 return (NULL); 2783 } 2784 2785 static boolean_t 2786 ill_capability_dls_init(ill_t *ill) 2787 { 2788 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2789 conn_t *connp; 2790 size_t sz; 2791 ip_stack_t *ipst = ill->ill_ipst; 2792 2793 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2794 if (ill_dls == NULL) { 2795 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2796 "soft_ring enabled for ill=%s (%p) but data " 2797 "structs uninitialized\n", ill->ill_name, 2798 (void *)ill); 2799 } 2800 return (B_TRUE); 2801 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2802 if (ill_dls == NULL) { 2803 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2804 "polling enabled for ill=%s (%p) but data " 2805 "structs uninitialized\n", ill->ill_name, 2806 (void *)ill); 2807 } 2808 return (B_TRUE); 2809 } 2810 2811 if (ill_dls != NULL) { 2812 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2813 /* Soft_Ring or polling is being re-enabled */ 2814 2815 connp = ill_dls->ill_unbind_conn; 2816 ASSERT(rx_ring != NULL); 2817 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2818 bzero((void *)rx_ring, 2819 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2820 ill_dls->ill_ring_tbl = rx_ring; 2821 ill_dls->ill_unbind_conn = connp; 2822 return (B_TRUE); 2823 } 2824 2825 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2826 ipst->ips_netstack)) == NULL) 2827 return (B_FALSE); 2828 2829 sz = sizeof (ill_dls_capab_t); 2830 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2831 2832 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2833 if (ill_dls == NULL) { 2834 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2835 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2836 (void *)ill); 2837 CONN_DEC_REF(connp); 2838 return (B_FALSE); 2839 } 2840 2841 /* Allocate space to hold ring table */ 2842 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2843 ill->ill_dls_capab = ill_dls; 2844 ill_dls->ill_unbind_conn = connp; 2845 return (B_TRUE); 2846 } 2847 2848 /* 2849 * ill_capability_dls_disable: disable soft_ring and/or polling 2850 * capability. Since any of the rings might already be in use, need 2851 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2852 * direct calls if necessary. 2853 */ 2854 static void 2855 ill_capability_dls_disable(ill_t *ill) 2856 { 2857 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2858 2859 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2860 ip_squeue_clean_all(ill); 2861 ill_dls->ill_tx = NULL; 2862 ill_dls->ill_tx_handle = NULL; 2863 ill_dls->ill_dls_change_status = NULL; 2864 ill_dls->ill_dls_bind = NULL; 2865 ill_dls->ill_dls_unbind = NULL; 2866 } 2867 2868 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2869 } 2870 2871 static void 2872 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2873 dl_capability_sub_t *isub) 2874 { 2875 uint_t size; 2876 uchar_t *rptr; 2877 dl_capab_dls_t dls, *odls; 2878 ill_dls_capab_t *ill_dls; 2879 mblk_t *nmp = NULL; 2880 dl_capability_req_t *ocap; 2881 uint_t sub_dl_cap = isub->dl_cap; 2882 2883 if (!ill_capability_dls_init(ill)) 2884 return; 2885 ill_dls = ill->ill_dls_capab; 2886 2887 /* Copy locally to get the members aligned */ 2888 bcopy((void *)idls, (void *)&dls, 2889 sizeof (dl_capab_dls_t)); 2890 2891 /* Get the tx function and handle from dld */ 2892 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2893 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2894 2895 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2896 ill_dls->ill_dls_change_status = 2897 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2898 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2899 ill_dls->ill_dls_unbind = 2900 (ip_dls_unbind_t)dls.dls_ring_unbind; 2901 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2902 } 2903 2904 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2905 isub->dl_length; 2906 2907 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2908 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2909 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2910 ill->ill_name, (void *)ill); 2911 return; 2912 } 2913 2914 /* initialize dl_capability_req_t */ 2915 rptr = nmp->b_rptr; 2916 ocap = (dl_capability_req_t *)rptr; 2917 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2918 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2919 rptr += sizeof (dl_capability_req_t); 2920 2921 /* initialize dl_capability_sub_t */ 2922 bcopy(isub, rptr, sizeof (*isub)); 2923 rptr += sizeof (*isub); 2924 2925 odls = (dl_capab_dls_t *)rptr; 2926 rptr += sizeof (dl_capab_dls_t); 2927 2928 /* initialize dl_capab_dls_t to be sent down */ 2929 dls.dls_rx_handle = (uintptr_t)ill; 2930 dls.dls_rx = (uintptr_t)ip_input; 2931 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2932 2933 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2934 dls.dls_ring_cnt = ip_soft_rings_cnt; 2935 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2936 dls.dls_flags = SOFT_RING_ENABLE; 2937 } else { 2938 dls.dls_flags = POLL_ENABLE; 2939 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2940 "to enable polling\n", ill->ill_name)); 2941 } 2942 bcopy((void *)&dls, (void *)odls, 2943 sizeof (dl_capab_dls_t)); 2944 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2945 /* 2946 * nmp points to a DL_CAPABILITY_REQ message to 2947 * enable either soft_ring or polling 2948 */ 2949 ill_dlpi_send(ill, nmp); 2950 } 2951 2952 static void 2953 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2954 { 2955 mblk_t *mp; 2956 dl_capab_dls_t *idls; 2957 dl_capability_sub_t *dl_subcap; 2958 int size; 2959 2960 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2961 return; 2962 2963 ASSERT(ill->ill_dls_capab != NULL); 2964 2965 size = sizeof (*dl_subcap) + sizeof (*idls); 2966 2967 mp = allocb(size, BPRI_HI); 2968 if (mp == NULL) { 2969 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2970 "request to disable soft_ring\n")); 2971 return; 2972 } 2973 2974 mp->b_wptr = mp->b_rptr + size; 2975 2976 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2977 dl_subcap->dl_length = sizeof (*idls); 2978 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2979 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2980 else 2981 dl_subcap->dl_cap = DL_CAPAB_POLL; 2982 2983 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2984 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2985 idls->dls_flags = SOFT_RING_DISABLE; 2986 else 2987 idls->dls_flags = POLL_DISABLE; 2988 2989 if (*sc_mp != NULL) 2990 linkb(*sc_mp, mp); 2991 else 2992 *sc_mp = mp; 2993 } 2994 2995 /* 2996 * Process a soft_ring/poll capability negotiation ack received 2997 * from a DLS Provider.isub must point to the sub-capability 2998 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2999 */ 3000 static void 3001 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3002 { 3003 dl_capab_dls_t *idls; 3004 uint_t sub_dl_cap = isub->dl_cap; 3005 uint8_t *capend; 3006 3007 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3008 sub_dl_cap == DL_CAPAB_POLL); 3009 3010 if (ill->ill_isv6) 3011 return; 3012 3013 /* 3014 * Note: range checks here are not absolutely sufficient to 3015 * make us robust against malformed messages sent by drivers; 3016 * this is in keeping with the rest of IP's dlpi handling. 3017 * (Remember, it's coming from something else in the kernel 3018 * address space) 3019 */ 3020 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3021 if (capend > mp->b_wptr) { 3022 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3023 "malformed sub-capability too long for mblk"); 3024 return; 3025 } 3026 3027 /* 3028 * There are two types of acks we process here: 3029 * 1. acks in reply to a (first form) generic capability req 3030 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3031 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3032 * capability req. 3033 */ 3034 idls = (dl_capab_dls_t *)(isub + 1); 3035 3036 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3037 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3038 "capability isn't as expected; pass-thru " 3039 "module(s) detected, discarding capability\n")); 3040 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3041 /* 3042 * This is a capability renegotitation case. 3043 * The interface better be unusable at this 3044 * point other wise bad things will happen 3045 * if we disable direct calls on a running 3046 * and up interface. 3047 */ 3048 ill_capability_dls_disable(ill); 3049 } 3050 return; 3051 } 3052 3053 switch (idls->dls_flags) { 3054 default: 3055 /* Disable if unknown flag */ 3056 case SOFT_RING_DISABLE: 3057 case POLL_DISABLE: 3058 ill_capability_dls_disable(ill); 3059 break; 3060 case SOFT_RING_CAPABLE: 3061 case POLL_CAPABLE: 3062 /* 3063 * If the capability was already enabled, its safe 3064 * to disable it first to get rid of stale information 3065 * and then start enabling it again. 3066 */ 3067 ill_capability_dls_disable(ill); 3068 ill_capability_dls_capable(ill, idls, isub); 3069 break; 3070 case SOFT_RING_ENABLE: 3071 case POLL_ENABLE: 3072 mutex_enter(&ill->ill_lock); 3073 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3074 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3075 ASSERT(ill->ill_dls_capab != NULL); 3076 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3077 } 3078 if (sub_dl_cap == DL_CAPAB_POLL && 3079 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3080 ASSERT(ill->ill_dls_capab != NULL); 3081 ill->ill_capabilities |= ILL_CAPAB_POLL; 3082 ip1dbg(("ill_capability_dls_ack: interface %s " 3083 "has enabled polling\n", ill->ill_name)); 3084 } 3085 mutex_exit(&ill->ill_lock); 3086 break; 3087 } 3088 } 3089 3090 /* 3091 * Process a hardware checksum offload capability negotiation ack received 3092 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3093 * of a DL_CAPABILITY_ACK message. 3094 */ 3095 static void 3096 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3097 { 3098 dl_capability_req_t *ocap; 3099 dl_capab_hcksum_t *ihck, *ohck; 3100 ill_hcksum_capab_t **ill_hcksum; 3101 mblk_t *nmp = NULL; 3102 uint_t sub_dl_cap = isub->dl_cap; 3103 uint8_t *capend; 3104 3105 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3106 3107 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3108 3109 /* 3110 * Note: range checks here are not absolutely sufficient to 3111 * make us robust against malformed messages sent by drivers; 3112 * this is in keeping with the rest of IP's dlpi handling. 3113 * (Remember, it's coming from something else in the kernel 3114 * address space) 3115 */ 3116 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3117 if (capend > mp->b_wptr) { 3118 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3119 "malformed sub-capability too long for mblk"); 3120 return; 3121 } 3122 3123 /* 3124 * There are two types of acks we process here: 3125 * 1. acks in reply to a (first form) generic capability req 3126 * (no ENABLE flag set) 3127 * 2. acks in reply to a ENABLE capability req. 3128 * (ENABLE flag set) 3129 */ 3130 ihck = (dl_capab_hcksum_t *)(isub + 1); 3131 3132 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3133 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3134 "unsupported hardware checksum " 3135 "sub-capability (version %d, expected %d)", 3136 ihck->hcksum_version, HCKSUM_VERSION_1); 3137 return; 3138 } 3139 3140 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3141 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3142 "checksum capability isn't as expected; pass-thru " 3143 "module(s) detected, discarding capability\n")); 3144 return; 3145 } 3146 3147 #define CURR_HCKSUM_CAPAB \ 3148 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3149 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3150 3151 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3152 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3153 /* do ENABLE processing */ 3154 if (*ill_hcksum == NULL) { 3155 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3156 KM_NOSLEEP); 3157 3158 if (*ill_hcksum == NULL) { 3159 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3160 "could not enable hcksum version %d " 3161 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3162 ill->ill_name); 3163 return; 3164 } 3165 } 3166 3167 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3168 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3169 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3170 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3171 "has enabled hardware checksumming\n ", 3172 ill->ill_name)); 3173 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3174 /* 3175 * Enabling hardware checksum offload 3176 * Currently IP supports {TCP,UDP}/IPv4 3177 * partial and full cksum offload and 3178 * IPv4 header checksum offload. 3179 * Allocate new mblk which will 3180 * contain a new capability request 3181 * to enable hardware checksum offload. 3182 */ 3183 uint_t size; 3184 uchar_t *rptr; 3185 3186 size = sizeof (dl_capability_req_t) + 3187 sizeof (dl_capability_sub_t) + isub->dl_length; 3188 3189 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3190 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3191 "could not enable hardware cksum for %s (ENOMEM)\n", 3192 ill->ill_name); 3193 return; 3194 } 3195 3196 rptr = nmp->b_rptr; 3197 /* initialize dl_capability_req_t */ 3198 ocap = (dl_capability_req_t *)nmp->b_rptr; 3199 ocap->dl_sub_offset = 3200 sizeof (dl_capability_req_t); 3201 ocap->dl_sub_length = 3202 sizeof (dl_capability_sub_t) + 3203 isub->dl_length; 3204 nmp->b_rptr += sizeof (dl_capability_req_t); 3205 3206 /* initialize dl_capability_sub_t */ 3207 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3208 nmp->b_rptr += sizeof (*isub); 3209 3210 /* initialize dl_capab_hcksum_t */ 3211 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3212 bcopy(ihck, ohck, sizeof (*ihck)); 3213 3214 nmp->b_rptr = rptr; 3215 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3216 3217 /* Set ENABLE flag */ 3218 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3219 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3220 3221 /* 3222 * nmp points to a DL_CAPABILITY_REQ message to enable 3223 * hardware checksum acceleration. 3224 */ 3225 ill_dlpi_send(ill, nmp); 3226 } else { 3227 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3228 "advertised %x hardware checksum capability flags\n", 3229 ill->ill_name, ihck->hcksum_txflags)); 3230 } 3231 } 3232 3233 static void 3234 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3235 { 3236 mblk_t *mp; 3237 dl_capab_hcksum_t *hck_subcap; 3238 dl_capability_sub_t *dl_subcap; 3239 int size; 3240 3241 if (!ILL_HCKSUM_CAPABLE(ill)) 3242 return; 3243 3244 ASSERT(ill->ill_hcksum_capab != NULL); 3245 /* 3246 * Clear the capability flag for hardware checksum offload but 3247 * retain the ill_hcksum_capab structure since it's possible that 3248 * another thread is still referring to it. The structure only 3249 * gets deallocated when we destroy the ill. 3250 */ 3251 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3252 3253 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3254 3255 mp = allocb(size, BPRI_HI); 3256 if (mp == NULL) { 3257 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3258 "request to disable hardware checksum offload\n")); 3259 return; 3260 } 3261 3262 mp->b_wptr = mp->b_rptr + size; 3263 3264 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3265 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3266 dl_subcap->dl_length = sizeof (*hck_subcap); 3267 3268 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3269 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3270 hck_subcap->hcksum_txflags = 0; 3271 3272 if (*sc_mp != NULL) 3273 linkb(*sc_mp, mp); 3274 else 3275 *sc_mp = mp; 3276 } 3277 3278 static void 3279 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3280 { 3281 mblk_t *nmp = NULL; 3282 dl_capability_req_t *oc; 3283 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3284 ill_zerocopy_capab_t **ill_zerocopy_capab; 3285 uint_t sub_dl_cap = isub->dl_cap; 3286 uint8_t *capend; 3287 3288 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3289 3290 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3291 3292 /* 3293 * Note: range checks here are not absolutely sufficient to 3294 * make us robust against malformed messages sent by drivers; 3295 * this is in keeping with the rest of IP's dlpi handling. 3296 * (Remember, it's coming from something else in the kernel 3297 * address space) 3298 */ 3299 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3300 if (capend > mp->b_wptr) { 3301 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3302 "malformed sub-capability too long for mblk"); 3303 return; 3304 } 3305 3306 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3307 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3308 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3309 "unsupported ZEROCOPY sub-capability (version %d, " 3310 "expected %d)", zc_ic->zerocopy_version, 3311 ZEROCOPY_VERSION_1); 3312 return; 3313 } 3314 3315 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3316 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3317 "capability isn't as expected; pass-thru module(s) " 3318 "detected, discarding capability\n")); 3319 return; 3320 } 3321 3322 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3323 if (*ill_zerocopy_capab == NULL) { 3324 *ill_zerocopy_capab = 3325 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3326 KM_NOSLEEP); 3327 3328 if (*ill_zerocopy_capab == NULL) { 3329 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3330 "could not enable Zero-copy version %d " 3331 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3332 ill->ill_name); 3333 return; 3334 } 3335 } 3336 3337 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3338 "supports Zero-copy version %d\n", ill->ill_name, 3339 ZEROCOPY_VERSION_1)); 3340 3341 (*ill_zerocopy_capab)->ill_zerocopy_version = 3342 zc_ic->zerocopy_version; 3343 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3344 zc_ic->zerocopy_flags; 3345 3346 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3347 } else { 3348 uint_t size; 3349 uchar_t *rptr; 3350 3351 size = sizeof (dl_capability_req_t) + 3352 sizeof (dl_capability_sub_t) + 3353 sizeof (dl_capab_zerocopy_t); 3354 3355 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable zerocopy for %s (ENOMEM)\n", 3358 ill->ill_name); 3359 return; 3360 } 3361 3362 rptr = nmp->b_rptr; 3363 /* initialize dl_capability_req_t */ 3364 oc = (dl_capability_req_t *)rptr; 3365 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3366 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3367 sizeof (dl_capab_zerocopy_t); 3368 rptr += sizeof (dl_capability_req_t); 3369 3370 /* initialize dl_capability_sub_t */ 3371 bcopy(isub, rptr, sizeof (*isub)); 3372 rptr += sizeof (*isub); 3373 3374 /* initialize dl_capab_zerocopy_t */ 3375 zc_oc = (dl_capab_zerocopy_t *)rptr; 3376 *zc_oc = *zc_ic; 3377 3378 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3379 "to enable zero-copy version %d\n", ill->ill_name, 3380 ZEROCOPY_VERSION_1)); 3381 3382 /* set VMSAFE_MEM flag */ 3383 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3384 3385 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3386 ill_dlpi_send(ill, nmp); 3387 } 3388 } 3389 3390 static void 3391 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3392 { 3393 mblk_t *mp; 3394 dl_capab_zerocopy_t *zerocopy_subcap; 3395 dl_capability_sub_t *dl_subcap; 3396 int size; 3397 3398 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3399 return; 3400 3401 ASSERT(ill->ill_zerocopy_capab != NULL); 3402 /* 3403 * Clear the capability flag for Zero-copy but retain the 3404 * ill_zerocopy_capab structure since it's possible that another 3405 * thread is still referring to it. The structure only gets 3406 * deallocated when we destroy the ill. 3407 */ 3408 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3409 3410 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3411 3412 mp = allocb(size, BPRI_HI); 3413 if (mp == NULL) { 3414 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3415 "request to disable Zero-copy\n")); 3416 return; 3417 } 3418 3419 mp->b_wptr = mp->b_rptr + size; 3420 3421 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3422 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3423 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3424 3425 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3426 zerocopy_subcap->zerocopy_version = 3427 ill->ill_zerocopy_capab->ill_zerocopy_version; 3428 zerocopy_subcap->zerocopy_flags = 0; 3429 3430 if (*sc_mp != NULL) 3431 linkb(*sc_mp, mp); 3432 else 3433 *sc_mp = mp; 3434 } 3435 3436 /* 3437 * Process Large Segment Offload capability negotiation ack received from a 3438 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3439 * DL_CAPABILITY_ACK message. 3440 */ 3441 static void 3442 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3443 { 3444 mblk_t *nmp = NULL; 3445 dl_capability_req_t *oc; 3446 dl_capab_lso_t *lso_ic, *lso_oc; 3447 ill_lso_capab_t **ill_lso_capab; 3448 uint_t sub_dl_cap = isub->dl_cap; 3449 uint8_t *capend; 3450 3451 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3452 3453 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3454 3455 /* 3456 * Note: range checks here are not absolutely sufficient to 3457 * make us robust against malformed messages sent by drivers; 3458 * this is in keeping with the rest of IP's dlpi handling. 3459 * (Remember, it's coming from something else in the kernel 3460 * address space) 3461 */ 3462 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3463 if (capend > mp->b_wptr) { 3464 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3465 "malformed sub-capability too long for mblk"); 3466 return; 3467 } 3468 3469 lso_ic = (dl_capab_lso_t *)(isub + 1); 3470 3471 if (lso_ic->lso_version != LSO_VERSION_1) { 3472 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3473 "unsupported LSO sub-capability (version %d, expected %d)", 3474 lso_ic->lso_version, LSO_VERSION_1); 3475 return; 3476 } 3477 3478 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3479 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3480 "capability isn't as expected; pass-thru module(s) " 3481 "detected, discarding capability\n")); 3482 return; 3483 } 3484 3485 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3486 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3487 if (*ill_lso_capab == NULL) { 3488 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3489 KM_NOSLEEP); 3490 3491 if (*ill_lso_capab == NULL) { 3492 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3493 "could not enable LSO version %d " 3494 "for %s (ENOMEM)\n", LSO_VERSION_1, 3495 ill->ill_name); 3496 return; 3497 } 3498 } 3499 3500 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3501 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3502 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3503 ill->ill_capabilities |= ILL_CAPAB_LSO; 3504 3505 ip1dbg(("ill_capability_lso_ack: interface %s " 3506 "has enabled LSO\n ", ill->ill_name)); 3507 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3508 uint_t size; 3509 uchar_t *rptr; 3510 3511 size = sizeof (dl_capability_req_t) + 3512 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3513 3514 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3515 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3516 "could not enable LSO for %s (ENOMEM)\n", 3517 ill->ill_name); 3518 return; 3519 } 3520 3521 rptr = nmp->b_rptr; 3522 /* initialize dl_capability_req_t */ 3523 oc = (dl_capability_req_t *)nmp->b_rptr; 3524 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3525 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3526 sizeof (dl_capab_lso_t); 3527 nmp->b_rptr += sizeof (dl_capability_req_t); 3528 3529 /* initialize dl_capability_sub_t */ 3530 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3531 nmp->b_rptr += sizeof (*isub); 3532 3533 /* initialize dl_capab_lso_t */ 3534 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3535 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3536 3537 nmp->b_rptr = rptr; 3538 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3539 3540 /* set ENABLE flag */ 3541 lso_oc->lso_flags |= LSO_TX_ENABLE; 3542 3543 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3544 ill_dlpi_send(ill, nmp); 3545 } else { 3546 ip1dbg(("ill_capability_lso_ack: interface %s has " 3547 "advertised %x LSO capability flags\n", 3548 ill->ill_name, lso_ic->lso_flags)); 3549 } 3550 } 3551 3552 3553 static void 3554 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3555 { 3556 mblk_t *mp; 3557 dl_capab_lso_t *lso_subcap; 3558 dl_capability_sub_t *dl_subcap; 3559 int size; 3560 3561 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3562 return; 3563 3564 ASSERT(ill->ill_lso_capab != NULL); 3565 /* 3566 * Clear the capability flag for LSO but retain the 3567 * ill_lso_capab structure since it's possible that another 3568 * thread is still referring to it. The structure only gets 3569 * deallocated when we destroy the ill. 3570 */ 3571 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3572 3573 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3574 3575 mp = allocb(size, BPRI_HI); 3576 if (mp == NULL) { 3577 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3578 "request to disable LSO\n")); 3579 return; 3580 } 3581 3582 mp->b_wptr = mp->b_rptr + size; 3583 3584 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3585 dl_subcap->dl_cap = DL_CAPAB_LSO; 3586 dl_subcap->dl_length = sizeof (*lso_subcap); 3587 3588 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3589 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3590 lso_subcap->lso_flags = 0; 3591 3592 if (*sc_mp != NULL) 3593 linkb(*sc_mp, mp); 3594 else 3595 *sc_mp = mp; 3596 } 3597 3598 /* 3599 * Consume a new-style hardware capabilities negotiation ack. 3600 * Called from ip_rput_dlpi_writer(). 3601 */ 3602 void 3603 ill_capability_ack(ill_t *ill, mblk_t *mp) 3604 { 3605 dl_capability_ack_t *capp; 3606 dl_capability_sub_t *subp, *endp; 3607 3608 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3609 ill->ill_dlpi_capab_state = IDS_OK; 3610 3611 capp = (dl_capability_ack_t *)mp->b_rptr; 3612 3613 if (capp->dl_sub_length == 0) 3614 /* no new-style capabilities */ 3615 return; 3616 3617 /* make sure the driver supplied correct dl_sub_length */ 3618 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3619 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3620 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3621 return; 3622 } 3623 3624 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3625 /* 3626 * There are sub-capabilities. Process the ones we know about. 3627 * Loop until we don't have room for another sub-cap header.. 3628 */ 3629 for (subp = SC(capp, capp->dl_sub_offset), 3630 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3631 subp <= endp; 3632 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3633 3634 switch (subp->dl_cap) { 3635 case DL_CAPAB_ID_WRAPPER: 3636 ill_capability_id_ack(ill, mp, subp); 3637 break; 3638 default: 3639 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3640 break; 3641 } 3642 } 3643 #undef SC 3644 } 3645 3646 /* 3647 * This routine is called to scan the fragmentation reassembly table for 3648 * the specified ILL for any packets that are starting to smell. 3649 * dead_interval is the maximum time in seconds that will be tolerated. It 3650 * will either be the value specified in ip_g_frag_timeout, or zero if the 3651 * ILL is shutting down and it is time to blow everything off. 3652 * 3653 * It returns the number of seconds (as a time_t) that the next frag timer 3654 * should be scheduled for, 0 meaning that the timer doesn't need to be 3655 * re-started. Note that the method of calculating next_timeout isn't 3656 * entirely accurate since time will flow between the time we grab 3657 * current_time and the time we schedule the next timeout. This isn't a 3658 * big problem since this is the timer for sending an ICMP reassembly time 3659 * exceeded messages, and it doesn't have to be exactly accurate. 3660 * 3661 * This function is 3662 * sometimes called as writer, although this is not required. 3663 */ 3664 time_t 3665 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3666 { 3667 ipfb_t *ipfb; 3668 ipfb_t *endp; 3669 ipf_t *ipf; 3670 ipf_t *ipfnext; 3671 mblk_t *mp; 3672 time_t current_time = gethrestime_sec(); 3673 time_t next_timeout = 0; 3674 uint32_t hdr_length; 3675 mblk_t *send_icmp_head; 3676 mblk_t *send_icmp_head_v6; 3677 zoneid_t zoneid; 3678 ip_stack_t *ipst = ill->ill_ipst; 3679 3680 ipfb = ill->ill_frag_hash_tbl; 3681 if (ipfb == NULL) 3682 return (B_FALSE); 3683 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3684 /* Walk the frag hash table. */ 3685 for (; ipfb < endp; ipfb++) { 3686 send_icmp_head = NULL; 3687 send_icmp_head_v6 = NULL; 3688 mutex_enter(&ipfb->ipfb_lock); 3689 while ((ipf = ipfb->ipfb_ipf) != 0) { 3690 time_t frag_time = current_time - ipf->ipf_timestamp; 3691 time_t frag_timeout; 3692 3693 if (frag_time < dead_interval) { 3694 /* 3695 * There are some outstanding fragments 3696 * that will timeout later. Make note of 3697 * the time so that we can reschedule the 3698 * next timeout appropriately. 3699 */ 3700 frag_timeout = dead_interval - frag_time; 3701 if (next_timeout == 0 || 3702 frag_timeout < next_timeout) { 3703 next_timeout = frag_timeout; 3704 } 3705 break; 3706 } 3707 /* Time's up. Get it out of here. */ 3708 hdr_length = ipf->ipf_nf_hdr_len; 3709 ipfnext = ipf->ipf_hash_next; 3710 if (ipfnext) 3711 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3712 *ipf->ipf_ptphn = ipfnext; 3713 mp = ipf->ipf_mp->b_cont; 3714 for (; mp; mp = mp->b_cont) { 3715 /* Extra points for neatness. */ 3716 IP_REASS_SET_START(mp, 0); 3717 IP_REASS_SET_END(mp, 0); 3718 } 3719 mp = ipf->ipf_mp->b_cont; 3720 ill->ill_frag_count -= ipf->ipf_count; 3721 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3722 ipfb->ipfb_count -= ipf->ipf_count; 3723 ASSERT(ipfb->ipfb_frag_pkts > 0); 3724 ipfb->ipfb_frag_pkts--; 3725 /* 3726 * We do not send any icmp message from here because 3727 * we currently are holding the ipfb_lock for this 3728 * hash chain. If we try and send any icmp messages 3729 * from here we may end up via a put back into ip 3730 * trying to get the same lock, causing a recursive 3731 * mutex panic. Instead we build a list and send all 3732 * the icmp messages after we have dropped the lock. 3733 */ 3734 if (ill->ill_isv6) { 3735 if (hdr_length != 0) { 3736 mp->b_next = send_icmp_head_v6; 3737 send_icmp_head_v6 = mp; 3738 } else { 3739 freemsg(mp); 3740 } 3741 } else { 3742 if (hdr_length != 0) { 3743 mp->b_next = send_icmp_head; 3744 send_icmp_head = mp; 3745 } else { 3746 freemsg(mp); 3747 } 3748 } 3749 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3750 freeb(ipf->ipf_mp); 3751 } 3752 mutex_exit(&ipfb->ipfb_lock); 3753 /* 3754 * Now need to send any icmp messages that we delayed from 3755 * above. 3756 */ 3757 while (send_icmp_head_v6 != NULL) { 3758 ip6_t *ip6h; 3759 3760 mp = send_icmp_head_v6; 3761 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3762 mp->b_next = NULL; 3763 if (mp->b_datap->db_type == M_CTL) 3764 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3765 else 3766 ip6h = (ip6_t *)mp->b_rptr; 3767 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3768 ill, ipst); 3769 if (zoneid == ALL_ZONES) { 3770 freemsg(mp); 3771 } else { 3772 icmp_time_exceeded_v6(ill->ill_wq, mp, 3773 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3774 B_FALSE, zoneid, ipst); 3775 } 3776 } 3777 while (send_icmp_head != NULL) { 3778 ipaddr_t dst; 3779 3780 mp = send_icmp_head; 3781 send_icmp_head = send_icmp_head->b_next; 3782 mp->b_next = NULL; 3783 3784 if (mp->b_datap->db_type == M_CTL) 3785 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3786 else 3787 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3788 3789 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3790 if (zoneid == ALL_ZONES) { 3791 freemsg(mp); 3792 } else { 3793 icmp_time_exceeded(ill->ill_wq, mp, 3794 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3795 ipst); 3796 } 3797 } 3798 } 3799 /* 3800 * A non-dying ILL will use the return value to decide whether to 3801 * restart the frag timer, and for how long. 3802 */ 3803 return (next_timeout); 3804 } 3805 3806 /* 3807 * This routine is called when the approximate count of mblk memory used 3808 * for the specified ILL has exceeded max_count. 3809 */ 3810 void 3811 ill_frag_prune(ill_t *ill, uint_t max_count) 3812 { 3813 ipfb_t *ipfb; 3814 ipf_t *ipf; 3815 size_t count; 3816 3817 /* 3818 * If we are here within ip_min_frag_prune_time msecs remove 3819 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3820 * ill_frag_free_num_pkts. 3821 */ 3822 mutex_enter(&ill->ill_lock); 3823 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3824 (ip_min_frag_prune_time != 0 ? 3825 ip_min_frag_prune_time : msec_per_tick)) { 3826 3827 ill->ill_frag_free_num_pkts++; 3828 3829 } else { 3830 ill->ill_frag_free_num_pkts = 0; 3831 } 3832 ill->ill_last_frag_clean_time = lbolt; 3833 mutex_exit(&ill->ill_lock); 3834 3835 /* 3836 * free ill_frag_free_num_pkts oldest packets from each bucket. 3837 */ 3838 if (ill->ill_frag_free_num_pkts != 0) { 3839 int ix; 3840 3841 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3842 ipfb = &ill->ill_frag_hash_tbl[ix]; 3843 mutex_enter(&ipfb->ipfb_lock); 3844 if (ipfb->ipfb_ipf != NULL) { 3845 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3846 ill->ill_frag_free_num_pkts); 3847 } 3848 mutex_exit(&ipfb->ipfb_lock); 3849 } 3850 } 3851 /* 3852 * While the reassembly list for this ILL is too big, prune a fragment 3853 * queue by age, oldest first. Note that the per ILL count is 3854 * approximate, while the per frag hash bucket counts are accurate. 3855 */ 3856 while (ill->ill_frag_count > max_count) { 3857 int ix; 3858 ipfb_t *oipfb = NULL; 3859 uint_t oldest = UINT_MAX; 3860 3861 count = 0; 3862 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3863 ipfb = &ill->ill_frag_hash_tbl[ix]; 3864 mutex_enter(&ipfb->ipfb_lock); 3865 ipf = ipfb->ipfb_ipf; 3866 if (ipf != NULL && ipf->ipf_gen < oldest) { 3867 oldest = ipf->ipf_gen; 3868 oipfb = ipfb; 3869 } 3870 count += ipfb->ipfb_count; 3871 mutex_exit(&ipfb->ipfb_lock); 3872 } 3873 /* Refresh the per ILL count */ 3874 ill->ill_frag_count = count; 3875 if (oipfb == NULL) { 3876 ill->ill_frag_count = 0; 3877 break; 3878 } 3879 if (count <= max_count) 3880 return; /* Somebody beat us to it, nothing to do */ 3881 mutex_enter(&oipfb->ipfb_lock); 3882 ipf = oipfb->ipfb_ipf; 3883 if (ipf != NULL) { 3884 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3885 } 3886 mutex_exit(&oipfb->ipfb_lock); 3887 } 3888 } 3889 3890 /* 3891 * free 'free_cnt' fragmented packets starting at ipf. 3892 */ 3893 void 3894 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3895 { 3896 size_t count; 3897 mblk_t *mp; 3898 mblk_t *tmp; 3899 ipf_t **ipfp = ipf->ipf_ptphn; 3900 3901 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3902 ASSERT(ipfp != NULL); 3903 ASSERT(ipf != NULL); 3904 3905 while (ipf != NULL && free_cnt-- > 0) { 3906 count = ipf->ipf_count; 3907 mp = ipf->ipf_mp; 3908 ipf = ipf->ipf_hash_next; 3909 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3910 IP_REASS_SET_START(tmp, 0); 3911 IP_REASS_SET_END(tmp, 0); 3912 } 3913 ill->ill_frag_count -= count; 3914 ASSERT(ipfb->ipfb_count >= count); 3915 ipfb->ipfb_count -= count; 3916 ASSERT(ipfb->ipfb_frag_pkts > 0); 3917 ipfb->ipfb_frag_pkts--; 3918 freemsg(mp); 3919 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3920 } 3921 3922 if (ipf) 3923 ipf->ipf_ptphn = ipfp; 3924 ipfp[0] = ipf; 3925 } 3926 3927 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3928 "obsolete and may be removed in a future release of Solaris. Use " \ 3929 "ifconfig(1M) to manipulate the forwarding status of an interface." 3930 3931 /* 3932 * For obsolete per-interface forwarding configuration; 3933 * called in response to ND_GET. 3934 */ 3935 /* ARGSUSED */ 3936 static int 3937 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3938 { 3939 ill_t *ill = (ill_t *)cp; 3940 3941 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3942 3943 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3944 return (0); 3945 } 3946 3947 /* 3948 * For obsolete per-interface forwarding configuration; 3949 * called in response to ND_SET. 3950 */ 3951 /* ARGSUSED */ 3952 static int 3953 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3954 cred_t *ioc_cr) 3955 { 3956 long value; 3957 int retval; 3958 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3959 3960 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3961 3962 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3963 value < 0 || value > 1) { 3964 return (EINVAL); 3965 } 3966 3967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3968 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3969 rw_exit(&ipst->ips_ill_g_lock); 3970 return (retval); 3971 } 3972 3973 /* 3974 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3975 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3976 * up RTS_IFINFO routing socket messages for each interface whose flags we 3977 * change. 3978 */ 3979 int 3980 ill_forward_set(ill_t *ill, boolean_t enable) 3981 { 3982 ill_group_t *illgrp; 3983 ip_stack_t *ipst = ill->ill_ipst; 3984 3985 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3986 3987 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3988 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3989 return (0); 3990 3991 if (IS_LOOPBACK(ill)) 3992 return (EINVAL); 3993 3994 /* 3995 * If the ill is in an IPMP group, set the forwarding policy on all 3996 * members of the group to the same value. 3997 */ 3998 illgrp = ill->ill_group; 3999 if (illgrp != NULL) { 4000 ill_t *tmp_ill; 4001 4002 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4003 tmp_ill = tmp_ill->ill_group_next) { 4004 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4005 (enable ? "Enabling" : "Disabling"), 4006 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4007 tmp_ill->ill_name)); 4008 mutex_enter(&tmp_ill->ill_lock); 4009 if (enable) 4010 tmp_ill->ill_flags |= ILLF_ROUTER; 4011 else 4012 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4013 mutex_exit(&tmp_ill->ill_lock); 4014 if (tmp_ill->ill_isv6) 4015 ill_set_nce_router_flags(tmp_ill, enable); 4016 /* Notify routing socket listeners of this change. */ 4017 ip_rts_ifmsg(tmp_ill->ill_ipif); 4018 } 4019 } else { 4020 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4021 (enable ? "Enabling" : "Disabling"), 4022 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4023 mutex_enter(&ill->ill_lock); 4024 if (enable) 4025 ill->ill_flags |= ILLF_ROUTER; 4026 else 4027 ill->ill_flags &= ~ILLF_ROUTER; 4028 mutex_exit(&ill->ill_lock); 4029 if (ill->ill_isv6) 4030 ill_set_nce_router_flags(ill, enable); 4031 /* Notify routing socket listeners of this change. */ 4032 ip_rts_ifmsg(ill->ill_ipif); 4033 } 4034 4035 return (0); 4036 } 4037 4038 /* 4039 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4040 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4041 * set or clear. 4042 */ 4043 static void 4044 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4045 { 4046 ipif_t *ipif; 4047 nce_t *nce; 4048 4049 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4050 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4051 if (nce != NULL) { 4052 mutex_enter(&nce->nce_lock); 4053 if (enable) 4054 nce->nce_flags |= NCE_F_ISROUTER; 4055 else 4056 nce->nce_flags &= ~NCE_F_ISROUTER; 4057 mutex_exit(&nce->nce_lock); 4058 NCE_REFRELE(nce); 4059 } 4060 } 4061 } 4062 4063 /* 4064 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4065 * for this ill. Make sure the v6/v4 question has been answered about this 4066 * ill. The creation of this ndd variable is only for backwards compatibility. 4067 * The preferred way to control per-interface IP forwarding is through the 4068 * ILLF_ROUTER interface flag. 4069 */ 4070 static int 4071 ill_set_ndd_name(ill_t *ill) 4072 { 4073 char *suffix; 4074 ip_stack_t *ipst = ill->ill_ipst; 4075 4076 ASSERT(IAM_WRITER_ILL(ill)); 4077 4078 if (ill->ill_isv6) 4079 suffix = ipv6_forward_suffix; 4080 else 4081 suffix = ipv4_forward_suffix; 4082 4083 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4084 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4085 /* 4086 * Copies over the '\0'. 4087 * Note that strlen(suffix) is always bounded. 4088 */ 4089 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4090 strlen(suffix) + 1); 4091 4092 /* 4093 * Use of the nd table requires holding the reader lock. 4094 * Modifying the nd table thru nd_load/nd_unload requires 4095 * the writer lock. 4096 */ 4097 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4098 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4099 nd_ill_forward_set, (caddr_t)ill)) { 4100 /* 4101 * If the nd_load failed, it only meant that it could not 4102 * allocate a new bunch of room for further NDD expansion. 4103 * Because of that, the ill_ndd_name will be set to 0, and 4104 * this interface is at the mercy of the global ip_forwarding 4105 * variable. 4106 */ 4107 rw_exit(&ipst->ips_ip_g_nd_lock); 4108 ill->ill_ndd_name = NULL; 4109 return (ENOMEM); 4110 } 4111 rw_exit(&ipst->ips_ip_g_nd_lock); 4112 return (0); 4113 } 4114 4115 /* 4116 * Intializes the context structure and returns the first ill in the list 4117 * cuurently start_list and end_list can have values: 4118 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4119 * IP_V4_G_HEAD Traverse IPV4 list only. 4120 * IP_V6_G_HEAD Traverse IPV6 list only. 4121 */ 4122 4123 /* 4124 * We don't check for CONDEMNED ills here. Caller must do that if 4125 * necessary under the ill lock. 4126 */ 4127 ill_t * 4128 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4129 ip_stack_t *ipst) 4130 { 4131 ill_if_t *ifp; 4132 ill_t *ill; 4133 avl_tree_t *avl_tree; 4134 4135 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4136 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4137 4138 /* 4139 * setup the lists to search 4140 */ 4141 if (end_list != MAX_G_HEADS) { 4142 ctx->ctx_current_list = start_list; 4143 ctx->ctx_last_list = end_list; 4144 } else { 4145 ctx->ctx_last_list = MAX_G_HEADS - 1; 4146 ctx->ctx_current_list = 0; 4147 } 4148 4149 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4150 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4151 if (ifp != (ill_if_t *) 4152 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4153 avl_tree = &ifp->illif_avl_by_ppa; 4154 ill = avl_first(avl_tree); 4155 /* 4156 * ill is guaranteed to be non NULL or ifp should have 4157 * not existed. 4158 */ 4159 ASSERT(ill != NULL); 4160 return (ill); 4161 } 4162 ctx->ctx_current_list++; 4163 } 4164 4165 return (NULL); 4166 } 4167 4168 /* 4169 * returns the next ill in the list. ill_first() must have been called 4170 * before calling ill_next() or bad things will happen. 4171 */ 4172 4173 /* 4174 * We don't check for CONDEMNED ills here. Caller must do that if 4175 * necessary under the ill lock. 4176 */ 4177 ill_t * 4178 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4179 { 4180 ill_if_t *ifp; 4181 ill_t *ill; 4182 ip_stack_t *ipst = lastill->ill_ipst; 4183 4184 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4185 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4186 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4187 AVL_AFTER)) != NULL) { 4188 return (ill); 4189 } 4190 4191 /* goto next ill_ifp in the list. */ 4192 ifp = lastill->ill_ifptr->illif_next; 4193 4194 /* make sure not at end of circular list */ 4195 while (ifp == 4196 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4197 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4198 return (NULL); 4199 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4200 } 4201 4202 return (avl_first(&ifp->illif_avl_by_ppa)); 4203 } 4204 4205 /* 4206 * Check interface name for correct format which is name+ppa. 4207 * name can contain characters and digits, the right most digits 4208 * make up the ppa number. use of octal is not allowed, name must contain 4209 * a ppa, return pointer to the start of ppa. 4210 * In case of error return NULL. 4211 */ 4212 static char * 4213 ill_get_ppa_ptr(char *name) 4214 { 4215 int namelen = mi_strlen(name); 4216 4217 int len = namelen; 4218 4219 name += len; 4220 while (len > 0) { 4221 name--; 4222 if (*name < '0' || *name > '9') 4223 break; 4224 len--; 4225 } 4226 4227 /* empty string, all digits, or no trailing digits */ 4228 if (len == 0 || len == (int)namelen) 4229 return (NULL); 4230 4231 name++; 4232 /* check for attempted use of octal */ 4233 if (*name == '0' && len != (int)namelen - 1) 4234 return (NULL); 4235 return (name); 4236 } 4237 4238 /* 4239 * use avl tree to locate the ill. 4240 */ 4241 static ill_t * 4242 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4243 ipsq_func_t func, int *error, ip_stack_t *ipst) 4244 { 4245 char *ppa_ptr = NULL; 4246 int len; 4247 uint_t ppa; 4248 ill_t *ill = NULL; 4249 ill_if_t *ifp; 4250 int list; 4251 ipsq_t *ipsq; 4252 4253 if (error != NULL) 4254 *error = 0; 4255 4256 /* 4257 * get ppa ptr 4258 */ 4259 if (isv6) 4260 list = IP_V6_G_HEAD; 4261 else 4262 list = IP_V4_G_HEAD; 4263 4264 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4265 if (error != NULL) 4266 *error = ENXIO; 4267 return (NULL); 4268 } 4269 4270 len = ppa_ptr - name + 1; 4271 4272 ppa = stoi(&ppa_ptr); 4273 4274 ifp = IP_VX_ILL_G_LIST(list, ipst); 4275 4276 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4277 /* 4278 * match is done on len - 1 as the name is not null 4279 * terminated it contains ppa in addition to the interface 4280 * name. 4281 */ 4282 if ((ifp->illif_name_len == len) && 4283 bcmp(ifp->illif_name, name, len - 1) == 0) { 4284 break; 4285 } else { 4286 ifp = ifp->illif_next; 4287 } 4288 } 4289 4290 4291 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4292 /* 4293 * Even the interface type does not exist. 4294 */ 4295 if (error != NULL) 4296 *error = ENXIO; 4297 return (NULL); 4298 } 4299 4300 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4301 if (ill != NULL) { 4302 /* 4303 * The block comment at the start of ipif_down 4304 * explains the use of the macros used below 4305 */ 4306 GRAB_CONN_LOCK(q); 4307 mutex_enter(&ill->ill_lock); 4308 if (ILL_CAN_LOOKUP(ill)) { 4309 ill_refhold_locked(ill); 4310 mutex_exit(&ill->ill_lock); 4311 RELEASE_CONN_LOCK(q); 4312 return (ill); 4313 } else if (ILL_CAN_WAIT(ill, q)) { 4314 ipsq = ill->ill_phyint->phyint_ipsq; 4315 mutex_enter(&ipsq->ipsq_lock); 4316 mutex_exit(&ill->ill_lock); 4317 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4318 mutex_exit(&ipsq->ipsq_lock); 4319 RELEASE_CONN_LOCK(q); 4320 *error = EINPROGRESS; 4321 return (NULL); 4322 } 4323 mutex_exit(&ill->ill_lock); 4324 RELEASE_CONN_LOCK(q); 4325 } 4326 if (error != NULL) 4327 *error = ENXIO; 4328 return (NULL); 4329 } 4330 4331 /* 4332 * comparison function for use with avl. 4333 */ 4334 static int 4335 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4336 { 4337 uint_t ppa; 4338 uint_t ill_ppa; 4339 4340 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4341 4342 ppa = *((uint_t *)ppa_ptr); 4343 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4344 /* 4345 * We want the ill with the lowest ppa to be on the 4346 * top. 4347 */ 4348 if (ill_ppa < ppa) 4349 return (1); 4350 if (ill_ppa > ppa) 4351 return (-1); 4352 return (0); 4353 } 4354 4355 /* 4356 * remove an interface type from the global list. 4357 */ 4358 static void 4359 ill_delete_interface_type(ill_if_t *interface) 4360 { 4361 ASSERT(interface != NULL); 4362 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4363 4364 avl_destroy(&interface->illif_avl_by_ppa); 4365 if (interface->illif_ppa_arena != NULL) 4366 vmem_destroy(interface->illif_ppa_arena); 4367 4368 remque(interface); 4369 4370 mi_free(interface); 4371 } 4372 4373 /* Defined in ip_netinfo.c */ 4374 extern ddi_taskq_t *eventq_queue_nic; 4375 4376 /* 4377 * remove ill from the global list. 4378 */ 4379 static void 4380 ill_glist_delete(ill_t *ill) 4381 { 4382 char *nicname; 4383 size_t nicnamelen; 4384 hook_nic_event_t *info; 4385 ip_stack_t *ipst; 4386 4387 if (ill == NULL) 4388 return; 4389 ipst = ill->ill_ipst; 4390 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4391 4392 if (ill->ill_name != NULL) { 4393 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4394 if (nicname != NULL) { 4395 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4396 nicnamelen = ill->ill_name_length; 4397 } 4398 } else { 4399 nicname = NULL; 4400 nicnamelen = 0; 4401 } 4402 4403 /* 4404 * If the ill was never inserted into the AVL tree 4405 * we skip the if branch. 4406 */ 4407 if (ill->ill_ifptr != NULL) { 4408 /* 4409 * remove from AVL tree and free ppa number 4410 */ 4411 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4412 4413 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4414 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4415 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4416 } 4417 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4418 ill_delete_interface_type(ill->ill_ifptr); 4419 } 4420 4421 /* 4422 * Indicate ill is no longer in the list. 4423 */ 4424 ill->ill_ifptr = NULL; 4425 ill->ill_name_length = 0; 4426 ill->ill_name[0] = '\0'; 4427 ill->ill_ppa = UINT_MAX; 4428 } 4429 4430 /* 4431 * Run the unplumb hook after the NIC has disappeared from being 4432 * visible so that attempts to revalidate its existance will fail. 4433 * 4434 * This needs to be run inside the ill_g_lock perimeter to ensure 4435 * that the ordering of delivered events to listeners matches the 4436 * order of them in the kernel. 4437 */ 4438 if ((info = ill->ill_nic_event_info) != NULL) { 4439 if (info->hne_event != NE_DOWN) { 4440 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4441 "attached for %s\n", info->hne_event, 4442 ill->ill_name)); 4443 if (info->hne_data != NULL) 4444 kmem_free(info->hne_data, info->hne_datalen); 4445 kmem_free(info, sizeof (hook_nic_event_t)); 4446 } else { 4447 if (ddi_taskq_dispatch(eventq_queue_nic, 4448 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4449 == DDI_FAILURE) { 4450 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4451 "failed\n")); 4452 if (info->hne_data != NULL) 4453 kmem_free(info->hne_data, 4454 info->hne_datalen); 4455 kmem_free(info, sizeof (hook_nic_event_t)); 4456 } 4457 } 4458 } 4459 4460 /* Generate NE_UNPLUMB event for ill_name. */ 4461 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4462 if (info != NULL) { 4463 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4464 info->hne_lif = 0; 4465 info->hne_event = NE_UNPLUMB; 4466 info->hne_data = nicname; 4467 info->hne_datalen = nicnamelen; 4468 info->hne_family = ill->ill_isv6 ? 4469 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4470 } else { 4471 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4472 "information for %s (ENOMEM)\n", ill->ill_name)); 4473 if (nicname != NULL) 4474 kmem_free(nicname, nicnamelen); 4475 } 4476 4477 ill->ill_nic_event_info = info; 4478 4479 ill_phyint_free(ill); 4480 rw_exit(&ipst->ips_ill_g_lock); 4481 } 4482 4483 /* 4484 * allocate a ppa, if the number of plumbed interfaces of this type are 4485 * less than ill_no_arena do a linear search to find a unused ppa. 4486 * When the number goes beyond ill_no_arena switch to using an arena. 4487 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4488 * is the return value for an error condition, so allocation starts at one 4489 * and is decremented by one. 4490 */ 4491 static int 4492 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4493 { 4494 ill_t *tmp_ill; 4495 uint_t start, end; 4496 int ppa; 4497 4498 if (ifp->illif_ppa_arena == NULL && 4499 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4500 /* 4501 * Create an arena. 4502 */ 4503 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4504 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4505 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4506 /* allocate what has already been assigned */ 4507 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4508 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4509 tmp_ill, AVL_AFTER)) { 4510 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4511 1, /* size */ 4512 1, /* align/quantum */ 4513 0, /* phase */ 4514 0, /* nocross */ 4515 /* minaddr */ 4516 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4517 /* maxaddr */ 4518 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4519 VM_NOSLEEP|VM_FIRSTFIT); 4520 if (ppa == 0) { 4521 ip1dbg(("ill_alloc_ppa: ppa allocation" 4522 " failed while switching")); 4523 vmem_destroy(ifp->illif_ppa_arena); 4524 ifp->illif_ppa_arena = NULL; 4525 break; 4526 } 4527 } 4528 } 4529 4530 if (ifp->illif_ppa_arena != NULL) { 4531 if (ill->ill_ppa == UINT_MAX) { 4532 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4533 1, VM_NOSLEEP|VM_FIRSTFIT); 4534 if (ppa == 0) 4535 return (EAGAIN); 4536 ill->ill_ppa = --ppa; 4537 } else { 4538 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4539 1, /* size */ 4540 1, /* align/quantum */ 4541 0, /* phase */ 4542 0, /* nocross */ 4543 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4544 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4545 VM_NOSLEEP|VM_FIRSTFIT); 4546 /* 4547 * Most likely the allocation failed because 4548 * the requested ppa was in use. 4549 */ 4550 if (ppa == 0) 4551 return (EEXIST); 4552 } 4553 return (0); 4554 } 4555 4556 /* 4557 * No arena is in use and not enough (>ill_no_arena) interfaces have 4558 * been plumbed to create one. Do a linear search to get a unused ppa. 4559 */ 4560 if (ill->ill_ppa == UINT_MAX) { 4561 end = UINT_MAX - 1; 4562 start = 0; 4563 } else { 4564 end = start = ill->ill_ppa; 4565 } 4566 4567 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4568 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4569 if (start++ >= end) { 4570 if (ill->ill_ppa == UINT_MAX) 4571 return (EAGAIN); 4572 else 4573 return (EEXIST); 4574 } 4575 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4576 } 4577 ill->ill_ppa = start; 4578 return (0); 4579 } 4580 4581 /* 4582 * Insert ill into the list of configured ill's. Once this function completes, 4583 * the ill is globally visible and is available through lookups. More precisely 4584 * this happens after the caller drops the ill_g_lock. 4585 */ 4586 static int 4587 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4588 { 4589 ill_if_t *ill_interface; 4590 avl_index_t where = 0; 4591 int error; 4592 int name_length; 4593 int index; 4594 boolean_t check_length = B_FALSE; 4595 ip_stack_t *ipst = ill->ill_ipst; 4596 4597 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4598 4599 name_length = mi_strlen(name) + 1; 4600 4601 if (isv6) 4602 index = IP_V6_G_HEAD; 4603 else 4604 index = IP_V4_G_HEAD; 4605 4606 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4607 /* 4608 * Search for interface type based on name 4609 */ 4610 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4611 if ((ill_interface->illif_name_len == name_length) && 4612 (strcmp(ill_interface->illif_name, name) == 0)) { 4613 break; 4614 } 4615 ill_interface = ill_interface->illif_next; 4616 } 4617 4618 /* 4619 * Interface type not found, create one. 4620 */ 4621 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4622 4623 ill_g_head_t ghead; 4624 4625 /* 4626 * allocate ill_if_t structure 4627 */ 4628 4629 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4630 if (ill_interface == NULL) { 4631 return (ENOMEM); 4632 } 4633 4634 4635 4636 (void) strcpy(ill_interface->illif_name, name); 4637 ill_interface->illif_name_len = name_length; 4638 4639 avl_create(&ill_interface->illif_avl_by_ppa, 4640 ill_compare_ppa, sizeof (ill_t), 4641 offsetof(struct ill_s, ill_avl_byppa)); 4642 4643 /* 4644 * link the structure in the back to maintain order 4645 * of configuration for ifconfig output. 4646 */ 4647 ghead = ipst->ips_ill_g_heads[index]; 4648 insque(ill_interface, ghead.ill_g_list_tail); 4649 4650 } 4651 4652 if (ill->ill_ppa == UINT_MAX) 4653 check_length = B_TRUE; 4654 4655 error = ill_alloc_ppa(ill_interface, ill); 4656 if (error != 0) { 4657 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4658 ill_delete_interface_type(ill->ill_ifptr); 4659 return (error); 4660 } 4661 4662 /* 4663 * When the ppa is choosen by the system, check that there is 4664 * enough space to insert ppa. if a specific ppa was passed in this 4665 * check is not required as the interface name passed in will have 4666 * the right ppa in it. 4667 */ 4668 if (check_length) { 4669 /* 4670 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4671 */ 4672 char buf[sizeof (uint_t) * 3]; 4673 4674 /* 4675 * convert ppa to string to calculate the amount of space 4676 * required for it in the name. 4677 */ 4678 numtos(ill->ill_ppa, buf); 4679 4680 /* Do we have enough space to insert ppa ? */ 4681 4682 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4683 /* Free ppa and interface type struct */ 4684 if (ill_interface->illif_ppa_arena != NULL) { 4685 vmem_free(ill_interface->illif_ppa_arena, 4686 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4687 } 4688 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4689 0) { 4690 ill_delete_interface_type(ill->ill_ifptr); 4691 } 4692 4693 return (EINVAL); 4694 } 4695 } 4696 4697 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4698 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4699 4700 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4701 &where); 4702 ill->ill_ifptr = ill_interface; 4703 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4704 4705 ill_phyint_reinit(ill); 4706 return (0); 4707 } 4708 4709 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4710 static boolean_t 4711 ipsq_init(ill_t *ill) 4712 { 4713 ipsq_t *ipsq; 4714 4715 /* Init the ipsq and impicitly enter as writer */ 4716 ill->ill_phyint->phyint_ipsq = 4717 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4718 if (ill->ill_phyint->phyint_ipsq == NULL) 4719 return (B_FALSE); 4720 ipsq = ill->ill_phyint->phyint_ipsq; 4721 ipsq->ipsq_phyint_list = ill->ill_phyint; 4722 ill->ill_phyint->phyint_ipsq_next = NULL; 4723 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4724 ipsq->ipsq_refs = 1; 4725 ipsq->ipsq_writer = curthread; 4726 ipsq->ipsq_reentry_cnt = 1; 4727 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4728 #ifdef ILL_DEBUG 4729 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4730 #endif 4731 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4732 return (B_TRUE); 4733 } 4734 4735 /* 4736 * ill_init is called by ip_open when a device control stream is opened. 4737 * It does a few initializations, and shoots a DL_INFO_REQ message down 4738 * to the driver. The response is later picked up in ip_rput_dlpi and 4739 * used to set up default mechanisms for talking to the driver. (Always 4740 * called as writer.) 4741 * 4742 * If this function returns error, ip_open will call ip_close which in 4743 * turn will call ill_delete to clean up any memory allocated here that 4744 * is not yet freed. 4745 */ 4746 int 4747 ill_init(queue_t *q, ill_t *ill) 4748 { 4749 int count; 4750 dl_info_req_t *dlir; 4751 mblk_t *info_mp; 4752 uchar_t *frag_ptr; 4753 4754 /* 4755 * The ill is initialized to zero by mi_alloc*(). In addition 4756 * some fields already contain valid values, initialized in 4757 * ip_open(), before we reach here. 4758 */ 4759 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4760 4761 ill->ill_rq = q; 4762 ill->ill_wq = WR(q); 4763 4764 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4765 BPRI_HI); 4766 if (info_mp == NULL) 4767 return (ENOMEM); 4768 4769 /* 4770 * Allocate sufficient space to contain our fragment hash table and 4771 * the device name. 4772 */ 4773 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4774 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4775 if (frag_ptr == NULL) { 4776 freemsg(info_mp); 4777 return (ENOMEM); 4778 } 4779 ill->ill_frag_ptr = frag_ptr; 4780 ill->ill_frag_free_num_pkts = 0; 4781 ill->ill_last_frag_clean_time = 0; 4782 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4783 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4784 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4785 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4786 NULL, MUTEX_DEFAULT, NULL); 4787 } 4788 4789 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4790 if (ill->ill_phyint == NULL) { 4791 freemsg(info_mp); 4792 mi_free(frag_ptr); 4793 return (ENOMEM); 4794 } 4795 4796 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4797 /* 4798 * For now pretend this is a v4 ill. We need to set phyint_ill* 4799 * at this point because of the following reason. If we can't 4800 * enter the ipsq at some point and cv_wait, the writer that 4801 * wakes us up tries to locate us using the list of all phyints 4802 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4803 * If we don't set it now, we risk a missed wakeup. 4804 */ 4805 ill->ill_phyint->phyint_illv4 = ill; 4806 ill->ill_ppa = UINT_MAX; 4807 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4808 4809 if (!ipsq_init(ill)) { 4810 freemsg(info_mp); 4811 mi_free(frag_ptr); 4812 mi_free(ill->ill_phyint); 4813 return (ENOMEM); 4814 } 4815 4816 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4817 4818 4819 /* Frag queue limit stuff */ 4820 ill->ill_frag_count = 0; 4821 ill->ill_ipf_gen = 0; 4822 4823 ill->ill_global_timer = INFINITY; 4824 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4825 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4826 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4827 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4828 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4829 4830 /* 4831 * Initialize IPv6 configuration variables. The IP module is always 4832 * opened as an IPv4 module. Instead tracking down the cases where 4833 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4834 * here for convenience, this has no effect until the ill is set to do 4835 * IPv6. 4836 */ 4837 ill->ill_reachable_time = ND_REACHABLE_TIME; 4838 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4839 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4840 ill->ill_max_buf = ND_MAX_Q; 4841 ill->ill_refcnt = 0; 4842 4843 /* Send down the Info Request to the driver. */ 4844 info_mp->b_datap->db_type = M_PCPROTO; 4845 dlir = (dl_info_req_t *)info_mp->b_rptr; 4846 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4847 dlir->dl_primitive = DL_INFO_REQ; 4848 4849 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4850 4851 qprocson(q); 4852 ill_dlpi_send(ill, info_mp); 4853 4854 return (0); 4855 } 4856 4857 /* 4858 * ill_dls_info 4859 * creates datalink socket info from the device. 4860 */ 4861 int 4862 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4863 { 4864 size_t len; 4865 ill_t *ill = ipif->ipif_ill; 4866 4867 sdl->sdl_family = AF_LINK; 4868 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4869 sdl->sdl_type = ill->ill_type; 4870 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4871 len = strlen(sdl->sdl_data); 4872 ASSERT(len < 256); 4873 sdl->sdl_nlen = (uchar_t)len; 4874 sdl->sdl_alen = ill->ill_phys_addr_length; 4875 sdl->sdl_slen = 0; 4876 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4877 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4878 4879 return (sizeof (struct sockaddr_dl)); 4880 } 4881 4882 /* 4883 * ill_xarp_info 4884 * creates xarp info from the device. 4885 */ 4886 static int 4887 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4888 { 4889 sdl->sdl_family = AF_LINK; 4890 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4891 sdl->sdl_type = ill->ill_type; 4892 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4893 sizeof (sdl->sdl_data)); 4894 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4895 sdl->sdl_alen = ill->ill_phys_addr_length; 4896 sdl->sdl_slen = 0; 4897 return (sdl->sdl_nlen); 4898 } 4899 4900 static int 4901 loopback_kstat_update(kstat_t *ksp, int rw) 4902 { 4903 kstat_named_t *kn; 4904 netstackid_t stackid; 4905 netstack_t *ns; 4906 ip_stack_t *ipst; 4907 4908 if (ksp == NULL || ksp->ks_data == NULL) 4909 return (EIO); 4910 4911 if (rw == KSTAT_WRITE) 4912 return (EACCES); 4913 4914 kn = KSTAT_NAMED_PTR(ksp); 4915 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4916 4917 ns = netstack_find_by_stackid(stackid); 4918 if (ns == NULL) 4919 return (-1); 4920 4921 ipst = ns->netstack_ip; 4922 if (ipst == NULL) { 4923 netstack_rele(ns); 4924 return (-1); 4925 } 4926 kn[0].value.ui32 = ipst->ips_loopback_packets; 4927 kn[1].value.ui32 = ipst->ips_loopback_packets; 4928 netstack_rele(ns); 4929 return (0); 4930 } 4931 4932 4933 /* 4934 * Has ifindex been plumbed already. 4935 * Compares both phyint_ifindex and phyint_group_ifindex. 4936 */ 4937 static boolean_t 4938 phyint_exists(uint_t index, ip_stack_t *ipst) 4939 { 4940 phyint_t *phyi; 4941 4942 ASSERT(index != 0); 4943 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4944 /* 4945 * Indexes are stored in the phyint - a common structure 4946 * to both IPv4 and IPv6. 4947 */ 4948 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4949 for (; phyi != NULL; 4950 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4951 phyi, AVL_AFTER)) { 4952 if (phyi->phyint_ifindex == index || 4953 phyi->phyint_group_ifindex == index) 4954 return (B_TRUE); 4955 } 4956 return (B_FALSE); 4957 } 4958 4959 /* Pick a unique ifindex */ 4960 boolean_t 4961 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4962 { 4963 uint_t starting_index; 4964 4965 if (!ipst->ips_ill_index_wrap) { 4966 *indexp = ipst->ips_ill_index++; 4967 if (ipst->ips_ill_index == 0) { 4968 /* Reached the uint_t limit Next time wrap */ 4969 ipst->ips_ill_index_wrap = B_TRUE; 4970 } 4971 return (B_TRUE); 4972 } 4973 4974 /* 4975 * Start reusing unused indexes. Note that we hold the ill_g_lock 4976 * at this point and don't want to call any function that attempts 4977 * to get the lock again. 4978 */ 4979 starting_index = ipst->ips_ill_index++; 4980 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4981 if (ipst->ips_ill_index != 0 && 4982 !phyint_exists(ipst->ips_ill_index, ipst)) { 4983 /* found unused index - use it */ 4984 *indexp = ipst->ips_ill_index; 4985 return (B_TRUE); 4986 } 4987 } 4988 4989 /* 4990 * all interface indicies are inuse. 4991 */ 4992 return (B_FALSE); 4993 } 4994 4995 /* 4996 * Assign a unique interface index for the phyint. 4997 */ 4998 static boolean_t 4999 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 5000 { 5001 ASSERT(phyi->phyint_ifindex == 0); 5002 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 5003 } 5004 5005 /* 5006 * Return a pointer to the ill which matches the supplied name. Note that 5007 * the ill name length includes the null termination character. (May be 5008 * called as writer.) 5009 * If do_alloc and the interface is "lo0" it will be automatically created. 5010 * Cannot bump up reference on condemned ills. So dup detect can't be done 5011 * using this func. 5012 */ 5013 ill_t * 5014 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5015 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5016 ip_stack_t *ipst) 5017 { 5018 ill_t *ill; 5019 ipif_t *ipif; 5020 kstat_named_t *kn; 5021 boolean_t isloopback; 5022 ipsq_t *old_ipsq; 5023 in6_addr_t ov6addr; 5024 5025 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5026 5027 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5028 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5029 rw_exit(&ipst->ips_ill_g_lock); 5030 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5031 return (ill); 5032 5033 /* 5034 * Couldn't find it. Does this happen to be a lookup for the 5035 * loopback device and are we allowed to allocate it? 5036 */ 5037 if (!isloopback || !do_alloc) 5038 return (NULL); 5039 5040 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5041 5042 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5043 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5044 rw_exit(&ipst->ips_ill_g_lock); 5045 return (ill); 5046 } 5047 5048 /* Create the loopback device on demand */ 5049 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5050 sizeof (ipif_loopback_name), BPRI_MED)); 5051 if (ill == NULL) 5052 goto done; 5053 5054 *ill = ill_null; 5055 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5056 ill->ill_ipst = ipst; 5057 netstack_hold(ipst->ips_netstack); 5058 /* 5059 * For exclusive stacks we set the zoneid to zero 5060 * to make IP operate as if in the global zone. 5061 */ 5062 ill->ill_zoneid = GLOBAL_ZONEID; 5063 5064 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5065 if (ill->ill_phyint == NULL) 5066 goto done; 5067 5068 if (isv6) 5069 ill->ill_phyint->phyint_illv6 = ill; 5070 else 5071 ill->ill_phyint->phyint_illv4 = ill; 5072 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5073 ill->ill_max_frag = IP_LOOPBACK_MTU; 5074 /* Add room for tcp+ip headers */ 5075 if (isv6) { 5076 ill->ill_isv6 = B_TRUE; 5077 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5078 } else { 5079 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5080 } 5081 if (!ill_allocate_mibs(ill)) 5082 goto done; 5083 ill->ill_max_mtu = ill->ill_max_frag; 5084 /* 5085 * ipif_loopback_name can't be pointed at directly because its used 5086 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5087 * from the glist, ill_glist_delete() sets the first character of 5088 * ill_name to '\0'. 5089 */ 5090 ill->ill_name = (char *)ill + sizeof (*ill); 5091 (void) strcpy(ill->ill_name, ipif_loopback_name); 5092 ill->ill_name_length = sizeof (ipif_loopback_name); 5093 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5094 5095 ill->ill_global_timer = INFINITY; 5096 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5097 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5098 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5099 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5100 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5101 5102 /* No resolver here. */ 5103 ill->ill_net_type = IRE_LOOPBACK; 5104 5105 /* Initialize the ipsq */ 5106 if (!ipsq_init(ill)) 5107 goto done; 5108 5109 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5110 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5111 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5112 #ifdef ILL_DEBUG 5113 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5114 #endif 5115 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5116 if (ipif == NULL) 5117 goto done; 5118 5119 ill->ill_flags = ILLF_MULTICAST; 5120 5121 ov6addr = ipif->ipif_v6lcl_addr; 5122 /* Set up default loopback address and mask. */ 5123 if (!isv6) { 5124 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5125 5126 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5127 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5128 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5129 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5130 ipif->ipif_v6subnet); 5131 ill->ill_flags |= ILLF_IPV4; 5132 } else { 5133 ipif->ipif_v6lcl_addr = ipv6_loopback; 5134 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5135 ipif->ipif_v6net_mask = ipv6_all_ones; 5136 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5137 ipif->ipif_v6subnet); 5138 ill->ill_flags |= ILLF_IPV6; 5139 } 5140 5141 /* 5142 * Chain us in at the end of the ill list. hold the ill 5143 * before we make it globally visible. 1 for the lookup. 5144 */ 5145 ill->ill_refcnt = 0; 5146 ill_refhold(ill); 5147 5148 ill->ill_frag_count = 0; 5149 ill->ill_frag_free_num_pkts = 0; 5150 ill->ill_last_frag_clean_time = 0; 5151 5152 old_ipsq = ill->ill_phyint->phyint_ipsq; 5153 5154 if (ill_glist_insert(ill, "lo", isv6) != 0) 5155 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5156 5157 /* Let SCTP know so that it can add this to its list */ 5158 sctp_update_ill(ill, SCTP_ILL_INSERT); 5159 5160 /* 5161 * We have already assigned ipif_v6lcl_addr above, but we need to 5162 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5163 * requires to be after ill_glist_insert() since we need the 5164 * ill_index set. Pass on ipv6_loopback as the old address. 5165 */ 5166 sctp_update_ipif_addr(ipif, ov6addr); 5167 5168 /* 5169 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5170 */ 5171 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5172 /* Loopback ills aren't in any IPMP group */ 5173 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5174 ipsq_delete(old_ipsq); 5175 } 5176 5177 /* 5178 * Delay this till the ipif is allocated as ipif_allocate 5179 * de-references ill_phyint for getting the ifindex. We 5180 * can't do this before ipif_allocate because ill_phyint_reinit 5181 * -> phyint_assign_ifindex expects ipif to be present. 5182 */ 5183 mutex_enter(&ill->ill_phyint->phyint_lock); 5184 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5185 mutex_exit(&ill->ill_phyint->phyint_lock); 5186 5187 if (ipst->ips_loopback_ksp == NULL) { 5188 /* Export loopback interface statistics */ 5189 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5190 ipif_loopback_name, "net", 5191 KSTAT_TYPE_NAMED, 2, 0, 5192 ipst->ips_netstack->netstack_stackid); 5193 if (ipst->ips_loopback_ksp != NULL) { 5194 ipst->ips_loopback_ksp->ks_update = 5195 loopback_kstat_update; 5196 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5197 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5198 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5199 ipst->ips_loopback_ksp->ks_private = 5200 (void *)(uintptr_t)ipst->ips_netstack-> 5201 netstack_stackid; 5202 kstat_install(ipst->ips_loopback_ksp); 5203 } 5204 } 5205 5206 if (error != NULL) 5207 *error = 0; 5208 *did_alloc = B_TRUE; 5209 rw_exit(&ipst->ips_ill_g_lock); 5210 return (ill); 5211 done: 5212 if (ill != NULL) { 5213 if (ill->ill_phyint != NULL) { 5214 ipsq_t *ipsq; 5215 5216 ipsq = ill->ill_phyint->phyint_ipsq; 5217 if (ipsq != NULL) { 5218 ipsq->ipsq_ipst = NULL; 5219 kmem_free(ipsq, sizeof (ipsq_t)); 5220 } 5221 mi_free(ill->ill_phyint); 5222 } 5223 ill_free_mib(ill); 5224 if (ill->ill_ipst != NULL) 5225 netstack_rele(ill->ill_ipst->ips_netstack); 5226 mi_free(ill); 5227 } 5228 rw_exit(&ipst->ips_ill_g_lock); 5229 if (error != NULL) 5230 *error = ENOMEM; 5231 return (NULL); 5232 } 5233 5234 /* 5235 * For IPP calls - use the ip_stack_t for global stack. 5236 */ 5237 ill_t * 5238 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5239 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5240 { 5241 ip_stack_t *ipst; 5242 ill_t *ill; 5243 5244 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5245 if (ipst == NULL) { 5246 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5247 return (NULL); 5248 } 5249 5250 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5251 netstack_rele(ipst->ips_netstack); 5252 return (ill); 5253 } 5254 5255 /* 5256 * Return a pointer to the ill which matches the index and IP version type. 5257 */ 5258 ill_t * 5259 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5260 ipsq_func_t func, int *err, ip_stack_t *ipst) 5261 { 5262 ill_t *ill; 5263 ipsq_t *ipsq; 5264 phyint_t *phyi; 5265 5266 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5267 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5268 5269 if (err != NULL) 5270 *err = 0; 5271 5272 /* 5273 * Indexes are stored in the phyint - a common structure 5274 * to both IPv4 and IPv6. 5275 */ 5276 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5277 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5278 (void *) &index, NULL); 5279 if (phyi != NULL) { 5280 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5281 if (ill != NULL) { 5282 /* 5283 * The block comment at the start of ipif_down 5284 * explains the use of the macros used below 5285 */ 5286 GRAB_CONN_LOCK(q); 5287 mutex_enter(&ill->ill_lock); 5288 if (ILL_CAN_LOOKUP(ill)) { 5289 ill_refhold_locked(ill); 5290 mutex_exit(&ill->ill_lock); 5291 RELEASE_CONN_LOCK(q); 5292 rw_exit(&ipst->ips_ill_g_lock); 5293 return (ill); 5294 } else if (ILL_CAN_WAIT(ill, q)) { 5295 ipsq = ill->ill_phyint->phyint_ipsq; 5296 mutex_enter(&ipsq->ipsq_lock); 5297 rw_exit(&ipst->ips_ill_g_lock); 5298 mutex_exit(&ill->ill_lock); 5299 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5300 mutex_exit(&ipsq->ipsq_lock); 5301 RELEASE_CONN_LOCK(q); 5302 *err = EINPROGRESS; 5303 return (NULL); 5304 } 5305 RELEASE_CONN_LOCK(q); 5306 mutex_exit(&ill->ill_lock); 5307 } 5308 } 5309 rw_exit(&ipst->ips_ill_g_lock); 5310 if (err != NULL) 5311 *err = ENXIO; 5312 return (NULL); 5313 } 5314 5315 /* 5316 * Return the ifindex next in sequence after the passed in ifindex. 5317 * If there is no next ifindex for the given protocol, return 0. 5318 */ 5319 uint_t 5320 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5321 { 5322 phyint_t *phyi; 5323 phyint_t *phyi_initial; 5324 uint_t ifindex; 5325 5326 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5327 5328 if (index == 0) { 5329 phyi = avl_first( 5330 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5331 } else { 5332 phyi = phyi_initial = avl_find( 5333 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5334 (void *) &index, NULL); 5335 } 5336 5337 for (; phyi != NULL; 5338 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5339 phyi, AVL_AFTER)) { 5340 /* 5341 * If we're not returning the first interface in the tree 5342 * and we still haven't moved past the phyint_t that 5343 * corresponds to index, avl_walk needs to be called again 5344 */ 5345 if (!((index != 0) && (phyi == phyi_initial))) { 5346 if (isv6) { 5347 if ((phyi->phyint_illv6) && 5348 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5349 (phyi->phyint_illv6->ill_isv6 == 1)) 5350 break; 5351 } else { 5352 if ((phyi->phyint_illv4) && 5353 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5354 (phyi->phyint_illv4->ill_isv6 == 0)) 5355 break; 5356 } 5357 } 5358 } 5359 5360 rw_exit(&ipst->ips_ill_g_lock); 5361 5362 if (phyi != NULL) 5363 ifindex = phyi->phyint_ifindex; 5364 else 5365 ifindex = 0; 5366 5367 return (ifindex); 5368 } 5369 5370 5371 /* 5372 * Return the ifindex for the named interface. 5373 * If there is no next ifindex for the interface, return 0. 5374 */ 5375 uint_t 5376 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5377 { 5378 phyint_t *phyi; 5379 avl_index_t where = 0; 5380 uint_t ifindex; 5381 5382 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5383 5384 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5385 name, &where)) == NULL) { 5386 rw_exit(&ipst->ips_ill_g_lock); 5387 return (0); 5388 } 5389 5390 ifindex = phyi->phyint_ifindex; 5391 5392 rw_exit(&ipst->ips_ill_g_lock); 5393 5394 return (ifindex); 5395 } 5396 5397 5398 /* 5399 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5400 * that gives a running thread a reference to the ill. This reference must be 5401 * released by the thread when it is done accessing the ill and related 5402 * objects. ill_refcnt can not be used to account for static references 5403 * such as other structures pointing to an ill. Callers must generally 5404 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5405 * or be sure that the ill is not being deleted or changing state before 5406 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5407 * ill won't change any of its critical state such as address, netmask etc. 5408 */ 5409 void 5410 ill_refhold(ill_t *ill) 5411 { 5412 mutex_enter(&ill->ill_lock); 5413 ill->ill_refcnt++; 5414 ILL_TRACE_REF(ill); 5415 mutex_exit(&ill->ill_lock); 5416 } 5417 5418 void 5419 ill_refhold_locked(ill_t *ill) 5420 { 5421 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5422 ill->ill_refcnt++; 5423 ILL_TRACE_REF(ill); 5424 } 5425 5426 int 5427 ill_check_and_refhold(ill_t *ill) 5428 { 5429 mutex_enter(&ill->ill_lock); 5430 if (ILL_CAN_LOOKUP(ill)) { 5431 ill_refhold_locked(ill); 5432 mutex_exit(&ill->ill_lock); 5433 return (0); 5434 } 5435 mutex_exit(&ill->ill_lock); 5436 return (ILL_LOOKUP_FAILED); 5437 } 5438 5439 /* 5440 * Must not be called while holding any locks. Otherwise if this is 5441 * the last reference to be released, there is a chance of recursive mutex 5442 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5443 * to restart an ioctl. 5444 */ 5445 void 5446 ill_refrele(ill_t *ill) 5447 { 5448 mutex_enter(&ill->ill_lock); 5449 ASSERT(ill->ill_refcnt != 0); 5450 ill->ill_refcnt--; 5451 ILL_UNTRACE_REF(ill); 5452 if (ill->ill_refcnt != 0) { 5453 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5454 mutex_exit(&ill->ill_lock); 5455 return; 5456 } 5457 5458 /* Drops the ill_lock */ 5459 ipif_ill_refrele_tail(ill); 5460 } 5461 5462 /* 5463 * Obtain a weak reference count on the ill. This reference ensures the 5464 * ill won't be freed, but the ill may change any of its critical state 5465 * such as netmask, address etc. Returns an error if the ill has started 5466 * closing. 5467 */ 5468 boolean_t 5469 ill_waiter_inc(ill_t *ill) 5470 { 5471 mutex_enter(&ill->ill_lock); 5472 if (ill->ill_state_flags & ILL_CONDEMNED) { 5473 mutex_exit(&ill->ill_lock); 5474 return (B_FALSE); 5475 } 5476 ill->ill_waiters++; 5477 mutex_exit(&ill->ill_lock); 5478 return (B_TRUE); 5479 } 5480 5481 void 5482 ill_waiter_dcr(ill_t *ill) 5483 { 5484 mutex_enter(&ill->ill_lock); 5485 ill->ill_waiters--; 5486 if (ill->ill_waiters == 0) 5487 cv_broadcast(&ill->ill_cv); 5488 mutex_exit(&ill->ill_lock); 5489 } 5490 5491 /* 5492 * Named Dispatch routine to produce a formatted report on all ILLs. 5493 * This report is accessed by using the ndd utility to "get" ND variable 5494 * "ip_ill_status". 5495 */ 5496 /* ARGSUSED */ 5497 int 5498 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5499 { 5500 ill_t *ill; 5501 ill_walk_context_t ctx; 5502 ip_stack_t *ipst; 5503 5504 ipst = CONNQ_TO_IPST(q); 5505 5506 (void) mi_mpprintf(mp, 5507 "ILL " MI_COL_HDRPAD_STR 5508 /* 01234567[89ABCDEF] */ 5509 "rq " MI_COL_HDRPAD_STR 5510 /* 01234567[89ABCDEF] */ 5511 "wq " MI_COL_HDRPAD_STR 5512 /* 01234567[89ABCDEF] */ 5513 "upcnt mxfrg err name"); 5514 /* 12345 12345 123 xxxxxxxx */ 5515 5516 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5517 ill = ILL_START_WALK_ALL(&ctx, ipst); 5518 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5519 (void) mi_mpprintf(mp, 5520 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5521 "%05u %05u %03d %s", 5522 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5523 ill->ill_ipif_up_count, 5524 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5525 } 5526 rw_exit(&ipst->ips_ill_g_lock); 5527 5528 return (0); 5529 } 5530 5531 /* 5532 * Named Dispatch routine to produce a formatted report on all IPIFs. 5533 * This report is accessed by using the ndd utility to "get" ND variable 5534 * "ip_ipif_status". 5535 */ 5536 /* ARGSUSED */ 5537 int 5538 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5539 { 5540 char buf1[INET6_ADDRSTRLEN]; 5541 char buf2[INET6_ADDRSTRLEN]; 5542 char buf3[INET6_ADDRSTRLEN]; 5543 char buf4[INET6_ADDRSTRLEN]; 5544 char buf5[INET6_ADDRSTRLEN]; 5545 char buf6[INET6_ADDRSTRLEN]; 5546 char buf[LIFNAMSIZ]; 5547 ill_t *ill; 5548 ipif_t *ipif; 5549 nv_t *nvp; 5550 uint64_t flags; 5551 zoneid_t zoneid; 5552 ill_walk_context_t ctx; 5553 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5554 5555 (void) mi_mpprintf(mp, 5556 "IPIF metric mtu in/out/forward name zone flags...\n" 5557 "\tlocal address\n" 5558 "\tsrc address\n" 5559 "\tsubnet\n" 5560 "\tmask\n" 5561 "\tbroadcast\n" 5562 "\tp-p-dst"); 5563 5564 ASSERT(q->q_next == NULL); 5565 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5566 5567 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5568 ill = ILL_START_WALK_ALL(&ctx, ipst); 5569 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5570 for (ipif = ill->ill_ipif; ipif != NULL; 5571 ipif = ipif->ipif_next) { 5572 if (zoneid != GLOBAL_ZONEID && 5573 zoneid != ipif->ipif_zoneid && 5574 ipif->ipif_zoneid != ALL_ZONES) 5575 continue; 5576 (void) mi_mpprintf(mp, 5577 MI_COL_PTRFMT_STR 5578 "%04u %05u %u/%u/%u %s %d", 5579 (void *)ipif, 5580 ipif->ipif_metric, ipif->ipif_mtu, 5581 ipif->ipif_ib_pkt_count, 5582 ipif->ipif_ob_pkt_count, 5583 ipif->ipif_fo_pkt_count, 5584 ipif_get_name(ipif, buf, sizeof (buf)), 5585 ipif->ipif_zoneid); 5586 5587 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5588 ipif->ipif_ill->ill_phyint->phyint_flags; 5589 5590 /* Tack on text strings for any flags. */ 5591 nvp = ipif_nv_tbl; 5592 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5593 if (nvp->nv_value & flags) 5594 (void) mi_mpprintf_nr(mp, " %s", 5595 nvp->nv_name); 5596 } 5597 (void) mi_mpprintf(mp, 5598 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5599 inet_ntop(AF_INET6, 5600 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5601 inet_ntop(AF_INET6, 5602 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5603 inet_ntop(AF_INET6, 5604 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5605 inet_ntop(AF_INET6, 5606 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5607 inet_ntop(AF_INET6, 5608 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5609 inet_ntop(AF_INET6, 5610 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5611 } 5612 } 5613 rw_exit(&ipst->ips_ill_g_lock); 5614 return (0); 5615 } 5616 5617 /* 5618 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5619 * driver. We construct best guess defaults for lower level information that 5620 * we need. If an interface is brought up without injection of any overriding 5621 * information from outside, we have to be ready to go with these defaults. 5622 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5623 * we primarely want the dl_provider_style. 5624 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5625 * at which point we assume the other part of the information is valid. 5626 */ 5627 void 5628 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5629 { 5630 uchar_t *brdcst_addr; 5631 uint_t brdcst_addr_length, phys_addr_length; 5632 t_scalar_t sap_length; 5633 dl_info_ack_t *dlia; 5634 ip_m_t *ipm; 5635 dl_qos_cl_sel1_t *sel1; 5636 5637 ASSERT(IAM_WRITER_ILL(ill)); 5638 5639 /* 5640 * Till the ill is fully up ILL_CHANGING will be set and 5641 * the ill is not globally visible. So no need for a lock. 5642 */ 5643 dlia = (dl_info_ack_t *)mp->b_rptr; 5644 ill->ill_mactype = dlia->dl_mac_type; 5645 5646 ipm = ip_m_lookup(dlia->dl_mac_type); 5647 if (ipm == NULL) { 5648 ipm = ip_m_lookup(DL_OTHER); 5649 ASSERT(ipm != NULL); 5650 } 5651 ill->ill_media = ipm; 5652 5653 /* 5654 * When the new DLPI stuff is ready we'll pull lengths 5655 * from dlia. 5656 */ 5657 if (dlia->dl_version == DL_VERSION_2) { 5658 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5659 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5660 brdcst_addr_length); 5661 if (brdcst_addr == NULL) { 5662 brdcst_addr_length = 0; 5663 } 5664 sap_length = dlia->dl_sap_length; 5665 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5666 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5667 brdcst_addr_length, sap_length, phys_addr_length)); 5668 } else { 5669 brdcst_addr_length = 6; 5670 brdcst_addr = ip_six_byte_all_ones; 5671 sap_length = -2; 5672 phys_addr_length = brdcst_addr_length; 5673 } 5674 5675 ill->ill_bcast_addr_length = brdcst_addr_length; 5676 ill->ill_phys_addr_length = phys_addr_length; 5677 ill->ill_sap_length = sap_length; 5678 ill->ill_max_frag = dlia->dl_max_sdu; 5679 ill->ill_max_mtu = ill->ill_max_frag; 5680 5681 ill->ill_type = ipm->ip_m_type; 5682 5683 if (!ill->ill_dlpi_style_set) { 5684 if (dlia->dl_provider_style == DL_STYLE2) 5685 ill->ill_needs_attach = 1; 5686 5687 /* 5688 * Allocate the first ipif on this ill. We don't delay it 5689 * further as ioctl handling assumes atleast one ipif to 5690 * be present. 5691 * 5692 * At this point we don't know whether the ill is v4 or v6. 5693 * We will know this whan the SIOCSLIFNAME happens and 5694 * the correct value for ill_isv6 will be assigned in 5695 * ipif_set_values(). We need to hold the ill lock and 5696 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5697 * the wakeup. 5698 */ 5699 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5700 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5701 mutex_enter(&ill->ill_lock); 5702 ASSERT(ill->ill_dlpi_style_set == 0); 5703 ill->ill_dlpi_style_set = 1; 5704 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5705 cv_broadcast(&ill->ill_cv); 5706 mutex_exit(&ill->ill_lock); 5707 freemsg(mp); 5708 return; 5709 } 5710 ASSERT(ill->ill_ipif != NULL); 5711 /* 5712 * We know whether it is IPv4 or IPv6 now, as this is the 5713 * second DL_INFO_ACK we are recieving in response to the 5714 * DL_INFO_REQ sent in ipif_set_values. 5715 */ 5716 if (ill->ill_isv6) 5717 ill->ill_sap = IP6_DL_SAP; 5718 else 5719 ill->ill_sap = IP_DL_SAP; 5720 /* 5721 * Set ipif_mtu which is used to set the IRE's 5722 * ire_max_frag value. The driver could have sent 5723 * a different mtu from what it sent last time. No 5724 * need to call ipif_mtu_change because IREs have 5725 * not yet been created. 5726 */ 5727 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5728 /* 5729 * Clear all the flags that were set based on ill_bcast_addr_length 5730 * and ill_phys_addr_length (in ipif_set_values) as these could have 5731 * changed now and we need to re-evaluate. 5732 */ 5733 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5734 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5735 5736 /* 5737 * Free ill_resolver_mp and ill_bcast_mp as things could have 5738 * changed now. 5739 */ 5740 if (ill->ill_bcast_addr_length == 0) { 5741 if (ill->ill_resolver_mp != NULL) 5742 freemsg(ill->ill_resolver_mp); 5743 if (ill->ill_bcast_mp != NULL) 5744 freemsg(ill->ill_bcast_mp); 5745 if (ill->ill_flags & ILLF_XRESOLV) 5746 ill->ill_net_type = IRE_IF_RESOLVER; 5747 else 5748 ill->ill_net_type = IRE_IF_NORESOLVER; 5749 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5750 ill->ill_phys_addr_length, 5751 ill->ill_sap, 5752 ill->ill_sap_length); 5753 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5754 5755 if (ill->ill_isv6) 5756 /* 5757 * Note: xresolv interfaces will eventually need NOARP 5758 * set here as well, but that will require those 5759 * external resolvers to have some knowledge of 5760 * that flag and act appropriately. Not to be changed 5761 * at present. 5762 */ 5763 ill->ill_flags |= ILLF_NONUD; 5764 else 5765 ill->ill_flags |= ILLF_NOARP; 5766 5767 if (ill->ill_phys_addr_length == 0) { 5768 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5769 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5770 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5771 } else { 5772 /* pt-pt supports multicast. */ 5773 ill->ill_flags |= ILLF_MULTICAST; 5774 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5775 } 5776 } 5777 } else { 5778 ill->ill_net_type = IRE_IF_RESOLVER; 5779 if (ill->ill_bcast_mp != NULL) 5780 freemsg(ill->ill_bcast_mp); 5781 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5782 ill->ill_bcast_addr_length, ill->ill_sap, 5783 ill->ill_sap_length); 5784 /* 5785 * Later detect lack of DLPI driver multicast 5786 * capability by catching DL_ENABMULTI errors in 5787 * ip_rput_dlpi. 5788 */ 5789 ill->ill_flags |= ILLF_MULTICAST; 5790 if (!ill->ill_isv6) 5791 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5792 } 5793 /* By default an interface does not support any CoS marking */ 5794 ill->ill_flags &= ~ILLF_COS_ENABLED; 5795 5796 /* 5797 * If we get QoS information in DL_INFO_ACK, the device supports 5798 * some form of CoS marking, set ILLF_COS_ENABLED. 5799 */ 5800 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5801 dlia->dl_qos_length); 5802 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5803 ill->ill_flags |= ILLF_COS_ENABLED; 5804 } 5805 5806 /* Clear any previous error indication. */ 5807 ill->ill_error = 0; 5808 freemsg(mp); 5809 } 5810 5811 /* 5812 * Perform various checks to verify that an address would make sense as a 5813 * local, remote, or subnet interface address. 5814 */ 5815 static boolean_t 5816 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5817 { 5818 ipaddr_t net_mask; 5819 5820 /* 5821 * Don't allow all zeroes, all ones or experimental address, but allow 5822 * all ones netmask. 5823 */ 5824 if ((net_mask = ip_net_mask(addr)) == 0) 5825 return (B_FALSE); 5826 /* A given netmask overrides the "guess" netmask */ 5827 if (subnet_mask != 0) 5828 net_mask = subnet_mask; 5829 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5830 (addr == (addr | ~net_mask)))) { 5831 return (B_FALSE); 5832 } 5833 if (CLASSD(addr)) 5834 return (B_FALSE); 5835 5836 return (B_TRUE); 5837 } 5838 5839 #define V6_IPIF_LINKLOCAL(p) \ 5840 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5841 5842 /* 5843 * Compare two given ipifs and check if the second one is better than 5844 * the first one using the order of preference (not taking deprecated 5845 * into acount) specified in ipif_lookup_multicast(). 5846 */ 5847 static boolean_t 5848 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5849 { 5850 /* Check the least preferred first. */ 5851 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5852 /* If both ipifs are the same, use the first one. */ 5853 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5854 return (B_FALSE); 5855 else 5856 return (B_TRUE); 5857 } 5858 5859 /* For IPv6, check for link local address. */ 5860 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5861 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5862 V6_IPIF_LINKLOCAL(new_ipif)) { 5863 /* The second one is equal or less preferred. */ 5864 return (B_FALSE); 5865 } else { 5866 return (B_TRUE); 5867 } 5868 } 5869 5870 /* Then check for point to point interface. */ 5871 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5872 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5873 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5874 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5875 return (B_FALSE); 5876 } else { 5877 return (B_TRUE); 5878 } 5879 } 5880 5881 /* old_ipif is a normal interface, so no need to use the new one. */ 5882 return (B_FALSE); 5883 } 5884 5885 /* 5886 * Find any non-virtual, not condemned, and up multicast capable interface 5887 * given an IP instance and zoneid. Order of preference is: 5888 * 5889 * 1. normal 5890 * 1.1 normal, but deprecated 5891 * 2. point to point 5892 * 2.1 point to point, but deprecated 5893 * 3. link local 5894 * 3.1 link local, but deprecated 5895 * 4. loopback. 5896 */ 5897 ipif_t * 5898 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5899 { 5900 ill_t *ill; 5901 ill_walk_context_t ctx; 5902 ipif_t *ipif; 5903 ipif_t *saved_ipif = NULL; 5904 ipif_t *dep_ipif = NULL; 5905 5906 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5907 if (isv6) 5908 ill = ILL_START_WALK_V6(&ctx, ipst); 5909 else 5910 ill = ILL_START_WALK_V4(&ctx, ipst); 5911 5912 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5913 mutex_enter(&ill->ill_lock); 5914 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5915 !(ill->ill_flags & ILLF_MULTICAST)) { 5916 mutex_exit(&ill->ill_lock); 5917 continue; 5918 } 5919 for (ipif = ill->ill_ipif; ipif != NULL; 5920 ipif = ipif->ipif_next) { 5921 if (zoneid != ipif->ipif_zoneid && 5922 zoneid != ALL_ZONES && 5923 ipif->ipif_zoneid != ALL_ZONES) { 5924 continue; 5925 } 5926 if (!(ipif->ipif_flags & IPIF_UP) || 5927 !IPIF_CAN_LOOKUP(ipif)) { 5928 continue; 5929 } 5930 5931 /* 5932 * Found one candidate. If it is deprecated, 5933 * remember it in dep_ipif. If it is not deprecated, 5934 * remember it in saved_ipif. 5935 */ 5936 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5937 if (dep_ipif == NULL) { 5938 dep_ipif = ipif; 5939 } else if (ipif_comp_multi(dep_ipif, ipif, 5940 isv6)) { 5941 /* 5942 * If the previous dep_ipif does not 5943 * belong to the same ill, we've done 5944 * a ipif_refhold() on it. So we need 5945 * to release it. 5946 */ 5947 if (dep_ipif->ipif_ill != ill) 5948 ipif_refrele(dep_ipif); 5949 dep_ipif = ipif; 5950 } 5951 continue; 5952 } 5953 if (saved_ipif == NULL) { 5954 saved_ipif = ipif; 5955 } else { 5956 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5957 if (saved_ipif->ipif_ill != ill) 5958 ipif_refrele(saved_ipif); 5959 saved_ipif = ipif; 5960 } 5961 } 5962 } 5963 /* 5964 * Before going to the next ill, do a ipif_refhold() on the 5965 * saved ones. 5966 */ 5967 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5968 ipif_refhold_locked(saved_ipif); 5969 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5970 ipif_refhold_locked(dep_ipif); 5971 mutex_exit(&ill->ill_lock); 5972 } 5973 rw_exit(&ipst->ips_ill_g_lock); 5974 5975 /* 5976 * If we have only the saved_ipif, return it. But if we have both 5977 * saved_ipif and dep_ipif, check to see which one is better. 5978 */ 5979 if (saved_ipif != NULL) { 5980 if (dep_ipif != NULL) { 5981 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5982 ipif_refrele(saved_ipif); 5983 return (dep_ipif); 5984 } else { 5985 ipif_refrele(dep_ipif); 5986 return (saved_ipif); 5987 } 5988 } 5989 return (saved_ipif); 5990 } else { 5991 return (dep_ipif); 5992 } 5993 } 5994 5995 /* 5996 * This function is called when an application does not specify an interface 5997 * to be used for multicast traffic (joining a group/sending data). It 5998 * calls ire_lookup_multi() to look for an interface route for the 5999 * specified multicast group. Doing this allows the administrator to add 6000 * prefix routes for multicast to indicate which interface to be used for 6001 * multicast traffic in the above scenario. The route could be for all 6002 * multicast (224.0/4), for a single multicast group (a /32 route) or 6003 * anything in between. If there is no such multicast route, we just find 6004 * any multicast capable interface and return it. The returned ipif 6005 * is refhold'ed. 6006 */ 6007 ipif_t * 6008 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 6009 { 6010 ire_t *ire; 6011 ipif_t *ipif; 6012 6013 ire = ire_lookup_multi(group, zoneid, ipst); 6014 if (ire != NULL) { 6015 ipif = ire->ire_ipif; 6016 ipif_refhold(ipif); 6017 ire_refrele(ire); 6018 return (ipif); 6019 } 6020 6021 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 6022 } 6023 6024 /* 6025 * Look for an ipif with the specified interface address and destination. 6026 * The destination address is used only for matching point-to-point interfaces. 6027 */ 6028 ipif_t * 6029 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 6030 ipsq_func_t func, int *error, ip_stack_t *ipst) 6031 { 6032 ipif_t *ipif; 6033 ill_t *ill; 6034 ill_walk_context_t ctx; 6035 ipsq_t *ipsq; 6036 6037 if (error != NULL) 6038 *error = 0; 6039 6040 /* 6041 * First match all the point-to-point interfaces 6042 * before looking at non-point-to-point interfaces. 6043 * This is done to avoid returning non-point-to-point 6044 * ipif instead of unnumbered point-to-point ipif. 6045 */ 6046 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6047 ill = ILL_START_WALK_V4(&ctx, ipst); 6048 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6049 GRAB_CONN_LOCK(q); 6050 mutex_enter(&ill->ill_lock); 6051 for (ipif = ill->ill_ipif; ipif != NULL; 6052 ipif = ipif->ipif_next) { 6053 /* Allow the ipif to be down */ 6054 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 6055 (ipif->ipif_lcl_addr == if_addr) && 6056 (ipif->ipif_pp_dst_addr == dst)) { 6057 /* 6058 * The block comment at the start of ipif_down 6059 * explains the use of the macros used below 6060 */ 6061 if (IPIF_CAN_LOOKUP(ipif)) { 6062 ipif_refhold_locked(ipif); 6063 mutex_exit(&ill->ill_lock); 6064 RELEASE_CONN_LOCK(q); 6065 rw_exit(&ipst->ips_ill_g_lock); 6066 return (ipif); 6067 } else if (IPIF_CAN_WAIT(ipif, q)) { 6068 ipsq = ill->ill_phyint->phyint_ipsq; 6069 mutex_enter(&ipsq->ipsq_lock); 6070 mutex_exit(&ill->ill_lock); 6071 rw_exit(&ipst->ips_ill_g_lock); 6072 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6073 ill); 6074 mutex_exit(&ipsq->ipsq_lock); 6075 RELEASE_CONN_LOCK(q); 6076 *error = EINPROGRESS; 6077 return (NULL); 6078 } 6079 } 6080 } 6081 mutex_exit(&ill->ill_lock); 6082 RELEASE_CONN_LOCK(q); 6083 } 6084 rw_exit(&ipst->ips_ill_g_lock); 6085 6086 /* lookup the ipif based on interface address */ 6087 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6088 ipst); 6089 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6090 return (ipif); 6091 } 6092 6093 /* 6094 * Look for an ipif with the specified address. For point-point links 6095 * we look for matches on either the destination address and the local 6096 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6097 * is set. 6098 * Matches on a specific ill if match_ill is set. 6099 */ 6100 ipif_t * 6101 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6102 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6103 { 6104 ipif_t *ipif; 6105 ill_t *ill; 6106 boolean_t ptp = B_FALSE; 6107 ipsq_t *ipsq; 6108 ill_walk_context_t ctx; 6109 6110 if (error != NULL) 6111 *error = 0; 6112 6113 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6114 /* 6115 * Repeat twice, first based on local addresses and 6116 * next time for pointopoint. 6117 */ 6118 repeat: 6119 ill = ILL_START_WALK_V4(&ctx, ipst); 6120 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6121 if (match_ill != NULL && ill != match_ill) { 6122 continue; 6123 } 6124 GRAB_CONN_LOCK(q); 6125 mutex_enter(&ill->ill_lock); 6126 for (ipif = ill->ill_ipif; ipif != NULL; 6127 ipif = ipif->ipif_next) { 6128 if (zoneid != ALL_ZONES && 6129 zoneid != ipif->ipif_zoneid && 6130 ipif->ipif_zoneid != ALL_ZONES) 6131 continue; 6132 /* Allow the ipif to be down */ 6133 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6134 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6135 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6136 (ipif->ipif_pp_dst_addr == addr))) { 6137 /* 6138 * The block comment at the start of ipif_down 6139 * explains the use of the macros used below 6140 */ 6141 if (IPIF_CAN_LOOKUP(ipif)) { 6142 ipif_refhold_locked(ipif); 6143 mutex_exit(&ill->ill_lock); 6144 RELEASE_CONN_LOCK(q); 6145 rw_exit(&ipst->ips_ill_g_lock); 6146 return (ipif); 6147 } else if (IPIF_CAN_WAIT(ipif, q)) { 6148 ipsq = ill->ill_phyint->phyint_ipsq; 6149 mutex_enter(&ipsq->ipsq_lock); 6150 mutex_exit(&ill->ill_lock); 6151 rw_exit(&ipst->ips_ill_g_lock); 6152 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6153 ill); 6154 mutex_exit(&ipsq->ipsq_lock); 6155 RELEASE_CONN_LOCK(q); 6156 *error = EINPROGRESS; 6157 return (NULL); 6158 } 6159 } 6160 } 6161 mutex_exit(&ill->ill_lock); 6162 RELEASE_CONN_LOCK(q); 6163 } 6164 6165 /* If we already did the ptp case, then we are done */ 6166 if (ptp) { 6167 rw_exit(&ipst->ips_ill_g_lock); 6168 if (error != NULL) 6169 *error = ENXIO; 6170 return (NULL); 6171 } 6172 ptp = B_TRUE; 6173 goto repeat; 6174 } 6175 6176 /* 6177 * Look for an ipif with the specified address. For point-point links 6178 * we look for matches on either the destination address and the local 6179 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6180 * is set. 6181 * Matches on a specific ill if match_ill is set. 6182 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6183 */ 6184 zoneid_t 6185 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6186 { 6187 zoneid_t zoneid; 6188 ipif_t *ipif; 6189 ill_t *ill; 6190 boolean_t ptp = B_FALSE; 6191 ill_walk_context_t ctx; 6192 6193 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6194 /* 6195 * Repeat twice, first based on local addresses and 6196 * next time for pointopoint. 6197 */ 6198 repeat: 6199 ill = ILL_START_WALK_V4(&ctx, ipst); 6200 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6201 if (match_ill != NULL && ill != match_ill) { 6202 continue; 6203 } 6204 mutex_enter(&ill->ill_lock); 6205 for (ipif = ill->ill_ipif; ipif != NULL; 6206 ipif = ipif->ipif_next) { 6207 /* Allow the ipif to be down */ 6208 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6209 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6210 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6211 (ipif->ipif_pp_dst_addr == addr)) && 6212 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6213 zoneid = ipif->ipif_zoneid; 6214 mutex_exit(&ill->ill_lock); 6215 rw_exit(&ipst->ips_ill_g_lock); 6216 /* 6217 * If ipif_zoneid was ALL_ZONES then we have 6218 * a trusted extensions shared IP address. 6219 * In that case GLOBAL_ZONEID works to send. 6220 */ 6221 if (zoneid == ALL_ZONES) 6222 zoneid = GLOBAL_ZONEID; 6223 return (zoneid); 6224 } 6225 } 6226 mutex_exit(&ill->ill_lock); 6227 } 6228 6229 /* If we already did the ptp case, then we are done */ 6230 if (ptp) { 6231 rw_exit(&ipst->ips_ill_g_lock); 6232 return (ALL_ZONES); 6233 } 6234 ptp = B_TRUE; 6235 goto repeat; 6236 } 6237 6238 /* 6239 * Look for an ipif that matches the specified remote address i.e. the 6240 * ipif that would receive the specified packet. 6241 * First look for directly connected interfaces and then do a recursive 6242 * IRE lookup and pick the first ipif corresponding to the source address in the 6243 * ire. 6244 * Returns: held ipif 6245 */ 6246 ipif_t * 6247 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6248 { 6249 ipif_t *ipif; 6250 ire_t *ire; 6251 ip_stack_t *ipst = ill->ill_ipst; 6252 6253 ASSERT(!ill->ill_isv6); 6254 6255 /* 6256 * Someone could be changing this ipif currently or change it 6257 * after we return this. Thus a few packets could use the old 6258 * old values. However structure updates/creates (ire, ilg, ilm etc) 6259 * will atomically be updated or cleaned up with the new value 6260 * Thus we don't need a lock to check the flags or other attrs below. 6261 */ 6262 mutex_enter(&ill->ill_lock); 6263 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6264 if (!IPIF_CAN_LOOKUP(ipif)) 6265 continue; 6266 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6267 ipif->ipif_zoneid != ALL_ZONES) 6268 continue; 6269 /* Allow the ipif to be down */ 6270 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6271 if ((ipif->ipif_pp_dst_addr == addr) || 6272 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6273 ipif->ipif_lcl_addr == addr)) { 6274 ipif_refhold_locked(ipif); 6275 mutex_exit(&ill->ill_lock); 6276 return (ipif); 6277 } 6278 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6279 ipif_refhold_locked(ipif); 6280 mutex_exit(&ill->ill_lock); 6281 return (ipif); 6282 } 6283 } 6284 mutex_exit(&ill->ill_lock); 6285 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6286 NULL, MATCH_IRE_RECURSIVE, ipst); 6287 if (ire != NULL) { 6288 /* 6289 * The callers of this function wants to know the 6290 * interface on which they have to send the replies 6291 * back. For IRE_CACHES that have ire_stq and ire_ipif 6292 * derived from different ills, we really don't care 6293 * what we return here. 6294 */ 6295 ipif = ire->ire_ipif; 6296 if (ipif != NULL) { 6297 ipif_refhold(ipif); 6298 ire_refrele(ire); 6299 return (ipif); 6300 } 6301 ire_refrele(ire); 6302 } 6303 /* Pick the first interface */ 6304 ipif = ipif_get_next_ipif(NULL, ill); 6305 return (ipif); 6306 } 6307 6308 /* 6309 * This func does not prevent refcnt from increasing. But if 6310 * the caller has taken steps to that effect, then this func 6311 * can be used to determine whether the ill has become quiescent 6312 */ 6313 boolean_t 6314 ill_is_quiescent(ill_t *ill) 6315 { 6316 ipif_t *ipif; 6317 6318 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6319 6320 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6321 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6322 return (B_FALSE); 6323 } 6324 } 6325 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6326 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6327 ill->ill_mrtun_refcnt != 0) { 6328 return (B_FALSE); 6329 } 6330 return (B_TRUE); 6331 } 6332 6333 /* 6334 * This func does not prevent refcnt from increasing. But if 6335 * the caller has taken steps to that effect, then this func 6336 * can be used to determine whether the ipif has become quiescent 6337 */ 6338 static boolean_t 6339 ipif_is_quiescent(ipif_t *ipif) 6340 { 6341 ill_t *ill; 6342 6343 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6344 6345 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6346 return (B_FALSE); 6347 } 6348 6349 ill = ipif->ipif_ill; 6350 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6351 ill->ill_logical_down) { 6352 return (B_TRUE); 6353 } 6354 6355 /* This is the last ipif going down or being deleted on this ill */ 6356 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6357 return (B_FALSE); 6358 } 6359 6360 return (B_TRUE); 6361 } 6362 6363 /* 6364 * This func does not prevent refcnt from increasing. But if 6365 * the caller has taken steps to that effect, then this func 6366 * can be used to determine whether the ipifs marked with IPIF_MOVING 6367 * have become quiescent and can be moved in a failover/failback. 6368 */ 6369 static ipif_t * 6370 ill_quiescent_to_move(ill_t *ill) 6371 { 6372 ipif_t *ipif; 6373 6374 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6375 6376 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6377 if (ipif->ipif_state_flags & IPIF_MOVING) { 6378 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6379 return (ipif); 6380 } 6381 } 6382 } 6383 return (NULL); 6384 } 6385 6386 /* 6387 * The ipif/ill/ire has been refreled. Do the tail processing. 6388 * Determine if the ipif or ill in question has become quiescent and if so 6389 * wakeup close and/or restart any queued pending ioctl that is waiting 6390 * for the ipif_down (or ill_down) 6391 */ 6392 void 6393 ipif_ill_refrele_tail(ill_t *ill) 6394 { 6395 mblk_t *mp; 6396 conn_t *connp; 6397 ipsq_t *ipsq; 6398 ipif_t *ipif; 6399 dl_notify_ind_t *dlindp; 6400 6401 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6402 6403 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6404 ill_is_quiescent(ill)) { 6405 /* ill_close may be waiting */ 6406 cv_broadcast(&ill->ill_cv); 6407 } 6408 6409 /* ipsq can't change because ill_lock is held */ 6410 ipsq = ill->ill_phyint->phyint_ipsq; 6411 if (ipsq->ipsq_waitfor == 0) { 6412 /* Not waiting for anything, just return. */ 6413 mutex_exit(&ill->ill_lock); 6414 return; 6415 } 6416 ASSERT(ipsq->ipsq_pending_mp != NULL && 6417 ipsq->ipsq_pending_ipif != NULL); 6418 /* 6419 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6420 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6421 * be zero for restarting an ioctl that ends up downing the ill. 6422 */ 6423 ipif = ipsq->ipsq_pending_ipif; 6424 if (ipif->ipif_ill != ill) { 6425 /* The ioctl is pending on some other ill. */ 6426 mutex_exit(&ill->ill_lock); 6427 return; 6428 } 6429 6430 switch (ipsq->ipsq_waitfor) { 6431 case IPIF_DOWN: 6432 case IPIF_FREE: 6433 if (!ipif_is_quiescent(ipif)) { 6434 mutex_exit(&ill->ill_lock); 6435 return; 6436 } 6437 break; 6438 6439 case ILL_DOWN: 6440 case ILL_FREE: 6441 /* 6442 * case ILL_FREE arises only for loopback. otherwise ill_delete 6443 * waits synchronously in ip_close, and no message is queued in 6444 * ipsq_pending_mp at all in this case 6445 */ 6446 if (!ill_is_quiescent(ill)) { 6447 mutex_exit(&ill->ill_lock); 6448 return; 6449 } 6450 6451 break; 6452 6453 case ILL_MOVE_OK: 6454 if (ill_quiescent_to_move(ill) != NULL) { 6455 mutex_exit(&ill->ill_lock); 6456 return; 6457 } 6458 6459 break; 6460 default: 6461 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6462 (void *)ipsq, ipsq->ipsq_waitfor); 6463 } 6464 6465 /* 6466 * Incr refcnt for the qwriter_ip call below which 6467 * does a refrele 6468 */ 6469 ill_refhold_locked(ill); 6470 mutex_exit(&ill->ill_lock); 6471 6472 mp = ipsq_pending_mp_get(ipsq, &connp); 6473 ASSERT(mp != NULL); 6474 6475 /* 6476 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6477 * we can only get here when the current operation decides it 6478 * it needs to quiesce via ipsq_pending_mp_add(). 6479 */ 6480 switch (mp->b_datap->db_type) { 6481 case M_PCPROTO: 6482 case M_PROTO: 6483 /* 6484 * For now, only DL_NOTIFY_IND messages can use this facility. 6485 */ 6486 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6487 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6488 6489 switch (dlindp->dl_notification) { 6490 case DL_NOTE_PHYS_ADDR: 6491 qwriter_ip(ill, ill->ill_rq, mp, 6492 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6493 return; 6494 default: 6495 ASSERT(0); 6496 } 6497 break; 6498 6499 case M_ERROR: 6500 case M_HANGUP: 6501 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6502 B_TRUE); 6503 return; 6504 6505 case M_IOCTL: 6506 case M_IOCDATA: 6507 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6508 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6509 return; 6510 6511 default: 6512 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6513 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6514 } 6515 } 6516 6517 #ifdef ILL_DEBUG 6518 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6519 void 6520 th_trace_rrecord(th_trace_t *th_trace) 6521 { 6522 tr_buf_t *tr_buf; 6523 uint_t lastref; 6524 6525 lastref = th_trace->th_trace_lastref; 6526 lastref++; 6527 if (lastref == TR_BUF_MAX) 6528 lastref = 0; 6529 th_trace->th_trace_lastref = lastref; 6530 tr_buf = &th_trace->th_trbuf[lastref]; 6531 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6532 } 6533 6534 th_trace_t * 6535 th_trace_ipif_lookup(ipif_t *ipif) 6536 { 6537 int bucket_id; 6538 th_trace_t *th_trace; 6539 6540 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6541 6542 bucket_id = IP_TR_HASH(curthread); 6543 ASSERT(bucket_id < IP_TR_HASH_MAX); 6544 6545 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6546 th_trace = th_trace->th_next) { 6547 if (th_trace->th_id == curthread) 6548 return (th_trace); 6549 } 6550 return (NULL); 6551 } 6552 6553 void 6554 ipif_trace_ref(ipif_t *ipif) 6555 { 6556 int bucket_id; 6557 th_trace_t *th_trace; 6558 6559 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6560 6561 if (ipif->ipif_trace_disable) 6562 return; 6563 6564 /* 6565 * Attempt to locate the trace buffer for the curthread. 6566 * If it does not exist, then allocate a new trace buffer 6567 * and link it in list of trace bufs for this ipif, at the head 6568 */ 6569 th_trace = th_trace_ipif_lookup(ipif); 6570 if (th_trace == NULL) { 6571 bucket_id = IP_TR_HASH(curthread); 6572 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6573 KM_NOSLEEP); 6574 if (th_trace == NULL) { 6575 ipif->ipif_trace_disable = B_TRUE; 6576 ipif_trace_cleanup(ipif); 6577 return; 6578 } 6579 th_trace->th_id = curthread; 6580 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6581 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6582 if (th_trace->th_next != NULL) 6583 th_trace->th_next->th_prev = &th_trace->th_next; 6584 ipif->ipif_trace[bucket_id] = th_trace; 6585 } 6586 ASSERT(th_trace->th_refcnt >= 0 && 6587 th_trace->th_refcnt < TR_BUF_MAX -1); 6588 th_trace->th_refcnt++; 6589 th_trace_rrecord(th_trace); 6590 } 6591 6592 void 6593 ipif_untrace_ref(ipif_t *ipif) 6594 { 6595 th_trace_t *th_trace; 6596 6597 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6598 6599 if (ipif->ipif_trace_disable) 6600 return; 6601 th_trace = th_trace_ipif_lookup(ipif); 6602 ASSERT(th_trace != NULL); 6603 ASSERT(th_trace->th_refcnt > 0); 6604 6605 th_trace->th_refcnt--; 6606 th_trace_rrecord(th_trace); 6607 } 6608 6609 th_trace_t * 6610 th_trace_ill_lookup(ill_t *ill) 6611 { 6612 th_trace_t *th_trace; 6613 int bucket_id; 6614 6615 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6616 6617 bucket_id = IP_TR_HASH(curthread); 6618 ASSERT(bucket_id < IP_TR_HASH_MAX); 6619 6620 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6621 th_trace = th_trace->th_next) { 6622 if (th_trace->th_id == curthread) 6623 return (th_trace); 6624 } 6625 return (NULL); 6626 } 6627 6628 void 6629 ill_trace_ref(ill_t *ill) 6630 { 6631 int bucket_id; 6632 th_trace_t *th_trace; 6633 6634 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6635 if (ill->ill_trace_disable) 6636 return; 6637 /* 6638 * Attempt to locate the trace buffer for the curthread. 6639 * If it does not exist, then allocate a new trace buffer 6640 * and link it in list of trace bufs for this ill, at the head 6641 */ 6642 th_trace = th_trace_ill_lookup(ill); 6643 if (th_trace == NULL) { 6644 bucket_id = IP_TR_HASH(curthread); 6645 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6646 KM_NOSLEEP); 6647 if (th_trace == NULL) { 6648 ill->ill_trace_disable = B_TRUE; 6649 ill_trace_cleanup(ill); 6650 return; 6651 } 6652 th_trace->th_id = curthread; 6653 th_trace->th_next = ill->ill_trace[bucket_id]; 6654 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6655 if (th_trace->th_next != NULL) 6656 th_trace->th_next->th_prev = &th_trace->th_next; 6657 ill->ill_trace[bucket_id] = th_trace; 6658 } 6659 ASSERT(th_trace->th_refcnt >= 0 && 6660 th_trace->th_refcnt < TR_BUF_MAX - 1); 6661 6662 th_trace->th_refcnt++; 6663 th_trace_rrecord(th_trace); 6664 } 6665 6666 void 6667 ill_untrace_ref(ill_t *ill) 6668 { 6669 th_trace_t *th_trace; 6670 6671 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6672 6673 if (ill->ill_trace_disable) 6674 return; 6675 th_trace = th_trace_ill_lookup(ill); 6676 ASSERT(th_trace != NULL); 6677 ASSERT(th_trace->th_refcnt > 0); 6678 6679 th_trace->th_refcnt--; 6680 th_trace_rrecord(th_trace); 6681 } 6682 6683 /* 6684 * Verify that this thread has no refs to the ipif and free 6685 * the trace buffers 6686 */ 6687 /* ARGSUSED */ 6688 void 6689 ipif_thread_exit(ipif_t *ipif, void *dummy) 6690 { 6691 th_trace_t *th_trace; 6692 6693 mutex_enter(&ipif->ipif_ill->ill_lock); 6694 6695 th_trace = th_trace_ipif_lookup(ipif); 6696 if (th_trace == NULL) { 6697 mutex_exit(&ipif->ipif_ill->ill_lock); 6698 return; 6699 } 6700 ASSERT(th_trace->th_refcnt == 0); 6701 /* unlink th_trace and free it */ 6702 *th_trace->th_prev = th_trace->th_next; 6703 if (th_trace->th_next != NULL) 6704 th_trace->th_next->th_prev = th_trace->th_prev; 6705 th_trace->th_next = NULL; 6706 th_trace->th_prev = NULL; 6707 kmem_free(th_trace, sizeof (th_trace_t)); 6708 6709 mutex_exit(&ipif->ipif_ill->ill_lock); 6710 } 6711 6712 /* 6713 * Verify that this thread has no refs to the ill and free 6714 * the trace buffers 6715 */ 6716 /* ARGSUSED */ 6717 void 6718 ill_thread_exit(ill_t *ill, void *dummy) 6719 { 6720 th_trace_t *th_trace; 6721 6722 mutex_enter(&ill->ill_lock); 6723 6724 th_trace = th_trace_ill_lookup(ill); 6725 if (th_trace == NULL) { 6726 mutex_exit(&ill->ill_lock); 6727 return; 6728 } 6729 ASSERT(th_trace->th_refcnt == 0); 6730 /* unlink th_trace and free it */ 6731 *th_trace->th_prev = th_trace->th_next; 6732 if (th_trace->th_next != NULL) 6733 th_trace->th_next->th_prev = th_trace->th_prev; 6734 th_trace->th_next = NULL; 6735 th_trace->th_prev = NULL; 6736 kmem_free(th_trace, sizeof (th_trace_t)); 6737 6738 mutex_exit(&ill->ill_lock); 6739 } 6740 #endif 6741 6742 #ifdef ILL_DEBUG 6743 void 6744 ip_thread_exit_stack(ip_stack_t *ipst) 6745 { 6746 ill_t *ill; 6747 ipif_t *ipif; 6748 ill_walk_context_t ctx; 6749 6750 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6751 ill = ILL_START_WALK_ALL(&ctx, ipst); 6752 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6753 for (ipif = ill->ill_ipif; ipif != NULL; 6754 ipif = ipif->ipif_next) { 6755 ipif_thread_exit(ipif, NULL); 6756 } 6757 ill_thread_exit(ill, NULL); 6758 } 6759 rw_exit(&ipst->ips_ill_g_lock); 6760 6761 ire_walk(ire_thread_exit, NULL, ipst); 6762 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6763 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6764 } 6765 6766 /* 6767 * This is a function which is called from thread_exit 6768 * that can be used to debug reference count issues in IP. See comment in 6769 * <inet/ip.h> on how it is used. 6770 */ 6771 void 6772 ip_thread_exit(void) 6773 { 6774 netstack_t *ns; 6775 6776 ns = netstack_get_current(); 6777 if (ns != NULL) { 6778 ip_thread_exit_stack(ns->netstack_ip); 6779 netstack_rele(ns); 6780 } 6781 } 6782 6783 /* 6784 * Called when ipif is unplumbed or when memory alloc fails 6785 */ 6786 void 6787 ipif_trace_cleanup(ipif_t *ipif) 6788 { 6789 int i; 6790 th_trace_t *th_trace; 6791 th_trace_t *th_trace_next; 6792 6793 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6794 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6795 th_trace = th_trace_next) { 6796 th_trace_next = th_trace->th_next; 6797 kmem_free(th_trace, sizeof (th_trace_t)); 6798 } 6799 ipif->ipif_trace[i] = NULL; 6800 } 6801 } 6802 6803 /* 6804 * Called when ill is unplumbed or when memory alloc fails 6805 */ 6806 void 6807 ill_trace_cleanup(ill_t *ill) 6808 { 6809 int i; 6810 th_trace_t *th_trace; 6811 th_trace_t *th_trace_next; 6812 6813 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6814 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6815 th_trace = th_trace_next) { 6816 th_trace_next = th_trace->th_next; 6817 kmem_free(th_trace, sizeof (th_trace_t)); 6818 } 6819 ill->ill_trace[i] = NULL; 6820 } 6821 } 6822 6823 #else 6824 void ip_thread_exit(void) {} 6825 #endif 6826 6827 void 6828 ipif_refhold_locked(ipif_t *ipif) 6829 { 6830 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6831 ipif->ipif_refcnt++; 6832 IPIF_TRACE_REF(ipif); 6833 } 6834 6835 void 6836 ipif_refhold(ipif_t *ipif) 6837 { 6838 ill_t *ill; 6839 6840 ill = ipif->ipif_ill; 6841 mutex_enter(&ill->ill_lock); 6842 ipif->ipif_refcnt++; 6843 IPIF_TRACE_REF(ipif); 6844 mutex_exit(&ill->ill_lock); 6845 } 6846 6847 /* 6848 * Must not be called while holding any locks. Otherwise if this is 6849 * the last reference to be released there is a chance of recursive mutex 6850 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6851 * to restart an ioctl. 6852 */ 6853 void 6854 ipif_refrele(ipif_t *ipif) 6855 { 6856 ill_t *ill; 6857 6858 ill = ipif->ipif_ill; 6859 6860 mutex_enter(&ill->ill_lock); 6861 ASSERT(ipif->ipif_refcnt != 0); 6862 ipif->ipif_refcnt--; 6863 IPIF_UNTRACE_REF(ipif); 6864 if (ipif->ipif_refcnt != 0) { 6865 mutex_exit(&ill->ill_lock); 6866 return; 6867 } 6868 6869 /* Drops the ill_lock */ 6870 ipif_ill_refrele_tail(ill); 6871 } 6872 6873 ipif_t * 6874 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6875 { 6876 ipif_t *ipif; 6877 6878 mutex_enter(&ill->ill_lock); 6879 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6880 ipif != NULL; ipif = ipif->ipif_next) { 6881 if (!IPIF_CAN_LOOKUP(ipif)) 6882 continue; 6883 ipif_refhold_locked(ipif); 6884 mutex_exit(&ill->ill_lock); 6885 return (ipif); 6886 } 6887 mutex_exit(&ill->ill_lock); 6888 return (NULL); 6889 } 6890 6891 /* 6892 * TODO: make this table extendible at run time 6893 * Return a pointer to the mac type info for 'mac_type' 6894 */ 6895 static ip_m_t * 6896 ip_m_lookup(t_uscalar_t mac_type) 6897 { 6898 ip_m_t *ipm; 6899 6900 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6901 if (ipm->ip_m_mac_type == mac_type) 6902 return (ipm); 6903 return (NULL); 6904 } 6905 6906 /* 6907 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6908 * ipif_arg is passed in to associate it with the correct interface. 6909 * We may need to restart this operation if the ipif cannot be looked up 6910 * due to an exclusive operation that is currently in progress. The restart 6911 * entry point is specified by 'func' 6912 */ 6913 int 6914 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6915 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6916 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6917 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6918 { 6919 ire_t *ire; 6920 ire_t *gw_ire = NULL; 6921 ipif_t *ipif = NULL; 6922 boolean_t ipif_refheld = B_FALSE; 6923 uint_t type; 6924 int match_flags = MATCH_IRE_TYPE; 6925 int error; 6926 tsol_gc_t *gc = NULL; 6927 tsol_gcgrp_t *gcgrp = NULL; 6928 boolean_t gcgrp_xtraref = B_FALSE; 6929 6930 ip1dbg(("ip_rt_add:")); 6931 6932 if (ire_arg != NULL) 6933 *ire_arg = NULL; 6934 6935 /* 6936 * If this is the case of RTF_HOST being set, then we set the netmask 6937 * to all ones (regardless if one was supplied). 6938 */ 6939 if (flags & RTF_HOST) 6940 mask = IP_HOST_MASK; 6941 6942 /* 6943 * Prevent routes with a zero gateway from being created (since 6944 * interfaces can currently be plumbed and brought up no assigned 6945 * address). 6946 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6947 */ 6948 if (gw_addr == 0 && src_ipif == NULL) 6949 return (ENETUNREACH); 6950 /* 6951 * Get the ipif, if any, corresponding to the gw_addr 6952 */ 6953 if (gw_addr != 0) { 6954 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6955 &error, ipst); 6956 if (ipif != NULL) { 6957 if (IS_VNI(ipif->ipif_ill)) { 6958 ipif_refrele(ipif); 6959 return (EINVAL); 6960 } 6961 ipif_refheld = B_TRUE; 6962 } else if (error == EINPROGRESS) { 6963 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6964 return (EINPROGRESS); 6965 } else { 6966 error = 0; 6967 } 6968 } 6969 6970 if (ipif != NULL) { 6971 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6972 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6973 } else { 6974 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6975 } 6976 6977 /* 6978 * GateD will attempt to create routes with a loopback interface 6979 * address as the gateway and with RTF_GATEWAY set. We allow 6980 * these routes to be added, but create them as interface routes 6981 * since the gateway is an interface address. 6982 */ 6983 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6984 flags &= ~RTF_GATEWAY; 6985 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6986 mask == IP_HOST_MASK) { 6987 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6988 ALL_ZONES, NULL, match_flags, ipst); 6989 if (ire != NULL) { 6990 ire_refrele(ire); 6991 if (ipif_refheld) 6992 ipif_refrele(ipif); 6993 return (EEXIST); 6994 } 6995 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6996 "for 0x%x\n", (void *)ipif, 6997 ipif->ipif_ire_type, 6998 ntohl(ipif->ipif_lcl_addr))); 6999 ire = ire_create( 7000 (uchar_t *)&dst_addr, /* dest address */ 7001 (uchar_t *)&mask, /* mask */ 7002 (uchar_t *)&ipif->ipif_src_addr, 7003 NULL, /* no gateway */ 7004 NULL, 7005 &ipif->ipif_mtu, 7006 NULL, 7007 ipif->ipif_rq, /* recv-from queue */ 7008 NULL, /* no send-to queue */ 7009 ipif->ipif_ire_type, /* LOOPBACK */ 7010 ipif, 7011 NULL, 7012 0, 7013 0, 7014 0, 7015 (ipif->ipif_flags & IPIF_PRIVATE) ? 7016 RTF_PRIVATE : 0, 7017 &ire_uinfo_null, 7018 NULL, 7019 NULL, 7020 ipst); 7021 7022 if (ire == NULL) { 7023 if (ipif_refheld) 7024 ipif_refrele(ipif); 7025 return (ENOMEM); 7026 } 7027 error = ire_add(&ire, q, mp, func, B_FALSE); 7028 if (error == 0) 7029 goto save_ire; 7030 if (ipif_refheld) 7031 ipif_refrele(ipif); 7032 return (error); 7033 7034 } 7035 } 7036 7037 /* 7038 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 7039 * and the gateway address provided is one of the system's interface 7040 * addresses. By using the routing socket interface and supplying an 7041 * RTA_IFP sockaddr with an interface index, an alternate method of 7042 * specifying an interface route to be created is available which uses 7043 * the interface index that specifies the outgoing interface rather than 7044 * the address of an outgoing interface (which may not be able to 7045 * uniquely identify an interface). When coupled with the RTF_GATEWAY 7046 * flag, routes can be specified which not only specify the next-hop to 7047 * be used when routing to a certain prefix, but also which outgoing 7048 * interface should be used. 7049 * 7050 * Previously, interfaces would have unique addresses assigned to them 7051 * and so the address assigned to a particular interface could be used 7052 * to identify a particular interface. One exception to this was the 7053 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 7054 * 7055 * With the advent of IPv6 and its link-local addresses, this 7056 * restriction was relaxed and interfaces could share addresses between 7057 * themselves. In fact, typically all of the link-local interfaces on 7058 * an IPv6 node or router will have the same link-local address. In 7059 * order to differentiate between these interfaces, the use of an 7060 * interface index is necessary and this index can be carried inside a 7061 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 7062 * of using the interface index, however, is that all of the ipif's that 7063 * are part of an ill have the same index and so the RTA_IFP sockaddr 7064 * cannot be used to differentiate between ipif's (or logical 7065 * interfaces) that belong to the same ill (physical interface). 7066 * 7067 * For example, in the following case involving IPv4 interfaces and 7068 * logical interfaces 7069 * 7070 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 7071 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 7072 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 7073 * 7074 * the ipif's corresponding to each of these interface routes can be 7075 * uniquely identified by the "gateway" (actually interface address). 7076 * 7077 * In this case involving multiple IPv6 default routes to a particular 7078 * link-local gateway, the use of RTA_IFP is necessary to specify which 7079 * default route is of interest: 7080 * 7081 * default fe80::123:4567:89ab:cdef U if0 7082 * default fe80::123:4567:89ab:cdef U if1 7083 */ 7084 7085 /* RTF_GATEWAY not set */ 7086 if (!(flags & RTF_GATEWAY)) { 7087 queue_t *stq; 7088 queue_t *rfq = NULL; 7089 ill_t *in_ill = NULL; 7090 7091 if (sp != NULL) { 7092 ip2dbg(("ip_rt_add: gateway security attributes " 7093 "cannot be set with interface route\n")); 7094 if (ipif_refheld) 7095 ipif_refrele(ipif); 7096 return (EINVAL); 7097 } 7098 7099 /* 7100 * As the interface index specified with the RTA_IFP sockaddr is 7101 * the same for all ipif's off of an ill, the matching logic 7102 * below uses MATCH_IRE_ILL if such an index was specified. 7103 * This means that routes sharing the same prefix when added 7104 * using a RTA_IFP sockaddr must have distinct interface 7105 * indices (namely, they must be on distinct ill's). 7106 * 7107 * On the other hand, since the gateway address will usually be 7108 * different for each ipif on the system, the matching logic 7109 * uses MATCH_IRE_IPIF in the case of a traditional interface 7110 * route. This means that interface routes for the same prefix 7111 * can be created if they belong to distinct ipif's and if a 7112 * RTA_IFP sockaddr is not present. 7113 */ 7114 if (ipif_arg != NULL) { 7115 if (ipif_refheld) { 7116 ipif_refrele(ipif); 7117 ipif_refheld = B_FALSE; 7118 } 7119 ipif = ipif_arg; 7120 match_flags |= MATCH_IRE_ILL; 7121 } else { 7122 /* 7123 * Check the ipif corresponding to the gw_addr 7124 */ 7125 if (ipif == NULL) 7126 return (ENETUNREACH); 7127 match_flags |= MATCH_IRE_IPIF; 7128 } 7129 ASSERT(ipif != NULL); 7130 /* 7131 * If src_ipif is not NULL, we have to create 7132 * an ire with non-null ire_in_ill value 7133 */ 7134 if (src_ipif != NULL) { 7135 in_ill = src_ipif->ipif_ill; 7136 } 7137 7138 /* 7139 * We check for an existing entry at this point. 7140 * 7141 * Since a netmask isn't passed in via the ioctl interface 7142 * (SIOCADDRT), we don't check for a matching netmask in that 7143 * case. 7144 */ 7145 if (!ioctl_msg) 7146 match_flags |= MATCH_IRE_MASK; 7147 if (src_ipif != NULL) { 7148 /* Look up in the special table */ 7149 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7150 ipif, src_ipif->ipif_ill, match_flags); 7151 } else { 7152 ire = ire_ftable_lookup(dst_addr, mask, 0, 7153 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7154 NULL, match_flags, ipst); 7155 } 7156 if (ire != NULL) { 7157 ire_refrele(ire); 7158 if (ipif_refheld) 7159 ipif_refrele(ipif); 7160 return (EEXIST); 7161 } 7162 7163 if (src_ipif != NULL) { 7164 /* 7165 * Create the special ire for the IRE table 7166 * which hangs out of ire_in_ill. This ire 7167 * is in-between IRE_CACHE and IRE_INTERFACE. 7168 * Thus rfq is non-NULL. 7169 */ 7170 rfq = ipif->ipif_rq; 7171 } 7172 /* Create the usual interface ires */ 7173 7174 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7175 ? ipif->ipif_rq : ipif->ipif_wq; 7176 7177 /* 7178 * Create a copy of the IRE_LOOPBACK, 7179 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7180 * the modified address and netmask. 7181 */ 7182 ire = ire_create( 7183 (uchar_t *)&dst_addr, 7184 (uint8_t *)&mask, 7185 (uint8_t *)&ipif->ipif_src_addr, 7186 NULL, 7187 NULL, 7188 &ipif->ipif_mtu, 7189 NULL, 7190 rfq, 7191 stq, 7192 ipif->ipif_net_type, 7193 ipif, 7194 in_ill, 7195 0, 7196 0, 7197 0, 7198 flags, 7199 &ire_uinfo_null, 7200 NULL, 7201 NULL, 7202 ipst); 7203 if (ire == NULL) { 7204 if (ipif_refheld) 7205 ipif_refrele(ipif); 7206 return (ENOMEM); 7207 } 7208 7209 /* 7210 * Some software (for example, GateD and Sun Cluster) attempts 7211 * to create (what amount to) IRE_PREFIX routes with the 7212 * loopback address as the gateway. This is primarily done to 7213 * set up prefixes with the RTF_REJECT flag set (for example, 7214 * when generating aggregate routes.) 7215 * 7216 * If the IRE type (as defined by ipif->ipif_net_type) is 7217 * IRE_LOOPBACK, then we map the request into a 7218 * IRE_IF_NORESOLVER. 7219 * 7220 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7221 * routine, but rather using ire_create() directly. 7222 * 7223 */ 7224 if (ipif->ipif_net_type == IRE_LOOPBACK) 7225 ire->ire_type = IRE_IF_NORESOLVER; 7226 7227 error = ire_add(&ire, q, mp, func, B_FALSE); 7228 if (error == 0) 7229 goto save_ire; 7230 7231 /* 7232 * In the result of failure, ire_add() will have already 7233 * deleted the ire in question, so there is no need to 7234 * do that here. 7235 */ 7236 if (ipif_refheld) 7237 ipif_refrele(ipif); 7238 return (error); 7239 } 7240 if (ipif_refheld) { 7241 ipif_refrele(ipif); 7242 ipif_refheld = B_FALSE; 7243 } 7244 7245 if (src_ipif != NULL) { 7246 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7247 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7248 return (EINVAL); 7249 } 7250 /* 7251 * Get an interface IRE for the specified gateway. 7252 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7253 * gateway, it is currently unreachable and we fail the request 7254 * accordingly. 7255 */ 7256 ipif = ipif_arg; 7257 if (ipif_arg != NULL) 7258 match_flags |= MATCH_IRE_ILL; 7259 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7260 ALL_ZONES, 0, NULL, match_flags, ipst); 7261 if (gw_ire == NULL) 7262 return (ENETUNREACH); 7263 7264 /* 7265 * We create one of three types of IREs as a result of this request 7266 * based on the netmask. A netmask of all ones (which is automatically 7267 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7268 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7269 * created. Otherwise, an IRE_PREFIX route is created for the 7270 * destination prefix. 7271 */ 7272 if (mask == IP_HOST_MASK) 7273 type = IRE_HOST; 7274 else if (mask == 0) 7275 type = IRE_DEFAULT; 7276 else 7277 type = IRE_PREFIX; 7278 7279 /* check for a duplicate entry */ 7280 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7281 NULL, ALL_ZONES, 0, NULL, 7282 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7283 if (ire != NULL) { 7284 ire_refrele(gw_ire); 7285 ire_refrele(ire); 7286 return (EEXIST); 7287 } 7288 7289 /* Security attribute exists */ 7290 if (sp != NULL) { 7291 tsol_gcgrp_addr_t ga; 7292 7293 /* find or create the gateway credentials group */ 7294 ga.ga_af = AF_INET; 7295 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7296 7297 /* we hold reference to it upon success */ 7298 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7299 if (gcgrp == NULL) { 7300 ire_refrele(gw_ire); 7301 return (ENOMEM); 7302 } 7303 7304 /* 7305 * Create and add the security attribute to the group; a 7306 * reference to the group is made upon allocating a new 7307 * entry successfully. If it finds an already-existing 7308 * entry for the security attribute in the group, it simply 7309 * returns it and no new reference is made to the group. 7310 */ 7311 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7312 if (gc == NULL) { 7313 /* release reference held by gcgrp_lookup */ 7314 GCGRP_REFRELE(gcgrp); 7315 ire_refrele(gw_ire); 7316 return (ENOMEM); 7317 } 7318 } 7319 7320 /* Create the IRE. */ 7321 ire = ire_create( 7322 (uchar_t *)&dst_addr, /* dest address */ 7323 (uchar_t *)&mask, /* mask */ 7324 /* src address assigned by the caller? */ 7325 (uchar_t *)(((src_addr != INADDR_ANY) && 7326 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7327 (uchar_t *)&gw_addr, /* gateway address */ 7328 NULL, /* no in-srcaddress */ 7329 &gw_ire->ire_max_frag, 7330 NULL, /* no src nce */ 7331 NULL, /* no recv-from queue */ 7332 NULL, /* no send-to queue */ 7333 (ushort_t)type, /* IRE type */ 7334 ipif_arg, 7335 NULL, 7336 0, 7337 0, 7338 0, 7339 flags, 7340 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7341 gc, /* security attribute */ 7342 NULL, 7343 ipst); 7344 7345 /* 7346 * The ire holds a reference to the 'gc' and the 'gc' holds a 7347 * reference to the 'gcgrp'. We can now release the extra reference 7348 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7349 */ 7350 if (gcgrp_xtraref) 7351 GCGRP_REFRELE(gcgrp); 7352 if (ire == NULL) { 7353 if (gc != NULL) 7354 GC_REFRELE(gc); 7355 ire_refrele(gw_ire); 7356 return (ENOMEM); 7357 } 7358 7359 /* 7360 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7361 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7362 */ 7363 7364 /* Add the new IRE. */ 7365 error = ire_add(&ire, q, mp, func, B_FALSE); 7366 if (error != 0) { 7367 /* 7368 * In the result of failure, ire_add() will have already 7369 * deleted the ire in question, so there is no need to 7370 * do that here. 7371 */ 7372 ire_refrele(gw_ire); 7373 return (error); 7374 } 7375 7376 if (flags & RTF_MULTIRT) { 7377 /* 7378 * Invoke the CGTP (multirouting) filtering module 7379 * to add the dst address in the filtering database. 7380 * Replicated inbound packets coming from that address 7381 * will be filtered to discard the duplicates. 7382 * It is not necessary to call the CGTP filter hook 7383 * when the dst address is a broadcast or multicast, 7384 * because an IP source address cannot be a broadcast 7385 * or a multicast. 7386 */ 7387 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7388 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7389 if (ire_dst != NULL) { 7390 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7391 ire_refrele(ire_dst); 7392 goto save_ire; 7393 } 7394 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7395 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7396 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7397 ire->ire_addr, 7398 ire->ire_gateway_addr, 7399 ire->ire_src_addr, 7400 gw_ire->ire_src_addr); 7401 if (res != 0) { 7402 ire_refrele(gw_ire); 7403 ire_delete(ire); 7404 return (res); 7405 } 7406 } 7407 } 7408 7409 /* 7410 * Now that the prefix IRE entry has been created, delete any 7411 * existing gateway IRE cache entries as well as any IRE caches 7412 * using the gateway, and force them to be created through 7413 * ip_newroute. 7414 */ 7415 if (gc != NULL) { 7416 ASSERT(gcgrp != NULL); 7417 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7418 } 7419 7420 save_ire: 7421 if (gw_ire != NULL) { 7422 ire_refrele(gw_ire); 7423 } 7424 /* 7425 * We do not do save_ire for the routes added with RTA_SRCIFP 7426 * flag. This route is only added and deleted by mipagent. 7427 * So, for simplicity of design, we refrain from saving 7428 * ires that are created with srcif value. This may change 7429 * in future if we find more usage of srcifp feature. 7430 */ 7431 if (ipif != NULL && src_ipif == NULL) { 7432 /* 7433 * Save enough information so that we can recreate the IRE if 7434 * the interface goes down and then up. The metrics associated 7435 * with the route will be saved as well when rts_setmetrics() is 7436 * called after the IRE has been created. In the case where 7437 * memory cannot be allocated, none of this information will be 7438 * saved. 7439 */ 7440 ipif_save_ire(ipif, ire); 7441 } 7442 if (ioctl_msg) 7443 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7444 if (ire_arg != NULL) { 7445 /* 7446 * Store the ire that was successfully added into where ire_arg 7447 * points to so that callers don't have to look it up 7448 * themselves (but they are responsible for ire_refrele()ing 7449 * the ire when they are finished with it). 7450 */ 7451 *ire_arg = ire; 7452 } else { 7453 ire_refrele(ire); /* Held in ire_add */ 7454 } 7455 if (ipif_refheld) 7456 ipif_refrele(ipif); 7457 return (0); 7458 } 7459 7460 /* 7461 * ip_rt_delete is called to delete an IPv4 route. 7462 * ipif_arg is passed in to associate it with the correct interface. 7463 * src_ipif is passed to associate the incoming interface of the packet. 7464 * We may need to restart this operation if the ipif cannot be looked up 7465 * due to an exclusive operation that is currently in progress. The restart 7466 * entry point is specified by 'func' 7467 */ 7468 /* ARGSUSED4 */ 7469 int 7470 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7471 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7472 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7473 ip_stack_t *ipst) 7474 { 7475 ire_t *ire = NULL; 7476 ipif_t *ipif; 7477 boolean_t ipif_refheld = B_FALSE; 7478 uint_t type; 7479 uint_t match_flags = MATCH_IRE_TYPE; 7480 int err = 0; 7481 7482 ip1dbg(("ip_rt_delete:")); 7483 /* 7484 * If this is the case of RTF_HOST being set, then we set the netmask 7485 * to all ones. Otherwise, we use the netmask if one was supplied. 7486 */ 7487 if (flags & RTF_HOST) { 7488 mask = IP_HOST_MASK; 7489 match_flags |= MATCH_IRE_MASK; 7490 } else if (rtm_addrs & RTA_NETMASK) { 7491 match_flags |= MATCH_IRE_MASK; 7492 } 7493 7494 /* 7495 * Note that RTF_GATEWAY is never set on a delete, therefore 7496 * we check if the gateway address is one of our interfaces first, 7497 * and fall back on RTF_GATEWAY routes. 7498 * 7499 * This makes it possible to delete an original 7500 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7501 * 7502 * As the interface index specified with the RTA_IFP sockaddr is the 7503 * same for all ipif's off of an ill, the matching logic below uses 7504 * MATCH_IRE_ILL if such an index was specified. This means a route 7505 * sharing the same prefix and interface index as the the route 7506 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7507 * is specified in the request. 7508 * 7509 * On the other hand, since the gateway address will usually be 7510 * different for each ipif on the system, the matching logic 7511 * uses MATCH_IRE_IPIF in the case of a traditional interface 7512 * route. This means that interface routes for the same prefix can be 7513 * uniquely identified if they belong to distinct ipif's and if a 7514 * RTA_IFP sockaddr is not present. 7515 * 7516 * For more detail on specifying routes by gateway address and by 7517 * interface index, see the comments in ip_rt_add(). 7518 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7519 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7520 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7521 * succeed. 7522 */ 7523 if (src_ipif != NULL) { 7524 if (ipif_arg == NULL && gw_addr != 0) { 7525 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7526 q, mp, func, &err, ipst); 7527 if (ipif_arg != NULL) 7528 ipif_refheld = B_TRUE; 7529 } 7530 if (ipif_arg == NULL) { 7531 err = (err == EINPROGRESS) ? err : ESRCH; 7532 return (err); 7533 } 7534 ipif = ipif_arg; 7535 } else { 7536 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7537 q, mp, func, &err, ipst); 7538 if (ipif != NULL) 7539 ipif_refheld = B_TRUE; 7540 else if (err == EINPROGRESS) 7541 return (err); 7542 else 7543 err = 0; 7544 } 7545 if (ipif != NULL) { 7546 if (ipif_arg != NULL) { 7547 if (ipif_refheld) { 7548 ipif_refrele(ipif); 7549 ipif_refheld = B_FALSE; 7550 } 7551 ipif = ipif_arg; 7552 match_flags |= MATCH_IRE_ILL; 7553 } else { 7554 match_flags |= MATCH_IRE_IPIF; 7555 } 7556 if (src_ipif != NULL) { 7557 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7558 ipif, src_ipif->ipif_ill, match_flags); 7559 } else { 7560 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7561 ire = ire_ctable_lookup(dst_addr, 0, 7562 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7563 match_flags, ipst); 7564 } 7565 if (ire == NULL) { 7566 ire = ire_ftable_lookup(dst_addr, mask, 0, 7567 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7568 NULL, match_flags, ipst); 7569 } 7570 } 7571 } 7572 7573 if (ire == NULL) { 7574 /* 7575 * At this point, the gateway address is not one of our own 7576 * addresses or a matching interface route was not found. We 7577 * set the IRE type to lookup based on whether 7578 * this is a host route, a default route or just a prefix. 7579 * 7580 * If an ipif_arg was passed in, then the lookup is based on an 7581 * interface index so MATCH_IRE_ILL is added to match_flags. 7582 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7583 * set as the route being looked up is not a traditional 7584 * interface route. 7585 * Since we do not add gateway route with srcipif, we don't 7586 * expect to find it either. 7587 */ 7588 if (src_ipif != NULL) { 7589 if (ipif_refheld) 7590 ipif_refrele(ipif); 7591 return (ESRCH); 7592 } else { 7593 match_flags &= ~MATCH_IRE_IPIF; 7594 match_flags |= MATCH_IRE_GW; 7595 if (ipif_arg != NULL) 7596 match_flags |= MATCH_IRE_ILL; 7597 if (mask == IP_HOST_MASK) 7598 type = IRE_HOST; 7599 else if (mask == 0) 7600 type = IRE_DEFAULT; 7601 else 7602 type = IRE_PREFIX; 7603 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7604 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7605 ipst); 7606 } 7607 } 7608 7609 if (ipif_refheld) 7610 ipif_refrele(ipif); 7611 7612 /* ipif is not refheld anymore */ 7613 if (ire == NULL) 7614 return (ESRCH); 7615 7616 if (ire->ire_flags & RTF_MULTIRT) { 7617 /* 7618 * Invoke the CGTP (multirouting) filtering module 7619 * to remove the dst address from the filtering database. 7620 * Packets coming from that address will no longer be 7621 * filtered to remove duplicates. 7622 */ 7623 if (ip_cgtp_filter_ops != NULL && 7624 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7625 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7626 ire->ire_addr, ire->ire_gateway_addr); 7627 } 7628 ip_cgtp_bcast_delete(ire, ipst); 7629 } 7630 7631 ipif = ire->ire_ipif; 7632 /* 7633 * Removing from ipif_saved_ire_mp is not necessary 7634 * when src_ipif being non-NULL. ip_rt_add does not 7635 * save the ires which src_ipif being non-NULL. 7636 */ 7637 if (ipif != NULL && src_ipif == NULL) { 7638 ipif_remove_ire(ipif, ire); 7639 } 7640 if (ioctl_msg) 7641 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7642 ire_delete(ire); 7643 ire_refrele(ire); 7644 return (err); 7645 } 7646 7647 /* 7648 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7649 */ 7650 /* ARGSUSED */ 7651 int 7652 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7653 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7654 { 7655 ipaddr_t dst_addr; 7656 ipaddr_t gw_addr; 7657 ipaddr_t mask; 7658 int error = 0; 7659 mblk_t *mp1; 7660 struct rtentry *rt; 7661 ipif_t *ipif = NULL; 7662 ip_stack_t *ipst; 7663 7664 ASSERT(q->q_next == NULL); 7665 ipst = CONNQ_TO_IPST(q); 7666 7667 ip1dbg(("ip_siocaddrt:")); 7668 /* Existence of mp1 verified in ip_wput_nondata */ 7669 mp1 = mp->b_cont->b_cont; 7670 rt = (struct rtentry *)mp1->b_rptr; 7671 7672 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7673 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7674 7675 /* 7676 * If the RTF_HOST flag is on, this is a request to assign a gateway 7677 * to a particular host address. In this case, we set the netmask to 7678 * all ones for the particular destination address. Otherwise, 7679 * determine the netmask to be used based on dst_addr and the interfaces 7680 * in use. 7681 */ 7682 if (rt->rt_flags & RTF_HOST) { 7683 mask = IP_HOST_MASK; 7684 } else { 7685 /* 7686 * Note that ip_subnet_mask returns a zero mask in the case of 7687 * default (an all-zeroes address). 7688 */ 7689 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7690 } 7691 7692 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7693 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7694 if (ipif != NULL) 7695 ipif_refrele(ipif); 7696 return (error); 7697 } 7698 7699 /* 7700 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7701 */ 7702 /* ARGSUSED */ 7703 int 7704 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7705 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7706 { 7707 ipaddr_t dst_addr; 7708 ipaddr_t gw_addr; 7709 ipaddr_t mask; 7710 int error; 7711 mblk_t *mp1; 7712 struct rtentry *rt; 7713 ipif_t *ipif = NULL; 7714 ip_stack_t *ipst; 7715 7716 ASSERT(q->q_next == NULL); 7717 ipst = CONNQ_TO_IPST(q); 7718 7719 ip1dbg(("ip_siocdelrt:")); 7720 /* Existence of mp1 verified in ip_wput_nondata */ 7721 mp1 = mp->b_cont->b_cont; 7722 rt = (struct rtentry *)mp1->b_rptr; 7723 7724 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7725 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7726 7727 /* 7728 * If the RTF_HOST flag is on, this is a request to delete a gateway 7729 * to a particular host address. In this case, we set the netmask to 7730 * all ones for the particular destination address. Otherwise, 7731 * determine the netmask to be used based on dst_addr and the interfaces 7732 * in use. 7733 */ 7734 if (rt->rt_flags & RTF_HOST) { 7735 mask = IP_HOST_MASK; 7736 } else { 7737 /* 7738 * Note that ip_subnet_mask returns a zero mask in the case of 7739 * default (an all-zeroes address). 7740 */ 7741 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7742 } 7743 7744 error = ip_rt_delete(dst_addr, mask, gw_addr, 7745 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7746 B_TRUE, q, mp, ip_process_ioctl, ipst); 7747 if (ipif != NULL) 7748 ipif_refrele(ipif); 7749 return (error); 7750 } 7751 7752 /* 7753 * Enqueue the mp onto the ipsq, chained by b_next. 7754 * b_prev stores the function to be executed later, and b_queue the queue 7755 * where this mp originated. 7756 */ 7757 void 7758 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7759 ill_t *pending_ill) 7760 { 7761 conn_t *connp = NULL; 7762 7763 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7764 ASSERT(func != NULL); 7765 7766 mp->b_queue = q; 7767 mp->b_prev = (void *)func; 7768 mp->b_next = NULL; 7769 7770 switch (type) { 7771 case CUR_OP: 7772 if (ipsq->ipsq_mptail != NULL) { 7773 ASSERT(ipsq->ipsq_mphead != NULL); 7774 ipsq->ipsq_mptail->b_next = mp; 7775 } else { 7776 ASSERT(ipsq->ipsq_mphead == NULL); 7777 ipsq->ipsq_mphead = mp; 7778 } 7779 ipsq->ipsq_mptail = mp; 7780 break; 7781 7782 case NEW_OP: 7783 if (ipsq->ipsq_xopq_mptail != NULL) { 7784 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7785 ipsq->ipsq_xopq_mptail->b_next = mp; 7786 } else { 7787 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7788 ipsq->ipsq_xopq_mphead = mp; 7789 } 7790 ipsq->ipsq_xopq_mptail = mp; 7791 break; 7792 default: 7793 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7794 } 7795 7796 if (CONN_Q(q) && pending_ill != NULL) { 7797 connp = Q_TO_CONN(q); 7798 7799 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7800 connp->conn_oper_pending_ill = pending_ill; 7801 } 7802 } 7803 7804 /* 7805 * Return the mp at the head of the ipsq. After emptying the ipsq 7806 * look at the next ioctl, if this ioctl is complete. Otherwise 7807 * return, we will resume when we complete the current ioctl. 7808 * The current ioctl will wait till it gets a response from the 7809 * driver below. 7810 */ 7811 static mblk_t * 7812 ipsq_dq(ipsq_t *ipsq) 7813 { 7814 mblk_t *mp; 7815 7816 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7817 7818 mp = ipsq->ipsq_mphead; 7819 if (mp != NULL) { 7820 ipsq->ipsq_mphead = mp->b_next; 7821 if (ipsq->ipsq_mphead == NULL) 7822 ipsq->ipsq_mptail = NULL; 7823 mp->b_next = NULL; 7824 return (mp); 7825 } 7826 if (ipsq->ipsq_current_ipif != NULL) 7827 return (NULL); 7828 mp = ipsq->ipsq_xopq_mphead; 7829 if (mp != NULL) { 7830 ipsq->ipsq_xopq_mphead = mp->b_next; 7831 if (ipsq->ipsq_xopq_mphead == NULL) 7832 ipsq->ipsq_xopq_mptail = NULL; 7833 mp->b_next = NULL; 7834 return (mp); 7835 } 7836 return (NULL); 7837 } 7838 7839 /* 7840 * Enter the ipsq corresponding to ill, by waiting synchronously till 7841 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7842 * will have to drain completely before ipsq_enter returns success. 7843 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7844 * and the ipsq_exit logic will start the next enqueued ioctl after 7845 * completion of the current ioctl. If 'force' is used, we don't wait 7846 * for the enqueued ioctls. This is needed when a conn_close wants to 7847 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7848 * of an ill can also use this option. But we dont' use it currently. 7849 */ 7850 #define ENTER_SQ_WAIT_TICKS 100 7851 boolean_t 7852 ipsq_enter(ill_t *ill, boolean_t force) 7853 { 7854 ipsq_t *ipsq; 7855 boolean_t waited_enough = B_FALSE; 7856 7857 /* 7858 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7859 * Since the <ill-ipsq> assocs could change while we wait for the 7860 * writer, it is easier to wait on a fixed global rather than try to 7861 * cv_wait on a changing ipsq. 7862 */ 7863 mutex_enter(&ill->ill_lock); 7864 for (;;) { 7865 if (ill->ill_state_flags & ILL_CONDEMNED) { 7866 mutex_exit(&ill->ill_lock); 7867 return (B_FALSE); 7868 } 7869 7870 ipsq = ill->ill_phyint->phyint_ipsq; 7871 mutex_enter(&ipsq->ipsq_lock); 7872 if (ipsq->ipsq_writer == NULL && 7873 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7874 break; 7875 } else if (ipsq->ipsq_writer != NULL) { 7876 mutex_exit(&ipsq->ipsq_lock); 7877 cv_wait(&ill->ill_cv, &ill->ill_lock); 7878 } else { 7879 mutex_exit(&ipsq->ipsq_lock); 7880 if (force) { 7881 (void) cv_timedwait(&ill->ill_cv, 7882 &ill->ill_lock, 7883 lbolt + ENTER_SQ_WAIT_TICKS); 7884 waited_enough = B_TRUE; 7885 continue; 7886 } else { 7887 cv_wait(&ill->ill_cv, &ill->ill_lock); 7888 } 7889 } 7890 } 7891 7892 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7893 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7894 ipsq->ipsq_writer = curthread; 7895 ipsq->ipsq_reentry_cnt++; 7896 #ifdef ILL_DEBUG 7897 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7898 #endif 7899 mutex_exit(&ipsq->ipsq_lock); 7900 mutex_exit(&ill->ill_lock); 7901 return (B_TRUE); 7902 } 7903 7904 /* 7905 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7906 * certain critical operations like plumbing (i.e. most set ioctls), 7907 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7908 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7909 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7910 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7911 * threads executing in the ipsq. Responses from the driver pertain to the 7912 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7913 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7914 * 7915 * If a thread does not want to reenter the ipsq when it is already writer, 7916 * it must make sure that the specified reentry point to be called later 7917 * when the ipsq is empty, nor any code path starting from the specified reentry 7918 * point must never ever try to enter the ipsq again. Otherwise it can lead 7919 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7920 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7921 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7922 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7923 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7924 * ioctl if the current ioctl has completed. If the current ioctl is still 7925 * in progress it simply returns. The current ioctl could be waiting for 7926 * a response from another module (arp_ or the driver or could be waiting for 7927 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7928 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7929 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7930 * ipsq_current_ipif is clear which happens only on ioctl completion. 7931 */ 7932 7933 /* 7934 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7935 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7936 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7937 * completion. 7938 */ 7939 ipsq_t * 7940 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7941 ipsq_func_t func, int type, boolean_t reentry_ok) 7942 { 7943 ipsq_t *ipsq; 7944 7945 /* Only 1 of ipif or ill can be specified */ 7946 ASSERT((ipif != NULL) ^ (ill != NULL)); 7947 if (ipif != NULL) 7948 ill = ipif->ipif_ill; 7949 7950 /* 7951 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7952 * ipsq of an ill can't change when ill_lock is held. 7953 */ 7954 GRAB_CONN_LOCK(q); 7955 mutex_enter(&ill->ill_lock); 7956 ipsq = ill->ill_phyint->phyint_ipsq; 7957 mutex_enter(&ipsq->ipsq_lock); 7958 7959 /* 7960 * 1. Enter the ipsq if we are already writer and reentry is ok. 7961 * (Note: If the caller does not specify reentry_ok then neither 7962 * 'func' nor any of its callees must ever attempt to enter the ipsq 7963 * again. Otherwise it can lead to an infinite loop 7964 * 2. Enter the ipsq if there is no current writer and this attempted 7965 * entry is part of the current ioctl or operation 7966 * 3. Enter the ipsq if there is no current writer and this is a new 7967 * ioctl (or operation) and the ioctl (or operation) queue is 7968 * empty and there is no ioctl (or operation) currently in progress 7969 */ 7970 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7971 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7972 ipsq->ipsq_current_ipif == NULL))) || 7973 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7974 /* Success. */ 7975 ipsq->ipsq_reentry_cnt++; 7976 ipsq->ipsq_writer = curthread; 7977 mutex_exit(&ipsq->ipsq_lock); 7978 mutex_exit(&ill->ill_lock); 7979 RELEASE_CONN_LOCK(q); 7980 #ifdef ILL_DEBUG 7981 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7982 #endif 7983 return (ipsq); 7984 } 7985 7986 ipsq_enq(ipsq, q, mp, func, type, ill); 7987 7988 mutex_exit(&ipsq->ipsq_lock); 7989 mutex_exit(&ill->ill_lock); 7990 RELEASE_CONN_LOCK(q); 7991 return (NULL); 7992 } 7993 7994 /* 7995 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7996 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7997 * cannot be entered, the mp is queued for completion. 7998 */ 7999 void 8000 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 8001 boolean_t reentry_ok) 8002 { 8003 ipsq_t *ipsq; 8004 8005 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 8006 8007 /* 8008 * Drop the caller's refhold on the ill. This is safe since we either 8009 * entered the IPSQ (and thus are exclusive), or failed to enter the 8010 * IPSQ, in which case we return without accessing ill anymore. This 8011 * is needed because func needs to see the correct refcount. 8012 * e.g. removeif can work only then. 8013 */ 8014 ill_refrele(ill); 8015 if (ipsq != NULL) { 8016 (*func)(ipsq, q, mp, NULL); 8017 ipsq_exit(ipsq, B_TRUE, B_TRUE); 8018 } 8019 } 8020 8021 /* 8022 * If there are more than ILL_GRP_CNT ills in a group, 8023 * we use kmem alloc'd buffers, else use the stack 8024 */ 8025 #define ILL_GRP_CNT 14 8026 /* 8027 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 8028 * Called by a thread that is currently exclusive on this ipsq. 8029 */ 8030 void 8031 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 8032 { 8033 queue_t *q; 8034 mblk_t *mp; 8035 ipsq_func_t func; 8036 int next; 8037 ill_t **ill_list = NULL; 8038 size_t ill_list_size = 0; 8039 int cnt = 0; 8040 boolean_t need_ipsq_free = B_FALSE; 8041 ip_stack_t *ipst = ipsq->ipsq_ipst; 8042 8043 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8044 mutex_enter(&ipsq->ipsq_lock); 8045 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 8046 if (ipsq->ipsq_reentry_cnt != 1) { 8047 ipsq->ipsq_reentry_cnt--; 8048 mutex_exit(&ipsq->ipsq_lock); 8049 return; 8050 } 8051 8052 mp = ipsq_dq(ipsq); 8053 while (mp != NULL) { 8054 again: 8055 mutex_exit(&ipsq->ipsq_lock); 8056 func = (ipsq_func_t)mp->b_prev; 8057 q = (queue_t *)mp->b_queue; 8058 mp->b_prev = NULL; 8059 mp->b_queue = NULL; 8060 8061 /* 8062 * If 'q' is an conn queue, it is valid, since we did a 8063 * a refhold on the connp, at the start of the ioctl. 8064 * If 'q' is an ill queue, it is valid, since close of an 8065 * ill will clean up the 'ipsq'. 8066 */ 8067 (*func)(ipsq, q, mp, NULL); 8068 8069 mutex_enter(&ipsq->ipsq_lock); 8070 mp = ipsq_dq(ipsq); 8071 } 8072 8073 mutex_exit(&ipsq->ipsq_lock); 8074 8075 /* 8076 * Need to grab the locks in the right order. Need to 8077 * atomically check (under ipsq_lock) that there are no 8078 * messages before relinquishing the ipsq. Also need to 8079 * atomically wakeup waiters on ill_cv while holding ill_lock. 8080 * Holding ill_g_lock ensures that ipsq list of ills is stable. 8081 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 8082 * to grab ill_g_lock as writer. 8083 */ 8084 rw_enter(&ipst->ips_ill_g_lock, 8085 ipsq->ipsq_split ? RW_WRITER : RW_READER); 8086 8087 /* ipsq_refs can't change while ill_g_lock is held as reader */ 8088 if (ipsq->ipsq_refs != 0) { 8089 /* At most 2 ills v4/v6 per phyint */ 8090 cnt = ipsq->ipsq_refs << 1; 8091 ill_list_size = cnt * sizeof (ill_t *); 8092 /* 8093 * If memory allocation fails, we will do the split 8094 * the next time ipsq_exit is called for whatever reason. 8095 * As long as the ipsq_split flag is set the need to 8096 * split is remembered. 8097 */ 8098 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 8099 if (ill_list != NULL) 8100 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 8101 } 8102 mutex_enter(&ipsq->ipsq_lock); 8103 mp = ipsq_dq(ipsq); 8104 if (mp != NULL) { 8105 /* oops, some message has landed up, we can't get out */ 8106 if (ill_list != NULL) 8107 ill_unlock_ills(ill_list, cnt); 8108 rw_exit(&ipst->ips_ill_g_lock); 8109 if (ill_list != NULL) 8110 kmem_free(ill_list, ill_list_size); 8111 ill_list = NULL; 8112 ill_list_size = 0; 8113 cnt = 0; 8114 goto again; 8115 } 8116 8117 /* 8118 * Split only if no ioctl is pending and if memory alloc succeeded 8119 * above. 8120 */ 8121 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 8122 ill_list != NULL) { 8123 /* 8124 * No new ill can join this ipsq since we are holding the 8125 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 8126 * ipsq. ill_split_ipsq may fail due to memory shortage. 8127 * If so we will retry on the next ipsq_exit. 8128 */ 8129 ipsq->ipsq_split = ill_split_ipsq(ipsq); 8130 } 8131 8132 /* 8133 * We are holding the ipsq lock, hence no new messages can 8134 * land up on the ipsq, and there are no messages currently. 8135 * Now safe to get out. Wake up waiters and relinquish ipsq 8136 * atomically while holding ill locks. 8137 */ 8138 ipsq->ipsq_writer = NULL; 8139 ipsq->ipsq_reentry_cnt--; 8140 ASSERT(ipsq->ipsq_reentry_cnt == 0); 8141 #ifdef ILL_DEBUG 8142 ipsq->ipsq_depth = 0; 8143 #endif 8144 mutex_exit(&ipsq->ipsq_lock); 8145 /* 8146 * For IPMP this should wake up all ills in this ipsq. 8147 * We need to hold the ill_lock while waking up waiters to 8148 * avoid missed wakeups. But there is no need to acquire all 8149 * the ill locks and then wakeup. If we have not acquired all 8150 * the locks (due to memory failure above) ill_signal_ipsq_ills 8151 * wakes up ills one at a time after getting the right ill_lock 8152 */ 8153 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 8154 if (ill_list != NULL) 8155 ill_unlock_ills(ill_list, cnt); 8156 if (ipsq->ipsq_refs == 0) 8157 need_ipsq_free = B_TRUE; 8158 rw_exit(&ipst->ips_ill_g_lock); 8159 if (ill_list != 0) 8160 kmem_free(ill_list, ill_list_size); 8161 8162 if (need_ipsq_free) { 8163 /* 8164 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8165 * looked up. ipsq can be looked up only thru ill or phyint 8166 * and there are no ills/phyint on this ipsq. 8167 */ 8168 ipsq_delete(ipsq); 8169 } 8170 /* 8171 * Now start any igmp or mld timers that could not be started 8172 * while inside the ipsq. The timers can't be started while inside 8173 * the ipsq, since igmp_start_timers may need to call untimeout() 8174 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8175 * there could be a deadlock since the timeout handlers 8176 * mld_timeout_handler / igmp_timeout_handler also synchronously 8177 * wait in ipsq_enter() trying to get the ipsq. 8178 * 8179 * However there is one exception to the above. If this thread is 8180 * itself the igmp/mld timeout handler thread, then we don't want 8181 * to start any new timer until the current handler is done. The 8182 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8183 * all others pass B_TRUE. 8184 */ 8185 if (start_igmp_timer) { 8186 mutex_enter(&ipst->ips_igmp_timer_lock); 8187 next = ipst->ips_igmp_deferred_next; 8188 ipst->ips_igmp_deferred_next = INFINITY; 8189 mutex_exit(&ipst->ips_igmp_timer_lock); 8190 8191 if (next != INFINITY) 8192 igmp_start_timers(next, ipst); 8193 } 8194 8195 if (start_mld_timer) { 8196 mutex_enter(&ipst->ips_mld_timer_lock); 8197 next = ipst->ips_mld_deferred_next; 8198 ipst->ips_mld_deferred_next = INFINITY; 8199 mutex_exit(&ipst->ips_mld_timer_lock); 8200 8201 if (next != INFINITY) 8202 mld_start_timers(next, ipst); 8203 } 8204 } 8205 8206 /* 8207 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8208 * and `ioccmd'. 8209 */ 8210 void 8211 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8212 { 8213 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8214 8215 mutex_enter(&ipsq->ipsq_lock); 8216 ASSERT(ipsq->ipsq_current_ipif == NULL); 8217 ASSERT(ipsq->ipsq_current_ioctl == 0); 8218 ipsq->ipsq_current_ipif = ipif; 8219 ipsq->ipsq_current_ioctl = ioccmd; 8220 mutex_exit(&ipsq->ipsq_lock); 8221 } 8222 8223 /* 8224 * Finish the current exclusive operation on `ipsq'. Note that other 8225 * operations will not be able to proceed until an ipsq_exit() is done. 8226 */ 8227 void 8228 ipsq_current_finish(ipsq_t *ipsq) 8229 { 8230 ipif_t *ipif = ipsq->ipsq_current_ipif; 8231 8232 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8233 8234 /* 8235 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8236 * (but we're careful to never set IPIF_CHANGING in that case). 8237 */ 8238 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8239 mutex_enter(&ipif->ipif_ill->ill_lock); 8240 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8241 8242 /* Send any queued event */ 8243 ill_nic_info_dispatch(ipif->ipif_ill); 8244 mutex_exit(&ipif->ipif_ill->ill_lock); 8245 } 8246 8247 mutex_enter(&ipsq->ipsq_lock); 8248 ASSERT(ipsq->ipsq_current_ipif != NULL); 8249 ipsq->ipsq_current_ipif = NULL; 8250 ipsq->ipsq_current_ioctl = 0; 8251 mutex_exit(&ipsq->ipsq_lock); 8252 } 8253 8254 /* 8255 * The ill is closing. Flush all messages on the ipsq that originated 8256 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8257 * for this ill since ipsq_enter could not have entered until then. 8258 * New messages can't be queued since the CONDEMNED flag is set. 8259 */ 8260 static void 8261 ipsq_flush(ill_t *ill) 8262 { 8263 queue_t *q; 8264 mblk_t *prev; 8265 mblk_t *mp; 8266 mblk_t *mp_next; 8267 ipsq_t *ipsq; 8268 8269 ASSERT(IAM_WRITER_ILL(ill)); 8270 ipsq = ill->ill_phyint->phyint_ipsq; 8271 /* 8272 * Flush any messages sent up by the driver. 8273 */ 8274 mutex_enter(&ipsq->ipsq_lock); 8275 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8276 mp_next = mp->b_next; 8277 q = mp->b_queue; 8278 if (q == ill->ill_rq || q == ill->ill_wq) { 8279 /* Remove the mp from the ipsq */ 8280 if (prev == NULL) 8281 ipsq->ipsq_mphead = mp->b_next; 8282 else 8283 prev->b_next = mp->b_next; 8284 if (ipsq->ipsq_mptail == mp) { 8285 ASSERT(mp_next == NULL); 8286 ipsq->ipsq_mptail = prev; 8287 } 8288 inet_freemsg(mp); 8289 } else { 8290 prev = mp; 8291 } 8292 } 8293 mutex_exit(&ipsq->ipsq_lock); 8294 (void) ipsq_pending_mp_cleanup(ill, NULL); 8295 ipsq_xopq_mp_cleanup(ill, NULL); 8296 ill_pending_mp_cleanup(ill); 8297 } 8298 8299 /* ARGSUSED */ 8300 int 8301 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8302 ip_ioctl_cmd_t *ipip, void *ifreq) 8303 { 8304 ill_t *ill; 8305 struct lifreq *lifr = (struct lifreq *)ifreq; 8306 boolean_t isv6; 8307 conn_t *connp; 8308 ip_stack_t *ipst; 8309 8310 connp = Q_TO_CONN(q); 8311 ipst = connp->conn_netstack->netstack_ip; 8312 isv6 = connp->conn_af_isv6; 8313 /* 8314 * Set original index. 8315 * Failover and failback move logical interfaces 8316 * from one physical interface to another. The 8317 * original index indicates the parent of a logical 8318 * interface, in other words, the physical interface 8319 * the logical interface will be moved back to on 8320 * failback. 8321 */ 8322 8323 /* 8324 * Don't allow the original index to be changed 8325 * for non-failover addresses, autoconfigured 8326 * addresses, or IPv6 link local addresses. 8327 */ 8328 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8329 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8330 return (EINVAL); 8331 } 8332 /* 8333 * The new original index must be in use by some 8334 * physical interface. 8335 */ 8336 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8337 NULL, NULL, ipst); 8338 if (ill == NULL) 8339 return (ENXIO); 8340 ill_refrele(ill); 8341 8342 ipif->ipif_orig_ifindex = lifr->lifr_index; 8343 /* 8344 * When this ipif gets failed back, don't 8345 * preserve the original id, as it is no 8346 * longer applicable. 8347 */ 8348 ipif->ipif_orig_ipifid = 0; 8349 /* 8350 * For IPv4, change the original index of any 8351 * multicast addresses associated with the 8352 * ipif to the new value. 8353 */ 8354 if (!isv6) { 8355 ilm_t *ilm; 8356 8357 mutex_enter(&ipif->ipif_ill->ill_lock); 8358 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8359 ilm = ilm->ilm_next) { 8360 if (ilm->ilm_ipif == ipif) { 8361 ilm->ilm_orig_ifindex = lifr->lifr_index; 8362 } 8363 } 8364 mutex_exit(&ipif->ipif_ill->ill_lock); 8365 } 8366 return (0); 8367 } 8368 8369 /* ARGSUSED */ 8370 int 8371 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8372 ip_ioctl_cmd_t *ipip, void *ifreq) 8373 { 8374 struct lifreq *lifr = (struct lifreq *)ifreq; 8375 8376 /* 8377 * Get the original interface index i.e the one 8378 * before FAILOVER if it ever happened. 8379 */ 8380 lifr->lifr_index = ipif->ipif_orig_ifindex; 8381 return (0); 8382 } 8383 8384 /* 8385 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8386 * refhold and return the associated ipif 8387 */ 8388 int 8389 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8390 { 8391 boolean_t exists; 8392 struct iftun_req *ta; 8393 ipif_t *ipif; 8394 ill_t *ill; 8395 boolean_t isv6; 8396 mblk_t *mp1; 8397 int error; 8398 conn_t *connp; 8399 ip_stack_t *ipst; 8400 8401 /* Existence verified in ip_wput_nondata */ 8402 mp1 = mp->b_cont->b_cont; 8403 ta = (struct iftun_req *)mp1->b_rptr; 8404 /* 8405 * Null terminate the string to protect against buffer 8406 * overrun. String was generated by user code and may not 8407 * be trusted. 8408 */ 8409 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8410 8411 connp = Q_TO_CONN(q); 8412 isv6 = connp->conn_af_isv6; 8413 ipst = connp->conn_netstack->netstack_ip; 8414 8415 /* Disallows implicit create */ 8416 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8417 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8418 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8419 if (ipif == NULL) 8420 return (error); 8421 8422 if (ipif->ipif_id != 0) { 8423 /* 8424 * We really don't want to set/get tunnel parameters 8425 * on virtual tunnel interfaces. Only allow the 8426 * base tunnel to do these. 8427 */ 8428 ipif_refrele(ipif); 8429 return (EINVAL); 8430 } 8431 8432 /* 8433 * Send down to tunnel mod for ioctl processing. 8434 * Will finish ioctl in ip_rput_other(). 8435 */ 8436 ill = ipif->ipif_ill; 8437 if (ill->ill_net_type == IRE_LOOPBACK) { 8438 ipif_refrele(ipif); 8439 return (EOPNOTSUPP); 8440 } 8441 8442 if (ill->ill_wq == NULL) { 8443 ipif_refrele(ipif); 8444 return (ENXIO); 8445 } 8446 /* 8447 * Mark the ioctl as coming from an IPv6 interface for 8448 * tun's convenience. 8449 */ 8450 if (ill->ill_isv6) 8451 ta->ifta_flags |= 0x80000000; 8452 *ipifp = ipif; 8453 return (0); 8454 } 8455 8456 /* 8457 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8458 * and return the associated ipif. 8459 * Return value: 8460 * Non zero: An error has occurred. ci may not be filled out. 8461 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8462 * a held ipif in ci.ci_ipif. 8463 */ 8464 int 8465 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8466 cmd_info_t *ci, ipsq_func_t func) 8467 { 8468 sin_t *sin; 8469 sin6_t *sin6; 8470 char *name; 8471 struct ifreq *ifr; 8472 struct lifreq *lifr; 8473 ipif_t *ipif = NULL; 8474 ill_t *ill; 8475 conn_t *connp; 8476 boolean_t isv6; 8477 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8478 boolean_t exists; 8479 int err; 8480 mblk_t *mp1; 8481 zoneid_t zoneid; 8482 ip_stack_t *ipst; 8483 8484 if (q->q_next != NULL) { 8485 ill = (ill_t *)q->q_ptr; 8486 isv6 = ill->ill_isv6; 8487 connp = NULL; 8488 zoneid = ALL_ZONES; 8489 ipst = ill->ill_ipst; 8490 } else { 8491 ill = NULL; 8492 connp = Q_TO_CONN(q); 8493 isv6 = connp->conn_af_isv6; 8494 zoneid = connp->conn_zoneid; 8495 if (zoneid == GLOBAL_ZONEID) { 8496 /* global zone can access ipifs in all zones */ 8497 zoneid = ALL_ZONES; 8498 } 8499 ipst = connp->conn_netstack->netstack_ip; 8500 } 8501 8502 /* Has been checked in ip_wput_nondata */ 8503 mp1 = mp->b_cont->b_cont; 8504 8505 8506 if (cmd_type == IF_CMD) { 8507 /* This a old style SIOC[GS]IF* command */ 8508 ifr = (struct ifreq *)mp1->b_rptr; 8509 /* 8510 * Null terminate the string to protect against buffer 8511 * overrun. String was generated by user code and may not 8512 * be trusted. 8513 */ 8514 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8515 sin = (sin_t *)&ifr->ifr_addr; 8516 name = ifr->ifr_name; 8517 ci->ci_sin = sin; 8518 ci->ci_sin6 = NULL; 8519 ci->ci_lifr = (struct lifreq *)ifr; 8520 } else { 8521 /* This a new style SIOC[GS]LIF* command */ 8522 ASSERT(cmd_type == LIF_CMD); 8523 lifr = (struct lifreq *)mp1->b_rptr; 8524 /* 8525 * Null terminate the string to protect against buffer 8526 * overrun. String was generated by user code and may not 8527 * be trusted. 8528 */ 8529 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8530 name = lifr->lifr_name; 8531 sin = (sin_t *)&lifr->lifr_addr; 8532 sin6 = (sin6_t *)&lifr->lifr_addr; 8533 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8534 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8535 LIFNAMSIZ); 8536 } 8537 ci->ci_sin = sin; 8538 ci->ci_sin6 = sin6; 8539 ci->ci_lifr = lifr; 8540 } 8541 8542 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8543 /* 8544 * The ioctl will be failed if the ioctl comes down 8545 * an conn stream 8546 */ 8547 if (ill == NULL) { 8548 /* 8549 * Not an ill queue, return EINVAL same as the 8550 * old error code. 8551 */ 8552 return (ENXIO); 8553 } 8554 ipif = ill->ill_ipif; 8555 ipif_refhold(ipif); 8556 } else { 8557 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8558 &exists, isv6, zoneid, 8559 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8560 ipst); 8561 if (ipif == NULL) { 8562 if (err == EINPROGRESS) 8563 return (err); 8564 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8565 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8566 /* 8567 * Need to try both v4 and v6 since this 8568 * ioctl can come down either v4 or v6 8569 * socket. The lifreq.lifr_family passed 8570 * down by this ioctl is AF_UNSPEC. 8571 */ 8572 ipif = ipif_lookup_on_name(name, 8573 mi_strlen(name), B_FALSE, &exists, !isv6, 8574 zoneid, (connp == NULL) ? q : 8575 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8576 if (err == EINPROGRESS) 8577 return (err); 8578 } 8579 err = 0; /* Ensure we don't use it below */ 8580 } 8581 } 8582 8583 /* 8584 * Old style [GS]IFCMD does not admit IPv6 ipif 8585 */ 8586 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8587 ipif_refrele(ipif); 8588 return (ENXIO); 8589 } 8590 8591 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8592 name[0] == '\0') { 8593 /* 8594 * Handle a or a SIOC?IF* with a null name 8595 * during plumb (on the ill queue before the I_PLINK). 8596 */ 8597 ipif = ill->ill_ipif; 8598 ipif_refhold(ipif); 8599 } 8600 8601 if (ipif == NULL) 8602 return (ENXIO); 8603 8604 /* 8605 * Allow only GET operations if this ipif has been created 8606 * temporarily due to a MOVE operation. 8607 */ 8608 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8609 ipif_refrele(ipif); 8610 return (EINVAL); 8611 } 8612 8613 ci->ci_ipif = ipif; 8614 return (0); 8615 } 8616 8617 /* 8618 * Return the total number of ipifs. 8619 */ 8620 static uint_t 8621 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8622 { 8623 uint_t numifs = 0; 8624 ill_t *ill; 8625 ill_walk_context_t ctx; 8626 ipif_t *ipif; 8627 8628 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8629 ill = ILL_START_WALK_V4(&ctx, ipst); 8630 8631 while (ill != NULL) { 8632 for (ipif = ill->ill_ipif; ipif != NULL; 8633 ipif = ipif->ipif_next) { 8634 if (ipif->ipif_zoneid == zoneid || 8635 ipif->ipif_zoneid == ALL_ZONES) 8636 numifs++; 8637 } 8638 ill = ill_next(&ctx, ill); 8639 } 8640 rw_exit(&ipst->ips_ill_g_lock); 8641 return (numifs); 8642 } 8643 8644 /* 8645 * Return the total number of ipifs. 8646 */ 8647 static uint_t 8648 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8649 { 8650 uint_t numifs = 0; 8651 ill_t *ill; 8652 ipif_t *ipif; 8653 ill_walk_context_t ctx; 8654 8655 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8656 8657 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8658 if (family == AF_INET) 8659 ill = ILL_START_WALK_V4(&ctx, ipst); 8660 else if (family == AF_INET6) 8661 ill = ILL_START_WALK_V6(&ctx, ipst); 8662 else 8663 ill = ILL_START_WALK_ALL(&ctx, ipst); 8664 8665 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8666 for (ipif = ill->ill_ipif; ipif != NULL; 8667 ipif = ipif->ipif_next) { 8668 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8669 !(lifn_flags & LIFC_NOXMIT)) 8670 continue; 8671 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8672 !(lifn_flags & LIFC_TEMPORARY)) 8673 continue; 8674 if (((ipif->ipif_flags & 8675 (IPIF_NOXMIT|IPIF_NOLOCAL| 8676 IPIF_DEPRECATED)) || 8677 IS_LOOPBACK(ill) || 8678 !(ipif->ipif_flags & IPIF_UP)) && 8679 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8680 continue; 8681 8682 if (zoneid != ipif->ipif_zoneid && 8683 ipif->ipif_zoneid != ALL_ZONES && 8684 (zoneid != GLOBAL_ZONEID || 8685 !(lifn_flags & LIFC_ALLZONES))) 8686 continue; 8687 8688 numifs++; 8689 } 8690 } 8691 rw_exit(&ipst->ips_ill_g_lock); 8692 return (numifs); 8693 } 8694 8695 uint_t 8696 ip_get_lifsrcofnum(ill_t *ill) 8697 { 8698 uint_t numifs = 0; 8699 ill_t *ill_head = ill; 8700 ip_stack_t *ipst = ill->ill_ipst; 8701 8702 /* 8703 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8704 * other thread may be trying to relink the ILLs in this usesrc group 8705 * and adjusting the ill_usesrc_grp_next pointers 8706 */ 8707 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8708 if ((ill->ill_usesrc_ifindex == 0) && 8709 (ill->ill_usesrc_grp_next != NULL)) { 8710 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8711 ill = ill->ill_usesrc_grp_next) 8712 numifs++; 8713 } 8714 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8715 8716 return (numifs); 8717 } 8718 8719 /* Null values are passed in for ipif, sin, and ifreq */ 8720 /* ARGSUSED */ 8721 int 8722 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8723 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8724 { 8725 int *nump; 8726 conn_t *connp = Q_TO_CONN(q); 8727 8728 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8729 8730 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8731 nump = (int *)mp->b_cont->b_cont->b_rptr; 8732 8733 *nump = ip_get_numifs(connp->conn_zoneid, 8734 connp->conn_netstack->netstack_ip); 8735 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8736 return (0); 8737 } 8738 8739 /* Null values are passed in for ipif, sin, and ifreq */ 8740 /* ARGSUSED */ 8741 int 8742 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8743 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8744 { 8745 struct lifnum *lifn; 8746 mblk_t *mp1; 8747 conn_t *connp = Q_TO_CONN(q); 8748 8749 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8750 8751 /* Existence checked in ip_wput_nondata */ 8752 mp1 = mp->b_cont->b_cont; 8753 8754 lifn = (struct lifnum *)mp1->b_rptr; 8755 switch (lifn->lifn_family) { 8756 case AF_UNSPEC: 8757 case AF_INET: 8758 case AF_INET6: 8759 break; 8760 default: 8761 return (EAFNOSUPPORT); 8762 } 8763 8764 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8765 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8766 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8767 return (0); 8768 } 8769 8770 /* ARGSUSED */ 8771 int 8772 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8773 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8774 { 8775 STRUCT_HANDLE(ifconf, ifc); 8776 mblk_t *mp1; 8777 struct iocblk *iocp; 8778 struct ifreq *ifr; 8779 ill_walk_context_t ctx; 8780 ill_t *ill; 8781 ipif_t *ipif; 8782 struct sockaddr_in *sin; 8783 int32_t ifclen; 8784 zoneid_t zoneid; 8785 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8786 8787 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8788 8789 ip1dbg(("ip_sioctl_get_ifconf")); 8790 /* Existence verified in ip_wput_nondata */ 8791 mp1 = mp->b_cont->b_cont; 8792 iocp = (struct iocblk *)mp->b_rptr; 8793 zoneid = Q_TO_CONN(q)->conn_zoneid; 8794 8795 /* 8796 * The original SIOCGIFCONF passed in a struct ifconf which specified 8797 * the user buffer address and length into which the list of struct 8798 * ifreqs was to be copied. Since AT&T Streams does not seem to 8799 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8800 * the SIOCGIFCONF operation was redefined to simply provide 8801 * a large output buffer into which we are supposed to jam the ifreq 8802 * array. The same ioctl command code was used, despite the fact that 8803 * both the applications and the kernel code had to change, thus making 8804 * it impossible to support both interfaces. 8805 * 8806 * For reasons not good enough to try to explain, the following 8807 * algorithm is used for deciding what to do with one of these: 8808 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8809 * form with the output buffer coming down as the continuation message. 8810 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8811 * and we have to copy in the ifconf structure to find out how big the 8812 * output buffer is and where to copy out to. Sure no problem... 8813 * 8814 */ 8815 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8816 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8817 int numifs = 0; 8818 size_t ifc_bufsize; 8819 8820 /* 8821 * Must be (better be!) continuation of a TRANSPARENT 8822 * IOCTL. We just copied in the ifconf structure. 8823 */ 8824 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8825 (struct ifconf *)mp1->b_rptr); 8826 8827 /* 8828 * Allocate a buffer to hold requested information. 8829 * 8830 * If ifc_len is larger than what is needed, we only 8831 * allocate what we will use. 8832 * 8833 * If ifc_len is smaller than what is needed, return 8834 * EINVAL. 8835 * 8836 * XXX: the ill_t structure can hava 2 counters, for 8837 * v4 and v6 (not just ill_ipif_up_count) to store the 8838 * number of interfaces for a device, so we don't need 8839 * to count them here... 8840 */ 8841 numifs = ip_get_numifs(zoneid, ipst); 8842 8843 ifclen = STRUCT_FGET(ifc, ifc_len); 8844 ifc_bufsize = numifs * sizeof (struct ifreq); 8845 if (ifc_bufsize > ifclen) { 8846 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8847 /* old behaviour */ 8848 return (EINVAL); 8849 } else { 8850 ifc_bufsize = ifclen; 8851 } 8852 } 8853 8854 mp1 = mi_copyout_alloc(q, mp, 8855 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8856 if (mp1 == NULL) 8857 return (ENOMEM); 8858 8859 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8860 } 8861 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8862 /* 8863 * the SIOCGIFCONF ioctl only knows about 8864 * IPv4 addresses, so don't try to tell 8865 * it about interfaces with IPv6-only 8866 * addresses. (Last parm 'isv6' is B_FALSE) 8867 */ 8868 8869 ifr = (struct ifreq *)mp1->b_rptr; 8870 8871 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8872 ill = ILL_START_WALK_V4(&ctx, ipst); 8873 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8874 for (ipif = ill->ill_ipif; ipif != NULL; 8875 ipif = ipif->ipif_next) { 8876 if (zoneid != ipif->ipif_zoneid && 8877 ipif->ipif_zoneid != ALL_ZONES) 8878 continue; 8879 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8880 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8881 /* old behaviour */ 8882 rw_exit(&ipst->ips_ill_g_lock); 8883 return (EINVAL); 8884 } else { 8885 goto if_copydone; 8886 } 8887 } 8888 (void) ipif_get_name(ipif, 8889 ifr->ifr_name, 8890 sizeof (ifr->ifr_name)); 8891 sin = (sin_t *)&ifr->ifr_addr; 8892 *sin = sin_null; 8893 sin->sin_family = AF_INET; 8894 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8895 ifr++; 8896 } 8897 } 8898 if_copydone: 8899 rw_exit(&ipst->ips_ill_g_lock); 8900 mp1->b_wptr = (uchar_t *)ifr; 8901 8902 if (STRUCT_BUF(ifc) != NULL) { 8903 STRUCT_FSET(ifc, ifc_len, 8904 (int)((uchar_t *)ifr - mp1->b_rptr)); 8905 } 8906 return (0); 8907 } 8908 8909 /* 8910 * Get the interfaces using the address hosted on the interface passed in, 8911 * as a source adddress 8912 */ 8913 /* ARGSUSED */ 8914 int 8915 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8916 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8917 { 8918 mblk_t *mp1; 8919 ill_t *ill, *ill_head; 8920 ipif_t *ipif, *orig_ipif; 8921 int numlifs = 0; 8922 size_t lifs_bufsize, lifsmaxlen; 8923 struct lifreq *lifr; 8924 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8925 uint_t ifindex; 8926 zoneid_t zoneid; 8927 int err = 0; 8928 boolean_t isv6 = B_FALSE; 8929 struct sockaddr_in *sin; 8930 struct sockaddr_in6 *sin6; 8931 STRUCT_HANDLE(lifsrcof, lifs); 8932 ip_stack_t *ipst; 8933 8934 ipst = CONNQ_TO_IPST(q); 8935 8936 ASSERT(q->q_next == NULL); 8937 8938 zoneid = Q_TO_CONN(q)->conn_zoneid; 8939 8940 /* Existence verified in ip_wput_nondata */ 8941 mp1 = mp->b_cont->b_cont; 8942 8943 /* 8944 * Must be (better be!) continuation of a TRANSPARENT 8945 * IOCTL. We just copied in the lifsrcof structure. 8946 */ 8947 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8948 (struct lifsrcof *)mp1->b_rptr); 8949 8950 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8951 return (EINVAL); 8952 8953 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8954 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8955 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8956 ip_process_ioctl, &err, ipst); 8957 if (ipif == NULL) { 8958 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8959 ifindex)); 8960 return (err); 8961 } 8962 8963 8964 /* Allocate a buffer to hold requested information */ 8965 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8966 lifs_bufsize = numlifs * sizeof (struct lifreq); 8967 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8968 /* The actual size needed is always returned in lifs_len */ 8969 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8970 8971 /* If the amount we need is more than what is passed in, abort */ 8972 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8973 ipif_refrele(ipif); 8974 return (0); 8975 } 8976 8977 mp1 = mi_copyout_alloc(q, mp, 8978 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8979 if (mp1 == NULL) { 8980 ipif_refrele(ipif); 8981 return (ENOMEM); 8982 } 8983 8984 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8985 bzero(mp1->b_rptr, lifs_bufsize); 8986 8987 lifr = (struct lifreq *)mp1->b_rptr; 8988 8989 ill = ill_head = ipif->ipif_ill; 8990 orig_ipif = ipif; 8991 8992 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8993 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8995 8996 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8997 for (; (ill != NULL) && (ill != ill_head); 8998 ill = ill->ill_usesrc_grp_next) { 8999 9000 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 9001 break; 9002 9003 ipif = ill->ill_ipif; 9004 (void) ipif_get_name(ipif, 9005 lifr->lifr_name, sizeof (lifr->lifr_name)); 9006 if (ipif->ipif_isv6) { 9007 sin6 = (sin6_t *)&lifr->lifr_addr; 9008 *sin6 = sin6_null; 9009 sin6->sin6_family = AF_INET6; 9010 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9011 lifr->lifr_addrlen = ip_mask_to_plen_v6( 9012 &ipif->ipif_v6net_mask); 9013 } else { 9014 sin = (sin_t *)&lifr->lifr_addr; 9015 *sin = sin_null; 9016 sin->sin_family = AF_INET; 9017 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9018 lifr->lifr_addrlen = ip_mask_to_plen( 9019 ipif->ipif_net_mask); 9020 } 9021 lifr++; 9022 } 9023 rw_exit(&ipst->ips_ill_g_usesrc_lock); 9024 rw_exit(&ipst->ips_ill_g_lock); 9025 ipif_refrele(orig_ipif); 9026 mp1->b_wptr = (uchar_t *)lifr; 9027 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 9028 9029 return (0); 9030 } 9031 9032 /* ARGSUSED */ 9033 int 9034 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 9035 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9036 { 9037 mblk_t *mp1; 9038 int list; 9039 ill_t *ill; 9040 ipif_t *ipif; 9041 int flags; 9042 int numlifs = 0; 9043 size_t lifc_bufsize; 9044 struct lifreq *lifr; 9045 sa_family_t family; 9046 struct sockaddr_in *sin; 9047 struct sockaddr_in6 *sin6; 9048 ill_walk_context_t ctx; 9049 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9050 int32_t lifclen; 9051 zoneid_t zoneid; 9052 STRUCT_HANDLE(lifconf, lifc); 9053 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9054 9055 ip1dbg(("ip_sioctl_get_lifconf")); 9056 9057 ASSERT(q->q_next == NULL); 9058 9059 zoneid = Q_TO_CONN(q)->conn_zoneid; 9060 9061 /* Existence verified in ip_wput_nondata */ 9062 mp1 = mp->b_cont->b_cont; 9063 9064 /* 9065 * An extended version of SIOCGIFCONF that takes an 9066 * additional address family and flags field. 9067 * AF_UNSPEC retrieve both IPv4 and IPv6. 9068 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9069 * interfaces are omitted. 9070 * Similarly, IPIF_TEMPORARY interfaces are omitted 9071 * unless LIFC_TEMPORARY is specified. 9072 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9073 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9074 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9075 * has priority over LIFC_NOXMIT. 9076 */ 9077 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9078 9079 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9080 return (EINVAL); 9081 9082 /* 9083 * Must be (better be!) continuation of a TRANSPARENT 9084 * IOCTL. We just copied in the lifconf structure. 9085 */ 9086 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9087 9088 family = STRUCT_FGET(lifc, lifc_family); 9089 flags = STRUCT_FGET(lifc, lifc_flags); 9090 9091 switch (family) { 9092 case AF_UNSPEC: 9093 /* 9094 * walk all ILL's. 9095 */ 9096 list = MAX_G_HEADS; 9097 break; 9098 case AF_INET: 9099 /* 9100 * walk only IPV4 ILL's. 9101 */ 9102 list = IP_V4_G_HEAD; 9103 break; 9104 case AF_INET6: 9105 /* 9106 * walk only IPV6 ILL's. 9107 */ 9108 list = IP_V6_G_HEAD; 9109 break; 9110 default: 9111 return (EAFNOSUPPORT); 9112 } 9113 9114 /* 9115 * Allocate a buffer to hold requested information. 9116 * 9117 * If lifc_len is larger than what is needed, we only 9118 * allocate what we will use. 9119 * 9120 * If lifc_len is smaller than what is needed, return 9121 * EINVAL. 9122 */ 9123 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9124 lifc_bufsize = numlifs * sizeof (struct lifreq); 9125 lifclen = STRUCT_FGET(lifc, lifc_len); 9126 if (lifc_bufsize > lifclen) { 9127 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9128 return (EINVAL); 9129 else 9130 lifc_bufsize = lifclen; 9131 } 9132 9133 mp1 = mi_copyout_alloc(q, mp, 9134 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9135 if (mp1 == NULL) 9136 return (ENOMEM); 9137 9138 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9139 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9140 9141 lifr = (struct lifreq *)mp1->b_rptr; 9142 9143 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9144 ill = ill_first(list, list, &ctx, ipst); 9145 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9146 for (ipif = ill->ill_ipif; ipif != NULL; 9147 ipif = ipif->ipif_next) { 9148 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9149 !(flags & LIFC_NOXMIT)) 9150 continue; 9151 9152 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9153 !(flags & LIFC_TEMPORARY)) 9154 continue; 9155 9156 if (((ipif->ipif_flags & 9157 (IPIF_NOXMIT|IPIF_NOLOCAL| 9158 IPIF_DEPRECATED)) || 9159 IS_LOOPBACK(ill) || 9160 !(ipif->ipif_flags & IPIF_UP)) && 9161 (flags & LIFC_EXTERNAL_SOURCE)) 9162 continue; 9163 9164 if (zoneid != ipif->ipif_zoneid && 9165 ipif->ipif_zoneid != ALL_ZONES && 9166 (zoneid != GLOBAL_ZONEID || 9167 !(flags & LIFC_ALLZONES))) 9168 continue; 9169 9170 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9171 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9172 rw_exit(&ipst->ips_ill_g_lock); 9173 return (EINVAL); 9174 } else { 9175 goto lif_copydone; 9176 } 9177 } 9178 9179 (void) ipif_get_name(ipif, lifr->lifr_name, 9180 sizeof (lifr->lifr_name)); 9181 if (ipif->ipif_isv6) { 9182 sin6 = (sin6_t *)&lifr->lifr_addr; 9183 *sin6 = sin6_null; 9184 sin6->sin6_family = AF_INET6; 9185 sin6->sin6_addr = 9186 ipif->ipif_v6lcl_addr; 9187 lifr->lifr_addrlen = 9188 ip_mask_to_plen_v6( 9189 &ipif->ipif_v6net_mask); 9190 } else { 9191 sin = (sin_t *)&lifr->lifr_addr; 9192 *sin = sin_null; 9193 sin->sin_family = AF_INET; 9194 sin->sin_addr.s_addr = 9195 ipif->ipif_lcl_addr; 9196 lifr->lifr_addrlen = 9197 ip_mask_to_plen( 9198 ipif->ipif_net_mask); 9199 } 9200 lifr++; 9201 } 9202 } 9203 lif_copydone: 9204 rw_exit(&ipst->ips_ill_g_lock); 9205 9206 mp1->b_wptr = (uchar_t *)lifr; 9207 if (STRUCT_BUF(lifc) != NULL) { 9208 STRUCT_FSET(lifc, lifc_len, 9209 (int)((uchar_t *)lifr - mp1->b_rptr)); 9210 } 9211 return (0); 9212 } 9213 9214 /* ARGSUSED */ 9215 int 9216 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9217 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9218 { 9219 ip_stack_t *ipst; 9220 9221 if (q->q_next == NULL) 9222 ipst = CONNQ_TO_IPST(q); 9223 else 9224 ipst = ILLQ_TO_IPST(q); 9225 9226 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9227 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9228 return (0); 9229 } 9230 9231 static void 9232 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9233 { 9234 ip6_asp_t *table; 9235 size_t table_size; 9236 mblk_t *data_mp; 9237 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9238 ip_stack_t *ipst; 9239 9240 if (q->q_next == NULL) 9241 ipst = CONNQ_TO_IPST(q); 9242 else 9243 ipst = ILLQ_TO_IPST(q); 9244 9245 /* These two ioctls are I_STR only */ 9246 if (iocp->ioc_count == TRANSPARENT) { 9247 miocnak(q, mp, 0, EINVAL); 9248 return; 9249 } 9250 9251 data_mp = mp->b_cont; 9252 if (data_mp == NULL) { 9253 /* The user passed us a NULL argument */ 9254 table = NULL; 9255 table_size = iocp->ioc_count; 9256 } else { 9257 /* 9258 * The user provided a table. The stream head 9259 * may have copied in the user data in chunks, 9260 * so make sure everything is pulled up 9261 * properly. 9262 */ 9263 if (MBLKL(data_mp) < iocp->ioc_count) { 9264 mblk_t *new_data_mp; 9265 if ((new_data_mp = msgpullup(data_mp, -1)) == 9266 NULL) { 9267 miocnak(q, mp, 0, ENOMEM); 9268 return; 9269 } 9270 freemsg(data_mp); 9271 data_mp = new_data_mp; 9272 mp->b_cont = data_mp; 9273 } 9274 table = (ip6_asp_t *)data_mp->b_rptr; 9275 table_size = iocp->ioc_count; 9276 } 9277 9278 switch (iocp->ioc_cmd) { 9279 case SIOCGIP6ADDRPOLICY: 9280 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9281 if (iocp->ioc_rval == -1) 9282 iocp->ioc_error = EINVAL; 9283 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9284 else if (table != NULL && 9285 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9286 ip6_asp_t *src = table; 9287 ip6_asp32_t *dst = (void *)table; 9288 int count = table_size / sizeof (ip6_asp_t); 9289 int i; 9290 9291 /* 9292 * We need to do an in-place shrink of the array 9293 * to match the alignment attributes of the 9294 * 32-bit ABI looking at it. 9295 */ 9296 /* LINTED: logical expression always true: op "||" */ 9297 ASSERT(sizeof (*src) > sizeof (*dst)); 9298 for (i = 1; i < count; i++) 9299 bcopy(src + i, dst + i, sizeof (*dst)); 9300 } 9301 #endif 9302 break; 9303 9304 case SIOCSIP6ADDRPOLICY: 9305 ASSERT(mp->b_prev == NULL); 9306 mp->b_prev = (void *)q; 9307 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9308 /* 9309 * We pass in the datamodel here so that the ip6_asp_replace() 9310 * routine can handle converting from 32-bit to native formats 9311 * where necessary. 9312 * 9313 * A better way to handle this might be to convert the inbound 9314 * data structure here, and hang it off a new 'mp'; thus the 9315 * ip6_asp_replace() logic would always be dealing with native 9316 * format data structures.. 9317 * 9318 * (An even simpler way to handle these ioctls is to just 9319 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9320 * and just recompile everything that depends on it.) 9321 */ 9322 #endif 9323 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9324 iocp->ioc_flag & IOC_MODELS); 9325 return; 9326 } 9327 9328 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9329 qreply(q, mp); 9330 } 9331 9332 static void 9333 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9334 { 9335 mblk_t *data_mp; 9336 struct dstinforeq *dir; 9337 uint8_t *end, *cur; 9338 in6_addr_t *daddr, *saddr; 9339 ipaddr_t v4daddr; 9340 ire_t *ire; 9341 char *slabel, *dlabel; 9342 boolean_t isipv4; 9343 int match_ire; 9344 ill_t *dst_ill; 9345 ipif_t *src_ipif, *ire_ipif; 9346 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9347 zoneid_t zoneid; 9348 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9349 9350 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9351 zoneid = Q_TO_CONN(q)->conn_zoneid; 9352 9353 /* 9354 * This ioctl is I_STR only, and must have a 9355 * data mblk following the M_IOCTL mblk. 9356 */ 9357 data_mp = mp->b_cont; 9358 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9359 miocnak(q, mp, 0, EINVAL); 9360 return; 9361 } 9362 9363 if (MBLKL(data_mp) < iocp->ioc_count) { 9364 mblk_t *new_data_mp; 9365 9366 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9367 miocnak(q, mp, 0, ENOMEM); 9368 return; 9369 } 9370 freemsg(data_mp); 9371 data_mp = new_data_mp; 9372 mp->b_cont = data_mp; 9373 } 9374 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9375 9376 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9377 end - cur >= sizeof (struct dstinforeq); 9378 cur += sizeof (struct dstinforeq)) { 9379 dir = (struct dstinforeq *)cur; 9380 daddr = &dir->dir_daddr; 9381 saddr = &dir->dir_saddr; 9382 9383 /* 9384 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9385 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9386 * and ipif_select_source[_v6]() do not. 9387 */ 9388 dir->dir_dscope = ip_addr_scope_v6(daddr); 9389 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9390 9391 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9392 if (isipv4) { 9393 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9394 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9395 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9396 } else { 9397 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9398 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9399 } 9400 if (ire == NULL) { 9401 dir->dir_dreachable = 0; 9402 9403 /* move on to next dst addr */ 9404 continue; 9405 } 9406 dir->dir_dreachable = 1; 9407 9408 ire_ipif = ire->ire_ipif; 9409 if (ire_ipif == NULL) 9410 goto next_dst; 9411 9412 /* 9413 * We expect to get back an interface ire or a 9414 * gateway ire cache entry. For both types, the 9415 * output interface is ire_ipif->ipif_ill. 9416 */ 9417 dst_ill = ire_ipif->ipif_ill; 9418 dir->dir_dmactype = dst_ill->ill_mactype; 9419 9420 if (isipv4) { 9421 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9422 } else { 9423 src_ipif = ipif_select_source_v6(dst_ill, 9424 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9425 zoneid); 9426 } 9427 if (src_ipif == NULL) 9428 goto next_dst; 9429 9430 *saddr = src_ipif->ipif_v6lcl_addr; 9431 dir->dir_sscope = ip_addr_scope_v6(saddr); 9432 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9433 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9434 dir->dir_sdeprecated = 9435 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9436 ipif_refrele(src_ipif); 9437 next_dst: 9438 ire_refrele(ire); 9439 } 9440 miocack(q, mp, iocp->ioc_count, 0); 9441 } 9442 9443 9444 /* 9445 * Check if this is an address assigned to this machine. 9446 * Skips interfaces that are down by using ire checks. 9447 * Translates mapped addresses to v4 addresses and then 9448 * treats them as such, returning true if the v4 address 9449 * associated with this mapped address is configured. 9450 * Note: Applications will have to be careful what they do 9451 * with the response; use of mapped addresses limits 9452 * what can be done with the socket, especially with 9453 * respect to socket options and ioctls - neither IPv4 9454 * options nor IPv6 sticky options/ancillary data options 9455 * may be used. 9456 */ 9457 /* ARGSUSED */ 9458 int 9459 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9460 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9461 { 9462 struct sioc_addrreq *sia; 9463 sin_t *sin; 9464 ire_t *ire; 9465 mblk_t *mp1; 9466 zoneid_t zoneid; 9467 ip_stack_t *ipst; 9468 9469 ip1dbg(("ip_sioctl_tmyaddr")); 9470 9471 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9472 zoneid = Q_TO_CONN(q)->conn_zoneid; 9473 ipst = CONNQ_TO_IPST(q); 9474 9475 /* Existence verified in ip_wput_nondata */ 9476 mp1 = mp->b_cont->b_cont; 9477 sia = (struct sioc_addrreq *)mp1->b_rptr; 9478 sin = (sin_t *)&sia->sa_addr; 9479 switch (sin->sin_family) { 9480 case AF_INET6: { 9481 sin6_t *sin6 = (sin6_t *)sin; 9482 9483 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9484 ipaddr_t v4_addr; 9485 9486 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9487 v4_addr); 9488 ire = ire_ctable_lookup(v4_addr, 0, 9489 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9490 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9491 } else { 9492 in6_addr_t v6addr; 9493 9494 v6addr = sin6->sin6_addr; 9495 ire = ire_ctable_lookup_v6(&v6addr, 0, 9496 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9497 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9498 } 9499 break; 9500 } 9501 case AF_INET: { 9502 ipaddr_t v4addr; 9503 9504 v4addr = sin->sin_addr.s_addr; 9505 ire = ire_ctable_lookup(v4addr, 0, 9506 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9507 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9508 break; 9509 } 9510 default: 9511 return (EAFNOSUPPORT); 9512 } 9513 if (ire != NULL) { 9514 sia->sa_res = 1; 9515 ire_refrele(ire); 9516 } else { 9517 sia->sa_res = 0; 9518 } 9519 return (0); 9520 } 9521 9522 /* 9523 * Check if this is an address assigned on-link i.e. neighbor, 9524 * and makes sure it's reachable from the current zone. 9525 * Returns true for my addresses as well. 9526 * Translates mapped addresses to v4 addresses and then 9527 * treats them as such, returning true if the v4 address 9528 * associated with this mapped address is configured. 9529 * Note: Applications will have to be careful what they do 9530 * with the response; use of mapped addresses limits 9531 * what can be done with the socket, especially with 9532 * respect to socket options and ioctls - neither IPv4 9533 * options nor IPv6 sticky options/ancillary data options 9534 * may be used. 9535 */ 9536 /* ARGSUSED */ 9537 int 9538 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9539 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9540 { 9541 struct sioc_addrreq *sia; 9542 sin_t *sin; 9543 mblk_t *mp1; 9544 ire_t *ire = NULL; 9545 zoneid_t zoneid; 9546 ip_stack_t *ipst; 9547 9548 ip1dbg(("ip_sioctl_tonlink")); 9549 9550 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9551 zoneid = Q_TO_CONN(q)->conn_zoneid; 9552 ipst = CONNQ_TO_IPST(q); 9553 9554 /* Existence verified in ip_wput_nondata */ 9555 mp1 = mp->b_cont->b_cont; 9556 sia = (struct sioc_addrreq *)mp1->b_rptr; 9557 sin = (sin_t *)&sia->sa_addr; 9558 9559 /* 9560 * Match addresses with a zero gateway field to avoid 9561 * routes going through a router. 9562 * Exclude broadcast and multicast addresses. 9563 */ 9564 switch (sin->sin_family) { 9565 case AF_INET6: { 9566 sin6_t *sin6 = (sin6_t *)sin; 9567 9568 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9569 ipaddr_t v4_addr; 9570 9571 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9572 v4_addr); 9573 if (!CLASSD(v4_addr)) { 9574 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9575 NULL, NULL, zoneid, NULL, 9576 MATCH_IRE_GW, ipst); 9577 } 9578 } else { 9579 in6_addr_t v6addr; 9580 in6_addr_t v6gw; 9581 9582 v6addr = sin6->sin6_addr; 9583 v6gw = ipv6_all_zeros; 9584 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9585 ire = ire_route_lookup_v6(&v6addr, 0, 9586 &v6gw, 0, NULL, NULL, zoneid, 9587 NULL, MATCH_IRE_GW, ipst); 9588 } 9589 } 9590 break; 9591 } 9592 case AF_INET: { 9593 ipaddr_t v4addr; 9594 9595 v4addr = sin->sin_addr.s_addr; 9596 if (!CLASSD(v4addr)) { 9597 ire = ire_route_lookup(v4addr, 0, 0, 0, 9598 NULL, NULL, zoneid, NULL, 9599 MATCH_IRE_GW, ipst); 9600 } 9601 break; 9602 } 9603 default: 9604 return (EAFNOSUPPORT); 9605 } 9606 sia->sa_res = 0; 9607 if (ire != NULL) { 9608 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9609 IRE_LOCAL|IRE_LOOPBACK)) { 9610 sia->sa_res = 1; 9611 } 9612 ire_refrele(ire); 9613 } 9614 return (0); 9615 } 9616 9617 /* 9618 * TBD: implement when kernel maintaines a list of site prefixes. 9619 */ 9620 /* ARGSUSED */ 9621 int 9622 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9623 ip_ioctl_cmd_t *ipip, void *ifreq) 9624 { 9625 return (ENXIO); 9626 } 9627 9628 /* ARGSUSED */ 9629 int 9630 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9631 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9632 { 9633 ill_t *ill; 9634 mblk_t *mp1; 9635 conn_t *connp; 9636 boolean_t success; 9637 9638 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9639 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9640 /* ioctl comes down on an conn */ 9641 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9642 connp = Q_TO_CONN(q); 9643 9644 mp->b_datap->db_type = M_IOCTL; 9645 9646 /* 9647 * Send down a copy. (copymsg does not copy b_next/b_prev). 9648 * The original mp contains contaminated b_next values due to 'mi', 9649 * which is needed to do the mi_copy_done. Unfortunately if we 9650 * send down the original mblk itself and if we are popped due to an 9651 * an unplumb before the response comes back from tunnel, 9652 * the streamhead (which does a freemsg) will see this contaminated 9653 * message and the assertion in freemsg about non-null b_next/b_prev 9654 * will panic a DEBUG kernel. 9655 */ 9656 mp1 = copymsg(mp); 9657 if (mp1 == NULL) 9658 return (ENOMEM); 9659 9660 ill = ipif->ipif_ill; 9661 mutex_enter(&connp->conn_lock); 9662 mutex_enter(&ill->ill_lock); 9663 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9664 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9665 mp, 0); 9666 } else { 9667 success = ill_pending_mp_add(ill, connp, mp); 9668 } 9669 mutex_exit(&ill->ill_lock); 9670 mutex_exit(&connp->conn_lock); 9671 9672 if (success) { 9673 ip1dbg(("sending down tunparam request ")); 9674 putnext(ill->ill_wq, mp1); 9675 return (EINPROGRESS); 9676 } else { 9677 /* The conn has started closing */ 9678 freemsg(mp1); 9679 return (EINTR); 9680 } 9681 } 9682 9683 static int 9684 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9685 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9686 { 9687 mblk_t *mp1; 9688 mblk_t *mp2; 9689 mblk_t *pending_mp; 9690 ipaddr_t ipaddr; 9691 area_t *area; 9692 struct iocblk *iocp; 9693 conn_t *connp; 9694 struct arpreq *ar; 9695 struct xarpreq *xar; 9696 boolean_t success; 9697 int flags, alength; 9698 char *lladdr; 9699 ip_stack_t *ipst; 9700 9701 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9702 connp = Q_TO_CONN(q); 9703 ipst = connp->conn_netstack->netstack_ip; 9704 9705 iocp = (struct iocblk *)mp->b_rptr; 9706 /* 9707 * ill has already been set depending on whether 9708 * bsd style or interface style ioctl. 9709 */ 9710 ASSERT(ill != NULL); 9711 9712 /* 9713 * Is this one of the new SIOC*XARP ioctls? 9714 */ 9715 if (x_arp_ioctl) { 9716 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9717 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9718 ar = NULL; 9719 9720 flags = xar->xarp_flags; 9721 lladdr = LLADDR(&xar->xarp_ha); 9722 /* 9723 * Validate against user's link layer address length 9724 * input and name and addr length limits. 9725 */ 9726 alength = ill->ill_phys_addr_length; 9727 if (iocp->ioc_cmd == SIOCSXARP) { 9728 if (alength != xar->xarp_ha.sdl_alen || 9729 (alength + xar->xarp_ha.sdl_nlen > 9730 sizeof (xar->xarp_ha.sdl_data))) 9731 return (EINVAL); 9732 } 9733 } else { 9734 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9735 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9736 xar = NULL; 9737 9738 flags = ar->arp_flags; 9739 lladdr = ar->arp_ha.sa_data; 9740 /* 9741 * Theoretically, the sa_family could tell us what link 9742 * layer type this operation is trying to deal with. By 9743 * common usage AF_UNSPEC means ethernet. We'll assume 9744 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9745 * for now. Our new SIOC*XARP ioctls can be used more 9746 * generally. 9747 * 9748 * If the underlying media happens to have a non 6 byte 9749 * address, arp module will fail set/get, but the del 9750 * operation will succeed. 9751 */ 9752 alength = 6; 9753 if ((iocp->ioc_cmd != SIOCDARP) && 9754 (alength != ill->ill_phys_addr_length)) { 9755 return (EINVAL); 9756 } 9757 } 9758 9759 /* 9760 * We are going to pass up to ARP a packet chain that looks 9761 * like: 9762 * 9763 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9764 * 9765 * Get a copy of the original IOCTL mblk to head the chain, 9766 * to be sent up (in mp1). Also get another copy to store 9767 * in the ill_pending_mp list, for matching the response 9768 * when it comes back from ARP. 9769 */ 9770 mp1 = copyb(mp); 9771 pending_mp = copymsg(mp); 9772 if (mp1 == NULL || pending_mp == NULL) { 9773 if (mp1 != NULL) 9774 freeb(mp1); 9775 if (pending_mp != NULL) 9776 inet_freemsg(pending_mp); 9777 return (ENOMEM); 9778 } 9779 9780 ipaddr = sin->sin_addr.s_addr; 9781 9782 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9783 (caddr_t)&ipaddr); 9784 if (mp2 == NULL) { 9785 freeb(mp1); 9786 inet_freemsg(pending_mp); 9787 return (ENOMEM); 9788 } 9789 /* Put together the chain. */ 9790 mp1->b_cont = mp2; 9791 mp1->b_datap->db_type = M_IOCTL; 9792 mp2->b_cont = mp; 9793 mp2->b_datap->db_type = M_DATA; 9794 9795 iocp = (struct iocblk *)mp1->b_rptr; 9796 9797 /* 9798 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9799 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9800 * cp_private field (or cp_rval on 32-bit systems) in place of the 9801 * ioc_count field; set ioc_count to be correct. 9802 */ 9803 iocp->ioc_count = MBLKL(mp1->b_cont); 9804 9805 /* 9806 * Set the proper command in the ARP message. 9807 * Convert the SIOC{G|S|D}ARP calls into our 9808 * AR_ENTRY_xxx calls. 9809 */ 9810 area = (area_t *)mp2->b_rptr; 9811 switch (iocp->ioc_cmd) { 9812 case SIOCDARP: 9813 case SIOCDXARP: 9814 /* 9815 * We defer deleting the corresponding IRE until 9816 * we return from arp. 9817 */ 9818 area->area_cmd = AR_ENTRY_DELETE; 9819 area->area_proto_mask_offset = 0; 9820 break; 9821 case SIOCGARP: 9822 case SIOCGXARP: 9823 area->area_cmd = AR_ENTRY_SQUERY; 9824 area->area_proto_mask_offset = 0; 9825 break; 9826 case SIOCSARP: 9827 case SIOCSXARP: { 9828 /* 9829 * Delete the corresponding ire to make sure IP will 9830 * pick up any change from arp. 9831 */ 9832 if (!if_arp_ioctl) { 9833 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9834 break; 9835 } else { 9836 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9837 if (ipif != NULL) { 9838 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9839 ipst); 9840 ipif_refrele(ipif); 9841 } 9842 break; 9843 } 9844 } 9845 } 9846 iocp->ioc_cmd = area->area_cmd; 9847 9848 /* 9849 * Before sending 'mp' to ARP, we have to clear the b_next 9850 * and b_prev. Otherwise if STREAMS encounters such a message 9851 * in freemsg(), (because ARP can close any time) it can cause 9852 * a panic. But mi code needs the b_next and b_prev values of 9853 * mp->b_cont, to complete the ioctl. So we store it here 9854 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9855 * when the response comes down from ARP. 9856 */ 9857 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9858 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9859 mp->b_cont->b_next = NULL; 9860 mp->b_cont->b_prev = NULL; 9861 9862 mutex_enter(&connp->conn_lock); 9863 mutex_enter(&ill->ill_lock); 9864 /* conn has not yet started closing, hence this can't fail */ 9865 success = ill_pending_mp_add(ill, connp, pending_mp); 9866 ASSERT(success); 9867 mutex_exit(&ill->ill_lock); 9868 mutex_exit(&connp->conn_lock); 9869 9870 /* 9871 * Fill in the rest of the ARP operation fields. 9872 */ 9873 area->area_hw_addr_length = alength; 9874 bcopy(lladdr, 9875 (char *)area + area->area_hw_addr_offset, 9876 area->area_hw_addr_length); 9877 /* Translate the flags. */ 9878 if (flags & ATF_PERM) 9879 area->area_flags |= ACE_F_PERMANENT; 9880 if (flags & ATF_PUBL) 9881 area->area_flags |= ACE_F_PUBLISH; 9882 if (flags & ATF_AUTHORITY) 9883 area->area_flags |= ACE_F_AUTHORITY; 9884 9885 /* 9886 * Up to ARP it goes. The response will come 9887 * back in ip_wput as an M_IOCACK message, and 9888 * will be handed to ip_sioctl_iocack for 9889 * completion. 9890 */ 9891 putnext(ill->ill_rq, mp1); 9892 return (EINPROGRESS); 9893 } 9894 9895 /* ARGSUSED */ 9896 int 9897 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9898 ip_ioctl_cmd_t *ipip, void *ifreq) 9899 { 9900 struct xarpreq *xar; 9901 boolean_t isv6; 9902 mblk_t *mp1; 9903 int err; 9904 conn_t *connp; 9905 int ifnamelen; 9906 ire_t *ire = NULL; 9907 ill_t *ill = NULL; 9908 struct sockaddr_in *sin; 9909 boolean_t if_arp_ioctl = B_FALSE; 9910 ip_stack_t *ipst; 9911 9912 /* ioctl comes down on an conn */ 9913 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9914 connp = Q_TO_CONN(q); 9915 isv6 = connp->conn_af_isv6; 9916 ipst = connp->conn_netstack->netstack_ip; 9917 9918 /* Existance verified in ip_wput_nondata */ 9919 mp1 = mp->b_cont->b_cont; 9920 9921 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9922 xar = (struct xarpreq *)mp1->b_rptr; 9923 sin = (sin_t *)&xar->xarp_pa; 9924 9925 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9926 (xar->xarp_pa.ss_family != AF_INET)) 9927 return (ENXIO); 9928 9929 ifnamelen = xar->xarp_ha.sdl_nlen; 9930 if (ifnamelen != 0) { 9931 char *cptr, cval; 9932 9933 if (ifnamelen >= LIFNAMSIZ) 9934 return (EINVAL); 9935 9936 /* 9937 * Instead of bcopying a bunch of bytes, 9938 * null-terminate the string in-situ. 9939 */ 9940 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9941 cval = *cptr; 9942 *cptr = '\0'; 9943 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9944 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9945 &err, NULL, ipst); 9946 *cptr = cval; 9947 if (ill == NULL) 9948 return (err); 9949 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9950 ill_refrele(ill); 9951 return (ENXIO); 9952 } 9953 9954 if_arp_ioctl = B_TRUE; 9955 } else { 9956 /* 9957 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9958 * as an extended BSD ioctl. The kernel uses the IP address 9959 * to figure out the network interface. 9960 */ 9961 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9962 ipst); 9963 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9964 ((ill = ire_to_ill(ire)) == NULL) || 9965 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9966 if (ire != NULL) 9967 ire_refrele(ire); 9968 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9969 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9970 NULL, MATCH_IRE_TYPE, ipst); 9971 if ((ire == NULL) || 9972 ((ill = ire_to_ill(ire)) == NULL)) { 9973 if (ire != NULL) 9974 ire_refrele(ire); 9975 return (ENXIO); 9976 } 9977 } 9978 ASSERT(ire != NULL && ill != NULL); 9979 } 9980 9981 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9982 if (if_arp_ioctl) 9983 ill_refrele(ill); 9984 if (ire != NULL) 9985 ire_refrele(ire); 9986 9987 return (err); 9988 } 9989 9990 /* 9991 * ARP IOCTLs. 9992 * How does IP get in the business of fronting ARP configuration/queries? 9993 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9994 * are by tradition passed in through a datagram socket. That lands in IP. 9995 * As it happens, this is just as well since the interface is quite crude in 9996 * that it passes in no information about protocol or hardware types, or 9997 * interface association. After making the protocol assumption, IP is in 9998 * the position to look up the name of the ILL, which ARP will need, and 9999 * format a request that can be handled by ARP. The request is passed up 10000 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 10001 * back a response. ARP supports its own set of more general IOCTLs, in 10002 * case anyone is interested. 10003 */ 10004 /* ARGSUSED */ 10005 int 10006 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10007 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 10008 { 10009 struct arpreq *ar; 10010 struct sockaddr_in *sin; 10011 ire_t *ire; 10012 boolean_t isv6; 10013 mblk_t *mp1; 10014 int err; 10015 conn_t *connp; 10016 ill_t *ill; 10017 ip_stack_t *ipst; 10018 10019 /* ioctl comes down on an conn */ 10020 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 10021 connp = Q_TO_CONN(q); 10022 ipst = CONNQ_TO_IPST(q); 10023 isv6 = connp->conn_af_isv6; 10024 if (isv6) 10025 return (ENXIO); 10026 10027 /* Existance verified in ip_wput_nondata */ 10028 mp1 = mp->b_cont->b_cont; 10029 10030 ar = (struct arpreq *)mp1->b_rptr; 10031 sin = (sin_t *)&ar->arp_pa; 10032 10033 /* 10034 * We need to let ARP know on which interface the IP 10035 * address has an ARP mapping. In the IPMP case, a 10036 * simple forwarding table lookup will return the 10037 * IRE_IF_RESOLVER for the first interface in the group, 10038 * which might not be the interface on which the 10039 * requested IP address was resolved due to the ill 10040 * selection algorithm (see ip_newroute_get_dst_ill()). 10041 * So we do a cache table lookup first: if the IRE cache 10042 * entry for the IP address is still there, it will 10043 * contain the ill pointer for the right interface, so 10044 * we use that. If the cache entry has been flushed, we 10045 * fall back to the forwarding table lookup. This should 10046 * be rare enough since IRE cache entries have a longer 10047 * life expectancy than ARP cache entries. 10048 */ 10049 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 10050 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10051 ((ill = ire_to_ill(ire)) == NULL)) { 10052 if (ire != NULL) 10053 ire_refrele(ire); 10054 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10055 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10056 NULL, MATCH_IRE_TYPE, ipst); 10057 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10058 if (ire != NULL) 10059 ire_refrele(ire); 10060 return (ENXIO); 10061 } 10062 } 10063 ASSERT(ire != NULL && ill != NULL); 10064 10065 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10066 ire_refrele(ire); 10067 return (err); 10068 } 10069 10070 /* 10071 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10072 * atomically set/clear the muxids. Also complete the ioctl by acking or 10073 * naking it. Note that the code is structured such that the link type, 10074 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10075 * its clones use the persistent link, while pppd(1M) and perhaps many 10076 * other daemons may use non-persistent link. When combined with some 10077 * ill_t states, linking and unlinking lower streams may be used as 10078 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10079 */ 10080 /* ARGSUSED */ 10081 void 10082 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10083 { 10084 mblk_t *mp1, *mp2; 10085 struct linkblk *li; 10086 struct ipmx_s *ipmxp; 10087 ill_t *ill; 10088 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 10089 int err = 0; 10090 boolean_t entered_ipsq = B_FALSE; 10091 boolean_t islink; 10092 ip_stack_t *ipst; 10093 10094 if (CONN_Q(q)) 10095 ipst = CONNQ_TO_IPST(q); 10096 else 10097 ipst = ILLQ_TO_IPST(q); 10098 10099 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 10100 ioccmd == I_LINK || ioccmd == I_UNLINK); 10101 10102 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 10103 10104 mp1 = mp->b_cont; /* This is the linkblk info */ 10105 li = (struct linkblk *)mp1->b_rptr; 10106 10107 /* 10108 * ARP has added this special mblk, and the utility is asking us 10109 * to perform consistency checks, and also atomically set the 10110 * muxid. Ifconfig is an example. It achieves this by using 10111 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10112 * to /dev/udp[6] stream for use as the mux when plinking the IP 10113 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10114 * and other comments in this routine for more details. 10115 */ 10116 mp2 = mp1->b_cont; /* This is added by ARP */ 10117 10118 /* 10119 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10120 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10121 * get the special mblk above. For backward compatibility, we 10122 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 10123 * The utility will use SIOCSLIFMUXID to store the muxids. This is 10124 * not atomic, and can leave the streams unplumbable if the utility 10125 * is interrupted before it does the SIOCSLIFMUXID. 10126 */ 10127 if (mp2 == NULL) { 10128 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 10129 if (err == EINPROGRESS) 10130 return; 10131 goto done; 10132 } 10133 10134 /* 10135 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 10136 * ARP has appended this last mblk to tell us whether the lower stream 10137 * is an arp-dev stream or an IP module stream. 10138 */ 10139 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10140 if (ipmxp->ipmx_arpdev_stream) { 10141 /* 10142 * The lower stream is the arp-dev stream. 10143 */ 10144 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10145 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10146 if (ill == NULL) { 10147 if (err == EINPROGRESS) 10148 return; 10149 err = EINVAL; 10150 goto done; 10151 } 10152 10153 if (ipsq == NULL) { 10154 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10155 NEW_OP, B_TRUE); 10156 if (ipsq == NULL) { 10157 ill_refrele(ill); 10158 return; 10159 } 10160 entered_ipsq = B_TRUE; 10161 } 10162 ASSERT(IAM_WRITER_ILL(ill)); 10163 ill_refrele(ill); 10164 10165 /* 10166 * To ensure consistency between IP and ARP, the following 10167 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 10168 * This is because the muxid's are stored in the IP stream on 10169 * the ill. 10170 * 10171 * I_{P}LINK: ifconfig plinks the IP stream before plinking 10172 * the ARP stream. On an arp-dev stream, IP checks that it is 10173 * not yet plinked, and it also checks that the corresponding 10174 * IP stream is already plinked. 10175 * 10176 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 10177 * punlinking the IP stream. IP does not allow punlink of the 10178 * IP stream unless the arp stream has been punlinked. 10179 */ 10180 if ((islink && 10181 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10182 (!islink && ill->ill_arp_muxid != li->l_index)) { 10183 err = EINVAL; 10184 goto done; 10185 } 10186 ill->ill_arp_muxid = islink ? li->l_index : 0; 10187 } else { 10188 /* 10189 * The lower stream is probably an IP module stream. Do 10190 * consistency checking. 10191 */ 10192 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 10193 if (err == EINPROGRESS) 10194 return; 10195 } 10196 done: 10197 if (err == 0) 10198 miocack(q, mp, 0, 0); 10199 else 10200 miocnak(q, mp, 0, err); 10201 10202 /* Conn was refheld in ip_sioctl_copyin_setup */ 10203 if (CONN_Q(q)) 10204 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10205 if (entered_ipsq) 10206 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10207 } 10208 10209 /* 10210 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 10211 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 10212 * module stream). If `doconsist' is set, then do the extended consistency 10213 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 10214 * Returns zero on success, EINPROGRESS if the operation is still pending, or 10215 * an error code on failure. 10216 */ 10217 static int 10218 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 10219 struct linkblk *li, boolean_t doconsist) 10220 { 10221 ill_t *ill; 10222 queue_t *ipwq, *dwq; 10223 const char *name; 10224 struct qinit *qinfo; 10225 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 10226 10227 /* 10228 * Walk the lower stream to verify it's the IP module stream. 10229 * The IP module is identified by its name, wput function, 10230 * and non-NULL q_next. STREAMS ensures that the lower stream 10231 * (li->l_qbot) will not vanish until this ioctl completes. 10232 */ 10233 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10234 qinfo = ipwq->q_qinfo; 10235 name = qinfo->qi_minfo->mi_idname; 10236 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10237 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10238 break; 10239 } 10240 } 10241 10242 /* 10243 * If this isn't an IP module stream, bail. 10244 */ 10245 if (ipwq == NULL) 10246 return (0); 10247 10248 ill = ipwq->q_ptr; 10249 ASSERT(ill != NULL); 10250 10251 if (ipsq == NULL) { 10252 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10253 NEW_OP, B_TRUE); 10254 if (ipsq == NULL) 10255 return (EINPROGRESS); 10256 } 10257 ASSERT(IAM_WRITER_ILL(ill)); 10258 10259 if (doconsist) { 10260 /* 10261 * Consistency checking requires that I_{P}LINK occurs 10262 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10263 * occurs prior to clearing ill_arp_muxid. 10264 */ 10265 if ((islink && ill->ill_ip_muxid != 0) || 10266 (!islink && ill->ill_arp_muxid != 0)) { 10267 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10268 return (EINVAL); 10269 } 10270 } 10271 10272 /* 10273 * As part of I_{P}LINKing, stash the number of downstream modules and 10274 * the read queue of the module immediately below IP in the ill. 10275 * These are used during the capability negotiation below. 10276 */ 10277 ill->ill_lmod_rq = NULL; 10278 ill->ill_lmod_cnt = 0; 10279 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10280 ill->ill_lmod_rq = RD(dwq); 10281 for (; dwq != NULL; dwq = dwq->q_next) 10282 ill->ill_lmod_cnt++; 10283 } 10284 10285 if (doconsist) 10286 ill->ill_ip_muxid = islink ? li->l_index : 0; 10287 10288 /* 10289 * If there's at least one up ipif on this ill, then we're bound to 10290 * the underlying driver via DLPI. In that case, renegotiate 10291 * capabilities to account for any possible change in modules 10292 * interposed between IP and the driver. 10293 */ 10294 if (ill->ill_ipif_up_count > 0) { 10295 if (islink) 10296 ill_capability_probe(ill); 10297 else 10298 ill_capability_reset(ill); 10299 } 10300 10301 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10302 return (0); 10303 } 10304 10305 /* 10306 * Search the ioctl command in the ioctl tables and return a pointer 10307 * to the ioctl command information. The ioctl command tables are 10308 * static and fully populated at compile time. 10309 */ 10310 ip_ioctl_cmd_t * 10311 ip_sioctl_lookup(int ioc_cmd) 10312 { 10313 int index; 10314 ip_ioctl_cmd_t *ipip; 10315 ip_ioctl_cmd_t *ipip_end; 10316 10317 if (ioc_cmd == IPI_DONTCARE) 10318 return (NULL); 10319 10320 /* 10321 * Do a 2 step search. First search the indexed table 10322 * based on the least significant byte of the ioctl cmd. 10323 * If we don't find a match, then search the misc table 10324 * serially. 10325 */ 10326 index = ioc_cmd & 0xFF; 10327 if (index < ip_ndx_ioctl_count) { 10328 ipip = &ip_ndx_ioctl_table[index]; 10329 if (ipip->ipi_cmd == ioc_cmd) { 10330 /* Found a match in the ndx table */ 10331 return (ipip); 10332 } 10333 } 10334 10335 /* Search the misc table */ 10336 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10337 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10338 if (ipip->ipi_cmd == ioc_cmd) 10339 /* Found a match in the misc table */ 10340 return (ipip); 10341 } 10342 10343 return (NULL); 10344 } 10345 10346 /* 10347 * Wrapper function for resuming deferred ioctl processing 10348 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10349 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10350 */ 10351 /* ARGSUSED */ 10352 void 10353 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10354 void *dummy_arg) 10355 { 10356 ip_sioctl_copyin_setup(q, mp); 10357 } 10358 10359 /* 10360 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10361 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10362 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10363 * We establish here the size of the block to be copied in. mi_copyin 10364 * arranges for this to happen, an processing continues in ip_wput with 10365 * an M_IOCDATA message. 10366 */ 10367 void 10368 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10369 { 10370 int copyin_size; 10371 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10372 ip_ioctl_cmd_t *ipip; 10373 cred_t *cr; 10374 ip_stack_t *ipst; 10375 10376 if (CONN_Q(q)) 10377 ipst = CONNQ_TO_IPST(q); 10378 else 10379 ipst = ILLQ_TO_IPST(q); 10380 10381 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10382 if (ipip == NULL) { 10383 /* 10384 * The ioctl is not one we understand or own. 10385 * Pass it along to be processed down stream, 10386 * if this is a module instance of IP, else nak 10387 * the ioctl. 10388 */ 10389 if (q->q_next == NULL) { 10390 goto nak; 10391 } else { 10392 putnext(q, mp); 10393 return; 10394 } 10395 } 10396 10397 /* 10398 * If this is deferred, then we will do all the checks when we 10399 * come back. 10400 */ 10401 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10402 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10403 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10404 return; 10405 } 10406 10407 /* 10408 * Only allow a very small subset of IP ioctls on this stream if 10409 * IP is a module and not a driver. Allowing ioctls to be processed 10410 * in this case may cause assert failures or data corruption. 10411 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10412 * ioctls allowed on an IP module stream, after which this stream 10413 * normally becomes a multiplexor (at which time the stream head 10414 * will fail all ioctls). 10415 */ 10416 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10417 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10418 /* 10419 * Pass common Streams ioctls which the IP 10420 * module does not own or consume along to 10421 * be processed down stream. 10422 */ 10423 putnext(q, mp); 10424 return; 10425 } else { 10426 goto nak; 10427 } 10428 } 10429 10430 /* Make sure we have ioctl data to process. */ 10431 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10432 goto nak; 10433 10434 /* 10435 * Prefer dblk credential over ioctl credential; some synthesized 10436 * ioctls have kcred set because there's no way to crhold() 10437 * a credential in some contexts. (ioc_cr is not crfree() by 10438 * the framework; the caller of ioctl needs to hold the reference 10439 * for the duration of the call). 10440 */ 10441 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10442 10443 /* Make sure normal users don't send down privileged ioctls */ 10444 if ((ipip->ipi_flags & IPI_PRIV) && 10445 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10446 /* We checked the privilege earlier but log it here */ 10447 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10448 return; 10449 } 10450 10451 /* 10452 * The ioctl command tables can only encode fixed length 10453 * ioctl data. If the length is variable, the table will 10454 * encode the length as zero. Such special cases are handled 10455 * below in the switch. 10456 */ 10457 if (ipip->ipi_copyin_size != 0) { 10458 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10459 return; 10460 } 10461 10462 switch (iocp->ioc_cmd) { 10463 case O_SIOCGIFCONF: 10464 case SIOCGIFCONF: 10465 /* 10466 * This IOCTL is hilarious. See comments in 10467 * ip_sioctl_get_ifconf for the story. 10468 */ 10469 if (iocp->ioc_count == TRANSPARENT) 10470 copyin_size = SIZEOF_STRUCT(ifconf, 10471 iocp->ioc_flag); 10472 else 10473 copyin_size = iocp->ioc_count; 10474 mi_copyin(q, mp, NULL, copyin_size); 10475 return; 10476 10477 case O_SIOCGLIFCONF: 10478 case SIOCGLIFCONF: 10479 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10480 mi_copyin(q, mp, NULL, copyin_size); 10481 return; 10482 10483 case SIOCGLIFSRCOF: 10484 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10485 mi_copyin(q, mp, NULL, copyin_size); 10486 return; 10487 case SIOCGIP6ADDRPOLICY: 10488 ip_sioctl_ip6addrpolicy(q, mp); 10489 ip6_asp_table_refrele(ipst); 10490 return; 10491 10492 case SIOCSIP6ADDRPOLICY: 10493 ip_sioctl_ip6addrpolicy(q, mp); 10494 return; 10495 10496 case SIOCGDSTINFO: 10497 ip_sioctl_dstinfo(q, mp); 10498 ip6_asp_table_refrele(ipst); 10499 return; 10500 10501 case I_PLINK: 10502 case I_PUNLINK: 10503 case I_LINK: 10504 case I_UNLINK: 10505 /* 10506 * We treat non-persistent link similarly as the persistent 10507 * link case, in terms of plumbing/unplumbing, as well as 10508 * dynamic re-plumbing events indicator. See comments 10509 * in ip_sioctl_plink() for more. 10510 * 10511 * Request can be enqueued in the 'ipsq' while waiting 10512 * to become exclusive. So bump up the conn ref. 10513 */ 10514 if (CONN_Q(q)) 10515 CONN_INC_REF(Q_TO_CONN(q)); 10516 ip_sioctl_plink(NULL, q, mp, NULL); 10517 return; 10518 10519 case ND_GET: 10520 case ND_SET: 10521 /* 10522 * Use of the nd table requires holding the reader lock. 10523 * Modifying the nd table thru nd_load/nd_unload requires 10524 * the writer lock. 10525 */ 10526 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10527 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10528 rw_exit(&ipst->ips_ip_g_nd_lock); 10529 10530 if (iocp->ioc_error) 10531 iocp->ioc_count = 0; 10532 mp->b_datap->db_type = M_IOCACK; 10533 qreply(q, mp); 10534 return; 10535 } 10536 rw_exit(&ipst->ips_ip_g_nd_lock); 10537 /* 10538 * We don't understand this subioctl of ND_GET / ND_SET. 10539 * Maybe intended for some driver / module below us 10540 */ 10541 if (q->q_next) { 10542 putnext(q, mp); 10543 } else { 10544 iocp->ioc_error = ENOENT; 10545 mp->b_datap->db_type = M_IOCNAK; 10546 iocp->ioc_count = 0; 10547 qreply(q, mp); 10548 } 10549 return; 10550 10551 case IP_IOCTL: 10552 ip_wput_ioctl(q, mp); 10553 return; 10554 default: 10555 cmn_err(CE_PANIC, "should not happen "); 10556 } 10557 nak: 10558 if (mp->b_cont != NULL) { 10559 freemsg(mp->b_cont); 10560 mp->b_cont = NULL; 10561 } 10562 iocp->ioc_error = EINVAL; 10563 mp->b_datap->db_type = M_IOCNAK; 10564 iocp->ioc_count = 0; 10565 qreply(q, mp); 10566 } 10567 10568 /* ip_wput hands off ARP IOCTL responses to us */ 10569 void 10570 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10571 { 10572 struct arpreq *ar; 10573 struct xarpreq *xar; 10574 area_t *area; 10575 mblk_t *area_mp; 10576 struct iocblk *iocp; 10577 mblk_t *orig_ioc_mp, *tmp; 10578 struct iocblk *orig_iocp; 10579 ill_t *ill; 10580 conn_t *connp = NULL; 10581 uint_t ioc_id; 10582 mblk_t *pending_mp; 10583 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10584 int *flagsp; 10585 char *storage = NULL; 10586 sin_t *sin; 10587 ipaddr_t addr; 10588 int err; 10589 ip_stack_t *ipst; 10590 10591 ill = q->q_ptr; 10592 ASSERT(ill != NULL); 10593 ipst = ill->ill_ipst; 10594 10595 /* 10596 * We should get back from ARP a packet chain that looks like: 10597 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10598 */ 10599 if (!(area_mp = mp->b_cont) || 10600 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10601 !(orig_ioc_mp = area_mp->b_cont) || 10602 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10603 freemsg(mp); 10604 return; 10605 } 10606 10607 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10608 10609 tmp = (orig_ioc_mp->b_cont)->b_cont; 10610 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10611 (orig_iocp->ioc_cmd == SIOCSXARP) || 10612 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10613 x_arp_ioctl = B_TRUE; 10614 xar = (struct xarpreq *)tmp->b_rptr; 10615 sin = (sin_t *)&xar->xarp_pa; 10616 flagsp = &xar->xarp_flags; 10617 storage = xar->xarp_ha.sdl_data; 10618 if (xar->xarp_ha.sdl_nlen != 0) 10619 ifx_arp_ioctl = B_TRUE; 10620 } else { 10621 ar = (struct arpreq *)tmp->b_rptr; 10622 sin = (sin_t *)&ar->arp_pa; 10623 flagsp = &ar->arp_flags; 10624 storage = ar->arp_ha.sa_data; 10625 } 10626 10627 iocp = (struct iocblk *)mp->b_rptr; 10628 10629 /* 10630 * Pick out the originating queue based on the ioc_id. 10631 */ 10632 ioc_id = iocp->ioc_id; 10633 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10634 if (pending_mp == NULL) { 10635 ASSERT(connp == NULL); 10636 inet_freemsg(mp); 10637 return; 10638 } 10639 ASSERT(connp != NULL); 10640 q = CONNP_TO_WQ(connp); 10641 10642 /* Uncouple the internally generated IOCTL from the original one */ 10643 area = (area_t *)area_mp->b_rptr; 10644 area_mp->b_cont = NULL; 10645 10646 /* 10647 * Restore the b_next and b_prev used by mi code. This is needed 10648 * to complete the ioctl using mi* functions. We stored them in 10649 * the pending mp prior to sending the request to ARP. 10650 */ 10651 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10652 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10653 inet_freemsg(pending_mp); 10654 10655 /* 10656 * We're done if there was an error or if this is not an SIOCG{X}ARP 10657 * Catch the case where there is an IRE_CACHE by no entry in the 10658 * arp table. 10659 */ 10660 addr = sin->sin_addr.s_addr; 10661 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10662 ire_t *ire; 10663 dl_unitdata_req_t *dlup; 10664 mblk_t *llmp; 10665 int addr_len; 10666 ill_t *ipsqill = NULL; 10667 10668 if (ifx_arp_ioctl) { 10669 /* 10670 * There's no need to lookup the ill, since 10671 * we've already done that when we started 10672 * processing the ioctl and sent the message 10673 * to ARP on that ill. So use the ill that 10674 * is stored in q->q_ptr. 10675 */ 10676 ipsqill = ill; 10677 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10678 ipsqill->ill_ipif, ALL_ZONES, 10679 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10680 } else { 10681 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10682 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10683 if (ire != NULL) 10684 ipsqill = ire_to_ill(ire); 10685 } 10686 10687 if ((x_arp_ioctl) && (ipsqill != NULL)) 10688 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10689 10690 if (ire != NULL) { 10691 /* 10692 * Since the ire obtained from cachetable is used for 10693 * mac addr copying below, treat an incomplete ire as if 10694 * as if we never found it. 10695 */ 10696 if (ire->ire_nce != NULL && 10697 ire->ire_nce->nce_state != ND_REACHABLE) { 10698 ire_refrele(ire); 10699 ire = NULL; 10700 ipsqill = NULL; 10701 goto errack; 10702 } 10703 *flagsp = ATF_INUSE; 10704 llmp = (ire->ire_nce != NULL ? 10705 ire->ire_nce->nce_res_mp : NULL); 10706 if (llmp != NULL && ipsqill != NULL) { 10707 uchar_t *macaddr; 10708 10709 addr_len = ipsqill->ill_phys_addr_length; 10710 if (x_arp_ioctl && ((addr_len + 10711 ipsqill->ill_name_length) > 10712 sizeof (xar->xarp_ha.sdl_data))) { 10713 ire_refrele(ire); 10714 freemsg(mp); 10715 ip_ioctl_finish(q, orig_ioc_mp, 10716 EINVAL, NO_COPYOUT, NULL); 10717 return; 10718 } 10719 *flagsp |= ATF_COM; 10720 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10721 if (ipsqill->ill_sap_length < 0) 10722 macaddr = llmp->b_rptr + 10723 dlup->dl_dest_addr_offset; 10724 else 10725 macaddr = llmp->b_rptr + 10726 dlup->dl_dest_addr_offset + 10727 ipsqill->ill_sap_length; 10728 /* 10729 * For SIOCGARP, MAC address length 10730 * validation has already been done 10731 * before the ioctl was issued to ARP to 10732 * allow it to progress only on 6 byte 10733 * addressable (ethernet like) media. Thus 10734 * the mac address copying can not overwrite 10735 * the sa_data area below. 10736 */ 10737 bcopy(macaddr, storage, addr_len); 10738 } 10739 /* Ditch the internal IOCTL. */ 10740 freemsg(mp); 10741 ire_refrele(ire); 10742 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10743 return; 10744 } 10745 } 10746 10747 /* 10748 * Delete the coresponding IRE_CACHE if any. 10749 * Reset the error if there was one (in case there was no entry 10750 * in arp.) 10751 */ 10752 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10753 ipif_t *ipintf = NULL; 10754 10755 if (ifx_arp_ioctl) { 10756 /* 10757 * There's no need to lookup the ill, since 10758 * we've already done that when we started 10759 * processing the ioctl and sent the message 10760 * to ARP on that ill. So use the ill that 10761 * is stored in q->q_ptr. 10762 */ 10763 ipintf = ill->ill_ipif; 10764 } 10765 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10766 /* 10767 * The address in "addr" may be an entry for a 10768 * router. If that's true, then any off-net 10769 * IRE_CACHE entries that go through the router 10770 * with address "addr" must be clobbered. Use 10771 * ire_walk to achieve this goal. 10772 */ 10773 if (ifx_arp_ioctl) 10774 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10775 ire_delete_cache_gw, (char *)&addr, ill); 10776 else 10777 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10778 ALL_ZONES, ipst); 10779 iocp->ioc_error = 0; 10780 } 10781 } 10782 errack: 10783 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10784 err = iocp->ioc_error; 10785 freemsg(mp); 10786 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10787 return; 10788 } 10789 10790 /* 10791 * Completion of an SIOCG{X}ARP. Translate the information from 10792 * the area_t into the struct {x}arpreq. 10793 */ 10794 if (x_arp_ioctl) { 10795 storage += ill_xarp_info(&xar->xarp_ha, ill); 10796 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10797 sizeof (xar->xarp_ha.sdl_data)) { 10798 freemsg(mp); 10799 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10800 NULL); 10801 return; 10802 } 10803 } 10804 *flagsp = ATF_INUSE; 10805 if (area->area_flags & ACE_F_PERMANENT) 10806 *flagsp |= ATF_PERM; 10807 if (area->area_flags & ACE_F_PUBLISH) 10808 *flagsp |= ATF_PUBL; 10809 if (area->area_flags & ACE_F_AUTHORITY) 10810 *flagsp |= ATF_AUTHORITY; 10811 if (area->area_hw_addr_length != 0) { 10812 *flagsp |= ATF_COM; 10813 /* 10814 * For SIOCGARP, MAC address length validation has 10815 * already been done before the ioctl was issued to ARP 10816 * to allow it to progress only on 6 byte addressable 10817 * (ethernet like) media. Thus the mac address copying 10818 * can not overwrite the sa_data area below. 10819 */ 10820 bcopy((char *)area + area->area_hw_addr_offset, 10821 storage, area->area_hw_addr_length); 10822 } 10823 10824 /* Ditch the internal IOCTL. */ 10825 freemsg(mp); 10826 /* Complete the original. */ 10827 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10828 } 10829 10830 /* 10831 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10832 * interface) create the next available logical interface for this 10833 * physical interface. 10834 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10835 * ipif with the specified name. 10836 * 10837 * If the address family is not AF_UNSPEC then set the address as well. 10838 * 10839 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10840 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10841 * 10842 * Executed as a writer on the ill or ill group. 10843 * So no lock is needed to traverse the ipif chain, or examine the 10844 * phyint flags. 10845 */ 10846 /* ARGSUSED */ 10847 int 10848 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10849 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10850 { 10851 mblk_t *mp1; 10852 struct lifreq *lifr; 10853 boolean_t isv6; 10854 boolean_t exists; 10855 char *name; 10856 char *endp; 10857 char *cp; 10858 int namelen; 10859 ipif_t *ipif; 10860 long id; 10861 ipsq_t *ipsq; 10862 ill_t *ill; 10863 sin_t *sin; 10864 int err = 0; 10865 boolean_t found_sep = B_FALSE; 10866 conn_t *connp; 10867 zoneid_t zoneid; 10868 int orig_ifindex = 0; 10869 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10870 10871 ASSERT(q->q_next == NULL); 10872 ip1dbg(("ip_sioctl_addif\n")); 10873 /* Existence of mp1 has been checked in ip_wput_nondata */ 10874 mp1 = mp->b_cont->b_cont; 10875 /* 10876 * Null terminate the string to protect against buffer 10877 * overrun. String was generated by user code and may not 10878 * be trusted. 10879 */ 10880 lifr = (struct lifreq *)mp1->b_rptr; 10881 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10882 name = lifr->lifr_name; 10883 ASSERT(CONN_Q(q)); 10884 connp = Q_TO_CONN(q); 10885 isv6 = connp->conn_af_isv6; 10886 zoneid = connp->conn_zoneid; 10887 namelen = mi_strlen(name); 10888 if (namelen == 0) 10889 return (EINVAL); 10890 10891 exists = B_FALSE; 10892 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10893 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10894 /* 10895 * Allow creating lo0 using SIOCLIFADDIF. 10896 * can't be any other writer thread. So can pass null below 10897 * for the last 4 args to ipif_lookup_name. 10898 */ 10899 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10900 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10901 /* Prevent any further action */ 10902 if (ipif == NULL) { 10903 return (ENOBUFS); 10904 } else if (!exists) { 10905 /* We created the ipif now and as writer */ 10906 ipif_refrele(ipif); 10907 return (0); 10908 } else { 10909 ill = ipif->ipif_ill; 10910 ill_refhold(ill); 10911 ipif_refrele(ipif); 10912 } 10913 } else { 10914 /* Look for a colon in the name. */ 10915 endp = &name[namelen]; 10916 for (cp = endp; --cp > name; ) { 10917 if (*cp == IPIF_SEPARATOR_CHAR) { 10918 found_sep = B_TRUE; 10919 /* 10920 * Reject any non-decimal aliases for plumbing 10921 * of logical interfaces. Aliases with leading 10922 * zeroes are also rejected as they introduce 10923 * ambiguity in the naming of the interfaces. 10924 * Comparing with "0" takes care of all such 10925 * cases. 10926 */ 10927 if ((strncmp("0", cp+1, 1)) == 0) 10928 return (EINVAL); 10929 10930 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10931 id <= 0 || *endp != '\0') { 10932 return (EINVAL); 10933 } 10934 *cp = '\0'; 10935 break; 10936 } 10937 } 10938 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10939 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10940 if (found_sep) 10941 *cp = IPIF_SEPARATOR_CHAR; 10942 if (ill == NULL) 10943 return (err); 10944 } 10945 10946 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10947 B_TRUE); 10948 10949 /* 10950 * Release the refhold due to the lookup, now that we are excl 10951 * or we are just returning 10952 */ 10953 ill_refrele(ill); 10954 10955 if (ipsq == NULL) 10956 return (EINPROGRESS); 10957 10958 /* 10959 * If the interface is failed, inactive or offlined, look for a working 10960 * interface in the ill group and create the ipif there. If we can't 10961 * find a good interface, create the ipif anyway so that in.mpathd can 10962 * move it to the first repaired interface. 10963 */ 10964 if ((ill->ill_phyint->phyint_flags & 10965 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10966 ill->ill_phyint->phyint_groupname_len != 0) { 10967 phyint_t *phyi; 10968 char *groupname = ill->ill_phyint->phyint_groupname; 10969 10970 /* 10971 * We're looking for a working interface, but it doesn't matter 10972 * if it's up or down; so instead of following the group lists, 10973 * we look at each physical interface and compare the groupname. 10974 * We're only interested in interfaces with IPv4 (resp. IPv6) 10975 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10976 * Otherwise we create the ipif on the failed interface. 10977 */ 10978 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10979 phyi = avl_first(&ipst->ips_phyint_g_list-> 10980 phyint_list_avl_by_index); 10981 for (; phyi != NULL; 10982 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10983 phyint_list_avl_by_index, 10984 phyi, AVL_AFTER)) { 10985 if (phyi->phyint_groupname_len == 0) 10986 continue; 10987 ASSERT(phyi->phyint_groupname != NULL); 10988 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10989 !(phyi->phyint_flags & 10990 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10991 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10992 (phyi->phyint_illv4 != NULL))) { 10993 break; 10994 } 10995 } 10996 rw_exit(&ipst->ips_ill_g_lock); 10997 10998 if (phyi != NULL) { 10999 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11000 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11001 phyi->phyint_illv4); 11002 } 11003 } 11004 11005 /* 11006 * We are now exclusive on the ipsq, so an ill move will be serialized 11007 * before or after us. 11008 */ 11009 ASSERT(IAM_WRITER_ILL(ill)); 11010 ASSERT(ill->ill_move_in_progress == B_FALSE); 11011 11012 if (found_sep && orig_ifindex == 0) { 11013 /* Now see if there is an IPIF with this unit number. */ 11014 for (ipif = ill->ill_ipif; ipif != NULL; 11015 ipif = ipif->ipif_next) { 11016 if (ipif->ipif_id == id) { 11017 err = EEXIST; 11018 goto done; 11019 } 11020 } 11021 } 11022 11023 /* 11024 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11025 * of lo0. We never come here when we plumb lo0:0. It 11026 * happens in ipif_lookup_on_name. 11027 * The specified unit number is ignored when we create the ipif on a 11028 * different interface. However, we save it in ipif_orig_ipifid below so 11029 * that the ipif fails back to the right position. 11030 */ 11031 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11032 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11033 err = ENOBUFS; 11034 goto done; 11035 } 11036 11037 /* Return created name with ioctl */ 11038 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11039 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11040 ip1dbg(("created %s\n", lifr->lifr_name)); 11041 11042 /* Set address */ 11043 sin = (sin_t *)&lifr->lifr_addr; 11044 if (sin->sin_family != AF_UNSPEC) { 11045 err = ip_sioctl_addr(ipif, sin, q, mp, 11046 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11047 } 11048 11049 /* Set ifindex and unit number for failback */ 11050 if (err == 0 && orig_ifindex != 0) { 11051 ipif->ipif_orig_ifindex = orig_ifindex; 11052 if (found_sep) { 11053 ipif->ipif_orig_ipifid = id; 11054 } 11055 } 11056 11057 done: 11058 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11059 return (err); 11060 } 11061 11062 /* 11063 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11064 * interface) delete it based on the IP address (on this physical interface). 11065 * Otherwise delete it based on the ipif_id. 11066 * Also, special handling to allow a removeif of lo0. 11067 */ 11068 /* ARGSUSED */ 11069 int 11070 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11071 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11072 { 11073 conn_t *connp; 11074 ill_t *ill = ipif->ipif_ill; 11075 boolean_t success; 11076 ip_stack_t *ipst; 11077 11078 ipst = CONNQ_TO_IPST(q); 11079 11080 ASSERT(q->q_next == NULL); 11081 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11083 ASSERT(IAM_WRITER_IPIF(ipif)); 11084 11085 connp = Q_TO_CONN(q); 11086 /* 11087 * Special case for unplumbing lo0 (the loopback physical interface). 11088 * If unplumbing lo0, the incoming address structure has been 11089 * initialized to all zeros. When unplumbing lo0, all its logical 11090 * interfaces must be removed too. 11091 * 11092 * Note that this interface may be called to remove a specific 11093 * loopback logical interface (eg, lo0:1). But in that case 11094 * ipif->ipif_id != 0 so that the code path for that case is the 11095 * same as any other interface (meaning it skips the code directly 11096 * below). 11097 */ 11098 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11099 if (sin->sin_family == AF_UNSPEC && 11100 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11101 /* 11102 * Mark it condemned. No new ref. will be made to ill. 11103 */ 11104 mutex_enter(&ill->ill_lock); 11105 ill->ill_state_flags |= ILL_CONDEMNED; 11106 for (ipif = ill->ill_ipif; ipif != NULL; 11107 ipif = ipif->ipif_next) { 11108 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11109 } 11110 mutex_exit(&ill->ill_lock); 11111 11112 ipif = ill->ill_ipif; 11113 /* unplumb the loopback interface */ 11114 ill_delete(ill); 11115 mutex_enter(&connp->conn_lock); 11116 mutex_enter(&ill->ill_lock); 11117 ASSERT(ill->ill_group == NULL); 11118 11119 /* Are any references to this ill active */ 11120 if (ill_is_quiescent(ill)) { 11121 mutex_exit(&ill->ill_lock); 11122 mutex_exit(&connp->conn_lock); 11123 ill_delete_tail(ill); 11124 mi_free(ill); 11125 return (0); 11126 } 11127 success = ipsq_pending_mp_add(connp, ipif, 11128 CONNP_TO_WQ(connp), mp, ILL_FREE); 11129 mutex_exit(&connp->conn_lock); 11130 mutex_exit(&ill->ill_lock); 11131 if (success) 11132 return (EINPROGRESS); 11133 else 11134 return (EINTR); 11135 } 11136 } 11137 11138 /* 11139 * We are exclusive on the ipsq, so an ill move will be serialized 11140 * before or after us. 11141 */ 11142 ASSERT(ill->ill_move_in_progress == B_FALSE); 11143 11144 if (ipif->ipif_id == 0) { 11145 /* Find based on address */ 11146 if (ipif->ipif_isv6) { 11147 sin6_t *sin6; 11148 11149 if (sin->sin_family != AF_INET6) 11150 return (EAFNOSUPPORT); 11151 11152 sin6 = (sin6_t *)sin; 11153 /* We are a writer, so we should be able to lookup */ 11154 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11155 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11156 if (ipif == NULL) { 11157 /* 11158 * Maybe the address in on another interface in 11159 * the same IPMP group? We check this below. 11160 */ 11161 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11162 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11163 ipst); 11164 } 11165 } else { 11166 ipaddr_t addr; 11167 11168 if (sin->sin_family != AF_INET) 11169 return (EAFNOSUPPORT); 11170 11171 addr = sin->sin_addr.s_addr; 11172 /* We are a writer, so we should be able to lookup */ 11173 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11174 NULL, NULL, NULL, ipst); 11175 if (ipif == NULL) { 11176 /* 11177 * Maybe the address in on another interface in 11178 * the same IPMP group? We check this below. 11179 */ 11180 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11181 NULL, NULL, NULL, NULL, ipst); 11182 } 11183 } 11184 if (ipif == NULL) { 11185 return (EADDRNOTAVAIL); 11186 } 11187 /* 11188 * When the address to be removed is hosted on a different 11189 * interface, we check if the interface is in the same IPMP 11190 * group as the specified one; if so we proceed with the 11191 * removal. 11192 * ill->ill_group is NULL when the ill is down, so we have to 11193 * compare the group names instead. 11194 */ 11195 if (ipif->ipif_ill != ill && 11196 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11197 ill->ill_phyint->phyint_groupname_len == 0 || 11198 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11199 ill->ill_phyint->phyint_groupname) != 0)) { 11200 ipif_refrele(ipif); 11201 return (EADDRNOTAVAIL); 11202 } 11203 11204 /* This is a writer */ 11205 ipif_refrele(ipif); 11206 } 11207 11208 /* 11209 * Can not delete instance zero since it is tied to the ill. 11210 */ 11211 if (ipif->ipif_id == 0) 11212 return (EBUSY); 11213 11214 mutex_enter(&ill->ill_lock); 11215 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11216 mutex_exit(&ill->ill_lock); 11217 11218 ipif_free(ipif); 11219 11220 mutex_enter(&connp->conn_lock); 11221 mutex_enter(&ill->ill_lock); 11222 11223 /* Are any references to this ipif active */ 11224 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11225 mutex_exit(&ill->ill_lock); 11226 mutex_exit(&connp->conn_lock); 11227 ipif_non_duplicate(ipif); 11228 ipif_down_tail(ipif); 11229 ipif_free_tail(ipif); 11230 return (0); 11231 } 11232 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11233 IPIF_FREE); 11234 mutex_exit(&ill->ill_lock); 11235 mutex_exit(&connp->conn_lock); 11236 if (success) 11237 return (EINPROGRESS); 11238 else 11239 return (EINTR); 11240 } 11241 11242 /* 11243 * Restart the removeif ioctl. The refcnt has gone down to 0. 11244 * The ipif is already condemned. So can't find it thru lookups. 11245 */ 11246 /* ARGSUSED */ 11247 int 11248 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11249 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11250 { 11251 ill_t *ill; 11252 11253 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11254 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11255 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11256 ill = ipif->ipif_ill; 11257 ASSERT(IAM_WRITER_ILL(ill)); 11258 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11259 (ill->ill_state_flags & IPIF_CONDEMNED)); 11260 ill_delete_tail(ill); 11261 mi_free(ill); 11262 return (0); 11263 } 11264 11265 ill = ipif->ipif_ill; 11266 ASSERT(IAM_WRITER_IPIF(ipif)); 11267 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11268 11269 ipif_non_duplicate(ipif); 11270 ipif_down_tail(ipif); 11271 ipif_free_tail(ipif); 11272 11273 ILL_UNMARK_CHANGING(ill); 11274 return (0); 11275 } 11276 11277 /* 11278 * Set the local interface address. 11279 * Allow an address of all zero when the interface is down. 11280 */ 11281 /* ARGSUSED */ 11282 int 11283 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11284 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11285 { 11286 int err = 0; 11287 in6_addr_t v6addr; 11288 boolean_t need_up = B_FALSE; 11289 11290 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11291 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11292 11293 ASSERT(IAM_WRITER_IPIF(ipif)); 11294 11295 if (ipif->ipif_isv6) { 11296 sin6_t *sin6; 11297 ill_t *ill; 11298 phyint_t *phyi; 11299 11300 if (sin->sin_family != AF_INET6) 11301 return (EAFNOSUPPORT); 11302 11303 sin6 = (sin6_t *)sin; 11304 v6addr = sin6->sin6_addr; 11305 ill = ipif->ipif_ill; 11306 phyi = ill->ill_phyint; 11307 11308 /* 11309 * Enforce that true multicast interfaces have a link-local 11310 * address for logical unit 0. 11311 */ 11312 if (ipif->ipif_id == 0 && 11313 (ill->ill_flags & ILLF_MULTICAST) && 11314 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11315 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11316 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11317 return (EADDRNOTAVAIL); 11318 } 11319 11320 /* 11321 * up interfaces shouldn't have the unspecified address 11322 * unless they also have the IPIF_NOLOCAL flags set and 11323 * have a subnet assigned. 11324 */ 11325 if ((ipif->ipif_flags & IPIF_UP) && 11326 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11327 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11328 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11329 return (EADDRNOTAVAIL); 11330 } 11331 11332 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11333 return (EADDRNOTAVAIL); 11334 } else { 11335 ipaddr_t addr; 11336 11337 if (sin->sin_family != AF_INET) 11338 return (EAFNOSUPPORT); 11339 11340 addr = sin->sin_addr.s_addr; 11341 11342 /* Allow 0 as the local address. */ 11343 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11344 return (EADDRNOTAVAIL); 11345 11346 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11347 } 11348 11349 11350 /* 11351 * Even if there is no change we redo things just to rerun 11352 * ipif_set_default. 11353 */ 11354 if (ipif->ipif_flags & IPIF_UP) { 11355 /* 11356 * Setting a new local address, make sure 11357 * we have net and subnet bcast ire's for 11358 * the old address if we need them. 11359 */ 11360 if (!ipif->ipif_isv6) 11361 ipif_check_bcast_ires(ipif); 11362 /* 11363 * If the interface is already marked up, 11364 * we call ipif_down which will take care 11365 * of ditching any IREs that have been set 11366 * up based on the old interface address. 11367 */ 11368 err = ipif_logical_down(ipif, q, mp); 11369 if (err == EINPROGRESS) 11370 return (err); 11371 ipif_down_tail(ipif); 11372 need_up = 1; 11373 } 11374 11375 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11376 return (err); 11377 } 11378 11379 int 11380 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11381 boolean_t need_up) 11382 { 11383 in6_addr_t v6addr; 11384 in6_addr_t ov6addr; 11385 ipaddr_t addr; 11386 sin6_t *sin6; 11387 int sinlen; 11388 int err = 0; 11389 ill_t *ill = ipif->ipif_ill; 11390 boolean_t need_dl_down; 11391 boolean_t need_arp_down; 11392 struct iocblk *iocp; 11393 11394 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11395 11396 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11397 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11398 ASSERT(IAM_WRITER_IPIF(ipif)); 11399 11400 /* Must cancel any pending timer before taking the ill_lock */ 11401 if (ipif->ipif_recovery_id != 0) 11402 (void) untimeout(ipif->ipif_recovery_id); 11403 ipif->ipif_recovery_id = 0; 11404 11405 if (ipif->ipif_isv6) { 11406 sin6 = (sin6_t *)sin; 11407 v6addr = sin6->sin6_addr; 11408 sinlen = sizeof (struct sockaddr_in6); 11409 } else { 11410 addr = sin->sin_addr.s_addr; 11411 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11412 sinlen = sizeof (struct sockaddr_in); 11413 } 11414 mutex_enter(&ill->ill_lock); 11415 ov6addr = ipif->ipif_v6lcl_addr; 11416 ipif->ipif_v6lcl_addr = v6addr; 11417 sctp_update_ipif_addr(ipif, ov6addr); 11418 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11419 ipif->ipif_v6src_addr = ipv6_all_zeros; 11420 } else { 11421 ipif->ipif_v6src_addr = v6addr; 11422 } 11423 ipif->ipif_addr_ready = 0; 11424 11425 /* 11426 * If the interface was previously marked as a duplicate, then since 11427 * we've now got a "new" address, it should no longer be considered a 11428 * duplicate -- even if the "new" address is the same as the old one. 11429 * Note that if all ipifs are down, we may have a pending ARP down 11430 * event to handle. This is because we want to recover from duplicates 11431 * and thus delay tearing down ARP until the duplicates have been 11432 * removed or disabled. 11433 */ 11434 need_dl_down = need_arp_down = B_FALSE; 11435 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11436 need_arp_down = !need_up; 11437 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11438 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11439 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11440 need_dl_down = B_TRUE; 11441 } 11442 } 11443 11444 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11445 !ill->ill_is_6to4tun) { 11446 queue_t *wqp = ill->ill_wq; 11447 11448 /* 11449 * The local address of this interface is a 6to4 address, 11450 * check if this interface is in fact a 6to4 tunnel or just 11451 * an interface configured with a 6to4 address. We are only 11452 * interested in the former. 11453 */ 11454 if (wqp != NULL) { 11455 while ((wqp->q_next != NULL) && 11456 (wqp->q_next->q_qinfo != NULL) && 11457 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11458 11459 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11460 == TUN6TO4_MODID) { 11461 /* set for use in IP */ 11462 ill->ill_is_6to4tun = 1; 11463 break; 11464 } 11465 wqp = wqp->q_next; 11466 } 11467 } 11468 } 11469 11470 ipif_set_default(ipif); 11471 11472 /* 11473 * When publishing an interface address change event, we only notify 11474 * the event listeners of the new address. It is assumed that if they 11475 * actively care about the addresses assigned that they will have 11476 * already discovered the previous address assigned (if there was one.) 11477 * 11478 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11479 */ 11480 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11481 hook_nic_event_t *info; 11482 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11483 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11484 "attached for %s\n", info->hne_event, 11485 ill->ill_name)); 11486 if (info->hne_data != NULL) 11487 kmem_free(info->hne_data, info->hne_datalen); 11488 kmem_free(info, sizeof (hook_nic_event_t)); 11489 } 11490 11491 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11492 if (info != NULL) { 11493 ip_stack_t *ipst = ill->ill_ipst; 11494 11495 info->hne_nic = 11496 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11497 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11498 info->hne_event = NE_ADDRESS_CHANGE; 11499 info->hne_family = ipif->ipif_isv6 ? 11500 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11501 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11502 if (info->hne_data != NULL) { 11503 info->hne_datalen = sinlen; 11504 bcopy(sin, info->hne_data, sinlen); 11505 } else { 11506 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11507 "address information for ADDRESS_CHANGE nic" 11508 " event of %s (ENOMEM)\n", 11509 ipif->ipif_ill->ill_name)); 11510 kmem_free(info, sizeof (hook_nic_event_t)); 11511 } 11512 } else 11513 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11514 "ADDRESS_CHANGE nic event information for %s " 11515 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11516 11517 ipif->ipif_ill->ill_nic_event_info = info; 11518 } 11519 11520 mutex_exit(&ill->ill_lock); 11521 11522 if (need_up) { 11523 /* 11524 * Now bring the interface back up. If this 11525 * is the only IPIF for the ILL, ipif_up 11526 * will have to re-bind to the device, so 11527 * we may get back EINPROGRESS, in which 11528 * case, this IOCTL will get completed in 11529 * ip_rput_dlpi when we see the DL_BIND_ACK. 11530 */ 11531 err = ipif_up(ipif, q, mp); 11532 } 11533 11534 if (need_dl_down) 11535 ill_dl_down(ill); 11536 if (need_arp_down) 11537 ipif_arp_down(ipif); 11538 11539 return (err); 11540 } 11541 11542 11543 /* 11544 * Restart entry point to restart the address set operation after the 11545 * refcounts have dropped to zero. 11546 */ 11547 /* ARGSUSED */ 11548 int 11549 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11550 ip_ioctl_cmd_t *ipip, void *ifreq) 11551 { 11552 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11553 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11554 ASSERT(IAM_WRITER_IPIF(ipif)); 11555 ipif_down_tail(ipif); 11556 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11557 } 11558 11559 /* ARGSUSED */ 11560 int 11561 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11562 ip_ioctl_cmd_t *ipip, void *if_req) 11563 { 11564 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11565 struct lifreq *lifr = (struct lifreq *)if_req; 11566 11567 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11568 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11569 /* 11570 * The net mask and address can't change since we have a 11571 * reference to the ipif. So no lock is necessary. 11572 */ 11573 if (ipif->ipif_isv6) { 11574 *sin6 = sin6_null; 11575 sin6->sin6_family = AF_INET6; 11576 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11577 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11578 lifr->lifr_addrlen = 11579 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11580 } else { 11581 *sin = sin_null; 11582 sin->sin_family = AF_INET; 11583 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11584 if (ipip->ipi_cmd_type == LIF_CMD) { 11585 lifr->lifr_addrlen = 11586 ip_mask_to_plen(ipif->ipif_net_mask); 11587 } 11588 } 11589 return (0); 11590 } 11591 11592 /* 11593 * Set the destination address for a pt-pt interface. 11594 */ 11595 /* ARGSUSED */ 11596 int 11597 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11598 ip_ioctl_cmd_t *ipip, void *if_req) 11599 { 11600 int err = 0; 11601 in6_addr_t v6addr; 11602 boolean_t need_up = B_FALSE; 11603 11604 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11605 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11606 ASSERT(IAM_WRITER_IPIF(ipif)); 11607 11608 if (ipif->ipif_isv6) { 11609 sin6_t *sin6; 11610 11611 if (sin->sin_family != AF_INET6) 11612 return (EAFNOSUPPORT); 11613 11614 sin6 = (sin6_t *)sin; 11615 v6addr = sin6->sin6_addr; 11616 11617 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11618 return (EADDRNOTAVAIL); 11619 } else { 11620 ipaddr_t addr; 11621 11622 if (sin->sin_family != AF_INET) 11623 return (EAFNOSUPPORT); 11624 11625 addr = sin->sin_addr.s_addr; 11626 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11627 return (EADDRNOTAVAIL); 11628 11629 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11630 } 11631 11632 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11633 return (0); /* No change */ 11634 11635 if (ipif->ipif_flags & IPIF_UP) { 11636 /* 11637 * If the interface is already marked up, 11638 * we call ipif_down which will take care 11639 * of ditching any IREs that have been set 11640 * up based on the old pp dst address. 11641 */ 11642 err = ipif_logical_down(ipif, q, mp); 11643 if (err == EINPROGRESS) 11644 return (err); 11645 ipif_down_tail(ipif); 11646 need_up = B_TRUE; 11647 } 11648 /* 11649 * could return EINPROGRESS. If so ioctl will complete in 11650 * ip_rput_dlpi_writer 11651 */ 11652 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11653 return (err); 11654 } 11655 11656 static int 11657 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11658 boolean_t need_up) 11659 { 11660 in6_addr_t v6addr; 11661 ill_t *ill = ipif->ipif_ill; 11662 int err = 0; 11663 boolean_t need_dl_down; 11664 boolean_t need_arp_down; 11665 11666 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11667 ipif->ipif_id, (void *)ipif)); 11668 11669 /* Must cancel any pending timer before taking the ill_lock */ 11670 if (ipif->ipif_recovery_id != 0) 11671 (void) untimeout(ipif->ipif_recovery_id); 11672 ipif->ipif_recovery_id = 0; 11673 11674 if (ipif->ipif_isv6) { 11675 sin6_t *sin6; 11676 11677 sin6 = (sin6_t *)sin; 11678 v6addr = sin6->sin6_addr; 11679 } else { 11680 ipaddr_t addr; 11681 11682 addr = sin->sin_addr.s_addr; 11683 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11684 } 11685 mutex_enter(&ill->ill_lock); 11686 /* Set point to point destination address. */ 11687 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11688 /* 11689 * Allow this as a means of creating logical 11690 * pt-pt interfaces on top of e.g. an Ethernet. 11691 * XXX Undocumented HACK for testing. 11692 * pt-pt interfaces are created with NUD disabled. 11693 */ 11694 ipif->ipif_flags |= IPIF_POINTOPOINT; 11695 ipif->ipif_flags &= ~IPIF_BROADCAST; 11696 if (ipif->ipif_isv6) 11697 ill->ill_flags |= ILLF_NONUD; 11698 } 11699 11700 /* 11701 * If the interface was previously marked as a duplicate, then since 11702 * we've now got a "new" address, it should no longer be considered a 11703 * duplicate -- even if the "new" address is the same as the old one. 11704 * Note that if all ipifs are down, we may have a pending ARP down 11705 * event to handle. 11706 */ 11707 need_dl_down = need_arp_down = B_FALSE; 11708 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11709 need_arp_down = !need_up; 11710 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11711 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11712 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11713 need_dl_down = B_TRUE; 11714 } 11715 } 11716 11717 /* Set the new address. */ 11718 ipif->ipif_v6pp_dst_addr = v6addr; 11719 /* Make sure subnet tracks pp_dst */ 11720 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11721 mutex_exit(&ill->ill_lock); 11722 11723 if (need_up) { 11724 /* 11725 * Now bring the interface back up. If this 11726 * is the only IPIF for the ILL, ipif_up 11727 * will have to re-bind to the device, so 11728 * we may get back EINPROGRESS, in which 11729 * case, this IOCTL will get completed in 11730 * ip_rput_dlpi when we see the DL_BIND_ACK. 11731 */ 11732 err = ipif_up(ipif, q, mp); 11733 } 11734 11735 if (need_dl_down) 11736 ill_dl_down(ill); 11737 11738 if (need_arp_down) 11739 ipif_arp_down(ipif); 11740 return (err); 11741 } 11742 11743 /* 11744 * Restart entry point to restart the dstaddress set operation after the 11745 * refcounts have dropped to zero. 11746 */ 11747 /* ARGSUSED */ 11748 int 11749 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11750 ip_ioctl_cmd_t *ipip, void *ifreq) 11751 { 11752 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11753 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11754 ipif_down_tail(ipif); 11755 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11756 } 11757 11758 /* ARGSUSED */ 11759 int 11760 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11761 ip_ioctl_cmd_t *ipip, void *if_req) 11762 { 11763 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11764 11765 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11766 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11767 /* 11768 * Get point to point destination address. The addresses can't 11769 * change since we hold a reference to the ipif. 11770 */ 11771 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11772 return (EADDRNOTAVAIL); 11773 11774 if (ipif->ipif_isv6) { 11775 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11776 *sin6 = sin6_null; 11777 sin6->sin6_family = AF_INET6; 11778 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11779 } else { 11780 *sin = sin_null; 11781 sin->sin_family = AF_INET; 11782 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11783 } 11784 return (0); 11785 } 11786 11787 /* 11788 * part of ipmp, make this func return the active/inactive state and 11789 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11790 */ 11791 /* 11792 * This function either sets or clears the IFF_INACTIVE flag. 11793 * 11794 * As long as there are some addresses or multicast memberships on the 11795 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11796 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11797 * will be used for outbound packets. 11798 * 11799 * Caller needs to verify the validity of setting IFF_INACTIVE. 11800 */ 11801 static void 11802 phyint_inactive(phyint_t *phyi) 11803 { 11804 ill_t *ill_v4; 11805 ill_t *ill_v6; 11806 ipif_t *ipif; 11807 ilm_t *ilm; 11808 11809 ill_v4 = phyi->phyint_illv4; 11810 ill_v6 = phyi->phyint_illv6; 11811 11812 /* 11813 * No need for a lock while traversing the list since iam 11814 * a writer 11815 */ 11816 if (ill_v4 != NULL) { 11817 ASSERT(IAM_WRITER_ILL(ill_v4)); 11818 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11819 ipif = ipif->ipif_next) { 11820 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11821 mutex_enter(&phyi->phyint_lock); 11822 phyi->phyint_flags &= ~PHYI_INACTIVE; 11823 mutex_exit(&phyi->phyint_lock); 11824 return; 11825 } 11826 } 11827 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11828 ilm = ilm->ilm_next) { 11829 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11830 mutex_enter(&phyi->phyint_lock); 11831 phyi->phyint_flags &= ~PHYI_INACTIVE; 11832 mutex_exit(&phyi->phyint_lock); 11833 return; 11834 } 11835 } 11836 } 11837 if (ill_v6 != NULL) { 11838 ill_v6 = phyi->phyint_illv6; 11839 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11840 ipif = ipif->ipif_next) { 11841 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11842 mutex_enter(&phyi->phyint_lock); 11843 phyi->phyint_flags &= ~PHYI_INACTIVE; 11844 mutex_exit(&phyi->phyint_lock); 11845 return; 11846 } 11847 } 11848 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11849 ilm = ilm->ilm_next) { 11850 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11851 mutex_enter(&phyi->phyint_lock); 11852 phyi->phyint_flags &= ~PHYI_INACTIVE; 11853 mutex_exit(&phyi->phyint_lock); 11854 return; 11855 } 11856 } 11857 } 11858 mutex_enter(&phyi->phyint_lock); 11859 phyi->phyint_flags |= PHYI_INACTIVE; 11860 mutex_exit(&phyi->phyint_lock); 11861 } 11862 11863 /* 11864 * This function is called only when the phyint flags change. Currently 11865 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11866 * that we can select a good ill. 11867 */ 11868 static void 11869 ip_redo_nomination(phyint_t *phyi) 11870 { 11871 ill_t *ill_v4; 11872 11873 ill_v4 = phyi->phyint_illv4; 11874 11875 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11876 ASSERT(IAM_WRITER_ILL(ill_v4)); 11877 if (ill_v4->ill_group->illgrp_ill_count > 1) 11878 ill_nominate_bcast_rcv(ill_v4->ill_group); 11879 } 11880 } 11881 11882 /* 11883 * Heuristic to check if ill is INACTIVE. 11884 * Checks if ill has an ipif with an usable ip address. 11885 * 11886 * Return values: 11887 * B_TRUE - ill is INACTIVE; has no usable ipif 11888 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11889 */ 11890 static boolean_t 11891 ill_is_inactive(ill_t *ill) 11892 { 11893 ipif_t *ipif; 11894 11895 /* Check whether it is in an IPMP group */ 11896 if (ill->ill_phyint->phyint_groupname == NULL) 11897 return (B_FALSE); 11898 11899 if (ill->ill_ipif_up_count == 0) 11900 return (B_TRUE); 11901 11902 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11903 uint64_t flags = ipif->ipif_flags; 11904 11905 /* 11906 * This ipif is usable if it is IPIF_UP and not a 11907 * dedicated test address. A dedicated test address 11908 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11909 * (note in particular that V6 test addresses are 11910 * link-local data addresses and thus are marked 11911 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11912 */ 11913 if ((flags & IPIF_UP) && 11914 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11915 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11916 return (B_FALSE); 11917 } 11918 return (B_TRUE); 11919 } 11920 11921 /* 11922 * Set interface flags. 11923 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11924 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11925 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11926 * 11927 * NOTE : We really don't enforce that ipif_id zero should be used 11928 * for setting any flags other than IFF_LOGINT_FLAGS. This 11929 * is because applications generally does SICGLIFFLAGS and 11930 * ORs in the new flags (that affects the logical) and does a 11931 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11932 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11933 * flags that will be turned on is correct with respect to 11934 * ipif_id 0. For backward compatibility reasons, it is not done. 11935 */ 11936 /* ARGSUSED */ 11937 int 11938 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11939 ip_ioctl_cmd_t *ipip, void *if_req) 11940 { 11941 uint64_t turn_on; 11942 uint64_t turn_off; 11943 int err; 11944 boolean_t need_up = B_FALSE; 11945 phyint_t *phyi; 11946 ill_t *ill; 11947 uint64_t intf_flags; 11948 boolean_t phyint_flags_modified = B_FALSE; 11949 uint64_t flags; 11950 struct ifreq *ifr; 11951 struct lifreq *lifr; 11952 boolean_t set_linklocal = B_FALSE; 11953 boolean_t zero_source = B_FALSE; 11954 ip_stack_t *ipst; 11955 11956 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11957 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11958 11959 ASSERT(IAM_WRITER_IPIF(ipif)); 11960 11961 ill = ipif->ipif_ill; 11962 phyi = ill->ill_phyint; 11963 ipst = ill->ill_ipst; 11964 11965 if (ipip->ipi_cmd_type == IF_CMD) { 11966 ifr = (struct ifreq *)if_req; 11967 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11968 } else { 11969 lifr = (struct lifreq *)if_req; 11970 flags = lifr->lifr_flags; 11971 } 11972 11973 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11974 11975 /* 11976 * Has the flags been set correctly till now ? 11977 */ 11978 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11979 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11980 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11981 /* 11982 * Compare the new flags to the old, and partition 11983 * into those coming on and those going off. 11984 * For the 16 bit command keep the bits above bit 16 unchanged. 11985 */ 11986 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11987 flags |= intf_flags & ~0xFFFF; 11988 11989 /* 11990 * First check which bits will change and then which will 11991 * go on and off 11992 */ 11993 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11994 if (!turn_on) 11995 return (0); /* No change */ 11996 11997 turn_off = intf_flags & turn_on; 11998 turn_on ^= turn_off; 11999 err = 0; 12000 12001 /* 12002 * Don't allow any bits belonging to the logical interface 12003 * to be set or cleared on the replacement ipif that was 12004 * created temporarily during a MOVE. 12005 */ 12006 if (ipif->ipif_replace_zero && 12007 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12008 return (EINVAL); 12009 } 12010 12011 /* 12012 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12013 * IPv6 interfaces. 12014 */ 12015 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12016 return (EINVAL); 12017 12018 /* 12019 * cannot turn off IFF_NOXMIT on VNI interfaces. 12020 */ 12021 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 12022 return (EINVAL); 12023 12024 /* 12025 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12026 * interfaces. It makes no sense in that context. 12027 */ 12028 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12029 return (EINVAL); 12030 12031 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12032 zero_source = B_TRUE; 12033 12034 /* 12035 * For IPv6 ipif_id 0, don't allow the interface to be up without 12036 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12037 * If the link local address isn't set, and can be set, it will get 12038 * set later on in this function. 12039 */ 12040 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12041 (flags & IFF_UP) && !zero_source && 12042 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12043 if (ipif_cant_setlinklocal(ipif)) 12044 return (EINVAL); 12045 set_linklocal = B_TRUE; 12046 } 12047 12048 /* 12049 * ILL cannot be part of a usesrc group and and IPMP group at the 12050 * same time. No need to grab ill_g_usesrc_lock here, see 12051 * synchronization notes in ip.c 12052 */ 12053 if (turn_on & PHYI_STANDBY && 12054 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12055 return (EINVAL); 12056 } 12057 12058 /* 12059 * If we modify physical interface flags, we'll potentially need to 12060 * send up two routing socket messages for the changes (one for the 12061 * IPv4 ill, and another for the IPv6 ill). Note that here. 12062 */ 12063 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12064 phyint_flags_modified = B_TRUE; 12065 12066 /* 12067 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12068 * we need to flush the IRE_CACHES belonging to this ill. 12069 * We handle this case here without doing the DOWN/UP dance 12070 * like it is done for other flags. If some other flags are 12071 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12072 * below will handle it by bringing it down and then 12073 * bringing it UP. 12074 */ 12075 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12076 ill_t *ill_v4, *ill_v6; 12077 12078 ill_v4 = phyi->phyint_illv4; 12079 ill_v6 = phyi->phyint_illv6; 12080 12081 /* 12082 * First set the INACTIVE flag if needed. Then delete the ires. 12083 * ire_add will atomically prevent creating new IRE_CACHEs 12084 * unless hidden flag is set. 12085 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12086 */ 12087 if ((turn_on & PHYI_FAILED) && 12088 ((intf_flags & PHYI_STANDBY) || 12089 !ipst->ips_ipmp_enable_failback)) { 12090 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12091 phyi->phyint_flags &= ~PHYI_INACTIVE; 12092 } 12093 if ((turn_off & PHYI_FAILED) && 12094 ((intf_flags & PHYI_STANDBY) || 12095 (!ipst->ips_ipmp_enable_failback && 12096 ill_is_inactive(ill)))) { 12097 phyint_inactive(phyi); 12098 } 12099 12100 if (turn_on & PHYI_STANDBY) { 12101 /* 12102 * We implicitly set INACTIVE only when STANDBY is set. 12103 * INACTIVE is also set on non-STANDBY phyint when user 12104 * disables FAILBACK using configuration file. 12105 * Do not allow STANDBY to be set on such INACTIVE 12106 * phyint 12107 */ 12108 if (phyi->phyint_flags & PHYI_INACTIVE) 12109 return (EINVAL); 12110 if (!(phyi->phyint_flags & PHYI_FAILED)) 12111 phyint_inactive(phyi); 12112 } 12113 if (turn_off & PHYI_STANDBY) { 12114 if (ipst->ips_ipmp_enable_failback) { 12115 /* 12116 * Reset PHYI_INACTIVE. 12117 */ 12118 phyi->phyint_flags &= ~PHYI_INACTIVE; 12119 } else if (ill_is_inactive(ill) && 12120 !(phyi->phyint_flags & PHYI_FAILED)) { 12121 /* 12122 * Need to set INACTIVE, when user sets 12123 * STANDBY on a non-STANDBY phyint and 12124 * later resets STANDBY 12125 */ 12126 phyint_inactive(phyi); 12127 } 12128 } 12129 /* 12130 * We should always send up a message so that the 12131 * daemons come to know of it. Note that the zeroth 12132 * interface can be down and the check below for IPIF_UP 12133 * will not make sense as we are actually setting 12134 * a phyint flag here. We assume that the ipif used 12135 * is always the zeroth ipif. (ip_rts_ifmsg does not 12136 * send up any message for non-zero ipifs). 12137 */ 12138 phyint_flags_modified = B_TRUE; 12139 12140 if (ill_v4 != NULL) { 12141 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12142 IRE_CACHE, ill_stq_cache_delete, 12143 (char *)ill_v4, ill_v4); 12144 illgrp_reset_schednext(ill_v4); 12145 } 12146 if (ill_v6 != NULL) { 12147 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12148 IRE_CACHE, ill_stq_cache_delete, 12149 (char *)ill_v6, ill_v6); 12150 illgrp_reset_schednext(ill_v6); 12151 } 12152 } 12153 12154 /* 12155 * If ILLF_ROUTER changes, we need to change the ip forwarding 12156 * status of the interface and, if the interface is part of an IPMP 12157 * group, all other interfaces that are part of the same IPMP 12158 * group. 12159 */ 12160 if ((turn_on | turn_off) & ILLF_ROUTER) 12161 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 12162 12163 /* 12164 * If the interface is not UP and we are not going to 12165 * bring it UP, record the flags and return. When the 12166 * interface comes UP later, the right actions will be 12167 * taken. 12168 */ 12169 if (!(ipif->ipif_flags & IPIF_UP) && 12170 !(turn_on & IPIF_UP)) { 12171 /* Record new flags in their respective places. */ 12172 mutex_enter(&ill->ill_lock); 12173 mutex_enter(&ill->ill_phyint->phyint_lock); 12174 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12175 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12176 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12177 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12178 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12179 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12180 mutex_exit(&ill->ill_lock); 12181 mutex_exit(&ill->ill_phyint->phyint_lock); 12182 12183 /* 12184 * We do the broadcast and nomination here rather 12185 * than waiting for a FAILOVER/FAILBACK to happen. In 12186 * the case of FAILBACK from INACTIVE standby to the 12187 * interface that has been repaired, PHYI_FAILED has not 12188 * been cleared yet. If there are only two interfaces in 12189 * that group, all we have is a FAILED and INACTIVE 12190 * interface. If we do the nomination soon after a failback, 12191 * the broadcast nomination code would select the 12192 * INACTIVE interface for receiving broadcasts as FAILED is 12193 * not yet cleared. As we don't want STANDBY/INACTIVE to 12194 * receive broadcast packets, we need to redo nomination 12195 * when the FAILED is cleared here. Thus, in general we 12196 * always do the nomination here for FAILED, STANDBY 12197 * and OFFLINE. 12198 */ 12199 if (((turn_on | turn_off) & 12200 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12201 ip_redo_nomination(phyi); 12202 } 12203 if (phyint_flags_modified) { 12204 if (phyi->phyint_illv4 != NULL) { 12205 ip_rts_ifmsg(phyi->phyint_illv4-> 12206 ill_ipif); 12207 } 12208 if (phyi->phyint_illv6 != NULL) { 12209 ip_rts_ifmsg(phyi->phyint_illv6-> 12210 ill_ipif); 12211 } 12212 } 12213 return (0); 12214 } else if (set_linklocal || zero_source) { 12215 mutex_enter(&ill->ill_lock); 12216 if (set_linklocal) 12217 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12218 if (zero_source) 12219 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12220 mutex_exit(&ill->ill_lock); 12221 } 12222 12223 /* 12224 * Disallow IPv6 interfaces coming up that have the unspecified address, 12225 * or point-to-point interfaces with an unspecified destination. We do 12226 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12227 * have a subnet assigned, which is how in.ndpd currently manages its 12228 * onlink prefix list when no addresses are configured with those 12229 * prefixes. 12230 */ 12231 if (ipif->ipif_isv6 && 12232 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12233 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12234 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12235 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12236 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12237 return (EINVAL); 12238 } 12239 12240 /* 12241 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12242 * from being brought up. 12243 */ 12244 if (!ipif->ipif_isv6 && 12245 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12246 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12247 return (EINVAL); 12248 } 12249 12250 /* 12251 * The only flag changes that we currently take specific action on 12252 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12253 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12254 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12255 * the flags and bringing it back up again. 12256 */ 12257 if ((turn_on|turn_off) & 12258 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12259 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12260 /* 12261 * Taking this ipif down, make sure we have 12262 * valid net and subnet bcast ire's for other 12263 * logical interfaces, if we need them. 12264 */ 12265 if (!ipif->ipif_isv6) 12266 ipif_check_bcast_ires(ipif); 12267 12268 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12269 !(turn_off & IPIF_UP)) { 12270 need_up = B_TRUE; 12271 if (ipif->ipif_flags & IPIF_UP) 12272 ill->ill_logical_down = 1; 12273 turn_on &= ~IPIF_UP; 12274 } 12275 err = ipif_down(ipif, q, mp); 12276 ip1dbg(("ipif_down returns %d err ", err)); 12277 if (err == EINPROGRESS) 12278 return (err); 12279 ipif_down_tail(ipif); 12280 } 12281 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12282 } 12283 12284 static int 12285 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12286 boolean_t need_up) 12287 { 12288 ill_t *ill; 12289 phyint_t *phyi; 12290 uint64_t turn_on; 12291 uint64_t turn_off; 12292 uint64_t intf_flags; 12293 boolean_t phyint_flags_modified = B_FALSE; 12294 int err = 0; 12295 boolean_t set_linklocal = B_FALSE; 12296 boolean_t zero_source = B_FALSE; 12297 12298 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12299 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12300 12301 ASSERT(IAM_WRITER_IPIF(ipif)); 12302 12303 ill = ipif->ipif_ill; 12304 phyi = ill->ill_phyint; 12305 12306 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12307 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12308 12309 turn_off = intf_flags & turn_on; 12310 turn_on ^= turn_off; 12311 12312 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12313 phyint_flags_modified = B_TRUE; 12314 12315 /* 12316 * Now we change the flags. Track current value of 12317 * other flags in their respective places. 12318 */ 12319 mutex_enter(&ill->ill_lock); 12320 mutex_enter(&phyi->phyint_lock); 12321 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12322 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12323 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12324 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12325 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12326 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12327 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12328 set_linklocal = B_TRUE; 12329 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12330 } 12331 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12332 zero_source = B_TRUE; 12333 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12334 } 12335 mutex_exit(&ill->ill_lock); 12336 mutex_exit(&phyi->phyint_lock); 12337 12338 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12339 ip_redo_nomination(phyi); 12340 12341 if (set_linklocal) 12342 (void) ipif_setlinklocal(ipif); 12343 12344 if (zero_source) 12345 ipif->ipif_v6src_addr = ipv6_all_zeros; 12346 else 12347 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12348 12349 if (need_up) { 12350 /* 12351 * XXX ipif_up really does not know whether a phyint flags 12352 * was modified or not. So, it sends up information on 12353 * only one routing sockets message. As we don't bring up 12354 * the interface and also set STANDBY/FAILED simultaneously 12355 * it should be okay. 12356 */ 12357 err = ipif_up(ipif, q, mp); 12358 } else { 12359 /* 12360 * Make sure routing socket sees all changes to the flags. 12361 * ipif_up_done* handles this when we use ipif_up. 12362 */ 12363 if (phyint_flags_modified) { 12364 if (phyi->phyint_illv4 != NULL) { 12365 ip_rts_ifmsg(phyi->phyint_illv4-> 12366 ill_ipif); 12367 } 12368 if (phyi->phyint_illv6 != NULL) { 12369 ip_rts_ifmsg(phyi->phyint_illv6-> 12370 ill_ipif); 12371 } 12372 } else { 12373 ip_rts_ifmsg(ipif); 12374 } 12375 /* 12376 * Update the flags in SCTP's IPIF list, ipif_up() will do 12377 * this in need_up case. 12378 */ 12379 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12380 } 12381 return (err); 12382 } 12383 12384 /* 12385 * Restart entry point to restart the flags restart operation after the 12386 * refcounts have dropped to zero. 12387 */ 12388 /* ARGSUSED */ 12389 int 12390 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12391 ip_ioctl_cmd_t *ipip, void *if_req) 12392 { 12393 int err; 12394 struct ifreq *ifr = (struct ifreq *)if_req; 12395 struct lifreq *lifr = (struct lifreq *)if_req; 12396 12397 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12398 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12399 12400 ipif_down_tail(ipif); 12401 if (ipip->ipi_cmd_type == IF_CMD) { 12402 /* 12403 * Since ip_sioctl_flags expects an int and ifr_flags 12404 * is a short we need to cast ifr_flags into an int 12405 * to avoid having sign extension cause bits to get 12406 * set that should not be. 12407 */ 12408 err = ip_sioctl_flags_tail(ipif, 12409 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12410 q, mp, B_TRUE); 12411 } else { 12412 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12413 q, mp, B_TRUE); 12414 } 12415 return (err); 12416 } 12417 12418 /* 12419 * Can operate on either a module or a driver queue. 12420 */ 12421 /* ARGSUSED */ 12422 int 12423 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12424 ip_ioctl_cmd_t *ipip, void *if_req) 12425 { 12426 /* 12427 * Has the flags been set correctly till now ? 12428 */ 12429 ill_t *ill = ipif->ipif_ill; 12430 phyint_t *phyi = ill->ill_phyint; 12431 12432 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12433 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12434 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12435 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12436 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12437 12438 /* 12439 * Need a lock since some flags can be set even when there are 12440 * references to the ipif. 12441 */ 12442 mutex_enter(&ill->ill_lock); 12443 if (ipip->ipi_cmd_type == IF_CMD) { 12444 struct ifreq *ifr = (struct ifreq *)if_req; 12445 12446 /* Get interface flags (low 16 only). */ 12447 ifr->ifr_flags = ((ipif->ipif_flags | 12448 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12449 } else { 12450 struct lifreq *lifr = (struct lifreq *)if_req; 12451 12452 /* Get interface flags. */ 12453 lifr->lifr_flags = ipif->ipif_flags | 12454 ill->ill_flags | phyi->phyint_flags; 12455 } 12456 mutex_exit(&ill->ill_lock); 12457 return (0); 12458 } 12459 12460 /* ARGSUSED */ 12461 int 12462 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12463 ip_ioctl_cmd_t *ipip, void *if_req) 12464 { 12465 int mtu; 12466 int ip_min_mtu; 12467 struct ifreq *ifr; 12468 struct lifreq *lifr; 12469 ire_t *ire; 12470 ip_stack_t *ipst; 12471 12472 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12473 ipif->ipif_id, (void *)ipif)); 12474 if (ipip->ipi_cmd_type == IF_CMD) { 12475 ifr = (struct ifreq *)if_req; 12476 mtu = ifr->ifr_metric; 12477 } else { 12478 lifr = (struct lifreq *)if_req; 12479 mtu = lifr->lifr_mtu; 12480 } 12481 12482 if (ipif->ipif_isv6) 12483 ip_min_mtu = IPV6_MIN_MTU; 12484 else 12485 ip_min_mtu = IP_MIN_MTU; 12486 12487 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12488 return (EINVAL); 12489 12490 /* 12491 * Change the MTU size in all relevant ire's. 12492 * Mtu change Vs. new ire creation - protocol below. 12493 * First change ipif_mtu and the ire_max_frag of the 12494 * interface ire. Then do an ire walk and change the 12495 * ire_max_frag of all affected ires. During ire_add 12496 * under the bucket lock, set the ire_max_frag of the 12497 * new ire being created from the ipif/ire from which 12498 * it is being derived. If an mtu change happens after 12499 * the ire is added, the new ire will be cleaned up. 12500 * Conversely if the mtu change happens before the ire 12501 * is added, ire_add will see the new value of the mtu. 12502 */ 12503 ipif->ipif_mtu = mtu; 12504 ipif->ipif_flags |= IPIF_FIXEDMTU; 12505 12506 if (ipif->ipif_isv6) 12507 ire = ipif_to_ire_v6(ipif); 12508 else 12509 ire = ipif_to_ire(ipif); 12510 if (ire != NULL) { 12511 ire->ire_max_frag = ipif->ipif_mtu; 12512 ire_refrele(ire); 12513 } 12514 ipst = ipif->ipif_ill->ill_ipst; 12515 if (ipif->ipif_flags & IPIF_UP) { 12516 if (ipif->ipif_isv6) 12517 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12518 ipst); 12519 else 12520 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12521 ipst); 12522 } 12523 /* Update the MTU in SCTP's list */ 12524 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12525 return (0); 12526 } 12527 12528 /* Get interface MTU. */ 12529 /* ARGSUSED */ 12530 int 12531 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12532 ip_ioctl_cmd_t *ipip, void *if_req) 12533 { 12534 struct ifreq *ifr; 12535 struct lifreq *lifr; 12536 12537 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12538 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12539 if (ipip->ipi_cmd_type == IF_CMD) { 12540 ifr = (struct ifreq *)if_req; 12541 ifr->ifr_metric = ipif->ipif_mtu; 12542 } else { 12543 lifr = (struct lifreq *)if_req; 12544 lifr->lifr_mtu = ipif->ipif_mtu; 12545 } 12546 return (0); 12547 } 12548 12549 /* Set interface broadcast address. */ 12550 /* ARGSUSED2 */ 12551 int 12552 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12553 ip_ioctl_cmd_t *ipip, void *if_req) 12554 { 12555 ipaddr_t addr; 12556 ire_t *ire; 12557 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12558 12559 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12560 ipif->ipif_id)); 12561 12562 ASSERT(IAM_WRITER_IPIF(ipif)); 12563 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12564 return (EADDRNOTAVAIL); 12565 12566 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12567 12568 if (sin->sin_family != AF_INET) 12569 return (EAFNOSUPPORT); 12570 12571 addr = sin->sin_addr.s_addr; 12572 if (ipif->ipif_flags & IPIF_UP) { 12573 /* 12574 * If we are already up, make sure the new 12575 * broadcast address makes sense. If it does, 12576 * there should be an IRE for it already. 12577 * Don't match on ipif, only on the ill 12578 * since we are sharing these now. Don't use 12579 * MATCH_IRE_ILL_GROUP as we are looking for 12580 * the broadcast ire on this ill and each ill 12581 * in the group has its own broadcast ire. 12582 */ 12583 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12584 ipif, ALL_ZONES, NULL, 12585 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12586 if (ire == NULL) { 12587 return (EINVAL); 12588 } else { 12589 ire_refrele(ire); 12590 } 12591 } 12592 /* 12593 * Changing the broadcast addr for this ipif. 12594 * Make sure we have valid net and subnet bcast 12595 * ire's for other logical interfaces, if needed. 12596 */ 12597 if (addr != ipif->ipif_brd_addr) 12598 ipif_check_bcast_ires(ipif); 12599 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12600 return (0); 12601 } 12602 12603 /* Get interface broadcast address. */ 12604 /* ARGSUSED */ 12605 int 12606 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12607 ip_ioctl_cmd_t *ipip, void *if_req) 12608 { 12609 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12610 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12611 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12612 return (EADDRNOTAVAIL); 12613 12614 /* IPIF_BROADCAST not possible with IPv6 */ 12615 ASSERT(!ipif->ipif_isv6); 12616 *sin = sin_null; 12617 sin->sin_family = AF_INET; 12618 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12619 return (0); 12620 } 12621 12622 /* 12623 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12624 */ 12625 /* ARGSUSED */ 12626 int 12627 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12628 ip_ioctl_cmd_t *ipip, void *if_req) 12629 { 12630 int err = 0; 12631 in6_addr_t v6mask; 12632 12633 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12634 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12635 12636 ASSERT(IAM_WRITER_IPIF(ipif)); 12637 12638 if (ipif->ipif_isv6) { 12639 sin6_t *sin6; 12640 12641 if (sin->sin_family != AF_INET6) 12642 return (EAFNOSUPPORT); 12643 12644 sin6 = (sin6_t *)sin; 12645 v6mask = sin6->sin6_addr; 12646 } else { 12647 ipaddr_t mask; 12648 12649 if (sin->sin_family != AF_INET) 12650 return (EAFNOSUPPORT); 12651 12652 mask = sin->sin_addr.s_addr; 12653 V4MASK_TO_V6(mask, v6mask); 12654 } 12655 12656 /* 12657 * No big deal if the interface isn't already up, or the mask 12658 * isn't really changing, or this is pt-pt. 12659 */ 12660 if (!(ipif->ipif_flags & IPIF_UP) || 12661 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12662 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12663 ipif->ipif_v6net_mask = v6mask; 12664 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12665 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12666 ipif->ipif_v6net_mask, 12667 ipif->ipif_v6subnet); 12668 } 12669 return (0); 12670 } 12671 /* 12672 * Make sure we have valid net and subnet broadcast ire's 12673 * for the old netmask, if needed by other logical interfaces. 12674 */ 12675 if (!ipif->ipif_isv6) 12676 ipif_check_bcast_ires(ipif); 12677 12678 err = ipif_logical_down(ipif, q, mp); 12679 if (err == EINPROGRESS) 12680 return (err); 12681 ipif_down_tail(ipif); 12682 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12683 return (err); 12684 } 12685 12686 static int 12687 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12688 { 12689 in6_addr_t v6mask; 12690 int err = 0; 12691 12692 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12693 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12694 12695 if (ipif->ipif_isv6) { 12696 sin6_t *sin6; 12697 12698 sin6 = (sin6_t *)sin; 12699 v6mask = sin6->sin6_addr; 12700 } else { 12701 ipaddr_t mask; 12702 12703 mask = sin->sin_addr.s_addr; 12704 V4MASK_TO_V6(mask, v6mask); 12705 } 12706 12707 ipif->ipif_v6net_mask = v6mask; 12708 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12709 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12710 ipif->ipif_v6subnet); 12711 } 12712 err = ipif_up(ipif, q, mp); 12713 12714 if (err == 0 || err == EINPROGRESS) { 12715 /* 12716 * The interface must be DL_BOUND if this packet has to 12717 * go out on the wire. Since we only go through a logical 12718 * down and are bound with the driver during an internal 12719 * down/up that is satisfied. 12720 */ 12721 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12722 /* Potentially broadcast an address mask reply. */ 12723 ipif_mask_reply(ipif); 12724 } 12725 } 12726 return (err); 12727 } 12728 12729 /* ARGSUSED */ 12730 int 12731 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12732 ip_ioctl_cmd_t *ipip, void *if_req) 12733 { 12734 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12735 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12736 ipif_down_tail(ipif); 12737 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12738 } 12739 12740 /* Get interface net mask. */ 12741 /* ARGSUSED */ 12742 int 12743 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12744 ip_ioctl_cmd_t *ipip, void *if_req) 12745 { 12746 struct lifreq *lifr = (struct lifreq *)if_req; 12747 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12748 12749 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12750 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12751 12752 /* 12753 * net mask can't change since we have a reference to the ipif. 12754 */ 12755 if (ipif->ipif_isv6) { 12756 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12757 *sin6 = sin6_null; 12758 sin6->sin6_family = AF_INET6; 12759 sin6->sin6_addr = ipif->ipif_v6net_mask; 12760 lifr->lifr_addrlen = 12761 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12762 } else { 12763 *sin = sin_null; 12764 sin->sin_family = AF_INET; 12765 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12766 if (ipip->ipi_cmd_type == LIF_CMD) { 12767 lifr->lifr_addrlen = 12768 ip_mask_to_plen(ipif->ipif_net_mask); 12769 } 12770 } 12771 return (0); 12772 } 12773 12774 /* ARGSUSED */ 12775 int 12776 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12777 ip_ioctl_cmd_t *ipip, void *if_req) 12778 { 12779 12780 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12781 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12782 /* 12783 * Set interface metric. We don't use this for 12784 * anything but we keep track of it in case it is 12785 * important to routing applications or such. 12786 */ 12787 if (ipip->ipi_cmd_type == IF_CMD) { 12788 struct ifreq *ifr; 12789 12790 ifr = (struct ifreq *)if_req; 12791 ipif->ipif_metric = ifr->ifr_metric; 12792 } else { 12793 struct lifreq *lifr; 12794 12795 lifr = (struct lifreq *)if_req; 12796 ipif->ipif_metric = lifr->lifr_metric; 12797 } 12798 return (0); 12799 } 12800 12801 12802 /* ARGSUSED */ 12803 int 12804 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12805 ip_ioctl_cmd_t *ipip, void *if_req) 12806 { 12807 12808 /* Get interface metric. */ 12809 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12810 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12811 if (ipip->ipi_cmd_type == IF_CMD) { 12812 struct ifreq *ifr; 12813 12814 ifr = (struct ifreq *)if_req; 12815 ifr->ifr_metric = ipif->ipif_metric; 12816 } else { 12817 struct lifreq *lifr; 12818 12819 lifr = (struct lifreq *)if_req; 12820 lifr->lifr_metric = ipif->ipif_metric; 12821 } 12822 12823 return (0); 12824 } 12825 12826 /* ARGSUSED */ 12827 int 12828 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12829 ip_ioctl_cmd_t *ipip, void *if_req) 12830 { 12831 12832 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12834 /* 12835 * Set the muxid returned from I_PLINK. 12836 */ 12837 if (ipip->ipi_cmd_type == IF_CMD) { 12838 struct ifreq *ifr = (struct ifreq *)if_req; 12839 12840 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12841 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12842 } else { 12843 struct lifreq *lifr = (struct lifreq *)if_req; 12844 12845 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12846 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12847 } 12848 return (0); 12849 } 12850 12851 /* ARGSUSED */ 12852 int 12853 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12854 ip_ioctl_cmd_t *ipip, void *if_req) 12855 { 12856 12857 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12858 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12859 /* 12860 * Get the muxid saved in ill for I_PUNLINK. 12861 */ 12862 if (ipip->ipi_cmd_type == IF_CMD) { 12863 struct ifreq *ifr = (struct ifreq *)if_req; 12864 12865 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12866 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12867 } else { 12868 struct lifreq *lifr = (struct lifreq *)if_req; 12869 12870 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12871 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12872 } 12873 return (0); 12874 } 12875 12876 /* 12877 * Set the subnet prefix. Does not modify the broadcast address. 12878 */ 12879 /* ARGSUSED */ 12880 int 12881 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12882 ip_ioctl_cmd_t *ipip, void *if_req) 12883 { 12884 int err = 0; 12885 in6_addr_t v6addr; 12886 in6_addr_t v6mask; 12887 boolean_t need_up = B_FALSE; 12888 int addrlen; 12889 12890 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12891 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12892 12893 ASSERT(IAM_WRITER_IPIF(ipif)); 12894 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12895 12896 if (ipif->ipif_isv6) { 12897 sin6_t *sin6; 12898 12899 if (sin->sin_family != AF_INET6) 12900 return (EAFNOSUPPORT); 12901 12902 sin6 = (sin6_t *)sin; 12903 v6addr = sin6->sin6_addr; 12904 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12905 return (EADDRNOTAVAIL); 12906 } else { 12907 ipaddr_t addr; 12908 12909 if (sin->sin_family != AF_INET) 12910 return (EAFNOSUPPORT); 12911 12912 addr = sin->sin_addr.s_addr; 12913 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12914 return (EADDRNOTAVAIL); 12915 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12916 /* Add 96 bits */ 12917 addrlen += IPV6_ABITS - IP_ABITS; 12918 } 12919 12920 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12921 return (EINVAL); 12922 12923 /* Check if bits in the address is set past the mask */ 12924 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12925 return (EINVAL); 12926 12927 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12928 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12929 return (0); /* No change */ 12930 12931 if (ipif->ipif_flags & IPIF_UP) { 12932 /* 12933 * If the interface is already marked up, 12934 * we call ipif_down which will take care 12935 * of ditching any IREs that have been set 12936 * up based on the old interface address. 12937 */ 12938 err = ipif_logical_down(ipif, q, mp); 12939 if (err == EINPROGRESS) 12940 return (err); 12941 ipif_down_tail(ipif); 12942 need_up = B_TRUE; 12943 } 12944 12945 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12946 return (err); 12947 } 12948 12949 static int 12950 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12951 queue_t *q, mblk_t *mp, boolean_t need_up) 12952 { 12953 ill_t *ill = ipif->ipif_ill; 12954 int err = 0; 12955 12956 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12957 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12958 12959 /* Set the new address. */ 12960 mutex_enter(&ill->ill_lock); 12961 ipif->ipif_v6net_mask = v6mask; 12962 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12963 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12964 ipif->ipif_v6subnet); 12965 } 12966 mutex_exit(&ill->ill_lock); 12967 12968 if (need_up) { 12969 /* 12970 * Now bring the interface back up. If this 12971 * is the only IPIF for the ILL, ipif_up 12972 * will have to re-bind to the device, so 12973 * we may get back EINPROGRESS, in which 12974 * case, this IOCTL will get completed in 12975 * ip_rput_dlpi when we see the DL_BIND_ACK. 12976 */ 12977 err = ipif_up(ipif, q, mp); 12978 if (err == EINPROGRESS) 12979 return (err); 12980 } 12981 return (err); 12982 } 12983 12984 /* ARGSUSED */ 12985 int 12986 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12987 ip_ioctl_cmd_t *ipip, void *if_req) 12988 { 12989 int addrlen; 12990 in6_addr_t v6addr; 12991 in6_addr_t v6mask; 12992 struct lifreq *lifr = (struct lifreq *)if_req; 12993 12994 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12995 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12996 ipif_down_tail(ipif); 12997 12998 addrlen = lifr->lifr_addrlen; 12999 if (ipif->ipif_isv6) { 13000 sin6_t *sin6; 13001 13002 sin6 = (sin6_t *)sin; 13003 v6addr = sin6->sin6_addr; 13004 } else { 13005 ipaddr_t addr; 13006 13007 addr = sin->sin_addr.s_addr; 13008 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13009 addrlen += IPV6_ABITS - IP_ABITS; 13010 } 13011 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13012 13013 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13014 } 13015 13016 /* ARGSUSED */ 13017 int 13018 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13019 ip_ioctl_cmd_t *ipip, void *if_req) 13020 { 13021 struct lifreq *lifr = (struct lifreq *)if_req; 13022 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13023 13024 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13026 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13027 13028 if (ipif->ipif_isv6) { 13029 *sin6 = sin6_null; 13030 sin6->sin6_family = AF_INET6; 13031 sin6->sin6_addr = ipif->ipif_v6subnet; 13032 lifr->lifr_addrlen = 13033 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13034 } else { 13035 *sin = sin_null; 13036 sin->sin_family = AF_INET; 13037 sin->sin_addr.s_addr = ipif->ipif_subnet; 13038 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13039 } 13040 return (0); 13041 } 13042 13043 /* 13044 * Set the IPv6 address token. 13045 */ 13046 /* ARGSUSED */ 13047 int 13048 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13049 ip_ioctl_cmd_t *ipi, void *if_req) 13050 { 13051 ill_t *ill = ipif->ipif_ill; 13052 int err; 13053 in6_addr_t v6addr; 13054 in6_addr_t v6mask; 13055 boolean_t need_up = B_FALSE; 13056 int i; 13057 sin6_t *sin6 = (sin6_t *)sin; 13058 struct lifreq *lifr = (struct lifreq *)if_req; 13059 int addrlen; 13060 13061 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13062 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13063 ASSERT(IAM_WRITER_IPIF(ipif)); 13064 13065 addrlen = lifr->lifr_addrlen; 13066 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13067 if (ipif->ipif_id != 0) 13068 return (EINVAL); 13069 13070 if (!ipif->ipif_isv6) 13071 return (EINVAL); 13072 13073 if (addrlen > IPV6_ABITS) 13074 return (EINVAL); 13075 13076 v6addr = sin6->sin6_addr; 13077 13078 /* 13079 * The length of the token is the length from the end. To get 13080 * the proper mask for this, compute the mask of the bits not 13081 * in the token; ie. the prefix, and then xor to get the mask. 13082 */ 13083 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13084 return (EINVAL); 13085 for (i = 0; i < 4; i++) { 13086 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13087 } 13088 13089 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13090 ill->ill_token_length == addrlen) 13091 return (0); /* No change */ 13092 13093 if (ipif->ipif_flags & IPIF_UP) { 13094 err = ipif_logical_down(ipif, q, mp); 13095 if (err == EINPROGRESS) 13096 return (err); 13097 ipif_down_tail(ipif); 13098 need_up = B_TRUE; 13099 } 13100 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13101 return (err); 13102 } 13103 13104 static int 13105 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13106 mblk_t *mp, boolean_t need_up) 13107 { 13108 in6_addr_t v6addr; 13109 in6_addr_t v6mask; 13110 ill_t *ill = ipif->ipif_ill; 13111 int i; 13112 int err = 0; 13113 13114 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13115 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13116 v6addr = sin6->sin6_addr; 13117 /* 13118 * The length of the token is the length from the end. To get 13119 * the proper mask for this, compute the mask of the bits not 13120 * in the token; ie. the prefix, and then xor to get the mask. 13121 */ 13122 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13123 for (i = 0; i < 4; i++) 13124 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13125 13126 mutex_enter(&ill->ill_lock); 13127 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13128 ill->ill_token_length = addrlen; 13129 mutex_exit(&ill->ill_lock); 13130 13131 if (need_up) { 13132 /* 13133 * Now bring the interface back up. If this 13134 * is the only IPIF for the ILL, ipif_up 13135 * will have to re-bind to the device, so 13136 * we may get back EINPROGRESS, in which 13137 * case, this IOCTL will get completed in 13138 * ip_rput_dlpi when we see the DL_BIND_ACK. 13139 */ 13140 err = ipif_up(ipif, q, mp); 13141 if (err == EINPROGRESS) 13142 return (err); 13143 } 13144 return (err); 13145 } 13146 13147 /* ARGSUSED */ 13148 int 13149 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13150 ip_ioctl_cmd_t *ipi, void *if_req) 13151 { 13152 ill_t *ill; 13153 sin6_t *sin6 = (sin6_t *)sin; 13154 struct lifreq *lifr = (struct lifreq *)if_req; 13155 13156 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13157 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13158 if (ipif->ipif_id != 0) 13159 return (EINVAL); 13160 13161 ill = ipif->ipif_ill; 13162 if (!ill->ill_isv6) 13163 return (ENXIO); 13164 13165 *sin6 = sin6_null; 13166 sin6->sin6_family = AF_INET6; 13167 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13168 sin6->sin6_addr = ill->ill_token; 13169 lifr->lifr_addrlen = ill->ill_token_length; 13170 return (0); 13171 } 13172 13173 /* 13174 * Set (hardware) link specific information that might override 13175 * what was acquired through the DL_INFO_ACK. 13176 * The logic is as follows. 13177 * 13178 * become exclusive 13179 * set CHANGING flag 13180 * change mtu on affected IREs 13181 * clear CHANGING flag 13182 * 13183 * An ire add that occurs before the CHANGING flag is set will have its mtu 13184 * changed by the ip_sioctl_lnkinfo. 13185 * 13186 * During the time the CHANGING flag is set, no new ires will be added to the 13187 * bucket, and ire add will fail (due the CHANGING flag). 13188 * 13189 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13190 * before it is added to the bucket. 13191 * 13192 * Obviously only 1 thread can set the CHANGING flag and we need to become 13193 * exclusive to set the flag. 13194 */ 13195 /* ARGSUSED */ 13196 int 13197 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13198 ip_ioctl_cmd_t *ipi, void *if_req) 13199 { 13200 ill_t *ill = ipif->ipif_ill; 13201 ipif_t *nipif; 13202 int ip_min_mtu; 13203 boolean_t mtu_walk = B_FALSE; 13204 struct lifreq *lifr = (struct lifreq *)if_req; 13205 lif_ifinfo_req_t *lir; 13206 ire_t *ire; 13207 13208 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13209 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13210 lir = &lifr->lifr_ifinfo; 13211 ASSERT(IAM_WRITER_IPIF(ipif)); 13212 13213 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13214 if (ipif->ipif_id != 0) 13215 return (EINVAL); 13216 13217 /* Set interface MTU. */ 13218 if (ipif->ipif_isv6) 13219 ip_min_mtu = IPV6_MIN_MTU; 13220 else 13221 ip_min_mtu = IP_MIN_MTU; 13222 13223 /* 13224 * Verify values before we set anything. Allow zero to 13225 * mean unspecified. 13226 */ 13227 if (lir->lir_maxmtu != 0 && 13228 (lir->lir_maxmtu > ill->ill_max_frag || 13229 lir->lir_maxmtu < ip_min_mtu)) 13230 return (EINVAL); 13231 if (lir->lir_reachtime != 0 && 13232 lir->lir_reachtime > ND_MAX_REACHTIME) 13233 return (EINVAL); 13234 if (lir->lir_reachretrans != 0 && 13235 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13236 return (EINVAL); 13237 13238 mutex_enter(&ill->ill_lock); 13239 ill->ill_state_flags |= ILL_CHANGING; 13240 for (nipif = ill->ill_ipif; nipif != NULL; 13241 nipif = nipif->ipif_next) { 13242 nipif->ipif_state_flags |= IPIF_CHANGING; 13243 } 13244 13245 mutex_exit(&ill->ill_lock); 13246 13247 if (lir->lir_maxmtu != 0) { 13248 ill->ill_max_mtu = lir->lir_maxmtu; 13249 ill->ill_mtu_userspecified = 1; 13250 mtu_walk = B_TRUE; 13251 } 13252 13253 if (lir->lir_reachtime != 0) 13254 ill->ill_reachable_time = lir->lir_reachtime; 13255 13256 if (lir->lir_reachretrans != 0) 13257 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13258 13259 ill->ill_max_hops = lir->lir_maxhops; 13260 13261 ill->ill_max_buf = ND_MAX_Q; 13262 13263 if (mtu_walk) { 13264 /* 13265 * Set the MTU on all ipifs associated with this ill except 13266 * for those whose MTU was fixed via SIOCSLIFMTU. 13267 */ 13268 for (nipif = ill->ill_ipif; nipif != NULL; 13269 nipif = nipif->ipif_next) { 13270 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13271 continue; 13272 13273 nipif->ipif_mtu = ill->ill_max_mtu; 13274 13275 if (!(nipif->ipif_flags & IPIF_UP)) 13276 continue; 13277 13278 if (nipif->ipif_isv6) 13279 ire = ipif_to_ire_v6(nipif); 13280 else 13281 ire = ipif_to_ire(nipif); 13282 if (ire != NULL) { 13283 ire->ire_max_frag = ipif->ipif_mtu; 13284 ire_refrele(ire); 13285 } 13286 if (ill->ill_isv6) { 13287 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13288 ipif_mtu_change, (char *)nipif, 13289 ill); 13290 } else { 13291 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13292 ipif_mtu_change, (char *)nipif, 13293 ill); 13294 } 13295 } 13296 } 13297 13298 mutex_enter(&ill->ill_lock); 13299 for (nipif = ill->ill_ipif; nipif != NULL; 13300 nipif = nipif->ipif_next) { 13301 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13302 } 13303 ILL_UNMARK_CHANGING(ill); 13304 mutex_exit(&ill->ill_lock); 13305 13306 return (0); 13307 } 13308 13309 /* ARGSUSED */ 13310 int 13311 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13312 ip_ioctl_cmd_t *ipi, void *if_req) 13313 { 13314 struct lif_ifinfo_req *lir; 13315 ill_t *ill = ipif->ipif_ill; 13316 13317 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13318 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13319 if (ipif->ipif_id != 0) 13320 return (EINVAL); 13321 13322 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13323 lir->lir_maxhops = ill->ill_max_hops; 13324 lir->lir_reachtime = ill->ill_reachable_time; 13325 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13326 lir->lir_maxmtu = ill->ill_max_mtu; 13327 13328 return (0); 13329 } 13330 13331 /* 13332 * Return best guess as to the subnet mask for the specified address. 13333 * Based on the subnet masks for all the configured interfaces. 13334 * 13335 * We end up returning a zero mask in the case of default, multicast or 13336 * experimental. 13337 */ 13338 static ipaddr_t 13339 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13340 { 13341 ipaddr_t net_mask; 13342 ill_t *ill; 13343 ipif_t *ipif; 13344 ill_walk_context_t ctx; 13345 ipif_t *fallback_ipif = NULL; 13346 13347 net_mask = ip_net_mask(addr); 13348 if (net_mask == 0) { 13349 *ipifp = NULL; 13350 return (0); 13351 } 13352 13353 /* Let's check to see if this is maybe a local subnet route. */ 13354 /* this function only applies to IPv4 interfaces */ 13355 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13356 ill = ILL_START_WALK_V4(&ctx, ipst); 13357 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13358 mutex_enter(&ill->ill_lock); 13359 for (ipif = ill->ill_ipif; ipif != NULL; 13360 ipif = ipif->ipif_next) { 13361 if (!IPIF_CAN_LOOKUP(ipif)) 13362 continue; 13363 if (!(ipif->ipif_flags & IPIF_UP)) 13364 continue; 13365 if ((ipif->ipif_subnet & net_mask) == 13366 (addr & net_mask)) { 13367 /* 13368 * Don't trust pt-pt interfaces if there are 13369 * other interfaces. 13370 */ 13371 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13372 if (fallback_ipif == NULL) { 13373 ipif_refhold_locked(ipif); 13374 fallback_ipif = ipif; 13375 } 13376 continue; 13377 } 13378 13379 /* 13380 * Fine. Just assume the same net mask as the 13381 * directly attached subnet interface is using. 13382 */ 13383 ipif_refhold_locked(ipif); 13384 mutex_exit(&ill->ill_lock); 13385 rw_exit(&ipst->ips_ill_g_lock); 13386 if (fallback_ipif != NULL) 13387 ipif_refrele(fallback_ipif); 13388 *ipifp = ipif; 13389 return (ipif->ipif_net_mask); 13390 } 13391 } 13392 mutex_exit(&ill->ill_lock); 13393 } 13394 rw_exit(&ipst->ips_ill_g_lock); 13395 13396 *ipifp = fallback_ipif; 13397 return ((fallback_ipif != NULL) ? 13398 fallback_ipif->ipif_net_mask : net_mask); 13399 } 13400 13401 /* 13402 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13403 */ 13404 static void 13405 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13406 { 13407 IOCP iocp; 13408 ipft_t *ipft; 13409 ipllc_t *ipllc; 13410 mblk_t *mp1; 13411 cred_t *cr; 13412 int error = 0; 13413 conn_t *connp; 13414 13415 ip1dbg(("ip_wput_ioctl")); 13416 iocp = (IOCP)mp->b_rptr; 13417 mp1 = mp->b_cont; 13418 if (mp1 == NULL) { 13419 iocp->ioc_error = EINVAL; 13420 mp->b_datap->db_type = M_IOCNAK; 13421 iocp->ioc_count = 0; 13422 qreply(q, mp); 13423 return; 13424 } 13425 13426 /* 13427 * These IOCTLs provide various control capabilities to 13428 * upstream agents such as ULPs and processes. There 13429 * are currently two such IOCTLs implemented. They 13430 * are used by TCP to provide update information for 13431 * existing IREs and to forcibly delete an IRE for a 13432 * host that is not responding, thereby forcing an 13433 * attempt at a new route. 13434 */ 13435 iocp->ioc_error = EINVAL; 13436 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13437 goto done; 13438 13439 ipllc = (ipllc_t *)mp1->b_rptr; 13440 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13441 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13442 break; 13443 } 13444 /* 13445 * prefer credential from mblk over ioctl; 13446 * see ip_sioctl_copyin_setup 13447 */ 13448 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13449 13450 /* 13451 * Refhold the conn in case the request gets queued up in some lookup 13452 */ 13453 ASSERT(CONN_Q(q)); 13454 connp = Q_TO_CONN(q); 13455 CONN_INC_REF(connp); 13456 if (ipft->ipft_pfi && 13457 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13458 pullupmsg(mp1, ipft->ipft_min_size))) { 13459 error = (*ipft->ipft_pfi)(q, 13460 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13461 } 13462 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13463 /* 13464 * CONN_OPER_PENDING_DONE happens in the function called 13465 * through ipft_pfi above. 13466 */ 13467 return; 13468 } 13469 13470 CONN_OPER_PENDING_DONE(connp); 13471 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13472 freemsg(mp); 13473 return; 13474 } 13475 iocp->ioc_error = error; 13476 13477 done: 13478 mp->b_datap->db_type = M_IOCACK; 13479 if (iocp->ioc_error) 13480 iocp->ioc_count = 0; 13481 qreply(q, mp); 13482 } 13483 13484 /* 13485 * Lookup an ipif using the sequence id (ipif_seqid) 13486 */ 13487 ipif_t * 13488 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13489 { 13490 ipif_t *ipif; 13491 13492 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13493 13494 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13495 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13496 return (ipif); 13497 } 13498 return (NULL); 13499 } 13500 13501 /* 13502 * Assign a unique id for the ipif. This is used later when we send 13503 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13504 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13505 * IRE is added, we verify that ipif has not disappeared. 13506 */ 13507 13508 static void 13509 ipif_assign_seqid(ipif_t *ipif) 13510 { 13511 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13512 13513 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13514 } 13515 13516 /* 13517 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13518 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13519 * be inserted into the first space available in the list. The value of 13520 * ipif_id will then be set to the appropriate value for its position. 13521 */ 13522 static int 13523 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13524 { 13525 ill_t *ill; 13526 ipif_t *tipif; 13527 ipif_t **tipifp; 13528 int id; 13529 ip_stack_t *ipst; 13530 13531 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13532 IAM_WRITER_IPIF(ipif)); 13533 13534 ill = ipif->ipif_ill; 13535 ASSERT(ill != NULL); 13536 ipst = ill->ill_ipst; 13537 13538 /* 13539 * In the case of lo0:0 we already hold the ill_g_lock. 13540 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13541 * ipif_insert. Another such caller is ipif_move. 13542 */ 13543 if (acquire_g_lock) 13544 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13545 if (acquire_ill_lock) 13546 mutex_enter(&ill->ill_lock); 13547 id = ipif->ipif_id; 13548 tipifp = &(ill->ill_ipif); 13549 if (id == -1) { /* need to find a real id */ 13550 id = 0; 13551 while ((tipif = *tipifp) != NULL) { 13552 ASSERT(tipif->ipif_id >= id); 13553 if (tipif->ipif_id != id) 13554 break; /* non-consecutive id */ 13555 id++; 13556 tipifp = &(tipif->ipif_next); 13557 } 13558 /* limit number of logical interfaces */ 13559 if (id >= ipst->ips_ip_addrs_per_if) { 13560 if (acquire_ill_lock) 13561 mutex_exit(&ill->ill_lock); 13562 if (acquire_g_lock) 13563 rw_exit(&ipst->ips_ill_g_lock); 13564 return (-1); 13565 } 13566 ipif->ipif_id = id; /* assign new id */ 13567 } else if (id < ipst->ips_ip_addrs_per_if) { 13568 /* we have a real id; insert ipif in the right place */ 13569 while ((tipif = *tipifp) != NULL) { 13570 ASSERT(tipif->ipif_id != id); 13571 if (tipif->ipif_id > id) 13572 break; /* found correct location */ 13573 tipifp = &(tipif->ipif_next); 13574 } 13575 } else { 13576 if (acquire_ill_lock) 13577 mutex_exit(&ill->ill_lock); 13578 if (acquire_g_lock) 13579 rw_exit(&ipst->ips_ill_g_lock); 13580 return (-1); 13581 } 13582 13583 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13584 13585 ipif->ipif_next = tipif; 13586 *tipifp = ipif; 13587 if (acquire_ill_lock) 13588 mutex_exit(&ill->ill_lock); 13589 if (acquire_g_lock) 13590 rw_exit(&ipst->ips_ill_g_lock); 13591 return (0); 13592 } 13593 13594 static void 13595 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13596 { 13597 ipif_t **ipifp; 13598 ill_t *ill = ipif->ipif_ill; 13599 13600 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13601 if (acquire_ill_lock) 13602 mutex_enter(&ill->ill_lock); 13603 else 13604 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13605 13606 ipifp = &ill->ill_ipif; 13607 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13608 if (*ipifp == ipif) { 13609 *ipifp = ipif->ipif_next; 13610 break; 13611 } 13612 } 13613 13614 if (acquire_ill_lock) 13615 mutex_exit(&ill->ill_lock); 13616 } 13617 13618 /* 13619 * Allocate and initialize a new interface control structure. (Always 13620 * called as writer.) 13621 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13622 * is not part of the global linked list of ills. ipif_seqid is unique 13623 * in the system and to preserve the uniqueness, it is assigned only 13624 * when ill becomes part of the global list. At that point ill will 13625 * have a name. If it doesn't get assigned here, it will get assigned 13626 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13627 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13628 * the interface flags or any other information from the DL_INFO_ACK for 13629 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13630 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13631 * second DL_INFO_ACK comes in from the driver. 13632 */ 13633 static ipif_t * 13634 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13635 { 13636 ipif_t *ipif; 13637 phyint_t *phyi; 13638 13639 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13640 ill->ill_name, id, (void *)ill)); 13641 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13642 13643 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13644 return (NULL); 13645 *ipif = ipif_zero; /* start clean */ 13646 13647 ipif->ipif_ill = ill; 13648 ipif->ipif_id = id; /* could be -1 */ 13649 /* 13650 * Inherit the zoneid from the ill; for the shared stack instance 13651 * this is always the global zone 13652 */ 13653 ipif->ipif_zoneid = ill->ill_zoneid; 13654 13655 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13656 13657 ipif->ipif_refcnt = 0; 13658 ipif->ipif_saved_ire_cnt = 0; 13659 13660 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13661 mi_free(ipif); 13662 return (NULL); 13663 } 13664 /* -1 id should have been replaced by real id */ 13665 id = ipif->ipif_id; 13666 ASSERT(id >= 0); 13667 13668 if (ill->ill_name[0] != '\0') 13669 ipif_assign_seqid(ipif); 13670 13671 /* 13672 * Keep a copy of original id in ipif_orig_ipifid. Failback 13673 * will attempt to restore the original id. The SIOCSLIFOINDEX 13674 * ioctl sets ipif_orig_ipifid to zero. 13675 */ 13676 ipif->ipif_orig_ipifid = id; 13677 13678 /* 13679 * We grab the ill_lock and phyint_lock to protect the flag changes. 13680 * The ipif is still not up and can't be looked up until the 13681 * ioctl completes and the IPIF_CHANGING flag is cleared. 13682 */ 13683 mutex_enter(&ill->ill_lock); 13684 mutex_enter(&ill->ill_phyint->phyint_lock); 13685 /* 13686 * Set the running flag when logical interface zero is created. 13687 * For subsequent logical interfaces, a DLPI link down 13688 * notification message may have cleared the running flag to 13689 * indicate the link is down, so we shouldn't just blindly set it. 13690 */ 13691 if (id == 0) 13692 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13693 ipif->ipif_ire_type = ire_type; 13694 phyi = ill->ill_phyint; 13695 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13696 13697 if (ipif->ipif_isv6) { 13698 ill->ill_flags |= ILLF_IPV6; 13699 } else { 13700 ipaddr_t inaddr_any = INADDR_ANY; 13701 13702 ill->ill_flags |= ILLF_IPV4; 13703 13704 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13705 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13706 &ipif->ipif_v6lcl_addr); 13707 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13708 &ipif->ipif_v6src_addr); 13709 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13710 &ipif->ipif_v6subnet); 13711 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13712 &ipif->ipif_v6net_mask); 13713 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13714 &ipif->ipif_v6brd_addr); 13715 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13716 &ipif->ipif_v6pp_dst_addr); 13717 } 13718 13719 /* 13720 * Don't set the interface flags etc. now, will do it in 13721 * ip_ll_subnet_defaults. 13722 */ 13723 if (!initialize) { 13724 mutex_exit(&ill->ill_lock); 13725 mutex_exit(&ill->ill_phyint->phyint_lock); 13726 return (ipif); 13727 } 13728 ipif->ipif_mtu = ill->ill_max_mtu; 13729 13730 if (ill->ill_bcast_addr_length != 0) { 13731 /* 13732 * Later detect lack of DLPI driver multicast 13733 * capability by catching DL_ENABMULTI errors in 13734 * ip_rput_dlpi. 13735 */ 13736 ill->ill_flags |= ILLF_MULTICAST; 13737 if (!ipif->ipif_isv6) 13738 ipif->ipif_flags |= IPIF_BROADCAST; 13739 } else { 13740 if (ill->ill_net_type != IRE_LOOPBACK) { 13741 if (ipif->ipif_isv6) 13742 /* 13743 * Note: xresolv interfaces will eventually need 13744 * NOARP set here as well, but that will require 13745 * those external resolvers to have some 13746 * knowledge of that flag and act appropriately. 13747 * Not to be changed at present. 13748 */ 13749 ill->ill_flags |= ILLF_NONUD; 13750 else 13751 ill->ill_flags |= ILLF_NOARP; 13752 } 13753 if (ill->ill_phys_addr_length == 0) { 13754 if (ill->ill_media && 13755 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13756 ipif->ipif_flags |= IPIF_NOXMIT; 13757 phyi->phyint_flags |= PHYI_VIRTUAL; 13758 } else { 13759 /* pt-pt supports multicast. */ 13760 ill->ill_flags |= ILLF_MULTICAST; 13761 if (ill->ill_net_type == IRE_LOOPBACK) { 13762 phyi->phyint_flags |= 13763 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13764 } else { 13765 ipif->ipif_flags |= IPIF_POINTOPOINT; 13766 } 13767 } 13768 } 13769 } 13770 mutex_exit(&ill->ill_lock); 13771 mutex_exit(&ill->ill_phyint->phyint_lock); 13772 return (ipif); 13773 } 13774 13775 /* 13776 * If appropriate, send a message up to the resolver delete the entry 13777 * for the address of this interface which is going out of business. 13778 * (Always called as writer). 13779 * 13780 * NOTE : We need to check for NULL mps as some of the fields are 13781 * initialized only for some interface types. See ipif_resolver_up() 13782 * for details. 13783 */ 13784 void 13785 ipif_arp_down(ipif_t *ipif) 13786 { 13787 mblk_t *mp; 13788 ill_t *ill = ipif->ipif_ill; 13789 13790 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13791 ASSERT(IAM_WRITER_IPIF(ipif)); 13792 13793 /* Delete the mapping for the local address */ 13794 mp = ipif->ipif_arp_del_mp; 13795 if (mp != NULL) { 13796 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13797 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13798 putnext(ill->ill_rq, mp); 13799 ipif->ipif_arp_del_mp = NULL; 13800 } 13801 13802 /* 13803 * If this is the last ipif that is going down and there are no 13804 * duplicate addresses we may yet attempt to re-probe, then we need to 13805 * clean up ARP completely. 13806 */ 13807 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13808 13809 /* Send up AR_INTERFACE_DOWN message */ 13810 mp = ill->ill_arp_down_mp; 13811 if (mp != NULL) { 13812 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13813 *(unsigned *)mp->b_rptr, ill->ill_name, 13814 ipif->ipif_id)); 13815 putnext(ill->ill_rq, mp); 13816 ill->ill_arp_down_mp = NULL; 13817 } 13818 13819 /* Tell ARP to delete the multicast mappings */ 13820 mp = ill->ill_arp_del_mapping_mp; 13821 if (mp != NULL) { 13822 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13823 *(unsigned *)mp->b_rptr, ill->ill_name, 13824 ipif->ipif_id)); 13825 putnext(ill->ill_rq, mp); 13826 ill->ill_arp_del_mapping_mp = NULL; 13827 } 13828 } 13829 } 13830 13831 /* 13832 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13833 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13834 * that it wants the add_mp allocated in this function to be returned 13835 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13836 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13837 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13838 * as it does a ipif_arp_down after calling this function - which will 13839 * remove what we add here. 13840 * 13841 * Returns -1 on failures and 0 on success. 13842 */ 13843 int 13844 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13845 { 13846 mblk_t *del_mp = NULL; 13847 mblk_t *add_mp = NULL; 13848 mblk_t *mp; 13849 ill_t *ill = ipif->ipif_ill; 13850 phyint_t *phyi = ill->ill_phyint; 13851 ipaddr_t addr, mask, extract_mask = 0; 13852 arma_t *arma; 13853 uint8_t *maddr, *bphys_addr; 13854 uint32_t hw_start; 13855 dl_unitdata_req_t *dlur; 13856 13857 ASSERT(IAM_WRITER_IPIF(ipif)); 13858 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13859 return (0); 13860 13861 /* 13862 * Delete the existing mapping from ARP. Normally ipif_down 13863 * -> ipif_arp_down should send this up to ARP. The only 13864 * reason we would find this when we are switching from 13865 * Multicast to Broadcast where we did not do a down. 13866 */ 13867 mp = ill->ill_arp_del_mapping_mp; 13868 if (mp != NULL) { 13869 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13870 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13871 putnext(ill->ill_rq, mp); 13872 ill->ill_arp_del_mapping_mp = NULL; 13873 } 13874 13875 if (arp_add_mapping_mp != NULL) 13876 *arp_add_mapping_mp = NULL; 13877 13878 /* 13879 * Check that the address is not to long for the constant 13880 * length reserved in the template arma_t. 13881 */ 13882 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13883 return (-1); 13884 13885 /* Add mapping mblk */ 13886 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13887 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13888 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13889 (caddr_t)&addr); 13890 if (add_mp == NULL) 13891 return (-1); 13892 arma = (arma_t *)add_mp->b_rptr; 13893 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13894 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13895 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13896 13897 /* 13898 * Determine the broadcast address. 13899 */ 13900 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13901 if (ill->ill_sap_length < 0) 13902 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13903 else 13904 bphys_addr = (uchar_t *)dlur + 13905 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13906 /* 13907 * Check PHYI_MULTI_BCAST and length of physical 13908 * address to determine if we use the mapping or the 13909 * broadcast address. 13910 */ 13911 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13912 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13913 bphys_addr, maddr, &hw_start, &extract_mask)) 13914 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13915 13916 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13917 (ill->ill_flags & ILLF_MULTICAST)) { 13918 /* Make sure this will not match the "exact" entry. */ 13919 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13920 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13921 (caddr_t)&addr); 13922 if (del_mp == NULL) { 13923 freemsg(add_mp); 13924 return (-1); 13925 } 13926 bcopy(&extract_mask, (char *)arma + 13927 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13928 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13929 /* Use link-layer broadcast address for MULTI_BCAST */ 13930 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13931 ip2dbg(("ipif_arp_setup_multicast: adding" 13932 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13933 } else { 13934 arma->arma_hw_mapping_start = hw_start; 13935 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13936 " ARP setup for %s\n", ill->ill_name)); 13937 } 13938 } else { 13939 freemsg(add_mp); 13940 ASSERT(del_mp == NULL); 13941 /* It is neither MULTICAST nor MULTI_BCAST */ 13942 return (0); 13943 } 13944 ASSERT(add_mp != NULL && del_mp != NULL); 13945 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13946 ill->ill_arp_del_mapping_mp = del_mp; 13947 if (arp_add_mapping_mp != NULL) { 13948 /* The caller just wants the mblks allocated */ 13949 *arp_add_mapping_mp = add_mp; 13950 } else { 13951 /* The caller wants us to send it to arp */ 13952 putnext(ill->ill_rq, add_mp); 13953 } 13954 return (0); 13955 } 13956 13957 /* 13958 * Get the resolver set up for a new interface address. 13959 * (Always called as writer.) 13960 * Called both for IPv4 and IPv6 interfaces, 13961 * though it only sets up the resolver for v6 13962 * if it's an xresolv interface (one using an external resolver). 13963 * Honors ILLF_NOARP. 13964 * The enumerated value res_act is used to tune the behavior. 13965 * If set to Res_act_initial, then we set up all the resolver 13966 * structures for a new interface. If set to Res_act_move, then 13967 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13968 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13969 * asynchronous hardware address change notification. If set to 13970 * Res_act_defend, then we tell ARP that it needs to send a single 13971 * gratuitous message in defense of the address. 13972 * Returns error on failure. 13973 */ 13974 int 13975 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13976 { 13977 caddr_t addr; 13978 mblk_t *arp_up_mp = NULL; 13979 mblk_t *arp_down_mp = NULL; 13980 mblk_t *arp_add_mp = NULL; 13981 mblk_t *arp_del_mp = NULL; 13982 mblk_t *arp_add_mapping_mp = NULL; 13983 mblk_t *arp_del_mapping_mp = NULL; 13984 ill_t *ill = ipif->ipif_ill; 13985 uchar_t *area_p = NULL; 13986 uchar_t *ared_p = NULL; 13987 int err = ENOMEM; 13988 boolean_t was_dup; 13989 13990 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13991 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13992 ASSERT(IAM_WRITER_IPIF(ipif)); 13993 13994 was_dup = B_FALSE; 13995 if (res_act == Res_act_initial) { 13996 ipif->ipif_addr_ready = 0; 13997 /* 13998 * We're bringing an interface up here. There's no way that we 13999 * should need to shut down ARP now. 14000 */ 14001 mutex_enter(&ill->ill_lock); 14002 if (ipif->ipif_flags & IPIF_DUPLICATE) { 14003 ipif->ipif_flags &= ~IPIF_DUPLICATE; 14004 ill->ill_ipif_dup_count--; 14005 was_dup = B_TRUE; 14006 } 14007 mutex_exit(&ill->ill_lock); 14008 } 14009 if (ipif->ipif_recovery_id != 0) 14010 (void) untimeout(ipif->ipif_recovery_id); 14011 ipif->ipif_recovery_id = 0; 14012 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14013 ipif->ipif_addr_ready = 1; 14014 return (0); 14015 } 14016 /* NDP will set the ipif_addr_ready flag when it's ready */ 14017 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14018 return (0); 14019 14020 if (ill->ill_isv6) { 14021 /* 14022 * External resolver for IPv6 14023 */ 14024 ASSERT(res_act == Res_act_initial); 14025 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14026 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14027 area_p = (uchar_t *)&ip6_area_template; 14028 ared_p = (uchar_t *)&ip6_ared_template; 14029 } 14030 } else { 14031 /* 14032 * IPv4 arp case. If the ARP stream has already started 14033 * closing, fail this request for ARP bringup. Else 14034 * record the fact that an ARP bringup is pending. 14035 */ 14036 mutex_enter(&ill->ill_lock); 14037 if (ill->ill_arp_closing) { 14038 mutex_exit(&ill->ill_lock); 14039 err = EINVAL; 14040 goto failed; 14041 } else { 14042 if (ill->ill_ipif_up_count == 0 && 14043 ill->ill_ipif_dup_count == 0 && !was_dup) 14044 ill->ill_arp_bringup_pending = 1; 14045 mutex_exit(&ill->ill_lock); 14046 } 14047 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14048 addr = (caddr_t)&ipif->ipif_lcl_addr; 14049 area_p = (uchar_t *)&ip_area_template; 14050 ared_p = (uchar_t *)&ip_ared_template; 14051 } 14052 } 14053 14054 /* 14055 * Add an entry for the local address in ARP only if it 14056 * is not UNNUMBERED and the address is not INADDR_ANY. 14057 */ 14058 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14059 area_t *area; 14060 14061 /* Now ask ARP to publish our address. */ 14062 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14063 if (arp_add_mp == NULL) 14064 goto failed; 14065 area = (area_t *)arp_add_mp->b_rptr; 14066 if (res_act != Res_act_initial) { 14067 /* 14068 * Copy the new hardware address and length into 14069 * arp_add_mp to be sent to ARP. 14070 */ 14071 area->area_hw_addr_length = ill->ill_phys_addr_length; 14072 bcopy(ill->ill_phys_addr, 14073 ((char *)area + area->area_hw_addr_offset), 14074 area->area_hw_addr_length); 14075 } 14076 14077 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14078 ACE_F_MYADDR; 14079 14080 if (res_act == Res_act_defend) { 14081 area->area_flags |= ACE_F_DEFEND; 14082 /* 14083 * If we're just defending our address now, then 14084 * there's no need to set up ARP multicast mappings. 14085 * The publish command is enough. 14086 */ 14087 goto done; 14088 } 14089 14090 if (res_act != Res_act_initial) 14091 goto arp_setup_multicast; 14092 14093 /* 14094 * Allocate an ARP deletion message so we know we can tell ARP 14095 * when the interface goes down. 14096 */ 14097 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14098 if (arp_del_mp == NULL) 14099 goto failed; 14100 14101 } else { 14102 if (res_act != Res_act_initial) 14103 goto done; 14104 } 14105 /* 14106 * Need to bring up ARP or setup multicast mapping only 14107 * when the first interface is coming UP. 14108 */ 14109 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14110 was_dup) { 14111 goto done; 14112 } 14113 14114 /* 14115 * Allocate an ARP down message (to be saved) and an ARP up 14116 * message. 14117 */ 14118 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14119 if (arp_down_mp == NULL) 14120 goto failed; 14121 14122 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14123 if (arp_up_mp == NULL) 14124 goto failed; 14125 14126 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14127 goto done; 14128 14129 arp_setup_multicast: 14130 /* 14131 * Setup the multicast mappings. This function initializes 14132 * ill_arp_del_mapping_mp also. This does not need to be done for 14133 * IPv6. 14134 */ 14135 if (!ill->ill_isv6) { 14136 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14137 if (err != 0) 14138 goto failed; 14139 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14140 ASSERT(arp_add_mapping_mp != NULL); 14141 } 14142 14143 done: 14144 if (arp_del_mp != NULL) { 14145 ASSERT(ipif->ipif_arp_del_mp == NULL); 14146 ipif->ipif_arp_del_mp = arp_del_mp; 14147 } 14148 if (arp_down_mp != NULL) { 14149 ASSERT(ill->ill_arp_down_mp == NULL); 14150 ill->ill_arp_down_mp = arp_down_mp; 14151 } 14152 if (arp_del_mapping_mp != NULL) { 14153 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14154 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14155 } 14156 if (arp_up_mp != NULL) { 14157 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14158 ill->ill_name, ipif->ipif_id)); 14159 putnext(ill->ill_rq, arp_up_mp); 14160 } 14161 if (arp_add_mp != NULL) { 14162 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14163 ill->ill_name, ipif->ipif_id)); 14164 /* 14165 * If it's an extended ARP implementation, then we'll wait to 14166 * hear that DAD has finished before using the interface. 14167 */ 14168 if (!ill->ill_arp_extend) 14169 ipif->ipif_addr_ready = 1; 14170 putnext(ill->ill_rq, arp_add_mp); 14171 } else { 14172 ipif->ipif_addr_ready = 1; 14173 } 14174 if (arp_add_mapping_mp != NULL) { 14175 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14176 ill->ill_name, ipif->ipif_id)); 14177 putnext(ill->ill_rq, arp_add_mapping_mp); 14178 } 14179 if (res_act != Res_act_initial) 14180 return (0); 14181 14182 if (ill->ill_flags & ILLF_NOARP) 14183 err = ill_arp_off(ill); 14184 else 14185 err = ill_arp_on(ill); 14186 if (err != 0) { 14187 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14188 freemsg(ipif->ipif_arp_del_mp); 14189 freemsg(ill->ill_arp_down_mp); 14190 freemsg(ill->ill_arp_del_mapping_mp); 14191 ipif->ipif_arp_del_mp = NULL; 14192 ill->ill_arp_down_mp = NULL; 14193 ill->ill_arp_del_mapping_mp = NULL; 14194 return (err); 14195 } 14196 return ((ill->ill_ipif_up_count != 0 || was_dup || 14197 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14198 14199 failed: 14200 ip1dbg(("ipif_resolver_up: FAILED\n")); 14201 freemsg(arp_add_mp); 14202 freemsg(arp_del_mp); 14203 freemsg(arp_add_mapping_mp); 14204 freemsg(arp_up_mp); 14205 freemsg(arp_down_mp); 14206 ill->ill_arp_bringup_pending = 0; 14207 return (err); 14208 } 14209 14210 /* 14211 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14212 * just gone back up. 14213 */ 14214 static void 14215 ipif_arp_start_dad(ipif_t *ipif) 14216 { 14217 ill_t *ill = ipif->ipif_ill; 14218 mblk_t *arp_add_mp; 14219 area_t *area; 14220 14221 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14222 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14223 ipif->ipif_lcl_addr == INADDR_ANY || 14224 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14225 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14226 /* 14227 * If we can't contact ARP for some reason, that's not really a 14228 * problem. Just send out the routing socket notification that 14229 * DAD completion would have done, and continue. 14230 */ 14231 ipif_mask_reply(ipif); 14232 ip_rts_ifmsg(ipif); 14233 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14234 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14235 ipif->ipif_addr_ready = 1; 14236 return; 14237 } 14238 14239 /* Setting the 'unverified' flag restarts DAD */ 14240 area = (area_t *)arp_add_mp->b_rptr; 14241 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14242 ACE_F_UNVERIFIED; 14243 putnext(ill->ill_rq, arp_add_mp); 14244 } 14245 14246 static void 14247 ipif_ndp_start_dad(ipif_t *ipif) 14248 { 14249 nce_t *nce; 14250 14251 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14252 if (nce == NULL) 14253 return; 14254 14255 if (!ndp_restart_dad(nce)) { 14256 /* 14257 * If we can't restart DAD for some reason, that's not really a 14258 * problem. Just send out the routing socket notification that 14259 * DAD completion would have done, and continue. 14260 */ 14261 ip_rts_ifmsg(ipif); 14262 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14263 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14264 ipif->ipif_addr_ready = 1; 14265 } 14266 NCE_REFRELE(nce); 14267 } 14268 14269 /* 14270 * Restart duplicate address detection on all interfaces on the given ill. 14271 * 14272 * This is called when an interface transitions from down to up 14273 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14274 * 14275 * Note that since the underlying physical link has transitioned, we must cause 14276 * at least one routing socket message to be sent here, either via DAD 14277 * completion or just by default on the first ipif. (If we don't do this, then 14278 * in.mpathd will see long delays when doing link-based failure recovery.) 14279 */ 14280 void 14281 ill_restart_dad(ill_t *ill, boolean_t went_up) 14282 { 14283 ipif_t *ipif; 14284 14285 if (ill == NULL) 14286 return; 14287 14288 /* 14289 * If layer two doesn't support duplicate address detection, then just 14290 * send the routing socket message now and be done with it. 14291 */ 14292 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14293 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14294 ip_rts_ifmsg(ill->ill_ipif); 14295 return; 14296 } 14297 14298 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14299 if (went_up) { 14300 if (ipif->ipif_flags & IPIF_UP) { 14301 if (ill->ill_isv6) 14302 ipif_ndp_start_dad(ipif); 14303 else 14304 ipif_arp_start_dad(ipif); 14305 } else if (ill->ill_isv6 && 14306 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14307 /* 14308 * For IPv4, the ARP module itself will 14309 * automatically start the DAD process when it 14310 * sees DL_NOTE_LINK_UP. We respond to the 14311 * AR_CN_READY at the completion of that task. 14312 * For IPv6, we must kick off the bring-up 14313 * process now. 14314 */ 14315 ndp_do_recovery(ipif); 14316 } else { 14317 /* 14318 * Unfortunately, the first ipif is "special" 14319 * and represents the underlying ill in the 14320 * routing socket messages. Thus, when this 14321 * one ipif is down, we must still notify so 14322 * that the user knows the IFF_RUNNING status 14323 * change. (If the first ipif is up, then 14324 * we'll handle eventual routing socket 14325 * notification via DAD completion.) 14326 */ 14327 if (ipif == ill->ill_ipif) 14328 ip_rts_ifmsg(ill->ill_ipif); 14329 } 14330 } else { 14331 /* 14332 * After link down, we'll need to send a new routing 14333 * message when the link comes back, so clear 14334 * ipif_addr_ready. 14335 */ 14336 ipif->ipif_addr_ready = 0; 14337 } 14338 } 14339 14340 /* 14341 * If we've torn down links, then notify the user right away. 14342 */ 14343 if (!went_up) 14344 ip_rts_ifmsg(ill->ill_ipif); 14345 } 14346 14347 /* 14348 * Wakeup all threads waiting to enter the ipsq, and sleeping 14349 * on any of the ills in this ipsq. The ill_lock of the ill 14350 * must be held so that waiters don't miss wakeups 14351 */ 14352 static void 14353 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14354 { 14355 phyint_t *phyint; 14356 14357 phyint = ipsq->ipsq_phyint_list; 14358 while (phyint != NULL) { 14359 if (phyint->phyint_illv4) { 14360 if (!caller_holds_lock) 14361 mutex_enter(&phyint->phyint_illv4->ill_lock); 14362 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14363 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14364 if (!caller_holds_lock) 14365 mutex_exit(&phyint->phyint_illv4->ill_lock); 14366 } 14367 if (phyint->phyint_illv6) { 14368 if (!caller_holds_lock) 14369 mutex_enter(&phyint->phyint_illv6->ill_lock); 14370 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14371 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14372 if (!caller_holds_lock) 14373 mutex_exit(&phyint->phyint_illv6->ill_lock); 14374 } 14375 phyint = phyint->phyint_ipsq_next; 14376 } 14377 } 14378 14379 static ipsq_t * 14380 ipsq_create(char *groupname, ip_stack_t *ipst) 14381 { 14382 ipsq_t *ipsq; 14383 14384 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14385 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14386 if (ipsq == NULL) { 14387 return (NULL); 14388 } 14389 14390 if (groupname != NULL) 14391 (void) strcpy(ipsq->ipsq_name, groupname); 14392 else 14393 ipsq->ipsq_name[0] = '\0'; 14394 14395 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14396 ipsq->ipsq_flags |= IPSQ_GROUP; 14397 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14398 ipst->ips_ipsq_g_head = ipsq; 14399 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14400 return (ipsq); 14401 } 14402 14403 /* 14404 * Return an ipsq correspoding to the groupname. If 'create' is true 14405 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14406 * uniquely with an IPMP group. However during IPMP groupname operations, 14407 * multiple IPMP groups may be associated with a single ipsq. But no 14408 * IPMP group can be associated with more than 1 ipsq at any time. 14409 * For example 14410 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14411 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14412 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14413 * 14414 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14415 * status shown below during the execution of the above command. 14416 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14417 * 14418 * After the completion of the above groupname command we return to the stable 14419 * state shown below. 14420 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14421 * hme4 mpk17-85 ipsq2 mpk17-85 1 14422 * 14423 * Because of the above, we don't search based on the ipsq_name since that 14424 * would miss the correct ipsq during certain windows as shown above. 14425 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14426 * natural state. 14427 */ 14428 static ipsq_t * 14429 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14430 ip_stack_t *ipst) 14431 { 14432 ipsq_t *ipsq; 14433 int group_len; 14434 phyint_t *phyint; 14435 14436 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14437 14438 group_len = strlen(groupname); 14439 ASSERT(group_len != 0); 14440 group_len++; 14441 14442 for (ipsq = ipst->ips_ipsq_g_head; 14443 ipsq != NULL; 14444 ipsq = ipsq->ipsq_next) { 14445 /* 14446 * When an ipsq is being split, and ill_split_ipsq 14447 * calls this function, we exclude it from being considered. 14448 */ 14449 if (ipsq == exclude_ipsq) 14450 continue; 14451 14452 /* 14453 * Compare against the ipsq_name. The groupname change happens 14454 * in 2 phases. The 1st phase merges the from group into 14455 * the to group's ipsq, by calling ill_merge_groups and restarts 14456 * the ioctl. The 2nd phase then locates the ipsq again thru 14457 * ipsq_name. At this point the phyint_groupname has not been 14458 * updated. 14459 */ 14460 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14461 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14462 /* 14463 * Verify that an ipmp groupname is exactly 14464 * part of 1 ipsq and is not found in any other 14465 * ipsq. 14466 */ 14467 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14468 NULL); 14469 return (ipsq); 14470 } 14471 14472 /* 14473 * Comparison against ipsq_name alone is not sufficient. 14474 * In the case when groups are currently being 14475 * merged, the ipsq could hold other IPMP groups temporarily. 14476 * so we walk the phyint list and compare against the 14477 * phyint_groupname as well. 14478 */ 14479 phyint = ipsq->ipsq_phyint_list; 14480 while (phyint != NULL) { 14481 if ((group_len == phyint->phyint_groupname_len) && 14482 (bcmp(phyint->phyint_groupname, groupname, 14483 group_len) == 0)) { 14484 /* 14485 * Verify that an ipmp groupname is exactly 14486 * part of 1 ipsq and is not found in any other 14487 * ipsq. 14488 */ 14489 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14490 ipst) == NULL); 14491 return (ipsq); 14492 } 14493 phyint = phyint->phyint_ipsq_next; 14494 } 14495 } 14496 if (create) 14497 ipsq = ipsq_create(groupname, ipst); 14498 return (ipsq); 14499 } 14500 14501 static void 14502 ipsq_delete(ipsq_t *ipsq) 14503 { 14504 ipsq_t *nipsq; 14505 ipsq_t *pipsq = NULL; 14506 ip_stack_t *ipst = ipsq->ipsq_ipst; 14507 14508 /* 14509 * We don't hold the ipsq lock, but we are sure no new 14510 * messages can land up, since the ipsq_refs is zero. 14511 * i.e. this ipsq is unnamed and no phyint or phyint group 14512 * is associated with this ipsq. (Lookups are based on ill_name 14513 * or phyint_groupname) 14514 */ 14515 ASSERT(ipsq->ipsq_refs == 0); 14516 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14517 ASSERT(ipsq->ipsq_pending_mp == NULL); 14518 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14519 /* 14520 * This is not the ipsq of an IPMP group. 14521 */ 14522 ipsq->ipsq_ipst = NULL; 14523 kmem_free(ipsq, sizeof (ipsq_t)); 14524 return; 14525 } 14526 14527 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14528 14529 /* 14530 * Locate the ipsq before we can remove it from 14531 * the singly linked list of ipsq's. 14532 */ 14533 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14534 nipsq = nipsq->ipsq_next) { 14535 if (nipsq == ipsq) { 14536 break; 14537 } 14538 pipsq = nipsq; 14539 } 14540 14541 ASSERT(nipsq == ipsq); 14542 14543 /* unlink ipsq from the list */ 14544 if (pipsq != NULL) 14545 pipsq->ipsq_next = ipsq->ipsq_next; 14546 else 14547 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14548 ipsq->ipsq_ipst = NULL; 14549 kmem_free(ipsq, sizeof (ipsq_t)); 14550 rw_exit(&ipst->ips_ill_g_lock); 14551 } 14552 14553 static void 14554 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14555 queue_t *q) 14556 { 14557 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14558 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14559 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14560 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14561 ASSERT(current_mp != NULL); 14562 14563 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14564 NEW_OP, NULL); 14565 14566 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14567 new_ipsq->ipsq_xopq_mphead != NULL); 14568 14569 /* 14570 * move from old ipsq to the new ipsq. 14571 */ 14572 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14573 if (old_ipsq->ipsq_xopq_mphead != NULL) 14574 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14575 14576 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14577 } 14578 14579 void 14580 ill_group_cleanup(ill_t *ill) 14581 { 14582 ill_t *ill_v4; 14583 ill_t *ill_v6; 14584 ipif_t *ipif; 14585 14586 ill_v4 = ill->ill_phyint->phyint_illv4; 14587 ill_v6 = ill->ill_phyint->phyint_illv6; 14588 14589 if (ill_v4 != NULL) { 14590 mutex_enter(&ill_v4->ill_lock); 14591 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14592 ipif = ipif->ipif_next) { 14593 IPIF_UNMARK_MOVING(ipif); 14594 } 14595 ill_v4->ill_up_ipifs = B_FALSE; 14596 mutex_exit(&ill_v4->ill_lock); 14597 } 14598 14599 if (ill_v6 != NULL) { 14600 mutex_enter(&ill_v6->ill_lock); 14601 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14602 ipif = ipif->ipif_next) { 14603 IPIF_UNMARK_MOVING(ipif); 14604 } 14605 ill_v6->ill_up_ipifs = B_FALSE; 14606 mutex_exit(&ill_v6->ill_lock); 14607 } 14608 } 14609 /* 14610 * This function is called when an ill has had a change in its group status 14611 * to bring up all the ipifs that were up before the change. 14612 */ 14613 int 14614 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14615 { 14616 ipif_t *ipif; 14617 ill_t *ill_v4; 14618 ill_t *ill_v6; 14619 ill_t *from_ill; 14620 int err = 0; 14621 14622 14623 ASSERT(IAM_WRITER_ILL(ill)); 14624 14625 /* 14626 * Except for ipif_state_flags and ill_state_flags the other 14627 * fields of the ipif/ill that are modified below are protected 14628 * implicitly since we are a writer. We would have tried to down 14629 * even an ipif that was already down, in ill_down_ipifs. So we 14630 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14631 */ 14632 ill_v4 = ill->ill_phyint->phyint_illv4; 14633 ill_v6 = ill->ill_phyint->phyint_illv6; 14634 if (ill_v4 != NULL) { 14635 ill_v4->ill_up_ipifs = B_TRUE; 14636 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14637 ipif = ipif->ipif_next) { 14638 mutex_enter(&ill_v4->ill_lock); 14639 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14640 IPIF_UNMARK_MOVING(ipif); 14641 mutex_exit(&ill_v4->ill_lock); 14642 if (ipif->ipif_was_up) { 14643 if (!(ipif->ipif_flags & IPIF_UP)) 14644 err = ipif_up(ipif, q, mp); 14645 ipif->ipif_was_up = B_FALSE; 14646 if (err != 0) { 14647 /* 14648 * Can there be any other error ? 14649 */ 14650 ASSERT(err == EINPROGRESS); 14651 return (err); 14652 } 14653 } 14654 } 14655 mutex_enter(&ill_v4->ill_lock); 14656 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14657 mutex_exit(&ill_v4->ill_lock); 14658 ill_v4->ill_up_ipifs = B_FALSE; 14659 if (ill_v4->ill_move_in_progress) { 14660 ASSERT(ill_v4->ill_move_peer != NULL); 14661 ill_v4->ill_move_in_progress = B_FALSE; 14662 from_ill = ill_v4->ill_move_peer; 14663 from_ill->ill_move_in_progress = B_FALSE; 14664 from_ill->ill_move_peer = NULL; 14665 mutex_enter(&from_ill->ill_lock); 14666 from_ill->ill_state_flags &= ~ILL_CHANGING; 14667 mutex_exit(&from_ill->ill_lock); 14668 if (ill_v6 == NULL) { 14669 if (from_ill->ill_phyint->phyint_flags & 14670 PHYI_STANDBY) { 14671 phyint_inactive(from_ill->ill_phyint); 14672 } 14673 if (ill_v4->ill_phyint->phyint_flags & 14674 PHYI_STANDBY) { 14675 phyint_inactive(ill_v4->ill_phyint); 14676 } 14677 } 14678 ill_v4->ill_move_peer = NULL; 14679 } 14680 } 14681 14682 if (ill_v6 != NULL) { 14683 ill_v6->ill_up_ipifs = B_TRUE; 14684 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14685 ipif = ipif->ipif_next) { 14686 mutex_enter(&ill_v6->ill_lock); 14687 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14688 IPIF_UNMARK_MOVING(ipif); 14689 mutex_exit(&ill_v6->ill_lock); 14690 if (ipif->ipif_was_up) { 14691 if (!(ipif->ipif_flags & IPIF_UP)) 14692 err = ipif_up(ipif, q, mp); 14693 ipif->ipif_was_up = B_FALSE; 14694 if (err != 0) { 14695 /* 14696 * Can there be any other error ? 14697 */ 14698 ASSERT(err == EINPROGRESS); 14699 return (err); 14700 } 14701 } 14702 } 14703 mutex_enter(&ill_v6->ill_lock); 14704 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14705 mutex_exit(&ill_v6->ill_lock); 14706 ill_v6->ill_up_ipifs = B_FALSE; 14707 if (ill_v6->ill_move_in_progress) { 14708 ASSERT(ill_v6->ill_move_peer != NULL); 14709 ill_v6->ill_move_in_progress = B_FALSE; 14710 from_ill = ill_v6->ill_move_peer; 14711 from_ill->ill_move_in_progress = B_FALSE; 14712 from_ill->ill_move_peer = NULL; 14713 mutex_enter(&from_ill->ill_lock); 14714 from_ill->ill_state_flags &= ~ILL_CHANGING; 14715 mutex_exit(&from_ill->ill_lock); 14716 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14717 phyint_inactive(from_ill->ill_phyint); 14718 } 14719 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14720 phyint_inactive(ill_v6->ill_phyint); 14721 } 14722 ill_v6->ill_move_peer = NULL; 14723 } 14724 } 14725 return (0); 14726 } 14727 14728 /* 14729 * bring down all the approriate ipifs. 14730 */ 14731 /* ARGSUSED */ 14732 static void 14733 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14734 { 14735 ipif_t *ipif; 14736 14737 ASSERT(IAM_WRITER_ILL(ill)); 14738 14739 /* 14740 * Except for ipif_state_flags the other fields of the ipif/ill that 14741 * are modified below are protected implicitly since we are a writer 14742 */ 14743 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14744 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14745 continue; 14746 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14747 /* 14748 * We go through the ipif_down logic even if the ipif 14749 * is already down, since routes can be added based 14750 * on down ipifs. Going through ipif_down once again 14751 * will delete any IREs created based on these routes. 14752 */ 14753 if (ipif->ipif_flags & IPIF_UP) 14754 ipif->ipif_was_up = B_TRUE; 14755 /* 14756 * If called with chk_nofailover true ipif is moving. 14757 */ 14758 mutex_enter(&ill->ill_lock); 14759 if (chk_nofailover) { 14760 ipif->ipif_state_flags |= 14761 IPIF_MOVING | IPIF_CHANGING; 14762 } else { 14763 ipif->ipif_state_flags |= IPIF_CHANGING; 14764 } 14765 mutex_exit(&ill->ill_lock); 14766 /* 14767 * Need to re-create net/subnet bcast ires if 14768 * they are dependent on ipif. 14769 */ 14770 if (!ipif->ipif_isv6) 14771 ipif_check_bcast_ires(ipif); 14772 (void) ipif_logical_down(ipif, NULL, NULL); 14773 ipif_non_duplicate(ipif); 14774 ipif_down_tail(ipif); 14775 } 14776 } 14777 } 14778 14779 #define IPSQ_INC_REF(ipsq, ipst) { \ 14780 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14781 (ipsq)->ipsq_refs++; \ 14782 } 14783 14784 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14785 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14786 (ipsq)->ipsq_refs--; \ 14787 if ((ipsq)->ipsq_refs == 0) \ 14788 (ipsq)->ipsq_name[0] = '\0'; \ 14789 } 14790 14791 /* 14792 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14793 * new_ipsq. 14794 */ 14795 static void 14796 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14797 { 14798 phyint_t *phyint; 14799 phyint_t *next_phyint; 14800 14801 /* 14802 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14803 * writer and the ill_lock of the ill in question. Also the dest 14804 * ipsq can't vanish while we hold the ill_g_lock as writer. 14805 */ 14806 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14807 14808 phyint = cur_ipsq->ipsq_phyint_list; 14809 cur_ipsq->ipsq_phyint_list = NULL; 14810 while (phyint != NULL) { 14811 next_phyint = phyint->phyint_ipsq_next; 14812 IPSQ_DEC_REF(cur_ipsq, ipst); 14813 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14814 new_ipsq->ipsq_phyint_list = phyint; 14815 IPSQ_INC_REF(new_ipsq, ipst); 14816 phyint->phyint_ipsq = new_ipsq; 14817 phyint = next_phyint; 14818 } 14819 } 14820 14821 #define SPLIT_SUCCESS 0 14822 #define SPLIT_NOT_NEEDED 1 14823 #define SPLIT_FAILED 2 14824 14825 int 14826 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14827 ip_stack_t *ipst) 14828 { 14829 ipsq_t *newipsq = NULL; 14830 14831 /* 14832 * Assertions denote pre-requisites for changing the ipsq of 14833 * a phyint 14834 */ 14835 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14836 /* 14837 * <ill-phyint> assocs can't change while ill_g_lock 14838 * is held as writer. See ill_phyint_reinit() 14839 */ 14840 ASSERT(phyint->phyint_illv4 == NULL || 14841 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14842 ASSERT(phyint->phyint_illv6 == NULL || 14843 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14844 14845 if ((phyint->phyint_groupname_len != 14846 (strlen(cur_ipsq->ipsq_name) + 1) || 14847 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14848 phyint->phyint_groupname_len) != 0)) { 14849 /* 14850 * Once we fail in creating a new ipsq due to memory shortage, 14851 * don't attempt to create new ipsq again, based on another 14852 * phyint, since we want all phyints belonging to an IPMP group 14853 * to be in the same ipsq even in the event of mem alloc fails. 14854 */ 14855 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14856 cur_ipsq, ipst); 14857 if (newipsq == NULL) { 14858 /* Memory allocation failure */ 14859 return (SPLIT_FAILED); 14860 } else { 14861 /* ipsq_refs protected by ill_g_lock (writer) */ 14862 IPSQ_DEC_REF(cur_ipsq, ipst); 14863 phyint->phyint_ipsq = newipsq; 14864 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14865 newipsq->ipsq_phyint_list = phyint; 14866 IPSQ_INC_REF(newipsq, ipst); 14867 return (SPLIT_SUCCESS); 14868 } 14869 } 14870 return (SPLIT_NOT_NEEDED); 14871 } 14872 14873 /* 14874 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14875 * to do this split 14876 */ 14877 static int 14878 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14879 { 14880 ipsq_t *newipsq; 14881 14882 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14883 /* 14884 * <ill-phyint> assocs can't change while ill_g_lock 14885 * is held as writer. See ill_phyint_reinit() 14886 */ 14887 14888 ASSERT(phyint->phyint_illv4 == NULL || 14889 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14890 ASSERT(phyint->phyint_illv6 == NULL || 14891 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14892 14893 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14894 phyint->phyint_illv4: phyint->phyint_illv6)) { 14895 /* 14896 * ipsq_init failed due to no memory 14897 * caller will use the same ipsq 14898 */ 14899 return (SPLIT_FAILED); 14900 } 14901 14902 /* ipsq_ref is protected by ill_g_lock (writer) */ 14903 IPSQ_DEC_REF(cur_ipsq, ipst); 14904 14905 /* 14906 * This is a new ipsq that is unknown to the world. 14907 * So we don't need to hold ipsq_lock, 14908 */ 14909 newipsq = phyint->phyint_ipsq; 14910 newipsq->ipsq_writer = NULL; 14911 newipsq->ipsq_reentry_cnt--; 14912 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14913 #ifdef ILL_DEBUG 14914 newipsq->ipsq_depth = 0; 14915 #endif 14916 14917 return (SPLIT_SUCCESS); 14918 } 14919 14920 /* 14921 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14922 * ipsq's representing their individual groups or themselves. Return 14923 * whether split needs to be retried again later. 14924 */ 14925 static boolean_t 14926 ill_split_ipsq(ipsq_t *cur_ipsq) 14927 { 14928 phyint_t *phyint; 14929 phyint_t *next_phyint; 14930 int error; 14931 boolean_t need_retry = B_FALSE; 14932 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14933 14934 phyint = cur_ipsq->ipsq_phyint_list; 14935 cur_ipsq->ipsq_phyint_list = NULL; 14936 while (phyint != NULL) { 14937 next_phyint = phyint->phyint_ipsq_next; 14938 /* 14939 * 'created' will tell us whether the callee actually 14940 * created an ipsq. Lack of memory may force the callee 14941 * to return without creating an ipsq. 14942 */ 14943 if (phyint->phyint_groupname == NULL) { 14944 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14945 } else { 14946 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14947 need_retry, ipst); 14948 } 14949 14950 switch (error) { 14951 case SPLIT_FAILED: 14952 need_retry = B_TRUE; 14953 /* FALLTHRU */ 14954 case SPLIT_NOT_NEEDED: 14955 /* 14956 * Keep it on the list. 14957 */ 14958 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14959 cur_ipsq->ipsq_phyint_list = phyint; 14960 break; 14961 case SPLIT_SUCCESS: 14962 break; 14963 default: 14964 ASSERT(0); 14965 } 14966 14967 phyint = next_phyint; 14968 } 14969 return (need_retry); 14970 } 14971 14972 /* 14973 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14974 * and return the ills in the list. This list will be 14975 * needed to unlock all the ills later on by the caller. 14976 * The <ill-ipsq> associations could change between the 14977 * lock and unlock. Hence the unlock can't traverse the 14978 * ipsq to get the list of ills. 14979 */ 14980 static int 14981 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14982 { 14983 int cnt = 0; 14984 phyint_t *phyint; 14985 ip_stack_t *ipst = ipsq->ipsq_ipst; 14986 14987 /* 14988 * The caller holds ill_g_lock to ensure that the ill memberships 14989 * of the ipsq don't change 14990 */ 14991 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14992 14993 phyint = ipsq->ipsq_phyint_list; 14994 while (phyint != NULL) { 14995 if (phyint->phyint_illv4 != NULL) { 14996 ASSERT(cnt < list_max); 14997 list[cnt++] = phyint->phyint_illv4; 14998 } 14999 if (phyint->phyint_illv6 != NULL) { 15000 ASSERT(cnt < list_max); 15001 list[cnt++] = phyint->phyint_illv6; 15002 } 15003 phyint = phyint->phyint_ipsq_next; 15004 } 15005 ill_lock_ills(list, cnt); 15006 return (cnt); 15007 } 15008 15009 void 15010 ill_lock_ills(ill_t **list, int cnt) 15011 { 15012 int i; 15013 15014 if (cnt > 1) { 15015 boolean_t try_again; 15016 do { 15017 try_again = B_FALSE; 15018 for (i = 0; i < cnt - 1; i++) { 15019 if (list[i] < list[i + 1]) { 15020 ill_t *tmp; 15021 15022 /* swap the elements */ 15023 tmp = list[i]; 15024 list[i] = list[i + 1]; 15025 list[i + 1] = tmp; 15026 try_again = B_TRUE; 15027 } 15028 } 15029 } while (try_again); 15030 } 15031 15032 for (i = 0; i < cnt; i++) { 15033 if (i == 0) { 15034 if (list[i] != NULL) 15035 mutex_enter(&list[i]->ill_lock); 15036 else 15037 return; 15038 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15039 mutex_enter(&list[i]->ill_lock); 15040 } 15041 } 15042 } 15043 15044 void 15045 ill_unlock_ills(ill_t **list, int cnt) 15046 { 15047 int i; 15048 15049 for (i = 0; i < cnt; i++) { 15050 if ((i == 0) && (list[i] != NULL)) { 15051 mutex_exit(&list[i]->ill_lock); 15052 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15053 mutex_exit(&list[i]->ill_lock); 15054 } 15055 } 15056 } 15057 15058 /* 15059 * Merge all the ills from 1 ipsq group into another ipsq group. 15060 * The source ipsq group is specified by the ipsq associated with 15061 * 'from_ill'. The destination ipsq group is specified by the ipsq 15062 * associated with 'to_ill' or 'groupname' respectively. 15063 * Note that ipsq itself does not have a reference count mechanism 15064 * and functions don't look up an ipsq and pass it around. Instead 15065 * functions pass around an ill or groupname, and the ipsq is looked 15066 * up from the ill or groupname and the required operation performed 15067 * atomically with the lookup on the ipsq. 15068 */ 15069 static int 15070 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15071 queue_t *q) 15072 { 15073 ipsq_t *old_ipsq; 15074 ipsq_t *new_ipsq; 15075 ill_t **ill_list; 15076 int cnt; 15077 size_t ill_list_size; 15078 boolean_t became_writer_on_new_sq = B_FALSE; 15079 ip_stack_t *ipst = from_ill->ill_ipst; 15080 15081 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15082 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15083 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15084 15085 /* 15086 * Need to hold ill_g_lock as writer and also the ill_lock to 15087 * change the <ill-ipsq> assoc of an ill. Need to hold the 15088 * ipsq_lock to prevent new messages from landing on an ipsq. 15089 */ 15090 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15091 15092 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15093 if (groupname != NULL) 15094 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15095 else { 15096 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15097 } 15098 15099 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15100 15101 /* 15102 * both groups are on the same ipsq. 15103 */ 15104 if (old_ipsq == new_ipsq) { 15105 rw_exit(&ipst->ips_ill_g_lock); 15106 return (0); 15107 } 15108 15109 cnt = old_ipsq->ipsq_refs << 1; 15110 ill_list_size = cnt * sizeof (ill_t *); 15111 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15112 if (ill_list == NULL) { 15113 rw_exit(&ipst->ips_ill_g_lock); 15114 return (ENOMEM); 15115 } 15116 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15117 15118 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15119 mutex_enter(&new_ipsq->ipsq_lock); 15120 if ((new_ipsq->ipsq_writer == NULL && 15121 new_ipsq->ipsq_current_ipif == NULL) || 15122 (new_ipsq->ipsq_writer == curthread)) { 15123 new_ipsq->ipsq_writer = curthread; 15124 new_ipsq->ipsq_reentry_cnt++; 15125 became_writer_on_new_sq = B_TRUE; 15126 } 15127 15128 /* 15129 * We are holding ill_g_lock as writer and all the ill locks of 15130 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15131 * message can land up on the old ipsq even though we don't hold the 15132 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15133 */ 15134 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15135 15136 /* 15137 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15138 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15139 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15140 */ 15141 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15142 15143 /* 15144 * Mark the new ipsq as needing a split since it is currently 15145 * being shared by more than 1 IPMP group. The split will 15146 * occur at the end of ipsq_exit 15147 */ 15148 new_ipsq->ipsq_split = B_TRUE; 15149 15150 /* Now release all the locks */ 15151 mutex_exit(&new_ipsq->ipsq_lock); 15152 ill_unlock_ills(ill_list, cnt); 15153 rw_exit(&ipst->ips_ill_g_lock); 15154 15155 kmem_free(ill_list, ill_list_size); 15156 15157 /* 15158 * If we succeeded in becoming writer on the new ipsq, then 15159 * drain the new ipsq and start processing all enqueued messages 15160 * including the current ioctl we are processing which is either 15161 * a set groupname or failover/failback. 15162 */ 15163 if (became_writer_on_new_sq) 15164 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15165 15166 /* 15167 * syncq has been changed and all the messages have been moved. 15168 */ 15169 mutex_enter(&old_ipsq->ipsq_lock); 15170 old_ipsq->ipsq_current_ipif = NULL; 15171 old_ipsq->ipsq_current_ioctl = 0; 15172 mutex_exit(&old_ipsq->ipsq_lock); 15173 return (EINPROGRESS); 15174 } 15175 15176 /* 15177 * Delete and add the loopback copy and non-loopback copy of 15178 * the BROADCAST ire corresponding to ill and addr. Used to 15179 * group broadcast ires together when ill becomes part of 15180 * a group. 15181 * 15182 * This function is also called when ill is leaving the group 15183 * so that the ires belonging to the group gets re-grouped. 15184 */ 15185 static void 15186 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15187 { 15188 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15189 ire_t **ire_ptpn = &ire_head; 15190 ip_stack_t *ipst = ill->ill_ipst; 15191 15192 /* 15193 * The loopback and non-loopback IREs are inserted in the order in which 15194 * they're found, on the basis that they are correctly ordered (loopback 15195 * first). 15196 */ 15197 for (;;) { 15198 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15199 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15200 if (ire == NULL) 15201 break; 15202 15203 /* 15204 * we are passing in KM_SLEEP because it is not easy to 15205 * go back to a sane state in case of memory failure. 15206 */ 15207 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15208 ASSERT(nire != NULL); 15209 bzero(nire, sizeof (ire_t)); 15210 /* 15211 * Don't use ire_max_frag directly since we don't 15212 * hold on to 'ire' until we add the new ire 'nire' and 15213 * we don't want the new ire to have a dangling reference 15214 * to 'ire'. The ire_max_frag of a broadcast ire must 15215 * be in sync with the ipif_mtu of the associate ipif. 15216 * For eg. this happens as a result of SIOCSLIFNAME, 15217 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15218 * the driver. A change in ire_max_frag triggered as 15219 * as a result of path mtu discovery, or due to an 15220 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15221 * route change -mtu command does not apply to broadcast ires. 15222 * 15223 * XXX We need a recovery strategy here if ire_init fails 15224 */ 15225 if (ire_init(nire, 15226 (uchar_t *)&ire->ire_addr, 15227 (uchar_t *)&ire->ire_mask, 15228 (uchar_t *)&ire->ire_src_addr, 15229 (uchar_t *)&ire->ire_gateway_addr, 15230 (uchar_t *)&ire->ire_in_src_addr, 15231 ire->ire_stq == NULL ? &ip_loopback_mtu : 15232 &ire->ire_ipif->ipif_mtu, 15233 ire->ire_nce, 15234 ire->ire_rfq, 15235 ire->ire_stq, 15236 ire->ire_type, 15237 ire->ire_ipif, 15238 ire->ire_in_ill, 15239 ire->ire_cmask, 15240 ire->ire_phandle, 15241 ire->ire_ihandle, 15242 ire->ire_flags, 15243 &ire->ire_uinfo, 15244 NULL, 15245 NULL, 15246 ipst) == NULL) { 15247 cmn_err(CE_PANIC, "ire_init() failed"); 15248 } 15249 ire_delete(ire); 15250 ire_refrele(ire); 15251 15252 /* 15253 * The newly created IREs are inserted at the tail of the list 15254 * starting with ire_head. As we've just allocated them no one 15255 * knows about them so it's safe. 15256 */ 15257 *ire_ptpn = nire; 15258 ire_ptpn = &nire->ire_next; 15259 } 15260 15261 for (nire = ire_head; nire != NULL; nire = nire_next) { 15262 int error; 15263 ire_t *oire; 15264 /* unlink the IRE from our list before calling ire_add() */ 15265 nire_next = nire->ire_next; 15266 nire->ire_next = NULL; 15267 15268 /* ire_add adds the ire at the right place in the list */ 15269 oire = nire; 15270 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15271 ASSERT(error == 0); 15272 ASSERT(oire == nire); 15273 ire_refrele(nire); /* Held in ire_add */ 15274 } 15275 } 15276 15277 /* 15278 * This function is usually called when an ill is inserted in 15279 * a group and all the ipifs are already UP. As all the ipifs 15280 * are already UP, the broadcast ires have already been created 15281 * and been inserted. But, ire_add_v4 would not have grouped properly. 15282 * We need to re-group for the benefit of ip_wput_ire which 15283 * expects BROADCAST ires to be grouped properly to avoid sending 15284 * more than one copy of the broadcast packet per group. 15285 * 15286 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15287 * because when ipif_up_done ends up calling this, ires have 15288 * already been added before illgrp_insert i.e before ill_group 15289 * has been initialized. 15290 */ 15291 static void 15292 ill_group_bcast_for_xmit(ill_t *ill) 15293 { 15294 ill_group_t *illgrp; 15295 ipif_t *ipif; 15296 ipaddr_t addr; 15297 ipaddr_t net_mask; 15298 ipaddr_t subnet_netmask; 15299 15300 illgrp = ill->ill_group; 15301 15302 /* 15303 * This function is called even when an ill is deleted from 15304 * the group. Hence, illgrp could be null. 15305 */ 15306 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15307 return; 15308 15309 /* 15310 * Delete all the BROADCAST ires matching this ill and add 15311 * them back. This time, ire_add_v4 should take care of 15312 * grouping them with others because ill is part of the 15313 * group. 15314 */ 15315 ill_bcast_delete_and_add(ill, 0); 15316 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15317 15318 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15319 15320 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15321 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15322 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15323 } else { 15324 net_mask = htonl(IN_CLASSA_NET); 15325 } 15326 addr = net_mask & ipif->ipif_subnet; 15327 ill_bcast_delete_and_add(ill, addr); 15328 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15329 15330 subnet_netmask = ipif->ipif_net_mask; 15331 addr = ipif->ipif_subnet; 15332 ill_bcast_delete_and_add(ill, addr); 15333 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15334 } 15335 } 15336 15337 /* 15338 * This function is called from illgrp_delete when ill is being deleted 15339 * from the group. 15340 * 15341 * As ill is not there in the group anymore, any address belonging 15342 * to this ill should be cleared of IRE_MARK_NORECV. 15343 */ 15344 static void 15345 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15346 { 15347 ire_t *ire; 15348 irb_t *irb; 15349 ip_stack_t *ipst = ill->ill_ipst; 15350 15351 ASSERT(ill->ill_group == NULL); 15352 15353 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15354 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15355 15356 if (ire != NULL) { 15357 /* 15358 * IPMP and plumbing operations are serialized on the ipsq, so 15359 * no one will insert or delete a broadcast ire under our feet. 15360 */ 15361 irb = ire->ire_bucket; 15362 rw_enter(&irb->irb_lock, RW_READER); 15363 ire_refrele(ire); 15364 15365 for (; ire != NULL; ire = ire->ire_next) { 15366 if (ire->ire_addr != addr) 15367 break; 15368 if (ire_to_ill(ire) != ill) 15369 continue; 15370 15371 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15372 ire->ire_marks &= ~IRE_MARK_NORECV; 15373 } 15374 rw_exit(&irb->irb_lock); 15375 } 15376 } 15377 15378 /* 15379 * This function must be called only after the broadcast ires 15380 * have been grouped together. For a given address addr, nominate 15381 * only one of the ires whose interface is not FAILED or OFFLINE. 15382 * 15383 * This is also called when an ipif goes down, so that we can nominate 15384 * a different ire with the same address for receiving. 15385 */ 15386 static void 15387 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15388 { 15389 irb_t *irb; 15390 ire_t *ire; 15391 ire_t *ire1; 15392 ire_t *save_ire; 15393 ire_t **irep = NULL; 15394 boolean_t first = B_TRUE; 15395 ire_t *clear_ire = NULL; 15396 ire_t *start_ire = NULL; 15397 ire_t *new_lb_ire; 15398 ire_t *new_nlb_ire; 15399 boolean_t new_lb_ire_used = B_FALSE; 15400 boolean_t new_nlb_ire_used = B_FALSE; 15401 uint64_t match_flags; 15402 uint64_t phyi_flags; 15403 boolean_t fallback = B_FALSE; 15404 uint_t max_frag; 15405 15406 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15407 NULL, MATCH_IRE_TYPE, ipst); 15408 /* 15409 * We may not be able to find some ires if a previous 15410 * ire_create failed. This happens when an ipif goes 15411 * down and we are unable to create BROADCAST ires due 15412 * to memory failure. Thus, we have to check for NULL 15413 * below. This should handle the case for LOOPBACK, 15414 * POINTOPOINT and interfaces with some POINTOPOINT 15415 * logicals for which there are no BROADCAST ires. 15416 */ 15417 if (ire == NULL) 15418 return; 15419 /* 15420 * Currently IRE_BROADCASTS are deleted when an ipif 15421 * goes down which runs exclusively. Thus, setting 15422 * IRE_MARK_RCVD should not race with ire_delete marking 15423 * IRE_MARK_CONDEMNED. We grab the lock below just to 15424 * be consistent with other parts of the code that walks 15425 * a given bucket. 15426 */ 15427 save_ire = ire; 15428 irb = ire->ire_bucket; 15429 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15430 if (new_lb_ire == NULL) { 15431 ire_refrele(ire); 15432 return; 15433 } 15434 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15435 if (new_nlb_ire == NULL) { 15436 ire_refrele(ire); 15437 kmem_cache_free(ire_cache, new_lb_ire); 15438 return; 15439 } 15440 IRB_REFHOLD(irb); 15441 rw_enter(&irb->irb_lock, RW_WRITER); 15442 /* 15443 * Get to the first ire matching the address and the 15444 * group. If the address does not match we are done 15445 * as we could not find the IRE. If the address matches 15446 * we should get to the first one matching the group. 15447 */ 15448 while (ire != NULL) { 15449 if (ire->ire_addr != addr || 15450 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15451 break; 15452 } 15453 ire = ire->ire_next; 15454 } 15455 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15456 start_ire = ire; 15457 redo: 15458 while (ire != NULL && ire->ire_addr == addr && 15459 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15460 /* 15461 * The first ire for any address within a group 15462 * should always be the one with IRE_MARK_NORECV cleared 15463 * so that ip_wput_ire can avoid searching for one. 15464 * Note down the insertion point which will be used 15465 * later. 15466 */ 15467 if (first && (irep == NULL)) 15468 irep = ire->ire_ptpn; 15469 /* 15470 * PHYI_FAILED is set when the interface fails. 15471 * This interface might have become good, but the 15472 * daemon has not yet detected. We should still 15473 * not receive on this. PHYI_OFFLINE should never 15474 * be picked as this has been offlined and soon 15475 * be removed. 15476 */ 15477 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15478 if (phyi_flags & PHYI_OFFLINE) { 15479 ire->ire_marks |= IRE_MARK_NORECV; 15480 ire = ire->ire_next; 15481 continue; 15482 } 15483 if (phyi_flags & match_flags) { 15484 ire->ire_marks |= IRE_MARK_NORECV; 15485 ire = ire->ire_next; 15486 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15487 PHYI_INACTIVE) { 15488 fallback = B_TRUE; 15489 } 15490 continue; 15491 } 15492 if (first) { 15493 /* 15494 * We will move this to the front of the list later 15495 * on. 15496 */ 15497 clear_ire = ire; 15498 ire->ire_marks &= ~IRE_MARK_NORECV; 15499 } else { 15500 ire->ire_marks |= IRE_MARK_NORECV; 15501 } 15502 first = B_FALSE; 15503 ire = ire->ire_next; 15504 } 15505 /* 15506 * If we never nominated anybody, try nominating at least 15507 * an INACTIVE, if we found one. Do it only once though. 15508 */ 15509 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15510 fallback) { 15511 match_flags = PHYI_FAILED; 15512 ire = start_ire; 15513 irep = NULL; 15514 goto redo; 15515 } 15516 ire_refrele(save_ire); 15517 15518 /* 15519 * irep non-NULL indicates that we entered the while loop 15520 * above. If clear_ire is at the insertion point, we don't 15521 * have to do anything. clear_ire will be NULL if all the 15522 * interfaces are failed. 15523 * 15524 * We cannot unlink and reinsert the ire at the right place 15525 * in the list since there can be other walkers of this bucket. 15526 * Instead we delete and recreate the ire 15527 */ 15528 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15529 ire_t *clear_ire_stq = NULL; 15530 15531 bzero(new_lb_ire, sizeof (ire_t)); 15532 /* XXX We need a recovery strategy here. */ 15533 if (ire_init(new_lb_ire, 15534 (uchar_t *)&clear_ire->ire_addr, 15535 (uchar_t *)&clear_ire->ire_mask, 15536 (uchar_t *)&clear_ire->ire_src_addr, 15537 (uchar_t *)&clear_ire->ire_gateway_addr, 15538 (uchar_t *)&clear_ire->ire_in_src_addr, 15539 &clear_ire->ire_max_frag, 15540 NULL, /* let ire_nce_init derive the resolver info */ 15541 clear_ire->ire_rfq, 15542 clear_ire->ire_stq, 15543 clear_ire->ire_type, 15544 clear_ire->ire_ipif, 15545 clear_ire->ire_in_ill, 15546 clear_ire->ire_cmask, 15547 clear_ire->ire_phandle, 15548 clear_ire->ire_ihandle, 15549 clear_ire->ire_flags, 15550 &clear_ire->ire_uinfo, 15551 NULL, 15552 NULL, 15553 ipst) == NULL) 15554 cmn_err(CE_PANIC, "ire_init() failed"); 15555 if (clear_ire->ire_stq == NULL) { 15556 ire_t *ire_next = clear_ire->ire_next; 15557 if (ire_next != NULL && 15558 ire_next->ire_stq != NULL && 15559 ire_next->ire_addr == clear_ire->ire_addr && 15560 ire_next->ire_ipif->ipif_ill == 15561 clear_ire->ire_ipif->ipif_ill) { 15562 clear_ire_stq = ire_next; 15563 15564 bzero(new_nlb_ire, sizeof (ire_t)); 15565 /* XXX We need a recovery strategy here. */ 15566 if (ire_init(new_nlb_ire, 15567 (uchar_t *)&clear_ire_stq->ire_addr, 15568 (uchar_t *)&clear_ire_stq->ire_mask, 15569 (uchar_t *)&clear_ire_stq->ire_src_addr, 15570 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15571 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15572 &clear_ire_stq->ire_max_frag, 15573 NULL, 15574 clear_ire_stq->ire_rfq, 15575 clear_ire_stq->ire_stq, 15576 clear_ire_stq->ire_type, 15577 clear_ire_stq->ire_ipif, 15578 clear_ire_stq->ire_in_ill, 15579 clear_ire_stq->ire_cmask, 15580 clear_ire_stq->ire_phandle, 15581 clear_ire_stq->ire_ihandle, 15582 clear_ire_stq->ire_flags, 15583 &clear_ire_stq->ire_uinfo, 15584 NULL, 15585 NULL, 15586 ipst) == NULL) 15587 cmn_err(CE_PANIC, "ire_init() failed"); 15588 } 15589 } 15590 15591 /* 15592 * Delete the ire. We can't call ire_delete() since 15593 * we are holding the bucket lock. We can't release the 15594 * bucket lock since we can't allow irep to change. So just 15595 * mark it CONDEMNED. The IRB_REFRELE will delete the 15596 * ire from the list and do the refrele. 15597 */ 15598 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15599 irb->irb_marks |= IRB_MARK_CONDEMNED; 15600 15601 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15602 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15603 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15604 } 15605 15606 /* 15607 * Also take care of otherfields like ib/ob pkt count 15608 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15609 */ 15610 15611 /* Set the max_frag before adding the ire */ 15612 max_frag = *new_lb_ire->ire_max_fragp; 15613 new_lb_ire->ire_max_fragp = NULL; 15614 new_lb_ire->ire_max_frag = max_frag; 15615 15616 /* Add the new ire's. Insert at *irep */ 15617 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15618 ire1 = *irep; 15619 if (ire1 != NULL) 15620 ire1->ire_ptpn = &new_lb_ire->ire_next; 15621 new_lb_ire->ire_next = ire1; 15622 /* Link the new one in. */ 15623 new_lb_ire->ire_ptpn = irep; 15624 membar_producer(); 15625 *irep = new_lb_ire; 15626 new_lb_ire_used = B_TRUE; 15627 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15628 new_lb_ire->ire_bucket->irb_ire_cnt++; 15629 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15630 15631 if (clear_ire_stq != NULL) { 15632 /* Set the max_frag before adding the ire */ 15633 max_frag = *new_nlb_ire->ire_max_fragp; 15634 new_nlb_ire->ire_max_fragp = NULL; 15635 new_nlb_ire->ire_max_frag = max_frag; 15636 15637 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15638 irep = &new_lb_ire->ire_next; 15639 /* Add the new ire. Insert at *irep */ 15640 ire1 = *irep; 15641 if (ire1 != NULL) 15642 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15643 new_nlb_ire->ire_next = ire1; 15644 /* Link the new one in. */ 15645 new_nlb_ire->ire_ptpn = irep; 15646 membar_producer(); 15647 *irep = new_nlb_ire; 15648 new_nlb_ire_used = B_TRUE; 15649 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15650 ire_stats_inserted); 15651 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15652 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15653 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15654 } 15655 } 15656 rw_exit(&irb->irb_lock); 15657 if (!new_lb_ire_used) 15658 kmem_cache_free(ire_cache, new_lb_ire); 15659 if (!new_nlb_ire_used) 15660 kmem_cache_free(ire_cache, new_nlb_ire); 15661 IRB_REFRELE(irb); 15662 } 15663 15664 /* 15665 * Whenever an ipif goes down we have to renominate a different 15666 * broadcast ire to receive. Whenever an ipif comes up, we need 15667 * to make sure that we have only one nominated to receive. 15668 */ 15669 static void 15670 ipif_renominate_bcast(ipif_t *ipif) 15671 { 15672 ill_t *ill = ipif->ipif_ill; 15673 ipaddr_t subnet_addr; 15674 ipaddr_t net_addr; 15675 ipaddr_t net_mask = 0; 15676 ipaddr_t subnet_netmask; 15677 ipaddr_t addr; 15678 ill_group_t *illgrp; 15679 ip_stack_t *ipst = ill->ill_ipst; 15680 15681 illgrp = ill->ill_group; 15682 /* 15683 * If this is the last ipif going down, it might take 15684 * the ill out of the group. In that case ipif_down -> 15685 * illgrp_delete takes care of doing the nomination. 15686 * ipif_down does not call for this case. 15687 */ 15688 ASSERT(illgrp != NULL); 15689 15690 /* There could not have been any ires associated with this */ 15691 if (ipif->ipif_subnet == 0) 15692 return; 15693 15694 ill_mark_bcast(illgrp, 0, ipst); 15695 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15696 15697 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15698 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15699 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15700 } else { 15701 net_mask = htonl(IN_CLASSA_NET); 15702 } 15703 addr = net_mask & ipif->ipif_subnet; 15704 ill_mark_bcast(illgrp, addr, ipst); 15705 15706 net_addr = ~net_mask | addr; 15707 ill_mark_bcast(illgrp, net_addr, ipst); 15708 15709 subnet_netmask = ipif->ipif_net_mask; 15710 addr = ipif->ipif_subnet; 15711 ill_mark_bcast(illgrp, addr, ipst); 15712 15713 subnet_addr = ~subnet_netmask | addr; 15714 ill_mark_bcast(illgrp, subnet_addr, ipst); 15715 } 15716 15717 /* 15718 * Whenever we form or delete ill groups, we need to nominate one set of 15719 * BROADCAST ires for receiving in the group. 15720 * 15721 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15722 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15723 * for ill_ipif_up_count to be non-zero. This is the only case where 15724 * ill_ipif_up_count is zero and we would still find the ires. 15725 * 15726 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15727 * ipif is UP and we just have to do the nomination. 15728 * 15729 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15730 * from the group. So, we have to do the nomination. 15731 * 15732 * Because of (3), there could be just one ill in the group. But we have 15733 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15734 * Thus, this function does not optimize when there is only one ill as 15735 * it is not correct for (3). 15736 */ 15737 static void 15738 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15739 { 15740 ill_t *ill; 15741 ipif_t *ipif; 15742 ipaddr_t subnet_addr; 15743 ipaddr_t prev_subnet_addr = 0; 15744 ipaddr_t net_addr; 15745 ipaddr_t prev_net_addr = 0; 15746 ipaddr_t net_mask = 0; 15747 ipaddr_t subnet_netmask; 15748 ipaddr_t addr; 15749 ip_stack_t *ipst; 15750 15751 /* 15752 * When the last memeber is leaving, there is nothing to 15753 * nominate. 15754 */ 15755 if (illgrp->illgrp_ill_count == 0) { 15756 ASSERT(illgrp->illgrp_ill == NULL); 15757 return; 15758 } 15759 15760 ill = illgrp->illgrp_ill; 15761 ASSERT(!ill->ill_isv6); 15762 ipst = ill->ill_ipst; 15763 /* 15764 * We assume that ires with same address and belonging to the 15765 * same group, has been grouped together. Nominating a *single* 15766 * ill in the group for sending and receiving broadcast is done 15767 * by making sure that the first BROADCAST ire (which will be 15768 * the one returned by ire_ctable_lookup for ip_rput and the 15769 * one that will be used in ip_wput_ire) will be the one that 15770 * will not have IRE_MARK_NORECV set. 15771 * 15772 * 1) ip_rput checks and discards packets received on ires marked 15773 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15774 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15775 * first ire in the group for every broadcast address in the group. 15776 * ip_rput will accept packets only on the first ire i.e only 15777 * one copy of the ill. 15778 * 15779 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15780 * packet for the whole group. It needs to send out on the ill 15781 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15782 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15783 * the copy echoed back on other port where the ire is not marked 15784 * with IRE_MARK_NORECV. 15785 * 15786 * Note that we just need to have the first IRE either loopback or 15787 * non-loopback (either of them may not exist if ire_create failed 15788 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15789 * always hit the first one and hence will always accept one copy. 15790 * 15791 * We have a broadcast ire per ill for all the unique prefixes 15792 * hosted on that ill. As we don't have a way of knowing the 15793 * unique prefixes on a given ill and hence in the whole group, 15794 * we just call ill_mark_bcast on all the prefixes that exist 15795 * in the group. For the common case of one prefix, the code 15796 * below optimizes by remebering the last address used for 15797 * markng. In the case of multiple prefixes, this will still 15798 * optimize depending the order of prefixes. 15799 * 15800 * The only unique address across the whole group is 0.0.0.0 and 15801 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15802 * the first ire in the bucket for receiving and disables the 15803 * others. 15804 */ 15805 ill_mark_bcast(illgrp, 0, ipst); 15806 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15807 for (; ill != NULL; ill = ill->ill_group_next) { 15808 15809 for (ipif = ill->ill_ipif; ipif != NULL; 15810 ipif = ipif->ipif_next) { 15811 15812 if (!(ipif->ipif_flags & IPIF_UP) || 15813 ipif->ipif_subnet == 0) { 15814 continue; 15815 } 15816 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15817 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15818 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15819 } else { 15820 net_mask = htonl(IN_CLASSA_NET); 15821 } 15822 addr = net_mask & ipif->ipif_subnet; 15823 if (prev_net_addr == 0 || prev_net_addr != addr) { 15824 ill_mark_bcast(illgrp, addr, ipst); 15825 net_addr = ~net_mask | addr; 15826 ill_mark_bcast(illgrp, net_addr, ipst); 15827 } 15828 prev_net_addr = addr; 15829 15830 subnet_netmask = ipif->ipif_net_mask; 15831 addr = ipif->ipif_subnet; 15832 if (prev_subnet_addr == 0 || 15833 prev_subnet_addr != addr) { 15834 ill_mark_bcast(illgrp, addr, ipst); 15835 subnet_addr = ~subnet_netmask | addr; 15836 ill_mark_bcast(illgrp, subnet_addr, ipst); 15837 } 15838 prev_subnet_addr = addr; 15839 } 15840 } 15841 } 15842 15843 /* 15844 * This function is called while forming ill groups. 15845 * 15846 * Currently, we handle only allmulti groups. We want to join 15847 * allmulti on only one of the ills in the groups. In future, 15848 * when we have link aggregation, we may have to join normal 15849 * multicast groups on multiple ills as switch does inbound load 15850 * balancing. Following are the functions that calls this 15851 * function : 15852 * 15853 * 1) ill_recover_multicast : Interface is coming back UP. 15854 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15855 * will call ill_recover_multicast to recover all the multicast 15856 * groups. We need to make sure that only one member is joined 15857 * in the ill group. 15858 * 15859 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15860 * Somebody is joining allmulti. We need to make sure that only one 15861 * member is joined in the group. 15862 * 15863 * 3) illgrp_insert : If allmulti has already joined, we need to make 15864 * sure that only one member is joined in the group. 15865 * 15866 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15867 * allmulti who we have nominated. We need to pick someother ill. 15868 * 15869 * 5) illgrp_delete : The ill we nominated is leaving the group, 15870 * we need to pick a new ill to join the group. 15871 * 15872 * For (1), (2), (5) - we just have to check whether there is 15873 * a good ill joined in the group. If we could not find any ills 15874 * joined the group, we should join. 15875 * 15876 * For (4), the one that was nominated to receive, left the group. 15877 * There could be nobody joined in the group when this function is 15878 * called. 15879 * 15880 * For (3) - we need to explicitly check whether there are multiple 15881 * ills joined in the group. 15882 * 15883 * For simplicity, we don't differentiate any of the above cases. We 15884 * just leave the group if it is joined on any of them and join on 15885 * the first good ill. 15886 */ 15887 int 15888 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15889 { 15890 ilm_t *ilm; 15891 ill_t *ill; 15892 ill_t *fallback_inactive_ill = NULL; 15893 ill_t *fallback_failed_ill = NULL; 15894 int ret = 0; 15895 15896 /* 15897 * Leave the allmulti on all the ills and start fresh. 15898 */ 15899 for (ill = illgrp->illgrp_ill; ill != NULL; 15900 ill = ill->ill_group_next) { 15901 if (ill->ill_join_allmulti) 15902 (void) ip_leave_allmulti(ill->ill_ipif); 15903 } 15904 15905 /* 15906 * Choose a good ill. Fallback to inactive or failed if 15907 * none available. We need to fallback to FAILED in the 15908 * case where we have 2 interfaces in a group - where 15909 * one of them is failed and another is a good one and 15910 * the good one (not marked inactive) is leaving the group. 15911 */ 15912 ret = 0; 15913 for (ill = illgrp->illgrp_ill; ill != NULL; 15914 ill = ill->ill_group_next) { 15915 /* Never pick an offline interface */ 15916 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15917 continue; 15918 15919 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15920 fallback_failed_ill = ill; 15921 continue; 15922 } 15923 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15924 fallback_inactive_ill = ill; 15925 continue; 15926 } 15927 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15928 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15929 ret = ip_join_allmulti(ill->ill_ipif); 15930 /* 15931 * ip_join_allmulti can fail because of memory 15932 * failures. So, make sure we join at least 15933 * on one ill. 15934 */ 15935 if (ill->ill_join_allmulti) 15936 return (0); 15937 } 15938 } 15939 } 15940 if (ret != 0) { 15941 /* 15942 * If we tried nominating above and failed to do so, 15943 * return error. We might have tried multiple times. 15944 * But, return the latest error. 15945 */ 15946 return (ret); 15947 } 15948 if ((ill = fallback_inactive_ill) != NULL) { 15949 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15950 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15951 ret = ip_join_allmulti(ill->ill_ipif); 15952 return (ret); 15953 } 15954 } 15955 } else if ((ill = fallback_failed_ill) != NULL) { 15956 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15957 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15958 ret = ip_join_allmulti(ill->ill_ipif); 15959 return (ret); 15960 } 15961 } 15962 } 15963 return (0); 15964 } 15965 15966 /* 15967 * This function is called from illgrp_delete after it is 15968 * deleted from the group to reschedule responsibilities 15969 * to a different ill. 15970 */ 15971 static void 15972 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15973 { 15974 ilm_t *ilm; 15975 ipif_t *ipif; 15976 ipaddr_t subnet_addr; 15977 ipaddr_t net_addr; 15978 ipaddr_t net_mask = 0; 15979 ipaddr_t subnet_netmask; 15980 ipaddr_t addr; 15981 ip_stack_t *ipst = ill->ill_ipst; 15982 15983 ASSERT(ill->ill_group == NULL); 15984 /* 15985 * Broadcast Responsibility: 15986 * 15987 * 1. If this ill has been nominated for receiving broadcast 15988 * packets, we need to find a new one. Before we find a new 15989 * one, we need to re-group the ires that are part of this new 15990 * group (assumed by ill_nominate_bcast_rcv). We do this by 15991 * calling ill_group_bcast_for_xmit(ill) which will do the right 15992 * thing for us. 15993 * 15994 * 2. If this ill was not nominated for receiving broadcast 15995 * packets, we need to clear the IRE_MARK_NORECV flag 15996 * so that we continue to send up broadcast packets. 15997 */ 15998 if (!ill->ill_isv6) { 15999 /* 16000 * Case 1 above : No optimization here. Just redo the 16001 * nomination. 16002 */ 16003 ill_group_bcast_for_xmit(ill); 16004 ill_nominate_bcast_rcv(illgrp); 16005 16006 /* 16007 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16008 */ 16009 ill_clear_bcast_mark(ill, 0); 16010 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16011 16012 for (ipif = ill->ill_ipif; ipif != NULL; 16013 ipif = ipif->ipif_next) { 16014 16015 if (!(ipif->ipif_flags & IPIF_UP) || 16016 ipif->ipif_subnet == 0) { 16017 continue; 16018 } 16019 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16020 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16021 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16022 } else { 16023 net_mask = htonl(IN_CLASSA_NET); 16024 } 16025 addr = net_mask & ipif->ipif_subnet; 16026 ill_clear_bcast_mark(ill, addr); 16027 16028 net_addr = ~net_mask | addr; 16029 ill_clear_bcast_mark(ill, net_addr); 16030 16031 subnet_netmask = ipif->ipif_net_mask; 16032 addr = ipif->ipif_subnet; 16033 ill_clear_bcast_mark(ill, addr); 16034 16035 subnet_addr = ~subnet_netmask | addr; 16036 ill_clear_bcast_mark(ill, subnet_addr); 16037 } 16038 } 16039 16040 /* 16041 * Multicast Responsibility. 16042 * 16043 * If we have joined allmulti on this one, find a new member 16044 * in the group to join allmulti. As this ill is already part 16045 * of allmulti, we don't have to join on this one. 16046 * 16047 * If we have not joined allmulti on this one, there is no 16048 * responsibility to handoff. But we need to take new 16049 * responsibility i.e, join allmulti on this one if we need 16050 * to. 16051 */ 16052 if (ill->ill_join_allmulti) { 16053 (void) ill_nominate_mcast_rcv(illgrp); 16054 } else { 16055 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16056 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16057 (void) ip_join_allmulti(ill->ill_ipif); 16058 break; 16059 } 16060 } 16061 } 16062 16063 /* 16064 * We intentionally do the flushing of IRE_CACHES only matching 16065 * on the ill and not on groups. Note that we are already deleted 16066 * from the group. 16067 * 16068 * This will make sure that all IRE_CACHES whose stq is pointing 16069 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16070 * deleted and IRE_CACHES that are not pointing at this ill will 16071 * be left alone. 16072 */ 16073 if (ill->ill_isv6) { 16074 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16075 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16076 } else { 16077 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16078 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16079 } 16080 16081 /* 16082 * Some conn may have cached one of the IREs deleted above. By removing 16083 * the ire reference, we clean up the extra reference to the ill held in 16084 * ire->ire_stq. 16085 */ 16086 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16087 16088 /* 16089 * Re-do source address selection for all the members in the 16090 * group, if they borrowed source address from one of the ipifs 16091 * in this ill. 16092 */ 16093 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16094 if (ill->ill_isv6) { 16095 ipif_update_other_ipifs_v6(ipif, illgrp); 16096 } else { 16097 ipif_update_other_ipifs(ipif, illgrp); 16098 } 16099 } 16100 } 16101 16102 /* 16103 * Delete the ill from the group. The caller makes sure that it is 16104 * in a group and it okay to delete from the group. So, we always 16105 * delete here. 16106 */ 16107 static void 16108 illgrp_delete(ill_t *ill) 16109 { 16110 ill_group_t *illgrp; 16111 ill_group_t *tmpg; 16112 ill_t *tmp_ill; 16113 ip_stack_t *ipst = ill->ill_ipst; 16114 16115 /* 16116 * Reset illgrp_ill_schednext if it was pointing at us. 16117 * We need to do this before we set ill_group to NULL. 16118 */ 16119 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16120 mutex_enter(&ill->ill_lock); 16121 16122 illgrp_reset_schednext(ill); 16123 16124 illgrp = ill->ill_group; 16125 16126 /* Delete the ill from illgrp. */ 16127 if (illgrp->illgrp_ill == ill) { 16128 illgrp->illgrp_ill = ill->ill_group_next; 16129 } else { 16130 tmp_ill = illgrp->illgrp_ill; 16131 while (tmp_ill->ill_group_next != ill) { 16132 tmp_ill = tmp_ill->ill_group_next; 16133 ASSERT(tmp_ill != NULL); 16134 } 16135 tmp_ill->ill_group_next = ill->ill_group_next; 16136 } 16137 ill->ill_group = NULL; 16138 ill->ill_group_next = NULL; 16139 16140 illgrp->illgrp_ill_count--; 16141 mutex_exit(&ill->ill_lock); 16142 rw_exit(&ipst->ips_ill_g_lock); 16143 16144 /* 16145 * As this ill is leaving the group, we need to hand off 16146 * the responsibilities to the other ills in the group, if 16147 * this ill had some responsibilities. 16148 */ 16149 16150 ill_handoff_responsibility(ill, illgrp); 16151 16152 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16153 16154 if (illgrp->illgrp_ill_count == 0) { 16155 16156 ASSERT(illgrp->illgrp_ill == NULL); 16157 if (ill->ill_isv6) { 16158 if (illgrp == ipst->ips_illgrp_head_v6) { 16159 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16160 } else { 16161 tmpg = ipst->ips_illgrp_head_v6; 16162 while (tmpg->illgrp_next != illgrp) { 16163 tmpg = tmpg->illgrp_next; 16164 ASSERT(tmpg != NULL); 16165 } 16166 tmpg->illgrp_next = illgrp->illgrp_next; 16167 } 16168 } else { 16169 if (illgrp == ipst->ips_illgrp_head_v4) { 16170 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16171 } else { 16172 tmpg = ipst->ips_illgrp_head_v4; 16173 while (tmpg->illgrp_next != illgrp) { 16174 tmpg = tmpg->illgrp_next; 16175 ASSERT(tmpg != NULL); 16176 } 16177 tmpg->illgrp_next = illgrp->illgrp_next; 16178 } 16179 } 16180 mutex_destroy(&illgrp->illgrp_lock); 16181 mi_free(illgrp); 16182 } 16183 rw_exit(&ipst->ips_ill_g_lock); 16184 16185 /* 16186 * Even though the ill is out of the group its not necessary 16187 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16188 * We will split the ipsq when phyint_groupname is set to NULL. 16189 */ 16190 16191 /* 16192 * Send a routing sockets message if we are deleting from 16193 * groups with names. 16194 */ 16195 if (ill->ill_phyint->phyint_groupname_len != 0) 16196 ip_rts_ifmsg(ill->ill_ipif); 16197 } 16198 16199 /* 16200 * Re-do source address selection. This is normally called when 16201 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16202 * ipif comes up. 16203 */ 16204 void 16205 ill_update_source_selection(ill_t *ill) 16206 { 16207 ipif_t *ipif; 16208 16209 ASSERT(IAM_WRITER_ILL(ill)); 16210 16211 if (ill->ill_group != NULL) 16212 ill = ill->ill_group->illgrp_ill; 16213 16214 for (; ill != NULL; ill = ill->ill_group_next) { 16215 for (ipif = ill->ill_ipif; ipif != NULL; 16216 ipif = ipif->ipif_next) { 16217 if (ill->ill_isv6) 16218 ipif_recreate_interface_routes_v6(NULL, ipif); 16219 else 16220 ipif_recreate_interface_routes(NULL, ipif); 16221 } 16222 } 16223 } 16224 16225 /* 16226 * Insert ill in a group headed by illgrp_head. The caller can either 16227 * pass a groupname in which case we search for a group with the 16228 * same name to insert in or pass a group to insert in. This function 16229 * would only search groups with names. 16230 * 16231 * NOTE : The caller should make sure that there is at least one ipif 16232 * UP on this ill so that illgrp_scheduler can pick this ill 16233 * for outbound packets. If ill_ipif_up_count is zero, we have 16234 * already sent a DL_UNBIND to the driver and we don't want to 16235 * send anymore packets. We don't assert for ipif_up_count 16236 * to be greater than zero, because ipif_up_done wants to call 16237 * this function before bumping up the ipif_up_count. See 16238 * ipif_up_done() for details. 16239 */ 16240 int 16241 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16242 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16243 { 16244 ill_group_t *illgrp; 16245 ill_t *prev_ill; 16246 phyint_t *phyi; 16247 ip_stack_t *ipst = ill->ill_ipst; 16248 16249 ASSERT(ill->ill_group == NULL); 16250 16251 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16252 mutex_enter(&ill->ill_lock); 16253 16254 if (groupname != NULL) { 16255 /* 16256 * Look for a group with a matching groupname to insert. 16257 */ 16258 for (illgrp = *illgrp_head; illgrp != NULL; 16259 illgrp = illgrp->illgrp_next) { 16260 16261 ill_t *tmp_ill; 16262 16263 /* 16264 * If we have an ill_group_t in the list which has 16265 * no ill_t assigned then we must be in the process of 16266 * removing this group. We skip this as illgrp_delete() 16267 * will remove it from the list. 16268 */ 16269 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16270 ASSERT(illgrp->illgrp_ill_count == 0); 16271 continue; 16272 } 16273 16274 ASSERT(tmp_ill->ill_phyint != NULL); 16275 phyi = tmp_ill->ill_phyint; 16276 /* 16277 * Look at groups which has names only. 16278 */ 16279 if (phyi->phyint_groupname_len == 0) 16280 continue; 16281 /* 16282 * Names are stored in the phyint common to both 16283 * IPv4 and IPv6. 16284 */ 16285 if (mi_strcmp(phyi->phyint_groupname, 16286 groupname) == 0) { 16287 break; 16288 } 16289 } 16290 } else { 16291 /* 16292 * If the caller passes in a NULL "grp_to_insert", we 16293 * allocate one below and insert this singleton. 16294 */ 16295 illgrp = grp_to_insert; 16296 } 16297 16298 ill->ill_group_next = NULL; 16299 16300 if (illgrp == NULL) { 16301 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16302 if (illgrp == NULL) { 16303 return (ENOMEM); 16304 } 16305 illgrp->illgrp_next = *illgrp_head; 16306 *illgrp_head = illgrp; 16307 illgrp->illgrp_ill = ill; 16308 illgrp->illgrp_ill_count = 1; 16309 ill->ill_group = illgrp; 16310 /* 16311 * Used in illgrp_scheduler to protect multiple threads 16312 * from traversing the list. 16313 */ 16314 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16315 } else { 16316 ASSERT(ill->ill_net_type == 16317 illgrp->illgrp_ill->ill_net_type); 16318 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16319 16320 /* Insert ill at tail of this group */ 16321 prev_ill = illgrp->illgrp_ill; 16322 while (prev_ill->ill_group_next != NULL) 16323 prev_ill = prev_ill->ill_group_next; 16324 prev_ill->ill_group_next = ill; 16325 ill->ill_group = illgrp; 16326 illgrp->illgrp_ill_count++; 16327 /* 16328 * Inherit group properties. Currently only forwarding 16329 * is the property we try to keep the same with all the 16330 * ills. When there are more, we will abstract this into 16331 * a function. 16332 */ 16333 ill->ill_flags &= ~ILLF_ROUTER; 16334 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16335 } 16336 mutex_exit(&ill->ill_lock); 16337 rw_exit(&ipst->ips_ill_g_lock); 16338 16339 /* 16340 * 1) When ipif_up_done() calls this function, ipif_up_count 16341 * may be zero as it has not yet been bumped. But the ires 16342 * have already been added. So, we do the nomination here 16343 * itself. But, when ip_sioctl_groupname calls this, it checks 16344 * for ill_ipif_up_count != 0. Thus we don't check for 16345 * ill_ipif_up_count here while nominating broadcast ires for 16346 * receive. 16347 * 16348 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16349 * to group them properly as ire_add() has already happened 16350 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16351 * case, we need to do it here anyway. 16352 */ 16353 if (!ill->ill_isv6) { 16354 ill_group_bcast_for_xmit(ill); 16355 ill_nominate_bcast_rcv(illgrp); 16356 } 16357 16358 if (!ipif_is_coming_up) { 16359 /* 16360 * When ipif_up_done() calls this function, the multicast 16361 * groups have not been joined yet. So, there is no point in 16362 * nomination. ip_join_allmulti will handle groups when 16363 * ill_recover_multicast is called from ipif_up_done() later. 16364 */ 16365 (void) ill_nominate_mcast_rcv(illgrp); 16366 /* 16367 * ipif_up_done calls ill_update_source_selection 16368 * anyway. Moreover, we don't want to re-create 16369 * interface routes while ipif_up_done() still has reference 16370 * to them. Refer to ipif_up_done() for more details. 16371 */ 16372 ill_update_source_selection(ill); 16373 } 16374 16375 /* 16376 * Send a routing sockets message if we are inserting into 16377 * groups with names. 16378 */ 16379 if (groupname != NULL) 16380 ip_rts_ifmsg(ill->ill_ipif); 16381 return (0); 16382 } 16383 16384 /* 16385 * Return the first phyint matching the groupname. There could 16386 * be more than one when there are ill groups. 16387 * 16388 * If 'usable' is set, then we exclude ones that are marked with any of 16389 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16390 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16391 * emulation of ipmp. 16392 */ 16393 phyint_t * 16394 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16395 { 16396 phyint_t *phyi; 16397 16398 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16399 /* 16400 * Group names are stored in the phyint - a common structure 16401 * to both IPv4 and IPv6. 16402 */ 16403 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16404 for (; phyi != NULL; 16405 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16406 phyi, AVL_AFTER)) { 16407 if (phyi->phyint_groupname_len == 0) 16408 continue; 16409 /* 16410 * Skip the ones that should not be used since the callers 16411 * sometime use this for sending packets. 16412 */ 16413 if (usable && (phyi->phyint_flags & 16414 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16415 continue; 16416 16417 ASSERT(phyi->phyint_groupname != NULL); 16418 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16419 return (phyi); 16420 } 16421 return (NULL); 16422 } 16423 16424 16425 /* 16426 * Return the first usable phyint matching the group index. By 'usable' 16427 * we exclude ones that are marked ununsable with any of 16428 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16429 * 16430 * Used only for the ipmp/netinfo emulation of ipmp. 16431 */ 16432 phyint_t * 16433 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16434 { 16435 phyint_t *phyi; 16436 16437 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16438 16439 if (!ipst->ips_ipmp_hook_emulation) 16440 return (NULL); 16441 16442 /* 16443 * Group indicies are stored in the phyint - a common structure 16444 * to both IPv4 and IPv6. 16445 */ 16446 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16447 for (; phyi != NULL; 16448 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16449 phyi, AVL_AFTER)) { 16450 /* Ignore the ones that do not have a group */ 16451 if (phyi->phyint_groupname_len == 0) 16452 continue; 16453 16454 ASSERT(phyi->phyint_group_ifindex != 0); 16455 /* 16456 * Skip the ones that should not be used since the callers 16457 * sometime use this for sending packets. 16458 */ 16459 if (phyi->phyint_flags & 16460 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16461 continue; 16462 if (phyi->phyint_group_ifindex == group_ifindex) 16463 return (phyi); 16464 } 16465 return (NULL); 16466 } 16467 16468 16469 /* 16470 * MT notes on creation and deletion of IPMP groups 16471 * 16472 * Creation and deletion of IPMP groups introduce the need to merge or 16473 * split the associated serialization objects i.e the ipsq's. Normally all 16474 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16475 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16476 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16477 * is a need to change the <ill-ipsq> association and we have to operate on both 16478 * the source and destination IPMP groups. For eg. attempting to set the 16479 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16480 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16481 * source or destination IPMP group are mapped to a single ipsq for executing 16482 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16483 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16484 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16485 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16486 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16487 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16488 * 16489 * In the above example the ioctl handling code locates the current ipsq of hme0 16490 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16491 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16492 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16493 * the destination ipsq. If the destination ipsq is not busy, it also enters 16494 * the destination ipsq exclusively. Now the actual groupname setting operation 16495 * can proceed. If the destination ipsq is busy, the operation is enqueued 16496 * on the destination (merged) ipsq and will be handled in the unwind from 16497 * ipsq_exit. 16498 * 16499 * To prevent other threads accessing the ill while the group name change is 16500 * in progres, we bring down the ipifs which also removes the ill from the 16501 * group. The group is changed in phyint and when the first ipif on the ill 16502 * is brought up, the ill is inserted into the right IPMP group by 16503 * illgrp_insert. 16504 */ 16505 /* ARGSUSED */ 16506 int 16507 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16508 ip_ioctl_cmd_t *ipip, void *ifreq) 16509 { 16510 int i; 16511 char *tmp; 16512 int namelen; 16513 ill_t *ill = ipif->ipif_ill; 16514 ill_t *ill_v4, *ill_v6; 16515 int err = 0; 16516 phyint_t *phyi; 16517 phyint_t *phyi_tmp; 16518 struct lifreq *lifr; 16519 mblk_t *mp1; 16520 char *groupname; 16521 ipsq_t *ipsq; 16522 ip_stack_t *ipst = ill->ill_ipst; 16523 16524 ASSERT(IAM_WRITER_IPIF(ipif)); 16525 16526 /* Existance verified in ip_wput_nondata */ 16527 mp1 = mp->b_cont->b_cont; 16528 lifr = (struct lifreq *)mp1->b_rptr; 16529 groupname = lifr->lifr_groupname; 16530 16531 if (ipif->ipif_id != 0) 16532 return (EINVAL); 16533 16534 phyi = ill->ill_phyint; 16535 ASSERT(phyi != NULL); 16536 16537 if (phyi->phyint_flags & PHYI_VIRTUAL) 16538 return (EINVAL); 16539 16540 tmp = groupname; 16541 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16542 ; 16543 16544 if (i == LIFNAMSIZ) { 16545 /* no null termination */ 16546 return (EINVAL); 16547 } 16548 16549 /* 16550 * Calculate the namelen exclusive of the null 16551 * termination character. 16552 */ 16553 namelen = tmp - groupname; 16554 16555 ill_v4 = phyi->phyint_illv4; 16556 ill_v6 = phyi->phyint_illv6; 16557 16558 /* 16559 * ILL cannot be part of a usesrc group and and IPMP group at the 16560 * same time. No need to grab the ill_g_usesrc_lock here, see 16561 * synchronization notes in ip.c 16562 */ 16563 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16564 return (EINVAL); 16565 } 16566 16567 /* 16568 * mark the ill as changing. 16569 * this should queue all new requests on the syncq. 16570 */ 16571 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16572 16573 if (ill_v4 != NULL) 16574 ill_v4->ill_state_flags |= ILL_CHANGING; 16575 if (ill_v6 != NULL) 16576 ill_v6->ill_state_flags |= ILL_CHANGING; 16577 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16578 16579 if (namelen == 0) { 16580 /* 16581 * Null string means remove this interface from the 16582 * existing group. 16583 */ 16584 if (phyi->phyint_groupname_len == 0) { 16585 /* 16586 * Never was in a group. 16587 */ 16588 err = 0; 16589 goto done; 16590 } 16591 16592 /* 16593 * IPv4 or IPv6 may be temporarily out of the group when all 16594 * the ipifs are down. Thus, we need to check for ill_group to 16595 * be non-NULL. 16596 */ 16597 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16598 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16599 mutex_enter(&ill_v4->ill_lock); 16600 if (!ill_is_quiescent(ill_v4)) { 16601 /* 16602 * ipsq_pending_mp_add will not fail since 16603 * connp is NULL 16604 */ 16605 (void) ipsq_pending_mp_add(NULL, 16606 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16607 mutex_exit(&ill_v4->ill_lock); 16608 err = EINPROGRESS; 16609 goto done; 16610 } 16611 mutex_exit(&ill_v4->ill_lock); 16612 } 16613 16614 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16615 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16616 mutex_enter(&ill_v6->ill_lock); 16617 if (!ill_is_quiescent(ill_v6)) { 16618 (void) ipsq_pending_mp_add(NULL, 16619 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16620 mutex_exit(&ill_v6->ill_lock); 16621 err = EINPROGRESS; 16622 goto done; 16623 } 16624 mutex_exit(&ill_v6->ill_lock); 16625 } 16626 16627 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16628 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16629 mutex_enter(&phyi->phyint_lock); 16630 ASSERT(phyi->phyint_groupname != NULL); 16631 mi_free(phyi->phyint_groupname); 16632 phyi->phyint_groupname = NULL; 16633 phyi->phyint_groupname_len = 0; 16634 16635 /* Restore the ifindex used to be the per interface one */ 16636 phyi->phyint_group_ifindex = 0; 16637 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16638 mutex_exit(&phyi->phyint_lock); 16639 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16640 rw_exit(&ipst->ips_ill_g_lock); 16641 err = ill_up_ipifs(ill, q, mp); 16642 16643 /* 16644 * set the split flag so that the ipsq can be split 16645 */ 16646 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16647 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16648 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16649 16650 } else { 16651 if (phyi->phyint_groupname_len != 0) { 16652 ASSERT(phyi->phyint_groupname != NULL); 16653 /* Are we inserting in the same group ? */ 16654 if (mi_strcmp(groupname, 16655 phyi->phyint_groupname) == 0) { 16656 err = 0; 16657 goto done; 16658 } 16659 } 16660 16661 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16662 /* 16663 * Merge ipsq for the group's. 16664 * This check is here as multiple groups/ills might be 16665 * sharing the same ipsq. 16666 * If we have to merege than the operation is restarted 16667 * on the new ipsq. 16668 */ 16669 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16670 if (phyi->phyint_ipsq != ipsq) { 16671 rw_exit(&ipst->ips_ill_g_lock); 16672 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16673 goto done; 16674 } 16675 /* 16676 * Running exclusive on new ipsq. 16677 */ 16678 16679 ASSERT(ipsq != NULL); 16680 ASSERT(ipsq->ipsq_writer == curthread); 16681 16682 /* 16683 * Check whether the ill_type and ill_net_type matches before 16684 * we allocate any memory so that the cleanup is easier. 16685 * 16686 * We can't group dissimilar ones as we can't load spread 16687 * packets across the group because of potential link-level 16688 * header differences. 16689 */ 16690 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16691 if (phyi_tmp != NULL) { 16692 if ((ill_v4 != NULL && 16693 phyi_tmp->phyint_illv4 != NULL) && 16694 ((ill_v4->ill_net_type != 16695 phyi_tmp->phyint_illv4->ill_net_type) || 16696 (ill_v4->ill_type != 16697 phyi_tmp->phyint_illv4->ill_type))) { 16698 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16699 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16700 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16701 rw_exit(&ipst->ips_ill_g_lock); 16702 return (EINVAL); 16703 } 16704 if ((ill_v6 != NULL && 16705 phyi_tmp->phyint_illv6 != NULL) && 16706 ((ill_v6->ill_net_type != 16707 phyi_tmp->phyint_illv6->ill_net_type) || 16708 (ill_v6->ill_type != 16709 phyi_tmp->phyint_illv6->ill_type))) { 16710 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16711 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16712 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16713 rw_exit(&ipst->ips_ill_g_lock); 16714 return (EINVAL); 16715 } 16716 } 16717 16718 rw_exit(&ipst->ips_ill_g_lock); 16719 16720 /* 16721 * bring down all v4 ipifs. 16722 */ 16723 if (ill_v4 != NULL) { 16724 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16725 } 16726 16727 /* 16728 * bring down all v6 ipifs. 16729 */ 16730 if (ill_v6 != NULL) { 16731 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16732 } 16733 16734 /* 16735 * make sure all ipifs are down and there are no active 16736 * references. Call to ipsq_pending_mp_add will not fail 16737 * since connp is NULL. 16738 */ 16739 if (ill_v4 != NULL) { 16740 mutex_enter(&ill_v4->ill_lock); 16741 if (!ill_is_quiescent(ill_v4)) { 16742 (void) ipsq_pending_mp_add(NULL, 16743 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16744 mutex_exit(&ill_v4->ill_lock); 16745 err = EINPROGRESS; 16746 goto done; 16747 } 16748 mutex_exit(&ill_v4->ill_lock); 16749 } 16750 16751 if (ill_v6 != NULL) { 16752 mutex_enter(&ill_v6->ill_lock); 16753 if (!ill_is_quiescent(ill_v6)) { 16754 (void) ipsq_pending_mp_add(NULL, 16755 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16756 mutex_exit(&ill_v6->ill_lock); 16757 err = EINPROGRESS; 16758 goto done; 16759 } 16760 mutex_exit(&ill_v6->ill_lock); 16761 } 16762 16763 /* 16764 * allocate including space for null terminator 16765 * before we insert. 16766 */ 16767 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16768 if (tmp == NULL) 16769 return (ENOMEM); 16770 16771 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16772 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16773 mutex_enter(&phyi->phyint_lock); 16774 if (phyi->phyint_groupname_len != 0) { 16775 ASSERT(phyi->phyint_groupname != NULL); 16776 mi_free(phyi->phyint_groupname); 16777 } 16778 16779 /* 16780 * setup the new group name. 16781 */ 16782 phyi->phyint_groupname = tmp; 16783 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16784 phyi->phyint_groupname_len = namelen + 1; 16785 16786 if (ipst->ips_ipmp_hook_emulation) { 16787 /* 16788 * If the group already exists we use the existing 16789 * group_ifindex, otherwise we pick a new index here. 16790 */ 16791 if (phyi_tmp != NULL) { 16792 phyi->phyint_group_ifindex = 16793 phyi_tmp->phyint_group_ifindex; 16794 } else { 16795 /* XXX We need a recovery strategy here. */ 16796 if (!ip_assign_ifindex( 16797 &phyi->phyint_group_ifindex, ipst)) 16798 cmn_err(CE_PANIC, 16799 "ip_assign_ifindex() failed"); 16800 } 16801 } 16802 /* 16803 * Select whether the netinfo and hook use the per-interface 16804 * or per-group ifindex. 16805 */ 16806 if (ipst->ips_ipmp_hook_emulation) 16807 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16808 else 16809 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16810 16811 if (ipst->ips_ipmp_hook_emulation && 16812 phyi_tmp != NULL) { 16813 /* First phyint in group - group PLUMB event */ 16814 ill_nic_info_plumb(ill, B_TRUE); 16815 } 16816 mutex_exit(&phyi->phyint_lock); 16817 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16818 rw_exit(&ipst->ips_ill_g_lock); 16819 16820 err = ill_up_ipifs(ill, q, mp); 16821 } 16822 16823 done: 16824 /* 16825 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16826 */ 16827 if (err != EINPROGRESS) { 16828 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16829 if (ill_v4 != NULL) 16830 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16831 if (ill_v6 != NULL) 16832 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16833 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16834 } 16835 return (err); 16836 } 16837 16838 /* ARGSUSED */ 16839 int 16840 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16841 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16842 { 16843 ill_t *ill; 16844 phyint_t *phyi; 16845 struct lifreq *lifr; 16846 mblk_t *mp1; 16847 16848 /* Existence verified in ip_wput_nondata */ 16849 mp1 = mp->b_cont->b_cont; 16850 lifr = (struct lifreq *)mp1->b_rptr; 16851 ill = ipif->ipif_ill; 16852 phyi = ill->ill_phyint; 16853 16854 lifr->lifr_groupname[0] = '\0'; 16855 /* 16856 * ill_group may be null if all the interfaces 16857 * are down. But still, the phyint should always 16858 * hold the name. 16859 */ 16860 if (phyi->phyint_groupname_len != 0) { 16861 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16862 phyi->phyint_groupname_len); 16863 } 16864 16865 return (0); 16866 } 16867 16868 16869 typedef struct conn_move_s { 16870 ill_t *cm_from_ill; 16871 ill_t *cm_to_ill; 16872 int cm_ifindex; 16873 } conn_move_t; 16874 16875 /* 16876 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16877 */ 16878 static void 16879 conn_move(conn_t *connp, caddr_t arg) 16880 { 16881 conn_move_t *connm; 16882 int ifindex; 16883 int i; 16884 ill_t *from_ill; 16885 ill_t *to_ill; 16886 ilg_t *ilg; 16887 ilm_t *ret_ilm; 16888 16889 connm = (conn_move_t *)arg; 16890 ifindex = connm->cm_ifindex; 16891 from_ill = connm->cm_from_ill; 16892 to_ill = connm->cm_to_ill; 16893 16894 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16895 16896 /* All multicast fields protected by conn_lock */ 16897 mutex_enter(&connp->conn_lock); 16898 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16899 if ((connp->conn_outgoing_ill == from_ill) && 16900 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16901 connp->conn_outgoing_ill = to_ill; 16902 connp->conn_incoming_ill = to_ill; 16903 } 16904 16905 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16906 16907 if ((connp->conn_multicast_ill == from_ill) && 16908 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16909 connp->conn_multicast_ill = connm->cm_to_ill; 16910 } 16911 16912 /* Change IP_XMIT_IF associations */ 16913 if ((connp->conn_xmit_if_ill == from_ill) && 16914 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16915 connp->conn_xmit_if_ill = to_ill; 16916 } 16917 /* 16918 * Change the ilg_ill to point to the new one. This assumes 16919 * ilm_move_v6 has moved the ilms to new_ill and the driver 16920 * has been told to receive packets on this interface. 16921 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16922 * But when doing a FAILOVER, it might fail with ENOMEM and so 16923 * some ilms may not have moved. We check to see whether 16924 * the ilms have moved to to_ill. We can't check on from_ill 16925 * as in the process of moving, we could have split an ilm 16926 * in to two - which has the same orig_ifindex and v6group. 16927 * 16928 * For IPv4, ilg_ipif moves implicitly. The code below really 16929 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16930 */ 16931 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16932 ilg = &connp->conn_ilg[i]; 16933 if ((ilg->ilg_ill == from_ill) && 16934 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16935 /* ifindex != 0 indicates failback */ 16936 if (ifindex != 0) { 16937 connp->conn_ilg[i].ilg_ill = to_ill; 16938 continue; 16939 } 16940 16941 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16942 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16943 connp->conn_zoneid); 16944 16945 if (ret_ilm != NULL) 16946 connp->conn_ilg[i].ilg_ill = to_ill; 16947 } 16948 } 16949 mutex_exit(&connp->conn_lock); 16950 } 16951 16952 static void 16953 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16954 { 16955 conn_move_t connm; 16956 ip_stack_t *ipst = from_ill->ill_ipst; 16957 16958 connm.cm_from_ill = from_ill; 16959 connm.cm_to_ill = to_ill; 16960 connm.cm_ifindex = ifindex; 16961 16962 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16963 } 16964 16965 /* 16966 * ilm has been moved from from_ill to to_ill. 16967 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16968 * appropriately. 16969 * 16970 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16971 * the code there de-references ipif_ill to get the ill to 16972 * send multicast requests. It does not work as ipif is on its 16973 * move and already moved when this function is called. 16974 * Thus, we need to use from_ill and to_ill send down multicast 16975 * requests. 16976 */ 16977 static void 16978 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16979 { 16980 ipif_t *ipif; 16981 ilm_t *ilm; 16982 16983 /* 16984 * See whether we need to send down DL_ENABMULTI_REQ on 16985 * to_ill as ilm has just been added. 16986 */ 16987 ASSERT(IAM_WRITER_ILL(to_ill)); 16988 ASSERT(IAM_WRITER_ILL(from_ill)); 16989 16990 ILM_WALKER_HOLD(to_ill); 16991 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16992 16993 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16994 continue; 16995 /* 16996 * no locks held, ill/ipif cannot dissappear as long 16997 * as we are writer. 16998 */ 16999 ipif = to_ill->ill_ipif; 17000 /* 17001 * No need to hold any lock as we are the writer and this 17002 * can only be changed by a writer. 17003 */ 17004 ilm->ilm_is_new = B_FALSE; 17005 17006 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 17007 ipif->ipif_flags & IPIF_POINTOPOINT) { 17008 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 17009 "resolver\n")); 17010 continue; /* Must be IRE_IF_NORESOLVER */ 17011 } 17012 17013 17014 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17015 ip1dbg(("ilm_send_multicast_reqs: " 17016 "to_ill MULTI_BCAST\n")); 17017 goto from; 17018 } 17019 17020 if (to_ill->ill_isv6) 17021 mld_joingroup(ilm); 17022 else 17023 igmp_joingroup(ilm); 17024 17025 if (to_ill->ill_ipif_up_count == 0) { 17026 /* 17027 * Nobody there. All multicast addresses will be 17028 * re-joined when we get the DL_BIND_ACK bringing the 17029 * interface up. 17030 */ 17031 ilm->ilm_notify_driver = B_FALSE; 17032 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 17033 goto from; 17034 } 17035 17036 /* 17037 * For allmulti address, we want to join on only one interface. 17038 * Checking for ilm_numentries_v6 is not correct as you may 17039 * find an ilm with zero address on to_ill, but we may not 17040 * have nominated to_ill for receiving. Thus, if we have 17041 * nominated from_ill (ill_join_allmulti is set), nominate 17042 * only if to_ill is not already nominated (to_ill normally 17043 * should not have been nominated if "from_ill" has already 17044 * been nominated. As we don't prevent failovers from happening 17045 * across groups, we don't assert). 17046 */ 17047 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17048 /* 17049 * There is no need to hold ill locks as we are 17050 * writer on both ills and when ill_join_allmulti 17051 * is changed the thread is always a writer. 17052 */ 17053 if (from_ill->ill_join_allmulti && 17054 !to_ill->ill_join_allmulti) { 17055 (void) ip_join_allmulti(to_ill->ill_ipif); 17056 } 17057 } else if (ilm->ilm_notify_driver) { 17058 17059 /* 17060 * This is a newly moved ilm so we need to tell the 17061 * driver about the new group. There can be more than 17062 * one ilm's for the same group in the list each with a 17063 * different orig_ifindex. We have to inform the driver 17064 * once. In ilm_move_v[4,6] we only set the flag 17065 * ilm_notify_driver for the first ilm. 17066 */ 17067 17068 (void) ip_ll_send_enabmulti_req(to_ill, 17069 &ilm->ilm_v6addr); 17070 } 17071 17072 ilm->ilm_notify_driver = B_FALSE; 17073 17074 /* 17075 * See whether we need to send down DL_DISABMULTI_REQ on 17076 * from_ill as ilm has just been removed. 17077 */ 17078 from: 17079 ipif = from_ill->ill_ipif; 17080 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 17081 ipif->ipif_flags & IPIF_POINTOPOINT) { 17082 ip1dbg(("ilm_send_multicast_reqs: " 17083 "from_ill not resolver\n")); 17084 continue; /* Must be IRE_IF_NORESOLVER */ 17085 } 17086 17087 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17088 ip1dbg(("ilm_send_multicast_reqs: " 17089 "from_ill MULTI_BCAST\n")); 17090 continue; 17091 } 17092 17093 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17094 if (from_ill->ill_join_allmulti) 17095 (void) ip_leave_allmulti(from_ill->ill_ipif); 17096 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17097 (void) ip_ll_send_disabmulti_req(from_ill, 17098 &ilm->ilm_v6addr); 17099 } 17100 } 17101 ILM_WALKER_RELE(to_ill); 17102 } 17103 17104 /* 17105 * This function is called when all multicast memberships needs 17106 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17107 * called only once unlike the IPv4 counterpart where it is called after 17108 * every logical interface is moved. The reason is due to multicast 17109 * memberships are joined using an interface address in IPv4 while in 17110 * IPv6, interface index is used. 17111 */ 17112 static void 17113 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17114 { 17115 ilm_t *ilm; 17116 ilm_t *ilm_next; 17117 ilm_t *new_ilm; 17118 ilm_t **ilmp; 17119 int count; 17120 char buf[INET6_ADDRSTRLEN]; 17121 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17122 ip_stack_t *ipst = from_ill->ill_ipst; 17123 17124 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17125 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17126 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17127 17128 if (ifindex == 0) { 17129 /* 17130 * Form the solicited node mcast address which is used later. 17131 */ 17132 ipif_t *ipif; 17133 17134 ipif = from_ill->ill_ipif; 17135 ASSERT(ipif->ipif_id == 0); 17136 17137 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17138 } 17139 17140 ilmp = &from_ill->ill_ilm; 17141 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17142 ilm_next = ilm->ilm_next; 17143 17144 if (ilm->ilm_flags & ILM_DELETED) { 17145 ilmp = &ilm->ilm_next; 17146 continue; 17147 } 17148 17149 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17150 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17151 ASSERT(ilm->ilm_orig_ifindex != 0); 17152 if (ilm->ilm_orig_ifindex == ifindex) { 17153 /* 17154 * We are failing back multicast memberships. 17155 * If the same ilm exists in to_ill, it means somebody 17156 * has joined the same group there e.g. ff02::1 17157 * is joined within the kernel when the interfaces 17158 * came UP. 17159 */ 17160 ASSERT(ilm->ilm_ipif == NULL); 17161 if (new_ilm != NULL) { 17162 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17163 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17164 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17165 new_ilm->ilm_is_new = B_TRUE; 17166 } 17167 } else { 17168 /* 17169 * check if we can just move the ilm 17170 */ 17171 if (from_ill->ill_ilm_walker_cnt != 0) { 17172 /* 17173 * We have walkers we cannot move 17174 * the ilm, so allocate a new ilm, 17175 * this (old) ilm will be marked 17176 * ILM_DELETED at the end of the loop 17177 * and will be freed when the 17178 * last walker exits. 17179 */ 17180 new_ilm = (ilm_t *)mi_zalloc 17181 (sizeof (ilm_t)); 17182 if (new_ilm == NULL) { 17183 ip0dbg(("ilm_move_v6: " 17184 "FAILBACK of IPv6" 17185 " multicast address %s : " 17186 "from %s to" 17187 " %s failed : ENOMEM \n", 17188 inet_ntop(AF_INET6, 17189 &ilm->ilm_v6addr, buf, 17190 sizeof (buf)), 17191 from_ill->ill_name, 17192 to_ill->ill_name)); 17193 17194 ilmp = &ilm->ilm_next; 17195 continue; 17196 } 17197 *new_ilm = *ilm; 17198 /* 17199 * we don't want new_ilm linked to 17200 * ilm's filter list. 17201 */ 17202 new_ilm->ilm_filter = NULL; 17203 } else { 17204 /* 17205 * No walkers we can move the ilm. 17206 * lets take it out of the list. 17207 */ 17208 *ilmp = ilm->ilm_next; 17209 ilm->ilm_next = NULL; 17210 new_ilm = ilm; 17211 } 17212 17213 /* 17214 * if this is the first ilm for the group 17215 * set ilm_notify_driver so that we notify the 17216 * driver in ilm_send_multicast_reqs. 17217 */ 17218 if (ilm_lookup_ill_v6(to_ill, 17219 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17220 new_ilm->ilm_notify_driver = B_TRUE; 17221 17222 new_ilm->ilm_ill = to_ill; 17223 /* Add to the to_ill's list */ 17224 new_ilm->ilm_next = to_ill->ill_ilm; 17225 to_ill->ill_ilm = new_ilm; 17226 /* 17227 * set the flag so that mld_joingroup is 17228 * called in ilm_send_multicast_reqs(). 17229 */ 17230 new_ilm->ilm_is_new = B_TRUE; 17231 } 17232 goto bottom; 17233 } else if (ifindex != 0) { 17234 /* 17235 * If this is FAILBACK (ifindex != 0) and the ifindex 17236 * has not matched above, look at the next ilm. 17237 */ 17238 ilmp = &ilm->ilm_next; 17239 continue; 17240 } 17241 /* 17242 * If we are here, it means ifindex is 0. Failover 17243 * everything. 17244 * 17245 * We need to handle solicited node mcast address 17246 * and all_nodes mcast address differently as they 17247 * are joined witin the kenrel (ipif_multicast_up) 17248 * and potentially from the userland. We are called 17249 * after the ipifs of from_ill has been moved. 17250 * If we still find ilms on ill with solicited node 17251 * mcast address or all_nodes mcast address, it must 17252 * belong to the UP interface that has not moved e.g. 17253 * ipif_id 0 with the link local prefix does not move. 17254 * We join this on the new ill accounting for all the 17255 * userland memberships so that applications don't 17256 * see any failure. 17257 * 17258 * We need to make sure that we account only for the 17259 * solicited node and all node multicast addresses 17260 * that was brought UP on these. In the case of 17261 * a failover from A to B, we might have ilms belonging 17262 * to A (ilm_orig_ifindex pointing at A) on B accounting 17263 * for the membership from the userland. If we are failing 17264 * over from B to C now, we will find the ones belonging 17265 * to A on B. These don't account for the ill_ipif_up_count. 17266 * They just move from B to C. The check below on 17267 * ilm_orig_ifindex ensures that. 17268 */ 17269 if ((ilm->ilm_orig_ifindex == 17270 from_ill->ill_phyint->phyint_ifindex) && 17271 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17272 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17273 &ilm->ilm_v6addr))) { 17274 ASSERT(ilm->ilm_refcnt > 0); 17275 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17276 /* 17277 * For indentation reasons, we are not using a 17278 * "else" here. 17279 */ 17280 if (count == 0) { 17281 ilmp = &ilm->ilm_next; 17282 continue; 17283 } 17284 ilm->ilm_refcnt -= count; 17285 if (new_ilm != NULL) { 17286 /* 17287 * Can find one with the same 17288 * ilm_orig_ifindex, if we are failing 17289 * over to a STANDBY. This happens 17290 * when somebody wants to join a group 17291 * on a STANDBY interface and we 17292 * internally join on a different one. 17293 * If we had joined on from_ill then, a 17294 * failover now will find a new ilm 17295 * with this index. 17296 */ 17297 ip1dbg(("ilm_move_v6: FAILOVER, found" 17298 " new ilm on %s, group address %s\n", 17299 to_ill->ill_name, 17300 inet_ntop(AF_INET6, 17301 &ilm->ilm_v6addr, buf, 17302 sizeof (buf)))); 17303 new_ilm->ilm_refcnt += count; 17304 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17305 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17306 new_ilm->ilm_is_new = B_TRUE; 17307 } 17308 } else { 17309 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17310 if (new_ilm == NULL) { 17311 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17312 " multicast address %s : from %s to" 17313 " %s failed : ENOMEM \n", 17314 inet_ntop(AF_INET6, 17315 &ilm->ilm_v6addr, buf, 17316 sizeof (buf)), from_ill->ill_name, 17317 to_ill->ill_name)); 17318 ilmp = &ilm->ilm_next; 17319 continue; 17320 } 17321 *new_ilm = *ilm; 17322 new_ilm->ilm_filter = NULL; 17323 new_ilm->ilm_refcnt = count; 17324 new_ilm->ilm_timer = INFINITY; 17325 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17326 new_ilm->ilm_is_new = B_TRUE; 17327 /* 17328 * If the to_ill has not joined this 17329 * group we need to tell the driver in 17330 * ill_send_multicast_reqs. 17331 */ 17332 if (ilm_lookup_ill_v6(to_ill, 17333 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17334 new_ilm->ilm_notify_driver = B_TRUE; 17335 17336 new_ilm->ilm_ill = to_ill; 17337 /* Add to the to_ill's list */ 17338 new_ilm->ilm_next = to_ill->ill_ilm; 17339 to_ill->ill_ilm = new_ilm; 17340 ASSERT(new_ilm->ilm_ipif == NULL); 17341 } 17342 if (ilm->ilm_refcnt == 0) { 17343 goto bottom; 17344 } else { 17345 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17346 CLEAR_SLIST(new_ilm->ilm_filter); 17347 ilmp = &ilm->ilm_next; 17348 } 17349 continue; 17350 } else { 17351 /* 17352 * ifindex = 0 means, move everything pointing at 17353 * from_ill. We are doing this becuase ill has 17354 * either FAILED or became INACTIVE. 17355 * 17356 * As we would like to move things later back to 17357 * from_ill, we want to retain the identity of this 17358 * ilm. Thus, we don't blindly increment the reference 17359 * count on the ilms matching the address alone. We 17360 * need to match on the ilm_orig_index also. new_ilm 17361 * was obtained by matching ilm_orig_index also. 17362 */ 17363 if (new_ilm != NULL) { 17364 /* 17365 * This is possible only if a previous restore 17366 * was incomplete i.e restore to 17367 * ilm_orig_ifindex left some ilms because 17368 * of some failures. Thus when we are failing 17369 * again, we might find our old friends there. 17370 */ 17371 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17372 " on %s, group address %s\n", 17373 to_ill->ill_name, 17374 inet_ntop(AF_INET6, 17375 &ilm->ilm_v6addr, buf, 17376 sizeof (buf)))); 17377 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17378 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17379 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17380 new_ilm->ilm_is_new = B_TRUE; 17381 } 17382 } else { 17383 if (from_ill->ill_ilm_walker_cnt != 0) { 17384 new_ilm = (ilm_t *) 17385 mi_zalloc(sizeof (ilm_t)); 17386 if (new_ilm == NULL) { 17387 ip0dbg(("ilm_move_v6: " 17388 "FAILOVER of IPv6" 17389 " multicast address %s : " 17390 "from %s to" 17391 " %s failed : ENOMEM \n", 17392 inet_ntop(AF_INET6, 17393 &ilm->ilm_v6addr, buf, 17394 sizeof (buf)), 17395 from_ill->ill_name, 17396 to_ill->ill_name)); 17397 17398 ilmp = &ilm->ilm_next; 17399 continue; 17400 } 17401 *new_ilm = *ilm; 17402 new_ilm->ilm_filter = NULL; 17403 } else { 17404 *ilmp = ilm->ilm_next; 17405 new_ilm = ilm; 17406 } 17407 /* 17408 * If the to_ill has not joined this 17409 * group we need to tell the driver in 17410 * ill_send_multicast_reqs. 17411 */ 17412 if (ilm_lookup_ill_v6(to_ill, 17413 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17414 new_ilm->ilm_notify_driver = B_TRUE; 17415 17416 /* Add to the to_ill's list */ 17417 new_ilm->ilm_next = to_ill->ill_ilm; 17418 to_ill->ill_ilm = new_ilm; 17419 ASSERT(ilm->ilm_ipif == NULL); 17420 new_ilm->ilm_ill = to_ill; 17421 new_ilm->ilm_is_new = B_TRUE; 17422 } 17423 17424 } 17425 17426 bottom: 17427 /* 17428 * Revert multicast filter state to (EXCLUDE, NULL). 17429 * new_ilm->ilm_is_new should already be set if needed. 17430 */ 17431 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17432 CLEAR_SLIST(new_ilm->ilm_filter); 17433 /* 17434 * We allocated/got a new ilm, free the old one. 17435 */ 17436 if (new_ilm != ilm) { 17437 if (from_ill->ill_ilm_walker_cnt == 0) { 17438 *ilmp = ilm->ilm_next; 17439 ilm->ilm_next = NULL; 17440 FREE_SLIST(ilm->ilm_filter); 17441 FREE_SLIST(ilm->ilm_pendsrcs); 17442 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17443 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17444 mi_free((char *)ilm); 17445 } else { 17446 ilm->ilm_flags |= ILM_DELETED; 17447 from_ill->ill_ilm_cleanup_reqd = 1; 17448 ilmp = &ilm->ilm_next; 17449 } 17450 } 17451 } 17452 } 17453 17454 /* 17455 * Move all the multicast memberships to to_ill. Called when 17456 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17457 * different from IPv6 counterpart as multicast memberships are associated 17458 * with ills in IPv6. This function is called after every ipif is moved 17459 * unlike IPv6, where it is moved only once. 17460 */ 17461 static void 17462 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17463 { 17464 ilm_t *ilm; 17465 ilm_t *ilm_next; 17466 ilm_t *new_ilm; 17467 ilm_t **ilmp; 17468 ip_stack_t *ipst = from_ill->ill_ipst; 17469 17470 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17471 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17472 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17473 17474 ilmp = &from_ill->ill_ilm; 17475 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17476 ilm_next = ilm->ilm_next; 17477 17478 if (ilm->ilm_flags & ILM_DELETED) { 17479 ilmp = &ilm->ilm_next; 17480 continue; 17481 } 17482 17483 ASSERT(ilm->ilm_ipif != NULL); 17484 17485 if (ilm->ilm_ipif != ipif) { 17486 ilmp = &ilm->ilm_next; 17487 continue; 17488 } 17489 17490 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17491 htonl(INADDR_ALLHOSTS_GROUP)) { 17492 new_ilm = ilm_lookup_ipif(ipif, 17493 V4_PART_OF_V6(ilm->ilm_v6addr)); 17494 if (new_ilm != NULL) { 17495 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17496 /* 17497 * We still need to deal with the from_ill. 17498 */ 17499 new_ilm->ilm_is_new = B_TRUE; 17500 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17501 CLEAR_SLIST(new_ilm->ilm_filter); 17502 goto delete_ilm; 17503 } 17504 /* 17505 * If we could not find one e.g. ipif is 17506 * still down on to_ill, we add this ilm 17507 * on ill_new to preserve the reference 17508 * count. 17509 */ 17510 } 17511 /* 17512 * When ipifs move, ilms always move with it 17513 * to the NEW ill. Thus we should never be 17514 * able to find ilm till we really move it here. 17515 */ 17516 ASSERT(ilm_lookup_ipif(ipif, 17517 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17518 17519 if (from_ill->ill_ilm_walker_cnt != 0) { 17520 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17521 if (new_ilm == NULL) { 17522 char buf[INET6_ADDRSTRLEN]; 17523 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17524 " multicast address %s : " 17525 "from %s to" 17526 " %s failed : ENOMEM \n", 17527 inet_ntop(AF_INET, 17528 &ilm->ilm_v6addr, buf, 17529 sizeof (buf)), 17530 from_ill->ill_name, 17531 to_ill->ill_name)); 17532 17533 ilmp = &ilm->ilm_next; 17534 continue; 17535 } 17536 *new_ilm = *ilm; 17537 /* We don't want new_ilm linked to ilm's filter list */ 17538 new_ilm->ilm_filter = NULL; 17539 } else { 17540 /* Remove from the list */ 17541 *ilmp = ilm->ilm_next; 17542 new_ilm = ilm; 17543 } 17544 17545 /* 17546 * If we have never joined this group on the to_ill 17547 * make sure we tell the driver. 17548 */ 17549 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17550 ALL_ZONES) == NULL) 17551 new_ilm->ilm_notify_driver = B_TRUE; 17552 17553 /* Add to the to_ill's list */ 17554 new_ilm->ilm_next = to_ill->ill_ilm; 17555 to_ill->ill_ilm = new_ilm; 17556 new_ilm->ilm_is_new = B_TRUE; 17557 17558 /* 17559 * Revert multicast filter state to (EXCLUDE, NULL) 17560 */ 17561 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17562 CLEAR_SLIST(new_ilm->ilm_filter); 17563 17564 /* 17565 * Delete only if we have allocated a new ilm. 17566 */ 17567 if (new_ilm != ilm) { 17568 delete_ilm: 17569 if (from_ill->ill_ilm_walker_cnt == 0) { 17570 /* Remove from the list */ 17571 *ilmp = ilm->ilm_next; 17572 ilm->ilm_next = NULL; 17573 FREE_SLIST(ilm->ilm_filter); 17574 FREE_SLIST(ilm->ilm_pendsrcs); 17575 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17576 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17577 mi_free((char *)ilm); 17578 } else { 17579 ilm->ilm_flags |= ILM_DELETED; 17580 from_ill->ill_ilm_cleanup_reqd = 1; 17581 ilmp = &ilm->ilm_next; 17582 } 17583 } 17584 } 17585 } 17586 17587 static uint_t 17588 ipif_get_id(ill_t *ill, uint_t id) 17589 { 17590 uint_t unit; 17591 ipif_t *tipif; 17592 boolean_t found = B_FALSE; 17593 ip_stack_t *ipst = ill->ill_ipst; 17594 17595 /* 17596 * During failback, we want to go back to the same id 17597 * instead of the smallest id so that the original 17598 * configuration is maintained. id is non-zero in that 17599 * case. 17600 */ 17601 if (id != 0) { 17602 /* 17603 * While failing back, if we still have an ipif with 17604 * MAX_ADDRS_PER_IF, it means this will be replaced 17605 * as soon as we return from this function. It was 17606 * to set to MAX_ADDRS_PER_IF by the caller so that 17607 * we can choose the smallest id. Thus we return zero 17608 * in that case ignoring the hint. 17609 */ 17610 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17611 return (0); 17612 for (tipif = ill->ill_ipif; tipif != NULL; 17613 tipif = tipif->ipif_next) { 17614 if (tipif->ipif_id == id) { 17615 found = B_TRUE; 17616 break; 17617 } 17618 } 17619 /* 17620 * If somebody already plumbed another logical 17621 * with the same id, we won't be able to find it. 17622 */ 17623 if (!found) 17624 return (id); 17625 } 17626 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17627 found = B_FALSE; 17628 for (tipif = ill->ill_ipif; tipif != NULL; 17629 tipif = tipif->ipif_next) { 17630 if (tipif->ipif_id == unit) { 17631 found = B_TRUE; 17632 break; 17633 } 17634 } 17635 if (!found) 17636 break; 17637 } 17638 return (unit); 17639 } 17640 17641 /* ARGSUSED */ 17642 static int 17643 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17644 ipif_t **rep_ipif_ptr) 17645 { 17646 ill_t *from_ill; 17647 ipif_t *rep_ipif; 17648 uint_t unit; 17649 int err = 0; 17650 ipif_t *to_ipif; 17651 struct iocblk *iocp; 17652 boolean_t failback_cmd; 17653 boolean_t remove_ipif; 17654 int rc; 17655 ip_stack_t *ipst; 17656 17657 ASSERT(IAM_WRITER_ILL(to_ill)); 17658 ASSERT(IAM_WRITER_IPIF(ipif)); 17659 17660 iocp = (struct iocblk *)mp->b_rptr; 17661 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17662 remove_ipif = B_FALSE; 17663 17664 from_ill = ipif->ipif_ill; 17665 ipst = from_ill->ill_ipst; 17666 17667 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17668 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17669 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17670 17671 /* 17672 * Don't move LINK LOCAL addresses as they are tied to 17673 * physical interface. 17674 */ 17675 if (from_ill->ill_isv6 && 17676 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17677 ipif->ipif_was_up = B_FALSE; 17678 IPIF_UNMARK_MOVING(ipif); 17679 return (0); 17680 } 17681 17682 /* 17683 * We set the ipif_id to maximum so that the search for 17684 * ipif_id will pick the lowest number i.e 0 in the 17685 * following 2 cases : 17686 * 17687 * 1) We have a replacement ipif at the head of to_ill. 17688 * We can't remove it yet as we can exceed ip_addrs_per_if 17689 * on to_ill and hence the MOVE might fail. We want to 17690 * remove it only if we could move the ipif. Thus, by 17691 * setting it to the MAX value, we make the search in 17692 * ipif_get_id return the zeroth id. 17693 * 17694 * 2) When DR pulls out the NIC and re-plumbs the interface, 17695 * we might just have a zero address plumbed on the ipif 17696 * with zero id in the case of IPv4. We remove that while 17697 * doing the failback. We want to remove it only if we 17698 * could move the ipif. Thus, by setting it to the MAX 17699 * value, we make the search in ipif_get_id return the 17700 * zeroth id. 17701 * 17702 * Both (1) and (2) are done only when when we are moving 17703 * an ipif (either due to failover/failback) which originally 17704 * belonged to this interface i.e the ipif_orig_ifindex is 17705 * the same as to_ill's ifindex. This is needed so that 17706 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17707 * from B -> A (B is being removed from the group) and 17708 * FAILBACK from A -> B restores the original configuration. 17709 * Without the check for orig_ifindex, the second FAILOVER 17710 * could make the ipif belonging to B replace the A's zeroth 17711 * ipif and the subsequent failback re-creating the replacement 17712 * ipif again. 17713 * 17714 * NOTE : We created the replacement ipif when we did a 17715 * FAILOVER (See below). We could check for FAILBACK and 17716 * then look for replacement ipif to be removed. But we don't 17717 * want to do that because we wan't to allow the possibility 17718 * of a FAILOVER from A -> B (which creates the replacement ipif), 17719 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17720 * from B -> A. 17721 */ 17722 to_ipif = to_ill->ill_ipif; 17723 if ((to_ill->ill_phyint->phyint_ifindex == 17724 ipif->ipif_orig_ifindex) && 17725 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17726 ASSERT(to_ipif->ipif_id == 0); 17727 remove_ipif = B_TRUE; 17728 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17729 } 17730 /* 17731 * Find the lowest logical unit number on the to_ill. 17732 * If we are failing back, try to get the original id 17733 * rather than the lowest one so that the original 17734 * configuration is maintained. 17735 * 17736 * XXX need a better scheme for this. 17737 */ 17738 if (failback_cmd) { 17739 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17740 } else { 17741 unit = ipif_get_id(to_ill, 0); 17742 } 17743 17744 /* Reset back to zero in case we fail below */ 17745 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17746 to_ipif->ipif_id = 0; 17747 17748 if (unit == ipst->ips_ip_addrs_per_if) { 17749 ipif->ipif_was_up = B_FALSE; 17750 IPIF_UNMARK_MOVING(ipif); 17751 return (EINVAL); 17752 } 17753 17754 /* 17755 * ipif is ready to move from "from_ill" to "to_ill". 17756 * 17757 * 1) If we are moving ipif with id zero, create a 17758 * replacement ipif for this ipif on from_ill. If this fails 17759 * fail the MOVE operation. 17760 * 17761 * 2) Remove the replacement ipif on to_ill if any. 17762 * We could remove the replacement ipif when we are moving 17763 * the ipif with id zero. But what if somebody already 17764 * unplumbed it ? Thus we always remove it if it is present. 17765 * We want to do it only if we are sure we are going to 17766 * move the ipif to to_ill which is why there are no 17767 * returns due to error till ipif is linked to to_ill. 17768 * Note that the first ipif that we failback will always 17769 * be zero if it is present. 17770 */ 17771 if (ipif->ipif_id == 0) { 17772 ipaddr_t inaddr_any = INADDR_ANY; 17773 17774 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17775 if (rep_ipif == NULL) { 17776 ipif->ipif_was_up = B_FALSE; 17777 IPIF_UNMARK_MOVING(ipif); 17778 return (ENOMEM); 17779 } 17780 *rep_ipif = ipif_zero; 17781 /* 17782 * Before we put the ipif on the list, store the addresses 17783 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17784 * assumes so. This logic is not any different from what 17785 * ipif_allocate does. 17786 */ 17787 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17788 &rep_ipif->ipif_v6lcl_addr); 17789 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17790 &rep_ipif->ipif_v6src_addr); 17791 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17792 &rep_ipif->ipif_v6subnet); 17793 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17794 &rep_ipif->ipif_v6net_mask); 17795 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17796 &rep_ipif->ipif_v6brd_addr); 17797 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17798 &rep_ipif->ipif_v6pp_dst_addr); 17799 /* 17800 * We mark IPIF_NOFAILOVER so that this can never 17801 * move. 17802 */ 17803 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17804 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17805 rep_ipif->ipif_replace_zero = B_TRUE; 17806 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17807 MUTEX_DEFAULT, NULL); 17808 rep_ipif->ipif_id = 0; 17809 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17810 rep_ipif->ipif_ill = from_ill; 17811 rep_ipif->ipif_orig_ifindex = 17812 from_ill->ill_phyint->phyint_ifindex; 17813 /* Insert at head */ 17814 rep_ipif->ipif_next = from_ill->ill_ipif; 17815 from_ill->ill_ipif = rep_ipif; 17816 /* 17817 * We don't really care to let apps know about 17818 * this interface. 17819 */ 17820 } 17821 17822 if (remove_ipif) { 17823 /* 17824 * We set to a max value above for this case to get 17825 * id zero. ASSERT that we did get one. 17826 */ 17827 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17828 rep_ipif = to_ipif; 17829 to_ill->ill_ipif = rep_ipif->ipif_next; 17830 rep_ipif->ipif_next = NULL; 17831 /* 17832 * If some apps scanned and find this interface, 17833 * it is time to let them know, so that they can 17834 * delete it. 17835 */ 17836 17837 *rep_ipif_ptr = rep_ipif; 17838 } 17839 17840 /* Get it out of the ILL interface list. */ 17841 ipif_remove(ipif, B_FALSE); 17842 17843 /* Assign the new ill */ 17844 ipif->ipif_ill = to_ill; 17845 ipif->ipif_id = unit; 17846 /* id has already been checked */ 17847 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17848 ASSERT(rc == 0); 17849 /* Let SCTP update its list */ 17850 sctp_move_ipif(ipif, from_ill, to_ill); 17851 /* 17852 * Handle the failover and failback of ipif_t between 17853 * ill_t that have differing maximum mtu values. 17854 */ 17855 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17856 if (ipif->ipif_saved_mtu == 0) { 17857 /* 17858 * As this ipif_t is moving to an ill_t 17859 * that has a lower ill_max_mtu, its 17860 * ipif_mtu needs to be saved so it can 17861 * be restored during failback or during 17862 * failover to an ill_t which has a 17863 * higher ill_max_mtu. 17864 */ 17865 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17866 ipif->ipif_mtu = to_ill->ill_max_mtu; 17867 } else { 17868 /* 17869 * The ipif_t is, once again, moving to 17870 * an ill_t that has a lower maximum mtu 17871 * value. 17872 */ 17873 ipif->ipif_mtu = to_ill->ill_max_mtu; 17874 } 17875 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17876 ipif->ipif_saved_mtu != 0) { 17877 /* 17878 * The mtu of this ipif_t had to be reduced 17879 * during an earlier failover; this is an 17880 * opportunity for it to be increased (either as 17881 * part of another failover or a failback). 17882 */ 17883 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17884 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17885 ipif->ipif_saved_mtu = 0; 17886 } else { 17887 ipif->ipif_mtu = to_ill->ill_max_mtu; 17888 } 17889 } 17890 17891 /* 17892 * We preserve all the other fields of the ipif including 17893 * ipif_saved_ire_mp. The routes that are saved here will 17894 * be recreated on the new interface and back on the old 17895 * interface when we move back. 17896 */ 17897 ASSERT(ipif->ipif_arp_del_mp == NULL); 17898 17899 return (err); 17900 } 17901 17902 static int 17903 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17904 int ifindex, ipif_t **rep_ipif_ptr) 17905 { 17906 ipif_t *mipif; 17907 ipif_t *ipif_next; 17908 int err; 17909 17910 /* 17911 * We don't really try to MOVE back things if some of the 17912 * operations fail. The daemon will take care of moving again 17913 * later on. 17914 */ 17915 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17916 ipif_next = mipif->ipif_next; 17917 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17918 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17919 17920 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17921 17922 /* 17923 * When the MOVE fails, it is the job of the 17924 * application to take care of this properly 17925 * i.e try again if it is ENOMEM. 17926 */ 17927 if (mipif->ipif_ill != from_ill) { 17928 /* 17929 * ipif has moved. 17930 * 17931 * Move the multicast memberships associated 17932 * with this ipif to the new ill. For IPv6, we 17933 * do it once after all the ipifs are moved 17934 * (in ill_move) as they are not associated 17935 * with ipifs. 17936 * 17937 * We need to move the ilms as the ipif has 17938 * already been moved to a new ill even 17939 * in the case of errors. Neither 17940 * ilm_free(ipif) will find the ilm 17941 * when somebody unplumbs this ipif nor 17942 * ilm_delete(ilm) will be able to find the 17943 * ilm, if we don't move now. 17944 */ 17945 if (!from_ill->ill_isv6) 17946 ilm_move_v4(from_ill, to_ill, mipif); 17947 } 17948 17949 if (err != 0) 17950 return (err); 17951 } 17952 } 17953 return (0); 17954 } 17955 17956 static int 17957 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17958 { 17959 int ifindex; 17960 int err; 17961 struct iocblk *iocp; 17962 ipif_t *ipif; 17963 ipif_t *rep_ipif_ptr = NULL; 17964 ipif_t *from_ipif = NULL; 17965 boolean_t check_rep_if = B_FALSE; 17966 ip_stack_t *ipst = from_ill->ill_ipst; 17967 17968 iocp = (struct iocblk *)mp->b_rptr; 17969 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17970 /* 17971 * Move everything pointing at from_ill to to_ill. 17972 * We acheive this by passing in 0 as ifindex. 17973 */ 17974 ifindex = 0; 17975 } else { 17976 /* 17977 * Move everything pointing at from_ill whose original 17978 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17979 * We acheive this by passing in ifindex rather than 0. 17980 * Multicast vifs, ilgs move implicitly because ipifs move. 17981 */ 17982 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17983 ifindex = to_ill->ill_phyint->phyint_ifindex; 17984 } 17985 17986 /* 17987 * Determine if there is at least one ipif that would move from 17988 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17989 * ipif (if it exists) on the to_ill would be consumed as a result of 17990 * the move, in which case we need to quiesce the replacement ipif also. 17991 */ 17992 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17993 from_ipif = from_ipif->ipif_next) { 17994 if (((ifindex == 0) || 17995 (ifindex == from_ipif->ipif_orig_ifindex)) && 17996 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17997 check_rep_if = B_TRUE; 17998 break; 17999 } 18000 } 18001 18002 18003 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 18004 18005 GRAB_ILL_LOCKS(from_ill, to_ill); 18006 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 18007 (void) ipsq_pending_mp_add(NULL, ipif, q, 18008 mp, ILL_MOVE_OK); 18009 RELEASE_ILL_LOCKS(from_ill, to_ill); 18010 return (EINPROGRESS); 18011 } 18012 18013 /* Check if the replacement ipif is quiescent to delete */ 18014 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 18015 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 18016 to_ill->ill_ipif->ipif_state_flags |= 18017 IPIF_MOVING | IPIF_CHANGING; 18018 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 18019 (void) ipsq_pending_mp_add(NULL, ipif, q, 18020 mp, ILL_MOVE_OK); 18021 RELEASE_ILL_LOCKS(from_ill, to_ill); 18022 return (EINPROGRESS); 18023 } 18024 } 18025 RELEASE_ILL_LOCKS(from_ill, to_ill); 18026 18027 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 18028 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18029 GRAB_ILL_LOCKS(from_ill, to_ill); 18030 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 18031 18032 /* ilm_move is done inside ipif_move for IPv4 */ 18033 if (err == 0 && from_ill->ill_isv6) 18034 ilm_move_v6(from_ill, to_ill, ifindex); 18035 18036 RELEASE_ILL_LOCKS(from_ill, to_ill); 18037 rw_exit(&ipst->ips_ill_g_lock); 18038 18039 /* 18040 * send rts messages and multicast messages. 18041 */ 18042 if (rep_ipif_ptr != NULL) { 18043 if (rep_ipif_ptr->ipif_recovery_id != 0) { 18044 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 18045 rep_ipif_ptr->ipif_recovery_id = 0; 18046 } 18047 ip_rts_ifmsg(rep_ipif_ptr); 18048 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 18049 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 18050 mi_free(rep_ipif_ptr); 18051 } 18052 18053 conn_move_ill(from_ill, to_ill, ifindex); 18054 18055 return (err); 18056 } 18057 18058 /* 18059 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 18060 * Also checks for the validity of the arguments. 18061 * Note: We are already exclusive inside the from group. 18062 * It is upto the caller to release refcnt on the to_ill's. 18063 */ 18064 static int 18065 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 18066 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 18067 { 18068 int dst_index; 18069 ipif_t *ipif_v4, *ipif_v6; 18070 struct lifreq *lifr; 18071 mblk_t *mp1; 18072 boolean_t exists; 18073 sin_t *sin; 18074 int err = 0; 18075 ip_stack_t *ipst; 18076 18077 if (CONN_Q(q)) 18078 ipst = CONNQ_TO_IPST(q); 18079 else 18080 ipst = ILLQ_TO_IPST(q); 18081 18082 18083 if ((mp1 = mp->b_cont) == NULL) 18084 return (EPROTO); 18085 18086 if ((mp1 = mp1->b_cont) == NULL) 18087 return (EPROTO); 18088 18089 lifr = (struct lifreq *)mp1->b_rptr; 18090 sin = (sin_t *)&lifr->lifr_addr; 18091 18092 /* 18093 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18094 * specific operations. 18095 */ 18096 if (sin->sin_family != AF_UNSPEC) 18097 return (EINVAL); 18098 18099 /* 18100 * Get ipif with id 0. We are writer on the from ill. So we can pass 18101 * NULLs for the last 4 args and we know the lookup won't fail 18102 * with EINPROGRESS. 18103 */ 18104 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18105 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18106 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18107 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18108 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18109 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18110 18111 if (ipif_v4 == NULL && ipif_v6 == NULL) 18112 return (ENXIO); 18113 18114 if (ipif_v4 != NULL) { 18115 ASSERT(ipif_v4->ipif_refcnt != 0); 18116 if (ipif_v4->ipif_id != 0) { 18117 err = EINVAL; 18118 goto done; 18119 } 18120 18121 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18122 *ill_from_v4 = ipif_v4->ipif_ill; 18123 } 18124 18125 if (ipif_v6 != NULL) { 18126 ASSERT(ipif_v6->ipif_refcnt != 0); 18127 if (ipif_v6->ipif_id != 0) { 18128 err = EINVAL; 18129 goto done; 18130 } 18131 18132 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18133 *ill_from_v6 = ipif_v6->ipif_ill; 18134 } 18135 18136 err = 0; 18137 dst_index = lifr->lifr_movetoindex; 18138 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18139 q, mp, ip_process_ioctl, &err, ipst); 18140 if (err != 0) { 18141 /* 18142 * There could be only v6. 18143 */ 18144 if (err != ENXIO) 18145 goto done; 18146 err = 0; 18147 } 18148 18149 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18150 q, mp, ip_process_ioctl, &err, ipst); 18151 if (err != 0) { 18152 if (err != ENXIO) 18153 goto done; 18154 if (*ill_to_v4 == NULL) { 18155 err = ENXIO; 18156 goto done; 18157 } 18158 err = 0; 18159 } 18160 18161 /* 18162 * If we have something to MOVE i.e "from" not NULL, 18163 * "to" should be non-NULL. 18164 */ 18165 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18166 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18167 err = EINVAL; 18168 } 18169 18170 done: 18171 if (ipif_v4 != NULL) 18172 ipif_refrele(ipif_v4); 18173 if (ipif_v6 != NULL) 18174 ipif_refrele(ipif_v6); 18175 return (err); 18176 } 18177 18178 /* 18179 * FAILOVER and FAILBACK are modelled as MOVE operations. 18180 * 18181 * We don't check whether the MOVE is within the same group or 18182 * not, because this ioctl can be used as a generic mechanism 18183 * to failover from interface A to B, though things will function 18184 * only if they are really part of the same group. Moreover, 18185 * all ipifs may be down and hence temporarily out of the group. 18186 * 18187 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18188 * down first and then V6. For each we wait for the ipif's to become quiescent. 18189 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18190 * have been deleted and there are no active references. Once quiescent the 18191 * ipif's are moved and brought up on the new ill. 18192 * 18193 * Normally the source ill and destination ill belong to the same IPMP group 18194 * and hence the same ipsq_t. In the event they don't belong to the same 18195 * same group the two ipsq's are first merged into one ipsq - that of the 18196 * to_ill. The multicast memberships on the source and destination ill cannot 18197 * change during the move operation since multicast joins/leaves also have to 18198 * execute on the same ipsq and are hence serialized. 18199 */ 18200 /* ARGSUSED */ 18201 int 18202 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18203 ip_ioctl_cmd_t *ipip, void *ifreq) 18204 { 18205 ill_t *ill_to_v4 = NULL; 18206 ill_t *ill_to_v6 = NULL; 18207 ill_t *ill_from_v4 = NULL; 18208 ill_t *ill_from_v6 = NULL; 18209 int err = 0; 18210 18211 /* 18212 * setup from and to ill's, we can get EINPROGRESS only for 18213 * to_ill's. 18214 */ 18215 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18216 &ill_to_v4, &ill_to_v6); 18217 18218 if (err != 0) { 18219 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18220 goto done; 18221 } 18222 18223 /* 18224 * nothing to do. 18225 */ 18226 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18227 goto done; 18228 } 18229 18230 /* 18231 * nothing to do. 18232 */ 18233 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18234 goto done; 18235 } 18236 18237 /* 18238 * Mark the ill as changing. 18239 * ILL_CHANGING flag is cleared when the ipif's are brought up 18240 * in ill_up_ipifs in case of error they are cleared below. 18241 */ 18242 18243 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18244 if (ill_from_v4 != NULL) 18245 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18246 if (ill_from_v6 != NULL) 18247 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18248 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18249 18250 /* 18251 * Make sure that both src and dst are 18252 * in the same syncq group. If not make it happen. 18253 * We are not holding any locks because we are the writer 18254 * on the from_ipsq and we will hold locks in ill_merge_groups 18255 * to protect to_ipsq against changing. 18256 */ 18257 if (ill_from_v4 != NULL) { 18258 if (ill_from_v4->ill_phyint->phyint_ipsq != 18259 ill_to_v4->ill_phyint->phyint_ipsq) { 18260 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18261 NULL, mp, q); 18262 goto err_ret; 18263 18264 } 18265 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18266 } else { 18267 18268 if (ill_from_v6->ill_phyint->phyint_ipsq != 18269 ill_to_v6->ill_phyint->phyint_ipsq) { 18270 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18271 NULL, mp, q); 18272 goto err_ret; 18273 18274 } 18275 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18276 } 18277 18278 /* 18279 * Now that the ipsq's have been merged and we are the writer 18280 * lets mark to_ill as changing as well. 18281 */ 18282 18283 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18284 if (ill_to_v4 != NULL) 18285 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18286 if (ill_to_v6 != NULL) 18287 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18288 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18289 18290 /* 18291 * Its ok for us to proceed with the move even if 18292 * ill_pending_mp is non null on one of the from ill's as the reply 18293 * should not be looking at the ipif, it should only care about the 18294 * ill itself. 18295 */ 18296 18297 /* 18298 * lets move ipv4 first. 18299 */ 18300 if (ill_from_v4 != NULL) { 18301 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18302 ill_from_v4->ill_move_in_progress = B_TRUE; 18303 ill_to_v4->ill_move_in_progress = B_TRUE; 18304 ill_to_v4->ill_move_peer = ill_from_v4; 18305 ill_from_v4->ill_move_peer = ill_to_v4; 18306 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18307 } 18308 18309 /* 18310 * Now lets move ipv6. 18311 */ 18312 if (err == 0 && ill_from_v6 != NULL) { 18313 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18314 ill_from_v6->ill_move_in_progress = B_TRUE; 18315 ill_to_v6->ill_move_in_progress = B_TRUE; 18316 ill_to_v6->ill_move_peer = ill_from_v6; 18317 ill_from_v6->ill_move_peer = ill_to_v6; 18318 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18319 } 18320 18321 err_ret: 18322 /* 18323 * EINPROGRESS means we are waiting for the ipif's that need to be 18324 * moved to become quiescent. 18325 */ 18326 if (err == EINPROGRESS) { 18327 goto done; 18328 } 18329 18330 /* 18331 * if err is set ill_up_ipifs will not be called 18332 * lets clear the flags. 18333 */ 18334 18335 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18336 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18337 /* 18338 * Some of the clearing may be redundant. But it is simple 18339 * not making any extra checks. 18340 */ 18341 if (ill_from_v6 != NULL) { 18342 ill_from_v6->ill_move_in_progress = B_FALSE; 18343 ill_from_v6->ill_move_peer = NULL; 18344 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18345 } 18346 if (ill_from_v4 != NULL) { 18347 ill_from_v4->ill_move_in_progress = B_FALSE; 18348 ill_from_v4->ill_move_peer = NULL; 18349 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18350 } 18351 if (ill_to_v6 != NULL) { 18352 ill_to_v6->ill_move_in_progress = B_FALSE; 18353 ill_to_v6->ill_move_peer = NULL; 18354 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18355 } 18356 if (ill_to_v4 != NULL) { 18357 ill_to_v4->ill_move_in_progress = B_FALSE; 18358 ill_to_v4->ill_move_peer = NULL; 18359 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18360 } 18361 18362 /* 18363 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18364 * Do this always to maintain proper state i.e even in case of errors. 18365 * As phyint_inactive looks at both v4 and v6 interfaces, 18366 * we need not call on both v4 and v6 interfaces. 18367 */ 18368 if (ill_from_v4 != NULL) { 18369 if ((ill_from_v4->ill_phyint->phyint_flags & 18370 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18371 phyint_inactive(ill_from_v4->ill_phyint); 18372 } 18373 } else if (ill_from_v6 != NULL) { 18374 if ((ill_from_v6->ill_phyint->phyint_flags & 18375 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18376 phyint_inactive(ill_from_v6->ill_phyint); 18377 } 18378 } 18379 18380 if (ill_to_v4 != NULL) { 18381 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18382 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18383 } 18384 } else if (ill_to_v6 != NULL) { 18385 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18386 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18387 } 18388 } 18389 18390 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18391 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18392 18393 no_err: 18394 /* 18395 * lets bring the interfaces up on the to_ill. 18396 */ 18397 if (err == 0) { 18398 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18399 q, mp); 18400 } 18401 18402 if (err == 0) { 18403 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18404 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18405 18406 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18407 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18408 } 18409 done: 18410 18411 if (ill_to_v4 != NULL) { 18412 ill_refrele(ill_to_v4); 18413 } 18414 if (ill_to_v6 != NULL) { 18415 ill_refrele(ill_to_v6); 18416 } 18417 18418 return (err); 18419 } 18420 18421 static void 18422 ill_dl_down(ill_t *ill) 18423 { 18424 /* 18425 * The ill is down; unbind but stay attached since we're still 18426 * associated with a PPA. If we have negotiated DLPI capabilites 18427 * with the data link service provider (IDS_OK) then reset them. 18428 * The interval between unbinding and rebinding is potentially 18429 * unbounded hence we cannot assume things will be the same. 18430 * The DLPI capabilities will be probed again when the data link 18431 * is brought up. 18432 */ 18433 mblk_t *mp = ill->ill_unbind_mp; 18434 hook_nic_event_t *info; 18435 18436 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18437 18438 ill->ill_unbind_mp = NULL; 18439 if (mp != NULL) { 18440 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18441 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18442 ill->ill_name)); 18443 mutex_enter(&ill->ill_lock); 18444 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18445 mutex_exit(&ill->ill_lock); 18446 if (ill->ill_dlpi_capab_state == IDS_OK) 18447 ill_capability_reset(ill); 18448 ill_dlpi_send(ill, mp); 18449 } 18450 18451 /* 18452 * Toss all of our multicast memberships. We could keep them, but 18453 * then we'd have to do bookkeeping of any joins and leaves performed 18454 * by the application while the the interface is down (we can't just 18455 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18456 * on a downed interface). 18457 */ 18458 ill_leave_multicast(ill); 18459 18460 mutex_enter(&ill->ill_lock); 18461 18462 ill->ill_dl_up = 0; 18463 18464 if ((info = ill->ill_nic_event_info) != NULL) { 18465 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18466 info->hne_event, ill->ill_name)); 18467 if (info->hne_data != NULL) 18468 kmem_free(info->hne_data, info->hne_datalen); 18469 kmem_free(info, sizeof (hook_nic_event_t)); 18470 } 18471 18472 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18473 if (info != NULL) { 18474 ip_stack_t *ipst = ill->ill_ipst; 18475 18476 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18477 info->hne_lif = 0; 18478 info->hne_event = NE_DOWN; 18479 info->hne_data = NULL; 18480 info->hne_datalen = 0; 18481 info->hne_family = ill->ill_isv6 ? 18482 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18483 } else 18484 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18485 "information for %s (ENOMEM)\n", ill->ill_name)); 18486 18487 ill->ill_nic_event_info = info; 18488 18489 mutex_exit(&ill->ill_lock); 18490 } 18491 18492 static void 18493 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18494 { 18495 union DL_primitives *dlp; 18496 t_uscalar_t prim; 18497 18498 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18499 18500 dlp = (union DL_primitives *)mp->b_rptr; 18501 prim = dlp->dl_primitive; 18502 18503 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18504 dlpi_prim_str(prim), prim, ill->ill_name)); 18505 18506 switch (prim) { 18507 case DL_PHYS_ADDR_REQ: 18508 { 18509 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18510 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18511 break; 18512 } 18513 case DL_BIND_REQ: 18514 mutex_enter(&ill->ill_lock); 18515 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18516 mutex_exit(&ill->ill_lock); 18517 break; 18518 } 18519 18520 /* 18521 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18522 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18523 * we only wait for the ACK of the DL_UNBIND_REQ. 18524 */ 18525 mutex_enter(&ill->ill_lock); 18526 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18527 (prim == DL_UNBIND_REQ)) { 18528 ill->ill_dlpi_pending = prim; 18529 } 18530 mutex_exit(&ill->ill_lock); 18531 18532 putnext(ill->ill_wq, mp); 18533 } 18534 18535 /* 18536 * Helper function for ill_dlpi_send(). 18537 */ 18538 /* ARGSUSED */ 18539 static void 18540 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18541 { 18542 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18543 } 18544 18545 /* 18546 * Send a DLPI control message to the driver but make sure there 18547 * is only one outstanding message. Uses ill_dlpi_pending to tell 18548 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18549 * when an ACK or a NAK is received to process the next queued message. 18550 */ 18551 void 18552 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18553 { 18554 mblk_t **mpp; 18555 18556 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18557 18558 /* 18559 * To ensure that any DLPI requests for current exclusive operation 18560 * are always completely sent before any DLPI messages for other 18561 * operations, require writer access before enqueuing. 18562 */ 18563 if (!IAM_WRITER_ILL(ill)) { 18564 ill_refhold(ill); 18565 /* qwriter_ip() does the ill_refrele() */ 18566 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18567 NEW_OP, B_TRUE); 18568 return; 18569 } 18570 18571 mutex_enter(&ill->ill_lock); 18572 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18573 /* Must queue message. Tail insertion */ 18574 mpp = &ill->ill_dlpi_deferred; 18575 while (*mpp != NULL) 18576 mpp = &((*mpp)->b_next); 18577 18578 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18579 ill->ill_name)); 18580 18581 *mpp = mp; 18582 mutex_exit(&ill->ill_lock); 18583 return; 18584 } 18585 mutex_exit(&ill->ill_lock); 18586 ill_dlpi_dispatch(ill, mp); 18587 } 18588 18589 /* 18590 * Send all deferred DLPI messages without waiting for their ACKs. 18591 */ 18592 void 18593 ill_dlpi_send_deferred(ill_t *ill) 18594 { 18595 mblk_t *mp, *nextmp; 18596 18597 /* 18598 * Clear ill_dlpi_pending so that the message is not queued in 18599 * ill_dlpi_send(). 18600 */ 18601 mutex_enter(&ill->ill_lock); 18602 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18603 mp = ill->ill_dlpi_deferred; 18604 ill->ill_dlpi_deferred = NULL; 18605 mutex_exit(&ill->ill_lock); 18606 18607 for (; mp != NULL; mp = nextmp) { 18608 nextmp = mp->b_next; 18609 mp->b_next = NULL; 18610 ill_dlpi_send(ill, mp); 18611 } 18612 } 18613 18614 /* 18615 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18616 */ 18617 boolean_t 18618 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18619 { 18620 t_uscalar_t prim_pending; 18621 18622 mutex_enter(&ill->ill_lock); 18623 prim_pending = ill->ill_dlpi_pending; 18624 mutex_exit(&ill->ill_lock); 18625 18626 /* 18627 * During teardown, ill_dlpi_send_deferred() will send requests 18628 * without waiting; don't bother printing any warnings in that case. 18629 */ 18630 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18631 if (prim_pending == DL_PRIM_INVAL) { 18632 (void) mi_strlog(ill->ill_rq, 1, 18633 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18634 "unsolicited ack for %s on %s\n", 18635 dlpi_prim_str(prim), ill->ill_name); 18636 } else { 18637 (void) mi_strlog(ill->ill_rq, 1, 18638 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18639 "unexpected ack for %s on %s (expecting %s)\n", 18640 dlpi_prim_str(prim), ill->ill_name, 18641 dlpi_prim_str(prim_pending)); 18642 } 18643 } 18644 return (prim_pending == prim); 18645 } 18646 18647 /* 18648 * Called when an DLPI control message has been acked or nacked to 18649 * send down the next queued message (if any). 18650 */ 18651 void 18652 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18653 { 18654 mblk_t *mp; 18655 18656 ASSERT(IAM_WRITER_ILL(ill)); 18657 mutex_enter(&ill->ill_lock); 18658 18659 ASSERT(prim != DL_PRIM_INVAL); 18660 ASSERT(ill->ill_dlpi_pending == prim); 18661 18662 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18663 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18664 18665 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18666 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18667 cv_signal(&ill->ill_cv); 18668 mutex_exit(&ill->ill_lock); 18669 return; 18670 } 18671 18672 ill->ill_dlpi_deferred = mp->b_next; 18673 mp->b_next = NULL; 18674 mutex_exit(&ill->ill_lock); 18675 18676 ill_dlpi_dispatch(ill, mp); 18677 } 18678 18679 void 18680 conn_delete_ire(conn_t *connp, caddr_t arg) 18681 { 18682 ipif_t *ipif = (ipif_t *)arg; 18683 ire_t *ire; 18684 18685 /* 18686 * Look at the cached ires on conns which has pointers to ipifs. 18687 * We just call ire_refrele which clears up the reference 18688 * to ire. Called when a conn closes. Also called from ipif_free 18689 * to cleanup indirect references to the stale ipif via the cached ire. 18690 */ 18691 mutex_enter(&connp->conn_lock); 18692 ire = connp->conn_ire_cache; 18693 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18694 connp->conn_ire_cache = NULL; 18695 mutex_exit(&connp->conn_lock); 18696 IRE_REFRELE_NOTR(ire); 18697 return; 18698 } 18699 mutex_exit(&connp->conn_lock); 18700 18701 } 18702 18703 /* 18704 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18705 * of IREs. Those IREs may have been previously cached in the conn structure. 18706 * This ipcl_walk() walker function releases all references to such IREs based 18707 * on the condemned flag. 18708 */ 18709 /* ARGSUSED */ 18710 void 18711 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18712 { 18713 ire_t *ire; 18714 18715 mutex_enter(&connp->conn_lock); 18716 ire = connp->conn_ire_cache; 18717 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18718 connp->conn_ire_cache = NULL; 18719 mutex_exit(&connp->conn_lock); 18720 IRE_REFRELE_NOTR(ire); 18721 return; 18722 } 18723 mutex_exit(&connp->conn_lock); 18724 } 18725 18726 /* 18727 * Take down a specific interface, but don't lose any information about it. 18728 * Also delete interface from its interface group (ifgrp). 18729 * (Always called as writer.) 18730 * This function goes through the down sequence even if the interface is 18731 * already down. There are 2 reasons. 18732 * a. Currently we permit interface routes that depend on down interfaces 18733 * to be added. This behaviour itself is questionable. However it appears 18734 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18735 * time. We go thru the cleanup in order to remove these routes. 18736 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18737 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18738 * down, but we need to cleanup i.e. do ill_dl_down and 18739 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18740 * 18741 * IP-MT notes: 18742 * 18743 * Model of reference to interfaces. 18744 * 18745 * The following members in ipif_t track references to the ipif. 18746 * int ipif_refcnt; Active reference count 18747 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18748 * The following members in ill_t track references to the ill. 18749 * int ill_refcnt; active refcnt 18750 * uint_t ill_ire_cnt; Number of ires referencing ill 18751 * uint_t ill_nce_cnt; Number of nces referencing ill 18752 * 18753 * Reference to an ipif or ill can be obtained in any of the following ways. 18754 * 18755 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18756 * Pointers to ipif / ill from other data structures viz ire and conn. 18757 * Implicit reference to the ipif / ill by holding a reference to the ire. 18758 * 18759 * The ipif/ill lookup functions return a reference held ipif / ill. 18760 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18761 * This is a purely dynamic reference count associated with threads holding 18762 * references to the ipif / ill. Pointers from other structures do not 18763 * count towards this reference count. 18764 * 18765 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18766 * ipif/ill. This is incremented whenever a new ire is created referencing the 18767 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18768 * actually added to the ire hash table. The count is decremented in 18769 * ire_inactive where the ire is destroyed. 18770 * 18771 * nce's reference ill's thru nce_ill and the count of nce's associated with 18772 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18773 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18774 * table. Similarly it is decremented in ndp_inactive() where the nce 18775 * is destroyed. 18776 * 18777 * Flow of ioctls involving interface down/up 18778 * 18779 * The following is the sequence of an attempt to set some critical flags on an 18780 * up interface. 18781 * ip_sioctl_flags 18782 * ipif_down 18783 * wait for ipif to be quiescent 18784 * ipif_down_tail 18785 * ip_sioctl_flags_tail 18786 * 18787 * All set ioctls that involve down/up sequence would have a skeleton similar 18788 * to the above. All the *tail functions are called after the refcounts have 18789 * dropped to the appropriate values. 18790 * 18791 * The mechanism to quiesce an ipif is as follows. 18792 * 18793 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18794 * on the ipif. Callers either pass a flag requesting wait or the lookup 18795 * functions will return NULL. 18796 * 18797 * Delete all ires referencing this ipif 18798 * 18799 * Any thread attempting to do an ipif_refhold on an ipif that has been 18800 * obtained thru a cached pointer will first make sure that 18801 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18802 * increment the refcount. 18803 * 18804 * The above guarantees that the ipif refcount will eventually come down to 18805 * zero and the ipif will quiesce, once all threads that currently hold a 18806 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18807 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18808 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18809 * drop to zero. 18810 * 18811 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18812 * 18813 * Threads trying to lookup an ipif or ill can pass a flag requesting 18814 * wait and restart if the ipif / ill cannot be looked up currently. 18815 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18816 * failure if the ipif is currently undergoing an exclusive operation, and 18817 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18818 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18819 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18820 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18821 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18822 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18823 * until we release the ipsq_lock, even though the the ill/ipif state flags 18824 * can change after we drop the ill_lock. 18825 * 18826 * An attempt to send out a packet using an ipif that is currently 18827 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18828 * operation and restart it later when the exclusive condition on the ipif ends. 18829 * This is an example of not passing the wait flag to the lookup functions. For 18830 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18831 * out a multicast packet on that ipif will fail while the ipif is 18832 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18833 * currently IPIF_CHANGING will also fail. 18834 */ 18835 int 18836 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18837 { 18838 ill_t *ill = ipif->ipif_ill; 18839 phyint_t *phyi; 18840 conn_t *connp; 18841 boolean_t success; 18842 boolean_t ipif_was_up = B_FALSE; 18843 ip_stack_t *ipst = ill->ill_ipst; 18844 18845 ASSERT(IAM_WRITER_IPIF(ipif)); 18846 18847 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18848 18849 if (ipif->ipif_flags & IPIF_UP) { 18850 mutex_enter(&ill->ill_lock); 18851 ipif->ipif_flags &= ~IPIF_UP; 18852 ASSERT(ill->ill_ipif_up_count > 0); 18853 --ill->ill_ipif_up_count; 18854 mutex_exit(&ill->ill_lock); 18855 ipif_was_up = B_TRUE; 18856 /* Update status in SCTP's list */ 18857 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18858 } 18859 18860 /* 18861 * Blow away memberships we established in ipif_multicast_up(). 18862 */ 18863 ipif_multicast_down(ipif); 18864 18865 /* 18866 * Remove from the mapping for __sin6_src_id. We insert only 18867 * when the address is not INADDR_ANY. As IPv4 addresses are 18868 * stored as mapped addresses, we need to check for mapped 18869 * INADDR_ANY also. 18870 */ 18871 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18872 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18873 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18874 int err; 18875 18876 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18877 ipif->ipif_zoneid, ipst); 18878 if (err != 0) { 18879 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18880 } 18881 } 18882 18883 /* 18884 * Before we delete the ill from the group (if any), we need 18885 * to make sure that we delete all the routes dependent on 18886 * this and also any ipifs dependent on this ipif for 18887 * source address. We need to do before we delete from 18888 * the group because 18889 * 18890 * 1) ipif_down_delete_ire de-references ill->ill_group. 18891 * 18892 * 2) ipif_update_other_ipifs needs to walk the whole group 18893 * for re-doing source address selection. Note that 18894 * ipif_select_source[_v6] called from 18895 * ipif_update_other_ipifs[_v6] will not pick this ipif 18896 * because we have already marked down here i.e cleared 18897 * IPIF_UP. 18898 */ 18899 if (ipif->ipif_isv6) { 18900 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18901 ipst); 18902 } else { 18903 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18904 ipst); 18905 } 18906 18907 /* 18908 * Need to add these also to be saved and restored when the 18909 * ipif is brought down and up 18910 */ 18911 mutex_enter(&ipst->ips_ire_mrtun_lock); 18912 if (ipst->ips_ire_mrtun_count != 0) { 18913 mutex_exit(&ipst->ips_ire_mrtun_lock); 18914 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18915 (char *)ipif, NULL, ipst); 18916 } else { 18917 mutex_exit(&ipst->ips_ire_mrtun_lock); 18918 } 18919 18920 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18921 if (ipst->ips_ire_srcif_table_count > 0) { 18922 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18923 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18924 ipst); 18925 } else { 18926 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18927 } 18928 18929 /* 18930 * Cleaning up the conn_ire_cache or conns must be done only after the 18931 * ires have been deleted above. Otherwise a thread could end up 18932 * caching an ire in a conn after we have finished the cleanup of the 18933 * conn. The caching is done after making sure that the ire is not yet 18934 * condemned. Also documented in the block comment above ip_output 18935 */ 18936 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18937 /* Also, delete the ires cached in SCTP */ 18938 sctp_ire_cache_flush(ipif); 18939 18940 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18941 nattymod_clean_ipif(ipif); 18942 18943 /* 18944 * Update any other ipifs which have used "our" local address as 18945 * a source address. This entails removing and recreating IRE_INTERFACE 18946 * entries for such ipifs. 18947 */ 18948 if (ipif->ipif_isv6) 18949 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18950 else 18951 ipif_update_other_ipifs(ipif, ill->ill_group); 18952 18953 if (ipif_was_up) { 18954 /* 18955 * Check whether it is last ipif to leave this group. 18956 * If this is the last ipif to leave, we should remove 18957 * this ill from the group as ipif_select_source will not 18958 * be able to find any useful ipifs if this ill is selected 18959 * for load balancing. 18960 * 18961 * For nameless groups, we should call ifgrp_delete if this 18962 * belongs to some group. As this ipif is going down, we may 18963 * need to reconstruct groups. 18964 */ 18965 phyi = ill->ill_phyint; 18966 /* 18967 * If the phyint_groupname_len is 0, it may or may not 18968 * be in the nameless group. If the phyint_groupname_len is 18969 * not 0, then this ill should be part of some group. 18970 * As we always insert this ill in the group if 18971 * phyint_groupname_len is not zero when the first ipif 18972 * comes up (in ipif_up_done), it should be in a group 18973 * when the namelen is not 0. 18974 * 18975 * NOTE : When we delete the ill from the group,it will 18976 * blow away all the IRE_CACHES pointing either at this ipif or 18977 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18978 * should be pointing at this ill. 18979 */ 18980 ASSERT(phyi->phyint_groupname_len == 0 || 18981 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18982 18983 if (phyi->phyint_groupname_len != 0) { 18984 if (ill->ill_ipif_up_count == 0) 18985 illgrp_delete(ill); 18986 } 18987 18988 /* 18989 * If we have deleted some of the broadcast ires associated 18990 * with this ipif, we need to re-nominate somebody else if 18991 * the ires that we deleted were the nominated ones. 18992 */ 18993 if (ill->ill_group != NULL && !ill->ill_isv6) 18994 ipif_renominate_bcast(ipif); 18995 } 18996 18997 /* 18998 * neighbor-discovery or arp entries for this interface. 18999 */ 19000 ipif_ndp_down(ipif); 19001 19002 /* 19003 * If mp is NULL the caller will wait for the appropriate refcnt. 19004 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 19005 * and ill_delete -> ipif_free -> ipif_down 19006 */ 19007 if (mp == NULL) { 19008 ASSERT(q == NULL); 19009 return (0); 19010 } 19011 19012 if (CONN_Q(q)) { 19013 connp = Q_TO_CONN(q); 19014 mutex_enter(&connp->conn_lock); 19015 } else { 19016 connp = NULL; 19017 } 19018 mutex_enter(&ill->ill_lock); 19019 /* 19020 * Are there any ire's pointing to this ipif that are still active ? 19021 * If this is the last ipif going down, are there any ire's pointing 19022 * to this ill that are still active ? 19023 */ 19024 if (ipif_is_quiescent(ipif)) { 19025 mutex_exit(&ill->ill_lock); 19026 if (connp != NULL) 19027 mutex_exit(&connp->conn_lock); 19028 return (0); 19029 } 19030 19031 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 19032 ill->ill_name, (void *)ill)); 19033 /* 19034 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 19035 * drops down, the operation will be restarted by ipif_ill_refrele_tail 19036 * which in turn is called by the last refrele on the ipif/ill/ire. 19037 */ 19038 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 19039 if (!success) { 19040 /* The conn is closing. So just return */ 19041 ASSERT(connp != NULL); 19042 mutex_exit(&ill->ill_lock); 19043 mutex_exit(&connp->conn_lock); 19044 return (EINTR); 19045 } 19046 19047 mutex_exit(&ill->ill_lock); 19048 if (connp != NULL) 19049 mutex_exit(&connp->conn_lock); 19050 return (EINPROGRESS); 19051 } 19052 19053 void 19054 ipif_down_tail(ipif_t *ipif) 19055 { 19056 ill_t *ill = ipif->ipif_ill; 19057 19058 /* 19059 * Skip any loopback interface (null wq). 19060 * If this is the last logical interface on the ill 19061 * have ill_dl_down tell the driver we are gone (unbind) 19062 * Note that lun 0 can ipif_down even though 19063 * there are other logical units that are up. 19064 * This occurs e.g. when we change a "significant" IFF_ flag. 19065 */ 19066 if (ill->ill_wq != NULL && !ill->ill_logical_down && 19067 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 19068 ill->ill_dl_up) { 19069 ill_dl_down(ill); 19070 } 19071 ill->ill_logical_down = 0; 19072 19073 /* 19074 * Have to be after removing the routes in ipif_down_delete_ire. 19075 */ 19076 if (ipif->ipif_isv6) { 19077 if (ill->ill_flags & ILLF_XRESOLV) 19078 ipif_arp_down(ipif); 19079 } else { 19080 ipif_arp_down(ipif); 19081 } 19082 19083 ip_rts_ifmsg(ipif); 19084 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 19085 } 19086 19087 /* 19088 * Bring interface logically down without bringing the physical interface 19089 * down e.g. when the netmask is changed. This avoids long lasting link 19090 * negotiations between an ethernet interface and a certain switches. 19091 */ 19092 static int 19093 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 19094 { 19095 /* 19096 * The ill_logical_down flag is a transient flag. It is set here 19097 * and is cleared once the down has completed in ipif_down_tail. 19098 * This flag does not indicate whether the ill stream is in the 19099 * DL_BOUND state with the driver. Instead this flag is used by 19100 * ipif_down_tail to determine whether to DL_UNBIND the stream with 19101 * the driver. The state of the ill stream i.e. whether it is 19102 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 19103 */ 19104 ipif->ipif_ill->ill_logical_down = 1; 19105 return (ipif_down(ipif, q, mp)); 19106 } 19107 19108 /* 19109 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 19110 * If the usesrc client ILL is already part of a usesrc group or not, 19111 * in either case a ire_stq with the matching usesrc client ILL will 19112 * locate the IRE's that need to be deleted. We want IREs to be created 19113 * with the new source address. 19114 */ 19115 static void 19116 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 19117 { 19118 ill_t *ucill = (ill_t *)ill_arg; 19119 19120 ASSERT(IAM_WRITER_ILL(ucill)); 19121 19122 if (ire->ire_stq == NULL) 19123 return; 19124 19125 if ((ire->ire_type == IRE_CACHE) && 19126 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19127 ire_delete(ire); 19128 } 19129 19130 /* 19131 * ire_walk routine to delete every IRE dependent on the interface 19132 * address that is going down. (Always called as writer.) 19133 * Works for both v4 and v6. 19134 * In addition for checking for ire_ipif matches it also checks for 19135 * IRE_CACHE entries which have the same source address as the 19136 * disappearing ipif since ipif_select_source might have picked 19137 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19138 * care of any IRE_INTERFACE with the disappearing source address. 19139 */ 19140 static void 19141 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19142 { 19143 ipif_t *ipif = (ipif_t *)ipif_arg; 19144 ill_t *ire_ill; 19145 ill_t *ipif_ill; 19146 19147 ASSERT(IAM_WRITER_IPIF(ipif)); 19148 if (ire->ire_ipif == NULL) 19149 return; 19150 19151 /* 19152 * For IPv4, we derive source addresses for an IRE from ipif's 19153 * belonging to the same IPMP group as the IRE's outgoing 19154 * interface. If an IRE's outgoing interface isn't in the 19155 * same IPMP group as a particular ipif, then that ipif 19156 * couldn't have been used as a source address for this IRE. 19157 * 19158 * For IPv6, source addresses are only restricted to the IPMP group 19159 * if the IRE is for a link-local address or a multicast address. 19160 * Otherwise, source addresses for an IRE can be chosen from 19161 * interfaces other than the the outgoing interface for that IRE. 19162 * 19163 * For source address selection details, see ipif_select_source() 19164 * and ipif_select_source_v6(). 19165 */ 19166 if (ire->ire_ipversion == IPV4_VERSION || 19167 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19168 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19169 ire_ill = ire->ire_ipif->ipif_ill; 19170 ipif_ill = ipif->ipif_ill; 19171 19172 if (ire_ill->ill_group != ipif_ill->ill_group) { 19173 return; 19174 } 19175 } 19176 19177 19178 if (ire->ire_ipif != ipif) { 19179 /* 19180 * Look for a matching source address. 19181 */ 19182 if (ire->ire_type != IRE_CACHE) 19183 return; 19184 if (ipif->ipif_flags & IPIF_NOLOCAL) 19185 return; 19186 19187 if (ire->ire_ipversion == IPV4_VERSION) { 19188 if (ire->ire_src_addr != ipif->ipif_src_addr) 19189 return; 19190 } else { 19191 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19192 &ipif->ipif_v6lcl_addr)) 19193 return; 19194 } 19195 ire_delete(ire); 19196 return; 19197 } 19198 /* 19199 * ire_delete() will do an ire_flush_cache which will delete 19200 * all ire_ipif matches 19201 */ 19202 ire_delete(ire); 19203 } 19204 19205 /* 19206 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19207 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19208 * 2) when an interface is brought up or down (on that ill). 19209 * This ensures that the IRE_CACHE entries don't retain stale source 19210 * address selection results. 19211 */ 19212 void 19213 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19214 { 19215 ill_t *ill = (ill_t *)ill_arg; 19216 ill_t *ipif_ill; 19217 19218 ASSERT(IAM_WRITER_ILL(ill)); 19219 /* 19220 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19221 * Hence this should be IRE_CACHE. 19222 */ 19223 ASSERT(ire->ire_type == IRE_CACHE); 19224 19225 /* 19226 * We are called for IRE_CACHES whose ire_ipif matches ill. 19227 * We are only interested in IRE_CACHES that has borrowed 19228 * the source address from ill_arg e.g. ipif_up_done[_v6] 19229 * for which we need to look at ire_ipif->ipif_ill match 19230 * with ill. 19231 */ 19232 ASSERT(ire->ire_ipif != NULL); 19233 ipif_ill = ire->ire_ipif->ipif_ill; 19234 if (ipif_ill == ill || (ill->ill_group != NULL && 19235 ipif_ill->ill_group == ill->ill_group)) { 19236 ire_delete(ire); 19237 } 19238 } 19239 19240 /* 19241 * Delete all the ire whose stq references ill_arg. 19242 */ 19243 static void 19244 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19245 { 19246 ill_t *ill = (ill_t *)ill_arg; 19247 ill_t *ire_ill; 19248 19249 ASSERT(IAM_WRITER_ILL(ill)); 19250 /* 19251 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19252 * Hence this should be IRE_CACHE. 19253 */ 19254 ASSERT(ire->ire_type == IRE_CACHE); 19255 19256 /* 19257 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19258 * matches ill. We are only interested in IRE_CACHES that 19259 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19260 * filtering here. 19261 */ 19262 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19263 19264 if (ire_ill == ill) 19265 ire_delete(ire); 19266 } 19267 19268 /* 19269 * This is called when an ill leaves the group. We want to delete 19270 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19271 * pointing at ill. 19272 */ 19273 static void 19274 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19275 { 19276 ill_t *ill = (ill_t *)ill_arg; 19277 19278 ASSERT(IAM_WRITER_ILL(ill)); 19279 ASSERT(ill->ill_group == NULL); 19280 /* 19281 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19282 * Hence this should be IRE_CACHE. 19283 */ 19284 ASSERT(ire->ire_type == IRE_CACHE); 19285 /* 19286 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19287 * matches ill. We are interested in both. 19288 */ 19289 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19290 (ire->ire_ipif->ipif_ill == ill)); 19291 19292 ire_delete(ire); 19293 } 19294 19295 /* 19296 * Initiate deallocate of an IPIF. Always called as writer. Called by 19297 * ill_delete or ip_sioctl_removeif. 19298 */ 19299 static void 19300 ipif_free(ipif_t *ipif) 19301 { 19302 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19303 19304 ASSERT(IAM_WRITER_IPIF(ipif)); 19305 19306 if (ipif->ipif_recovery_id != 0) 19307 (void) untimeout(ipif->ipif_recovery_id); 19308 ipif->ipif_recovery_id = 0; 19309 19310 /* Remove conn references */ 19311 reset_conn_ipif(ipif); 19312 19313 /* 19314 * Make sure we have valid net and subnet broadcast ire's for the 19315 * other ipif's which share them with this ipif. 19316 */ 19317 if (!ipif->ipif_isv6) 19318 ipif_check_bcast_ires(ipif); 19319 19320 /* 19321 * Take down the interface. We can be called either from ill_delete 19322 * or from ip_sioctl_removeif. 19323 */ 19324 (void) ipif_down(ipif, NULL, NULL); 19325 19326 /* 19327 * Now that the interface is down, there's no chance it can still 19328 * become a duplicate. Cancel any timer that may have been set while 19329 * tearing down. 19330 */ 19331 if (ipif->ipif_recovery_id != 0) 19332 (void) untimeout(ipif->ipif_recovery_id); 19333 ipif->ipif_recovery_id = 0; 19334 19335 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19336 /* Remove pointers to this ill in the multicast routing tables */ 19337 reset_mrt_vif_ipif(ipif); 19338 rw_exit(&ipst->ips_ill_g_lock); 19339 } 19340 19341 /* 19342 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19343 * also ill_move(). 19344 */ 19345 static void 19346 ipif_free_tail(ipif_t *ipif) 19347 { 19348 mblk_t *mp; 19349 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19350 19351 /* 19352 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19353 */ 19354 mutex_enter(&ipif->ipif_saved_ire_lock); 19355 mp = ipif->ipif_saved_ire_mp; 19356 ipif->ipif_saved_ire_mp = NULL; 19357 mutex_exit(&ipif->ipif_saved_ire_lock); 19358 freemsg(mp); 19359 19360 /* 19361 * Need to hold both ill_g_lock and ill_lock while 19362 * inserting or removing an ipif from the linked list 19363 * of ipifs hanging off the ill. 19364 */ 19365 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19366 /* 19367 * Remove all IPv4 multicast memberships on the interface now. 19368 * IPv6 is not handled here as the multicast memberships are 19369 * tied to the ill rather than the ipif. 19370 */ 19371 ilm_free(ipif); 19372 19373 /* 19374 * Since we held the ill_g_lock while doing the ilm_free above, 19375 * we can assert the ilms were really deleted and not just marked 19376 * ILM_DELETED. 19377 */ 19378 ASSERT(ilm_walk_ipif(ipif) == 0); 19379 19380 IPIF_TRACE_CLEANUP(ipif); 19381 19382 /* Ask SCTP to take it out of it list */ 19383 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19384 19385 /* Get it out of the ILL interface list. */ 19386 ipif_remove(ipif, B_TRUE); 19387 rw_exit(&ipst->ips_ill_g_lock); 19388 19389 mutex_destroy(&ipif->ipif_saved_ire_lock); 19390 19391 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19392 ASSERT(ipif->ipif_recovery_id == 0); 19393 19394 /* Free the memory. */ 19395 mi_free(ipif); 19396 } 19397 19398 /* 19399 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19400 * "ill_name" otherwise. 19401 */ 19402 char * 19403 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19404 { 19405 char lbuf[32]; 19406 char *name; 19407 size_t name_len; 19408 19409 buf[0] = '\0'; 19410 if (!ipif) 19411 return (buf); 19412 name = ipif->ipif_ill->ill_name; 19413 name_len = ipif->ipif_ill->ill_name_length; 19414 if (ipif->ipif_id != 0) { 19415 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19416 ipif->ipif_id); 19417 name = lbuf; 19418 name_len = mi_strlen(name) + 1; 19419 } 19420 len -= 1; 19421 buf[len] = '\0'; 19422 len = MIN(len, name_len); 19423 bcopy(name, buf, len); 19424 return (buf); 19425 } 19426 19427 /* 19428 * Find an IPIF based on the name passed in. Names can be of the 19429 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19430 * The <phys> string can have forms like <dev><#> (e.g., le0), 19431 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19432 * When there is no colon, the implied unit id is zero. <phys> must 19433 * correspond to the name of an ILL. (May be called as writer.) 19434 */ 19435 static ipif_t * 19436 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19437 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19438 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19439 { 19440 char *cp; 19441 char *endp; 19442 long id; 19443 ill_t *ill; 19444 ipif_t *ipif; 19445 uint_t ire_type; 19446 boolean_t did_alloc = B_FALSE; 19447 ipsq_t *ipsq; 19448 19449 if (error != NULL) 19450 *error = 0; 19451 19452 /* 19453 * If the caller wants to us to create the ipif, make sure we have a 19454 * valid zoneid 19455 */ 19456 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19457 19458 if (namelen == 0) { 19459 if (error != NULL) 19460 *error = ENXIO; 19461 return (NULL); 19462 } 19463 19464 *exists = B_FALSE; 19465 /* Look for a colon in the name. */ 19466 endp = &name[namelen]; 19467 for (cp = endp; --cp > name; ) { 19468 if (*cp == IPIF_SEPARATOR_CHAR) 19469 break; 19470 } 19471 19472 if (*cp == IPIF_SEPARATOR_CHAR) { 19473 /* 19474 * Reject any non-decimal aliases for logical 19475 * interfaces. Aliases with leading zeroes 19476 * are also rejected as they introduce ambiguity 19477 * in the naming of the interfaces. 19478 * In order to confirm with existing semantics, 19479 * and to not break any programs/script relying 19480 * on that behaviour, if<0>:0 is considered to be 19481 * a valid interface. 19482 * 19483 * If alias has two or more digits and the first 19484 * is zero, fail. 19485 */ 19486 if (&cp[2] < endp && cp[1] == '0') 19487 return (NULL); 19488 } 19489 19490 if (cp <= name) { 19491 cp = endp; 19492 } else { 19493 *cp = '\0'; 19494 } 19495 19496 /* 19497 * Look up the ILL, based on the portion of the name 19498 * before the slash. ill_lookup_on_name returns a held ill. 19499 * Temporary to check whether ill exists already. If so 19500 * ill_lookup_on_name will clear it. 19501 */ 19502 ill = ill_lookup_on_name(name, do_alloc, isv6, 19503 q, mp, func, error, &did_alloc, ipst); 19504 if (cp != endp) 19505 *cp = IPIF_SEPARATOR_CHAR; 19506 if (ill == NULL) 19507 return (NULL); 19508 19509 /* Establish the unit number in the name. */ 19510 id = 0; 19511 if (cp < endp && *endp == '\0') { 19512 /* If there was a colon, the unit number follows. */ 19513 cp++; 19514 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19515 ill_refrele(ill); 19516 if (error != NULL) 19517 *error = ENXIO; 19518 return (NULL); 19519 } 19520 } 19521 19522 GRAB_CONN_LOCK(q); 19523 mutex_enter(&ill->ill_lock); 19524 /* Now see if there is an IPIF with this unit number. */ 19525 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19526 if (ipif->ipif_id == id) { 19527 if (zoneid != ALL_ZONES && 19528 zoneid != ipif->ipif_zoneid && 19529 ipif->ipif_zoneid != ALL_ZONES) { 19530 mutex_exit(&ill->ill_lock); 19531 RELEASE_CONN_LOCK(q); 19532 ill_refrele(ill); 19533 if (error != NULL) 19534 *error = ENXIO; 19535 return (NULL); 19536 } 19537 /* 19538 * The block comment at the start of ipif_down 19539 * explains the use of the macros used below 19540 */ 19541 if (IPIF_CAN_LOOKUP(ipif)) { 19542 ipif_refhold_locked(ipif); 19543 mutex_exit(&ill->ill_lock); 19544 if (!did_alloc) 19545 *exists = B_TRUE; 19546 /* 19547 * Drop locks before calling ill_refrele 19548 * since it can potentially call into 19549 * ipif_ill_refrele_tail which can end up 19550 * in trying to acquire any lock. 19551 */ 19552 RELEASE_CONN_LOCK(q); 19553 ill_refrele(ill); 19554 return (ipif); 19555 } else if (IPIF_CAN_WAIT(ipif, q)) { 19556 ipsq = ill->ill_phyint->phyint_ipsq; 19557 mutex_enter(&ipsq->ipsq_lock); 19558 mutex_exit(&ill->ill_lock); 19559 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19560 mutex_exit(&ipsq->ipsq_lock); 19561 RELEASE_CONN_LOCK(q); 19562 ill_refrele(ill); 19563 *error = EINPROGRESS; 19564 return (NULL); 19565 } 19566 } 19567 } 19568 RELEASE_CONN_LOCK(q); 19569 19570 if (!do_alloc) { 19571 mutex_exit(&ill->ill_lock); 19572 ill_refrele(ill); 19573 if (error != NULL) 19574 *error = ENXIO; 19575 return (NULL); 19576 } 19577 19578 /* 19579 * If none found, atomically allocate and return a new one. 19580 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19581 * to support "receive only" use of lo0:1 etc. as is still done 19582 * below as an initial guess. 19583 * However, this is now likely to be overriden later in ipif_up_done() 19584 * when we know for sure what address has been configured on the 19585 * interface, since we might have more than one loopback interface 19586 * with a loopback address, e.g. in the case of zones, and all the 19587 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19588 */ 19589 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19590 ire_type = IRE_LOOPBACK; 19591 else 19592 ire_type = IRE_LOCAL; 19593 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19594 if (ipif != NULL) 19595 ipif_refhold_locked(ipif); 19596 else if (error != NULL) 19597 *error = ENOMEM; 19598 mutex_exit(&ill->ill_lock); 19599 ill_refrele(ill); 19600 return (ipif); 19601 } 19602 19603 /* 19604 * This routine is called whenever a new address comes up on an ipif. If 19605 * we are configured to respond to address mask requests, then we are supposed 19606 * to broadcast an address mask reply at this time. This routine is also 19607 * called if we are already up, but a netmask change is made. This is legal 19608 * but might not make the system manager very popular. (May be called 19609 * as writer.) 19610 */ 19611 void 19612 ipif_mask_reply(ipif_t *ipif) 19613 { 19614 icmph_t *icmph; 19615 ipha_t *ipha; 19616 mblk_t *mp; 19617 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19618 19619 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19620 19621 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19622 return; 19623 19624 /* ICMP mask reply is IPv4 only */ 19625 ASSERT(!ipif->ipif_isv6); 19626 /* ICMP mask reply is not for a loopback interface */ 19627 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19628 19629 mp = allocb(REPLY_LEN, BPRI_HI); 19630 if (mp == NULL) 19631 return; 19632 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19633 19634 ipha = (ipha_t *)mp->b_rptr; 19635 bzero(ipha, REPLY_LEN); 19636 *ipha = icmp_ipha; 19637 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19638 ipha->ipha_src = ipif->ipif_src_addr; 19639 ipha->ipha_dst = ipif->ipif_brd_addr; 19640 ipha->ipha_length = htons(REPLY_LEN); 19641 ipha->ipha_ident = 0; 19642 19643 icmph = (icmph_t *)&ipha[1]; 19644 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19645 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19646 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19647 19648 put(ipif->ipif_wq, mp); 19649 19650 #undef REPLY_LEN 19651 } 19652 19653 /* 19654 * When the mtu in the ipif changes, we call this routine through ire_walk 19655 * to update all the relevant IREs. 19656 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19657 */ 19658 static void 19659 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19660 { 19661 ipif_t *ipif = (ipif_t *)ipif_arg; 19662 19663 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19664 return; 19665 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19666 } 19667 19668 /* 19669 * When the mtu in the ill changes, we call this routine through ire_walk 19670 * to update all the relevant IREs. 19671 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19672 */ 19673 void 19674 ill_mtu_change(ire_t *ire, char *ill_arg) 19675 { 19676 ill_t *ill = (ill_t *)ill_arg; 19677 19678 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19679 return; 19680 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19681 } 19682 19683 /* 19684 * Join the ipif specific multicast groups. 19685 * Must be called after a mapping has been set up in the resolver. (Always 19686 * called as writer.) 19687 */ 19688 void 19689 ipif_multicast_up(ipif_t *ipif) 19690 { 19691 int err, index; 19692 ill_t *ill; 19693 19694 ASSERT(IAM_WRITER_IPIF(ipif)); 19695 19696 ill = ipif->ipif_ill; 19697 index = ill->ill_phyint->phyint_ifindex; 19698 19699 ip1dbg(("ipif_multicast_up\n")); 19700 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19701 return; 19702 19703 if (ipif->ipif_isv6) { 19704 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19705 return; 19706 19707 /* Join the all hosts multicast address */ 19708 ip1dbg(("ipif_multicast_up - addmulti\n")); 19709 /* 19710 * Passing B_TRUE means we have to join the multicast 19711 * membership on this interface even though this is 19712 * FAILED. If we join on a different one in the group, 19713 * we will not be able to delete the membership later 19714 * as we currently don't track where we join when we 19715 * join within the kernel unlike applications where 19716 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19717 * for more on this. 19718 */ 19719 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19720 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19721 if (err != 0) { 19722 ip0dbg(("ipif_multicast_up: " 19723 "all_hosts_mcast failed %d\n", 19724 err)); 19725 return; 19726 } 19727 /* 19728 * Enable multicast for the solicited node multicast address 19729 */ 19730 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19731 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19732 19733 ipv6_multi.s6_addr32[3] |= 19734 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19735 19736 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19737 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19738 NULL); 19739 if (err != 0) { 19740 ip0dbg(("ipif_multicast_up: solicited MC" 19741 " failed %d\n", err)); 19742 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19743 ill, ill->ill_phyint->phyint_ifindex, 19744 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19745 return; 19746 } 19747 } 19748 } else { 19749 if (ipif->ipif_lcl_addr == INADDR_ANY) 19750 return; 19751 19752 /* Join the all hosts multicast address */ 19753 ip1dbg(("ipif_multicast_up - addmulti\n")); 19754 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19755 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19756 if (err) { 19757 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19758 return; 19759 } 19760 } 19761 ipif->ipif_multicast_up = 1; 19762 } 19763 19764 /* 19765 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19766 * (Explicit memberships are blown away in ill_leave_multicast() when the 19767 * ill is brought down.) 19768 */ 19769 static void 19770 ipif_multicast_down(ipif_t *ipif) 19771 { 19772 int err; 19773 19774 ASSERT(IAM_WRITER_IPIF(ipif)); 19775 19776 ip1dbg(("ipif_multicast_down\n")); 19777 if (!ipif->ipif_multicast_up) 19778 return; 19779 19780 ip1dbg(("ipif_multicast_down - delmulti\n")); 19781 19782 if (!ipif->ipif_isv6) { 19783 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19784 B_TRUE); 19785 if (err != 0) 19786 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19787 19788 ipif->ipif_multicast_up = 0; 19789 return; 19790 } 19791 19792 /* 19793 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19794 * we should look for ilms on this ill rather than the ones that have 19795 * been failed over here. They are here temporarily. As 19796 * ipif_multicast_up has joined on this ill, we should delete only 19797 * from this ill. 19798 */ 19799 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19800 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19801 B_TRUE, B_TRUE); 19802 if (err != 0) { 19803 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19804 err)); 19805 } 19806 /* 19807 * Disable multicast for the solicited node multicast address 19808 */ 19809 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19810 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19811 19812 ipv6_multi.s6_addr32[3] |= 19813 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19814 19815 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19816 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19817 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19818 19819 if (err != 0) { 19820 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19821 err)); 19822 } 19823 } 19824 19825 ipif->ipif_multicast_up = 0; 19826 } 19827 19828 /* 19829 * Used when an interface comes up to recreate any extra routes on this 19830 * interface. 19831 */ 19832 static ire_t ** 19833 ipif_recover_ire(ipif_t *ipif) 19834 { 19835 mblk_t *mp; 19836 ire_t **ipif_saved_irep; 19837 ire_t **irep; 19838 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19839 19840 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19841 ipif->ipif_id)); 19842 19843 mutex_enter(&ipif->ipif_saved_ire_lock); 19844 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19845 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19846 if (ipif_saved_irep == NULL) { 19847 mutex_exit(&ipif->ipif_saved_ire_lock); 19848 return (NULL); 19849 } 19850 19851 irep = ipif_saved_irep; 19852 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19853 ire_t *ire; 19854 queue_t *rfq; 19855 queue_t *stq; 19856 ifrt_t *ifrt; 19857 uchar_t *src_addr; 19858 uchar_t *gateway_addr; 19859 ushort_t type; 19860 19861 /* 19862 * When the ire was initially created and then added in 19863 * ip_rt_add(), it was created either using ipif->ipif_net_type 19864 * in the case of a traditional interface route, or as one of 19865 * the IRE_OFFSUBNET types (with the exception of 19866 * IRE_HOST types ire which is created by icmp_redirect() and 19867 * which we don't need to save or recover). In the case where 19868 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19869 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19870 * to satisfy software like GateD and Sun Cluster which creates 19871 * routes using the the loopback interface's address as a 19872 * gateway. 19873 * 19874 * As ifrt->ifrt_type reflects the already updated ire_type, 19875 * ire_create() will be called in the same way here as 19876 * in ip_rt_add(), namely using ipif->ipif_net_type when 19877 * the route looks like a traditional interface route (where 19878 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19879 * the saved ifrt->ifrt_type. This means that in the case where 19880 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19881 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19882 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19883 */ 19884 ifrt = (ifrt_t *)mp->b_rptr; 19885 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19886 if (ifrt->ifrt_type & IRE_INTERFACE) { 19887 rfq = NULL; 19888 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19889 ? ipif->ipif_rq : ipif->ipif_wq; 19890 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19891 ? (uint8_t *)&ifrt->ifrt_src_addr 19892 : (uint8_t *)&ipif->ipif_src_addr; 19893 gateway_addr = NULL; 19894 type = ipif->ipif_net_type; 19895 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19896 /* Recover multiroute broadcast IRE. */ 19897 rfq = ipif->ipif_rq; 19898 stq = ipif->ipif_wq; 19899 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19900 ? (uint8_t *)&ifrt->ifrt_src_addr 19901 : (uint8_t *)&ipif->ipif_src_addr; 19902 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19903 type = ifrt->ifrt_type; 19904 } else { 19905 rfq = NULL; 19906 stq = NULL; 19907 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19908 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19909 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19910 type = ifrt->ifrt_type; 19911 } 19912 19913 /* 19914 * Create a copy of the IRE with the saved address and netmask. 19915 */ 19916 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19917 "0x%x/0x%x\n", 19918 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19919 ntohl(ifrt->ifrt_addr), 19920 ntohl(ifrt->ifrt_mask))); 19921 ire = ire_create( 19922 (uint8_t *)&ifrt->ifrt_addr, 19923 (uint8_t *)&ifrt->ifrt_mask, 19924 src_addr, 19925 gateway_addr, 19926 NULL, 19927 &ifrt->ifrt_max_frag, 19928 NULL, 19929 rfq, 19930 stq, 19931 type, 19932 ipif, 19933 NULL, 19934 0, 19935 0, 19936 0, 19937 ifrt->ifrt_flags, 19938 &ifrt->ifrt_iulp_info, 19939 NULL, 19940 NULL, 19941 ipst); 19942 19943 if (ire == NULL) { 19944 mutex_exit(&ipif->ipif_saved_ire_lock); 19945 kmem_free(ipif_saved_irep, 19946 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19947 return (NULL); 19948 } 19949 19950 /* 19951 * Some software (for example, GateD and Sun Cluster) attempts 19952 * to create (what amount to) IRE_PREFIX routes with the 19953 * loopback address as the gateway. This is primarily done to 19954 * set up prefixes with the RTF_REJECT flag set (for example, 19955 * when generating aggregate routes.) 19956 * 19957 * If the IRE type (as defined by ipif->ipif_net_type) is 19958 * IRE_LOOPBACK, then we map the request into a 19959 * IRE_IF_NORESOLVER. 19960 */ 19961 if (ipif->ipif_net_type == IRE_LOOPBACK) 19962 ire->ire_type = IRE_IF_NORESOLVER; 19963 /* 19964 * ire held by ire_add, will be refreled' towards the 19965 * the end of ipif_up_done 19966 */ 19967 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19968 *irep = ire; 19969 irep++; 19970 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19971 } 19972 mutex_exit(&ipif->ipif_saved_ire_lock); 19973 return (ipif_saved_irep); 19974 } 19975 19976 /* 19977 * Used to set the netmask and broadcast address to default values when the 19978 * interface is brought up. (Always called as writer.) 19979 */ 19980 static void 19981 ipif_set_default(ipif_t *ipif) 19982 { 19983 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19984 19985 if (!ipif->ipif_isv6) { 19986 /* 19987 * Interface holds an IPv4 address. Default 19988 * mask is the natural netmask. 19989 */ 19990 if (!ipif->ipif_net_mask) { 19991 ipaddr_t v4mask; 19992 19993 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19994 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19995 } 19996 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19997 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19998 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19999 } else { 20000 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20001 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20002 } 20003 /* 20004 * NOTE: SunOS 4.X does this even if the broadcast address 20005 * has been already set thus we do the same here. 20006 */ 20007 if (ipif->ipif_flags & IPIF_BROADCAST) { 20008 ipaddr_t v4addr; 20009 20010 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 20011 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 20012 } 20013 } else { 20014 /* 20015 * Interface holds an IPv6-only address. Default 20016 * mask is all-ones. 20017 */ 20018 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 20019 ipif->ipif_v6net_mask = ipv6_all_ones; 20020 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20021 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20022 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20023 } else { 20024 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20025 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20026 } 20027 } 20028 } 20029 20030 /* 20031 * Return 0 if this address can be used as local address without causing 20032 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 20033 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 20034 * Special checks are needed to allow the same IPv6 link-local address 20035 * on different ills. 20036 * TODO: allowing the same site-local address on different ill's. 20037 */ 20038 int 20039 ip_addr_availability_check(ipif_t *new_ipif) 20040 { 20041 in6_addr_t our_v6addr; 20042 ill_t *ill; 20043 ipif_t *ipif; 20044 ill_walk_context_t ctx; 20045 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 20046 20047 ASSERT(IAM_WRITER_IPIF(new_ipif)); 20048 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 20049 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 20050 20051 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 20052 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 20053 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 20054 return (0); 20055 20056 our_v6addr = new_ipif->ipif_v6lcl_addr; 20057 20058 if (new_ipif->ipif_isv6) 20059 ill = ILL_START_WALK_V6(&ctx, ipst); 20060 else 20061 ill = ILL_START_WALK_V4(&ctx, ipst); 20062 20063 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20064 for (ipif = ill->ill_ipif; ipif != NULL; 20065 ipif = ipif->ipif_next) { 20066 if ((ipif == new_ipif) || 20067 !(ipif->ipif_flags & IPIF_UP) || 20068 (ipif->ipif_flags & IPIF_UNNUMBERED)) 20069 continue; 20070 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 20071 &our_v6addr)) { 20072 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 20073 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 20074 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 20075 ipif->ipif_flags |= IPIF_UNNUMBERED; 20076 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 20077 new_ipif->ipif_ill != ill) 20078 continue; 20079 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 20080 new_ipif->ipif_ill != ill) 20081 continue; 20082 else if (new_ipif->ipif_zoneid != 20083 ipif->ipif_zoneid && 20084 ipif->ipif_zoneid != ALL_ZONES && 20085 IS_LOOPBACK(ill)) 20086 continue; 20087 else if (new_ipif->ipif_ill == ill) 20088 return (EADDRINUSE); 20089 else 20090 return (EADDRNOTAVAIL); 20091 } 20092 } 20093 } 20094 20095 return (0); 20096 } 20097 20098 /* 20099 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 20100 * IREs for the ipif. 20101 * When the routine returns EINPROGRESS then mp has been consumed and 20102 * the ioctl will be acked from ip_rput_dlpi. 20103 */ 20104 static int 20105 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20106 { 20107 ill_t *ill = ipif->ipif_ill; 20108 boolean_t isv6 = ipif->ipif_isv6; 20109 int err = 0; 20110 boolean_t success; 20111 20112 ASSERT(IAM_WRITER_IPIF(ipif)); 20113 20114 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20115 20116 /* Shouldn't get here if it is already up. */ 20117 if (ipif->ipif_flags & IPIF_UP) 20118 return (EALREADY); 20119 20120 /* Skip arp/ndp for any loopback interface. */ 20121 if (ill->ill_wq != NULL) { 20122 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20123 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20124 20125 if (!ill->ill_dl_up) { 20126 /* 20127 * ill_dl_up is not yet set. i.e. we are yet to 20128 * DL_BIND with the driver and this is the first 20129 * logical interface on the ill to become "up". 20130 * Tell the driver to get going (via DL_BIND_REQ). 20131 * Note that changing "significant" IFF_ flags 20132 * address/netmask etc cause a down/up dance, but 20133 * does not cause an unbind (DL_UNBIND) with the driver 20134 */ 20135 return (ill_dl_up(ill, ipif, mp, q)); 20136 } 20137 20138 /* 20139 * ipif_resolver_up may end up sending an 20140 * AR_INTERFACE_UP message to ARP, which would, in 20141 * turn send a DLPI message to the driver. ioctls are 20142 * serialized and so we cannot send more than one 20143 * interface up message at a time. If ipif_resolver_up 20144 * does send an interface up message to ARP, we get 20145 * EINPROGRESS and we will complete in ip_arp_done. 20146 */ 20147 20148 ASSERT(connp != NULL || !CONN_Q(q)); 20149 ASSERT(ipsq->ipsq_pending_mp == NULL); 20150 if (connp != NULL) 20151 mutex_enter(&connp->conn_lock); 20152 mutex_enter(&ill->ill_lock); 20153 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20154 mutex_exit(&ill->ill_lock); 20155 if (connp != NULL) 20156 mutex_exit(&connp->conn_lock); 20157 if (!success) 20158 return (EINTR); 20159 20160 /* 20161 * Crank up IPv6 neighbor discovery 20162 * Unlike ARP, this should complete when 20163 * ipif_ndp_up returns. However, for 20164 * ILLF_XRESOLV interfaces we also send a 20165 * AR_INTERFACE_UP to the external resolver. 20166 * That ioctl will complete in ip_rput. 20167 */ 20168 if (isv6) { 20169 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20170 if (err != 0) { 20171 if (err != EINPROGRESS) 20172 mp = ipsq_pending_mp_get(ipsq, &connp); 20173 return (err); 20174 } 20175 } 20176 /* Now, ARP */ 20177 err = ipif_resolver_up(ipif, Res_act_initial); 20178 if (err == EINPROGRESS) { 20179 /* We will complete it in ip_arp_done */ 20180 return (err); 20181 } 20182 mp = ipsq_pending_mp_get(ipsq, &connp); 20183 ASSERT(mp != NULL); 20184 if (err != 0) 20185 return (err); 20186 } else { 20187 /* 20188 * Interfaces without underlying hardware don't do duplicate 20189 * address detection. 20190 */ 20191 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20192 ipif->ipif_addr_ready = 1; 20193 } 20194 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20195 } 20196 20197 /* 20198 * Perform a bind for the physical device. 20199 * When the routine returns EINPROGRESS then mp has been consumed and 20200 * the ioctl will be acked from ip_rput_dlpi. 20201 * Allocate an unbind message and save it until ipif_down. 20202 */ 20203 static int 20204 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20205 { 20206 areq_t *areq; 20207 mblk_t *areq_mp = NULL; 20208 mblk_t *bind_mp = NULL; 20209 mblk_t *unbind_mp = NULL; 20210 conn_t *connp; 20211 boolean_t success; 20212 uint16_t sap_addr; 20213 20214 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20215 ASSERT(IAM_WRITER_ILL(ill)); 20216 ASSERT(mp != NULL); 20217 20218 /* Create a resolver cookie for ARP */ 20219 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20220 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 20221 if (areq_mp == NULL) 20222 return (ENOMEM); 20223 20224 freemsg(ill->ill_resolver_mp); 20225 ill->ill_resolver_mp = areq_mp; 20226 areq = (areq_t *)areq_mp->b_rptr; 20227 sap_addr = ill->ill_sap; 20228 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20229 } 20230 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20231 DL_BIND_REQ); 20232 if (bind_mp == NULL) 20233 goto bad; 20234 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20235 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20236 20237 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20238 if (unbind_mp == NULL) 20239 goto bad; 20240 20241 /* 20242 * Record state needed to complete this operation when the 20243 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20244 */ 20245 ASSERT(WR(q)->q_next == NULL); 20246 connp = Q_TO_CONN(q); 20247 20248 mutex_enter(&connp->conn_lock); 20249 mutex_enter(&ipif->ipif_ill->ill_lock); 20250 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20251 mutex_exit(&ipif->ipif_ill->ill_lock); 20252 mutex_exit(&connp->conn_lock); 20253 if (!success) 20254 goto bad; 20255 20256 /* 20257 * Save the unbind message for ill_dl_down(); it will be consumed when 20258 * the interface goes down. 20259 */ 20260 ASSERT(ill->ill_unbind_mp == NULL); 20261 ill->ill_unbind_mp = unbind_mp; 20262 20263 ill_dlpi_send(ill, bind_mp); 20264 /* Send down link-layer capabilities probe if not already done. */ 20265 ill_capability_probe(ill); 20266 20267 /* 20268 * Sysid used to rely on the fact that netboots set domainname 20269 * and the like. Now that miniroot boots aren't strictly netboots 20270 * and miniroot network configuration is driven from userland 20271 * these things still need to be set. This situation can be detected 20272 * by comparing the interface being configured here to the one 20273 * dhcack was set to reference by the boot loader. Once sysid is 20274 * converted to use dhcp_ipc_getinfo() this call can go away. 20275 */ 20276 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20277 (strcmp(ill->ill_name, dhcack) == 0) && 20278 (strlen(srpc_domain) == 0)) { 20279 if (dhcpinit() != 0) 20280 cmn_err(CE_WARN, "no cached dhcp response"); 20281 } 20282 20283 /* 20284 * This operation will complete in ip_rput_dlpi with either 20285 * a DL_BIND_ACK or DL_ERROR_ACK. 20286 */ 20287 return (EINPROGRESS); 20288 bad: 20289 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20290 /* 20291 * We don't have to check for possible removal from illgrp 20292 * as we have not yet inserted in illgrp. For groups 20293 * without names, this ipif is still not UP and hence 20294 * this could not have possibly had any influence in forming 20295 * groups. 20296 */ 20297 20298 freemsg(bind_mp); 20299 freemsg(unbind_mp); 20300 return (ENOMEM); 20301 } 20302 20303 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20304 20305 /* 20306 * DLPI and ARP is up. 20307 * Create all the IREs associated with an interface bring up multicast. 20308 * Set the interface flag and finish other initialization 20309 * that potentially had to be differed to after DL_BIND_ACK. 20310 */ 20311 int 20312 ipif_up_done(ipif_t *ipif) 20313 { 20314 ire_t *ire_array[20]; 20315 ire_t **irep = ire_array; 20316 ire_t **irep1; 20317 ipaddr_t net_mask = 0; 20318 ipaddr_t subnet_mask, route_mask; 20319 ill_t *ill = ipif->ipif_ill; 20320 queue_t *stq; 20321 ipif_t *src_ipif; 20322 ipif_t *tmp_ipif; 20323 boolean_t flush_ire_cache = B_TRUE; 20324 int err = 0; 20325 phyint_t *phyi; 20326 ire_t **ipif_saved_irep = NULL; 20327 int ipif_saved_ire_cnt; 20328 int cnt; 20329 boolean_t src_ipif_held = B_FALSE; 20330 boolean_t ire_added = B_FALSE; 20331 boolean_t loopback = B_FALSE; 20332 ip_stack_t *ipst = ill->ill_ipst; 20333 20334 ip1dbg(("ipif_up_done(%s:%u)\n", 20335 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20336 /* Check if this is a loopback interface */ 20337 if (ipif->ipif_ill->ill_wq == NULL) 20338 loopback = B_TRUE; 20339 20340 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20341 /* 20342 * If all other interfaces for this ill are down or DEPRECATED, 20343 * or otherwise unsuitable for source address selection, remove 20344 * any IRE_CACHE entries for this ill to make sure source 20345 * address selection gets to take this new ipif into account. 20346 * No need to hold ill_lock while traversing the ipif list since 20347 * we are writer 20348 */ 20349 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20350 tmp_ipif = tmp_ipif->ipif_next) { 20351 if (((tmp_ipif->ipif_flags & 20352 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20353 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20354 (tmp_ipif == ipif)) 20355 continue; 20356 /* first useable pre-existing interface */ 20357 flush_ire_cache = B_FALSE; 20358 break; 20359 } 20360 if (flush_ire_cache) 20361 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20362 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20363 20364 /* 20365 * Figure out which way the send-to queue should go. Only 20366 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20367 * should show up here. 20368 */ 20369 switch (ill->ill_net_type) { 20370 case IRE_IF_RESOLVER: 20371 stq = ill->ill_rq; 20372 break; 20373 case IRE_IF_NORESOLVER: 20374 case IRE_LOOPBACK: 20375 stq = ill->ill_wq; 20376 break; 20377 default: 20378 return (EINVAL); 20379 } 20380 20381 if (IS_LOOPBACK(ill)) { 20382 /* 20383 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20384 * ipif_lookup_on_name(), but in the case of zones we can have 20385 * several loopback addresses on lo0. So all the interfaces with 20386 * loopback addresses need to be marked IRE_LOOPBACK. 20387 */ 20388 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20389 htonl(INADDR_LOOPBACK)) 20390 ipif->ipif_ire_type = IRE_LOOPBACK; 20391 else 20392 ipif->ipif_ire_type = IRE_LOCAL; 20393 } 20394 20395 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20396 /* 20397 * Can't use our source address. Select a different 20398 * source address for the IRE_INTERFACE and IRE_LOCAL 20399 */ 20400 src_ipif = ipif_select_source(ipif->ipif_ill, 20401 ipif->ipif_subnet, ipif->ipif_zoneid); 20402 if (src_ipif == NULL) 20403 src_ipif = ipif; /* Last resort */ 20404 else 20405 src_ipif_held = B_TRUE; 20406 } else { 20407 src_ipif = ipif; 20408 } 20409 20410 /* Create all the IREs associated with this interface */ 20411 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20412 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20413 20414 /* 20415 * If we're on a labeled system then make sure that zone- 20416 * private addresses have proper remote host database entries. 20417 */ 20418 if (is_system_labeled() && 20419 ipif->ipif_ire_type != IRE_LOOPBACK && 20420 !tsol_check_interface_address(ipif)) 20421 return (EINVAL); 20422 20423 /* Register the source address for __sin6_src_id */ 20424 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20425 ipif->ipif_zoneid, ipst); 20426 if (err != 0) { 20427 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20428 return (err); 20429 } 20430 20431 /* If the interface address is set, create the local IRE. */ 20432 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20433 (void *)ipif, 20434 ipif->ipif_ire_type, 20435 ntohl(ipif->ipif_lcl_addr))); 20436 *irep++ = ire_create( 20437 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20438 (uchar_t *)&ip_g_all_ones, /* mask */ 20439 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20440 NULL, /* no gateway */ 20441 NULL, 20442 &ip_loopback_mtuplus, /* max frag size */ 20443 NULL, 20444 ipif->ipif_rq, /* recv-from queue */ 20445 NULL, /* no send-to queue */ 20446 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20447 ipif, 20448 NULL, 20449 0, 20450 0, 20451 0, 20452 (ipif->ipif_flags & IPIF_PRIVATE) ? 20453 RTF_PRIVATE : 0, 20454 &ire_uinfo_null, 20455 NULL, 20456 NULL, 20457 ipst); 20458 } else { 20459 ip1dbg(( 20460 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20461 ipif->ipif_ire_type, 20462 ntohl(ipif->ipif_lcl_addr), 20463 (uint_t)ipif->ipif_flags)); 20464 } 20465 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20466 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20467 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20468 } else { 20469 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20470 } 20471 20472 subnet_mask = ipif->ipif_net_mask; 20473 20474 /* 20475 * If mask was not specified, use natural netmask of 20476 * interface address. Also, store this mask back into the 20477 * ipif struct. 20478 */ 20479 if (subnet_mask == 0) { 20480 subnet_mask = net_mask; 20481 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20482 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20483 ipif->ipif_v6subnet); 20484 } 20485 20486 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20487 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20488 ipif->ipif_subnet != INADDR_ANY) { 20489 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20490 20491 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20492 route_mask = IP_HOST_MASK; 20493 } else { 20494 route_mask = subnet_mask; 20495 } 20496 20497 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20498 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20499 (void *)ipif, (void *)ill, 20500 ill->ill_net_type, 20501 ntohl(ipif->ipif_subnet))); 20502 *irep++ = ire_create( 20503 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20504 (uchar_t *)&route_mask, /* mask */ 20505 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20506 NULL, /* no gateway */ 20507 NULL, 20508 &ipif->ipif_mtu, /* max frag */ 20509 NULL, 20510 NULL, /* no recv queue */ 20511 stq, /* send-to queue */ 20512 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20513 ipif, 20514 NULL, 20515 0, 20516 0, 20517 0, 20518 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20519 &ire_uinfo_null, 20520 NULL, 20521 NULL, 20522 ipst); 20523 } 20524 20525 /* 20526 * Create any necessary broadcast IREs. 20527 */ 20528 if ((ipif->ipif_subnet != INADDR_ANY) && 20529 (ipif->ipif_flags & IPIF_BROADCAST)) 20530 irep = ipif_create_bcast_ires(ipif, irep); 20531 20532 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20533 20534 /* If an earlier ire_create failed, get out now */ 20535 for (irep1 = irep; irep1 > ire_array; ) { 20536 irep1--; 20537 if (*irep1 == NULL) { 20538 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20539 err = ENOMEM; 20540 goto bad; 20541 } 20542 } 20543 20544 /* 20545 * Need to atomically check for ip_addr_availablity_check 20546 * under ip_addr_avail_lock, and if it fails got bad, and remove 20547 * from group also.The ill_g_lock is grabbed as reader 20548 * just to make sure no new ills or new ipifs are being added 20549 * to the system while we are checking the uniqueness of addresses. 20550 */ 20551 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20552 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20553 /* Mark it up, and increment counters. */ 20554 ipif->ipif_flags |= IPIF_UP; 20555 ill->ill_ipif_up_count++; 20556 err = ip_addr_availability_check(ipif); 20557 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20558 rw_exit(&ipst->ips_ill_g_lock); 20559 20560 if (err != 0) { 20561 /* 20562 * Our address may already be up on the same ill. In this case, 20563 * the ARP entry for our ipif replaced the one for the other 20564 * ipif. So we don't want to delete it (otherwise the other ipif 20565 * would be unable to send packets). 20566 * ip_addr_availability_check() identifies this case for us and 20567 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20568 * which is the expected error code. 20569 */ 20570 if (err == EADDRINUSE) { 20571 freemsg(ipif->ipif_arp_del_mp); 20572 ipif->ipif_arp_del_mp = NULL; 20573 err = EADDRNOTAVAIL; 20574 } 20575 ill->ill_ipif_up_count--; 20576 ipif->ipif_flags &= ~IPIF_UP; 20577 goto bad; 20578 } 20579 20580 /* 20581 * Add in all newly created IREs. ire_create_bcast() has 20582 * already checked for duplicates of the IRE_BROADCAST type. 20583 * We want to add before we call ifgrp_insert which wants 20584 * to know whether IRE_IF_RESOLVER exists or not. 20585 * 20586 * NOTE : We refrele the ire though we may branch to "bad" 20587 * later on where we do ire_delete. This is okay 20588 * because nobody can delete it as we are running 20589 * exclusively. 20590 */ 20591 for (irep1 = irep; irep1 > ire_array; ) { 20592 irep1--; 20593 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20594 /* 20595 * refheld by ire_add. refele towards the end of the func 20596 */ 20597 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20598 } 20599 ire_added = B_TRUE; 20600 /* 20601 * Form groups if possible. 20602 * 20603 * If we are supposed to be in a ill_group with a name, insert it 20604 * now as we know that at least one ipif is UP. Otherwise form 20605 * nameless groups. 20606 * 20607 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20608 * this ipif into the appropriate interface group, or create a 20609 * new one. If this is already in a nameless group, we try to form 20610 * a bigger group looking at other ills potentially sharing this 20611 * ipif's prefix. 20612 */ 20613 phyi = ill->ill_phyint; 20614 if (phyi->phyint_groupname_len != 0) { 20615 ASSERT(phyi->phyint_groupname != NULL); 20616 if (ill->ill_ipif_up_count == 1) { 20617 ASSERT(ill->ill_group == NULL); 20618 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20619 phyi->phyint_groupname, NULL, B_TRUE); 20620 if (err != 0) { 20621 ip1dbg(("ipif_up_done: illgrp allocation " 20622 "failed, error %d\n", err)); 20623 goto bad; 20624 } 20625 } 20626 ASSERT(ill->ill_group != NULL); 20627 } 20628 20629 /* 20630 * When this is part of group, we need to make sure that 20631 * any broadcast ires created because of this ipif coming 20632 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20633 * so that we don't receive duplicate broadcast packets. 20634 */ 20635 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20636 ipif_renominate_bcast(ipif); 20637 20638 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20639 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20640 ipif_saved_irep = ipif_recover_ire(ipif); 20641 20642 if (!loopback) { 20643 /* 20644 * If the broadcast address has been set, make sure it makes 20645 * sense based on the interface address. 20646 * Only match on ill since we are sharing broadcast addresses. 20647 */ 20648 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20649 (ipif->ipif_flags & IPIF_BROADCAST)) { 20650 ire_t *ire; 20651 20652 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20653 IRE_BROADCAST, ipif, ALL_ZONES, 20654 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20655 20656 if (ire == NULL) { 20657 /* 20658 * If there isn't a matching broadcast IRE, 20659 * revert to the default for this netmask. 20660 */ 20661 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20662 mutex_enter(&ipif->ipif_ill->ill_lock); 20663 ipif_set_default(ipif); 20664 mutex_exit(&ipif->ipif_ill->ill_lock); 20665 } else { 20666 ire_refrele(ire); 20667 } 20668 } 20669 20670 } 20671 20672 /* This is the first interface on this ill */ 20673 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20674 /* 20675 * Need to recover all multicast memberships in the driver. 20676 * This had to be deferred until we had attached. 20677 */ 20678 ill_recover_multicast(ill); 20679 } 20680 /* Join the allhosts multicast address */ 20681 ipif_multicast_up(ipif); 20682 20683 if (!loopback) { 20684 /* 20685 * See whether anybody else would benefit from the 20686 * new ipif that we added. We call this always rather 20687 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20688 * ipif is for the benefit of illgrp_insert (done above) 20689 * which does not do source address selection as it does 20690 * not want to re-create interface routes that we are 20691 * having reference to it here. 20692 */ 20693 ill_update_source_selection(ill); 20694 } 20695 20696 for (irep1 = irep; irep1 > ire_array; ) { 20697 irep1--; 20698 if (*irep1 != NULL) { 20699 /* was held in ire_add */ 20700 ire_refrele(*irep1); 20701 } 20702 } 20703 20704 cnt = ipif_saved_ire_cnt; 20705 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20706 if (*irep1 != NULL) { 20707 /* was held in ire_add */ 20708 ire_refrele(*irep1); 20709 } 20710 } 20711 20712 if (!loopback && ipif->ipif_addr_ready) { 20713 /* Broadcast an address mask reply. */ 20714 ipif_mask_reply(ipif); 20715 } 20716 if (ipif_saved_irep != NULL) { 20717 kmem_free(ipif_saved_irep, 20718 ipif_saved_ire_cnt * sizeof (ire_t *)); 20719 } 20720 if (src_ipif_held) 20721 ipif_refrele(src_ipif); 20722 20723 /* 20724 * This had to be deferred until we had bound. Tell routing sockets and 20725 * others that this interface is up if it looks like the address has 20726 * been validated. Otherwise, if it isn't ready yet, wait for 20727 * duplicate address detection to do its thing. 20728 */ 20729 if (ipif->ipif_addr_ready) { 20730 ip_rts_ifmsg(ipif); 20731 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20732 /* Let SCTP update the status for this ipif */ 20733 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20734 } 20735 return (0); 20736 20737 bad: 20738 ip1dbg(("ipif_up_done: FAILED \n")); 20739 /* 20740 * We don't have to bother removing from ill groups because 20741 * 20742 * 1) For groups with names, we insert only when the first ipif 20743 * comes up. In that case if it fails, it will not be in any 20744 * group. So, we need not try to remove for that case. 20745 * 20746 * 2) For groups without names, either we tried to insert ipif_ill 20747 * in a group as singleton or found some other group to become 20748 * a bigger group. For the former, if it fails we don't have 20749 * anything to do as ipif_ill is not in the group and for the 20750 * latter, there are no failures in illgrp_insert/illgrp_delete 20751 * (ENOMEM can't occur for this. Check ifgrp_insert). 20752 */ 20753 while (irep > ire_array) { 20754 irep--; 20755 if (*irep != NULL) { 20756 ire_delete(*irep); 20757 if (ire_added) 20758 ire_refrele(*irep); 20759 } 20760 } 20761 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20762 20763 if (ipif_saved_irep != NULL) { 20764 kmem_free(ipif_saved_irep, 20765 ipif_saved_ire_cnt * sizeof (ire_t *)); 20766 } 20767 if (src_ipif_held) 20768 ipif_refrele(src_ipif); 20769 20770 ipif_arp_down(ipif); 20771 return (err); 20772 } 20773 20774 /* 20775 * Turn off the ARP with the ILLF_NOARP flag. 20776 */ 20777 static int 20778 ill_arp_off(ill_t *ill) 20779 { 20780 mblk_t *arp_off_mp = NULL; 20781 mblk_t *arp_on_mp = NULL; 20782 20783 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20784 20785 ASSERT(IAM_WRITER_ILL(ill)); 20786 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20787 20788 /* 20789 * If the on message is still around we've already done 20790 * an arp_off without doing an arp_on thus there is no 20791 * work needed. 20792 */ 20793 if (ill->ill_arp_on_mp != NULL) 20794 return (0); 20795 20796 /* 20797 * Allocate an ARP on message (to be saved) and an ARP off message 20798 */ 20799 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20800 if (!arp_off_mp) 20801 return (ENOMEM); 20802 20803 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20804 if (!arp_on_mp) 20805 goto failed; 20806 20807 ASSERT(ill->ill_arp_on_mp == NULL); 20808 ill->ill_arp_on_mp = arp_on_mp; 20809 20810 /* Send an AR_INTERFACE_OFF request */ 20811 putnext(ill->ill_rq, arp_off_mp); 20812 return (0); 20813 failed: 20814 20815 if (arp_off_mp) 20816 freemsg(arp_off_mp); 20817 return (ENOMEM); 20818 } 20819 20820 /* 20821 * Turn on ARP by turning off the ILLF_NOARP flag. 20822 */ 20823 static int 20824 ill_arp_on(ill_t *ill) 20825 { 20826 mblk_t *mp; 20827 20828 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20829 20830 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20831 20832 ASSERT(IAM_WRITER_ILL(ill)); 20833 /* 20834 * Send an AR_INTERFACE_ON request if we have already done 20835 * an arp_off (which allocated the message). 20836 */ 20837 if (ill->ill_arp_on_mp != NULL) { 20838 mp = ill->ill_arp_on_mp; 20839 ill->ill_arp_on_mp = NULL; 20840 putnext(ill->ill_rq, mp); 20841 } 20842 return (0); 20843 } 20844 20845 /* 20846 * Called after either deleting ill from the group or when setting 20847 * FAILED or STANDBY on the interface. 20848 */ 20849 static void 20850 illgrp_reset_schednext(ill_t *ill) 20851 { 20852 ill_group_t *illgrp; 20853 ill_t *save_ill; 20854 20855 ASSERT(IAM_WRITER_ILL(ill)); 20856 /* 20857 * When called from illgrp_delete, ill_group will be non-NULL. 20858 * But when called from ip_sioctl_flags, it could be NULL if 20859 * somebody is setting FAILED/INACTIVE on some interface which 20860 * is not part of a group. 20861 */ 20862 illgrp = ill->ill_group; 20863 if (illgrp == NULL) 20864 return; 20865 if (illgrp->illgrp_ill_schednext != ill) 20866 return; 20867 20868 illgrp->illgrp_ill_schednext = NULL; 20869 save_ill = ill; 20870 /* 20871 * Choose a good ill to be the next one for 20872 * outbound traffic. As the flags FAILED/STANDBY is 20873 * not yet marked when called from ip_sioctl_flags, 20874 * we check for ill separately. 20875 */ 20876 for (ill = illgrp->illgrp_ill; ill != NULL; 20877 ill = ill->ill_group_next) { 20878 if ((ill != save_ill) && 20879 !(ill->ill_phyint->phyint_flags & 20880 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20881 illgrp->illgrp_ill_schednext = ill; 20882 return; 20883 } 20884 } 20885 } 20886 20887 /* 20888 * Given an ill, find the next ill in the group to be scheduled. 20889 * (This should be called by ip_newroute() before ire_create().) 20890 * The passed in ill may be pulled out of the group, after we have picked 20891 * up a different outgoing ill from the same group. However ire add will 20892 * atomically check this. 20893 */ 20894 ill_t * 20895 illgrp_scheduler(ill_t *ill) 20896 { 20897 ill_t *retill; 20898 ill_group_t *illgrp; 20899 int illcnt; 20900 int i; 20901 uint64_t flags; 20902 ip_stack_t *ipst = ill->ill_ipst; 20903 20904 /* 20905 * We don't use a lock to check for the ill_group. If this ill 20906 * is currently being inserted we may end up just returning this 20907 * ill itself. That is ok. 20908 */ 20909 if (ill->ill_group == NULL) { 20910 ill_refhold(ill); 20911 return (ill); 20912 } 20913 20914 /* 20915 * Grab the ill_g_lock as reader to make sure we are dealing with 20916 * a set of stable ills. No ill can be added or deleted or change 20917 * group while we hold the reader lock. 20918 */ 20919 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20920 if ((illgrp = ill->ill_group) == NULL) { 20921 rw_exit(&ipst->ips_ill_g_lock); 20922 ill_refhold(ill); 20923 return (ill); 20924 } 20925 20926 illcnt = illgrp->illgrp_ill_count; 20927 mutex_enter(&illgrp->illgrp_lock); 20928 retill = illgrp->illgrp_ill_schednext; 20929 20930 if (retill == NULL) 20931 retill = illgrp->illgrp_ill; 20932 20933 /* 20934 * We do a circular search beginning at illgrp_ill_schednext 20935 * or illgrp_ill. We don't check the flags against the ill lock 20936 * since it can change anytime. The ire creation will be atomic 20937 * and will fail if the ill is FAILED or OFFLINE. 20938 */ 20939 for (i = 0; i < illcnt; i++) { 20940 flags = retill->ill_phyint->phyint_flags; 20941 20942 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20943 ILL_CAN_LOOKUP(retill)) { 20944 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20945 ill_refhold(retill); 20946 break; 20947 } 20948 retill = retill->ill_group_next; 20949 if (retill == NULL) 20950 retill = illgrp->illgrp_ill; 20951 } 20952 mutex_exit(&illgrp->illgrp_lock); 20953 rw_exit(&ipst->ips_ill_g_lock); 20954 20955 return (i == illcnt ? NULL : retill); 20956 } 20957 20958 /* 20959 * Checks for availbility of a usable source address (if there is one) when the 20960 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20961 * this selection is done regardless of the destination. 20962 */ 20963 boolean_t 20964 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20965 { 20966 uint_t ifindex; 20967 ipif_t *ipif = NULL; 20968 ill_t *uill; 20969 boolean_t isv6; 20970 ip_stack_t *ipst = ill->ill_ipst; 20971 20972 ASSERT(ill != NULL); 20973 20974 isv6 = ill->ill_isv6; 20975 ifindex = ill->ill_usesrc_ifindex; 20976 if (ifindex != 0) { 20977 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20978 NULL, ipst); 20979 if (uill == NULL) 20980 return (NULL); 20981 mutex_enter(&uill->ill_lock); 20982 for (ipif = uill->ill_ipif; ipif != NULL; 20983 ipif = ipif->ipif_next) { 20984 if (!IPIF_CAN_LOOKUP(ipif)) 20985 continue; 20986 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20987 continue; 20988 if (!(ipif->ipif_flags & IPIF_UP)) 20989 continue; 20990 if (ipif->ipif_zoneid != zoneid) 20991 continue; 20992 if ((isv6 && 20993 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20994 (ipif->ipif_lcl_addr == INADDR_ANY)) 20995 continue; 20996 mutex_exit(&uill->ill_lock); 20997 ill_refrele(uill); 20998 return (B_TRUE); 20999 } 21000 mutex_exit(&uill->ill_lock); 21001 ill_refrele(uill); 21002 } 21003 return (B_FALSE); 21004 } 21005 21006 /* 21007 * Determine the best source address given a destination address and an ill. 21008 * Prefers non-deprecated over deprecated but will return a deprecated 21009 * address if there is no other choice. If there is a usable source address 21010 * on the interface pointed to by ill_usesrc_ifindex then that is given 21011 * first preference. 21012 * 21013 * Returns NULL if there is no suitable source address for the ill. 21014 * This only occurs when there is no valid source address for the ill. 21015 */ 21016 ipif_t * 21017 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 21018 { 21019 ipif_t *ipif; 21020 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 21021 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 21022 int index = 0; 21023 boolean_t wrapped = B_FALSE; 21024 boolean_t same_subnet_only = B_FALSE; 21025 boolean_t ipif_same_found, ipif_other_found; 21026 boolean_t specific_found; 21027 ill_t *till, *usill = NULL; 21028 tsol_tpc_t *src_rhtp, *dst_rhtp; 21029 ip_stack_t *ipst = ill->ill_ipst; 21030 21031 if (ill->ill_usesrc_ifindex != 0) { 21032 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 21033 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21034 if (usill != NULL) 21035 ill = usill; /* Select source from usesrc ILL */ 21036 else 21037 return (NULL); 21038 } 21039 21040 /* 21041 * If we're dealing with an unlabeled destination on a labeled system, 21042 * make sure that we ignore source addresses that are incompatible with 21043 * the destination's default label. That destination's default label 21044 * must dominate the minimum label on the source address. 21045 */ 21046 dst_rhtp = NULL; 21047 if (is_system_labeled()) { 21048 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21049 if (dst_rhtp == NULL) 21050 return (NULL); 21051 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21052 TPC_RELE(dst_rhtp); 21053 dst_rhtp = NULL; 21054 } 21055 } 21056 21057 /* 21058 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21059 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21060 * After selecting the right ipif, under ill_lock make sure ipif is 21061 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21062 * we retry. Inside the loop we still need to check for CONDEMNED, 21063 * but not under a lock. 21064 */ 21065 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21066 21067 retry: 21068 till = ill; 21069 ipif_arr[0] = NULL; 21070 21071 if (till->ill_group != NULL) 21072 till = till->ill_group->illgrp_ill; 21073 21074 /* 21075 * Choose one good source address from each ill across the group. 21076 * If possible choose a source address in the same subnet as 21077 * the destination address. 21078 * 21079 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21080 * This is okay because of the following. 21081 * 21082 * If PHYI_FAILED is set and we still have non-deprecated 21083 * addresses, it means the addresses have not yet been 21084 * failed over to a different interface. We potentially 21085 * select them to create IRE_CACHES, which will be later 21086 * flushed when the addresses move over. 21087 * 21088 * If PHYI_INACTIVE is set and we still have non-deprecated 21089 * addresses, it means either the user has configured them 21090 * or PHYI_INACTIVE has not been cleared after the addresses 21091 * been moved over. For the former, in.mpathd does a failover 21092 * when the interface becomes INACTIVE and hence we should 21093 * not find them. Once INACTIVE is set, we don't allow them 21094 * to create logical interfaces anymore. For the latter, a 21095 * flush will happen when INACTIVE is cleared which will 21096 * flush the IRE_CACHES. 21097 * 21098 * If PHYI_OFFLINE is set, all the addresses will be failed 21099 * over soon. We potentially select them to create IRE_CACHEs, 21100 * which will be later flushed when the addresses move over. 21101 * 21102 * NOTE : As ipif_select_source is called to borrow source address 21103 * for an ipif that is part of a group, source address selection 21104 * will be re-done whenever the group changes i.e either an 21105 * insertion/deletion in the group. 21106 * 21107 * Fill ipif_arr[] with source addresses, using these rules: 21108 * 21109 * 1. At most one source address from a given ill ends up 21110 * in ipif_arr[] -- that is, at most one of the ipif's 21111 * associated with a given ill ends up in ipif_arr[]. 21112 * 21113 * 2. If there is at least one non-deprecated ipif in the 21114 * IPMP group with a source address on the same subnet as 21115 * our destination, then fill ipif_arr[] only with 21116 * source addresses on the same subnet as our destination. 21117 * Note that because of (1), only the first 21118 * non-deprecated ipif found with a source address 21119 * matching the destination ends up in ipif_arr[]. 21120 * 21121 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21122 * addresses not in the same subnet as our destination. 21123 * Again, because of (1), only the first off-subnet source 21124 * address will be chosen. 21125 * 21126 * 4. If there are no non-deprecated ipifs, then just use 21127 * the source address associated with the last deprecated 21128 * one we find that happens to be on the same subnet, 21129 * otherwise the first one not in the same subnet. 21130 */ 21131 specific_found = B_FALSE; 21132 for (; till != NULL; till = till->ill_group_next) { 21133 ipif_same_found = B_FALSE; 21134 ipif_other_found = B_FALSE; 21135 for (ipif = till->ill_ipif; ipif != NULL; 21136 ipif = ipif->ipif_next) { 21137 if (!IPIF_CAN_LOOKUP(ipif)) 21138 continue; 21139 /* Always skip NOLOCAL and ANYCAST interfaces */ 21140 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21141 continue; 21142 if (!(ipif->ipif_flags & IPIF_UP) || 21143 !ipif->ipif_addr_ready) 21144 continue; 21145 if (ipif->ipif_zoneid != zoneid && 21146 ipif->ipif_zoneid != ALL_ZONES) 21147 continue; 21148 /* 21149 * Interfaces with 0.0.0.0 address are allowed to be UP, 21150 * but are not valid as source addresses. 21151 */ 21152 if (ipif->ipif_lcl_addr == INADDR_ANY) 21153 continue; 21154 21155 /* 21156 * Check compatibility of local address for 21157 * destination's default label if we're on a labeled 21158 * system. Incompatible addresses can't be used at 21159 * all. 21160 */ 21161 if (dst_rhtp != NULL) { 21162 boolean_t incompat; 21163 21164 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21165 IPV4_VERSION, B_FALSE); 21166 if (src_rhtp == NULL) 21167 continue; 21168 incompat = 21169 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21170 src_rhtp->tpc_tp.tp_doi != 21171 dst_rhtp->tpc_tp.tp_doi || 21172 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21173 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21174 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21175 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21176 TPC_RELE(src_rhtp); 21177 if (incompat) 21178 continue; 21179 } 21180 21181 /* 21182 * We prefer not to use all all-zones addresses, if we 21183 * can avoid it, as they pose problems with unlabeled 21184 * destinations. 21185 */ 21186 if (ipif->ipif_zoneid != ALL_ZONES) { 21187 if (!specific_found && 21188 (!same_subnet_only || 21189 (ipif->ipif_net_mask & dst) == 21190 ipif->ipif_subnet)) { 21191 index = 0; 21192 specific_found = B_TRUE; 21193 ipif_other_found = B_FALSE; 21194 } 21195 } else { 21196 if (specific_found) 21197 continue; 21198 } 21199 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21200 if (ipif_dep == NULL || 21201 (ipif->ipif_net_mask & dst) == 21202 ipif->ipif_subnet) 21203 ipif_dep = ipif; 21204 continue; 21205 } 21206 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21207 /* found a source address in the same subnet */ 21208 if (!same_subnet_only) { 21209 same_subnet_only = B_TRUE; 21210 index = 0; 21211 } 21212 ipif_same_found = B_TRUE; 21213 } else { 21214 if (same_subnet_only || ipif_other_found) 21215 continue; 21216 ipif_other_found = B_TRUE; 21217 } 21218 ipif_arr[index++] = ipif; 21219 if (index == MAX_IPIF_SELECT_SOURCE) { 21220 wrapped = B_TRUE; 21221 index = 0; 21222 } 21223 if (ipif_same_found) 21224 break; 21225 } 21226 } 21227 21228 if (ipif_arr[0] == NULL) { 21229 ipif = ipif_dep; 21230 } else { 21231 if (wrapped) 21232 index = MAX_IPIF_SELECT_SOURCE; 21233 ipif = ipif_arr[ipif_rand(ipst) % index]; 21234 ASSERT(ipif != NULL); 21235 } 21236 21237 if (ipif != NULL) { 21238 mutex_enter(&ipif->ipif_ill->ill_lock); 21239 if (!IPIF_CAN_LOOKUP(ipif)) { 21240 mutex_exit(&ipif->ipif_ill->ill_lock); 21241 goto retry; 21242 } 21243 ipif_refhold_locked(ipif); 21244 mutex_exit(&ipif->ipif_ill->ill_lock); 21245 } 21246 21247 rw_exit(&ipst->ips_ill_g_lock); 21248 if (usill != NULL) 21249 ill_refrele(usill); 21250 if (dst_rhtp != NULL) 21251 TPC_RELE(dst_rhtp); 21252 21253 #ifdef DEBUG 21254 if (ipif == NULL) { 21255 char buf1[INET6_ADDRSTRLEN]; 21256 21257 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21258 ill->ill_name, 21259 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21260 } else { 21261 char buf1[INET6_ADDRSTRLEN]; 21262 char buf2[INET6_ADDRSTRLEN]; 21263 21264 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21265 ipif->ipif_ill->ill_name, 21266 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21267 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21268 buf2, sizeof (buf2)))); 21269 } 21270 #endif /* DEBUG */ 21271 return (ipif); 21272 } 21273 21274 21275 /* 21276 * If old_ipif is not NULL, see if ipif was derived from old 21277 * ipif and if so, recreate the interface route by re-doing 21278 * source address selection. This happens when ipif_down -> 21279 * ipif_update_other_ipifs calls us. 21280 * 21281 * If old_ipif is NULL, just redo the source address selection 21282 * if needed. This happens when illgrp_insert or ipif_up_done 21283 * calls us. 21284 */ 21285 static void 21286 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21287 { 21288 ire_t *ire; 21289 ire_t *ipif_ire; 21290 queue_t *stq; 21291 ipif_t *nipif; 21292 ill_t *ill; 21293 boolean_t need_rele = B_FALSE; 21294 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21295 21296 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21297 ASSERT(IAM_WRITER_IPIF(ipif)); 21298 21299 ill = ipif->ipif_ill; 21300 if (!(ipif->ipif_flags & 21301 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21302 /* 21303 * Can't possibly have borrowed the source 21304 * from old_ipif. 21305 */ 21306 return; 21307 } 21308 21309 /* 21310 * Is there any work to be done? No work if the address 21311 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21312 * ipif_select_source() does not borrow addresses from 21313 * NOLOCAL and ANYCAST interfaces). 21314 */ 21315 if ((old_ipif != NULL) && 21316 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21317 (old_ipif->ipif_ill->ill_wq == NULL) || 21318 (old_ipif->ipif_flags & 21319 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21320 return; 21321 } 21322 21323 /* 21324 * Perform the same checks as when creating the 21325 * IRE_INTERFACE in ipif_up_done. 21326 */ 21327 if (!(ipif->ipif_flags & IPIF_UP)) 21328 return; 21329 21330 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21331 (ipif->ipif_subnet == INADDR_ANY)) 21332 return; 21333 21334 ipif_ire = ipif_to_ire(ipif); 21335 if (ipif_ire == NULL) 21336 return; 21337 21338 /* 21339 * We know that ipif uses some other source for its 21340 * IRE_INTERFACE. Is it using the source of this 21341 * old_ipif? 21342 */ 21343 if (old_ipif != NULL && 21344 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21345 ire_refrele(ipif_ire); 21346 return; 21347 } 21348 if (ip_debug > 2) { 21349 /* ip1dbg */ 21350 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21351 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21352 } 21353 21354 stq = ipif_ire->ire_stq; 21355 21356 /* 21357 * Can't use our source address. Select a different 21358 * source address for the IRE_INTERFACE. 21359 */ 21360 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21361 if (nipif == NULL) { 21362 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21363 nipif = ipif; 21364 } else { 21365 need_rele = B_TRUE; 21366 } 21367 21368 ire = ire_create( 21369 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21370 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21371 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21372 NULL, /* no gateway */ 21373 NULL, 21374 &ipif->ipif_mtu, /* max frag */ 21375 NULL, /* no src nce */ 21376 NULL, /* no recv from queue */ 21377 stq, /* send-to queue */ 21378 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21379 ipif, 21380 NULL, 21381 0, 21382 0, 21383 0, 21384 0, 21385 &ire_uinfo_null, 21386 NULL, 21387 NULL, 21388 ipst); 21389 21390 if (ire != NULL) { 21391 ire_t *ret_ire; 21392 int error; 21393 21394 /* 21395 * We don't need ipif_ire anymore. We need to delete 21396 * before we add so that ire_add does not detect 21397 * duplicates. 21398 */ 21399 ire_delete(ipif_ire); 21400 ret_ire = ire; 21401 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21402 ASSERT(error == 0); 21403 ASSERT(ire == ret_ire); 21404 /* Held in ire_add */ 21405 ire_refrele(ret_ire); 21406 } 21407 /* 21408 * Either we are falling through from above or could not 21409 * allocate a replacement. 21410 */ 21411 ire_refrele(ipif_ire); 21412 if (need_rele) 21413 ipif_refrele(nipif); 21414 } 21415 21416 /* 21417 * This old_ipif is going away. 21418 * 21419 * Determine if any other ipif's is using our address as 21420 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21421 * IPIF_DEPRECATED). 21422 * Find the IRE_INTERFACE for such ipifs and recreate them 21423 * to use an different source address following the rules in 21424 * ipif_up_done. 21425 * 21426 * This function takes an illgrp as an argument so that illgrp_delete 21427 * can call this to update source address even after deleting the 21428 * old_ipif->ipif_ill from the ill group. 21429 */ 21430 static void 21431 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21432 { 21433 ipif_t *ipif; 21434 ill_t *ill; 21435 char buf[INET6_ADDRSTRLEN]; 21436 21437 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21438 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21439 21440 ill = old_ipif->ipif_ill; 21441 21442 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21443 ill->ill_name, 21444 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21445 buf, sizeof (buf)))); 21446 /* 21447 * If this part of a group, look at all ills as ipif_select_source 21448 * borrows source address across all the ills in the group. 21449 */ 21450 if (illgrp != NULL) 21451 ill = illgrp->illgrp_ill; 21452 21453 for (; ill != NULL; ill = ill->ill_group_next) { 21454 for (ipif = ill->ill_ipif; ipif != NULL; 21455 ipif = ipif->ipif_next) { 21456 21457 if (ipif == old_ipif) 21458 continue; 21459 21460 ipif_recreate_interface_routes(old_ipif, ipif); 21461 } 21462 } 21463 } 21464 21465 /* ARGSUSED */ 21466 int 21467 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21468 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21469 { 21470 /* 21471 * ill_phyint_reinit merged the v4 and v6 into a single 21472 * ipsq. Could also have become part of a ipmp group in the 21473 * process, and we might not have been able to complete the 21474 * operation in ipif_set_values, if we could not become 21475 * exclusive. If so restart it here. 21476 */ 21477 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21478 } 21479 21480 21481 /* 21482 * Can operate on either a module or a driver queue. 21483 * Returns an error if not a module queue. 21484 */ 21485 /* ARGSUSED */ 21486 int 21487 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21488 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21489 { 21490 queue_t *q1 = q; 21491 char *cp; 21492 char interf_name[LIFNAMSIZ]; 21493 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21494 21495 if (q->q_next == NULL) { 21496 ip1dbg(( 21497 "if_unitsel: IF_UNITSEL: no q_next\n")); 21498 return (EINVAL); 21499 } 21500 21501 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21502 return (EALREADY); 21503 21504 do { 21505 q1 = q1->q_next; 21506 } while (q1->q_next); 21507 cp = q1->q_qinfo->qi_minfo->mi_idname; 21508 (void) sprintf(interf_name, "%s%d", cp, ppa); 21509 21510 /* 21511 * Here we are not going to delay the ioack until after 21512 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21513 * original ioctl message before sending the requests. 21514 */ 21515 return (ipif_set_values(q, mp, interf_name, &ppa)); 21516 } 21517 21518 /* ARGSUSED */ 21519 int 21520 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21521 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21522 { 21523 return (ENXIO); 21524 } 21525 21526 /* 21527 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21528 * `irep'. Returns a pointer to the next free `irep' entry (just like 21529 * ire_check_and_create_bcast()). 21530 */ 21531 static ire_t ** 21532 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21533 { 21534 ipaddr_t addr; 21535 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21536 ipaddr_t subnetmask = ipif->ipif_net_mask; 21537 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21538 21539 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21540 21541 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21542 21543 if (ipif->ipif_lcl_addr == INADDR_ANY || 21544 (ipif->ipif_flags & IPIF_NOLOCAL)) 21545 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21546 21547 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21548 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21549 21550 /* 21551 * For backward compatibility, we create net broadcast IREs based on 21552 * the old "IP address class system", since some old machines only 21553 * respond to these class derived net broadcast. However, we must not 21554 * create these net broadcast IREs if the subnetmask is shorter than 21555 * the IP address class based derived netmask. Otherwise, we may 21556 * create a net broadcast address which is the same as an IP address 21557 * on the subnet -- and then TCP will refuse to talk to that address. 21558 */ 21559 if (netmask < subnetmask) { 21560 addr = netmask & ipif->ipif_subnet; 21561 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21562 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21563 flags); 21564 } 21565 21566 /* 21567 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21568 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21569 * created. Creating these broadcast IREs will only create confusion 21570 * as `addr' will be the same as the IP address. 21571 */ 21572 if (subnetmask != 0xFFFFFFFF) { 21573 addr = ipif->ipif_subnet; 21574 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21575 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21576 irep, flags); 21577 } 21578 21579 return (irep); 21580 } 21581 21582 /* 21583 * Broadcast IRE info structure used in the functions below. Since we 21584 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21585 */ 21586 typedef struct bcast_ireinfo { 21587 uchar_t bi_type; /* BCAST_* value from below */ 21588 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21589 bi_needrep:1, /* do we need to replace it? */ 21590 bi_haverep:1, /* have we replaced it? */ 21591 bi_pad:5; 21592 ipaddr_t bi_addr; /* IRE address */ 21593 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21594 } bcast_ireinfo_t; 21595 21596 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21597 21598 /* 21599 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21600 * return B_TRUE if it should immediately be used to recreate the IRE. 21601 */ 21602 static boolean_t 21603 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21604 { 21605 ipaddr_t addr; 21606 21607 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21608 21609 switch (bireinfop->bi_type) { 21610 case BCAST_NET: 21611 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21612 if (addr != bireinfop->bi_addr) 21613 return (B_FALSE); 21614 break; 21615 case BCAST_SUBNET: 21616 if (ipif->ipif_subnet != bireinfop->bi_addr) 21617 return (B_FALSE); 21618 break; 21619 } 21620 21621 bireinfop->bi_needrep = 1; 21622 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21623 if (bireinfop->bi_backup == NULL) 21624 bireinfop->bi_backup = ipif; 21625 return (B_FALSE); 21626 } 21627 return (B_TRUE); 21628 } 21629 21630 /* 21631 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21632 * them ala ire_check_and_create_bcast(). 21633 */ 21634 static ire_t ** 21635 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21636 { 21637 ipaddr_t mask, addr; 21638 21639 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21640 21641 addr = bireinfop->bi_addr; 21642 irep = ire_create_bcast(ipif, addr, irep); 21643 21644 switch (bireinfop->bi_type) { 21645 case BCAST_NET: 21646 mask = ip_net_mask(ipif->ipif_subnet); 21647 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21648 break; 21649 case BCAST_SUBNET: 21650 mask = ipif->ipif_net_mask; 21651 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21652 break; 21653 } 21654 21655 bireinfop->bi_haverep = 1; 21656 return (irep); 21657 } 21658 21659 /* 21660 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21661 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21662 * that are going away are still needed. If so, have ipif_create_bcast() 21663 * recreate them (except for the deprecated case, as explained below). 21664 */ 21665 static ire_t ** 21666 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21667 ire_t **irep) 21668 { 21669 int i; 21670 ipif_t *ipif; 21671 21672 ASSERT(!ill->ill_isv6); 21673 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21674 /* 21675 * Skip this ipif if it's (a) the one being taken down, (b) 21676 * not in the same zone, or (c) has no valid local address. 21677 */ 21678 if (ipif == test_ipif || 21679 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21680 ipif->ipif_subnet == 0 || 21681 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21682 (IPIF_UP|IPIF_BROADCAST)) 21683 continue; 21684 21685 /* 21686 * For each dying IRE that hasn't yet been replaced, see if 21687 * `ipif' needs it and whether the IRE should be recreated on 21688 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21689 * will return B_FALSE even if `ipif' needs the IRE on the 21690 * hopes that we'll later find a needy non-deprecated ipif. 21691 * However, the ipif is recorded in bi_backup for possible 21692 * subsequent use by ipif_check_bcast_ires(). 21693 */ 21694 for (i = 0; i < BCAST_COUNT; i++) { 21695 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21696 continue; 21697 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21698 continue; 21699 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21700 } 21701 21702 /* 21703 * If we've replaced all of the broadcast IREs that are going 21704 * to be taken down, we know we're done. 21705 */ 21706 for (i = 0; i < BCAST_COUNT; i++) { 21707 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21708 break; 21709 } 21710 if (i == BCAST_COUNT) 21711 break; 21712 } 21713 return (irep); 21714 } 21715 21716 /* 21717 * Check if `test_ipif' (which is going away) is associated with any existing 21718 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21719 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21720 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21721 * 21722 * This is necessary because broadcast IREs are shared. In particular, a 21723 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21724 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21725 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21726 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21727 * same zone, they will share the same set of broadcast IREs. 21728 * 21729 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21730 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21731 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21732 */ 21733 static void 21734 ipif_check_bcast_ires(ipif_t *test_ipif) 21735 { 21736 ill_t *ill = test_ipif->ipif_ill; 21737 ire_t *ire, *ire_array[12]; /* see note above */ 21738 ire_t **irep1, **irep = &ire_array[0]; 21739 uint_t i, willdie; 21740 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21741 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21742 21743 ASSERT(!test_ipif->ipif_isv6); 21744 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21745 21746 /* 21747 * No broadcast IREs for the LOOPBACK interface 21748 * or others such as point to point and IPIF_NOXMIT. 21749 */ 21750 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21751 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21752 return; 21753 21754 bzero(bireinfo, sizeof (bireinfo)); 21755 bireinfo[0].bi_type = BCAST_ALLZEROES; 21756 bireinfo[0].bi_addr = 0; 21757 21758 bireinfo[1].bi_type = BCAST_ALLONES; 21759 bireinfo[1].bi_addr = INADDR_BROADCAST; 21760 21761 bireinfo[2].bi_type = BCAST_NET; 21762 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21763 21764 if (test_ipif->ipif_net_mask != 0) 21765 mask = test_ipif->ipif_net_mask; 21766 bireinfo[3].bi_type = BCAST_SUBNET; 21767 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21768 21769 /* 21770 * Figure out what (if any) broadcast IREs will die as a result of 21771 * `test_ipif' going away. If none will die, we're done. 21772 */ 21773 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21774 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21775 test_ipif, ALL_ZONES, NULL, 21776 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21777 if (ire != NULL) { 21778 willdie++; 21779 bireinfo[i].bi_willdie = 1; 21780 ire_refrele(ire); 21781 } 21782 } 21783 21784 if (willdie == 0) 21785 return; 21786 21787 /* 21788 * Walk through all the ipifs that will be affected by the dying IREs, 21789 * and recreate the IREs as necessary. 21790 */ 21791 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21792 21793 /* 21794 * Scan through the set of broadcast IREs and see if there are any 21795 * that we need to replace that have not yet been replaced. If so, 21796 * replace them using the appropriate backup ipif. 21797 */ 21798 for (i = 0; i < BCAST_COUNT; i++) { 21799 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21800 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21801 &bireinfo[i], irep); 21802 } 21803 21804 /* 21805 * If we can't create all of them, don't add any of them. (Code in 21806 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21807 * non-loopback copy and loopback copy for a given address.) 21808 */ 21809 for (irep1 = irep; irep1 > ire_array; ) { 21810 irep1--; 21811 if (*irep1 == NULL) { 21812 ip0dbg(("ipif_check_bcast_ires: can't create " 21813 "IRE_BROADCAST, memory allocation failure\n")); 21814 while (irep > ire_array) { 21815 irep--; 21816 if (*irep != NULL) 21817 ire_delete(*irep); 21818 } 21819 return; 21820 } 21821 } 21822 21823 for (irep1 = irep; irep1 > ire_array; ) { 21824 irep1--; 21825 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21826 ire_refrele(*irep1); /* Held in ire_add */ 21827 } 21828 } 21829 21830 /* 21831 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21832 * from lifr_flags and the name from lifr_name. 21833 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21834 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21835 * Returns EINPROGRESS when mp has been consumed by queueing it on 21836 * ill_pending_mp and the ioctl will complete in ip_rput. 21837 * 21838 * Can operate on either a module or a driver queue. 21839 * Returns an error if not a module queue. 21840 */ 21841 /* ARGSUSED */ 21842 int 21843 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21844 ip_ioctl_cmd_t *ipip, void *if_req) 21845 { 21846 int err; 21847 ill_t *ill; 21848 struct lifreq *lifr = (struct lifreq *)if_req; 21849 21850 ASSERT(ipif != NULL); 21851 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21852 21853 if (q->q_next == NULL) { 21854 ip1dbg(( 21855 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21856 return (EINVAL); 21857 } 21858 21859 ill = (ill_t *)q->q_ptr; 21860 /* 21861 * If we are not writer on 'q' then this interface exists already 21862 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21863 * So return EALREADY 21864 */ 21865 if (ill != ipif->ipif_ill) 21866 return (EALREADY); 21867 21868 if (ill->ill_name[0] != '\0') 21869 return (EALREADY); 21870 21871 /* 21872 * Set all the flags. Allows all kinds of override. Provide some 21873 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21874 * unless there is either multicast/broadcast support in the driver 21875 * or it is a pt-pt link. 21876 */ 21877 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21878 /* Meaningless to IP thus don't allow them to be set. */ 21879 ip1dbg(("ip_setname: EINVAL 1\n")); 21880 return (EINVAL); 21881 } 21882 /* 21883 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21884 * ill_bcast_addr_length info. 21885 */ 21886 if (!ill->ill_needs_attach && 21887 ((lifr->lifr_flags & IFF_MULTICAST) && 21888 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21889 ill->ill_bcast_addr_length == 0)) { 21890 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21891 ip1dbg(("ip_setname: EINVAL 2\n")); 21892 return (EINVAL); 21893 } 21894 if ((lifr->lifr_flags & IFF_BROADCAST) && 21895 ((lifr->lifr_flags & IFF_IPV6) || 21896 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21897 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21898 ip1dbg(("ip_setname: EINVAL 3\n")); 21899 return (EINVAL); 21900 } 21901 if (lifr->lifr_flags & IFF_UP) { 21902 /* Can only be set with SIOCSLIFFLAGS */ 21903 ip1dbg(("ip_setname: EINVAL 4\n")); 21904 return (EINVAL); 21905 } 21906 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21907 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21908 ip1dbg(("ip_setname: EINVAL 5\n")); 21909 return (EINVAL); 21910 } 21911 /* 21912 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21913 */ 21914 if ((lifr->lifr_flags & IFF_XRESOLV) && 21915 !(lifr->lifr_flags & IFF_IPV6) && 21916 !(ipif->ipif_isv6)) { 21917 ip1dbg(("ip_setname: EINVAL 6\n")); 21918 return (EINVAL); 21919 } 21920 21921 /* 21922 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21923 * we have all the flags here. So, we assign rather than we OR. 21924 * We can't OR the flags here because we don't want to set 21925 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21926 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21927 * on lifr_flags value here. 21928 */ 21929 /* 21930 * This ill has not been inserted into the global list. 21931 * So we are still single threaded and don't need any lock 21932 */ 21933 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21934 ~IFF_DUPLICATE; 21935 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21936 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21937 21938 /* We started off as V4. */ 21939 if (ill->ill_flags & ILLF_IPV6) { 21940 ill->ill_phyint->phyint_illv6 = ill; 21941 ill->ill_phyint->phyint_illv4 = NULL; 21942 } 21943 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21944 return (err); 21945 } 21946 21947 /* ARGSUSED */ 21948 int 21949 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21950 ip_ioctl_cmd_t *ipip, void *if_req) 21951 { 21952 /* 21953 * ill_phyint_reinit merged the v4 and v6 into a single 21954 * ipsq. Could also have become part of a ipmp group in the 21955 * process, and we might not have been able to complete the 21956 * slifname in ipif_set_values, if we could not become 21957 * exclusive. If so restart it here 21958 */ 21959 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21960 } 21961 21962 /* 21963 * Return a pointer to the ipif which matches the index, IP version type and 21964 * zoneid. 21965 */ 21966 ipif_t * 21967 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21968 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21969 { 21970 ill_t *ill; 21971 ipsq_t *ipsq; 21972 phyint_t *phyi; 21973 ipif_t *ipif; 21974 21975 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21976 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21977 21978 if (err != NULL) 21979 *err = 0; 21980 21981 /* 21982 * Indexes are stored in the phyint - a common structure 21983 * to both IPv4 and IPv6. 21984 */ 21985 21986 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21987 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21988 (void *) &index, NULL); 21989 if (phyi != NULL) { 21990 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21991 if (ill == NULL) { 21992 rw_exit(&ipst->ips_ill_g_lock); 21993 if (err != NULL) 21994 *err = ENXIO; 21995 return (NULL); 21996 } 21997 GRAB_CONN_LOCK(q); 21998 mutex_enter(&ill->ill_lock); 21999 if (ILL_CAN_LOOKUP(ill)) { 22000 for (ipif = ill->ill_ipif; ipif != NULL; 22001 ipif = ipif->ipif_next) { 22002 if (IPIF_CAN_LOOKUP(ipif) && 22003 (zoneid == ALL_ZONES || 22004 zoneid == ipif->ipif_zoneid || 22005 ipif->ipif_zoneid == ALL_ZONES)) { 22006 ipif_refhold_locked(ipif); 22007 mutex_exit(&ill->ill_lock); 22008 RELEASE_CONN_LOCK(q); 22009 rw_exit(&ipst->ips_ill_g_lock); 22010 return (ipif); 22011 } 22012 } 22013 } else if (ILL_CAN_WAIT(ill, q)) { 22014 ipsq = ill->ill_phyint->phyint_ipsq; 22015 mutex_enter(&ipsq->ipsq_lock); 22016 rw_exit(&ipst->ips_ill_g_lock); 22017 mutex_exit(&ill->ill_lock); 22018 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 22019 mutex_exit(&ipsq->ipsq_lock); 22020 RELEASE_CONN_LOCK(q); 22021 *err = EINPROGRESS; 22022 return (NULL); 22023 } 22024 mutex_exit(&ill->ill_lock); 22025 RELEASE_CONN_LOCK(q); 22026 } 22027 rw_exit(&ipst->ips_ill_g_lock); 22028 if (err != NULL) 22029 *err = ENXIO; 22030 return (NULL); 22031 } 22032 22033 typedef struct conn_change_s { 22034 uint_t cc_old_ifindex; 22035 uint_t cc_new_ifindex; 22036 } conn_change_t; 22037 22038 /* 22039 * ipcl_walk function for changing interface index. 22040 */ 22041 static void 22042 conn_change_ifindex(conn_t *connp, caddr_t arg) 22043 { 22044 conn_change_t *connc; 22045 uint_t old_ifindex; 22046 uint_t new_ifindex; 22047 int i; 22048 ilg_t *ilg; 22049 22050 connc = (conn_change_t *)arg; 22051 old_ifindex = connc->cc_old_ifindex; 22052 new_ifindex = connc->cc_new_ifindex; 22053 22054 if (connp->conn_orig_bound_ifindex == old_ifindex) 22055 connp->conn_orig_bound_ifindex = new_ifindex; 22056 22057 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22058 connp->conn_orig_multicast_ifindex = new_ifindex; 22059 22060 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22061 connp->conn_orig_xmit_ifindex = new_ifindex; 22062 22063 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22064 ilg = &connp->conn_ilg[i]; 22065 if (ilg->ilg_orig_ifindex == old_ifindex) 22066 ilg->ilg_orig_ifindex = new_ifindex; 22067 } 22068 } 22069 22070 /* 22071 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22072 * to new_index if it matches the old_index. 22073 * 22074 * Failovers typically happen within a group of ills. But somebody 22075 * can remove an ill from the group after a failover happened. If 22076 * we are setting the ifindex after this, we potentially need to 22077 * look at all the ills rather than just the ones in the group. 22078 * We cut down the work by looking at matching ill_net_types 22079 * and ill_types as we could not possibly grouped them together. 22080 */ 22081 static void 22082 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22083 { 22084 ill_t *ill; 22085 ipif_t *ipif; 22086 uint_t old_ifindex; 22087 uint_t new_ifindex; 22088 ilm_t *ilm; 22089 ill_walk_context_t ctx; 22090 ip_stack_t *ipst = ill_orig->ill_ipst; 22091 22092 old_ifindex = connc->cc_old_ifindex; 22093 new_ifindex = connc->cc_new_ifindex; 22094 22095 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22096 ill = ILL_START_WALK_ALL(&ctx, ipst); 22097 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22098 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22099 (ill_orig->ill_type != ill->ill_type)) { 22100 continue; 22101 } 22102 for (ipif = ill->ill_ipif; ipif != NULL; 22103 ipif = ipif->ipif_next) { 22104 if (ipif->ipif_orig_ifindex == old_ifindex) 22105 ipif->ipif_orig_ifindex = new_ifindex; 22106 } 22107 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22108 if (ilm->ilm_orig_ifindex == old_ifindex) 22109 ilm->ilm_orig_ifindex = new_ifindex; 22110 } 22111 } 22112 rw_exit(&ipst->ips_ill_g_lock); 22113 } 22114 22115 /* 22116 * We first need to ensure that the new index is unique, and 22117 * then carry the change across both v4 and v6 ill representation 22118 * of the physical interface. 22119 */ 22120 /* ARGSUSED */ 22121 int 22122 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22123 ip_ioctl_cmd_t *ipip, void *ifreq) 22124 { 22125 ill_t *ill; 22126 ill_t *ill_other; 22127 phyint_t *phyi; 22128 int old_index; 22129 conn_change_t connc; 22130 struct ifreq *ifr = (struct ifreq *)ifreq; 22131 struct lifreq *lifr = (struct lifreq *)ifreq; 22132 uint_t index; 22133 ill_t *ill_v4; 22134 ill_t *ill_v6; 22135 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22136 22137 if (ipip->ipi_cmd_type == IF_CMD) 22138 index = ifr->ifr_index; 22139 else 22140 index = lifr->lifr_index; 22141 22142 /* 22143 * Only allow on physical interface. Also, index zero is illegal. 22144 * 22145 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22146 * 22147 * 1) If PHYI_FAILED is set, a failover could have happened which 22148 * implies a possible failback might have to happen. As failback 22149 * depends on the old index, we should fail setting the index. 22150 * 22151 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22152 * any addresses or multicast memberships are failed over to 22153 * a non-STANDBY interface. As failback depends on the old 22154 * index, we should fail setting the index for this case also. 22155 * 22156 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22157 * Be consistent with PHYI_FAILED and fail the ioctl. 22158 */ 22159 ill = ipif->ipif_ill; 22160 phyi = ill->ill_phyint; 22161 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22162 ipif->ipif_id != 0 || index == 0) { 22163 return (EINVAL); 22164 } 22165 old_index = phyi->phyint_ifindex; 22166 22167 /* If the index is not changing, no work to do */ 22168 if (old_index == index) 22169 return (0); 22170 22171 /* 22172 * Use ill_lookup_on_ifindex to determine if the 22173 * new index is unused and if so allow the change. 22174 */ 22175 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22176 ipst); 22177 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22178 ipst); 22179 if (ill_v6 != NULL || ill_v4 != NULL) { 22180 if (ill_v4 != NULL) 22181 ill_refrele(ill_v4); 22182 if (ill_v6 != NULL) 22183 ill_refrele(ill_v6); 22184 return (EBUSY); 22185 } 22186 22187 /* 22188 * The new index is unused. Set it in the phyint. 22189 * Locate the other ill so that we can send a routing 22190 * sockets message. 22191 */ 22192 if (ill->ill_isv6) { 22193 ill_other = phyi->phyint_illv4; 22194 } else { 22195 ill_other = phyi->phyint_illv6; 22196 } 22197 22198 phyi->phyint_ifindex = index; 22199 22200 /* Update SCTP's ILL list */ 22201 sctp_ill_reindex(ill, old_index); 22202 22203 connc.cc_old_ifindex = old_index; 22204 connc.cc_new_ifindex = index; 22205 ip_change_ifindex(ill, &connc); 22206 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22207 22208 /* Send the routing sockets message */ 22209 ip_rts_ifmsg(ipif); 22210 if (ill_other != NULL) 22211 ip_rts_ifmsg(ill_other->ill_ipif); 22212 22213 return (0); 22214 } 22215 22216 /* ARGSUSED */ 22217 int 22218 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22219 ip_ioctl_cmd_t *ipip, void *ifreq) 22220 { 22221 struct ifreq *ifr = (struct ifreq *)ifreq; 22222 struct lifreq *lifr = (struct lifreq *)ifreq; 22223 22224 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22225 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22226 /* Get the interface index */ 22227 if (ipip->ipi_cmd_type == IF_CMD) { 22228 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22229 } else { 22230 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22231 } 22232 return (0); 22233 } 22234 22235 /* ARGSUSED */ 22236 int 22237 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22238 ip_ioctl_cmd_t *ipip, void *ifreq) 22239 { 22240 struct lifreq *lifr = (struct lifreq *)ifreq; 22241 22242 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22244 /* Get the interface zone */ 22245 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22246 lifr->lifr_zoneid = ipif->ipif_zoneid; 22247 return (0); 22248 } 22249 22250 /* 22251 * Set the zoneid of an interface. 22252 */ 22253 /* ARGSUSED */ 22254 int 22255 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22256 ip_ioctl_cmd_t *ipip, void *ifreq) 22257 { 22258 struct lifreq *lifr = (struct lifreq *)ifreq; 22259 int err = 0; 22260 boolean_t need_up = B_FALSE; 22261 zone_t *zptr; 22262 zone_status_t status; 22263 zoneid_t zoneid; 22264 22265 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22266 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22267 if (!is_system_labeled()) 22268 return (ENOTSUP); 22269 zoneid = GLOBAL_ZONEID; 22270 } 22271 22272 /* cannot assign instance zero to a non-global zone */ 22273 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22274 return (ENOTSUP); 22275 22276 /* 22277 * Cannot assign to a zone that doesn't exist or is shutting down. In 22278 * the event of a race with the zone shutdown processing, since IP 22279 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22280 * interface will be cleaned up even if the zone is shut down 22281 * immediately after the status check. If the interface can't be brought 22282 * down right away, and the zone is shut down before the restart 22283 * function is called, we resolve the possible races by rechecking the 22284 * zone status in the restart function. 22285 */ 22286 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22287 return (EINVAL); 22288 status = zone_status_get(zptr); 22289 zone_rele(zptr); 22290 22291 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22292 return (EINVAL); 22293 22294 if (ipif->ipif_flags & IPIF_UP) { 22295 /* 22296 * If the interface is already marked up, 22297 * we call ipif_down which will take care 22298 * of ditching any IREs that have been set 22299 * up based on the old interface address. 22300 */ 22301 err = ipif_logical_down(ipif, q, mp); 22302 if (err == EINPROGRESS) 22303 return (err); 22304 ipif_down_tail(ipif); 22305 need_up = B_TRUE; 22306 } 22307 22308 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22309 return (err); 22310 } 22311 22312 static int 22313 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22314 queue_t *q, mblk_t *mp, boolean_t need_up) 22315 { 22316 int err = 0; 22317 ip_stack_t *ipst; 22318 22319 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22320 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22321 22322 if (CONN_Q(q)) 22323 ipst = CONNQ_TO_IPST(q); 22324 else 22325 ipst = ILLQ_TO_IPST(q); 22326 22327 /* 22328 * For exclusive stacks we don't allow a different zoneid than 22329 * global. 22330 */ 22331 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22332 zoneid != GLOBAL_ZONEID) 22333 return (EINVAL); 22334 22335 /* Set the new zone id. */ 22336 ipif->ipif_zoneid = zoneid; 22337 22338 /* Update sctp list */ 22339 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22340 22341 if (need_up) { 22342 /* 22343 * Now bring the interface back up. If this 22344 * is the only IPIF for the ILL, ipif_up 22345 * will have to re-bind to the device, so 22346 * we may get back EINPROGRESS, in which 22347 * case, this IOCTL will get completed in 22348 * ip_rput_dlpi when we see the DL_BIND_ACK. 22349 */ 22350 err = ipif_up(ipif, q, mp); 22351 } 22352 return (err); 22353 } 22354 22355 /* ARGSUSED */ 22356 int 22357 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22358 ip_ioctl_cmd_t *ipip, void *if_req) 22359 { 22360 struct lifreq *lifr = (struct lifreq *)if_req; 22361 zoneid_t zoneid; 22362 zone_t *zptr; 22363 zone_status_t status; 22364 22365 ASSERT(ipif->ipif_id != 0); 22366 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22367 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22368 zoneid = GLOBAL_ZONEID; 22369 22370 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22371 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22372 22373 /* 22374 * We recheck the zone status to resolve the following race condition: 22375 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22376 * 2) hme0:1 is up and can't be brought down right away; 22377 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22378 * 3) zone "myzone" is halted; the zone status switches to 22379 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22380 * the interfaces to remove - hme0:1 is not returned because it's not 22381 * yet in "myzone", so it won't be removed; 22382 * 4) the restart function for SIOCSLIFZONE is called; without the 22383 * status check here, we would have hme0:1 in "myzone" after it's been 22384 * destroyed. 22385 * Note that if the status check fails, we need to bring the interface 22386 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22387 * ipif_up_done[_v6](). 22388 */ 22389 status = ZONE_IS_UNINITIALIZED; 22390 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22391 status = zone_status_get(zptr); 22392 zone_rele(zptr); 22393 } 22394 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22395 if (ipif->ipif_isv6) { 22396 (void) ipif_up_done_v6(ipif); 22397 } else { 22398 (void) ipif_up_done(ipif); 22399 } 22400 return (EINVAL); 22401 } 22402 22403 ipif_down_tail(ipif); 22404 22405 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22406 B_TRUE)); 22407 } 22408 22409 /* ARGSUSED */ 22410 int 22411 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22412 ip_ioctl_cmd_t *ipip, void *ifreq) 22413 { 22414 struct lifreq *lifr = ifreq; 22415 22416 ASSERT(q->q_next == NULL); 22417 ASSERT(CONN_Q(q)); 22418 22419 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22420 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22421 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22422 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22423 22424 return (0); 22425 } 22426 22427 22428 /* Find the previous ILL in this usesrc group */ 22429 static ill_t * 22430 ill_prev_usesrc(ill_t *uill) 22431 { 22432 ill_t *ill; 22433 22434 for (ill = uill->ill_usesrc_grp_next; 22435 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22436 ill = ill->ill_usesrc_grp_next) 22437 /* do nothing */; 22438 return (ill); 22439 } 22440 22441 /* 22442 * Release all members of the usesrc group. This routine is called 22443 * from ill_delete when the interface being unplumbed is the 22444 * group head. 22445 */ 22446 static void 22447 ill_disband_usesrc_group(ill_t *uill) 22448 { 22449 ill_t *next_ill, *tmp_ill; 22450 ip_stack_t *ipst = uill->ill_ipst; 22451 22452 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22453 next_ill = uill->ill_usesrc_grp_next; 22454 22455 do { 22456 ASSERT(next_ill != NULL); 22457 tmp_ill = next_ill->ill_usesrc_grp_next; 22458 ASSERT(tmp_ill != NULL); 22459 next_ill->ill_usesrc_grp_next = NULL; 22460 next_ill->ill_usesrc_ifindex = 0; 22461 next_ill = tmp_ill; 22462 } while (next_ill->ill_usesrc_ifindex != 0); 22463 uill->ill_usesrc_grp_next = NULL; 22464 } 22465 22466 /* 22467 * Remove the client usesrc ILL from the list and relink to a new list 22468 */ 22469 int 22470 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22471 { 22472 ill_t *ill, *tmp_ill; 22473 ip_stack_t *ipst = ucill->ill_ipst; 22474 22475 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22476 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22477 22478 /* 22479 * Check if the usesrc client ILL passed in is not already 22480 * in use as a usesrc ILL i.e one whose source address is 22481 * in use OR a usesrc ILL is not already in use as a usesrc 22482 * client ILL 22483 */ 22484 if ((ucill->ill_usesrc_ifindex == 0) || 22485 (uill->ill_usesrc_ifindex != 0)) { 22486 return (-1); 22487 } 22488 22489 ill = ill_prev_usesrc(ucill); 22490 ASSERT(ill->ill_usesrc_grp_next != NULL); 22491 22492 /* Remove from the current list */ 22493 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22494 /* Only two elements in the list */ 22495 ASSERT(ill->ill_usesrc_ifindex == 0); 22496 ill->ill_usesrc_grp_next = NULL; 22497 } else { 22498 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22499 } 22500 22501 if (ifindex == 0) { 22502 ucill->ill_usesrc_ifindex = 0; 22503 ucill->ill_usesrc_grp_next = NULL; 22504 return (0); 22505 } 22506 22507 ucill->ill_usesrc_ifindex = ifindex; 22508 tmp_ill = uill->ill_usesrc_grp_next; 22509 uill->ill_usesrc_grp_next = ucill; 22510 ucill->ill_usesrc_grp_next = 22511 (tmp_ill != NULL) ? tmp_ill : uill; 22512 return (0); 22513 } 22514 22515 /* 22516 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22517 * ip.c for locking details. 22518 */ 22519 /* ARGSUSED */ 22520 int 22521 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22522 ip_ioctl_cmd_t *ipip, void *ifreq) 22523 { 22524 struct lifreq *lifr = (struct lifreq *)ifreq; 22525 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22526 ill_flag_changed = B_FALSE; 22527 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22528 int err = 0, ret; 22529 uint_t ifindex; 22530 phyint_t *us_phyint, *us_cli_phyint; 22531 ipsq_t *ipsq = NULL; 22532 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22533 22534 ASSERT(IAM_WRITER_IPIF(ipif)); 22535 ASSERT(q->q_next == NULL); 22536 ASSERT(CONN_Q(q)); 22537 22538 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22539 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22540 22541 ASSERT(us_cli_phyint != NULL); 22542 22543 /* 22544 * If the client ILL is being used for IPMP, abort. 22545 * Note, this can be done before ipsq_try_enter since we are already 22546 * exclusive on this ILL 22547 */ 22548 if ((us_cli_phyint->phyint_groupname != NULL) || 22549 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22550 return (EINVAL); 22551 } 22552 22553 ifindex = lifr->lifr_index; 22554 if (ifindex == 0) { 22555 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22556 /* non usesrc group interface, nothing to reset */ 22557 return (0); 22558 } 22559 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22560 /* valid reset request */ 22561 reset_flg = B_TRUE; 22562 } 22563 22564 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22565 ip_process_ioctl, &err, ipst); 22566 22567 if (usesrc_ill == NULL) { 22568 return (err); 22569 } 22570 22571 /* 22572 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22573 * group nor can either of the interfaces be used for standy. So 22574 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22575 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22576 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22577 * We are already exlusive on this ipsq i.e ipsq corresponding to 22578 * the usesrc_cli_ill 22579 */ 22580 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22581 NEW_OP, B_TRUE); 22582 if (ipsq == NULL) { 22583 err = EINPROGRESS; 22584 /* Operation enqueued on the ipsq of the usesrc ILL */ 22585 goto done; 22586 } 22587 22588 /* Check if the usesrc_ill is used for IPMP */ 22589 us_phyint = usesrc_ill->ill_phyint; 22590 if ((us_phyint->phyint_groupname != NULL) || 22591 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22592 err = EINVAL; 22593 goto done; 22594 } 22595 22596 /* 22597 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22598 * already a client then return EINVAL 22599 */ 22600 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22601 err = EINVAL; 22602 goto done; 22603 } 22604 22605 /* 22606 * If the ill_usesrc_ifindex field is already set to what it needs to 22607 * be then this is a duplicate operation. 22608 */ 22609 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22610 err = 0; 22611 goto done; 22612 } 22613 22614 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22615 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22616 usesrc_ill->ill_isv6)); 22617 22618 /* 22619 * The next step ensures that no new ires will be created referencing 22620 * the client ill, until the ILL_CHANGING flag is cleared. Then 22621 * we go through an ire walk deleting all ire caches that reference 22622 * the client ill. New ires referencing the client ill that are added 22623 * to the ire table before the ILL_CHANGING flag is set, will be 22624 * cleaned up by the ire walk below. Attempt to add new ires referencing 22625 * the client ill while the ILL_CHANGING flag is set will be failed 22626 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22627 * checks (under the ill_g_usesrc_lock) that the ire being added 22628 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22629 * belong to the same usesrc group. 22630 */ 22631 mutex_enter(&usesrc_cli_ill->ill_lock); 22632 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22633 mutex_exit(&usesrc_cli_ill->ill_lock); 22634 ill_flag_changed = B_TRUE; 22635 22636 if (ipif->ipif_isv6) 22637 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22638 ALL_ZONES, ipst); 22639 else 22640 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22641 ALL_ZONES, ipst); 22642 22643 /* 22644 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22645 * and the ill_usesrc_ifindex fields 22646 */ 22647 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22648 22649 if (reset_flg) { 22650 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22651 if (ret != 0) { 22652 err = EINVAL; 22653 } 22654 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22655 goto done; 22656 } 22657 22658 /* 22659 * Four possibilities to consider: 22660 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22661 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22662 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22663 * 4. Both are part of their respective usesrc groups 22664 */ 22665 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22666 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22667 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22668 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22669 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22670 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22671 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22672 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22673 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22674 /* Insert at head of list */ 22675 usesrc_cli_ill->ill_usesrc_grp_next = 22676 usesrc_ill->ill_usesrc_grp_next; 22677 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22678 } else { 22679 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22680 ifindex); 22681 if (ret != 0) 22682 err = EINVAL; 22683 } 22684 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22685 22686 done: 22687 if (ill_flag_changed) { 22688 mutex_enter(&usesrc_cli_ill->ill_lock); 22689 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22690 mutex_exit(&usesrc_cli_ill->ill_lock); 22691 } 22692 if (ipsq != NULL) 22693 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22694 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22695 ill_refrele(usesrc_ill); 22696 return (err); 22697 } 22698 22699 /* 22700 * comparison function used by avl. 22701 */ 22702 static int 22703 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22704 { 22705 22706 uint_t index; 22707 22708 ASSERT(phyip != NULL && index_ptr != NULL); 22709 22710 index = *((uint_t *)index_ptr); 22711 /* 22712 * let the phyint with the lowest index be on top. 22713 */ 22714 if (((phyint_t *)phyip)->phyint_ifindex < index) 22715 return (1); 22716 if (((phyint_t *)phyip)->phyint_ifindex > index) 22717 return (-1); 22718 return (0); 22719 } 22720 22721 /* 22722 * comparison function used by avl. 22723 */ 22724 static int 22725 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22726 { 22727 ill_t *ill; 22728 int res = 0; 22729 22730 ASSERT(phyip != NULL && name_ptr != NULL); 22731 22732 if (((phyint_t *)phyip)->phyint_illv4) 22733 ill = ((phyint_t *)phyip)->phyint_illv4; 22734 else 22735 ill = ((phyint_t *)phyip)->phyint_illv6; 22736 ASSERT(ill != NULL); 22737 22738 res = strcmp(ill->ill_name, (char *)name_ptr); 22739 if (res > 0) 22740 return (1); 22741 else if (res < 0) 22742 return (-1); 22743 return (0); 22744 } 22745 /* 22746 * This function is called from ill_delete when the ill is being 22747 * unplumbed. We remove the reference from the phyint and we also 22748 * free the phyint when there are no more references to it. 22749 */ 22750 static void 22751 ill_phyint_free(ill_t *ill) 22752 { 22753 phyint_t *phyi; 22754 phyint_t *next_phyint; 22755 ipsq_t *cur_ipsq; 22756 ip_stack_t *ipst = ill->ill_ipst; 22757 22758 ASSERT(ill->ill_phyint != NULL); 22759 22760 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22761 phyi = ill->ill_phyint; 22762 ill->ill_phyint = NULL; 22763 /* 22764 * ill_init allocates a phyint always to store the copy 22765 * of flags relevant to phyint. At that point in time, we could 22766 * not assign the name and hence phyint_illv4/v6 could not be 22767 * initialized. Later in ipif_set_values, we assign the name to 22768 * the ill, at which point in time we assign phyint_illv4/v6. 22769 * Thus we don't rely on phyint_illv6 to be initialized always. 22770 */ 22771 if (ill->ill_flags & ILLF_IPV6) { 22772 phyi->phyint_illv6 = NULL; 22773 } else { 22774 phyi->phyint_illv4 = NULL; 22775 } 22776 /* 22777 * ipif_down removes it from the group when the last ipif goes 22778 * down. 22779 */ 22780 ASSERT(ill->ill_group == NULL); 22781 22782 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22783 return; 22784 22785 /* 22786 * Make sure this phyint was put in the list. 22787 */ 22788 if (phyi->phyint_ifindex > 0) { 22789 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22790 phyi); 22791 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22792 phyi); 22793 } 22794 /* 22795 * remove phyint from the ipsq list. 22796 */ 22797 cur_ipsq = phyi->phyint_ipsq; 22798 if (phyi == cur_ipsq->ipsq_phyint_list) { 22799 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22800 } else { 22801 next_phyint = cur_ipsq->ipsq_phyint_list; 22802 while (next_phyint != NULL) { 22803 if (next_phyint->phyint_ipsq_next == phyi) { 22804 next_phyint->phyint_ipsq_next = 22805 phyi->phyint_ipsq_next; 22806 break; 22807 } 22808 next_phyint = next_phyint->phyint_ipsq_next; 22809 } 22810 ASSERT(next_phyint != NULL); 22811 } 22812 IPSQ_DEC_REF(cur_ipsq, ipst); 22813 22814 if (phyi->phyint_groupname_len != 0) { 22815 ASSERT(phyi->phyint_groupname != NULL); 22816 mi_free(phyi->phyint_groupname); 22817 } 22818 mi_free(phyi); 22819 } 22820 22821 /* 22822 * Attach the ill to the phyint structure which can be shared by both 22823 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22824 * function is called from ipif_set_values and ill_lookup_on_name (for 22825 * loopback) where we know the name of the ill. We lookup the ill and if 22826 * there is one present already with the name use that phyint. Otherwise 22827 * reuse the one allocated by ill_init. 22828 */ 22829 static void 22830 ill_phyint_reinit(ill_t *ill) 22831 { 22832 boolean_t isv6 = ill->ill_isv6; 22833 phyint_t *phyi_old; 22834 phyint_t *phyi; 22835 avl_index_t where = 0; 22836 ill_t *ill_other = NULL; 22837 ipsq_t *ipsq; 22838 ip_stack_t *ipst = ill->ill_ipst; 22839 22840 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22841 22842 phyi_old = ill->ill_phyint; 22843 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22844 phyi_old->phyint_illv6 == NULL)); 22845 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22846 phyi_old->phyint_illv4 == NULL)); 22847 ASSERT(phyi_old->phyint_ifindex == 0); 22848 22849 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22850 ill->ill_name, &where); 22851 22852 /* 22853 * 1. We grabbed the ill_g_lock before inserting this ill into 22854 * the global list of ills. So no other thread could have located 22855 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22856 * 2. Now locate the other protocol instance of this ill. 22857 * 3. Now grab both ill locks in the right order, and the phyint lock of 22858 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22859 * of neither ill can change. 22860 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22861 * other ill. 22862 * 5. Release all locks. 22863 */ 22864 22865 /* 22866 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22867 * we are initializing IPv4. 22868 */ 22869 if (phyi != NULL) { 22870 ill_other = (isv6) ? phyi->phyint_illv4 : 22871 phyi->phyint_illv6; 22872 ASSERT(ill_other->ill_phyint != NULL); 22873 ASSERT((isv6 && !ill_other->ill_isv6) || 22874 (!isv6 && ill_other->ill_isv6)); 22875 GRAB_ILL_LOCKS(ill, ill_other); 22876 /* 22877 * We are potentially throwing away phyint_flags which 22878 * could be different from the one that we obtain from 22879 * ill_other->ill_phyint. But it is okay as we are assuming 22880 * that the state maintained within IP is correct. 22881 */ 22882 mutex_enter(&phyi->phyint_lock); 22883 if (isv6) { 22884 ASSERT(phyi->phyint_illv6 == NULL); 22885 phyi->phyint_illv6 = ill; 22886 } else { 22887 ASSERT(phyi->phyint_illv4 == NULL); 22888 phyi->phyint_illv4 = ill; 22889 } 22890 /* 22891 * This is a new ill, currently undergoing SLIFNAME 22892 * So we could not have joined an IPMP group until now. 22893 */ 22894 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22895 phyi_old->phyint_groupname == NULL); 22896 22897 /* 22898 * This phyi_old is going away. Decref ipsq_refs and 22899 * assert it is zero. The ipsq itself will be freed in 22900 * ipsq_exit 22901 */ 22902 ipsq = phyi_old->phyint_ipsq; 22903 IPSQ_DEC_REF(ipsq, ipst); 22904 ASSERT(ipsq->ipsq_refs == 0); 22905 /* Get the singleton phyint out of the ipsq list */ 22906 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22907 ipsq->ipsq_phyint_list = NULL; 22908 phyi_old->phyint_illv4 = NULL; 22909 phyi_old->phyint_illv6 = NULL; 22910 mi_free(phyi_old); 22911 } else { 22912 mutex_enter(&ill->ill_lock); 22913 /* 22914 * We don't need to acquire any lock, since 22915 * the ill is not yet visible globally and we 22916 * have not yet released the ill_g_lock. 22917 */ 22918 phyi = phyi_old; 22919 mutex_enter(&phyi->phyint_lock); 22920 /* XXX We need a recovery strategy here. */ 22921 if (!phyint_assign_ifindex(phyi, ipst)) 22922 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22923 22924 /* No IPMP group yet, thus the hook uses the ifindex */ 22925 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22926 22927 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22928 (void *)phyi, where); 22929 22930 (void) avl_find(&ipst->ips_phyint_g_list-> 22931 phyint_list_avl_by_index, 22932 &phyi->phyint_ifindex, &where); 22933 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22934 (void *)phyi, where); 22935 } 22936 22937 /* 22938 * Reassigning ill_phyint automatically reassigns the ipsq also. 22939 * pending mp is not affected because that is per ill basis. 22940 */ 22941 ill->ill_phyint = phyi; 22942 22943 /* 22944 * Keep the index on ipif_orig_index to be used by FAILOVER. 22945 * We do this here as when the first ipif was allocated, 22946 * ipif_allocate does not know the right interface index. 22947 */ 22948 22949 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22950 /* 22951 * Now that the phyint's ifindex has been assigned, complete the 22952 * remaining 22953 */ 22954 22955 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22956 if (ill->ill_isv6) { 22957 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22958 ill->ill_phyint->phyint_ifindex; 22959 } 22960 22961 /* 22962 * Generate an event within the hooks framework to indicate that 22963 * a new interface has just been added to IP. For this event to 22964 * be generated, the network interface must, at least, have an 22965 * ifindex assigned to it. 22966 * 22967 * This needs to be run inside the ill_g_lock perimeter to ensure 22968 * that the ordering of delivered events to listeners matches the 22969 * order of them in the kernel. 22970 * 22971 * This function could be called from ill_lookup_on_name. In that case 22972 * the interface is loopback "lo", which will not generate a NIC event. 22973 */ 22974 if (ill->ill_name_length <= 2 || 22975 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22976 /* 22977 * Generate nic plumb event for ill_name even if 22978 * ipmp_hook_emulation is set. That avoids generating events 22979 * for the ill_names should ipmp_hook_emulation be turned on 22980 * later. 22981 */ 22982 ill_nic_info_plumb(ill, B_FALSE); 22983 } 22984 RELEASE_ILL_LOCKS(ill, ill_other); 22985 mutex_exit(&phyi->phyint_lock); 22986 } 22987 22988 /* 22989 * Allocate a NE_PLUMB nic info event and store in the ill. 22990 * If 'group' is set we do it for the group name, otherwise the ill name. 22991 * It will be sent when we leave the ipsq. 22992 */ 22993 void 22994 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22995 { 22996 phyint_t *phyi = ill->ill_phyint; 22997 ip_stack_t *ipst = ill->ill_ipst; 22998 hook_nic_event_t *info; 22999 char *name; 23000 int namelen; 23001 23002 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23003 23004 if ((info = ill->ill_nic_event_info) != NULL) { 23005 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 23006 "attached for %s\n", info->hne_event, 23007 ill->ill_name)); 23008 if (info->hne_data != NULL) 23009 kmem_free(info->hne_data, info->hne_datalen); 23010 kmem_free(info, sizeof (hook_nic_event_t)); 23011 ill->ill_nic_event_info = NULL; 23012 } 23013 23014 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 23015 if (info == NULL) { 23016 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 23017 "event information for %s (ENOMEM)\n", 23018 ill->ill_name)); 23019 return; 23020 } 23021 23022 if (group) { 23023 ASSERT(phyi->phyint_groupname_len != 0); 23024 namelen = phyi->phyint_groupname_len; 23025 name = phyi->phyint_groupname; 23026 } else { 23027 namelen = ill->ill_name_length; 23028 name = ill->ill_name; 23029 } 23030 23031 info->hne_nic = phyi->phyint_hook_ifindex; 23032 info->hne_lif = 0; 23033 info->hne_event = NE_PLUMB; 23034 info->hne_family = ill->ill_isv6 ? 23035 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 23036 23037 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 23038 if (info->hne_data != NULL) { 23039 info->hne_datalen = namelen; 23040 bcopy(name, info->hne_data, info->hne_datalen); 23041 } else { 23042 ip2dbg(("ill_nic_info_plumb: could not attach " 23043 "name information for PLUMB nic event " 23044 "of %s (ENOMEM)\n", name)); 23045 kmem_free(info, sizeof (hook_nic_event_t)); 23046 info = NULL; 23047 } 23048 ill->ill_nic_event_info = info; 23049 } 23050 23051 /* 23052 * Unhook the nic event message from the ill and enqueue it 23053 * into the nic event taskq. 23054 */ 23055 void 23056 ill_nic_info_dispatch(ill_t *ill) 23057 { 23058 hook_nic_event_t *info; 23059 23060 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23061 23062 if ((info = ill->ill_nic_event_info) != NULL) { 23063 if (ddi_taskq_dispatch(eventq_queue_nic, 23064 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 23065 ip2dbg(("ill_nic_info_dispatch: " 23066 "ddi_taskq_dispatch failed\n")); 23067 if (info->hne_data != NULL) 23068 kmem_free(info->hne_data, info->hne_datalen); 23069 kmem_free(info, sizeof (hook_nic_event_t)); 23070 } 23071 ill->ill_nic_event_info = NULL; 23072 } 23073 } 23074 23075 /* 23076 * Notify any downstream modules of the name of this interface. 23077 * An M_IOCTL is used even though we don't expect a successful reply. 23078 * Any reply message from the driver (presumably an M_IOCNAK) will 23079 * eventually get discarded somewhere upstream. The message format is 23080 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 23081 * to IP. 23082 */ 23083 static void 23084 ip_ifname_notify(ill_t *ill, queue_t *q) 23085 { 23086 mblk_t *mp1, *mp2; 23087 struct iocblk *iocp; 23088 struct lifreq *lifr; 23089 23090 mp1 = mkiocb(SIOCSLIFNAME); 23091 if (mp1 == NULL) 23092 return; 23093 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 23094 if (mp2 == NULL) { 23095 freeb(mp1); 23096 return; 23097 } 23098 23099 mp1->b_cont = mp2; 23100 iocp = (struct iocblk *)mp1->b_rptr; 23101 iocp->ioc_count = sizeof (struct lifreq); 23102 23103 lifr = (struct lifreq *)mp2->b_rptr; 23104 mp2->b_wptr += sizeof (struct lifreq); 23105 bzero(lifr, sizeof (struct lifreq)); 23106 23107 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23108 lifr->lifr_ppa = ill->ill_ppa; 23109 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23110 23111 putnext(q, mp1); 23112 } 23113 23114 static int 23115 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23116 { 23117 int err; 23118 ip_stack_t *ipst = ill->ill_ipst; 23119 23120 /* Set the obsolete NDD per-interface forwarding name. */ 23121 err = ill_set_ndd_name(ill); 23122 if (err != 0) { 23123 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23124 err); 23125 } 23126 23127 /* Tell downstream modules where they are. */ 23128 ip_ifname_notify(ill, q); 23129 23130 /* 23131 * ill_dl_phys returns EINPROGRESS in the usual case. 23132 * Error cases are ENOMEM ... 23133 */ 23134 err = ill_dl_phys(ill, ipif, mp, q); 23135 23136 /* 23137 * If there is no IRE expiration timer running, get one started. 23138 * igmp and mld timers will be triggered by the first multicast 23139 */ 23140 if (ipst->ips_ip_ire_expire_id == 0) { 23141 /* 23142 * acquire the lock and check again. 23143 */ 23144 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23145 if (ipst->ips_ip_ire_expire_id == 0) { 23146 ipst->ips_ip_ire_expire_id = timeout( 23147 ip_trash_timer_expire, ipst, 23148 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23149 } 23150 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23151 } 23152 23153 if (ill->ill_isv6) { 23154 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23155 if (ipst->ips_mld_slowtimeout_id == 0) { 23156 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23157 (void *)ipst, 23158 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23159 } 23160 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23161 } else { 23162 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23163 if (ipst->ips_igmp_slowtimeout_id == 0) { 23164 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23165 (void *)ipst, 23166 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23167 } 23168 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23169 } 23170 23171 return (err); 23172 } 23173 23174 /* 23175 * Common routine for ppa and ifname setting. Should be called exclusive. 23176 * 23177 * Returns EINPROGRESS when mp has been consumed by queueing it on 23178 * ill_pending_mp and the ioctl will complete in ip_rput. 23179 * 23180 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23181 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23182 * For SLIFNAME, we pass these values back to the userland. 23183 */ 23184 static int 23185 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23186 { 23187 ill_t *ill; 23188 ipif_t *ipif; 23189 ipsq_t *ipsq; 23190 char *ppa_ptr; 23191 char *old_ptr; 23192 char old_char; 23193 int error; 23194 ip_stack_t *ipst; 23195 23196 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23197 ASSERT(q->q_next != NULL); 23198 ASSERT(interf_name != NULL); 23199 23200 ill = (ill_t *)q->q_ptr; 23201 ipst = ill->ill_ipst; 23202 23203 ASSERT(ill->ill_ipst != NULL); 23204 ASSERT(ill->ill_name[0] == '\0'); 23205 ASSERT(IAM_WRITER_ILL(ill)); 23206 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23207 ASSERT(ill->ill_ppa == UINT_MAX); 23208 23209 /* The ppa is sent down by ifconfig or is chosen */ 23210 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23211 return (EINVAL); 23212 } 23213 23214 /* 23215 * make sure ppa passed in is same as ppa in the name. 23216 * This check is not made when ppa == UINT_MAX in that case ppa 23217 * in the name could be anything. System will choose a ppa and 23218 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23219 */ 23220 if (*new_ppa_ptr != UINT_MAX) { 23221 /* stoi changes the pointer */ 23222 old_ptr = ppa_ptr; 23223 /* 23224 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23225 * (they don't have an externally visible ppa). We assign one 23226 * here so that we can manage the interface. Note that in 23227 * the past this value was always 0 for DLPI 1 drivers. 23228 */ 23229 if (*new_ppa_ptr == 0) 23230 *new_ppa_ptr = stoi(&old_ptr); 23231 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23232 return (EINVAL); 23233 } 23234 /* 23235 * terminate string before ppa 23236 * save char at that location. 23237 */ 23238 old_char = ppa_ptr[0]; 23239 ppa_ptr[0] = '\0'; 23240 23241 ill->ill_ppa = *new_ppa_ptr; 23242 /* 23243 * Finish as much work now as possible before calling ill_glist_insert 23244 * which makes the ill globally visible and also merges it with the 23245 * other protocol instance of this phyint. The remaining work is 23246 * done after entering the ipsq which may happen sometime later. 23247 * ill_set_ndd_name occurs after the ill has been made globally visible. 23248 */ 23249 ipif = ill->ill_ipif; 23250 23251 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23252 ipif_assign_seqid(ipif); 23253 23254 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23255 ill->ill_flags |= ILLF_IPV4; 23256 23257 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23258 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23259 23260 if (ill->ill_flags & ILLF_IPV6) { 23261 23262 ill->ill_isv6 = B_TRUE; 23263 if (ill->ill_rq != NULL) { 23264 ill->ill_rq->q_qinfo = &rinit_ipv6; 23265 ill->ill_wq->q_qinfo = &winit_ipv6; 23266 } 23267 23268 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23269 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23270 ipif->ipif_v6src_addr = ipv6_all_zeros; 23271 ipif->ipif_v6subnet = ipv6_all_zeros; 23272 ipif->ipif_v6net_mask = ipv6_all_zeros; 23273 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23274 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23275 /* 23276 * point-to-point or Non-mulicast capable 23277 * interfaces won't do NUD unless explicitly 23278 * configured to do so. 23279 */ 23280 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23281 !(ill->ill_flags & ILLF_MULTICAST)) { 23282 ill->ill_flags |= ILLF_NONUD; 23283 } 23284 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23285 if (ill->ill_flags & ILLF_NOARP) { 23286 /* 23287 * Note: xresolv interfaces will eventually need 23288 * NOARP set here as well, but that will require 23289 * those external resolvers to have some 23290 * knowledge of that flag and act appropriately. 23291 * Not to be changed at present. 23292 */ 23293 ill->ill_flags &= ~ILLF_NOARP; 23294 } 23295 /* 23296 * Set the ILLF_ROUTER flag according to the global 23297 * IPv6 forwarding policy. 23298 */ 23299 if (ipst->ips_ipv6_forward != 0) 23300 ill->ill_flags |= ILLF_ROUTER; 23301 } else if (ill->ill_flags & ILLF_IPV4) { 23302 ill->ill_isv6 = B_FALSE; 23303 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23304 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23305 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23306 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23307 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23308 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23309 /* 23310 * Set the ILLF_ROUTER flag according to the global 23311 * IPv4 forwarding policy. 23312 */ 23313 if (ipst->ips_ip_g_forward != 0) 23314 ill->ill_flags |= ILLF_ROUTER; 23315 } 23316 23317 ASSERT(ill->ill_phyint != NULL); 23318 23319 /* 23320 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23321 * be completed in ill_glist_insert -> ill_phyint_reinit 23322 */ 23323 if (!ill_allocate_mibs(ill)) 23324 return (ENOMEM); 23325 23326 /* 23327 * Pick a default sap until we get the DL_INFO_ACK back from 23328 * the driver. 23329 */ 23330 if (ill->ill_sap == 0) { 23331 if (ill->ill_isv6) 23332 ill->ill_sap = IP6_DL_SAP; 23333 else 23334 ill->ill_sap = IP_DL_SAP; 23335 } 23336 23337 ill->ill_ifname_pending = 1; 23338 ill->ill_ifname_pending_err = 0; 23339 23340 ill_refhold(ill); 23341 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23342 if ((error = ill_glist_insert(ill, interf_name, 23343 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23344 ill->ill_ppa = UINT_MAX; 23345 ill->ill_name[0] = '\0'; 23346 /* 23347 * undo null termination done above. 23348 */ 23349 ppa_ptr[0] = old_char; 23350 rw_exit(&ipst->ips_ill_g_lock); 23351 ill_refrele(ill); 23352 return (error); 23353 } 23354 23355 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23356 23357 /* 23358 * When we return the buffer pointed to by interf_name should contain 23359 * the same name as in ill_name. 23360 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23361 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23362 * so copy full name and update the ppa ptr. 23363 * When ppa passed in != UINT_MAX all values are correct just undo 23364 * null termination, this saves a bcopy. 23365 */ 23366 if (*new_ppa_ptr == UINT_MAX) { 23367 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23368 *new_ppa_ptr = ill->ill_ppa; 23369 } else { 23370 /* 23371 * undo null termination done above. 23372 */ 23373 ppa_ptr[0] = old_char; 23374 } 23375 23376 /* Let SCTP know about this ILL */ 23377 sctp_update_ill(ill, SCTP_ILL_INSERT); 23378 23379 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23380 B_TRUE); 23381 23382 rw_exit(&ipst->ips_ill_g_lock); 23383 ill_refrele(ill); 23384 if (ipsq == NULL) 23385 return (EINPROGRESS); 23386 23387 /* 23388 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23389 */ 23390 if (ipsq->ipsq_current_ipif == NULL) 23391 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23392 else 23393 ASSERT(ipsq->ipsq_current_ipif == ipif); 23394 23395 error = ipif_set_values_tail(ill, ipif, mp, q); 23396 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23397 if (error != 0 && error != EINPROGRESS) { 23398 /* 23399 * restore previous values 23400 */ 23401 ill->ill_isv6 = B_FALSE; 23402 } 23403 return (error); 23404 } 23405 23406 23407 void 23408 ipif_init(ip_stack_t *ipst) 23409 { 23410 hrtime_t hrt; 23411 int i; 23412 23413 /* 23414 * Can't call drv_getparm here as it is too early in the boot. 23415 * As we use ipif_src_random just for picking a different 23416 * source address everytime, this need not be really random. 23417 */ 23418 hrt = gethrtime(); 23419 ipst->ips_ipif_src_random = 23420 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23421 23422 for (i = 0; i < MAX_G_HEADS; i++) { 23423 ipst->ips_ill_g_heads[i].ill_g_list_head = 23424 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23425 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23426 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23427 } 23428 23429 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23430 ill_phyint_compare_index, 23431 sizeof (phyint_t), 23432 offsetof(struct phyint, phyint_avl_by_index)); 23433 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23434 ill_phyint_compare_name, 23435 sizeof (phyint_t), 23436 offsetof(struct phyint, phyint_avl_by_name)); 23437 } 23438 23439 /* 23440 * This is called by ip_rt_add when src_addr value is other than zero. 23441 * src_addr signifies the source address of the incoming packet. For 23442 * reverse tunnel route we need to create a source addr based routing 23443 * table. This routine creates ip_mrtun_table if it's empty and then 23444 * it adds the route entry hashed by source address. It verifies that 23445 * the outgoing interface is always a non-resolver interface (tunnel). 23446 */ 23447 int 23448 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23449 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23450 ip_stack_t *ipst) 23451 { 23452 ire_t *ire; 23453 ire_t *save_ire; 23454 ipif_t *ipif; 23455 ill_t *in_ill = NULL; 23456 ill_t *out_ill; 23457 queue_t *stq; 23458 mblk_t *dlureq_mp; 23459 int error; 23460 23461 if (ire_arg != NULL) 23462 *ire_arg = NULL; 23463 ASSERT(in_src_addr != INADDR_ANY); 23464 23465 ipif = ipif_arg; 23466 if (ipif != NULL) { 23467 out_ill = ipif->ipif_ill; 23468 } else { 23469 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23470 return (EINVAL); 23471 } 23472 23473 if (src_ipif == NULL) { 23474 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23475 return (EINVAL); 23476 } 23477 in_ill = src_ipif->ipif_ill; 23478 23479 /* 23480 * Check for duplicates. We don't need to 23481 * match out_ill, because the uniqueness of 23482 * a route is only dependent on src_addr and 23483 * in_ill. 23484 */ 23485 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23486 if (ire != NULL) { 23487 ire_refrele(ire); 23488 return (EEXIST); 23489 } 23490 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23491 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23492 ipif->ipif_net_type)); 23493 return (EINVAL); 23494 } 23495 23496 stq = ipif->ipif_wq; 23497 ASSERT(stq != NULL); 23498 23499 /* 23500 * The outgoing interface must be non-resolver 23501 * interface. 23502 */ 23503 dlureq_mp = ill_dlur_gen(NULL, 23504 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23505 out_ill->ill_sap_length); 23506 23507 if (dlureq_mp == NULL) { 23508 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23509 return (ENOMEM); 23510 } 23511 23512 /* Create the IRE. */ 23513 23514 ire = ire_create( 23515 NULL, /* Zero dst addr */ 23516 NULL, /* Zero mask */ 23517 NULL, /* Zero gateway addr */ 23518 NULL, /* Zero ipif_src addr */ 23519 (uint8_t *)&in_src_addr, /* in_src-addr */ 23520 &ipif->ipif_mtu, 23521 NULL, 23522 NULL, /* rfq */ 23523 stq, 23524 IRE_MIPRTUN, 23525 ipif, 23526 in_ill, 23527 0, 23528 0, 23529 0, 23530 flags, 23531 &ire_uinfo_null, 23532 NULL, 23533 NULL, 23534 ipst); 23535 23536 if (ire == NULL) { 23537 freeb(dlureq_mp); 23538 return (ENOMEM); 23539 } 23540 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23541 ire->ire_type)); 23542 save_ire = ire; 23543 ASSERT(save_ire != NULL); 23544 error = ire_add_mrtun(&ire, q, mp, func); 23545 /* 23546 * If ire_add_mrtun() failed, the ire passed in was freed 23547 * so there is no need to do so here. 23548 */ 23549 if (error != 0) { 23550 return (error); 23551 } 23552 23553 /* Duplicate check */ 23554 if (ire != save_ire) { 23555 /* route already exists by now */ 23556 ire_refrele(ire); 23557 return (EEXIST); 23558 } 23559 23560 if (ire_arg != NULL) { 23561 /* 23562 * Store the ire that was just added. the caller 23563 * ip_rts_request responsible for doing ire_refrele() 23564 * on it. 23565 */ 23566 *ire_arg = ire; 23567 } else { 23568 ire_refrele(ire); /* held in ire_add_mrtun */ 23569 } 23570 23571 return (0); 23572 } 23573 23574 /* 23575 * It is called by ip_rt_delete() only when mipagent requests to delete 23576 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23577 */ 23578 23579 int 23580 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23581 { 23582 ire_t *ire = NULL; 23583 23584 if (in_src_addr == INADDR_ANY) 23585 return (EINVAL); 23586 if (src_ipif == NULL) 23587 return (EINVAL); 23588 23589 /* search if this route exists in the ip_mrtun_table */ 23590 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23591 if (ire == NULL) { 23592 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23593 return (ESRCH); 23594 } 23595 ire_delete(ire); 23596 ire_refrele(ire); 23597 return (0); 23598 } 23599 23600 /* 23601 * Lookup the ipif corresponding to the onlink destination address. For 23602 * point-to-point interfaces, it matches with remote endpoint destination 23603 * address. For point-to-multipoint interfaces it only tries to match the 23604 * destination with the interface's subnet address. The longest, most specific 23605 * match is found to take care of such rare network configurations like - 23606 * le0: 129.146.1.1/16 23607 * le1: 129.146.2.2/24 23608 * It is used only by SO_DONTROUTE at the moment. 23609 */ 23610 ipif_t * 23611 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23612 { 23613 ipif_t *ipif, *best_ipif; 23614 ill_t *ill; 23615 ill_walk_context_t ctx; 23616 23617 ASSERT(zoneid != ALL_ZONES); 23618 best_ipif = NULL; 23619 23620 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23621 ill = ILL_START_WALK_V4(&ctx, ipst); 23622 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23623 mutex_enter(&ill->ill_lock); 23624 for (ipif = ill->ill_ipif; ipif != NULL; 23625 ipif = ipif->ipif_next) { 23626 if (!IPIF_CAN_LOOKUP(ipif)) 23627 continue; 23628 if (ipif->ipif_zoneid != zoneid && 23629 ipif->ipif_zoneid != ALL_ZONES) 23630 continue; 23631 /* 23632 * Point-to-point case. Look for exact match with 23633 * destination address. 23634 */ 23635 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23636 if (ipif->ipif_pp_dst_addr == addr) { 23637 ipif_refhold_locked(ipif); 23638 mutex_exit(&ill->ill_lock); 23639 rw_exit(&ipst->ips_ill_g_lock); 23640 if (best_ipif != NULL) 23641 ipif_refrele(best_ipif); 23642 return (ipif); 23643 } 23644 } else if (ipif->ipif_subnet == (addr & 23645 ipif->ipif_net_mask)) { 23646 /* 23647 * Point-to-multipoint case. Looping through to 23648 * find the most specific match. If there are 23649 * multiple best match ipif's then prefer ipif's 23650 * that are UP. If there is only one best match 23651 * ipif and it is DOWN we must still return it. 23652 */ 23653 if ((best_ipif == NULL) || 23654 (ipif->ipif_net_mask > 23655 best_ipif->ipif_net_mask) || 23656 ((ipif->ipif_net_mask == 23657 best_ipif->ipif_net_mask) && 23658 ((ipif->ipif_flags & IPIF_UP) && 23659 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23660 ipif_refhold_locked(ipif); 23661 mutex_exit(&ill->ill_lock); 23662 rw_exit(&ipst->ips_ill_g_lock); 23663 if (best_ipif != NULL) 23664 ipif_refrele(best_ipif); 23665 best_ipif = ipif; 23666 rw_enter(&ipst->ips_ill_g_lock, 23667 RW_READER); 23668 mutex_enter(&ill->ill_lock); 23669 } 23670 } 23671 } 23672 mutex_exit(&ill->ill_lock); 23673 } 23674 rw_exit(&ipst->ips_ill_g_lock); 23675 return (best_ipif); 23676 } 23677 23678 23679 /* 23680 * Save enough information so that we can recreate the IRE if 23681 * the interface goes down and then up. 23682 */ 23683 static void 23684 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23685 { 23686 mblk_t *save_mp; 23687 23688 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23689 if (save_mp != NULL) { 23690 ifrt_t *ifrt; 23691 23692 save_mp->b_wptr += sizeof (ifrt_t); 23693 ifrt = (ifrt_t *)save_mp->b_rptr; 23694 bzero(ifrt, sizeof (ifrt_t)); 23695 ifrt->ifrt_type = ire->ire_type; 23696 ifrt->ifrt_addr = ire->ire_addr; 23697 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23698 ifrt->ifrt_src_addr = ire->ire_src_addr; 23699 ifrt->ifrt_mask = ire->ire_mask; 23700 ifrt->ifrt_flags = ire->ire_flags; 23701 ifrt->ifrt_max_frag = ire->ire_max_frag; 23702 mutex_enter(&ipif->ipif_saved_ire_lock); 23703 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23704 ipif->ipif_saved_ire_mp = save_mp; 23705 ipif->ipif_saved_ire_cnt++; 23706 mutex_exit(&ipif->ipif_saved_ire_lock); 23707 } 23708 } 23709 23710 23711 static void 23712 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23713 { 23714 mblk_t **mpp; 23715 mblk_t *mp; 23716 ifrt_t *ifrt; 23717 23718 /* Remove from ipif_saved_ire_mp list if it is there */ 23719 mutex_enter(&ipif->ipif_saved_ire_lock); 23720 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23721 mpp = &(*mpp)->b_cont) { 23722 /* 23723 * On a given ipif, the triple of address, gateway and 23724 * mask is unique for each saved IRE (in the case of 23725 * ordinary interface routes, the gateway address is 23726 * all-zeroes). 23727 */ 23728 mp = *mpp; 23729 ifrt = (ifrt_t *)mp->b_rptr; 23730 if (ifrt->ifrt_addr == ire->ire_addr && 23731 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23732 ifrt->ifrt_mask == ire->ire_mask) { 23733 *mpp = mp->b_cont; 23734 ipif->ipif_saved_ire_cnt--; 23735 freeb(mp); 23736 break; 23737 } 23738 } 23739 mutex_exit(&ipif->ipif_saved_ire_lock); 23740 } 23741 23742 23743 /* 23744 * IP multirouting broadcast routes handling 23745 * Append CGTP broadcast IREs to regular ones created 23746 * at ifconfig time. 23747 */ 23748 static void 23749 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23750 { 23751 ire_t *ire_prim; 23752 23753 ASSERT(ire != NULL); 23754 ASSERT(ire_dst != NULL); 23755 23756 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23757 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23758 if (ire_prim != NULL) { 23759 /* 23760 * We are in the special case of broadcasts for 23761 * CGTP. We add an IRE_BROADCAST that holds 23762 * the RTF_MULTIRT flag, the destination 23763 * address of ire_dst and the low level 23764 * info of ire_prim. In other words, CGTP 23765 * broadcast is added to the redundant ipif. 23766 */ 23767 ipif_t *ipif_prim; 23768 ire_t *bcast_ire; 23769 23770 ipif_prim = ire_prim->ire_ipif; 23771 23772 ip2dbg(("ip_cgtp_filter_bcast_add: " 23773 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23774 (void *)ire_dst, (void *)ire_prim, 23775 (void *)ipif_prim)); 23776 23777 bcast_ire = ire_create( 23778 (uchar_t *)&ire->ire_addr, 23779 (uchar_t *)&ip_g_all_ones, 23780 (uchar_t *)&ire_dst->ire_src_addr, 23781 (uchar_t *)&ire->ire_gateway_addr, 23782 NULL, 23783 &ipif_prim->ipif_mtu, 23784 NULL, 23785 ipif_prim->ipif_rq, 23786 ipif_prim->ipif_wq, 23787 IRE_BROADCAST, 23788 ipif_prim, 23789 NULL, 23790 0, 23791 0, 23792 0, 23793 ire->ire_flags, 23794 &ire_uinfo_null, 23795 NULL, 23796 NULL, 23797 ipst); 23798 23799 if (bcast_ire != NULL) { 23800 23801 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23802 B_FALSE) == 0) { 23803 ip2dbg(("ip_cgtp_filter_bcast_add: " 23804 "added bcast_ire %p\n", 23805 (void *)bcast_ire)); 23806 23807 ipif_save_ire(bcast_ire->ire_ipif, 23808 bcast_ire); 23809 ire_refrele(bcast_ire); 23810 } 23811 } 23812 ire_refrele(ire_prim); 23813 } 23814 } 23815 23816 23817 /* 23818 * IP multirouting broadcast routes handling 23819 * Remove the broadcast ire 23820 */ 23821 static void 23822 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23823 { 23824 ire_t *ire_dst; 23825 23826 ASSERT(ire != NULL); 23827 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23828 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23829 if (ire_dst != NULL) { 23830 ire_t *ire_prim; 23831 23832 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23833 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23834 if (ire_prim != NULL) { 23835 ipif_t *ipif_prim; 23836 ire_t *bcast_ire; 23837 23838 ipif_prim = ire_prim->ire_ipif; 23839 23840 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23841 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23842 (void *)ire_dst, (void *)ire_prim, 23843 (void *)ipif_prim)); 23844 23845 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23846 ire->ire_gateway_addr, 23847 IRE_BROADCAST, 23848 ipif_prim, ALL_ZONES, 23849 NULL, 23850 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23851 MATCH_IRE_MASK, ipst); 23852 23853 if (bcast_ire != NULL) { 23854 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23855 "looked up bcast_ire %p\n", 23856 (void *)bcast_ire)); 23857 ipif_remove_ire(bcast_ire->ire_ipif, 23858 bcast_ire); 23859 ire_delete(bcast_ire); 23860 } 23861 ire_refrele(ire_prim); 23862 } 23863 ire_refrele(ire_dst); 23864 } 23865 } 23866 23867 /* 23868 * IPsec hardware acceleration capabilities related functions. 23869 */ 23870 23871 /* 23872 * Free a per-ill IPsec capabilities structure. 23873 */ 23874 static void 23875 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23876 { 23877 if (capab->auth_hw_algs != NULL) 23878 kmem_free(capab->auth_hw_algs, capab->algs_size); 23879 if (capab->encr_hw_algs != NULL) 23880 kmem_free(capab->encr_hw_algs, capab->algs_size); 23881 if (capab->encr_algparm != NULL) 23882 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23883 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23884 } 23885 23886 /* 23887 * Allocate a new per-ill IPsec capabilities structure. This structure 23888 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23889 * an array which specifies, for each algorithm, whether this algorithm 23890 * is supported by the ill or not. 23891 */ 23892 static ill_ipsec_capab_t * 23893 ill_ipsec_capab_alloc(void) 23894 { 23895 ill_ipsec_capab_t *capab; 23896 uint_t nelems; 23897 23898 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23899 if (capab == NULL) 23900 return (NULL); 23901 23902 /* we need one bit per algorithm */ 23903 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23904 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23905 23906 /* allocate memory to store algorithm flags */ 23907 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23908 if (capab->encr_hw_algs == NULL) 23909 goto nomem; 23910 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23911 if (capab->auth_hw_algs == NULL) 23912 goto nomem; 23913 /* 23914 * Leave encr_algparm NULL for now since we won't need it half 23915 * the time 23916 */ 23917 return (capab); 23918 23919 nomem: 23920 ill_ipsec_capab_free(capab); 23921 return (NULL); 23922 } 23923 23924 /* 23925 * Resize capability array. Since we're exclusive, this is OK. 23926 */ 23927 static boolean_t 23928 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23929 { 23930 ipsec_capab_algparm_t *nalp, *oalp; 23931 uint32_t olen, nlen; 23932 23933 oalp = capab->encr_algparm; 23934 olen = capab->encr_algparm_size; 23935 23936 if (oalp != NULL) { 23937 if (algid < capab->encr_algparm_end) 23938 return (B_TRUE); 23939 } 23940 23941 nlen = (algid + 1) * sizeof (*nalp); 23942 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23943 if (nalp == NULL) 23944 return (B_FALSE); 23945 23946 if (oalp != NULL) { 23947 bcopy(oalp, nalp, olen); 23948 kmem_free(oalp, olen); 23949 } 23950 capab->encr_algparm = nalp; 23951 capab->encr_algparm_size = nlen; 23952 capab->encr_algparm_end = algid + 1; 23953 23954 return (B_TRUE); 23955 } 23956 23957 /* 23958 * Compare the capabilities of the specified ill with the protocol 23959 * and algorithms specified by the SA passed as argument. 23960 * If they match, returns B_TRUE, B_FALSE if they do not match. 23961 * 23962 * The ill can be passed as a pointer to it, or by specifying its index 23963 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23964 * 23965 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23966 * packet is eligible for hardware acceleration, and by 23967 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23968 * to a particular ill. 23969 */ 23970 boolean_t 23971 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23972 ipsa_t *sa, netstack_t *ns) 23973 { 23974 boolean_t sa_isv6; 23975 uint_t algid; 23976 struct ill_ipsec_capab_s *cpp; 23977 boolean_t need_refrele = B_FALSE; 23978 ip_stack_t *ipst = ns->netstack_ip; 23979 23980 if (ill == NULL) { 23981 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23982 NULL, NULL, NULL, ipst); 23983 if (ill == NULL) { 23984 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23985 return (B_FALSE); 23986 } 23987 need_refrele = B_TRUE; 23988 } 23989 23990 /* 23991 * Use the address length specified by the SA to determine 23992 * if it corresponds to a IPv6 address, and fail the matching 23993 * if the isv6 flag passed as argument does not match. 23994 * Note: this check is used for SADB capability checking before 23995 * sending SA information to an ill. 23996 */ 23997 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23998 if (sa_isv6 != ill_isv6) 23999 /* protocol mismatch */ 24000 goto done; 24001 24002 /* 24003 * Check if the ill supports the protocol, algorithm(s) and 24004 * key size(s) specified by the SA, and get the pointers to 24005 * the algorithms supported by the ill. 24006 */ 24007 switch (sa->ipsa_type) { 24008 24009 case SADB_SATYPE_ESP: 24010 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 24011 /* ill does not support ESP acceleration */ 24012 goto done; 24013 cpp = ill->ill_ipsec_capab_esp; 24014 algid = sa->ipsa_auth_alg; 24015 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 24016 goto done; 24017 algid = sa->ipsa_encr_alg; 24018 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 24019 goto done; 24020 if (algid < cpp->encr_algparm_end) { 24021 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 24022 if (sa->ipsa_encrkeybits < alp->minkeylen) 24023 goto done; 24024 if (sa->ipsa_encrkeybits > alp->maxkeylen) 24025 goto done; 24026 } 24027 break; 24028 24029 case SADB_SATYPE_AH: 24030 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 24031 /* ill does not support AH acceleration */ 24032 goto done; 24033 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 24034 ill->ill_ipsec_capab_ah->auth_hw_algs)) 24035 goto done; 24036 break; 24037 } 24038 24039 if (need_refrele) 24040 ill_refrele(ill); 24041 return (B_TRUE); 24042 done: 24043 if (need_refrele) 24044 ill_refrele(ill); 24045 return (B_FALSE); 24046 } 24047 24048 24049 /* 24050 * Add a new ill to the list of IPsec capable ills. 24051 * Called from ill_capability_ipsec_ack() when an ACK was received 24052 * indicating that IPsec hardware processing was enabled for an ill. 24053 * 24054 * ill must point to the ill for which acceleration was enabled. 24055 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 24056 */ 24057 static void 24058 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 24059 { 24060 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 24061 uint_t sa_type; 24062 uint_t ipproto; 24063 ip_stack_t *ipst = ill->ill_ipst; 24064 24065 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 24066 (dl_cap == DL_CAPAB_IPSEC_ESP)); 24067 24068 switch (dl_cap) { 24069 case DL_CAPAB_IPSEC_AH: 24070 sa_type = SADB_SATYPE_AH; 24071 ills = &ipst->ips_ipsec_capab_ills_ah; 24072 ipproto = IPPROTO_AH; 24073 break; 24074 case DL_CAPAB_IPSEC_ESP: 24075 sa_type = SADB_SATYPE_ESP; 24076 ills = &ipst->ips_ipsec_capab_ills_esp; 24077 ipproto = IPPROTO_ESP; 24078 break; 24079 } 24080 24081 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24082 24083 /* 24084 * Add ill index to list of hardware accelerators. If 24085 * already in list, do nothing. 24086 */ 24087 for (cur_ill = *ills; cur_ill != NULL && 24088 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 24089 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 24090 ; 24091 24092 if (cur_ill == NULL) { 24093 /* if this is a new entry for this ill */ 24094 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 24095 if (new_ill == NULL) { 24096 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24097 return; 24098 } 24099 24100 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24101 new_ill->ill_isv6 = ill->ill_isv6; 24102 new_ill->next = *ills; 24103 *ills = new_ill; 24104 } else if (!sadb_resync) { 24105 /* not resync'ing SADB and an entry exists for this ill */ 24106 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24107 return; 24108 } 24109 24110 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24111 24112 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24113 /* 24114 * IPsec module for protocol loaded, initiate dump 24115 * of the SADB to this ill. 24116 */ 24117 sadb_ill_download(ill, sa_type); 24118 } 24119 24120 /* 24121 * Remove an ill from the list of IPsec capable ills. 24122 */ 24123 static void 24124 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24125 { 24126 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24127 ip_stack_t *ipst = ill->ill_ipst; 24128 24129 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24130 dl_cap == DL_CAPAB_IPSEC_ESP); 24131 24132 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24133 &ipst->ips_ipsec_capab_ills_esp; 24134 24135 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24136 24137 prev_ill = NULL; 24138 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24139 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24140 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24141 ; 24142 if (cur_ill == NULL) { 24143 /* entry not found */ 24144 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24145 return; 24146 } 24147 if (prev_ill == NULL) { 24148 /* entry at front of list */ 24149 *ills = NULL; 24150 } else { 24151 prev_ill->next = cur_ill->next; 24152 } 24153 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24154 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24155 } 24156 24157 /* 24158 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24159 * supporting the specified IPsec protocol acceleration. 24160 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24161 * We free the mblk and, if sa is non-null, release the held referece. 24162 */ 24163 void 24164 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24165 netstack_t *ns) 24166 { 24167 ipsec_capab_ill_t *ici, *cur_ici; 24168 ill_t *ill; 24169 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24170 ip_stack_t *ipst = ns->netstack_ip; 24171 24172 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24173 ipst->ips_ipsec_capab_ills_esp; 24174 24175 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24176 24177 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24178 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24179 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24180 24181 /* 24182 * Handle the case where the ill goes away while the SADB is 24183 * attempting to send messages. If it's going away, it's 24184 * nuking its shadow SADB, so we don't care.. 24185 */ 24186 24187 if (ill == NULL) 24188 continue; 24189 24190 if (sa != NULL) { 24191 /* 24192 * Make sure capabilities match before 24193 * sending SA to ill. 24194 */ 24195 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24196 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24197 ill_refrele(ill); 24198 continue; 24199 } 24200 24201 mutex_enter(&sa->ipsa_lock); 24202 sa->ipsa_flags |= IPSA_F_HW; 24203 mutex_exit(&sa->ipsa_lock); 24204 } 24205 24206 /* 24207 * Copy template message, and add it to the front 24208 * of the mblk ship list. We want to avoid holding 24209 * the ipsec_capab_ills_lock while sending the 24210 * message to the ills. 24211 * 24212 * The b_next and b_prev are temporarily used 24213 * to build a list of mblks to be sent down, and to 24214 * save the ill to which they must be sent. 24215 */ 24216 nmp = copymsg(mp); 24217 if (nmp == NULL) { 24218 ill_refrele(ill); 24219 continue; 24220 } 24221 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24222 nmp->b_next = mp_ship_list; 24223 mp_ship_list = nmp; 24224 nmp->b_prev = (mblk_t *)ill; 24225 } 24226 24227 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24228 24229 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 24230 /* restore the mblk to a sane state */ 24231 next_mp = nmp->b_next; 24232 nmp->b_next = NULL; 24233 ill = (ill_t *)nmp->b_prev; 24234 nmp->b_prev = NULL; 24235 24236 ill_dlpi_send(ill, nmp); 24237 ill_refrele(ill); 24238 } 24239 24240 if (sa != NULL) 24241 IPSA_REFRELE(sa); 24242 freemsg(mp); 24243 } 24244 24245 /* 24246 * Derive an interface id from the link layer address. 24247 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24248 */ 24249 static boolean_t 24250 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24251 { 24252 char *addr; 24253 24254 if (phys_length != ETHERADDRL) 24255 return (B_FALSE); 24256 24257 /* Form EUI-64 like address */ 24258 addr = (char *)&v6addr->s6_addr32[2]; 24259 bcopy((char *)phys_addr, addr, 3); 24260 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24261 addr[3] = (char)0xff; 24262 addr[4] = (char)0xfe; 24263 bcopy((char *)phys_addr + 3, addr + 5, 3); 24264 return (B_TRUE); 24265 } 24266 24267 /* ARGSUSED */ 24268 static boolean_t 24269 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24270 { 24271 return (B_FALSE); 24272 } 24273 24274 /* ARGSUSED */ 24275 static boolean_t 24276 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24277 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24278 { 24279 /* 24280 * Multicast address mappings used over Ethernet/802.X. 24281 * This address is used as a base for mappings. 24282 */ 24283 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24284 0x00, 0x00, 0x00}; 24285 24286 /* 24287 * Extract low order 32 bits from IPv6 multicast address. 24288 * Or that into the link layer address, starting from the 24289 * second byte. 24290 */ 24291 *hw_start = 2; 24292 v6_extract_mask->s6_addr32[0] = 0; 24293 v6_extract_mask->s6_addr32[1] = 0; 24294 v6_extract_mask->s6_addr32[2] = 0; 24295 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24296 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24297 return (B_TRUE); 24298 } 24299 24300 /* 24301 * Indicate by return value whether multicast is supported. If not, 24302 * this code should not touch/change any parameters. 24303 */ 24304 /* ARGSUSED */ 24305 static boolean_t 24306 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24307 uint32_t *hw_start, ipaddr_t *extract_mask) 24308 { 24309 /* 24310 * Multicast address mappings used over Ethernet/802.X. 24311 * This address is used as a base for mappings. 24312 */ 24313 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24314 0x00, 0x00, 0x00 }; 24315 24316 if (phys_length != ETHERADDRL) 24317 return (B_FALSE); 24318 24319 *extract_mask = htonl(0x007fffff); 24320 *hw_start = 2; 24321 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24322 return (B_TRUE); 24323 } 24324 24325 /* 24326 * Derive IPoIB interface id from the link layer address. 24327 */ 24328 static boolean_t 24329 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24330 { 24331 char *addr; 24332 24333 if (phys_length != 20) 24334 return (B_FALSE); 24335 addr = (char *)&v6addr->s6_addr32[2]; 24336 bcopy(phys_addr + 12, addr, 8); 24337 /* 24338 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24339 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24340 * rules. In these cases, the IBA considers these GUIDs to be in 24341 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24342 * required; vendors are required not to assign global EUI-64's 24343 * that differ only in u/l bit values, thus guaranteeing uniqueness 24344 * of the interface identifier. Whether the GUID is in modified 24345 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24346 * bit set to 1. 24347 */ 24348 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24349 return (B_TRUE); 24350 } 24351 24352 /* 24353 * Note on mapping from multicast IP addresses to IPoIB multicast link 24354 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24355 * The format of an IPoIB multicast address is: 24356 * 24357 * 4 byte QPN Scope Sign. Pkey 24358 * +--------------------------------------------+ 24359 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24360 * +--------------------------------------------+ 24361 * 24362 * The Scope and Pkey components are properties of the IBA port and 24363 * network interface. They can be ascertained from the broadcast address. 24364 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24365 */ 24366 24367 static boolean_t 24368 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24369 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24370 { 24371 /* 24372 * Base IPoIB IPv6 multicast address used for mappings. 24373 * Does not contain the IBA scope/Pkey values. 24374 */ 24375 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24376 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24377 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24378 24379 /* 24380 * Extract low order 80 bits from IPv6 multicast address. 24381 * Or that into the link layer address, starting from the 24382 * sixth byte. 24383 */ 24384 *hw_start = 6; 24385 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24386 24387 /* 24388 * Now fill in the IBA scope/Pkey values from the broadcast address. 24389 */ 24390 *(maddr + 5) = *(bphys_addr + 5); 24391 *(maddr + 8) = *(bphys_addr + 8); 24392 *(maddr + 9) = *(bphys_addr + 9); 24393 24394 v6_extract_mask->s6_addr32[0] = 0; 24395 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24396 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24397 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24398 return (B_TRUE); 24399 } 24400 24401 static boolean_t 24402 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24403 uint32_t *hw_start, ipaddr_t *extract_mask) 24404 { 24405 /* 24406 * Base IPoIB IPv4 multicast address used for mappings. 24407 * Does not contain the IBA scope/Pkey values. 24408 */ 24409 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24410 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24411 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24412 24413 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24414 return (B_FALSE); 24415 24416 /* 24417 * Extract low order 28 bits from IPv4 multicast address. 24418 * Or that into the link layer address, starting from the 24419 * sixteenth byte. 24420 */ 24421 *extract_mask = htonl(0x0fffffff); 24422 *hw_start = 16; 24423 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24424 24425 /* 24426 * Now fill in the IBA scope/Pkey values from the broadcast address. 24427 */ 24428 *(maddr + 5) = *(bphys_addr + 5); 24429 *(maddr + 8) = *(bphys_addr + 8); 24430 *(maddr + 9) = *(bphys_addr + 9); 24431 return (B_TRUE); 24432 } 24433 24434 /* 24435 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24436 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24437 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24438 * the link-local address is preferred. 24439 */ 24440 boolean_t 24441 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24442 { 24443 ipif_t *ipif; 24444 ipif_t *maybe_ipif = NULL; 24445 24446 mutex_enter(&ill->ill_lock); 24447 if (ill->ill_state_flags & ILL_CONDEMNED) { 24448 mutex_exit(&ill->ill_lock); 24449 if (ipifp != NULL) 24450 *ipifp = NULL; 24451 return (B_FALSE); 24452 } 24453 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24454 if (!IPIF_CAN_LOOKUP(ipif)) 24455 continue; 24456 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24457 ipif->ipif_zoneid != ALL_ZONES) 24458 continue; 24459 if ((ipif->ipif_flags & flags) != flags) 24460 continue; 24461 24462 if (ipifp == NULL) { 24463 mutex_exit(&ill->ill_lock); 24464 ASSERT(maybe_ipif == NULL); 24465 return (B_TRUE); 24466 } 24467 if (!ill->ill_isv6 || 24468 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24469 ipif_refhold_locked(ipif); 24470 mutex_exit(&ill->ill_lock); 24471 *ipifp = ipif; 24472 return (B_TRUE); 24473 } 24474 if (maybe_ipif == NULL) 24475 maybe_ipif = ipif; 24476 } 24477 if (ipifp != NULL) { 24478 if (maybe_ipif != NULL) 24479 ipif_refhold_locked(maybe_ipif); 24480 *ipifp = maybe_ipif; 24481 } 24482 mutex_exit(&ill->ill_lock); 24483 return (maybe_ipif != NULL); 24484 } 24485 24486 /* 24487 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24488 */ 24489 boolean_t 24490 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24491 { 24492 ill_t *illg; 24493 ip_stack_t *ipst = ill->ill_ipst; 24494 24495 /* 24496 * We look at the passed-in ill first without grabbing ill_g_lock. 24497 */ 24498 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24499 return (B_TRUE); 24500 } 24501 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24502 if (ill->ill_group == NULL) { 24503 /* ill not in a group */ 24504 rw_exit(&ipst->ips_ill_g_lock); 24505 return (B_FALSE); 24506 } 24507 24508 /* 24509 * There's no ipif in the zone on ill, however ill is part of an IPMP 24510 * group. We need to look for an ipif in the zone on all the ills in the 24511 * group. 24512 */ 24513 illg = ill->ill_group->illgrp_ill; 24514 do { 24515 /* 24516 * We don't call ipif_lookup_zoneid() on ill as we already know 24517 * that it's not there. 24518 */ 24519 if (illg != ill && 24520 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24521 break; 24522 } 24523 } while ((illg = illg->ill_group_next) != NULL); 24524 rw_exit(&ipst->ips_ill_g_lock); 24525 return (illg != NULL); 24526 } 24527 24528 /* 24529 * Check if this ill is only being used to send ICMP probes for IPMP 24530 */ 24531 boolean_t 24532 ill_is_probeonly(ill_t *ill) 24533 { 24534 /* 24535 * Check if the interface is FAILED, or INACTIVE 24536 */ 24537 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24538 return (B_TRUE); 24539 24540 return (B_FALSE); 24541 } 24542 24543 /* 24544 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24545 * If a pointer to an ipif_t is returned then the caller will need to do 24546 * an ill_refrele(). 24547 * 24548 * If there is no real interface which matches the ifindex, then it looks 24549 * for a group that has a matching index. In the case of a group match the 24550 * lifidx must be zero. We don't need emulate the logical interfaces 24551 * since IP Filter's use of netinfo doesn't use that. 24552 */ 24553 ipif_t * 24554 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24555 ip_stack_t *ipst) 24556 { 24557 ipif_t *ipif; 24558 ill_t *ill; 24559 24560 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24561 ipst); 24562 24563 if (ill == NULL) { 24564 /* Fallback to group names only if hook_emulation set */ 24565 if (!ipst->ips_ipmp_hook_emulation) 24566 return (NULL); 24567 24568 if (lifidx != 0) 24569 return (NULL); 24570 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24571 if (ill == NULL) 24572 return (NULL); 24573 } 24574 24575 mutex_enter(&ill->ill_lock); 24576 if (ill->ill_state_flags & ILL_CONDEMNED) { 24577 mutex_exit(&ill->ill_lock); 24578 ill_refrele(ill); 24579 return (NULL); 24580 } 24581 24582 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24583 if (!IPIF_CAN_LOOKUP(ipif)) 24584 continue; 24585 if (lifidx == ipif->ipif_id) { 24586 ipif_refhold_locked(ipif); 24587 break; 24588 } 24589 } 24590 24591 mutex_exit(&ill->ill_lock); 24592 ill_refrele(ill); 24593 return (ipif); 24594 } 24595 24596 /* 24597 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24598 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24599 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24600 * for details. 24601 */ 24602 void 24603 ill_fastpath_flush(ill_t *ill) 24604 { 24605 ip_stack_t *ipst = ill->ill_ipst; 24606 24607 nce_fastpath_list_dispatch(ill, NULL, NULL); 24608 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24609 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24610 } 24611 24612 /* 24613 * Set the physical address information for `ill' to the contents of the 24614 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24615 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24616 * EINPROGRESS will be returned. 24617 */ 24618 int 24619 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24620 { 24621 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24622 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24623 24624 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24625 24626 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24627 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24628 /* Changing DL_IPV6_TOKEN is not yet supported */ 24629 return (0); 24630 } 24631 24632 /* 24633 * We need to store up to two copies of `mp' in `ill'. Due to the 24634 * design of ipsq_pending_mp_add(), we can't pass them as separate 24635 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24636 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24637 */ 24638 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24639 freemsg(mp); 24640 return (ENOMEM); 24641 } 24642 24643 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24644 24645 /* 24646 * If we can quiesce the ill, then set the address. If not, then 24647 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24648 */ 24649 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24650 mutex_enter(&ill->ill_lock); 24651 if (!ill_is_quiescent(ill)) { 24652 /* call cannot fail since `conn_t *' argument is NULL */ 24653 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24654 mp, ILL_DOWN); 24655 mutex_exit(&ill->ill_lock); 24656 return (EINPROGRESS); 24657 } 24658 mutex_exit(&ill->ill_lock); 24659 24660 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24661 return (0); 24662 } 24663 24664 /* 24665 * Once the ill associated with `q' has quiesced, set its physical address 24666 * information to the values in `addrmp'. Note that two copies of `addrmp' 24667 * are passed (linked by b_cont), since we sometimes need to save two distinct 24668 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24669 * failure (we'll free the other copy if it's not needed). Since the ill_t 24670 * is quiesced, we know any stale IREs with the old address information have 24671 * already been removed, so we don't need to call ill_fastpath_flush(). 24672 */ 24673 /* ARGSUSED */ 24674 static void 24675 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24676 { 24677 ill_t *ill = q->q_ptr; 24678 mblk_t *addrmp2 = unlinkb(addrmp); 24679 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24680 uint_t addrlen, addroff; 24681 24682 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24683 24684 addroff = dlindp->dl_addr_offset; 24685 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24686 24687 switch (dlindp->dl_data) { 24688 case DL_IPV6_LINK_LAYER_ADDR: 24689 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24690 freemsg(addrmp2); 24691 break; 24692 24693 case DL_CURR_PHYS_ADDR: 24694 freemsg(ill->ill_phys_addr_mp); 24695 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24696 ill->ill_phys_addr_mp = addrmp; 24697 ill->ill_phys_addr_length = addrlen; 24698 24699 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24700 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24701 else 24702 freemsg(addrmp2); 24703 break; 24704 default: 24705 ASSERT(0); 24706 } 24707 24708 /* 24709 * If there are ipifs to bring up, ill_up_ipifs() will return 24710 * EINPROGRESS, and ipsq_current_finish() will be called by 24711 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24712 * brought up. 24713 */ 24714 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24715 ipsq_current_finish(ipsq); 24716 } 24717 24718 /* 24719 * Helper routine for setting the ill_nd_lla fields. 24720 */ 24721 void 24722 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24723 { 24724 freemsg(ill->ill_nd_lla_mp); 24725 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24726 ill->ill_nd_lla_mp = ndmp; 24727 ill->ill_nd_lla_len = addrlen; 24728 } 24729 24730 major_t IP_MAJ; 24731 #define IP "ip" 24732 24733 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24734 #define UDPDEV "/devices/pseudo/udp@0:udp" 24735 24736 /* 24737 * Issue REMOVEIF ioctls to have the loopback interfaces 24738 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24739 * the former going away when the user-level processes in the zone 24740 * are killed * and the latter are cleaned up by the stream head 24741 * str_stack_shutdown callback that undoes all I_PLINKs. 24742 */ 24743 void 24744 ip_loopback_cleanup(ip_stack_t *ipst) 24745 { 24746 int error; 24747 ldi_handle_t lh = NULL; 24748 ldi_ident_t li = NULL; 24749 int rval; 24750 cred_t *cr; 24751 struct strioctl iocb; 24752 struct lifreq lifreq; 24753 24754 IP_MAJ = ddi_name_to_major(IP); 24755 24756 #ifdef NS_DEBUG 24757 (void) printf("ip_loopback_cleanup() stackid %d\n", 24758 ipst->ips_netstack->netstack_stackid); 24759 #endif 24760 24761 bzero(&lifreq, sizeof (lifreq)); 24762 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24763 24764 error = ldi_ident_from_major(IP_MAJ, &li); 24765 if (error) { 24766 #ifdef DEBUG 24767 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24768 error); 24769 #endif 24770 return; 24771 } 24772 24773 cr = zone_get_kcred(netstackid_to_zoneid( 24774 ipst->ips_netstack->netstack_stackid)); 24775 ASSERT(cr != NULL); 24776 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24777 if (error) { 24778 #ifdef DEBUG 24779 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24780 error); 24781 #endif 24782 goto out; 24783 } 24784 iocb.ic_cmd = SIOCLIFREMOVEIF; 24785 iocb.ic_timout = 15; 24786 iocb.ic_len = sizeof (lifreq); 24787 iocb.ic_dp = (char *)&lifreq; 24788 24789 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24790 /* LINTED - statement has no consequent */ 24791 if (error) { 24792 #ifdef NS_DEBUG 24793 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24794 "UDP6 error %d\n", error); 24795 #endif 24796 } 24797 (void) ldi_close(lh, FREAD|FWRITE, cr); 24798 lh = NULL; 24799 24800 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24801 if (error) { 24802 #ifdef NS_DEBUG 24803 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24804 error); 24805 #endif 24806 goto out; 24807 } 24808 24809 iocb.ic_cmd = SIOCLIFREMOVEIF; 24810 iocb.ic_timout = 15; 24811 iocb.ic_len = sizeof (lifreq); 24812 iocb.ic_dp = (char *)&lifreq; 24813 24814 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24815 /* LINTED - statement has no consequent */ 24816 if (error) { 24817 #ifdef NS_DEBUG 24818 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24819 "UDP error %d\n", error); 24820 #endif 24821 } 24822 (void) ldi_close(lh, FREAD|FWRITE, cr); 24823 lh = NULL; 24824 24825 out: 24826 /* Close layered handles */ 24827 if (lh) 24828 (void) ldi_close(lh, FREAD|FWRITE, cr); 24829 if (li) 24830 ldi_ident_release(li); 24831 24832 crfree(cr); 24833 } 24834