1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 153 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 154 queue_t *q, mblk_t *mp, boolean_t need_up); 155 static void ipsq_delete(ipsq_t *); 156 157 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 158 boolean_t initialize); 159 static void ipif_check_bcast_ires(ipif_t *test_ipif); 160 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 161 boolean_t isv6); 162 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 163 static void ipif_delete_cache_ire(ire_t *, char *); 164 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 165 static void ipif_free(ipif_t *ipif); 166 static void ipif_free_tail(ipif_t *ipif); 167 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 168 static void ipif_multicast_down(ipif_t *ipif); 169 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 170 static void ipif_set_default(ipif_t *ipif); 171 static int ipif_set_values(queue_t *q, mblk_t *mp, 172 char *interf_name, uint_t *ppa); 173 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 174 queue_t *q); 175 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 176 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 177 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 178 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 179 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 180 181 static int ill_alloc_ppa(ill_if_t *, ill_t *); 182 static int ill_arp_off(ill_t *ill); 183 static int ill_arp_on(ill_t *ill); 184 static void ill_delete_interface_type(ill_if_t *); 185 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 186 static void ill_dl_down(ill_t *ill); 187 static void ill_down(ill_t *ill); 188 static void ill_downi(ire_t *ire, char *ill_arg); 189 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 190 static void ill_down_tail(ill_t *ill); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 /* 260 * if we go over the memory footprint limit more than once in this msec 261 * interval, we'll start pruning aggressively. 262 */ 263 int ip_min_frag_prune_time = 0; 264 265 /* 266 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 267 * and the IPsec DOI 268 */ 269 #define MAX_IPSEC_ALGS 256 270 271 #define BITSPERBYTE 8 272 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 273 274 #define IPSEC_ALG_ENABLE(algs, algid) \ 275 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 276 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 277 278 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 279 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 280 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 281 282 typedef uint8_t ipsec_capab_elem_t; 283 284 /* 285 * Per-algorithm parameters. Note that at present, only encryption 286 * algorithms have variable keysize (IKE does not provide a way to negotiate 287 * auth algorithm keysize). 288 * 289 * All sizes here are in bits. 290 */ 291 typedef struct 292 { 293 uint16_t minkeylen; 294 uint16_t maxkeylen; 295 } ipsec_capab_algparm_t; 296 297 /* 298 * Per-ill capabilities. 299 */ 300 struct ill_ipsec_capab_s { 301 ipsec_capab_elem_t *encr_hw_algs; 302 ipsec_capab_elem_t *auth_hw_algs; 303 uint32_t algs_size; /* size of _hw_algs in bytes */ 304 /* algorithm key lengths */ 305 ipsec_capab_algparm_t *encr_algparm; 306 uint32_t encr_algparm_size; 307 uint32_t encr_algparm_end; 308 }; 309 310 /* 311 * The field values are larger than strictly necessary for simple 312 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 313 */ 314 static area_t ip_area_template = { 315 AR_ENTRY_ADD, /* area_cmd */ 316 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 317 /* area_name_offset */ 318 /* area_name_length temporarily holds this structure length */ 319 sizeof (area_t), /* area_name_length */ 320 IP_ARP_PROTO_TYPE, /* area_proto */ 321 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 322 IP_ADDR_LEN, /* area_proto_addr_length */ 323 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 324 /* area_proto_mask_offset */ 325 0, /* area_flags */ 326 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 327 /* area_hw_addr_offset */ 328 /* Zero length hw_addr_length means 'use your idea of the address' */ 329 0 /* area_hw_addr_length */ 330 }; 331 332 /* 333 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 334 * support 335 */ 336 static area_t ip6_area_template = { 337 AR_ENTRY_ADD, /* area_cmd */ 338 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 339 /* area_name_offset */ 340 /* area_name_length temporarily holds this structure length */ 341 sizeof (area_t), /* area_name_length */ 342 IP_ARP_PROTO_TYPE, /* area_proto */ 343 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 344 IPV6_ADDR_LEN, /* area_proto_addr_length */ 345 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 346 /* area_proto_mask_offset */ 347 0, /* area_flags */ 348 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 349 /* area_hw_addr_offset */ 350 /* Zero length hw_addr_length means 'use your idea of the address' */ 351 0 /* area_hw_addr_length */ 352 }; 353 354 static ared_t ip_ared_template = { 355 AR_ENTRY_DELETE, 356 sizeof (ared_t) + IP_ADDR_LEN, 357 sizeof (ared_t), 358 IP_ARP_PROTO_TYPE, 359 sizeof (ared_t), 360 IP_ADDR_LEN 361 }; 362 363 static ared_t ip6_ared_template = { 364 AR_ENTRY_DELETE, 365 sizeof (ared_t) + IPV6_ADDR_LEN, 366 sizeof (ared_t), 367 IP_ARP_PROTO_TYPE, 368 sizeof (ared_t), 369 IPV6_ADDR_LEN 370 }; 371 372 /* 373 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 374 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 375 * areq is used). 376 */ 377 static areq_t ip_areq_template = { 378 AR_ENTRY_QUERY, /* cmd */ 379 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 380 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 381 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 382 sizeof (areq_t), /* target addr offset */ 383 IP_ADDR_LEN, /* target addr_length */ 384 0, /* flags */ 385 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 386 IP_ADDR_LEN, /* sender addr length */ 387 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 388 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 389 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 390 /* anything else filled in by the code */ 391 }; 392 393 static arc_t ip_aru_template = { 394 AR_INTERFACE_UP, 395 sizeof (arc_t), /* Name offset */ 396 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 397 }; 398 399 static arc_t ip_ard_template = { 400 AR_INTERFACE_DOWN, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_aron_template = { 406 AR_INTERFACE_ON, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aroff_template = { 412 AR_INTERFACE_OFF, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 418 static arma_t ip_arma_multi_template = { 419 AR_MAPPING_ADD, 420 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 421 /* Name offset */ 422 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 423 IP_ARP_PROTO_TYPE, 424 sizeof (arma_t), /* proto_addr_offset */ 425 IP_ADDR_LEN, /* proto_addr_length */ 426 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 427 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 428 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 429 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 430 IP_MAX_HW_LEN, /* hw_addr_length */ 431 0, /* hw_mapping_start */ 432 }; 433 434 static ipft_t ip_ioctl_ftbl[] = { 435 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 436 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 437 IPFT_F_NO_REPLY }, 438 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 439 IPFT_F_NO_REPLY }, 440 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 441 { 0 } 442 }; 443 444 /* Simple ICMP IP Header Template */ 445 static ipha_t icmp_ipha = { 446 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 447 }; 448 449 /* Flag descriptors for ip_ipif_report */ 450 static nv_t ipif_nv_tbl[] = { 451 { IPIF_UP, "UP" }, 452 { IPIF_BROADCAST, "BROADCAST" }, 453 { ILLF_DEBUG, "DEBUG" }, 454 { PHYI_LOOPBACK, "LOOPBACK" }, 455 { IPIF_POINTOPOINT, "POINTOPOINT" }, 456 { ILLF_NOTRAILERS, "NOTRAILERS" }, 457 { PHYI_RUNNING, "RUNNING" }, 458 { ILLF_NOARP, "NOARP" }, 459 { PHYI_PROMISC, "PROMISC" }, 460 { PHYI_ALLMULTI, "ALLMULTI" }, 461 { PHYI_INTELLIGENT, "INTELLIGENT" }, 462 { ILLF_MULTICAST, "MULTICAST" }, 463 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 464 { IPIF_UNNUMBERED, "UNNUMBERED" }, 465 { IPIF_DHCPRUNNING, "DHCP" }, 466 { IPIF_PRIVATE, "PRIVATE" }, 467 { IPIF_NOXMIT, "NOXMIT" }, 468 { IPIF_NOLOCAL, "NOLOCAL" }, 469 { IPIF_DEPRECATED, "DEPRECATED" }, 470 { IPIF_PREFERRED, "PREFERRED" }, 471 { IPIF_TEMPORARY, "TEMPORARY" }, 472 { IPIF_ADDRCONF, "ADDRCONF" }, 473 { PHYI_VIRTUAL, "VIRTUAL" }, 474 { ILLF_ROUTER, "ROUTER" }, 475 { ILLF_NONUD, "NONUD" }, 476 { IPIF_ANYCAST, "ANYCAST" }, 477 { ILLF_NORTEXCH, "NORTEXCH" }, 478 { ILLF_IPV4, "IPV4" }, 479 { ILLF_IPV6, "IPV6" }, 480 { IPIF_MIPRUNNING, "MIP" }, 481 { IPIF_NOFAILOVER, "NOFAILOVER" }, 482 { PHYI_FAILED, "FAILED" }, 483 { PHYI_STANDBY, "STANDBY" }, 484 { PHYI_INACTIVE, "INACTIVE" }, 485 { PHYI_OFFLINE, "OFFLINE" }, 486 }; 487 488 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 489 490 static ip_m_t ip_m_tbl[] = { 491 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 492 ip_ether_v6intfid }, 493 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_nodef_v6intfid }, 495 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_nodef_v6intfid }, 497 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 502 ip_ib_v6intfid }, 503 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 504 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_nodef_v6intfid } 506 }; 507 508 static ill_t ill_null; /* Empty ILL for init. */ 509 char ipif_loopback_name[] = "lo0"; 510 static char *ipv4_forward_suffix = ":ip_forwarding"; 511 static char *ipv6_forward_suffix = ":ip6_forwarding"; 512 static sin6_t sin6_null; /* Zero address for quick clears */ 513 static sin_t sin_null; /* Zero address for quick clears */ 514 515 /* When set search for unused ipif_seqid */ 516 static ipif_t ipif_zero; 517 518 /* 519 * ppa arena is created after these many 520 * interfaces have been plumbed. 521 */ 522 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 523 524 /* 525 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 526 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 527 * set through platform specific code (Niagara/Ontario). 528 */ 529 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 530 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 531 532 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 533 534 static uint_t 535 ipif_rand(ip_stack_t *ipst) 536 { 537 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 538 12345; 539 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 540 } 541 542 /* 543 * Allocate per-interface mibs. 544 * Returns true if ok. False otherwise. 545 * ipsq may not yet be allocated (loopback case ). 546 */ 547 static boolean_t 548 ill_allocate_mibs(ill_t *ill) 549 { 550 /* Already allocated? */ 551 if (ill->ill_ip_mib != NULL) { 552 if (ill->ill_isv6) 553 ASSERT(ill->ill_icmp6_mib != NULL); 554 return (B_TRUE); 555 } 556 557 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 558 KM_NOSLEEP); 559 if (ill->ill_ip_mib == NULL) { 560 return (B_FALSE); 561 } 562 563 /* Setup static information */ 564 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 565 sizeof (mib2_ipIfStatsEntry_t)); 566 if (ill->ill_isv6) { 567 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 568 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 569 sizeof (mib2_ipv6AddrEntry_t)); 570 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 571 sizeof (mib2_ipv6RouteEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 573 sizeof (mib2_ipv6NetToMediaEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 575 sizeof (ipv6_member_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 577 sizeof (ipv6_grpsrc_t)); 578 } else { 579 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 580 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 581 sizeof (mib2_ipAddrEntry_t)); 582 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 583 sizeof (mib2_ipRouteEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 585 sizeof (mib2_ipNetToMediaEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 587 sizeof (ip_member_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 589 sizeof (ip_grpsrc_t)); 590 591 /* 592 * For a v4 ill, we are done at this point, because per ill 593 * icmp mibs are only used for v6. 594 */ 595 return (B_TRUE); 596 } 597 598 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 599 KM_NOSLEEP); 600 if (ill->ill_icmp6_mib == NULL) { 601 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 602 ill->ill_ip_mib = NULL; 603 return (B_FALSE); 604 } 605 /* static icmp info */ 606 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 607 sizeof (mib2_ipv6IfIcmpEntry_t); 608 /* 609 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 mblk_t * 674 ipif_area_alloc(ipif_t *ipif) 675 { 676 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 677 (char *)&ipif->ipif_lcl_addr)); 678 } 679 680 mblk_t * 681 ipif_ared_alloc(ipif_t *ipif) 682 { 683 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 684 (char *)&ipif->ipif_lcl_addr)); 685 } 686 687 mblk_t * 688 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 689 { 690 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 691 (char *)&addr)); 692 } 693 694 /* 695 * Completely vaporize a lower level tap and all associated interfaces. 696 * ill_delete is called only out of ip_close when the device control 697 * stream is being closed. 698 */ 699 void 700 ill_delete(ill_t *ill) 701 { 702 ipif_t *ipif; 703 ill_t *prev_ill; 704 ip_stack_t *ipst = ill->ill_ipst; 705 706 /* 707 * ill_delete may be forcibly entering the ipsq. The previous 708 * ioctl may not have completed and may need to be aborted. 709 * ipsq_flush takes care of it. If we don't need to enter the 710 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 711 * ill_delete_tail is sufficient. 712 */ 713 ipsq_flush(ill); 714 715 /* 716 * Nuke all interfaces. ipif_free will take down the interface, 717 * remove it from the list, and free the data structure. 718 * Walk down the ipif list and remove the logical interfaces 719 * first before removing the main ipif. We can't unplumb 720 * zeroth interface first in the case of IPv6 as reset_conn_ill 721 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 722 * POINTOPOINT. 723 * 724 * If ill_ipif was not properly initialized (i.e low on memory), 725 * then no interfaces to clean up. In this case just clean up the 726 * ill. 727 */ 728 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 729 ipif_free(ipif); 730 731 /* 732 * Used only by ill_arp_on and ill_arp_off, which are writers. 733 * So nobody can be using this mp now. Free the mp allocated for 734 * honoring ILLF_NOARP 735 */ 736 freemsg(ill->ill_arp_on_mp); 737 ill->ill_arp_on_mp = NULL; 738 739 /* Clean up msgs on pending upcalls for mrouted */ 740 reset_mrt_ill(ill); 741 742 /* 743 * ipif_free -> reset_conn_ipif will remove all multicast 744 * references for IPv4. For IPv6, we need to do it here as 745 * it points only at ills. 746 */ 747 reset_conn_ill(ill); 748 749 /* 750 * ill_down will arrange to blow off any IRE's dependent on this 751 * ILL, and shut down fragmentation reassembly. 752 */ 753 ill_down(ill); 754 755 /* Let SCTP know, so that it can remove this from its list. */ 756 sctp_update_ill(ill, SCTP_ILL_REMOVE); 757 758 /* 759 * If an address on this ILL is being used as a source address then 760 * clear out the pointers in other ILLs that point to this ILL. 761 */ 762 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 763 if (ill->ill_usesrc_grp_next != NULL) { 764 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 765 ill_disband_usesrc_group(ill); 766 } else { /* consumer of the usesrc ILL */ 767 prev_ill = ill_prev_usesrc(ill); 768 prev_ill->ill_usesrc_grp_next = 769 ill->ill_usesrc_grp_next; 770 } 771 } 772 rw_exit(&ipst->ips_ill_g_usesrc_lock); 773 } 774 775 static void 776 ipif_non_duplicate(ipif_t *ipif) 777 { 778 ill_t *ill = ipif->ipif_ill; 779 mutex_enter(&ill->ill_lock); 780 if (ipif->ipif_flags & IPIF_DUPLICATE) { 781 ipif->ipif_flags &= ~IPIF_DUPLICATE; 782 ASSERT(ill->ill_ipif_dup_count > 0); 783 ill->ill_ipif_dup_count--; 784 } 785 mutex_exit(&ill->ill_lock); 786 } 787 788 /* 789 * ill_delete_tail is called from ip_modclose after all references 790 * to the closing ill are gone. The wait is done in ip_modclose 791 */ 792 void 793 ill_delete_tail(ill_t *ill) 794 { 795 mblk_t **mpp; 796 ipif_t *ipif; 797 ip_stack_t *ipst = ill->ill_ipst; 798 799 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 800 ipif_non_duplicate(ipif); 801 ipif_down_tail(ipif); 802 } 803 804 ASSERT(ill->ill_ipif_dup_count == 0 && 805 ill->ill_arp_down_mp == NULL && 806 ill->ill_arp_del_mapping_mp == NULL); 807 808 /* 809 * If polling capability is enabled (which signifies direct 810 * upcall into IP and driver has ill saved as a handle), 811 * we need to make sure that unbind has completed before we 812 * let the ill disappear and driver no longer has any reference 813 * to this ill. 814 */ 815 mutex_enter(&ill->ill_lock); 816 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 817 cv_wait(&ill->ill_cv, &ill->ill_lock); 818 mutex_exit(&ill->ill_lock); 819 820 /* 821 * Clean up polling and soft ring capabilities 822 */ 823 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 824 ill_capability_dls_disable(ill); 825 826 if (ill->ill_net_type != IRE_LOOPBACK) 827 qprocsoff(ill->ill_rq); 828 829 /* 830 * We do an ipsq_flush once again now. New messages could have 831 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 832 * could also have landed up if an ioctl thread had looked up 833 * the ill before we set the ILL_CONDEMNED flag, but not yet 834 * enqueued the ioctl when we did the ipsq_flush last time. 835 */ 836 ipsq_flush(ill); 837 838 /* 839 * Free capabilities. 840 */ 841 if (ill->ill_ipsec_capab_ah != NULL) { 842 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 843 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 844 ill->ill_ipsec_capab_ah = NULL; 845 } 846 847 if (ill->ill_ipsec_capab_esp != NULL) { 848 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 849 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 850 ill->ill_ipsec_capab_esp = NULL; 851 } 852 853 if (ill->ill_mdt_capab != NULL) { 854 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 855 ill->ill_mdt_capab = NULL; 856 } 857 858 if (ill->ill_hcksum_capab != NULL) { 859 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 860 ill->ill_hcksum_capab = NULL; 861 } 862 863 if (ill->ill_zerocopy_capab != NULL) { 864 kmem_free(ill->ill_zerocopy_capab, 865 sizeof (ill_zerocopy_capab_t)); 866 ill->ill_zerocopy_capab = NULL; 867 } 868 869 if (ill->ill_lso_capab != NULL) { 870 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 871 ill->ill_lso_capab = NULL; 872 } 873 874 if (ill->ill_dls_capab != NULL) { 875 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 876 ill->ill_dls_capab->ill_unbind_conn = NULL; 877 kmem_free(ill->ill_dls_capab, 878 sizeof (ill_dls_capab_t) + 879 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 880 ill->ill_dls_capab = NULL; 881 } 882 883 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 884 885 while (ill->ill_ipif != NULL) 886 ipif_free_tail(ill->ill_ipif); 887 888 ill_down_tail(ill); 889 890 /* 891 * We have removed all references to ilm from conn and the ones joined 892 * within the kernel. 893 * 894 * We don't walk conns, mrts and ires because 895 * 896 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 897 * 2) ill_down ->ill_downi walks all the ires and cleans up 898 * ill references. 899 */ 900 ASSERT(ilm_walk_ill(ill) == 0); 901 /* 902 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 903 * could free the phyint. No more reference to the phyint after this 904 * point. 905 */ 906 (void) ill_glist_delete(ill); 907 908 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 909 if (ill->ill_ndd_name != NULL) 910 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 911 rw_exit(&ipst->ips_ip_g_nd_lock); 912 913 914 if (ill->ill_frag_ptr != NULL) { 915 uint_t count; 916 917 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 918 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 919 } 920 mi_free(ill->ill_frag_ptr); 921 ill->ill_frag_ptr = NULL; 922 ill->ill_frag_hash_tbl = NULL; 923 } 924 925 freemsg(ill->ill_nd_lla_mp); 926 /* Free all retained control messages. */ 927 mpp = &ill->ill_first_mp_to_free; 928 do { 929 while (mpp[0]) { 930 mblk_t *mp; 931 mblk_t *mp1; 932 933 mp = mpp[0]; 934 mpp[0] = mp->b_next; 935 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 936 mp1->b_next = NULL; 937 mp1->b_prev = NULL; 938 } 939 freemsg(mp); 940 } 941 } while (mpp++ != &ill->ill_last_mp_to_free); 942 943 ill_free_mib(ill); 944 /* Drop refcnt here */ 945 netstack_rele(ill->ill_ipst->ips_netstack); 946 ill->ill_ipst = NULL; 947 948 ILL_TRACE_CLEANUP(ill); 949 } 950 951 static void 952 ill_free_mib(ill_t *ill) 953 { 954 ip_stack_t *ipst = ill->ill_ipst; 955 956 /* 957 * MIB statistics must not be lost, so when an interface 958 * goes away the counter values will be added to the global 959 * MIBs. 960 */ 961 if (ill->ill_ip_mib != NULL) { 962 if (ill->ill_isv6) { 963 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 964 ill->ill_ip_mib); 965 } else { 966 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 967 ill->ill_ip_mib); 968 } 969 970 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 971 ill->ill_ip_mib = NULL; 972 } 973 if (ill->ill_icmp6_mib != NULL) { 974 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 975 ill->ill_icmp6_mib); 976 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 977 ill->ill_icmp6_mib = NULL; 978 } 979 } 980 981 /* 982 * Concatenate together a physical address and a sap. 983 * 984 * Sap_lengths are interpreted as follows: 985 * sap_length == 0 ==> no sap 986 * sap_length > 0 ==> sap is at the head of the dlpi address 987 * sap_length < 0 ==> sap is at the tail of the dlpi address 988 */ 989 static void 990 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 991 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 992 { 993 uint16_t sap_addr = (uint16_t)sap_src; 994 995 if (sap_length == 0) { 996 if (phys_src == NULL) 997 bzero(dst, phys_length); 998 else 999 bcopy(phys_src, dst, phys_length); 1000 } else if (sap_length < 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1006 } else { 1007 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1008 if (phys_src == NULL) 1009 bzero((char *)dst + sap_length, phys_length); 1010 else 1011 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1012 } 1013 } 1014 1015 /* 1016 * Generate a dl_unitdata_req mblk for the device and address given. 1017 * addr_length is the length of the physical portion of the address. 1018 * If addr is NULL include an all zero address of the specified length. 1019 * TRUE? In any case, addr_length is taken to be the entire length of the 1020 * dlpi address, including the absolute value of sap_length. 1021 */ 1022 mblk_t * 1023 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1024 t_scalar_t sap_length) 1025 { 1026 dl_unitdata_req_t *dlur; 1027 mblk_t *mp; 1028 t_scalar_t abs_sap_length; /* absolute value */ 1029 1030 abs_sap_length = ABS(sap_length); 1031 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1032 DL_UNITDATA_REQ); 1033 if (mp == NULL) 1034 return (NULL); 1035 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1036 /* HACK: accomodate incompatible DLPI drivers */ 1037 if (addr_length == 8) 1038 addr_length = 6; 1039 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1040 dlur->dl_dest_addr_offset = sizeof (*dlur); 1041 dlur->dl_priority.dl_min = 0; 1042 dlur->dl_priority.dl_max = 0; 1043 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1044 (uchar_t *)&dlur[1]); 1045 return (mp); 1046 } 1047 1048 /* 1049 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1050 * Return an error if we already have 1 or more ioctls in progress. 1051 * This is used only for non-exclusive ioctls. Currently this is used 1052 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1053 * and thus need to use ipsq_pending_mp_add. 1054 */ 1055 boolean_t 1056 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1057 { 1058 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1059 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1060 /* 1061 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1062 */ 1063 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1064 (add_mp->b_datap->db_type == M_IOCTL)); 1065 1066 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1067 /* 1068 * Return error if the conn has started closing. The conn 1069 * could have finished cleaning up the pending mp list, 1070 * If so we should not add another mp to the list negating 1071 * the cleanup. 1072 */ 1073 if (connp->conn_state_flags & CONN_CLOSING) 1074 return (B_FALSE); 1075 /* 1076 * Add the pending mp to the head of the list, chained by b_next. 1077 * Note down the conn on which the ioctl request came, in b_prev. 1078 * This will be used to later get the conn, when we get a response 1079 * on the ill queue, from some other module (typically arp) 1080 */ 1081 add_mp->b_next = (void *)ill->ill_pending_mp; 1082 add_mp->b_queue = CONNP_TO_WQ(connp); 1083 ill->ill_pending_mp = add_mp; 1084 if (connp != NULL) 1085 connp->conn_oper_pending_ill = ill; 1086 return (B_TRUE); 1087 } 1088 1089 /* 1090 * Retrieve the ill_pending_mp and return it. We have to walk the list 1091 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1092 */ 1093 mblk_t * 1094 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1095 { 1096 mblk_t *prev = NULL; 1097 mblk_t *curr = NULL; 1098 uint_t id; 1099 conn_t *connp; 1100 1101 /* 1102 * When the conn closes, conn_ioctl_cleanup needs to clean 1103 * up the pending mp, but it does not know the ioc_id and 1104 * passes in a zero for it. 1105 */ 1106 mutex_enter(&ill->ill_lock); 1107 if (ioc_id != 0) 1108 *connpp = NULL; 1109 1110 /* Search the list for the appropriate ioctl based on ioc_id */ 1111 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1112 prev = curr, curr = curr->b_next) { 1113 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1114 connp = Q_TO_CONN(curr->b_queue); 1115 /* Match based on the ioc_id or based on the conn */ 1116 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1117 break; 1118 } 1119 1120 if (curr != NULL) { 1121 /* Unlink the mblk from the pending mp list */ 1122 if (prev != NULL) { 1123 prev->b_next = curr->b_next; 1124 } else { 1125 ASSERT(ill->ill_pending_mp == curr); 1126 ill->ill_pending_mp = curr->b_next; 1127 } 1128 1129 /* 1130 * conn refcnt must have been bumped up at the start of 1131 * the ioctl. So we can safely access the conn. 1132 */ 1133 ASSERT(CONN_Q(curr->b_queue)); 1134 *connpp = Q_TO_CONN(curr->b_queue); 1135 curr->b_next = NULL; 1136 curr->b_queue = NULL; 1137 } 1138 1139 mutex_exit(&ill->ill_lock); 1140 1141 return (curr); 1142 } 1143 1144 /* 1145 * Add the pending mp to the list. There can be only 1 pending mp 1146 * in the list. Any exclusive ioctl that needs to wait for a response 1147 * from another module or driver needs to use this function to set 1148 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1149 * the other module/driver. This is also used while waiting for the 1150 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1151 */ 1152 boolean_t 1153 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1154 int waitfor) 1155 { 1156 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1157 1158 ASSERT(IAM_WRITER_IPIF(ipif)); 1159 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1160 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1161 ASSERT(ipsq->ipsq_pending_mp == NULL); 1162 /* 1163 * The caller may be using a different ipif than the one passed into 1164 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1165 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1166 * that `ipsq_current_ipif == ipif'. 1167 */ 1168 ASSERT(ipsq->ipsq_current_ipif != NULL); 1169 1170 /* 1171 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1172 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1173 */ 1174 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1175 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1176 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1177 1178 if (connp != NULL) { 1179 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1180 /* 1181 * Return error if the conn has started closing. The conn 1182 * could have finished cleaning up the pending mp list, 1183 * If so we should not add another mp to the list negating 1184 * the cleanup. 1185 */ 1186 if (connp->conn_state_flags & CONN_CLOSING) 1187 return (B_FALSE); 1188 } 1189 mutex_enter(&ipsq->ipsq_lock); 1190 ipsq->ipsq_pending_ipif = ipif; 1191 /* 1192 * Note down the queue in b_queue. This will be returned by 1193 * ipsq_pending_mp_get. Caller will then use these values to restart 1194 * the processing 1195 */ 1196 add_mp->b_next = NULL; 1197 add_mp->b_queue = q; 1198 ipsq->ipsq_pending_mp = add_mp; 1199 ipsq->ipsq_waitfor = waitfor; 1200 1201 if (connp != NULL) 1202 connp->conn_oper_pending_ill = ipif->ipif_ill; 1203 mutex_exit(&ipsq->ipsq_lock); 1204 return (B_TRUE); 1205 } 1206 1207 /* 1208 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1209 * queued in the list. 1210 */ 1211 mblk_t * 1212 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1213 { 1214 mblk_t *curr = NULL; 1215 1216 mutex_enter(&ipsq->ipsq_lock); 1217 *connpp = NULL; 1218 if (ipsq->ipsq_pending_mp == NULL) { 1219 mutex_exit(&ipsq->ipsq_lock); 1220 return (NULL); 1221 } 1222 1223 /* There can be only 1 such excl message */ 1224 curr = ipsq->ipsq_pending_mp; 1225 ASSERT(curr != NULL && curr->b_next == NULL); 1226 ipsq->ipsq_pending_ipif = NULL; 1227 ipsq->ipsq_pending_mp = NULL; 1228 ipsq->ipsq_waitfor = 0; 1229 mutex_exit(&ipsq->ipsq_lock); 1230 1231 if (CONN_Q(curr->b_queue)) { 1232 /* 1233 * This mp did a refhold on the conn, at the start of the ioctl. 1234 * So we can safely return a pointer to the conn to the caller. 1235 */ 1236 *connpp = Q_TO_CONN(curr->b_queue); 1237 } else { 1238 *connpp = NULL; 1239 } 1240 curr->b_next = NULL; 1241 curr->b_prev = NULL; 1242 return (curr); 1243 } 1244 1245 /* 1246 * Cleanup the ioctl mp queued in ipsq_pending_mp 1247 * - Called in the ill_delete path 1248 * - Called in the M_ERROR or M_HANGUP path on the ill. 1249 * - Called in the conn close path. 1250 */ 1251 boolean_t 1252 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1253 { 1254 mblk_t *mp; 1255 ipsq_t *ipsq; 1256 queue_t *q; 1257 ipif_t *ipif; 1258 1259 ASSERT(IAM_WRITER_ILL(ill)); 1260 ipsq = ill->ill_phyint->phyint_ipsq; 1261 mutex_enter(&ipsq->ipsq_lock); 1262 /* 1263 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1264 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1265 * even if it is meant for another ill, since we have to enqueue 1266 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1267 * If connp is non-null we are called from the conn close path. 1268 */ 1269 mp = ipsq->ipsq_pending_mp; 1270 if (mp == NULL || (connp != NULL && 1271 mp->b_queue != CONNP_TO_WQ(connp))) { 1272 mutex_exit(&ipsq->ipsq_lock); 1273 return (B_FALSE); 1274 } 1275 /* Now remove from the ipsq_pending_mp */ 1276 ipsq->ipsq_pending_mp = NULL; 1277 q = mp->b_queue; 1278 mp->b_next = NULL; 1279 mp->b_prev = NULL; 1280 mp->b_queue = NULL; 1281 1282 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1283 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1284 if (ill->ill_move_in_progress) { 1285 ILL_CLEAR_MOVE(ill); 1286 } else if (ill->ill_up_ipifs) { 1287 ill_group_cleanup(ill); 1288 } 1289 1290 ipif = ipsq->ipsq_pending_ipif; 1291 ipsq->ipsq_pending_ipif = NULL; 1292 ipsq->ipsq_waitfor = 0; 1293 ipsq->ipsq_current_ipif = NULL; 1294 ipsq->ipsq_current_ioctl = 0; 1295 mutex_exit(&ipsq->ipsq_lock); 1296 1297 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1298 if (connp == NULL) { 1299 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1300 } else { 1301 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1302 mutex_enter(&ipif->ipif_ill->ill_lock); 1303 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1304 mutex_exit(&ipif->ipif_ill->ill_lock); 1305 } 1306 } else { 1307 /* 1308 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1309 * be just inet_freemsg. we have to restart it 1310 * otherwise the thread will be stuck. 1311 */ 1312 inet_freemsg(mp); 1313 } 1314 return (B_TRUE); 1315 } 1316 1317 /* 1318 * The ill is closing. Cleanup all the pending mps. Called exclusively 1319 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1320 * knows this ill, and hence nobody can add an mp to this list 1321 */ 1322 static void 1323 ill_pending_mp_cleanup(ill_t *ill) 1324 { 1325 mblk_t *mp; 1326 queue_t *q; 1327 1328 ASSERT(IAM_WRITER_ILL(ill)); 1329 1330 mutex_enter(&ill->ill_lock); 1331 /* 1332 * Every mp on the pending mp list originating from an ioctl 1333 * added 1 to the conn refcnt, at the start of the ioctl. 1334 * So bump it down now. See comments in ip_wput_nondata() 1335 */ 1336 while (ill->ill_pending_mp != NULL) { 1337 mp = ill->ill_pending_mp; 1338 ill->ill_pending_mp = mp->b_next; 1339 mutex_exit(&ill->ill_lock); 1340 1341 q = mp->b_queue; 1342 ASSERT(CONN_Q(q)); 1343 mp->b_next = NULL; 1344 mp->b_prev = NULL; 1345 mp->b_queue = NULL; 1346 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1347 mutex_enter(&ill->ill_lock); 1348 } 1349 ill->ill_pending_ipif = NULL; 1350 1351 mutex_exit(&ill->ill_lock); 1352 } 1353 1354 /* 1355 * Called in the conn close path and ill delete path 1356 */ 1357 static void 1358 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1359 { 1360 ipsq_t *ipsq; 1361 mblk_t *prev; 1362 mblk_t *curr; 1363 mblk_t *next; 1364 queue_t *q; 1365 mblk_t *tmp_list = NULL; 1366 1367 ASSERT(IAM_WRITER_ILL(ill)); 1368 if (connp != NULL) 1369 q = CONNP_TO_WQ(connp); 1370 else 1371 q = ill->ill_wq; 1372 1373 ipsq = ill->ill_phyint->phyint_ipsq; 1374 /* 1375 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1376 * In the case of ioctl from a conn, there can be only 1 mp 1377 * queued on the ipsq. If an ill is being unplumbed, only messages 1378 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1379 * ioctls meant for this ill form conn's are not flushed. They will 1380 * be processed during ipsq_exit and will not find the ill and will 1381 * return error. 1382 */ 1383 mutex_enter(&ipsq->ipsq_lock); 1384 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1385 curr = next) { 1386 next = curr->b_next; 1387 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1388 /* Unlink the mblk from the pending mp list */ 1389 if (prev != NULL) { 1390 prev->b_next = curr->b_next; 1391 } else { 1392 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1393 ipsq->ipsq_xopq_mphead = curr->b_next; 1394 } 1395 if (ipsq->ipsq_xopq_mptail == curr) 1396 ipsq->ipsq_xopq_mptail = prev; 1397 /* 1398 * Create a temporary list and release the ipsq lock 1399 * New elements are added to the head of the tmp_list 1400 */ 1401 curr->b_next = tmp_list; 1402 tmp_list = curr; 1403 } else { 1404 prev = curr; 1405 } 1406 } 1407 mutex_exit(&ipsq->ipsq_lock); 1408 1409 while (tmp_list != NULL) { 1410 curr = tmp_list; 1411 tmp_list = curr->b_next; 1412 curr->b_next = NULL; 1413 curr->b_prev = NULL; 1414 curr->b_queue = NULL; 1415 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1416 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1417 CONN_CLOSE : NO_COPYOUT, NULL); 1418 } else { 1419 /* 1420 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1421 * this can't be just inet_freemsg. we have to 1422 * restart it otherwise the thread will be stuck. 1423 */ 1424 inet_freemsg(curr); 1425 } 1426 } 1427 } 1428 1429 /* 1430 * This conn has started closing. Cleanup any pending ioctl from this conn. 1431 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1432 */ 1433 void 1434 conn_ioctl_cleanup(conn_t *connp) 1435 { 1436 mblk_t *curr; 1437 ipsq_t *ipsq; 1438 ill_t *ill; 1439 boolean_t refheld; 1440 1441 /* 1442 * Is any exclusive ioctl pending ? If so clean it up. If the 1443 * ioctl has not yet started, the mp is pending in the list headed by 1444 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1445 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1446 * is currently executing now the mp is not queued anywhere but 1447 * conn_oper_pending_ill is null. The conn close will wait 1448 * till the conn_ref drops to zero. 1449 */ 1450 mutex_enter(&connp->conn_lock); 1451 ill = connp->conn_oper_pending_ill; 1452 if (ill == NULL) { 1453 mutex_exit(&connp->conn_lock); 1454 return; 1455 } 1456 1457 curr = ill_pending_mp_get(ill, &connp, 0); 1458 if (curr != NULL) { 1459 mutex_exit(&connp->conn_lock); 1460 CONN_DEC_REF(connp); 1461 inet_freemsg(curr); 1462 return; 1463 } 1464 /* 1465 * We may not be able to refhold the ill if the ill/ipif 1466 * is changing. But we need to make sure that the ill will 1467 * not vanish. So we just bump up the ill_waiter count. 1468 */ 1469 refheld = ill_waiter_inc(ill); 1470 mutex_exit(&connp->conn_lock); 1471 if (refheld) { 1472 if (ipsq_enter(ill, B_TRUE)) { 1473 ill_waiter_dcr(ill); 1474 /* 1475 * Check whether this ioctl has started and is 1476 * pending now in ipsq_pending_mp. If it is not 1477 * found there then check whether this ioctl has 1478 * not even started and is in the ipsq_xopq list. 1479 */ 1480 if (!ipsq_pending_mp_cleanup(ill, connp)) 1481 ipsq_xopq_mp_cleanup(ill, connp); 1482 ipsq = ill->ill_phyint->phyint_ipsq; 1483 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1484 return; 1485 } 1486 } 1487 1488 /* 1489 * The ill is also closing and we could not bump up the 1490 * ill_waiter_count or we could not enter the ipsq. Leave 1491 * the cleanup to ill_delete 1492 */ 1493 mutex_enter(&connp->conn_lock); 1494 while (connp->conn_oper_pending_ill != NULL) 1495 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1496 mutex_exit(&connp->conn_lock); 1497 if (refheld) 1498 ill_waiter_dcr(ill); 1499 } 1500 1501 /* 1502 * ipcl_walk function for cleaning up conn_*_ill fields. 1503 */ 1504 static void 1505 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1506 { 1507 ill_t *ill = (ill_t *)arg; 1508 ire_t *ire; 1509 1510 mutex_enter(&connp->conn_lock); 1511 if (connp->conn_multicast_ill == ill) { 1512 /* Revert to late binding */ 1513 connp->conn_multicast_ill = NULL; 1514 connp->conn_orig_multicast_ifindex = 0; 1515 } 1516 if (connp->conn_incoming_ill == ill) 1517 connp->conn_incoming_ill = NULL; 1518 if (connp->conn_outgoing_ill == ill) 1519 connp->conn_outgoing_ill = NULL; 1520 if (connp->conn_outgoing_pill == ill) 1521 connp->conn_outgoing_pill = NULL; 1522 if (connp->conn_nofailover_ill == ill) 1523 connp->conn_nofailover_ill = NULL; 1524 if (connp->conn_xmit_if_ill == ill) 1525 connp->conn_xmit_if_ill = NULL; 1526 if (connp->conn_ire_cache != NULL) { 1527 ire = connp->conn_ire_cache; 1528 /* 1529 * ip_newroute creates IRE_CACHE with ire_stq coming from 1530 * interface X and ipif coming from interface Y, if interface 1531 * X and Y are part of the same IPMPgroup. Thus whenever 1532 * interface X goes down, remove all references to it by 1533 * checking both on ire_ipif and ire_stq. 1534 */ 1535 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1536 (ire->ire_type == IRE_CACHE && 1537 ire->ire_stq == ill->ill_wq)) { 1538 connp->conn_ire_cache = NULL; 1539 mutex_exit(&connp->conn_lock); 1540 ire_refrele_notr(ire); 1541 return; 1542 } 1543 } 1544 mutex_exit(&connp->conn_lock); 1545 1546 } 1547 1548 /* ARGSUSED */ 1549 void 1550 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1551 { 1552 ill_t *ill = q->q_ptr; 1553 ipif_t *ipif; 1554 1555 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1556 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1557 ipif_non_duplicate(ipif); 1558 ipif_down_tail(ipif); 1559 } 1560 ill_down_tail(ill); 1561 freemsg(mp); 1562 ipsq_current_finish(ipsq); 1563 } 1564 1565 /* 1566 * ill_down_start is called when we want to down this ill and bring it up again 1567 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1568 * all interfaces, but don't tear down any plumbing. 1569 */ 1570 boolean_t 1571 ill_down_start(queue_t *q, mblk_t *mp) 1572 { 1573 ill_t *ill = q->q_ptr; 1574 ipif_t *ipif; 1575 1576 ASSERT(IAM_WRITER_ILL(ill)); 1577 1578 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1579 (void) ipif_down(ipif, NULL, NULL); 1580 1581 ill_down(ill); 1582 1583 (void) ipsq_pending_mp_cleanup(ill, NULL); 1584 1585 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1586 1587 /* 1588 * Atomically test and add the pending mp if references are active. 1589 */ 1590 mutex_enter(&ill->ill_lock); 1591 if (!ill_is_quiescent(ill)) { 1592 /* call cannot fail since `conn_t *' argument is NULL */ 1593 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1594 mp, ILL_DOWN); 1595 mutex_exit(&ill->ill_lock); 1596 return (B_FALSE); 1597 } 1598 mutex_exit(&ill->ill_lock); 1599 return (B_TRUE); 1600 } 1601 1602 static void 1603 ill_down(ill_t *ill) 1604 { 1605 ip_stack_t *ipst = ill->ill_ipst; 1606 1607 /* Blow off any IREs dependent on this ILL. */ 1608 ire_walk(ill_downi, (char *)ill, ipst); 1609 1610 mutex_enter(&ipst->ips_ire_mrtun_lock); 1611 if (ipst->ips_ire_mrtun_count != 0) { 1612 mutex_exit(&ipst->ips_ire_mrtun_lock); 1613 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1614 (char *)ill, NULL, ipst); 1615 } else { 1616 mutex_exit(&ipst->ips_ire_mrtun_lock); 1617 } 1618 1619 /* 1620 * If any interface based forwarding table exists 1621 * Blow off the ires there dependent on this ill 1622 */ 1623 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1624 if (ipst->ips_ire_srcif_table_count > 0) { 1625 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1626 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1627 ipst); 1628 } else { 1629 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1630 } 1631 1632 /* Remove any conn_*_ill depending on this ill */ 1633 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1634 1635 if (ill->ill_group != NULL) { 1636 illgrp_delete(ill); 1637 } 1638 } 1639 1640 static void 1641 ill_down_tail(ill_t *ill) 1642 { 1643 int i; 1644 1645 /* Destroy ill_srcif_table if it exists */ 1646 /* Lock not reqd really because nobody should be able to access */ 1647 mutex_enter(&ill->ill_lock); 1648 if (ill->ill_srcif_table != NULL) { 1649 ill->ill_srcif_refcnt = 0; 1650 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1651 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1652 } 1653 kmem_free(ill->ill_srcif_table, 1654 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1655 ill->ill_srcif_table = NULL; 1656 ill->ill_srcif_refcnt = 0; 1657 ill->ill_mrtun_refcnt = 0; 1658 } 1659 mutex_exit(&ill->ill_lock); 1660 } 1661 1662 /* 1663 * ire_walk routine used to delete every IRE that depends on queues 1664 * associated with 'ill'. (Always called as writer.) 1665 */ 1666 static void 1667 ill_downi(ire_t *ire, char *ill_arg) 1668 { 1669 ill_t *ill = (ill_t *)ill_arg; 1670 1671 /* 1672 * ip_newroute creates IRE_CACHE with ire_stq coming from 1673 * interface X and ipif coming from interface Y, if interface 1674 * X and Y are part of the same IPMP group. Thus whenever interface 1675 * X goes down, remove all references to it by checking both 1676 * on ire_ipif and ire_stq. 1677 */ 1678 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1679 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1680 ire_delete(ire); 1681 } 1682 } 1683 1684 /* 1685 * A seperate routine for deleting revtun and srcif based routes 1686 * are needed because the ires only deleted when the interface 1687 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1688 * we want to keep mobile IP specific code separate. 1689 */ 1690 static void 1691 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1692 { 1693 ill_t *ill = (ill_t *)ill_arg; 1694 1695 ASSERT(ire->ire_in_ill != NULL); 1696 1697 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1698 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1699 ire_delete(ire); 1700 } 1701 } 1702 1703 /* 1704 * Remove ire/nce from the fastpath list. 1705 */ 1706 void 1707 ill_fastpath_nack(ill_t *ill) 1708 { 1709 nce_fastpath_list_dispatch(ill, NULL, NULL); 1710 } 1711 1712 /* Consume an M_IOCACK of the fastpath probe. */ 1713 void 1714 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1715 { 1716 mblk_t *mp1 = mp; 1717 1718 /* 1719 * If this was the first attempt turn on the fastpath probing. 1720 */ 1721 mutex_enter(&ill->ill_lock); 1722 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1723 ill->ill_dlpi_fastpath_state = IDS_OK; 1724 mutex_exit(&ill->ill_lock); 1725 1726 /* Free the M_IOCACK mblk, hold on to the data */ 1727 mp = mp->b_cont; 1728 freeb(mp1); 1729 if (mp == NULL) 1730 return; 1731 if (mp->b_cont != NULL) { 1732 /* 1733 * Update all IRE's or NCE's that are waiting for 1734 * fastpath update. 1735 */ 1736 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1737 mp1 = mp->b_cont; 1738 freeb(mp); 1739 mp = mp1; 1740 } else { 1741 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1742 } 1743 1744 freeb(mp); 1745 } 1746 1747 /* 1748 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1749 * The data portion of the request is a dl_unitdata_req_t template for 1750 * what we would send downstream in the absence of a fastpath confirmation. 1751 */ 1752 int 1753 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1754 { 1755 struct iocblk *ioc; 1756 mblk_t *mp; 1757 1758 if (dlur_mp == NULL) 1759 return (EINVAL); 1760 1761 mutex_enter(&ill->ill_lock); 1762 switch (ill->ill_dlpi_fastpath_state) { 1763 case IDS_FAILED: 1764 /* 1765 * Driver NAKed the first fastpath ioctl - assume it doesn't 1766 * support it. 1767 */ 1768 mutex_exit(&ill->ill_lock); 1769 return (ENOTSUP); 1770 case IDS_UNKNOWN: 1771 /* This is the first probe */ 1772 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1773 break; 1774 default: 1775 break; 1776 } 1777 mutex_exit(&ill->ill_lock); 1778 1779 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1780 return (EAGAIN); 1781 1782 mp->b_cont = copyb(dlur_mp); 1783 if (mp->b_cont == NULL) { 1784 freeb(mp); 1785 return (EAGAIN); 1786 } 1787 1788 ioc = (struct iocblk *)mp->b_rptr; 1789 ioc->ioc_count = msgdsize(mp->b_cont); 1790 1791 putnext(ill->ill_wq, mp); 1792 return (0); 1793 } 1794 1795 void 1796 ill_capability_probe(ill_t *ill) 1797 { 1798 /* 1799 * Do so only if negotiation is enabled, capabilities are unknown, 1800 * and a capability negotiation is not already in progress. 1801 */ 1802 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1803 ill->ill_dlpi_capab_state != IDS_RENEG) 1804 return; 1805 1806 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1807 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1808 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1809 } 1810 1811 void 1812 ill_capability_reset(ill_t *ill) 1813 { 1814 mblk_t *sc_mp = NULL; 1815 mblk_t *tmp; 1816 1817 /* 1818 * Note here that we reset the state to UNKNOWN, and later send 1819 * down the DL_CAPABILITY_REQ without first setting the state to 1820 * INPROGRESS. We do this in order to distinguish the 1821 * DL_CAPABILITY_ACK response which may come back in response to 1822 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1823 * also handle the case where the driver doesn't send us back 1824 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1825 * requires the state to be in UNKNOWN anyway. In any case, all 1826 * features are turned off until the state reaches IDS_OK. 1827 */ 1828 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1829 1830 /* 1831 * Disable sub-capabilities and request a list of sub-capability 1832 * messages which will be sent down to the driver. Each handler 1833 * allocates the corresponding dl_capability_sub_t inside an 1834 * mblk, and links it to the existing sc_mp mblk, or return it 1835 * as sc_mp if it's the first sub-capability (the passed in 1836 * sc_mp is NULL). Upon returning from all capability handlers, 1837 * sc_mp will be pulled-up, before passing it downstream. 1838 */ 1839 ill_capability_mdt_reset(ill, &sc_mp); 1840 ill_capability_hcksum_reset(ill, &sc_mp); 1841 ill_capability_zerocopy_reset(ill, &sc_mp); 1842 ill_capability_ipsec_reset(ill, &sc_mp); 1843 ill_capability_dls_reset(ill, &sc_mp); 1844 ill_capability_lso_reset(ill, &sc_mp); 1845 1846 /* Nothing to send down in order to disable the capabilities? */ 1847 if (sc_mp == NULL) 1848 return; 1849 1850 tmp = msgpullup(sc_mp, -1); 1851 freemsg(sc_mp); 1852 if ((sc_mp = tmp) == NULL) { 1853 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1854 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1855 return; 1856 } 1857 1858 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1859 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1860 } 1861 1862 /* 1863 * Request or set new-style hardware capabilities supported by DLS provider. 1864 */ 1865 static void 1866 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1867 { 1868 mblk_t *mp; 1869 dl_capability_req_t *capb; 1870 size_t size = 0; 1871 uint8_t *ptr; 1872 1873 if (reqp != NULL) 1874 size = MBLKL(reqp); 1875 1876 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1877 if (mp == NULL) { 1878 freemsg(reqp); 1879 return; 1880 } 1881 ptr = mp->b_rptr; 1882 1883 capb = (dl_capability_req_t *)ptr; 1884 ptr += sizeof (dl_capability_req_t); 1885 1886 if (reqp != NULL) { 1887 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1888 capb->dl_sub_length = size; 1889 bcopy(reqp->b_rptr, ptr, size); 1890 ptr += size; 1891 mp->b_cont = reqp->b_cont; 1892 freeb(reqp); 1893 } 1894 ASSERT(ptr == mp->b_wptr); 1895 1896 ill_dlpi_send(ill, mp); 1897 } 1898 1899 static void 1900 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1901 { 1902 dl_capab_id_t *id_ic; 1903 uint_t sub_dl_cap = outers->dl_cap; 1904 dl_capability_sub_t *inners; 1905 uint8_t *capend; 1906 1907 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1908 1909 /* 1910 * Note: range checks here are not absolutely sufficient to 1911 * make us robust against malformed messages sent by drivers; 1912 * this is in keeping with the rest of IP's dlpi handling. 1913 * (Remember, it's coming from something else in the kernel 1914 * address space) 1915 */ 1916 1917 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1918 if (capend > mp->b_wptr) { 1919 cmn_err(CE_WARN, "ill_capability_id_ack: " 1920 "malformed sub-capability too long for mblk"); 1921 return; 1922 } 1923 1924 id_ic = (dl_capab_id_t *)(outers + 1); 1925 1926 if (outers->dl_length < sizeof (*id_ic) || 1927 (inners = &id_ic->id_subcap, 1928 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1929 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1930 "encapsulated capab type %d too long for mblk", 1931 inners->dl_cap); 1932 return; 1933 } 1934 1935 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1936 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1937 "isn't as expected; pass-thru module(s) detected, " 1938 "discarding capability\n", inners->dl_cap)); 1939 return; 1940 } 1941 1942 /* Process the encapsulated sub-capability */ 1943 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1944 } 1945 1946 /* 1947 * Process Multidata Transmit capability negotiation ack received from a 1948 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1949 * DL_CAPABILITY_ACK message. 1950 */ 1951 static void 1952 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1953 { 1954 mblk_t *nmp = NULL; 1955 dl_capability_req_t *oc; 1956 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1957 ill_mdt_capab_t **ill_mdt_capab; 1958 uint_t sub_dl_cap = isub->dl_cap; 1959 uint8_t *capend; 1960 1961 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1962 1963 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1964 1965 /* 1966 * Note: range checks here are not absolutely sufficient to 1967 * make us robust against malformed messages sent by drivers; 1968 * this is in keeping with the rest of IP's dlpi handling. 1969 * (Remember, it's coming from something else in the kernel 1970 * address space) 1971 */ 1972 1973 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1974 if (capend > mp->b_wptr) { 1975 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1976 "malformed sub-capability too long for mblk"); 1977 return; 1978 } 1979 1980 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1981 1982 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1983 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1984 "unsupported MDT sub-capability (version %d, expected %d)", 1985 mdt_ic->mdt_version, MDT_VERSION_2); 1986 return; 1987 } 1988 1989 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1990 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1991 "capability isn't as expected; pass-thru module(s) " 1992 "detected, discarding capability\n")); 1993 return; 1994 } 1995 1996 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1997 1998 if (*ill_mdt_capab == NULL) { 1999 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2000 KM_NOSLEEP); 2001 2002 if (*ill_mdt_capab == NULL) { 2003 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2004 "could not enable MDT version %d " 2005 "for %s (ENOMEM)\n", MDT_VERSION_2, 2006 ill->ill_name); 2007 return; 2008 } 2009 } 2010 2011 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2012 "MDT version %d (%d bytes leading, %d bytes trailing " 2013 "header spaces, %d max pld bufs, %d span limit)\n", 2014 ill->ill_name, MDT_VERSION_2, 2015 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2016 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2017 2018 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2019 (*ill_mdt_capab)->ill_mdt_on = 1; 2020 /* 2021 * Round the following values to the nearest 32-bit; ULP 2022 * may further adjust them to accomodate for additional 2023 * protocol headers. We pass these values to ULP during 2024 * bind time. 2025 */ 2026 (*ill_mdt_capab)->ill_mdt_hdr_head = 2027 roundup(mdt_ic->mdt_hdr_head, 4); 2028 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2029 roundup(mdt_ic->mdt_hdr_tail, 4); 2030 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2031 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2032 2033 ill->ill_capabilities |= ILL_CAPAB_MDT; 2034 } else { 2035 uint_t size; 2036 uchar_t *rptr; 2037 2038 size = sizeof (dl_capability_req_t) + 2039 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2040 2041 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2042 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2043 "could not enable MDT for %s (ENOMEM)\n", 2044 ill->ill_name); 2045 return; 2046 } 2047 2048 rptr = nmp->b_rptr; 2049 /* initialize dl_capability_req_t */ 2050 oc = (dl_capability_req_t *)nmp->b_rptr; 2051 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2052 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2053 sizeof (dl_capab_mdt_t); 2054 nmp->b_rptr += sizeof (dl_capability_req_t); 2055 2056 /* initialize dl_capability_sub_t */ 2057 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2058 nmp->b_rptr += sizeof (*isub); 2059 2060 /* initialize dl_capab_mdt_t */ 2061 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2062 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2063 2064 nmp->b_rptr = rptr; 2065 2066 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2067 "to enable MDT version %d\n", ill->ill_name, 2068 MDT_VERSION_2)); 2069 2070 /* set ENABLE flag */ 2071 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2072 2073 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2074 ill_dlpi_send(ill, nmp); 2075 } 2076 } 2077 2078 static void 2079 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2080 { 2081 mblk_t *mp; 2082 dl_capab_mdt_t *mdt_subcap; 2083 dl_capability_sub_t *dl_subcap; 2084 int size; 2085 2086 if (!ILL_MDT_CAPABLE(ill)) 2087 return; 2088 2089 ASSERT(ill->ill_mdt_capab != NULL); 2090 /* 2091 * Clear the capability flag for MDT but retain the ill_mdt_capab 2092 * structure since it's possible that another thread is still 2093 * referring to it. The structure only gets deallocated when 2094 * we destroy the ill. 2095 */ 2096 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2097 2098 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2099 2100 mp = allocb(size, BPRI_HI); 2101 if (mp == NULL) { 2102 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2103 "request to disable MDT\n")); 2104 return; 2105 } 2106 2107 mp->b_wptr = mp->b_rptr + size; 2108 2109 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2110 dl_subcap->dl_cap = DL_CAPAB_MDT; 2111 dl_subcap->dl_length = sizeof (*mdt_subcap); 2112 2113 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2114 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2115 mdt_subcap->mdt_flags = 0; 2116 mdt_subcap->mdt_hdr_head = 0; 2117 mdt_subcap->mdt_hdr_tail = 0; 2118 2119 if (*sc_mp != NULL) 2120 linkb(*sc_mp, mp); 2121 else 2122 *sc_mp = mp; 2123 } 2124 2125 /* 2126 * Send a DL_NOTIFY_REQ to the specified ill to enable 2127 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2128 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2129 * acceleration. 2130 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2131 */ 2132 static boolean_t 2133 ill_enable_promisc_notify(ill_t *ill) 2134 { 2135 mblk_t *mp; 2136 dl_notify_req_t *req; 2137 2138 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2139 2140 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2141 if (mp == NULL) 2142 return (B_FALSE); 2143 2144 req = (dl_notify_req_t *)mp->b_rptr; 2145 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2146 DL_NOTE_PROMISC_OFF_PHYS; 2147 2148 ill_dlpi_send(ill, mp); 2149 2150 return (B_TRUE); 2151 } 2152 2153 2154 /* 2155 * Allocate an IPsec capability request which will be filled by our 2156 * caller to turn on support for one or more algorithms. 2157 */ 2158 static mblk_t * 2159 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2160 { 2161 mblk_t *nmp; 2162 dl_capability_req_t *ocap; 2163 dl_capab_ipsec_t *ocip; 2164 dl_capab_ipsec_t *icip; 2165 uint8_t *ptr; 2166 icip = (dl_capab_ipsec_t *)(isub + 1); 2167 2168 /* 2169 * The first time around, we send a DL_NOTIFY_REQ to enable 2170 * PROMISC_ON/OFF notification from the provider. We need to 2171 * do this before enabling the algorithms to avoid leakage of 2172 * cleartext packets. 2173 */ 2174 2175 if (!ill_enable_promisc_notify(ill)) 2176 return (NULL); 2177 2178 /* 2179 * Allocate new mblk which will contain a new capability 2180 * request to enable the capabilities. 2181 */ 2182 2183 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2184 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2185 if (nmp == NULL) 2186 return (NULL); 2187 2188 ptr = nmp->b_rptr; 2189 2190 /* initialize dl_capability_req_t */ 2191 ocap = (dl_capability_req_t *)ptr; 2192 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2193 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2194 ptr += sizeof (dl_capability_req_t); 2195 2196 /* initialize dl_capability_sub_t */ 2197 bcopy(isub, ptr, sizeof (*isub)); 2198 ptr += sizeof (*isub); 2199 2200 /* initialize dl_capab_ipsec_t */ 2201 ocip = (dl_capab_ipsec_t *)ptr; 2202 bcopy(icip, ocip, sizeof (*icip)); 2203 2204 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2205 return (nmp); 2206 } 2207 2208 /* 2209 * Process an IPsec capability negotiation ack received from a DLS Provider. 2210 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2211 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2212 */ 2213 static void 2214 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2215 { 2216 dl_capab_ipsec_t *icip; 2217 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2218 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2219 uint_t cipher, nciphers; 2220 mblk_t *nmp; 2221 uint_t alg_len; 2222 boolean_t need_sadb_dump; 2223 uint_t sub_dl_cap = isub->dl_cap; 2224 ill_ipsec_capab_t **ill_capab; 2225 uint64_t ill_capab_flag; 2226 uint8_t *capend, *ciphend; 2227 boolean_t sadb_resync; 2228 2229 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2230 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2231 2232 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2233 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2234 ill_capab_flag = ILL_CAPAB_AH; 2235 } else { 2236 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2237 ill_capab_flag = ILL_CAPAB_ESP; 2238 } 2239 2240 /* 2241 * If the ill capability structure exists, then this incoming 2242 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2243 * If this is so, then we'd need to resynchronize the SADB 2244 * after re-enabling the offloaded ciphers. 2245 */ 2246 sadb_resync = (*ill_capab != NULL); 2247 2248 /* 2249 * Note: range checks here are not absolutely sufficient to 2250 * make us robust against malformed messages sent by drivers; 2251 * this is in keeping with the rest of IP's dlpi handling. 2252 * (Remember, it's coming from something else in the kernel 2253 * address space) 2254 */ 2255 2256 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2257 if (capend > mp->b_wptr) { 2258 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2259 "malformed sub-capability too long for mblk"); 2260 return; 2261 } 2262 2263 /* 2264 * There are two types of acks we process here: 2265 * 1. acks in reply to a (first form) generic capability req 2266 * (no ENABLE flag set) 2267 * 2. acks in reply to a ENABLE capability req. 2268 * (ENABLE flag set) 2269 * 2270 * We process the subcapability passed as argument as follows: 2271 * 1 do initializations 2272 * 1.1 initialize nmp = NULL 2273 * 1.2 set need_sadb_dump to B_FALSE 2274 * 2 for each cipher in subcapability: 2275 * 2.1 if ENABLE flag is set: 2276 * 2.1.1 update per-ill ipsec capabilities info 2277 * 2.1.2 set need_sadb_dump to B_TRUE 2278 * 2.2 if ENABLE flag is not set: 2279 * 2.2.1 if nmp is NULL: 2280 * 2.2.1.1 allocate and initialize nmp 2281 * 2.2.1.2 init current pos in nmp 2282 * 2.2.2 copy current cipher to current pos in nmp 2283 * 2.2.3 set ENABLE flag in nmp 2284 * 2.2.4 update current pos 2285 * 3 if nmp is not equal to NULL, send enable request 2286 * 3.1 send capability request 2287 * 4 if need_sadb_dump is B_TRUE 2288 * 4.1 enable promiscuous on/off notifications 2289 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2290 * AH or ESP SA's to interface. 2291 */ 2292 2293 nmp = NULL; 2294 oalg = NULL; 2295 need_sadb_dump = B_FALSE; 2296 icip = (dl_capab_ipsec_t *)(isub + 1); 2297 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2298 2299 nciphers = icip->cip_nciphers; 2300 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2301 2302 if (ciphend > capend) { 2303 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2304 "too many ciphers for sub-capability len"); 2305 return; 2306 } 2307 2308 for (cipher = 0; cipher < nciphers; cipher++) { 2309 alg_len = sizeof (dl_capab_ipsec_alg_t); 2310 2311 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2312 /* 2313 * TBD: when we provide a way to disable capabilities 2314 * from above, need to manage the request-pending state 2315 * and fail if we were not expecting this ACK. 2316 */ 2317 IPSECHW_DEBUG(IPSECHW_CAPAB, 2318 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2319 2320 /* 2321 * Update IPsec capabilities for this ill 2322 */ 2323 2324 if (*ill_capab == NULL) { 2325 IPSECHW_DEBUG(IPSECHW_CAPAB, 2326 ("ill_capability_ipsec_ack: " 2327 "allocating ipsec_capab for ill\n")); 2328 *ill_capab = ill_ipsec_capab_alloc(); 2329 2330 if (*ill_capab == NULL) { 2331 cmn_err(CE_WARN, 2332 "ill_capability_ipsec_ack: " 2333 "could not enable IPsec Hardware " 2334 "acceleration for %s (ENOMEM)\n", 2335 ill->ill_name); 2336 return; 2337 } 2338 } 2339 2340 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2341 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2342 2343 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2344 cmn_err(CE_WARN, 2345 "ill_capability_ipsec_ack: " 2346 "malformed IPsec algorithm id %d", 2347 ialg->alg_prim); 2348 continue; 2349 } 2350 2351 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2352 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2353 ialg->alg_prim); 2354 } else { 2355 ipsec_capab_algparm_t *alp; 2356 2357 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2358 ialg->alg_prim); 2359 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2360 ialg->alg_prim)) { 2361 cmn_err(CE_WARN, 2362 "ill_capability_ipsec_ack: " 2363 "no space for IPsec alg id %d", 2364 ialg->alg_prim); 2365 continue; 2366 } 2367 alp = &((*ill_capab)->encr_algparm[ 2368 ialg->alg_prim]); 2369 alp->minkeylen = ialg->alg_minbits; 2370 alp->maxkeylen = ialg->alg_maxbits; 2371 } 2372 ill->ill_capabilities |= ill_capab_flag; 2373 /* 2374 * indicate that a capability was enabled, which 2375 * will be used below to kick off a SADB dump 2376 * to the ill. 2377 */ 2378 need_sadb_dump = B_TRUE; 2379 } else { 2380 IPSECHW_DEBUG(IPSECHW_CAPAB, 2381 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2382 ialg->alg_prim)); 2383 2384 if (nmp == NULL) { 2385 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2386 if (nmp == NULL) { 2387 /* 2388 * Sending the PROMISC_ON/OFF 2389 * notification request failed. 2390 * We cannot enable the algorithms 2391 * since the Provider will not 2392 * notify IP of promiscous mode 2393 * changes, which could lead 2394 * to leakage of packets. 2395 */ 2396 cmn_err(CE_WARN, 2397 "ill_capability_ipsec_ack: " 2398 "could not enable IPsec Hardware " 2399 "acceleration for %s (ENOMEM)\n", 2400 ill->ill_name); 2401 return; 2402 } 2403 /* ptr to current output alg specifier */ 2404 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2405 } 2406 2407 /* 2408 * Copy current alg specifier, set ENABLE 2409 * flag, and advance to next output alg. 2410 * For now we enable all IPsec capabilities. 2411 */ 2412 ASSERT(oalg != NULL); 2413 bcopy(ialg, oalg, alg_len); 2414 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2415 nmp->b_wptr += alg_len; 2416 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2417 } 2418 2419 /* move to next input algorithm specifier */ 2420 ialg = (dl_capab_ipsec_alg_t *) 2421 ((char *)ialg + alg_len); 2422 } 2423 2424 if (nmp != NULL) 2425 /* 2426 * nmp points to a DL_CAPABILITY_REQ message to enable 2427 * IPsec hardware acceleration. 2428 */ 2429 ill_dlpi_send(ill, nmp); 2430 2431 if (need_sadb_dump) 2432 /* 2433 * An acknowledgement corresponding to a request to 2434 * enable acceleration was received, notify SADB. 2435 */ 2436 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2437 } 2438 2439 /* 2440 * Given an mblk with enough space in it, create sub-capability entries for 2441 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2442 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2443 * in preparation for the reset the DL_CAPABILITY_REQ message. 2444 */ 2445 static void 2446 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2447 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2448 { 2449 dl_capab_ipsec_t *oipsec; 2450 dl_capab_ipsec_alg_t *oalg; 2451 dl_capability_sub_t *dl_subcap; 2452 int i, k; 2453 2454 ASSERT(nciphers > 0); 2455 ASSERT(ill_cap != NULL); 2456 ASSERT(mp != NULL); 2457 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2458 2459 /* dl_capability_sub_t for "stype" */ 2460 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2461 dl_subcap->dl_cap = stype; 2462 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2463 mp->b_wptr += sizeof (dl_capability_sub_t); 2464 2465 /* dl_capab_ipsec_t for "stype" */ 2466 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2467 oipsec->cip_version = 1; 2468 oipsec->cip_nciphers = nciphers; 2469 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2470 2471 /* create entries for "stype" AUTH ciphers */ 2472 for (i = 0; i < ill_cap->algs_size; i++) { 2473 for (k = 0; k < BITSPERBYTE; k++) { 2474 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2475 continue; 2476 2477 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2478 bzero((void *)oalg, sizeof (*oalg)); 2479 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2480 oalg->alg_prim = k + (BITSPERBYTE * i); 2481 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2482 } 2483 } 2484 /* create entries for "stype" ENCR ciphers */ 2485 for (i = 0; i < ill_cap->algs_size; i++) { 2486 for (k = 0; k < BITSPERBYTE; k++) { 2487 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2488 continue; 2489 2490 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2491 bzero((void *)oalg, sizeof (*oalg)); 2492 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2493 oalg->alg_prim = k + (BITSPERBYTE * i); 2494 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2495 } 2496 } 2497 } 2498 2499 /* 2500 * Macro to count number of 1s in a byte (8-bit word). The total count is 2501 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2502 * POPC instruction, but our macro is more flexible for an arbitrary length 2503 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2504 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2505 * stays that way, we can reduce the number of iterations required. 2506 */ 2507 #define COUNT_1S(val, sum) { \ 2508 uint8_t x = val & 0xff; \ 2509 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2510 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2511 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2512 } 2513 2514 /* ARGSUSED */ 2515 static void 2516 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2517 { 2518 mblk_t *mp; 2519 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2520 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2521 uint64_t ill_capabilities = ill->ill_capabilities; 2522 int ah_cnt = 0, esp_cnt = 0; 2523 int ah_len = 0, esp_len = 0; 2524 int i, size = 0; 2525 2526 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2527 return; 2528 2529 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2530 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2531 2532 /* Find out the number of ciphers for AH */ 2533 if (cap_ah != NULL) { 2534 for (i = 0; i < cap_ah->algs_size; i++) { 2535 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2536 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2537 } 2538 if (ah_cnt > 0) { 2539 size += sizeof (dl_capability_sub_t) + 2540 sizeof (dl_capab_ipsec_t); 2541 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2542 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2543 size += ah_len; 2544 } 2545 } 2546 2547 /* Find out the number of ciphers for ESP */ 2548 if (cap_esp != NULL) { 2549 for (i = 0; i < cap_esp->algs_size; i++) { 2550 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2551 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2552 } 2553 if (esp_cnt > 0) { 2554 size += sizeof (dl_capability_sub_t) + 2555 sizeof (dl_capab_ipsec_t); 2556 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2557 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2558 size += esp_len; 2559 } 2560 } 2561 2562 if (size == 0) { 2563 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2564 "there's nothing to reset\n")); 2565 return; 2566 } 2567 2568 mp = allocb(size, BPRI_HI); 2569 if (mp == NULL) { 2570 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2571 "request to disable IPSEC Hardware Acceleration\n")); 2572 return; 2573 } 2574 2575 /* 2576 * Clear the capability flags for IPSec HA but retain the ill 2577 * capability structures since it's possible that another thread 2578 * is still referring to them. The structures only get deallocated 2579 * when we destroy the ill. 2580 * 2581 * Various places check the flags to see if the ill is capable of 2582 * hardware acceleration, and by clearing them we ensure that new 2583 * outbound IPSec packets are sent down encrypted. 2584 */ 2585 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2586 2587 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2588 if (ah_cnt > 0) { 2589 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2590 cap_ah, mp); 2591 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2592 } 2593 2594 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2595 if (esp_cnt > 0) { 2596 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2597 cap_esp, mp); 2598 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2599 } 2600 2601 /* 2602 * At this point we've composed a bunch of sub-capabilities to be 2603 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2604 * by the caller. Upon receiving this reset message, the driver 2605 * must stop inbound decryption (by destroying all inbound SAs) 2606 * and let the corresponding packets come in encrypted. 2607 */ 2608 2609 if (*sc_mp != NULL) 2610 linkb(*sc_mp, mp); 2611 else 2612 *sc_mp = mp; 2613 } 2614 2615 static void 2616 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2617 boolean_t encapsulated) 2618 { 2619 boolean_t legacy = B_FALSE; 2620 2621 /* 2622 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2623 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2624 * instructed the driver to disable its advertised capabilities, 2625 * so there's no point in accepting any response at this moment. 2626 */ 2627 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2628 return; 2629 2630 /* 2631 * Note that only the following two sub-capabilities may be 2632 * considered as "legacy", since their original definitions 2633 * do not incorporate the dl_mid_t module ID token, and hence 2634 * may require the use of the wrapper sub-capability. 2635 */ 2636 switch (subp->dl_cap) { 2637 case DL_CAPAB_IPSEC_AH: 2638 case DL_CAPAB_IPSEC_ESP: 2639 legacy = B_TRUE; 2640 break; 2641 } 2642 2643 /* 2644 * For legacy sub-capabilities which don't incorporate a queue_t 2645 * pointer in their structures, discard them if we detect that 2646 * there are intermediate modules in between IP and the driver. 2647 */ 2648 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2649 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2650 "%d discarded; %d module(s) present below IP\n", 2651 subp->dl_cap, ill->ill_lmod_cnt)); 2652 return; 2653 } 2654 2655 switch (subp->dl_cap) { 2656 case DL_CAPAB_IPSEC_AH: 2657 case DL_CAPAB_IPSEC_ESP: 2658 ill_capability_ipsec_ack(ill, mp, subp); 2659 break; 2660 case DL_CAPAB_MDT: 2661 ill_capability_mdt_ack(ill, mp, subp); 2662 break; 2663 case DL_CAPAB_HCKSUM: 2664 ill_capability_hcksum_ack(ill, mp, subp); 2665 break; 2666 case DL_CAPAB_ZEROCOPY: 2667 ill_capability_zerocopy_ack(ill, mp, subp); 2668 break; 2669 case DL_CAPAB_POLL: 2670 if (!SOFT_RINGS_ENABLED()) 2671 ill_capability_dls_ack(ill, mp, subp); 2672 break; 2673 case DL_CAPAB_SOFT_RING: 2674 if (SOFT_RINGS_ENABLED()) 2675 ill_capability_dls_ack(ill, mp, subp); 2676 break; 2677 case DL_CAPAB_LSO: 2678 ill_capability_lso_ack(ill, mp, subp); 2679 break; 2680 default: 2681 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2682 subp->dl_cap)); 2683 } 2684 } 2685 2686 /* 2687 * As part of negotiating polling capability, the driver tells us 2688 * the default (or normal) blanking interval and packet threshold 2689 * (the receive timer fires if blanking interval is reached or 2690 * the packet threshold is reached). 2691 * 2692 * As part of manipulating the polling interval, we always use our 2693 * estimated interval (avg service time * number of packets queued 2694 * on the squeue) but we try to blank for a minimum of 2695 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2696 * packet threshold during this time. When we are not in polling mode 2697 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2698 * rr_min_blank_ratio but up the packet cnt by a ratio of 2699 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2700 * possible although for a shorter interval. 2701 */ 2702 #define RR_MAX_BLANK_RATIO 20 2703 #define RR_MIN_BLANK_RATIO 10 2704 #define RR_MAX_PKT_CNT_RATIO 3 2705 #define RR_MIN_PKT_CNT_RATIO 3 2706 2707 /* 2708 * These can be tuned via /etc/system. 2709 */ 2710 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2711 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2712 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2713 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2714 2715 static mac_resource_handle_t 2716 ill_ring_add(void *arg, mac_resource_t *mrp) 2717 { 2718 ill_t *ill = (ill_t *)arg; 2719 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2720 ill_rx_ring_t *rx_ring; 2721 int ip_rx_index; 2722 2723 ASSERT(mrp != NULL); 2724 if (mrp->mr_type != MAC_RX_FIFO) { 2725 return (NULL); 2726 } 2727 ASSERT(ill != NULL); 2728 ASSERT(ill->ill_dls_capab != NULL); 2729 2730 mutex_enter(&ill->ill_lock); 2731 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2732 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2733 ASSERT(rx_ring != NULL); 2734 2735 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2736 time_t normal_blank_time = 2737 mrfp->mrf_normal_blank_time; 2738 uint_t normal_pkt_cnt = 2739 mrfp->mrf_normal_pkt_count; 2740 2741 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2742 2743 rx_ring->rr_blank = mrfp->mrf_blank; 2744 rx_ring->rr_handle = mrfp->mrf_arg; 2745 rx_ring->rr_ill = ill; 2746 rx_ring->rr_normal_blank_time = normal_blank_time; 2747 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2748 2749 rx_ring->rr_max_blank_time = 2750 normal_blank_time * rr_max_blank_ratio; 2751 rx_ring->rr_min_blank_time = 2752 normal_blank_time * rr_min_blank_ratio; 2753 rx_ring->rr_max_pkt_cnt = 2754 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2755 rx_ring->rr_min_pkt_cnt = 2756 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2757 2758 rx_ring->rr_ring_state = ILL_RING_INUSE; 2759 mutex_exit(&ill->ill_lock); 2760 2761 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2762 (int), ip_rx_index); 2763 return ((mac_resource_handle_t)rx_ring); 2764 } 2765 } 2766 2767 /* 2768 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2769 * we have devices which can overwhelm this limit, ILL_MAX_RING 2770 * should be made configurable. Meanwhile it cause no panic because 2771 * driver will pass ip_input a NULL handle which will make 2772 * IP allocate the default squeue and Polling mode will not 2773 * be used for this ring. 2774 */ 2775 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2776 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2777 2778 mutex_exit(&ill->ill_lock); 2779 return (NULL); 2780 } 2781 2782 static boolean_t 2783 ill_capability_dls_init(ill_t *ill) 2784 { 2785 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2786 conn_t *connp; 2787 size_t sz; 2788 ip_stack_t *ipst = ill->ill_ipst; 2789 2790 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2791 if (ill_dls == NULL) { 2792 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2793 "soft_ring enabled for ill=%s (%p) but data " 2794 "structs uninitialized\n", ill->ill_name, 2795 (void *)ill); 2796 } 2797 return (B_TRUE); 2798 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2799 if (ill_dls == NULL) { 2800 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2801 "polling enabled for ill=%s (%p) but data " 2802 "structs uninitialized\n", ill->ill_name, 2803 (void *)ill); 2804 } 2805 return (B_TRUE); 2806 } 2807 2808 if (ill_dls != NULL) { 2809 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2810 /* Soft_Ring or polling is being re-enabled */ 2811 2812 connp = ill_dls->ill_unbind_conn; 2813 ASSERT(rx_ring != NULL); 2814 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2815 bzero((void *)rx_ring, 2816 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2817 ill_dls->ill_ring_tbl = rx_ring; 2818 ill_dls->ill_unbind_conn = connp; 2819 return (B_TRUE); 2820 } 2821 2822 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2823 ipst->ips_netstack)) == NULL) 2824 return (B_FALSE); 2825 2826 sz = sizeof (ill_dls_capab_t); 2827 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2828 2829 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2830 if (ill_dls == NULL) { 2831 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2832 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2833 (void *)ill); 2834 CONN_DEC_REF(connp); 2835 return (B_FALSE); 2836 } 2837 2838 /* Allocate space to hold ring table */ 2839 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2840 ill->ill_dls_capab = ill_dls; 2841 ill_dls->ill_unbind_conn = connp; 2842 return (B_TRUE); 2843 } 2844 2845 /* 2846 * ill_capability_dls_disable: disable soft_ring and/or polling 2847 * capability. Since any of the rings might already be in use, need 2848 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2849 * direct calls if necessary. 2850 */ 2851 static void 2852 ill_capability_dls_disable(ill_t *ill) 2853 { 2854 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2855 2856 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2857 ip_squeue_clean_all(ill); 2858 ill_dls->ill_tx = NULL; 2859 ill_dls->ill_tx_handle = NULL; 2860 ill_dls->ill_dls_change_status = NULL; 2861 ill_dls->ill_dls_bind = NULL; 2862 ill_dls->ill_dls_unbind = NULL; 2863 } 2864 2865 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2866 } 2867 2868 static void 2869 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2870 dl_capability_sub_t *isub) 2871 { 2872 uint_t size; 2873 uchar_t *rptr; 2874 dl_capab_dls_t dls, *odls; 2875 ill_dls_capab_t *ill_dls; 2876 mblk_t *nmp = NULL; 2877 dl_capability_req_t *ocap; 2878 uint_t sub_dl_cap = isub->dl_cap; 2879 2880 if (!ill_capability_dls_init(ill)) 2881 return; 2882 ill_dls = ill->ill_dls_capab; 2883 2884 /* Copy locally to get the members aligned */ 2885 bcopy((void *)idls, (void *)&dls, 2886 sizeof (dl_capab_dls_t)); 2887 2888 /* Get the tx function and handle from dld */ 2889 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2890 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2891 2892 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2893 ill_dls->ill_dls_change_status = 2894 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2895 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2896 ill_dls->ill_dls_unbind = 2897 (ip_dls_unbind_t)dls.dls_ring_unbind; 2898 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2899 } 2900 2901 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2902 isub->dl_length; 2903 2904 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2905 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2906 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2907 ill->ill_name, (void *)ill); 2908 return; 2909 } 2910 2911 /* initialize dl_capability_req_t */ 2912 rptr = nmp->b_rptr; 2913 ocap = (dl_capability_req_t *)rptr; 2914 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2915 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2916 rptr += sizeof (dl_capability_req_t); 2917 2918 /* initialize dl_capability_sub_t */ 2919 bcopy(isub, rptr, sizeof (*isub)); 2920 rptr += sizeof (*isub); 2921 2922 odls = (dl_capab_dls_t *)rptr; 2923 rptr += sizeof (dl_capab_dls_t); 2924 2925 /* initialize dl_capab_dls_t to be sent down */ 2926 dls.dls_rx_handle = (uintptr_t)ill; 2927 dls.dls_rx = (uintptr_t)ip_input; 2928 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2929 2930 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2931 dls.dls_ring_cnt = ip_soft_rings_cnt; 2932 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2933 dls.dls_flags = SOFT_RING_ENABLE; 2934 } else { 2935 dls.dls_flags = POLL_ENABLE; 2936 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2937 "to enable polling\n", ill->ill_name)); 2938 } 2939 bcopy((void *)&dls, (void *)odls, 2940 sizeof (dl_capab_dls_t)); 2941 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2942 /* 2943 * nmp points to a DL_CAPABILITY_REQ message to 2944 * enable either soft_ring or polling 2945 */ 2946 ill_dlpi_send(ill, nmp); 2947 } 2948 2949 static void 2950 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2951 { 2952 mblk_t *mp; 2953 dl_capab_dls_t *idls; 2954 dl_capability_sub_t *dl_subcap; 2955 int size; 2956 2957 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2958 return; 2959 2960 ASSERT(ill->ill_dls_capab != NULL); 2961 2962 size = sizeof (*dl_subcap) + sizeof (*idls); 2963 2964 mp = allocb(size, BPRI_HI); 2965 if (mp == NULL) { 2966 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2967 "request to disable soft_ring\n")); 2968 return; 2969 } 2970 2971 mp->b_wptr = mp->b_rptr + size; 2972 2973 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2974 dl_subcap->dl_length = sizeof (*idls); 2975 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2976 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2977 else 2978 dl_subcap->dl_cap = DL_CAPAB_POLL; 2979 2980 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2981 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2982 idls->dls_flags = SOFT_RING_DISABLE; 2983 else 2984 idls->dls_flags = POLL_DISABLE; 2985 2986 if (*sc_mp != NULL) 2987 linkb(*sc_mp, mp); 2988 else 2989 *sc_mp = mp; 2990 } 2991 2992 /* 2993 * Process a soft_ring/poll capability negotiation ack received 2994 * from a DLS Provider.isub must point to the sub-capability 2995 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2996 */ 2997 static void 2998 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2999 { 3000 dl_capab_dls_t *idls; 3001 uint_t sub_dl_cap = isub->dl_cap; 3002 uint8_t *capend; 3003 3004 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3005 sub_dl_cap == DL_CAPAB_POLL); 3006 3007 if (ill->ill_isv6) 3008 return; 3009 3010 /* 3011 * Note: range checks here are not absolutely sufficient to 3012 * make us robust against malformed messages sent by drivers; 3013 * this is in keeping with the rest of IP's dlpi handling. 3014 * (Remember, it's coming from something else in the kernel 3015 * address space) 3016 */ 3017 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3018 if (capend > mp->b_wptr) { 3019 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3020 "malformed sub-capability too long for mblk"); 3021 return; 3022 } 3023 3024 /* 3025 * There are two types of acks we process here: 3026 * 1. acks in reply to a (first form) generic capability req 3027 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3028 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3029 * capability req. 3030 */ 3031 idls = (dl_capab_dls_t *)(isub + 1); 3032 3033 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3034 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3035 "capability isn't as expected; pass-thru " 3036 "module(s) detected, discarding capability\n")); 3037 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3038 /* 3039 * This is a capability renegotitation case. 3040 * The interface better be unusable at this 3041 * point other wise bad things will happen 3042 * if we disable direct calls on a running 3043 * and up interface. 3044 */ 3045 ill_capability_dls_disable(ill); 3046 } 3047 return; 3048 } 3049 3050 switch (idls->dls_flags) { 3051 default: 3052 /* Disable if unknown flag */ 3053 case SOFT_RING_DISABLE: 3054 case POLL_DISABLE: 3055 ill_capability_dls_disable(ill); 3056 break; 3057 case SOFT_RING_CAPABLE: 3058 case POLL_CAPABLE: 3059 /* 3060 * If the capability was already enabled, its safe 3061 * to disable it first to get rid of stale information 3062 * and then start enabling it again. 3063 */ 3064 ill_capability_dls_disable(ill); 3065 ill_capability_dls_capable(ill, idls, isub); 3066 break; 3067 case SOFT_RING_ENABLE: 3068 case POLL_ENABLE: 3069 mutex_enter(&ill->ill_lock); 3070 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3071 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3072 ASSERT(ill->ill_dls_capab != NULL); 3073 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3074 } 3075 if (sub_dl_cap == DL_CAPAB_POLL && 3076 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3077 ASSERT(ill->ill_dls_capab != NULL); 3078 ill->ill_capabilities |= ILL_CAPAB_POLL; 3079 ip1dbg(("ill_capability_dls_ack: interface %s " 3080 "has enabled polling\n", ill->ill_name)); 3081 } 3082 mutex_exit(&ill->ill_lock); 3083 break; 3084 } 3085 } 3086 3087 /* 3088 * Process a hardware checksum offload capability negotiation ack received 3089 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3090 * of a DL_CAPABILITY_ACK message. 3091 */ 3092 static void 3093 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3094 { 3095 dl_capability_req_t *ocap; 3096 dl_capab_hcksum_t *ihck, *ohck; 3097 ill_hcksum_capab_t **ill_hcksum; 3098 mblk_t *nmp = NULL; 3099 uint_t sub_dl_cap = isub->dl_cap; 3100 uint8_t *capend; 3101 3102 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3103 3104 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3105 3106 /* 3107 * Note: range checks here are not absolutely sufficient to 3108 * make us robust against malformed messages sent by drivers; 3109 * this is in keeping with the rest of IP's dlpi handling. 3110 * (Remember, it's coming from something else in the kernel 3111 * address space) 3112 */ 3113 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3114 if (capend > mp->b_wptr) { 3115 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3116 "malformed sub-capability too long for mblk"); 3117 return; 3118 } 3119 3120 /* 3121 * There are two types of acks we process here: 3122 * 1. acks in reply to a (first form) generic capability req 3123 * (no ENABLE flag set) 3124 * 2. acks in reply to a ENABLE capability req. 3125 * (ENABLE flag set) 3126 */ 3127 ihck = (dl_capab_hcksum_t *)(isub + 1); 3128 3129 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3130 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3131 "unsupported hardware checksum " 3132 "sub-capability (version %d, expected %d)", 3133 ihck->hcksum_version, HCKSUM_VERSION_1); 3134 return; 3135 } 3136 3137 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3138 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3139 "checksum capability isn't as expected; pass-thru " 3140 "module(s) detected, discarding capability\n")); 3141 return; 3142 } 3143 3144 #define CURR_HCKSUM_CAPAB \ 3145 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3146 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3147 3148 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3149 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3150 /* do ENABLE processing */ 3151 if (*ill_hcksum == NULL) { 3152 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3153 KM_NOSLEEP); 3154 3155 if (*ill_hcksum == NULL) { 3156 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3157 "could not enable hcksum version %d " 3158 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3159 ill->ill_name); 3160 return; 3161 } 3162 } 3163 3164 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3165 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3166 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3167 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3168 "has enabled hardware checksumming\n ", 3169 ill->ill_name)); 3170 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3171 /* 3172 * Enabling hardware checksum offload 3173 * Currently IP supports {TCP,UDP}/IPv4 3174 * partial and full cksum offload and 3175 * IPv4 header checksum offload. 3176 * Allocate new mblk which will 3177 * contain a new capability request 3178 * to enable hardware checksum offload. 3179 */ 3180 uint_t size; 3181 uchar_t *rptr; 3182 3183 size = sizeof (dl_capability_req_t) + 3184 sizeof (dl_capability_sub_t) + isub->dl_length; 3185 3186 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3187 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3188 "could not enable hardware cksum for %s (ENOMEM)\n", 3189 ill->ill_name); 3190 return; 3191 } 3192 3193 rptr = nmp->b_rptr; 3194 /* initialize dl_capability_req_t */ 3195 ocap = (dl_capability_req_t *)nmp->b_rptr; 3196 ocap->dl_sub_offset = 3197 sizeof (dl_capability_req_t); 3198 ocap->dl_sub_length = 3199 sizeof (dl_capability_sub_t) + 3200 isub->dl_length; 3201 nmp->b_rptr += sizeof (dl_capability_req_t); 3202 3203 /* initialize dl_capability_sub_t */ 3204 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3205 nmp->b_rptr += sizeof (*isub); 3206 3207 /* initialize dl_capab_hcksum_t */ 3208 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3209 bcopy(ihck, ohck, sizeof (*ihck)); 3210 3211 nmp->b_rptr = rptr; 3212 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3213 3214 /* Set ENABLE flag */ 3215 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3216 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3217 3218 /* 3219 * nmp points to a DL_CAPABILITY_REQ message to enable 3220 * hardware checksum acceleration. 3221 */ 3222 ill_dlpi_send(ill, nmp); 3223 } else { 3224 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3225 "advertised %x hardware checksum capability flags\n", 3226 ill->ill_name, ihck->hcksum_txflags)); 3227 } 3228 } 3229 3230 static void 3231 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3232 { 3233 mblk_t *mp; 3234 dl_capab_hcksum_t *hck_subcap; 3235 dl_capability_sub_t *dl_subcap; 3236 int size; 3237 3238 if (!ILL_HCKSUM_CAPABLE(ill)) 3239 return; 3240 3241 ASSERT(ill->ill_hcksum_capab != NULL); 3242 /* 3243 * Clear the capability flag for hardware checksum offload but 3244 * retain the ill_hcksum_capab structure since it's possible that 3245 * another thread is still referring to it. The structure only 3246 * gets deallocated when we destroy the ill. 3247 */ 3248 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3249 3250 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3251 3252 mp = allocb(size, BPRI_HI); 3253 if (mp == NULL) { 3254 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3255 "request to disable hardware checksum offload\n")); 3256 return; 3257 } 3258 3259 mp->b_wptr = mp->b_rptr + size; 3260 3261 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3262 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3263 dl_subcap->dl_length = sizeof (*hck_subcap); 3264 3265 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3266 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3267 hck_subcap->hcksum_txflags = 0; 3268 3269 if (*sc_mp != NULL) 3270 linkb(*sc_mp, mp); 3271 else 3272 *sc_mp = mp; 3273 } 3274 3275 static void 3276 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3277 { 3278 mblk_t *nmp = NULL; 3279 dl_capability_req_t *oc; 3280 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3281 ill_zerocopy_capab_t **ill_zerocopy_capab; 3282 uint_t sub_dl_cap = isub->dl_cap; 3283 uint8_t *capend; 3284 3285 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3286 3287 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3288 3289 /* 3290 * Note: range checks here are not absolutely sufficient to 3291 * make us robust against malformed messages sent by drivers; 3292 * this is in keeping with the rest of IP's dlpi handling. 3293 * (Remember, it's coming from something else in the kernel 3294 * address space) 3295 */ 3296 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3297 if (capend > mp->b_wptr) { 3298 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3299 "malformed sub-capability too long for mblk"); 3300 return; 3301 } 3302 3303 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3304 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3305 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3306 "unsupported ZEROCOPY sub-capability (version %d, " 3307 "expected %d)", zc_ic->zerocopy_version, 3308 ZEROCOPY_VERSION_1); 3309 return; 3310 } 3311 3312 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3313 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3314 "capability isn't as expected; pass-thru module(s) " 3315 "detected, discarding capability\n")); 3316 return; 3317 } 3318 3319 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3320 if (*ill_zerocopy_capab == NULL) { 3321 *ill_zerocopy_capab = 3322 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3323 KM_NOSLEEP); 3324 3325 if (*ill_zerocopy_capab == NULL) { 3326 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3327 "could not enable Zero-copy version %d " 3328 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3329 ill->ill_name); 3330 return; 3331 } 3332 } 3333 3334 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3335 "supports Zero-copy version %d\n", ill->ill_name, 3336 ZEROCOPY_VERSION_1)); 3337 3338 (*ill_zerocopy_capab)->ill_zerocopy_version = 3339 zc_ic->zerocopy_version; 3340 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3341 zc_ic->zerocopy_flags; 3342 3343 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3344 } else { 3345 uint_t size; 3346 uchar_t *rptr; 3347 3348 size = sizeof (dl_capability_req_t) + 3349 sizeof (dl_capability_sub_t) + 3350 sizeof (dl_capab_zerocopy_t); 3351 3352 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3353 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3354 "could not enable zerocopy for %s (ENOMEM)\n", 3355 ill->ill_name); 3356 return; 3357 } 3358 3359 rptr = nmp->b_rptr; 3360 /* initialize dl_capability_req_t */ 3361 oc = (dl_capability_req_t *)rptr; 3362 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3363 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3364 sizeof (dl_capab_zerocopy_t); 3365 rptr += sizeof (dl_capability_req_t); 3366 3367 /* initialize dl_capability_sub_t */ 3368 bcopy(isub, rptr, sizeof (*isub)); 3369 rptr += sizeof (*isub); 3370 3371 /* initialize dl_capab_zerocopy_t */ 3372 zc_oc = (dl_capab_zerocopy_t *)rptr; 3373 *zc_oc = *zc_ic; 3374 3375 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3376 "to enable zero-copy version %d\n", ill->ill_name, 3377 ZEROCOPY_VERSION_1)); 3378 3379 /* set VMSAFE_MEM flag */ 3380 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3381 3382 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3383 ill_dlpi_send(ill, nmp); 3384 } 3385 } 3386 3387 static void 3388 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3389 { 3390 mblk_t *mp; 3391 dl_capab_zerocopy_t *zerocopy_subcap; 3392 dl_capability_sub_t *dl_subcap; 3393 int size; 3394 3395 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3396 return; 3397 3398 ASSERT(ill->ill_zerocopy_capab != NULL); 3399 /* 3400 * Clear the capability flag for Zero-copy but retain the 3401 * ill_zerocopy_capab structure since it's possible that another 3402 * thread is still referring to it. The structure only gets 3403 * deallocated when we destroy the ill. 3404 */ 3405 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3406 3407 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3408 3409 mp = allocb(size, BPRI_HI); 3410 if (mp == NULL) { 3411 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3412 "request to disable Zero-copy\n")); 3413 return; 3414 } 3415 3416 mp->b_wptr = mp->b_rptr + size; 3417 3418 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3419 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3420 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3421 3422 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3423 zerocopy_subcap->zerocopy_version = 3424 ill->ill_zerocopy_capab->ill_zerocopy_version; 3425 zerocopy_subcap->zerocopy_flags = 0; 3426 3427 if (*sc_mp != NULL) 3428 linkb(*sc_mp, mp); 3429 else 3430 *sc_mp = mp; 3431 } 3432 3433 /* 3434 * Process Large Segment Offload capability negotiation ack received from a 3435 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3436 * DL_CAPABILITY_ACK message. 3437 */ 3438 static void 3439 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3440 { 3441 mblk_t *nmp = NULL; 3442 dl_capability_req_t *oc; 3443 dl_capab_lso_t *lso_ic, *lso_oc; 3444 ill_lso_capab_t **ill_lso_capab; 3445 uint_t sub_dl_cap = isub->dl_cap; 3446 uint8_t *capend; 3447 3448 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3449 3450 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3451 3452 /* 3453 * Note: range checks here are not absolutely sufficient to 3454 * make us robust against malformed messages sent by drivers; 3455 * this is in keeping with the rest of IP's dlpi handling. 3456 * (Remember, it's coming from something else in the kernel 3457 * address space) 3458 */ 3459 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3460 if (capend > mp->b_wptr) { 3461 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3462 "malformed sub-capability too long for mblk"); 3463 return; 3464 } 3465 3466 lso_ic = (dl_capab_lso_t *)(isub + 1); 3467 3468 if (lso_ic->lso_version != LSO_VERSION_1) { 3469 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3470 "unsupported LSO sub-capability (version %d, expected %d)", 3471 lso_ic->lso_version, LSO_VERSION_1); 3472 return; 3473 } 3474 3475 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3476 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3477 "capability isn't as expected; pass-thru module(s) " 3478 "detected, discarding capability\n")); 3479 return; 3480 } 3481 3482 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3483 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3484 if (*ill_lso_capab == NULL) { 3485 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3486 KM_NOSLEEP); 3487 3488 if (*ill_lso_capab == NULL) { 3489 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3490 "could not enable LSO version %d " 3491 "for %s (ENOMEM)\n", LSO_VERSION_1, 3492 ill->ill_name); 3493 return; 3494 } 3495 } 3496 3497 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3498 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3499 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3500 ill->ill_capabilities |= ILL_CAPAB_LSO; 3501 3502 ip1dbg(("ill_capability_lso_ack: interface %s " 3503 "has enabled LSO\n ", ill->ill_name)); 3504 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3505 uint_t size; 3506 uchar_t *rptr; 3507 3508 size = sizeof (dl_capability_req_t) + 3509 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3510 3511 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3512 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3513 "could not enable LSO for %s (ENOMEM)\n", 3514 ill->ill_name); 3515 return; 3516 } 3517 3518 rptr = nmp->b_rptr; 3519 /* initialize dl_capability_req_t */ 3520 oc = (dl_capability_req_t *)nmp->b_rptr; 3521 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3522 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3523 sizeof (dl_capab_lso_t); 3524 nmp->b_rptr += sizeof (dl_capability_req_t); 3525 3526 /* initialize dl_capability_sub_t */ 3527 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3528 nmp->b_rptr += sizeof (*isub); 3529 3530 /* initialize dl_capab_lso_t */ 3531 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3532 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3533 3534 nmp->b_rptr = rptr; 3535 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3536 3537 /* set ENABLE flag */ 3538 lso_oc->lso_flags |= LSO_TX_ENABLE; 3539 3540 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3541 ill_dlpi_send(ill, nmp); 3542 } else { 3543 ip1dbg(("ill_capability_lso_ack: interface %s has " 3544 "advertised %x LSO capability flags\n", 3545 ill->ill_name, lso_ic->lso_flags)); 3546 } 3547 } 3548 3549 3550 static void 3551 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3552 { 3553 mblk_t *mp; 3554 dl_capab_lso_t *lso_subcap; 3555 dl_capability_sub_t *dl_subcap; 3556 int size; 3557 3558 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3559 return; 3560 3561 ASSERT(ill->ill_lso_capab != NULL); 3562 /* 3563 * Clear the capability flag for LSO but retain the 3564 * ill_lso_capab structure since it's possible that another 3565 * thread is still referring to it. The structure only gets 3566 * deallocated when we destroy the ill. 3567 */ 3568 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3569 3570 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3571 3572 mp = allocb(size, BPRI_HI); 3573 if (mp == NULL) { 3574 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3575 "request to disable LSO\n")); 3576 return; 3577 } 3578 3579 mp->b_wptr = mp->b_rptr + size; 3580 3581 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3582 dl_subcap->dl_cap = DL_CAPAB_LSO; 3583 dl_subcap->dl_length = sizeof (*lso_subcap); 3584 3585 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3586 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3587 lso_subcap->lso_flags = 0; 3588 3589 if (*sc_mp != NULL) 3590 linkb(*sc_mp, mp); 3591 else 3592 *sc_mp = mp; 3593 } 3594 3595 /* 3596 * Consume a new-style hardware capabilities negotiation ack. 3597 * Called from ip_rput_dlpi_writer(). 3598 */ 3599 void 3600 ill_capability_ack(ill_t *ill, mblk_t *mp) 3601 { 3602 dl_capability_ack_t *capp; 3603 dl_capability_sub_t *subp, *endp; 3604 3605 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3606 ill->ill_dlpi_capab_state = IDS_OK; 3607 3608 capp = (dl_capability_ack_t *)mp->b_rptr; 3609 3610 if (capp->dl_sub_length == 0) 3611 /* no new-style capabilities */ 3612 return; 3613 3614 /* make sure the driver supplied correct dl_sub_length */ 3615 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3616 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3617 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3618 return; 3619 } 3620 3621 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3622 /* 3623 * There are sub-capabilities. Process the ones we know about. 3624 * Loop until we don't have room for another sub-cap header.. 3625 */ 3626 for (subp = SC(capp, capp->dl_sub_offset), 3627 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3628 subp <= endp; 3629 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3630 3631 switch (subp->dl_cap) { 3632 case DL_CAPAB_ID_WRAPPER: 3633 ill_capability_id_ack(ill, mp, subp); 3634 break; 3635 default: 3636 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3637 break; 3638 } 3639 } 3640 #undef SC 3641 } 3642 3643 /* 3644 * This routine is called to scan the fragmentation reassembly table for 3645 * the specified ILL for any packets that are starting to smell. 3646 * dead_interval is the maximum time in seconds that will be tolerated. It 3647 * will either be the value specified in ip_g_frag_timeout, or zero if the 3648 * ILL is shutting down and it is time to blow everything off. 3649 * 3650 * It returns the number of seconds (as a time_t) that the next frag timer 3651 * should be scheduled for, 0 meaning that the timer doesn't need to be 3652 * re-started. Note that the method of calculating next_timeout isn't 3653 * entirely accurate since time will flow between the time we grab 3654 * current_time and the time we schedule the next timeout. This isn't a 3655 * big problem since this is the timer for sending an ICMP reassembly time 3656 * exceeded messages, and it doesn't have to be exactly accurate. 3657 * 3658 * This function is 3659 * sometimes called as writer, although this is not required. 3660 */ 3661 time_t 3662 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3663 { 3664 ipfb_t *ipfb; 3665 ipfb_t *endp; 3666 ipf_t *ipf; 3667 ipf_t *ipfnext; 3668 mblk_t *mp; 3669 time_t current_time = gethrestime_sec(); 3670 time_t next_timeout = 0; 3671 uint32_t hdr_length; 3672 mblk_t *send_icmp_head; 3673 mblk_t *send_icmp_head_v6; 3674 zoneid_t zoneid; 3675 ip_stack_t *ipst = ill->ill_ipst; 3676 3677 ipfb = ill->ill_frag_hash_tbl; 3678 if (ipfb == NULL) 3679 return (B_FALSE); 3680 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3681 /* Walk the frag hash table. */ 3682 for (; ipfb < endp; ipfb++) { 3683 send_icmp_head = NULL; 3684 send_icmp_head_v6 = NULL; 3685 mutex_enter(&ipfb->ipfb_lock); 3686 while ((ipf = ipfb->ipfb_ipf) != 0) { 3687 time_t frag_time = current_time - ipf->ipf_timestamp; 3688 time_t frag_timeout; 3689 3690 if (frag_time < dead_interval) { 3691 /* 3692 * There are some outstanding fragments 3693 * that will timeout later. Make note of 3694 * the time so that we can reschedule the 3695 * next timeout appropriately. 3696 */ 3697 frag_timeout = dead_interval - frag_time; 3698 if (next_timeout == 0 || 3699 frag_timeout < next_timeout) { 3700 next_timeout = frag_timeout; 3701 } 3702 break; 3703 } 3704 /* Time's up. Get it out of here. */ 3705 hdr_length = ipf->ipf_nf_hdr_len; 3706 ipfnext = ipf->ipf_hash_next; 3707 if (ipfnext) 3708 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3709 *ipf->ipf_ptphn = ipfnext; 3710 mp = ipf->ipf_mp->b_cont; 3711 for (; mp; mp = mp->b_cont) { 3712 /* Extra points for neatness. */ 3713 IP_REASS_SET_START(mp, 0); 3714 IP_REASS_SET_END(mp, 0); 3715 } 3716 mp = ipf->ipf_mp->b_cont; 3717 ill->ill_frag_count -= ipf->ipf_count; 3718 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3719 ipfb->ipfb_count -= ipf->ipf_count; 3720 ASSERT(ipfb->ipfb_frag_pkts > 0); 3721 ipfb->ipfb_frag_pkts--; 3722 /* 3723 * We do not send any icmp message from here because 3724 * we currently are holding the ipfb_lock for this 3725 * hash chain. If we try and send any icmp messages 3726 * from here we may end up via a put back into ip 3727 * trying to get the same lock, causing a recursive 3728 * mutex panic. Instead we build a list and send all 3729 * the icmp messages after we have dropped the lock. 3730 */ 3731 if (ill->ill_isv6) { 3732 if (hdr_length != 0) { 3733 mp->b_next = send_icmp_head_v6; 3734 send_icmp_head_v6 = mp; 3735 } else { 3736 freemsg(mp); 3737 } 3738 } else { 3739 if (hdr_length != 0) { 3740 mp->b_next = send_icmp_head; 3741 send_icmp_head = mp; 3742 } else { 3743 freemsg(mp); 3744 } 3745 } 3746 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3747 freeb(ipf->ipf_mp); 3748 } 3749 mutex_exit(&ipfb->ipfb_lock); 3750 /* 3751 * Now need to send any icmp messages that we delayed from 3752 * above. 3753 */ 3754 while (send_icmp_head_v6 != NULL) { 3755 ip6_t *ip6h; 3756 3757 mp = send_icmp_head_v6; 3758 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3759 mp->b_next = NULL; 3760 if (mp->b_datap->db_type == M_CTL) 3761 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3762 else 3763 ip6h = (ip6_t *)mp->b_rptr; 3764 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3765 ill, ipst); 3766 if (zoneid == ALL_ZONES) { 3767 freemsg(mp); 3768 } else { 3769 icmp_time_exceeded_v6(ill->ill_wq, mp, 3770 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3771 B_FALSE, zoneid, ipst); 3772 } 3773 } 3774 while (send_icmp_head != NULL) { 3775 ipaddr_t dst; 3776 3777 mp = send_icmp_head; 3778 send_icmp_head = send_icmp_head->b_next; 3779 mp->b_next = NULL; 3780 3781 if (mp->b_datap->db_type == M_CTL) 3782 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3783 else 3784 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3785 3786 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3787 if (zoneid == ALL_ZONES) { 3788 freemsg(mp); 3789 } else { 3790 icmp_time_exceeded(ill->ill_wq, mp, 3791 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3792 ipst); 3793 } 3794 } 3795 } 3796 /* 3797 * A non-dying ILL will use the return value to decide whether to 3798 * restart the frag timer, and for how long. 3799 */ 3800 return (next_timeout); 3801 } 3802 3803 /* 3804 * This routine is called when the approximate count of mblk memory used 3805 * for the specified ILL has exceeded max_count. 3806 */ 3807 void 3808 ill_frag_prune(ill_t *ill, uint_t max_count) 3809 { 3810 ipfb_t *ipfb; 3811 ipf_t *ipf; 3812 size_t count; 3813 3814 /* 3815 * If we are here within ip_min_frag_prune_time msecs remove 3816 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3817 * ill_frag_free_num_pkts. 3818 */ 3819 mutex_enter(&ill->ill_lock); 3820 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3821 (ip_min_frag_prune_time != 0 ? 3822 ip_min_frag_prune_time : msec_per_tick)) { 3823 3824 ill->ill_frag_free_num_pkts++; 3825 3826 } else { 3827 ill->ill_frag_free_num_pkts = 0; 3828 } 3829 ill->ill_last_frag_clean_time = lbolt; 3830 mutex_exit(&ill->ill_lock); 3831 3832 /* 3833 * free ill_frag_free_num_pkts oldest packets from each bucket. 3834 */ 3835 if (ill->ill_frag_free_num_pkts != 0) { 3836 int ix; 3837 3838 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3839 ipfb = &ill->ill_frag_hash_tbl[ix]; 3840 mutex_enter(&ipfb->ipfb_lock); 3841 if (ipfb->ipfb_ipf != NULL) { 3842 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3843 ill->ill_frag_free_num_pkts); 3844 } 3845 mutex_exit(&ipfb->ipfb_lock); 3846 } 3847 } 3848 /* 3849 * While the reassembly list for this ILL is too big, prune a fragment 3850 * queue by age, oldest first. Note that the per ILL count is 3851 * approximate, while the per frag hash bucket counts are accurate. 3852 */ 3853 while (ill->ill_frag_count > max_count) { 3854 int ix; 3855 ipfb_t *oipfb = NULL; 3856 uint_t oldest = UINT_MAX; 3857 3858 count = 0; 3859 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3860 ipfb = &ill->ill_frag_hash_tbl[ix]; 3861 mutex_enter(&ipfb->ipfb_lock); 3862 ipf = ipfb->ipfb_ipf; 3863 if (ipf != NULL && ipf->ipf_gen < oldest) { 3864 oldest = ipf->ipf_gen; 3865 oipfb = ipfb; 3866 } 3867 count += ipfb->ipfb_count; 3868 mutex_exit(&ipfb->ipfb_lock); 3869 } 3870 /* Refresh the per ILL count */ 3871 ill->ill_frag_count = count; 3872 if (oipfb == NULL) { 3873 ill->ill_frag_count = 0; 3874 break; 3875 } 3876 if (count <= max_count) 3877 return; /* Somebody beat us to it, nothing to do */ 3878 mutex_enter(&oipfb->ipfb_lock); 3879 ipf = oipfb->ipfb_ipf; 3880 if (ipf != NULL) { 3881 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3882 } 3883 mutex_exit(&oipfb->ipfb_lock); 3884 } 3885 } 3886 3887 /* 3888 * free 'free_cnt' fragmented packets starting at ipf. 3889 */ 3890 void 3891 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3892 { 3893 size_t count; 3894 mblk_t *mp; 3895 mblk_t *tmp; 3896 ipf_t **ipfp = ipf->ipf_ptphn; 3897 3898 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3899 ASSERT(ipfp != NULL); 3900 ASSERT(ipf != NULL); 3901 3902 while (ipf != NULL && free_cnt-- > 0) { 3903 count = ipf->ipf_count; 3904 mp = ipf->ipf_mp; 3905 ipf = ipf->ipf_hash_next; 3906 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3907 IP_REASS_SET_START(tmp, 0); 3908 IP_REASS_SET_END(tmp, 0); 3909 } 3910 ill->ill_frag_count -= count; 3911 ASSERT(ipfb->ipfb_count >= count); 3912 ipfb->ipfb_count -= count; 3913 ASSERT(ipfb->ipfb_frag_pkts > 0); 3914 ipfb->ipfb_frag_pkts--; 3915 freemsg(mp); 3916 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3917 } 3918 3919 if (ipf) 3920 ipf->ipf_ptphn = ipfp; 3921 ipfp[0] = ipf; 3922 } 3923 3924 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3925 "obsolete and may be removed in a future release of Solaris. Use " \ 3926 "ifconfig(1M) to manipulate the forwarding status of an interface." 3927 3928 /* 3929 * For obsolete per-interface forwarding configuration; 3930 * called in response to ND_GET. 3931 */ 3932 /* ARGSUSED */ 3933 static int 3934 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3935 { 3936 ill_t *ill = (ill_t *)cp; 3937 3938 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3939 3940 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3941 return (0); 3942 } 3943 3944 /* 3945 * For obsolete per-interface forwarding configuration; 3946 * called in response to ND_SET. 3947 */ 3948 /* ARGSUSED */ 3949 static int 3950 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3951 cred_t *ioc_cr) 3952 { 3953 long value; 3954 int retval; 3955 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3956 3957 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3958 3959 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3960 value < 0 || value > 1) { 3961 return (EINVAL); 3962 } 3963 3964 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3965 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3966 rw_exit(&ipst->ips_ill_g_lock); 3967 return (retval); 3968 } 3969 3970 /* 3971 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3972 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3973 * up RTS_IFINFO routing socket messages for each interface whose flags we 3974 * change. 3975 */ 3976 int 3977 ill_forward_set(ill_t *ill, boolean_t enable) 3978 { 3979 ill_group_t *illgrp; 3980 ip_stack_t *ipst = ill->ill_ipst; 3981 3982 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3983 3984 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3985 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3986 return (0); 3987 3988 if (IS_LOOPBACK(ill)) 3989 return (EINVAL); 3990 3991 /* 3992 * If the ill is in an IPMP group, set the forwarding policy on all 3993 * members of the group to the same value. 3994 */ 3995 illgrp = ill->ill_group; 3996 if (illgrp != NULL) { 3997 ill_t *tmp_ill; 3998 3999 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4000 tmp_ill = tmp_ill->ill_group_next) { 4001 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4002 (enable ? "Enabling" : "Disabling"), 4003 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4004 tmp_ill->ill_name)); 4005 mutex_enter(&tmp_ill->ill_lock); 4006 if (enable) 4007 tmp_ill->ill_flags |= ILLF_ROUTER; 4008 else 4009 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4010 mutex_exit(&tmp_ill->ill_lock); 4011 if (tmp_ill->ill_isv6) 4012 ill_set_nce_router_flags(tmp_ill, enable); 4013 /* Notify routing socket listeners of this change. */ 4014 ip_rts_ifmsg(tmp_ill->ill_ipif); 4015 } 4016 } else { 4017 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4018 (enable ? "Enabling" : "Disabling"), 4019 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4020 mutex_enter(&ill->ill_lock); 4021 if (enable) 4022 ill->ill_flags |= ILLF_ROUTER; 4023 else 4024 ill->ill_flags &= ~ILLF_ROUTER; 4025 mutex_exit(&ill->ill_lock); 4026 if (ill->ill_isv6) 4027 ill_set_nce_router_flags(ill, enable); 4028 /* Notify routing socket listeners of this change. */ 4029 ip_rts_ifmsg(ill->ill_ipif); 4030 } 4031 4032 return (0); 4033 } 4034 4035 /* 4036 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4037 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4038 * set or clear. 4039 */ 4040 static void 4041 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4042 { 4043 ipif_t *ipif; 4044 nce_t *nce; 4045 4046 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4047 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4048 if (nce != NULL) { 4049 mutex_enter(&nce->nce_lock); 4050 if (enable) 4051 nce->nce_flags |= NCE_F_ISROUTER; 4052 else 4053 nce->nce_flags &= ~NCE_F_ISROUTER; 4054 mutex_exit(&nce->nce_lock); 4055 NCE_REFRELE(nce); 4056 } 4057 } 4058 } 4059 4060 /* 4061 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4062 * for this ill. Make sure the v6/v4 question has been answered about this 4063 * ill. The creation of this ndd variable is only for backwards compatibility. 4064 * The preferred way to control per-interface IP forwarding is through the 4065 * ILLF_ROUTER interface flag. 4066 */ 4067 static int 4068 ill_set_ndd_name(ill_t *ill) 4069 { 4070 char *suffix; 4071 ip_stack_t *ipst = ill->ill_ipst; 4072 4073 ASSERT(IAM_WRITER_ILL(ill)); 4074 4075 if (ill->ill_isv6) 4076 suffix = ipv6_forward_suffix; 4077 else 4078 suffix = ipv4_forward_suffix; 4079 4080 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4081 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4082 /* 4083 * Copies over the '\0'. 4084 * Note that strlen(suffix) is always bounded. 4085 */ 4086 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4087 strlen(suffix) + 1); 4088 4089 /* 4090 * Use of the nd table requires holding the reader lock. 4091 * Modifying the nd table thru nd_load/nd_unload requires 4092 * the writer lock. 4093 */ 4094 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4095 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4096 nd_ill_forward_set, (caddr_t)ill)) { 4097 /* 4098 * If the nd_load failed, it only meant that it could not 4099 * allocate a new bunch of room for further NDD expansion. 4100 * Because of that, the ill_ndd_name will be set to 0, and 4101 * this interface is at the mercy of the global ip_forwarding 4102 * variable. 4103 */ 4104 rw_exit(&ipst->ips_ip_g_nd_lock); 4105 ill->ill_ndd_name = NULL; 4106 return (ENOMEM); 4107 } 4108 rw_exit(&ipst->ips_ip_g_nd_lock); 4109 return (0); 4110 } 4111 4112 /* 4113 * Intializes the context structure and returns the first ill in the list 4114 * cuurently start_list and end_list can have values: 4115 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4116 * IP_V4_G_HEAD Traverse IPV4 list only. 4117 * IP_V6_G_HEAD Traverse IPV6 list only. 4118 */ 4119 4120 /* 4121 * We don't check for CONDEMNED ills here. Caller must do that if 4122 * necessary under the ill lock. 4123 */ 4124 ill_t * 4125 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4126 ip_stack_t *ipst) 4127 { 4128 ill_if_t *ifp; 4129 ill_t *ill; 4130 avl_tree_t *avl_tree; 4131 4132 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4133 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4134 4135 /* 4136 * setup the lists to search 4137 */ 4138 if (end_list != MAX_G_HEADS) { 4139 ctx->ctx_current_list = start_list; 4140 ctx->ctx_last_list = end_list; 4141 } else { 4142 ctx->ctx_last_list = MAX_G_HEADS - 1; 4143 ctx->ctx_current_list = 0; 4144 } 4145 4146 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4147 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4148 if (ifp != (ill_if_t *) 4149 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4150 avl_tree = &ifp->illif_avl_by_ppa; 4151 ill = avl_first(avl_tree); 4152 /* 4153 * ill is guaranteed to be non NULL or ifp should have 4154 * not existed. 4155 */ 4156 ASSERT(ill != NULL); 4157 return (ill); 4158 } 4159 ctx->ctx_current_list++; 4160 } 4161 4162 return (NULL); 4163 } 4164 4165 /* 4166 * returns the next ill in the list. ill_first() must have been called 4167 * before calling ill_next() or bad things will happen. 4168 */ 4169 4170 /* 4171 * We don't check for CONDEMNED ills here. Caller must do that if 4172 * necessary under the ill lock. 4173 */ 4174 ill_t * 4175 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4176 { 4177 ill_if_t *ifp; 4178 ill_t *ill; 4179 ip_stack_t *ipst = lastill->ill_ipst; 4180 4181 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4182 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4183 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4184 AVL_AFTER)) != NULL) { 4185 return (ill); 4186 } 4187 4188 /* goto next ill_ifp in the list. */ 4189 ifp = lastill->ill_ifptr->illif_next; 4190 4191 /* make sure not at end of circular list */ 4192 while (ifp == 4193 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4194 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4195 return (NULL); 4196 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4197 } 4198 4199 return (avl_first(&ifp->illif_avl_by_ppa)); 4200 } 4201 4202 /* 4203 * Check interface name for correct format which is name+ppa. 4204 * name can contain characters and digits, the right most digits 4205 * make up the ppa number. use of octal is not allowed, name must contain 4206 * a ppa, return pointer to the start of ppa. 4207 * In case of error return NULL. 4208 */ 4209 static char * 4210 ill_get_ppa_ptr(char *name) 4211 { 4212 int namelen = mi_strlen(name); 4213 4214 int len = namelen; 4215 4216 name += len; 4217 while (len > 0) { 4218 name--; 4219 if (*name < '0' || *name > '9') 4220 break; 4221 len--; 4222 } 4223 4224 /* empty string, all digits, or no trailing digits */ 4225 if (len == 0 || len == (int)namelen) 4226 return (NULL); 4227 4228 name++; 4229 /* check for attempted use of octal */ 4230 if (*name == '0' && len != (int)namelen - 1) 4231 return (NULL); 4232 return (name); 4233 } 4234 4235 /* 4236 * use avl tree to locate the ill. 4237 */ 4238 static ill_t * 4239 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4240 ipsq_func_t func, int *error, ip_stack_t *ipst) 4241 { 4242 char *ppa_ptr = NULL; 4243 int len; 4244 uint_t ppa; 4245 ill_t *ill = NULL; 4246 ill_if_t *ifp; 4247 int list; 4248 ipsq_t *ipsq; 4249 4250 if (error != NULL) 4251 *error = 0; 4252 4253 /* 4254 * get ppa ptr 4255 */ 4256 if (isv6) 4257 list = IP_V6_G_HEAD; 4258 else 4259 list = IP_V4_G_HEAD; 4260 4261 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4262 if (error != NULL) 4263 *error = ENXIO; 4264 return (NULL); 4265 } 4266 4267 len = ppa_ptr - name + 1; 4268 4269 ppa = stoi(&ppa_ptr); 4270 4271 ifp = IP_VX_ILL_G_LIST(list, ipst); 4272 4273 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4274 /* 4275 * match is done on len - 1 as the name is not null 4276 * terminated it contains ppa in addition to the interface 4277 * name. 4278 */ 4279 if ((ifp->illif_name_len == len) && 4280 bcmp(ifp->illif_name, name, len - 1) == 0) { 4281 break; 4282 } else { 4283 ifp = ifp->illif_next; 4284 } 4285 } 4286 4287 4288 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4289 /* 4290 * Even the interface type does not exist. 4291 */ 4292 if (error != NULL) 4293 *error = ENXIO; 4294 return (NULL); 4295 } 4296 4297 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4298 if (ill != NULL) { 4299 /* 4300 * The block comment at the start of ipif_down 4301 * explains the use of the macros used below 4302 */ 4303 GRAB_CONN_LOCK(q); 4304 mutex_enter(&ill->ill_lock); 4305 if (ILL_CAN_LOOKUP(ill)) { 4306 ill_refhold_locked(ill); 4307 mutex_exit(&ill->ill_lock); 4308 RELEASE_CONN_LOCK(q); 4309 return (ill); 4310 } else if (ILL_CAN_WAIT(ill, q)) { 4311 ipsq = ill->ill_phyint->phyint_ipsq; 4312 mutex_enter(&ipsq->ipsq_lock); 4313 mutex_exit(&ill->ill_lock); 4314 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4315 mutex_exit(&ipsq->ipsq_lock); 4316 RELEASE_CONN_LOCK(q); 4317 *error = EINPROGRESS; 4318 return (NULL); 4319 } 4320 mutex_exit(&ill->ill_lock); 4321 RELEASE_CONN_LOCK(q); 4322 } 4323 if (error != NULL) 4324 *error = ENXIO; 4325 return (NULL); 4326 } 4327 4328 /* 4329 * comparison function for use with avl. 4330 */ 4331 static int 4332 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4333 { 4334 uint_t ppa; 4335 uint_t ill_ppa; 4336 4337 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4338 4339 ppa = *((uint_t *)ppa_ptr); 4340 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4341 /* 4342 * We want the ill with the lowest ppa to be on the 4343 * top. 4344 */ 4345 if (ill_ppa < ppa) 4346 return (1); 4347 if (ill_ppa > ppa) 4348 return (-1); 4349 return (0); 4350 } 4351 4352 /* 4353 * remove an interface type from the global list. 4354 */ 4355 static void 4356 ill_delete_interface_type(ill_if_t *interface) 4357 { 4358 ASSERT(interface != NULL); 4359 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4360 4361 avl_destroy(&interface->illif_avl_by_ppa); 4362 if (interface->illif_ppa_arena != NULL) 4363 vmem_destroy(interface->illif_ppa_arena); 4364 4365 remque(interface); 4366 4367 mi_free(interface); 4368 } 4369 4370 /* Defined in ip_netinfo.c */ 4371 extern ddi_taskq_t *eventq_queue_nic; 4372 4373 /* 4374 * remove ill from the global list. 4375 */ 4376 static void 4377 ill_glist_delete(ill_t *ill) 4378 { 4379 char *nicname; 4380 size_t nicnamelen; 4381 hook_nic_event_t *info; 4382 ip_stack_t *ipst; 4383 4384 if (ill == NULL) 4385 return; 4386 ipst = ill->ill_ipst; 4387 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4388 4389 if (ill->ill_name != NULL) { 4390 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4391 if (nicname != NULL) { 4392 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4393 nicnamelen = ill->ill_name_length; 4394 } 4395 } else { 4396 nicname = NULL; 4397 nicnamelen = 0; 4398 } 4399 4400 /* 4401 * If the ill was never inserted into the AVL tree 4402 * we skip the if branch. 4403 */ 4404 if (ill->ill_ifptr != NULL) { 4405 /* 4406 * remove from AVL tree and free ppa number 4407 */ 4408 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4409 4410 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4411 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4412 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4413 } 4414 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4415 ill_delete_interface_type(ill->ill_ifptr); 4416 } 4417 4418 /* 4419 * Indicate ill is no longer in the list. 4420 */ 4421 ill->ill_ifptr = NULL; 4422 ill->ill_name_length = 0; 4423 ill->ill_name[0] = '\0'; 4424 ill->ill_ppa = UINT_MAX; 4425 } 4426 4427 /* 4428 * Run the unplumb hook after the NIC has disappeared from being 4429 * visible so that attempts to revalidate its existance will fail. 4430 * 4431 * This needs to be run inside the ill_g_lock perimeter to ensure 4432 * that the ordering of delivered events to listeners matches the 4433 * order of them in the kernel. 4434 */ 4435 if ((info = ill->ill_nic_event_info) != NULL) { 4436 if (info->hne_event != NE_DOWN) { 4437 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4438 "attached for %s\n", info->hne_event, 4439 ill->ill_name)); 4440 if (info->hne_data != NULL) 4441 kmem_free(info->hne_data, info->hne_datalen); 4442 kmem_free(info, sizeof (hook_nic_event_t)); 4443 } else { 4444 if (ddi_taskq_dispatch(eventq_queue_nic, 4445 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4446 == DDI_FAILURE) { 4447 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4448 "failed\n")); 4449 if (info->hne_data != NULL) 4450 kmem_free(info->hne_data, 4451 info->hne_datalen); 4452 kmem_free(info, sizeof (hook_nic_event_t)); 4453 } 4454 } 4455 } 4456 4457 /* Generate NE_UNPLUMB event for ill_name. */ 4458 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4459 if (info != NULL) { 4460 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4461 info->hne_lif = 0; 4462 info->hne_event = NE_UNPLUMB; 4463 info->hne_data = nicname; 4464 info->hne_datalen = nicnamelen; 4465 info->hne_family = ill->ill_isv6 ? 4466 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4467 } else { 4468 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4469 "information for %s (ENOMEM)\n", ill->ill_name)); 4470 if (nicname != NULL) 4471 kmem_free(nicname, nicnamelen); 4472 } 4473 4474 ill->ill_nic_event_info = info; 4475 4476 ill_phyint_free(ill); 4477 rw_exit(&ipst->ips_ill_g_lock); 4478 } 4479 4480 /* 4481 * allocate a ppa, if the number of plumbed interfaces of this type are 4482 * less than ill_no_arena do a linear search to find a unused ppa. 4483 * When the number goes beyond ill_no_arena switch to using an arena. 4484 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4485 * is the return value for an error condition, so allocation starts at one 4486 * and is decremented by one. 4487 */ 4488 static int 4489 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4490 { 4491 ill_t *tmp_ill; 4492 uint_t start, end; 4493 int ppa; 4494 4495 if (ifp->illif_ppa_arena == NULL && 4496 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4497 /* 4498 * Create an arena. 4499 */ 4500 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4501 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4502 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4503 /* allocate what has already been assigned */ 4504 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4505 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4506 tmp_ill, AVL_AFTER)) { 4507 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4508 1, /* size */ 4509 1, /* align/quantum */ 4510 0, /* phase */ 4511 0, /* nocross */ 4512 /* minaddr */ 4513 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4514 /* maxaddr */ 4515 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4516 VM_NOSLEEP|VM_FIRSTFIT); 4517 if (ppa == 0) { 4518 ip1dbg(("ill_alloc_ppa: ppa allocation" 4519 " failed while switching")); 4520 vmem_destroy(ifp->illif_ppa_arena); 4521 ifp->illif_ppa_arena = NULL; 4522 break; 4523 } 4524 } 4525 } 4526 4527 if (ifp->illif_ppa_arena != NULL) { 4528 if (ill->ill_ppa == UINT_MAX) { 4529 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4530 1, VM_NOSLEEP|VM_FIRSTFIT); 4531 if (ppa == 0) 4532 return (EAGAIN); 4533 ill->ill_ppa = --ppa; 4534 } else { 4535 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4536 1, /* size */ 4537 1, /* align/quantum */ 4538 0, /* phase */ 4539 0, /* nocross */ 4540 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4541 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4542 VM_NOSLEEP|VM_FIRSTFIT); 4543 /* 4544 * Most likely the allocation failed because 4545 * the requested ppa was in use. 4546 */ 4547 if (ppa == 0) 4548 return (EEXIST); 4549 } 4550 return (0); 4551 } 4552 4553 /* 4554 * No arena is in use and not enough (>ill_no_arena) interfaces have 4555 * been plumbed to create one. Do a linear search to get a unused ppa. 4556 */ 4557 if (ill->ill_ppa == UINT_MAX) { 4558 end = UINT_MAX - 1; 4559 start = 0; 4560 } else { 4561 end = start = ill->ill_ppa; 4562 } 4563 4564 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4565 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4566 if (start++ >= end) { 4567 if (ill->ill_ppa == UINT_MAX) 4568 return (EAGAIN); 4569 else 4570 return (EEXIST); 4571 } 4572 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4573 } 4574 ill->ill_ppa = start; 4575 return (0); 4576 } 4577 4578 /* 4579 * Insert ill into the list of configured ill's. Once this function completes, 4580 * the ill is globally visible and is available through lookups. More precisely 4581 * this happens after the caller drops the ill_g_lock. 4582 */ 4583 static int 4584 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4585 { 4586 ill_if_t *ill_interface; 4587 avl_index_t where = 0; 4588 int error; 4589 int name_length; 4590 int index; 4591 boolean_t check_length = B_FALSE; 4592 ip_stack_t *ipst = ill->ill_ipst; 4593 4594 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4595 4596 name_length = mi_strlen(name) + 1; 4597 4598 if (isv6) 4599 index = IP_V6_G_HEAD; 4600 else 4601 index = IP_V4_G_HEAD; 4602 4603 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4604 /* 4605 * Search for interface type based on name 4606 */ 4607 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4608 if ((ill_interface->illif_name_len == name_length) && 4609 (strcmp(ill_interface->illif_name, name) == 0)) { 4610 break; 4611 } 4612 ill_interface = ill_interface->illif_next; 4613 } 4614 4615 /* 4616 * Interface type not found, create one. 4617 */ 4618 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4619 4620 ill_g_head_t ghead; 4621 4622 /* 4623 * allocate ill_if_t structure 4624 */ 4625 4626 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4627 if (ill_interface == NULL) { 4628 return (ENOMEM); 4629 } 4630 4631 4632 4633 (void) strcpy(ill_interface->illif_name, name); 4634 ill_interface->illif_name_len = name_length; 4635 4636 avl_create(&ill_interface->illif_avl_by_ppa, 4637 ill_compare_ppa, sizeof (ill_t), 4638 offsetof(struct ill_s, ill_avl_byppa)); 4639 4640 /* 4641 * link the structure in the back to maintain order 4642 * of configuration for ifconfig output. 4643 */ 4644 ghead = ipst->ips_ill_g_heads[index]; 4645 insque(ill_interface, ghead.ill_g_list_tail); 4646 4647 } 4648 4649 if (ill->ill_ppa == UINT_MAX) 4650 check_length = B_TRUE; 4651 4652 error = ill_alloc_ppa(ill_interface, ill); 4653 if (error != 0) { 4654 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4655 ill_delete_interface_type(ill->ill_ifptr); 4656 return (error); 4657 } 4658 4659 /* 4660 * When the ppa is choosen by the system, check that there is 4661 * enough space to insert ppa. if a specific ppa was passed in this 4662 * check is not required as the interface name passed in will have 4663 * the right ppa in it. 4664 */ 4665 if (check_length) { 4666 /* 4667 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4668 */ 4669 char buf[sizeof (uint_t) * 3]; 4670 4671 /* 4672 * convert ppa to string to calculate the amount of space 4673 * required for it in the name. 4674 */ 4675 numtos(ill->ill_ppa, buf); 4676 4677 /* Do we have enough space to insert ppa ? */ 4678 4679 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4680 /* Free ppa and interface type struct */ 4681 if (ill_interface->illif_ppa_arena != NULL) { 4682 vmem_free(ill_interface->illif_ppa_arena, 4683 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4684 } 4685 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4686 0) { 4687 ill_delete_interface_type(ill->ill_ifptr); 4688 } 4689 4690 return (EINVAL); 4691 } 4692 } 4693 4694 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4695 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4696 4697 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4698 &where); 4699 ill->ill_ifptr = ill_interface; 4700 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4701 4702 ill_phyint_reinit(ill); 4703 return (0); 4704 } 4705 4706 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4707 static boolean_t 4708 ipsq_init(ill_t *ill) 4709 { 4710 ipsq_t *ipsq; 4711 4712 /* Init the ipsq and impicitly enter as writer */ 4713 ill->ill_phyint->phyint_ipsq = 4714 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4715 if (ill->ill_phyint->phyint_ipsq == NULL) 4716 return (B_FALSE); 4717 ipsq = ill->ill_phyint->phyint_ipsq; 4718 ipsq->ipsq_phyint_list = ill->ill_phyint; 4719 ill->ill_phyint->phyint_ipsq_next = NULL; 4720 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4721 ipsq->ipsq_refs = 1; 4722 ipsq->ipsq_writer = curthread; 4723 ipsq->ipsq_reentry_cnt = 1; 4724 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4725 #ifdef ILL_DEBUG 4726 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4727 #endif 4728 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4729 return (B_TRUE); 4730 } 4731 4732 /* 4733 * ill_init is called by ip_open when a device control stream is opened. 4734 * It does a few initializations, and shoots a DL_INFO_REQ message down 4735 * to the driver. The response is later picked up in ip_rput_dlpi and 4736 * used to set up default mechanisms for talking to the driver. (Always 4737 * called as writer.) 4738 * 4739 * If this function returns error, ip_open will call ip_close which in 4740 * turn will call ill_delete to clean up any memory allocated here that 4741 * is not yet freed. 4742 */ 4743 int 4744 ill_init(queue_t *q, ill_t *ill) 4745 { 4746 int count; 4747 dl_info_req_t *dlir; 4748 mblk_t *info_mp; 4749 uchar_t *frag_ptr; 4750 4751 /* 4752 * The ill is initialized to zero by mi_alloc*(). In addition 4753 * some fields already contain valid values, initialized in 4754 * ip_open(), before we reach here. 4755 */ 4756 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4757 4758 ill->ill_rq = q; 4759 ill->ill_wq = WR(q); 4760 4761 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4762 BPRI_HI); 4763 if (info_mp == NULL) 4764 return (ENOMEM); 4765 4766 /* 4767 * Allocate sufficient space to contain our fragment hash table and 4768 * the device name. 4769 */ 4770 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4771 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4772 if (frag_ptr == NULL) { 4773 freemsg(info_mp); 4774 return (ENOMEM); 4775 } 4776 ill->ill_frag_ptr = frag_ptr; 4777 ill->ill_frag_free_num_pkts = 0; 4778 ill->ill_last_frag_clean_time = 0; 4779 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4780 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4781 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4782 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4783 NULL, MUTEX_DEFAULT, NULL); 4784 } 4785 4786 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4787 if (ill->ill_phyint == NULL) { 4788 freemsg(info_mp); 4789 mi_free(frag_ptr); 4790 return (ENOMEM); 4791 } 4792 4793 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4794 /* 4795 * For now pretend this is a v4 ill. We need to set phyint_ill* 4796 * at this point because of the following reason. If we can't 4797 * enter the ipsq at some point and cv_wait, the writer that 4798 * wakes us up tries to locate us using the list of all phyints 4799 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4800 * If we don't set it now, we risk a missed wakeup. 4801 */ 4802 ill->ill_phyint->phyint_illv4 = ill; 4803 ill->ill_ppa = UINT_MAX; 4804 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4805 4806 if (!ipsq_init(ill)) { 4807 freemsg(info_mp); 4808 mi_free(frag_ptr); 4809 mi_free(ill->ill_phyint); 4810 return (ENOMEM); 4811 } 4812 4813 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4814 4815 4816 /* Frag queue limit stuff */ 4817 ill->ill_frag_count = 0; 4818 ill->ill_ipf_gen = 0; 4819 4820 ill->ill_global_timer = INFINITY; 4821 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4822 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4823 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4824 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4825 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4826 4827 /* 4828 * Initialize IPv6 configuration variables. The IP module is always 4829 * opened as an IPv4 module. Instead tracking down the cases where 4830 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4831 * here for convenience, this has no effect until the ill is set to do 4832 * IPv6. 4833 */ 4834 ill->ill_reachable_time = ND_REACHABLE_TIME; 4835 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4836 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4837 ill->ill_max_buf = ND_MAX_Q; 4838 ill->ill_refcnt = 0; 4839 4840 /* Send down the Info Request to the driver. */ 4841 info_mp->b_datap->db_type = M_PCPROTO; 4842 dlir = (dl_info_req_t *)info_mp->b_rptr; 4843 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4844 dlir->dl_primitive = DL_INFO_REQ; 4845 4846 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4847 4848 qprocson(q); 4849 ill_dlpi_send(ill, info_mp); 4850 4851 return (0); 4852 } 4853 4854 /* 4855 * ill_dls_info 4856 * creates datalink socket info from the device. 4857 */ 4858 int 4859 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4860 { 4861 size_t len; 4862 ill_t *ill = ipif->ipif_ill; 4863 4864 sdl->sdl_family = AF_LINK; 4865 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4866 sdl->sdl_type = ill->ill_type; 4867 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4868 len = strlen(sdl->sdl_data); 4869 ASSERT(len < 256); 4870 sdl->sdl_nlen = (uchar_t)len; 4871 sdl->sdl_alen = ill->ill_phys_addr_length; 4872 sdl->sdl_slen = 0; 4873 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4874 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4875 4876 return (sizeof (struct sockaddr_dl)); 4877 } 4878 4879 /* 4880 * ill_xarp_info 4881 * creates xarp info from the device. 4882 */ 4883 static int 4884 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4885 { 4886 sdl->sdl_family = AF_LINK; 4887 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4888 sdl->sdl_type = ill->ill_type; 4889 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4890 sizeof (sdl->sdl_data)); 4891 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4892 sdl->sdl_alen = ill->ill_phys_addr_length; 4893 sdl->sdl_slen = 0; 4894 return (sdl->sdl_nlen); 4895 } 4896 4897 static int 4898 loopback_kstat_update(kstat_t *ksp, int rw) 4899 { 4900 kstat_named_t *kn; 4901 netstackid_t stackid; 4902 netstack_t *ns; 4903 ip_stack_t *ipst; 4904 4905 if (ksp == NULL || ksp->ks_data == NULL) 4906 return (EIO); 4907 4908 if (rw == KSTAT_WRITE) 4909 return (EACCES); 4910 4911 kn = KSTAT_NAMED_PTR(ksp); 4912 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4913 4914 ns = netstack_find_by_stackid(stackid); 4915 if (ns == NULL) 4916 return (-1); 4917 4918 ipst = ns->netstack_ip; 4919 if (ipst == NULL) { 4920 netstack_rele(ns); 4921 return (-1); 4922 } 4923 kn[0].value.ui32 = ipst->ips_loopback_packets; 4924 kn[1].value.ui32 = ipst->ips_loopback_packets; 4925 netstack_rele(ns); 4926 return (0); 4927 } 4928 4929 4930 /* 4931 * Has ifindex been plumbed already. 4932 * Compares both phyint_ifindex and phyint_group_ifindex. 4933 */ 4934 static boolean_t 4935 phyint_exists(uint_t index, ip_stack_t *ipst) 4936 { 4937 phyint_t *phyi; 4938 4939 ASSERT(index != 0); 4940 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4941 /* 4942 * Indexes are stored in the phyint - a common structure 4943 * to both IPv4 and IPv6. 4944 */ 4945 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4946 for (; phyi != NULL; 4947 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4948 phyi, AVL_AFTER)) { 4949 if (phyi->phyint_ifindex == index || 4950 phyi->phyint_group_ifindex == index) 4951 return (B_TRUE); 4952 } 4953 return (B_FALSE); 4954 } 4955 4956 /* Pick a unique ifindex */ 4957 boolean_t 4958 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4959 { 4960 uint_t starting_index; 4961 4962 if (!ipst->ips_ill_index_wrap) { 4963 *indexp = ipst->ips_ill_index++; 4964 if (ipst->ips_ill_index == 0) { 4965 /* Reached the uint_t limit Next time wrap */ 4966 ipst->ips_ill_index_wrap = B_TRUE; 4967 } 4968 return (B_TRUE); 4969 } 4970 4971 /* 4972 * Start reusing unused indexes. Note that we hold the ill_g_lock 4973 * at this point and don't want to call any function that attempts 4974 * to get the lock again. 4975 */ 4976 starting_index = ipst->ips_ill_index++; 4977 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4978 if (ipst->ips_ill_index != 0 && 4979 !phyint_exists(ipst->ips_ill_index, ipst)) { 4980 /* found unused index - use it */ 4981 *indexp = ipst->ips_ill_index; 4982 return (B_TRUE); 4983 } 4984 } 4985 4986 /* 4987 * all interface indicies are inuse. 4988 */ 4989 return (B_FALSE); 4990 } 4991 4992 /* 4993 * Assign a unique interface index for the phyint. 4994 */ 4995 static boolean_t 4996 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4997 { 4998 ASSERT(phyi->phyint_ifindex == 0); 4999 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 5000 } 5001 5002 /* 5003 * Return a pointer to the ill which matches the supplied name. Note that 5004 * the ill name length includes the null termination character. (May be 5005 * called as writer.) 5006 * If do_alloc and the interface is "lo0" it will be automatically created. 5007 * Cannot bump up reference on condemned ills. So dup detect can't be done 5008 * using this func. 5009 */ 5010 ill_t * 5011 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5012 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5013 ip_stack_t *ipst) 5014 { 5015 ill_t *ill; 5016 ipif_t *ipif; 5017 kstat_named_t *kn; 5018 boolean_t isloopback; 5019 ipsq_t *old_ipsq; 5020 in6_addr_t ov6addr; 5021 5022 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5023 5024 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5025 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5026 rw_exit(&ipst->ips_ill_g_lock); 5027 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5028 return (ill); 5029 5030 /* 5031 * Couldn't find it. Does this happen to be a lookup for the 5032 * loopback device and are we allowed to allocate it? 5033 */ 5034 if (!isloopback || !do_alloc) 5035 return (NULL); 5036 5037 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5038 5039 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5040 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5041 rw_exit(&ipst->ips_ill_g_lock); 5042 return (ill); 5043 } 5044 5045 /* Create the loopback device on demand */ 5046 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5047 sizeof (ipif_loopback_name), BPRI_MED)); 5048 if (ill == NULL) 5049 goto done; 5050 5051 *ill = ill_null; 5052 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5053 ill->ill_ipst = ipst; 5054 netstack_hold(ipst->ips_netstack); 5055 /* 5056 * For exclusive stacks we set the zoneid to zero 5057 * to make IP operate as if in the global zone. 5058 */ 5059 ill->ill_zoneid = GLOBAL_ZONEID; 5060 5061 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5062 if (ill->ill_phyint == NULL) 5063 goto done; 5064 5065 if (isv6) 5066 ill->ill_phyint->phyint_illv6 = ill; 5067 else 5068 ill->ill_phyint->phyint_illv4 = ill; 5069 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5070 ill->ill_max_frag = IP_LOOPBACK_MTU; 5071 /* Add room for tcp+ip headers */ 5072 if (isv6) { 5073 ill->ill_isv6 = B_TRUE; 5074 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5075 } else { 5076 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5077 } 5078 if (!ill_allocate_mibs(ill)) 5079 goto done; 5080 ill->ill_max_mtu = ill->ill_max_frag; 5081 /* 5082 * ipif_loopback_name can't be pointed at directly because its used 5083 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5084 * from the glist, ill_glist_delete() sets the first character of 5085 * ill_name to '\0'. 5086 */ 5087 ill->ill_name = (char *)ill + sizeof (*ill); 5088 (void) strcpy(ill->ill_name, ipif_loopback_name); 5089 ill->ill_name_length = sizeof (ipif_loopback_name); 5090 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5091 5092 ill->ill_global_timer = INFINITY; 5093 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5094 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5095 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5096 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5097 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5098 5099 /* No resolver here. */ 5100 ill->ill_net_type = IRE_LOOPBACK; 5101 5102 /* Initialize the ipsq */ 5103 if (!ipsq_init(ill)) 5104 goto done; 5105 5106 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5107 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5108 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5109 #ifdef ILL_DEBUG 5110 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5111 #endif 5112 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5113 if (ipif == NULL) 5114 goto done; 5115 5116 ill->ill_flags = ILLF_MULTICAST; 5117 5118 ov6addr = ipif->ipif_v6lcl_addr; 5119 /* Set up default loopback address and mask. */ 5120 if (!isv6) { 5121 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5122 5123 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5124 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5125 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5126 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5127 ipif->ipif_v6subnet); 5128 ill->ill_flags |= ILLF_IPV4; 5129 } else { 5130 ipif->ipif_v6lcl_addr = ipv6_loopback; 5131 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5132 ipif->ipif_v6net_mask = ipv6_all_ones; 5133 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5134 ipif->ipif_v6subnet); 5135 ill->ill_flags |= ILLF_IPV6; 5136 } 5137 5138 /* 5139 * Chain us in at the end of the ill list. hold the ill 5140 * before we make it globally visible. 1 for the lookup. 5141 */ 5142 ill->ill_refcnt = 0; 5143 ill_refhold(ill); 5144 5145 ill->ill_frag_count = 0; 5146 ill->ill_frag_free_num_pkts = 0; 5147 ill->ill_last_frag_clean_time = 0; 5148 5149 old_ipsq = ill->ill_phyint->phyint_ipsq; 5150 5151 if (ill_glist_insert(ill, "lo", isv6) != 0) 5152 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5153 5154 /* Let SCTP know so that it can add this to its list */ 5155 sctp_update_ill(ill, SCTP_ILL_INSERT); 5156 5157 /* 5158 * We have already assigned ipif_v6lcl_addr above, but we need to 5159 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5160 * requires to be after ill_glist_insert() since we need the 5161 * ill_index set. Pass on ipv6_loopback as the old address. 5162 */ 5163 sctp_update_ipif_addr(ipif, ov6addr); 5164 5165 /* 5166 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5167 */ 5168 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5169 /* Loopback ills aren't in any IPMP group */ 5170 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5171 ipsq_delete(old_ipsq); 5172 } 5173 5174 /* 5175 * Delay this till the ipif is allocated as ipif_allocate 5176 * de-references ill_phyint for getting the ifindex. We 5177 * can't do this before ipif_allocate because ill_phyint_reinit 5178 * -> phyint_assign_ifindex expects ipif to be present. 5179 */ 5180 mutex_enter(&ill->ill_phyint->phyint_lock); 5181 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5182 mutex_exit(&ill->ill_phyint->phyint_lock); 5183 5184 if (ipst->ips_loopback_ksp == NULL) { 5185 /* Export loopback interface statistics */ 5186 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5187 ipif_loopback_name, "net", 5188 KSTAT_TYPE_NAMED, 2, 0, 5189 ipst->ips_netstack->netstack_stackid); 5190 if (ipst->ips_loopback_ksp != NULL) { 5191 ipst->ips_loopback_ksp->ks_update = 5192 loopback_kstat_update; 5193 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5194 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5195 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5196 ipst->ips_loopback_ksp->ks_private = 5197 (void *)(uintptr_t)ipst->ips_netstack-> 5198 netstack_stackid; 5199 kstat_install(ipst->ips_loopback_ksp); 5200 } 5201 } 5202 5203 if (error != NULL) 5204 *error = 0; 5205 *did_alloc = B_TRUE; 5206 rw_exit(&ipst->ips_ill_g_lock); 5207 return (ill); 5208 done: 5209 if (ill != NULL) { 5210 if (ill->ill_phyint != NULL) { 5211 ipsq_t *ipsq; 5212 5213 ipsq = ill->ill_phyint->phyint_ipsq; 5214 if (ipsq != NULL) { 5215 ipsq->ipsq_ipst = NULL; 5216 kmem_free(ipsq, sizeof (ipsq_t)); 5217 } 5218 mi_free(ill->ill_phyint); 5219 } 5220 ill_free_mib(ill); 5221 if (ill->ill_ipst != NULL) 5222 netstack_rele(ill->ill_ipst->ips_netstack); 5223 mi_free(ill); 5224 } 5225 rw_exit(&ipst->ips_ill_g_lock); 5226 if (error != NULL) 5227 *error = ENOMEM; 5228 return (NULL); 5229 } 5230 5231 /* 5232 * For IPP calls - use the ip_stack_t for global stack. 5233 */ 5234 ill_t * 5235 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5236 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5237 { 5238 ip_stack_t *ipst; 5239 ill_t *ill; 5240 5241 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5242 if (ipst == NULL) { 5243 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5244 return (NULL); 5245 } 5246 5247 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5248 netstack_rele(ipst->ips_netstack); 5249 return (ill); 5250 } 5251 5252 /* 5253 * Return a pointer to the ill which matches the index and IP version type. 5254 */ 5255 ill_t * 5256 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5257 ipsq_func_t func, int *err, ip_stack_t *ipst) 5258 { 5259 ill_t *ill; 5260 ipsq_t *ipsq; 5261 phyint_t *phyi; 5262 5263 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5264 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5265 5266 if (err != NULL) 5267 *err = 0; 5268 5269 /* 5270 * Indexes are stored in the phyint - a common structure 5271 * to both IPv4 and IPv6. 5272 */ 5273 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5274 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5275 (void *) &index, NULL); 5276 if (phyi != NULL) { 5277 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5278 if (ill != NULL) { 5279 /* 5280 * The block comment at the start of ipif_down 5281 * explains the use of the macros used below 5282 */ 5283 GRAB_CONN_LOCK(q); 5284 mutex_enter(&ill->ill_lock); 5285 if (ILL_CAN_LOOKUP(ill)) { 5286 ill_refhold_locked(ill); 5287 mutex_exit(&ill->ill_lock); 5288 RELEASE_CONN_LOCK(q); 5289 rw_exit(&ipst->ips_ill_g_lock); 5290 return (ill); 5291 } else if (ILL_CAN_WAIT(ill, q)) { 5292 ipsq = ill->ill_phyint->phyint_ipsq; 5293 mutex_enter(&ipsq->ipsq_lock); 5294 rw_exit(&ipst->ips_ill_g_lock); 5295 mutex_exit(&ill->ill_lock); 5296 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5297 mutex_exit(&ipsq->ipsq_lock); 5298 RELEASE_CONN_LOCK(q); 5299 *err = EINPROGRESS; 5300 return (NULL); 5301 } 5302 RELEASE_CONN_LOCK(q); 5303 mutex_exit(&ill->ill_lock); 5304 } 5305 } 5306 rw_exit(&ipst->ips_ill_g_lock); 5307 if (err != NULL) 5308 *err = ENXIO; 5309 return (NULL); 5310 } 5311 5312 /* 5313 * Return the ifindex next in sequence after the passed in ifindex. 5314 * If there is no next ifindex for the given protocol, return 0. 5315 */ 5316 uint_t 5317 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5318 { 5319 phyint_t *phyi; 5320 phyint_t *phyi_initial; 5321 uint_t ifindex; 5322 5323 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5324 5325 if (index == 0) { 5326 phyi = avl_first( 5327 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5328 } else { 5329 phyi = phyi_initial = avl_find( 5330 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5331 (void *) &index, NULL); 5332 } 5333 5334 for (; phyi != NULL; 5335 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5336 phyi, AVL_AFTER)) { 5337 /* 5338 * If we're not returning the first interface in the tree 5339 * and we still haven't moved past the phyint_t that 5340 * corresponds to index, avl_walk needs to be called again 5341 */ 5342 if (!((index != 0) && (phyi == phyi_initial))) { 5343 if (isv6) { 5344 if ((phyi->phyint_illv6) && 5345 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5346 (phyi->phyint_illv6->ill_isv6 == 1)) 5347 break; 5348 } else { 5349 if ((phyi->phyint_illv4) && 5350 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5351 (phyi->phyint_illv4->ill_isv6 == 0)) 5352 break; 5353 } 5354 } 5355 } 5356 5357 rw_exit(&ipst->ips_ill_g_lock); 5358 5359 if (phyi != NULL) 5360 ifindex = phyi->phyint_ifindex; 5361 else 5362 ifindex = 0; 5363 5364 return (ifindex); 5365 } 5366 5367 5368 /* 5369 * Return the ifindex for the named interface. 5370 * If there is no next ifindex for the interface, return 0. 5371 */ 5372 uint_t 5373 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5374 { 5375 phyint_t *phyi; 5376 avl_index_t where = 0; 5377 uint_t ifindex; 5378 5379 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5380 5381 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5382 name, &where)) == NULL) { 5383 rw_exit(&ipst->ips_ill_g_lock); 5384 return (0); 5385 } 5386 5387 ifindex = phyi->phyint_ifindex; 5388 5389 rw_exit(&ipst->ips_ill_g_lock); 5390 5391 return (ifindex); 5392 } 5393 5394 5395 /* 5396 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5397 * that gives a running thread a reference to the ill. This reference must be 5398 * released by the thread when it is done accessing the ill and related 5399 * objects. ill_refcnt can not be used to account for static references 5400 * such as other structures pointing to an ill. Callers must generally 5401 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5402 * or be sure that the ill is not being deleted or changing state before 5403 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5404 * ill won't change any of its critical state such as address, netmask etc. 5405 */ 5406 void 5407 ill_refhold(ill_t *ill) 5408 { 5409 mutex_enter(&ill->ill_lock); 5410 ill->ill_refcnt++; 5411 ILL_TRACE_REF(ill); 5412 mutex_exit(&ill->ill_lock); 5413 } 5414 5415 void 5416 ill_refhold_locked(ill_t *ill) 5417 { 5418 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5419 ill->ill_refcnt++; 5420 ILL_TRACE_REF(ill); 5421 } 5422 5423 int 5424 ill_check_and_refhold(ill_t *ill) 5425 { 5426 mutex_enter(&ill->ill_lock); 5427 if (ILL_CAN_LOOKUP(ill)) { 5428 ill_refhold_locked(ill); 5429 mutex_exit(&ill->ill_lock); 5430 return (0); 5431 } 5432 mutex_exit(&ill->ill_lock); 5433 return (ILL_LOOKUP_FAILED); 5434 } 5435 5436 /* 5437 * Must not be called while holding any locks. Otherwise if this is 5438 * the last reference to be released, there is a chance of recursive mutex 5439 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5440 * to restart an ioctl. 5441 */ 5442 void 5443 ill_refrele(ill_t *ill) 5444 { 5445 mutex_enter(&ill->ill_lock); 5446 ASSERT(ill->ill_refcnt != 0); 5447 ill->ill_refcnt--; 5448 ILL_UNTRACE_REF(ill); 5449 if (ill->ill_refcnt != 0) { 5450 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5451 mutex_exit(&ill->ill_lock); 5452 return; 5453 } 5454 5455 /* Drops the ill_lock */ 5456 ipif_ill_refrele_tail(ill); 5457 } 5458 5459 /* 5460 * Obtain a weak reference count on the ill. This reference ensures the 5461 * ill won't be freed, but the ill may change any of its critical state 5462 * such as netmask, address etc. Returns an error if the ill has started 5463 * closing. 5464 */ 5465 boolean_t 5466 ill_waiter_inc(ill_t *ill) 5467 { 5468 mutex_enter(&ill->ill_lock); 5469 if (ill->ill_state_flags & ILL_CONDEMNED) { 5470 mutex_exit(&ill->ill_lock); 5471 return (B_FALSE); 5472 } 5473 ill->ill_waiters++; 5474 mutex_exit(&ill->ill_lock); 5475 return (B_TRUE); 5476 } 5477 5478 void 5479 ill_waiter_dcr(ill_t *ill) 5480 { 5481 mutex_enter(&ill->ill_lock); 5482 ill->ill_waiters--; 5483 if (ill->ill_waiters == 0) 5484 cv_broadcast(&ill->ill_cv); 5485 mutex_exit(&ill->ill_lock); 5486 } 5487 5488 /* 5489 * Named Dispatch routine to produce a formatted report on all ILLs. 5490 * This report is accessed by using the ndd utility to "get" ND variable 5491 * "ip_ill_status". 5492 */ 5493 /* ARGSUSED */ 5494 int 5495 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5496 { 5497 ill_t *ill; 5498 ill_walk_context_t ctx; 5499 ip_stack_t *ipst; 5500 5501 ipst = CONNQ_TO_IPST(q); 5502 5503 (void) mi_mpprintf(mp, 5504 "ILL " MI_COL_HDRPAD_STR 5505 /* 01234567[89ABCDEF] */ 5506 "rq " MI_COL_HDRPAD_STR 5507 /* 01234567[89ABCDEF] */ 5508 "wq " MI_COL_HDRPAD_STR 5509 /* 01234567[89ABCDEF] */ 5510 "upcnt mxfrg err name"); 5511 /* 12345 12345 123 xxxxxxxx */ 5512 5513 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5514 ill = ILL_START_WALK_ALL(&ctx, ipst); 5515 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5516 (void) mi_mpprintf(mp, 5517 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5518 "%05u %05u %03d %s", 5519 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5520 ill->ill_ipif_up_count, 5521 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5522 } 5523 rw_exit(&ipst->ips_ill_g_lock); 5524 5525 return (0); 5526 } 5527 5528 /* 5529 * Named Dispatch routine to produce a formatted report on all IPIFs. 5530 * This report is accessed by using the ndd utility to "get" ND variable 5531 * "ip_ipif_status". 5532 */ 5533 /* ARGSUSED */ 5534 int 5535 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5536 { 5537 char buf1[INET6_ADDRSTRLEN]; 5538 char buf2[INET6_ADDRSTRLEN]; 5539 char buf3[INET6_ADDRSTRLEN]; 5540 char buf4[INET6_ADDRSTRLEN]; 5541 char buf5[INET6_ADDRSTRLEN]; 5542 char buf6[INET6_ADDRSTRLEN]; 5543 char buf[LIFNAMSIZ]; 5544 ill_t *ill; 5545 ipif_t *ipif; 5546 nv_t *nvp; 5547 uint64_t flags; 5548 zoneid_t zoneid; 5549 ill_walk_context_t ctx; 5550 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5551 5552 (void) mi_mpprintf(mp, 5553 "IPIF metric mtu in/out/forward name zone flags...\n" 5554 "\tlocal address\n" 5555 "\tsrc address\n" 5556 "\tsubnet\n" 5557 "\tmask\n" 5558 "\tbroadcast\n" 5559 "\tp-p-dst"); 5560 5561 ASSERT(q->q_next == NULL); 5562 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5563 5564 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5565 ill = ILL_START_WALK_ALL(&ctx, ipst); 5566 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5567 for (ipif = ill->ill_ipif; ipif != NULL; 5568 ipif = ipif->ipif_next) { 5569 if (zoneid != GLOBAL_ZONEID && 5570 zoneid != ipif->ipif_zoneid && 5571 ipif->ipif_zoneid != ALL_ZONES) 5572 continue; 5573 (void) mi_mpprintf(mp, 5574 MI_COL_PTRFMT_STR 5575 "%04u %05u %u/%u/%u %s %d", 5576 (void *)ipif, 5577 ipif->ipif_metric, ipif->ipif_mtu, 5578 ipif->ipif_ib_pkt_count, 5579 ipif->ipif_ob_pkt_count, 5580 ipif->ipif_fo_pkt_count, 5581 ipif_get_name(ipif, buf, sizeof (buf)), 5582 ipif->ipif_zoneid); 5583 5584 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5585 ipif->ipif_ill->ill_phyint->phyint_flags; 5586 5587 /* Tack on text strings for any flags. */ 5588 nvp = ipif_nv_tbl; 5589 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5590 if (nvp->nv_value & flags) 5591 (void) mi_mpprintf_nr(mp, " %s", 5592 nvp->nv_name); 5593 } 5594 (void) mi_mpprintf(mp, 5595 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5596 inet_ntop(AF_INET6, 5597 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5598 inet_ntop(AF_INET6, 5599 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5600 inet_ntop(AF_INET6, 5601 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5602 inet_ntop(AF_INET6, 5603 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5604 inet_ntop(AF_INET6, 5605 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5606 inet_ntop(AF_INET6, 5607 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5608 } 5609 } 5610 rw_exit(&ipst->ips_ill_g_lock); 5611 return (0); 5612 } 5613 5614 /* 5615 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5616 * driver. We construct best guess defaults for lower level information that 5617 * we need. If an interface is brought up without injection of any overriding 5618 * information from outside, we have to be ready to go with these defaults. 5619 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5620 * we primarely want the dl_provider_style. 5621 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5622 * at which point we assume the other part of the information is valid. 5623 */ 5624 void 5625 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5626 { 5627 uchar_t *brdcst_addr; 5628 uint_t brdcst_addr_length, phys_addr_length; 5629 t_scalar_t sap_length; 5630 dl_info_ack_t *dlia; 5631 ip_m_t *ipm; 5632 dl_qos_cl_sel1_t *sel1; 5633 5634 ASSERT(IAM_WRITER_ILL(ill)); 5635 5636 /* 5637 * Till the ill is fully up ILL_CHANGING will be set and 5638 * the ill is not globally visible. So no need for a lock. 5639 */ 5640 dlia = (dl_info_ack_t *)mp->b_rptr; 5641 ill->ill_mactype = dlia->dl_mac_type; 5642 5643 ipm = ip_m_lookup(dlia->dl_mac_type); 5644 if (ipm == NULL) { 5645 ipm = ip_m_lookup(DL_OTHER); 5646 ASSERT(ipm != NULL); 5647 } 5648 ill->ill_media = ipm; 5649 5650 /* 5651 * When the new DLPI stuff is ready we'll pull lengths 5652 * from dlia. 5653 */ 5654 if (dlia->dl_version == DL_VERSION_2) { 5655 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5656 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5657 brdcst_addr_length); 5658 if (brdcst_addr == NULL) { 5659 brdcst_addr_length = 0; 5660 } 5661 sap_length = dlia->dl_sap_length; 5662 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5663 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5664 brdcst_addr_length, sap_length, phys_addr_length)); 5665 } else { 5666 brdcst_addr_length = 6; 5667 brdcst_addr = ip_six_byte_all_ones; 5668 sap_length = -2; 5669 phys_addr_length = brdcst_addr_length; 5670 } 5671 5672 ill->ill_bcast_addr_length = brdcst_addr_length; 5673 ill->ill_phys_addr_length = phys_addr_length; 5674 ill->ill_sap_length = sap_length; 5675 ill->ill_max_frag = dlia->dl_max_sdu; 5676 ill->ill_max_mtu = ill->ill_max_frag; 5677 5678 ill->ill_type = ipm->ip_m_type; 5679 5680 if (!ill->ill_dlpi_style_set) { 5681 if (dlia->dl_provider_style == DL_STYLE2) 5682 ill->ill_needs_attach = 1; 5683 5684 /* 5685 * Allocate the first ipif on this ill. We don't delay it 5686 * further as ioctl handling assumes atleast one ipif to 5687 * be present. 5688 * 5689 * At this point we don't know whether the ill is v4 or v6. 5690 * We will know this whan the SIOCSLIFNAME happens and 5691 * the correct value for ill_isv6 will be assigned in 5692 * ipif_set_values(). We need to hold the ill lock and 5693 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5694 * the wakeup. 5695 */ 5696 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5697 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5698 mutex_enter(&ill->ill_lock); 5699 ASSERT(ill->ill_dlpi_style_set == 0); 5700 ill->ill_dlpi_style_set = 1; 5701 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5702 cv_broadcast(&ill->ill_cv); 5703 mutex_exit(&ill->ill_lock); 5704 freemsg(mp); 5705 return; 5706 } 5707 ASSERT(ill->ill_ipif != NULL); 5708 /* 5709 * We know whether it is IPv4 or IPv6 now, as this is the 5710 * second DL_INFO_ACK we are recieving in response to the 5711 * DL_INFO_REQ sent in ipif_set_values. 5712 */ 5713 if (ill->ill_isv6) 5714 ill->ill_sap = IP6_DL_SAP; 5715 else 5716 ill->ill_sap = IP_DL_SAP; 5717 /* 5718 * Set ipif_mtu which is used to set the IRE's 5719 * ire_max_frag value. The driver could have sent 5720 * a different mtu from what it sent last time. No 5721 * need to call ipif_mtu_change because IREs have 5722 * not yet been created. 5723 */ 5724 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5725 /* 5726 * Clear all the flags that were set based on ill_bcast_addr_length 5727 * and ill_phys_addr_length (in ipif_set_values) as these could have 5728 * changed now and we need to re-evaluate. 5729 */ 5730 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5731 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5732 5733 /* 5734 * Free ill_resolver_mp and ill_bcast_mp as things could have 5735 * changed now. 5736 */ 5737 if (ill->ill_bcast_addr_length == 0) { 5738 if (ill->ill_resolver_mp != NULL) 5739 freemsg(ill->ill_resolver_mp); 5740 if (ill->ill_bcast_mp != NULL) 5741 freemsg(ill->ill_bcast_mp); 5742 if (ill->ill_flags & ILLF_XRESOLV) 5743 ill->ill_net_type = IRE_IF_RESOLVER; 5744 else 5745 ill->ill_net_type = IRE_IF_NORESOLVER; 5746 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5747 ill->ill_phys_addr_length, 5748 ill->ill_sap, 5749 ill->ill_sap_length); 5750 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5751 5752 if (ill->ill_isv6) 5753 /* 5754 * Note: xresolv interfaces will eventually need NOARP 5755 * set here as well, but that will require those 5756 * external resolvers to have some knowledge of 5757 * that flag and act appropriately. Not to be changed 5758 * at present. 5759 */ 5760 ill->ill_flags |= ILLF_NONUD; 5761 else 5762 ill->ill_flags |= ILLF_NOARP; 5763 5764 if (ill->ill_phys_addr_length == 0) { 5765 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5766 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5767 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5768 } else { 5769 /* pt-pt supports multicast. */ 5770 ill->ill_flags |= ILLF_MULTICAST; 5771 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5772 } 5773 } 5774 } else { 5775 ill->ill_net_type = IRE_IF_RESOLVER; 5776 if (ill->ill_bcast_mp != NULL) 5777 freemsg(ill->ill_bcast_mp); 5778 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5779 ill->ill_bcast_addr_length, ill->ill_sap, 5780 ill->ill_sap_length); 5781 /* 5782 * Later detect lack of DLPI driver multicast 5783 * capability by catching DL_ENABMULTI errors in 5784 * ip_rput_dlpi. 5785 */ 5786 ill->ill_flags |= ILLF_MULTICAST; 5787 if (!ill->ill_isv6) 5788 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5789 } 5790 /* By default an interface does not support any CoS marking */ 5791 ill->ill_flags &= ~ILLF_COS_ENABLED; 5792 5793 /* 5794 * If we get QoS information in DL_INFO_ACK, the device supports 5795 * some form of CoS marking, set ILLF_COS_ENABLED. 5796 */ 5797 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5798 dlia->dl_qos_length); 5799 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5800 ill->ill_flags |= ILLF_COS_ENABLED; 5801 } 5802 5803 /* Clear any previous error indication. */ 5804 ill->ill_error = 0; 5805 freemsg(mp); 5806 } 5807 5808 /* 5809 * Perform various checks to verify that an address would make sense as a 5810 * local, remote, or subnet interface address. 5811 */ 5812 static boolean_t 5813 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5814 { 5815 ipaddr_t net_mask; 5816 5817 /* 5818 * Don't allow all zeroes, all ones or experimental address, but allow 5819 * all ones netmask. 5820 */ 5821 if ((net_mask = ip_net_mask(addr)) == 0) 5822 return (B_FALSE); 5823 /* A given netmask overrides the "guess" netmask */ 5824 if (subnet_mask != 0) 5825 net_mask = subnet_mask; 5826 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5827 (addr == (addr | ~net_mask)))) { 5828 return (B_FALSE); 5829 } 5830 if (CLASSD(addr)) 5831 return (B_FALSE); 5832 5833 return (B_TRUE); 5834 } 5835 5836 #define V6_IPIF_LINKLOCAL(p) \ 5837 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5838 5839 /* 5840 * Compare two given ipifs and check if the second one is better than 5841 * the first one using the order of preference (not taking deprecated 5842 * into acount) specified in ipif_lookup_multicast(). 5843 */ 5844 static boolean_t 5845 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5846 { 5847 /* Check the least preferred first. */ 5848 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5849 /* If both ipifs are the same, use the first one. */ 5850 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5851 return (B_FALSE); 5852 else 5853 return (B_TRUE); 5854 } 5855 5856 /* For IPv6, check for link local address. */ 5857 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5858 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5859 V6_IPIF_LINKLOCAL(new_ipif)) { 5860 /* The second one is equal or less preferred. */ 5861 return (B_FALSE); 5862 } else { 5863 return (B_TRUE); 5864 } 5865 } 5866 5867 /* Then check for point to point interface. */ 5868 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5869 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5870 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5871 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5872 return (B_FALSE); 5873 } else { 5874 return (B_TRUE); 5875 } 5876 } 5877 5878 /* old_ipif is a normal interface, so no need to use the new one. */ 5879 return (B_FALSE); 5880 } 5881 5882 /* 5883 * Find any non-virtual, not condemned, and up multicast capable interface 5884 * given an IP instance and zoneid. Order of preference is: 5885 * 5886 * 1. normal 5887 * 1.1 normal, but deprecated 5888 * 2. point to point 5889 * 2.1 point to point, but deprecated 5890 * 3. link local 5891 * 3.1 link local, but deprecated 5892 * 4. loopback. 5893 */ 5894 ipif_t * 5895 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5896 { 5897 ill_t *ill; 5898 ill_walk_context_t ctx; 5899 ipif_t *ipif; 5900 ipif_t *saved_ipif = NULL; 5901 ipif_t *dep_ipif = NULL; 5902 5903 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5904 if (isv6) 5905 ill = ILL_START_WALK_V6(&ctx, ipst); 5906 else 5907 ill = ILL_START_WALK_V4(&ctx, ipst); 5908 5909 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5910 mutex_enter(&ill->ill_lock); 5911 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5912 !(ill->ill_flags & ILLF_MULTICAST)) { 5913 mutex_exit(&ill->ill_lock); 5914 continue; 5915 } 5916 for (ipif = ill->ill_ipif; ipif != NULL; 5917 ipif = ipif->ipif_next) { 5918 if (zoneid != ipif->ipif_zoneid && 5919 zoneid != ALL_ZONES && 5920 ipif->ipif_zoneid != ALL_ZONES) { 5921 continue; 5922 } 5923 if (!(ipif->ipif_flags & IPIF_UP) || 5924 !IPIF_CAN_LOOKUP(ipif)) { 5925 continue; 5926 } 5927 5928 /* 5929 * Found one candidate. If it is deprecated, 5930 * remember it in dep_ipif. If it is not deprecated, 5931 * remember it in saved_ipif. 5932 */ 5933 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5934 if (dep_ipif == NULL) { 5935 dep_ipif = ipif; 5936 } else if (ipif_comp_multi(dep_ipif, ipif, 5937 isv6)) { 5938 /* 5939 * If the previous dep_ipif does not 5940 * belong to the same ill, we've done 5941 * a ipif_refhold() on it. So we need 5942 * to release it. 5943 */ 5944 if (dep_ipif->ipif_ill != ill) 5945 ipif_refrele(dep_ipif); 5946 dep_ipif = ipif; 5947 } 5948 continue; 5949 } 5950 if (saved_ipif == NULL) { 5951 saved_ipif = ipif; 5952 } else { 5953 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5954 if (saved_ipif->ipif_ill != ill) 5955 ipif_refrele(saved_ipif); 5956 saved_ipif = ipif; 5957 } 5958 } 5959 } 5960 /* 5961 * Before going to the next ill, do a ipif_refhold() on the 5962 * saved ones. 5963 */ 5964 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5965 ipif_refhold_locked(saved_ipif); 5966 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5967 ipif_refhold_locked(dep_ipif); 5968 mutex_exit(&ill->ill_lock); 5969 } 5970 rw_exit(&ipst->ips_ill_g_lock); 5971 5972 /* 5973 * If we have only the saved_ipif, return it. But if we have both 5974 * saved_ipif and dep_ipif, check to see which one is better. 5975 */ 5976 if (saved_ipif != NULL) { 5977 if (dep_ipif != NULL) { 5978 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5979 ipif_refrele(saved_ipif); 5980 return (dep_ipif); 5981 } else { 5982 ipif_refrele(dep_ipif); 5983 return (saved_ipif); 5984 } 5985 } 5986 return (saved_ipif); 5987 } else { 5988 return (dep_ipif); 5989 } 5990 } 5991 5992 /* 5993 * This function is called when an application does not specify an interface 5994 * to be used for multicast traffic (joining a group/sending data). It 5995 * calls ire_lookup_multi() to look for an interface route for the 5996 * specified multicast group. Doing this allows the administrator to add 5997 * prefix routes for multicast to indicate which interface to be used for 5998 * multicast traffic in the above scenario. The route could be for all 5999 * multicast (224.0/4), for a single multicast group (a /32 route) or 6000 * anything in between. If there is no such multicast route, we just find 6001 * any multicast capable interface and return it. The returned ipif 6002 * is refhold'ed. 6003 */ 6004 ipif_t * 6005 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 6006 { 6007 ire_t *ire; 6008 ipif_t *ipif; 6009 6010 ire = ire_lookup_multi(group, zoneid, ipst); 6011 if (ire != NULL) { 6012 ipif = ire->ire_ipif; 6013 ipif_refhold(ipif); 6014 ire_refrele(ire); 6015 return (ipif); 6016 } 6017 6018 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 6019 } 6020 6021 /* 6022 * Look for an ipif with the specified interface address and destination. 6023 * The destination address is used only for matching point-to-point interfaces. 6024 */ 6025 ipif_t * 6026 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 6027 ipsq_func_t func, int *error, ip_stack_t *ipst) 6028 { 6029 ipif_t *ipif; 6030 ill_t *ill; 6031 ill_walk_context_t ctx; 6032 ipsq_t *ipsq; 6033 6034 if (error != NULL) 6035 *error = 0; 6036 6037 /* 6038 * First match all the point-to-point interfaces 6039 * before looking at non-point-to-point interfaces. 6040 * This is done to avoid returning non-point-to-point 6041 * ipif instead of unnumbered point-to-point ipif. 6042 */ 6043 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6044 ill = ILL_START_WALK_V4(&ctx, ipst); 6045 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6046 GRAB_CONN_LOCK(q); 6047 mutex_enter(&ill->ill_lock); 6048 for (ipif = ill->ill_ipif; ipif != NULL; 6049 ipif = ipif->ipif_next) { 6050 /* Allow the ipif to be down */ 6051 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 6052 (ipif->ipif_lcl_addr == if_addr) && 6053 (ipif->ipif_pp_dst_addr == dst)) { 6054 /* 6055 * The block comment at the start of ipif_down 6056 * explains the use of the macros used below 6057 */ 6058 if (IPIF_CAN_LOOKUP(ipif)) { 6059 ipif_refhold_locked(ipif); 6060 mutex_exit(&ill->ill_lock); 6061 RELEASE_CONN_LOCK(q); 6062 rw_exit(&ipst->ips_ill_g_lock); 6063 return (ipif); 6064 } else if (IPIF_CAN_WAIT(ipif, q)) { 6065 ipsq = ill->ill_phyint->phyint_ipsq; 6066 mutex_enter(&ipsq->ipsq_lock); 6067 mutex_exit(&ill->ill_lock); 6068 rw_exit(&ipst->ips_ill_g_lock); 6069 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6070 ill); 6071 mutex_exit(&ipsq->ipsq_lock); 6072 RELEASE_CONN_LOCK(q); 6073 *error = EINPROGRESS; 6074 return (NULL); 6075 } 6076 } 6077 } 6078 mutex_exit(&ill->ill_lock); 6079 RELEASE_CONN_LOCK(q); 6080 } 6081 rw_exit(&ipst->ips_ill_g_lock); 6082 6083 /* lookup the ipif based on interface address */ 6084 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6085 ipst); 6086 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6087 return (ipif); 6088 } 6089 6090 /* 6091 * Look for an ipif with the specified address. For point-point links 6092 * we look for matches on either the destination address and the local 6093 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6094 * is set. 6095 * Matches on a specific ill if match_ill is set. 6096 */ 6097 ipif_t * 6098 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6099 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6100 { 6101 ipif_t *ipif; 6102 ill_t *ill; 6103 boolean_t ptp = B_FALSE; 6104 ipsq_t *ipsq; 6105 ill_walk_context_t ctx; 6106 6107 if (error != NULL) 6108 *error = 0; 6109 6110 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6111 /* 6112 * Repeat twice, first based on local addresses and 6113 * next time for pointopoint. 6114 */ 6115 repeat: 6116 ill = ILL_START_WALK_V4(&ctx, ipst); 6117 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6118 if (match_ill != NULL && ill != match_ill) { 6119 continue; 6120 } 6121 GRAB_CONN_LOCK(q); 6122 mutex_enter(&ill->ill_lock); 6123 for (ipif = ill->ill_ipif; ipif != NULL; 6124 ipif = ipif->ipif_next) { 6125 if (zoneid != ALL_ZONES && 6126 zoneid != ipif->ipif_zoneid && 6127 ipif->ipif_zoneid != ALL_ZONES) 6128 continue; 6129 /* Allow the ipif to be down */ 6130 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6131 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6132 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6133 (ipif->ipif_pp_dst_addr == addr))) { 6134 /* 6135 * The block comment at the start of ipif_down 6136 * explains the use of the macros used below 6137 */ 6138 if (IPIF_CAN_LOOKUP(ipif)) { 6139 ipif_refhold_locked(ipif); 6140 mutex_exit(&ill->ill_lock); 6141 RELEASE_CONN_LOCK(q); 6142 rw_exit(&ipst->ips_ill_g_lock); 6143 return (ipif); 6144 } else if (IPIF_CAN_WAIT(ipif, q)) { 6145 ipsq = ill->ill_phyint->phyint_ipsq; 6146 mutex_enter(&ipsq->ipsq_lock); 6147 mutex_exit(&ill->ill_lock); 6148 rw_exit(&ipst->ips_ill_g_lock); 6149 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6150 ill); 6151 mutex_exit(&ipsq->ipsq_lock); 6152 RELEASE_CONN_LOCK(q); 6153 *error = EINPROGRESS; 6154 return (NULL); 6155 } 6156 } 6157 } 6158 mutex_exit(&ill->ill_lock); 6159 RELEASE_CONN_LOCK(q); 6160 } 6161 6162 /* If we already did the ptp case, then we are done */ 6163 if (ptp) { 6164 rw_exit(&ipst->ips_ill_g_lock); 6165 if (error != NULL) 6166 *error = ENXIO; 6167 return (NULL); 6168 } 6169 ptp = B_TRUE; 6170 goto repeat; 6171 } 6172 6173 /* 6174 * Look for an ipif with the specified address. For point-point links 6175 * we look for matches on either the destination address and the local 6176 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6177 * is set. 6178 * Matches on a specific ill if match_ill is set. 6179 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6180 */ 6181 zoneid_t 6182 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6183 { 6184 zoneid_t zoneid; 6185 ipif_t *ipif; 6186 ill_t *ill; 6187 boolean_t ptp = B_FALSE; 6188 ill_walk_context_t ctx; 6189 6190 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6191 /* 6192 * Repeat twice, first based on local addresses and 6193 * next time for pointopoint. 6194 */ 6195 repeat: 6196 ill = ILL_START_WALK_V4(&ctx, ipst); 6197 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6198 if (match_ill != NULL && ill != match_ill) { 6199 continue; 6200 } 6201 mutex_enter(&ill->ill_lock); 6202 for (ipif = ill->ill_ipif; ipif != NULL; 6203 ipif = ipif->ipif_next) { 6204 /* Allow the ipif to be down */ 6205 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6206 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6207 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6208 (ipif->ipif_pp_dst_addr == addr)) && 6209 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6210 zoneid = ipif->ipif_zoneid; 6211 mutex_exit(&ill->ill_lock); 6212 rw_exit(&ipst->ips_ill_g_lock); 6213 /* 6214 * If ipif_zoneid was ALL_ZONES then we have 6215 * a trusted extensions shared IP address. 6216 * In that case GLOBAL_ZONEID works to send. 6217 */ 6218 if (zoneid == ALL_ZONES) 6219 zoneid = GLOBAL_ZONEID; 6220 return (zoneid); 6221 } 6222 } 6223 mutex_exit(&ill->ill_lock); 6224 } 6225 6226 /* If we already did the ptp case, then we are done */ 6227 if (ptp) { 6228 rw_exit(&ipst->ips_ill_g_lock); 6229 return (ALL_ZONES); 6230 } 6231 ptp = B_TRUE; 6232 goto repeat; 6233 } 6234 6235 /* 6236 * Look for an ipif that matches the specified remote address i.e. the 6237 * ipif that would receive the specified packet. 6238 * First look for directly connected interfaces and then do a recursive 6239 * IRE lookup and pick the first ipif corresponding to the source address in the 6240 * ire. 6241 * Returns: held ipif 6242 */ 6243 ipif_t * 6244 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6245 { 6246 ipif_t *ipif; 6247 ire_t *ire; 6248 ip_stack_t *ipst = ill->ill_ipst; 6249 6250 ASSERT(!ill->ill_isv6); 6251 6252 /* 6253 * Someone could be changing this ipif currently or change it 6254 * after we return this. Thus a few packets could use the old 6255 * old values. However structure updates/creates (ire, ilg, ilm etc) 6256 * will atomically be updated or cleaned up with the new value 6257 * Thus we don't need a lock to check the flags or other attrs below. 6258 */ 6259 mutex_enter(&ill->ill_lock); 6260 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6261 if (!IPIF_CAN_LOOKUP(ipif)) 6262 continue; 6263 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6264 ipif->ipif_zoneid != ALL_ZONES) 6265 continue; 6266 /* Allow the ipif to be down */ 6267 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6268 if ((ipif->ipif_pp_dst_addr == addr) || 6269 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6270 ipif->ipif_lcl_addr == addr)) { 6271 ipif_refhold_locked(ipif); 6272 mutex_exit(&ill->ill_lock); 6273 return (ipif); 6274 } 6275 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6276 ipif_refhold_locked(ipif); 6277 mutex_exit(&ill->ill_lock); 6278 return (ipif); 6279 } 6280 } 6281 mutex_exit(&ill->ill_lock); 6282 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6283 NULL, MATCH_IRE_RECURSIVE, ipst); 6284 if (ire != NULL) { 6285 /* 6286 * The callers of this function wants to know the 6287 * interface on which they have to send the replies 6288 * back. For IRE_CACHES that have ire_stq and ire_ipif 6289 * derived from different ills, we really don't care 6290 * what we return here. 6291 */ 6292 ipif = ire->ire_ipif; 6293 if (ipif != NULL) { 6294 ipif_refhold(ipif); 6295 ire_refrele(ire); 6296 return (ipif); 6297 } 6298 ire_refrele(ire); 6299 } 6300 /* Pick the first interface */ 6301 ipif = ipif_get_next_ipif(NULL, ill); 6302 return (ipif); 6303 } 6304 6305 /* 6306 * This func does not prevent refcnt from increasing. But if 6307 * the caller has taken steps to that effect, then this func 6308 * can be used to determine whether the ill has become quiescent 6309 */ 6310 boolean_t 6311 ill_is_quiescent(ill_t *ill) 6312 { 6313 ipif_t *ipif; 6314 6315 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6316 6317 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6318 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6319 return (B_FALSE); 6320 } 6321 } 6322 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6323 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6324 ill->ill_mrtun_refcnt != 0) { 6325 return (B_FALSE); 6326 } 6327 return (B_TRUE); 6328 } 6329 6330 /* 6331 * This func does not prevent refcnt from increasing. But if 6332 * the caller has taken steps to that effect, then this func 6333 * can be used to determine whether the ipif has become quiescent 6334 */ 6335 static boolean_t 6336 ipif_is_quiescent(ipif_t *ipif) 6337 { 6338 ill_t *ill; 6339 6340 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6341 6342 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6343 return (B_FALSE); 6344 } 6345 6346 ill = ipif->ipif_ill; 6347 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6348 ill->ill_logical_down) { 6349 return (B_TRUE); 6350 } 6351 6352 /* This is the last ipif going down or being deleted on this ill */ 6353 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6354 return (B_FALSE); 6355 } 6356 6357 return (B_TRUE); 6358 } 6359 6360 /* 6361 * This func does not prevent refcnt from increasing. But if 6362 * the caller has taken steps to that effect, then this func 6363 * can be used to determine whether the ipifs marked with IPIF_MOVING 6364 * have become quiescent and can be moved in a failover/failback. 6365 */ 6366 static ipif_t * 6367 ill_quiescent_to_move(ill_t *ill) 6368 { 6369 ipif_t *ipif; 6370 6371 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6372 6373 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6374 if (ipif->ipif_state_flags & IPIF_MOVING) { 6375 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6376 return (ipif); 6377 } 6378 } 6379 } 6380 return (NULL); 6381 } 6382 6383 /* 6384 * The ipif/ill/ire has been refreled. Do the tail processing. 6385 * Determine if the ipif or ill in question has become quiescent and if so 6386 * wakeup close and/or restart any queued pending ioctl that is waiting 6387 * for the ipif_down (or ill_down) 6388 */ 6389 void 6390 ipif_ill_refrele_tail(ill_t *ill) 6391 { 6392 mblk_t *mp; 6393 conn_t *connp; 6394 ipsq_t *ipsq; 6395 ipif_t *ipif; 6396 dl_notify_ind_t *dlindp; 6397 6398 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6399 6400 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6401 ill_is_quiescent(ill)) { 6402 /* ill_close may be waiting */ 6403 cv_broadcast(&ill->ill_cv); 6404 } 6405 6406 /* ipsq can't change because ill_lock is held */ 6407 ipsq = ill->ill_phyint->phyint_ipsq; 6408 if (ipsq->ipsq_waitfor == 0) { 6409 /* Not waiting for anything, just return. */ 6410 mutex_exit(&ill->ill_lock); 6411 return; 6412 } 6413 ASSERT(ipsq->ipsq_pending_mp != NULL && 6414 ipsq->ipsq_pending_ipif != NULL); 6415 /* 6416 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6417 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6418 * be zero for restarting an ioctl that ends up downing the ill. 6419 */ 6420 ipif = ipsq->ipsq_pending_ipif; 6421 if (ipif->ipif_ill != ill) { 6422 /* The ioctl is pending on some other ill. */ 6423 mutex_exit(&ill->ill_lock); 6424 return; 6425 } 6426 6427 switch (ipsq->ipsq_waitfor) { 6428 case IPIF_DOWN: 6429 case IPIF_FREE: 6430 if (!ipif_is_quiescent(ipif)) { 6431 mutex_exit(&ill->ill_lock); 6432 return; 6433 } 6434 break; 6435 6436 case ILL_DOWN: 6437 case ILL_FREE: 6438 /* 6439 * case ILL_FREE arises only for loopback. otherwise ill_delete 6440 * waits synchronously in ip_close, and no message is queued in 6441 * ipsq_pending_mp at all in this case 6442 */ 6443 if (!ill_is_quiescent(ill)) { 6444 mutex_exit(&ill->ill_lock); 6445 return; 6446 } 6447 6448 break; 6449 6450 case ILL_MOVE_OK: 6451 if (ill_quiescent_to_move(ill) != NULL) { 6452 mutex_exit(&ill->ill_lock); 6453 return; 6454 } 6455 6456 break; 6457 default: 6458 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6459 (void *)ipsq, ipsq->ipsq_waitfor); 6460 } 6461 6462 /* 6463 * Incr refcnt for the qwriter_ip call below which 6464 * does a refrele 6465 */ 6466 ill_refhold_locked(ill); 6467 mutex_exit(&ill->ill_lock); 6468 6469 mp = ipsq_pending_mp_get(ipsq, &connp); 6470 ASSERT(mp != NULL); 6471 6472 /* 6473 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6474 * we can only get here when the current operation decides it 6475 * it needs to quiesce via ipsq_pending_mp_add(). 6476 */ 6477 switch (mp->b_datap->db_type) { 6478 case M_PCPROTO: 6479 case M_PROTO: 6480 /* 6481 * For now, only DL_NOTIFY_IND messages can use this facility. 6482 */ 6483 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6484 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6485 6486 switch (dlindp->dl_notification) { 6487 case DL_NOTE_PHYS_ADDR: 6488 qwriter_ip(ill, ill->ill_rq, mp, 6489 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6490 return; 6491 default: 6492 ASSERT(0); 6493 } 6494 break; 6495 6496 case M_ERROR: 6497 case M_HANGUP: 6498 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6499 B_TRUE); 6500 return; 6501 6502 case M_IOCTL: 6503 case M_IOCDATA: 6504 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6505 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6506 return; 6507 6508 default: 6509 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6510 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6511 } 6512 } 6513 6514 #ifdef ILL_DEBUG 6515 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6516 void 6517 th_trace_rrecord(th_trace_t *th_trace) 6518 { 6519 tr_buf_t *tr_buf; 6520 uint_t lastref; 6521 6522 lastref = th_trace->th_trace_lastref; 6523 lastref++; 6524 if (lastref == TR_BUF_MAX) 6525 lastref = 0; 6526 th_trace->th_trace_lastref = lastref; 6527 tr_buf = &th_trace->th_trbuf[lastref]; 6528 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6529 } 6530 6531 th_trace_t * 6532 th_trace_ipif_lookup(ipif_t *ipif) 6533 { 6534 int bucket_id; 6535 th_trace_t *th_trace; 6536 6537 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6538 6539 bucket_id = IP_TR_HASH(curthread); 6540 ASSERT(bucket_id < IP_TR_HASH_MAX); 6541 6542 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6543 th_trace = th_trace->th_next) { 6544 if (th_trace->th_id == curthread) 6545 return (th_trace); 6546 } 6547 return (NULL); 6548 } 6549 6550 void 6551 ipif_trace_ref(ipif_t *ipif) 6552 { 6553 int bucket_id; 6554 th_trace_t *th_trace; 6555 6556 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6557 6558 if (ipif->ipif_trace_disable) 6559 return; 6560 6561 /* 6562 * Attempt to locate the trace buffer for the curthread. 6563 * If it does not exist, then allocate a new trace buffer 6564 * and link it in list of trace bufs for this ipif, at the head 6565 */ 6566 th_trace = th_trace_ipif_lookup(ipif); 6567 if (th_trace == NULL) { 6568 bucket_id = IP_TR_HASH(curthread); 6569 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6570 KM_NOSLEEP); 6571 if (th_trace == NULL) { 6572 ipif->ipif_trace_disable = B_TRUE; 6573 ipif_trace_cleanup(ipif); 6574 return; 6575 } 6576 th_trace->th_id = curthread; 6577 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6578 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6579 if (th_trace->th_next != NULL) 6580 th_trace->th_next->th_prev = &th_trace->th_next; 6581 ipif->ipif_trace[bucket_id] = th_trace; 6582 } 6583 ASSERT(th_trace->th_refcnt >= 0 && 6584 th_trace->th_refcnt < TR_BUF_MAX -1); 6585 th_trace->th_refcnt++; 6586 th_trace_rrecord(th_trace); 6587 } 6588 6589 void 6590 ipif_untrace_ref(ipif_t *ipif) 6591 { 6592 th_trace_t *th_trace; 6593 6594 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6595 6596 if (ipif->ipif_trace_disable) 6597 return; 6598 th_trace = th_trace_ipif_lookup(ipif); 6599 ASSERT(th_trace != NULL); 6600 ASSERT(th_trace->th_refcnt > 0); 6601 6602 th_trace->th_refcnt--; 6603 th_trace_rrecord(th_trace); 6604 } 6605 6606 th_trace_t * 6607 th_trace_ill_lookup(ill_t *ill) 6608 { 6609 th_trace_t *th_trace; 6610 int bucket_id; 6611 6612 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6613 6614 bucket_id = IP_TR_HASH(curthread); 6615 ASSERT(bucket_id < IP_TR_HASH_MAX); 6616 6617 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6618 th_trace = th_trace->th_next) { 6619 if (th_trace->th_id == curthread) 6620 return (th_trace); 6621 } 6622 return (NULL); 6623 } 6624 6625 void 6626 ill_trace_ref(ill_t *ill) 6627 { 6628 int bucket_id; 6629 th_trace_t *th_trace; 6630 6631 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6632 if (ill->ill_trace_disable) 6633 return; 6634 /* 6635 * Attempt to locate the trace buffer for the curthread. 6636 * If it does not exist, then allocate a new trace buffer 6637 * and link it in list of trace bufs for this ill, at the head 6638 */ 6639 th_trace = th_trace_ill_lookup(ill); 6640 if (th_trace == NULL) { 6641 bucket_id = IP_TR_HASH(curthread); 6642 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6643 KM_NOSLEEP); 6644 if (th_trace == NULL) { 6645 ill->ill_trace_disable = B_TRUE; 6646 ill_trace_cleanup(ill); 6647 return; 6648 } 6649 th_trace->th_id = curthread; 6650 th_trace->th_next = ill->ill_trace[bucket_id]; 6651 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6652 if (th_trace->th_next != NULL) 6653 th_trace->th_next->th_prev = &th_trace->th_next; 6654 ill->ill_trace[bucket_id] = th_trace; 6655 } 6656 ASSERT(th_trace->th_refcnt >= 0 && 6657 th_trace->th_refcnt < TR_BUF_MAX - 1); 6658 6659 th_trace->th_refcnt++; 6660 th_trace_rrecord(th_trace); 6661 } 6662 6663 void 6664 ill_untrace_ref(ill_t *ill) 6665 { 6666 th_trace_t *th_trace; 6667 6668 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6669 6670 if (ill->ill_trace_disable) 6671 return; 6672 th_trace = th_trace_ill_lookup(ill); 6673 ASSERT(th_trace != NULL); 6674 ASSERT(th_trace->th_refcnt > 0); 6675 6676 th_trace->th_refcnt--; 6677 th_trace_rrecord(th_trace); 6678 } 6679 6680 /* 6681 * Verify that this thread has no refs to the ipif and free 6682 * the trace buffers 6683 */ 6684 /* ARGSUSED */ 6685 void 6686 ipif_thread_exit(ipif_t *ipif, void *dummy) 6687 { 6688 th_trace_t *th_trace; 6689 6690 mutex_enter(&ipif->ipif_ill->ill_lock); 6691 6692 th_trace = th_trace_ipif_lookup(ipif); 6693 if (th_trace == NULL) { 6694 mutex_exit(&ipif->ipif_ill->ill_lock); 6695 return; 6696 } 6697 ASSERT(th_trace->th_refcnt == 0); 6698 /* unlink th_trace and free it */ 6699 *th_trace->th_prev = th_trace->th_next; 6700 if (th_trace->th_next != NULL) 6701 th_trace->th_next->th_prev = th_trace->th_prev; 6702 th_trace->th_next = NULL; 6703 th_trace->th_prev = NULL; 6704 kmem_free(th_trace, sizeof (th_trace_t)); 6705 6706 mutex_exit(&ipif->ipif_ill->ill_lock); 6707 } 6708 6709 /* 6710 * Verify that this thread has no refs to the ill and free 6711 * the trace buffers 6712 */ 6713 /* ARGSUSED */ 6714 void 6715 ill_thread_exit(ill_t *ill, void *dummy) 6716 { 6717 th_trace_t *th_trace; 6718 6719 mutex_enter(&ill->ill_lock); 6720 6721 th_trace = th_trace_ill_lookup(ill); 6722 if (th_trace == NULL) { 6723 mutex_exit(&ill->ill_lock); 6724 return; 6725 } 6726 ASSERT(th_trace->th_refcnt == 0); 6727 /* unlink th_trace and free it */ 6728 *th_trace->th_prev = th_trace->th_next; 6729 if (th_trace->th_next != NULL) 6730 th_trace->th_next->th_prev = th_trace->th_prev; 6731 th_trace->th_next = NULL; 6732 th_trace->th_prev = NULL; 6733 kmem_free(th_trace, sizeof (th_trace_t)); 6734 6735 mutex_exit(&ill->ill_lock); 6736 } 6737 #endif 6738 6739 #ifdef ILL_DEBUG 6740 void 6741 ip_thread_exit_stack(ip_stack_t *ipst) 6742 { 6743 ill_t *ill; 6744 ipif_t *ipif; 6745 ill_walk_context_t ctx; 6746 6747 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6748 ill = ILL_START_WALK_ALL(&ctx, ipst); 6749 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6750 for (ipif = ill->ill_ipif; ipif != NULL; 6751 ipif = ipif->ipif_next) { 6752 ipif_thread_exit(ipif, NULL); 6753 } 6754 ill_thread_exit(ill, NULL); 6755 } 6756 rw_exit(&ipst->ips_ill_g_lock); 6757 6758 ire_walk(ire_thread_exit, NULL, ipst); 6759 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6760 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6761 } 6762 6763 /* 6764 * This is a function which is called from thread_exit 6765 * that can be used to debug reference count issues in IP. See comment in 6766 * <inet/ip.h> on how it is used. 6767 */ 6768 void 6769 ip_thread_exit(void) 6770 { 6771 netstack_t *ns; 6772 6773 ns = netstack_get_current(); 6774 if (ns != NULL) { 6775 ip_thread_exit_stack(ns->netstack_ip); 6776 netstack_rele(ns); 6777 } 6778 } 6779 6780 /* 6781 * Called when ipif is unplumbed or when memory alloc fails 6782 */ 6783 void 6784 ipif_trace_cleanup(ipif_t *ipif) 6785 { 6786 int i; 6787 th_trace_t *th_trace; 6788 th_trace_t *th_trace_next; 6789 6790 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6791 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6792 th_trace = th_trace_next) { 6793 th_trace_next = th_trace->th_next; 6794 kmem_free(th_trace, sizeof (th_trace_t)); 6795 } 6796 ipif->ipif_trace[i] = NULL; 6797 } 6798 } 6799 6800 /* 6801 * Called when ill is unplumbed or when memory alloc fails 6802 */ 6803 void 6804 ill_trace_cleanup(ill_t *ill) 6805 { 6806 int i; 6807 th_trace_t *th_trace; 6808 th_trace_t *th_trace_next; 6809 6810 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6811 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6812 th_trace = th_trace_next) { 6813 th_trace_next = th_trace->th_next; 6814 kmem_free(th_trace, sizeof (th_trace_t)); 6815 } 6816 ill->ill_trace[i] = NULL; 6817 } 6818 } 6819 6820 #else 6821 void ip_thread_exit(void) {} 6822 #endif 6823 6824 void 6825 ipif_refhold_locked(ipif_t *ipif) 6826 { 6827 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6828 ipif->ipif_refcnt++; 6829 IPIF_TRACE_REF(ipif); 6830 } 6831 6832 void 6833 ipif_refhold(ipif_t *ipif) 6834 { 6835 ill_t *ill; 6836 6837 ill = ipif->ipif_ill; 6838 mutex_enter(&ill->ill_lock); 6839 ipif->ipif_refcnt++; 6840 IPIF_TRACE_REF(ipif); 6841 mutex_exit(&ill->ill_lock); 6842 } 6843 6844 /* 6845 * Must not be called while holding any locks. Otherwise if this is 6846 * the last reference to be released there is a chance of recursive mutex 6847 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6848 * to restart an ioctl. 6849 */ 6850 void 6851 ipif_refrele(ipif_t *ipif) 6852 { 6853 ill_t *ill; 6854 6855 ill = ipif->ipif_ill; 6856 6857 mutex_enter(&ill->ill_lock); 6858 ASSERT(ipif->ipif_refcnt != 0); 6859 ipif->ipif_refcnt--; 6860 IPIF_UNTRACE_REF(ipif); 6861 if (ipif->ipif_refcnt != 0) { 6862 mutex_exit(&ill->ill_lock); 6863 return; 6864 } 6865 6866 /* Drops the ill_lock */ 6867 ipif_ill_refrele_tail(ill); 6868 } 6869 6870 ipif_t * 6871 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6872 { 6873 ipif_t *ipif; 6874 6875 mutex_enter(&ill->ill_lock); 6876 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6877 ipif != NULL; ipif = ipif->ipif_next) { 6878 if (!IPIF_CAN_LOOKUP(ipif)) 6879 continue; 6880 ipif_refhold_locked(ipif); 6881 mutex_exit(&ill->ill_lock); 6882 return (ipif); 6883 } 6884 mutex_exit(&ill->ill_lock); 6885 return (NULL); 6886 } 6887 6888 /* 6889 * TODO: make this table extendible at run time 6890 * Return a pointer to the mac type info for 'mac_type' 6891 */ 6892 static ip_m_t * 6893 ip_m_lookup(t_uscalar_t mac_type) 6894 { 6895 ip_m_t *ipm; 6896 6897 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6898 if (ipm->ip_m_mac_type == mac_type) 6899 return (ipm); 6900 return (NULL); 6901 } 6902 6903 /* 6904 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6905 * ipif_arg is passed in to associate it with the correct interface. 6906 * We may need to restart this operation if the ipif cannot be looked up 6907 * due to an exclusive operation that is currently in progress. The restart 6908 * entry point is specified by 'func' 6909 */ 6910 int 6911 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6912 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6913 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6914 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6915 { 6916 ire_t *ire; 6917 ire_t *gw_ire = NULL; 6918 ipif_t *ipif = NULL; 6919 boolean_t ipif_refheld = B_FALSE; 6920 uint_t type; 6921 int match_flags = MATCH_IRE_TYPE; 6922 int error; 6923 tsol_gc_t *gc = NULL; 6924 tsol_gcgrp_t *gcgrp = NULL; 6925 boolean_t gcgrp_xtraref = B_FALSE; 6926 6927 ip1dbg(("ip_rt_add:")); 6928 6929 if (ire_arg != NULL) 6930 *ire_arg = NULL; 6931 6932 /* 6933 * If this is the case of RTF_HOST being set, then we set the netmask 6934 * to all ones (regardless if one was supplied). 6935 */ 6936 if (flags & RTF_HOST) 6937 mask = IP_HOST_MASK; 6938 6939 /* 6940 * Prevent routes with a zero gateway from being created (since 6941 * interfaces can currently be plumbed and brought up no assigned 6942 * address). 6943 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6944 */ 6945 if (gw_addr == 0 && src_ipif == NULL) 6946 return (ENETUNREACH); 6947 /* 6948 * Get the ipif, if any, corresponding to the gw_addr 6949 */ 6950 if (gw_addr != 0) { 6951 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6952 &error, ipst); 6953 if (ipif != NULL) { 6954 if (IS_VNI(ipif->ipif_ill)) { 6955 ipif_refrele(ipif); 6956 return (EINVAL); 6957 } 6958 ipif_refheld = B_TRUE; 6959 } else if (error == EINPROGRESS) { 6960 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6961 return (EINPROGRESS); 6962 } else { 6963 error = 0; 6964 } 6965 } 6966 6967 if (ipif != NULL) { 6968 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6969 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6970 } else { 6971 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6972 } 6973 6974 /* 6975 * GateD will attempt to create routes with a loopback interface 6976 * address as the gateway and with RTF_GATEWAY set. We allow 6977 * these routes to be added, but create them as interface routes 6978 * since the gateway is an interface address. 6979 */ 6980 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6981 flags &= ~RTF_GATEWAY; 6982 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6983 mask == IP_HOST_MASK) { 6984 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6985 ALL_ZONES, NULL, match_flags, ipst); 6986 if (ire != NULL) { 6987 ire_refrele(ire); 6988 if (ipif_refheld) 6989 ipif_refrele(ipif); 6990 return (EEXIST); 6991 } 6992 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6993 "for 0x%x\n", (void *)ipif, 6994 ipif->ipif_ire_type, 6995 ntohl(ipif->ipif_lcl_addr))); 6996 ire = ire_create( 6997 (uchar_t *)&dst_addr, /* dest address */ 6998 (uchar_t *)&mask, /* mask */ 6999 (uchar_t *)&ipif->ipif_src_addr, 7000 NULL, /* no gateway */ 7001 NULL, 7002 &ipif->ipif_mtu, 7003 NULL, 7004 ipif->ipif_rq, /* recv-from queue */ 7005 NULL, /* no send-to queue */ 7006 ipif->ipif_ire_type, /* LOOPBACK */ 7007 ipif, 7008 NULL, 7009 0, 7010 0, 7011 0, 7012 (ipif->ipif_flags & IPIF_PRIVATE) ? 7013 RTF_PRIVATE : 0, 7014 &ire_uinfo_null, 7015 NULL, 7016 NULL, 7017 ipst); 7018 7019 if (ire == NULL) { 7020 if (ipif_refheld) 7021 ipif_refrele(ipif); 7022 return (ENOMEM); 7023 } 7024 error = ire_add(&ire, q, mp, func, B_FALSE); 7025 if (error == 0) 7026 goto save_ire; 7027 if (ipif_refheld) 7028 ipif_refrele(ipif); 7029 return (error); 7030 7031 } 7032 } 7033 7034 /* 7035 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 7036 * and the gateway address provided is one of the system's interface 7037 * addresses. By using the routing socket interface and supplying an 7038 * RTA_IFP sockaddr with an interface index, an alternate method of 7039 * specifying an interface route to be created is available which uses 7040 * the interface index that specifies the outgoing interface rather than 7041 * the address of an outgoing interface (which may not be able to 7042 * uniquely identify an interface). When coupled with the RTF_GATEWAY 7043 * flag, routes can be specified which not only specify the next-hop to 7044 * be used when routing to a certain prefix, but also which outgoing 7045 * interface should be used. 7046 * 7047 * Previously, interfaces would have unique addresses assigned to them 7048 * and so the address assigned to a particular interface could be used 7049 * to identify a particular interface. One exception to this was the 7050 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 7051 * 7052 * With the advent of IPv6 and its link-local addresses, this 7053 * restriction was relaxed and interfaces could share addresses between 7054 * themselves. In fact, typically all of the link-local interfaces on 7055 * an IPv6 node or router will have the same link-local address. In 7056 * order to differentiate between these interfaces, the use of an 7057 * interface index is necessary and this index can be carried inside a 7058 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 7059 * of using the interface index, however, is that all of the ipif's that 7060 * are part of an ill have the same index and so the RTA_IFP sockaddr 7061 * cannot be used to differentiate between ipif's (or logical 7062 * interfaces) that belong to the same ill (physical interface). 7063 * 7064 * For example, in the following case involving IPv4 interfaces and 7065 * logical interfaces 7066 * 7067 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 7068 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 7069 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 7070 * 7071 * the ipif's corresponding to each of these interface routes can be 7072 * uniquely identified by the "gateway" (actually interface address). 7073 * 7074 * In this case involving multiple IPv6 default routes to a particular 7075 * link-local gateway, the use of RTA_IFP is necessary to specify which 7076 * default route is of interest: 7077 * 7078 * default fe80::123:4567:89ab:cdef U if0 7079 * default fe80::123:4567:89ab:cdef U if1 7080 */ 7081 7082 /* RTF_GATEWAY not set */ 7083 if (!(flags & RTF_GATEWAY)) { 7084 queue_t *stq; 7085 queue_t *rfq = NULL; 7086 ill_t *in_ill = NULL; 7087 7088 if (sp != NULL) { 7089 ip2dbg(("ip_rt_add: gateway security attributes " 7090 "cannot be set with interface route\n")); 7091 if (ipif_refheld) 7092 ipif_refrele(ipif); 7093 return (EINVAL); 7094 } 7095 7096 /* 7097 * As the interface index specified with the RTA_IFP sockaddr is 7098 * the same for all ipif's off of an ill, the matching logic 7099 * below uses MATCH_IRE_ILL if such an index was specified. 7100 * This means that routes sharing the same prefix when added 7101 * using a RTA_IFP sockaddr must have distinct interface 7102 * indices (namely, they must be on distinct ill's). 7103 * 7104 * On the other hand, since the gateway address will usually be 7105 * different for each ipif on the system, the matching logic 7106 * uses MATCH_IRE_IPIF in the case of a traditional interface 7107 * route. This means that interface routes for the same prefix 7108 * can be created if they belong to distinct ipif's and if a 7109 * RTA_IFP sockaddr is not present. 7110 */ 7111 if (ipif_arg != NULL) { 7112 if (ipif_refheld) { 7113 ipif_refrele(ipif); 7114 ipif_refheld = B_FALSE; 7115 } 7116 ipif = ipif_arg; 7117 match_flags |= MATCH_IRE_ILL; 7118 } else { 7119 /* 7120 * Check the ipif corresponding to the gw_addr 7121 */ 7122 if (ipif == NULL) 7123 return (ENETUNREACH); 7124 match_flags |= MATCH_IRE_IPIF; 7125 } 7126 ASSERT(ipif != NULL); 7127 /* 7128 * If src_ipif is not NULL, we have to create 7129 * an ire with non-null ire_in_ill value 7130 */ 7131 if (src_ipif != NULL) { 7132 in_ill = src_ipif->ipif_ill; 7133 } 7134 7135 /* 7136 * We check for an existing entry at this point. 7137 * 7138 * Since a netmask isn't passed in via the ioctl interface 7139 * (SIOCADDRT), we don't check for a matching netmask in that 7140 * case. 7141 */ 7142 if (!ioctl_msg) 7143 match_flags |= MATCH_IRE_MASK; 7144 if (src_ipif != NULL) { 7145 /* Look up in the special table */ 7146 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7147 ipif, src_ipif->ipif_ill, match_flags); 7148 } else { 7149 ire = ire_ftable_lookup(dst_addr, mask, 0, 7150 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7151 NULL, match_flags, ipst); 7152 } 7153 if (ire != NULL) { 7154 ire_refrele(ire); 7155 if (ipif_refheld) 7156 ipif_refrele(ipif); 7157 return (EEXIST); 7158 } 7159 7160 if (src_ipif != NULL) { 7161 /* 7162 * Create the special ire for the IRE table 7163 * which hangs out of ire_in_ill. This ire 7164 * is in-between IRE_CACHE and IRE_INTERFACE. 7165 * Thus rfq is non-NULL. 7166 */ 7167 rfq = ipif->ipif_rq; 7168 } 7169 /* Create the usual interface ires */ 7170 7171 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7172 ? ipif->ipif_rq : ipif->ipif_wq; 7173 7174 /* 7175 * Create a copy of the IRE_LOOPBACK, 7176 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7177 * the modified address and netmask. 7178 */ 7179 ire = ire_create( 7180 (uchar_t *)&dst_addr, 7181 (uint8_t *)&mask, 7182 (uint8_t *)&ipif->ipif_src_addr, 7183 NULL, 7184 NULL, 7185 &ipif->ipif_mtu, 7186 NULL, 7187 rfq, 7188 stq, 7189 ipif->ipif_net_type, 7190 ipif, 7191 in_ill, 7192 0, 7193 0, 7194 0, 7195 flags, 7196 &ire_uinfo_null, 7197 NULL, 7198 NULL, 7199 ipst); 7200 if (ire == NULL) { 7201 if (ipif_refheld) 7202 ipif_refrele(ipif); 7203 return (ENOMEM); 7204 } 7205 7206 /* 7207 * Some software (for example, GateD and Sun Cluster) attempts 7208 * to create (what amount to) IRE_PREFIX routes with the 7209 * loopback address as the gateway. This is primarily done to 7210 * set up prefixes with the RTF_REJECT flag set (for example, 7211 * when generating aggregate routes.) 7212 * 7213 * If the IRE type (as defined by ipif->ipif_net_type) is 7214 * IRE_LOOPBACK, then we map the request into a 7215 * IRE_IF_NORESOLVER. 7216 * 7217 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7218 * routine, but rather using ire_create() directly. 7219 * 7220 */ 7221 if (ipif->ipif_net_type == IRE_LOOPBACK) 7222 ire->ire_type = IRE_IF_NORESOLVER; 7223 7224 error = ire_add(&ire, q, mp, func, B_FALSE); 7225 if (error == 0) 7226 goto save_ire; 7227 7228 /* 7229 * In the result of failure, ire_add() will have already 7230 * deleted the ire in question, so there is no need to 7231 * do that here. 7232 */ 7233 if (ipif_refheld) 7234 ipif_refrele(ipif); 7235 return (error); 7236 } 7237 if (ipif_refheld) { 7238 ipif_refrele(ipif); 7239 ipif_refheld = B_FALSE; 7240 } 7241 7242 if (src_ipif != NULL) { 7243 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7244 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7245 return (EINVAL); 7246 } 7247 /* 7248 * Get an interface IRE for the specified gateway. 7249 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7250 * gateway, it is currently unreachable and we fail the request 7251 * accordingly. 7252 */ 7253 ipif = ipif_arg; 7254 if (ipif_arg != NULL) 7255 match_flags |= MATCH_IRE_ILL; 7256 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7257 ALL_ZONES, 0, NULL, match_flags, ipst); 7258 if (gw_ire == NULL) 7259 return (ENETUNREACH); 7260 7261 /* 7262 * We create one of three types of IREs as a result of this request 7263 * based on the netmask. A netmask of all ones (which is automatically 7264 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7265 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7266 * created. Otherwise, an IRE_PREFIX route is created for the 7267 * destination prefix. 7268 */ 7269 if (mask == IP_HOST_MASK) 7270 type = IRE_HOST; 7271 else if (mask == 0) 7272 type = IRE_DEFAULT; 7273 else 7274 type = IRE_PREFIX; 7275 7276 /* check for a duplicate entry */ 7277 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7278 NULL, ALL_ZONES, 0, NULL, 7279 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7280 if (ire != NULL) { 7281 ire_refrele(gw_ire); 7282 ire_refrele(ire); 7283 return (EEXIST); 7284 } 7285 7286 /* Security attribute exists */ 7287 if (sp != NULL) { 7288 tsol_gcgrp_addr_t ga; 7289 7290 /* find or create the gateway credentials group */ 7291 ga.ga_af = AF_INET; 7292 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7293 7294 /* we hold reference to it upon success */ 7295 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7296 if (gcgrp == NULL) { 7297 ire_refrele(gw_ire); 7298 return (ENOMEM); 7299 } 7300 7301 /* 7302 * Create and add the security attribute to the group; a 7303 * reference to the group is made upon allocating a new 7304 * entry successfully. If it finds an already-existing 7305 * entry for the security attribute in the group, it simply 7306 * returns it and no new reference is made to the group. 7307 */ 7308 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7309 if (gc == NULL) { 7310 /* release reference held by gcgrp_lookup */ 7311 GCGRP_REFRELE(gcgrp); 7312 ire_refrele(gw_ire); 7313 return (ENOMEM); 7314 } 7315 } 7316 7317 /* Create the IRE. */ 7318 ire = ire_create( 7319 (uchar_t *)&dst_addr, /* dest address */ 7320 (uchar_t *)&mask, /* mask */ 7321 /* src address assigned by the caller? */ 7322 (uchar_t *)(((src_addr != INADDR_ANY) && 7323 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7324 (uchar_t *)&gw_addr, /* gateway address */ 7325 NULL, /* no in-srcaddress */ 7326 &gw_ire->ire_max_frag, 7327 NULL, /* no src nce */ 7328 NULL, /* no recv-from queue */ 7329 NULL, /* no send-to queue */ 7330 (ushort_t)type, /* IRE type */ 7331 ipif_arg, 7332 NULL, 7333 0, 7334 0, 7335 0, 7336 flags, 7337 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7338 gc, /* security attribute */ 7339 NULL, 7340 ipst); 7341 7342 /* 7343 * The ire holds a reference to the 'gc' and the 'gc' holds a 7344 * reference to the 'gcgrp'. We can now release the extra reference 7345 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7346 */ 7347 if (gcgrp_xtraref) 7348 GCGRP_REFRELE(gcgrp); 7349 if (ire == NULL) { 7350 if (gc != NULL) 7351 GC_REFRELE(gc); 7352 ire_refrele(gw_ire); 7353 return (ENOMEM); 7354 } 7355 7356 /* 7357 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7358 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7359 */ 7360 7361 /* Add the new IRE. */ 7362 error = ire_add(&ire, q, mp, func, B_FALSE); 7363 if (error != 0) { 7364 /* 7365 * In the result of failure, ire_add() will have already 7366 * deleted the ire in question, so there is no need to 7367 * do that here. 7368 */ 7369 ire_refrele(gw_ire); 7370 return (error); 7371 } 7372 7373 if (flags & RTF_MULTIRT) { 7374 /* 7375 * Invoke the CGTP (multirouting) filtering module 7376 * to add the dst address in the filtering database. 7377 * Replicated inbound packets coming from that address 7378 * will be filtered to discard the duplicates. 7379 * It is not necessary to call the CGTP filter hook 7380 * when the dst address is a broadcast or multicast, 7381 * because an IP source address cannot be a broadcast 7382 * or a multicast. 7383 */ 7384 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7385 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7386 if (ire_dst != NULL) { 7387 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7388 ire_refrele(ire_dst); 7389 goto save_ire; 7390 } 7391 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7392 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7393 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7394 ire->ire_addr, 7395 ire->ire_gateway_addr, 7396 ire->ire_src_addr, 7397 gw_ire->ire_src_addr); 7398 if (res != 0) { 7399 ire_refrele(gw_ire); 7400 ire_delete(ire); 7401 return (res); 7402 } 7403 } 7404 } 7405 7406 /* 7407 * Now that the prefix IRE entry has been created, delete any 7408 * existing gateway IRE cache entries as well as any IRE caches 7409 * using the gateway, and force them to be created through 7410 * ip_newroute. 7411 */ 7412 if (gc != NULL) { 7413 ASSERT(gcgrp != NULL); 7414 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7415 } 7416 7417 save_ire: 7418 if (gw_ire != NULL) { 7419 ire_refrele(gw_ire); 7420 } 7421 /* 7422 * We do not do save_ire for the routes added with RTA_SRCIFP 7423 * flag. This route is only added and deleted by mipagent. 7424 * So, for simplicity of design, we refrain from saving 7425 * ires that are created with srcif value. This may change 7426 * in future if we find more usage of srcifp feature. 7427 */ 7428 if (ipif != NULL && src_ipif == NULL) { 7429 /* 7430 * Save enough information so that we can recreate the IRE if 7431 * the interface goes down and then up. The metrics associated 7432 * with the route will be saved as well when rts_setmetrics() is 7433 * called after the IRE has been created. In the case where 7434 * memory cannot be allocated, none of this information will be 7435 * saved. 7436 */ 7437 ipif_save_ire(ipif, ire); 7438 } 7439 if (ioctl_msg) 7440 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7441 if (ire_arg != NULL) { 7442 /* 7443 * Store the ire that was successfully added into where ire_arg 7444 * points to so that callers don't have to look it up 7445 * themselves (but they are responsible for ire_refrele()ing 7446 * the ire when they are finished with it). 7447 */ 7448 *ire_arg = ire; 7449 } else { 7450 ire_refrele(ire); /* Held in ire_add */ 7451 } 7452 if (ipif_refheld) 7453 ipif_refrele(ipif); 7454 return (0); 7455 } 7456 7457 /* 7458 * ip_rt_delete is called to delete an IPv4 route. 7459 * ipif_arg is passed in to associate it with the correct interface. 7460 * src_ipif is passed to associate the incoming interface of the packet. 7461 * We may need to restart this operation if the ipif cannot be looked up 7462 * due to an exclusive operation that is currently in progress. The restart 7463 * entry point is specified by 'func' 7464 */ 7465 /* ARGSUSED4 */ 7466 int 7467 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7468 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7469 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7470 ip_stack_t *ipst) 7471 { 7472 ire_t *ire = NULL; 7473 ipif_t *ipif; 7474 boolean_t ipif_refheld = B_FALSE; 7475 uint_t type; 7476 uint_t match_flags = MATCH_IRE_TYPE; 7477 int err = 0; 7478 7479 ip1dbg(("ip_rt_delete:")); 7480 /* 7481 * If this is the case of RTF_HOST being set, then we set the netmask 7482 * to all ones. Otherwise, we use the netmask if one was supplied. 7483 */ 7484 if (flags & RTF_HOST) { 7485 mask = IP_HOST_MASK; 7486 match_flags |= MATCH_IRE_MASK; 7487 } else if (rtm_addrs & RTA_NETMASK) { 7488 match_flags |= MATCH_IRE_MASK; 7489 } 7490 7491 /* 7492 * Note that RTF_GATEWAY is never set on a delete, therefore 7493 * we check if the gateway address is one of our interfaces first, 7494 * and fall back on RTF_GATEWAY routes. 7495 * 7496 * This makes it possible to delete an original 7497 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7498 * 7499 * As the interface index specified with the RTA_IFP sockaddr is the 7500 * same for all ipif's off of an ill, the matching logic below uses 7501 * MATCH_IRE_ILL if such an index was specified. This means a route 7502 * sharing the same prefix and interface index as the the route 7503 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7504 * is specified in the request. 7505 * 7506 * On the other hand, since the gateway address will usually be 7507 * different for each ipif on the system, the matching logic 7508 * uses MATCH_IRE_IPIF in the case of a traditional interface 7509 * route. This means that interface routes for the same prefix can be 7510 * uniquely identified if they belong to distinct ipif's and if a 7511 * RTA_IFP sockaddr is not present. 7512 * 7513 * For more detail on specifying routes by gateway address and by 7514 * interface index, see the comments in ip_rt_add(). 7515 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7516 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7517 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7518 * succeed. 7519 */ 7520 if (src_ipif != NULL) { 7521 if (ipif_arg == NULL && gw_addr != 0) { 7522 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7523 q, mp, func, &err, ipst); 7524 if (ipif_arg != NULL) 7525 ipif_refheld = B_TRUE; 7526 } 7527 if (ipif_arg == NULL) { 7528 err = (err == EINPROGRESS) ? err : ESRCH; 7529 return (err); 7530 } 7531 ipif = ipif_arg; 7532 } else { 7533 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7534 q, mp, func, &err, ipst); 7535 if (ipif != NULL) 7536 ipif_refheld = B_TRUE; 7537 else if (err == EINPROGRESS) 7538 return (err); 7539 else 7540 err = 0; 7541 } 7542 if (ipif != NULL) { 7543 if (ipif_arg != NULL) { 7544 if (ipif_refheld) { 7545 ipif_refrele(ipif); 7546 ipif_refheld = B_FALSE; 7547 } 7548 ipif = ipif_arg; 7549 match_flags |= MATCH_IRE_ILL; 7550 } else { 7551 match_flags |= MATCH_IRE_IPIF; 7552 } 7553 if (src_ipif != NULL) { 7554 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7555 ipif, src_ipif->ipif_ill, match_flags); 7556 } else { 7557 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7558 ire = ire_ctable_lookup(dst_addr, 0, 7559 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7560 match_flags, ipst); 7561 } 7562 if (ire == NULL) { 7563 ire = ire_ftable_lookup(dst_addr, mask, 0, 7564 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7565 NULL, match_flags, ipst); 7566 } 7567 } 7568 } 7569 7570 if (ire == NULL) { 7571 /* 7572 * At this point, the gateway address is not one of our own 7573 * addresses or a matching interface route was not found. We 7574 * set the IRE type to lookup based on whether 7575 * this is a host route, a default route or just a prefix. 7576 * 7577 * If an ipif_arg was passed in, then the lookup is based on an 7578 * interface index so MATCH_IRE_ILL is added to match_flags. 7579 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7580 * set as the route being looked up is not a traditional 7581 * interface route. 7582 * Since we do not add gateway route with srcipif, we don't 7583 * expect to find it either. 7584 */ 7585 if (src_ipif != NULL) { 7586 if (ipif_refheld) 7587 ipif_refrele(ipif); 7588 return (ESRCH); 7589 } else { 7590 match_flags &= ~MATCH_IRE_IPIF; 7591 match_flags |= MATCH_IRE_GW; 7592 if (ipif_arg != NULL) 7593 match_flags |= MATCH_IRE_ILL; 7594 if (mask == IP_HOST_MASK) 7595 type = IRE_HOST; 7596 else if (mask == 0) 7597 type = IRE_DEFAULT; 7598 else 7599 type = IRE_PREFIX; 7600 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7601 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7602 ipst); 7603 } 7604 } 7605 7606 if (ipif_refheld) 7607 ipif_refrele(ipif); 7608 7609 /* ipif is not refheld anymore */ 7610 if (ire == NULL) 7611 return (ESRCH); 7612 7613 if (ire->ire_flags & RTF_MULTIRT) { 7614 /* 7615 * Invoke the CGTP (multirouting) filtering module 7616 * to remove the dst address from the filtering database. 7617 * Packets coming from that address will no longer be 7618 * filtered to remove duplicates. 7619 */ 7620 if (ip_cgtp_filter_ops != NULL && 7621 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7622 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7623 ire->ire_addr, ire->ire_gateway_addr); 7624 } 7625 ip_cgtp_bcast_delete(ire, ipst); 7626 } 7627 7628 ipif = ire->ire_ipif; 7629 /* 7630 * Removing from ipif_saved_ire_mp is not necessary 7631 * when src_ipif being non-NULL. ip_rt_add does not 7632 * save the ires which src_ipif being non-NULL. 7633 */ 7634 if (ipif != NULL && src_ipif == NULL) { 7635 ipif_remove_ire(ipif, ire); 7636 } 7637 if (ioctl_msg) 7638 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7639 ire_delete(ire); 7640 ire_refrele(ire); 7641 return (err); 7642 } 7643 7644 /* 7645 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7646 */ 7647 /* ARGSUSED */ 7648 int 7649 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7650 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7651 { 7652 ipaddr_t dst_addr; 7653 ipaddr_t gw_addr; 7654 ipaddr_t mask; 7655 int error = 0; 7656 mblk_t *mp1; 7657 struct rtentry *rt; 7658 ipif_t *ipif = NULL; 7659 ip_stack_t *ipst; 7660 7661 ASSERT(q->q_next == NULL); 7662 ipst = CONNQ_TO_IPST(q); 7663 7664 ip1dbg(("ip_siocaddrt:")); 7665 /* Existence of mp1 verified in ip_wput_nondata */ 7666 mp1 = mp->b_cont->b_cont; 7667 rt = (struct rtentry *)mp1->b_rptr; 7668 7669 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7670 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7671 7672 /* 7673 * If the RTF_HOST flag is on, this is a request to assign a gateway 7674 * to a particular host address. In this case, we set the netmask to 7675 * all ones for the particular destination address. Otherwise, 7676 * determine the netmask to be used based on dst_addr and the interfaces 7677 * in use. 7678 */ 7679 if (rt->rt_flags & RTF_HOST) { 7680 mask = IP_HOST_MASK; 7681 } else { 7682 /* 7683 * Note that ip_subnet_mask returns a zero mask in the case of 7684 * default (an all-zeroes address). 7685 */ 7686 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7687 } 7688 7689 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7690 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7691 if (ipif != NULL) 7692 ipif_refrele(ipif); 7693 return (error); 7694 } 7695 7696 /* 7697 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7698 */ 7699 /* ARGSUSED */ 7700 int 7701 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7702 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7703 { 7704 ipaddr_t dst_addr; 7705 ipaddr_t gw_addr; 7706 ipaddr_t mask; 7707 int error; 7708 mblk_t *mp1; 7709 struct rtentry *rt; 7710 ipif_t *ipif = NULL; 7711 ip_stack_t *ipst; 7712 7713 ASSERT(q->q_next == NULL); 7714 ipst = CONNQ_TO_IPST(q); 7715 7716 ip1dbg(("ip_siocdelrt:")); 7717 /* Existence of mp1 verified in ip_wput_nondata */ 7718 mp1 = mp->b_cont->b_cont; 7719 rt = (struct rtentry *)mp1->b_rptr; 7720 7721 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7722 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7723 7724 /* 7725 * If the RTF_HOST flag is on, this is a request to delete a gateway 7726 * to a particular host address. In this case, we set the netmask to 7727 * all ones for the particular destination address. Otherwise, 7728 * determine the netmask to be used based on dst_addr and the interfaces 7729 * in use. 7730 */ 7731 if (rt->rt_flags & RTF_HOST) { 7732 mask = IP_HOST_MASK; 7733 } else { 7734 /* 7735 * Note that ip_subnet_mask returns a zero mask in the case of 7736 * default (an all-zeroes address). 7737 */ 7738 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7739 } 7740 7741 error = ip_rt_delete(dst_addr, mask, gw_addr, 7742 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7743 B_TRUE, q, mp, ip_process_ioctl, ipst); 7744 if (ipif != NULL) 7745 ipif_refrele(ipif); 7746 return (error); 7747 } 7748 7749 /* 7750 * Enqueue the mp onto the ipsq, chained by b_next. 7751 * b_prev stores the function to be executed later, and b_queue the queue 7752 * where this mp originated. 7753 */ 7754 void 7755 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7756 ill_t *pending_ill) 7757 { 7758 conn_t *connp = NULL; 7759 7760 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7761 ASSERT(func != NULL); 7762 7763 mp->b_queue = q; 7764 mp->b_prev = (void *)func; 7765 mp->b_next = NULL; 7766 7767 switch (type) { 7768 case CUR_OP: 7769 if (ipsq->ipsq_mptail != NULL) { 7770 ASSERT(ipsq->ipsq_mphead != NULL); 7771 ipsq->ipsq_mptail->b_next = mp; 7772 } else { 7773 ASSERT(ipsq->ipsq_mphead == NULL); 7774 ipsq->ipsq_mphead = mp; 7775 } 7776 ipsq->ipsq_mptail = mp; 7777 break; 7778 7779 case NEW_OP: 7780 if (ipsq->ipsq_xopq_mptail != NULL) { 7781 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7782 ipsq->ipsq_xopq_mptail->b_next = mp; 7783 } else { 7784 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7785 ipsq->ipsq_xopq_mphead = mp; 7786 } 7787 ipsq->ipsq_xopq_mptail = mp; 7788 break; 7789 default: 7790 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7791 } 7792 7793 if (CONN_Q(q) && pending_ill != NULL) { 7794 connp = Q_TO_CONN(q); 7795 7796 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7797 connp->conn_oper_pending_ill = pending_ill; 7798 } 7799 } 7800 7801 /* 7802 * Return the mp at the head of the ipsq. After emptying the ipsq 7803 * look at the next ioctl, if this ioctl is complete. Otherwise 7804 * return, we will resume when we complete the current ioctl. 7805 * The current ioctl will wait till it gets a response from the 7806 * driver below. 7807 */ 7808 static mblk_t * 7809 ipsq_dq(ipsq_t *ipsq) 7810 { 7811 mblk_t *mp; 7812 7813 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7814 7815 mp = ipsq->ipsq_mphead; 7816 if (mp != NULL) { 7817 ipsq->ipsq_mphead = mp->b_next; 7818 if (ipsq->ipsq_mphead == NULL) 7819 ipsq->ipsq_mptail = NULL; 7820 mp->b_next = NULL; 7821 return (mp); 7822 } 7823 if (ipsq->ipsq_current_ipif != NULL) 7824 return (NULL); 7825 mp = ipsq->ipsq_xopq_mphead; 7826 if (mp != NULL) { 7827 ipsq->ipsq_xopq_mphead = mp->b_next; 7828 if (ipsq->ipsq_xopq_mphead == NULL) 7829 ipsq->ipsq_xopq_mptail = NULL; 7830 mp->b_next = NULL; 7831 return (mp); 7832 } 7833 return (NULL); 7834 } 7835 7836 /* 7837 * Enter the ipsq corresponding to ill, by waiting synchronously till 7838 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7839 * will have to drain completely before ipsq_enter returns success. 7840 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7841 * and the ipsq_exit logic will start the next enqueued ioctl after 7842 * completion of the current ioctl. If 'force' is used, we don't wait 7843 * for the enqueued ioctls. This is needed when a conn_close wants to 7844 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7845 * of an ill can also use this option. But we dont' use it currently. 7846 */ 7847 #define ENTER_SQ_WAIT_TICKS 100 7848 boolean_t 7849 ipsq_enter(ill_t *ill, boolean_t force) 7850 { 7851 ipsq_t *ipsq; 7852 boolean_t waited_enough = B_FALSE; 7853 7854 /* 7855 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7856 * Since the <ill-ipsq> assocs could change while we wait for the 7857 * writer, it is easier to wait on a fixed global rather than try to 7858 * cv_wait on a changing ipsq. 7859 */ 7860 mutex_enter(&ill->ill_lock); 7861 for (;;) { 7862 if (ill->ill_state_flags & ILL_CONDEMNED) { 7863 mutex_exit(&ill->ill_lock); 7864 return (B_FALSE); 7865 } 7866 7867 ipsq = ill->ill_phyint->phyint_ipsq; 7868 mutex_enter(&ipsq->ipsq_lock); 7869 if (ipsq->ipsq_writer == NULL && 7870 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7871 break; 7872 } else if (ipsq->ipsq_writer != NULL) { 7873 mutex_exit(&ipsq->ipsq_lock); 7874 cv_wait(&ill->ill_cv, &ill->ill_lock); 7875 } else { 7876 mutex_exit(&ipsq->ipsq_lock); 7877 if (force) { 7878 (void) cv_timedwait(&ill->ill_cv, 7879 &ill->ill_lock, 7880 lbolt + ENTER_SQ_WAIT_TICKS); 7881 waited_enough = B_TRUE; 7882 continue; 7883 } else { 7884 cv_wait(&ill->ill_cv, &ill->ill_lock); 7885 } 7886 } 7887 } 7888 7889 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7890 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7891 ipsq->ipsq_writer = curthread; 7892 ipsq->ipsq_reentry_cnt++; 7893 #ifdef ILL_DEBUG 7894 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7895 #endif 7896 mutex_exit(&ipsq->ipsq_lock); 7897 mutex_exit(&ill->ill_lock); 7898 return (B_TRUE); 7899 } 7900 7901 /* 7902 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7903 * certain critical operations like plumbing (i.e. most set ioctls), 7904 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7905 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7906 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7907 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7908 * threads executing in the ipsq. Responses from the driver pertain to the 7909 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7910 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7911 * 7912 * If a thread does not want to reenter the ipsq when it is already writer, 7913 * it must make sure that the specified reentry point to be called later 7914 * when the ipsq is empty, nor any code path starting from the specified reentry 7915 * point must never ever try to enter the ipsq again. Otherwise it can lead 7916 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7917 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7918 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7919 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7920 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7921 * ioctl if the current ioctl has completed. If the current ioctl is still 7922 * in progress it simply returns. The current ioctl could be waiting for 7923 * a response from another module (arp_ or the driver or could be waiting for 7924 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7925 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7926 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7927 * ipsq_current_ipif is clear which happens only on ioctl completion. 7928 */ 7929 7930 /* 7931 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7932 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7933 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7934 * completion. 7935 */ 7936 ipsq_t * 7937 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7938 ipsq_func_t func, int type, boolean_t reentry_ok) 7939 { 7940 ipsq_t *ipsq; 7941 7942 /* Only 1 of ipif or ill can be specified */ 7943 ASSERT((ipif != NULL) ^ (ill != NULL)); 7944 if (ipif != NULL) 7945 ill = ipif->ipif_ill; 7946 7947 /* 7948 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7949 * ipsq of an ill can't change when ill_lock is held. 7950 */ 7951 GRAB_CONN_LOCK(q); 7952 mutex_enter(&ill->ill_lock); 7953 ipsq = ill->ill_phyint->phyint_ipsq; 7954 mutex_enter(&ipsq->ipsq_lock); 7955 7956 /* 7957 * 1. Enter the ipsq if we are already writer and reentry is ok. 7958 * (Note: If the caller does not specify reentry_ok then neither 7959 * 'func' nor any of its callees must ever attempt to enter the ipsq 7960 * again. Otherwise it can lead to an infinite loop 7961 * 2. Enter the ipsq if there is no current writer and this attempted 7962 * entry is part of the current ioctl or operation 7963 * 3. Enter the ipsq if there is no current writer and this is a new 7964 * ioctl (or operation) and the ioctl (or operation) queue is 7965 * empty and there is no ioctl (or operation) currently in progress 7966 */ 7967 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7968 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7969 ipsq->ipsq_current_ipif == NULL))) || 7970 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7971 /* Success. */ 7972 ipsq->ipsq_reentry_cnt++; 7973 ipsq->ipsq_writer = curthread; 7974 mutex_exit(&ipsq->ipsq_lock); 7975 mutex_exit(&ill->ill_lock); 7976 RELEASE_CONN_LOCK(q); 7977 #ifdef ILL_DEBUG 7978 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7979 #endif 7980 return (ipsq); 7981 } 7982 7983 ipsq_enq(ipsq, q, mp, func, type, ill); 7984 7985 mutex_exit(&ipsq->ipsq_lock); 7986 mutex_exit(&ill->ill_lock); 7987 RELEASE_CONN_LOCK(q); 7988 return (NULL); 7989 } 7990 7991 /* 7992 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7993 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7994 * cannot be entered, the mp is queued for completion. 7995 */ 7996 void 7997 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7998 boolean_t reentry_ok) 7999 { 8000 ipsq_t *ipsq; 8001 8002 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 8003 8004 /* 8005 * Drop the caller's refhold on the ill. This is safe since we either 8006 * entered the IPSQ (and thus are exclusive), or failed to enter the 8007 * IPSQ, in which case we return without accessing ill anymore. This 8008 * is needed because func needs to see the correct refcount. 8009 * e.g. removeif can work only then. 8010 */ 8011 ill_refrele(ill); 8012 if (ipsq != NULL) { 8013 (*func)(ipsq, q, mp, NULL); 8014 ipsq_exit(ipsq, B_TRUE, B_TRUE); 8015 } 8016 } 8017 8018 /* 8019 * If there are more than ILL_GRP_CNT ills in a group, 8020 * we use kmem alloc'd buffers, else use the stack 8021 */ 8022 #define ILL_GRP_CNT 14 8023 /* 8024 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 8025 * Called by a thread that is currently exclusive on this ipsq. 8026 */ 8027 void 8028 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 8029 { 8030 queue_t *q; 8031 mblk_t *mp; 8032 ipsq_func_t func; 8033 int next; 8034 ill_t **ill_list = NULL; 8035 size_t ill_list_size = 0; 8036 int cnt = 0; 8037 boolean_t need_ipsq_free = B_FALSE; 8038 ip_stack_t *ipst = ipsq->ipsq_ipst; 8039 8040 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8041 mutex_enter(&ipsq->ipsq_lock); 8042 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 8043 if (ipsq->ipsq_reentry_cnt != 1) { 8044 ipsq->ipsq_reentry_cnt--; 8045 mutex_exit(&ipsq->ipsq_lock); 8046 return; 8047 } 8048 8049 mp = ipsq_dq(ipsq); 8050 while (mp != NULL) { 8051 again: 8052 mutex_exit(&ipsq->ipsq_lock); 8053 func = (ipsq_func_t)mp->b_prev; 8054 q = (queue_t *)mp->b_queue; 8055 mp->b_prev = NULL; 8056 mp->b_queue = NULL; 8057 8058 /* 8059 * If 'q' is an conn queue, it is valid, since we did a 8060 * a refhold on the connp, at the start of the ioctl. 8061 * If 'q' is an ill queue, it is valid, since close of an 8062 * ill will clean up the 'ipsq'. 8063 */ 8064 (*func)(ipsq, q, mp, NULL); 8065 8066 mutex_enter(&ipsq->ipsq_lock); 8067 mp = ipsq_dq(ipsq); 8068 } 8069 8070 mutex_exit(&ipsq->ipsq_lock); 8071 8072 /* 8073 * Need to grab the locks in the right order. Need to 8074 * atomically check (under ipsq_lock) that there are no 8075 * messages before relinquishing the ipsq. Also need to 8076 * atomically wakeup waiters on ill_cv while holding ill_lock. 8077 * Holding ill_g_lock ensures that ipsq list of ills is stable. 8078 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 8079 * to grab ill_g_lock as writer. 8080 */ 8081 rw_enter(&ipst->ips_ill_g_lock, 8082 ipsq->ipsq_split ? RW_WRITER : RW_READER); 8083 8084 /* ipsq_refs can't change while ill_g_lock is held as reader */ 8085 if (ipsq->ipsq_refs != 0) { 8086 /* At most 2 ills v4/v6 per phyint */ 8087 cnt = ipsq->ipsq_refs << 1; 8088 ill_list_size = cnt * sizeof (ill_t *); 8089 /* 8090 * If memory allocation fails, we will do the split 8091 * the next time ipsq_exit is called for whatever reason. 8092 * As long as the ipsq_split flag is set the need to 8093 * split is remembered. 8094 */ 8095 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 8096 if (ill_list != NULL) 8097 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 8098 } 8099 mutex_enter(&ipsq->ipsq_lock); 8100 mp = ipsq_dq(ipsq); 8101 if (mp != NULL) { 8102 /* oops, some message has landed up, we can't get out */ 8103 if (ill_list != NULL) 8104 ill_unlock_ills(ill_list, cnt); 8105 rw_exit(&ipst->ips_ill_g_lock); 8106 if (ill_list != NULL) 8107 kmem_free(ill_list, ill_list_size); 8108 ill_list = NULL; 8109 ill_list_size = 0; 8110 cnt = 0; 8111 goto again; 8112 } 8113 8114 /* 8115 * Split only if no ioctl is pending and if memory alloc succeeded 8116 * above. 8117 */ 8118 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 8119 ill_list != NULL) { 8120 /* 8121 * No new ill can join this ipsq since we are holding the 8122 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 8123 * ipsq. ill_split_ipsq may fail due to memory shortage. 8124 * If so we will retry on the next ipsq_exit. 8125 */ 8126 ipsq->ipsq_split = ill_split_ipsq(ipsq); 8127 } 8128 8129 /* 8130 * We are holding the ipsq lock, hence no new messages can 8131 * land up on the ipsq, and there are no messages currently. 8132 * Now safe to get out. Wake up waiters and relinquish ipsq 8133 * atomically while holding ill locks. 8134 */ 8135 ipsq->ipsq_writer = NULL; 8136 ipsq->ipsq_reentry_cnt--; 8137 ASSERT(ipsq->ipsq_reentry_cnt == 0); 8138 #ifdef ILL_DEBUG 8139 ipsq->ipsq_depth = 0; 8140 #endif 8141 mutex_exit(&ipsq->ipsq_lock); 8142 /* 8143 * For IPMP this should wake up all ills in this ipsq. 8144 * We need to hold the ill_lock while waking up waiters to 8145 * avoid missed wakeups. But there is no need to acquire all 8146 * the ill locks and then wakeup. If we have not acquired all 8147 * the locks (due to memory failure above) ill_signal_ipsq_ills 8148 * wakes up ills one at a time after getting the right ill_lock 8149 */ 8150 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 8151 if (ill_list != NULL) 8152 ill_unlock_ills(ill_list, cnt); 8153 if (ipsq->ipsq_refs == 0) 8154 need_ipsq_free = B_TRUE; 8155 rw_exit(&ipst->ips_ill_g_lock); 8156 if (ill_list != 0) 8157 kmem_free(ill_list, ill_list_size); 8158 8159 if (need_ipsq_free) { 8160 /* 8161 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8162 * looked up. ipsq can be looked up only thru ill or phyint 8163 * and there are no ills/phyint on this ipsq. 8164 */ 8165 ipsq_delete(ipsq); 8166 } 8167 /* 8168 * Now start any igmp or mld timers that could not be started 8169 * while inside the ipsq. The timers can't be started while inside 8170 * the ipsq, since igmp_start_timers may need to call untimeout() 8171 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8172 * there could be a deadlock since the timeout handlers 8173 * mld_timeout_handler / igmp_timeout_handler also synchronously 8174 * wait in ipsq_enter() trying to get the ipsq. 8175 * 8176 * However there is one exception to the above. If this thread is 8177 * itself the igmp/mld timeout handler thread, then we don't want 8178 * to start any new timer until the current handler is done. The 8179 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8180 * all others pass B_TRUE. 8181 */ 8182 if (start_igmp_timer) { 8183 mutex_enter(&ipst->ips_igmp_timer_lock); 8184 next = ipst->ips_igmp_deferred_next; 8185 ipst->ips_igmp_deferred_next = INFINITY; 8186 mutex_exit(&ipst->ips_igmp_timer_lock); 8187 8188 if (next != INFINITY) 8189 igmp_start_timers(next, ipst); 8190 } 8191 8192 if (start_mld_timer) { 8193 mutex_enter(&ipst->ips_mld_timer_lock); 8194 next = ipst->ips_mld_deferred_next; 8195 ipst->ips_mld_deferred_next = INFINITY; 8196 mutex_exit(&ipst->ips_mld_timer_lock); 8197 8198 if (next != INFINITY) 8199 mld_start_timers(next, ipst); 8200 } 8201 } 8202 8203 /* 8204 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8205 * and `ioccmd'. 8206 */ 8207 void 8208 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8209 { 8210 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8211 8212 mutex_enter(&ipsq->ipsq_lock); 8213 ASSERT(ipsq->ipsq_current_ipif == NULL); 8214 ASSERT(ipsq->ipsq_current_ioctl == 0); 8215 ipsq->ipsq_current_ipif = ipif; 8216 ipsq->ipsq_current_ioctl = ioccmd; 8217 mutex_exit(&ipsq->ipsq_lock); 8218 } 8219 8220 /* 8221 * Finish the current exclusive operation on `ipsq'. Note that other 8222 * operations will not be able to proceed until an ipsq_exit() is done. 8223 */ 8224 void 8225 ipsq_current_finish(ipsq_t *ipsq) 8226 { 8227 ipif_t *ipif = ipsq->ipsq_current_ipif; 8228 8229 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8230 8231 /* 8232 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8233 * (but we're careful to never set IPIF_CHANGING in that case). 8234 */ 8235 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8236 mutex_enter(&ipif->ipif_ill->ill_lock); 8237 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8238 8239 /* Send any queued event */ 8240 ill_nic_info_dispatch(ipif->ipif_ill); 8241 mutex_exit(&ipif->ipif_ill->ill_lock); 8242 } 8243 8244 mutex_enter(&ipsq->ipsq_lock); 8245 ASSERT(ipsq->ipsq_current_ipif != NULL); 8246 ipsq->ipsq_current_ipif = NULL; 8247 ipsq->ipsq_current_ioctl = 0; 8248 mutex_exit(&ipsq->ipsq_lock); 8249 } 8250 8251 /* 8252 * The ill is closing. Flush all messages on the ipsq that originated 8253 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8254 * for this ill since ipsq_enter could not have entered until then. 8255 * New messages can't be queued since the CONDEMNED flag is set. 8256 */ 8257 static void 8258 ipsq_flush(ill_t *ill) 8259 { 8260 queue_t *q; 8261 mblk_t *prev; 8262 mblk_t *mp; 8263 mblk_t *mp_next; 8264 ipsq_t *ipsq; 8265 8266 ASSERT(IAM_WRITER_ILL(ill)); 8267 ipsq = ill->ill_phyint->phyint_ipsq; 8268 /* 8269 * Flush any messages sent up by the driver. 8270 */ 8271 mutex_enter(&ipsq->ipsq_lock); 8272 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8273 mp_next = mp->b_next; 8274 q = mp->b_queue; 8275 if (q == ill->ill_rq || q == ill->ill_wq) { 8276 /* Remove the mp from the ipsq */ 8277 if (prev == NULL) 8278 ipsq->ipsq_mphead = mp->b_next; 8279 else 8280 prev->b_next = mp->b_next; 8281 if (ipsq->ipsq_mptail == mp) { 8282 ASSERT(mp_next == NULL); 8283 ipsq->ipsq_mptail = prev; 8284 } 8285 inet_freemsg(mp); 8286 } else { 8287 prev = mp; 8288 } 8289 } 8290 mutex_exit(&ipsq->ipsq_lock); 8291 (void) ipsq_pending_mp_cleanup(ill, NULL); 8292 ipsq_xopq_mp_cleanup(ill, NULL); 8293 ill_pending_mp_cleanup(ill); 8294 } 8295 8296 /* ARGSUSED */ 8297 int 8298 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8299 ip_ioctl_cmd_t *ipip, void *ifreq) 8300 { 8301 ill_t *ill; 8302 struct lifreq *lifr = (struct lifreq *)ifreq; 8303 boolean_t isv6; 8304 conn_t *connp; 8305 ip_stack_t *ipst; 8306 8307 connp = Q_TO_CONN(q); 8308 ipst = connp->conn_netstack->netstack_ip; 8309 isv6 = connp->conn_af_isv6; 8310 /* 8311 * Set original index. 8312 * Failover and failback move logical interfaces 8313 * from one physical interface to another. The 8314 * original index indicates the parent of a logical 8315 * interface, in other words, the physical interface 8316 * the logical interface will be moved back to on 8317 * failback. 8318 */ 8319 8320 /* 8321 * Don't allow the original index to be changed 8322 * for non-failover addresses, autoconfigured 8323 * addresses, or IPv6 link local addresses. 8324 */ 8325 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8326 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8327 return (EINVAL); 8328 } 8329 /* 8330 * The new original index must be in use by some 8331 * physical interface. 8332 */ 8333 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8334 NULL, NULL, ipst); 8335 if (ill == NULL) 8336 return (ENXIO); 8337 ill_refrele(ill); 8338 8339 ipif->ipif_orig_ifindex = lifr->lifr_index; 8340 /* 8341 * When this ipif gets failed back, don't 8342 * preserve the original id, as it is no 8343 * longer applicable. 8344 */ 8345 ipif->ipif_orig_ipifid = 0; 8346 /* 8347 * For IPv4, change the original index of any 8348 * multicast addresses associated with the 8349 * ipif to the new value. 8350 */ 8351 if (!isv6) { 8352 ilm_t *ilm; 8353 8354 mutex_enter(&ipif->ipif_ill->ill_lock); 8355 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8356 ilm = ilm->ilm_next) { 8357 if (ilm->ilm_ipif == ipif) { 8358 ilm->ilm_orig_ifindex = lifr->lifr_index; 8359 } 8360 } 8361 mutex_exit(&ipif->ipif_ill->ill_lock); 8362 } 8363 return (0); 8364 } 8365 8366 /* ARGSUSED */ 8367 int 8368 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8369 ip_ioctl_cmd_t *ipip, void *ifreq) 8370 { 8371 struct lifreq *lifr = (struct lifreq *)ifreq; 8372 8373 /* 8374 * Get the original interface index i.e the one 8375 * before FAILOVER if it ever happened. 8376 */ 8377 lifr->lifr_index = ipif->ipif_orig_ifindex; 8378 return (0); 8379 } 8380 8381 /* 8382 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8383 * refhold and return the associated ipif 8384 */ 8385 int 8386 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8387 { 8388 boolean_t exists; 8389 struct iftun_req *ta; 8390 ipif_t *ipif; 8391 ill_t *ill; 8392 boolean_t isv6; 8393 mblk_t *mp1; 8394 int error; 8395 conn_t *connp; 8396 ip_stack_t *ipst; 8397 8398 /* Existence verified in ip_wput_nondata */ 8399 mp1 = mp->b_cont->b_cont; 8400 ta = (struct iftun_req *)mp1->b_rptr; 8401 /* 8402 * Null terminate the string to protect against buffer 8403 * overrun. String was generated by user code and may not 8404 * be trusted. 8405 */ 8406 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8407 8408 connp = Q_TO_CONN(q); 8409 isv6 = connp->conn_af_isv6; 8410 ipst = connp->conn_netstack->netstack_ip; 8411 8412 /* Disallows implicit create */ 8413 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8414 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8415 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8416 if (ipif == NULL) 8417 return (error); 8418 8419 if (ipif->ipif_id != 0) { 8420 /* 8421 * We really don't want to set/get tunnel parameters 8422 * on virtual tunnel interfaces. Only allow the 8423 * base tunnel to do these. 8424 */ 8425 ipif_refrele(ipif); 8426 return (EINVAL); 8427 } 8428 8429 /* 8430 * Send down to tunnel mod for ioctl processing. 8431 * Will finish ioctl in ip_rput_other(). 8432 */ 8433 ill = ipif->ipif_ill; 8434 if (ill->ill_net_type == IRE_LOOPBACK) { 8435 ipif_refrele(ipif); 8436 return (EOPNOTSUPP); 8437 } 8438 8439 if (ill->ill_wq == NULL) { 8440 ipif_refrele(ipif); 8441 return (ENXIO); 8442 } 8443 /* 8444 * Mark the ioctl as coming from an IPv6 interface for 8445 * tun's convenience. 8446 */ 8447 if (ill->ill_isv6) 8448 ta->ifta_flags |= 0x80000000; 8449 *ipifp = ipif; 8450 return (0); 8451 } 8452 8453 /* 8454 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8455 * and return the associated ipif. 8456 * Return value: 8457 * Non zero: An error has occurred. ci may not be filled out. 8458 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8459 * a held ipif in ci.ci_ipif. 8460 */ 8461 int 8462 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8463 cmd_info_t *ci, ipsq_func_t func) 8464 { 8465 sin_t *sin; 8466 sin6_t *sin6; 8467 char *name; 8468 struct ifreq *ifr; 8469 struct lifreq *lifr; 8470 ipif_t *ipif = NULL; 8471 ill_t *ill; 8472 conn_t *connp; 8473 boolean_t isv6; 8474 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8475 boolean_t exists; 8476 int err; 8477 mblk_t *mp1; 8478 zoneid_t zoneid; 8479 ip_stack_t *ipst; 8480 8481 if (q->q_next != NULL) { 8482 ill = (ill_t *)q->q_ptr; 8483 isv6 = ill->ill_isv6; 8484 connp = NULL; 8485 zoneid = ALL_ZONES; 8486 ipst = ill->ill_ipst; 8487 } else { 8488 ill = NULL; 8489 connp = Q_TO_CONN(q); 8490 isv6 = connp->conn_af_isv6; 8491 zoneid = connp->conn_zoneid; 8492 if (zoneid == GLOBAL_ZONEID) { 8493 /* global zone can access ipifs in all zones */ 8494 zoneid = ALL_ZONES; 8495 } 8496 ipst = connp->conn_netstack->netstack_ip; 8497 } 8498 8499 /* Has been checked in ip_wput_nondata */ 8500 mp1 = mp->b_cont->b_cont; 8501 8502 8503 if (cmd_type == IF_CMD) { 8504 /* This a old style SIOC[GS]IF* command */ 8505 ifr = (struct ifreq *)mp1->b_rptr; 8506 /* 8507 * Null terminate the string to protect against buffer 8508 * overrun. String was generated by user code and may not 8509 * be trusted. 8510 */ 8511 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8512 sin = (sin_t *)&ifr->ifr_addr; 8513 name = ifr->ifr_name; 8514 ci->ci_sin = sin; 8515 ci->ci_sin6 = NULL; 8516 ci->ci_lifr = (struct lifreq *)ifr; 8517 } else { 8518 /* This a new style SIOC[GS]LIF* command */ 8519 ASSERT(cmd_type == LIF_CMD); 8520 lifr = (struct lifreq *)mp1->b_rptr; 8521 /* 8522 * Null terminate the string to protect against buffer 8523 * overrun. String was generated by user code and may not 8524 * be trusted. 8525 */ 8526 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8527 name = lifr->lifr_name; 8528 sin = (sin_t *)&lifr->lifr_addr; 8529 sin6 = (sin6_t *)&lifr->lifr_addr; 8530 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8531 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8532 LIFNAMSIZ); 8533 } 8534 ci->ci_sin = sin; 8535 ci->ci_sin6 = sin6; 8536 ci->ci_lifr = lifr; 8537 } 8538 8539 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8540 /* 8541 * The ioctl will be failed if the ioctl comes down 8542 * an conn stream 8543 */ 8544 if (ill == NULL) { 8545 /* 8546 * Not an ill queue, return EINVAL same as the 8547 * old error code. 8548 */ 8549 return (ENXIO); 8550 } 8551 ipif = ill->ill_ipif; 8552 ipif_refhold(ipif); 8553 } else { 8554 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8555 &exists, isv6, zoneid, 8556 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8557 ipst); 8558 if (ipif == NULL) { 8559 if (err == EINPROGRESS) 8560 return (err); 8561 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8562 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8563 /* 8564 * Need to try both v4 and v6 since this 8565 * ioctl can come down either v4 or v6 8566 * socket. The lifreq.lifr_family passed 8567 * down by this ioctl is AF_UNSPEC. 8568 */ 8569 ipif = ipif_lookup_on_name(name, 8570 mi_strlen(name), B_FALSE, &exists, !isv6, 8571 zoneid, (connp == NULL) ? q : 8572 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8573 if (err == EINPROGRESS) 8574 return (err); 8575 } 8576 err = 0; /* Ensure we don't use it below */ 8577 } 8578 } 8579 8580 /* 8581 * Old style [GS]IFCMD does not admit IPv6 ipif 8582 */ 8583 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8584 ipif_refrele(ipif); 8585 return (ENXIO); 8586 } 8587 8588 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8589 name[0] == '\0') { 8590 /* 8591 * Handle a or a SIOC?IF* with a null name 8592 * during plumb (on the ill queue before the I_PLINK). 8593 */ 8594 ipif = ill->ill_ipif; 8595 ipif_refhold(ipif); 8596 } 8597 8598 if (ipif == NULL) 8599 return (ENXIO); 8600 8601 /* 8602 * Allow only GET operations if this ipif has been created 8603 * temporarily due to a MOVE operation. 8604 */ 8605 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8606 ipif_refrele(ipif); 8607 return (EINVAL); 8608 } 8609 8610 ci->ci_ipif = ipif; 8611 return (0); 8612 } 8613 8614 /* 8615 * Return the total number of ipifs. 8616 */ 8617 static uint_t 8618 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8619 { 8620 uint_t numifs = 0; 8621 ill_t *ill; 8622 ill_walk_context_t ctx; 8623 ipif_t *ipif; 8624 8625 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8626 ill = ILL_START_WALK_V4(&ctx, ipst); 8627 8628 while (ill != NULL) { 8629 for (ipif = ill->ill_ipif; ipif != NULL; 8630 ipif = ipif->ipif_next) { 8631 if (ipif->ipif_zoneid == zoneid || 8632 ipif->ipif_zoneid == ALL_ZONES) 8633 numifs++; 8634 } 8635 ill = ill_next(&ctx, ill); 8636 } 8637 rw_exit(&ipst->ips_ill_g_lock); 8638 return (numifs); 8639 } 8640 8641 /* 8642 * Return the total number of ipifs. 8643 */ 8644 static uint_t 8645 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8646 { 8647 uint_t numifs = 0; 8648 ill_t *ill; 8649 ipif_t *ipif; 8650 ill_walk_context_t ctx; 8651 8652 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8653 8654 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8655 if (family == AF_INET) 8656 ill = ILL_START_WALK_V4(&ctx, ipst); 8657 else if (family == AF_INET6) 8658 ill = ILL_START_WALK_V6(&ctx, ipst); 8659 else 8660 ill = ILL_START_WALK_ALL(&ctx, ipst); 8661 8662 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8663 for (ipif = ill->ill_ipif; ipif != NULL; 8664 ipif = ipif->ipif_next) { 8665 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8666 !(lifn_flags & LIFC_NOXMIT)) 8667 continue; 8668 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8669 !(lifn_flags & LIFC_TEMPORARY)) 8670 continue; 8671 if (((ipif->ipif_flags & 8672 (IPIF_NOXMIT|IPIF_NOLOCAL| 8673 IPIF_DEPRECATED)) || 8674 IS_LOOPBACK(ill) || 8675 !(ipif->ipif_flags & IPIF_UP)) && 8676 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8677 continue; 8678 8679 if (zoneid != ipif->ipif_zoneid && 8680 ipif->ipif_zoneid != ALL_ZONES && 8681 (zoneid != GLOBAL_ZONEID || 8682 !(lifn_flags & LIFC_ALLZONES))) 8683 continue; 8684 8685 numifs++; 8686 } 8687 } 8688 rw_exit(&ipst->ips_ill_g_lock); 8689 return (numifs); 8690 } 8691 8692 uint_t 8693 ip_get_lifsrcofnum(ill_t *ill) 8694 { 8695 uint_t numifs = 0; 8696 ill_t *ill_head = ill; 8697 ip_stack_t *ipst = ill->ill_ipst; 8698 8699 /* 8700 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8701 * other thread may be trying to relink the ILLs in this usesrc group 8702 * and adjusting the ill_usesrc_grp_next pointers 8703 */ 8704 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8705 if ((ill->ill_usesrc_ifindex == 0) && 8706 (ill->ill_usesrc_grp_next != NULL)) { 8707 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8708 ill = ill->ill_usesrc_grp_next) 8709 numifs++; 8710 } 8711 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8712 8713 return (numifs); 8714 } 8715 8716 /* Null values are passed in for ipif, sin, and ifreq */ 8717 /* ARGSUSED */ 8718 int 8719 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8720 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8721 { 8722 int *nump; 8723 conn_t *connp = Q_TO_CONN(q); 8724 8725 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8726 8727 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8728 nump = (int *)mp->b_cont->b_cont->b_rptr; 8729 8730 *nump = ip_get_numifs(connp->conn_zoneid, 8731 connp->conn_netstack->netstack_ip); 8732 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8733 return (0); 8734 } 8735 8736 /* Null values are passed in for ipif, sin, and ifreq */ 8737 /* ARGSUSED */ 8738 int 8739 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8740 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8741 { 8742 struct lifnum *lifn; 8743 mblk_t *mp1; 8744 conn_t *connp = Q_TO_CONN(q); 8745 8746 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8747 8748 /* Existence checked in ip_wput_nondata */ 8749 mp1 = mp->b_cont->b_cont; 8750 8751 lifn = (struct lifnum *)mp1->b_rptr; 8752 switch (lifn->lifn_family) { 8753 case AF_UNSPEC: 8754 case AF_INET: 8755 case AF_INET6: 8756 break; 8757 default: 8758 return (EAFNOSUPPORT); 8759 } 8760 8761 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8762 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8763 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8764 return (0); 8765 } 8766 8767 /* ARGSUSED */ 8768 int 8769 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8770 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8771 { 8772 STRUCT_HANDLE(ifconf, ifc); 8773 mblk_t *mp1; 8774 struct iocblk *iocp; 8775 struct ifreq *ifr; 8776 ill_walk_context_t ctx; 8777 ill_t *ill; 8778 ipif_t *ipif; 8779 struct sockaddr_in *sin; 8780 int32_t ifclen; 8781 zoneid_t zoneid; 8782 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8783 8784 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8785 8786 ip1dbg(("ip_sioctl_get_ifconf")); 8787 /* Existence verified in ip_wput_nondata */ 8788 mp1 = mp->b_cont->b_cont; 8789 iocp = (struct iocblk *)mp->b_rptr; 8790 zoneid = Q_TO_CONN(q)->conn_zoneid; 8791 8792 /* 8793 * The original SIOCGIFCONF passed in a struct ifconf which specified 8794 * the user buffer address and length into which the list of struct 8795 * ifreqs was to be copied. Since AT&T Streams does not seem to 8796 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8797 * the SIOCGIFCONF operation was redefined to simply provide 8798 * a large output buffer into which we are supposed to jam the ifreq 8799 * array. The same ioctl command code was used, despite the fact that 8800 * both the applications and the kernel code had to change, thus making 8801 * it impossible to support both interfaces. 8802 * 8803 * For reasons not good enough to try to explain, the following 8804 * algorithm is used for deciding what to do with one of these: 8805 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8806 * form with the output buffer coming down as the continuation message. 8807 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8808 * and we have to copy in the ifconf structure to find out how big the 8809 * output buffer is and where to copy out to. Sure no problem... 8810 * 8811 */ 8812 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8813 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8814 int numifs = 0; 8815 size_t ifc_bufsize; 8816 8817 /* 8818 * Must be (better be!) continuation of a TRANSPARENT 8819 * IOCTL. We just copied in the ifconf structure. 8820 */ 8821 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8822 (struct ifconf *)mp1->b_rptr); 8823 8824 /* 8825 * Allocate a buffer to hold requested information. 8826 * 8827 * If ifc_len is larger than what is needed, we only 8828 * allocate what we will use. 8829 * 8830 * If ifc_len is smaller than what is needed, return 8831 * EINVAL. 8832 * 8833 * XXX: the ill_t structure can hava 2 counters, for 8834 * v4 and v6 (not just ill_ipif_up_count) to store the 8835 * number of interfaces for a device, so we don't need 8836 * to count them here... 8837 */ 8838 numifs = ip_get_numifs(zoneid, ipst); 8839 8840 ifclen = STRUCT_FGET(ifc, ifc_len); 8841 ifc_bufsize = numifs * sizeof (struct ifreq); 8842 if (ifc_bufsize > ifclen) { 8843 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8844 /* old behaviour */ 8845 return (EINVAL); 8846 } else { 8847 ifc_bufsize = ifclen; 8848 } 8849 } 8850 8851 mp1 = mi_copyout_alloc(q, mp, 8852 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8853 if (mp1 == NULL) 8854 return (ENOMEM); 8855 8856 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8857 } 8858 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8859 /* 8860 * the SIOCGIFCONF ioctl only knows about 8861 * IPv4 addresses, so don't try to tell 8862 * it about interfaces with IPv6-only 8863 * addresses. (Last parm 'isv6' is B_FALSE) 8864 */ 8865 8866 ifr = (struct ifreq *)mp1->b_rptr; 8867 8868 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8869 ill = ILL_START_WALK_V4(&ctx, ipst); 8870 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8871 for (ipif = ill->ill_ipif; ipif != NULL; 8872 ipif = ipif->ipif_next) { 8873 if (zoneid != ipif->ipif_zoneid && 8874 ipif->ipif_zoneid != ALL_ZONES) 8875 continue; 8876 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8877 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8878 /* old behaviour */ 8879 rw_exit(&ipst->ips_ill_g_lock); 8880 return (EINVAL); 8881 } else { 8882 goto if_copydone; 8883 } 8884 } 8885 (void) ipif_get_name(ipif, 8886 ifr->ifr_name, 8887 sizeof (ifr->ifr_name)); 8888 sin = (sin_t *)&ifr->ifr_addr; 8889 *sin = sin_null; 8890 sin->sin_family = AF_INET; 8891 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8892 ifr++; 8893 } 8894 } 8895 if_copydone: 8896 rw_exit(&ipst->ips_ill_g_lock); 8897 mp1->b_wptr = (uchar_t *)ifr; 8898 8899 if (STRUCT_BUF(ifc) != NULL) { 8900 STRUCT_FSET(ifc, ifc_len, 8901 (int)((uchar_t *)ifr - mp1->b_rptr)); 8902 } 8903 return (0); 8904 } 8905 8906 /* 8907 * Get the interfaces using the address hosted on the interface passed in, 8908 * as a source adddress 8909 */ 8910 /* ARGSUSED */ 8911 int 8912 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8913 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8914 { 8915 mblk_t *mp1; 8916 ill_t *ill, *ill_head; 8917 ipif_t *ipif, *orig_ipif; 8918 int numlifs = 0; 8919 size_t lifs_bufsize, lifsmaxlen; 8920 struct lifreq *lifr; 8921 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8922 uint_t ifindex; 8923 zoneid_t zoneid; 8924 int err = 0; 8925 boolean_t isv6 = B_FALSE; 8926 struct sockaddr_in *sin; 8927 struct sockaddr_in6 *sin6; 8928 STRUCT_HANDLE(lifsrcof, lifs); 8929 ip_stack_t *ipst; 8930 8931 ipst = CONNQ_TO_IPST(q); 8932 8933 ASSERT(q->q_next == NULL); 8934 8935 zoneid = Q_TO_CONN(q)->conn_zoneid; 8936 8937 /* Existence verified in ip_wput_nondata */ 8938 mp1 = mp->b_cont->b_cont; 8939 8940 /* 8941 * Must be (better be!) continuation of a TRANSPARENT 8942 * IOCTL. We just copied in the lifsrcof structure. 8943 */ 8944 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8945 (struct lifsrcof *)mp1->b_rptr); 8946 8947 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8948 return (EINVAL); 8949 8950 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8951 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8952 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8953 ip_process_ioctl, &err, ipst); 8954 if (ipif == NULL) { 8955 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8956 ifindex)); 8957 return (err); 8958 } 8959 8960 8961 /* Allocate a buffer to hold requested information */ 8962 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8963 lifs_bufsize = numlifs * sizeof (struct lifreq); 8964 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8965 /* The actual size needed is always returned in lifs_len */ 8966 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8967 8968 /* If the amount we need is more than what is passed in, abort */ 8969 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8970 ipif_refrele(ipif); 8971 return (0); 8972 } 8973 8974 mp1 = mi_copyout_alloc(q, mp, 8975 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8976 if (mp1 == NULL) { 8977 ipif_refrele(ipif); 8978 return (ENOMEM); 8979 } 8980 8981 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8982 bzero(mp1->b_rptr, lifs_bufsize); 8983 8984 lifr = (struct lifreq *)mp1->b_rptr; 8985 8986 ill = ill_head = ipif->ipif_ill; 8987 orig_ipif = ipif; 8988 8989 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8990 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8991 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8992 8993 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8994 for (; (ill != NULL) && (ill != ill_head); 8995 ill = ill->ill_usesrc_grp_next) { 8996 8997 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8998 break; 8999 9000 ipif = ill->ill_ipif; 9001 (void) ipif_get_name(ipif, 9002 lifr->lifr_name, sizeof (lifr->lifr_name)); 9003 if (ipif->ipif_isv6) { 9004 sin6 = (sin6_t *)&lifr->lifr_addr; 9005 *sin6 = sin6_null; 9006 sin6->sin6_family = AF_INET6; 9007 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9008 lifr->lifr_addrlen = ip_mask_to_plen_v6( 9009 &ipif->ipif_v6net_mask); 9010 } else { 9011 sin = (sin_t *)&lifr->lifr_addr; 9012 *sin = sin_null; 9013 sin->sin_family = AF_INET; 9014 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9015 lifr->lifr_addrlen = ip_mask_to_plen( 9016 ipif->ipif_net_mask); 9017 } 9018 lifr++; 9019 } 9020 rw_exit(&ipst->ips_ill_g_usesrc_lock); 9021 rw_exit(&ipst->ips_ill_g_lock); 9022 ipif_refrele(orig_ipif); 9023 mp1->b_wptr = (uchar_t *)lifr; 9024 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 9025 9026 return (0); 9027 } 9028 9029 /* ARGSUSED */ 9030 int 9031 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 9032 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9033 { 9034 mblk_t *mp1; 9035 int list; 9036 ill_t *ill; 9037 ipif_t *ipif; 9038 int flags; 9039 int numlifs = 0; 9040 size_t lifc_bufsize; 9041 struct lifreq *lifr; 9042 sa_family_t family; 9043 struct sockaddr_in *sin; 9044 struct sockaddr_in6 *sin6; 9045 ill_walk_context_t ctx; 9046 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9047 int32_t lifclen; 9048 zoneid_t zoneid; 9049 STRUCT_HANDLE(lifconf, lifc); 9050 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9051 9052 ip1dbg(("ip_sioctl_get_lifconf")); 9053 9054 ASSERT(q->q_next == NULL); 9055 9056 zoneid = Q_TO_CONN(q)->conn_zoneid; 9057 9058 /* Existence verified in ip_wput_nondata */ 9059 mp1 = mp->b_cont->b_cont; 9060 9061 /* 9062 * An extended version of SIOCGIFCONF that takes an 9063 * additional address family and flags field. 9064 * AF_UNSPEC retrieve both IPv4 and IPv6. 9065 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9066 * interfaces are omitted. 9067 * Similarly, IPIF_TEMPORARY interfaces are omitted 9068 * unless LIFC_TEMPORARY is specified. 9069 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9070 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9071 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9072 * has priority over LIFC_NOXMIT. 9073 */ 9074 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9075 9076 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9077 return (EINVAL); 9078 9079 /* 9080 * Must be (better be!) continuation of a TRANSPARENT 9081 * IOCTL. We just copied in the lifconf structure. 9082 */ 9083 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9084 9085 family = STRUCT_FGET(lifc, lifc_family); 9086 flags = STRUCT_FGET(lifc, lifc_flags); 9087 9088 switch (family) { 9089 case AF_UNSPEC: 9090 /* 9091 * walk all ILL's. 9092 */ 9093 list = MAX_G_HEADS; 9094 break; 9095 case AF_INET: 9096 /* 9097 * walk only IPV4 ILL's. 9098 */ 9099 list = IP_V4_G_HEAD; 9100 break; 9101 case AF_INET6: 9102 /* 9103 * walk only IPV6 ILL's. 9104 */ 9105 list = IP_V6_G_HEAD; 9106 break; 9107 default: 9108 return (EAFNOSUPPORT); 9109 } 9110 9111 /* 9112 * Allocate a buffer to hold requested information. 9113 * 9114 * If lifc_len is larger than what is needed, we only 9115 * allocate what we will use. 9116 * 9117 * If lifc_len is smaller than what is needed, return 9118 * EINVAL. 9119 */ 9120 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9121 lifc_bufsize = numlifs * sizeof (struct lifreq); 9122 lifclen = STRUCT_FGET(lifc, lifc_len); 9123 if (lifc_bufsize > lifclen) { 9124 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9125 return (EINVAL); 9126 else 9127 lifc_bufsize = lifclen; 9128 } 9129 9130 mp1 = mi_copyout_alloc(q, mp, 9131 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9132 if (mp1 == NULL) 9133 return (ENOMEM); 9134 9135 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9136 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9137 9138 lifr = (struct lifreq *)mp1->b_rptr; 9139 9140 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9141 ill = ill_first(list, list, &ctx, ipst); 9142 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9143 for (ipif = ill->ill_ipif; ipif != NULL; 9144 ipif = ipif->ipif_next) { 9145 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9146 !(flags & LIFC_NOXMIT)) 9147 continue; 9148 9149 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9150 !(flags & LIFC_TEMPORARY)) 9151 continue; 9152 9153 if (((ipif->ipif_flags & 9154 (IPIF_NOXMIT|IPIF_NOLOCAL| 9155 IPIF_DEPRECATED)) || 9156 IS_LOOPBACK(ill) || 9157 !(ipif->ipif_flags & IPIF_UP)) && 9158 (flags & LIFC_EXTERNAL_SOURCE)) 9159 continue; 9160 9161 if (zoneid != ipif->ipif_zoneid && 9162 ipif->ipif_zoneid != ALL_ZONES && 9163 (zoneid != GLOBAL_ZONEID || 9164 !(flags & LIFC_ALLZONES))) 9165 continue; 9166 9167 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9168 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9169 rw_exit(&ipst->ips_ill_g_lock); 9170 return (EINVAL); 9171 } else { 9172 goto lif_copydone; 9173 } 9174 } 9175 9176 (void) ipif_get_name(ipif, lifr->lifr_name, 9177 sizeof (lifr->lifr_name)); 9178 if (ipif->ipif_isv6) { 9179 sin6 = (sin6_t *)&lifr->lifr_addr; 9180 *sin6 = sin6_null; 9181 sin6->sin6_family = AF_INET6; 9182 sin6->sin6_addr = 9183 ipif->ipif_v6lcl_addr; 9184 lifr->lifr_addrlen = 9185 ip_mask_to_plen_v6( 9186 &ipif->ipif_v6net_mask); 9187 } else { 9188 sin = (sin_t *)&lifr->lifr_addr; 9189 *sin = sin_null; 9190 sin->sin_family = AF_INET; 9191 sin->sin_addr.s_addr = 9192 ipif->ipif_lcl_addr; 9193 lifr->lifr_addrlen = 9194 ip_mask_to_plen( 9195 ipif->ipif_net_mask); 9196 } 9197 lifr++; 9198 } 9199 } 9200 lif_copydone: 9201 rw_exit(&ipst->ips_ill_g_lock); 9202 9203 mp1->b_wptr = (uchar_t *)lifr; 9204 if (STRUCT_BUF(lifc) != NULL) { 9205 STRUCT_FSET(lifc, lifc_len, 9206 (int)((uchar_t *)lifr - mp1->b_rptr)); 9207 } 9208 return (0); 9209 } 9210 9211 /* ARGSUSED */ 9212 int 9213 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9214 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9215 { 9216 ip_stack_t *ipst; 9217 9218 if (q->q_next == NULL) 9219 ipst = CONNQ_TO_IPST(q); 9220 else 9221 ipst = ILLQ_TO_IPST(q); 9222 9223 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9224 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9225 return (0); 9226 } 9227 9228 static void 9229 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9230 { 9231 ip6_asp_t *table; 9232 size_t table_size; 9233 mblk_t *data_mp; 9234 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9235 ip_stack_t *ipst; 9236 9237 if (q->q_next == NULL) 9238 ipst = CONNQ_TO_IPST(q); 9239 else 9240 ipst = ILLQ_TO_IPST(q); 9241 9242 /* These two ioctls are I_STR only */ 9243 if (iocp->ioc_count == TRANSPARENT) { 9244 miocnak(q, mp, 0, EINVAL); 9245 return; 9246 } 9247 9248 data_mp = mp->b_cont; 9249 if (data_mp == NULL) { 9250 /* The user passed us a NULL argument */ 9251 table = NULL; 9252 table_size = iocp->ioc_count; 9253 } else { 9254 /* 9255 * The user provided a table. The stream head 9256 * may have copied in the user data in chunks, 9257 * so make sure everything is pulled up 9258 * properly. 9259 */ 9260 if (MBLKL(data_mp) < iocp->ioc_count) { 9261 mblk_t *new_data_mp; 9262 if ((new_data_mp = msgpullup(data_mp, -1)) == 9263 NULL) { 9264 miocnak(q, mp, 0, ENOMEM); 9265 return; 9266 } 9267 freemsg(data_mp); 9268 data_mp = new_data_mp; 9269 mp->b_cont = data_mp; 9270 } 9271 table = (ip6_asp_t *)data_mp->b_rptr; 9272 table_size = iocp->ioc_count; 9273 } 9274 9275 switch (iocp->ioc_cmd) { 9276 case SIOCGIP6ADDRPOLICY: 9277 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9278 if (iocp->ioc_rval == -1) 9279 iocp->ioc_error = EINVAL; 9280 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9281 else if (table != NULL && 9282 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9283 ip6_asp_t *src = table; 9284 ip6_asp32_t *dst = (void *)table; 9285 int count = table_size / sizeof (ip6_asp_t); 9286 int i; 9287 9288 /* 9289 * We need to do an in-place shrink of the array 9290 * to match the alignment attributes of the 9291 * 32-bit ABI looking at it. 9292 */ 9293 /* LINTED: logical expression always true: op "||" */ 9294 ASSERT(sizeof (*src) > sizeof (*dst)); 9295 for (i = 1; i < count; i++) 9296 bcopy(src + i, dst + i, sizeof (*dst)); 9297 } 9298 #endif 9299 break; 9300 9301 case SIOCSIP6ADDRPOLICY: 9302 ASSERT(mp->b_prev == NULL); 9303 mp->b_prev = (void *)q; 9304 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9305 /* 9306 * We pass in the datamodel here so that the ip6_asp_replace() 9307 * routine can handle converting from 32-bit to native formats 9308 * where necessary. 9309 * 9310 * A better way to handle this might be to convert the inbound 9311 * data structure here, and hang it off a new 'mp'; thus the 9312 * ip6_asp_replace() logic would always be dealing with native 9313 * format data structures.. 9314 * 9315 * (An even simpler way to handle these ioctls is to just 9316 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9317 * and just recompile everything that depends on it.) 9318 */ 9319 #endif 9320 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9321 iocp->ioc_flag & IOC_MODELS); 9322 return; 9323 } 9324 9325 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9326 qreply(q, mp); 9327 } 9328 9329 static void 9330 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9331 { 9332 mblk_t *data_mp; 9333 struct dstinforeq *dir; 9334 uint8_t *end, *cur; 9335 in6_addr_t *daddr, *saddr; 9336 ipaddr_t v4daddr; 9337 ire_t *ire; 9338 char *slabel, *dlabel; 9339 boolean_t isipv4; 9340 int match_ire; 9341 ill_t *dst_ill; 9342 ipif_t *src_ipif, *ire_ipif; 9343 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9344 zoneid_t zoneid; 9345 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9346 9347 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9348 zoneid = Q_TO_CONN(q)->conn_zoneid; 9349 9350 /* 9351 * This ioctl is I_STR only, and must have a 9352 * data mblk following the M_IOCTL mblk. 9353 */ 9354 data_mp = mp->b_cont; 9355 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9356 miocnak(q, mp, 0, EINVAL); 9357 return; 9358 } 9359 9360 if (MBLKL(data_mp) < iocp->ioc_count) { 9361 mblk_t *new_data_mp; 9362 9363 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9364 miocnak(q, mp, 0, ENOMEM); 9365 return; 9366 } 9367 freemsg(data_mp); 9368 data_mp = new_data_mp; 9369 mp->b_cont = data_mp; 9370 } 9371 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9372 9373 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9374 end - cur >= sizeof (struct dstinforeq); 9375 cur += sizeof (struct dstinforeq)) { 9376 dir = (struct dstinforeq *)cur; 9377 daddr = &dir->dir_daddr; 9378 saddr = &dir->dir_saddr; 9379 9380 /* 9381 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9382 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9383 * and ipif_select_source[_v6]() do not. 9384 */ 9385 dir->dir_dscope = ip_addr_scope_v6(daddr); 9386 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9387 9388 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9389 if (isipv4) { 9390 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9391 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9392 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9393 } else { 9394 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9395 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9396 } 9397 if (ire == NULL) { 9398 dir->dir_dreachable = 0; 9399 9400 /* move on to next dst addr */ 9401 continue; 9402 } 9403 dir->dir_dreachable = 1; 9404 9405 ire_ipif = ire->ire_ipif; 9406 if (ire_ipif == NULL) 9407 goto next_dst; 9408 9409 /* 9410 * We expect to get back an interface ire or a 9411 * gateway ire cache entry. For both types, the 9412 * output interface is ire_ipif->ipif_ill. 9413 */ 9414 dst_ill = ire_ipif->ipif_ill; 9415 dir->dir_dmactype = dst_ill->ill_mactype; 9416 9417 if (isipv4) { 9418 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9419 } else { 9420 src_ipif = ipif_select_source_v6(dst_ill, 9421 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9422 zoneid); 9423 } 9424 if (src_ipif == NULL) 9425 goto next_dst; 9426 9427 *saddr = src_ipif->ipif_v6lcl_addr; 9428 dir->dir_sscope = ip_addr_scope_v6(saddr); 9429 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9430 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9431 dir->dir_sdeprecated = 9432 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9433 ipif_refrele(src_ipif); 9434 next_dst: 9435 ire_refrele(ire); 9436 } 9437 miocack(q, mp, iocp->ioc_count, 0); 9438 } 9439 9440 9441 /* 9442 * Check if this is an address assigned to this machine. 9443 * Skips interfaces that are down by using ire checks. 9444 * Translates mapped addresses to v4 addresses and then 9445 * treats them as such, returning true if the v4 address 9446 * associated with this mapped address is configured. 9447 * Note: Applications will have to be careful what they do 9448 * with the response; use of mapped addresses limits 9449 * what can be done with the socket, especially with 9450 * respect to socket options and ioctls - neither IPv4 9451 * options nor IPv6 sticky options/ancillary data options 9452 * may be used. 9453 */ 9454 /* ARGSUSED */ 9455 int 9456 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9457 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9458 { 9459 struct sioc_addrreq *sia; 9460 sin_t *sin; 9461 ire_t *ire; 9462 mblk_t *mp1; 9463 zoneid_t zoneid; 9464 ip_stack_t *ipst; 9465 9466 ip1dbg(("ip_sioctl_tmyaddr")); 9467 9468 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9469 zoneid = Q_TO_CONN(q)->conn_zoneid; 9470 ipst = CONNQ_TO_IPST(q); 9471 9472 /* Existence verified in ip_wput_nondata */ 9473 mp1 = mp->b_cont->b_cont; 9474 sia = (struct sioc_addrreq *)mp1->b_rptr; 9475 sin = (sin_t *)&sia->sa_addr; 9476 switch (sin->sin_family) { 9477 case AF_INET6: { 9478 sin6_t *sin6 = (sin6_t *)sin; 9479 9480 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9481 ipaddr_t v4_addr; 9482 9483 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9484 v4_addr); 9485 ire = ire_ctable_lookup(v4_addr, 0, 9486 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9487 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9488 } else { 9489 in6_addr_t v6addr; 9490 9491 v6addr = sin6->sin6_addr; 9492 ire = ire_ctable_lookup_v6(&v6addr, 0, 9493 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9494 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9495 } 9496 break; 9497 } 9498 case AF_INET: { 9499 ipaddr_t v4addr; 9500 9501 v4addr = sin->sin_addr.s_addr; 9502 ire = ire_ctable_lookup(v4addr, 0, 9503 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9504 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9505 break; 9506 } 9507 default: 9508 return (EAFNOSUPPORT); 9509 } 9510 if (ire != NULL) { 9511 sia->sa_res = 1; 9512 ire_refrele(ire); 9513 } else { 9514 sia->sa_res = 0; 9515 } 9516 return (0); 9517 } 9518 9519 /* 9520 * Check if this is an address assigned on-link i.e. neighbor, 9521 * and makes sure it's reachable from the current zone. 9522 * Returns true for my addresses as well. 9523 * Translates mapped addresses to v4 addresses and then 9524 * treats them as such, returning true if the v4 address 9525 * associated with this mapped address is configured. 9526 * Note: Applications will have to be careful what they do 9527 * with the response; use of mapped addresses limits 9528 * what can be done with the socket, especially with 9529 * respect to socket options and ioctls - neither IPv4 9530 * options nor IPv6 sticky options/ancillary data options 9531 * may be used. 9532 */ 9533 /* ARGSUSED */ 9534 int 9535 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9536 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9537 { 9538 struct sioc_addrreq *sia; 9539 sin_t *sin; 9540 mblk_t *mp1; 9541 ire_t *ire = NULL; 9542 zoneid_t zoneid; 9543 ip_stack_t *ipst; 9544 9545 ip1dbg(("ip_sioctl_tonlink")); 9546 9547 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9548 zoneid = Q_TO_CONN(q)->conn_zoneid; 9549 ipst = CONNQ_TO_IPST(q); 9550 9551 /* Existence verified in ip_wput_nondata */ 9552 mp1 = mp->b_cont->b_cont; 9553 sia = (struct sioc_addrreq *)mp1->b_rptr; 9554 sin = (sin_t *)&sia->sa_addr; 9555 9556 /* 9557 * Match addresses with a zero gateway field to avoid 9558 * routes going through a router. 9559 * Exclude broadcast and multicast addresses. 9560 */ 9561 switch (sin->sin_family) { 9562 case AF_INET6: { 9563 sin6_t *sin6 = (sin6_t *)sin; 9564 9565 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9566 ipaddr_t v4_addr; 9567 9568 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9569 v4_addr); 9570 if (!CLASSD(v4_addr)) { 9571 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9572 NULL, NULL, zoneid, NULL, 9573 MATCH_IRE_GW, ipst); 9574 } 9575 } else { 9576 in6_addr_t v6addr; 9577 in6_addr_t v6gw; 9578 9579 v6addr = sin6->sin6_addr; 9580 v6gw = ipv6_all_zeros; 9581 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9582 ire = ire_route_lookup_v6(&v6addr, 0, 9583 &v6gw, 0, NULL, NULL, zoneid, 9584 NULL, MATCH_IRE_GW, ipst); 9585 } 9586 } 9587 break; 9588 } 9589 case AF_INET: { 9590 ipaddr_t v4addr; 9591 9592 v4addr = sin->sin_addr.s_addr; 9593 if (!CLASSD(v4addr)) { 9594 ire = ire_route_lookup(v4addr, 0, 0, 0, 9595 NULL, NULL, zoneid, NULL, 9596 MATCH_IRE_GW, ipst); 9597 } 9598 break; 9599 } 9600 default: 9601 return (EAFNOSUPPORT); 9602 } 9603 sia->sa_res = 0; 9604 if (ire != NULL) { 9605 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9606 IRE_LOCAL|IRE_LOOPBACK)) { 9607 sia->sa_res = 1; 9608 } 9609 ire_refrele(ire); 9610 } 9611 return (0); 9612 } 9613 9614 /* 9615 * TBD: implement when kernel maintaines a list of site prefixes. 9616 */ 9617 /* ARGSUSED */ 9618 int 9619 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9620 ip_ioctl_cmd_t *ipip, void *ifreq) 9621 { 9622 return (ENXIO); 9623 } 9624 9625 /* ARGSUSED */ 9626 int 9627 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9628 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9629 { 9630 ill_t *ill; 9631 mblk_t *mp1; 9632 conn_t *connp; 9633 boolean_t success; 9634 9635 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9636 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9637 /* ioctl comes down on an conn */ 9638 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9639 connp = Q_TO_CONN(q); 9640 9641 mp->b_datap->db_type = M_IOCTL; 9642 9643 /* 9644 * Send down a copy. (copymsg does not copy b_next/b_prev). 9645 * The original mp contains contaminated b_next values due to 'mi', 9646 * which is needed to do the mi_copy_done. Unfortunately if we 9647 * send down the original mblk itself and if we are popped due to an 9648 * an unplumb before the response comes back from tunnel, 9649 * the streamhead (which does a freemsg) will see this contaminated 9650 * message and the assertion in freemsg about non-null b_next/b_prev 9651 * will panic a DEBUG kernel. 9652 */ 9653 mp1 = copymsg(mp); 9654 if (mp1 == NULL) 9655 return (ENOMEM); 9656 9657 ill = ipif->ipif_ill; 9658 mutex_enter(&connp->conn_lock); 9659 mutex_enter(&ill->ill_lock); 9660 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9661 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9662 mp, 0); 9663 } else { 9664 success = ill_pending_mp_add(ill, connp, mp); 9665 } 9666 mutex_exit(&ill->ill_lock); 9667 mutex_exit(&connp->conn_lock); 9668 9669 if (success) { 9670 ip1dbg(("sending down tunparam request ")); 9671 putnext(ill->ill_wq, mp1); 9672 return (EINPROGRESS); 9673 } else { 9674 /* The conn has started closing */ 9675 freemsg(mp1); 9676 return (EINTR); 9677 } 9678 } 9679 9680 static int 9681 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9682 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9683 { 9684 mblk_t *mp1; 9685 mblk_t *mp2; 9686 mblk_t *pending_mp; 9687 ipaddr_t ipaddr; 9688 area_t *area; 9689 struct iocblk *iocp; 9690 conn_t *connp; 9691 struct arpreq *ar; 9692 struct xarpreq *xar; 9693 boolean_t success; 9694 int flags, alength; 9695 char *lladdr; 9696 ip_stack_t *ipst; 9697 9698 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9699 connp = Q_TO_CONN(q); 9700 ipst = connp->conn_netstack->netstack_ip; 9701 9702 iocp = (struct iocblk *)mp->b_rptr; 9703 /* 9704 * ill has already been set depending on whether 9705 * bsd style or interface style ioctl. 9706 */ 9707 ASSERT(ill != NULL); 9708 9709 /* 9710 * Is this one of the new SIOC*XARP ioctls? 9711 */ 9712 if (x_arp_ioctl) { 9713 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9714 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9715 ar = NULL; 9716 9717 flags = xar->xarp_flags; 9718 lladdr = LLADDR(&xar->xarp_ha); 9719 /* 9720 * Validate against user's link layer address length 9721 * input and name and addr length limits. 9722 */ 9723 alength = ill->ill_phys_addr_length; 9724 if (iocp->ioc_cmd == SIOCSXARP) { 9725 if (alength != xar->xarp_ha.sdl_alen || 9726 (alength + xar->xarp_ha.sdl_nlen > 9727 sizeof (xar->xarp_ha.sdl_data))) 9728 return (EINVAL); 9729 } 9730 } else { 9731 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9732 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9733 xar = NULL; 9734 9735 flags = ar->arp_flags; 9736 lladdr = ar->arp_ha.sa_data; 9737 /* 9738 * Theoretically, the sa_family could tell us what link 9739 * layer type this operation is trying to deal with. By 9740 * common usage AF_UNSPEC means ethernet. We'll assume 9741 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9742 * for now. Our new SIOC*XARP ioctls can be used more 9743 * generally. 9744 * 9745 * If the underlying media happens to have a non 6 byte 9746 * address, arp module will fail set/get, but the del 9747 * operation will succeed. 9748 */ 9749 alength = 6; 9750 if ((iocp->ioc_cmd != SIOCDARP) && 9751 (alength != ill->ill_phys_addr_length)) { 9752 return (EINVAL); 9753 } 9754 } 9755 9756 /* 9757 * We are going to pass up to ARP a packet chain that looks 9758 * like: 9759 * 9760 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9761 * 9762 * Get a copy of the original IOCTL mblk to head the chain, 9763 * to be sent up (in mp1). Also get another copy to store 9764 * in the ill_pending_mp list, for matching the response 9765 * when it comes back from ARP. 9766 */ 9767 mp1 = copyb(mp); 9768 pending_mp = copymsg(mp); 9769 if (mp1 == NULL || pending_mp == NULL) { 9770 if (mp1 != NULL) 9771 freeb(mp1); 9772 if (pending_mp != NULL) 9773 inet_freemsg(pending_mp); 9774 return (ENOMEM); 9775 } 9776 9777 ipaddr = sin->sin_addr.s_addr; 9778 9779 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9780 (caddr_t)&ipaddr); 9781 if (mp2 == NULL) { 9782 freeb(mp1); 9783 inet_freemsg(pending_mp); 9784 return (ENOMEM); 9785 } 9786 /* Put together the chain. */ 9787 mp1->b_cont = mp2; 9788 mp1->b_datap->db_type = M_IOCTL; 9789 mp2->b_cont = mp; 9790 mp2->b_datap->db_type = M_DATA; 9791 9792 iocp = (struct iocblk *)mp1->b_rptr; 9793 9794 /* 9795 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9796 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9797 * cp_private field (or cp_rval on 32-bit systems) in place of the 9798 * ioc_count field; set ioc_count to be correct. 9799 */ 9800 iocp->ioc_count = MBLKL(mp1->b_cont); 9801 9802 /* 9803 * Set the proper command in the ARP message. 9804 * Convert the SIOC{G|S|D}ARP calls into our 9805 * AR_ENTRY_xxx calls. 9806 */ 9807 area = (area_t *)mp2->b_rptr; 9808 switch (iocp->ioc_cmd) { 9809 case SIOCDARP: 9810 case SIOCDXARP: 9811 /* 9812 * We defer deleting the corresponding IRE until 9813 * we return from arp. 9814 */ 9815 area->area_cmd = AR_ENTRY_DELETE; 9816 area->area_proto_mask_offset = 0; 9817 break; 9818 case SIOCGARP: 9819 case SIOCGXARP: 9820 area->area_cmd = AR_ENTRY_SQUERY; 9821 area->area_proto_mask_offset = 0; 9822 break; 9823 case SIOCSARP: 9824 case SIOCSXARP: { 9825 /* 9826 * Delete the corresponding ire to make sure IP will 9827 * pick up any change from arp. 9828 */ 9829 if (!if_arp_ioctl) { 9830 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9831 break; 9832 } else { 9833 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9834 if (ipif != NULL) { 9835 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9836 ipst); 9837 ipif_refrele(ipif); 9838 } 9839 break; 9840 } 9841 } 9842 } 9843 iocp->ioc_cmd = area->area_cmd; 9844 9845 /* 9846 * Before sending 'mp' to ARP, we have to clear the b_next 9847 * and b_prev. Otherwise if STREAMS encounters such a message 9848 * in freemsg(), (because ARP can close any time) it can cause 9849 * a panic. But mi code needs the b_next and b_prev values of 9850 * mp->b_cont, to complete the ioctl. So we store it here 9851 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9852 * when the response comes down from ARP. 9853 */ 9854 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9855 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9856 mp->b_cont->b_next = NULL; 9857 mp->b_cont->b_prev = NULL; 9858 9859 mutex_enter(&connp->conn_lock); 9860 mutex_enter(&ill->ill_lock); 9861 /* conn has not yet started closing, hence this can't fail */ 9862 success = ill_pending_mp_add(ill, connp, pending_mp); 9863 ASSERT(success); 9864 mutex_exit(&ill->ill_lock); 9865 mutex_exit(&connp->conn_lock); 9866 9867 /* 9868 * Fill in the rest of the ARP operation fields. 9869 */ 9870 area->area_hw_addr_length = alength; 9871 bcopy(lladdr, 9872 (char *)area + area->area_hw_addr_offset, 9873 area->area_hw_addr_length); 9874 /* Translate the flags. */ 9875 if (flags & ATF_PERM) 9876 area->area_flags |= ACE_F_PERMANENT; 9877 if (flags & ATF_PUBL) 9878 area->area_flags |= ACE_F_PUBLISH; 9879 if (flags & ATF_AUTHORITY) 9880 area->area_flags |= ACE_F_AUTHORITY; 9881 9882 /* 9883 * Up to ARP it goes. The response will come 9884 * back in ip_wput as an M_IOCACK message, and 9885 * will be handed to ip_sioctl_iocack for 9886 * completion. 9887 */ 9888 putnext(ill->ill_rq, mp1); 9889 return (EINPROGRESS); 9890 } 9891 9892 /* ARGSUSED */ 9893 int 9894 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9895 ip_ioctl_cmd_t *ipip, void *ifreq) 9896 { 9897 struct xarpreq *xar; 9898 boolean_t isv6; 9899 mblk_t *mp1; 9900 int err; 9901 conn_t *connp; 9902 int ifnamelen; 9903 ire_t *ire = NULL; 9904 ill_t *ill = NULL; 9905 struct sockaddr_in *sin; 9906 boolean_t if_arp_ioctl = B_FALSE; 9907 ip_stack_t *ipst; 9908 9909 /* ioctl comes down on an conn */ 9910 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9911 connp = Q_TO_CONN(q); 9912 isv6 = connp->conn_af_isv6; 9913 ipst = connp->conn_netstack->netstack_ip; 9914 9915 /* Existance verified in ip_wput_nondata */ 9916 mp1 = mp->b_cont->b_cont; 9917 9918 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9919 xar = (struct xarpreq *)mp1->b_rptr; 9920 sin = (sin_t *)&xar->xarp_pa; 9921 9922 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9923 (xar->xarp_pa.ss_family != AF_INET)) 9924 return (ENXIO); 9925 9926 ifnamelen = xar->xarp_ha.sdl_nlen; 9927 if (ifnamelen != 0) { 9928 char *cptr, cval; 9929 9930 if (ifnamelen >= LIFNAMSIZ) 9931 return (EINVAL); 9932 9933 /* 9934 * Instead of bcopying a bunch of bytes, 9935 * null-terminate the string in-situ. 9936 */ 9937 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9938 cval = *cptr; 9939 *cptr = '\0'; 9940 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9941 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9942 &err, NULL, ipst); 9943 *cptr = cval; 9944 if (ill == NULL) 9945 return (err); 9946 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9947 ill_refrele(ill); 9948 return (ENXIO); 9949 } 9950 9951 if_arp_ioctl = B_TRUE; 9952 } else { 9953 /* 9954 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9955 * as an extended BSD ioctl. The kernel uses the IP address 9956 * to figure out the network interface. 9957 */ 9958 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9959 ipst); 9960 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9961 ((ill = ire_to_ill(ire)) == NULL) || 9962 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9963 if (ire != NULL) 9964 ire_refrele(ire); 9965 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9966 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9967 NULL, MATCH_IRE_TYPE, ipst); 9968 if ((ire == NULL) || 9969 ((ill = ire_to_ill(ire)) == NULL)) { 9970 if (ire != NULL) 9971 ire_refrele(ire); 9972 return (ENXIO); 9973 } 9974 } 9975 ASSERT(ire != NULL && ill != NULL); 9976 } 9977 9978 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9979 if (if_arp_ioctl) 9980 ill_refrele(ill); 9981 if (ire != NULL) 9982 ire_refrele(ire); 9983 9984 return (err); 9985 } 9986 9987 /* 9988 * ARP IOCTLs. 9989 * How does IP get in the business of fronting ARP configuration/queries? 9990 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9991 * are by tradition passed in through a datagram socket. That lands in IP. 9992 * As it happens, this is just as well since the interface is quite crude in 9993 * that it passes in no information about protocol or hardware types, or 9994 * interface association. After making the protocol assumption, IP is in 9995 * the position to look up the name of the ILL, which ARP will need, and 9996 * format a request that can be handled by ARP. The request is passed up 9997 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9998 * back a response. ARP supports its own set of more general IOCTLs, in 9999 * case anyone is interested. 10000 */ 10001 /* ARGSUSED */ 10002 int 10003 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10004 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 10005 { 10006 struct arpreq *ar; 10007 struct sockaddr_in *sin; 10008 ire_t *ire; 10009 boolean_t isv6; 10010 mblk_t *mp1; 10011 int err; 10012 conn_t *connp; 10013 ill_t *ill; 10014 ip_stack_t *ipst; 10015 10016 /* ioctl comes down on an conn */ 10017 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 10018 connp = Q_TO_CONN(q); 10019 ipst = CONNQ_TO_IPST(q); 10020 isv6 = connp->conn_af_isv6; 10021 if (isv6) 10022 return (ENXIO); 10023 10024 /* Existance verified in ip_wput_nondata */ 10025 mp1 = mp->b_cont->b_cont; 10026 10027 ar = (struct arpreq *)mp1->b_rptr; 10028 sin = (sin_t *)&ar->arp_pa; 10029 10030 /* 10031 * We need to let ARP know on which interface the IP 10032 * address has an ARP mapping. In the IPMP case, a 10033 * simple forwarding table lookup will return the 10034 * IRE_IF_RESOLVER for the first interface in the group, 10035 * which might not be the interface on which the 10036 * requested IP address was resolved due to the ill 10037 * selection algorithm (see ip_newroute_get_dst_ill()). 10038 * So we do a cache table lookup first: if the IRE cache 10039 * entry for the IP address is still there, it will 10040 * contain the ill pointer for the right interface, so 10041 * we use that. If the cache entry has been flushed, we 10042 * fall back to the forwarding table lookup. This should 10043 * be rare enough since IRE cache entries have a longer 10044 * life expectancy than ARP cache entries. 10045 */ 10046 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 10047 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10048 ((ill = ire_to_ill(ire)) == NULL)) { 10049 if (ire != NULL) 10050 ire_refrele(ire); 10051 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10052 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10053 NULL, MATCH_IRE_TYPE, ipst); 10054 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10055 if (ire != NULL) 10056 ire_refrele(ire); 10057 return (ENXIO); 10058 } 10059 } 10060 ASSERT(ire != NULL && ill != NULL); 10061 10062 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10063 ire_refrele(ire); 10064 return (err); 10065 } 10066 10067 /* 10068 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10069 * atomically set/clear the muxids. Also complete the ioctl by acking or 10070 * naking it. Note that the code is structured such that the link type, 10071 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10072 * its clones use the persistent link, while pppd(1M) and perhaps many 10073 * other daemons may use non-persistent link. When combined with some 10074 * ill_t states, linking and unlinking lower streams may be used as 10075 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10076 */ 10077 /* ARGSUSED */ 10078 void 10079 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10080 { 10081 mblk_t *mp1; 10082 mblk_t *mp2; 10083 struct linkblk *li; 10084 queue_t *ipwq; 10085 char *name; 10086 struct qinit *qinfo; 10087 struct ipmx_s *ipmxp; 10088 ill_t *ill = NULL; 10089 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10090 int err = 0; 10091 boolean_t entered_ipsq = B_FALSE; 10092 boolean_t islink; 10093 queue_t *dwq = NULL; 10094 ip_stack_t *ipst; 10095 10096 if (CONN_Q(q)) 10097 ipst = CONNQ_TO_IPST(q); 10098 else 10099 ipst = ILLQ_TO_IPST(q); 10100 10101 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 10102 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 10103 10104 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 10105 B_TRUE : B_FALSE; 10106 10107 mp1 = mp->b_cont; /* This is the linkblk info */ 10108 li = (struct linkblk *)mp1->b_rptr; 10109 10110 /* 10111 * ARP has added this special mblk, and the utility is asking us 10112 * to perform consistency checks, and also atomically set the 10113 * muxid. Ifconfig is an example. It achieves this by using 10114 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10115 * to /dev/udp[6] stream for use as the mux when plinking the IP 10116 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10117 * and other comments in this routine for more details. 10118 */ 10119 mp2 = mp1->b_cont; /* This is added by ARP */ 10120 10121 /* 10122 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10123 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10124 * get the special mblk above. For backward compatibility, we just 10125 * return success. The utility will use SIOCSLIFMUXID to store 10126 * the muxids. This is not atomic, and can leave the streams 10127 * unplumbable if the utility is interrrupted, before it does the 10128 * SIOCSLIFMUXID. 10129 */ 10130 if (mp2 == NULL) { 10131 /* 10132 * At this point we don't know whether or not this is the 10133 * IP module stream or the ARP device stream. We need to 10134 * walk the lower stream in order to find this out, since 10135 * the capability negotiation is done only on the IP module 10136 * stream. IP module instance is identified by the module 10137 * name IP, non-null q_next, and it's wput not being ip_lwput. 10138 * STREAMS ensures that the lower stream (l_qbot) will not 10139 * vanish until this ioctl completes. So we can safely walk 10140 * the stream or refer to the q_ptr. 10141 */ 10142 ipwq = li->l_qbot; 10143 while (ipwq != NULL) { 10144 qinfo = ipwq->q_qinfo; 10145 name = qinfo->qi_minfo->mi_idname; 10146 if (name != NULL && name[0] != NULL && 10147 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10148 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10149 (ipwq->q_next != NULL)) { 10150 break; 10151 } 10152 ipwq = ipwq->q_next; 10153 } 10154 /* 10155 * This looks like an IP module stream, so trigger 10156 * the capability reset or re-negotiation if necessary. 10157 */ 10158 if (ipwq != NULL) { 10159 ill = ipwq->q_ptr; 10160 ASSERT(ill != NULL); 10161 10162 if (ipsq == NULL) { 10163 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10164 ip_sioctl_plink, NEW_OP, B_TRUE); 10165 if (ipsq == NULL) 10166 return; 10167 entered_ipsq = B_TRUE; 10168 } 10169 ASSERT(IAM_WRITER_ILL(ill)); 10170 /* 10171 * Store the upper read queue of the module 10172 * immediately below IP, and count the total 10173 * number of lower modules. Do this only 10174 * for I_PLINK or I_LINK event. 10175 */ 10176 ill->ill_lmod_rq = NULL; 10177 ill->ill_lmod_cnt = 0; 10178 if (islink && (dwq = ipwq->q_next) != NULL) { 10179 ill->ill_lmod_rq = RD(dwq); 10180 10181 while (dwq != NULL) { 10182 ill->ill_lmod_cnt++; 10183 dwq = dwq->q_next; 10184 } 10185 } 10186 /* 10187 * There's no point in resetting or re-negotiating if 10188 * we are not bound to the driver, so only do this if 10189 * the DLPI state is idle (up); we assume such state 10190 * since ill_ipif_up_count gets incremented in 10191 * ipif_up_done(), which is after we are bound to the 10192 * driver. Note that in the case of logical 10193 * interfaces, IP won't rebind to the driver unless 10194 * the ill_ipif_up_count is 0, meaning that all other 10195 * IP interfaces (including the main ipif) are in the 10196 * down state. Because of this, we use such counter 10197 * as an indicator, instead of relying on the IPIF_UP 10198 * flag, which is per ipif instance. 10199 */ 10200 if (ill->ill_ipif_up_count > 0) { 10201 if (islink) 10202 ill_capability_probe(ill); 10203 else 10204 ill_capability_reset(ill); 10205 } 10206 } 10207 goto done; 10208 } 10209 10210 /* 10211 * This is an I_{P}LINK sent down by ifconfig on 10212 * /dev/arp. ARP has appended this last (3rd) mblk, 10213 * giving more info. STREAMS ensures that the lower 10214 * stream (l_qbot) will not vanish until this ioctl 10215 * completes. So we can safely walk the stream or refer 10216 * to the q_ptr. 10217 */ 10218 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10219 if (ipmxp->ipmx_arpdev_stream) { 10220 /* 10221 * The operation is occuring on the arp-device 10222 * stream. 10223 */ 10224 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10225 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10226 if (ill == NULL) { 10227 if (err == EINPROGRESS) { 10228 return; 10229 } else { 10230 err = EINVAL; 10231 goto done; 10232 } 10233 } 10234 10235 if (ipsq == NULL) { 10236 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10237 NEW_OP, B_TRUE); 10238 if (ipsq == NULL) { 10239 ill_refrele(ill); 10240 return; 10241 } 10242 entered_ipsq = B_TRUE; 10243 } 10244 ASSERT(IAM_WRITER_ILL(ill)); 10245 ill_refrele(ill); 10246 /* 10247 * To ensure consistency between IP and ARP, 10248 * the following LIFO scheme is used in 10249 * plink/punlink. (IP first, ARP last). 10250 * This is because the muxid's are stored 10251 * in the IP stream on the ill. 10252 * 10253 * I_{P}LINK: ifconfig plinks the IP stream before 10254 * plinking the ARP stream. On an arp-dev 10255 * stream, IP checks that it is not yet 10256 * plinked, and it also checks that the 10257 * corresponding IP stream is already plinked. 10258 * 10259 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10260 * before punlinking the IP stream. IP does 10261 * not allow punlink of the IP stream unless 10262 * the arp stream has been punlinked. 10263 * 10264 */ 10265 if ((islink && 10266 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10267 (!islink && 10268 ill->ill_arp_muxid != li->l_index)) { 10269 err = EINVAL; 10270 goto done; 10271 } 10272 if (islink) { 10273 ill->ill_arp_muxid = li->l_index; 10274 } else { 10275 ill->ill_arp_muxid = 0; 10276 } 10277 } else { 10278 /* 10279 * This must be the IP module stream with or 10280 * without arp. Walk the stream and locate the 10281 * IP module. An IP module instance is 10282 * identified by the module name IP, non-null 10283 * q_next, and it's wput not being ip_lwput. 10284 */ 10285 ipwq = li->l_qbot; 10286 while (ipwq != NULL) { 10287 qinfo = ipwq->q_qinfo; 10288 name = qinfo->qi_minfo->mi_idname; 10289 if (name != NULL && name[0] != NULL && 10290 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10291 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10292 (ipwq->q_next != NULL)) { 10293 break; 10294 } 10295 ipwq = ipwq->q_next; 10296 } 10297 if (ipwq != NULL) { 10298 ill = ipwq->q_ptr; 10299 ASSERT(ill != NULL); 10300 10301 if (ipsq == NULL) { 10302 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10303 ip_sioctl_plink, NEW_OP, B_TRUE); 10304 if (ipsq == NULL) 10305 return; 10306 entered_ipsq = B_TRUE; 10307 } 10308 ASSERT(IAM_WRITER_ILL(ill)); 10309 /* 10310 * Return error if the ip_mux_id is 10311 * non-zero and command is I_{P}LINK. 10312 * If command is I_{P}UNLINK, return 10313 * error if the arp-devstr is not 10314 * yet punlinked. 10315 */ 10316 if ((islink && ill->ill_ip_muxid != 0) || 10317 (!islink && ill->ill_arp_muxid != 0)) { 10318 err = EINVAL; 10319 goto done; 10320 } 10321 ill->ill_lmod_rq = NULL; 10322 ill->ill_lmod_cnt = 0; 10323 if (islink) { 10324 /* 10325 * Store the upper read queue of the module 10326 * immediately below IP, and count the total 10327 * number of lower modules. 10328 */ 10329 if ((dwq = ipwq->q_next) != NULL) { 10330 ill->ill_lmod_rq = RD(dwq); 10331 10332 while (dwq != NULL) { 10333 ill->ill_lmod_cnt++; 10334 dwq = dwq->q_next; 10335 } 10336 } 10337 ill->ill_ip_muxid = li->l_index; 10338 } else { 10339 ill->ill_ip_muxid = 0; 10340 } 10341 10342 /* 10343 * See comments above about resetting/re- 10344 * negotiating driver sub-capabilities. 10345 */ 10346 if (ill->ill_ipif_up_count > 0) { 10347 if (islink) 10348 ill_capability_probe(ill); 10349 else 10350 ill_capability_reset(ill); 10351 } 10352 } 10353 } 10354 done: 10355 iocp->ioc_count = 0; 10356 iocp->ioc_error = err; 10357 if (err == 0) 10358 mp->b_datap->db_type = M_IOCACK; 10359 else 10360 mp->b_datap->db_type = M_IOCNAK; 10361 qreply(q, mp); 10362 10363 /* Conn was refheld in ip_sioctl_copyin_setup */ 10364 if (CONN_Q(q)) 10365 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10366 if (entered_ipsq) 10367 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10368 } 10369 10370 /* 10371 * Search the ioctl command in the ioctl tables and return a pointer 10372 * to the ioctl command information. The ioctl command tables are 10373 * static and fully populated at compile time. 10374 */ 10375 ip_ioctl_cmd_t * 10376 ip_sioctl_lookup(int ioc_cmd) 10377 { 10378 int index; 10379 ip_ioctl_cmd_t *ipip; 10380 ip_ioctl_cmd_t *ipip_end; 10381 10382 if (ioc_cmd == IPI_DONTCARE) 10383 return (NULL); 10384 10385 /* 10386 * Do a 2 step search. First search the indexed table 10387 * based on the least significant byte of the ioctl cmd. 10388 * If we don't find a match, then search the misc table 10389 * serially. 10390 */ 10391 index = ioc_cmd & 0xFF; 10392 if (index < ip_ndx_ioctl_count) { 10393 ipip = &ip_ndx_ioctl_table[index]; 10394 if (ipip->ipi_cmd == ioc_cmd) { 10395 /* Found a match in the ndx table */ 10396 return (ipip); 10397 } 10398 } 10399 10400 /* Search the misc table */ 10401 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10402 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10403 if (ipip->ipi_cmd == ioc_cmd) 10404 /* Found a match in the misc table */ 10405 return (ipip); 10406 } 10407 10408 return (NULL); 10409 } 10410 10411 /* 10412 * Wrapper function for resuming deferred ioctl processing 10413 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10414 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10415 */ 10416 /* ARGSUSED */ 10417 void 10418 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10419 void *dummy_arg) 10420 { 10421 ip_sioctl_copyin_setup(q, mp); 10422 } 10423 10424 /* 10425 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10426 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10427 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10428 * We establish here the size of the block to be copied in. mi_copyin 10429 * arranges for this to happen, an processing continues in ip_wput with 10430 * an M_IOCDATA message. 10431 */ 10432 void 10433 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10434 { 10435 int copyin_size; 10436 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10437 ip_ioctl_cmd_t *ipip; 10438 cred_t *cr; 10439 ip_stack_t *ipst; 10440 10441 if (CONN_Q(q)) 10442 ipst = CONNQ_TO_IPST(q); 10443 else 10444 ipst = ILLQ_TO_IPST(q); 10445 10446 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10447 if (ipip == NULL) { 10448 /* 10449 * The ioctl is not one we understand or own. 10450 * Pass it along to be processed down stream, 10451 * if this is a module instance of IP, else nak 10452 * the ioctl. 10453 */ 10454 if (q->q_next == NULL) { 10455 goto nak; 10456 } else { 10457 putnext(q, mp); 10458 return; 10459 } 10460 } 10461 10462 /* 10463 * If this is deferred, then we will do all the checks when we 10464 * come back. 10465 */ 10466 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10467 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10468 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10469 return; 10470 } 10471 10472 /* 10473 * Only allow a very small subset of IP ioctls on this stream if 10474 * IP is a module and not a driver. Allowing ioctls to be processed 10475 * in this case may cause assert failures or data corruption. 10476 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10477 * ioctls allowed on an IP module stream, after which this stream 10478 * normally becomes a multiplexor (at which time the stream head 10479 * will fail all ioctls). 10480 */ 10481 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10482 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10483 /* 10484 * Pass common Streams ioctls which the IP 10485 * module does not own or consume along to 10486 * be processed down stream. 10487 */ 10488 putnext(q, mp); 10489 return; 10490 } else { 10491 goto nak; 10492 } 10493 } 10494 10495 /* Make sure we have ioctl data to process. */ 10496 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10497 goto nak; 10498 10499 /* 10500 * Prefer dblk credential over ioctl credential; some synthesized 10501 * ioctls have kcred set because there's no way to crhold() 10502 * a credential in some contexts. (ioc_cr is not crfree() by 10503 * the framework; the caller of ioctl needs to hold the reference 10504 * for the duration of the call). 10505 */ 10506 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10507 10508 /* Make sure normal users don't send down privileged ioctls */ 10509 if ((ipip->ipi_flags & IPI_PRIV) && 10510 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10511 /* We checked the privilege earlier but log it here */ 10512 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10513 return; 10514 } 10515 10516 /* 10517 * The ioctl command tables can only encode fixed length 10518 * ioctl data. If the length is variable, the table will 10519 * encode the length as zero. Such special cases are handled 10520 * below in the switch. 10521 */ 10522 if (ipip->ipi_copyin_size != 0) { 10523 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10524 return; 10525 } 10526 10527 switch (iocp->ioc_cmd) { 10528 case O_SIOCGIFCONF: 10529 case SIOCGIFCONF: 10530 /* 10531 * This IOCTL is hilarious. See comments in 10532 * ip_sioctl_get_ifconf for the story. 10533 */ 10534 if (iocp->ioc_count == TRANSPARENT) 10535 copyin_size = SIZEOF_STRUCT(ifconf, 10536 iocp->ioc_flag); 10537 else 10538 copyin_size = iocp->ioc_count; 10539 mi_copyin(q, mp, NULL, copyin_size); 10540 return; 10541 10542 case O_SIOCGLIFCONF: 10543 case SIOCGLIFCONF: 10544 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10545 mi_copyin(q, mp, NULL, copyin_size); 10546 return; 10547 10548 case SIOCGLIFSRCOF: 10549 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10550 mi_copyin(q, mp, NULL, copyin_size); 10551 return; 10552 case SIOCGIP6ADDRPOLICY: 10553 ip_sioctl_ip6addrpolicy(q, mp); 10554 ip6_asp_table_refrele(ipst); 10555 return; 10556 10557 case SIOCSIP6ADDRPOLICY: 10558 ip_sioctl_ip6addrpolicy(q, mp); 10559 return; 10560 10561 case SIOCGDSTINFO: 10562 ip_sioctl_dstinfo(q, mp); 10563 ip6_asp_table_refrele(ipst); 10564 return; 10565 10566 case I_PLINK: 10567 case I_PUNLINK: 10568 case I_LINK: 10569 case I_UNLINK: 10570 /* 10571 * We treat non-persistent link similarly as the persistent 10572 * link case, in terms of plumbing/unplumbing, as well as 10573 * dynamic re-plumbing events indicator. See comments 10574 * in ip_sioctl_plink() for more. 10575 * 10576 * Request can be enqueued in the 'ipsq' while waiting 10577 * to become exclusive. So bump up the conn ref. 10578 */ 10579 if (CONN_Q(q)) 10580 CONN_INC_REF(Q_TO_CONN(q)); 10581 ip_sioctl_plink(NULL, q, mp, NULL); 10582 return; 10583 10584 case ND_GET: 10585 case ND_SET: 10586 /* 10587 * Use of the nd table requires holding the reader lock. 10588 * Modifying the nd table thru nd_load/nd_unload requires 10589 * the writer lock. 10590 */ 10591 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10592 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10593 rw_exit(&ipst->ips_ip_g_nd_lock); 10594 10595 if (iocp->ioc_error) 10596 iocp->ioc_count = 0; 10597 mp->b_datap->db_type = M_IOCACK; 10598 qreply(q, mp); 10599 return; 10600 } 10601 rw_exit(&ipst->ips_ip_g_nd_lock); 10602 /* 10603 * We don't understand this subioctl of ND_GET / ND_SET. 10604 * Maybe intended for some driver / module below us 10605 */ 10606 if (q->q_next) { 10607 putnext(q, mp); 10608 } else { 10609 iocp->ioc_error = ENOENT; 10610 mp->b_datap->db_type = M_IOCNAK; 10611 iocp->ioc_count = 0; 10612 qreply(q, mp); 10613 } 10614 return; 10615 10616 case IP_IOCTL: 10617 ip_wput_ioctl(q, mp); 10618 return; 10619 default: 10620 cmn_err(CE_PANIC, "should not happen "); 10621 } 10622 nak: 10623 if (mp->b_cont != NULL) { 10624 freemsg(mp->b_cont); 10625 mp->b_cont = NULL; 10626 } 10627 iocp->ioc_error = EINVAL; 10628 mp->b_datap->db_type = M_IOCNAK; 10629 iocp->ioc_count = 0; 10630 qreply(q, mp); 10631 } 10632 10633 /* ip_wput hands off ARP IOCTL responses to us */ 10634 void 10635 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10636 { 10637 struct arpreq *ar; 10638 struct xarpreq *xar; 10639 area_t *area; 10640 mblk_t *area_mp; 10641 struct iocblk *iocp; 10642 mblk_t *orig_ioc_mp, *tmp; 10643 struct iocblk *orig_iocp; 10644 ill_t *ill; 10645 conn_t *connp = NULL; 10646 uint_t ioc_id; 10647 mblk_t *pending_mp; 10648 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10649 int *flagsp; 10650 char *storage = NULL; 10651 sin_t *sin; 10652 ipaddr_t addr; 10653 int err; 10654 ip_stack_t *ipst; 10655 10656 ill = q->q_ptr; 10657 ASSERT(ill != NULL); 10658 ipst = ill->ill_ipst; 10659 10660 /* 10661 * We should get back from ARP a packet chain that looks like: 10662 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10663 */ 10664 if (!(area_mp = mp->b_cont) || 10665 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10666 !(orig_ioc_mp = area_mp->b_cont) || 10667 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10668 freemsg(mp); 10669 return; 10670 } 10671 10672 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10673 10674 tmp = (orig_ioc_mp->b_cont)->b_cont; 10675 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10676 (orig_iocp->ioc_cmd == SIOCSXARP) || 10677 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10678 x_arp_ioctl = B_TRUE; 10679 xar = (struct xarpreq *)tmp->b_rptr; 10680 sin = (sin_t *)&xar->xarp_pa; 10681 flagsp = &xar->xarp_flags; 10682 storage = xar->xarp_ha.sdl_data; 10683 if (xar->xarp_ha.sdl_nlen != 0) 10684 ifx_arp_ioctl = B_TRUE; 10685 } else { 10686 ar = (struct arpreq *)tmp->b_rptr; 10687 sin = (sin_t *)&ar->arp_pa; 10688 flagsp = &ar->arp_flags; 10689 storage = ar->arp_ha.sa_data; 10690 } 10691 10692 iocp = (struct iocblk *)mp->b_rptr; 10693 10694 /* 10695 * Pick out the originating queue based on the ioc_id. 10696 */ 10697 ioc_id = iocp->ioc_id; 10698 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10699 if (pending_mp == NULL) { 10700 ASSERT(connp == NULL); 10701 inet_freemsg(mp); 10702 return; 10703 } 10704 ASSERT(connp != NULL); 10705 q = CONNP_TO_WQ(connp); 10706 10707 /* Uncouple the internally generated IOCTL from the original one */ 10708 area = (area_t *)area_mp->b_rptr; 10709 area_mp->b_cont = NULL; 10710 10711 /* 10712 * Restore the b_next and b_prev used by mi code. This is needed 10713 * to complete the ioctl using mi* functions. We stored them in 10714 * the pending mp prior to sending the request to ARP. 10715 */ 10716 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10717 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10718 inet_freemsg(pending_mp); 10719 10720 /* 10721 * We're done if there was an error or if this is not an SIOCG{X}ARP 10722 * Catch the case where there is an IRE_CACHE by no entry in the 10723 * arp table. 10724 */ 10725 addr = sin->sin_addr.s_addr; 10726 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10727 ire_t *ire; 10728 dl_unitdata_req_t *dlup; 10729 mblk_t *llmp; 10730 int addr_len; 10731 ill_t *ipsqill = NULL; 10732 10733 if (ifx_arp_ioctl) { 10734 /* 10735 * There's no need to lookup the ill, since 10736 * we've already done that when we started 10737 * processing the ioctl and sent the message 10738 * to ARP on that ill. So use the ill that 10739 * is stored in q->q_ptr. 10740 */ 10741 ipsqill = ill; 10742 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10743 ipsqill->ill_ipif, ALL_ZONES, 10744 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10745 } else { 10746 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10747 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10748 if (ire != NULL) 10749 ipsqill = ire_to_ill(ire); 10750 } 10751 10752 if ((x_arp_ioctl) && (ipsqill != NULL)) 10753 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10754 10755 if (ire != NULL) { 10756 /* 10757 * Since the ire obtained from cachetable is used for 10758 * mac addr copying below, treat an incomplete ire as if 10759 * as if we never found it. 10760 */ 10761 if (ire->ire_nce != NULL && 10762 ire->ire_nce->nce_state != ND_REACHABLE) { 10763 ire_refrele(ire); 10764 ire = NULL; 10765 ipsqill = NULL; 10766 goto errack; 10767 } 10768 *flagsp = ATF_INUSE; 10769 llmp = (ire->ire_nce != NULL ? 10770 ire->ire_nce->nce_res_mp : NULL); 10771 if (llmp != NULL && ipsqill != NULL) { 10772 uchar_t *macaddr; 10773 10774 addr_len = ipsqill->ill_phys_addr_length; 10775 if (x_arp_ioctl && ((addr_len + 10776 ipsqill->ill_name_length) > 10777 sizeof (xar->xarp_ha.sdl_data))) { 10778 ire_refrele(ire); 10779 freemsg(mp); 10780 ip_ioctl_finish(q, orig_ioc_mp, 10781 EINVAL, NO_COPYOUT, NULL); 10782 return; 10783 } 10784 *flagsp |= ATF_COM; 10785 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10786 if (ipsqill->ill_sap_length < 0) 10787 macaddr = llmp->b_rptr + 10788 dlup->dl_dest_addr_offset; 10789 else 10790 macaddr = llmp->b_rptr + 10791 dlup->dl_dest_addr_offset + 10792 ipsqill->ill_sap_length; 10793 /* 10794 * For SIOCGARP, MAC address length 10795 * validation has already been done 10796 * before the ioctl was issued to ARP to 10797 * allow it to progress only on 6 byte 10798 * addressable (ethernet like) media. Thus 10799 * the mac address copying can not overwrite 10800 * the sa_data area below. 10801 */ 10802 bcopy(macaddr, storage, addr_len); 10803 } 10804 /* Ditch the internal IOCTL. */ 10805 freemsg(mp); 10806 ire_refrele(ire); 10807 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10808 return; 10809 } 10810 } 10811 10812 /* 10813 * Delete the coresponding IRE_CACHE if any. 10814 * Reset the error if there was one (in case there was no entry 10815 * in arp.) 10816 */ 10817 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10818 ipif_t *ipintf = NULL; 10819 10820 if (ifx_arp_ioctl) { 10821 /* 10822 * There's no need to lookup the ill, since 10823 * we've already done that when we started 10824 * processing the ioctl and sent the message 10825 * to ARP on that ill. So use the ill that 10826 * is stored in q->q_ptr. 10827 */ 10828 ipintf = ill->ill_ipif; 10829 } 10830 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10831 /* 10832 * The address in "addr" may be an entry for a 10833 * router. If that's true, then any off-net 10834 * IRE_CACHE entries that go through the router 10835 * with address "addr" must be clobbered. Use 10836 * ire_walk to achieve this goal. 10837 */ 10838 if (ifx_arp_ioctl) 10839 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10840 ire_delete_cache_gw, (char *)&addr, ill); 10841 else 10842 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10843 ALL_ZONES, ipst); 10844 iocp->ioc_error = 0; 10845 } 10846 } 10847 errack: 10848 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10849 err = iocp->ioc_error; 10850 freemsg(mp); 10851 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10852 return; 10853 } 10854 10855 /* 10856 * Completion of an SIOCG{X}ARP. Translate the information from 10857 * the area_t into the struct {x}arpreq. 10858 */ 10859 if (x_arp_ioctl) { 10860 storage += ill_xarp_info(&xar->xarp_ha, ill); 10861 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10862 sizeof (xar->xarp_ha.sdl_data)) { 10863 freemsg(mp); 10864 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10865 NULL); 10866 return; 10867 } 10868 } 10869 *flagsp = ATF_INUSE; 10870 if (area->area_flags & ACE_F_PERMANENT) 10871 *flagsp |= ATF_PERM; 10872 if (area->area_flags & ACE_F_PUBLISH) 10873 *flagsp |= ATF_PUBL; 10874 if (area->area_flags & ACE_F_AUTHORITY) 10875 *flagsp |= ATF_AUTHORITY; 10876 if (area->area_hw_addr_length != 0) { 10877 *flagsp |= ATF_COM; 10878 /* 10879 * For SIOCGARP, MAC address length validation has 10880 * already been done before the ioctl was issued to ARP 10881 * to allow it to progress only on 6 byte addressable 10882 * (ethernet like) media. Thus the mac address copying 10883 * can not overwrite the sa_data area below. 10884 */ 10885 bcopy((char *)area + area->area_hw_addr_offset, 10886 storage, area->area_hw_addr_length); 10887 } 10888 10889 /* Ditch the internal IOCTL. */ 10890 freemsg(mp); 10891 /* Complete the original. */ 10892 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10893 } 10894 10895 /* 10896 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10897 * interface) create the next available logical interface for this 10898 * physical interface. 10899 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10900 * ipif with the specified name. 10901 * 10902 * If the address family is not AF_UNSPEC then set the address as well. 10903 * 10904 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10905 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10906 * 10907 * Executed as a writer on the ill or ill group. 10908 * So no lock is needed to traverse the ipif chain, or examine the 10909 * phyint flags. 10910 */ 10911 /* ARGSUSED */ 10912 int 10913 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10914 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10915 { 10916 mblk_t *mp1; 10917 struct lifreq *lifr; 10918 boolean_t isv6; 10919 boolean_t exists; 10920 char *name; 10921 char *endp; 10922 char *cp; 10923 int namelen; 10924 ipif_t *ipif; 10925 long id; 10926 ipsq_t *ipsq; 10927 ill_t *ill; 10928 sin_t *sin; 10929 int err = 0; 10930 boolean_t found_sep = B_FALSE; 10931 conn_t *connp; 10932 zoneid_t zoneid; 10933 int orig_ifindex = 0; 10934 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10935 10936 ASSERT(q->q_next == NULL); 10937 ip1dbg(("ip_sioctl_addif\n")); 10938 /* Existence of mp1 has been checked in ip_wput_nondata */ 10939 mp1 = mp->b_cont->b_cont; 10940 /* 10941 * Null terminate the string to protect against buffer 10942 * overrun. String was generated by user code and may not 10943 * be trusted. 10944 */ 10945 lifr = (struct lifreq *)mp1->b_rptr; 10946 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10947 name = lifr->lifr_name; 10948 ASSERT(CONN_Q(q)); 10949 connp = Q_TO_CONN(q); 10950 isv6 = connp->conn_af_isv6; 10951 zoneid = connp->conn_zoneid; 10952 namelen = mi_strlen(name); 10953 if (namelen == 0) 10954 return (EINVAL); 10955 10956 exists = B_FALSE; 10957 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10958 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10959 /* 10960 * Allow creating lo0 using SIOCLIFADDIF. 10961 * can't be any other writer thread. So can pass null below 10962 * for the last 4 args to ipif_lookup_name. 10963 */ 10964 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10965 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10966 /* Prevent any further action */ 10967 if (ipif == NULL) { 10968 return (ENOBUFS); 10969 } else if (!exists) { 10970 /* We created the ipif now and as writer */ 10971 ipif_refrele(ipif); 10972 return (0); 10973 } else { 10974 ill = ipif->ipif_ill; 10975 ill_refhold(ill); 10976 ipif_refrele(ipif); 10977 } 10978 } else { 10979 /* Look for a colon in the name. */ 10980 endp = &name[namelen]; 10981 for (cp = endp; --cp > name; ) { 10982 if (*cp == IPIF_SEPARATOR_CHAR) { 10983 found_sep = B_TRUE; 10984 /* 10985 * Reject any non-decimal aliases for plumbing 10986 * of logical interfaces. Aliases with leading 10987 * zeroes are also rejected as they introduce 10988 * ambiguity in the naming of the interfaces. 10989 * Comparing with "0" takes care of all such 10990 * cases. 10991 */ 10992 if ((strncmp("0", cp+1, 1)) == 0) 10993 return (EINVAL); 10994 10995 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10996 id <= 0 || *endp != '\0') { 10997 return (EINVAL); 10998 } 10999 *cp = '\0'; 11000 break; 11001 } 11002 } 11003 ill = ill_lookup_on_name(name, B_FALSE, isv6, 11004 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 11005 if (found_sep) 11006 *cp = IPIF_SEPARATOR_CHAR; 11007 if (ill == NULL) 11008 return (err); 11009 } 11010 11011 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 11012 B_TRUE); 11013 11014 /* 11015 * Release the refhold due to the lookup, now that we are excl 11016 * or we are just returning 11017 */ 11018 ill_refrele(ill); 11019 11020 if (ipsq == NULL) 11021 return (EINPROGRESS); 11022 11023 /* 11024 * If the interface is failed, inactive or offlined, look for a working 11025 * interface in the ill group and create the ipif there. If we can't 11026 * find a good interface, create the ipif anyway so that in.mpathd can 11027 * move it to the first repaired interface. 11028 */ 11029 if ((ill->ill_phyint->phyint_flags & 11030 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11031 ill->ill_phyint->phyint_groupname_len != 0) { 11032 phyint_t *phyi; 11033 char *groupname = ill->ill_phyint->phyint_groupname; 11034 11035 /* 11036 * We're looking for a working interface, but it doesn't matter 11037 * if it's up or down; so instead of following the group lists, 11038 * we look at each physical interface and compare the groupname. 11039 * We're only interested in interfaces with IPv4 (resp. IPv6) 11040 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 11041 * Otherwise we create the ipif on the failed interface. 11042 */ 11043 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11044 phyi = avl_first(&ipst->ips_phyint_g_list-> 11045 phyint_list_avl_by_index); 11046 for (; phyi != NULL; 11047 phyi = avl_walk(&ipst->ips_phyint_g_list-> 11048 phyint_list_avl_by_index, 11049 phyi, AVL_AFTER)) { 11050 if (phyi->phyint_groupname_len == 0) 11051 continue; 11052 ASSERT(phyi->phyint_groupname != NULL); 11053 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 11054 !(phyi->phyint_flags & 11055 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11056 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 11057 (phyi->phyint_illv4 != NULL))) { 11058 break; 11059 } 11060 } 11061 rw_exit(&ipst->ips_ill_g_lock); 11062 11063 if (phyi != NULL) { 11064 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11065 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11066 phyi->phyint_illv4); 11067 } 11068 } 11069 11070 /* 11071 * We are now exclusive on the ipsq, so an ill move will be serialized 11072 * before or after us. 11073 */ 11074 ASSERT(IAM_WRITER_ILL(ill)); 11075 ASSERT(ill->ill_move_in_progress == B_FALSE); 11076 11077 if (found_sep && orig_ifindex == 0) { 11078 /* Now see if there is an IPIF with this unit number. */ 11079 for (ipif = ill->ill_ipif; ipif != NULL; 11080 ipif = ipif->ipif_next) { 11081 if (ipif->ipif_id == id) { 11082 err = EEXIST; 11083 goto done; 11084 } 11085 } 11086 } 11087 11088 /* 11089 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11090 * of lo0. We never come here when we plumb lo0:0. It 11091 * happens in ipif_lookup_on_name. 11092 * The specified unit number is ignored when we create the ipif on a 11093 * different interface. However, we save it in ipif_orig_ipifid below so 11094 * that the ipif fails back to the right position. 11095 */ 11096 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11097 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11098 err = ENOBUFS; 11099 goto done; 11100 } 11101 11102 /* Return created name with ioctl */ 11103 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11104 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11105 ip1dbg(("created %s\n", lifr->lifr_name)); 11106 11107 /* Set address */ 11108 sin = (sin_t *)&lifr->lifr_addr; 11109 if (sin->sin_family != AF_UNSPEC) { 11110 err = ip_sioctl_addr(ipif, sin, q, mp, 11111 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11112 } 11113 11114 /* Set ifindex and unit number for failback */ 11115 if (err == 0 && orig_ifindex != 0) { 11116 ipif->ipif_orig_ifindex = orig_ifindex; 11117 if (found_sep) { 11118 ipif->ipif_orig_ipifid = id; 11119 } 11120 } 11121 11122 done: 11123 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11124 return (err); 11125 } 11126 11127 /* 11128 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11129 * interface) delete it based on the IP address (on this physical interface). 11130 * Otherwise delete it based on the ipif_id. 11131 * Also, special handling to allow a removeif of lo0. 11132 */ 11133 /* ARGSUSED */ 11134 int 11135 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11136 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11137 { 11138 conn_t *connp; 11139 ill_t *ill = ipif->ipif_ill; 11140 boolean_t success; 11141 ip_stack_t *ipst; 11142 11143 ipst = CONNQ_TO_IPST(q); 11144 11145 ASSERT(q->q_next == NULL); 11146 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11147 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11148 ASSERT(IAM_WRITER_IPIF(ipif)); 11149 11150 connp = Q_TO_CONN(q); 11151 /* 11152 * Special case for unplumbing lo0 (the loopback physical interface). 11153 * If unplumbing lo0, the incoming address structure has been 11154 * initialized to all zeros. When unplumbing lo0, all its logical 11155 * interfaces must be removed too. 11156 * 11157 * Note that this interface may be called to remove a specific 11158 * loopback logical interface (eg, lo0:1). But in that case 11159 * ipif->ipif_id != 0 so that the code path for that case is the 11160 * same as any other interface (meaning it skips the code directly 11161 * below). 11162 */ 11163 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11164 if (sin->sin_family == AF_UNSPEC && 11165 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11166 /* 11167 * Mark it condemned. No new ref. will be made to ill. 11168 */ 11169 mutex_enter(&ill->ill_lock); 11170 ill->ill_state_flags |= ILL_CONDEMNED; 11171 for (ipif = ill->ill_ipif; ipif != NULL; 11172 ipif = ipif->ipif_next) { 11173 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11174 } 11175 mutex_exit(&ill->ill_lock); 11176 11177 ipif = ill->ill_ipif; 11178 /* unplumb the loopback interface */ 11179 ill_delete(ill); 11180 mutex_enter(&connp->conn_lock); 11181 mutex_enter(&ill->ill_lock); 11182 ASSERT(ill->ill_group == NULL); 11183 11184 /* Are any references to this ill active */ 11185 if (ill_is_quiescent(ill)) { 11186 mutex_exit(&ill->ill_lock); 11187 mutex_exit(&connp->conn_lock); 11188 ill_delete_tail(ill); 11189 mi_free(ill); 11190 return (0); 11191 } 11192 success = ipsq_pending_mp_add(connp, ipif, 11193 CONNP_TO_WQ(connp), mp, ILL_FREE); 11194 mutex_exit(&connp->conn_lock); 11195 mutex_exit(&ill->ill_lock); 11196 if (success) 11197 return (EINPROGRESS); 11198 else 11199 return (EINTR); 11200 } 11201 } 11202 11203 /* 11204 * We are exclusive on the ipsq, so an ill move will be serialized 11205 * before or after us. 11206 */ 11207 ASSERT(ill->ill_move_in_progress == B_FALSE); 11208 11209 if (ipif->ipif_id == 0) { 11210 /* Find based on address */ 11211 if (ipif->ipif_isv6) { 11212 sin6_t *sin6; 11213 11214 if (sin->sin_family != AF_INET6) 11215 return (EAFNOSUPPORT); 11216 11217 sin6 = (sin6_t *)sin; 11218 /* We are a writer, so we should be able to lookup */ 11219 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11220 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11221 if (ipif == NULL) { 11222 /* 11223 * Maybe the address in on another interface in 11224 * the same IPMP group? We check this below. 11225 */ 11226 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11227 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11228 ipst); 11229 } 11230 } else { 11231 ipaddr_t addr; 11232 11233 if (sin->sin_family != AF_INET) 11234 return (EAFNOSUPPORT); 11235 11236 addr = sin->sin_addr.s_addr; 11237 /* We are a writer, so we should be able to lookup */ 11238 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11239 NULL, NULL, NULL, ipst); 11240 if (ipif == NULL) { 11241 /* 11242 * Maybe the address in on another interface in 11243 * the same IPMP group? We check this below. 11244 */ 11245 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11246 NULL, NULL, NULL, NULL, ipst); 11247 } 11248 } 11249 if (ipif == NULL) { 11250 return (EADDRNOTAVAIL); 11251 } 11252 /* 11253 * When the address to be removed is hosted on a different 11254 * interface, we check if the interface is in the same IPMP 11255 * group as the specified one; if so we proceed with the 11256 * removal. 11257 * ill->ill_group is NULL when the ill is down, so we have to 11258 * compare the group names instead. 11259 */ 11260 if (ipif->ipif_ill != ill && 11261 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11262 ill->ill_phyint->phyint_groupname_len == 0 || 11263 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11264 ill->ill_phyint->phyint_groupname) != 0)) { 11265 ipif_refrele(ipif); 11266 return (EADDRNOTAVAIL); 11267 } 11268 11269 /* This is a writer */ 11270 ipif_refrele(ipif); 11271 } 11272 11273 /* 11274 * Can not delete instance zero since it is tied to the ill. 11275 */ 11276 if (ipif->ipif_id == 0) 11277 return (EBUSY); 11278 11279 mutex_enter(&ill->ill_lock); 11280 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11281 mutex_exit(&ill->ill_lock); 11282 11283 ipif_free(ipif); 11284 11285 mutex_enter(&connp->conn_lock); 11286 mutex_enter(&ill->ill_lock); 11287 11288 /* Are any references to this ipif active */ 11289 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11290 mutex_exit(&ill->ill_lock); 11291 mutex_exit(&connp->conn_lock); 11292 ipif_non_duplicate(ipif); 11293 ipif_down_tail(ipif); 11294 ipif_free_tail(ipif); 11295 return (0); 11296 } 11297 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11298 IPIF_FREE); 11299 mutex_exit(&ill->ill_lock); 11300 mutex_exit(&connp->conn_lock); 11301 if (success) 11302 return (EINPROGRESS); 11303 else 11304 return (EINTR); 11305 } 11306 11307 /* 11308 * Restart the removeif ioctl. The refcnt has gone down to 0. 11309 * The ipif is already condemned. So can't find it thru lookups. 11310 */ 11311 /* ARGSUSED */ 11312 int 11313 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11314 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11315 { 11316 ill_t *ill; 11317 11318 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11319 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11320 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11321 ill = ipif->ipif_ill; 11322 ASSERT(IAM_WRITER_ILL(ill)); 11323 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11324 (ill->ill_state_flags & IPIF_CONDEMNED)); 11325 ill_delete_tail(ill); 11326 mi_free(ill); 11327 return (0); 11328 } 11329 11330 ill = ipif->ipif_ill; 11331 ASSERT(IAM_WRITER_IPIF(ipif)); 11332 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11333 11334 ipif_non_duplicate(ipif); 11335 ipif_down_tail(ipif); 11336 ipif_free_tail(ipif); 11337 11338 ILL_UNMARK_CHANGING(ill); 11339 return (0); 11340 } 11341 11342 /* 11343 * Set the local interface address. 11344 * Allow an address of all zero when the interface is down. 11345 */ 11346 /* ARGSUSED */ 11347 int 11348 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11349 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11350 { 11351 int err = 0; 11352 in6_addr_t v6addr; 11353 boolean_t need_up = B_FALSE; 11354 11355 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11356 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11357 11358 ASSERT(IAM_WRITER_IPIF(ipif)); 11359 11360 if (ipif->ipif_isv6) { 11361 sin6_t *sin6; 11362 ill_t *ill; 11363 phyint_t *phyi; 11364 11365 if (sin->sin_family != AF_INET6) 11366 return (EAFNOSUPPORT); 11367 11368 sin6 = (sin6_t *)sin; 11369 v6addr = sin6->sin6_addr; 11370 ill = ipif->ipif_ill; 11371 phyi = ill->ill_phyint; 11372 11373 /* 11374 * Enforce that true multicast interfaces have a link-local 11375 * address for logical unit 0. 11376 */ 11377 if (ipif->ipif_id == 0 && 11378 (ill->ill_flags & ILLF_MULTICAST) && 11379 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11380 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11381 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11382 return (EADDRNOTAVAIL); 11383 } 11384 11385 /* 11386 * up interfaces shouldn't have the unspecified address 11387 * unless they also have the IPIF_NOLOCAL flags set and 11388 * have a subnet assigned. 11389 */ 11390 if ((ipif->ipif_flags & IPIF_UP) && 11391 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11392 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11393 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11394 return (EADDRNOTAVAIL); 11395 } 11396 11397 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11398 return (EADDRNOTAVAIL); 11399 } else { 11400 ipaddr_t addr; 11401 11402 if (sin->sin_family != AF_INET) 11403 return (EAFNOSUPPORT); 11404 11405 addr = sin->sin_addr.s_addr; 11406 11407 /* Allow 0 as the local address. */ 11408 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11409 return (EADDRNOTAVAIL); 11410 11411 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11412 } 11413 11414 11415 /* 11416 * Even if there is no change we redo things just to rerun 11417 * ipif_set_default. 11418 */ 11419 if (ipif->ipif_flags & IPIF_UP) { 11420 /* 11421 * Setting a new local address, make sure 11422 * we have net and subnet bcast ire's for 11423 * the old address if we need them. 11424 */ 11425 if (!ipif->ipif_isv6) 11426 ipif_check_bcast_ires(ipif); 11427 /* 11428 * If the interface is already marked up, 11429 * we call ipif_down which will take care 11430 * of ditching any IREs that have been set 11431 * up based on the old interface address. 11432 */ 11433 err = ipif_logical_down(ipif, q, mp); 11434 if (err == EINPROGRESS) 11435 return (err); 11436 ipif_down_tail(ipif); 11437 need_up = 1; 11438 } 11439 11440 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11441 return (err); 11442 } 11443 11444 int 11445 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11446 boolean_t need_up) 11447 { 11448 in6_addr_t v6addr; 11449 in6_addr_t ov6addr; 11450 ipaddr_t addr; 11451 sin6_t *sin6; 11452 int sinlen; 11453 int err = 0; 11454 ill_t *ill = ipif->ipif_ill; 11455 boolean_t need_dl_down; 11456 boolean_t need_arp_down; 11457 struct iocblk *iocp; 11458 11459 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11460 11461 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11462 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11463 ASSERT(IAM_WRITER_IPIF(ipif)); 11464 11465 /* Must cancel any pending timer before taking the ill_lock */ 11466 if (ipif->ipif_recovery_id != 0) 11467 (void) untimeout(ipif->ipif_recovery_id); 11468 ipif->ipif_recovery_id = 0; 11469 11470 if (ipif->ipif_isv6) { 11471 sin6 = (sin6_t *)sin; 11472 v6addr = sin6->sin6_addr; 11473 sinlen = sizeof (struct sockaddr_in6); 11474 } else { 11475 addr = sin->sin_addr.s_addr; 11476 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11477 sinlen = sizeof (struct sockaddr_in); 11478 } 11479 mutex_enter(&ill->ill_lock); 11480 ov6addr = ipif->ipif_v6lcl_addr; 11481 ipif->ipif_v6lcl_addr = v6addr; 11482 sctp_update_ipif_addr(ipif, ov6addr); 11483 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11484 ipif->ipif_v6src_addr = ipv6_all_zeros; 11485 } else { 11486 ipif->ipif_v6src_addr = v6addr; 11487 } 11488 ipif->ipif_addr_ready = 0; 11489 11490 /* 11491 * If the interface was previously marked as a duplicate, then since 11492 * we've now got a "new" address, it should no longer be considered a 11493 * duplicate -- even if the "new" address is the same as the old one. 11494 * Note that if all ipifs are down, we may have a pending ARP down 11495 * event to handle. This is because we want to recover from duplicates 11496 * and thus delay tearing down ARP until the duplicates have been 11497 * removed or disabled. 11498 */ 11499 need_dl_down = need_arp_down = B_FALSE; 11500 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11501 need_arp_down = !need_up; 11502 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11503 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11504 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11505 need_dl_down = B_TRUE; 11506 } 11507 } 11508 11509 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11510 !ill->ill_is_6to4tun) { 11511 queue_t *wqp = ill->ill_wq; 11512 11513 /* 11514 * The local address of this interface is a 6to4 address, 11515 * check if this interface is in fact a 6to4 tunnel or just 11516 * an interface configured with a 6to4 address. We are only 11517 * interested in the former. 11518 */ 11519 if (wqp != NULL) { 11520 while ((wqp->q_next != NULL) && 11521 (wqp->q_next->q_qinfo != NULL) && 11522 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11523 11524 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11525 == TUN6TO4_MODID) { 11526 /* set for use in IP */ 11527 ill->ill_is_6to4tun = 1; 11528 break; 11529 } 11530 wqp = wqp->q_next; 11531 } 11532 } 11533 } 11534 11535 ipif_set_default(ipif); 11536 11537 /* 11538 * When publishing an interface address change event, we only notify 11539 * the event listeners of the new address. It is assumed that if they 11540 * actively care about the addresses assigned that they will have 11541 * already discovered the previous address assigned (if there was one.) 11542 * 11543 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11544 */ 11545 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11546 hook_nic_event_t *info; 11547 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11548 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11549 "attached for %s\n", info->hne_event, 11550 ill->ill_name)); 11551 if (info->hne_data != NULL) 11552 kmem_free(info->hne_data, info->hne_datalen); 11553 kmem_free(info, sizeof (hook_nic_event_t)); 11554 } 11555 11556 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11557 if (info != NULL) { 11558 ip_stack_t *ipst = ill->ill_ipst; 11559 11560 info->hne_nic = 11561 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11562 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11563 info->hne_event = NE_ADDRESS_CHANGE; 11564 info->hne_family = ipif->ipif_isv6 ? 11565 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11566 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11567 if (info->hne_data != NULL) { 11568 info->hne_datalen = sinlen; 11569 bcopy(sin, info->hne_data, sinlen); 11570 } else { 11571 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11572 "address information for ADDRESS_CHANGE nic" 11573 " event of %s (ENOMEM)\n", 11574 ipif->ipif_ill->ill_name)); 11575 kmem_free(info, sizeof (hook_nic_event_t)); 11576 } 11577 } else 11578 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11579 "ADDRESS_CHANGE nic event information for %s " 11580 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11581 11582 ipif->ipif_ill->ill_nic_event_info = info; 11583 } 11584 11585 mutex_exit(&ill->ill_lock); 11586 11587 if (need_up) { 11588 /* 11589 * Now bring the interface back up. If this 11590 * is the only IPIF for the ILL, ipif_up 11591 * will have to re-bind to the device, so 11592 * we may get back EINPROGRESS, in which 11593 * case, this IOCTL will get completed in 11594 * ip_rput_dlpi when we see the DL_BIND_ACK. 11595 */ 11596 err = ipif_up(ipif, q, mp); 11597 } 11598 11599 if (need_dl_down) 11600 ill_dl_down(ill); 11601 if (need_arp_down) 11602 ipif_arp_down(ipif); 11603 11604 return (err); 11605 } 11606 11607 11608 /* 11609 * Restart entry point to restart the address set operation after the 11610 * refcounts have dropped to zero. 11611 */ 11612 /* ARGSUSED */ 11613 int 11614 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11615 ip_ioctl_cmd_t *ipip, void *ifreq) 11616 { 11617 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11618 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11619 ASSERT(IAM_WRITER_IPIF(ipif)); 11620 ipif_down_tail(ipif); 11621 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11622 } 11623 11624 /* ARGSUSED */ 11625 int 11626 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11627 ip_ioctl_cmd_t *ipip, void *if_req) 11628 { 11629 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11630 struct lifreq *lifr = (struct lifreq *)if_req; 11631 11632 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11633 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11634 /* 11635 * The net mask and address can't change since we have a 11636 * reference to the ipif. So no lock is necessary. 11637 */ 11638 if (ipif->ipif_isv6) { 11639 *sin6 = sin6_null; 11640 sin6->sin6_family = AF_INET6; 11641 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11642 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11643 lifr->lifr_addrlen = 11644 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11645 } else { 11646 *sin = sin_null; 11647 sin->sin_family = AF_INET; 11648 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11649 if (ipip->ipi_cmd_type == LIF_CMD) { 11650 lifr->lifr_addrlen = 11651 ip_mask_to_plen(ipif->ipif_net_mask); 11652 } 11653 } 11654 return (0); 11655 } 11656 11657 /* 11658 * Set the destination address for a pt-pt interface. 11659 */ 11660 /* ARGSUSED */ 11661 int 11662 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11663 ip_ioctl_cmd_t *ipip, void *if_req) 11664 { 11665 int err = 0; 11666 in6_addr_t v6addr; 11667 boolean_t need_up = B_FALSE; 11668 11669 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11670 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11671 ASSERT(IAM_WRITER_IPIF(ipif)); 11672 11673 if (ipif->ipif_isv6) { 11674 sin6_t *sin6; 11675 11676 if (sin->sin_family != AF_INET6) 11677 return (EAFNOSUPPORT); 11678 11679 sin6 = (sin6_t *)sin; 11680 v6addr = sin6->sin6_addr; 11681 11682 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11683 return (EADDRNOTAVAIL); 11684 } else { 11685 ipaddr_t addr; 11686 11687 if (sin->sin_family != AF_INET) 11688 return (EAFNOSUPPORT); 11689 11690 addr = sin->sin_addr.s_addr; 11691 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11692 return (EADDRNOTAVAIL); 11693 11694 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11695 } 11696 11697 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11698 return (0); /* No change */ 11699 11700 if (ipif->ipif_flags & IPIF_UP) { 11701 /* 11702 * If the interface is already marked up, 11703 * we call ipif_down which will take care 11704 * of ditching any IREs that have been set 11705 * up based on the old pp dst address. 11706 */ 11707 err = ipif_logical_down(ipif, q, mp); 11708 if (err == EINPROGRESS) 11709 return (err); 11710 ipif_down_tail(ipif); 11711 need_up = B_TRUE; 11712 } 11713 /* 11714 * could return EINPROGRESS. If so ioctl will complete in 11715 * ip_rput_dlpi_writer 11716 */ 11717 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11718 return (err); 11719 } 11720 11721 static int 11722 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11723 boolean_t need_up) 11724 { 11725 in6_addr_t v6addr; 11726 ill_t *ill = ipif->ipif_ill; 11727 int err = 0; 11728 boolean_t need_dl_down; 11729 boolean_t need_arp_down; 11730 11731 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11732 ipif->ipif_id, (void *)ipif)); 11733 11734 /* Must cancel any pending timer before taking the ill_lock */ 11735 if (ipif->ipif_recovery_id != 0) 11736 (void) untimeout(ipif->ipif_recovery_id); 11737 ipif->ipif_recovery_id = 0; 11738 11739 if (ipif->ipif_isv6) { 11740 sin6_t *sin6; 11741 11742 sin6 = (sin6_t *)sin; 11743 v6addr = sin6->sin6_addr; 11744 } else { 11745 ipaddr_t addr; 11746 11747 addr = sin->sin_addr.s_addr; 11748 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11749 } 11750 mutex_enter(&ill->ill_lock); 11751 /* Set point to point destination address. */ 11752 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11753 /* 11754 * Allow this as a means of creating logical 11755 * pt-pt interfaces on top of e.g. an Ethernet. 11756 * XXX Undocumented HACK for testing. 11757 * pt-pt interfaces are created with NUD disabled. 11758 */ 11759 ipif->ipif_flags |= IPIF_POINTOPOINT; 11760 ipif->ipif_flags &= ~IPIF_BROADCAST; 11761 if (ipif->ipif_isv6) 11762 ill->ill_flags |= ILLF_NONUD; 11763 } 11764 11765 /* 11766 * If the interface was previously marked as a duplicate, then since 11767 * we've now got a "new" address, it should no longer be considered a 11768 * duplicate -- even if the "new" address is the same as the old one. 11769 * Note that if all ipifs are down, we may have a pending ARP down 11770 * event to handle. 11771 */ 11772 need_dl_down = need_arp_down = B_FALSE; 11773 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11774 need_arp_down = !need_up; 11775 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11776 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11777 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11778 need_dl_down = B_TRUE; 11779 } 11780 } 11781 11782 /* Set the new address. */ 11783 ipif->ipif_v6pp_dst_addr = v6addr; 11784 /* Make sure subnet tracks pp_dst */ 11785 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11786 mutex_exit(&ill->ill_lock); 11787 11788 if (need_up) { 11789 /* 11790 * Now bring the interface back up. If this 11791 * is the only IPIF for the ILL, ipif_up 11792 * will have to re-bind to the device, so 11793 * we may get back EINPROGRESS, in which 11794 * case, this IOCTL will get completed in 11795 * ip_rput_dlpi when we see the DL_BIND_ACK. 11796 */ 11797 err = ipif_up(ipif, q, mp); 11798 } 11799 11800 if (need_dl_down) 11801 ill_dl_down(ill); 11802 11803 if (need_arp_down) 11804 ipif_arp_down(ipif); 11805 return (err); 11806 } 11807 11808 /* 11809 * Restart entry point to restart the dstaddress set operation after the 11810 * refcounts have dropped to zero. 11811 */ 11812 /* ARGSUSED */ 11813 int 11814 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11815 ip_ioctl_cmd_t *ipip, void *ifreq) 11816 { 11817 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11818 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11819 ipif_down_tail(ipif); 11820 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11821 } 11822 11823 /* ARGSUSED */ 11824 int 11825 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11826 ip_ioctl_cmd_t *ipip, void *if_req) 11827 { 11828 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11829 11830 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11831 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11832 /* 11833 * Get point to point destination address. The addresses can't 11834 * change since we hold a reference to the ipif. 11835 */ 11836 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11837 return (EADDRNOTAVAIL); 11838 11839 if (ipif->ipif_isv6) { 11840 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11841 *sin6 = sin6_null; 11842 sin6->sin6_family = AF_INET6; 11843 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11844 } else { 11845 *sin = sin_null; 11846 sin->sin_family = AF_INET; 11847 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11848 } 11849 return (0); 11850 } 11851 11852 /* 11853 * part of ipmp, make this func return the active/inactive state and 11854 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11855 */ 11856 /* 11857 * This function either sets or clears the IFF_INACTIVE flag. 11858 * 11859 * As long as there are some addresses or multicast memberships on the 11860 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11861 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11862 * will be used for outbound packets. 11863 * 11864 * Caller needs to verify the validity of setting IFF_INACTIVE. 11865 */ 11866 static void 11867 phyint_inactive(phyint_t *phyi) 11868 { 11869 ill_t *ill_v4; 11870 ill_t *ill_v6; 11871 ipif_t *ipif; 11872 ilm_t *ilm; 11873 11874 ill_v4 = phyi->phyint_illv4; 11875 ill_v6 = phyi->phyint_illv6; 11876 11877 /* 11878 * No need for a lock while traversing the list since iam 11879 * a writer 11880 */ 11881 if (ill_v4 != NULL) { 11882 ASSERT(IAM_WRITER_ILL(ill_v4)); 11883 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11884 ipif = ipif->ipif_next) { 11885 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11886 mutex_enter(&phyi->phyint_lock); 11887 phyi->phyint_flags &= ~PHYI_INACTIVE; 11888 mutex_exit(&phyi->phyint_lock); 11889 return; 11890 } 11891 } 11892 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11893 ilm = ilm->ilm_next) { 11894 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11895 mutex_enter(&phyi->phyint_lock); 11896 phyi->phyint_flags &= ~PHYI_INACTIVE; 11897 mutex_exit(&phyi->phyint_lock); 11898 return; 11899 } 11900 } 11901 } 11902 if (ill_v6 != NULL) { 11903 ill_v6 = phyi->phyint_illv6; 11904 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11905 ipif = ipif->ipif_next) { 11906 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11907 mutex_enter(&phyi->phyint_lock); 11908 phyi->phyint_flags &= ~PHYI_INACTIVE; 11909 mutex_exit(&phyi->phyint_lock); 11910 return; 11911 } 11912 } 11913 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11914 ilm = ilm->ilm_next) { 11915 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11916 mutex_enter(&phyi->phyint_lock); 11917 phyi->phyint_flags &= ~PHYI_INACTIVE; 11918 mutex_exit(&phyi->phyint_lock); 11919 return; 11920 } 11921 } 11922 } 11923 mutex_enter(&phyi->phyint_lock); 11924 phyi->phyint_flags |= PHYI_INACTIVE; 11925 mutex_exit(&phyi->phyint_lock); 11926 } 11927 11928 /* 11929 * This function is called only when the phyint flags change. Currently 11930 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11931 * that we can select a good ill. 11932 */ 11933 static void 11934 ip_redo_nomination(phyint_t *phyi) 11935 { 11936 ill_t *ill_v4; 11937 11938 ill_v4 = phyi->phyint_illv4; 11939 11940 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11941 ASSERT(IAM_WRITER_ILL(ill_v4)); 11942 if (ill_v4->ill_group->illgrp_ill_count > 1) 11943 ill_nominate_bcast_rcv(ill_v4->ill_group); 11944 } 11945 } 11946 11947 /* 11948 * Heuristic to check if ill is INACTIVE. 11949 * Checks if ill has an ipif with an usable ip address. 11950 * 11951 * Return values: 11952 * B_TRUE - ill is INACTIVE; has no usable ipif 11953 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11954 */ 11955 static boolean_t 11956 ill_is_inactive(ill_t *ill) 11957 { 11958 ipif_t *ipif; 11959 11960 /* Check whether it is in an IPMP group */ 11961 if (ill->ill_phyint->phyint_groupname == NULL) 11962 return (B_FALSE); 11963 11964 if (ill->ill_ipif_up_count == 0) 11965 return (B_TRUE); 11966 11967 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11968 uint64_t flags = ipif->ipif_flags; 11969 11970 /* 11971 * This ipif is usable if it is IPIF_UP and not a 11972 * dedicated test address. A dedicated test address 11973 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11974 * (note in particular that V6 test addresses are 11975 * link-local data addresses and thus are marked 11976 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11977 */ 11978 if ((flags & IPIF_UP) && 11979 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11980 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11981 return (B_FALSE); 11982 } 11983 return (B_TRUE); 11984 } 11985 11986 /* 11987 * Set interface flags. 11988 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11989 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11990 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11991 * 11992 * NOTE : We really don't enforce that ipif_id zero should be used 11993 * for setting any flags other than IFF_LOGINT_FLAGS. This 11994 * is because applications generally does SICGLIFFLAGS and 11995 * ORs in the new flags (that affects the logical) and does a 11996 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11997 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11998 * flags that will be turned on is correct with respect to 11999 * ipif_id 0. For backward compatibility reasons, it is not done. 12000 */ 12001 /* ARGSUSED */ 12002 int 12003 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12004 ip_ioctl_cmd_t *ipip, void *if_req) 12005 { 12006 uint64_t turn_on; 12007 uint64_t turn_off; 12008 int err; 12009 boolean_t need_up = B_FALSE; 12010 phyint_t *phyi; 12011 ill_t *ill; 12012 uint64_t intf_flags; 12013 boolean_t phyint_flags_modified = B_FALSE; 12014 uint64_t flags; 12015 struct ifreq *ifr; 12016 struct lifreq *lifr; 12017 boolean_t set_linklocal = B_FALSE; 12018 boolean_t zero_source = B_FALSE; 12019 ip_stack_t *ipst; 12020 12021 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 12022 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12023 12024 ASSERT(IAM_WRITER_IPIF(ipif)); 12025 12026 ill = ipif->ipif_ill; 12027 phyi = ill->ill_phyint; 12028 ipst = ill->ill_ipst; 12029 12030 if (ipip->ipi_cmd_type == IF_CMD) { 12031 ifr = (struct ifreq *)if_req; 12032 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 12033 } else { 12034 lifr = (struct lifreq *)if_req; 12035 flags = lifr->lifr_flags; 12036 } 12037 12038 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12039 12040 /* 12041 * Has the flags been set correctly till now ? 12042 */ 12043 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12044 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12045 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12046 /* 12047 * Compare the new flags to the old, and partition 12048 * into those coming on and those going off. 12049 * For the 16 bit command keep the bits above bit 16 unchanged. 12050 */ 12051 if (ipip->ipi_cmd == SIOCSIFFLAGS) 12052 flags |= intf_flags & ~0xFFFF; 12053 12054 /* 12055 * First check which bits will change and then which will 12056 * go on and off 12057 */ 12058 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 12059 if (!turn_on) 12060 return (0); /* No change */ 12061 12062 turn_off = intf_flags & turn_on; 12063 turn_on ^= turn_off; 12064 err = 0; 12065 12066 /* 12067 * Don't allow any bits belonging to the logical interface 12068 * to be set or cleared on the replacement ipif that was 12069 * created temporarily during a MOVE. 12070 */ 12071 if (ipif->ipif_replace_zero && 12072 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12073 return (EINVAL); 12074 } 12075 12076 /* 12077 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12078 * IPv6 interfaces. 12079 */ 12080 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12081 return (EINVAL); 12082 12083 /* 12084 * cannot turn off IFF_NOXMIT on VNI interfaces. 12085 */ 12086 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 12087 return (EINVAL); 12088 12089 /* 12090 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12091 * interfaces. It makes no sense in that context. 12092 */ 12093 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12094 return (EINVAL); 12095 12096 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12097 zero_source = B_TRUE; 12098 12099 /* 12100 * For IPv6 ipif_id 0, don't allow the interface to be up without 12101 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12102 * If the link local address isn't set, and can be set, it will get 12103 * set later on in this function. 12104 */ 12105 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12106 (flags & IFF_UP) && !zero_source && 12107 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12108 if (ipif_cant_setlinklocal(ipif)) 12109 return (EINVAL); 12110 set_linklocal = B_TRUE; 12111 } 12112 12113 /* 12114 * ILL cannot be part of a usesrc group and and IPMP group at the 12115 * same time. No need to grab ill_g_usesrc_lock here, see 12116 * synchronization notes in ip.c 12117 */ 12118 if (turn_on & PHYI_STANDBY && 12119 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12120 return (EINVAL); 12121 } 12122 12123 /* 12124 * If we modify physical interface flags, we'll potentially need to 12125 * send up two routing socket messages for the changes (one for the 12126 * IPv4 ill, and another for the IPv6 ill). Note that here. 12127 */ 12128 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12129 phyint_flags_modified = B_TRUE; 12130 12131 /* 12132 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12133 * we need to flush the IRE_CACHES belonging to this ill. 12134 * We handle this case here without doing the DOWN/UP dance 12135 * like it is done for other flags. If some other flags are 12136 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12137 * below will handle it by bringing it down and then 12138 * bringing it UP. 12139 */ 12140 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12141 ill_t *ill_v4, *ill_v6; 12142 12143 ill_v4 = phyi->phyint_illv4; 12144 ill_v6 = phyi->phyint_illv6; 12145 12146 /* 12147 * First set the INACTIVE flag if needed. Then delete the ires. 12148 * ire_add will atomically prevent creating new IRE_CACHEs 12149 * unless hidden flag is set. 12150 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12151 */ 12152 if ((turn_on & PHYI_FAILED) && 12153 ((intf_flags & PHYI_STANDBY) || 12154 !ipst->ips_ipmp_enable_failback)) { 12155 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12156 phyi->phyint_flags &= ~PHYI_INACTIVE; 12157 } 12158 if ((turn_off & PHYI_FAILED) && 12159 ((intf_flags & PHYI_STANDBY) || 12160 (!ipst->ips_ipmp_enable_failback && 12161 ill_is_inactive(ill)))) { 12162 phyint_inactive(phyi); 12163 } 12164 12165 if (turn_on & PHYI_STANDBY) { 12166 /* 12167 * We implicitly set INACTIVE only when STANDBY is set. 12168 * INACTIVE is also set on non-STANDBY phyint when user 12169 * disables FAILBACK using configuration file. 12170 * Do not allow STANDBY to be set on such INACTIVE 12171 * phyint 12172 */ 12173 if (phyi->phyint_flags & PHYI_INACTIVE) 12174 return (EINVAL); 12175 if (!(phyi->phyint_flags & PHYI_FAILED)) 12176 phyint_inactive(phyi); 12177 } 12178 if (turn_off & PHYI_STANDBY) { 12179 if (ipst->ips_ipmp_enable_failback) { 12180 /* 12181 * Reset PHYI_INACTIVE. 12182 */ 12183 phyi->phyint_flags &= ~PHYI_INACTIVE; 12184 } else if (ill_is_inactive(ill) && 12185 !(phyi->phyint_flags & PHYI_FAILED)) { 12186 /* 12187 * Need to set INACTIVE, when user sets 12188 * STANDBY on a non-STANDBY phyint and 12189 * later resets STANDBY 12190 */ 12191 phyint_inactive(phyi); 12192 } 12193 } 12194 /* 12195 * We should always send up a message so that the 12196 * daemons come to know of it. Note that the zeroth 12197 * interface can be down and the check below for IPIF_UP 12198 * will not make sense as we are actually setting 12199 * a phyint flag here. We assume that the ipif used 12200 * is always the zeroth ipif. (ip_rts_ifmsg does not 12201 * send up any message for non-zero ipifs). 12202 */ 12203 phyint_flags_modified = B_TRUE; 12204 12205 if (ill_v4 != NULL) { 12206 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12207 IRE_CACHE, ill_stq_cache_delete, 12208 (char *)ill_v4, ill_v4); 12209 illgrp_reset_schednext(ill_v4); 12210 } 12211 if (ill_v6 != NULL) { 12212 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12213 IRE_CACHE, ill_stq_cache_delete, 12214 (char *)ill_v6, ill_v6); 12215 illgrp_reset_schednext(ill_v6); 12216 } 12217 } 12218 12219 /* 12220 * If ILLF_ROUTER changes, we need to change the ip forwarding 12221 * status of the interface and, if the interface is part of an IPMP 12222 * group, all other interfaces that are part of the same IPMP 12223 * group. 12224 */ 12225 if ((turn_on | turn_off) & ILLF_ROUTER) 12226 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 12227 12228 /* 12229 * If the interface is not UP and we are not going to 12230 * bring it UP, record the flags and return. When the 12231 * interface comes UP later, the right actions will be 12232 * taken. 12233 */ 12234 if (!(ipif->ipif_flags & IPIF_UP) && 12235 !(turn_on & IPIF_UP)) { 12236 /* Record new flags in their respective places. */ 12237 mutex_enter(&ill->ill_lock); 12238 mutex_enter(&ill->ill_phyint->phyint_lock); 12239 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12240 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12241 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12242 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12243 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12244 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12245 mutex_exit(&ill->ill_lock); 12246 mutex_exit(&ill->ill_phyint->phyint_lock); 12247 12248 /* 12249 * We do the broadcast and nomination here rather 12250 * than waiting for a FAILOVER/FAILBACK to happen. In 12251 * the case of FAILBACK from INACTIVE standby to the 12252 * interface that has been repaired, PHYI_FAILED has not 12253 * been cleared yet. If there are only two interfaces in 12254 * that group, all we have is a FAILED and INACTIVE 12255 * interface. If we do the nomination soon after a failback, 12256 * the broadcast nomination code would select the 12257 * INACTIVE interface for receiving broadcasts as FAILED is 12258 * not yet cleared. As we don't want STANDBY/INACTIVE to 12259 * receive broadcast packets, we need to redo nomination 12260 * when the FAILED is cleared here. Thus, in general we 12261 * always do the nomination here for FAILED, STANDBY 12262 * and OFFLINE. 12263 */ 12264 if (((turn_on | turn_off) & 12265 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12266 ip_redo_nomination(phyi); 12267 } 12268 if (phyint_flags_modified) { 12269 if (phyi->phyint_illv4 != NULL) { 12270 ip_rts_ifmsg(phyi->phyint_illv4-> 12271 ill_ipif); 12272 } 12273 if (phyi->phyint_illv6 != NULL) { 12274 ip_rts_ifmsg(phyi->phyint_illv6-> 12275 ill_ipif); 12276 } 12277 } 12278 return (0); 12279 } else if (set_linklocal || zero_source) { 12280 mutex_enter(&ill->ill_lock); 12281 if (set_linklocal) 12282 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12283 if (zero_source) 12284 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12285 mutex_exit(&ill->ill_lock); 12286 } 12287 12288 /* 12289 * Disallow IPv6 interfaces coming up that have the unspecified address, 12290 * or point-to-point interfaces with an unspecified destination. We do 12291 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12292 * have a subnet assigned, which is how in.ndpd currently manages its 12293 * onlink prefix list when no addresses are configured with those 12294 * prefixes. 12295 */ 12296 if (ipif->ipif_isv6 && 12297 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12298 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12299 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12300 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12301 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12302 return (EINVAL); 12303 } 12304 12305 /* 12306 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12307 * from being brought up. 12308 */ 12309 if (!ipif->ipif_isv6 && 12310 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12311 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12312 return (EINVAL); 12313 } 12314 12315 /* 12316 * The only flag changes that we currently take specific action on 12317 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12318 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12319 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12320 * the flags and bringing it back up again. 12321 */ 12322 if ((turn_on|turn_off) & 12323 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12324 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12325 /* 12326 * Taking this ipif down, make sure we have 12327 * valid net and subnet bcast ire's for other 12328 * logical interfaces, if we need them. 12329 */ 12330 if (!ipif->ipif_isv6) 12331 ipif_check_bcast_ires(ipif); 12332 12333 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12334 !(turn_off & IPIF_UP)) { 12335 need_up = B_TRUE; 12336 if (ipif->ipif_flags & IPIF_UP) 12337 ill->ill_logical_down = 1; 12338 turn_on &= ~IPIF_UP; 12339 } 12340 err = ipif_down(ipif, q, mp); 12341 ip1dbg(("ipif_down returns %d err ", err)); 12342 if (err == EINPROGRESS) 12343 return (err); 12344 ipif_down_tail(ipif); 12345 } 12346 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12347 } 12348 12349 static int 12350 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12351 boolean_t need_up) 12352 { 12353 ill_t *ill; 12354 phyint_t *phyi; 12355 uint64_t turn_on; 12356 uint64_t turn_off; 12357 uint64_t intf_flags; 12358 boolean_t phyint_flags_modified = B_FALSE; 12359 int err = 0; 12360 boolean_t set_linklocal = B_FALSE; 12361 boolean_t zero_source = B_FALSE; 12362 12363 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12364 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12365 12366 ASSERT(IAM_WRITER_IPIF(ipif)); 12367 12368 ill = ipif->ipif_ill; 12369 phyi = ill->ill_phyint; 12370 12371 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12372 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12373 12374 turn_off = intf_flags & turn_on; 12375 turn_on ^= turn_off; 12376 12377 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12378 phyint_flags_modified = B_TRUE; 12379 12380 /* 12381 * Now we change the flags. Track current value of 12382 * other flags in their respective places. 12383 */ 12384 mutex_enter(&ill->ill_lock); 12385 mutex_enter(&phyi->phyint_lock); 12386 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12387 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12388 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12389 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12390 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12391 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12392 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12393 set_linklocal = B_TRUE; 12394 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12395 } 12396 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12397 zero_source = B_TRUE; 12398 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12399 } 12400 mutex_exit(&ill->ill_lock); 12401 mutex_exit(&phyi->phyint_lock); 12402 12403 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12404 ip_redo_nomination(phyi); 12405 12406 if (set_linklocal) 12407 (void) ipif_setlinklocal(ipif); 12408 12409 if (zero_source) 12410 ipif->ipif_v6src_addr = ipv6_all_zeros; 12411 else 12412 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12413 12414 if (need_up) { 12415 /* 12416 * XXX ipif_up really does not know whether a phyint flags 12417 * was modified or not. So, it sends up information on 12418 * only one routing sockets message. As we don't bring up 12419 * the interface and also set STANDBY/FAILED simultaneously 12420 * it should be okay. 12421 */ 12422 err = ipif_up(ipif, q, mp); 12423 } else { 12424 /* 12425 * Make sure routing socket sees all changes to the flags. 12426 * ipif_up_done* handles this when we use ipif_up. 12427 */ 12428 if (phyint_flags_modified) { 12429 if (phyi->phyint_illv4 != NULL) { 12430 ip_rts_ifmsg(phyi->phyint_illv4-> 12431 ill_ipif); 12432 } 12433 if (phyi->phyint_illv6 != NULL) { 12434 ip_rts_ifmsg(phyi->phyint_illv6-> 12435 ill_ipif); 12436 } 12437 } else { 12438 ip_rts_ifmsg(ipif); 12439 } 12440 /* 12441 * Update the flags in SCTP's IPIF list, ipif_up() will do 12442 * this in need_up case. 12443 */ 12444 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12445 } 12446 return (err); 12447 } 12448 12449 /* 12450 * Restart entry point to restart the flags restart operation after the 12451 * refcounts have dropped to zero. 12452 */ 12453 /* ARGSUSED */ 12454 int 12455 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12456 ip_ioctl_cmd_t *ipip, void *if_req) 12457 { 12458 int err; 12459 struct ifreq *ifr = (struct ifreq *)if_req; 12460 struct lifreq *lifr = (struct lifreq *)if_req; 12461 12462 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12463 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12464 12465 ipif_down_tail(ipif); 12466 if (ipip->ipi_cmd_type == IF_CMD) { 12467 /* 12468 * Since ip_sioctl_flags expects an int and ifr_flags 12469 * is a short we need to cast ifr_flags into an int 12470 * to avoid having sign extension cause bits to get 12471 * set that should not be. 12472 */ 12473 err = ip_sioctl_flags_tail(ipif, 12474 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12475 q, mp, B_TRUE); 12476 } else { 12477 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12478 q, mp, B_TRUE); 12479 } 12480 return (err); 12481 } 12482 12483 /* 12484 * Can operate on either a module or a driver queue. 12485 */ 12486 /* ARGSUSED */ 12487 int 12488 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12489 ip_ioctl_cmd_t *ipip, void *if_req) 12490 { 12491 /* 12492 * Has the flags been set correctly till now ? 12493 */ 12494 ill_t *ill = ipif->ipif_ill; 12495 phyint_t *phyi = ill->ill_phyint; 12496 12497 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12498 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12499 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12500 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12501 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12502 12503 /* 12504 * Need a lock since some flags can be set even when there are 12505 * references to the ipif. 12506 */ 12507 mutex_enter(&ill->ill_lock); 12508 if (ipip->ipi_cmd_type == IF_CMD) { 12509 struct ifreq *ifr = (struct ifreq *)if_req; 12510 12511 /* Get interface flags (low 16 only). */ 12512 ifr->ifr_flags = ((ipif->ipif_flags | 12513 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12514 } else { 12515 struct lifreq *lifr = (struct lifreq *)if_req; 12516 12517 /* Get interface flags. */ 12518 lifr->lifr_flags = ipif->ipif_flags | 12519 ill->ill_flags | phyi->phyint_flags; 12520 } 12521 mutex_exit(&ill->ill_lock); 12522 return (0); 12523 } 12524 12525 /* ARGSUSED */ 12526 int 12527 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12528 ip_ioctl_cmd_t *ipip, void *if_req) 12529 { 12530 int mtu; 12531 int ip_min_mtu; 12532 struct ifreq *ifr; 12533 struct lifreq *lifr; 12534 ire_t *ire; 12535 ip_stack_t *ipst; 12536 12537 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12538 ipif->ipif_id, (void *)ipif)); 12539 if (ipip->ipi_cmd_type == IF_CMD) { 12540 ifr = (struct ifreq *)if_req; 12541 mtu = ifr->ifr_metric; 12542 } else { 12543 lifr = (struct lifreq *)if_req; 12544 mtu = lifr->lifr_mtu; 12545 } 12546 12547 if (ipif->ipif_isv6) 12548 ip_min_mtu = IPV6_MIN_MTU; 12549 else 12550 ip_min_mtu = IP_MIN_MTU; 12551 12552 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12553 return (EINVAL); 12554 12555 /* 12556 * Change the MTU size in all relevant ire's. 12557 * Mtu change Vs. new ire creation - protocol below. 12558 * First change ipif_mtu and the ire_max_frag of the 12559 * interface ire. Then do an ire walk and change the 12560 * ire_max_frag of all affected ires. During ire_add 12561 * under the bucket lock, set the ire_max_frag of the 12562 * new ire being created from the ipif/ire from which 12563 * it is being derived. If an mtu change happens after 12564 * the ire is added, the new ire will be cleaned up. 12565 * Conversely if the mtu change happens before the ire 12566 * is added, ire_add will see the new value of the mtu. 12567 */ 12568 ipif->ipif_mtu = mtu; 12569 ipif->ipif_flags |= IPIF_FIXEDMTU; 12570 12571 if (ipif->ipif_isv6) 12572 ire = ipif_to_ire_v6(ipif); 12573 else 12574 ire = ipif_to_ire(ipif); 12575 if (ire != NULL) { 12576 ire->ire_max_frag = ipif->ipif_mtu; 12577 ire_refrele(ire); 12578 } 12579 ipst = ipif->ipif_ill->ill_ipst; 12580 if (ipif->ipif_flags & IPIF_UP) { 12581 if (ipif->ipif_isv6) 12582 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12583 ipst); 12584 else 12585 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12586 ipst); 12587 } 12588 /* Update the MTU in SCTP's list */ 12589 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12590 return (0); 12591 } 12592 12593 /* Get interface MTU. */ 12594 /* ARGSUSED */ 12595 int 12596 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12597 ip_ioctl_cmd_t *ipip, void *if_req) 12598 { 12599 struct ifreq *ifr; 12600 struct lifreq *lifr; 12601 12602 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12603 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12604 if (ipip->ipi_cmd_type == IF_CMD) { 12605 ifr = (struct ifreq *)if_req; 12606 ifr->ifr_metric = ipif->ipif_mtu; 12607 } else { 12608 lifr = (struct lifreq *)if_req; 12609 lifr->lifr_mtu = ipif->ipif_mtu; 12610 } 12611 return (0); 12612 } 12613 12614 /* Set interface broadcast address. */ 12615 /* ARGSUSED2 */ 12616 int 12617 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12618 ip_ioctl_cmd_t *ipip, void *if_req) 12619 { 12620 ipaddr_t addr; 12621 ire_t *ire; 12622 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12623 12624 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12625 ipif->ipif_id)); 12626 12627 ASSERT(IAM_WRITER_IPIF(ipif)); 12628 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12629 return (EADDRNOTAVAIL); 12630 12631 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12632 12633 if (sin->sin_family != AF_INET) 12634 return (EAFNOSUPPORT); 12635 12636 addr = sin->sin_addr.s_addr; 12637 if (ipif->ipif_flags & IPIF_UP) { 12638 /* 12639 * If we are already up, make sure the new 12640 * broadcast address makes sense. If it does, 12641 * there should be an IRE for it already. 12642 * Don't match on ipif, only on the ill 12643 * since we are sharing these now. Don't use 12644 * MATCH_IRE_ILL_GROUP as we are looking for 12645 * the broadcast ire on this ill and each ill 12646 * in the group has its own broadcast ire. 12647 */ 12648 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12649 ipif, ALL_ZONES, NULL, 12650 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12651 if (ire == NULL) { 12652 return (EINVAL); 12653 } else { 12654 ire_refrele(ire); 12655 } 12656 } 12657 /* 12658 * Changing the broadcast addr for this ipif. 12659 * Make sure we have valid net and subnet bcast 12660 * ire's for other logical interfaces, if needed. 12661 */ 12662 if (addr != ipif->ipif_brd_addr) 12663 ipif_check_bcast_ires(ipif); 12664 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12665 return (0); 12666 } 12667 12668 /* Get interface broadcast address. */ 12669 /* ARGSUSED */ 12670 int 12671 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12672 ip_ioctl_cmd_t *ipip, void *if_req) 12673 { 12674 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12675 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12676 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12677 return (EADDRNOTAVAIL); 12678 12679 /* IPIF_BROADCAST not possible with IPv6 */ 12680 ASSERT(!ipif->ipif_isv6); 12681 *sin = sin_null; 12682 sin->sin_family = AF_INET; 12683 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12684 return (0); 12685 } 12686 12687 /* 12688 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12689 */ 12690 /* ARGSUSED */ 12691 int 12692 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12693 ip_ioctl_cmd_t *ipip, void *if_req) 12694 { 12695 int err = 0; 12696 in6_addr_t v6mask; 12697 12698 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12699 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12700 12701 ASSERT(IAM_WRITER_IPIF(ipif)); 12702 12703 if (ipif->ipif_isv6) { 12704 sin6_t *sin6; 12705 12706 if (sin->sin_family != AF_INET6) 12707 return (EAFNOSUPPORT); 12708 12709 sin6 = (sin6_t *)sin; 12710 v6mask = sin6->sin6_addr; 12711 } else { 12712 ipaddr_t mask; 12713 12714 if (sin->sin_family != AF_INET) 12715 return (EAFNOSUPPORT); 12716 12717 mask = sin->sin_addr.s_addr; 12718 V4MASK_TO_V6(mask, v6mask); 12719 } 12720 12721 /* 12722 * No big deal if the interface isn't already up, or the mask 12723 * isn't really changing, or this is pt-pt. 12724 */ 12725 if (!(ipif->ipif_flags & IPIF_UP) || 12726 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12727 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12728 ipif->ipif_v6net_mask = v6mask; 12729 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12730 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12731 ipif->ipif_v6net_mask, 12732 ipif->ipif_v6subnet); 12733 } 12734 return (0); 12735 } 12736 /* 12737 * Make sure we have valid net and subnet broadcast ire's 12738 * for the old netmask, if needed by other logical interfaces. 12739 */ 12740 if (!ipif->ipif_isv6) 12741 ipif_check_bcast_ires(ipif); 12742 12743 err = ipif_logical_down(ipif, q, mp); 12744 if (err == EINPROGRESS) 12745 return (err); 12746 ipif_down_tail(ipif); 12747 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12748 return (err); 12749 } 12750 12751 static int 12752 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12753 { 12754 in6_addr_t v6mask; 12755 int err = 0; 12756 12757 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12758 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12759 12760 if (ipif->ipif_isv6) { 12761 sin6_t *sin6; 12762 12763 sin6 = (sin6_t *)sin; 12764 v6mask = sin6->sin6_addr; 12765 } else { 12766 ipaddr_t mask; 12767 12768 mask = sin->sin_addr.s_addr; 12769 V4MASK_TO_V6(mask, v6mask); 12770 } 12771 12772 ipif->ipif_v6net_mask = v6mask; 12773 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12774 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12775 ipif->ipif_v6subnet); 12776 } 12777 err = ipif_up(ipif, q, mp); 12778 12779 if (err == 0 || err == EINPROGRESS) { 12780 /* 12781 * The interface must be DL_BOUND if this packet has to 12782 * go out on the wire. Since we only go through a logical 12783 * down and are bound with the driver during an internal 12784 * down/up that is satisfied. 12785 */ 12786 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12787 /* Potentially broadcast an address mask reply. */ 12788 ipif_mask_reply(ipif); 12789 } 12790 } 12791 return (err); 12792 } 12793 12794 /* ARGSUSED */ 12795 int 12796 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12797 ip_ioctl_cmd_t *ipip, void *if_req) 12798 { 12799 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12800 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12801 ipif_down_tail(ipif); 12802 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12803 } 12804 12805 /* Get interface net mask. */ 12806 /* ARGSUSED */ 12807 int 12808 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12809 ip_ioctl_cmd_t *ipip, void *if_req) 12810 { 12811 struct lifreq *lifr = (struct lifreq *)if_req; 12812 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12813 12814 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12815 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12816 12817 /* 12818 * net mask can't change since we have a reference to the ipif. 12819 */ 12820 if (ipif->ipif_isv6) { 12821 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12822 *sin6 = sin6_null; 12823 sin6->sin6_family = AF_INET6; 12824 sin6->sin6_addr = ipif->ipif_v6net_mask; 12825 lifr->lifr_addrlen = 12826 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12827 } else { 12828 *sin = sin_null; 12829 sin->sin_family = AF_INET; 12830 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12831 if (ipip->ipi_cmd_type == LIF_CMD) { 12832 lifr->lifr_addrlen = 12833 ip_mask_to_plen(ipif->ipif_net_mask); 12834 } 12835 } 12836 return (0); 12837 } 12838 12839 /* ARGSUSED */ 12840 int 12841 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12842 ip_ioctl_cmd_t *ipip, void *if_req) 12843 { 12844 12845 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12846 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12847 /* 12848 * Set interface metric. We don't use this for 12849 * anything but we keep track of it in case it is 12850 * important to routing applications or such. 12851 */ 12852 if (ipip->ipi_cmd_type == IF_CMD) { 12853 struct ifreq *ifr; 12854 12855 ifr = (struct ifreq *)if_req; 12856 ipif->ipif_metric = ifr->ifr_metric; 12857 } else { 12858 struct lifreq *lifr; 12859 12860 lifr = (struct lifreq *)if_req; 12861 ipif->ipif_metric = lifr->lifr_metric; 12862 } 12863 return (0); 12864 } 12865 12866 12867 /* ARGSUSED */ 12868 int 12869 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12870 ip_ioctl_cmd_t *ipip, void *if_req) 12871 { 12872 12873 /* Get interface metric. */ 12874 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12875 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12876 if (ipip->ipi_cmd_type == IF_CMD) { 12877 struct ifreq *ifr; 12878 12879 ifr = (struct ifreq *)if_req; 12880 ifr->ifr_metric = ipif->ipif_metric; 12881 } else { 12882 struct lifreq *lifr; 12883 12884 lifr = (struct lifreq *)if_req; 12885 lifr->lifr_metric = ipif->ipif_metric; 12886 } 12887 12888 return (0); 12889 } 12890 12891 /* ARGSUSED */ 12892 int 12893 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12894 ip_ioctl_cmd_t *ipip, void *if_req) 12895 { 12896 12897 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12898 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12899 /* 12900 * Set the muxid returned from I_PLINK. 12901 */ 12902 if (ipip->ipi_cmd_type == IF_CMD) { 12903 struct ifreq *ifr = (struct ifreq *)if_req; 12904 12905 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12906 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12907 } else { 12908 struct lifreq *lifr = (struct lifreq *)if_req; 12909 12910 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12911 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12912 } 12913 return (0); 12914 } 12915 12916 /* ARGSUSED */ 12917 int 12918 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12919 ip_ioctl_cmd_t *ipip, void *if_req) 12920 { 12921 12922 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12923 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12924 /* 12925 * Get the muxid saved in ill for I_PUNLINK. 12926 */ 12927 if (ipip->ipi_cmd_type == IF_CMD) { 12928 struct ifreq *ifr = (struct ifreq *)if_req; 12929 12930 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12931 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12932 } else { 12933 struct lifreq *lifr = (struct lifreq *)if_req; 12934 12935 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12936 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12937 } 12938 return (0); 12939 } 12940 12941 /* 12942 * Set the subnet prefix. Does not modify the broadcast address. 12943 */ 12944 /* ARGSUSED */ 12945 int 12946 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12947 ip_ioctl_cmd_t *ipip, void *if_req) 12948 { 12949 int err = 0; 12950 in6_addr_t v6addr; 12951 in6_addr_t v6mask; 12952 boolean_t need_up = B_FALSE; 12953 int addrlen; 12954 12955 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12956 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12957 12958 ASSERT(IAM_WRITER_IPIF(ipif)); 12959 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12960 12961 if (ipif->ipif_isv6) { 12962 sin6_t *sin6; 12963 12964 if (sin->sin_family != AF_INET6) 12965 return (EAFNOSUPPORT); 12966 12967 sin6 = (sin6_t *)sin; 12968 v6addr = sin6->sin6_addr; 12969 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12970 return (EADDRNOTAVAIL); 12971 } else { 12972 ipaddr_t addr; 12973 12974 if (sin->sin_family != AF_INET) 12975 return (EAFNOSUPPORT); 12976 12977 addr = sin->sin_addr.s_addr; 12978 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12979 return (EADDRNOTAVAIL); 12980 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12981 /* Add 96 bits */ 12982 addrlen += IPV6_ABITS - IP_ABITS; 12983 } 12984 12985 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12986 return (EINVAL); 12987 12988 /* Check if bits in the address is set past the mask */ 12989 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12990 return (EINVAL); 12991 12992 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12993 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12994 return (0); /* No change */ 12995 12996 if (ipif->ipif_flags & IPIF_UP) { 12997 /* 12998 * If the interface is already marked up, 12999 * we call ipif_down which will take care 13000 * of ditching any IREs that have been set 13001 * up based on the old interface address. 13002 */ 13003 err = ipif_logical_down(ipif, q, mp); 13004 if (err == EINPROGRESS) 13005 return (err); 13006 ipif_down_tail(ipif); 13007 need_up = B_TRUE; 13008 } 13009 13010 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 13011 return (err); 13012 } 13013 13014 static int 13015 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 13016 queue_t *q, mblk_t *mp, boolean_t need_up) 13017 { 13018 ill_t *ill = ipif->ipif_ill; 13019 int err = 0; 13020 13021 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 13022 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13023 13024 /* Set the new address. */ 13025 mutex_enter(&ill->ill_lock); 13026 ipif->ipif_v6net_mask = v6mask; 13027 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 13028 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 13029 ipif->ipif_v6subnet); 13030 } 13031 mutex_exit(&ill->ill_lock); 13032 13033 if (need_up) { 13034 /* 13035 * Now bring the interface back up. If this 13036 * is the only IPIF for the ILL, ipif_up 13037 * will have to re-bind to the device, so 13038 * we may get back EINPROGRESS, in which 13039 * case, this IOCTL will get completed in 13040 * ip_rput_dlpi when we see the DL_BIND_ACK. 13041 */ 13042 err = ipif_up(ipif, q, mp); 13043 if (err == EINPROGRESS) 13044 return (err); 13045 } 13046 return (err); 13047 } 13048 13049 /* ARGSUSED */ 13050 int 13051 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13052 ip_ioctl_cmd_t *ipip, void *if_req) 13053 { 13054 int addrlen; 13055 in6_addr_t v6addr; 13056 in6_addr_t v6mask; 13057 struct lifreq *lifr = (struct lifreq *)if_req; 13058 13059 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 13060 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13061 ipif_down_tail(ipif); 13062 13063 addrlen = lifr->lifr_addrlen; 13064 if (ipif->ipif_isv6) { 13065 sin6_t *sin6; 13066 13067 sin6 = (sin6_t *)sin; 13068 v6addr = sin6->sin6_addr; 13069 } else { 13070 ipaddr_t addr; 13071 13072 addr = sin->sin_addr.s_addr; 13073 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13074 addrlen += IPV6_ABITS - IP_ABITS; 13075 } 13076 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13077 13078 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13079 } 13080 13081 /* ARGSUSED */ 13082 int 13083 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13084 ip_ioctl_cmd_t *ipip, void *if_req) 13085 { 13086 struct lifreq *lifr = (struct lifreq *)if_req; 13087 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13088 13089 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13090 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13091 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13092 13093 if (ipif->ipif_isv6) { 13094 *sin6 = sin6_null; 13095 sin6->sin6_family = AF_INET6; 13096 sin6->sin6_addr = ipif->ipif_v6subnet; 13097 lifr->lifr_addrlen = 13098 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13099 } else { 13100 *sin = sin_null; 13101 sin->sin_family = AF_INET; 13102 sin->sin_addr.s_addr = ipif->ipif_subnet; 13103 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13104 } 13105 return (0); 13106 } 13107 13108 /* 13109 * Set the IPv6 address token. 13110 */ 13111 /* ARGSUSED */ 13112 int 13113 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13114 ip_ioctl_cmd_t *ipi, void *if_req) 13115 { 13116 ill_t *ill = ipif->ipif_ill; 13117 int err; 13118 in6_addr_t v6addr; 13119 in6_addr_t v6mask; 13120 boolean_t need_up = B_FALSE; 13121 int i; 13122 sin6_t *sin6 = (sin6_t *)sin; 13123 struct lifreq *lifr = (struct lifreq *)if_req; 13124 int addrlen; 13125 13126 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13128 ASSERT(IAM_WRITER_IPIF(ipif)); 13129 13130 addrlen = lifr->lifr_addrlen; 13131 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13132 if (ipif->ipif_id != 0) 13133 return (EINVAL); 13134 13135 if (!ipif->ipif_isv6) 13136 return (EINVAL); 13137 13138 if (addrlen > IPV6_ABITS) 13139 return (EINVAL); 13140 13141 v6addr = sin6->sin6_addr; 13142 13143 /* 13144 * The length of the token is the length from the end. To get 13145 * the proper mask for this, compute the mask of the bits not 13146 * in the token; ie. the prefix, and then xor to get the mask. 13147 */ 13148 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13149 return (EINVAL); 13150 for (i = 0; i < 4; i++) { 13151 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13152 } 13153 13154 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13155 ill->ill_token_length == addrlen) 13156 return (0); /* No change */ 13157 13158 if (ipif->ipif_flags & IPIF_UP) { 13159 err = ipif_logical_down(ipif, q, mp); 13160 if (err == EINPROGRESS) 13161 return (err); 13162 ipif_down_tail(ipif); 13163 need_up = B_TRUE; 13164 } 13165 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13166 return (err); 13167 } 13168 13169 static int 13170 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13171 mblk_t *mp, boolean_t need_up) 13172 { 13173 in6_addr_t v6addr; 13174 in6_addr_t v6mask; 13175 ill_t *ill = ipif->ipif_ill; 13176 int i; 13177 int err = 0; 13178 13179 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13180 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13181 v6addr = sin6->sin6_addr; 13182 /* 13183 * The length of the token is the length from the end. To get 13184 * the proper mask for this, compute the mask of the bits not 13185 * in the token; ie. the prefix, and then xor to get the mask. 13186 */ 13187 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13188 for (i = 0; i < 4; i++) 13189 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13190 13191 mutex_enter(&ill->ill_lock); 13192 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13193 ill->ill_token_length = addrlen; 13194 mutex_exit(&ill->ill_lock); 13195 13196 if (need_up) { 13197 /* 13198 * Now bring the interface back up. If this 13199 * is the only IPIF for the ILL, ipif_up 13200 * will have to re-bind to the device, so 13201 * we may get back EINPROGRESS, in which 13202 * case, this IOCTL will get completed in 13203 * ip_rput_dlpi when we see the DL_BIND_ACK. 13204 */ 13205 err = ipif_up(ipif, q, mp); 13206 if (err == EINPROGRESS) 13207 return (err); 13208 } 13209 return (err); 13210 } 13211 13212 /* ARGSUSED */ 13213 int 13214 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13215 ip_ioctl_cmd_t *ipi, void *if_req) 13216 { 13217 ill_t *ill; 13218 sin6_t *sin6 = (sin6_t *)sin; 13219 struct lifreq *lifr = (struct lifreq *)if_req; 13220 13221 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13222 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13223 if (ipif->ipif_id != 0) 13224 return (EINVAL); 13225 13226 ill = ipif->ipif_ill; 13227 if (!ill->ill_isv6) 13228 return (ENXIO); 13229 13230 *sin6 = sin6_null; 13231 sin6->sin6_family = AF_INET6; 13232 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13233 sin6->sin6_addr = ill->ill_token; 13234 lifr->lifr_addrlen = ill->ill_token_length; 13235 return (0); 13236 } 13237 13238 /* 13239 * Set (hardware) link specific information that might override 13240 * what was acquired through the DL_INFO_ACK. 13241 * The logic is as follows. 13242 * 13243 * become exclusive 13244 * set CHANGING flag 13245 * change mtu on affected IREs 13246 * clear CHANGING flag 13247 * 13248 * An ire add that occurs before the CHANGING flag is set will have its mtu 13249 * changed by the ip_sioctl_lnkinfo. 13250 * 13251 * During the time the CHANGING flag is set, no new ires will be added to the 13252 * bucket, and ire add will fail (due the CHANGING flag). 13253 * 13254 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13255 * before it is added to the bucket. 13256 * 13257 * Obviously only 1 thread can set the CHANGING flag and we need to become 13258 * exclusive to set the flag. 13259 */ 13260 /* ARGSUSED */ 13261 int 13262 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13263 ip_ioctl_cmd_t *ipi, void *if_req) 13264 { 13265 ill_t *ill = ipif->ipif_ill; 13266 ipif_t *nipif; 13267 int ip_min_mtu; 13268 boolean_t mtu_walk = B_FALSE; 13269 struct lifreq *lifr = (struct lifreq *)if_req; 13270 lif_ifinfo_req_t *lir; 13271 ire_t *ire; 13272 13273 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13274 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13275 lir = &lifr->lifr_ifinfo; 13276 ASSERT(IAM_WRITER_IPIF(ipif)); 13277 13278 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13279 if (ipif->ipif_id != 0) 13280 return (EINVAL); 13281 13282 /* Set interface MTU. */ 13283 if (ipif->ipif_isv6) 13284 ip_min_mtu = IPV6_MIN_MTU; 13285 else 13286 ip_min_mtu = IP_MIN_MTU; 13287 13288 /* 13289 * Verify values before we set anything. Allow zero to 13290 * mean unspecified. 13291 */ 13292 if (lir->lir_maxmtu != 0 && 13293 (lir->lir_maxmtu > ill->ill_max_frag || 13294 lir->lir_maxmtu < ip_min_mtu)) 13295 return (EINVAL); 13296 if (lir->lir_reachtime != 0 && 13297 lir->lir_reachtime > ND_MAX_REACHTIME) 13298 return (EINVAL); 13299 if (lir->lir_reachretrans != 0 && 13300 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13301 return (EINVAL); 13302 13303 mutex_enter(&ill->ill_lock); 13304 ill->ill_state_flags |= ILL_CHANGING; 13305 for (nipif = ill->ill_ipif; nipif != NULL; 13306 nipif = nipif->ipif_next) { 13307 nipif->ipif_state_flags |= IPIF_CHANGING; 13308 } 13309 13310 mutex_exit(&ill->ill_lock); 13311 13312 if (lir->lir_maxmtu != 0) { 13313 ill->ill_max_mtu = lir->lir_maxmtu; 13314 ill->ill_mtu_userspecified = 1; 13315 mtu_walk = B_TRUE; 13316 } 13317 13318 if (lir->lir_reachtime != 0) 13319 ill->ill_reachable_time = lir->lir_reachtime; 13320 13321 if (lir->lir_reachretrans != 0) 13322 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13323 13324 ill->ill_max_hops = lir->lir_maxhops; 13325 13326 ill->ill_max_buf = ND_MAX_Q; 13327 13328 if (mtu_walk) { 13329 /* 13330 * Set the MTU on all ipifs associated with this ill except 13331 * for those whose MTU was fixed via SIOCSLIFMTU. 13332 */ 13333 for (nipif = ill->ill_ipif; nipif != NULL; 13334 nipif = nipif->ipif_next) { 13335 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13336 continue; 13337 13338 nipif->ipif_mtu = ill->ill_max_mtu; 13339 13340 if (!(nipif->ipif_flags & IPIF_UP)) 13341 continue; 13342 13343 if (nipif->ipif_isv6) 13344 ire = ipif_to_ire_v6(nipif); 13345 else 13346 ire = ipif_to_ire(nipif); 13347 if (ire != NULL) { 13348 ire->ire_max_frag = ipif->ipif_mtu; 13349 ire_refrele(ire); 13350 } 13351 if (ill->ill_isv6) { 13352 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13353 ipif_mtu_change, (char *)nipif, 13354 ill); 13355 } else { 13356 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13357 ipif_mtu_change, (char *)nipif, 13358 ill); 13359 } 13360 } 13361 } 13362 13363 mutex_enter(&ill->ill_lock); 13364 for (nipif = ill->ill_ipif; nipif != NULL; 13365 nipif = nipif->ipif_next) { 13366 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13367 } 13368 ILL_UNMARK_CHANGING(ill); 13369 mutex_exit(&ill->ill_lock); 13370 13371 return (0); 13372 } 13373 13374 /* ARGSUSED */ 13375 int 13376 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13377 ip_ioctl_cmd_t *ipi, void *if_req) 13378 { 13379 struct lif_ifinfo_req *lir; 13380 ill_t *ill = ipif->ipif_ill; 13381 13382 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13383 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13384 if (ipif->ipif_id != 0) 13385 return (EINVAL); 13386 13387 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13388 lir->lir_maxhops = ill->ill_max_hops; 13389 lir->lir_reachtime = ill->ill_reachable_time; 13390 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13391 lir->lir_maxmtu = ill->ill_max_mtu; 13392 13393 return (0); 13394 } 13395 13396 /* 13397 * Return best guess as to the subnet mask for the specified address. 13398 * Based on the subnet masks for all the configured interfaces. 13399 * 13400 * We end up returning a zero mask in the case of default, multicast or 13401 * experimental. 13402 */ 13403 static ipaddr_t 13404 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13405 { 13406 ipaddr_t net_mask; 13407 ill_t *ill; 13408 ipif_t *ipif; 13409 ill_walk_context_t ctx; 13410 ipif_t *fallback_ipif = NULL; 13411 13412 net_mask = ip_net_mask(addr); 13413 if (net_mask == 0) { 13414 *ipifp = NULL; 13415 return (0); 13416 } 13417 13418 /* Let's check to see if this is maybe a local subnet route. */ 13419 /* this function only applies to IPv4 interfaces */ 13420 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13421 ill = ILL_START_WALK_V4(&ctx, ipst); 13422 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13423 mutex_enter(&ill->ill_lock); 13424 for (ipif = ill->ill_ipif; ipif != NULL; 13425 ipif = ipif->ipif_next) { 13426 if (!IPIF_CAN_LOOKUP(ipif)) 13427 continue; 13428 if (!(ipif->ipif_flags & IPIF_UP)) 13429 continue; 13430 if ((ipif->ipif_subnet & net_mask) == 13431 (addr & net_mask)) { 13432 /* 13433 * Don't trust pt-pt interfaces if there are 13434 * other interfaces. 13435 */ 13436 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13437 if (fallback_ipif == NULL) { 13438 ipif_refhold_locked(ipif); 13439 fallback_ipif = ipif; 13440 } 13441 continue; 13442 } 13443 13444 /* 13445 * Fine. Just assume the same net mask as the 13446 * directly attached subnet interface is using. 13447 */ 13448 ipif_refhold_locked(ipif); 13449 mutex_exit(&ill->ill_lock); 13450 rw_exit(&ipst->ips_ill_g_lock); 13451 if (fallback_ipif != NULL) 13452 ipif_refrele(fallback_ipif); 13453 *ipifp = ipif; 13454 return (ipif->ipif_net_mask); 13455 } 13456 } 13457 mutex_exit(&ill->ill_lock); 13458 } 13459 rw_exit(&ipst->ips_ill_g_lock); 13460 13461 *ipifp = fallback_ipif; 13462 return ((fallback_ipif != NULL) ? 13463 fallback_ipif->ipif_net_mask : net_mask); 13464 } 13465 13466 /* 13467 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13468 */ 13469 static void 13470 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13471 { 13472 IOCP iocp; 13473 ipft_t *ipft; 13474 ipllc_t *ipllc; 13475 mblk_t *mp1; 13476 cred_t *cr; 13477 int error = 0; 13478 conn_t *connp; 13479 13480 ip1dbg(("ip_wput_ioctl")); 13481 iocp = (IOCP)mp->b_rptr; 13482 mp1 = mp->b_cont; 13483 if (mp1 == NULL) { 13484 iocp->ioc_error = EINVAL; 13485 mp->b_datap->db_type = M_IOCNAK; 13486 iocp->ioc_count = 0; 13487 qreply(q, mp); 13488 return; 13489 } 13490 13491 /* 13492 * These IOCTLs provide various control capabilities to 13493 * upstream agents such as ULPs and processes. There 13494 * are currently two such IOCTLs implemented. They 13495 * are used by TCP to provide update information for 13496 * existing IREs and to forcibly delete an IRE for a 13497 * host that is not responding, thereby forcing an 13498 * attempt at a new route. 13499 */ 13500 iocp->ioc_error = EINVAL; 13501 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13502 goto done; 13503 13504 ipllc = (ipllc_t *)mp1->b_rptr; 13505 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13506 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13507 break; 13508 } 13509 /* 13510 * prefer credential from mblk over ioctl; 13511 * see ip_sioctl_copyin_setup 13512 */ 13513 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13514 13515 /* 13516 * Refhold the conn in case the request gets queued up in some lookup 13517 */ 13518 ASSERT(CONN_Q(q)); 13519 connp = Q_TO_CONN(q); 13520 CONN_INC_REF(connp); 13521 if (ipft->ipft_pfi && 13522 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13523 pullupmsg(mp1, ipft->ipft_min_size))) { 13524 error = (*ipft->ipft_pfi)(q, 13525 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13526 } 13527 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13528 /* 13529 * CONN_OPER_PENDING_DONE happens in the function called 13530 * through ipft_pfi above. 13531 */ 13532 return; 13533 } 13534 13535 CONN_OPER_PENDING_DONE(connp); 13536 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13537 freemsg(mp); 13538 return; 13539 } 13540 iocp->ioc_error = error; 13541 13542 done: 13543 mp->b_datap->db_type = M_IOCACK; 13544 if (iocp->ioc_error) 13545 iocp->ioc_count = 0; 13546 qreply(q, mp); 13547 } 13548 13549 /* 13550 * Lookup an ipif using the sequence id (ipif_seqid) 13551 */ 13552 ipif_t * 13553 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13554 { 13555 ipif_t *ipif; 13556 13557 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13558 13559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13560 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13561 return (ipif); 13562 } 13563 return (NULL); 13564 } 13565 13566 /* 13567 * Assign a unique id for the ipif. This is used later when we send 13568 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13569 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13570 * IRE is added, we verify that ipif has not disappeared. 13571 */ 13572 13573 static void 13574 ipif_assign_seqid(ipif_t *ipif) 13575 { 13576 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13577 13578 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13579 } 13580 13581 /* 13582 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13583 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13584 * be inserted into the first space available in the list. The value of 13585 * ipif_id will then be set to the appropriate value for its position. 13586 */ 13587 static int 13588 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13589 { 13590 ill_t *ill; 13591 ipif_t *tipif; 13592 ipif_t **tipifp; 13593 int id; 13594 ip_stack_t *ipst; 13595 13596 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13597 IAM_WRITER_IPIF(ipif)); 13598 13599 ill = ipif->ipif_ill; 13600 ASSERT(ill != NULL); 13601 ipst = ill->ill_ipst; 13602 13603 /* 13604 * In the case of lo0:0 we already hold the ill_g_lock. 13605 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13606 * ipif_insert. Another such caller is ipif_move. 13607 */ 13608 if (acquire_g_lock) 13609 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13610 if (acquire_ill_lock) 13611 mutex_enter(&ill->ill_lock); 13612 id = ipif->ipif_id; 13613 tipifp = &(ill->ill_ipif); 13614 if (id == -1) { /* need to find a real id */ 13615 id = 0; 13616 while ((tipif = *tipifp) != NULL) { 13617 ASSERT(tipif->ipif_id >= id); 13618 if (tipif->ipif_id != id) 13619 break; /* non-consecutive id */ 13620 id++; 13621 tipifp = &(tipif->ipif_next); 13622 } 13623 /* limit number of logical interfaces */ 13624 if (id >= ipst->ips_ip_addrs_per_if) { 13625 if (acquire_ill_lock) 13626 mutex_exit(&ill->ill_lock); 13627 if (acquire_g_lock) 13628 rw_exit(&ipst->ips_ill_g_lock); 13629 return (-1); 13630 } 13631 ipif->ipif_id = id; /* assign new id */ 13632 } else if (id < ipst->ips_ip_addrs_per_if) { 13633 /* we have a real id; insert ipif in the right place */ 13634 while ((tipif = *tipifp) != NULL) { 13635 ASSERT(tipif->ipif_id != id); 13636 if (tipif->ipif_id > id) 13637 break; /* found correct location */ 13638 tipifp = &(tipif->ipif_next); 13639 } 13640 } else { 13641 if (acquire_ill_lock) 13642 mutex_exit(&ill->ill_lock); 13643 if (acquire_g_lock) 13644 rw_exit(&ipst->ips_ill_g_lock); 13645 return (-1); 13646 } 13647 13648 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13649 13650 ipif->ipif_next = tipif; 13651 *tipifp = ipif; 13652 if (acquire_ill_lock) 13653 mutex_exit(&ill->ill_lock); 13654 if (acquire_g_lock) 13655 rw_exit(&ipst->ips_ill_g_lock); 13656 return (0); 13657 } 13658 13659 static void 13660 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13661 { 13662 ipif_t **ipifp; 13663 ill_t *ill = ipif->ipif_ill; 13664 13665 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13666 if (acquire_ill_lock) 13667 mutex_enter(&ill->ill_lock); 13668 else 13669 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13670 13671 ipifp = &ill->ill_ipif; 13672 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13673 if (*ipifp == ipif) { 13674 *ipifp = ipif->ipif_next; 13675 break; 13676 } 13677 } 13678 13679 if (acquire_ill_lock) 13680 mutex_exit(&ill->ill_lock); 13681 } 13682 13683 /* 13684 * Allocate and initialize a new interface control structure. (Always 13685 * called as writer.) 13686 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13687 * is not part of the global linked list of ills. ipif_seqid is unique 13688 * in the system and to preserve the uniqueness, it is assigned only 13689 * when ill becomes part of the global list. At that point ill will 13690 * have a name. If it doesn't get assigned here, it will get assigned 13691 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13692 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13693 * the interface flags or any other information from the DL_INFO_ACK for 13694 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13695 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13696 * second DL_INFO_ACK comes in from the driver. 13697 */ 13698 static ipif_t * 13699 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13700 { 13701 ipif_t *ipif; 13702 phyint_t *phyi; 13703 13704 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13705 ill->ill_name, id, (void *)ill)); 13706 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13707 13708 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13709 return (NULL); 13710 *ipif = ipif_zero; /* start clean */ 13711 13712 ipif->ipif_ill = ill; 13713 ipif->ipif_id = id; /* could be -1 */ 13714 /* 13715 * Inherit the zoneid from the ill; for the shared stack instance 13716 * this is always the global zone 13717 */ 13718 ipif->ipif_zoneid = ill->ill_zoneid; 13719 13720 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13721 13722 ipif->ipif_refcnt = 0; 13723 ipif->ipif_saved_ire_cnt = 0; 13724 13725 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13726 mi_free(ipif); 13727 return (NULL); 13728 } 13729 /* -1 id should have been replaced by real id */ 13730 id = ipif->ipif_id; 13731 ASSERT(id >= 0); 13732 13733 if (ill->ill_name[0] != '\0') 13734 ipif_assign_seqid(ipif); 13735 13736 /* 13737 * Keep a copy of original id in ipif_orig_ipifid. Failback 13738 * will attempt to restore the original id. The SIOCSLIFOINDEX 13739 * ioctl sets ipif_orig_ipifid to zero. 13740 */ 13741 ipif->ipif_orig_ipifid = id; 13742 13743 /* 13744 * We grab the ill_lock and phyint_lock to protect the flag changes. 13745 * The ipif is still not up and can't be looked up until the 13746 * ioctl completes and the IPIF_CHANGING flag is cleared. 13747 */ 13748 mutex_enter(&ill->ill_lock); 13749 mutex_enter(&ill->ill_phyint->phyint_lock); 13750 /* 13751 * Set the running flag when logical interface zero is created. 13752 * For subsequent logical interfaces, a DLPI link down 13753 * notification message may have cleared the running flag to 13754 * indicate the link is down, so we shouldn't just blindly set it. 13755 */ 13756 if (id == 0) 13757 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13758 ipif->ipif_ire_type = ire_type; 13759 phyi = ill->ill_phyint; 13760 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13761 13762 if (ipif->ipif_isv6) { 13763 ill->ill_flags |= ILLF_IPV6; 13764 } else { 13765 ipaddr_t inaddr_any = INADDR_ANY; 13766 13767 ill->ill_flags |= ILLF_IPV4; 13768 13769 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13770 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13771 &ipif->ipif_v6lcl_addr); 13772 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13773 &ipif->ipif_v6src_addr); 13774 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13775 &ipif->ipif_v6subnet); 13776 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13777 &ipif->ipif_v6net_mask); 13778 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13779 &ipif->ipif_v6brd_addr); 13780 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13781 &ipif->ipif_v6pp_dst_addr); 13782 } 13783 13784 /* 13785 * Don't set the interface flags etc. now, will do it in 13786 * ip_ll_subnet_defaults. 13787 */ 13788 if (!initialize) { 13789 mutex_exit(&ill->ill_lock); 13790 mutex_exit(&ill->ill_phyint->phyint_lock); 13791 return (ipif); 13792 } 13793 ipif->ipif_mtu = ill->ill_max_mtu; 13794 13795 if (ill->ill_bcast_addr_length != 0) { 13796 /* 13797 * Later detect lack of DLPI driver multicast 13798 * capability by catching DL_ENABMULTI errors in 13799 * ip_rput_dlpi. 13800 */ 13801 ill->ill_flags |= ILLF_MULTICAST; 13802 if (!ipif->ipif_isv6) 13803 ipif->ipif_flags |= IPIF_BROADCAST; 13804 } else { 13805 if (ill->ill_net_type != IRE_LOOPBACK) { 13806 if (ipif->ipif_isv6) 13807 /* 13808 * Note: xresolv interfaces will eventually need 13809 * NOARP set here as well, but that will require 13810 * those external resolvers to have some 13811 * knowledge of that flag and act appropriately. 13812 * Not to be changed at present. 13813 */ 13814 ill->ill_flags |= ILLF_NONUD; 13815 else 13816 ill->ill_flags |= ILLF_NOARP; 13817 } 13818 if (ill->ill_phys_addr_length == 0) { 13819 if (ill->ill_media && 13820 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13821 ipif->ipif_flags |= IPIF_NOXMIT; 13822 phyi->phyint_flags |= PHYI_VIRTUAL; 13823 } else { 13824 /* pt-pt supports multicast. */ 13825 ill->ill_flags |= ILLF_MULTICAST; 13826 if (ill->ill_net_type == IRE_LOOPBACK) { 13827 phyi->phyint_flags |= 13828 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13829 } else { 13830 ipif->ipif_flags |= IPIF_POINTOPOINT; 13831 } 13832 } 13833 } 13834 } 13835 mutex_exit(&ill->ill_lock); 13836 mutex_exit(&ill->ill_phyint->phyint_lock); 13837 return (ipif); 13838 } 13839 13840 /* 13841 * If appropriate, send a message up to the resolver delete the entry 13842 * for the address of this interface which is going out of business. 13843 * (Always called as writer). 13844 * 13845 * NOTE : We need to check for NULL mps as some of the fields are 13846 * initialized only for some interface types. See ipif_resolver_up() 13847 * for details. 13848 */ 13849 void 13850 ipif_arp_down(ipif_t *ipif) 13851 { 13852 mblk_t *mp; 13853 ill_t *ill = ipif->ipif_ill; 13854 13855 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13856 ASSERT(IAM_WRITER_IPIF(ipif)); 13857 13858 /* Delete the mapping for the local address */ 13859 mp = ipif->ipif_arp_del_mp; 13860 if (mp != NULL) { 13861 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13862 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13863 putnext(ill->ill_rq, mp); 13864 ipif->ipif_arp_del_mp = NULL; 13865 } 13866 13867 /* 13868 * If this is the last ipif that is going down and there are no 13869 * duplicate addresses we may yet attempt to re-probe, then we need to 13870 * clean up ARP completely. 13871 */ 13872 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13873 13874 /* Send up AR_INTERFACE_DOWN message */ 13875 mp = ill->ill_arp_down_mp; 13876 if (mp != NULL) { 13877 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13878 *(unsigned *)mp->b_rptr, ill->ill_name, 13879 ipif->ipif_id)); 13880 putnext(ill->ill_rq, mp); 13881 ill->ill_arp_down_mp = NULL; 13882 } 13883 13884 /* Tell ARP to delete the multicast mappings */ 13885 mp = ill->ill_arp_del_mapping_mp; 13886 if (mp != NULL) { 13887 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13888 *(unsigned *)mp->b_rptr, ill->ill_name, 13889 ipif->ipif_id)); 13890 putnext(ill->ill_rq, mp); 13891 ill->ill_arp_del_mapping_mp = NULL; 13892 } 13893 } 13894 } 13895 13896 /* 13897 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13898 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13899 * that it wants the add_mp allocated in this function to be returned 13900 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13901 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13902 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13903 * as it does a ipif_arp_down after calling this function - which will 13904 * remove what we add here. 13905 * 13906 * Returns -1 on failures and 0 on success. 13907 */ 13908 int 13909 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13910 { 13911 mblk_t *del_mp = NULL; 13912 mblk_t *add_mp = NULL; 13913 mblk_t *mp; 13914 ill_t *ill = ipif->ipif_ill; 13915 phyint_t *phyi = ill->ill_phyint; 13916 ipaddr_t addr, mask, extract_mask = 0; 13917 arma_t *arma; 13918 uint8_t *maddr, *bphys_addr; 13919 uint32_t hw_start; 13920 dl_unitdata_req_t *dlur; 13921 13922 ASSERT(IAM_WRITER_IPIF(ipif)); 13923 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13924 return (0); 13925 13926 /* 13927 * Delete the existing mapping from ARP. Normally ipif_down 13928 * -> ipif_arp_down should send this up to ARP. The only 13929 * reason we would find this when we are switching from 13930 * Multicast to Broadcast where we did not do a down. 13931 */ 13932 mp = ill->ill_arp_del_mapping_mp; 13933 if (mp != NULL) { 13934 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13935 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13936 putnext(ill->ill_rq, mp); 13937 ill->ill_arp_del_mapping_mp = NULL; 13938 } 13939 13940 if (arp_add_mapping_mp != NULL) 13941 *arp_add_mapping_mp = NULL; 13942 13943 /* 13944 * Check that the address is not to long for the constant 13945 * length reserved in the template arma_t. 13946 */ 13947 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13948 return (-1); 13949 13950 /* Add mapping mblk */ 13951 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13952 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13953 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13954 (caddr_t)&addr); 13955 if (add_mp == NULL) 13956 return (-1); 13957 arma = (arma_t *)add_mp->b_rptr; 13958 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13959 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13960 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13961 13962 /* 13963 * Determine the broadcast address. 13964 */ 13965 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13966 if (ill->ill_sap_length < 0) 13967 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13968 else 13969 bphys_addr = (uchar_t *)dlur + 13970 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13971 /* 13972 * Check PHYI_MULTI_BCAST and length of physical 13973 * address to determine if we use the mapping or the 13974 * broadcast address. 13975 */ 13976 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13977 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13978 bphys_addr, maddr, &hw_start, &extract_mask)) 13979 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13980 13981 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13982 (ill->ill_flags & ILLF_MULTICAST)) { 13983 /* Make sure this will not match the "exact" entry. */ 13984 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13985 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13986 (caddr_t)&addr); 13987 if (del_mp == NULL) { 13988 freemsg(add_mp); 13989 return (-1); 13990 } 13991 bcopy(&extract_mask, (char *)arma + 13992 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13993 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13994 /* Use link-layer broadcast address for MULTI_BCAST */ 13995 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13996 ip2dbg(("ipif_arp_setup_multicast: adding" 13997 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13998 } else { 13999 arma->arma_hw_mapping_start = hw_start; 14000 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 14001 " ARP setup for %s\n", ill->ill_name)); 14002 } 14003 } else { 14004 freemsg(add_mp); 14005 ASSERT(del_mp == NULL); 14006 /* It is neither MULTICAST nor MULTI_BCAST */ 14007 return (0); 14008 } 14009 ASSERT(add_mp != NULL && del_mp != NULL); 14010 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14011 ill->ill_arp_del_mapping_mp = del_mp; 14012 if (arp_add_mapping_mp != NULL) { 14013 /* The caller just wants the mblks allocated */ 14014 *arp_add_mapping_mp = add_mp; 14015 } else { 14016 /* The caller wants us to send it to arp */ 14017 putnext(ill->ill_rq, add_mp); 14018 } 14019 return (0); 14020 } 14021 14022 /* 14023 * Get the resolver set up for a new interface address. 14024 * (Always called as writer.) 14025 * Called both for IPv4 and IPv6 interfaces, 14026 * though it only sets up the resolver for v6 14027 * if it's an xresolv interface (one using an external resolver). 14028 * Honors ILLF_NOARP. 14029 * The enumerated value res_act is used to tune the behavior. 14030 * If set to Res_act_initial, then we set up all the resolver 14031 * structures for a new interface. If set to Res_act_move, then 14032 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 14033 * interfaces; this is called by ip_rput_dlpi_writer() to handle 14034 * asynchronous hardware address change notification. If set to 14035 * Res_act_defend, then we tell ARP that it needs to send a single 14036 * gratuitous message in defense of the address. 14037 * Returns error on failure. 14038 */ 14039 int 14040 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 14041 { 14042 caddr_t addr; 14043 mblk_t *arp_up_mp = NULL; 14044 mblk_t *arp_down_mp = NULL; 14045 mblk_t *arp_add_mp = NULL; 14046 mblk_t *arp_del_mp = NULL; 14047 mblk_t *arp_add_mapping_mp = NULL; 14048 mblk_t *arp_del_mapping_mp = NULL; 14049 ill_t *ill = ipif->ipif_ill; 14050 uchar_t *area_p = NULL; 14051 uchar_t *ared_p = NULL; 14052 int err = ENOMEM; 14053 boolean_t was_dup; 14054 14055 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 14056 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 14057 ASSERT(IAM_WRITER_IPIF(ipif)); 14058 14059 was_dup = B_FALSE; 14060 if (res_act == Res_act_initial) { 14061 ipif->ipif_addr_ready = 0; 14062 /* 14063 * We're bringing an interface up here. There's no way that we 14064 * should need to shut down ARP now. 14065 */ 14066 mutex_enter(&ill->ill_lock); 14067 if (ipif->ipif_flags & IPIF_DUPLICATE) { 14068 ipif->ipif_flags &= ~IPIF_DUPLICATE; 14069 ill->ill_ipif_dup_count--; 14070 was_dup = B_TRUE; 14071 } 14072 mutex_exit(&ill->ill_lock); 14073 } 14074 if (ipif->ipif_recovery_id != 0) 14075 (void) untimeout(ipif->ipif_recovery_id); 14076 ipif->ipif_recovery_id = 0; 14077 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14078 ipif->ipif_addr_ready = 1; 14079 return (0); 14080 } 14081 /* NDP will set the ipif_addr_ready flag when it's ready */ 14082 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14083 return (0); 14084 14085 if (ill->ill_isv6) { 14086 /* 14087 * External resolver for IPv6 14088 */ 14089 ASSERT(res_act == Res_act_initial); 14090 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14091 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14092 area_p = (uchar_t *)&ip6_area_template; 14093 ared_p = (uchar_t *)&ip6_ared_template; 14094 } 14095 } else { 14096 /* 14097 * IPv4 arp case. If the ARP stream has already started 14098 * closing, fail this request for ARP bringup. Else 14099 * record the fact that an ARP bringup is pending. 14100 */ 14101 mutex_enter(&ill->ill_lock); 14102 if (ill->ill_arp_closing) { 14103 mutex_exit(&ill->ill_lock); 14104 err = EINVAL; 14105 goto failed; 14106 } else { 14107 if (ill->ill_ipif_up_count == 0 && 14108 ill->ill_ipif_dup_count == 0 && !was_dup) 14109 ill->ill_arp_bringup_pending = 1; 14110 mutex_exit(&ill->ill_lock); 14111 } 14112 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14113 addr = (caddr_t)&ipif->ipif_lcl_addr; 14114 area_p = (uchar_t *)&ip_area_template; 14115 ared_p = (uchar_t *)&ip_ared_template; 14116 } 14117 } 14118 14119 /* 14120 * Add an entry for the local address in ARP only if it 14121 * is not UNNUMBERED and the address is not INADDR_ANY. 14122 */ 14123 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14124 area_t *area; 14125 14126 /* Now ask ARP to publish our address. */ 14127 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14128 if (arp_add_mp == NULL) 14129 goto failed; 14130 area = (area_t *)arp_add_mp->b_rptr; 14131 if (res_act != Res_act_initial) { 14132 /* 14133 * Copy the new hardware address and length into 14134 * arp_add_mp to be sent to ARP. 14135 */ 14136 area->area_hw_addr_length = ill->ill_phys_addr_length; 14137 bcopy(ill->ill_phys_addr, 14138 ((char *)area + area->area_hw_addr_offset), 14139 area->area_hw_addr_length); 14140 } 14141 14142 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14143 ACE_F_MYADDR; 14144 14145 if (res_act == Res_act_defend) { 14146 area->area_flags |= ACE_F_DEFEND; 14147 /* 14148 * If we're just defending our address now, then 14149 * there's no need to set up ARP multicast mappings. 14150 * The publish command is enough. 14151 */ 14152 goto done; 14153 } 14154 14155 if (res_act != Res_act_initial) 14156 goto arp_setup_multicast; 14157 14158 /* 14159 * Allocate an ARP deletion message so we know we can tell ARP 14160 * when the interface goes down. 14161 */ 14162 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14163 if (arp_del_mp == NULL) 14164 goto failed; 14165 14166 } else { 14167 if (res_act != Res_act_initial) 14168 goto done; 14169 } 14170 /* 14171 * Need to bring up ARP or setup multicast mapping only 14172 * when the first interface is coming UP. 14173 */ 14174 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14175 was_dup) { 14176 goto done; 14177 } 14178 14179 /* 14180 * Allocate an ARP down message (to be saved) and an ARP up 14181 * message. 14182 */ 14183 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14184 if (arp_down_mp == NULL) 14185 goto failed; 14186 14187 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14188 if (arp_up_mp == NULL) 14189 goto failed; 14190 14191 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14192 goto done; 14193 14194 arp_setup_multicast: 14195 /* 14196 * Setup the multicast mappings. This function initializes 14197 * ill_arp_del_mapping_mp also. This does not need to be done for 14198 * IPv6. 14199 */ 14200 if (!ill->ill_isv6) { 14201 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14202 if (err != 0) 14203 goto failed; 14204 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14205 ASSERT(arp_add_mapping_mp != NULL); 14206 } 14207 14208 done: 14209 if (arp_del_mp != NULL) { 14210 ASSERT(ipif->ipif_arp_del_mp == NULL); 14211 ipif->ipif_arp_del_mp = arp_del_mp; 14212 } 14213 if (arp_down_mp != NULL) { 14214 ASSERT(ill->ill_arp_down_mp == NULL); 14215 ill->ill_arp_down_mp = arp_down_mp; 14216 } 14217 if (arp_del_mapping_mp != NULL) { 14218 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14219 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14220 } 14221 if (arp_up_mp != NULL) { 14222 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14223 ill->ill_name, ipif->ipif_id)); 14224 putnext(ill->ill_rq, arp_up_mp); 14225 } 14226 if (arp_add_mp != NULL) { 14227 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14228 ill->ill_name, ipif->ipif_id)); 14229 /* 14230 * If it's an extended ARP implementation, then we'll wait to 14231 * hear that DAD has finished before using the interface. 14232 */ 14233 if (!ill->ill_arp_extend) 14234 ipif->ipif_addr_ready = 1; 14235 putnext(ill->ill_rq, arp_add_mp); 14236 } else { 14237 ipif->ipif_addr_ready = 1; 14238 } 14239 if (arp_add_mapping_mp != NULL) { 14240 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14241 ill->ill_name, ipif->ipif_id)); 14242 putnext(ill->ill_rq, arp_add_mapping_mp); 14243 } 14244 if (res_act != Res_act_initial) 14245 return (0); 14246 14247 if (ill->ill_flags & ILLF_NOARP) 14248 err = ill_arp_off(ill); 14249 else 14250 err = ill_arp_on(ill); 14251 if (err != 0) { 14252 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14253 freemsg(ipif->ipif_arp_del_mp); 14254 freemsg(ill->ill_arp_down_mp); 14255 freemsg(ill->ill_arp_del_mapping_mp); 14256 ipif->ipif_arp_del_mp = NULL; 14257 ill->ill_arp_down_mp = NULL; 14258 ill->ill_arp_del_mapping_mp = NULL; 14259 return (err); 14260 } 14261 return ((ill->ill_ipif_up_count != 0 || was_dup || 14262 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14263 14264 failed: 14265 ip1dbg(("ipif_resolver_up: FAILED\n")); 14266 freemsg(arp_add_mp); 14267 freemsg(arp_del_mp); 14268 freemsg(arp_add_mapping_mp); 14269 freemsg(arp_up_mp); 14270 freemsg(arp_down_mp); 14271 ill->ill_arp_bringup_pending = 0; 14272 return (err); 14273 } 14274 14275 /* 14276 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14277 * just gone back up. 14278 */ 14279 static void 14280 ipif_arp_start_dad(ipif_t *ipif) 14281 { 14282 ill_t *ill = ipif->ipif_ill; 14283 mblk_t *arp_add_mp; 14284 area_t *area; 14285 14286 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14287 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14288 ipif->ipif_lcl_addr == INADDR_ANY || 14289 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14290 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14291 /* 14292 * If we can't contact ARP for some reason, that's not really a 14293 * problem. Just send out the routing socket notification that 14294 * DAD completion would have done, and continue. 14295 */ 14296 ipif_mask_reply(ipif); 14297 ip_rts_ifmsg(ipif); 14298 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14299 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14300 ipif->ipif_addr_ready = 1; 14301 return; 14302 } 14303 14304 /* Setting the 'unverified' flag restarts DAD */ 14305 area = (area_t *)arp_add_mp->b_rptr; 14306 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14307 ACE_F_UNVERIFIED; 14308 putnext(ill->ill_rq, arp_add_mp); 14309 } 14310 14311 static void 14312 ipif_ndp_start_dad(ipif_t *ipif) 14313 { 14314 nce_t *nce; 14315 14316 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14317 if (nce == NULL) 14318 return; 14319 14320 if (!ndp_restart_dad(nce)) { 14321 /* 14322 * If we can't restart DAD for some reason, that's not really a 14323 * problem. Just send out the routing socket notification that 14324 * DAD completion would have done, and continue. 14325 */ 14326 ip_rts_ifmsg(ipif); 14327 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14328 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14329 ipif->ipif_addr_ready = 1; 14330 } 14331 NCE_REFRELE(nce); 14332 } 14333 14334 /* 14335 * Restart duplicate address detection on all interfaces on the given ill. 14336 * 14337 * This is called when an interface transitions from down to up 14338 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14339 * 14340 * Note that since the underlying physical link has transitioned, we must cause 14341 * at least one routing socket message to be sent here, either via DAD 14342 * completion or just by default on the first ipif. (If we don't do this, then 14343 * in.mpathd will see long delays when doing link-based failure recovery.) 14344 */ 14345 void 14346 ill_restart_dad(ill_t *ill, boolean_t went_up) 14347 { 14348 ipif_t *ipif; 14349 14350 if (ill == NULL) 14351 return; 14352 14353 /* 14354 * If layer two doesn't support duplicate address detection, then just 14355 * send the routing socket message now and be done with it. 14356 */ 14357 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14358 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14359 ip_rts_ifmsg(ill->ill_ipif); 14360 return; 14361 } 14362 14363 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14364 if (went_up) { 14365 if (ipif->ipif_flags & IPIF_UP) { 14366 if (ill->ill_isv6) 14367 ipif_ndp_start_dad(ipif); 14368 else 14369 ipif_arp_start_dad(ipif); 14370 } else if (ill->ill_isv6 && 14371 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14372 /* 14373 * For IPv4, the ARP module itself will 14374 * automatically start the DAD process when it 14375 * sees DL_NOTE_LINK_UP. We respond to the 14376 * AR_CN_READY at the completion of that task. 14377 * For IPv6, we must kick off the bring-up 14378 * process now. 14379 */ 14380 ndp_do_recovery(ipif); 14381 } else { 14382 /* 14383 * Unfortunately, the first ipif is "special" 14384 * and represents the underlying ill in the 14385 * routing socket messages. Thus, when this 14386 * one ipif is down, we must still notify so 14387 * that the user knows the IFF_RUNNING status 14388 * change. (If the first ipif is up, then 14389 * we'll handle eventual routing socket 14390 * notification via DAD completion.) 14391 */ 14392 if (ipif == ill->ill_ipif) 14393 ip_rts_ifmsg(ill->ill_ipif); 14394 } 14395 } else { 14396 /* 14397 * After link down, we'll need to send a new routing 14398 * message when the link comes back, so clear 14399 * ipif_addr_ready. 14400 */ 14401 ipif->ipif_addr_ready = 0; 14402 } 14403 } 14404 14405 /* 14406 * If we've torn down links, then notify the user right away. 14407 */ 14408 if (!went_up) 14409 ip_rts_ifmsg(ill->ill_ipif); 14410 } 14411 14412 /* 14413 * Wakeup all threads waiting to enter the ipsq, and sleeping 14414 * on any of the ills in this ipsq. The ill_lock of the ill 14415 * must be held so that waiters don't miss wakeups 14416 */ 14417 static void 14418 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14419 { 14420 phyint_t *phyint; 14421 14422 phyint = ipsq->ipsq_phyint_list; 14423 while (phyint != NULL) { 14424 if (phyint->phyint_illv4) { 14425 if (!caller_holds_lock) 14426 mutex_enter(&phyint->phyint_illv4->ill_lock); 14427 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14428 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14429 if (!caller_holds_lock) 14430 mutex_exit(&phyint->phyint_illv4->ill_lock); 14431 } 14432 if (phyint->phyint_illv6) { 14433 if (!caller_holds_lock) 14434 mutex_enter(&phyint->phyint_illv6->ill_lock); 14435 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14436 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14437 if (!caller_holds_lock) 14438 mutex_exit(&phyint->phyint_illv6->ill_lock); 14439 } 14440 phyint = phyint->phyint_ipsq_next; 14441 } 14442 } 14443 14444 static ipsq_t * 14445 ipsq_create(char *groupname, ip_stack_t *ipst) 14446 { 14447 ipsq_t *ipsq; 14448 14449 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14450 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14451 if (ipsq == NULL) { 14452 return (NULL); 14453 } 14454 14455 if (groupname != NULL) 14456 (void) strcpy(ipsq->ipsq_name, groupname); 14457 else 14458 ipsq->ipsq_name[0] = '\0'; 14459 14460 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14461 ipsq->ipsq_flags |= IPSQ_GROUP; 14462 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14463 ipst->ips_ipsq_g_head = ipsq; 14464 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14465 return (ipsq); 14466 } 14467 14468 /* 14469 * Return an ipsq correspoding to the groupname. If 'create' is true 14470 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14471 * uniquely with an IPMP group. However during IPMP groupname operations, 14472 * multiple IPMP groups may be associated with a single ipsq. But no 14473 * IPMP group can be associated with more than 1 ipsq at any time. 14474 * For example 14475 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14476 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14477 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14478 * 14479 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14480 * status shown below during the execution of the above command. 14481 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14482 * 14483 * After the completion of the above groupname command we return to the stable 14484 * state shown below. 14485 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14486 * hme4 mpk17-85 ipsq2 mpk17-85 1 14487 * 14488 * Because of the above, we don't search based on the ipsq_name since that 14489 * would miss the correct ipsq during certain windows as shown above. 14490 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14491 * natural state. 14492 */ 14493 static ipsq_t * 14494 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14495 ip_stack_t *ipst) 14496 { 14497 ipsq_t *ipsq; 14498 int group_len; 14499 phyint_t *phyint; 14500 14501 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14502 14503 group_len = strlen(groupname); 14504 ASSERT(group_len != 0); 14505 group_len++; 14506 14507 for (ipsq = ipst->ips_ipsq_g_head; 14508 ipsq != NULL; 14509 ipsq = ipsq->ipsq_next) { 14510 /* 14511 * When an ipsq is being split, and ill_split_ipsq 14512 * calls this function, we exclude it from being considered. 14513 */ 14514 if (ipsq == exclude_ipsq) 14515 continue; 14516 14517 /* 14518 * Compare against the ipsq_name. The groupname change happens 14519 * in 2 phases. The 1st phase merges the from group into 14520 * the to group's ipsq, by calling ill_merge_groups and restarts 14521 * the ioctl. The 2nd phase then locates the ipsq again thru 14522 * ipsq_name. At this point the phyint_groupname has not been 14523 * updated. 14524 */ 14525 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14526 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14527 /* 14528 * Verify that an ipmp groupname is exactly 14529 * part of 1 ipsq and is not found in any other 14530 * ipsq. 14531 */ 14532 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14533 NULL); 14534 return (ipsq); 14535 } 14536 14537 /* 14538 * Comparison against ipsq_name alone is not sufficient. 14539 * In the case when groups are currently being 14540 * merged, the ipsq could hold other IPMP groups temporarily. 14541 * so we walk the phyint list and compare against the 14542 * phyint_groupname as well. 14543 */ 14544 phyint = ipsq->ipsq_phyint_list; 14545 while (phyint != NULL) { 14546 if ((group_len == phyint->phyint_groupname_len) && 14547 (bcmp(phyint->phyint_groupname, groupname, 14548 group_len) == 0)) { 14549 /* 14550 * Verify that an ipmp groupname is exactly 14551 * part of 1 ipsq and is not found in any other 14552 * ipsq. 14553 */ 14554 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14555 ipst) == NULL); 14556 return (ipsq); 14557 } 14558 phyint = phyint->phyint_ipsq_next; 14559 } 14560 } 14561 if (create) 14562 ipsq = ipsq_create(groupname, ipst); 14563 return (ipsq); 14564 } 14565 14566 static void 14567 ipsq_delete(ipsq_t *ipsq) 14568 { 14569 ipsq_t *nipsq; 14570 ipsq_t *pipsq = NULL; 14571 ip_stack_t *ipst = ipsq->ipsq_ipst; 14572 14573 /* 14574 * We don't hold the ipsq lock, but we are sure no new 14575 * messages can land up, since the ipsq_refs is zero. 14576 * i.e. this ipsq is unnamed and no phyint or phyint group 14577 * is associated with this ipsq. (Lookups are based on ill_name 14578 * or phyint_groupname) 14579 */ 14580 ASSERT(ipsq->ipsq_refs == 0); 14581 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14582 ASSERT(ipsq->ipsq_pending_mp == NULL); 14583 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14584 /* 14585 * This is not the ipsq of an IPMP group. 14586 */ 14587 ipsq->ipsq_ipst = NULL; 14588 kmem_free(ipsq, sizeof (ipsq_t)); 14589 return; 14590 } 14591 14592 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14593 14594 /* 14595 * Locate the ipsq before we can remove it from 14596 * the singly linked list of ipsq's. 14597 */ 14598 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14599 nipsq = nipsq->ipsq_next) { 14600 if (nipsq == ipsq) { 14601 break; 14602 } 14603 pipsq = nipsq; 14604 } 14605 14606 ASSERT(nipsq == ipsq); 14607 14608 /* unlink ipsq from the list */ 14609 if (pipsq != NULL) 14610 pipsq->ipsq_next = ipsq->ipsq_next; 14611 else 14612 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14613 ipsq->ipsq_ipst = NULL; 14614 kmem_free(ipsq, sizeof (ipsq_t)); 14615 rw_exit(&ipst->ips_ill_g_lock); 14616 } 14617 14618 static void 14619 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14620 queue_t *q) 14621 { 14622 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14623 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14624 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14625 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14626 ASSERT(current_mp != NULL); 14627 14628 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14629 NEW_OP, NULL); 14630 14631 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14632 new_ipsq->ipsq_xopq_mphead != NULL); 14633 14634 /* 14635 * move from old ipsq to the new ipsq. 14636 */ 14637 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14638 if (old_ipsq->ipsq_xopq_mphead != NULL) 14639 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14640 14641 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14642 } 14643 14644 void 14645 ill_group_cleanup(ill_t *ill) 14646 { 14647 ill_t *ill_v4; 14648 ill_t *ill_v6; 14649 ipif_t *ipif; 14650 14651 ill_v4 = ill->ill_phyint->phyint_illv4; 14652 ill_v6 = ill->ill_phyint->phyint_illv6; 14653 14654 if (ill_v4 != NULL) { 14655 mutex_enter(&ill_v4->ill_lock); 14656 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14657 ipif = ipif->ipif_next) { 14658 IPIF_UNMARK_MOVING(ipif); 14659 } 14660 ill_v4->ill_up_ipifs = B_FALSE; 14661 mutex_exit(&ill_v4->ill_lock); 14662 } 14663 14664 if (ill_v6 != NULL) { 14665 mutex_enter(&ill_v6->ill_lock); 14666 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14667 ipif = ipif->ipif_next) { 14668 IPIF_UNMARK_MOVING(ipif); 14669 } 14670 ill_v6->ill_up_ipifs = B_FALSE; 14671 mutex_exit(&ill_v6->ill_lock); 14672 } 14673 } 14674 /* 14675 * This function is called when an ill has had a change in its group status 14676 * to bring up all the ipifs that were up before the change. 14677 */ 14678 int 14679 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14680 { 14681 ipif_t *ipif; 14682 ill_t *ill_v4; 14683 ill_t *ill_v6; 14684 ill_t *from_ill; 14685 int err = 0; 14686 14687 14688 ASSERT(IAM_WRITER_ILL(ill)); 14689 14690 /* 14691 * Except for ipif_state_flags and ill_state_flags the other 14692 * fields of the ipif/ill that are modified below are protected 14693 * implicitly since we are a writer. We would have tried to down 14694 * even an ipif that was already down, in ill_down_ipifs. So we 14695 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14696 */ 14697 ill_v4 = ill->ill_phyint->phyint_illv4; 14698 ill_v6 = ill->ill_phyint->phyint_illv6; 14699 if (ill_v4 != NULL) { 14700 ill_v4->ill_up_ipifs = B_TRUE; 14701 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14702 ipif = ipif->ipif_next) { 14703 mutex_enter(&ill_v4->ill_lock); 14704 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14705 IPIF_UNMARK_MOVING(ipif); 14706 mutex_exit(&ill_v4->ill_lock); 14707 if (ipif->ipif_was_up) { 14708 if (!(ipif->ipif_flags & IPIF_UP)) 14709 err = ipif_up(ipif, q, mp); 14710 ipif->ipif_was_up = B_FALSE; 14711 if (err != 0) { 14712 /* 14713 * Can there be any other error ? 14714 */ 14715 ASSERT(err == EINPROGRESS); 14716 return (err); 14717 } 14718 } 14719 } 14720 mutex_enter(&ill_v4->ill_lock); 14721 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14722 mutex_exit(&ill_v4->ill_lock); 14723 ill_v4->ill_up_ipifs = B_FALSE; 14724 if (ill_v4->ill_move_in_progress) { 14725 ASSERT(ill_v4->ill_move_peer != NULL); 14726 ill_v4->ill_move_in_progress = B_FALSE; 14727 from_ill = ill_v4->ill_move_peer; 14728 from_ill->ill_move_in_progress = B_FALSE; 14729 from_ill->ill_move_peer = NULL; 14730 mutex_enter(&from_ill->ill_lock); 14731 from_ill->ill_state_flags &= ~ILL_CHANGING; 14732 mutex_exit(&from_ill->ill_lock); 14733 if (ill_v6 == NULL) { 14734 if (from_ill->ill_phyint->phyint_flags & 14735 PHYI_STANDBY) { 14736 phyint_inactive(from_ill->ill_phyint); 14737 } 14738 if (ill_v4->ill_phyint->phyint_flags & 14739 PHYI_STANDBY) { 14740 phyint_inactive(ill_v4->ill_phyint); 14741 } 14742 } 14743 ill_v4->ill_move_peer = NULL; 14744 } 14745 } 14746 14747 if (ill_v6 != NULL) { 14748 ill_v6->ill_up_ipifs = B_TRUE; 14749 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14750 ipif = ipif->ipif_next) { 14751 mutex_enter(&ill_v6->ill_lock); 14752 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14753 IPIF_UNMARK_MOVING(ipif); 14754 mutex_exit(&ill_v6->ill_lock); 14755 if (ipif->ipif_was_up) { 14756 if (!(ipif->ipif_flags & IPIF_UP)) 14757 err = ipif_up(ipif, q, mp); 14758 ipif->ipif_was_up = B_FALSE; 14759 if (err != 0) { 14760 /* 14761 * Can there be any other error ? 14762 */ 14763 ASSERT(err == EINPROGRESS); 14764 return (err); 14765 } 14766 } 14767 } 14768 mutex_enter(&ill_v6->ill_lock); 14769 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14770 mutex_exit(&ill_v6->ill_lock); 14771 ill_v6->ill_up_ipifs = B_FALSE; 14772 if (ill_v6->ill_move_in_progress) { 14773 ASSERT(ill_v6->ill_move_peer != NULL); 14774 ill_v6->ill_move_in_progress = B_FALSE; 14775 from_ill = ill_v6->ill_move_peer; 14776 from_ill->ill_move_in_progress = B_FALSE; 14777 from_ill->ill_move_peer = NULL; 14778 mutex_enter(&from_ill->ill_lock); 14779 from_ill->ill_state_flags &= ~ILL_CHANGING; 14780 mutex_exit(&from_ill->ill_lock); 14781 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14782 phyint_inactive(from_ill->ill_phyint); 14783 } 14784 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14785 phyint_inactive(ill_v6->ill_phyint); 14786 } 14787 ill_v6->ill_move_peer = NULL; 14788 } 14789 } 14790 return (0); 14791 } 14792 14793 /* 14794 * bring down all the approriate ipifs. 14795 */ 14796 /* ARGSUSED */ 14797 static void 14798 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14799 { 14800 ipif_t *ipif; 14801 14802 ASSERT(IAM_WRITER_ILL(ill)); 14803 14804 /* 14805 * Except for ipif_state_flags the other fields of the ipif/ill that 14806 * are modified below are protected implicitly since we are a writer 14807 */ 14808 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14809 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14810 continue; 14811 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14812 /* 14813 * We go through the ipif_down logic even if the ipif 14814 * is already down, since routes can be added based 14815 * on down ipifs. Going through ipif_down once again 14816 * will delete any IREs created based on these routes. 14817 */ 14818 if (ipif->ipif_flags & IPIF_UP) 14819 ipif->ipif_was_up = B_TRUE; 14820 /* 14821 * If called with chk_nofailover true ipif is moving. 14822 */ 14823 mutex_enter(&ill->ill_lock); 14824 if (chk_nofailover) { 14825 ipif->ipif_state_flags |= 14826 IPIF_MOVING | IPIF_CHANGING; 14827 } else { 14828 ipif->ipif_state_flags |= IPIF_CHANGING; 14829 } 14830 mutex_exit(&ill->ill_lock); 14831 /* 14832 * Need to re-create net/subnet bcast ires if 14833 * they are dependent on ipif. 14834 */ 14835 if (!ipif->ipif_isv6) 14836 ipif_check_bcast_ires(ipif); 14837 (void) ipif_logical_down(ipif, NULL, NULL); 14838 ipif_non_duplicate(ipif); 14839 ipif_down_tail(ipif); 14840 /* 14841 * We don't do ipif_multicast_down for IPv4 in 14842 * ipif_down. We need to set this so that 14843 * ipif_multicast_up will join the 14844 * ALLHOSTS_GROUP on to_ill. 14845 */ 14846 ipif->ipif_multicast_up = B_FALSE; 14847 } 14848 } 14849 } 14850 14851 #define IPSQ_INC_REF(ipsq, ipst) { \ 14852 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14853 (ipsq)->ipsq_refs++; \ 14854 } 14855 14856 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14857 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14858 (ipsq)->ipsq_refs--; \ 14859 if ((ipsq)->ipsq_refs == 0) \ 14860 (ipsq)->ipsq_name[0] = '\0'; \ 14861 } 14862 14863 /* 14864 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14865 * new_ipsq. 14866 */ 14867 static void 14868 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14869 { 14870 phyint_t *phyint; 14871 phyint_t *next_phyint; 14872 14873 /* 14874 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14875 * writer and the ill_lock of the ill in question. Also the dest 14876 * ipsq can't vanish while we hold the ill_g_lock as writer. 14877 */ 14878 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14879 14880 phyint = cur_ipsq->ipsq_phyint_list; 14881 cur_ipsq->ipsq_phyint_list = NULL; 14882 while (phyint != NULL) { 14883 next_phyint = phyint->phyint_ipsq_next; 14884 IPSQ_DEC_REF(cur_ipsq, ipst); 14885 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14886 new_ipsq->ipsq_phyint_list = phyint; 14887 IPSQ_INC_REF(new_ipsq, ipst); 14888 phyint->phyint_ipsq = new_ipsq; 14889 phyint = next_phyint; 14890 } 14891 } 14892 14893 #define SPLIT_SUCCESS 0 14894 #define SPLIT_NOT_NEEDED 1 14895 #define SPLIT_FAILED 2 14896 14897 int 14898 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14899 ip_stack_t *ipst) 14900 { 14901 ipsq_t *newipsq = NULL; 14902 14903 /* 14904 * Assertions denote pre-requisites for changing the ipsq of 14905 * a phyint 14906 */ 14907 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14908 /* 14909 * <ill-phyint> assocs can't change while ill_g_lock 14910 * is held as writer. See ill_phyint_reinit() 14911 */ 14912 ASSERT(phyint->phyint_illv4 == NULL || 14913 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14914 ASSERT(phyint->phyint_illv6 == NULL || 14915 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14916 14917 if ((phyint->phyint_groupname_len != 14918 (strlen(cur_ipsq->ipsq_name) + 1) || 14919 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14920 phyint->phyint_groupname_len) != 0)) { 14921 /* 14922 * Once we fail in creating a new ipsq due to memory shortage, 14923 * don't attempt to create new ipsq again, based on another 14924 * phyint, since we want all phyints belonging to an IPMP group 14925 * to be in the same ipsq even in the event of mem alloc fails. 14926 */ 14927 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14928 cur_ipsq, ipst); 14929 if (newipsq == NULL) { 14930 /* Memory allocation failure */ 14931 return (SPLIT_FAILED); 14932 } else { 14933 /* ipsq_refs protected by ill_g_lock (writer) */ 14934 IPSQ_DEC_REF(cur_ipsq, ipst); 14935 phyint->phyint_ipsq = newipsq; 14936 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14937 newipsq->ipsq_phyint_list = phyint; 14938 IPSQ_INC_REF(newipsq, ipst); 14939 return (SPLIT_SUCCESS); 14940 } 14941 } 14942 return (SPLIT_NOT_NEEDED); 14943 } 14944 14945 /* 14946 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14947 * to do this split 14948 */ 14949 static int 14950 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14951 { 14952 ipsq_t *newipsq; 14953 14954 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14955 /* 14956 * <ill-phyint> assocs can't change while ill_g_lock 14957 * is held as writer. See ill_phyint_reinit() 14958 */ 14959 14960 ASSERT(phyint->phyint_illv4 == NULL || 14961 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14962 ASSERT(phyint->phyint_illv6 == NULL || 14963 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14964 14965 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14966 phyint->phyint_illv4: phyint->phyint_illv6)) { 14967 /* 14968 * ipsq_init failed due to no memory 14969 * caller will use the same ipsq 14970 */ 14971 return (SPLIT_FAILED); 14972 } 14973 14974 /* ipsq_ref is protected by ill_g_lock (writer) */ 14975 IPSQ_DEC_REF(cur_ipsq, ipst); 14976 14977 /* 14978 * This is a new ipsq that is unknown to the world. 14979 * So we don't need to hold ipsq_lock, 14980 */ 14981 newipsq = phyint->phyint_ipsq; 14982 newipsq->ipsq_writer = NULL; 14983 newipsq->ipsq_reentry_cnt--; 14984 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14985 #ifdef ILL_DEBUG 14986 newipsq->ipsq_depth = 0; 14987 #endif 14988 14989 return (SPLIT_SUCCESS); 14990 } 14991 14992 /* 14993 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14994 * ipsq's representing their individual groups or themselves. Return 14995 * whether split needs to be retried again later. 14996 */ 14997 static boolean_t 14998 ill_split_ipsq(ipsq_t *cur_ipsq) 14999 { 15000 phyint_t *phyint; 15001 phyint_t *next_phyint; 15002 int error; 15003 boolean_t need_retry = B_FALSE; 15004 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 15005 15006 phyint = cur_ipsq->ipsq_phyint_list; 15007 cur_ipsq->ipsq_phyint_list = NULL; 15008 while (phyint != NULL) { 15009 next_phyint = phyint->phyint_ipsq_next; 15010 /* 15011 * 'created' will tell us whether the callee actually 15012 * created an ipsq. Lack of memory may force the callee 15013 * to return without creating an ipsq. 15014 */ 15015 if (phyint->phyint_groupname == NULL) { 15016 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 15017 } else { 15018 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 15019 need_retry, ipst); 15020 } 15021 15022 switch (error) { 15023 case SPLIT_FAILED: 15024 need_retry = B_TRUE; 15025 /* FALLTHRU */ 15026 case SPLIT_NOT_NEEDED: 15027 /* 15028 * Keep it on the list. 15029 */ 15030 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 15031 cur_ipsq->ipsq_phyint_list = phyint; 15032 break; 15033 case SPLIT_SUCCESS: 15034 break; 15035 default: 15036 ASSERT(0); 15037 } 15038 15039 phyint = next_phyint; 15040 } 15041 return (need_retry); 15042 } 15043 15044 /* 15045 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 15046 * and return the ills in the list. This list will be 15047 * needed to unlock all the ills later on by the caller. 15048 * The <ill-ipsq> associations could change between the 15049 * lock and unlock. Hence the unlock can't traverse the 15050 * ipsq to get the list of ills. 15051 */ 15052 static int 15053 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 15054 { 15055 int cnt = 0; 15056 phyint_t *phyint; 15057 ip_stack_t *ipst = ipsq->ipsq_ipst; 15058 15059 /* 15060 * The caller holds ill_g_lock to ensure that the ill memberships 15061 * of the ipsq don't change 15062 */ 15063 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 15064 15065 phyint = ipsq->ipsq_phyint_list; 15066 while (phyint != NULL) { 15067 if (phyint->phyint_illv4 != NULL) { 15068 ASSERT(cnt < list_max); 15069 list[cnt++] = phyint->phyint_illv4; 15070 } 15071 if (phyint->phyint_illv6 != NULL) { 15072 ASSERT(cnt < list_max); 15073 list[cnt++] = phyint->phyint_illv6; 15074 } 15075 phyint = phyint->phyint_ipsq_next; 15076 } 15077 ill_lock_ills(list, cnt); 15078 return (cnt); 15079 } 15080 15081 void 15082 ill_lock_ills(ill_t **list, int cnt) 15083 { 15084 int i; 15085 15086 if (cnt > 1) { 15087 boolean_t try_again; 15088 do { 15089 try_again = B_FALSE; 15090 for (i = 0; i < cnt - 1; i++) { 15091 if (list[i] < list[i + 1]) { 15092 ill_t *tmp; 15093 15094 /* swap the elements */ 15095 tmp = list[i]; 15096 list[i] = list[i + 1]; 15097 list[i + 1] = tmp; 15098 try_again = B_TRUE; 15099 } 15100 } 15101 } while (try_again); 15102 } 15103 15104 for (i = 0; i < cnt; i++) { 15105 if (i == 0) { 15106 if (list[i] != NULL) 15107 mutex_enter(&list[i]->ill_lock); 15108 else 15109 return; 15110 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15111 mutex_enter(&list[i]->ill_lock); 15112 } 15113 } 15114 } 15115 15116 void 15117 ill_unlock_ills(ill_t **list, int cnt) 15118 { 15119 int i; 15120 15121 for (i = 0; i < cnt; i++) { 15122 if ((i == 0) && (list[i] != NULL)) { 15123 mutex_exit(&list[i]->ill_lock); 15124 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15125 mutex_exit(&list[i]->ill_lock); 15126 } 15127 } 15128 } 15129 15130 /* 15131 * Merge all the ills from 1 ipsq group into another ipsq group. 15132 * The source ipsq group is specified by the ipsq associated with 15133 * 'from_ill'. The destination ipsq group is specified by the ipsq 15134 * associated with 'to_ill' or 'groupname' respectively. 15135 * Note that ipsq itself does not have a reference count mechanism 15136 * and functions don't look up an ipsq and pass it around. Instead 15137 * functions pass around an ill or groupname, and the ipsq is looked 15138 * up from the ill or groupname and the required operation performed 15139 * atomically with the lookup on the ipsq. 15140 */ 15141 static int 15142 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15143 queue_t *q) 15144 { 15145 ipsq_t *old_ipsq; 15146 ipsq_t *new_ipsq; 15147 ill_t **ill_list; 15148 int cnt; 15149 size_t ill_list_size; 15150 boolean_t became_writer_on_new_sq = B_FALSE; 15151 ip_stack_t *ipst = from_ill->ill_ipst; 15152 15153 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15154 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15155 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15156 15157 /* 15158 * Need to hold ill_g_lock as writer and also the ill_lock to 15159 * change the <ill-ipsq> assoc of an ill. Need to hold the 15160 * ipsq_lock to prevent new messages from landing on an ipsq. 15161 */ 15162 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15163 15164 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15165 if (groupname != NULL) 15166 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15167 else { 15168 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15169 } 15170 15171 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15172 15173 /* 15174 * both groups are on the same ipsq. 15175 */ 15176 if (old_ipsq == new_ipsq) { 15177 rw_exit(&ipst->ips_ill_g_lock); 15178 return (0); 15179 } 15180 15181 cnt = old_ipsq->ipsq_refs << 1; 15182 ill_list_size = cnt * sizeof (ill_t *); 15183 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15184 if (ill_list == NULL) { 15185 rw_exit(&ipst->ips_ill_g_lock); 15186 return (ENOMEM); 15187 } 15188 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15189 15190 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15191 mutex_enter(&new_ipsq->ipsq_lock); 15192 if ((new_ipsq->ipsq_writer == NULL && 15193 new_ipsq->ipsq_current_ipif == NULL) || 15194 (new_ipsq->ipsq_writer == curthread)) { 15195 new_ipsq->ipsq_writer = curthread; 15196 new_ipsq->ipsq_reentry_cnt++; 15197 became_writer_on_new_sq = B_TRUE; 15198 } 15199 15200 /* 15201 * We are holding ill_g_lock as writer and all the ill locks of 15202 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15203 * message can land up on the old ipsq even though we don't hold the 15204 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15205 */ 15206 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15207 15208 /* 15209 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15210 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15211 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15212 */ 15213 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15214 15215 /* 15216 * Mark the new ipsq as needing a split since it is currently 15217 * being shared by more than 1 IPMP group. The split will 15218 * occur at the end of ipsq_exit 15219 */ 15220 new_ipsq->ipsq_split = B_TRUE; 15221 15222 /* Now release all the locks */ 15223 mutex_exit(&new_ipsq->ipsq_lock); 15224 ill_unlock_ills(ill_list, cnt); 15225 rw_exit(&ipst->ips_ill_g_lock); 15226 15227 kmem_free(ill_list, ill_list_size); 15228 15229 /* 15230 * If we succeeded in becoming writer on the new ipsq, then 15231 * drain the new ipsq and start processing all enqueued messages 15232 * including the current ioctl we are processing which is either 15233 * a set groupname or failover/failback. 15234 */ 15235 if (became_writer_on_new_sq) 15236 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15237 15238 /* 15239 * syncq has been changed and all the messages have been moved. 15240 */ 15241 mutex_enter(&old_ipsq->ipsq_lock); 15242 old_ipsq->ipsq_current_ipif = NULL; 15243 old_ipsq->ipsq_current_ioctl = 0; 15244 mutex_exit(&old_ipsq->ipsq_lock); 15245 return (EINPROGRESS); 15246 } 15247 15248 /* 15249 * Delete and add the loopback copy and non-loopback copy of 15250 * the BROADCAST ire corresponding to ill and addr. Used to 15251 * group broadcast ires together when ill becomes part of 15252 * a group. 15253 * 15254 * This function is also called when ill is leaving the group 15255 * so that the ires belonging to the group gets re-grouped. 15256 */ 15257 static void 15258 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15259 { 15260 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15261 ire_t **ire_ptpn = &ire_head; 15262 ip_stack_t *ipst = ill->ill_ipst; 15263 15264 /* 15265 * The loopback and non-loopback IREs are inserted in the order in which 15266 * they're found, on the basis that they are correctly ordered (loopback 15267 * first). 15268 */ 15269 for (;;) { 15270 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15271 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15272 if (ire == NULL) 15273 break; 15274 15275 /* 15276 * we are passing in KM_SLEEP because it is not easy to 15277 * go back to a sane state in case of memory failure. 15278 */ 15279 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15280 ASSERT(nire != NULL); 15281 bzero(nire, sizeof (ire_t)); 15282 /* 15283 * Don't use ire_max_frag directly since we don't 15284 * hold on to 'ire' until we add the new ire 'nire' and 15285 * we don't want the new ire to have a dangling reference 15286 * to 'ire'. The ire_max_frag of a broadcast ire must 15287 * be in sync with the ipif_mtu of the associate ipif. 15288 * For eg. this happens as a result of SIOCSLIFNAME, 15289 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15290 * the driver. A change in ire_max_frag triggered as 15291 * as a result of path mtu discovery, or due to an 15292 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15293 * route change -mtu command does not apply to broadcast ires. 15294 * 15295 * XXX We need a recovery strategy here if ire_init fails 15296 */ 15297 if (ire_init(nire, 15298 (uchar_t *)&ire->ire_addr, 15299 (uchar_t *)&ire->ire_mask, 15300 (uchar_t *)&ire->ire_src_addr, 15301 (uchar_t *)&ire->ire_gateway_addr, 15302 (uchar_t *)&ire->ire_in_src_addr, 15303 ire->ire_stq == NULL ? &ip_loopback_mtu : 15304 &ire->ire_ipif->ipif_mtu, 15305 ire->ire_nce, 15306 ire->ire_rfq, 15307 ire->ire_stq, 15308 ire->ire_type, 15309 ire->ire_ipif, 15310 ire->ire_in_ill, 15311 ire->ire_cmask, 15312 ire->ire_phandle, 15313 ire->ire_ihandle, 15314 ire->ire_flags, 15315 &ire->ire_uinfo, 15316 NULL, 15317 NULL, 15318 ipst) == NULL) { 15319 cmn_err(CE_PANIC, "ire_init() failed"); 15320 } 15321 ire_delete(ire); 15322 ire_refrele(ire); 15323 15324 /* 15325 * The newly created IREs are inserted at the tail of the list 15326 * starting with ire_head. As we've just allocated them no one 15327 * knows about them so it's safe. 15328 */ 15329 *ire_ptpn = nire; 15330 ire_ptpn = &nire->ire_next; 15331 } 15332 15333 for (nire = ire_head; nire != NULL; nire = nire_next) { 15334 int error; 15335 ire_t *oire; 15336 /* unlink the IRE from our list before calling ire_add() */ 15337 nire_next = nire->ire_next; 15338 nire->ire_next = NULL; 15339 15340 /* ire_add adds the ire at the right place in the list */ 15341 oire = nire; 15342 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15343 ASSERT(error == 0); 15344 ASSERT(oire == nire); 15345 ire_refrele(nire); /* Held in ire_add */ 15346 } 15347 } 15348 15349 /* 15350 * This function is usually called when an ill is inserted in 15351 * a group and all the ipifs are already UP. As all the ipifs 15352 * are already UP, the broadcast ires have already been created 15353 * and been inserted. But, ire_add_v4 would not have grouped properly. 15354 * We need to re-group for the benefit of ip_wput_ire which 15355 * expects BROADCAST ires to be grouped properly to avoid sending 15356 * more than one copy of the broadcast packet per group. 15357 * 15358 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15359 * because when ipif_up_done ends up calling this, ires have 15360 * already been added before illgrp_insert i.e before ill_group 15361 * has been initialized. 15362 */ 15363 static void 15364 ill_group_bcast_for_xmit(ill_t *ill) 15365 { 15366 ill_group_t *illgrp; 15367 ipif_t *ipif; 15368 ipaddr_t addr; 15369 ipaddr_t net_mask; 15370 ipaddr_t subnet_netmask; 15371 15372 illgrp = ill->ill_group; 15373 15374 /* 15375 * This function is called even when an ill is deleted from 15376 * the group. Hence, illgrp could be null. 15377 */ 15378 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15379 return; 15380 15381 /* 15382 * Delete all the BROADCAST ires matching this ill and add 15383 * them back. This time, ire_add_v4 should take care of 15384 * grouping them with others because ill is part of the 15385 * group. 15386 */ 15387 ill_bcast_delete_and_add(ill, 0); 15388 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15389 15390 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15391 15392 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15393 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15394 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15395 } else { 15396 net_mask = htonl(IN_CLASSA_NET); 15397 } 15398 addr = net_mask & ipif->ipif_subnet; 15399 ill_bcast_delete_and_add(ill, addr); 15400 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15401 15402 subnet_netmask = ipif->ipif_net_mask; 15403 addr = ipif->ipif_subnet; 15404 ill_bcast_delete_and_add(ill, addr); 15405 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15406 } 15407 } 15408 15409 /* 15410 * This function is called from illgrp_delete when ill is being deleted 15411 * from the group. 15412 * 15413 * As ill is not there in the group anymore, any address belonging 15414 * to this ill should be cleared of IRE_MARK_NORECV. 15415 */ 15416 static void 15417 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15418 { 15419 ire_t *ire; 15420 irb_t *irb; 15421 ip_stack_t *ipst = ill->ill_ipst; 15422 15423 ASSERT(ill->ill_group == NULL); 15424 15425 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15426 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15427 15428 if (ire != NULL) { 15429 /* 15430 * IPMP and plumbing operations are serialized on the ipsq, so 15431 * no one will insert or delete a broadcast ire under our feet. 15432 */ 15433 irb = ire->ire_bucket; 15434 rw_enter(&irb->irb_lock, RW_READER); 15435 ire_refrele(ire); 15436 15437 for (; ire != NULL; ire = ire->ire_next) { 15438 if (ire->ire_addr != addr) 15439 break; 15440 if (ire_to_ill(ire) != ill) 15441 continue; 15442 15443 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15444 ire->ire_marks &= ~IRE_MARK_NORECV; 15445 } 15446 rw_exit(&irb->irb_lock); 15447 } 15448 } 15449 15450 /* 15451 * This function must be called only after the broadcast ires 15452 * have been grouped together. For a given address addr, nominate 15453 * only one of the ires whose interface is not FAILED or OFFLINE. 15454 * 15455 * This is also called when an ipif goes down, so that we can nominate 15456 * a different ire with the same address for receiving. 15457 */ 15458 static void 15459 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15460 { 15461 irb_t *irb; 15462 ire_t *ire; 15463 ire_t *ire1; 15464 ire_t *save_ire; 15465 ire_t **irep = NULL; 15466 boolean_t first = B_TRUE; 15467 ire_t *clear_ire = NULL; 15468 ire_t *start_ire = NULL; 15469 ire_t *new_lb_ire; 15470 ire_t *new_nlb_ire; 15471 boolean_t new_lb_ire_used = B_FALSE; 15472 boolean_t new_nlb_ire_used = B_FALSE; 15473 uint64_t match_flags; 15474 uint64_t phyi_flags; 15475 boolean_t fallback = B_FALSE; 15476 uint_t max_frag; 15477 15478 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15479 NULL, MATCH_IRE_TYPE, ipst); 15480 /* 15481 * We may not be able to find some ires if a previous 15482 * ire_create failed. This happens when an ipif goes 15483 * down and we are unable to create BROADCAST ires due 15484 * to memory failure. Thus, we have to check for NULL 15485 * below. This should handle the case for LOOPBACK, 15486 * POINTOPOINT and interfaces with some POINTOPOINT 15487 * logicals for which there are no BROADCAST ires. 15488 */ 15489 if (ire == NULL) 15490 return; 15491 /* 15492 * Currently IRE_BROADCASTS are deleted when an ipif 15493 * goes down which runs exclusively. Thus, setting 15494 * IRE_MARK_RCVD should not race with ire_delete marking 15495 * IRE_MARK_CONDEMNED. We grab the lock below just to 15496 * be consistent with other parts of the code that walks 15497 * a given bucket. 15498 */ 15499 save_ire = ire; 15500 irb = ire->ire_bucket; 15501 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15502 if (new_lb_ire == NULL) { 15503 ire_refrele(ire); 15504 return; 15505 } 15506 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15507 if (new_nlb_ire == NULL) { 15508 ire_refrele(ire); 15509 kmem_cache_free(ire_cache, new_lb_ire); 15510 return; 15511 } 15512 IRB_REFHOLD(irb); 15513 rw_enter(&irb->irb_lock, RW_WRITER); 15514 /* 15515 * Get to the first ire matching the address and the 15516 * group. If the address does not match we are done 15517 * as we could not find the IRE. If the address matches 15518 * we should get to the first one matching the group. 15519 */ 15520 while (ire != NULL) { 15521 if (ire->ire_addr != addr || 15522 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15523 break; 15524 } 15525 ire = ire->ire_next; 15526 } 15527 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15528 start_ire = ire; 15529 redo: 15530 while (ire != NULL && ire->ire_addr == addr && 15531 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15532 /* 15533 * The first ire for any address within a group 15534 * should always be the one with IRE_MARK_NORECV cleared 15535 * so that ip_wput_ire can avoid searching for one. 15536 * Note down the insertion point which will be used 15537 * later. 15538 */ 15539 if (first && (irep == NULL)) 15540 irep = ire->ire_ptpn; 15541 /* 15542 * PHYI_FAILED is set when the interface fails. 15543 * This interface might have become good, but the 15544 * daemon has not yet detected. We should still 15545 * not receive on this. PHYI_OFFLINE should never 15546 * be picked as this has been offlined and soon 15547 * be removed. 15548 */ 15549 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15550 if (phyi_flags & PHYI_OFFLINE) { 15551 ire->ire_marks |= IRE_MARK_NORECV; 15552 ire = ire->ire_next; 15553 continue; 15554 } 15555 if (phyi_flags & match_flags) { 15556 ire->ire_marks |= IRE_MARK_NORECV; 15557 ire = ire->ire_next; 15558 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15559 PHYI_INACTIVE) { 15560 fallback = B_TRUE; 15561 } 15562 continue; 15563 } 15564 if (first) { 15565 /* 15566 * We will move this to the front of the list later 15567 * on. 15568 */ 15569 clear_ire = ire; 15570 ire->ire_marks &= ~IRE_MARK_NORECV; 15571 } else { 15572 ire->ire_marks |= IRE_MARK_NORECV; 15573 } 15574 first = B_FALSE; 15575 ire = ire->ire_next; 15576 } 15577 /* 15578 * If we never nominated anybody, try nominating at least 15579 * an INACTIVE, if we found one. Do it only once though. 15580 */ 15581 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15582 fallback) { 15583 match_flags = PHYI_FAILED; 15584 ire = start_ire; 15585 irep = NULL; 15586 goto redo; 15587 } 15588 ire_refrele(save_ire); 15589 15590 /* 15591 * irep non-NULL indicates that we entered the while loop 15592 * above. If clear_ire is at the insertion point, we don't 15593 * have to do anything. clear_ire will be NULL if all the 15594 * interfaces are failed. 15595 * 15596 * We cannot unlink and reinsert the ire at the right place 15597 * in the list since there can be other walkers of this bucket. 15598 * Instead we delete and recreate the ire 15599 */ 15600 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15601 ire_t *clear_ire_stq = NULL; 15602 15603 bzero(new_lb_ire, sizeof (ire_t)); 15604 /* XXX We need a recovery strategy here. */ 15605 if (ire_init(new_lb_ire, 15606 (uchar_t *)&clear_ire->ire_addr, 15607 (uchar_t *)&clear_ire->ire_mask, 15608 (uchar_t *)&clear_ire->ire_src_addr, 15609 (uchar_t *)&clear_ire->ire_gateway_addr, 15610 (uchar_t *)&clear_ire->ire_in_src_addr, 15611 &clear_ire->ire_max_frag, 15612 NULL, /* let ire_nce_init derive the resolver info */ 15613 clear_ire->ire_rfq, 15614 clear_ire->ire_stq, 15615 clear_ire->ire_type, 15616 clear_ire->ire_ipif, 15617 clear_ire->ire_in_ill, 15618 clear_ire->ire_cmask, 15619 clear_ire->ire_phandle, 15620 clear_ire->ire_ihandle, 15621 clear_ire->ire_flags, 15622 &clear_ire->ire_uinfo, 15623 NULL, 15624 NULL, 15625 ipst) == NULL) 15626 cmn_err(CE_PANIC, "ire_init() failed"); 15627 if (clear_ire->ire_stq == NULL) { 15628 ire_t *ire_next = clear_ire->ire_next; 15629 if (ire_next != NULL && 15630 ire_next->ire_stq != NULL && 15631 ire_next->ire_addr == clear_ire->ire_addr && 15632 ire_next->ire_ipif->ipif_ill == 15633 clear_ire->ire_ipif->ipif_ill) { 15634 clear_ire_stq = ire_next; 15635 15636 bzero(new_nlb_ire, sizeof (ire_t)); 15637 /* XXX We need a recovery strategy here. */ 15638 if (ire_init(new_nlb_ire, 15639 (uchar_t *)&clear_ire_stq->ire_addr, 15640 (uchar_t *)&clear_ire_stq->ire_mask, 15641 (uchar_t *)&clear_ire_stq->ire_src_addr, 15642 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15643 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15644 &clear_ire_stq->ire_max_frag, 15645 NULL, 15646 clear_ire_stq->ire_rfq, 15647 clear_ire_stq->ire_stq, 15648 clear_ire_stq->ire_type, 15649 clear_ire_stq->ire_ipif, 15650 clear_ire_stq->ire_in_ill, 15651 clear_ire_stq->ire_cmask, 15652 clear_ire_stq->ire_phandle, 15653 clear_ire_stq->ire_ihandle, 15654 clear_ire_stq->ire_flags, 15655 &clear_ire_stq->ire_uinfo, 15656 NULL, 15657 NULL, 15658 ipst) == NULL) 15659 cmn_err(CE_PANIC, "ire_init() failed"); 15660 } 15661 } 15662 15663 /* 15664 * Delete the ire. We can't call ire_delete() since 15665 * we are holding the bucket lock. We can't release the 15666 * bucket lock since we can't allow irep to change. So just 15667 * mark it CONDEMNED. The IRB_REFRELE will delete the 15668 * ire from the list and do the refrele. 15669 */ 15670 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15671 irb->irb_marks |= IRB_MARK_CONDEMNED; 15672 15673 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15674 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15675 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15676 } 15677 15678 /* 15679 * Also take care of otherfields like ib/ob pkt count 15680 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15681 */ 15682 15683 /* Set the max_frag before adding the ire */ 15684 max_frag = *new_lb_ire->ire_max_fragp; 15685 new_lb_ire->ire_max_fragp = NULL; 15686 new_lb_ire->ire_max_frag = max_frag; 15687 15688 /* Add the new ire's. Insert at *irep */ 15689 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15690 ire1 = *irep; 15691 if (ire1 != NULL) 15692 ire1->ire_ptpn = &new_lb_ire->ire_next; 15693 new_lb_ire->ire_next = ire1; 15694 /* Link the new one in. */ 15695 new_lb_ire->ire_ptpn = irep; 15696 membar_producer(); 15697 *irep = new_lb_ire; 15698 new_lb_ire_used = B_TRUE; 15699 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15700 new_lb_ire->ire_bucket->irb_ire_cnt++; 15701 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15702 15703 if (clear_ire_stq != NULL) { 15704 /* Set the max_frag before adding the ire */ 15705 max_frag = *new_nlb_ire->ire_max_fragp; 15706 new_nlb_ire->ire_max_fragp = NULL; 15707 new_nlb_ire->ire_max_frag = max_frag; 15708 15709 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15710 irep = &new_lb_ire->ire_next; 15711 /* Add the new ire. Insert at *irep */ 15712 ire1 = *irep; 15713 if (ire1 != NULL) 15714 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15715 new_nlb_ire->ire_next = ire1; 15716 /* Link the new one in. */ 15717 new_nlb_ire->ire_ptpn = irep; 15718 membar_producer(); 15719 *irep = new_nlb_ire; 15720 new_nlb_ire_used = B_TRUE; 15721 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15722 ire_stats_inserted); 15723 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15724 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15725 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15726 } 15727 } 15728 rw_exit(&irb->irb_lock); 15729 if (!new_lb_ire_used) 15730 kmem_cache_free(ire_cache, new_lb_ire); 15731 if (!new_nlb_ire_used) 15732 kmem_cache_free(ire_cache, new_nlb_ire); 15733 IRB_REFRELE(irb); 15734 } 15735 15736 /* 15737 * Whenever an ipif goes down we have to renominate a different 15738 * broadcast ire to receive. Whenever an ipif comes up, we need 15739 * to make sure that we have only one nominated to receive. 15740 */ 15741 static void 15742 ipif_renominate_bcast(ipif_t *ipif) 15743 { 15744 ill_t *ill = ipif->ipif_ill; 15745 ipaddr_t subnet_addr; 15746 ipaddr_t net_addr; 15747 ipaddr_t net_mask = 0; 15748 ipaddr_t subnet_netmask; 15749 ipaddr_t addr; 15750 ill_group_t *illgrp; 15751 ip_stack_t *ipst = ill->ill_ipst; 15752 15753 illgrp = ill->ill_group; 15754 /* 15755 * If this is the last ipif going down, it might take 15756 * the ill out of the group. In that case ipif_down -> 15757 * illgrp_delete takes care of doing the nomination. 15758 * ipif_down does not call for this case. 15759 */ 15760 ASSERT(illgrp != NULL); 15761 15762 /* There could not have been any ires associated with this */ 15763 if (ipif->ipif_subnet == 0) 15764 return; 15765 15766 ill_mark_bcast(illgrp, 0, ipst); 15767 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15768 15769 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15770 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15771 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15772 } else { 15773 net_mask = htonl(IN_CLASSA_NET); 15774 } 15775 addr = net_mask & ipif->ipif_subnet; 15776 ill_mark_bcast(illgrp, addr, ipst); 15777 15778 net_addr = ~net_mask | addr; 15779 ill_mark_bcast(illgrp, net_addr, ipst); 15780 15781 subnet_netmask = ipif->ipif_net_mask; 15782 addr = ipif->ipif_subnet; 15783 ill_mark_bcast(illgrp, addr, ipst); 15784 15785 subnet_addr = ~subnet_netmask | addr; 15786 ill_mark_bcast(illgrp, subnet_addr, ipst); 15787 } 15788 15789 /* 15790 * Whenever we form or delete ill groups, we need to nominate one set of 15791 * BROADCAST ires for receiving in the group. 15792 * 15793 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15794 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15795 * for ill_ipif_up_count to be non-zero. This is the only case where 15796 * ill_ipif_up_count is zero and we would still find the ires. 15797 * 15798 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15799 * ipif is UP and we just have to do the nomination. 15800 * 15801 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15802 * from the group. So, we have to do the nomination. 15803 * 15804 * Because of (3), there could be just one ill in the group. But we have 15805 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15806 * Thus, this function does not optimize when there is only one ill as 15807 * it is not correct for (3). 15808 */ 15809 static void 15810 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15811 { 15812 ill_t *ill; 15813 ipif_t *ipif; 15814 ipaddr_t subnet_addr; 15815 ipaddr_t prev_subnet_addr = 0; 15816 ipaddr_t net_addr; 15817 ipaddr_t prev_net_addr = 0; 15818 ipaddr_t net_mask = 0; 15819 ipaddr_t subnet_netmask; 15820 ipaddr_t addr; 15821 ip_stack_t *ipst; 15822 15823 /* 15824 * When the last memeber is leaving, there is nothing to 15825 * nominate. 15826 */ 15827 if (illgrp->illgrp_ill_count == 0) { 15828 ASSERT(illgrp->illgrp_ill == NULL); 15829 return; 15830 } 15831 15832 ill = illgrp->illgrp_ill; 15833 ASSERT(!ill->ill_isv6); 15834 ipst = ill->ill_ipst; 15835 /* 15836 * We assume that ires with same address and belonging to the 15837 * same group, has been grouped together. Nominating a *single* 15838 * ill in the group for sending and receiving broadcast is done 15839 * by making sure that the first BROADCAST ire (which will be 15840 * the one returned by ire_ctable_lookup for ip_rput and the 15841 * one that will be used in ip_wput_ire) will be the one that 15842 * will not have IRE_MARK_NORECV set. 15843 * 15844 * 1) ip_rput checks and discards packets received on ires marked 15845 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15846 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15847 * first ire in the group for every broadcast address in the group. 15848 * ip_rput will accept packets only on the first ire i.e only 15849 * one copy of the ill. 15850 * 15851 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15852 * packet for the whole group. It needs to send out on the ill 15853 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15854 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15855 * the copy echoed back on other port where the ire is not marked 15856 * with IRE_MARK_NORECV. 15857 * 15858 * Note that we just need to have the first IRE either loopback or 15859 * non-loopback (either of them may not exist if ire_create failed 15860 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15861 * always hit the first one and hence will always accept one copy. 15862 * 15863 * We have a broadcast ire per ill for all the unique prefixes 15864 * hosted on that ill. As we don't have a way of knowing the 15865 * unique prefixes on a given ill and hence in the whole group, 15866 * we just call ill_mark_bcast on all the prefixes that exist 15867 * in the group. For the common case of one prefix, the code 15868 * below optimizes by remebering the last address used for 15869 * markng. In the case of multiple prefixes, this will still 15870 * optimize depending the order of prefixes. 15871 * 15872 * The only unique address across the whole group is 0.0.0.0 and 15873 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15874 * the first ire in the bucket for receiving and disables the 15875 * others. 15876 */ 15877 ill_mark_bcast(illgrp, 0, ipst); 15878 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15879 for (; ill != NULL; ill = ill->ill_group_next) { 15880 15881 for (ipif = ill->ill_ipif; ipif != NULL; 15882 ipif = ipif->ipif_next) { 15883 15884 if (!(ipif->ipif_flags & IPIF_UP) || 15885 ipif->ipif_subnet == 0) { 15886 continue; 15887 } 15888 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15889 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15890 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15891 } else { 15892 net_mask = htonl(IN_CLASSA_NET); 15893 } 15894 addr = net_mask & ipif->ipif_subnet; 15895 if (prev_net_addr == 0 || prev_net_addr != addr) { 15896 ill_mark_bcast(illgrp, addr, ipst); 15897 net_addr = ~net_mask | addr; 15898 ill_mark_bcast(illgrp, net_addr, ipst); 15899 } 15900 prev_net_addr = addr; 15901 15902 subnet_netmask = ipif->ipif_net_mask; 15903 addr = ipif->ipif_subnet; 15904 if (prev_subnet_addr == 0 || 15905 prev_subnet_addr != addr) { 15906 ill_mark_bcast(illgrp, addr, ipst); 15907 subnet_addr = ~subnet_netmask | addr; 15908 ill_mark_bcast(illgrp, subnet_addr, ipst); 15909 } 15910 prev_subnet_addr = addr; 15911 } 15912 } 15913 } 15914 15915 /* 15916 * This function is called while forming ill groups. 15917 * 15918 * Currently, we handle only allmulti groups. We want to join 15919 * allmulti on only one of the ills in the groups. In future, 15920 * when we have link aggregation, we may have to join normal 15921 * multicast groups on multiple ills as switch does inbound load 15922 * balancing. Following are the functions that calls this 15923 * function : 15924 * 15925 * 1) ill_recover_multicast : Interface is coming back UP. 15926 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15927 * will call ill_recover_multicast to recover all the multicast 15928 * groups. We need to make sure that only one member is joined 15929 * in the ill group. 15930 * 15931 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15932 * Somebody is joining allmulti. We need to make sure that only one 15933 * member is joined in the group. 15934 * 15935 * 3) illgrp_insert : If allmulti has already joined, we need to make 15936 * sure that only one member is joined in the group. 15937 * 15938 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15939 * allmulti who we have nominated. We need to pick someother ill. 15940 * 15941 * 5) illgrp_delete : The ill we nominated is leaving the group, 15942 * we need to pick a new ill to join the group. 15943 * 15944 * For (1), (2), (5) - we just have to check whether there is 15945 * a good ill joined in the group. If we could not find any ills 15946 * joined the group, we should join. 15947 * 15948 * For (4), the one that was nominated to receive, left the group. 15949 * There could be nobody joined in the group when this function is 15950 * called. 15951 * 15952 * For (3) - we need to explicitly check whether there are multiple 15953 * ills joined in the group. 15954 * 15955 * For simplicity, we don't differentiate any of the above cases. We 15956 * just leave the group if it is joined on any of them and join on 15957 * the first good ill. 15958 */ 15959 int 15960 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15961 { 15962 ilm_t *ilm; 15963 ill_t *ill; 15964 ill_t *fallback_inactive_ill = NULL; 15965 ill_t *fallback_failed_ill = NULL; 15966 int ret = 0; 15967 15968 /* 15969 * Leave the allmulti on all the ills and start fresh. 15970 */ 15971 for (ill = illgrp->illgrp_ill; ill != NULL; 15972 ill = ill->ill_group_next) { 15973 if (ill->ill_join_allmulti) 15974 (void) ip_leave_allmulti(ill->ill_ipif); 15975 } 15976 15977 /* 15978 * Choose a good ill. Fallback to inactive or failed if 15979 * none available. We need to fallback to FAILED in the 15980 * case where we have 2 interfaces in a group - where 15981 * one of them is failed and another is a good one and 15982 * the good one (not marked inactive) is leaving the group. 15983 */ 15984 ret = 0; 15985 for (ill = illgrp->illgrp_ill; ill != NULL; 15986 ill = ill->ill_group_next) { 15987 /* Never pick an offline interface */ 15988 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15989 continue; 15990 15991 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15992 fallback_failed_ill = ill; 15993 continue; 15994 } 15995 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15996 fallback_inactive_ill = ill; 15997 continue; 15998 } 15999 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16000 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16001 ret = ip_join_allmulti(ill->ill_ipif); 16002 /* 16003 * ip_join_allmulti can fail because of memory 16004 * failures. So, make sure we join at least 16005 * on one ill. 16006 */ 16007 if (ill->ill_join_allmulti) 16008 return (0); 16009 } 16010 } 16011 } 16012 if (ret != 0) { 16013 /* 16014 * If we tried nominating above and failed to do so, 16015 * return error. We might have tried multiple times. 16016 * But, return the latest error. 16017 */ 16018 return (ret); 16019 } 16020 if ((ill = fallback_inactive_ill) != NULL) { 16021 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16022 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16023 ret = ip_join_allmulti(ill->ill_ipif); 16024 return (ret); 16025 } 16026 } 16027 } else if ((ill = fallback_failed_ill) != NULL) { 16028 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16029 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16030 ret = ip_join_allmulti(ill->ill_ipif); 16031 return (ret); 16032 } 16033 } 16034 } 16035 return (0); 16036 } 16037 16038 /* 16039 * This function is called from illgrp_delete after it is 16040 * deleted from the group to reschedule responsibilities 16041 * to a different ill. 16042 */ 16043 static void 16044 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 16045 { 16046 ilm_t *ilm; 16047 ipif_t *ipif; 16048 ipaddr_t subnet_addr; 16049 ipaddr_t net_addr; 16050 ipaddr_t net_mask = 0; 16051 ipaddr_t subnet_netmask; 16052 ipaddr_t addr; 16053 ip_stack_t *ipst = ill->ill_ipst; 16054 16055 ASSERT(ill->ill_group == NULL); 16056 /* 16057 * Broadcast Responsibility: 16058 * 16059 * 1. If this ill has been nominated for receiving broadcast 16060 * packets, we need to find a new one. Before we find a new 16061 * one, we need to re-group the ires that are part of this new 16062 * group (assumed by ill_nominate_bcast_rcv). We do this by 16063 * calling ill_group_bcast_for_xmit(ill) which will do the right 16064 * thing for us. 16065 * 16066 * 2. If this ill was not nominated for receiving broadcast 16067 * packets, we need to clear the IRE_MARK_NORECV flag 16068 * so that we continue to send up broadcast packets. 16069 */ 16070 if (!ill->ill_isv6) { 16071 /* 16072 * Case 1 above : No optimization here. Just redo the 16073 * nomination. 16074 */ 16075 ill_group_bcast_for_xmit(ill); 16076 ill_nominate_bcast_rcv(illgrp); 16077 16078 /* 16079 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16080 */ 16081 ill_clear_bcast_mark(ill, 0); 16082 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16083 16084 for (ipif = ill->ill_ipif; ipif != NULL; 16085 ipif = ipif->ipif_next) { 16086 16087 if (!(ipif->ipif_flags & IPIF_UP) || 16088 ipif->ipif_subnet == 0) { 16089 continue; 16090 } 16091 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16092 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16093 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16094 } else { 16095 net_mask = htonl(IN_CLASSA_NET); 16096 } 16097 addr = net_mask & ipif->ipif_subnet; 16098 ill_clear_bcast_mark(ill, addr); 16099 16100 net_addr = ~net_mask | addr; 16101 ill_clear_bcast_mark(ill, net_addr); 16102 16103 subnet_netmask = ipif->ipif_net_mask; 16104 addr = ipif->ipif_subnet; 16105 ill_clear_bcast_mark(ill, addr); 16106 16107 subnet_addr = ~subnet_netmask | addr; 16108 ill_clear_bcast_mark(ill, subnet_addr); 16109 } 16110 } 16111 16112 /* 16113 * Multicast Responsibility. 16114 * 16115 * If we have joined allmulti on this one, find a new member 16116 * in the group to join allmulti. As this ill is already part 16117 * of allmulti, we don't have to join on this one. 16118 * 16119 * If we have not joined allmulti on this one, there is no 16120 * responsibility to handoff. But we need to take new 16121 * responsibility i.e, join allmulti on this one if we need 16122 * to. 16123 */ 16124 if (ill->ill_join_allmulti) { 16125 (void) ill_nominate_mcast_rcv(illgrp); 16126 } else { 16127 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16128 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16129 (void) ip_join_allmulti(ill->ill_ipif); 16130 break; 16131 } 16132 } 16133 } 16134 16135 /* 16136 * We intentionally do the flushing of IRE_CACHES only matching 16137 * on the ill and not on groups. Note that we are already deleted 16138 * from the group. 16139 * 16140 * This will make sure that all IRE_CACHES whose stq is pointing 16141 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16142 * deleted and IRE_CACHES that are not pointing at this ill will 16143 * be left alone. 16144 */ 16145 if (ill->ill_isv6) { 16146 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16147 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16148 } else { 16149 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16150 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16151 } 16152 16153 /* 16154 * Some conn may have cached one of the IREs deleted above. By removing 16155 * the ire reference, we clean up the extra reference to the ill held in 16156 * ire->ire_stq. 16157 */ 16158 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16159 16160 /* 16161 * Re-do source address selection for all the members in the 16162 * group, if they borrowed source address from one of the ipifs 16163 * in this ill. 16164 */ 16165 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16166 if (ill->ill_isv6) { 16167 ipif_update_other_ipifs_v6(ipif, illgrp); 16168 } else { 16169 ipif_update_other_ipifs(ipif, illgrp); 16170 } 16171 } 16172 } 16173 16174 /* 16175 * Delete the ill from the group. The caller makes sure that it is 16176 * in a group and it okay to delete from the group. So, we always 16177 * delete here. 16178 */ 16179 static void 16180 illgrp_delete(ill_t *ill) 16181 { 16182 ill_group_t *illgrp; 16183 ill_group_t *tmpg; 16184 ill_t *tmp_ill; 16185 ip_stack_t *ipst = ill->ill_ipst; 16186 16187 /* 16188 * Reset illgrp_ill_schednext if it was pointing at us. 16189 * We need to do this before we set ill_group to NULL. 16190 */ 16191 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16192 mutex_enter(&ill->ill_lock); 16193 16194 illgrp_reset_schednext(ill); 16195 16196 illgrp = ill->ill_group; 16197 16198 /* Delete the ill from illgrp. */ 16199 if (illgrp->illgrp_ill == ill) { 16200 illgrp->illgrp_ill = ill->ill_group_next; 16201 } else { 16202 tmp_ill = illgrp->illgrp_ill; 16203 while (tmp_ill->ill_group_next != ill) { 16204 tmp_ill = tmp_ill->ill_group_next; 16205 ASSERT(tmp_ill != NULL); 16206 } 16207 tmp_ill->ill_group_next = ill->ill_group_next; 16208 } 16209 ill->ill_group = NULL; 16210 ill->ill_group_next = NULL; 16211 16212 illgrp->illgrp_ill_count--; 16213 mutex_exit(&ill->ill_lock); 16214 rw_exit(&ipst->ips_ill_g_lock); 16215 16216 /* 16217 * As this ill is leaving the group, we need to hand off 16218 * the responsibilities to the other ills in the group, if 16219 * this ill had some responsibilities. 16220 */ 16221 16222 ill_handoff_responsibility(ill, illgrp); 16223 16224 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16225 16226 if (illgrp->illgrp_ill_count == 0) { 16227 16228 ASSERT(illgrp->illgrp_ill == NULL); 16229 if (ill->ill_isv6) { 16230 if (illgrp == ipst->ips_illgrp_head_v6) { 16231 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16232 } else { 16233 tmpg = ipst->ips_illgrp_head_v6; 16234 while (tmpg->illgrp_next != illgrp) { 16235 tmpg = tmpg->illgrp_next; 16236 ASSERT(tmpg != NULL); 16237 } 16238 tmpg->illgrp_next = illgrp->illgrp_next; 16239 } 16240 } else { 16241 if (illgrp == ipst->ips_illgrp_head_v4) { 16242 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16243 } else { 16244 tmpg = ipst->ips_illgrp_head_v4; 16245 while (tmpg->illgrp_next != illgrp) { 16246 tmpg = tmpg->illgrp_next; 16247 ASSERT(tmpg != NULL); 16248 } 16249 tmpg->illgrp_next = illgrp->illgrp_next; 16250 } 16251 } 16252 mutex_destroy(&illgrp->illgrp_lock); 16253 mi_free(illgrp); 16254 } 16255 rw_exit(&ipst->ips_ill_g_lock); 16256 16257 /* 16258 * Even though the ill is out of the group its not necessary 16259 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16260 * We will split the ipsq when phyint_groupname is set to NULL. 16261 */ 16262 16263 /* 16264 * Send a routing sockets message if we are deleting from 16265 * groups with names. 16266 */ 16267 if (ill->ill_phyint->phyint_groupname_len != 0) 16268 ip_rts_ifmsg(ill->ill_ipif); 16269 } 16270 16271 /* 16272 * Re-do source address selection. This is normally called when 16273 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16274 * ipif comes up. 16275 */ 16276 void 16277 ill_update_source_selection(ill_t *ill) 16278 { 16279 ipif_t *ipif; 16280 16281 ASSERT(IAM_WRITER_ILL(ill)); 16282 16283 if (ill->ill_group != NULL) 16284 ill = ill->ill_group->illgrp_ill; 16285 16286 for (; ill != NULL; ill = ill->ill_group_next) { 16287 for (ipif = ill->ill_ipif; ipif != NULL; 16288 ipif = ipif->ipif_next) { 16289 if (ill->ill_isv6) 16290 ipif_recreate_interface_routes_v6(NULL, ipif); 16291 else 16292 ipif_recreate_interface_routes(NULL, ipif); 16293 } 16294 } 16295 } 16296 16297 /* 16298 * Insert ill in a group headed by illgrp_head. The caller can either 16299 * pass a groupname in which case we search for a group with the 16300 * same name to insert in or pass a group to insert in. This function 16301 * would only search groups with names. 16302 * 16303 * NOTE : The caller should make sure that there is at least one ipif 16304 * UP on this ill so that illgrp_scheduler can pick this ill 16305 * for outbound packets. If ill_ipif_up_count is zero, we have 16306 * already sent a DL_UNBIND to the driver and we don't want to 16307 * send anymore packets. We don't assert for ipif_up_count 16308 * to be greater than zero, because ipif_up_done wants to call 16309 * this function before bumping up the ipif_up_count. See 16310 * ipif_up_done() for details. 16311 */ 16312 int 16313 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16314 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16315 { 16316 ill_group_t *illgrp; 16317 ill_t *prev_ill; 16318 phyint_t *phyi; 16319 ip_stack_t *ipst = ill->ill_ipst; 16320 16321 ASSERT(ill->ill_group == NULL); 16322 16323 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16324 mutex_enter(&ill->ill_lock); 16325 16326 if (groupname != NULL) { 16327 /* 16328 * Look for a group with a matching groupname to insert. 16329 */ 16330 for (illgrp = *illgrp_head; illgrp != NULL; 16331 illgrp = illgrp->illgrp_next) { 16332 16333 ill_t *tmp_ill; 16334 16335 /* 16336 * If we have an ill_group_t in the list which has 16337 * no ill_t assigned then we must be in the process of 16338 * removing this group. We skip this as illgrp_delete() 16339 * will remove it from the list. 16340 */ 16341 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16342 ASSERT(illgrp->illgrp_ill_count == 0); 16343 continue; 16344 } 16345 16346 ASSERT(tmp_ill->ill_phyint != NULL); 16347 phyi = tmp_ill->ill_phyint; 16348 /* 16349 * Look at groups which has names only. 16350 */ 16351 if (phyi->phyint_groupname_len == 0) 16352 continue; 16353 /* 16354 * Names are stored in the phyint common to both 16355 * IPv4 and IPv6. 16356 */ 16357 if (mi_strcmp(phyi->phyint_groupname, 16358 groupname) == 0) { 16359 break; 16360 } 16361 } 16362 } else { 16363 /* 16364 * If the caller passes in a NULL "grp_to_insert", we 16365 * allocate one below and insert this singleton. 16366 */ 16367 illgrp = grp_to_insert; 16368 } 16369 16370 ill->ill_group_next = NULL; 16371 16372 if (illgrp == NULL) { 16373 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16374 if (illgrp == NULL) { 16375 return (ENOMEM); 16376 } 16377 illgrp->illgrp_next = *illgrp_head; 16378 *illgrp_head = illgrp; 16379 illgrp->illgrp_ill = ill; 16380 illgrp->illgrp_ill_count = 1; 16381 ill->ill_group = illgrp; 16382 /* 16383 * Used in illgrp_scheduler to protect multiple threads 16384 * from traversing the list. 16385 */ 16386 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16387 } else { 16388 ASSERT(ill->ill_net_type == 16389 illgrp->illgrp_ill->ill_net_type); 16390 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16391 16392 /* Insert ill at tail of this group */ 16393 prev_ill = illgrp->illgrp_ill; 16394 while (prev_ill->ill_group_next != NULL) 16395 prev_ill = prev_ill->ill_group_next; 16396 prev_ill->ill_group_next = ill; 16397 ill->ill_group = illgrp; 16398 illgrp->illgrp_ill_count++; 16399 /* 16400 * Inherit group properties. Currently only forwarding 16401 * is the property we try to keep the same with all the 16402 * ills. When there are more, we will abstract this into 16403 * a function. 16404 */ 16405 ill->ill_flags &= ~ILLF_ROUTER; 16406 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16407 } 16408 mutex_exit(&ill->ill_lock); 16409 rw_exit(&ipst->ips_ill_g_lock); 16410 16411 /* 16412 * 1) When ipif_up_done() calls this function, ipif_up_count 16413 * may be zero as it has not yet been bumped. But the ires 16414 * have already been added. So, we do the nomination here 16415 * itself. But, when ip_sioctl_groupname calls this, it checks 16416 * for ill_ipif_up_count != 0. Thus we don't check for 16417 * ill_ipif_up_count here while nominating broadcast ires for 16418 * receive. 16419 * 16420 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16421 * to group them properly as ire_add() has already happened 16422 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16423 * case, we need to do it here anyway. 16424 */ 16425 if (!ill->ill_isv6) { 16426 ill_group_bcast_for_xmit(ill); 16427 ill_nominate_bcast_rcv(illgrp); 16428 } 16429 16430 if (!ipif_is_coming_up) { 16431 /* 16432 * When ipif_up_done() calls this function, the multicast 16433 * groups have not been joined yet. So, there is no point in 16434 * nomination. ip_join_allmulti will handle groups when 16435 * ill_recover_multicast is called from ipif_up_done() later. 16436 */ 16437 (void) ill_nominate_mcast_rcv(illgrp); 16438 /* 16439 * ipif_up_done calls ill_update_source_selection 16440 * anyway. Moreover, we don't want to re-create 16441 * interface routes while ipif_up_done() still has reference 16442 * to them. Refer to ipif_up_done() for more details. 16443 */ 16444 ill_update_source_selection(ill); 16445 } 16446 16447 /* 16448 * Send a routing sockets message if we are inserting into 16449 * groups with names. 16450 */ 16451 if (groupname != NULL) 16452 ip_rts_ifmsg(ill->ill_ipif); 16453 return (0); 16454 } 16455 16456 /* 16457 * Return the first phyint matching the groupname. There could 16458 * be more than one when there are ill groups. 16459 * 16460 * If 'usable' is set, then we exclude ones that are marked with any of 16461 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16462 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16463 * emulation of ipmp. 16464 */ 16465 phyint_t * 16466 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16467 { 16468 phyint_t *phyi; 16469 16470 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16471 /* 16472 * Group names are stored in the phyint - a common structure 16473 * to both IPv4 and IPv6. 16474 */ 16475 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16476 for (; phyi != NULL; 16477 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16478 phyi, AVL_AFTER)) { 16479 if (phyi->phyint_groupname_len == 0) 16480 continue; 16481 /* 16482 * Skip the ones that should not be used since the callers 16483 * sometime use this for sending packets. 16484 */ 16485 if (usable && (phyi->phyint_flags & 16486 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16487 continue; 16488 16489 ASSERT(phyi->phyint_groupname != NULL); 16490 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16491 return (phyi); 16492 } 16493 return (NULL); 16494 } 16495 16496 16497 /* 16498 * Return the first usable phyint matching the group index. By 'usable' 16499 * we exclude ones that are marked ununsable with any of 16500 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16501 * 16502 * Used only for the ipmp/netinfo emulation of ipmp. 16503 */ 16504 phyint_t * 16505 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16506 { 16507 phyint_t *phyi; 16508 16509 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16510 16511 if (!ipst->ips_ipmp_hook_emulation) 16512 return (NULL); 16513 16514 /* 16515 * Group indicies are stored in the phyint - a common structure 16516 * to both IPv4 and IPv6. 16517 */ 16518 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16519 for (; phyi != NULL; 16520 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16521 phyi, AVL_AFTER)) { 16522 /* Ignore the ones that do not have a group */ 16523 if (phyi->phyint_groupname_len == 0) 16524 continue; 16525 16526 ASSERT(phyi->phyint_group_ifindex != 0); 16527 /* 16528 * Skip the ones that should not be used since the callers 16529 * sometime use this for sending packets. 16530 */ 16531 if (phyi->phyint_flags & 16532 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16533 continue; 16534 if (phyi->phyint_group_ifindex == group_ifindex) 16535 return (phyi); 16536 } 16537 return (NULL); 16538 } 16539 16540 16541 /* 16542 * MT notes on creation and deletion of IPMP groups 16543 * 16544 * Creation and deletion of IPMP groups introduce the need to merge or 16545 * split the associated serialization objects i.e the ipsq's. Normally all 16546 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16547 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16548 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16549 * is a need to change the <ill-ipsq> association and we have to operate on both 16550 * the source and destination IPMP groups. For eg. attempting to set the 16551 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16552 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16553 * source or destination IPMP group are mapped to a single ipsq for executing 16554 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16555 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16556 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16557 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16558 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16559 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16560 * 16561 * In the above example the ioctl handling code locates the current ipsq of hme0 16562 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16563 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16564 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16565 * the destination ipsq. If the destination ipsq is not busy, it also enters 16566 * the destination ipsq exclusively. Now the actual groupname setting operation 16567 * can proceed. If the destination ipsq is busy, the operation is enqueued 16568 * on the destination (merged) ipsq and will be handled in the unwind from 16569 * ipsq_exit. 16570 * 16571 * To prevent other threads accessing the ill while the group name change is 16572 * in progres, we bring down the ipifs which also removes the ill from the 16573 * group. The group is changed in phyint and when the first ipif on the ill 16574 * is brought up, the ill is inserted into the right IPMP group by 16575 * illgrp_insert. 16576 */ 16577 /* ARGSUSED */ 16578 int 16579 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16580 ip_ioctl_cmd_t *ipip, void *ifreq) 16581 { 16582 int i; 16583 char *tmp; 16584 int namelen; 16585 ill_t *ill = ipif->ipif_ill; 16586 ill_t *ill_v4, *ill_v6; 16587 int err = 0; 16588 phyint_t *phyi; 16589 phyint_t *phyi_tmp; 16590 struct lifreq *lifr; 16591 mblk_t *mp1; 16592 char *groupname; 16593 ipsq_t *ipsq; 16594 ip_stack_t *ipst = ill->ill_ipst; 16595 16596 ASSERT(IAM_WRITER_IPIF(ipif)); 16597 16598 /* Existance verified in ip_wput_nondata */ 16599 mp1 = mp->b_cont->b_cont; 16600 lifr = (struct lifreq *)mp1->b_rptr; 16601 groupname = lifr->lifr_groupname; 16602 16603 if (ipif->ipif_id != 0) 16604 return (EINVAL); 16605 16606 phyi = ill->ill_phyint; 16607 ASSERT(phyi != NULL); 16608 16609 if (phyi->phyint_flags & PHYI_VIRTUAL) 16610 return (EINVAL); 16611 16612 tmp = groupname; 16613 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16614 ; 16615 16616 if (i == LIFNAMSIZ) { 16617 /* no null termination */ 16618 return (EINVAL); 16619 } 16620 16621 /* 16622 * Calculate the namelen exclusive of the null 16623 * termination character. 16624 */ 16625 namelen = tmp - groupname; 16626 16627 ill_v4 = phyi->phyint_illv4; 16628 ill_v6 = phyi->phyint_illv6; 16629 16630 /* 16631 * ILL cannot be part of a usesrc group and and IPMP group at the 16632 * same time. No need to grab the ill_g_usesrc_lock here, see 16633 * synchronization notes in ip.c 16634 */ 16635 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16636 return (EINVAL); 16637 } 16638 16639 /* 16640 * mark the ill as changing. 16641 * this should queue all new requests on the syncq. 16642 */ 16643 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16644 16645 if (ill_v4 != NULL) 16646 ill_v4->ill_state_flags |= ILL_CHANGING; 16647 if (ill_v6 != NULL) 16648 ill_v6->ill_state_flags |= ILL_CHANGING; 16649 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16650 16651 if (namelen == 0) { 16652 /* 16653 * Null string means remove this interface from the 16654 * existing group. 16655 */ 16656 if (phyi->phyint_groupname_len == 0) { 16657 /* 16658 * Never was in a group. 16659 */ 16660 err = 0; 16661 goto done; 16662 } 16663 16664 /* 16665 * IPv4 or IPv6 may be temporarily out of the group when all 16666 * the ipifs are down. Thus, we need to check for ill_group to 16667 * be non-NULL. 16668 */ 16669 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16670 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16671 mutex_enter(&ill_v4->ill_lock); 16672 if (!ill_is_quiescent(ill_v4)) { 16673 /* 16674 * ipsq_pending_mp_add will not fail since 16675 * connp is NULL 16676 */ 16677 (void) ipsq_pending_mp_add(NULL, 16678 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16679 mutex_exit(&ill_v4->ill_lock); 16680 err = EINPROGRESS; 16681 goto done; 16682 } 16683 mutex_exit(&ill_v4->ill_lock); 16684 } 16685 16686 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16687 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16688 mutex_enter(&ill_v6->ill_lock); 16689 if (!ill_is_quiescent(ill_v6)) { 16690 (void) ipsq_pending_mp_add(NULL, 16691 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16692 mutex_exit(&ill_v6->ill_lock); 16693 err = EINPROGRESS; 16694 goto done; 16695 } 16696 mutex_exit(&ill_v6->ill_lock); 16697 } 16698 16699 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16700 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16701 mutex_enter(&phyi->phyint_lock); 16702 ASSERT(phyi->phyint_groupname != NULL); 16703 mi_free(phyi->phyint_groupname); 16704 phyi->phyint_groupname = NULL; 16705 phyi->phyint_groupname_len = 0; 16706 16707 /* Restore the ifindex used to be the per interface one */ 16708 phyi->phyint_group_ifindex = 0; 16709 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16710 mutex_exit(&phyi->phyint_lock); 16711 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16712 rw_exit(&ipst->ips_ill_g_lock); 16713 err = ill_up_ipifs(ill, q, mp); 16714 16715 /* 16716 * set the split flag so that the ipsq can be split 16717 */ 16718 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16719 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16720 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16721 16722 } else { 16723 if (phyi->phyint_groupname_len != 0) { 16724 ASSERT(phyi->phyint_groupname != NULL); 16725 /* Are we inserting in the same group ? */ 16726 if (mi_strcmp(groupname, 16727 phyi->phyint_groupname) == 0) { 16728 err = 0; 16729 goto done; 16730 } 16731 } 16732 16733 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16734 /* 16735 * Merge ipsq for the group's. 16736 * This check is here as multiple groups/ills might be 16737 * sharing the same ipsq. 16738 * If we have to merege than the operation is restarted 16739 * on the new ipsq. 16740 */ 16741 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16742 if (phyi->phyint_ipsq != ipsq) { 16743 rw_exit(&ipst->ips_ill_g_lock); 16744 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16745 goto done; 16746 } 16747 /* 16748 * Running exclusive on new ipsq. 16749 */ 16750 16751 ASSERT(ipsq != NULL); 16752 ASSERT(ipsq->ipsq_writer == curthread); 16753 16754 /* 16755 * Check whether the ill_type and ill_net_type matches before 16756 * we allocate any memory so that the cleanup is easier. 16757 * 16758 * We can't group dissimilar ones as we can't load spread 16759 * packets across the group because of potential link-level 16760 * header differences. 16761 */ 16762 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16763 if (phyi_tmp != NULL) { 16764 if ((ill_v4 != NULL && 16765 phyi_tmp->phyint_illv4 != NULL) && 16766 ((ill_v4->ill_net_type != 16767 phyi_tmp->phyint_illv4->ill_net_type) || 16768 (ill_v4->ill_type != 16769 phyi_tmp->phyint_illv4->ill_type))) { 16770 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16771 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16772 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16773 rw_exit(&ipst->ips_ill_g_lock); 16774 return (EINVAL); 16775 } 16776 if ((ill_v6 != NULL && 16777 phyi_tmp->phyint_illv6 != NULL) && 16778 ((ill_v6->ill_net_type != 16779 phyi_tmp->phyint_illv6->ill_net_type) || 16780 (ill_v6->ill_type != 16781 phyi_tmp->phyint_illv6->ill_type))) { 16782 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16783 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16784 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16785 rw_exit(&ipst->ips_ill_g_lock); 16786 return (EINVAL); 16787 } 16788 } 16789 16790 rw_exit(&ipst->ips_ill_g_lock); 16791 16792 /* 16793 * bring down all v4 ipifs. 16794 */ 16795 if (ill_v4 != NULL) { 16796 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16797 } 16798 16799 /* 16800 * bring down all v6 ipifs. 16801 */ 16802 if (ill_v6 != NULL) { 16803 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16804 } 16805 16806 /* 16807 * make sure all ipifs are down and there are no active 16808 * references. Call to ipsq_pending_mp_add will not fail 16809 * since connp is NULL. 16810 */ 16811 if (ill_v4 != NULL) { 16812 mutex_enter(&ill_v4->ill_lock); 16813 if (!ill_is_quiescent(ill_v4)) { 16814 (void) ipsq_pending_mp_add(NULL, 16815 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16816 mutex_exit(&ill_v4->ill_lock); 16817 err = EINPROGRESS; 16818 goto done; 16819 } 16820 mutex_exit(&ill_v4->ill_lock); 16821 } 16822 16823 if (ill_v6 != NULL) { 16824 mutex_enter(&ill_v6->ill_lock); 16825 if (!ill_is_quiescent(ill_v6)) { 16826 (void) ipsq_pending_mp_add(NULL, 16827 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16828 mutex_exit(&ill_v6->ill_lock); 16829 err = EINPROGRESS; 16830 goto done; 16831 } 16832 mutex_exit(&ill_v6->ill_lock); 16833 } 16834 16835 /* 16836 * allocate including space for null terminator 16837 * before we insert. 16838 */ 16839 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16840 if (tmp == NULL) 16841 return (ENOMEM); 16842 16843 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16844 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16845 mutex_enter(&phyi->phyint_lock); 16846 if (phyi->phyint_groupname_len != 0) { 16847 ASSERT(phyi->phyint_groupname != NULL); 16848 mi_free(phyi->phyint_groupname); 16849 } 16850 16851 /* 16852 * setup the new group name. 16853 */ 16854 phyi->phyint_groupname = tmp; 16855 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16856 phyi->phyint_groupname_len = namelen + 1; 16857 16858 if (ipst->ips_ipmp_hook_emulation) { 16859 /* 16860 * If the group already exists we use the existing 16861 * group_ifindex, otherwise we pick a new index here. 16862 */ 16863 if (phyi_tmp != NULL) { 16864 phyi->phyint_group_ifindex = 16865 phyi_tmp->phyint_group_ifindex; 16866 } else { 16867 /* XXX We need a recovery strategy here. */ 16868 if (!ip_assign_ifindex( 16869 &phyi->phyint_group_ifindex, ipst)) 16870 cmn_err(CE_PANIC, 16871 "ip_assign_ifindex() failed"); 16872 } 16873 } 16874 /* 16875 * Select whether the netinfo and hook use the per-interface 16876 * or per-group ifindex. 16877 */ 16878 if (ipst->ips_ipmp_hook_emulation) 16879 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16880 else 16881 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16882 16883 if (ipst->ips_ipmp_hook_emulation && 16884 phyi_tmp != NULL) { 16885 /* First phyint in group - group PLUMB event */ 16886 ill_nic_info_plumb(ill, B_TRUE); 16887 } 16888 mutex_exit(&phyi->phyint_lock); 16889 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16890 rw_exit(&ipst->ips_ill_g_lock); 16891 16892 err = ill_up_ipifs(ill, q, mp); 16893 } 16894 16895 done: 16896 /* 16897 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16898 */ 16899 if (err != EINPROGRESS) { 16900 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16901 if (ill_v4 != NULL) 16902 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16903 if (ill_v6 != NULL) 16904 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16905 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16906 } 16907 return (err); 16908 } 16909 16910 /* ARGSUSED */ 16911 int 16912 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16913 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16914 { 16915 ill_t *ill; 16916 phyint_t *phyi; 16917 struct lifreq *lifr; 16918 mblk_t *mp1; 16919 16920 /* Existence verified in ip_wput_nondata */ 16921 mp1 = mp->b_cont->b_cont; 16922 lifr = (struct lifreq *)mp1->b_rptr; 16923 ill = ipif->ipif_ill; 16924 phyi = ill->ill_phyint; 16925 16926 lifr->lifr_groupname[0] = '\0'; 16927 /* 16928 * ill_group may be null if all the interfaces 16929 * are down. But still, the phyint should always 16930 * hold the name. 16931 */ 16932 if (phyi->phyint_groupname_len != 0) { 16933 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16934 phyi->phyint_groupname_len); 16935 } 16936 16937 return (0); 16938 } 16939 16940 16941 typedef struct conn_move_s { 16942 ill_t *cm_from_ill; 16943 ill_t *cm_to_ill; 16944 int cm_ifindex; 16945 } conn_move_t; 16946 16947 /* 16948 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16949 */ 16950 static void 16951 conn_move(conn_t *connp, caddr_t arg) 16952 { 16953 conn_move_t *connm; 16954 int ifindex; 16955 int i; 16956 ill_t *from_ill; 16957 ill_t *to_ill; 16958 ilg_t *ilg; 16959 ilm_t *ret_ilm; 16960 16961 connm = (conn_move_t *)arg; 16962 ifindex = connm->cm_ifindex; 16963 from_ill = connm->cm_from_ill; 16964 to_ill = connm->cm_to_ill; 16965 16966 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16967 16968 /* All multicast fields protected by conn_lock */ 16969 mutex_enter(&connp->conn_lock); 16970 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16971 if ((connp->conn_outgoing_ill == from_ill) && 16972 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16973 connp->conn_outgoing_ill = to_ill; 16974 connp->conn_incoming_ill = to_ill; 16975 } 16976 16977 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16978 16979 if ((connp->conn_multicast_ill == from_ill) && 16980 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16981 connp->conn_multicast_ill = connm->cm_to_ill; 16982 } 16983 16984 /* Change IP_XMIT_IF associations */ 16985 if ((connp->conn_xmit_if_ill == from_ill) && 16986 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16987 connp->conn_xmit_if_ill = to_ill; 16988 } 16989 /* 16990 * Change the ilg_ill to point to the new one. This assumes 16991 * ilm_move_v6 has moved the ilms to new_ill and the driver 16992 * has been told to receive packets on this interface. 16993 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16994 * But when doing a FAILOVER, it might fail with ENOMEM and so 16995 * some ilms may not have moved. We check to see whether 16996 * the ilms have moved to to_ill. We can't check on from_ill 16997 * as in the process of moving, we could have split an ilm 16998 * in to two - which has the same orig_ifindex and v6group. 16999 * 17000 * For IPv4, ilg_ipif moves implicitly. The code below really 17001 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 17002 */ 17003 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 17004 ilg = &connp->conn_ilg[i]; 17005 if ((ilg->ilg_ill == from_ill) && 17006 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 17007 /* ifindex != 0 indicates failback */ 17008 if (ifindex != 0) { 17009 connp->conn_ilg[i].ilg_ill = to_ill; 17010 continue; 17011 } 17012 17013 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 17014 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 17015 connp->conn_zoneid); 17016 17017 if (ret_ilm != NULL) 17018 connp->conn_ilg[i].ilg_ill = to_ill; 17019 } 17020 } 17021 mutex_exit(&connp->conn_lock); 17022 } 17023 17024 static void 17025 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 17026 { 17027 conn_move_t connm; 17028 ip_stack_t *ipst = from_ill->ill_ipst; 17029 17030 connm.cm_from_ill = from_ill; 17031 connm.cm_to_ill = to_ill; 17032 connm.cm_ifindex = ifindex; 17033 17034 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 17035 } 17036 17037 /* 17038 * ilm has been moved from from_ill to to_ill. 17039 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 17040 * appropriately. 17041 * 17042 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 17043 * the code there de-references ipif_ill to get the ill to 17044 * send multicast requests. It does not work as ipif is on its 17045 * move and already moved when this function is called. 17046 * Thus, we need to use from_ill and to_ill send down multicast 17047 * requests. 17048 */ 17049 static void 17050 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 17051 { 17052 ipif_t *ipif; 17053 ilm_t *ilm; 17054 17055 /* 17056 * See whether we need to send down DL_ENABMULTI_REQ on 17057 * to_ill as ilm has just been added. 17058 */ 17059 ASSERT(IAM_WRITER_ILL(to_ill)); 17060 ASSERT(IAM_WRITER_ILL(from_ill)); 17061 17062 ILM_WALKER_HOLD(to_ill); 17063 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 17064 17065 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 17066 continue; 17067 /* 17068 * no locks held, ill/ipif cannot dissappear as long 17069 * as we are writer. 17070 */ 17071 ipif = to_ill->ill_ipif; 17072 /* 17073 * No need to hold any lock as we are the writer and this 17074 * can only be changed by a writer. 17075 */ 17076 ilm->ilm_is_new = B_FALSE; 17077 17078 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 17079 ipif->ipif_flags & IPIF_POINTOPOINT) { 17080 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 17081 "resolver\n")); 17082 continue; /* Must be IRE_IF_NORESOLVER */ 17083 } 17084 17085 17086 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17087 ip1dbg(("ilm_send_multicast_reqs: " 17088 "to_ill MULTI_BCAST\n")); 17089 goto from; 17090 } 17091 17092 if (to_ill->ill_isv6) 17093 mld_joingroup(ilm); 17094 else 17095 igmp_joingroup(ilm); 17096 17097 if (to_ill->ill_ipif_up_count == 0) { 17098 /* 17099 * Nobody there. All multicast addresses will be 17100 * re-joined when we get the DL_BIND_ACK bringing the 17101 * interface up. 17102 */ 17103 ilm->ilm_notify_driver = B_FALSE; 17104 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 17105 goto from; 17106 } 17107 17108 /* 17109 * For allmulti address, we want to join on only one interface. 17110 * Checking for ilm_numentries_v6 is not correct as you may 17111 * find an ilm with zero address on to_ill, but we may not 17112 * have nominated to_ill for receiving. Thus, if we have 17113 * nominated from_ill (ill_join_allmulti is set), nominate 17114 * only if to_ill is not already nominated (to_ill normally 17115 * should not have been nominated if "from_ill" has already 17116 * been nominated. As we don't prevent failovers from happening 17117 * across groups, we don't assert). 17118 */ 17119 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17120 /* 17121 * There is no need to hold ill locks as we are 17122 * writer on both ills and when ill_join_allmulti 17123 * is changed the thread is always a writer. 17124 */ 17125 if (from_ill->ill_join_allmulti && 17126 !to_ill->ill_join_allmulti) { 17127 (void) ip_join_allmulti(to_ill->ill_ipif); 17128 } 17129 } else if (ilm->ilm_notify_driver) { 17130 17131 /* 17132 * This is a newly moved ilm so we need to tell the 17133 * driver about the new group. There can be more than 17134 * one ilm's for the same group in the list each with a 17135 * different orig_ifindex. We have to inform the driver 17136 * once. In ilm_move_v[4,6] we only set the flag 17137 * ilm_notify_driver for the first ilm. 17138 */ 17139 17140 (void) ip_ll_send_enabmulti_req(to_ill, 17141 &ilm->ilm_v6addr); 17142 } 17143 17144 ilm->ilm_notify_driver = B_FALSE; 17145 17146 /* 17147 * See whether we need to send down DL_DISABMULTI_REQ on 17148 * from_ill as ilm has just been removed. 17149 */ 17150 from: 17151 ipif = from_ill->ill_ipif; 17152 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 17153 ipif->ipif_flags & IPIF_POINTOPOINT) { 17154 ip1dbg(("ilm_send_multicast_reqs: " 17155 "from_ill not resolver\n")); 17156 continue; /* Must be IRE_IF_NORESOLVER */ 17157 } 17158 17159 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17160 ip1dbg(("ilm_send_multicast_reqs: " 17161 "from_ill MULTI_BCAST\n")); 17162 continue; 17163 } 17164 17165 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17166 if (from_ill->ill_join_allmulti) 17167 (void) ip_leave_allmulti(from_ill->ill_ipif); 17168 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17169 (void) ip_ll_send_disabmulti_req(from_ill, 17170 &ilm->ilm_v6addr); 17171 } 17172 } 17173 ILM_WALKER_RELE(to_ill); 17174 } 17175 17176 /* 17177 * This function is called when all multicast memberships needs 17178 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17179 * called only once unlike the IPv4 counterpart where it is called after 17180 * every logical interface is moved. The reason is due to multicast 17181 * memberships are joined using an interface address in IPv4 while in 17182 * IPv6, interface index is used. 17183 */ 17184 static void 17185 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17186 { 17187 ilm_t *ilm; 17188 ilm_t *ilm_next; 17189 ilm_t *new_ilm; 17190 ilm_t **ilmp; 17191 int count; 17192 char buf[INET6_ADDRSTRLEN]; 17193 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17194 ip_stack_t *ipst = from_ill->ill_ipst; 17195 17196 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17197 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17198 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17199 17200 if (ifindex == 0) { 17201 /* 17202 * Form the solicited node mcast address which is used later. 17203 */ 17204 ipif_t *ipif; 17205 17206 ipif = from_ill->ill_ipif; 17207 ASSERT(ipif->ipif_id == 0); 17208 17209 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17210 } 17211 17212 ilmp = &from_ill->ill_ilm; 17213 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17214 ilm_next = ilm->ilm_next; 17215 17216 if (ilm->ilm_flags & ILM_DELETED) { 17217 ilmp = &ilm->ilm_next; 17218 continue; 17219 } 17220 17221 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17222 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17223 ASSERT(ilm->ilm_orig_ifindex != 0); 17224 if (ilm->ilm_orig_ifindex == ifindex) { 17225 /* 17226 * We are failing back multicast memberships. 17227 * If the same ilm exists in to_ill, it means somebody 17228 * has joined the same group there e.g. ff02::1 17229 * is joined within the kernel when the interfaces 17230 * came UP. 17231 */ 17232 ASSERT(ilm->ilm_ipif == NULL); 17233 if (new_ilm != NULL) { 17234 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17235 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17236 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17237 new_ilm->ilm_is_new = B_TRUE; 17238 } 17239 } else { 17240 /* 17241 * check if we can just move the ilm 17242 */ 17243 if (from_ill->ill_ilm_walker_cnt != 0) { 17244 /* 17245 * We have walkers we cannot move 17246 * the ilm, so allocate a new ilm, 17247 * this (old) ilm will be marked 17248 * ILM_DELETED at the end of the loop 17249 * and will be freed when the 17250 * last walker exits. 17251 */ 17252 new_ilm = (ilm_t *)mi_zalloc 17253 (sizeof (ilm_t)); 17254 if (new_ilm == NULL) { 17255 ip0dbg(("ilm_move_v6: " 17256 "FAILBACK of IPv6" 17257 " multicast address %s : " 17258 "from %s to" 17259 " %s failed : ENOMEM \n", 17260 inet_ntop(AF_INET6, 17261 &ilm->ilm_v6addr, buf, 17262 sizeof (buf)), 17263 from_ill->ill_name, 17264 to_ill->ill_name)); 17265 17266 ilmp = &ilm->ilm_next; 17267 continue; 17268 } 17269 *new_ilm = *ilm; 17270 /* 17271 * we don't want new_ilm linked to 17272 * ilm's filter list. 17273 */ 17274 new_ilm->ilm_filter = NULL; 17275 } else { 17276 /* 17277 * No walkers we can move the ilm. 17278 * lets take it out of the list. 17279 */ 17280 *ilmp = ilm->ilm_next; 17281 ilm->ilm_next = NULL; 17282 new_ilm = ilm; 17283 } 17284 17285 /* 17286 * if this is the first ilm for the group 17287 * set ilm_notify_driver so that we notify the 17288 * driver in ilm_send_multicast_reqs. 17289 */ 17290 if (ilm_lookup_ill_v6(to_ill, 17291 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17292 new_ilm->ilm_notify_driver = B_TRUE; 17293 17294 new_ilm->ilm_ill = to_ill; 17295 /* Add to the to_ill's list */ 17296 new_ilm->ilm_next = to_ill->ill_ilm; 17297 to_ill->ill_ilm = new_ilm; 17298 /* 17299 * set the flag so that mld_joingroup is 17300 * called in ilm_send_multicast_reqs(). 17301 */ 17302 new_ilm->ilm_is_new = B_TRUE; 17303 } 17304 goto bottom; 17305 } else if (ifindex != 0) { 17306 /* 17307 * If this is FAILBACK (ifindex != 0) and the ifindex 17308 * has not matched above, look at the next ilm. 17309 */ 17310 ilmp = &ilm->ilm_next; 17311 continue; 17312 } 17313 /* 17314 * If we are here, it means ifindex is 0. Failover 17315 * everything. 17316 * 17317 * We need to handle solicited node mcast address 17318 * and all_nodes mcast address differently as they 17319 * are joined witin the kenrel (ipif_multicast_up) 17320 * and potentially from the userland. We are called 17321 * after the ipifs of from_ill has been moved. 17322 * If we still find ilms on ill with solicited node 17323 * mcast address or all_nodes mcast address, it must 17324 * belong to the UP interface that has not moved e.g. 17325 * ipif_id 0 with the link local prefix does not move. 17326 * We join this on the new ill accounting for all the 17327 * userland memberships so that applications don't 17328 * see any failure. 17329 * 17330 * We need to make sure that we account only for the 17331 * solicited node and all node multicast addresses 17332 * that was brought UP on these. In the case of 17333 * a failover from A to B, we might have ilms belonging 17334 * to A (ilm_orig_ifindex pointing at A) on B accounting 17335 * for the membership from the userland. If we are failing 17336 * over from B to C now, we will find the ones belonging 17337 * to A on B. These don't account for the ill_ipif_up_count. 17338 * They just move from B to C. The check below on 17339 * ilm_orig_ifindex ensures that. 17340 */ 17341 if ((ilm->ilm_orig_ifindex == 17342 from_ill->ill_phyint->phyint_ifindex) && 17343 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17344 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17345 &ilm->ilm_v6addr))) { 17346 ASSERT(ilm->ilm_refcnt > 0); 17347 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17348 /* 17349 * For indentation reasons, we are not using a 17350 * "else" here. 17351 */ 17352 if (count == 0) { 17353 ilmp = &ilm->ilm_next; 17354 continue; 17355 } 17356 ilm->ilm_refcnt -= count; 17357 if (new_ilm != NULL) { 17358 /* 17359 * Can find one with the same 17360 * ilm_orig_ifindex, if we are failing 17361 * over to a STANDBY. This happens 17362 * when somebody wants to join a group 17363 * on a STANDBY interface and we 17364 * internally join on a different one. 17365 * If we had joined on from_ill then, a 17366 * failover now will find a new ilm 17367 * with this index. 17368 */ 17369 ip1dbg(("ilm_move_v6: FAILOVER, found" 17370 " new ilm on %s, group address %s\n", 17371 to_ill->ill_name, 17372 inet_ntop(AF_INET6, 17373 &ilm->ilm_v6addr, buf, 17374 sizeof (buf)))); 17375 new_ilm->ilm_refcnt += count; 17376 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17377 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17378 new_ilm->ilm_is_new = B_TRUE; 17379 } 17380 } else { 17381 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17382 if (new_ilm == NULL) { 17383 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17384 " multicast address %s : from %s to" 17385 " %s failed : ENOMEM \n", 17386 inet_ntop(AF_INET6, 17387 &ilm->ilm_v6addr, buf, 17388 sizeof (buf)), from_ill->ill_name, 17389 to_ill->ill_name)); 17390 ilmp = &ilm->ilm_next; 17391 continue; 17392 } 17393 *new_ilm = *ilm; 17394 new_ilm->ilm_filter = NULL; 17395 new_ilm->ilm_refcnt = count; 17396 new_ilm->ilm_timer = INFINITY; 17397 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17398 new_ilm->ilm_is_new = B_TRUE; 17399 /* 17400 * If the to_ill has not joined this 17401 * group we need to tell the driver in 17402 * ill_send_multicast_reqs. 17403 */ 17404 if (ilm_lookup_ill_v6(to_ill, 17405 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17406 new_ilm->ilm_notify_driver = B_TRUE; 17407 17408 new_ilm->ilm_ill = to_ill; 17409 /* Add to the to_ill's list */ 17410 new_ilm->ilm_next = to_ill->ill_ilm; 17411 to_ill->ill_ilm = new_ilm; 17412 ASSERT(new_ilm->ilm_ipif == NULL); 17413 } 17414 if (ilm->ilm_refcnt == 0) { 17415 goto bottom; 17416 } else { 17417 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17418 CLEAR_SLIST(new_ilm->ilm_filter); 17419 ilmp = &ilm->ilm_next; 17420 } 17421 continue; 17422 } else { 17423 /* 17424 * ifindex = 0 means, move everything pointing at 17425 * from_ill. We are doing this becuase ill has 17426 * either FAILED or became INACTIVE. 17427 * 17428 * As we would like to move things later back to 17429 * from_ill, we want to retain the identity of this 17430 * ilm. Thus, we don't blindly increment the reference 17431 * count on the ilms matching the address alone. We 17432 * need to match on the ilm_orig_index also. new_ilm 17433 * was obtained by matching ilm_orig_index also. 17434 */ 17435 if (new_ilm != NULL) { 17436 /* 17437 * This is possible only if a previous restore 17438 * was incomplete i.e restore to 17439 * ilm_orig_ifindex left some ilms because 17440 * of some failures. Thus when we are failing 17441 * again, we might find our old friends there. 17442 */ 17443 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17444 " on %s, group address %s\n", 17445 to_ill->ill_name, 17446 inet_ntop(AF_INET6, 17447 &ilm->ilm_v6addr, buf, 17448 sizeof (buf)))); 17449 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17450 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17451 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17452 new_ilm->ilm_is_new = B_TRUE; 17453 } 17454 } else { 17455 if (from_ill->ill_ilm_walker_cnt != 0) { 17456 new_ilm = (ilm_t *) 17457 mi_zalloc(sizeof (ilm_t)); 17458 if (new_ilm == NULL) { 17459 ip0dbg(("ilm_move_v6: " 17460 "FAILOVER of IPv6" 17461 " multicast address %s : " 17462 "from %s to" 17463 " %s failed : ENOMEM \n", 17464 inet_ntop(AF_INET6, 17465 &ilm->ilm_v6addr, buf, 17466 sizeof (buf)), 17467 from_ill->ill_name, 17468 to_ill->ill_name)); 17469 17470 ilmp = &ilm->ilm_next; 17471 continue; 17472 } 17473 *new_ilm = *ilm; 17474 new_ilm->ilm_filter = NULL; 17475 } else { 17476 *ilmp = ilm->ilm_next; 17477 new_ilm = ilm; 17478 } 17479 /* 17480 * If the to_ill has not joined this 17481 * group we need to tell the driver in 17482 * ill_send_multicast_reqs. 17483 */ 17484 if (ilm_lookup_ill_v6(to_ill, 17485 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17486 new_ilm->ilm_notify_driver = B_TRUE; 17487 17488 /* Add to the to_ill's list */ 17489 new_ilm->ilm_next = to_ill->ill_ilm; 17490 to_ill->ill_ilm = new_ilm; 17491 ASSERT(ilm->ilm_ipif == NULL); 17492 new_ilm->ilm_ill = to_ill; 17493 new_ilm->ilm_is_new = B_TRUE; 17494 } 17495 17496 } 17497 17498 bottom: 17499 /* 17500 * Revert multicast filter state to (EXCLUDE, NULL). 17501 * new_ilm->ilm_is_new should already be set if needed. 17502 */ 17503 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17504 CLEAR_SLIST(new_ilm->ilm_filter); 17505 /* 17506 * We allocated/got a new ilm, free the old one. 17507 */ 17508 if (new_ilm != ilm) { 17509 if (from_ill->ill_ilm_walker_cnt == 0) { 17510 *ilmp = ilm->ilm_next; 17511 ilm->ilm_next = NULL; 17512 FREE_SLIST(ilm->ilm_filter); 17513 FREE_SLIST(ilm->ilm_pendsrcs); 17514 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17515 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17516 mi_free((char *)ilm); 17517 } else { 17518 ilm->ilm_flags |= ILM_DELETED; 17519 from_ill->ill_ilm_cleanup_reqd = 1; 17520 ilmp = &ilm->ilm_next; 17521 } 17522 } 17523 } 17524 } 17525 17526 /* 17527 * Move all the multicast memberships to to_ill. Called when 17528 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17529 * different from IPv6 counterpart as multicast memberships are associated 17530 * with ills in IPv6. This function is called after every ipif is moved 17531 * unlike IPv6, where it is moved only once. 17532 */ 17533 static void 17534 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17535 { 17536 ilm_t *ilm; 17537 ilm_t *ilm_next; 17538 ilm_t *new_ilm; 17539 ilm_t **ilmp; 17540 ip_stack_t *ipst = from_ill->ill_ipst; 17541 17542 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17543 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17544 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17545 17546 ilmp = &from_ill->ill_ilm; 17547 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17548 ilm_next = ilm->ilm_next; 17549 17550 if (ilm->ilm_flags & ILM_DELETED) { 17551 ilmp = &ilm->ilm_next; 17552 continue; 17553 } 17554 17555 ASSERT(ilm->ilm_ipif != NULL); 17556 17557 if (ilm->ilm_ipif != ipif) { 17558 ilmp = &ilm->ilm_next; 17559 continue; 17560 } 17561 17562 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17563 htonl(INADDR_ALLHOSTS_GROUP)) { 17564 /* 17565 * We joined this in ipif_multicast_up 17566 * and we never did an ipif_multicast_down 17567 * for IPv4. If nobody else from the userland 17568 * has reference, we free the ilm, and later 17569 * when this ipif comes up on the new ill, 17570 * we will join this again. 17571 */ 17572 if (--ilm->ilm_refcnt == 0) 17573 goto delete_ilm; 17574 17575 new_ilm = ilm_lookup_ipif(ipif, 17576 V4_PART_OF_V6(ilm->ilm_v6addr)); 17577 if (new_ilm != NULL) { 17578 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17579 /* 17580 * We still need to deal with the from_ill. 17581 */ 17582 new_ilm->ilm_is_new = B_TRUE; 17583 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17584 CLEAR_SLIST(new_ilm->ilm_filter); 17585 goto delete_ilm; 17586 } 17587 /* 17588 * If we could not find one e.g. ipif is 17589 * still down on to_ill, we add this ilm 17590 * on ill_new to preserve the reference 17591 * count. 17592 */ 17593 } 17594 /* 17595 * When ipifs move, ilms always move with it 17596 * to the NEW ill. Thus we should never be 17597 * able to find ilm till we really move it here. 17598 */ 17599 ASSERT(ilm_lookup_ipif(ipif, 17600 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17601 17602 if (from_ill->ill_ilm_walker_cnt != 0) { 17603 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17604 if (new_ilm == NULL) { 17605 char buf[INET6_ADDRSTRLEN]; 17606 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17607 " multicast address %s : " 17608 "from %s to" 17609 " %s failed : ENOMEM \n", 17610 inet_ntop(AF_INET, 17611 &ilm->ilm_v6addr, buf, 17612 sizeof (buf)), 17613 from_ill->ill_name, 17614 to_ill->ill_name)); 17615 17616 ilmp = &ilm->ilm_next; 17617 continue; 17618 } 17619 *new_ilm = *ilm; 17620 /* We don't want new_ilm linked to ilm's filter list */ 17621 new_ilm->ilm_filter = NULL; 17622 } else { 17623 /* Remove from the list */ 17624 *ilmp = ilm->ilm_next; 17625 new_ilm = ilm; 17626 } 17627 17628 /* 17629 * If we have never joined this group on the to_ill 17630 * make sure we tell the driver. 17631 */ 17632 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17633 ALL_ZONES) == NULL) 17634 new_ilm->ilm_notify_driver = B_TRUE; 17635 17636 /* Add to the to_ill's list */ 17637 new_ilm->ilm_next = to_ill->ill_ilm; 17638 to_ill->ill_ilm = new_ilm; 17639 new_ilm->ilm_is_new = B_TRUE; 17640 17641 /* 17642 * Revert multicast filter state to (EXCLUDE, NULL) 17643 */ 17644 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17645 CLEAR_SLIST(new_ilm->ilm_filter); 17646 17647 /* 17648 * Delete only if we have allocated a new ilm. 17649 */ 17650 if (new_ilm != ilm) { 17651 delete_ilm: 17652 if (from_ill->ill_ilm_walker_cnt == 0) { 17653 /* Remove from the list */ 17654 *ilmp = ilm->ilm_next; 17655 ilm->ilm_next = NULL; 17656 FREE_SLIST(ilm->ilm_filter); 17657 FREE_SLIST(ilm->ilm_pendsrcs); 17658 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17659 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17660 mi_free((char *)ilm); 17661 } else { 17662 ilm->ilm_flags |= ILM_DELETED; 17663 from_ill->ill_ilm_cleanup_reqd = 1; 17664 ilmp = &ilm->ilm_next; 17665 } 17666 } 17667 } 17668 } 17669 17670 static uint_t 17671 ipif_get_id(ill_t *ill, uint_t id) 17672 { 17673 uint_t unit; 17674 ipif_t *tipif; 17675 boolean_t found = B_FALSE; 17676 ip_stack_t *ipst = ill->ill_ipst; 17677 17678 /* 17679 * During failback, we want to go back to the same id 17680 * instead of the smallest id so that the original 17681 * configuration is maintained. id is non-zero in that 17682 * case. 17683 */ 17684 if (id != 0) { 17685 /* 17686 * While failing back, if we still have an ipif with 17687 * MAX_ADDRS_PER_IF, it means this will be replaced 17688 * as soon as we return from this function. It was 17689 * to set to MAX_ADDRS_PER_IF by the caller so that 17690 * we can choose the smallest id. Thus we return zero 17691 * in that case ignoring the hint. 17692 */ 17693 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17694 return (0); 17695 for (tipif = ill->ill_ipif; tipif != NULL; 17696 tipif = tipif->ipif_next) { 17697 if (tipif->ipif_id == id) { 17698 found = B_TRUE; 17699 break; 17700 } 17701 } 17702 /* 17703 * If somebody already plumbed another logical 17704 * with the same id, we won't be able to find it. 17705 */ 17706 if (!found) 17707 return (id); 17708 } 17709 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17710 found = B_FALSE; 17711 for (tipif = ill->ill_ipif; tipif != NULL; 17712 tipif = tipif->ipif_next) { 17713 if (tipif->ipif_id == unit) { 17714 found = B_TRUE; 17715 break; 17716 } 17717 } 17718 if (!found) 17719 break; 17720 } 17721 return (unit); 17722 } 17723 17724 /* ARGSUSED */ 17725 static int 17726 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17727 ipif_t **rep_ipif_ptr) 17728 { 17729 ill_t *from_ill; 17730 ipif_t *rep_ipif; 17731 uint_t unit; 17732 int err = 0; 17733 ipif_t *to_ipif; 17734 struct iocblk *iocp; 17735 boolean_t failback_cmd; 17736 boolean_t remove_ipif; 17737 int rc; 17738 ip_stack_t *ipst; 17739 17740 ASSERT(IAM_WRITER_ILL(to_ill)); 17741 ASSERT(IAM_WRITER_IPIF(ipif)); 17742 17743 iocp = (struct iocblk *)mp->b_rptr; 17744 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17745 remove_ipif = B_FALSE; 17746 17747 from_ill = ipif->ipif_ill; 17748 ipst = from_ill->ill_ipst; 17749 17750 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17751 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17752 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17753 17754 /* 17755 * Don't move LINK LOCAL addresses as they are tied to 17756 * physical interface. 17757 */ 17758 if (from_ill->ill_isv6 && 17759 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17760 ipif->ipif_was_up = B_FALSE; 17761 IPIF_UNMARK_MOVING(ipif); 17762 return (0); 17763 } 17764 17765 /* 17766 * We set the ipif_id to maximum so that the search for 17767 * ipif_id will pick the lowest number i.e 0 in the 17768 * following 2 cases : 17769 * 17770 * 1) We have a replacement ipif at the head of to_ill. 17771 * We can't remove it yet as we can exceed ip_addrs_per_if 17772 * on to_ill and hence the MOVE might fail. We want to 17773 * remove it only if we could move the ipif. Thus, by 17774 * setting it to the MAX value, we make the search in 17775 * ipif_get_id return the zeroth id. 17776 * 17777 * 2) When DR pulls out the NIC and re-plumbs the interface, 17778 * we might just have a zero address plumbed on the ipif 17779 * with zero id in the case of IPv4. We remove that while 17780 * doing the failback. We want to remove it only if we 17781 * could move the ipif. Thus, by setting it to the MAX 17782 * value, we make the search in ipif_get_id return the 17783 * zeroth id. 17784 * 17785 * Both (1) and (2) are done only when when we are moving 17786 * an ipif (either due to failover/failback) which originally 17787 * belonged to this interface i.e the ipif_orig_ifindex is 17788 * the same as to_ill's ifindex. This is needed so that 17789 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17790 * from B -> A (B is being removed from the group) and 17791 * FAILBACK from A -> B restores the original configuration. 17792 * Without the check for orig_ifindex, the second FAILOVER 17793 * could make the ipif belonging to B replace the A's zeroth 17794 * ipif and the subsequent failback re-creating the replacement 17795 * ipif again. 17796 * 17797 * NOTE : We created the replacement ipif when we did a 17798 * FAILOVER (See below). We could check for FAILBACK and 17799 * then look for replacement ipif to be removed. But we don't 17800 * want to do that because we wan't to allow the possibility 17801 * of a FAILOVER from A -> B (which creates the replacement ipif), 17802 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17803 * from B -> A. 17804 */ 17805 to_ipif = to_ill->ill_ipif; 17806 if ((to_ill->ill_phyint->phyint_ifindex == 17807 ipif->ipif_orig_ifindex) && 17808 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17809 ASSERT(to_ipif->ipif_id == 0); 17810 remove_ipif = B_TRUE; 17811 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17812 } 17813 /* 17814 * Find the lowest logical unit number on the to_ill. 17815 * If we are failing back, try to get the original id 17816 * rather than the lowest one so that the original 17817 * configuration is maintained. 17818 * 17819 * XXX need a better scheme for this. 17820 */ 17821 if (failback_cmd) { 17822 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17823 } else { 17824 unit = ipif_get_id(to_ill, 0); 17825 } 17826 17827 /* Reset back to zero in case we fail below */ 17828 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17829 to_ipif->ipif_id = 0; 17830 17831 if (unit == ipst->ips_ip_addrs_per_if) { 17832 ipif->ipif_was_up = B_FALSE; 17833 IPIF_UNMARK_MOVING(ipif); 17834 return (EINVAL); 17835 } 17836 17837 /* 17838 * ipif is ready to move from "from_ill" to "to_ill". 17839 * 17840 * 1) If we are moving ipif with id zero, create a 17841 * replacement ipif for this ipif on from_ill. If this fails 17842 * fail the MOVE operation. 17843 * 17844 * 2) Remove the replacement ipif on to_ill if any. 17845 * We could remove the replacement ipif when we are moving 17846 * the ipif with id zero. But what if somebody already 17847 * unplumbed it ? Thus we always remove it if it is present. 17848 * We want to do it only if we are sure we are going to 17849 * move the ipif to to_ill which is why there are no 17850 * returns due to error till ipif is linked to to_ill. 17851 * Note that the first ipif that we failback will always 17852 * be zero if it is present. 17853 */ 17854 if (ipif->ipif_id == 0) { 17855 ipaddr_t inaddr_any = INADDR_ANY; 17856 17857 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17858 if (rep_ipif == NULL) { 17859 ipif->ipif_was_up = B_FALSE; 17860 IPIF_UNMARK_MOVING(ipif); 17861 return (ENOMEM); 17862 } 17863 *rep_ipif = ipif_zero; 17864 /* 17865 * Before we put the ipif on the list, store the addresses 17866 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17867 * assumes so. This logic is not any different from what 17868 * ipif_allocate does. 17869 */ 17870 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17871 &rep_ipif->ipif_v6lcl_addr); 17872 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17873 &rep_ipif->ipif_v6src_addr); 17874 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17875 &rep_ipif->ipif_v6subnet); 17876 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17877 &rep_ipif->ipif_v6net_mask); 17878 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17879 &rep_ipif->ipif_v6brd_addr); 17880 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17881 &rep_ipif->ipif_v6pp_dst_addr); 17882 /* 17883 * We mark IPIF_NOFAILOVER so that this can never 17884 * move. 17885 */ 17886 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17887 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17888 rep_ipif->ipif_replace_zero = B_TRUE; 17889 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17890 MUTEX_DEFAULT, NULL); 17891 rep_ipif->ipif_id = 0; 17892 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17893 rep_ipif->ipif_ill = from_ill; 17894 rep_ipif->ipif_orig_ifindex = 17895 from_ill->ill_phyint->phyint_ifindex; 17896 /* Insert at head */ 17897 rep_ipif->ipif_next = from_ill->ill_ipif; 17898 from_ill->ill_ipif = rep_ipif; 17899 /* 17900 * We don't really care to let apps know about 17901 * this interface. 17902 */ 17903 } 17904 17905 if (remove_ipif) { 17906 /* 17907 * We set to a max value above for this case to get 17908 * id zero. ASSERT that we did get one. 17909 */ 17910 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17911 rep_ipif = to_ipif; 17912 to_ill->ill_ipif = rep_ipif->ipif_next; 17913 rep_ipif->ipif_next = NULL; 17914 /* 17915 * If some apps scanned and find this interface, 17916 * it is time to let them know, so that they can 17917 * delete it. 17918 */ 17919 17920 *rep_ipif_ptr = rep_ipif; 17921 } 17922 17923 /* Get it out of the ILL interface list. */ 17924 ipif_remove(ipif, B_FALSE); 17925 17926 /* Assign the new ill */ 17927 ipif->ipif_ill = to_ill; 17928 ipif->ipif_id = unit; 17929 /* id has already been checked */ 17930 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17931 ASSERT(rc == 0); 17932 /* Let SCTP update its list */ 17933 sctp_move_ipif(ipif, from_ill, to_ill); 17934 /* 17935 * Handle the failover and failback of ipif_t between 17936 * ill_t that have differing maximum mtu values. 17937 */ 17938 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17939 if (ipif->ipif_saved_mtu == 0) { 17940 /* 17941 * As this ipif_t is moving to an ill_t 17942 * that has a lower ill_max_mtu, its 17943 * ipif_mtu needs to be saved so it can 17944 * be restored during failback or during 17945 * failover to an ill_t which has a 17946 * higher ill_max_mtu. 17947 */ 17948 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17949 ipif->ipif_mtu = to_ill->ill_max_mtu; 17950 } else { 17951 /* 17952 * The ipif_t is, once again, moving to 17953 * an ill_t that has a lower maximum mtu 17954 * value. 17955 */ 17956 ipif->ipif_mtu = to_ill->ill_max_mtu; 17957 } 17958 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17959 ipif->ipif_saved_mtu != 0) { 17960 /* 17961 * The mtu of this ipif_t had to be reduced 17962 * during an earlier failover; this is an 17963 * opportunity for it to be increased (either as 17964 * part of another failover or a failback). 17965 */ 17966 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17967 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17968 ipif->ipif_saved_mtu = 0; 17969 } else { 17970 ipif->ipif_mtu = to_ill->ill_max_mtu; 17971 } 17972 } 17973 17974 /* 17975 * We preserve all the other fields of the ipif including 17976 * ipif_saved_ire_mp. The routes that are saved here will 17977 * be recreated on the new interface and back on the old 17978 * interface when we move back. 17979 */ 17980 ASSERT(ipif->ipif_arp_del_mp == NULL); 17981 17982 return (err); 17983 } 17984 17985 static int 17986 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17987 int ifindex, ipif_t **rep_ipif_ptr) 17988 { 17989 ipif_t *mipif; 17990 ipif_t *ipif_next; 17991 int err; 17992 17993 /* 17994 * We don't really try to MOVE back things if some of the 17995 * operations fail. The daemon will take care of moving again 17996 * later on. 17997 */ 17998 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17999 ipif_next = mipif->ipif_next; 18000 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 18001 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 18002 18003 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 18004 18005 /* 18006 * When the MOVE fails, it is the job of the 18007 * application to take care of this properly 18008 * i.e try again if it is ENOMEM. 18009 */ 18010 if (mipif->ipif_ill != from_ill) { 18011 /* 18012 * ipif has moved. 18013 * 18014 * Move the multicast memberships associated 18015 * with this ipif to the new ill. For IPv6, we 18016 * do it once after all the ipifs are moved 18017 * (in ill_move) as they are not associated 18018 * with ipifs. 18019 * 18020 * We need to move the ilms as the ipif has 18021 * already been moved to a new ill even 18022 * in the case of errors. Neither 18023 * ilm_free(ipif) will find the ilm 18024 * when somebody unplumbs this ipif nor 18025 * ilm_delete(ilm) will be able to find the 18026 * ilm, if we don't move now. 18027 */ 18028 if (!from_ill->ill_isv6) 18029 ilm_move_v4(from_ill, to_ill, mipif); 18030 } 18031 18032 if (err != 0) 18033 return (err); 18034 } 18035 } 18036 return (0); 18037 } 18038 18039 static int 18040 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 18041 { 18042 int ifindex; 18043 int err; 18044 struct iocblk *iocp; 18045 ipif_t *ipif; 18046 ipif_t *rep_ipif_ptr = NULL; 18047 ipif_t *from_ipif = NULL; 18048 boolean_t check_rep_if = B_FALSE; 18049 ip_stack_t *ipst = from_ill->ill_ipst; 18050 18051 iocp = (struct iocblk *)mp->b_rptr; 18052 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 18053 /* 18054 * Move everything pointing at from_ill to to_ill. 18055 * We acheive this by passing in 0 as ifindex. 18056 */ 18057 ifindex = 0; 18058 } else { 18059 /* 18060 * Move everything pointing at from_ill whose original 18061 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 18062 * We acheive this by passing in ifindex rather than 0. 18063 * Multicast vifs, ilgs move implicitly because ipifs move. 18064 */ 18065 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 18066 ifindex = to_ill->ill_phyint->phyint_ifindex; 18067 } 18068 18069 /* 18070 * Determine if there is at least one ipif that would move from 18071 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 18072 * ipif (if it exists) on the to_ill would be consumed as a result of 18073 * the move, in which case we need to quiesce the replacement ipif also. 18074 */ 18075 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 18076 from_ipif = from_ipif->ipif_next) { 18077 if (((ifindex == 0) || 18078 (ifindex == from_ipif->ipif_orig_ifindex)) && 18079 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 18080 check_rep_if = B_TRUE; 18081 break; 18082 } 18083 } 18084 18085 18086 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 18087 18088 GRAB_ILL_LOCKS(from_ill, to_ill); 18089 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 18090 (void) ipsq_pending_mp_add(NULL, ipif, q, 18091 mp, ILL_MOVE_OK); 18092 RELEASE_ILL_LOCKS(from_ill, to_ill); 18093 return (EINPROGRESS); 18094 } 18095 18096 /* Check if the replacement ipif is quiescent to delete */ 18097 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 18098 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 18099 to_ill->ill_ipif->ipif_state_flags |= 18100 IPIF_MOVING | IPIF_CHANGING; 18101 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 18102 (void) ipsq_pending_mp_add(NULL, ipif, q, 18103 mp, ILL_MOVE_OK); 18104 RELEASE_ILL_LOCKS(from_ill, to_ill); 18105 return (EINPROGRESS); 18106 } 18107 } 18108 RELEASE_ILL_LOCKS(from_ill, to_ill); 18109 18110 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 18111 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18112 GRAB_ILL_LOCKS(from_ill, to_ill); 18113 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 18114 18115 /* ilm_move is done inside ipif_move for IPv4 */ 18116 if (err == 0 && from_ill->ill_isv6) 18117 ilm_move_v6(from_ill, to_ill, ifindex); 18118 18119 RELEASE_ILL_LOCKS(from_ill, to_ill); 18120 rw_exit(&ipst->ips_ill_g_lock); 18121 18122 /* 18123 * send rts messages and multicast messages. 18124 */ 18125 if (rep_ipif_ptr != NULL) { 18126 if (rep_ipif_ptr->ipif_recovery_id != 0) { 18127 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 18128 rep_ipif_ptr->ipif_recovery_id = 0; 18129 } 18130 ip_rts_ifmsg(rep_ipif_ptr); 18131 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 18132 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 18133 mi_free(rep_ipif_ptr); 18134 } 18135 18136 conn_move_ill(from_ill, to_ill, ifindex); 18137 18138 return (err); 18139 } 18140 18141 /* 18142 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 18143 * Also checks for the validity of the arguments. 18144 * Note: We are already exclusive inside the from group. 18145 * It is upto the caller to release refcnt on the to_ill's. 18146 */ 18147 static int 18148 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 18149 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 18150 { 18151 int dst_index; 18152 ipif_t *ipif_v4, *ipif_v6; 18153 struct lifreq *lifr; 18154 mblk_t *mp1; 18155 boolean_t exists; 18156 sin_t *sin; 18157 int err = 0; 18158 ip_stack_t *ipst; 18159 18160 if (CONN_Q(q)) 18161 ipst = CONNQ_TO_IPST(q); 18162 else 18163 ipst = ILLQ_TO_IPST(q); 18164 18165 18166 if ((mp1 = mp->b_cont) == NULL) 18167 return (EPROTO); 18168 18169 if ((mp1 = mp1->b_cont) == NULL) 18170 return (EPROTO); 18171 18172 lifr = (struct lifreq *)mp1->b_rptr; 18173 sin = (sin_t *)&lifr->lifr_addr; 18174 18175 /* 18176 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18177 * specific operations. 18178 */ 18179 if (sin->sin_family != AF_UNSPEC) 18180 return (EINVAL); 18181 18182 /* 18183 * Get ipif with id 0. We are writer on the from ill. So we can pass 18184 * NULLs for the last 4 args and we know the lookup won't fail 18185 * with EINPROGRESS. 18186 */ 18187 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18188 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18189 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18190 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18191 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18192 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18193 18194 if (ipif_v4 == NULL && ipif_v6 == NULL) 18195 return (ENXIO); 18196 18197 if (ipif_v4 != NULL) { 18198 ASSERT(ipif_v4->ipif_refcnt != 0); 18199 if (ipif_v4->ipif_id != 0) { 18200 err = EINVAL; 18201 goto done; 18202 } 18203 18204 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18205 *ill_from_v4 = ipif_v4->ipif_ill; 18206 } 18207 18208 if (ipif_v6 != NULL) { 18209 ASSERT(ipif_v6->ipif_refcnt != 0); 18210 if (ipif_v6->ipif_id != 0) { 18211 err = EINVAL; 18212 goto done; 18213 } 18214 18215 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18216 *ill_from_v6 = ipif_v6->ipif_ill; 18217 } 18218 18219 err = 0; 18220 dst_index = lifr->lifr_movetoindex; 18221 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18222 q, mp, ip_process_ioctl, &err, ipst); 18223 if (err != 0) { 18224 /* 18225 * There could be only v6. 18226 */ 18227 if (err != ENXIO) 18228 goto done; 18229 err = 0; 18230 } 18231 18232 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18233 q, mp, ip_process_ioctl, &err, ipst); 18234 if (err != 0) { 18235 if (err != ENXIO) 18236 goto done; 18237 if (*ill_to_v4 == NULL) { 18238 err = ENXIO; 18239 goto done; 18240 } 18241 err = 0; 18242 } 18243 18244 /* 18245 * If we have something to MOVE i.e "from" not NULL, 18246 * "to" should be non-NULL. 18247 */ 18248 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18249 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18250 err = EINVAL; 18251 } 18252 18253 done: 18254 if (ipif_v4 != NULL) 18255 ipif_refrele(ipif_v4); 18256 if (ipif_v6 != NULL) 18257 ipif_refrele(ipif_v6); 18258 return (err); 18259 } 18260 18261 /* 18262 * FAILOVER and FAILBACK are modelled as MOVE operations. 18263 * 18264 * We don't check whether the MOVE is within the same group or 18265 * not, because this ioctl can be used as a generic mechanism 18266 * to failover from interface A to B, though things will function 18267 * only if they are really part of the same group. Moreover, 18268 * all ipifs may be down and hence temporarily out of the group. 18269 * 18270 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18271 * down first and then V6. For each we wait for the ipif's to become quiescent. 18272 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18273 * have been deleted and there are no active references. Once quiescent the 18274 * ipif's are moved and brought up on the new ill. 18275 * 18276 * Normally the source ill and destination ill belong to the same IPMP group 18277 * and hence the same ipsq_t. In the event they don't belong to the same 18278 * same group the two ipsq's are first merged into one ipsq - that of the 18279 * to_ill. The multicast memberships on the source and destination ill cannot 18280 * change during the move operation since multicast joins/leaves also have to 18281 * execute on the same ipsq and are hence serialized. 18282 */ 18283 /* ARGSUSED */ 18284 int 18285 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18286 ip_ioctl_cmd_t *ipip, void *ifreq) 18287 { 18288 ill_t *ill_to_v4 = NULL; 18289 ill_t *ill_to_v6 = NULL; 18290 ill_t *ill_from_v4 = NULL; 18291 ill_t *ill_from_v6 = NULL; 18292 int err = 0; 18293 18294 /* 18295 * setup from and to ill's, we can get EINPROGRESS only for 18296 * to_ill's. 18297 */ 18298 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18299 &ill_to_v4, &ill_to_v6); 18300 18301 if (err != 0) { 18302 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18303 goto done; 18304 } 18305 18306 /* 18307 * nothing to do. 18308 */ 18309 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18310 goto done; 18311 } 18312 18313 /* 18314 * nothing to do. 18315 */ 18316 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18317 goto done; 18318 } 18319 18320 /* 18321 * Mark the ill as changing. 18322 * ILL_CHANGING flag is cleared when the ipif's are brought up 18323 * in ill_up_ipifs in case of error they are cleared below. 18324 */ 18325 18326 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18327 if (ill_from_v4 != NULL) 18328 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18329 if (ill_from_v6 != NULL) 18330 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18331 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18332 18333 /* 18334 * Make sure that both src and dst are 18335 * in the same syncq group. If not make it happen. 18336 * We are not holding any locks because we are the writer 18337 * on the from_ipsq and we will hold locks in ill_merge_groups 18338 * to protect to_ipsq against changing. 18339 */ 18340 if (ill_from_v4 != NULL) { 18341 if (ill_from_v4->ill_phyint->phyint_ipsq != 18342 ill_to_v4->ill_phyint->phyint_ipsq) { 18343 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18344 NULL, mp, q); 18345 goto err_ret; 18346 18347 } 18348 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18349 } else { 18350 18351 if (ill_from_v6->ill_phyint->phyint_ipsq != 18352 ill_to_v6->ill_phyint->phyint_ipsq) { 18353 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18354 NULL, mp, q); 18355 goto err_ret; 18356 18357 } 18358 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18359 } 18360 18361 /* 18362 * Now that the ipsq's have been merged and we are the writer 18363 * lets mark to_ill as changing as well. 18364 */ 18365 18366 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18367 if (ill_to_v4 != NULL) 18368 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18369 if (ill_to_v6 != NULL) 18370 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18371 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18372 18373 /* 18374 * Its ok for us to proceed with the move even if 18375 * ill_pending_mp is non null on one of the from ill's as the reply 18376 * should not be looking at the ipif, it should only care about the 18377 * ill itself. 18378 */ 18379 18380 /* 18381 * lets move ipv4 first. 18382 */ 18383 if (ill_from_v4 != NULL) { 18384 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18385 ill_from_v4->ill_move_in_progress = B_TRUE; 18386 ill_to_v4->ill_move_in_progress = B_TRUE; 18387 ill_to_v4->ill_move_peer = ill_from_v4; 18388 ill_from_v4->ill_move_peer = ill_to_v4; 18389 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18390 } 18391 18392 /* 18393 * Now lets move ipv6. 18394 */ 18395 if (err == 0 && ill_from_v6 != NULL) { 18396 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18397 ill_from_v6->ill_move_in_progress = B_TRUE; 18398 ill_to_v6->ill_move_in_progress = B_TRUE; 18399 ill_to_v6->ill_move_peer = ill_from_v6; 18400 ill_from_v6->ill_move_peer = ill_to_v6; 18401 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18402 } 18403 18404 err_ret: 18405 /* 18406 * EINPROGRESS means we are waiting for the ipif's that need to be 18407 * moved to become quiescent. 18408 */ 18409 if (err == EINPROGRESS) { 18410 goto done; 18411 } 18412 18413 /* 18414 * if err is set ill_up_ipifs will not be called 18415 * lets clear the flags. 18416 */ 18417 18418 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18419 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18420 /* 18421 * Some of the clearing may be redundant. But it is simple 18422 * not making any extra checks. 18423 */ 18424 if (ill_from_v6 != NULL) { 18425 ill_from_v6->ill_move_in_progress = B_FALSE; 18426 ill_from_v6->ill_move_peer = NULL; 18427 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18428 } 18429 if (ill_from_v4 != NULL) { 18430 ill_from_v4->ill_move_in_progress = B_FALSE; 18431 ill_from_v4->ill_move_peer = NULL; 18432 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18433 } 18434 if (ill_to_v6 != NULL) { 18435 ill_to_v6->ill_move_in_progress = B_FALSE; 18436 ill_to_v6->ill_move_peer = NULL; 18437 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18438 } 18439 if (ill_to_v4 != NULL) { 18440 ill_to_v4->ill_move_in_progress = B_FALSE; 18441 ill_to_v4->ill_move_peer = NULL; 18442 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18443 } 18444 18445 /* 18446 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18447 * Do this always to maintain proper state i.e even in case of errors. 18448 * As phyint_inactive looks at both v4 and v6 interfaces, 18449 * we need not call on both v4 and v6 interfaces. 18450 */ 18451 if (ill_from_v4 != NULL) { 18452 if ((ill_from_v4->ill_phyint->phyint_flags & 18453 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18454 phyint_inactive(ill_from_v4->ill_phyint); 18455 } 18456 } else if (ill_from_v6 != NULL) { 18457 if ((ill_from_v6->ill_phyint->phyint_flags & 18458 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18459 phyint_inactive(ill_from_v6->ill_phyint); 18460 } 18461 } 18462 18463 if (ill_to_v4 != NULL) { 18464 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18465 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18466 } 18467 } else if (ill_to_v6 != NULL) { 18468 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18469 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18470 } 18471 } 18472 18473 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18474 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18475 18476 no_err: 18477 /* 18478 * lets bring the interfaces up on the to_ill. 18479 */ 18480 if (err == 0) { 18481 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18482 q, mp); 18483 } 18484 18485 if (err == 0) { 18486 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18487 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18488 18489 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18490 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18491 } 18492 done: 18493 18494 if (ill_to_v4 != NULL) { 18495 ill_refrele(ill_to_v4); 18496 } 18497 if (ill_to_v6 != NULL) { 18498 ill_refrele(ill_to_v6); 18499 } 18500 18501 return (err); 18502 } 18503 18504 static void 18505 ill_dl_down(ill_t *ill) 18506 { 18507 /* 18508 * The ill is down; unbind but stay attached since we're still 18509 * associated with a PPA. If we have negotiated DLPI capabilites 18510 * with the data link service provider (IDS_OK) then reset them. 18511 * The interval between unbinding and rebinding is potentially 18512 * unbounded hence we cannot assume things will be the same. 18513 * The DLPI capabilities will be probed again when the data link 18514 * is brought up. 18515 */ 18516 mblk_t *mp = ill->ill_unbind_mp; 18517 hook_nic_event_t *info; 18518 18519 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18520 18521 ill->ill_unbind_mp = NULL; 18522 if (mp != NULL) { 18523 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18524 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18525 ill->ill_name)); 18526 mutex_enter(&ill->ill_lock); 18527 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18528 mutex_exit(&ill->ill_lock); 18529 if (ill->ill_dlpi_capab_state == IDS_OK) 18530 ill_capability_reset(ill); 18531 ill_dlpi_send(ill, mp); 18532 } 18533 18534 /* 18535 * Toss all of our multicast memberships. We could keep them, but 18536 * then we'd have to do bookkeeping of any joins and leaves performed 18537 * by the application while the the interface is down (we can't just 18538 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18539 * on a downed interface). 18540 */ 18541 ill_leave_multicast(ill); 18542 18543 mutex_enter(&ill->ill_lock); 18544 18545 ill->ill_dl_up = 0; 18546 18547 if ((info = ill->ill_nic_event_info) != NULL) { 18548 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18549 info->hne_event, ill->ill_name)); 18550 if (info->hne_data != NULL) 18551 kmem_free(info->hne_data, info->hne_datalen); 18552 kmem_free(info, sizeof (hook_nic_event_t)); 18553 } 18554 18555 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18556 if (info != NULL) { 18557 ip_stack_t *ipst = ill->ill_ipst; 18558 18559 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18560 info->hne_lif = 0; 18561 info->hne_event = NE_DOWN; 18562 info->hne_data = NULL; 18563 info->hne_datalen = 0; 18564 info->hne_family = ill->ill_isv6 ? 18565 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18566 } else 18567 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18568 "information for %s (ENOMEM)\n", ill->ill_name)); 18569 18570 ill->ill_nic_event_info = info; 18571 18572 mutex_exit(&ill->ill_lock); 18573 } 18574 18575 static void 18576 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18577 { 18578 union DL_primitives *dlp; 18579 t_uscalar_t prim; 18580 18581 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18582 18583 dlp = (union DL_primitives *)mp->b_rptr; 18584 prim = dlp->dl_primitive; 18585 18586 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18587 dlpi_prim_str(prim), prim, ill->ill_name)); 18588 18589 switch (prim) { 18590 case DL_PHYS_ADDR_REQ: 18591 { 18592 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18593 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18594 break; 18595 } 18596 case DL_BIND_REQ: 18597 mutex_enter(&ill->ill_lock); 18598 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18599 mutex_exit(&ill->ill_lock); 18600 break; 18601 } 18602 18603 /* 18604 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18605 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18606 * we only wait for the ACK of the DL_UNBIND_REQ. 18607 */ 18608 mutex_enter(&ill->ill_lock); 18609 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18610 (prim == DL_UNBIND_REQ)) { 18611 ill->ill_dlpi_pending = prim; 18612 } 18613 mutex_exit(&ill->ill_lock); 18614 18615 putnext(ill->ill_wq, mp); 18616 } 18617 18618 /* 18619 * Helper function for ill_dlpi_send(). 18620 */ 18621 /* ARGSUSED */ 18622 static void 18623 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18624 { 18625 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18626 } 18627 18628 /* 18629 * Send a DLPI control message to the driver but make sure there 18630 * is only one outstanding message. Uses ill_dlpi_pending to tell 18631 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18632 * when an ACK or a NAK is received to process the next queued message. 18633 */ 18634 void 18635 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18636 { 18637 mblk_t **mpp; 18638 18639 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18640 18641 /* 18642 * To ensure that any DLPI requests for current exclusive operation 18643 * are always completely sent before any DLPI messages for other 18644 * operations, require writer access before enqueuing. 18645 */ 18646 if (!IAM_WRITER_ILL(ill)) { 18647 ill_refhold(ill); 18648 /* qwriter_ip() does the ill_refrele() */ 18649 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18650 NEW_OP, B_TRUE); 18651 return; 18652 } 18653 18654 mutex_enter(&ill->ill_lock); 18655 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18656 /* Must queue message. Tail insertion */ 18657 mpp = &ill->ill_dlpi_deferred; 18658 while (*mpp != NULL) 18659 mpp = &((*mpp)->b_next); 18660 18661 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18662 ill->ill_name)); 18663 18664 *mpp = mp; 18665 mutex_exit(&ill->ill_lock); 18666 return; 18667 } 18668 mutex_exit(&ill->ill_lock); 18669 ill_dlpi_dispatch(ill, mp); 18670 } 18671 18672 /* 18673 * Send all deferred DLPI messages without waiting for their ACKs. 18674 */ 18675 void 18676 ill_dlpi_send_deferred(ill_t *ill) 18677 { 18678 mblk_t *mp, *nextmp; 18679 18680 /* 18681 * Clear ill_dlpi_pending so that the message is not queued in 18682 * ill_dlpi_send(). 18683 */ 18684 mutex_enter(&ill->ill_lock); 18685 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18686 mp = ill->ill_dlpi_deferred; 18687 ill->ill_dlpi_deferred = NULL; 18688 mutex_exit(&ill->ill_lock); 18689 18690 for (; mp != NULL; mp = nextmp) { 18691 nextmp = mp->b_next; 18692 mp->b_next = NULL; 18693 ill_dlpi_send(ill, mp); 18694 } 18695 } 18696 18697 /* 18698 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18699 */ 18700 boolean_t 18701 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18702 { 18703 t_uscalar_t prim_pending; 18704 18705 mutex_enter(&ill->ill_lock); 18706 prim_pending = ill->ill_dlpi_pending; 18707 mutex_exit(&ill->ill_lock); 18708 18709 /* 18710 * During teardown, ill_dlpi_send_deferred() will send requests 18711 * without waiting; don't bother printing any warnings in that case. 18712 */ 18713 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18714 if (prim_pending == DL_PRIM_INVAL) { 18715 (void) mi_strlog(ill->ill_rq, 1, 18716 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18717 "unsolicited ack for %s on %s\n", 18718 dlpi_prim_str(prim), ill->ill_name); 18719 } else { 18720 (void) mi_strlog(ill->ill_rq, 1, 18721 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18722 "unexpected ack for %s on %s (expecting %s)\n", 18723 dlpi_prim_str(prim), ill->ill_name, 18724 dlpi_prim_str(prim_pending)); 18725 } 18726 } 18727 return (prim_pending == prim); 18728 } 18729 18730 /* 18731 * Called when an DLPI control message has been acked or nacked to 18732 * send down the next queued message (if any). 18733 */ 18734 void 18735 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18736 { 18737 mblk_t *mp; 18738 18739 ASSERT(IAM_WRITER_ILL(ill)); 18740 mutex_enter(&ill->ill_lock); 18741 18742 ASSERT(prim != DL_PRIM_INVAL); 18743 ASSERT(ill->ill_dlpi_pending == prim); 18744 18745 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18746 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18747 18748 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18749 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18750 cv_signal(&ill->ill_cv); 18751 mutex_exit(&ill->ill_lock); 18752 return; 18753 } 18754 18755 ill->ill_dlpi_deferred = mp->b_next; 18756 mp->b_next = NULL; 18757 mutex_exit(&ill->ill_lock); 18758 18759 ill_dlpi_dispatch(ill, mp); 18760 } 18761 18762 void 18763 conn_delete_ire(conn_t *connp, caddr_t arg) 18764 { 18765 ipif_t *ipif = (ipif_t *)arg; 18766 ire_t *ire; 18767 18768 /* 18769 * Look at the cached ires on conns which has pointers to ipifs. 18770 * We just call ire_refrele which clears up the reference 18771 * to ire. Called when a conn closes. Also called from ipif_free 18772 * to cleanup indirect references to the stale ipif via the cached ire. 18773 */ 18774 mutex_enter(&connp->conn_lock); 18775 ire = connp->conn_ire_cache; 18776 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18777 connp->conn_ire_cache = NULL; 18778 mutex_exit(&connp->conn_lock); 18779 IRE_REFRELE_NOTR(ire); 18780 return; 18781 } 18782 mutex_exit(&connp->conn_lock); 18783 18784 } 18785 18786 /* 18787 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18788 * of IREs. Those IREs may have been previously cached in the conn structure. 18789 * This ipcl_walk() walker function releases all references to such IREs based 18790 * on the condemned flag. 18791 */ 18792 /* ARGSUSED */ 18793 void 18794 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18795 { 18796 ire_t *ire; 18797 18798 mutex_enter(&connp->conn_lock); 18799 ire = connp->conn_ire_cache; 18800 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18801 connp->conn_ire_cache = NULL; 18802 mutex_exit(&connp->conn_lock); 18803 IRE_REFRELE_NOTR(ire); 18804 return; 18805 } 18806 mutex_exit(&connp->conn_lock); 18807 } 18808 18809 /* 18810 * Take down a specific interface, but don't lose any information about it. 18811 * Also delete interface from its interface group (ifgrp). 18812 * (Always called as writer.) 18813 * This function goes through the down sequence even if the interface is 18814 * already down. There are 2 reasons. 18815 * a. Currently we permit interface routes that depend on down interfaces 18816 * to be added. This behaviour itself is questionable. However it appears 18817 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18818 * time. We go thru the cleanup in order to remove these routes. 18819 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18820 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18821 * down, but we need to cleanup i.e. do ill_dl_down and 18822 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18823 * 18824 * IP-MT notes: 18825 * 18826 * Model of reference to interfaces. 18827 * 18828 * The following members in ipif_t track references to the ipif. 18829 * int ipif_refcnt; Active reference count 18830 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18831 * The following members in ill_t track references to the ill. 18832 * int ill_refcnt; active refcnt 18833 * uint_t ill_ire_cnt; Number of ires referencing ill 18834 * uint_t ill_nce_cnt; Number of nces referencing ill 18835 * 18836 * Reference to an ipif or ill can be obtained in any of the following ways. 18837 * 18838 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18839 * Pointers to ipif / ill from other data structures viz ire and conn. 18840 * Implicit reference to the ipif / ill by holding a reference to the ire. 18841 * 18842 * The ipif/ill lookup functions return a reference held ipif / ill. 18843 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18844 * This is a purely dynamic reference count associated with threads holding 18845 * references to the ipif / ill. Pointers from other structures do not 18846 * count towards this reference count. 18847 * 18848 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18849 * ipif/ill. This is incremented whenever a new ire is created referencing the 18850 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18851 * actually added to the ire hash table. The count is decremented in 18852 * ire_inactive where the ire is destroyed. 18853 * 18854 * nce's reference ill's thru nce_ill and the count of nce's associated with 18855 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18856 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18857 * table. Similarly it is decremented in ndp_inactive() where the nce 18858 * is destroyed. 18859 * 18860 * Flow of ioctls involving interface down/up 18861 * 18862 * The following is the sequence of an attempt to set some critical flags on an 18863 * up interface. 18864 * ip_sioctl_flags 18865 * ipif_down 18866 * wait for ipif to be quiescent 18867 * ipif_down_tail 18868 * ip_sioctl_flags_tail 18869 * 18870 * All set ioctls that involve down/up sequence would have a skeleton similar 18871 * to the above. All the *tail functions are called after the refcounts have 18872 * dropped to the appropriate values. 18873 * 18874 * The mechanism to quiesce an ipif is as follows. 18875 * 18876 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18877 * on the ipif. Callers either pass a flag requesting wait or the lookup 18878 * functions will return NULL. 18879 * 18880 * Delete all ires referencing this ipif 18881 * 18882 * Any thread attempting to do an ipif_refhold on an ipif that has been 18883 * obtained thru a cached pointer will first make sure that 18884 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18885 * increment the refcount. 18886 * 18887 * The above guarantees that the ipif refcount will eventually come down to 18888 * zero and the ipif will quiesce, once all threads that currently hold a 18889 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18890 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18891 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18892 * drop to zero. 18893 * 18894 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18895 * 18896 * Threads trying to lookup an ipif or ill can pass a flag requesting 18897 * wait and restart if the ipif / ill cannot be looked up currently. 18898 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18899 * failure if the ipif is currently undergoing an exclusive operation, and 18900 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18901 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18902 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18903 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18904 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18905 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18906 * until we release the ipsq_lock, even though the the ill/ipif state flags 18907 * can change after we drop the ill_lock. 18908 * 18909 * An attempt to send out a packet using an ipif that is currently 18910 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18911 * operation and restart it later when the exclusive condition on the ipif ends. 18912 * This is an example of not passing the wait flag to the lookup functions. For 18913 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18914 * out a multicast packet on that ipif will fail while the ipif is 18915 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18916 * currently IPIF_CHANGING will also fail. 18917 */ 18918 int 18919 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18920 { 18921 ill_t *ill = ipif->ipif_ill; 18922 phyint_t *phyi; 18923 conn_t *connp; 18924 boolean_t success; 18925 boolean_t ipif_was_up = B_FALSE; 18926 ip_stack_t *ipst = ill->ill_ipst; 18927 18928 ASSERT(IAM_WRITER_IPIF(ipif)); 18929 18930 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18931 18932 if (ipif->ipif_flags & IPIF_UP) { 18933 mutex_enter(&ill->ill_lock); 18934 ipif->ipif_flags &= ~IPIF_UP; 18935 ASSERT(ill->ill_ipif_up_count > 0); 18936 --ill->ill_ipif_up_count; 18937 mutex_exit(&ill->ill_lock); 18938 ipif_was_up = B_TRUE; 18939 /* Update status in SCTP's list */ 18940 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18941 } 18942 18943 /* 18944 * Blow away v6 memberships we established in ipif_multicast_up(); the 18945 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18946 * know not to rejoin when the interface is brought back up). 18947 */ 18948 if (ipif->ipif_isv6) 18949 ipif_multicast_down(ipif); 18950 /* 18951 * Remove from the mapping for __sin6_src_id. We insert only 18952 * when the address is not INADDR_ANY. As IPv4 addresses are 18953 * stored as mapped addresses, we need to check for mapped 18954 * INADDR_ANY also. 18955 */ 18956 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18957 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18958 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18959 int err; 18960 18961 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18962 ipif->ipif_zoneid, ipst); 18963 if (err != 0) { 18964 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18965 } 18966 } 18967 18968 /* 18969 * Before we delete the ill from the group (if any), we need 18970 * to make sure that we delete all the routes dependent on 18971 * this and also any ipifs dependent on this ipif for 18972 * source address. We need to do before we delete from 18973 * the group because 18974 * 18975 * 1) ipif_down_delete_ire de-references ill->ill_group. 18976 * 18977 * 2) ipif_update_other_ipifs needs to walk the whole group 18978 * for re-doing source address selection. Note that 18979 * ipif_select_source[_v6] called from 18980 * ipif_update_other_ipifs[_v6] will not pick this ipif 18981 * because we have already marked down here i.e cleared 18982 * IPIF_UP. 18983 */ 18984 if (ipif->ipif_isv6) { 18985 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18986 ipst); 18987 } else { 18988 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18989 ipst); 18990 } 18991 18992 /* 18993 * Need to add these also to be saved and restored when the 18994 * ipif is brought down and up 18995 */ 18996 mutex_enter(&ipst->ips_ire_mrtun_lock); 18997 if (ipst->ips_ire_mrtun_count != 0) { 18998 mutex_exit(&ipst->ips_ire_mrtun_lock); 18999 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 19000 (char *)ipif, NULL, ipst); 19001 } else { 19002 mutex_exit(&ipst->ips_ire_mrtun_lock); 19003 } 19004 19005 mutex_enter(&ipst->ips_ire_srcif_table_lock); 19006 if (ipst->ips_ire_srcif_table_count > 0) { 19007 mutex_exit(&ipst->ips_ire_srcif_table_lock); 19008 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 19009 ipst); 19010 } else { 19011 mutex_exit(&ipst->ips_ire_srcif_table_lock); 19012 } 19013 19014 /* 19015 * Cleaning up the conn_ire_cache or conns must be done only after the 19016 * ires have been deleted above. Otherwise a thread could end up 19017 * caching an ire in a conn after we have finished the cleanup of the 19018 * conn. The caching is done after making sure that the ire is not yet 19019 * condemned. Also documented in the block comment above ip_output 19020 */ 19021 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 19022 /* Also, delete the ires cached in SCTP */ 19023 sctp_ire_cache_flush(ipif); 19024 19025 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 19026 nattymod_clean_ipif(ipif); 19027 19028 /* 19029 * Update any other ipifs which have used "our" local address as 19030 * a source address. This entails removing and recreating IRE_INTERFACE 19031 * entries for such ipifs. 19032 */ 19033 if (ipif->ipif_isv6) 19034 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 19035 else 19036 ipif_update_other_ipifs(ipif, ill->ill_group); 19037 19038 if (ipif_was_up) { 19039 /* 19040 * Check whether it is last ipif to leave this group. 19041 * If this is the last ipif to leave, we should remove 19042 * this ill from the group as ipif_select_source will not 19043 * be able to find any useful ipifs if this ill is selected 19044 * for load balancing. 19045 * 19046 * For nameless groups, we should call ifgrp_delete if this 19047 * belongs to some group. As this ipif is going down, we may 19048 * need to reconstruct groups. 19049 */ 19050 phyi = ill->ill_phyint; 19051 /* 19052 * If the phyint_groupname_len is 0, it may or may not 19053 * be in the nameless group. If the phyint_groupname_len is 19054 * not 0, then this ill should be part of some group. 19055 * As we always insert this ill in the group if 19056 * phyint_groupname_len is not zero when the first ipif 19057 * comes up (in ipif_up_done), it should be in a group 19058 * when the namelen is not 0. 19059 * 19060 * NOTE : When we delete the ill from the group,it will 19061 * blow away all the IRE_CACHES pointing either at this ipif or 19062 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 19063 * should be pointing at this ill. 19064 */ 19065 ASSERT(phyi->phyint_groupname_len == 0 || 19066 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 19067 19068 if (phyi->phyint_groupname_len != 0) { 19069 if (ill->ill_ipif_up_count == 0) 19070 illgrp_delete(ill); 19071 } 19072 19073 /* 19074 * If we have deleted some of the broadcast ires associated 19075 * with this ipif, we need to re-nominate somebody else if 19076 * the ires that we deleted were the nominated ones. 19077 */ 19078 if (ill->ill_group != NULL && !ill->ill_isv6) 19079 ipif_renominate_bcast(ipif); 19080 } 19081 19082 /* 19083 * neighbor-discovery or arp entries for this interface. 19084 */ 19085 ipif_ndp_down(ipif); 19086 19087 /* 19088 * If mp is NULL the caller will wait for the appropriate refcnt. 19089 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 19090 * and ill_delete -> ipif_free -> ipif_down 19091 */ 19092 if (mp == NULL) { 19093 ASSERT(q == NULL); 19094 return (0); 19095 } 19096 19097 if (CONN_Q(q)) { 19098 connp = Q_TO_CONN(q); 19099 mutex_enter(&connp->conn_lock); 19100 } else { 19101 connp = NULL; 19102 } 19103 mutex_enter(&ill->ill_lock); 19104 /* 19105 * Are there any ire's pointing to this ipif that are still active ? 19106 * If this is the last ipif going down, are there any ire's pointing 19107 * to this ill that are still active ? 19108 */ 19109 if (ipif_is_quiescent(ipif)) { 19110 mutex_exit(&ill->ill_lock); 19111 if (connp != NULL) 19112 mutex_exit(&connp->conn_lock); 19113 return (0); 19114 } 19115 19116 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 19117 ill->ill_name, (void *)ill)); 19118 /* 19119 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 19120 * drops down, the operation will be restarted by ipif_ill_refrele_tail 19121 * which in turn is called by the last refrele on the ipif/ill/ire. 19122 */ 19123 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 19124 if (!success) { 19125 /* The conn is closing. So just return */ 19126 ASSERT(connp != NULL); 19127 mutex_exit(&ill->ill_lock); 19128 mutex_exit(&connp->conn_lock); 19129 return (EINTR); 19130 } 19131 19132 mutex_exit(&ill->ill_lock); 19133 if (connp != NULL) 19134 mutex_exit(&connp->conn_lock); 19135 return (EINPROGRESS); 19136 } 19137 19138 void 19139 ipif_down_tail(ipif_t *ipif) 19140 { 19141 ill_t *ill = ipif->ipif_ill; 19142 19143 /* 19144 * Skip any loopback interface (null wq). 19145 * If this is the last logical interface on the ill 19146 * have ill_dl_down tell the driver we are gone (unbind) 19147 * Note that lun 0 can ipif_down even though 19148 * there are other logical units that are up. 19149 * This occurs e.g. when we change a "significant" IFF_ flag. 19150 */ 19151 if (ill->ill_wq != NULL && !ill->ill_logical_down && 19152 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 19153 ill->ill_dl_up) { 19154 ill_dl_down(ill); 19155 } 19156 ill->ill_logical_down = 0; 19157 19158 /* 19159 * Have to be after removing the routes in ipif_down_delete_ire. 19160 */ 19161 if (ipif->ipif_isv6) { 19162 if (ill->ill_flags & ILLF_XRESOLV) 19163 ipif_arp_down(ipif); 19164 } else { 19165 ipif_arp_down(ipif); 19166 } 19167 19168 ip_rts_ifmsg(ipif); 19169 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 19170 } 19171 19172 /* 19173 * Bring interface logically down without bringing the physical interface 19174 * down e.g. when the netmask is changed. This avoids long lasting link 19175 * negotiations between an ethernet interface and a certain switches. 19176 */ 19177 static int 19178 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 19179 { 19180 /* 19181 * The ill_logical_down flag is a transient flag. It is set here 19182 * and is cleared once the down has completed in ipif_down_tail. 19183 * This flag does not indicate whether the ill stream is in the 19184 * DL_BOUND state with the driver. Instead this flag is used by 19185 * ipif_down_tail to determine whether to DL_UNBIND the stream with 19186 * the driver. The state of the ill stream i.e. whether it is 19187 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 19188 */ 19189 ipif->ipif_ill->ill_logical_down = 1; 19190 return (ipif_down(ipif, q, mp)); 19191 } 19192 19193 /* 19194 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 19195 * If the usesrc client ILL is already part of a usesrc group or not, 19196 * in either case a ire_stq with the matching usesrc client ILL will 19197 * locate the IRE's that need to be deleted. We want IREs to be created 19198 * with the new source address. 19199 */ 19200 static void 19201 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 19202 { 19203 ill_t *ucill = (ill_t *)ill_arg; 19204 19205 ASSERT(IAM_WRITER_ILL(ucill)); 19206 19207 if (ire->ire_stq == NULL) 19208 return; 19209 19210 if ((ire->ire_type == IRE_CACHE) && 19211 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19212 ire_delete(ire); 19213 } 19214 19215 /* 19216 * ire_walk routine to delete every IRE dependent on the interface 19217 * address that is going down. (Always called as writer.) 19218 * Works for both v4 and v6. 19219 * In addition for checking for ire_ipif matches it also checks for 19220 * IRE_CACHE entries which have the same source address as the 19221 * disappearing ipif since ipif_select_source might have picked 19222 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19223 * care of any IRE_INTERFACE with the disappearing source address. 19224 */ 19225 static void 19226 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19227 { 19228 ipif_t *ipif = (ipif_t *)ipif_arg; 19229 ill_t *ire_ill; 19230 ill_t *ipif_ill; 19231 19232 ASSERT(IAM_WRITER_IPIF(ipif)); 19233 if (ire->ire_ipif == NULL) 19234 return; 19235 19236 /* 19237 * For IPv4, we derive source addresses for an IRE from ipif's 19238 * belonging to the same IPMP group as the IRE's outgoing 19239 * interface. If an IRE's outgoing interface isn't in the 19240 * same IPMP group as a particular ipif, then that ipif 19241 * couldn't have been used as a source address for this IRE. 19242 * 19243 * For IPv6, source addresses are only restricted to the IPMP group 19244 * if the IRE is for a link-local address or a multicast address. 19245 * Otherwise, source addresses for an IRE can be chosen from 19246 * interfaces other than the the outgoing interface for that IRE. 19247 * 19248 * For source address selection details, see ipif_select_source() 19249 * and ipif_select_source_v6(). 19250 */ 19251 if (ire->ire_ipversion == IPV4_VERSION || 19252 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19253 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19254 ire_ill = ire->ire_ipif->ipif_ill; 19255 ipif_ill = ipif->ipif_ill; 19256 19257 if (ire_ill->ill_group != ipif_ill->ill_group) { 19258 return; 19259 } 19260 } 19261 19262 19263 if (ire->ire_ipif != ipif) { 19264 /* 19265 * Look for a matching source address. 19266 */ 19267 if (ire->ire_type != IRE_CACHE) 19268 return; 19269 if (ipif->ipif_flags & IPIF_NOLOCAL) 19270 return; 19271 19272 if (ire->ire_ipversion == IPV4_VERSION) { 19273 if (ire->ire_src_addr != ipif->ipif_src_addr) 19274 return; 19275 } else { 19276 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19277 &ipif->ipif_v6lcl_addr)) 19278 return; 19279 } 19280 ire_delete(ire); 19281 return; 19282 } 19283 /* 19284 * ire_delete() will do an ire_flush_cache which will delete 19285 * all ire_ipif matches 19286 */ 19287 ire_delete(ire); 19288 } 19289 19290 /* 19291 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19292 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19293 * 2) when an interface is brought up or down (on that ill). 19294 * This ensures that the IRE_CACHE entries don't retain stale source 19295 * address selection results. 19296 */ 19297 void 19298 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19299 { 19300 ill_t *ill = (ill_t *)ill_arg; 19301 ill_t *ipif_ill; 19302 19303 ASSERT(IAM_WRITER_ILL(ill)); 19304 /* 19305 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19306 * Hence this should be IRE_CACHE. 19307 */ 19308 ASSERT(ire->ire_type == IRE_CACHE); 19309 19310 /* 19311 * We are called for IRE_CACHES whose ire_ipif matches ill. 19312 * We are only interested in IRE_CACHES that has borrowed 19313 * the source address from ill_arg e.g. ipif_up_done[_v6] 19314 * for which we need to look at ire_ipif->ipif_ill match 19315 * with ill. 19316 */ 19317 ASSERT(ire->ire_ipif != NULL); 19318 ipif_ill = ire->ire_ipif->ipif_ill; 19319 if (ipif_ill == ill || (ill->ill_group != NULL && 19320 ipif_ill->ill_group == ill->ill_group)) { 19321 ire_delete(ire); 19322 } 19323 } 19324 19325 /* 19326 * Delete all the ire whose stq references ill_arg. 19327 */ 19328 static void 19329 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19330 { 19331 ill_t *ill = (ill_t *)ill_arg; 19332 ill_t *ire_ill; 19333 19334 ASSERT(IAM_WRITER_ILL(ill)); 19335 /* 19336 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19337 * Hence this should be IRE_CACHE. 19338 */ 19339 ASSERT(ire->ire_type == IRE_CACHE); 19340 19341 /* 19342 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19343 * matches ill. We are only interested in IRE_CACHES that 19344 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19345 * filtering here. 19346 */ 19347 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19348 19349 if (ire_ill == ill) 19350 ire_delete(ire); 19351 } 19352 19353 /* 19354 * This is called when an ill leaves the group. We want to delete 19355 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19356 * pointing at ill. 19357 */ 19358 static void 19359 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19360 { 19361 ill_t *ill = (ill_t *)ill_arg; 19362 19363 ASSERT(IAM_WRITER_ILL(ill)); 19364 ASSERT(ill->ill_group == NULL); 19365 /* 19366 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19367 * Hence this should be IRE_CACHE. 19368 */ 19369 ASSERT(ire->ire_type == IRE_CACHE); 19370 /* 19371 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19372 * matches ill. We are interested in both. 19373 */ 19374 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19375 (ire->ire_ipif->ipif_ill == ill)); 19376 19377 ire_delete(ire); 19378 } 19379 19380 /* 19381 * Initiate deallocate of an IPIF. Always called as writer. Called by 19382 * ill_delete or ip_sioctl_removeif. 19383 */ 19384 static void 19385 ipif_free(ipif_t *ipif) 19386 { 19387 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19388 19389 ASSERT(IAM_WRITER_IPIF(ipif)); 19390 19391 if (ipif->ipif_recovery_id != 0) 19392 (void) untimeout(ipif->ipif_recovery_id); 19393 ipif->ipif_recovery_id = 0; 19394 19395 /* Remove conn references */ 19396 reset_conn_ipif(ipif); 19397 19398 /* 19399 * Make sure we have valid net and subnet broadcast ire's for the 19400 * other ipif's which share them with this ipif. 19401 */ 19402 if (!ipif->ipif_isv6) 19403 ipif_check_bcast_ires(ipif); 19404 19405 /* 19406 * Take down the interface. We can be called either from ill_delete 19407 * or from ip_sioctl_removeif. 19408 */ 19409 (void) ipif_down(ipif, NULL, NULL); 19410 19411 /* 19412 * Now that the interface is down, there's no chance it can still 19413 * become a duplicate. Cancel any timer that may have been set while 19414 * tearing down. 19415 */ 19416 if (ipif->ipif_recovery_id != 0) 19417 (void) untimeout(ipif->ipif_recovery_id); 19418 ipif->ipif_recovery_id = 0; 19419 19420 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19421 /* Remove pointers to this ill in the multicast routing tables */ 19422 reset_mrt_vif_ipif(ipif); 19423 rw_exit(&ipst->ips_ill_g_lock); 19424 } 19425 19426 /* 19427 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19428 * also ill_move(). 19429 */ 19430 static void 19431 ipif_free_tail(ipif_t *ipif) 19432 { 19433 mblk_t *mp; 19434 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19435 19436 /* 19437 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19438 */ 19439 mutex_enter(&ipif->ipif_saved_ire_lock); 19440 mp = ipif->ipif_saved_ire_mp; 19441 ipif->ipif_saved_ire_mp = NULL; 19442 mutex_exit(&ipif->ipif_saved_ire_lock); 19443 freemsg(mp); 19444 19445 /* 19446 * Need to hold both ill_g_lock and ill_lock while 19447 * inserting or removing an ipif from the linked list 19448 * of ipifs hanging off the ill. 19449 */ 19450 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19451 /* 19452 * Remove all multicast memberships on the interface now. 19453 * This removes IPv4 multicast memberships joined within 19454 * the kernel as ipif_down does not do ipif_multicast_down 19455 * for IPv4. IPv6 is not handled here as the multicast memberships 19456 * are based on ill and not on ipif. 19457 */ 19458 ilm_free(ipif); 19459 19460 /* 19461 * Since we held the ill_g_lock while doing the ilm_free above, 19462 * we can assert the ilms were really deleted and not just marked 19463 * ILM_DELETED. 19464 */ 19465 ASSERT(ilm_walk_ipif(ipif) == 0); 19466 19467 IPIF_TRACE_CLEANUP(ipif); 19468 19469 /* Ask SCTP to take it out of it list */ 19470 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19471 19472 /* Get it out of the ILL interface list. */ 19473 ipif_remove(ipif, B_TRUE); 19474 rw_exit(&ipst->ips_ill_g_lock); 19475 19476 mutex_destroy(&ipif->ipif_saved_ire_lock); 19477 19478 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19479 ASSERT(ipif->ipif_recovery_id == 0); 19480 19481 /* Free the memory. */ 19482 mi_free(ipif); 19483 } 19484 19485 /* 19486 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19487 * "ill_name" otherwise. 19488 */ 19489 char * 19490 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19491 { 19492 char lbuf[32]; 19493 char *name; 19494 size_t name_len; 19495 19496 buf[0] = '\0'; 19497 if (!ipif) 19498 return (buf); 19499 name = ipif->ipif_ill->ill_name; 19500 name_len = ipif->ipif_ill->ill_name_length; 19501 if (ipif->ipif_id != 0) { 19502 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19503 ipif->ipif_id); 19504 name = lbuf; 19505 name_len = mi_strlen(name) + 1; 19506 } 19507 len -= 1; 19508 buf[len] = '\0'; 19509 len = MIN(len, name_len); 19510 bcopy(name, buf, len); 19511 return (buf); 19512 } 19513 19514 /* 19515 * Find an IPIF based on the name passed in. Names can be of the 19516 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19517 * The <phys> string can have forms like <dev><#> (e.g., le0), 19518 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19519 * When there is no colon, the implied unit id is zero. <phys> must 19520 * correspond to the name of an ILL. (May be called as writer.) 19521 */ 19522 static ipif_t * 19523 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19524 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19525 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19526 { 19527 char *cp; 19528 char *endp; 19529 long id; 19530 ill_t *ill; 19531 ipif_t *ipif; 19532 uint_t ire_type; 19533 boolean_t did_alloc = B_FALSE; 19534 ipsq_t *ipsq; 19535 19536 if (error != NULL) 19537 *error = 0; 19538 19539 /* 19540 * If the caller wants to us to create the ipif, make sure we have a 19541 * valid zoneid 19542 */ 19543 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19544 19545 if (namelen == 0) { 19546 if (error != NULL) 19547 *error = ENXIO; 19548 return (NULL); 19549 } 19550 19551 *exists = B_FALSE; 19552 /* Look for a colon in the name. */ 19553 endp = &name[namelen]; 19554 for (cp = endp; --cp > name; ) { 19555 if (*cp == IPIF_SEPARATOR_CHAR) 19556 break; 19557 } 19558 19559 if (*cp == IPIF_SEPARATOR_CHAR) { 19560 /* 19561 * Reject any non-decimal aliases for logical 19562 * interfaces. Aliases with leading zeroes 19563 * are also rejected as they introduce ambiguity 19564 * in the naming of the interfaces. 19565 * In order to confirm with existing semantics, 19566 * and to not break any programs/script relying 19567 * on that behaviour, if<0>:0 is considered to be 19568 * a valid interface. 19569 * 19570 * If alias has two or more digits and the first 19571 * is zero, fail. 19572 */ 19573 if (&cp[2] < endp && cp[1] == '0') 19574 return (NULL); 19575 } 19576 19577 if (cp <= name) { 19578 cp = endp; 19579 } else { 19580 *cp = '\0'; 19581 } 19582 19583 /* 19584 * Look up the ILL, based on the portion of the name 19585 * before the slash. ill_lookup_on_name returns a held ill. 19586 * Temporary to check whether ill exists already. If so 19587 * ill_lookup_on_name will clear it. 19588 */ 19589 ill = ill_lookup_on_name(name, do_alloc, isv6, 19590 q, mp, func, error, &did_alloc, ipst); 19591 if (cp != endp) 19592 *cp = IPIF_SEPARATOR_CHAR; 19593 if (ill == NULL) 19594 return (NULL); 19595 19596 /* Establish the unit number in the name. */ 19597 id = 0; 19598 if (cp < endp && *endp == '\0') { 19599 /* If there was a colon, the unit number follows. */ 19600 cp++; 19601 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19602 ill_refrele(ill); 19603 if (error != NULL) 19604 *error = ENXIO; 19605 return (NULL); 19606 } 19607 } 19608 19609 GRAB_CONN_LOCK(q); 19610 mutex_enter(&ill->ill_lock); 19611 /* Now see if there is an IPIF with this unit number. */ 19612 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19613 if (ipif->ipif_id == id) { 19614 if (zoneid != ALL_ZONES && 19615 zoneid != ipif->ipif_zoneid && 19616 ipif->ipif_zoneid != ALL_ZONES) { 19617 mutex_exit(&ill->ill_lock); 19618 RELEASE_CONN_LOCK(q); 19619 ill_refrele(ill); 19620 if (error != NULL) 19621 *error = ENXIO; 19622 return (NULL); 19623 } 19624 /* 19625 * The block comment at the start of ipif_down 19626 * explains the use of the macros used below 19627 */ 19628 if (IPIF_CAN_LOOKUP(ipif)) { 19629 ipif_refhold_locked(ipif); 19630 mutex_exit(&ill->ill_lock); 19631 if (!did_alloc) 19632 *exists = B_TRUE; 19633 /* 19634 * Drop locks before calling ill_refrele 19635 * since it can potentially call into 19636 * ipif_ill_refrele_tail which can end up 19637 * in trying to acquire any lock. 19638 */ 19639 RELEASE_CONN_LOCK(q); 19640 ill_refrele(ill); 19641 return (ipif); 19642 } else if (IPIF_CAN_WAIT(ipif, q)) { 19643 ipsq = ill->ill_phyint->phyint_ipsq; 19644 mutex_enter(&ipsq->ipsq_lock); 19645 mutex_exit(&ill->ill_lock); 19646 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19647 mutex_exit(&ipsq->ipsq_lock); 19648 RELEASE_CONN_LOCK(q); 19649 ill_refrele(ill); 19650 *error = EINPROGRESS; 19651 return (NULL); 19652 } 19653 } 19654 } 19655 RELEASE_CONN_LOCK(q); 19656 19657 if (!do_alloc) { 19658 mutex_exit(&ill->ill_lock); 19659 ill_refrele(ill); 19660 if (error != NULL) 19661 *error = ENXIO; 19662 return (NULL); 19663 } 19664 19665 /* 19666 * If none found, atomically allocate and return a new one. 19667 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19668 * to support "receive only" use of lo0:1 etc. as is still done 19669 * below as an initial guess. 19670 * However, this is now likely to be overriden later in ipif_up_done() 19671 * when we know for sure what address has been configured on the 19672 * interface, since we might have more than one loopback interface 19673 * with a loopback address, e.g. in the case of zones, and all the 19674 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19675 */ 19676 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19677 ire_type = IRE_LOOPBACK; 19678 else 19679 ire_type = IRE_LOCAL; 19680 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19681 if (ipif != NULL) 19682 ipif_refhold_locked(ipif); 19683 else if (error != NULL) 19684 *error = ENOMEM; 19685 mutex_exit(&ill->ill_lock); 19686 ill_refrele(ill); 19687 return (ipif); 19688 } 19689 19690 /* 19691 * This routine is called whenever a new address comes up on an ipif. If 19692 * we are configured to respond to address mask requests, then we are supposed 19693 * to broadcast an address mask reply at this time. This routine is also 19694 * called if we are already up, but a netmask change is made. This is legal 19695 * but might not make the system manager very popular. (May be called 19696 * as writer.) 19697 */ 19698 void 19699 ipif_mask_reply(ipif_t *ipif) 19700 { 19701 icmph_t *icmph; 19702 ipha_t *ipha; 19703 mblk_t *mp; 19704 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19705 19706 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19707 19708 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19709 return; 19710 19711 /* ICMP mask reply is IPv4 only */ 19712 ASSERT(!ipif->ipif_isv6); 19713 /* ICMP mask reply is not for a loopback interface */ 19714 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19715 19716 mp = allocb(REPLY_LEN, BPRI_HI); 19717 if (mp == NULL) 19718 return; 19719 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19720 19721 ipha = (ipha_t *)mp->b_rptr; 19722 bzero(ipha, REPLY_LEN); 19723 *ipha = icmp_ipha; 19724 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19725 ipha->ipha_src = ipif->ipif_src_addr; 19726 ipha->ipha_dst = ipif->ipif_brd_addr; 19727 ipha->ipha_length = htons(REPLY_LEN); 19728 ipha->ipha_ident = 0; 19729 19730 icmph = (icmph_t *)&ipha[1]; 19731 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19732 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19733 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19734 19735 put(ipif->ipif_wq, mp); 19736 19737 #undef REPLY_LEN 19738 } 19739 19740 /* 19741 * When the mtu in the ipif changes, we call this routine through ire_walk 19742 * to update all the relevant IREs. 19743 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19744 */ 19745 static void 19746 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19747 { 19748 ipif_t *ipif = (ipif_t *)ipif_arg; 19749 19750 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19751 return; 19752 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19753 } 19754 19755 /* 19756 * When the mtu in the ill changes, we call this routine through ire_walk 19757 * to update all the relevant IREs. 19758 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19759 */ 19760 void 19761 ill_mtu_change(ire_t *ire, char *ill_arg) 19762 { 19763 ill_t *ill = (ill_t *)ill_arg; 19764 19765 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19766 return; 19767 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19768 } 19769 19770 /* 19771 * Join the ipif specific multicast groups. 19772 * Must be called after a mapping has been set up in the resolver. (Always 19773 * called as writer.) 19774 */ 19775 void 19776 ipif_multicast_up(ipif_t *ipif) 19777 { 19778 int err, index; 19779 ill_t *ill; 19780 19781 ASSERT(IAM_WRITER_IPIF(ipif)); 19782 19783 ill = ipif->ipif_ill; 19784 index = ill->ill_phyint->phyint_ifindex; 19785 19786 ip1dbg(("ipif_multicast_up\n")); 19787 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19788 return; 19789 19790 if (ipif->ipif_isv6) { 19791 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19792 return; 19793 19794 /* Join the all hosts multicast address */ 19795 ip1dbg(("ipif_multicast_up - addmulti\n")); 19796 /* 19797 * Passing B_TRUE means we have to join the multicast 19798 * membership on this interface even though this is 19799 * FAILED. If we join on a different one in the group, 19800 * we will not be able to delete the membership later 19801 * as we currently don't track where we join when we 19802 * join within the kernel unlike applications where 19803 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19804 * for more on this. 19805 */ 19806 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19807 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19808 if (err != 0) { 19809 ip0dbg(("ipif_multicast_up: " 19810 "all_hosts_mcast failed %d\n", 19811 err)); 19812 return; 19813 } 19814 /* 19815 * Enable multicast for the solicited node multicast address 19816 */ 19817 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19818 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19819 19820 ipv6_multi.s6_addr32[3] |= 19821 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19822 19823 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19824 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19825 NULL); 19826 if (err != 0) { 19827 ip0dbg(("ipif_multicast_up: solicited MC" 19828 " failed %d\n", err)); 19829 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19830 ill, ill->ill_phyint->phyint_ifindex, 19831 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19832 return; 19833 } 19834 } 19835 } else { 19836 if (ipif->ipif_lcl_addr == INADDR_ANY) 19837 return; 19838 19839 /* Join the all hosts multicast address */ 19840 ip1dbg(("ipif_multicast_up - addmulti\n")); 19841 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19842 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19843 if (err) { 19844 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19845 return; 19846 } 19847 } 19848 ipif->ipif_multicast_up = 1; 19849 } 19850 19851 /* 19852 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19853 * any explicit memberships are blown away in ill_leave_multicast() when the 19854 * ill is brought down. 19855 */ 19856 static void 19857 ipif_multicast_down(ipif_t *ipif) 19858 { 19859 int err; 19860 19861 ASSERT(IAM_WRITER_IPIF(ipif)); 19862 19863 ip1dbg(("ipif_multicast_down\n")); 19864 if (!ipif->ipif_multicast_up) 19865 return; 19866 19867 ASSERT(ipif->ipif_isv6); 19868 19869 ip1dbg(("ipif_multicast_down - delmulti\n")); 19870 19871 /* 19872 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19873 * we should look for ilms on this ill rather than the ones that have 19874 * been failed over here. They are here temporarily. As 19875 * ipif_multicast_up has joined on this ill, we should delete only 19876 * from this ill. 19877 */ 19878 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19879 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19880 B_TRUE, B_TRUE); 19881 if (err != 0) { 19882 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19883 err)); 19884 } 19885 /* 19886 * Disable multicast for the solicited node multicast address 19887 */ 19888 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19889 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19890 19891 ipv6_multi.s6_addr32[3] |= 19892 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19893 19894 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19895 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19896 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19897 19898 if (err != 0) { 19899 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19900 err)); 19901 } 19902 } 19903 19904 ipif->ipif_multicast_up = 0; 19905 } 19906 19907 /* 19908 * Used when an interface comes up to recreate any extra routes on this 19909 * interface. 19910 */ 19911 static ire_t ** 19912 ipif_recover_ire(ipif_t *ipif) 19913 { 19914 mblk_t *mp; 19915 ire_t **ipif_saved_irep; 19916 ire_t **irep; 19917 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19918 19919 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19920 ipif->ipif_id)); 19921 19922 mutex_enter(&ipif->ipif_saved_ire_lock); 19923 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19924 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19925 if (ipif_saved_irep == NULL) { 19926 mutex_exit(&ipif->ipif_saved_ire_lock); 19927 return (NULL); 19928 } 19929 19930 irep = ipif_saved_irep; 19931 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19932 ire_t *ire; 19933 queue_t *rfq; 19934 queue_t *stq; 19935 ifrt_t *ifrt; 19936 uchar_t *src_addr; 19937 uchar_t *gateway_addr; 19938 ushort_t type; 19939 19940 /* 19941 * When the ire was initially created and then added in 19942 * ip_rt_add(), it was created either using ipif->ipif_net_type 19943 * in the case of a traditional interface route, or as one of 19944 * the IRE_OFFSUBNET types (with the exception of 19945 * IRE_HOST types ire which is created by icmp_redirect() and 19946 * which we don't need to save or recover). In the case where 19947 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19948 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19949 * to satisfy software like GateD and Sun Cluster which creates 19950 * routes using the the loopback interface's address as a 19951 * gateway. 19952 * 19953 * As ifrt->ifrt_type reflects the already updated ire_type, 19954 * ire_create() will be called in the same way here as 19955 * in ip_rt_add(), namely using ipif->ipif_net_type when 19956 * the route looks like a traditional interface route (where 19957 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19958 * the saved ifrt->ifrt_type. This means that in the case where 19959 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19960 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19961 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19962 */ 19963 ifrt = (ifrt_t *)mp->b_rptr; 19964 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19965 if (ifrt->ifrt_type & IRE_INTERFACE) { 19966 rfq = NULL; 19967 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19968 ? ipif->ipif_rq : ipif->ipif_wq; 19969 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19970 ? (uint8_t *)&ifrt->ifrt_src_addr 19971 : (uint8_t *)&ipif->ipif_src_addr; 19972 gateway_addr = NULL; 19973 type = ipif->ipif_net_type; 19974 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19975 /* Recover multiroute broadcast IRE. */ 19976 rfq = ipif->ipif_rq; 19977 stq = ipif->ipif_wq; 19978 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19979 ? (uint8_t *)&ifrt->ifrt_src_addr 19980 : (uint8_t *)&ipif->ipif_src_addr; 19981 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19982 type = ifrt->ifrt_type; 19983 } else { 19984 rfq = NULL; 19985 stq = NULL; 19986 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19987 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19988 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19989 type = ifrt->ifrt_type; 19990 } 19991 19992 /* 19993 * Create a copy of the IRE with the saved address and netmask. 19994 */ 19995 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19996 "0x%x/0x%x\n", 19997 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19998 ntohl(ifrt->ifrt_addr), 19999 ntohl(ifrt->ifrt_mask))); 20000 ire = ire_create( 20001 (uint8_t *)&ifrt->ifrt_addr, 20002 (uint8_t *)&ifrt->ifrt_mask, 20003 src_addr, 20004 gateway_addr, 20005 NULL, 20006 &ifrt->ifrt_max_frag, 20007 NULL, 20008 rfq, 20009 stq, 20010 type, 20011 ipif, 20012 NULL, 20013 0, 20014 0, 20015 0, 20016 ifrt->ifrt_flags, 20017 &ifrt->ifrt_iulp_info, 20018 NULL, 20019 NULL, 20020 ipst); 20021 20022 if (ire == NULL) { 20023 mutex_exit(&ipif->ipif_saved_ire_lock); 20024 kmem_free(ipif_saved_irep, 20025 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 20026 return (NULL); 20027 } 20028 20029 /* 20030 * Some software (for example, GateD and Sun Cluster) attempts 20031 * to create (what amount to) IRE_PREFIX routes with the 20032 * loopback address as the gateway. This is primarily done to 20033 * set up prefixes with the RTF_REJECT flag set (for example, 20034 * when generating aggregate routes.) 20035 * 20036 * If the IRE type (as defined by ipif->ipif_net_type) is 20037 * IRE_LOOPBACK, then we map the request into a 20038 * IRE_IF_NORESOLVER. 20039 */ 20040 if (ipif->ipif_net_type == IRE_LOOPBACK) 20041 ire->ire_type = IRE_IF_NORESOLVER; 20042 /* 20043 * ire held by ire_add, will be refreled' towards the 20044 * the end of ipif_up_done 20045 */ 20046 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 20047 *irep = ire; 20048 irep++; 20049 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 20050 } 20051 mutex_exit(&ipif->ipif_saved_ire_lock); 20052 return (ipif_saved_irep); 20053 } 20054 20055 /* 20056 * Used to set the netmask and broadcast address to default values when the 20057 * interface is brought up. (Always called as writer.) 20058 */ 20059 static void 20060 ipif_set_default(ipif_t *ipif) 20061 { 20062 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20063 20064 if (!ipif->ipif_isv6) { 20065 /* 20066 * Interface holds an IPv4 address. Default 20067 * mask is the natural netmask. 20068 */ 20069 if (!ipif->ipif_net_mask) { 20070 ipaddr_t v4mask; 20071 20072 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 20073 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 20074 } 20075 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20076 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20077 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20078 } else { 20079 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20080 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20081 } 20082 /* 20083 * NOTE: SunOS 4.X does this even if the broadcast address 20084 * has been already set thus we do the same here. 20085 */ 20086 if (ipif->ipif_flags & IPIF_BROADCAST) { 20087 ipaddr_t v4addr; 20088 20089 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 20090 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 20091 } 20092 } else { 20093 /* 20094 * Interface holds an IPv6-only address. Default 20095 * mask is all-ones. 20096 */ 20097 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 20098 ipif->ipif_v6net_mask = ipv6_all_ones; 20099 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20100 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20101 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20102 } else { 20103 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20104 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20105 } 20106 } 20107 } 20108 20109 /* 20110 * Return 0 if this address can be used as local address without causing 20111 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 20112 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 20113 * Special checks are needed to allow the same IPv6 link-local address 20114 * on different ills. 20115 * TODO: allowing the same site-local address on different ill's. 20116 */ 20117 int 20118 ip_addr_availability_check(ipif_t *new_ipif) 20119 { 20120 in6_addr_t our_v6addr; 20121 ill_t *ill; 20122 ipif_t *ipif; 20123 ill_walk_context_t ctx; 20124 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 20125 20126 ASSERT(IAM_WRITER_IPIF(new_ipif)); 20127 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 20128 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 20129 20130 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 20131 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 20132 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 20133 return (0); 20134 20135 our_v6addr = new_ipif->ipif_v6lcl_addr; 20136 20137 if (new_ipif->ipif_isv6) 20138 ill = ILL_START_WALK_V6(&ctx, ipst); 20139 else 20140 ill = ILL_START_WALK_V4(&ctx, ipst); 20141 20142 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20143 for (ipif = ill->ill_ipif; ipif != NULL; 20144 ipif = ipif->ipif_next) { 20145 if ((ipif == new_ipif) || 20146 !(ipif->ipif_flags & IPIF_UP) || 20147 (ipif->ipif_flags & IPIF_UNNUMBERED)) 20148 continue; 20149 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 20150 &our_v6addr)) { 20151 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 20152 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 20153 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 20154 ipif->ipif_flags |= IPIF_UNNUMBERED; 20155 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 20156 new_ipif->ipif_ill != ill) 20157 continue; 20158 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 20159 new_ipif->ipif_ill != ill) 20160 continue; 20161 else if (new_ipif->ipif_zoneid != 20162 ipif->ipif_zoneid && 20163 ipif->ipif_zoneid != ALL_ZONES && 20164 IS_LOOPBACK(ill)) 20165 continue; 20166 else if (new_ipif->ipif_ill == ill) 20167 return (EADDRINUSE); 20168 else 20169 return (EADDRNOTAVAIL); 20170 } 20171 } 20172 } 20173 20174 return (0); 20175 } 20176 20177 /* 20178 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 20179 * IREs for the ipif. 20180 * When the routine returns EINPROGRESS then mp has been consumed and 20181 * the ioctl will be acked from ip_rput_dlpi. 20182 */ 20183 static int 20184 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20185 { 20186 ill_t *ill = ipif->ipif_ill; 20187 boolean_t isv6 = ipif->ipif_isv6; 20188 int err = 0; 20189 boolean_t success; 20190 20191 ASSERT(IAM_WRITER_IPIF(ipif)); 20192 20193 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20194 20195 /* Shouldn't get here if it is already up. */ 20196 if (ipif->ipif_flags & IPIF_UP) 20197 return (EALREADY); 20198 20199 /* Skip arp/ndp for any loopback interface. */ 20200 if (ill->ill_wq != NULL) { 20201 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20202 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20203 20204 if (!ill->ill_dl_up) { 20205 /* 20206 * ill_dl_up is not yet set. i.e. we are yet to 20207 * DL_BIND with the driver and this is the first 20208 * logical interface on the ill to become "up". 20209 * Tell the driver to get going (via DL_BIND_REQ). 20210 * Note that changing "significant" IFF_ flags 20211 * address/netmask etc cause a down/up dance, but 20212 * does not cause an unbind (DL_UNBIND) with the driver 20213 */ 20214 return (ill_dl_up(ill, ipif, mp, q)); 20215 } 20216 20217 /* 20218 * ipif_resolver_up may end up sending an 20219 * AR_INTERFACE_UP message to ARP, which would, in 20220 * turn send a DLPI message to the driver. ioctls are 20221 * serialized and so we cannot send more than one 20222 * interface up message at a time. If ipif_resolver_up 20223 * does send an interface up message to ARP, we get 20224 * EINPROGRESS and we will complete in ip_arp_done. 20225 */ 20226 20227 ASSERT(connp != NULL || !CONN_Q(q)); 20228 ASSERT(ipsq->ipsq_pending_mp == NULL); 20229 if (connp != NULL) 20230 mutex_enter(&connp->conn_lock); 20231 mutex_enter(&ill->ill_lock); 20232 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20233 mutex_exit(&ill->ill_lock); 20234 if (connp != NULL) 20235 mutex_exit(&connp->conn_lock); 20236 if (!success) 20237 return (EINTR); 20238 20239 /* 20240 * Crank up IPv6 neighbor discovery 20241 * Unlike ARP, this should complete when 20242 * ipif_ndp_up returns. However, for 20243 * ILLF_XRESOLV interfaces we also send a 20244 * AR_INTERFACE_UP to the external resolver. 20245 * That ioctl will complete in ip_rput. 20246 */ 20247 if (isv6) { 20248 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20249 if (err != 0) { 20250 if (err != EINPROGRESS) 20251 mp = ipsq_pending_mp_get(ipsq, &connp); 20252 return (err); 20253 } 20254 } 20255 /* Now, ARP */ 20256 err = ipif_resolver_up(ipif, Res_act_initial); 20257 if (err == EINPROGRESS) { 20258 /* We will complete it in ip_arp_done */ 20259 return (err); 20260 } 20261 mp = ipsq_pending_mp_get(ipsq, &connp); 20262 ASSERT(mp != NULL); 20263 if (err != 0) 20264 return (err); 20265 } else { 20266 /* 20267 * Interfaces without underlying hardware don't do duplicate 20268 * address detection. 20269 */ 20270 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20271 ipif->ipif_addr_ready = 1; 20272 } 20273 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20274 } 20275 20276 /* 20277 * Perform a bind for the physical device. 20278 * When the routine returns EINPROGRESS then mp has been consumed and 20279 * the ioctl will be acked from ip_rput_dlpi. 20280 * Allocate an unbind message and save it until ipif_down. 20281 */ 20282 static int 20283 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20284 { 20285 areq_t *areq; 20286 mblk_t *areq_mp = NULL; 20287 mblk_t *bind_mp = NULL; 20288 mblk_t *unbind_mp = NULL; 20289 conn_t *connp; 20290 boolean_t success; 20291 uint16_t sap_addr; 20292 20293 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20294 ASSERT(IAM_WRITER_ILL(ill)); 20295 ASSERT(mp != NULL); 20296 20297 /* Create a resolver cookie for ARP */ 20298 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20299 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 20300 if (areq_mp == NULL) 20301 return (ENOMEM); 20302 20303 freemsg(ill->ill_resolver_mp); 20304 ill->ill_resolver_mp = areq_mp; 20305 areq = (areq_t *)areq_mp->b_rptr; 20306 sap_addr = ill->ill_sap; 20307 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20308 } 20309 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20310 DL_BIND_REQ); 20311 if (bind_mp == NULL) 20312 goto bad; 20313 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20314 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20315 20316 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20317 if (unbind_mp == NULL) 20318 goto bad; 20319 20320 /* 20321 * Record state needed to complete this operation when the 20322 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20323 */ 20324 ASSERT(WR(q)->q_next == NULL); 20325 connp = Q_TO_CONN(q); 20326 20327 mutex_enter(&connp->conn_lock); 20328 mutex_enter(&ipif->ipif_ill->ill_lock); 20329 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20330 mutex_exit(&ipif->ipif_ill->ill_lock); 20331 mutex_exit(&connp->conn_lock); 20332 if (!success) 20333 goto bad; 20334 20335 /* 20336 * Save the unbind message for ill_dl_down(); it will be consumed when 20337 * the interface goes down. 20338 */ 20339 ASSERT(ill->ill_unbind_mp == NULL); 20340 ill->ill_unbind_mp = unbind_mp; 20341 20342 ill_dlpi_send(ill, bind_mp); 20343 /* Send down link-layer capabilities probe if not already done. */ 20344 ill_capability_probe(ill); 20345 20346 /* 20347 * Sysid used to rely on the fact that netboots set domainname 20348 * and the like. Now that miniroot boots aren't strictly netboots 20349 * and miniroot network configuration is driven from userland 20350 * these things still need to be set. This situation can be detected 20351 * by comparing the interface being configured here to the one 20352 * dhcack was set to reference by the boot loader. Once sysid is 20353 * converted to use dhcp_ipc_getinfo() this call can go away. 20354 */ 20355 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20356 (strcmp(ill->ill_name, dhcack) == 0) && 20357 (strlen(srpc_domain) == 0)) { 20358 if (dhcpinit() != 0) 20359 cmn_err(CE_WARN, "no cached dhcp response"); 20360 } 20361 20362 /* 20363 * This operation will complete in ip_rput_dlpi with either 20364 * a DL_BIND_ACK or DL_ERROR_ACK. 20365 */ 20366 return (EINPROGRESS); 20367 bad: 20368 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20369 /* 20370 * We don't have to check for possible removal from illgrp 20371 * as we have not yet inserted in illgrp. For groups 20372 * without names, this ipif is still not UP and hence 20373 * this could not have possibly had any influence in forming 20374 * groups. 20375 */ 20376 20377 freemsg(bind_mp); 20378 freemsg(unbind_mp); 20379 return (ENOMEM); 20380 } 20381 20382 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20383 20384 /* 20385 * DLPI and ARP is up. 20386 * Create all the IREs associated with an interface bring up multicast. 20387 * Set the interface flag and finish other initialization 20388 * that potentially had to be differed to after DL_BIND_ACK. 20389 */ 20390 int 20391 ipif_up_done(ipif_t *ipif) 20392 { 20393 ire_t *ire_array[20]; 20394 ire_t **irep = ire_array; 20395 ire_t **irep1; 20396 ipaddr_t net_mask = 0; 20397 ipaddr_t subnet_mask, route_mask; 20398 ill_t *ill = ipif->ipif_ill; 20399 queue_t *stq; 20400 ipif_t *src_ipif; 20401 ipif_t *tmp_ipif; 20402 boolean_t flush_ire_cache = B_TRUE; 20403 int err = 0; 20404 phyint_t *phyi; 20405 ire_t **ipif_saved_irep = NULL; 20406 int ipif_saved_ire_cnt; 20407 int cnt; 20408 boolean_t src_ipif_held = B_FALSE; 20409 boolean_t ire_added = B_FALSE; 20410 boolean_t loopback = B_FALSE; 20411 ip_stack_t *ipst = ill->ill_ipst; 20412 20413 ip1dbg(("ipif_up_done(%s:%u)\n", 20414 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20415 /* Check if this is a loopback interface */ 20416 if (ipif->ipif_ill->ill_wq == NULL) 20417 loopback = B_TRUE; 20418 20419 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20420 /* 20421 * If all other interfaces for this ill are down or DEPRECATED, 20422 * or otherwise unsuitable for source address selection, remove 20423 * any IRE_CACHE entries for this ill to make sure source 20424 * address selection gets to take this new ipif into account. 20425 * No need to hold ill_lock while traversing the ipif list since 20426 * we are writer 20427 */ 20428 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20429 tmp_ipif = tmp_ipif->ipif_next) { 20430 if (((tmp_ipif->ipif_flags & 20431 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20432 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20433 (tmp_ipif == ipif)) 20434 continue; 20435 /* first useable pre-existing interface */ 20436 flush_ire_cache = B_FALSE; 20437 break; 20438 } 20439 if (flush_ire_cache) 20440 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20441 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20442 20443 /* 20444 * Figure out which way the send-to queue should go. Only 20445 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20446 * should show up here. 20447 */ 20448 switch (ill->ill_net_type) { 20449 case IRE_IF_RESOLVER: 20450 stq = ill->ill_rq; 20451 break; 20452 case IRE_IF_NORESOLVER: 20453 case IRE_LOOPBACK: 20454 stq = ill->ill_wq; 20455 break; 20456 default: 20457 return (EINVAL); 20458 } 20459 20460 if (IS_LOOPBACK(ill)) { 20461 /* 20462 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20463 * ipif_lookup_on_name(), but in the case of zones we can have 20464 * several loopback addresses on lo0. So all the interfaces with 20465 * loopback addresses need to be marked IRE_LOOPBACK. 20466 */ 20467 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20468 htonl(INADDR_LOOPBACK)) 20469 ipif->ipif_ire_type = IRE_LOOPBACK; 20470 else 20471 ipif->ipif_ire_type = IRE_LOCAL; 20472 } 20473 20474 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20475 /* 20476 * Can't use our source address. Select a different 20477 * source address for the IRE_INTERFACE and IRE_LOCAL 20478 */ 20479 src_ipif = ipif_select_source(ipif->ipif_ill, 20480 ipif->ipif_subnet, ipif->ipif_zoneid); 20481 if (src_ipif == NULL) 20482 src_ipif = ipif; /* Last resort */ 20483 else 20484 src_ipif_held = B_TRUE; 20485 } else { 20486 src_ipif = ipif; 20487 } 20488 20489 /* Create all the IREs associated with this interface */ 20490 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20491 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20492 20493 /* 20494 * If we're on a labeled system then make sure that zone- 20495 * private addresses have proper remote host database entries. 20496 */ 20497 if (is_system_labeled() && 20498 ipif->ipif_ire_type != IRE_LOOPBACK && 20499 !tsol_check_interface_address(ipif)) 20500 return (EINVAL); 20501 20502 /* Register the source address for __sin6_src_id */ 20503 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20504 ipif->ipif_zoneid, ipst); 20505 if (err != 0) { 20506 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20507 return (err); 20508 } 20509 20510 /* If the interface address is set, create the local IRE. */ 20511 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20512 (void *)ipif, 20513 ipif->ipif_ire_type, 20514 ntohl(ipif->ipif_lcl_addr))); 20515 *irep++ = ire_create( 20516 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20517 (uchar_t *)&ip_g_all_ones, /* mask */ 20518 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20519 NULL, /* no gateway */ 20520 NULL, 20521 &ip_loopback_mtuplus, /* max frag size */ 20522 NULL, 20523 ipif->ipif_rq, /* recv-from queue */ 20524 NULL, /* no send-to queue */ 20525 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20526 ipif, 20527 NULL, 20528 0, 20529 0, 20530 0, 20531 (ipif->ipif_flags & IPIF_PRIVATE) ? 20532 RTF_PRIVATE : 0, 20533 &ire_uinfo_null, 20534 NULL, 20535 NULL, 20536 ipst); 20537 } else { 20538 ip1dbg(( 20539 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20540 ipif->ipif_ire_type, 20541 ntohl(ipif->ipif_lcl_addr), 20542 (uint_t)ipif->ipif_flags)); 20543 } 20544 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20545 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20546 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20547 } else { 20548 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20549 } 20550 20551 subnet_mask = ipif->ipif_net_mask; 20552 20553 /* 20554 * If mask was not specified, use natural netmask of 20555 * interface address. Also, store this mask back into the 20556 * ipif struct. 20557 */ 20558 if (subnet_mask == 0) { 20559 subnet_mask = net_mask; 20560 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20561 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20562 ipif->ipif_v6subnet); 20563 } 20564 20565 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20566 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20567 ipif->ipif_subnet != INADDR_ANY) { 20568 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20569 20570 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20571 route_mask = IP_HOST_MASK; 20572 } else { 20573 route_mask = subnet_mask; 20574 } 20575 20576 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20577 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20578 (void *)ipif, (void *)ill, 20579 ill->ill_net_type, 20580 ntohl(ipif->ipif_subnet))); 20581 *irep++ = ire_create( 20582 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20583 (uchar_t *)&route_mask, /* mask */ 20584 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20585 NULL, /* no gateway */ 20586 NULL, 20587 &ipif->ipif_mtu, /* max frag */ 20588 NULL, 20589 NULL, /* no recv queue */ 20590 stq, /* send-to queue */ 20591 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20592 ipif, 20593 NULL, 20594 0, 20595 0, 20596 0, 20597 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20598 &ire_uinfo_null, 20599 NULL, 20600 NULL, 20601 ipst); 20602 } 20603 20604 /* 20605 * If the interface address is set, create the broadcast IREs. 20606 * 20607 * ire_create_bcast checks if the proposed new IRE matches 20608 * any existing IRE's with the same physical interface (ILL). 20609 * This should get rid of duplicates. 20610 * ire_create_bcast also check IPIF_NOXMIT and does not create 20611 * any broadcast ires. 20612 */ 20613 if ((ipif->ipif_subnet != INADDR_ANY) && 20614 (ipif->ipif_flags & IPIF_BROADCAST)) { 20615 ipaddr_t addr; 20616 20617 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20618 irep = ire_check_and_create_bcast(ipif, 0, irep, 20619 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20620 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20621 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20622 20623 /* 20624 * For backward compatibility, we need to create net 20625 * broadcast ire's based on the old "IP address class 20626 * system." The reason is that some old machines only 20627 * respond to these class derived net broadcast. 20628 * 20629 * But we should not create these net broadcast ire's if 20630 * the subnet_mask is shorter than the IP address class based 20631 * derived netmask. Otherwise, we may create a net 20632 * broadcast address which is the same as an IP address 20633 * on the subnet. Then TCP will refuse to talk to that 20634 * address. 20635 * 20636 * Nor do we need IRE_BROADCAST ire's for the interface 20637 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20638 * interface is already created. Creating these broadcast 20639 * ire's will only create confusion as the "addr" is going 20640 * to be same as that of the IP address of the interface. 20641 */ 20642 if (net_mask < subnet_mask) { 20643 addr = net_mask & ipif->ipif_subnet; 20644 irep = ire_check_and_create_bcast(ipif, addr, irep, 20645 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20646 irep = ire_check_and_create_bcast(ipif, 20647 ~net_mask | addr, irep, 20648 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20649 } 20650 20651 if (subnet_mask != 0xFFFFFFFF) { 20652 addr = ipif->ipif_subnet; 20653 irep = ire_check_and_create_bcast(ipif, addr, irep, 20654 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20655 irep = ire_check_and_create_bcast(ipif, 20656 ~subnet_mask|addr, irep, 20657 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20658 } 20659 } 20660 20661 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20662 20663 /* If an earlier ire_create failed, get out now */ 20664 for (irep1 = irep; irep1 > ire_array; ) { 20665 irep1--; 20666 if (*irep1 == NULL) { 20667 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20668 err = ENOMEM; 20669 goto bad; 20670 } 20671 } 20672 20673 /* 20674 * Need to atomically check for ip_addr_availablity_check 20675 * under ip_addr_avail_lock, and if it fails got bad, and remove 20676 * from group also.The ill_g_lock is grabbed as reader 20677 * just to make sure no new ills or new ipifs are being added 20678 * to the system while we are checking the uniqueness of addresses. 20679 */ 20680 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20681 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20682 /* Mark it up, and increment counters. */ 20683 ipif->ipif_flags |= IPIF_UP; 20684 ill->ill_ipif_up_count++; 20685 err = ip_addr_availability_check(ipif); 20686 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20687 rw_exit(&ipst->ips_ill_g_lock); 20688 20689 if (err != 0) { 20690 /* 20691 * Our address may already be up on the same ill. In this case, 20692 * the ARP entry for our ipif replaced the one for the other 20693 * ipif. So we don't want to delete it (otherwise the other ipif 20694 * would be unable to send packets). 20695 * ip_addr_availability_check() identifies this case for us and 20696 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20697 * which is the expected error code. 20698 */ 20699 if (err == EADDRINUSE) { 20700 freemsg(ipif->ipif_arp_del_mp); 20701 ipif->ipif_arp_del_mp = NULL; 20702 err = EADDRNOTAVAIL; 20703 } 20704 ill->ill_ipif_up_count--; 20705 ipif->ipif_flags &= ~IPIF_UP; 20706 goto bad; 20707 } 20708 20709 /* 20710 * Add in all newly created IREs. ire_create_bcast() has 20711 * already checked for duplicates of the IRE_BROADCAST type. 20712 * We want to add before we call ifgrp_insert which wants 20713 * to know whether IRE_IF_RESOLVER exists or not. 20714 * 20715 * NOTE : We refrele the ire though we may branch to "bad" 20716 * later on where we do ire_delete. This is okay 20717 * because nobody can delete it as we are running 20718 * exclusively. 20719 */ 20720 for (irep1 = irep; irep1 > ire_array; ) { 20721 irep1--; 20722 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20723 /* 20724 * refheld by ire_add. refele towards the end of the func 20725 */ 20726 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20727 } 20728 ire_added = B_TRUE; 20729 /* 20730 * Form groups if possible. 20731 * 20732 * If we are supposed to be in a ill_group with a name, insert it 20733 * now as we know that at least one ipif is UP. Otherwise form 20734 * nameless groups. 20735 * 20736 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20737 * this ipif into the appropriate interface group, or create a 20738 * new one. If this is already in a nameless group, we try to form 20739 * a bigger group looking at other ills potentially sharing this 20740 * ipif's prefix. 20741 */ 20742 phyi = ill->ill_phyint; 20743 if (phyi->phyint_groupname_len != 0) { 20744 ASSERT(phyi->phyint_groupname != NULL); 20745 if (ill->ill_ipif_up_count == 1) { 20746 ASSERT(ill->ill_group == NULL); 20747 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20748 phyi->phyint_groupname, NULL, B_TRUE); 20749 if (err != 0) { 20750 ip1dbg(("ipif_up_done: illgrp allocation " 20751 "failed, error %d\n", err)); 20752 goto bad; 20753 } 20754 } 20755 ASSERT(ill->ill_group != NULL); 20756 } 20757 20758 /* 20759 * When this is part of group, we need to make sure that 20760 * any broadcast ires created because of this ipif coming 20761 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20762 * so that we don't receive duplicate broadcast packets. 20763 */ 20764 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20765 ipif_renominate_bcast(ipif); 20766 20767 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20768 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20769 ipif_saved_irep = ipif_recover_ire(ipif); 20770 20771 if (!loopback) { 20772 /* 20773 * If the broadcast address has been set, make sure it makes 20774 * sense based on the interface address. 20775 * Only match on ill since we are sharing broadcast addresses. 20776 */ 20777 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20778 (ipif->ipif_flags & IPIF_BROADCAST)) { 20779 ire_t *ire; 20780 20781 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20782 IRE_BROADCAST, ipif, ALL_ZONES, 20783 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20784 20785 if (ire == NULL) { 20786 /* 20787 * If there isn't a matching broadcast IRE, 20788 * revert to the default for this netmask. 20789 */ 20790 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20791 mutex_enter(&ipif->ipif_ill->ill_lock); 20792 ipif_set_default(ipif); 20793 mutex_exit(&ipif->ipif_ill->ill_lock); 20794 } else { 20795 ire_refrele(ire); 20796 } 20797 } 20798 20799 } 20800 20801 /* This is the first interface on this ill */ 20802 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20803 /* 20804 * Need to recover all multicast memberships in the driver. 20805 * This had to be deferred until we had attached. 20806 */ 20807 ill_recover_multicast(ill); 20808 } 20809 /* Join the allhosts multicast address */ 20810 ipif_multicast_up(ipif); 20811 20812 if (!loopback) { 20813 /* 20814 * See whether anybody else would benefit from the 20815 * new ipif that we added. We call this always rather 20816 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20817 * ipif is for the benefit of illgrp_insert (done above) 20818 * which does not do source address selection as it does 20819 * not want to re-create interface routes that we are 20820 * having reference to it here. 20821 */ 20822 ill_update_source_selection(ill); 20823 } 20824 20825 for (irep1 = irep; irep1 > ire_array; ) { 20826 irep1--; 20827 if (*irep1 != NULL) { 20828 /* was held in ire_add */ 20829 ire_refrele(*irep1); 20830 } 20831 } 20832 20833 cnt = ipif_saved_ire_cnt; 20834 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20835 if (*irep1 != NULL) { 20836 /* was held in ire_add */ 20837 ire_refrele(*irep1); 20838 } 20839 } 20840 20841 if (!loopback && ipif->ipif_addr_ready) { 20842 /* Broadcast an address mask reply. */ 20843 ipif_mask_reply(ipif); 20844 } 20845 if (ipif_saved_irep != NULL) { 20846 kmem_free(ipif_saved_irep, 20847 ipif_saved_ire_cnt * sizeof (ire_t *)); 20848 } 20849 if (src_ipif_held) 20850 ipif_refrele(src_ipif); 20851 20852 /* 20853 * This had to be deferred until we had bound. Tell routing sockets and 20854 * others that this interface is up if it looks like the address has 20855 * been validated. Otherwise, if it isn't ready yet, wait for 20856 * duplicate address detection to do its thing. 20857 */ 20858 if (ipif->ipif_addr_ready) { 20859 ip_rts_ifmsg(ipif); 20860 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20861 /* Let SCTP update the status for this ipif */ 20862 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20863 } 20864 return (0); 20865 20866 bad: 20867 ip1dbg(("ipif_up_done: FAILED \n")); 20868 /* 20869 * We don't have to bother removing from ill groups because 20870 * 20871 * 1) For groups with names, we insert only when the first ipif 20872 * comes up. In that case if it fails, it will not be in any 20873 * group. So, we need not try to remove for that case. 20874 * 20875 * 2) For groups without names, either we tried to insert ipif_ill 20876 * in a group as singleton or found some other group to become 20877 * a bigger group. For the former, if it fails we don't have 20878 * anything to do as ipif_ill is not in the group and for the 20879 * latter, there are no failures in illgrp_insert/illgrp_delete 20880 * (ENOMEM can't occur for this. Check ifgrp_insert). 20881 */ 20882 while (irep > ire_array) { 20883 irep--; 20884 if (*irep != NULL) { 20885 ire_delete(*irep); 20886 if (ire_added) 20887 ire_refrele(*irep); 20888 } 20889 } 20890 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20891 20892 if (ipif_saved_irep != NULL) { 20893 kmem_free(ipif_saved_irep, 20894 ipif_saved_ire_cnt * sizeof (ire_t *)); 20895 } 20896 if (src_ipif_held) 20897 ipif_refrele(src_ipif); 20898 20899 ipif_arp_down(ipif); 20900 return (err); 20901 } 20902 20903 /* 20904 * Turn off the ARP with the ILLF_NOARP flag. 20905 */ 20906 static int 20907 ill_arp_off(ill_t *ill) 20908 { 20909 mblk_t *arp_off_mp = NULL; 20910 mblk_t *arp_on_mp = NULL; 20911 20912 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20913 20914 ASSERT(IAM_WRITER_ILL(ill)); 20915 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20916 20917 /* 20918 * If the on message is still around we've already done 20919 * an arp_off without doing an arp_on thus there is no 20920 * work needed. 20921 */ 20922 if (ill->ill_arp_on_mp != NULL) 20923 return (0); 20924 20925 /* 20926 * Allocate an ARP on message (to be saved) and an ARP off message 20927 */ 20928 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20929 if (!arp_off_mp) 20930 return (ENOMEM); 20931 20932 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20933 if (!arp_on_mp) 20934 goto failed; 20935 20936 ASSERT(ill->ill_arp_on_mp == NULL); 20937 ill->ill_arp_on_mp = arp_on_mp; 20938 20939 /* Send an AR_INTERFACE_OFF request */ 20940 putnext(ill->ill_rq, arp_off_mp); 20941 return (0); 20942 failed: 20943 20944 if (arp_off_mp) 20945 freemsg(arp_off_mp); 20946 return (ENOMEM); 20947 } 20948 20949 /* 20950 * Turn on ARP by turning off the ILLF_NOARP flag. 20951 */ 20952 static int 20953 ill_arp_on(ill_t *ill) 20954 { 20955 mblk_t *mp; 20956 20957 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20958 20959 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20960 20961 ASSERT(IAM_WRITER_ILL(ill)); 20962 /* 20963 * Send an AR_INTERFACE_ON request if we have already done 20964 * an arp_off (which allocated the message). 20965 */ 20966 if (ill->ill_arp_on_mp != NULL) { 20967 mp = ill->ill_arp_on_mp; 20968 ill->ill_arp_on_mp = NULL; 20969 putnext(ill->ill_rq, mp); 20970 } 20971 return (0); 20972 } 20973 20974 /* 20975 * Called after either deleting ill from the group or when setting 20976 * FAILED or STANDBY on the interface. 20977 */ 20978 static void 20979 illgrp_reset_schednext(ill_t *ill) 20980 { 20981 ill_group_t *illgrp; 20982 ill_t *save_ill; 20983 20984 ASSERT(IAM_WRITER_ILL(ill)); 20985 /* 20986 * When called from illgrp_delete, ill_group will be non-NULL. 20987 * But when called from ip_sioctl_flags, it could be NULL if 20988 * somebody is setting FAILED/INACTIVE on some interface which 20989 * is not part of a group. 20990 */ 20991 illgrp = ill->ill_group; 20992 if (illgrp == NULL) 20993 return; 20994 if (illgrp->illgrp_ill_schednext != ill) 20995 return; 20996 20997 illgrp->illgrp_ill_schednext = NULL; 20998 save_ill = ill; 20999 /* 21000 * Choose a good ill to be the next one for 21001 * outbound traffic. As the flags FAILED/STANDBY is 21002 * not yet marked when called from ip_sioctl_flags, 21003 * we check for ill separately. 21004 */ 21005 for (ill = illgrp->illgrp_ill; ill != NULL; 21006 ill = ill->ill_group_next) { 21007 if ((ill != save_ill) && 21008 !(ill->ill_phyint->phyint_flags & 21009 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 21010 illgrp->illgrp_ill_schednext = ill; 21011 return; 21012 } 21013 } 21014 } 21015 21016 /* 21017 * Given an ill, find the next ill in the group to be scheduled. 21018 * (This should be called by ip_newroute() before ire_create().) 21019 * The passed in ill may be pulled out of the group, after we have picked 21020 * up a different outgoing ill from the same group. However ire add will 21021 * atomically check this. 21022 */ 21023 ill_t * 21024 illgrp_scheduler(ill_t *ill) 21025 { 21026 ill_t *retill; 21027 ill_group_t *illgrp; 21028 int illcnt; 21029 int i; 21030 uint64_t flags; 21031 ip_stack_t *ipst = ill->ill_ipst; 21032 21033 /* 21034 * We don't use a lock to check for the ill_group. If this ill 21035 * is currently being inserted we may end up just returning this 21036 * ill itself. That is ok. 21037 */ 21038 if (ill->ill_group == NULL) { 21039 ill_refhold(ill); 21040 return (ill); 21041 } 21042 21043 /* 21044 * Grab the ill_g_lock as reader to make sure we are dealing with 21045 * a set of stable ills. No ill can be added or deleted or change 21046 * group while we hold the reader lock. 21047 */ 21048 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21049 if ((illgrp = ill->ill_group) == NULL) { 21050 rw_exit(&ipst->ips_ill_g_lock); 21051 ill_refhold(ill); 21052 return (ill); 21053 } 21054 21055 illcnt = illgrp->illgrp_ill_count; 21056 mutex_enter(&illgrp->illgrp_lock); 21057 retill = illgrp->illgrp_ill_schednext; 21058 21059 if (retill == NULL) 21060 retill = illgrp->illgrp_ill; 21061 21062 /* 21063 * We do a circular search beginning at illgrp_ill_schednext 21064 * or illgrp_ill. We don't check the flags against the ill lock 21065 * since it can change anytime. The ire creation will be atomic 21066 * and will fail if the ill is FAILED or OFFLINE. 21067 */ 21068 for (i = 0; i < illcnt; i++) { 21069 flags = retill->ill_phyint->phyint_flags; 21070 21071 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 21072 ILL_CAN_LOOKUP(retill)) { 21073 illgrp->illgrp_ill_schednext = retill->ill_group_next; 21074 ill_refhold(retill); 21075 break; 21076 } 21077 retill = retill->ill_group_next; 21078 if (retill == NULL) 21079 retill = illgrp->illgrp_ill; 21080 } 21081 mutex_exit(&illgrp->illgrp_lock); 21082 rw_exit(&ipst->ips_ill_g_lock); 21083 21084 return (i == illcnt ? NULL : retill); 21085 } 21086 21087 /* 21088 * Checks for availbility of a usable source address (if there is one) when the 21089 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 21090 * this selection is done regardless of the destination. 21091 */ 21092 boolean_t 21093 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 21094 { 21095 uint_t ifindex; 21096 ipif_t *ipif = NULL; 21097 ill_t *uill; 21098 boolean_t isv6; 21099 ip_stack_t *ipst = ill->ill_ipst; 21100 21101 ASSERT(ill != NULL); 21102 21103 isv6 = ill->ill_isv6; 21104 ifindex = ill->ill_usesrc_ifindex; 21105 if (ifindex != 0) { 21106 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 21107 NULL, ipst); 21108 if (uill == NULL) 21109 return (NULL); 21110 mutex_enter(&uill->ill_lock); 21111 for (ipif = uill->ill_ipif; ipif != NULL; 21112 ipif = ipif->ipif_next) { 21113 if (!IPIF_CAN_LOOKUP(ipif)) 21114 continue; 21115 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21116 continue; 21117 if (!(ipif->ipif_flags & IPIF_UP)) 21118 continue; 21119 if (ipif->ipif_zoneid != zoneid) 21120 continue; 21121 if ((isv6 && 21122 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 21123 (ipif->ipif_lcl_addr == INADDR_ANY)) 21124 continue; 21125 mutex_exit(&uill->ill_lock); 21126 ill_refrele(uill); 21127 return (B_TRUE); 21128 } 21129 mutex_exit(&uill->ill_lock); 21130 ill_refrele(uill); 21131 } 21132 return (B_FALSE); 21133 } 21134 21135 /* 21136 * Determine the best source address given a destination address and an ill. 21137 * Prefers non-deprecated over deprecated but will return a deprecated 21138 * address if there is no other choice. If there is a usable source address 21139 * on the interface pointed to by ill_usesrc_ifindex then that is given 21140 * first preference. 21141 * 21142 * Returns NULL if there is no suitable source address for the ill. 21143 * This only occurs when there is no valid source address for the ill. 21144 */ 21145 ipif_t * 21146 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 21147 { 21148 ipif_t *ipif; 21149 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 21150 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 21151 int index = 0; 21152 boolean_t wrapped = B_FALSE; 21153 boolean_t same_subnet_only = B_FALSE; 21154 boolean_t ipif_same_found, ipif_other_found; 21155 boolean_t specific_found; 21156 ill_t *till, *usill = NULL; 21157 tsol_tpc_t *src_rhtp, *dst_rhtp; 21158 ip_stack_t *ipst = ill->ill_ipst; 21159 21160 if (ill->ill_usesrc_ifindex != 0) { 21161 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 21162 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21163 if (usill != NULL) 21164 ill = usill; /* Select source from usesrc ILL */ 21165 else 21166 return (NULL); 21167 } 21168 21169 /* 21170 * If we're dealing with an unlabeled destination on a labeled system, 21171 * make sure that we ignore source addresses that are incompatible with 21172 * the destination's default label. That destination's default label 21173 * must dominate the minimum label on the source address. 21174 */ 21175 dst_rhtp = NULL; 21176 if (is_system_labeled()) { 21177 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21178 if (dst_rhtp == NULL) 21179 return (NULL); 21180 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21181 TPC_RELE(dst_rhtp); 21182 dst_rhtp = NULL; 21183 } 21184 } 21185 21186 /* 21187 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21188 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21189 * After selecting the right ipif, under ill_lock make sure ipif is 21190 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21191 * we retry. Inside the loop we still need to check for CONDEMNED, 21192 * but not under a lock. 21193 */ 21194 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21195 21196 retry: 21197 till = ill; 21198 ipif_arr[0] = NULL; 21199 21200 if (till->ill_group != NULL) 21201 till = till->ill_group->illgrp_ill; 21202 21203 /* 21204 * Choose one good source address from each ill across the group. 21205 * If possible choose a source address in the same subnet as 21206 * the destination address. 21207 * 21208 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21209 * This is okay because of the following. 21210 * 21211 * If PHYI_FAILED is set and we still have non-deprecated 21212 * addresses, it means the addresses have not yet been 21213 * failed over to a different interface. We potentially 21214 * select them to create IRE_CACHES, which will be later 21215 * flushed when the addresses move over. 21216 * 21217 * If PHYI_INACTIVE is set and we still have non-deprecated 21218 * addresses, it means either the user has configured them 21219 * or PHYI_INACTIVE has not been cleared after the addresses 21220 * been moved over. For the former, in.mpathd does a failover 21221 * when the interface becomes INACTIVE and hence we should 21222 * not find them. Once INACTIVE is set, we don't allow them 21223 * to create logical interfaces anymore. For the latter, a 21224 * flush will happen when INACTIVE is cleared which will 21225 * flush the IRE_CACHES. 21226 * 21227 * If PHYI_OFFLINE is set, all the addresses will be failed 21228 * over soon. We potentially select them to create IRE_CACHEs, 21229 * which will be later flushed when the addresses move over. 21230 * 21231 * NOTE : As ipif_select_source is called to borrow source address 21232 * for an ipif that is part of a group, source address selection 21233 * will be re-done whenever the group changes i.e either an 21234 * insertion/deletion in the group. 21235 * 21236 * Fill ipif_arr[] with source addresses, using these rules: 21237 * 21238 * 1. At most one source address from a given ill ends up 21239 * in ipif_arr[] -- that is, at most one of the ipif's 21240 * associated with a given ill ends up in ipif_arr[]. 21241 * 21242 * 2. If there is at least one non-deprecated ipif in the 21243 * IPMP group with a source address on the same subnet as 21244 * our destination, then fill ipif_arr[] only with 21245 * source addresses on the same subnet as our destination. 21246 * Note that because of (1), only the first 21247 * non-deprecated ipif found with a source address 21248 * matching the destination ends up in ipif_arr[]. 21249 * 21250 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21251 * addresses not in the same subnet as our destination. 21252 * Again, because of (1), only the first off-subnet source 21253 * address will be chosen. 21254 * 21255 * 4. If there are no non-deprecated ipifs, then just use 21256 * the source address associated with the last deprecated 21257 * one we find that happens to be on the same subnet, 21258 * otherwise the first one not in the same subnet. 21259 */ 21260 specific_found = B_FALSE; 21261 for (; till != NULL; till = till->ill_group_next) { 21262 ipif_same_found = B_FALSE; 21263 ipif_other_found = B_FALSE; 21264 for (ipif = till->ill_ipif; ipif != NULL; 21265 ipif = ipif->ipif_next) { 21266 if (!IPIF_CAN_LOOKUP(ipif)) 21267 continue; 21268 /* Always skip NOLOCAL and ANYCAST interfaces */ 21269 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21270 continue; 21271 if (!(ipif->ipif_flags & IPIF_UP) || 21272 !ipif->ipif_addr_ready) 21273 continue; 21274 if (ipif->ipif_zoneid != zoneid && 21275 ipif->ipif_zoneid != ALL_ZONES) 21276 continue; 21277 /* 21278 * Interfaces with 0.0.0.0 address are allowed to be UP, 21279 * but are not valid as source addresses. 21280 */ 21281 if (ipif->ipif_lcl_addr == INADDR_ANY) 21282 continue; 21283 21284 /* 21285 * Check compatibility of local address for 21286 * destination's default label if we're on a labeled 21287 * system. Incompatible addresses can't be used at 21288 * all. 21289 */ 21290 if (dst_rhtp != NULL) { 21291 boolean_t incompat; 21292 21293 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21294 IPV4_VERSION, B_FALSE); 21295 if (src_rhtp == NULL) 21296 continue; 21297 incompat = 21298 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21299 src_rhtp->tpc_tp.tp_doi != 21300 dst_rhtp->tpc_tp.tp_doi || 21301 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21302 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21303 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21304 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21305 TPC_RELE(src_rhtp); 21306 if (incompat) 21307 continue; 21308 } 21309 21310 /* 21311 * We prefer not to use all all-zones addresses, if we 21312 * can avoid it, as they pose problems with unlabeled 21313 * destinations. 21314 */ 21315 if (ipif->ipif_zoneid != ALL_ZONES) { 21316 if (!specific_found && 21317 (!same_subnet_only || 21318 (ipif->ipif_net_mask & dst) == 21319 ipif->ipif_subnet)) { 21320 index = 0; 21321 specific_found = B_TRUE; 21322 ipif_other_found = B_FALSE; 21323 } 21324 } else { 21325 if (specific_found) 21326 continue; 21327 } 21328 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21329 if (ipif_dep == NULL || 21330 (ipif->ipif_net_mask & dst) == 21331 ipif->ipif_subnet) 21332 ipif_dep = ipif; 21333 continue; 21334 } 21335 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21336 /* found a source address in the same subnet */ 21337 if (!same_subnet_only) { 21338 same_subnet_only = B_TRUE; 21339 index = 0; 21340 } 21341 ipif_same_found = B_TRUE; 21342 } else { 21343 if (same_subnet_only || ipif_other_found) 21344 continue; 21345 ipif_other_found = B_TRUE; 21346 } 21347 ipif_arr[index++] = ipif; 21348 if (index == MAX_IPIF_SELECT_SOURCE) { 21349 wrapped = B_TRUE; 21350 index = 0; 21351 } 21352 if (ipif_same_found) 21353 break; 21354 } 21355 } 21356 21357 if (ipif_arr[0] == NULL) { 21358 ipif = ipif_dep; 21359 } else { 21360 if (wrapped) 21361 index = MAX_IPIF_SELECT_SOURCE; 21362 ipif = ipif_arr[ipif_rand(ipst) % index]; 21363 ASSERT(ipif != NULL); 21364 } 21365 21366 if (ipif != NULL) { 21367 mutex_enter(&ipif->ipif_ill->ill_lock); 21368 if (!IPIF_CAN_LOOKUP(ipif)) { 21369 mutex_exit(&ipif->ipif_ill->ill_lock); 21370 goto retry; 21371 } 21372 ipif_refhold_locked(ipif); 21373 mutex_exit(&ipif->ipif_ill->ill_lock); 21374 } 21375 21376 rw_exit(&ipst->ips_ill_g_lock); 21377 if (usill != NULL) 21378 ill_refrele(usill); 21379 if (dst_rhtp != NULL) 21380 TPC_RELE(dst_rhtp); 21381 21382 #ifdef DEBUG 21383 if (ipif == NULL) { 21384 char buf1[INET6_ADDRSTRLEN]; 21385 21386 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21387 ill->ill_name, 21388 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21389 } else { 21390 char buf1[INET6_ADDRSTRLEN]; 21391 char buf2[INET6_ADDRSTRLEN]; 21392 21393 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21394 ipif->ipif_ill->ill_name, 21395 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21396 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21397 buf2, sizeof (buf2)))); 21398 } 21399 #endif /* DEBUG */ 21400 return (ipif); 21401 } 21402 21403 21404 /* 21405 * If old_ipif is not NULL, see if ipif was derived from old 21406 * ipif and if so, recreate the interface route by re-doing 21407 * source address selection. This happens when ipif_down -> 21408 * ipif_update_other_ipifs calls us. 21409 * 21410 * If old_ipif is NULL, just redo the source address selection 21411 * if needed. This happens when illgrp_insert or ipif_up_done 21412 * calls us. 21413 */ 21414 static void 21415 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21416 { 21417 ire_t *ire; 21418 ire_t *ipif_ire; 21419 queue_t *stq; 21420 ipif_t *nipif; 21421 ill_t *ill; 21422 boolean_t need_rele = B_FALSE; 21423 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21424 21425 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21426 ASSERT(IAM_WRITER_IPIF(ipif)); 21427 21428 ill = ipif->ipif_ill; 21429 if (!(ipif->ipif_flags & 21430 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21431 /* 21432 * Can't possibly have borrowed the source 21433 * from old_ipif. 21434 */ 21435 return; 21436 } 21437 21438 /* 21439 * Is there any work to be done? No work if the address 21440 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21441 * ipif_select_source() does not borrow addresses from 21442 * NOLOCAL and ANYCAST interfaces). 21443 */ 21444 if ((old_ipif != NULL) && 21445 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21446 (old_ipif->ipif_ill->ill_wq == NULL) || 21447 (old_ipif->ipif_flags & 21448 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21449 return; 21450 } 21451 21452 /* 21453 * Perform the same checks as when creating the 21454 * IRE_INTERFACE in ipif_up_done. 21455 */ 21456 if (!(ipif->ipif_flags & IPIF_UP)) 21457 return; 21458 21459 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21460 (ipif->ipif_subnet == INADDR_ANY)) 21461 return; 21462 21463 ipif_ire = ipif_to_ire(ipif); 21464 if (ipif_ire == NULL) 21465 return; 21466 21467 /* 21468 * We know that ipif uses some other source for its 21469 * IRE_INTERFACE. Is it using the source of this 21470 * old_ipif? 21471 */ 21472 if (old_ipif != NULL && 21473 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21474 ire_refrele(ipif_ire); 21475 return; 21476 } 21477 if (ip_debug > 2) { 21478 /* ip1dbg */ 21479 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21480 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21481 } 21482 21483 stq = ipif_ire->ire_stq; 21484 21485 /* 21486 * Can't use our source address. Select a different 21487 * source address for the IRE_INTERFACE. 21488 */ 21489 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21490 if (nipif == NULL) { 21491 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21492 nipif = ipif; 21493 } else { 21494 need_rele = B_TRUE; 21495 } 21496 21497 ire = ire_create( 21498 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21499 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21500 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21501 NULL, /* no gateway */ 21502 NULL, 21503 &ipif->ipif_mtu, /* max frag */ 21504 NULL, /* no src nce */ 21505 NULL, /* no recv from queue */ 21506 stq, /* send-to queue */ 21507 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21508 ipif, 21509 NULL, 21510 0, 21511 0, 21512 0, 21513 0, 21514 &ire_uinfo_null, 21515 NULL, 21516 NULL, 21517 ipst); 21518 21519 if (ire != NULL) { 21520 ire_t *ret_ire; 21521 int error; 21522 21523 /* 21524 * We don't need ipif_ire anymore. We need to delete 21525 * before we add so that ire_add does not detect 21526 * duplicates. 21527 */ 21528 ire_delete(ipif_ire); 21529 ret_ire = ire; 21530 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21531 ASSERT(error == 0); 21532 ASSERT(ire == ret_ire); 21533 /* Held in ire_add */ 21534 ire_refrele(ret_ire); 21535 } 21536 /* 21537 * Either we are falling through from above or could not 21538 * allocate a replacement. 21539 */ 21540 ire_refrele(ipif_ire); 21541 if (need_rele) 21542 ipif_refrele(nipif); 21543 } 21544 21545 /* 21546 * This old_ipif is going away. 21547 * 21548 * Determine if any other ipif's is using our address as 21549 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21550 * IPIF_DEPRECATED). 21551 * Find the IRE_INTERFACE for such ipifs and recreate them 21552 * to use an different source address following the rules in 21553 * ipif_up_done. 21554 * 21555 * This function takes an illgrp as an argument so that illgrp_delete 21556 * can call this to update source address even after deleting the 21557 * old_ipif->ipif_ill from the ill group. 21558 */ 21559 static void 21560 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21561 { 21562 ipif_t *ipif; 21563 ill_t *ill; 21564 char buf[INET6_ADDRSTRLEN]; 21565 21566 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21567 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21568 21569 ill = old_ipif->ipif_ill; 21570 21571 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21572 ill->ill_name, 21573 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21574 buf, sizeof (buf)))); 21575 /* 21576 * If this part of a group, look at all ills as ipif_select_source 21577 * borrows source address across all the ills in the group. 21578 */ 21579 if (illgrp != NULL) 21580 ill = illgrp->illgrp_ill; 21581 21582 for (; ill != NULL; ill = ill->ill_group_next) { 21583 for (ipif = ill->ill_ipif; ipif != NULL; 21584 ipif = ipif->ipif_next) { 21585 21586 if (ipif == old_ipif) 21587 continue; 21588 21589 ipif_recreate_interface_routes(old_ipif, ipif); 21590 } 21591 } 21592 } 21593 21594 /* ARGSUSED */ 21595 int 21596 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21597 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21598 { 21599 /* 21600 * ill_phyint_reinit merged the v4 and v6 into a single 21601 * ipsq. Could also have become part of a ipmp group in the 21602 * process, and we might not have been able to complete the 21603 * operation in ipif_set_values, if we could not become 21604 * exclusive. If so restart it here. 21605 */ 21606 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21607 } 21608 21609 21610 /* 21611 * Can operate on either a module or a driver queue. 21612 * Returns an error if not a module queue. 21613 */ 21614 /* ARGSUSED */ 21615 int 21616 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21617 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21618 { 21619 queue_t *q1 = q; 21620 char *cp; 21621 char interf_name[LIFNAMSIZ]; 21622 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21623 21624 if (q->q_next == NULL) { 21625 ip1dbg(( 21626 "if_unitsel: IF_UNITSEL: no q_next\n")); 21627 return (EINVAL); 21628 } 21629 21630 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21631 return (EALREADY); 21632 21633 do { 21634 q1 = q1->q_next; 21635 } while (q1->q_next); 21636 cp = q1->q_qinfo->qi_minfo->mi_idname; 21637 (void) sprintf(interf_name, "%s%d", cp, ppa); 21638 21639 /* 21640 * Here we are not going to delay the ioack until after 21641 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21642 * original ioctl message before sending the requests. 21643 */ 21644 return (ipif_set_values(q, mp, interf_name, &ppa)); 21645 } 21646 21647 /* ARGSUSED */ 21648 int 21649 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21650 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21651 { 21652 return (ENXIO); 21653 } 21654 21655 /* 21656 * Net and subnet broadcast ire's are now specific to the particular 21657 * physical interface (ill) and not to any one locigal interface (ipif). 21658 * However, if a particular logical interface is being taken down, it's 21659 * associated ire's will be taken down as well. Hence, when we go to 21660 * take down or change the local address, broadcast address or netmask 21661 * of a specific logical interface, we must check to make sure that we 21662 * have valid net and subnet broadcast ire's for the other logical 21663 * interfaces which may have been shared with the logical interface 21664 * being brought down or changed. 21665 * 21666 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21667 * is tied to the first interface coming UP. If that ipif is going down, 21668 * we need to recreate them on the next valid ipif. 21669 * 21670 * Note: assume that the ipif passed in is still up so that it's IRE 21671 * entries are still valid. 21672 */ 21673 static void 21674 ipif_check_bcast_ires(ipif_t *test_ipif) 21675 { 21676 ipif_t *ipif; 21677 ire_t *test_subnet_ire, *test_net_ire; 21678 ire_t *test_allzero_ire, *test_allone_ire; 21679 ire_t *ire_array[12]; 21680 ire_t **irep = &ire_array[0]; 21681 ire_t **irep1; 21682 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21683 ipaddr_t test_net_addr, test_subnet_addr; 21684 ipaddr_t test_net_mask, test_subnet_mask; 21685 boolean_t need_net_bcast_ire = B_FALSE; 21686 boolean_t need_subnet_bcast_ire = B_FALSE; 21687 boolean_t allzero_bcast_ire_created = B_FALSE; 21688 boolean_t allone_bcast_ire_created = B_FALSE; 21689 boolean_t net_bcast_ire_created = B_FALSE; 21690 boolean_t subnet_bcast_ire_created = B_FALSE; 21691 21692 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21693 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21694 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21695 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21696 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21697 ip_stack_t *ipst = test_ipif->ipif_ill->ill_ipst; 21698 21699 ASSERT(!test_ipif->ipif_isv6); 21700 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21701 21702 /* 21703 * No broadcast IREs for the LOOPBACK interface 21704 * or others such as point to point and IPIF_NOXMIT. 21705 */ 21706 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21707 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21708 return; 21709 21710 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21711 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21712 ipst); 21713 21714 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21715 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21716 ipst); 21717 21718 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21719 test_subnet_mask = test_ipif->ipif_net_mask; 21720 21721 /* 21722 * If no net mask set, assume the default based on net class. 21723 */ 21724 if (test_subnet_mask == 0) 21725 test_subnet_mask = test_net_mask; 21726 21727 /* 21728 * Check if there is a network broadcast ire associated with this ipif 21729 */ 21730 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21731 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21732 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21733 ipst); 21734 21735 /* 21736 * Check if there is a subnet broadcast IRE associated with this ipif 21737 */ 21738 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21739 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21740 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21741 ipst); 21742 21743 /* 21744 * No broadcast ire's associated with this ipif. 21745 */ 21746 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21747 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21748 return; 21749 } 21750 21751 /* 21752 * We have established which bcast ires have to be replaced. 21753 * Next we try to locate ipifs that match there ires. 21754 * The rules are simple: If we find an ipif that matches on the subnet 21755 * address it will also match on the net address, the allzeros and 21756 * allones address. Any ipif that matches only on the net address will 21757 * also match the allzeros and allones addresses. 21758 * The other criterion is the ipif_flags. We look for non-deprecated 21759 * (and non-anycast and non-nolocal) ipifs as the best choice. 21760 * ipifs with check_flags matching (deprecated, etc) are used only 21761 * if good ipifs are not available. While looping, we save existing 21762 * deprecated ipifs as backup_ipif. 21763 * We loop through all the ipifs for this ill looking for ipifs 21764 * whose broadcast addr match the ipif passed in, but do not have 21765 * their own broadcast ires. For creating 0.0.0.0 and 21766 * 255.255.255.255 we just need an ipif on this ill to create. 21767 */ 21768 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21769 ipif = ipif->ipif_next) { 21770 21771 ASSERT(!ipif->ipif_isv6); 21772 /* 21773 * Already checked the ipif passed in. 21774 */ 21775 if (ipif == test_ipif) { 21776 continue; 21777 } 21778 21779 /* 21780 * We only need to recreate broadcast ires if another ipif in 21781 * the same zone uses them. The new ires must be created in the 21782 * same zone. 21783 */ 21784 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21785 continue; 21786 } 21787 21788 /* 21789 * Only interested in logical interfaces with valid local 21790 * addresses or with the ability to broadcast. 21791 */ 21792 if ((ipif->ipif_subnet == 0) || 21793 !(ipif->ipif_flags & IPIF_BROADCAST) || 21794 (ipif->ipif_flags & IPIF_NOXMIT) || 21795 !(ipif->ipif_flags & IPIF_UP)) { 21796 continue; 21797 } 21798 /* 21799 * Check if there is a net broadcast ire for this 21800 * net address. If it turns out that the ipif we are 21801 * about to take down owns this ire, we must make a 21802 * new one because it is potentially going away. 21803 */ 21804 if (test_net_ire && (!net_bcast_ire_created)) { 21805 net_mask = ip_net_mask(ipif->ipif_subnet); 21806 net_addr = net_mask & ipif->ipif_subnet; 21807 if (net_addr == test_net_addr) { 21808 need_net_bcast_ire = B_TRUE; 21809 /* 21810 * Use DEPRECATED ipif only if no good 21811 * ires are available. subnet_addr is 21812 * a better match than net_addr. 21813 */ 21814 if ((ipif->ipif_flags & check_flags) && 21815 (backup_ipif_net == NULL)) { 21816 backup_ipif_net = ipif; 21817 } 21818 } 21819 } 21820 /* 21821 * Check if there is a subnet broadcast ire for this 21822 * net address. If it turns out that the ipif we are 21823 * about to take down owns this ire, we must make a 21824 * new one because it is potentially going away. 21825 */ 21826 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21827 subnet_mask = ipif->ipif_net_mask; 21828 subnet_addr = ipif->ipif_subnet; 21829 if (subnet_addr == test_subnet_addr) { 21830 need_subnet_bcast_ire = B_TRUE; 21831 if ((ipif->ipif_flags & check_flags) && 21832 (backup_ipif_subnet == NULL)) { 21833 backup_ipif_subnet = ipif; 21834 } 21835 } 21836 } 21837 21838 21839 /* Short circuit here if this ipif is deprecated */ 21840 if (ipif->ipif_flags & check_flags) { 21841 if ((test_allzero_ire != NULL) && 21842 (!allzero_bcast_ire_created) && 21843 (backup_ipif_allzeros == NULL)) { 21844 backup_ipif_allzeros = ipif; 21845 } 21846 if ((test_allone_ire != NULL) && 21847 (!allone_bcast_ire_created) && 21848 (backup_ipif_allones == NULL)) { 21849 backup_ipif_allones = ipif; 21850 } 21851 continue; 21852 } 21853 21854 /* 21855 * Found an ipif which has the same broadcast ire as the 21856 * ipif passed in and the ipif passed in "owns" the ire. 21857 * Create new broadcast ire's for this broadcast addr. 21858 */ 21859 if (need_net_bcast_ire && !net_bcast_ire_created) { 21860 irep = ire_create_bcast(ipif, net_addr, irep); 21861 irep = ire_create_bcast(ipif, 21862 ~net_mask | net_addr, irep); 21863 net_bcast_ire_created = B_TRUE; 21864 } 21865 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21866 irep = ire_create_bcast(ipif, subnet_addr, irep); 21867 irep = ire_create_bcast(ipif, 21868 ~subnet_mask | subnet_addr, irep); 21869 subnet_bcast_ire_created = B_TRUE; 21870 } 21871 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21872 irep = ire_create_bcast(ipif, 0, irep); 21873 allzero_bcast_ire_created = B_TRUE; 21874 } 21875 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21876 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21877 allone_bcast_ire_created = B_TRUE; 21878 } 21879 /* 21880 * Once we have created all the appropriate ires, we 21881 * just break out of this loop to add what we have created. 21882 * This has been indented similar to ire_match_args for 21883 * readability. 21884 */ 21885 if (((test_net_ire == NULL) || 21886 (net_bcast_ire_created)) && 21887 ((test_subnet_ire == NULL) || 21888 (subnet_bcast_ire_created)) && 21889 ((test_allzero_ire == NULL) || 21890 (allzero_bcast_ire_created)) && 21891 ((test_allone_ire == NULL) || 21892 (allone_bcast_ire_created))) { 21893 break; 21894 } 21895 } 21896 21897 /* 21898 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21899 * exist. 6 pairs of bcast ires are needed. 21900 * Note - the old ires are deleted in ipif_down. 21901 */ 21902 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21903 ipif = backup_ipif_net; 21904 irep = ire_create_bcast(ipif, net_addr, irep); 21905 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21906 net_bcast_ire_created = B_TRUE; 21907 } 21908 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21909 backup_ipif_subnet) { 21910 ipif = backup_ipif_subnet; 21911 irep = ire_create_bcast(ipif, subnet_addr, irep); 21912 irep = ire_create_bcast(ipif, 21913 ~subnet_mask | subnet_addr, irep); 21914 subnet_bcast_ire_created = B_TRUE; 21915 } 21916 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21917 backup_ipif_allzeros) { 21918 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21919 allzero_bcast_ire_created = B_TRUE; 21920 } 21921 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21922 backup_ipif_allones) { 21923 irep = ire_create_bcast(backup_ipif_allones, 21924 INADDR_BROADCAST, irep); 21925 allone_bcast_ire_created = B_TRUE; 21926 } 21927 21928 /* 21929 * If we can't create all of them, don't add any of them. 21930 * Code in ip_wput_ire and ire_to_ill assumes that we 21931 * always have a non-loopback copy and loopback copy 21932 * for a given address. 21933 */ 21934 for (irep1 = irep; irep1 > ire_array; ) { 21935 irep1--; 21936 if (*irep1 == NULL) { 21937 ip0dbg(("ipif_check_bcast_ires: can't create " 21938 "IRE_BROADCAST, memory allocation failure\n")); 21939 while (irep > ire_array) { 21940 irep--; 21941 if (*irep != NULL) 21942 ire_delete(*irep); 21943 } 21944 goto bad; 21945 } 21946 } 21947 for (irep1 = irep; irep1 > ire_array; ) { 21948 int error; 21949 21950 irep1--; 21951 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21952 if (error == 0) { 21953 ire_refrele(*irep1); /* Held in ire_add */ 21954 } 21955 } 21956 bad: 21957 if (test_allzero_ire != NULL) 21958 ire_refrele(test_allzero_ire); 21959 if (test_allone_ire != NULL) 21960 ire_refrele(test_allone_ire); 21961 if (test_net_ire != NULL) 21962 ire_refrele(test_net_ire); 21963 if (test_subnet_ire != NULL) 21964 ire_refrele(test_subnet_ire); 21965 } 21966 21967 /* 21968 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21969 * from lifr_flags and the name from lifr_name. 21970 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21971 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21972 * Returns EINPROGRESS when mp has been consumed by queueing it on 21973 * ill_pending_mp and the ioctl will complete in ip_rput. 21974 * 21975 * Can operate on either a module or a driver queue. 21976 * Returns an error if not a module queue. 21977 */ 21978 /* ARGSUSED */ 21979 int 21980 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21981 ip_ioctl_cmd_t *ipip, void *if_req) 21982 { 21983 int err; 21984 ill_t *ill; 21985 struct lifreq *lifr = (struct lifreq *)if_req; 21986 21987 ASSERT(ipif != NULL); 21988 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21989 21990 if (q->q_next == NULL) { 21991 ip1dbg(( 21992 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21993 return (EINVAL); 21994 } 21995 21996 ill = (ill_t *)q->q_ptr; 21997 /* 21998 * If we are not writer on 'q' then this interface exists already 21999 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 22000 * So return EALREADY 22001 */ 22002 if (ill != ipif->ipif_ill) 22003 return (EALREADY); 22004 22005 if (ill->ill_name[0] != '\0') 22006 return (EALREADY); 22007 22008 /* 22009 * Set all the flags. Allows all kinds of override. Provide some 22010 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 22011 * unless there is either multicast/broadcast support in the driver 22012 * or it is a pt-pt link. 22013 */ 22014 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 22015 /* Meaningless to IP thus don't allow them to be set. */ 22016 ip1dbg(("ip_setname: EINVAL 1\n")); 22017 return (EINVAL); 22018 } 22019 /* 22020 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 22021 * ill_bcast_addr_length info. 22022 */ 22023 if (!ill->ill_needs_attach && 22024 ((lifr->lifr_flags & IFF_MULTICAST) && 22025 !(lifr->lifr_flags & IFF_POINTOPOINT) && 22026 ill->ill_bcast_addr_length == 0)) { 22027 /* Link not broadcast/pt-pt capable i.e. no multicast */ 22028 ip1dbg(("ip_setname: EINVAL 2\n")); 22029 return (EINVAL); 22030 } 22031 if ((lifr->lifr_flags & IFF_BROADCAST) && 22032 ((lifr->lifr_flags & IFF_IPV6) || 22033 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 22034 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 22035 ip1dbg(("ip_setname: EINVAL 3\n")); 22036 return (EINVAL); 22037 } 22038 if (lifr->lifr_flags & IFF_UP) { 22039 /* Can only be set with SIOCSLIFFLAGS */ 22040 ip1dbg(("ip_setname: EINVAL 4\n")); 22041 return (EINVAL); 22042 } 22043 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 22044 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 22045 ip1dbg(("ip_setname: EINVAL 5\n")); 22046 return (EINVAL); 22047 } 22048 /* 22049 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 22050 */ 22051 if ((lifr->lifr_flags & IFF_XRESOLV) && 22052 !(lifr->lifr_flags & IFF_IPV6) && 22053 !(ipif->ipif_isv6)) { 22054 ip1dbg(("ip_setname: EINVAL 6\n")); 22055 return (EINVAL); 22056 } 22057 22058 /* 22059 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 22060 * we have all the flags here. So, we assign rather than we OR. 22061 * We can't OR the flags here because we don't want to set 22062 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 22063 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 22064 * on lifr_flags value here. 22065 */ 22066 /* 22067 * This ill has not been inserted into the global list. 22068 * So we are still single threaded and don't need any lock 22069 */ 22070 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 22071 ~IFF_DUPLICATE; 22072 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 22073 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 22074 22075 /* We started off as V4. */ 22076 if (ill->ill_flags & ILLF_IPV6) { 22077 ill->ill_phyint->phyint_illv6 = ill; 22078 ill->ill_phyint->phyint_illv4 = NULL; 22079 } 22080 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 22081 return (err); 22082 } 22083 22084 /* ARGSUSED */ 22085 int 22086 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22087 ip_ioctl_cmd_t *ipip, void *if_req) 22088 { 22089 /* 22090 * ill_phyint_reinit merged the v4 and v6 into a single 22091 * ipsq. Could also have become part of a ipmp group in the 22092 * process, and we might not have been able to complete the 22093 * slifname in ipif_set_values, if we could not become 22094 * exclusive. If so restart it here 22095 */ 22096 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 22097 } 22098 22099 /* 22100 * Return a pointer to the ipif which matches the index, IP version type and 22101 * zoneid. 22102 */ 22103 ipif_t * 22104 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 22105 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 22106 { 22107 ill_t *ill; 22108 ipsq_t *ipsq; 22109 phyint_t *phyi; 22110 ipif_t *ipif; 22111 22112 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 22113 (q != NULL && mp != NULL && func != NULL && err != NULL)); 22114 22115 if (err != NULL) 22116 *err = 0; 22117 22118 /* 22119 * Indexes are stored in the phyint - a common structure 22120 * to both IPv4 and IPv6. 22121 */ 22122 22123 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22124 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22125 (void *) &index, NULL); 22126 if (phyi != NULL) { 22127 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 22128 if (ill == NULL) { 22129 rw_exit(&ipst->ips_ill_g_lock); 22130 if (err != NULL) 22131 *err = ENXIO; 22132 return (NULL); 22133 } 22134 GRAB_CONN_LOCK(q); 22135 mutex_enter(&ill->ill_lock); 22136 if (ILL_CAN_LOOKUP(ill)) { 22137 for (ipif = ill->ill_ipif; ipif != NULL; 22138 ipif = ipif->ipif_next) { 22139 if (IPIF_CAN_LOOKUP(ipif) && 22140 (zoneid == ALL_ZONES || 22141 zoneid == ipif->ipif_zoneid || 22142 ipif->ipif_zoneid == ALL_ZONES)) { 22143 ipif_refhold_locked(ipif); 22144 mutex_exit(&ill->ill_lock); 22145 RELEASE_CONN_LOCK(q); 22146 rw_exit(&ipst->ips_ill_g_lock); 22147 return (ipif); 22148 } 22149 } 22150 } else if (ILL_CAN_WAIT(ill, q)) { 22151 ipsq = ill->ill_phyint->phyint_ipsq; 22152 mutex_enter(&ipsq->ipsq_lock); 22153 rw_exit(&ipst->ips_ill_g_lock); 22154 mutex_exit(&ill->ill_lock); 22155 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 22156 mutex_exit(&ipsq->ipsq_lock); 22157 RELEASE_CONN_LOCK(q); 22158 *err = EINPROGRESS; 22159 return (NULL); 22160 } 22161 mutex_exit(&ill->ill_lock); 22162 RELEASE_CONN_LOCK(q); 22163 } 22164 rw_exit(&ipst->ips_ill_g_lock); 22165 if (err != NULL) 22166 *err = ENXIO; 22167 return (NULL); 22168 } 22169 22170 typedef struct conn_change_s { 22171 uint_t cc_old_ifindex; 22172 uint_t cc_new_ifindex; 22173 } conn_change_t; 22174 22175 /* 22176 * ipcl_walk function for changing interface index. 22177 */ 22178 static void 22179 conn_change_ifindex(conn_t *connp, caddr_t arg) 22180 { 22181 conn_change_t *connc; 22182 uint_t old_ifindex; 22183 uint_t new_ifindex; 22184 int i; 22185 ilg_t *ilg; 22186 22187 connc = (conn_change_t *)arg; 22188 old_ifindex = connc->cc_old_ifindex; 22189 new_ifindex = connc->cc_new_ifindex; 22190 22191 if (connp->conn_orig_bound_ifindex == old_ifindex) 22192 connp->conn_orig_bound_ifindex = new_ifindex; 22193 22194 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22195 connp->conn_orig_multicast_ifindex = new_ifindex; 22196 22197 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22198 connp->conn_orig_xmit_ifindex = new_ifindex; 22199 22200 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22201 ilg = &connp->conn_ilg[i]; 22202 if (ilg->ilg_orig_ifindex == old_ifindex) 22203 ilg->ilg_orig_ifindex = new_ifindex; 22204 } 22205 } 22206 22207 /* 22208 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22209 * to new_index if it matches the old_index. 22210 * 22211 * Failovers typically happen within a group of ills. But somebody 22212 * can remove an ill from the group after a failover happened. If 22213 * we are setting the ifindex after this, we potentially need to 22214 * look at all the ills rather than just the ones in the group. 22215 * We cut down the work by looking at matching ill_net_types 22216 * and ill_types as we could not possibly grouped them together. 22217 */ 22218 static void 22219 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22220 { 22221 ill_t *ill; 22222 ipif_t *ipif; 22223 uint_t old_ifindex; 22224 uint_t new_ifindex; 22225 ilm_t *ilm; 22226 ill_walk_context_t ctx; 22227 ip_stack_t *ipst = ill_orig->ill_ipst; 22228 22229 old_ifindex = connc->cc_old_ifindex; 22230 new_ifindex = connc->cc_new_ifindex; 22231 22232 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22233 ill = ILL_START_WALK_ALL(&ctx, ipst); 22234 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22235 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22236 (ill_orig->ill_type != ill->ill_type)) { 22237 continue; 22238 } 22239 for (ipif = ill->ill_ipif; ipif != NULL; 22240 ipif = ipif->ipif_next) { 22241 if (ipif->ipif_orig_ifindex == old_ifindex) 22242 ipif->ipif_orig_ifindex = new_ifindex; 22243 } 22244 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22245 if (ilm->ilm_orig_ifindex == old_ifindex) 22246 ilm->ilm_orig_ifindex = new_ifindex; 22247 } 22248 } 22249 rw_exit(&ipst->ips_ill_g_lock); 22250 } 22251 22252 /* 22253 * We first need to ensure that the new index is unique, and 22254 * then carry the change across both v4 and v6 ill representation 22255 * of the physical interface. 22256 */ 22257 /* ARGSUSED */ 22258 int 22259 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22260 ip_ioctl_cmd_t *ipip, void *ifreq) 22261 { 22262 ill_t *ill; 22263 ill_t *ill_other; 22264 phyint_t *phyi; 22265 int old_index; 22266 conn_change_t connc; 22267 struct ifreq *ifr = (struct ifreq *)ifreq; 22268 struct lifreq *lifr = (struct lifreq *)ifreq; 22269 uint_t index; 22270 ill_t *ill_v4; 22271 ill_t *ill_v6; 22272 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22273 22274 if (ipip->ipi_cmd_type == IF_CMD) 22275 index = ifr->ifr_index; 22276 else 22277 index = lifr->lifr_index; 22278 22279 /* 22280 * Only allow on physical interface. Also, index zero is illegal. 22281 * 22282 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22283 * 22284 * 1) If PHYI_FAILED is set, a failover could have happened which 22285 * implies a possible failback might have to happen. As failback 22286 * depends on the old index, we should fail setting the index. 22287 * 22288 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22289 * any addresses or multicast memberships are failed over to 22290 * a non-STANDBY interface. As failback depends on the old 22291 * index, we should fail setting the index for this case also. 22292 * 22293 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22294 * Be consistent with PHYI_FAILED and fail the ioctl. 22295 */ 22296 ill = ipif->ipif_ill; 22297 phyi = ill->ill_phyint; 22298 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22299 ipif->ipif_id != 0 || index == 0) { 22300 return (EINVAL); 22301 } 22302 old_index = phyi->phyint_ifindex; 22303 22304 /* If the index is not changing, no work to do */ 22305 if (old_index == index) 22306 return (0); 22307 22308 /* 22309 * Use ill_lookup_on_ifindex to determine if the 22310 * new index is unused and if so allow the change. 22311 */ 22312 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22313 ipst); 22314 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22315 ipst); 22316 if (ill_v6 != NULL || ill_v4 != NULL) { 22317 if (ill_v4 != NULL) 22318 ill_refrele(ill_v4); 22319 if (ill_v6 != NULL) 22320 ill_refrele(ill_v6); 22321 return (EBUSY); 22322 } 22323 22324 /* 22325 * The new index is unused. Set it in the phyint. 22326 * Locate the other ill so that we can send a routing 22327 * sockets message. 22328 */ 22329 if (ill->ill_isv6) { 22330 ill_other = phyi->phyint_illv4; 22331 } else { 22332 ill_other = phyi->phyint_illv6; 22333 } 22334 22335 phyi->phyint_ifindex = index; 22336 22337 /* Update SCTP's ILL list */ 22338 sctp_ill_reindex(ill, old_index); 22339 22340 connc.cc_old_ifindex = old_index; 22341 connc.cc_new_ifindex = index; 22342 ip_change_ifindex(ill, &connc); 22343 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22344 22345 /* Send the routing sockets message */ 22346 ip_rts_ifmsg(ipif); 22347 if (ill_other != NULL) 22348 ip_rts_ifmsg(ill_other->ill_ipif); 22349 22350 return (0); 22351 } 22352 22353 /* ARGSUSED */ 22354 int 22355 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22356 ip_ioctl_cmd_t *ipip, void *ifreq) 22357 { 22358 struct ifreq *ifr = (struct ifreq *)ifreq; 22359 struct lifreq *lifr = (struct lifreq *)ifreq; 22360 22361 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22362 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22363 /* Get the interface index */ 22364 if (ipip->ipi_cmd_type == IF_CMD) { 22365 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22366 } else { 22367 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22368 } 22369 return (0); 22370 } 22371 22372 /* ARGSUSED */ 22373 int 22374 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22375 ip_ioctl_cmd_t *ipip, void *ifreq) 22376 { 22377 struct lifreq *lifr = (struct lifreq *)ifreq; 22378 22379 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22380 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22381 /* Get the interface zone */ 22382 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22383 lifr->lifr_zoneid = ipif->ipif_zoneid; 22384 return (0); 22385 } 22386 22387 /* 22388 * Set the zoneid of an interface. 22389 */ 22390 /* ARGSUSED */ 22391 int 22392 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22393 ip_ioctl_cmd_t *ipip, void *ifreq) 22394 { 22395 struct lifreq *lifr = (struct lifreq *)ifreq; 22396 int err = 0; 22397 boolean_t need_up = B_FALSE; 22398 zone_t *zptr; 22399 zone_status_t status; 22400 zoneid_t zoneid; 22401 22402 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22403 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22404 if (!is_system_labeled()) 22405 return (ENOTSUP); 22406 zoneid = GLOBAL_ZONEID; 22407 } 22408 22409 /* cannot assign instance zero to a non-global zone */ 22410 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22411 return (ENOTSUP); 22412 22413 /* 22414 * Cannot assign to a zone that doesn't exist or is shutting down. In 22415 * the event of a race with the zone shutdown processing, since IP 22416 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22417 * interface will be cleaned up even if the zone is shut down 22418 * immediately after the status check. If the interface can't be brought 22419 * down right away, and the zone is shut down before the restart 22420 * function is called, we resolve the possible races by rechecking the 22421 * zone status in the restart function. 22422 */ 22423 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22424 return (EINVAL); 22425 status = zone_status_get(zptr); 22426 zone_rele(zptr); 22427 22428 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22429 return (EINVAL); 22430 22431 if (ipif->ipif_flags & IPIF_UP) { 22432 /* 22433 * If the interface is already marked up, 22434 * we call ipif_down which will take care 22435 * of ditching any IREs that have been set 22436 * up based on the old interface address. 22437 */ 22438 err = ipif_logical_down(ipif, q, mp); 22439 if (err == EINPROGRESS) 22440 return (err); 22441 ipif_down_tail(ipif); 22442 need_up = B_TRUE; 22443 } 22444 22445 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22446 return (err); 22447 } 22448 22449 static int 22450 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22451 queue_t *q, mblk_t *mp, boolean_t need_up) 22452 { 22453 int err = 0; 22454 ip_stack_t *ipst; 22455 22456 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22458 22459 if (CONN_Q(q)) 22460 ipst = CONNQ_TO_IPST(q); 22461 else 22462 ipst = ILLQ_TO_IPST(q); 22463 22464 /* 22465 * For exclusive stacks we don't allow a different zoneid than 22466 * global. 22467 */ 22468 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22469 zoneid != GLOBAL_ZONEID) 22470 return (EINVAL); 22471 22472 /* Set the new zone id. */ 22473 ipif->ipif_zoneid = zoneid; 22474 22475 /* Update sctp list */ 22476 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22477 22478 if (need_up) { 22479 /* 22480 * Now bring the interface back up. If this 22481 * is the only IPIF for the ILL, ipif_up 22482 * will have to re-bind to the device, so 22483 * we may get back EINPROGRESS, in which 22484 * case, this IOCTL will get completed in 22485 * ip_rput_dlpi when we see the DL_BIND_ACK. 22486 */ 22487 err = ipif_up(ipif, q, mp); 22488 } 22489 return (err); 22490 } 22491 22492 /* ARGSUSED */ 22493 int 22494 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22495 ip_ioctl_cmd_t *ipip, void *if_req) 22496 { 22497 struct lifreq *lifr = (struct lifreq *)if_req; 22498 zoneid_t zoneid; 22499 zone_t *zptr; 22500 zone_status_t status; 22501 22502 ASSERT(ipif->ipif_id != 0); 22503 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22504 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22505 zoneid = GLOBAL_ZONEID; 22506 22507 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22508 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22509 22510 /* 22511 * We recheck the zone status to resolve the following race condition: 22512 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22513 * 2) hme0:1 is up and can't be brought down right away; 22514 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22515 * 3) zone "myzone" is halted; the zone status switches to 22516 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22517 * the interfaces to remove - hme0:1 is not returned because it's not 22518 * yet in "myzone", so it won't be removed; 22519 * 4) the restart function for SIOCSLIFZONE is called; without the 22520 * status check here, we would have hme0:1 in "myzone" after it's been 22521 * destroyed. 22522 * Note that if the status check fails, we need to bring the interface 22523 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22524 * ipif_up_done[_v6](). 22525 */ 22526 status = ZONE_IS_UNINITIALIZED; 22527 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22528 status = zone_status_get(zptr); 22529 zone_rele(zptr); 22530 } 22531 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22532 if (ipif->ipif_isv6) { 22533 (void) ipif_up_done_v6(ipif); 22534 } else { 22535 (void) ipif_up_done(ipif); 22536 } 22537 return (EINVAL); 22538 } 22539 22540 ipif_down_tail(ipif); 22541 22542 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22543 B_TRUE)); 22544 } 22545 22546 /* ARGSUSED */ 22547 int 22548 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22549 ip_ioctl_cmd_t *ipip, void *ifreq) 22550 { 22551 struct lifreq *lifr = ifreq; 22552 22553 ASSERT(q->q_next == NULL); 22554 ASSERT(CONN_Q(q)); 22555 22556 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22557 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22558 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22559 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22560 22561 return (0); 22562 } 22563 22564 22565 /* Find the previous ILL in this usesrc group */ 22566 static ill_t * 22567 ill_prev_usesrc(ill_t *uill) 22568 { 22569 ill_t *ill; 22570 22571 for (ill = uill->ill_usesrc_grp_next; 22572 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22573 ill = ill->ill_usesrc_grp_next) 22574 /* do nothing */; 22575 return (ill); 22576 } 22577 22578 /* 22579 * Release all members of the usesrc group. This routine is called 22580 * from ill_delete when the interface being unplumbed is the 22581 * group head. 22582 */ 22583 static void 22584 ill_disband_usesrc_group(ill_t *uill) 22585 { 22586 ill_t *next_ill, *tmp_ill; 22587 ip_stack_t *ipst = uill->ill_ipst; 22588 22589 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22590 next_ill = uill->ill_usesrc_grp_next; 22591 22592 do { 22593 ASSERT(next_ill != NULL); 22594 tmp_ill = next_ill->ill_usesrc_grp_next; 22595 ASSERT(tmp_ill != NULL); 22596 next_ill->ill_usesrc_grp_next = NULL; 22597 next_ill->ill_usesrc_ifindex = 0; 22598 next_ill = tmp_ill; 22599 } while (next_ill->ill_usesrc_ifindex != 0); 22600 uill->ill_usesrc_grp_next = NULL; 22601 } 22602 22603 /* 22604 * Remove the client usesrc ILL from the list and relink to a new list 22605 */ 22606 int 22607 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22608 { 22609 ill_t *ill, *tmp_ill; 22610 ip_stack_t *ipst = ucill->ill_ipst; 22611 22612 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22613 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22614 22615 /* 22616 * Check if the usesrc client ILL passed in is not already 22617 * in use as a usesrc ILL i.e one whose source address is 22618 * in use OR a usesrc ILL is not already in use as a usesrc 22619 * client ILL 22620 */ 22621 if ((ucill->ill_usesrc_ifindex == 0) || 22622 (uill->ill_usesrc_ifindex != 0)) { 22623 return (-1); 22624 } 22625 22626 ill = ill_prev_usesrc(ucill); 22627 ASSERT(ill->ill_usesrc_grp_next != NULL); 22628 22629 /* Remove from the current list */ 22630 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22631 /* Only two elements in the list */ 22632 ASSERT(ill->ill_usesrc_ifindex == 0); 22633 ill->ill_usesrc_grp_next = NULL; 22634 } else { 22635 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22636 } 22637 22638 if (ifindex == 0) { 22639 ucill->ill_usesrc_ifindex = 0; 22640 ucill->ill_usesrc_grp_next = NULL; 22641 return (0); 22642 } 22643 22644 ucill->ill_usesrc_ifindex = ifindex; 22645 tmp_ill = uill->ill_usesrc_grp_next; 22646 uill->ill_usesrc_grp_next = ucill; 22647 ucill->ill_usesrc_grp_next = 22648 (tmp_ill != NULL) ? tmp_ill : uill; 22649 return (0); 22650 } 22651 22652 /* 22653 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22654 * ip.c for locking details. 22655 */ 22656 /* ARGSUSED */ 22657 int 22658 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22659 ip_ioctl_cmd_t *ipip, void *ifreq) 22660 { 22661 struct lifreq *lifr = (struct lifreq *)ifreq; 22662 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22663 ill_flag_changed = B_FALSE; 22664 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22665 int err = 0, ret; 22666 uint_t ifindex; 22667 phyint_t *us_phyint, *us_cli_phyint; 22668 ipsq_t *ipsq = NULL; 22669 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22670 22671 ASSERT(IAM_WRITER_IPIF(ipif)); 22672 ASSERT(q->q_next == NULL); 22673 ASSERT(CONN_Q(q)); 22674 22675 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22676 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22677 22678 ASSERT(us_cli_phyint != NULL); 22679 22680 /* 22681 * If the client ILL is being used for IPMP, abort. 22682 * Note, this can be done before ipsq_try_enter since we are already 22683 * exclusive on this ILL 22684 */ 22685 if ((us_cli_phyint->phyint_groupname != NULL) || 22686 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22687 return (EINVAL); 22688 } 22689 22690 ifindex = lifr->lifr_index; 22691 if (ifindex == 0) { 22692 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22693 /* non usesrc group interface, nothing to reset */ 22694 return (0); 22695 } 22696 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22697 /* valid reset request */ 22698 reset_flg = B_TRUE; 22699 } 22700 22701 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22702 ip_process_ioctl, &err, ipst); 22703 22704 if (usesrc_ill == NULL) { 22705 return (err); 22706 } 22707 22708 /* 22709 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22710 * group nor can either of the interfaces be used for standy. So 22711 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22712 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22713 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22714 * We are already exlusive on this ipsq i.e ipsq corresponding to 22715 * the usesrc_cli_ill 22716 */ 22717 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22718 NEW_OP, B_TRUE); 22719 if (ipsq == NULL) { 22720 err = EINPROGRESS; 22721 /* Operation enqueued on the ipsq of the usesrc ILL */ 22722 goto done; 22723 } 22724 22725 /* Check if the usesrc_ill is used for IPMP */ 22726 us_phyint = usesrc_ill->ill_phyint; 22727 if ((us_phyint->phyint_groupname != NULL) || 22728 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22729 err = EINVAL; 22730 goto done; 22731 } 22732 22733 /* 22734 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22735 * already a client then return EINVAL 22736 */ 22737 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22738 err = EINVAL; 22739 goto done; 22740 } 22741 22742 /* 22743 * If the ill_usesrc_ifindex field is already set to what it needs to 22744 * be then this is a duplicate operation. 22745 */ 22746 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22747 err = 0; 22748 goto done; 22749 } 22750 22751 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22752 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22753 usesrc_ill->ill_isv6)); 22754 22755 /* 22756 * The next step ensures that no new ires will be created referencing 22757 * the client ill, until the ILL_CHANGING flag is cleared. Then 22758 * we go through an ire walk deleting all ire caches that reference 22759 * the client ill. New ires referencing the client ill that are added 22760 * to the ire table before the ILL_CHANGING flag is set, will be 22761 * cleaned up by the ire walk below. Attempt to add new ires referencing 22762 * the client ill while the ILL_CHANGING flag is set will be failed 22763 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22764 * checks (under the ill_g_usesrc_lock) that the ire being added 22765 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22766 * belong to the same usesrc group. 22767 */ 22768 mutex_enter(&usesrc_cli_ill->ill_lock); 22769 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22770 mutex_exit(&usesrc_cli_ill->ill_lock); 22771 ill_flag_changed = B_TRUE; 22772 22773 if (ipif->ipif_isv6) 22774 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22775 ALL_ZONES, ipst); 22776 else 22777 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22778 ALL_ZONES, ipst); 22779 22780 /* 22781 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22782 * and the ill_usesrc_ifindex fields 22783 */ 22784 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22785 22786 if (reset_flg) { 22787 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22788 if (ret != 0) { 22789 err = EINVAL; 22790 } 22791 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22792 goto done; 22793 } 22794 22795 /* 22796 * Four possibilities to consider: 22797 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22798 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22799 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22800 * 4. Both are part of their respective usesrc groups 22801 */ 22802 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22803 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22804 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22805 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22806 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22807 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22808 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22809 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22810 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22811 /* Insert at head of list */ 22812 usesrc_cli_ill->ill_usesrc_grp_next = 22813 usesrc_ill->ill_usesrc_grp_next; 22814 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22815 } else { 22816 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22817 ifindex); 22818 if (ret != 0) 22819 err = EINVAL; 22820 } 22821 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22822 22823 done: 22824 if (ill_flag_changed) { 22825 mutex_enter(&usesrc_cli_ill->ill_lock); 22826 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22827 mutex_exit(&usesrc_cli_ill->ill_lock); 22828 } 22829 if (ipsq != NULL) 22830 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22831 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22832 ill_refrele(usesrc_ill); 22833 return (err); 22834 } 22835 22836 /* 22837 * comparison function used by avl. 22838 */ 22839 static int 22840 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22841 { 22842 22843 uint_t index; 22844 22845 ASSERT(phyip != NULL && index_ptr != NULL); 22846 22847 index = *((uint_t *)index_ptr); 22848 /* 22849 * let the phyint with the lowest index be on top. 22850 */ 22851 if (((phyint_t *)phyip)->phyint_ifindex < index) 22852 return (1); 22853 if (((phyint_t *)phyip)->phyint_ifindex > index) 22854 return (-1); 22855 return (0); 22856 } 22857 22858 /* 22859 * comparison function used by avl. 22860 */ 22861 static int 22862 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22863 { 22864 ill_t *ill; 22865 int res = 0; 22866 22867 ASSERT(phyip != NULL && name_ptr != NULL); 22868 22869 if (((phyint_t *)phyip)->phyint_illv4) 22870 ill = ((phyint_t *)phyip)->phyint_illv4; 22871 else 22872 ill = ((phyint_t *)phyip)->phyint_illv6; 22873 ASSERT(ill != NULL); 22874 22875 res = strcmp(ill->ill_name, (char *)name_ptr); 22876 if (res > 0) 22877 return (1); 22878 else if (res < 0) 22879 return (-1); 22880 return (0); 22881 } 22882 /* 22883 * This function is called from ill_delete when the ill is being 22884 * unplumbed. We remove the reference from the phyint and we also 22885 * free the phyint when there are no more references to it. 22886 */ 22887 static void 22888 ill_phyint_free(ill_t *ill) 22889 { 22890 phyint_t *phyi; 22891 phyint_t *next_phyint; 22892 ipsq_t *cur_ipsq; 22893 ip_stack_t *ipst = ill->ill_ipst; 22894 22895 ASSERT(ill->ill_phyint != NULL); 22896 22897 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22898 phyi = ill->ill_phyint; 22899 ill->ill_phyint = NULL; 22900 /* 22901 * ill_init allocates a phyint always to store the copy 22902 * of flags relevant to phyint. At that point in time, we could 22903 * not assign the name and hence phyint_illv4/v6 could not be 22904 * initialized. Later in ipif_set_values, we assign the name to 22905 * the ill, at which point in time we assign phyint_illv4/v6. 22906 * Thus we don't rely on phyint_illv6 to be initialized always. 22907 */ 22908 if (ill->ill_flags & ILLF_IPV6) { 22909 phyi->phyint_illv6 = NULL; 22910 } else { 22911 phyi->phyint_illv4 = NULL; 22912 } 22913 /* 22914 * ipif_down removes it from the group when the last ipif goes 22915 * down. 22916 */ 22917 ASSERT(ill->ill_group == NULL); 22918 22919 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22920 return; 22921 22922 /* 22923 * Make sure this phyint was put in the list. 22924 */ 22925 if (phyi->phyint_ifindex > 0) { 22926 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22927 phyi); 22928 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22929 phyi); 22930 } 22931 /* 22932 * remove phyint from the ipsq list. 22933 */ 22934 cur_ipsq = phyi->phyint_ipsq; 22935 if (phyi == cur_ipsq->ipsq_phyint_list) { 22936 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22937 } else { 22938 next_phyint = cur_ipsq->ipsq_phyint_list; 22939 while (next_phyint != NULL) { 22940 if (next_phyint->phyint_ipsq_next == phyi) { 22941 next_phyint->phyint_ipsq_next = 22942 phyi->phyint_ipsq_next; 22943 break; 22944 } 22945 next_phyint = next_phyint->phyint_ipsq_next; 22946 } 22947 ASSERT(next_phyint != NULL); 22948 } 22949 IPSQ_DEC_REF(cur_ipsq, ipst); 22950 22951 if (phyi->phyint_groupname_len != 0) { 22952 ASSERT(phyi->phyint_groupname != NULL); 22953 mi_free(phyi->phyint_groupname); 22954 } 22955 mi_free(phyi); 22956 } 22957 22958 /* 22959 * Attach the ill to the phyint structure which can be shared by both 22960 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22961 * function is called from ipif_set_values and ill_lookup_on_name (for 22962 * loopback) where we know the name of the ill. We lookup the ill and if 22963 * there is one present already with the name use that phyint. Otherwise 22964 * reuse the one allocated by ill_init. 22965 */ 22966 static void 22967 ill_phyint_reinit(ill_t *ill) 22968 { 22969 boolean_t isv6 = ill->ill_isv6; 22970 phyint_t *phyi_old; 22971 phyint_t *phyi; 22972 avl_index_t where = 0; 22973 ill_t *ill_other = NULL; 22974 ipsq_t *ipsq; 22975 ip_stack_t *ipst = ill->ill_ipst; 22976 22977 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22978 22979 phyi_old = ill->ill_phyint; 22980 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22981 phyi_old->phyint_illv6 == NULL)); 22982 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22983 phyi_old->phyint_illv4 == NULL)); 22984 ASSERT(phyi_old->phyint_ifindex == 0); 22985 22986 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22987 ill->ill_name, &where); 22988 22989 /* 22990 * 1. We grabbed the ill_g_lock before inserting this ill into 22991 * the global list of ills. So no other thread could have located 22992 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22993 * 2. Now locate the other protocol instance of this ill. 22994 * 3. Now grab both ill locks in the right order, and the phyint lock of 22995 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22996 * of neither ill can change. 22997 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22998 * other ill. 22999 * 5. Release all locks. 23000 */ 23001 23002 /* 23003 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 23004 * we are initializing IPv4. 23005 */ 23006 if (phyi != NULL) { 23007 ill_other = (isv6) ? phyi->phyint_illv4 : 23008 phyi->phyint_illv6; 23009 ASSERT(ill_other->ill_phyint != NULL); 23010 ASSERT((isv6 && !ill_other->ill_isv6) || 23011 (!isv6 && ill_other->ill_isv6)); 23012 GRAB_ILL_LOCKS(ill, ill_other); 23013 /* 23014 * We are potentially throwing away phyint_flags which 23015 * could be different from the one that we obtain from 23016 * ill_other->ill_phyint. But it is okay as we are assuming 23017 * that the state maintained within IP is correct. 23018 */ 23019 mutex_enter(&phyi->phyint_lock); 23020 if (isv6) { 23021 ASSERT(phyi->phyint_illv6 == NULL); 23022 phyi->phyint_illv6 = ill; 23023 } else { 23024 ASSERT(phyi->phyint_illv4 == NULL); 23025 phyi->phyint_illv4 = ill; 23026 } 23027 /* 23028 * This is a new ill, currently undergoing SLIFNAME 23029 * So we could not have joined an IPMP group until now. 23030 */ 23031 ASSERT(phyi_old->phyint_ipsq_next == NULL && 23032 phyi_old->phyint_groupname == NULL); 23033 23034 /* 23035 * This phyi_old is going away. Decref ipsq_refs and 23036 * assert it is zero. The ipsq itself will be freed in 23037 * ipsq_exit 23038 */ 23039 ipsq = phyi_old->phyint_ipsq; 23040 IPSQ_DEC_REF(ipsq, ipst); 23041 ASSERT(ipsq->ipsq_refs == 0); 23042 /* Get the singleton phyint out of the ipsq list */ 23043 ASSERT(phyi_old->phyint_ipsq_next == NULL); 23044 ipsq->ipsq_phyint_list = NULL; 23045 phyi_old->phyint_illv4 = NULL; 23046 phyi_old->phyint_illv6 = NULL; 23047 mi_free(phyi_old); 23048 } else { 23049 mutex_enter(&ill->ill_lock); 23050 /* 23051 * We don't need to acquire any lock, since 23052 * the ill is not yet visible globally and we 23053 * have not yet released the ill_g_lock. 23054 */ 23055 phyi = phyi_old; 23056 mutex_enter(&phyi->phyint_lock); 23057 /* XXX We need a recovery strategy here. */ 23058 if (!phyint_assign_ifindex(phyi, ipst)) 23059 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 23060 23061 /* No IPMP group yet, thus the hook uses the ifindex */ 23062 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 23063 23064 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23065 (void *)phyi, where); 23066 23067 (void) avl_find(&ipst->ips_phyint_g_list-> 23068 phyint_list_avl_by_index, 23069 &phyi->phyint_ifindex, &where); 23070 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23071 (void *)phyi, where); 23072 } 23073 23074 /* 23075 * Reassigning ill_phyint automatically reassigns the ipsq also. 23076 * pending mp is not affected because that is per ill basis. 23077 */ 23078 ill->ill_phyint = phyi; 23079 23080 /* 23081 * Keep the index on ipif_orig_index to be used by FAILOVER. 23082 * We do this here as when the first ipif was allocated, 23083 * ipif_allocate does not know the right interface index. 23084 */ 23085 23086 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 23087 /* 23088 * Now that the phyint's ifindex has been assigned, complete the 23089 * remaining 23090 */ 23091 23092 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 23093 if (ill->ill_isv6) { 23094 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 23095 ill->ill_phyint->phyint_ifindex; 23096 } 23097 23098 /* 23099 * Generate an event within the hooks framework to indicate that 23100 * a new interface has just been added to IP. For this event to 23101 * be generated, the network interface must, at least, have an 23102 * ifindex assigned to it. 23103 * 23104 * This needs to be run inside the ill_g_lock perimeter to ensure 23105 * that the ordering of delivered events to listeners matches the 23106 * order of them in the kernel. 23107 * 23108 * This function could be called from ill_lookup_on_name. In that case 23109 * the interface is loopback "lo", which will not generate a NIC event. 23110 */ 23111 if (ill->ill_name_length <= 2 || 23112 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 23113 /* 23114 * Generate nic plumb event for ill_name even if 23115 * ipmp_hook_emulation is set. That avoids generating events 23116 * for the ill_names should ipmp_hook_emulation be turned on 23117 * later. 23118 */ 23119 ill_nic_info_plumb(ill, B_FALSE); 23120 } 23121 RELEASE_ILL_LOCKS(ill, ill_other); 23122 mutex_exit(&phyi->phyint_lock); 23123 } 23124 23125 /* 23126 * Allocate a NE_PLUMB nic info event and store in the ill. 23127 * If 'group' is set we do it for the group name, otherwise the ill name. 23128 * It will be sent when we leave the ipsq. 23129 */ 23130 void 23131 ill_nic_info_plumb(ill_t *ill, boolean_t group) 23132 { 23133 phyint_t *phyi = ill->ill_phyint; 23134 ip_stack_t *ipst = ill->ill_ipst; 23135 hook_nic_event_t *info; 23136 char *name; 23137 int namelen; 23138 23139 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23140 23141 if ((info = ill->ill_nic_event_info) != NULL) { 23142 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 23143 "attached for %s\n", info->hne_event, 23144 ill->ill_name)); 23145 if (info->hne_data != NULL) 23146 kmem_free(info->hne_data, info->hne_datalen); 23147 kmem_free(info, sizeof (hook_nic_event_t)); 23148 ill->ill_nic_event_info = NULL; 23149 } 23150 23151 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 23152 if (info == NULL) { 23153 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 23154 "event information for %s (ENOMEM)\n", 23155 ill->ill_name)); 23156 return; 23157 } 23158 23159 if (group) { 23160 ASSERT(phyi->phyint_groupname_len != 0); 23161 namelen = phyi->phyint_groupname_len; 23162 name = phyi->phyint_groupname; 23163 } else { 23164 namelen = ill->ill_name_length; 23165 name = ill->ill_name; 23166 } 23167 23168 info->hne_nic = phyi->phyint_hook_ifindex; 23169 info->hne_lif = 0; 23170 info->hne_event = NE_PLUMB; 23171 info->hne_family = ill->ill_isv6 ? 23172 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 23173 23174 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 23175 if (info->hne_data != NULL) { 23176 info->hne_datalen = namelen; 23177 bcopy(name, info->hne_data, info->hne_datalen); 23178 } else { 23179 ip2dbg(("ill_nic_info_plumb: could not attach " 23180 "name information for PLUMB nic event " 23181 "of %s (ENOMEM)\n", name)); 23182 kmem_free(info, sizeof (hook_nic_event_t)); 23183 info = NULL; 23184 } 23185 ill->ill_nic_event_info = info; 23186 } 23187 23188 /* 23189 * Unhook the nic event message from the ill and enqueue it 23190 * into the nic event taskq. 23191 */ 23192 void 23193 ill_nic_info_dispatch(ill_t *ill) 23194 { 23195 hook_nic_event_t *info; 23196 23197 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23198 23199 if ((info = ill->ill_nic_event_info) != NULL) { 23200 if (ddi_taskq_dispatch(eventq_queue_nic, 23201 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 23202 ip2dbg(("ill_nic_info_dispatch: " 23203 "ddi_taskq_dispatch failed\n")); 23204 if (info->hne_data != NULL) 23205 kmem_free(info->hne_data, info->hne_datalen); 23206 kmem_free(info, sizeof (hook_nic_event_t)); 23207 } 23208 ill->ill_nic_event_info = NULL; 23209 } 23210 } 23211 23212 /* 23213 * Notify any downstream modules of the name of this interface. 23214 * An M_IOCTL is used even though we don't expect a successful reply. 23215 * Any reply message from the driver (presumably an M_IOCNAK) will 23216 * eventually get discarded somewhere upstream. The message format is 23217 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 23218 * to IP. 23219 */ 23220 static void 23221 ip_ifname_notify(ill_t *ill, queue_t *q) 23222 { 23223 mblk_t *mp1, *mp2; 23224 struct iocblk *iocp; 23225 struct lifreq *lifr; 23226 23227 mp1 = mkiocb(SIOCSLIFNAME); 23228 if (mp1 == NULL) 23229 return; 23230 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 23231 if (mp2 == NULL) { 23232 freeb(mp1); 23233 return; 23234 } 23235 23236 mp1->b_cont = mp2; 23237 iocp = (struct iocblk *)mp1->b_rptr; 23238 iocp->ioc_count = sizeof (struct lifreq); 23239 23240 lifr = (struct lifreq *)mp2->b_rptr; 23241 mp2->b_wptr += sizeof (struct lifreq); 23242 bzero(lifr, sizeof (struct lifreq)); 23243 23244 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23245 lifr->lifr_ppa = ill->ill_ppa; 23246 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23247 23248 putnext(q, mp1); 23249 } 23250 23251 static int 23252 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23253 { 23254 int err; 23255 ip_stack_t *ipst = ill->ill_ipst; 23256 23257 /* Set the obsolete NDD per-interface forwarding name. */ 23258 err = ill_set_ndd_name(ill); 23259 if (err != 0) { 23260 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23261 err); 23262 } 23263 23264 /* Tell downstream modules where they are. */ 23265 ip_ifname_notify(ill, q); 23266 23267 /* 23268 * ill_dl_phys returns EINPROGRESS in the usual case. 23269 * Error cases are ENOMEM ... 23270 */ 23271 err = ill_dl_phys(ill, ipif, mp, q); 23272 23273 /* 23274 * If there is no IRE expiration timer running, get one started. 23275 * igmp and mld timers will be triggered by the first multicast 23276 */ 23277 if (ipst->ips_ip_ire_expire_id == 0) { 23278 /* 23279 * acquire the lock and check again. 23280 */ 23281 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23282 if (ipst->ips_ip_ire_expire_id == 0) { 23283 ipst->ips_ip_ire_expire_id = timeout( 23284 ip_trash_timer_expire, ipst, 23285 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23286 } 23287 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23288 } 23289 23290 if (ill->ill_isv6) { 23291 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23292 if (ipst->ips_mld_slowtimeout_id == 0) { 23293 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23294 (void *)ipst, 23295 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23296 } 23297 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23298 } else { 23299 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23300 if (ipst->ips_igmp_slowtimeout_id == 0) { 23301 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23302 (void *)ipst, 23303 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23304 } 23305 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23306 } 23307 23308 return (err); 23309 } 23310 23311 /* 23312 * Common routine for ppa and ifname setting. Should be called exclusive. 23313 * 23314 * Returns EINPROGRESS when mp has been consumed by queueing it on 23315 * ill_pending_mp and the ioctl will complete in ip_rput. 23316 * 23317 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23318 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23319 * For SLIFNAME, we pass these values back to the userland. 23320 */ 23321 static int 23322 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23323 { 23324 ill_t *ill; 23325 ipif_t *ipif; 23326 ipsq_t *ipsq; 23327 char *ppa_ptr; 23328 char *old_ptr; 23329 char old_char; 23330 int error; 23331 ip_stack_t *ipst; 23332 23333 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23334 ASSERT(q->q_next != NULL); 23335 ASSERT(interf_name != NULL); 23336 23337 ill = (ill_t *)q->q_ptr; 23338 ipst = ill->ill_ipst; 23339 23340 ASSERT(ill->ill_ipst != NULL); 23341 ASSERT(ill->ill_name[0] == '\0'); 23342 ASSERT(IAM_WRITER_ILL(ill)); 23343 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23344 ASSERT(ill->ill_ppa == UINT_MAX); 23345 23346 /* The ppa is sent down by ifconfig or is chosen */ 23347 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23348 return (EINVAL); 23349 } 23350 23351 /* 23352 * make sure ppa passed in is same as ppa in the name. 23353 * This check is not made when ppa == UINT_MAX in that case ppa 23354 * in the name could be anything. System will choose a ppa and 23355 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23356 */ 23357 if (*new_ppa_ptr != UINT_MAX) { 23358 /* stoi changes the pointer */ 23359 old_ptr = ppa_ptr; 23360 /* 23361 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23362 * (they don't have an externally visible ppa). We assign one 23363 * here so that we can manage the interface. Note that in 23364 * the past this value was always 0 for DLPI 1 drivers. 23365 */ 23366 if (*new_ppa_ptr == 0) 23367 *new_ppa_ptr = stoi(&old_ptr); 23368 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23369 return (EINVAL); 23370 } 23371 /* 23372 * terminate string before ppa 23373 * save char at that location. 23374 */ 23375 old_char = ppa_ptr[0]; 23376 ppa_ptr[0] = '\0'; 23377 23378 ill->ill_ppa = *new_ppa_ptr; 23379 /* 23380 * Finish as much work now as possible before calling ill_glist_insert 23381 * which makes the ill globally visible and also merges it with the 23382 * other protocol instance of this phyint. The remaining work is 23383 * done after entering the ipsq which may happen sometime later. 23384 * ill_set_ndd_name occurs after the ill has been made globally visible. 23385 */ 23386 ipif = ill->ill_ipif; 23387 23388 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23389 ipif_assign_seqid(ipif); 23390 23391 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23392 ill->ill_flags |= ILLF_IPV4; 23393 23394 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23395 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23396 23397 if (ill->ill_flags & ILLF_IPV6) { 23398 23399 ill->ill_isv6 = B_TRUE; 23400 if (ill->ill_rq != NULL) { 23401 ill->ill_rq->q_qinfo = &rinit_ipv6; 23402 ill->ill_wq->q_qinfo = &winit_ipv6; 23403 } 23404 23405 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23406 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23407 ipif->ipif_v6src_addr = ipv6_all_zeros; 23408 ipif->ipif_v6subnet = ipv6_all_zeros; 23409 ipif->ipif_v6net_mask = ipv6_all_zeros; 23410 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23411 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23412 /* 23413 * point-to-point or Non-mulicast capable 23414 * interfaces won't do NUD unless explicitly 23415 * configured to do so. 23416 */ 23417 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23418 !(ill->ill_flags & ILLF_MULTICAST)) { 23419 ill->ill_flags |= ILLF_NONUD; 23420 } 23421 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23422 if (ill->ill_flags & ILLF_NOARP) { 23423 /* 23424 * Note: xresolv interfaces will eventually need 23425 * NOARP set here as well, but that will require 23426 * those external resolvers to have some 23427 * knowledge of that flag and act appropriately. 23428 * Not to be changed at present. 23429 */ 23430 ill->ill_flags &= ~ILLF_NOARP; 23431 } 23432 /* 23433 * Set the ILLF_ROUTER flag according to the global 23434 * IPv6 forwarding policy. 23435 */ 23436 if (ipst->ips_ipv6_forward != 0) 23437 ill->ill_flags |= ILLF_ROUTER; 23438 } else if (ill->ill_flags & ILLF_IPV4) { 23439 ill->ill_isv6 = B_FALSE; 23440 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23441 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23442 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23443 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23444 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23445 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23446 /* 23447 * Set the ILLF_ROUTER flag according to the global 23448 * IPv4 forwarding policy. 23449 */ 23450 if (ipst->ips_ip_g_forward != 0) 23451 ill->ill_flags |= ILLF_ROUTER; 23452 } 23453 23454 ASSERT(ill->ill_phyint != NULL); 23455 23456 /* 23457 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23458 * be completed in ill_glist_insert -> ill_phyint_reinit 23459 */ 23460 if (!ill_allocate_mibs(ill)) 23461 return (ENOMEM); 23462 23463 /* 23464 * Pick a default sap until we get the DL_INFO_ACK back from 23465 * the driver. 23466 */ 23467 if (ill->ill_sap == 0) { 23468 if (ill->ill_isv6) 23469 ill->ill_sap = IP6_DL_SAP; 23470 else 23471 ill->ill_sap = IP_DL_SAP; 23472 } 23473 23474 ill->ill_ifname_pending = 1; 23475 ill->ill_ifname_pending_err = 0; 23476 23477 ill_refhold(ill); 23478 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23479 if ((error = ill_glist_insert(ill, interf_name, 23480 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23481 ill->ill_ppa = UINT_MAX; 23482 ill->ill_name[0] = '\0'; 23483 /* 23484 * undo null termination done above. 23485 */ 23486 ppa_ptr[0] = old_char; 23487 rw_exit(&ipst->ips_ill_g_lock); 23488 ill_refrele(ill); 23489 return (error); 23490 } 23491 23492 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23493 23494 /* 23495 * When we return the buffer pointed to by interf_name should contain 23496 * the same name as in ill_name. 23497 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23498 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23499 * so copy full name and update the ppa ptr. 23500 * When ppa passed in != UINT_MAX all values are correct just undo 23501 * null termination, this saves a bcopy. 23502 */ 23503 if (*new_ppa_ptr == UINT_MAX) { 23504 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23505 *new_ppa_ptr = ill->ill_ppa; 23506 } else { 23507 /* 23508 * undo null termination done above. 23509 */ 23510 ppa_ptr[0] = old_char; 23511 } 23512 23513 /* Let SCTP know about this ILL */ 23514 sctp_update_ill(ill, SCTP_ILL_INSERT); 23515 23516 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23517 B_TRUE); 23518 23519 rw_exit(&ipst->ips_ill_g_lock); 23520 ill_refrele(ill); 23521 if (ipsq == NULL) 23522 return (EINPROGRESS); 23523 23524 /* 23525 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23526 */ 23527 if (ipsq->ipsq_current_ipif == NULL) 23528 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23529 else 23530 ASSERT(ipsq->ipsq_current_ipif == ipif); 23531 23532 error = ipif_set_values_tail(ill, ipif, mp, q); 23533 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23534 if (error != 0 && error != EINPROGRESS) { 23535 /* 23536 * restore previous values 23537 */ 23538 ill->ill_isv6 = B_FALSE; 23539 } 23540 return (error); 23541 } 23542 23543 23544 void 23545 ipif_init(ip_stack_t *ipst) 23546 { 23547 hrtime_t hrt; 23548 int i; 23549 23550 /* 23551 * Can't call drv_getparm here as it is too early in the boot. 23552 * As we use ipif_src_random just for picking a different 23553 * source address everytime, this need not be really random. 23554 */ 23555 hrt = gethrtime(); 23556 ipst->ips_ipif_src_random = 23557 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23558 23559 for (i = 0; i < MAX_G_HEADS; i++) { 23560 ipst->ips_ill_g_heads[i].ill_g_list_head = 23561 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23562 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23563 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23564 } 23565 23566 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23567 ill_phyint_compare_index, 23568 sizeof (phyint_t), 23569 offsetof(struct phyint, phyint_avl_by_index)); 23570 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23571 ill_phyint_compare_name, 23572 sizeof (phyint_t), 23573 offsetof(struct phyint, phyint_avl_by_name)); 23574 } 23575 23576 /* 23577 * This is called by ip_rt_add when src_addr value is other than zero. 23578 * src_addr signifies the source address of the incoming packet. For 23579 * reverse tunnel route we need to create a source addr based routing 23580 * table. This routine creates ip_mrtun_table if it's empty and then 23581 * it adds the route entry hashed by source address. It verifies that 23582 * the outgoing interface is always a non-resolver interface (tunnel). 23583 */ 23584 int 23585 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23586 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23587 ip_stack_t *ipst) 23588 { 23589 ire_t *ire; 23590 ire_t *save_ire; 23591 ipif_t *ipif; 23592 ill_t *in_ill = NULL; 23593 ill_t *out_ill; 23594 queue_t *stq; 23595 mblk_t *dlureq_mp; 23596 int error; 23597 23598 if (ire_arg != NULL) 23599 *ire_arg = NULL; 23600 ASSERT(in_src_addr != INADDR_ANY); 23601 23602 ipif = ipif_arg; 23603 if (ipif != NULL) { 23604 out_ill = ipif->ipif_ill; 23605 } else { 23606 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23607 return (EINVAL); 23608 } 23609 23610 if (src_ipif == NULL) { 23611 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23612 return (EINVAL); 23613 } 23614 in_ill = src_ipif->ipif_ill; 23615 23616 /* 23617 * Check for duplicates. We don't need to 23618 * match out_ill, because the uniqueness of 23619 * a route is only dependent on src_addr and 23620 * in_ill. 23621 */ 23622 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23623 if (ire != NULL) { 23624 ire_refrele(ire); 23625 return (EEXIST); 23626 } 23627 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23628 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23629 ipif->ipif_net_type)); 23630 return (EINVAL); 23631 } 23632 23633 stq = ipif->ipif_wq; 23634 ASSERT(stq != NULL); 23635 23636 /* 23637 * The outgoing interface must be non-resolver 23638 * interface. 23639 */ 23640 dlureq_mp = ill_dlur_gen(NULL, 23641 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23642 out_ill->ill_sap_length); 23643 23644 if (dlureq_mp == NULL) { 23645 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23646 return (ENOMEM); 23647 } 23648 23649 /* Create the IRE. */ 23650 23651 ire = ire_create( 23652 NULL, /* Zero dst addr */ 23653 NULL, /* Zero mask */ 23654 NULL, /* Zero gateway addr */ 23655 NULL, /* Zero ipif_src addr */ 23656 (uint8_t *)&in_src_addr, /* in_src-addr */ 23657 &ipif->ipif_mtu, 23658 NULL, 23659 NULL, /* rfq */ 23660 stq, 23661 IRE_MIPRTUN, 23662 ipif, 23663 in_ill, 23664 0, 23665 0, 23666 0, 23667 flags, 23668 &ire_uinfo_null, 23669 NULL, 23670 NULL, 23671 ipst); 23672 23673 if (ire == NULL) { 23674 freeb(dlureq_mp); 23675 return (ENOMEM); 23676 } 23677 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23678 ire->ire_type)); 23679 save_ire = ire; 23680 ASSERT(save_ire != NULL); 23681 error = ire_add_mrtun(&ire, q, mp, func); 23682 /* 23683 * If ire_add_mrtun() failed, the ire passed in was freed 23684 * so there is no need to do so here. 23685 */ 23686 if (error != 0) { 23687 return (error); 23688 } 23689 23690 /* Duplicate check */ 23691 if (ire != save_ire) { 23692 /* route already exists by now */ 23693 ire_refrele(ire); 23694 return (EEXIST); 23695 } 23696 23697 if (ire_arg != NULL) { 23698 /* 23699 * Store the ire that was just added. the caller 23700 * ip_rts_request responsible for doing ire_refrele() 23701 * on it. 23702 */ 23703 *ire_arg = ire; 23704 } else { 23705 ire_refrele(ire); /* held in ire_add_mrtun */ 23706 } 23707 23708 return (0); 23709 } 23710 23711 /* 23712 * It is called by ip_rt_delete() only when mipagent requests to delete 23713 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23714 */ 23715 23716 int 23717 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23718 { 23719 ire_t *ire = NULL; 23720 23721 if (in_src_addr == INADDR_ANY) 23722 return (EINVAL); 23723 if (src_ipif == NULL) 23724 return (EINVAL); 23725 23726 /* search if this route exists in the ip_mrtun_table */ 23727 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23728 if (ire == NULL) { 23729 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23730 return (ESRCH); 23731 } 23732 ire_delete(ire); 23733 ire_refrele(ire); 23734 return (0); 23735 } 23736 23737 /* 23738 * Lookup the ipif corresponding to the onlink destination address. For 23739 * point-to-point interfaces, it matches with remote endpoint destination 23740 * address. For point-to-multipoint interfaces it only tries to match the 23741 * destination with the interface's subnet address. The longest, most specific 23742 * match is found to take care of such rare network configurations like - 23743 * le0: 129.146.1.1/16 23744 * le1: 129.146.2.2/24 23745 * It is used only by SO_DONTROUTE at the moment. 23746 */ 23747 ipif_t * 23748 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23749 { 23750 ipif_t *ipif, *best_ipif; 23751 ill_t *ill; 23752 ill_walk_context_t ctx; 23753 23754 ASSERT(zoneid != ALL_ZONES); 23755 best_ipif = NULL; 23756 23757 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23758 ill = ILL_START_WALK_V4(&ctx, ipst); 23759 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23760 mutex_enter(&ill->ill_lock); 23761 for (ipif = ill->ill_ipif; ipif != NULL; 23762 ipif = ipif->ipif_next) { 23763 if (!IPIF_CAN_LOOKUP(ipif)) 23764 continue; 23765 if (ipif->ipif_zoneid != zoneid && 23766 ipif->ipif_zoneid != ALL_ZONES) 23767 continue; 23768 /* 23769 * Point-to-point case. Look for exact match with 23770 * destination address. 23771 */ 23772 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23773 if (ipif->ipif_pp_dst_addr == addr) { 23774 ipif_refhold_locked(ipif); 23775 mutex_exit(&ill->ill_lock); 23776 rw_exit(&ipst->ips_ill_g_lock); 23777 if (best_ipif != NULL) 23778 ipif_refrele(best_ipif); 23779 return (ipif); 23780 } 23781 } else if (ipif->ipif_subnet == (addr & 23782 ipif->ipif_net_mask)) { 23783 /* 23784 * Point-to-multipoint case. Looping through to 23785 * find the most specific match. If there are 23786 * multiple best match ipif's then prefer ipif's 23787 * that are UP. If there is only one best match 23788 * ipif and it is DOWN we must still return it. 23789 */ 23790 if ((best_ipif == NULL) || 23791 (ipif->ipif_net_mask > 23792 best_ipif->ipif_net_mask) || 23793 ((ipif->ipif_net_mask == 23794 best_ipif->ipif_net_mask) && 23795 ((ipif->ipif_flags & IPIF_UP) && 23796 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23797 ipif_refhold_locked(ipif); 23798 mutex_exit(&ill->ill_lock); 23799 rw_exit(&ipst->ips_ill_g_lock); 23800 if (best_ipif != NULL) 23801 ipif_refrele(best_ipif); 23802 best_ipif = ipif; 23803 rw_enter(&ipst->ips_ill_g_lock, 23804 RW_READER); 23805 mutex_enter(&ill->ill_lock); 23806 } 23807 } 23808 } 23809 mutex_exit(&ill->ill_lock); 23810 } 23811 rw_exit(&ipst->ips_ill_g_lock); 23812 return (best_ipif); 23813 } 23814 23815 23816 /* 23817 * Save enough information so that we can recreate the IRE if 23818 * the interface goes down and then up. 23819 */ 23820 static void 23821 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23822 { 23823 mblk_t *save_mp; 23824 23825 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23826 if (save_mp != NULL) { 23827 ifrt_t *ifrt; 23828 23829 save_mp->b_wptr += sizeof (ifrt_t); 23830 ifrt = (ifrt_t *)save_mp->b_rptr; 23831 bzero(ifrt, sizeof (ifrt_t)); 23832 ifrt->ifrt_type = ire->ire_type; 23833 ifrt->ifrt_addr = ire->ire_addr; 23834 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23835 ifrt->ifrt_src_addr = ire->ire_src_addr; 23836 ifrt->ifrt_mask = ire->ire_mask; 23837 ifrt->ifrt_flags = ire->ire_flags; 23838 ifrt->ifrt_max_frag = ire->ire_max_frag; 23839 mutex_enter(&ipif->ipif_saved_ire_lock); 23840 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23841 ipif->ipif_saved_ire_mp = save_mp; 23842 ipif->ipif_saved_ire_cnt++; 23843 mutex_exit(&ipif->ipif_saved_ire_lock); 23844 } 23845 } 23846 23847 23848 static void 23849 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23850 { 23851 mblk_t **mpp; 23852 mblk_t *mp; 23853 ifrt_t *ifrt; 23854 23855 /* Remove from ipif_saved_ire_mp list if it is there */ 23856 mutex_enter(&ipif->ipif_saved_ire_lock); 23857 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23858 mpp = &(*mpp)->b_cont) { 23859 /* 23860 * On a given ipif, the triple of address, gateway and 23861 * mask is unique for each saved IRE (in the case of 23862 * ordinary interface routes, the gateway address is 23863 * all-zeroes). 23864 */ 23865 mp = *mpp; 23866 ifrt = (ifrt_t *)mp->b_rptr; 23867 if (ifrt->ifrt_addr == ire->ire_addr && 23868 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23869 ifrt->ifrt_mask == ire->ire_mask) { 23870 *mpp = mp->b_cont; 23871 ipif->ipif_saved_ire_cnt--; 23872 freeb(mp); 23873 break; 23874 } 23875 } 23876 mutex_exit(&ipif->ipif_saved_ire_lock); 23877 } 23878 23879 23880 /* 23881 * IP multirouting broadcast routes handling 23882 * Append CGTP broadcast IREs to regular ones created 23883 * at ifconfig time. 23884 */ 23885 static void 23886 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23887 { 23888 ire_t *ire_prim; 23889 23890 ASSERT(ire != NULL); 23891 ASSERT(ire_dst != NULL); 23892 23893 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23894 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23895 if (ire_prim != NULL) { 23896 /* 23897 * We are in the special case of broadcasts for 23898 * CGTP. We add an IRE_BROADCAST that holds 23899 * the RTF_MULTIRT flag, the destination 23900 * address of ire_dst and the low level 23901 * info of ire_prim. In other words, CGTP 23902 * broadcast is added to the redundant ipif. 23903 */ 23904 ipif_t *ipif_prim; 23905 ire_t *bcast_ire; 23906 23907 ipif_prim = ire_prim->ire_ipif; 23908 23909 ip2dbg(("ip_cgtp_filter_bcast_add: " 23910 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23911 (void *)ire_dst, (void *)ire_prim, 23912 (void *)ipif_prim)); 23913 23914 bcast_ire = ire_create( 23915 (uchar_t *)&ire->ire_addr, 23916 (uchar_t *)&ip_g_all_ones, 23917 (uchar_t *)&ire_dst->ire_src_addr, 23918 (uchar_t *)&ire->ire_gateway_addr, 23919 NULL, 23920 &ipif_prim->ipif_mtu, 23921 NULL, 23922 ipif_prim->ipif_rq, 23923 ipif_prim->ipif_wq, 23924 IRE_BROADCAST, 23925 ipif_prim, 23926 NULL, 23927 0, 23928 0, 23929 0, 23930 ire->ire_flags, 23931 &ire_uinfo_null, 23932 NULL, 23933 NULL, 23934 ipst); 23935 23936 if (bcast_ire != NULL) { 23937 23938 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23939 B_FALSE) == 0) { 23940 ip2dbg(("ip_cgtp_filter_bcast_add: " 23941 "added bcast_ire %p\n", 23942 (void *)bcast_ire)); 23943 23944 ipif_save_ire(bcast_ire->ire_ipif, 23945 bcast_ire); 23946 ire_refrele(bcast_ire); 23947 } 23948 } 23949 ire_refrele(ire_prim); 23950 } 23951 } 23952 23953 23954 /* 23955 * IP multirouting broadcast routes handling 23956 * Remove the broadcast ire 23957 */ 23958 static void 23959 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23960 { 23961 ire_t *ire_dst; 23962 23963 ASSERT(ire != NULL); 23964 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23965 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23966 if (ire_dst != NULL) { 23967 ire_t *ire_prim; 23968 23969 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23970 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23971 if (ire_prim != NULL) { 23972 ipif_t *ipif_prim; 23973 ire_t *bcast_ire; 23974 23975 ipif_prim = ire_prim->ire_ipif; 23976 23977 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23978 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23979 (void *)ire_dst, (void *)ire_prim, 23980 (void *)ipif_prim)); 23981 23982 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23983 ire->ire_gateway_addr, 23984 IRE_BROADCAST, 23985 ipif_prim, ALL_ZONES, 23986 NULL, 23987 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23988 MATCH_IRE_MASK, ipst); 23989 23990 if (bcast_ire != NULL) { 23991 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23992 "looked up bcast_ire %p\n", 23993 (void *)bcast_ire)); 23994 ipif_remove_ire(bcast_ire->ire_ipif, 23995 bcast_ire); 23996 ire_delete(bcast_ire); 23997 } 23998 ire_refrele(ire_prim); 23999 } 24000 ire_refrele(ire_dst); 24001 } 24002 } 24003 24004 /* 24005 * IPsec hardware acceleration capabilities related functions. 24006 */ 24007 24008 /* 24009 * Free a per-ill IPsec capabilities structure. 24010 */ 24011 static void 24012 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 24013 { 24014 if (capab->auth_hw_algs != NULL) 24015 kmem_free(capab->auth_hw_algs, capab->algs_size); 24016 if (capab->encr_hw_algs != NULL) 24017 kmem_free(capab->encr_hw_algs, capab->algs_size); 24018 if (capab->encr_algparm != NULL) 24019 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 24020 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 24021 } 24022 24023 /* 24024 * Allocate a new per-ill IPsec capabilities structure. This structure 24025 * is specific to an IPsec protocol (AH or ESP). It is implemented as 24026 * an array which specifies, for each algorithm, whether this algorithm 24027 * is supported by the ill or not. 24028 */ 24029 static ill_ipsec_capab_t * 24030 ill_ipsec_capab_alloc(void) 24031 { 24032 ill_ipsec_capab_t *capab; 24033 uint_t nelems; 24034 24035 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 24036 if (capab == NULL) 24037 return (NULL); 24038 24039 /* we need one bit per algorithm */ 24040 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 24041 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 24042 24043 /* allocate memory to store algorithm flags */ 24044 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 24045 if (capab->encr_hw_algs == NULL) 24046 goto nomem; 24047 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 24048 if (capab->auth_hw_algs == NULL) 24049 goto nomem; 24050 /* 24051 * Leave encr_algparm NULL for now since we won't need it half 24052 * the time 24053 */ 24054 return (capab); 24055 24056 nomem: 24057 ill_ipsec_capab_free(capab); 24058 return (NULL); 24059 } 24060 24061 /* 24062 * Resize capability array. Since we're exclusive, this is OK. 24063 */ 24064 static boolean_t 24065 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 24066 { 24067 ipsec_capab_algparm_t *nalp, *oalp; 24068 uint32_t olen, nlen; 24069 24070 oalp = capab->encr_algparm; 24071 olen = capab->encr_algparm_size; 24072 24073 if (oalp != NULL) { 24074 if (algid < capab->encr_algparm_end) 24075 return (B_TRUE); 24076 } 24077 24078 nlen = (algid + 1) * sizeof (*nalp); 24079 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 24080 if (nalp == NULL) 24081 return (B_FALSE); 24082 24083 if (oalp != NULL) { 24084 bcopy(oalp, nalp, olen); 24085 kmem_free(oalp, olen); 24086 } 24087 capab->encr_algparm = nalp; 24088 capab->encr_algparm_size = nlen; 24089 capab->encr_algparm_end = algid + 1; 24090 24091 return (B_TRUE); 24092 } 24093 24094 /* 24095 * Compare the capabilities of the specified ill with the protocol 24096 * and algorithms specified by the SA passed as argument. 24097 * If they match, returns B_TRUE, B_FALSE if they do not match. 24098 * 24099 * The ill can be passed as a pointer to it, or by specifying its index 24100 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 24101 * 24102 * Called by ipsec_out_is_accelerated() do decide whether an outbound 24103 * packet is eligible for hardware acceleration, and by 24104 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 24105 * to a particular ill. 24106 */ 24107 boolean_t 24108 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 24109 ipsa_t *sa, netstack_t *ns) 24110 { 24111 boolean_t sa_isv6; 24112 uint_t algid; 24113 struct ill_ipsec_capab_s *cpp; 24114 boolean_t need_refrele = B_FALSE; 24115 ip_stack_t *ipst = ns->netstack_ip; 24116 24117 if (ill == NULL) { 24118 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 24119 NULL, NULL, NULL, ipst); 24120 if (ill == NULL) { 24121 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 24122 return (B_FALSE); 24123 } 24124 need_refrele = B_TRUE; 24125 } 24126 24127 /* 24128 * Use the address length specified by the SA to determine 24129 * if it corresponds to a IPv6 address, and fail the matching 24130 * if the isv6 flag passed as argument does not match. 24131 * Note: this check is used for SADB capability checking before 24132 * sending SA information to an ill. 24133 */ 24134 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 24135 if (sa_isv6 != ill_isv6) 24136 /* protocol mismatch */ 24137 goto done; 24138 24139 /* 24140 * Check if the ill supports the protocol, algorithm(s) and 24141 * key size(s) specified by the SA, and get the pointers to 24142 * the algorithms supported by the ill. 24143 */ 24144 switch (sa->ipsa_type) { 24145 24146 case SADB_SATYPE_ESP: 24147 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 24148 /* ill does not support ESP acceleration */ 24149 goto done; 24150 cpp = ill->ill_ipsec_capab_esp; 24151 algid = sa->ipsa_auth_alg; 24152 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 24153 goto done; 24154 algid = sa->ipsa_encr_alg; 24155 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 24156 goto done; 24157 if (algid < cpp->encr_algparm_end) { 24158 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 24159 if (sa->ipsa_encrkeybits < alp->minkeylen) 24160 goto done; 24161 if (sa->ipsa_encrkeybits > alp->maxkeylen) 24162 goto done; 24163 } 24164 break; 24165 24166 case SADB_SATYPE_AH: 24167 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 24168 /* ill does not support AH acceleration */ 24169 goto done; 24170 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 24171 ill->ill_ipsec_capab_ah->auth_hw_algs)) 24172 goto done; 24173 break; 24174 } 24175 24176 if (need_refrele) 24177 ill_refrele(ill); 24178 return (B_TRUE); 24179 done: 24180 if (need_refrele) 24181 ill_refrele(ill); 24182 return (B_FALSE); 24183 } 24184 24185 24186 /* 24187 * Add a new ill to the list of IPsec capable ills. 24188 * Called from ill_capability_ipsec_ack() when an ACK was received 24189 * indicating that IPsec hardware processing was enabled for an ill. 24190 * 24191 * ill must point to the ill for which acceleration was enabled. 24192 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 24193 */ 24194 static void 24195 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 24196 { 24197 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 24198 uint_t sa_type; 24199 uint_t ipproto; 24200 ip_stack_t *ipst = ill->ill_ipst; 24201 24202 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 24203 (dl_cap == DL_CAPAB_IPSEC_ESP)); 24204 24205 switch (dl_cap) { 24206 case DL_CAPAB_IPSEC_AH: 24207 sa_type = SADB_SATYPE_AH; 24208 ills = &ipst->ips_ipsec_capab_ills_ah; 24209 ipproto = IPPROTO_AH; 24210 break; 24211 case DL_CAPAB_IPSEC_ESP: 24212 sa_type = SADB_SATYPE_ESP; 24213 ills = &ipst->ips_ipsec_capab_ills_esp; 24214 ipproto = IPPROTO_ESP; 24215 break; 24216 } 24217 24218 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24219 24220 /* 24221 * Add ill index to list of hardware accelerators. If 24222 * already in list, do nothing. 24223 */ 24224 for (cur_ill = *ills; cur_ill != NULL && 24225 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 24226 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 24227 ; 24228 24229 if (cur_ill == NULL) { 24230 /* if this is a new entry for this ill */ 24231 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 24232 if (new_ill == NULL) { 24233 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24234 return; 24235 } 24236 24237 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24238 new_ill->ill_isv6 = ill->ill_isv6; 24239 new_ill->next = *ills; 24240 *ills = new_ill; 24241 } else if (!sadb_resync) { 24242 /* not resync'ing SADB and an entry exists for this ill */ 24243 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24244 return; 24245 } 24246 24247 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24248 24249 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24250 /* 24251 * IPsec module for protocol loaded, initiate dump 24252 * of the SADB to this ill. 24253 */ 24254 sadb_ill_download(ill, sa_type); 24255 } 24256 24257 /* 24258 * Remove an ill from the list of IPsec capable ills. 24259 */ 24260 static void 24261 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24262 { 24263 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24264 ip_stack_t *ipst = ill->ill_ipst; 24265 24266 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24267 dl_cap == DL_CAPAB_IPSEC_ESP); 24268 24269 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24270 &ipst->ips_ipsec_capab_ills_esp; 24271 24272 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24273 24274 prev_ill = NULL; 24275 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24276 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24277 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24278 ; 24279 if (cur_ill == NULL) { 24280 /* entry not found */ 24281 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24282 return; 24283 } 24284 if (prev_ill == NULL) { 24285 /* entry at front of list */ 24286 *ills = NULL; 24287 } else { 24288 prev_ill->next = cur_ill->next; 24289 } 24290 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24291 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24292 } 24293 24294 /* 24295 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24296 * supporting the specified IPsec protocol acceleration. 24297 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24298 * We free the mblk and, if sa is non-null, release the held referece. 24299 */ 24300 void 24301 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24302 netstack_t *ns) 24303 { 24304 ipsec_capab_ill_t *ici, *cur_ici; 24305 ill_t *ill; 24306 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24307 ip_stack_t *ipst = ns->netstack_ip; 24308 24309 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24310 ipst->ips_ipsec_capab_ills_esp; 24311 24312 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24313 24314 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24315 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24316 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24317 24318 /* 24319 * Handle the case where the ill goes away while the SADB is 24320 * attempting to send messages. If it's going away, it's 24321 * nuking its shadow SADB, so we don't care.. 24322 */ 24323 24324 if (ill == NULL) 24325 continue; 24326 24327 if (sa != NULL) { 24328 /* 24329 * Make sure capabilities match before 24330 * sending SA to ill. 24331 */ 24332 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24333 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24334 ill_refrele(ill); 24335 continue; 24336 } 24337 24338 mutex_enter(&sa->ipsa_lock); 24339 sa->ipsa_flags |= IPSA_F_HW; 24340 mutex_exit(&sa->ipsa_lock); 24341 } 24342 24343 /* 24344 * Copy template message, and add it to the front 24345 * of the mblk ship list. We want to avoid holding 24346 * the ipsec_capab_ills_lock while sending the 24347 * message to the ills. 24348 * 24349 * The b_next and b_prev are temporarily used 24350 * to build a list of mblks to be sent down, and to 24351 * save the ill to which they must be sent. 24352 */ 24353 nmp = copymsg(mp); 24354 if (nmp == NULL) { 24355 ill_refrele(ill); 24356 continue; 24357 } 24358 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24359 nmp->b_next = mp_ship_list; 24360 mp_ship_list = nmp; 24361 nmp->b_prev = (mblk_t *)ill; 24362 } 24363 24364 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24365 24366 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 24367 /* restore the mblk to a sane state */ 24368 next_mp = nmp->b_next; 24369 nmp->b_next = NULL; 24370 ill = (ill_t *)nmp->b_prev; 24371 nmp->b_prev = NULL; 24372 24373 ill_dlpi_send(ill, nmp); 24374 ill_refrele(ill); 24375 } 24376 24377 if (sa != NULL) 24378 IPSA_REFRELE(sa); 24379 freemsg(mp); 24380 } 24381 24382 /* 24383 * Derive an interface id from the link layer address. 24384 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24385 */ 24386 static boolean_t 24387 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24388 { 24389 char *addr; 24390 24391 if (phys_length != ETHERADDRL) 24392 return (B_FALSE); 24393 24394 /* Form EUI-64 like address */ 24395 addr = (char *)&v6addr->s6_addr32[2]; 24396 bcopy((char *)phys_addr, addr, 3); 24397 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24398 addr[3] = (char)0xff; 24399 addr[4] = (char)0xfe; 24400 bcopy((char *)phys_addr + 3, addr + 5, 3); 24401 return (B_TRUE); 24402 } 24403 24404 /* ARGSUSED */ 24405 static boolean_t 24406 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24407 { 24408 return (B_FALSE); 24409 } 24410 24411 /* ARGSUSED */ 24412 static boolean_t 24413 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24414 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24415 { 24416 /* 24417 * Multicast address mappings used over Ethernet/802.X. 24418 * This address is used as a base for mappings. 24419 */ 24420 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24421 0x00, 0x00, 0x00}; 24422 24423 /* 24424 * Extract low order 32 bits from IPv6 multicast address. 24425 * Or that into the link layer address, starting from the 24426 * second byte. 24427 */ 24428 *hw_start = 2; 24429 v6_extract_mask->s6_addr32[0] = 0; 24430 v6_extract_mask->s6_addr32[1] = 0; 24431 v6_extract_mask->s6_addr32[2] = 0; 24432 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24433 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24434 return (B_TRUE); 24435 } 24436 24437 /* 24438 * Indicate by return value whether multicast is supported. If not, 24439 * this code should not touch/change any parameters. 24440 */ 24441 /* ARGSUSED */ 24442 static boolean_t 24443 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24444 uint32_t *hw_start, ipaddr_t *extract_mask) 24445 { 24446 /* 24447 * Multicast address mappings used over Ethernet/802.X. 24448 * This address is used as a base for mappings. 24449 */ 24450 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24451 0x00, 0x00, 0x00 }; 24452 24453 if (phys_length != ETHERADDRL) 24454 return (B_FALSE); 24455 24456 *extract_mask = htonl(0x007fffff); 24457 *hw_start = 2; 24458 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24459 return (B_TRUE); 24460 } 24461 24462 /* 24463 * Derive IPoIB interface id from the link layer address. 24464 */ 24465 static boolean_t 24466 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24467 { 24468 char *addr; 24469 24470 if (phys_length != 20) 24471 return (B_FALSE); 24472 addr = (char *)&v6addr->s6_addr32[2]; 24473 bcopy(phys_addr + 12, addr, 8); 24474 /* 24475 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24476 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24477 * rules. In these cases, the IBA considers these GUIDs to be in 24478 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24479 * required; vendors are required not to assign global EUI-64's 24480 * that differ only in u/l bit values, thus guaranteeing uniqueness 24481 * of the interface identifier. Whether the GUID is in modified 24482 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24483 * bit set to 1. 24484 */ 24485 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24486 return (B_TRUE); 24487 } 24488 24489 /* 24490 * Note on mapping from multicast IP addresses to IPoIB multicast link 24491 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24492 * The format of an IPoIB multicast address is: 24493 * 24494 * 4 byte QPN Scope Sign. Pkey 24495 * +--------------------------------------------+ 24496 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24497 * +--------------------------------------------+ 24498 * 24499 * The Scope and Pkey components are properties of the IBA port and 24500 * network interface. They can be ascertained from the broadcast address. 24501 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24502 */ 24503 24504 static boolean_t 24505 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24506 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24507 { 24508 /* 24509 * Base IPoIB IPv6 multicast address used for mappings. 24510 * Does not contain the IBA scope/Pkey values. 24511 */ 24512 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24513 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24514 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24515 24516 /* 24517 * Extract low order 80 bits from IPv6 multicast address. 24518 * Or that into the link layer address, starting from the 24519 * sixth byte. 24520 */ 24521 *hw_start = 6; 24522 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24523 24524 /* 24525 * Now fill in the IBA scope/Pkey values from the broadcast address. 24526 */ 24527 *(maddr + 5) = *(bphys_addr + 5); 24528 *(maddr + 8) = *(bphys_addr + 8); 24529 *(maddr + 9) = *(bphys_addr + 9); 24530 24531 v6_extract_mask->s6_addr32[0] = 0; 24532 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24533 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24534 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24535 return (B_TRUE); 24536 } 24537 24538 static boolean_t 24539 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24540 uint32_t *hw_start, ipaddr_t *extract_mask) 24541 { 24542 /* 24543 * Base IPoIB IPv4 multicast address used for mappings. 24544 * Does not contain the IBA scope/Pkey values. 24545 */ 24546 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24547 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24548 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24549 24550 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24551 return (B_FALSE); 24552 24553 /* 24554 * Extract low order 28 bits from IPv4 multicast address. 24555 * Or that into the link layer address, starting from the 24556 * sixteenth byte. 24557 */ 24558 *extract_mask = htonl(0x0fffffff); 24559 *hw_start = 16; 24560 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24561 24562 /* 24563 * Now fill in the IBA scope/Pkey values from the broadcast address. 24564 */ 24565 *(maddr + 5) = *(bphys_addr + 5); 24566 *(maddr + 8) = *(bphys_addr + 8); 24567 *(maddr + 9) = *(bphys_addr + 9); 24568 return (B_TRUE); 24569 } 24570 24571 /* 24572 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24573 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24574 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24575 * the link-local address is preferred. 24576 */ 24577 boolean_t 24578 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24579 { 24580 ipif_t *ipif; 24581 ipif_t *maybe_ipif = NULL; 24582 24583 mutex_enter(&ill->ill_lock); 24584 if (ill->ill_state_flags & ILL_CONDEMNED) { 24585 mutex_exit(&ill->ill_lock); 24586 if (ipifp != NULL) 24587 *ipifp = NULL; 24588 return (B_FALSE); 24589 } 24590 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24591 if (!IPIF_CAN_LOOKUP(ipif)) 24592 continue; 24593 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24594 ipif->ipif_zoneid != ALL_ZONES) 24595 continue; 24596 if ((ipif->ipif_flags & flags) != flags) 24597 continue; 24598 24599 if (ipifp == NULL) { 24600 mutex_exit(&ill->ill_lock); 24601 ASSERT(maybe_ipif == NULL); 24602 return (B_TRUE); 24603 } 24604 if (!ill->ill_isv6 || 24605 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24606 ipif_refhold_locked(ipif); 24607 mutex_exit(&ill->ill_lock); 24608 *ipifp = ipif; 24609 return (B_TRUE); 24610 } 24611 if (maybe_ipif == NULL) 24612 maybe_ipif = ipif; 24613 } 24614 if (ipifp != NULL) { 24615 if (maybe_ipif != NULL) 24616 ipif_refhold_locked(maybe_ipif); 24617 *ipifp = maybe_ipif; 24618 } 24619 mutex_exit(&ill->ill_lock); 24620 return (maybe_ipif != NULL); 24621 } 24622 24623 /* 24624 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24625 */ 24626 boolean_t 24627 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24628 { 24629 ill_t *illg; 24630 ip_stack_t *ipst = ill->ill_ipst; 24631 24632 /* 24633 * We look at the passed-in ill first without grabbing ill_g_lock. 24634 */ 24635 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24636 return (B_TRUE); 24637 } 24638 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24639 if (ill->ill_group == NULL) { 24640 /* ill not in a group */ 24641 rw_exit(&ipst->ips_ill_g_lock); 24642 return (B_FALSE); 24643 } 24644 24645 /* 24646 * There's no ipif in the zone on ill, however ill is part of an IPMP 24647 * group. We need to look for an ipif in the zone on all the ills in the 24648 * group. 24649 */ 24650 illg = ill->ill_group->illgrp_ill; 24651 do { 24652 /* 24653 * We don't call ipif_lookup_zoneid() on ill as we already know 24654 * that it's not there. 24655 */ 24656 if (illg != ill && 24657 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24658 break; 24659 } 24660 } while ((illg = illg->ill_group_next) != NULL); 24661 rw_exit(&ipst->ips_ill_g_lock); 24662 return (illg != NULL); 24663 } 24664 24665 /* 24666 * Check if this ill is only being used to send ICMP probes for IPMP 24667 */ 24668 boolean_t 24669 ill_is_probeonly(ill_t *ill) 24670 { 24671 /* 24672 * Check if the interface is FAILED, or INACTIVE 24673 */ 24674 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24675 return (B_TRUE); 24676 24677 return (B_FALSE); 24678 } 24679 24680 /* 24681 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24682 * If a pointer to an ipif_t is returned then the caller will need to do 24683 * an ill_refrele(). 24684 * 24685 * If there is no real interface which matches the ifindex, then it looks 24686 * for a group that has a matching index. In the case of a group match the 24687 * lifidx must be zero. We don't need emulate the logical interfaces 24688 * since IP Filter's use of netinfo doesn't use that. 24689 */ 24690 ipif_t * 24691 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24692 ip_stack_t *ipst) 24693 { 24694 ipif_t *ipif; 24695 ill_t *ill; 24696 24697 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24698 ipst); 24699 24700 if (ill == NULL) { 24701 /* Fallback to group names only if hook_emulation set */ 24702 if (!ipst->ips_ipmp_hook_emulation) 24703 return (NULL); 24704 24705 if (lifidx != 0) 24706 return (NULL); 24707 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24708 if (ill == NULL) 24709 return (NULL); 24710 } 24711 24712 mutex_enter(&ill->ill_lock); 24713 if (ill->ill_state_flags & ILL_CONDEMNED) { 24714 mutex_exit(&ill->ill_lock); 24715 ill_refrele(ill); 24716 return (NULL); 24717 } 24718 24719 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24720 if (!IPIF_CAN_LOOKUP(ipif)) 24721 continue; 24722 if (lifidx == ipif->ipif_id) { 24723 ipif_refhold_locked(ipif); 24724 break; 24725 } 24726 } 24727 24728 mutex_exit(&ill->ill_lock); 24729 ill_refrele(ill); 24730 return (ipif); 24731 } 24732 24733 /* 24734 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24735 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24736 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24737 * for details. 24738 */ 24739 void 24740 ill_fastpath_flush(ill_t *ill) 24741 { 24742 ip_stack_t *ipst = ill->ill_ipst; 24743 24744 nce_fastpath_list_dispatch(ill, NULL, NULL); 24745 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24746 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24747 } 24748 24749 /* 24750 * Set the physical address information for `ill' to the contents of the 24751 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24752 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24753 * EINPROGRESS will be returned. 24754 */ 24755 int 24756 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24757 { 24758 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24759 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24760 24761 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24762 24763 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24764 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24765 /* Changing DL_IPV6_TOKEN is not yet supported */ 24766 return (0); 24767 } 24768 24769 /* 24770 * We need to store up to two copies of `mp' in `ill'. Due to the 24771 * design of ipsq_pending_mp_add(), we can't pass them as separate 24772 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24773 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24774 */ 24775 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24776 freemsg(mp); 24777 return (ENOMEM); 24778 } 24779 24780 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24781 24782 /* 24783 * If we can quiesce the ill, then set the address. If not, then 24784 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24785 */ 24786 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24787 mutex_enter(&ill->ill_lock); 24788 if (!ill_is_quiescent(ill)) { 24789 /* call cannot fail since `conn_t *' argument is NULL */ 24790 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24791 mp, ILL_DOWN); 24792 mutex_exit(&ill->ill_lock); 24793 return (EINPROGRESS); 24794 } 24795 mutex_exit(&ill->ill_lock); 24796 24797 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24798 return (0); 24799 } 24800 24801 /* 24802 * Once the ill associated with `q' has quiesced, set its physical address 24803 * information to the values in `addrmp'. Note that two copies of `addrmp' 24804 * are passed (linked by b_cont), since we sometimes need to save two distinct 24805 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24806 * failure (we'll free the other copy if it's not needed). Since the ill_t 24807 * is quiesced, we know any stale IREs with the old address information have 24808 * already been removed, so we don't need to call ill_fastpath_flush(). 24809 */ 24810 /* ARGSUSED */ 24811 static void 24812 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24813 { 24814 ill_t *ill = q->q_ptr; 24815 mblk_t *addrmp2 = unlinkb(addrmp); 24816 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24817 uint_t addrlen, addroff; 24818 24819 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24820 24821 addroff = dlindp->dl_addr_offset; 24822 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24823 24824 switch (dlindp->dl_data) { 24825 case DL_IPV6_LINK_LAYER_ADDR: 24826 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24827 freemsg(addrmp2); 24828 break; 24829 24830 case DL_CURR_PHYS_ADDR: 24831 freemsg(ill->ill_phys_addr_mp); 24832 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24833 ill->ill_phys_addr_mp = addrmp; 24834 ill->ill_phys_addr_length = addrlen; 24835 24836 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24837 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24838 else 24839 freemsg(addrmp2); 24840 break; 24841 default: 24842 ASSERT(0); 24843 } 24844 24845 /* 24846 * If there are ipifs to bring up, ill_up_ipifs() will return 24847 * EINPROGRESS, and ipsq_current_finish() will be called by 24848 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24849 * brought up. 24850 */ 24851 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24852 ipsq_current_finish(ipsq); 24853 } 24854 24855 /* 24856 * Helper routine for setting the ill_nd_lla fields. 24857 */ 24858 void 24859 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24860 { 24861 freemsg(ill->ill_nd_lla_mp); 24862 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24863 ill->ill_nd_lla_mp = ndmp; 24864 ill->ill_nd_lla_len = addrlen; 24865 } 24866 24867 major_t IP_MAJ; 24868 #define IP "ip" 24869 24870 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24871 #define UDPDEV "/devices/pseudo/udp@0:udp" 24872 24873 /* 24874 * Issue REMOVEIF ioctls to have the loopback interfaces 24875 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24876 * the former going away when the user-level processes in the zone 24877 * are killed * and the latter are cleaned up by the stream head 24878 * str_stack_shutdown callback that undoes all I_PLINKs. 24879 */ 24880 void 24881 ip_loopback_cleanup(ip_stack_t *ipst) 24882 { 24883 int error; 24884 ldi_handle_t lh = NULL; 24885 ldi_ident_t li = NULL; 24886 int rval; 24887 cred_t *cr; 24888 struct strioctl iocb; 24889 struct lifreq lifreq; 24890 24891 IP_MAJ = ddi_name_to_major(IP); 24892 24893 #ifdef NS_DEBUG 24894 (void) printf("ip_loopback_cleanup() stackid %d\n", 24895 ipst->ips_netstack->netstack_stackid); 24896 #endif 24897 24898 bzero(&lifreq, sizeof (lifreq)); 24899 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24900 24901 error = ldi_ident_from_major(IP_MAJ, &li); 24902 if (error) { 24903 #ifdef DEBUG 24904 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24905 error); 24906 #endif 24907 return; 24908 } 24909 24910 cr = zone_get_kcred(netstackid_to_zoneid( 24911 ipst->ips_netstack->netstack_stackid)); 24912 ASSERT(cr != NULL); 24913 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24914 if (error) { 24915 #ifdef DEBUG 24916 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24917 error); 24918 #endif 24919 goto out; 24920 } 24921 iocb.ic_cmd = SIOCLIFREMOVEIF; 24922 iocb.ic_timout = 15; 24923 iocb.ic_len = sizeof (lifreq); 24924 iocb.ic_dp = (char *)&lifreq; 24925 24926 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24927 /* LINTED - statement has no consequent */ 24928 if (error) { 24929 #ifdef NS_DEBUG 24930 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24931 "UDP6 error %d\n", error); 24932 #endif 24933 } 24934 (void) ldi_close(lh, FREAD|FWRITE, cr); 24935 lh = NULL; 24936 24937 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24938 if (error) { 24939 #ifdef NS_DEBUG 24940 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24941 error); 24942 #endif 24943 goto out; 24944 } 24945 24946 iocb.ic_cmd = SIOCLIFREMOVEIF; 24947 iocb.ic_timout = 15; 24948 iocb.ic_len = sizeof (lifreq); 24949 iocb.ic_dp = (char *)&lifreq; 24950 24951 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24952 /* LINTED - statement has no consequent */ 24953 if (error) { 24954 #ifdef NS_DEBUG 24955 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24956 "UDP error %d\n", error); 24957 #endif 24958 } 24959 (void) ldi_close(lh, FREAD|FWRITE, cr); 24960 lh = NULL; 24961 24962 out: 24963 /* Close layered handles */ 24964 if (lh) 24965 (void) ldi_close(lh, FREAD|FWRITE, cr); 24966 if (li) 24967 ldi_ident_release(li); 24968 24969 crfree(cr); 24970 } 24971