xref: /titanic_41/usr/src/uts/common/inet/ip/ip_if.c (revision 4d25c1d6097c545e02d2718b5cfa8e0e1845497e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/param.h>
52 #include <sys/socket.h>
53 #include <sys/isa_defs.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_types.h>
57 #include <net/if_dl.h>
58 #include <net/route.h>
59 #include <sys/sockio.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/igmp_var.h>
64 #include <sys/strsun.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 
68 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
69 #include <inet/mi.h>
70 #include <inet/nd.h>
71 #include <inet/arp.h>
72 #include <inet/mib2.h>
73 #include <inet/ip.h>
74 #include <inet/ip6.h>
75 #include <inet/ip6_asp.h>
76 #include <inet/tcp.h>
77 #include <inet/ip_multi.h>
78 #include <inet/ip_ire.h>
79 #include <inet/ip_ftable.h>
80 #include <inet/ip_rts.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/ip_if.h>
83 #include <inet/ip_impl.h>
84 #include <inet/tun.h>
85 #include <inet/sctp_ip.h>
86 #include <inet/ip_netinfo.h>
87 #include <inet/mib2.h>
88 
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/sadb.h>
92 #include <inet/ipsec_impl.h>
93 #include <sys/iphada.h>
94 
95 
96 #include <netinet/igmp.h>
97 #include <inet/ip_listutils.h>
98 #include <inet/ipclassifier.h>
99 #include <sys/mac.h>
100 
101 #include <sys/systeminfo.h>
102 #include <sys/bootconf.h>
103 
104 #include <sys/tsol/tndb.h>
105 #include <sys/tsol/tnet.h>
106 
107 /* The character which tells where the ill_name ends */
108 #define	IPIF_SEPARATOR_CHAR	':'
109 
110 /* IP ioctl function table entry */
111 typedef struct ipft_s {
112 	int	ipft_cmd;
113 	pfi_t	ipft_pfi;
114 	int	ipft_min_size;
115 	int	ipft_flags;
116 } ipft_t;
117 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
118 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
119 
120 typedef struct ip_sock_ar_s {
121 	union {
122 		area_t	ip_sock_area;
123 		ared_t	ip_sock_ared;
124 		areq_t	ip_sock_areq;
125 	} ip_sock_ar_u;
126 	queue_t	*ip_sock_ar_q;
127 } ip_sock_ar_t;
128 
129 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
130 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
131 		    char *value, caddr_t cp, cred_t *ioc_cr);
132 
133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
134 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
135 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
136     mblk_t *mp, boolean_t need_up);
137 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
138     mblk_t *mp, boolean_t need_up);
139 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
140     queue_t *q, mblk_t *mp, boolean_t need_up);
141 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
142     mblk_t *mp, boolean_t need_up);
143 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
144     mblk_t *mp);
145 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
146     queue_t *q, mblk_t *mp, boolean_t need_up);
147 static int	ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp,
148     sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl);
149 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
150 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
151 static void	ipsq_flush(ill_t *ill);
152 static void	ipsq_clean_all(ill_t *ill);
153 static void	ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring);
154 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
155     queue_t *q, mblk_t *mp, boolean_t need_up);
156 static void	ipsq_delete(ipsq_t *);
157 
158 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
159 		    boolean_t initialize);
160 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
161 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
162 static void	ipif_delete_cache_ire(ire_t *, char *);
163 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
164 static void	ipif_free(ipif_t *ipif);
165 static void	ipif_free_tail(ipif_t *ipif);
166 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
167 static void	ipif_multicast_down(ipif_t *ipif);
168 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
169 static void	ipif_set_default(ipif_t *ipif);
170 static int	ipif_set_values(queue_t *q, mblk_t *mp,
171     char *interf_name, uint_t *ppa);
172 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
173     queue_t *q);
174 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
175     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
176     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
177 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
178 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
179 
180 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
181 static int	ill_arp_off(ill_t *ill);
182 static int	ill_arp_on(ill_t *ill);
183 static void	ill_delete_interface_type(ill_if_t *);
184 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
185 static void	ill_dl_down(ill_t *ill);
186 static void	ill_down(ill_t *ill);
187 static void	ill_downi(ire_t *ire, char *ill_arg);
188 static void	ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg);
189 static void	ill_down_tail(ill_t *ill);
190 static void	ill_free_mib(ill_t *ill);
191 static void	ill_glist_delete(ill_t *);
192 static boolean_t ill_has_usable_ipif(ill_t *);
193 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
194 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
195 static void	ill_phyint_free(ill_t *ill);
196 static void	ill_phyint_reinit(ill_t *ill);
197 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
198 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
199 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
201 static void	ill_stq_cache_delete(ire_t *, char *);
202 
203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
206     in6_addr_t *);
207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
208     ipaddr_t *);
209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
211     in6_addr_t *);
212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
213     ipaddr_t *);
214 
215 static void	ipif_save_ire(ipif_t *, ire_t *);
216 static void	ipif_remove_ire(ipif_t *, ire_t *);
217 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
218 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
219 
220 /*
221  * Per-ill IPsec capabilities management.
222  */
223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
224 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
225 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
226 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
228 static void ill_capability_proto(ill_t *, int, mblk_t *);
229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
230     boolean_t);
231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
239     dl_capability_sub_t *);
240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
242 static void ill_capability_lso_reset(ill_t *, mblk_t **);
243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
245 static void	ill_capability_dls_reset(ill_t *, mblk_t **);
246 static void	ill_capability_dls_disable(ill_t *);
247 
248 static void	illgrp_cache_delete(ire_t *, char *);
249 static void	illgrp_delete(ill_t *ill);
250 static void	illgrp_reset_schednext(ill_t *ill);
251 
252 static ill_t	*ill_prev_usesrc(ill_t *);
253 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
254 static void	ill_disband_usesrc_group(ill_t *);
255 
256 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
257 
258 /*
259  * if we go over the memory footprint limit more than once in this msec
260  * interval, we'll start pruning aggressively.
261  */
262 int ip_min_frag_prune_time = 0;
263 
264 /*
265  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
266  * and the IPsec DOI
267  */
268 #define	MAX_IPSEC_ALGS	256
269 
270 #define	BITSPERBYTE	8
271 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
272 
273 #define	IPSEC_ALG_ENABLE(algs, algid) \
274 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
275 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
276 
277 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
278 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
279 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
280 
281 typedef uint8_t ipsec_capab_elem_t;
282 
283 /*
284  * Per-algorithm parameters.  Note that at present, only encryption
285  * algorithms have variable keysize (IKE does not provide a way to negotiate
286  * auth algorithm keysize).
287  *
288  * All sizes here are in bits.
289  */
290 typedef struct
291 {
292 	uint16_t	minkeylen;
293 	uint16_t	maxkeylen;
294 } ipsec_capab_algparm_t;
295 
296 /*
297  * Per-ill capabilities.
298  */
299 struct ill_ipsec_capab_s {
300 	ipsec_capab_elem_t *encr_hw_algs;
301 	ipsec_capab_elem_t *auth_hw_algs;
302 	uint32_t algs_size;	/* size of _hw_algs in bytes */
303 	/* algorithm key lengths */
304 	ipsec_capab_algparm_t *encr_algparm;
305 	uint32_t encr_algparm_size;
306 	uint32_t encr_algparm_end;
307 };
308 
309 /*
310  * The field values are larger than strictly necessary for simple
311  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
312  */
313 static area_t	ip_area_template = {
314 	AR_ENTRY_ADD,			/* area_cmd */
315 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
316 					/* area_name_offset */
317 	/* area_name_length temporarily holds this structure length */
318 	sizeof (area_t),			/* area_name_length */
319 	IP_ARP_PROTO_TYPE,		/* area_proto */
320 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
321 	IP_ADDR_LEN,			/* area_proto_addr_length */
322 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
323 					/* area_proto_mask_offset */
324 	0,				/* area_flags */
325 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
326 					/* area_hw_addr_offset */
327 	/* Zero length hw_addr_length means 'use your idea of the address' */
328 	0				/* area_hw_addr_length */
329 };
330 
331 /*
332  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
333  * support
334  */
335 static area_t	ip6_area_template = {
336 	AR_ENTRY_ADD,			/* area_cmd */
337 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
338 					/* area_name_offset */
339 	/* area_name_length temporarily holds this structure length */
340 	sizeof (area_t),			/* area_name_length */
341 	IP_ARP_PROTO_TYPE,		/* area_proto */
342 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
343 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
344 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
345 					/* area_proto_mask_offset */
346 	0,				/* area_flags */
347 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
348 					/* area_hw_addr_offset */
349 	/* Zero length hw_addr_length means 'use your idea of the address' */
350 	0				/* area_hw_addr_length */
351 };
352 
353 static ared_t	ip_ared_template = {
354 	AR_ENTRY_DELETE,
355 	sizeof (ared_t) + IP_ADDR_LEN,
356 	sizeof (ared_t),
357 	IP_ARP_PROTO_TYPE,
358 	sizeof (ared_t),
359 	IP_ADDR_LEN
360 };
361 
362 static ared_t	ip6_ared_template = {
363 	AR_ENTRY_DELETE,
364 	sizeof (ared_t) + IPV6_ADDR_LEN,
365 	sizeof (ared_t),
366 	IP_ARP_PROTO_TYPE,
367 	sizeof (ared_t),
368 	IPV6_ADDR_LEN
369 };
370 
371 /*
372  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
373  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
374  * areq is used).
375  */
376 static areq_t	ip_areq_template = {
377 	AR_ENTRY_QUERY,			/* cmd */
378 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
379 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
380 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
381 	sizeof (areq_t),			/* target addr offset */
382 	IP_ADDR_LEN,			/* target addr_length */
383 	0,				/* flags */
384 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
385 	IP_ADDR_LEN,			/* sender addr length */
386 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
387 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
388 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
389 	/* anything else filled in by the code */
390 };
391 
392 static arc_t	ip_aru_template = {
393 	AR_INTERFACE_UP,
394 	sizeof (arc_t),		/* Name offset */
395 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
396 };
397 
398 static arc_t	ip_ard_template = {
399 	AR_INTERFACE_DOWN,
400 	sizeof (arc_t),		/* Name offset */
401 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
402 };
403 
404 static arc_t	ip_aron_template = {
405 	AR_INTERFACE_ON,
406 	sizeof (arc_t),		/* Name offset */
407 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
408 };
409 
410 static arc_t	ip_aroff_template = {
411 	AR_INTERFACE_OFF,
412 	sizeof (arc_t),		/* Name offset */
413 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
414 };
415 
416 
417 static arma_t	ip_arma_multi_template = {
418 	AR_MAPPING_ADD,
419 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
420 				/* Name offset */
421 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
422 	IP_ARP_PROTO_TYPE,
423 	sizeof (arma_t),			/* proto_addr_offset */
424 	IP_ADDR_LEN,				/* proto_addr_length */
425 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
426 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
427 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
428 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
429 	IP_MAX_HW_LEN,				/* hw_addr_length */
430 	0,					/* hw_mapping_start */
431 };
432 
433 static ipft_t	ip_ioctl_ftbl[] = {
434 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
435 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
436 		IPFT_F_NO_REPLY },
437 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
438 		IPFT_F_NO_REPLY },
439 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
440 	{ 0 }
441 };
442 
443 /* Simple ICMP IP Header Template */
444 static ipha_t icmp_ipha = {
445 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
446 };
447 
448 /* Flag descriptors for ip_ipif_report */
449 static nv_t	ipif_nv_tbl[] = {
450 	{ IPIF_UP,		"UP" },
451 	{ IPIF_BROADCAST,	"BROADCAST" },
452 	{ ILLF_DEBUG,		"DEBUG" },
453 	{ PHYI_LOOPBACK,	"LOOPBACK" },
454 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
455 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
456 	{ PHYI_RUNNING,		"RUNNING" },
457 	{ ILLF_NOARP,		"NOARP" },
458 	{ PHYI_PROMISC,		"PROMISC" },
459 	{ PHYI_ALLMULTI,	"ALLMULTI" },
460 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
461 	{ ILLF_MULTICAST,	"MULTICAST" },
462 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
463 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
464 	{ IPIF_DHCPRUNNING,	"DHCP" },
465 	{ IPIF_PRIVATE,		"PRIVATE" },
466 	{ IPIF_NOXMIT,		"NOXMIT" },
467 	{ IPIF_NOLOCAL,		"NOLOCAL" },
468 	{ IPIF_DEPRECATED,	"DEPRECATED" },
469 	{ IPIF_PREFERRED,	"PREFERRED" },
470 	{ IPIF_TEMPORARY,	"TEMPORARY" },
471 	{ IPIF_ADDRCONF,	"ADDRCONF" },
472 	{ PHYI_VIRTUAL,		"VIRTUAL" },
473 	{ ILLF_ROUTER,		"ROUTER" },
474 	{ ILLF_NONUD,		"NONUD" },
475 	{ IPIF_ANYCAST,		"ANYCAST" },
476 	{ ILLF_NORTEXCH,	"NORTEXCH" },
477 	{ ILLF_IPV4,		"IPV4" },
478 	{ ILLF_IPV6,		"IPV6" },
479 	{ IPIF_MIPRUNNING,	"MIP" },
480 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
481 	{ PHYI_FAILED,		"FAILED" },
482 	{ PHYI_STANDBY,		"STANDBY" },
483 	{ PHYI_INACTIVE,	"INACTIVE" },
484 	{ PHYI_OFFLINE,		"OFFLINE" },
485 };
486 
487 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
488 
489 static ip_m_t	ip_m_tbl[] = {
490 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
491 	    ip_ether_v6intfid },
492 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
493 	    ip_nodef_v6intfid },
494 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
495 	    ip_nodef_v6intfid },
496 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
497 	    ip_nodef_v6intfid },
498 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
499 	    ip_ether_v6intfid },
500 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
501 	    ip_ib_v6intfid },
502 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
503 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 	    ip_nodef_v6intfid }
505 };
506 
507 static ill_t	ill_null;		/* Empty ILL for init. */
508 char	ipif_loopback_name[] = "lo0";
509 static char *ipv4_forward_suffix = ":ip_forwarding";
510 static char *ipv6_forward_suffix = ":ip6_forwarding";
511 static	sin6_t	sin6_null;	/* Zero address for quick clears */
512 static	sin_t	sin_null;	/* Zero address for quick clears */
513 
514 /* When set search for unused ipif_seqid */
515 static ipif_t	ipif_zero;
516 
517 /*
518  * ppa arena is created after these many
519  * interfaces have been plumbed.
520  */
521 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
522 
523 /*
524  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
525  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
526  * set through platform specific code (Niagara/Ontario).
527  */
528 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
529 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
530 
531 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
532 
533 static uint_t
534 ipif_rand(ip_stack_t *ipst)
535 {
536 	ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
537 	    12345;
538 	return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
539 }
540 
541 /*
542  * Allocate per-interface mibs.
543  * Returns true if ok. False otherwise.
544  *  ipsq  may not yet be allocated (loopback case ).
545  */
546 static boolean_t
547 ill_allocate_mibs(ill_t *ill)
548 {
549 	/* Already allocated? */
550 	if (ill->ill_ip_mib != NULL) {
551 		if (ill->ill_isv6)
552 			ASSERT(ill->ill_icmp6_mib != NULL);
553 		return (B_TRUE);
554 	}
555 
556 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
557 	    KM_NOSLEEP);
558 	if (ill->ill_ip_mib == NULL) {
559 		return (B_FALSE);
560 	}
561 
562 	/* Setup static information */
563 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
564 	    sizeof (mib2_ipIfStatsEntry_t));
565 	if (ill->ill_isv6) {
566 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
567 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
568 		    sizeof (mib2_ipv6AddrEntry_t));
569 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
570 		    sizeof (mib2_ipv6RouteEntry_t));
571 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
572 		    sizeof (mib2_ipv6NetToMediaEntry_t));
573 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
574 		    sizeof (ipv6_member_t));
575 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
576 		    sizeof (ipv6_grpsrc_t));
577 	} else {
578 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
579 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
580 		    sizeof (mib2_ipAddrEntry_t));
581 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
582 		    sizeof (mib2_ipRouteEntry_t));
583 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
584 		    sizeof (mib2_ipNetToMediaEntry_t));
585 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
586 		    sizeof (ip_member_t));
587 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
588 		    sizeof (ip_grpsrc_t));
589 
590 		/*
591 		 * For a v4 ill, we are done at this point, because per ill
592 		 * icmp mibs are only used for v6.
593 		 */
594 		return (B_TRUE);
595 	}
596 
597 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
598 	    KM_NOSLEEP);
599 	if (ill->ill_icmp6_mib == NULL) {
600 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
601 		ill->ill_ip_mib = NULL;
602 		return (B_FALSE);
603 	}
604 	/* static icmp info */
605 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
606 	    sizeof (mib2_ipv6IfIcmpEntry_t);
607 	/*
608 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
609 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
610 	 * -> ill_phyint_reinit
611 	 */
612 	return (B_TRUE);
613 }
614 
615 /*
616  * Common code for preparation of ARP commands.  Two points to remember:
617  * 	1) The ill_name is tacked on at the end of the allocated space so
618  *	   the templates name_offset field must contain the total space
619  *	   to allocate less the name length.
620  *
621  *	2) The templates name_length field should contain the *template*
622  *	   length.  We use it as a parameter to bcopy() and then write
623  *	   the real ill_name_length into the name_length field of the copy.
624  * (Always called as writer.)
625  */
626 mblk_t *
627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
628 {
629 	arc_t	*arc = (arc_t *)template;
630 	char	*cp;
631 	int	len;
632 	mblk_t	*mp;
633 	uint_t	name_length = ill->ill_name_length;
634 	uint_t	template_len = arc->arc_name_length;
635 
636 	len = arc->arc_name_offset + name_length;
637 	mp = allocb(len, BPRI_HI);
638 	if (mp == NULL)
639 		return (NULL);
640 	cp = (char *)mp->b_rptr;
641 	mp->b_wptr = (uchar_t *)&cp[len];
642 	if (template_len)
643 		bcopy(template, cp, template_len);
644 	if (len > template_len)
645 		bzero(&cp[template_len], len - template_len);
646 	mp->b_datap->db_type = M_PROTO;
647 
648 	arc = (arc_t *)cp;
649 	arc->arc_name_length = name_length;
650 	cp = (char *)arc + arc->arc_name_offset;
651 	bcopy(ill->ill_name, cp, name_length);
652 
653 	if (addr) {
654 		area_t	*area = (area_t *)mp->b_rptr;
655 
656 		cp = (char *)area + area->area_proto_addr_offset;
657 		bcopy(addr, cp, area->area_proto_addr_length);
658 		if (area->area_cmd == AR_ENTRY_ADD) {
659 			cp = (char *)area;
660 			len = area->area_proto_addr_length;
661 			if (area->area_proto_mask_offset)
662 				cp += area->area_proto_mask_offset;
663 			else
664 				cp += area->area_proto_addr_offset + len;
665 			while (len-- > 0)
666 				*cp++ = (char)~0;
667 		}
668 	}
669 	return (mp);
670 }
671 
672 mblk_t *
673 ipif_area_alloc(ipif_t *ipif)
674 {
675 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
676 	    (char *)&ipif->ipif_lcl_addr));
677 }
678 
679 mblk_t *
680 ipif_ared_alloc(ipif_t *ipif)
681 {
682 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
683 	    (char *)&ipif->ipif_lcl_addr));
684 }
685 
686 mblk_t *
687 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
688 {
689 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
690 	    (char *)&addr));
691 }
692 
693 /*
694  * Completely vaporize a lower level tap and all associated interfaces.
695  * ill_delete is called only out of ip_close when the device control
696  * stream is being closed.
697  */
698 void
699 ill_delete(ill_t *ill)
700 {
701 	ipif_t	*ipif;
702 	ill_t	*prev_ill;
703 	ip_stack_t	*ipst = ill->ill_ipst;
704 
705 	/*
706 	 * ill_delete may be forcibly entering the ipsq. The previous
707 	 * ioctl may not have completed and may need to be aborted.
708 	 * ipsq_flush takes care of it. If we don't need to enter the
709 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
710 	 * ill_delete_tail is sufficient.
711 	 */
712 	ipsq_flush(ill);
713 
714 	/*
715 	 * Nuke all interfaces.  ipif_free will take down the interface,
716 	 * remove it from the list, and free the data structure.
717 	 * Walk down the ipif list and remove the logical interfaces
718 	 * first before removing the main ipif. We can't unplumb
719 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
720 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
721 	 * POINTOPOINT.
722 	 *
723 	 * If ill_ipif was not properly initialized (i.e low on memory),
724 	 * then no interfaces to clean up. In this case just clean up the
725 	 * ill.
726 	 */
727 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
728 		ipif_free(ipif);
729 
730 	/*
731 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
732 	 * So nobody can be using this mp now. Free the mp allocated for
733 	 * honoring ILLF_NOARP
734 	 */
735 	freemsg(ill->ill_arp_on_mp);
736 	ill->ill_arp_on_mp = NULL;
737 
738 	/* Clean up msgs on pending upcalls for mrouted */
739 	reset_mrt_ill(ill);
740 
741 	/*
742 	 * ipif_free -> reset_conn_ipif will remove all multicast
743 	 * references for IPv4. For IPv6, we need to do it here as
744 	 * it points only at ills.
745 	 */
746 	reset_conn_ill(ill);
747 
748 	/*
749 	 * ill_down will arrange to blow off any IRE's dependent on this
750 	 * ILL, and shut down fragmentation reassembly.
751 	 */
752 	ill_down(ill);
753 
754 	/* Let SCTP know, so that it can remove this from its list. */
755 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
756 
757 	/*
758 	 * If an address on this ILL is being used as a source address then
759 	 * clear out the pointers in other ILLs that point to this ILL.
760 	 */
761 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
762 	if (ill->ill_usesrc_grp_next != NULL) {
763 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
764 			ill_disband_usesrc_group(ill);
765 		} else {	/* consumer of the usesrc ILL */
766 			prev_ill = ill_prev_usesrc(ill);
767 			prev_ill->ill_usesrc_grp_next =
768 			    ill->ill_usesrc_grp_next;
769 		}
770 	}
771 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
772 }
773 
774 static void
775 ipif_non_duplicate(ipif_t *ipif)
776 {
777 	ill_t *ill = ipif->ipif_ill;
778 	mutex_enter(&ill->ill_lock);
779 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
780 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
781 		ASSERT(ill->ill_ipif_dup_count > 0);
782 		ill->ill_ipif_dup_count--;
783 	}
784 	mutex_exit(&ill->ill_lock);
785 }
786 
787 /*
788  * Send all deferred messages without waiting for their ACKs.
789  */
790 void
791 ill_send_all_deferred_mp(ill_t *ill)
792 {
793 	mblk_t *mp, *next;
794 
795 	/*
796 	 * Clear ill_dlpi_pending so that the message is not queued in
797 	 * ill_dlpi_send().
798 	 */
799 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
800 
801 	for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) {
802 		next = mp->b_next;
803 		mp->b_next = NULL;
804 		ill_dlpi_send(ill, mp);
805 	}
806 	ill->ill_dlpi_deferred = NULL;
807 }
808 
809 /*
810  * ill_delete_tail is called from ip_modclose after all references
811  * to the closing ill are gone. The wait is done in ip_modclose
812  */
813 void
814 ill_delete_tail(ill_t *ill)
815 {
816 	mblk_t	**mpp;
817 	ipif_t	*ipif;
818 	ip_stack_t	*ipst = ill->ill_ipst;
819 
820 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
821 		ipif_non_duplicate(ipif);
822 		ipif_down_tail(ipif);
823 	}
824 
825 	ASSERT(ill->ill_ipif_dup_count == 0 &&
826 	    ill->ill_arp_down_mp == NULL &&
827 	    ill->ill_arp_del_mapping_mp == NULL);
828 
829 	/*
830 	 * If polling capability is enabled (which signifies direct
831 	 * upcall into IP and driver has ill saved as a handle),
832 	 * we need to make sure that unbind has completed before we
833 	 * let the ill disappear and driver no longer has any reference
834 	 * to this ill.
835 	 */
836 	mutex_enter(&ill->ill_lock);
837 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
838 		cv_wait(&ill->ill_cv, &ill->ill_lock);
839 	mutex_exit(&ill->ill_lock);
840 
841 	/*
842 	 * Clean up polling and soft ring capabilities
843 	 */
844 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
845 		ill_capability_dls_disable(ill);
846 
847 	/*
848 	 * Send the detach if there's one to send (i.e., if we're above a
849 	 * style 2 DLPI driver).
850 	 */
851 	if (ill->ill_detach_mp != NULL) {
852 		ill_dlpi_send(ill, ill->ill_detach_mp);
853 		ill->ill_detach_mp = NULL;
854 	}
855 
856 	if (ill->ill_net_type != IRE_LOOPBACK)
857 		qprocsoff(ill->ill_rq);
858 
859 	/*
860 	 * We do an ipsq_flush once again now. New messages could have
861 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
862 	 * could also have landed up if an ioctl thread had looked up
863 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
864 	 * enqueued the ioctl when we did the ipsq_flush last time.
865 	 */
866 	ipsq_flush(ill);
867 
868 	/*
869 	 * Free capabilities.
870 	 */
871 	if (ill->ill_ipsec_capab_ah != NULL) {
872 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
873 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
874 		ill->ill_ipsec_capab_ah = NULL;
875 	}
876 
877 	if (ill->ill_ipsec_capab_esp != NULL) {
878 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
879 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
880 		ill->ill_ipsec_capab_esp = NULL;
881 	}
882 
883 	if (ill->ill_mdt_capab != NULL) {
884 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
885 		ill->ill_mdt_capab = NULL;
886 	}
887 
888 	if (ill->ill_hcksum_capab != NULL) {
889 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
890 		ill->ill_hcksum_capab = NULL;
891 	}
892 
893 	if (ill->ill_zerocopy_capab != NULL) {
894 		kmem_free(ill->ill_zerocopy_capab,
895 		    sizeof (ill_zerocopy_capab_t));
896 		ill->ill_zerocopy_capab = NULL;
897 	}
898 
899 	if (ill->ill_lso_capab != NULL) {
900 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
901 		ill->ill_lso_capab = NULL;
902 	}
903 
904 	if (ill->ill_dls_capab != NULL) {
905 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
906 		ill->ill_dls_capab->ill_unbind_conn = NULL;
907 		kmem_free(ill->ill_dls_capab,
908 		    sizeof (ill_dls_capab_t) +
909 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
910 		ill->ill_dls_capab = NULL;
911 	}
912 
913 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
914 
915 	while (ill->ill_ipif != NULL)
916 		ipif_free_tail(ill->ill_ipif);
917 
918 	ill_down_tail(ill);
919 
920 	/*
921 	 * We have removed all references to ilm from conn and the ones joined
922 	 * within the kernel.
923 	 *
924 	 * We don't walk conns, mrts and ires because
925 	 *
926 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
927 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
928 	 *    ill references.
929 	 */
930 	ASSERT(ilm_walk_ill(ill) == 0);
931 	/*
932 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
933 	 * could free the phyint. No more reference to the phyint after this
934 	 * point.
935 	 */
936 	(void) ill_glist_delete(ill);
937 
938 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
939 	if (ill->ill_ndd_name != NULL)
940 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
941 	rw_exit(&ipst->ips_ip_g_nd_lock);
942 
943 
944 	if (ill->ill_frag_ptr != NULL) {
945 		uint_t count;
946 
947 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
948 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
949 		}
950 		mi_free(ill->ill_frag_ptr);
951 		ill->ill_frag_ptr = NULL;
952 		ill->ill_frag_hash_tbl = NULL;
953 	}
954 
955 	freemsg(ill->ill_nd_lla_mp);
956 	/* Free all retained control messages. */
957 	mpp = &ill->ill_first_mp_to_free;
958 	do {
959 		while (mpp[0]) {
960 			mblk_t  *mp;
961 			mblk_t  *mp1;
962 
963 			mp = mpp[0];
964 			mpp[0] = mp->b_next;
965 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
966 				mp1->b_next = NULL;
967 				mp1->b_prev = NULL;
968 			}
969 			freemsg(mp);
970 		}
971 	} while (mpp++ != &ill->ill_last_mp_to_free);
972 
973 	ill_free_mib(ill);
974 	/* Drop refcnt here */
975 	netstack_rele(ill->ill_ipst->ips_netstack);
976 	ill->ill_ipst = NULL;
977 
978 	ILL_TRACE_CLEANUP(ill);
979 }
980 
981 static void
982 ill_free_mib(ill_t *ill)
983 {
984 	ip_stack_t *ipst = ill->ill_ipst;
985 
986 	/*
987 	 * MIB statistics must not be lost, so when an interface
988 	 * goes away the counter values will be added to the global
989 	 * MIBs.
990 	 */
991 	if (ill->ill_ip_mib != NULL) {
992 		if (ill->ill_isv6) {
993 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
994 			    ill->ill_ip_mib);
995 		} else {
996 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
997 			    ill->ill_ip_mib);
998 		}
999 
1000 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
1001 		ill->ill_ip_mib = NULL;
1002 	}
1003 	if (ill->ill_icmp6_mib != NULL) {
1004 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
1005 		    ill->ill_icmp6_mib);
1006 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
1007 		ill->ill_icmp6_mib = NULL;
1008 	}
1009 }
1010 
1011 /*
1012  * Concatenate together a physical address and a sap.
1013  *
1014  * Sap_lengths are interpreted as follows:
1015  *   sap_length == 0	==>	no sap
1016  *   sap_length > 0	==>	sap is at the head of the dlpi address
1017  *   sap_length < 0	==>	sap is at the tail of the dlpi address
1018  */
1019 static void
1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
1021     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
1022 {
1023 	uint16_t sap_addr = (uint16_t)sap_src;
1024 
1025 	if (sap_length == 0) {
1026 		if (phys_src == NULL)
1027 			bzero(dst, phys_length);
1028 		else
1029 			bcopy(phys_src, dst, phys_length);
1030 	} else if (sap_length < 0) {
1031 		if (phys_src == NULL)
1032 			bzero(dst, phys_length);
1033 		else
1034 			bcopy(phys_src, dst, phys_length);
1035 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1036 	} else {
1037 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1038 		if (phys_src == NULL)
1039 			bzero((char *)dst + sap_length, phys_length);
1040 		else
1041 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1042 	}
1043 }
1044 
1045 /*
1046  * Generate a dl_unitdata_req mblk for the device and address given.
1047  * addr_length is the length of the physical portion of the address.
1048  * If addr is NULL include an all zero address of the specified length.
1049  * TRUE? In any case, addr_length is taken to be the entire length of the
1050  * dlpi address, including the absolute value of sap_length.
1051  */
1052 mblk_t *
1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1054 		t_scalar_t sap_length)
1055 {
1056 	dl_unitdata_req_t *dlur;
1057 	mblk_t	*mp;
1058 	t_scalar_t	abs_sap_length;		/* absolute value */
1059 
1060 	abs_sap_length = ABS(sap_length);
1061 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1062 		DL_UNITDATA_REQ);
1063 	if (mp == NULL)
1064 		return (NULL);
1065 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1066 	/* HACK: accomodate incompatible DLPI drivers */
1067 	if (addr_length == 8)
1068 		addr_length = 6;
1069 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1070 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1071 	dlur->dl_priority.dl_min = 0;
1072 	dlur->dl_priority.dl_max = 0;
1073 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1074 	    (uchar_t *)&dlur[1]);
1075 	return (mp);
1076 }
1077 
1078 /*
1079  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1080  * Return an error if we already have 1 or more ioctls in progress.
1081  * This is used only for non-exclusive ioctls. Currently this is used
1082  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1083  * and thus need to use ipsq_pending_mp_add.
1084  */
1085 boolean_t
1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1087 {
1088 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1089 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1090 	/*
1091 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1092 	 */
1093 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1094 	    (add_mp->b_datap->db_type == M_IOCTL));
1095 
1096 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1097 	/*
1098 	 * Return error if the conn has started closing. The conn
1099 	 * could have finished cleaning up the pending mp list,
1100 	 * If so we should not add another mp to the list negating
1101 	 * the cleanup.
1102 	 */
1103 	if (connp->conn_state_flags & CONN_CLOSING)
1104 		return (B_FALSE);
1105 	/*
1106 	 * Add the pending mp to the head of the list, chained by b_next.
1107 	 * Note down the conn on which the ioctl request came, in b_prev.
1108 	 * This will be used to later get the conn, when we get a response
1109 	 * on the ill queue, from some other module (typically arp)
1110 	 */
1111 	add_mp->b_next = (void *)ill->ill_pending_mp;
1112 	add_mp->b_queue = CONNP_TO_WQ(connp);
1113 	ill->ill_pending_mp = add_mp;
1114 	if (connp != NULL)
1115 		connp->conn_oper_pending_ill = ill;
1116 	return (B_TRUE);
1117 }
1118 
1119 /*
1120  * Retrieve the ill_pending_mp and return it. We have to walk the list
1121  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1122  */
1123 mblk_t *
1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1125 {
1126 	mblk_t	*prev = NULL;
1127 	mblk_t	*curr = NULL;
1128 	uint_t	id;
1129 	conn_t	*connp;
1130 
1131 	/*
1132 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1133 	 * up the pending mp, but it does not know the ioc_id and
1134 	 * passes in a zero for it.
1135 	 */
1136 	mutex_enter(&ill->ill_lock);
1137 	if (ioc_id != 0)
1138 		*connpp = NULL;
1139 
1140 	/* Search the list for the appropriate ioctl based on ioc_id */
1141 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1142 	    prev = curr, curr = curr->b_next) {
1143 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1144 		connp = Q_TO_CONN(curr->b_queue);
1145 		/* Match based on the ioc_id or based on the conn */
1146 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1147 			break;
1148 	}
1149 
1150 	if (curr != NULL) {
1151 		/* Unlink the mblk from the pending mp list */
1152 		if (prev != NULL) {
1153 			prev->b_next = curr->b_next;
1154 		} else {
1155 			ASSERT(ill->ill_pending_mp == curr);
1156 			ill->ill_pending_mp = curr->b_next;
1157 		}
1158 
1159 		/*
1160 		 * conn refcnt must have been bumped up at the start of
1161 		 * the ioctl. So we can safely access the conn.
1162 		 */
1163 		ASSERT(CONN_Q(curr->b_queue));
1164 		*connpp = Q_TO_CONN(curr->b_queue);
1165 		curr->b_next = NULL;
1166 		curr->b_queue = NULL;
1167 	}
1168 
1169 	mutex_exit(&ill->ill_lock);
1170 
1171 	return (curr);
1172 }
1173 
1174 /*
1175  * Add the pending mp to the list. There can be only 1 pending mp
1176  * in the list. Any exclusive ioctl that needs to wait for a response
1177  * from another module or driver needs to use this function to set
1178  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1179  * the other module/driver. This is also used while waiting for the
1180  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1181  */
1182 boolean_t
1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1184     int waitfor)
1185 {
1186 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1187 
1188 	ASSERT(IAM_WRITER_IPIF(ipif));
1189 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1190 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1191 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1192 	/*
1193 	 * The caller may be using a different ipif than the one passed into
1194 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1195 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1196 	 * that `ipsq_current_ipif == ipif'.
1197 	 */
1198 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1199 
1200 	/*
1201 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1202 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1203 	 */
1204 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1205 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1206 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1207 
1208 	if (connp != NULL) {
1209 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1210 		/*
1211 		 * Return error if the conn has started closing. The conn
1212 		 * could have finished cleaning up the pending mp list,
1213 		 * If so we should not add another mp to the list negating
1214 		 * the cleanup.
1215 		 */
1216 		if (connp->conn_state_flags & CONN_CLOSING)
1217 			return (B_FALSE);
1218 	}
1219 	mutex_enter(&ipsq->ipsq_lock);
1220 	ipsq->ipsq_pending_ipif = ipif;
1221 	/*
1222 	 * Note down the queue in b_queue. This will be returned by
1223 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1224 	 * the processing
1225 	 */
1226 	add_mp->b_next = NULL;
1227 	add_mp->b_queue = q;
1228 	ipsq->ipsq_pending_mp = add_mp;
1229 	ipsq->ipsq_waitfor = waitfor;
1230 
1231 	if (connp != NULL)
1232 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1233 	mutex_exit(&ipsq->ipsq_lock);
1234 	return (B_TRUE);
1235 }
1236 
1237 /*
1238  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1239  * queued in the list.
1240  */
1241 mblk_t *
1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1243 {
1244 	mblk_t	*curr = NULL;
1245 
1246 	mutex_enter(&ipsq->ipsq_lock);
1247 	*connpp = NULL;
1248 	if (ipsq->ipsq_pending_mp == NULL) {
1249 		mutex_exit(&ipsq->ipsq_lock);
1250 		return (NULL);
1251 	}
1252 
1253 	/* There can be only 1 such excl message */
1254 	curr = ipsq->ipsq_pending_mp;
1255 	ASSERT(curr != NULL && curr->b_next == NULL);
1256 	ipsq->ipsq_pending_ipif = NULL;
1257 	ipsq->ipsq_pending_mp = NULL;
1258 	ipsq->ipsq_waitfor = 0;
1259 	mutex_exit(&ipsq->ipsq_lock);
1260 
1261 	if (CONN_Q(curr->b_queue)) {
1262 		/*
1263 		 * This mp did a refhold on the conn, at the start of the ioctl.
1264 		 * So we can safely return a pointer to the conn to the caller.
1265 		 */
1266 		*connpp = Q_TO_CONN(curr->b_queue);
1267 	} else {
1268 		*connpp = NULL;
1269 	}
1270 	curr->b_next = NULL;
1271 	curr->b_prev = NULL;
1272 	return (curr);
1273 }
1274 
1275 /*
1276  * Cleanup the ioctl mp queued in ipsq_pending_mp
1277  * - Called in the ill_delete path
1278  * - Called in the M_ERROR or M_HANGUP path on the ill.
1279  * - Called in the conn close path.
1280  */
1281 boolean_t
1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1283 {
1284 	mblk_t	*mp;
1285 	ipsq_t	*ipsq;
1286 	queue_t	*q;
1287 	ipif_t	*ipif;
1288 
1289 	ASSERT(IAM_WRITER_ILL(ill));
1290 	ipsq = ill->ill_phyint->phyint_ipsq;
1291 	mutex_enter(&ipsq->ipsq_lock);
1292 	/*
1293 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1294 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1295 	 * even if it is meant for another ill, since we have to enqueue
1296 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1297 	 * If connp is non-null we are called from the conn close path.
1298 	 */
1299 	mp = ipsq->ipsq_pending_mp;
1300 	if (mp == NULL || (connp != NULL &&
1301 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1302 		mutex_exit(&ipsq->ipsq_lock);
1303 		return (B_FALSE);
1304 	}
1305 	/* Now remove from the ipsq_pending_mp */
1306 	ipsq->ipsq_pending_mp = NULL;
1307 	q = mp->b_queue;
1308 	mp->b_next = NULL;
1309 	mp->b_prev = NULL;
1310 	mp->b_queue = NULL;
1311 
1312 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1313 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1314 	if (ill->ill_move_in_progress) {
1315 		ILL_CLEAR_MOVE(ill);
1316 	} else if (ill->ill_up_ipifs) {
1317 		ill_group_cleanup(ill);
1318 	}
1319 
1320 	ipif = ipsq->ipsq_pending_ipif;
1321 	ipsq->ipsq_pending_ipif = NULL;
1322 	ipsq->ipsq_waitfor = 0;
1323 	ipsq->ipsq_current_ipif = NULL;
1324 	ipsq->ipsq_current_ioctl = 0;
1325 	mutex_exit(&ipsq->ipsq_lock);
1326 
1327 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1328 		if (connp == NULL) {
1329 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1330 		} else {
1331 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1332 			mutex_enter(&ipif->ipif_ill->ill_lock);
1333 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1334 			mutex_exit(&ipif->ipif_ill->ill_lock);
1335 		}
1336 	} else {
1337 		/*
1338 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1339 		 * be just inet_freemsg. we have to restart it
1340 		 * otherwise the thread will be stuck.
1341 		 */
1342 		inet_freemsg(mp);
1343 	}
1344 	return (B_TRUE);
1345 }
1346 
1347 /*
1348  * The ill is closing. Cleanup all the pending mps. Called exclusively
1349  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1350  * knows this ill, and hence nobody can add an mp to this list
1351  */
1352 static void
1353 ill_pending_mp_cleanup(ill_t *ill)
1354 {
1355 	mblk_t	*mp;
1356 	queue_t	*q;
1357 
1358 	ASSERT(IAM_WRITER_ILL(ill));
1359 
1360 	mutex_enter(&ill->ill_lock);
1361 	/*
1362 	 * Every mp on the pending mp list originating from an ioctl
1363 	 * added 1 to the conn refcnt, at the start of the ioctl.
1364 	 * So bump it down now.  See comments in ip_wput_nondata()
1365 	 */
1366 	while (ill->ill_pending_mp != NULL) {
1367 		mp = ill->ill_pending_mp;
1368 		ill->ill_pending_mp = mp->b_next;
1369 		mutex_exit(&ill->ill_lock);
1370 
1371 		q = mp->b_queue;
1372 		ASSERT(CONN_Q(q));
1373 		mp->b_next = NULL;
1374 		mp->b_prev = NULL;
1375 		mp->b_queue = NULL;
1376 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1377 		mutex_enter(&ill->ill_lock);
1378 	}
1379 	ill->ill_pending_ipif = NULL;
1380 
1381 	mutex_exit(&ill->ill_lock);
1382 }
1383 
1384 /*
1385  * Called in the conn close path and ill delete path
1386  */
1387 static void
1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1389 {
1390 	ipsq_t	*ipsq;
1391 	mblk_t	*prev;
1392 	mblk_t	*curr;
1393 	mblk_t	*next;
1394 	queue_t	*q;
1395 	mblk_t	*tmp_list = NULL;
1396 
1397 	ASSERT(IAM_WRITER_ILL(ill));
1398 	if (connp != NULL)
1399 		q = CONNP_TO_WQ(connp);
1400 	else
1401 		q = ill->ill_wq;
1402 
1403 	ipsq = ill->ill_phyint->phyint_ipsq;
1404 	/*
1405 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1406 	 * In the case of ioctl from a conn, there can be only 1 mp
1407 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1408 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1409 	 * ioctls meant for this ill form conn's are not flushed. They will
1410 	 * be processed during ipsq_exit and will not find the ill and will
1411 	 * return error.
1412 	 */
1413 	mutex_enter(&ipsq->ipsq_lock);
1414 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1415 	    curr = next) {
1416 		next = curr->b_next;
1417 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1418 			/* Unlink the mblk from the pending mp list */
1419 			if (prev != NULL) {
1420 				prev->b_next = curr->b_next;
1421 			} else {
1422 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1423 				ipsq->ipsq_xopq_mphead = curr->b_next;
1424 			}
1425 			if (ipsq->ipsq_xopq_mptail == curr)
1426 				ipsq->ipsq_xopq_mptail = prev;
1427 			/*
1428 			 * Create a temporary list and release the ipsq lock
1429 			 * New elements are added to the head of the tmp_list
1430 			 */
1431 			curr->b_next = tmp_list;
1432 			tmp_list = curr;
1433 		} else {
1434 			prev = curr;
1435 		}
1436 	}
1437 	mutex_exit(&ipsq->ipsq_lock);
1438 
1439 	while (tmp_list != NULL) {
1440 		curr = tmp_list;
1441 		tmp_list = curr->b_next;
1442 		curr->b_next = NULL;
1443 		curr->b_prev = NULL;
1444 		curr->b_queue = NULL;
1445 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1446 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1447 			    CONN_CLOSE : NO_COPYOUT, NULL);
1448 		} else {
1449 			/*
1450 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1451 			 * this can't be just inet_freemsg. we have to
1452 			 * restart it otherwise the thread will be stuck.
1453 			 */
1454 			inet_freemsg(curr);
1455 		}
1456 	}
1457 }
1458 
1459 /*
1460  * This conn has started closing. Cleanup any pending ioctl from this conn.
1461  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1462  */
1463 void
1464 conn_ioctl_cleanup(conn_t *connp)
1465 {
1466 	mblk_t *curr;
1467 	ipsq_t	*ipsq;
1468 	ill_t	*ill;
1469 	boolean_t refheld;
1470 
1471 	/*
1472 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1473 	 * ioctl has not yet started, the mp is pending in the list headed by
1474 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1475 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1476 	 * is currently executing now the mp is not queued anywhere but
1477 	 * conn_oper_pending_ill is null. The conn close will wait
1478 	 * till the conn_ref drops to zero.
1479 	 */
1480 	mutex_enter(&connp->conn_lock);
1481 	ill = connp->conn_oper_pending_ill;
1482 	if (ill == NULL) {
1483 		mutex_exit(&connp->conn_lock);
1484 		return;
1485 	}
1486 
1487 	curr = ill_pending_mp_get(ill, &connp, 0);
1488 	if (curr != NULL) {
1489 		mutex_exit(&connp->conn_lock);
1490 		CONN_DEC_REF(connp);
1491 		inet_freemsg(curr);
1492 		return;
1493 	}
1494 	/*
1495 	 * We may not be able to refhold the ill if the ill/ipif
1496 	 * is changing. But we need to make sure that the ill will
1497 	 * not vanish. So we just bump up the ill_waiter count.
1498 	 */
1499 	refheld = ill_waiter_inc(ill);
1500 	mutex_exit(&connp->conn_lock);
1501 	if (refheld) {
1502 		if (ipsq_enter(ill, B_TRUE)) {
1503 			ill_waiter_dcr(ill);
1504 			/*
1505 			 * Check whether this ioctl has started and is
1506 			 * pending now in ipsq_pending_mp. If it is not
1507 			 * found there then check whether this ioctl has
1508 			 * not even started and is in the ipsq_xopq list.
1509 			 */
1510 			if (!ipsq_pending_mp_cleanup(ill, connp))
1511 				ipsq_xopq_mp_cleanup(ill, connp);
1512 			ipsq = ill->ill_phyint->phyint_ipsq;
1513 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1514 			return;
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * The ill is also closing and we could not bump up the
1520 	 * ill_waiter_count or we could not enter the ipsq. Leave
1521 	 * the cleanup to ill_delete
1522 	 */
1523 	mutex_enter(&connp->conn_lock);
1524 	while (connp->conn_oper_pending_ill != NULL)
1525 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1526 	mutex_exit(&connp->conn_lock);
1527 	if (refheld)
1528 		ill_waiter_dcr(ill);
1529 }
1530 
1531 /*
1532  * ipcl_walk function for cleaning up conn_*_ill fields.
1533  */
1534 static void
1535 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1536 {
1537 	ill_t	*ill = (ill_t *)arg;
1538 	ire_t	*ire;
1539 
1540 	mutex_enter(&connp->conn_lock);
1541 	if (connp->conn_multicast_ill == ill) {
1542 		/* Revert to late binding */
1543 		connp->conn_multicast_ill = NULL;
1544 		connp->conn_orig_multicast_ifindex = 0;
1545 	}
1546 	if (connp->conn_incoming_ill == ill)
1547 		connp->conn_incoming_ill = NULL;
1548 	if (connp->conn_outgoing_ill == ill)
1549 		connp->conn_outgoing_ill = NULL;
1550 	if (connp->conn_outgoing_pill == ill)
1551 		connp->conn_outgoing_pill = NULL;
1552 	if (connp->conn_nofailover_ill == ill)
1553 		connp->conn_nofailover_ill = NULL;
1554 	if (connp->conn_xmit_if_ill == ill)
1555 		connp->conn_xmit_if_ill = NULL;
1556 	if (connp->conn_ire_cache != NULL) {
1557 		ire = connp->conn_ire_cache;
1558 		/*
1559 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1560 		 * interface X and ipif coming from interface Y, if interface
1561 		 * X and Y are part of the same IPMPgroup. Thus whenever
1562 		 * interface X goes down, remove all references to it by
1563 		 * checking both on ire_ipif and ire_stq.
1564 		 */
1565 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1566 		    (ire->ire_type == IRE_CACHE &&
1567 		    ire->ire_stq == ill->ill_wq)) {
1568 			connp->conn_ire_cache = NULL;
1569 			mutex_exit(&connp->conn_lock);
1570 			ire_refrele_notr(ire);
1571 			return;
1572 		}
1573 	}
1574 	mutex_exit(&connp->conn_lock);
1575 
1576 }
1577 
1578 /* ARGSUSED */
1579 void
1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1581 {
1582 	ill_t	*ill = q->q_ptr;
1583 	ipif_t	*ipif;
1584 
1585 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1586 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1587 		ipif_non_duplicate(ipif);
1588 		ipif_down_tail(ipif);
1589 	}
1590 	ill_down_tail(ill);
1591 	freemsg(mp);
1592 	ipsq_current_finish(ipsq);
1593 }
1594 
1595 /*
1596  * ill_down_start is called when we want to down this ill and bring it up again
1597  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1598  * all interfaces, but don't tear down any plumbing.
1599  */
1600 boolean_t
1601 ill_down_start(queue_t *q, mblk_t *mp)
1602 {
1603 	ill_t	*ill = q->q_ptr;
1604 	ipif_t	*ipif;
1605 
1606 	ASSERT(IAM_WRITER_ILL(ill));
1607 
1608 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1609 		(void) ipif_down(ipif, NULL, NULL);
1610 
1611 	ill_down(ill);
1612 
1613 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1614 
1615 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1616 
1617 	/*
1618 	 * Atomically test and add the pending mp if references are active.
1619 	 */
1620 	mutex_enter(&ill->ill_lock);
1621 	if (!ill_is_quiescent(ill)) {
1622 		/* call cannot fail since `conn_t *' argument is NULL */
1623 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1624 		    mp, ILL_DOWN);
1625 		mutex_exit(&ill->ill_lock);
1626 		return (B_FALSE);
1627 	}
1628 	mutex_exit(&ill->ill_lock);
1629 	return (B_TRUE);
1630 }
1631 
1632 static void
1633 ill_down(ill_t *ill)
1634 {
1635 	ip_stack_t	*ipst = ill->ill_ipst;
1636 
1637 	/* Blow off any IREs dependent on this ILL. */
1638 	ire_walk(ill_downi, (char *)ill, ipst);
1639 
1640 	mutex_enter(&ipst->ips_ire_mrtun_lock);
1641 	if (ipst->ips_ire_mrtun_count != 0) {
1642 		mutex_exit(&ipst->ips_ire_mrtun_lock);
1643 		ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif,
1644 		    (char *)ill, NULL, ipst);
1645 	} else {
1646 		mutex_exit(&ipst->ips_ire_mrtun_lock);
1647 	}
1648 
1649 	/*
1650 	 * If any interface based forwarding table exists
1651 	 * Blow off the ires there dependent on this ill
1652 	 */
1653 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
1654 	if (ipst->ips_ire_srcif_table_count > 0) {
1655 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
1656 		ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill,
1657 		    ipst);
1658 	} else {
1659 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
1660 	}
1661 
1662 	/* Remove any conn_*_ill depending on this ill */
1663 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1664 
1665 	if (ill->ill_group != NULL) {
1666 		illgrp_delete(ill);
1667 	}
1668 }
1669 
1670 static void
1671 ill_down_tail(ill_t *ill)
1672 {
1673 	int	i;
1674 
1675 	/* Destroy ill_srcif_table if it exists */
1676 	/* Lock not reqd really because nobody should be able to access */
1677 	mutex_enter(&ill->ill_lock);
1678 	if (ill->ill_srcif_table != NULL) {
1679 		ill->ill_srcif_refcnt = 0;
1680 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
1681 			rw_destroy(&ill->ill_srcif_table[i].irb_lock);
1682 		}
1683 		kmem_free(ill->ill_srcif_table,
1684 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t));
1685 		ill->ill_srcif_table = NULL;
1686 		ill->ill_srcif_refcnt = 0;
1687 		ill->ill_mrtun_refcnt = 0;
1688 	}
1689 	mutex_exit(&ill->ill_lock);
1690 }
1691 
1692 /*
1693  * ire_walk routine used to delete every IRE that depends on queues
1694  * associated with 'ill'.  (Always called as writer.)
1695  */
1696 static void
1697 ill_downi(ire_t *ire, char *ill_arg)
1698 {
1699 	ill_t	*ill = (ill_t *)ill_arg;
1700 
1701 	/*
1702 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1703 	 * interface X and ipif coming from interface Y, if interface
1704 	 * X and Y are part of the same IPMP group. Thus whenever interface
1705 	 * X goes down, remove all references to it by checking both
1706 	 * on ire_ipif and ire_stq.
1707 	 */
1708 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1709 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1710 		ire_delete(ire);
1711 	}
1712 }
1713 
1714 /*
1715  * A seperate routine for deleting revtun and srcif based routes
1716  * are needed because the ires only deleted when the interface
1717  * is unplumbed. Also these ires have ire_in_ill non-null as well.
1718  * we want to keep mobile IP specific code separate.
1719  */
1720 static void
1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg)
1722 {
1723 	ill_t   *ill = (ill_t *)ill_arg;
1724 
1725 	ASSERT(ire->ire_in_ill != NULL);
1726 
1727 	if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) ||
1728 	    (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) {
1729 		ire_delete(ire);
1730 	}
1731 }
1732 
1733 /*
1734  * Remove ire/nce from the fastpath list.
1735  */
1736 void
1737 ill_fastpath_nack(ill_t *ill)
1738 {
1739 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1740 }
1741 
1742 /* Consume an M_IOCACK of the fastpath probe. */
1743 void
1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1745 {
1746 	mblk_t	*mp1 = mp;
1747 
1748 	/*
1749 	 * If this was the first attempt turn on the fastpath probing.
1750 	 */
1751 	mutex_enter(&ill->ill_lock);
1752 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1753 		ill->ill_dlpi_fastpath_state = IDS_OK;
1754 	mutex_exit(&ill->ill_lock);
1755 
1756 	/* Free the M_IOCACK mblk, hold on to the data */
1757 	mp = mp->b_cont;
1758 	freeb(mp1);
1759 	if (mp == NULL)
1760 		return;
1761 	if (mp->b_cont != NULL) {
1762 		/*
1763 		 * Update all IRE's or NCE's that are waiting for
1764 		 * fastpath update.
1765 		 */
1766 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1767 		mp1 = mp->b_cont;
1768 		freeb(mp);
1769 		mp = mp1;
1770 	} else {
1771 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1772 	}
1773 
1774 	freeb(mp);
1775 }
1776 
1777 /*
1778  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1779  * The data portion of the request is a dl_unitdata_req_t template for
1780  * what we would send downstream in the absence of a fastpath confirmation.
1781  */
1782 int
1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1784 {
1785 	struct iocblk	*ioc;
1786 	mblk_t	*mp;
1787 
1788 	if (dlur_mp == NULL)
1789 		return (EINVAL);
1790 
1791 	mutex_enter(&ill->ill_lock);
1792 	switch (ill->ill_dlpi_fastpath_state) {
1793 	case IDS_FAILED:
1794 		/*
1795 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1796 		 * support it.
1797 		 */
1798 		mutex_exit(&ill->ill_lock);
1799 		return (ENOTSUP);
1800 	case IDS_UNKNOWN:
1801 		/* This is the first probe */
1802 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1803 		break;
1804 	default:
1805 		break;
1806 	}
1807 	mutex_exit(&ill->ill_lock);
1808 
1809 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1810 		return (EAGAIN);
1811 
1812 	mp->b_cont = copyb(dlur_mp);
1813 	if (mp->b_cont == NULL) {
1814 		freeb(mp);
1815 		return (EAGAIN);
1816 	}
1817 
1818 	ioc = (struct iocblk *)mp->b_rptr;
1819 	ioc->ioc_count = msgdsize(mp->b_cont);
1820 
1821 	putnext(ill->ill_wq, mp);
1822 	return (0);
1823 }
1824 
1825 void
1826 ill_capability_probe(ill_t *ill)
1827 {
1828 	/*
1829 	 * Do so only if negotiation is enabled, capabilities are unknown,
1830 	 * and a capability negotiation is not already in progress.
1831 	 */
1832 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN &&
1833 	    ill->ill_dlpi_capab_state != IDS_RENEG)
1834 		return;
1835 
1836 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1837 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1838 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1839 }
1840 
1841 void
1842 ill_capability_reset(ill_t *ill)
1843 {
1844 	mblk_t *sc_mp = NULL;
1845 	mblk_t *tmp;
1846 
1847 	/*
1848 	 * Note here that we reset the state to UNKNOWN, and later send
1849 	 * down the DL_CAPABILITY_REQ without first setting the state to
1850 	 * INPROGRESS.  We do this in order to distinguish the
1851 	 * DL_CAPABILITY_ACK response which may come back in response to
1852 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1853 	 * also handle the case where the driver doesn't send us back
1854 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1855 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1856 	 * features are turned off until the state reaches IDS_OK.
1857 	 */
1858 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1859 
1860 	/*
1861 	 * Disable sub-capabilities and request a list of sub-capability
1862 	 * messages which will be sent down to the driver.  Each handler
1863 	 * allocates the corresponding dl_capability_sub_t inside an
1864 	 * mblk, and links it to the existing sc_mp mblk, or return it
1865 	 * as sc_mp if it's the first sub-capability (the passed in
1866 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1867 	 * sc_mp will be pulled-up, before passing it downstream.
1868 	 */
1869 	ill_capability_mdt_reset(ill, &sc_mp);
1870 	ill_capability_hcksum_reset(ill, &sc_mp);
1871 	ill_capability_zerocopy_reset(ill, &sc_mp);
1872 	ill_capability_ipsec_reset(ill, &sc_mp);
1873 	ill_capability_dls_reset(ill, &sc_mp);
1874 	ill_capability_lso_reset(ill, &sc_mp);
1875 
1876 	/* Nothing to send down in order to disable the capabilities? */
1877 	if (sc_mp == NULL)
1878 		return;
1879 
1880 	tmp = msgpullup(sc_mp, -1);
1881 	freemsg(sc_mp);
1882 	if ((sc_mp = tmp) == NULL) {
1883 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1884 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1885 		return;
1886 	}
1887 
1888 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1889 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1890 }
1891 
1892 /*
1893  * Request or set new-style hardware capabilities supported by DLS provider.
1894  */
1895 static void
1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1897 {
1898 	mblk_t *mp;
1899 	dl_capability_req_t *capb;
1900 	size_t size = 0;
1901 	uint8_t *ptr;
1902 
1903 	if (reqp != NULL)
1904 		size = MBLKL(reqp);
1905 
1906 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1907 	if (mp == NULL) {
1908 		freemsg(reqp);
1909 		return;
1910 	}
1911 	ptr = mp->b_rptr;
1912 
1913 	capb = (dl_capability_req_t *)ptr;
1914 	ptr += sizeof (dl_capability_req_t);
1915 
1916 	if (reqp != NULL) {
1917 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1918 		capb->dl_sub_length = size;
1919 		bcopy(reqp->b_rptr, ptr, size);
1920 		ptr += size;
1921 		mp->b_cont = reqp->b_cont;
1922 		freeb(reqp);
1923 	}
1924 	ASSERT(ptr == mp->b_wptr);
1925 
1926 	ill_dlpi_send(ill, mp);
1927 }
1928 
1929 static void
1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1931 {
1932 	dl_capab_id_t *id_ic;
1933 	uint_t sub_dl_cap = outers->dl_cap;
1934 	dl_capability_sub_t *inners;
1935 	uint8_t *capend;
1936 
1937 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1938 
1939 	/*
1940 	 * Note: range checks here are not absolutely sufficient to
1941 	 * make us robust against malformed messages sent by drivers;
1942 	 * this is in keeping with the rest of IP's dlpi handling.
1943 	 * (Remember, it's coming from something else in the kernel
1944 	 * address space)
1945 	 */
1946 
1947 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1948 	if (capend > mp->b_wptr) {
1949 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1950 		    "malformed sub-capability too long for mblk");
1951 		return;
1952 	}
1953 
1954 	id_ic = (dl_capab_id_t *)(outers + 1);
1955 
1956 	if (outers->dl_length < sizeof (*id_ic) ||
1957 	    (inners = &id_ic->id_subcap,
1958 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1959 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1960 		    "encapsulated capab type %d too long for mblk",
1961 		    inners->dl_cap);
1962 		return;
1963 	}
1964 
1965 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1966 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1967 		    "isn't as expected; pass-thru module(s) detected, "
1968 		    "discarding capability\n", inners->dl_cap));
1969 		return;
1970 	}
1971 
1972 	/* Process the encapsulated sub-capability */
1973 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1974 }
1975 
1976 /*
1977  * Process Multidata Transmit capability negotiation ack received from a
1978  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1979  * DL_CAPABILITY_ACK message.
1980  */
1981 static void
1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1983 {
1984 	mblk_t *nmp = NULL;
1985 	dl_capability_req_t *oc;
1986 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1987 	ill_mdt_capab_t **ill_mdt_capab;
1988 	uint_t sub_dl_cap = isub->dl_cap;
1989 	uint8_t *capend;
1990 
1991 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1992 
1993 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1994 
1995 	/*
1996 	 * Note: range checks here are not absolutely sufficient to
1997 	 * make us robust against malformed messages sent by drivers;
1998 	 * this is in keeping with the rest of IP's dlpi handling.
1999 	 * (Remember, it's coming from something else in the kernel
2000 	 * address space)
2001 	 */
2002 
2003 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2004 	if (capend > mp->b_wptr) {
2005 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2006 		    "malformed sub-capability too long for mblk");
2007 		return;
2008 	}
2009 
2010 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
2011 
2012 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
2013 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
2014 		    "unsupported MDT sub-capability (version %d, expected %d)",
2015 		    mdt_ic->mdt_version, MDT_VERSION_2);
2016 		return;
2017 	}
2018 
2019 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
2020 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
2021 		    "capability isn't as expected; pass-thru module(s) "
2022 		    "detected, discarding capability\n"));
2023 		return;
2024 	}
2025 
2026 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
2027 
2028 		if (*ill_mdt_capab == NULL) {
2029 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
2030 			    KM_NOSLEEP);
2031 
2032 			if (*ill_mdt_capab == NULL) {
2033 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2034 				    "could not enable MDT version %d "
2035 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
2036 				    ill->ill_name);
2037 				return;
2038 			}
2039 		}
2040 
2041 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
2042 		    "MDT version %d (%d bytes leading, %d bytes trailing "
2043 		    "header spaces, %d max pld bufs, %d span limit)\n",
2044 		    ill->ill_name, MDT_VERSION_2,
2045 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
2046 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
2047 
2048 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
2049 		(*ill_mdt_capab)->ill_mdt_on = 1;
2050 		/*
2051 		 * Round the following values to the nearest 32-bit; ULP
2052 		 * may further adjust them to accomodate for additional
2053 		 * protocol headers.  We pass these values to ULP during
2054 		 * bind time.
2055 		 */
2056 		(*ill_mdt_capab)->ill_mdt_hdr_head =
2057 		    roundup(mdt_ic->mdt_hdr_head, 4);
2058 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
2059 		    roundup(mdt_ic->mdt_hdr_tail, 4);
2060 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
2061 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
2062 
2063 		ill->ill_capabilities |= ILL_CAPAB_MDT;
2064 	} else {
2065 		uint_t size;
2066 		uchar_t *rptr;
2067 
2068 		size = sizeof (dl_capability_req_t) +
2069 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2070 
2071 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2072 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2073 			    "could not enable MDT for %s (ENOMEM)\n",
2074 			    ill->ill_name);
2075 			return;
2076 		}
2077 
2078 		rptr = nmp->b_rptr;
2079 		/* initialize dl_capability_req_t */
2080 		oc = (dl_capability_req_t *)nmp->b_rptr;
2081 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2082 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2083 		    sizeof (dl_capab_mdt_t);
2084 		nmp->b_rptr += sizeof (dl_capability_req_t);
2085 
2086 		/* initialize dl_capability_sub_t */
2087 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2088 		nmp->b_rptr += sizeof (*isub);
2089 
2090 		/* initialize dl_capab_mdt_t */
2091 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2092 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2093 
2094 		nmp->b_rptr = rptr;
2095 
2096 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2097 		    "to enable MDT version %d\n", ill->ill_name,
2098 		    MDT_VERSION_2));
2099 
2100 		/* set ENABLE flag */
2101 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2102 
2103 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2104 		ill_dlpi_send(ill, nmp);
2105 	}
2106 }
2107 
2108 static void
2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2110 {
2111 	mblk_t *mp;
2112 	dl_capab_mdt_t *mdt_subcap;
2113 	dl_capability_sub_t *dl_subcap;
2114 	int size;
2115 
2116 	if (!ILL_MDT_CAPABLE(ill))
2117 		return;
2118 
2119 	ASSERT(ill->ill_mdt_capab != NULL);
2120 	/*
2121 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2122 	 * structure since it's possible that another thread is still
2123 	 * referring to it.  The structure only gets deallocated when
2124 	 * we destroy the ill.
2125 	 */
2126 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2127 
2128 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2129 
2130 	mp = allocb(size, BPRI_HI);
2131 	if (mp == NULL) {
2132 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2133 		    "request to disable MDT\n"));
2134 		return;
2135 	}
2136 
2137 	mp->b_wptr = mp->b_rptr + size;
2138 
2139 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2140 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2141 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2142 
2143 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2144 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2145 	mdt_subcap->mdt_flags = 0;
2146 	mdt_subcap->mdt_hdr_head = 0;
2147 	mdt_subcap->mdt_hdr_tail = 0;
2148 
2149 	if (*sc_mp != NULL)
2150 		linkb(*sc_mp, mp);
2151 	else
2152 		*sc_mp = mp;
2153 }
2154 
2155 /*
2156  * Send a DL_NOTIFY_REQ to the specified ill to enable
2157  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2158  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2159  * acceleration.
2160  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2161  */
2162 static boolean_t
2163 ill_enable_promisc_notify(ill_t *ill)
2164 {
2165 	mblk_t *mp;
2166 	dl_notify_req_t *req;
2167 
2168 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2169 
2170 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2171 	if (mp == NULL)
2172 		return (B_FALSE);
2173 
2174 	req = (dl_notify_req_t *)mp->b_rptr;
2175 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2176 	    DL_NOTE_PROMISC_OFF_PHYS;
2177 
2178 	ill_dlpi_send(ill, mp);
2179 
2180 	return (B_TRUE);
2181 }
2182 
2183 
2184 /*
2185  * Allocate an IPsec capability request which will be filled by our
2186  * caller to turn on support for one or more algorithms.
2187  */
2188 static mblk_t *
2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2190 {
2191 	mblk_t *nmp;
2192 	dl_capability_req_t	*ocap;
2193 	dl_capab_ipsec_t	*ocip;
2194 	dl_capab_ipsec_t	*icip;
2195 	uint8_t			*ptr;
2196 	icip = (dl_capab_ipsec_t *)(isub + 1);
2197 
2198 	/*
2199 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2200 	 * PROMISC_ON/OFF notification from the provider. We need to
2201 	 * do this before enabling the algorithms to avoid leakage of
2202 	 * cleartext packets.
2203 	 */
2204 
2205 	if (!ill_enable_promisc_notify(ill))
2206 		return (NULL);
2207 
2208 	/*
2209 	 * Allocate new mblk which will contain a new capability
2210 	 * request to enable the capabilities.
2211 	 */
2212 
2213 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2214 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2215 	if (nmp == NULL)
2216 		return (NULL);
2217 
2218 	ptr = nmp->b_rptr;
2219 
2220 	/* initialize dl_capability_req_t */
2221 	ocap = (dl_capability_req_t *)ptr;
2222 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2223 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2224 	ptr += sizeof (dl_capability_req_t);
2225 
2226 	/* initialize dl_capability_sub_t */
2227 	bcopy(isub, ptr, sizeof (*isub));
2228 	ptr += sizeof (*isub);
2229 
2230 	/* initialize dl_capab_ipsec_t */
2231 	ocip = (dl_capab_ipsec_t *)ptr;
2232 	bcopy(icip, ocip, sizeof (*icip));
2233 
2234 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2235 	return (nmp);
2236 }
2237 
2238 /*
2239  * Process an IPsec capability negotiation ack received from a DLS Provider.
2240  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2241  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2242  */
2243 static void
2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2245 {
2246 	dl_capab_ipsec_t	*icip;
2247 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2248 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2249 	uint_t cipher, nciphers;
2250 	mblk_t *nmp;
2251 	uint_t alg_len;
2252 	boolean_t need_sadb_dump;
2253 	uint_t sub_dl_cap = isub->dl_cap;
2254 	ill_ipsec_capab_t **ill_capab;
2255 	uint64_t ill_capab_flag;
2256 	uint8_t *capend, *ciphend;
2257 	boolean_t sadb_resync;
2258 
2259 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2260 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2261 
2262 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2263 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2264 		ill_capab_flag = ILL_CAPAB_AH;
2265 	} else {
2266 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2267 		ill_capab_flag = ILL_CAPAB_ESP;
2268 	}
2269 
2270 	/*
2271 	 * If the ill capability structure exists, then this incoming
2272 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2273 	 * If this is so, then we'd need to resynchronize the SADB
2274 	 * after re-enabling the offloaded ciphers.
2275 	 */
2276 	sadb_resync = (*ill_capab != NULL);
2277 
2278 	/*
2279 	 * Note: range checks here are not absolutely sufficient to
2280 	 * make us robust against malformed messages sent by drivers;
2281 	 * this is in keeping with the rest of IP's dlpi handling.
2282 	 * (Remember, it's coming from something else in the kernel
2283 	 * address space)
2284 	 */
2285 
2286 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2287 	if (capend > mp->b_wptr) {
2288 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2289 		    "malformed sub-capability too long for mblk");
2290 		return;
2291 	}
2292 
2293 	/*
2294 	 * There are two types of acks we process here:
2295 	 * 1. acks in reply to a (first form) generic capability req
2296 	 *    (no ENABLE flag set)
2297 	 * 2. acks in reply to a ENABLE capability req.
2298 	 *    (ENABLE flag set)
2299 	 *
2300 	 * We process the subcapability passed as argument as follows:
2301 	 * 1 do initializations
2302 	 *   1.1 initialize nmp = NULL
2303 	 *   1.2 set need_sadb_dump to B_FALSE
2304 	 * 2 for each cipher in subcapability:
2305 	 *   2.1 if ENABLE flag is set:
2306 	 *	2.1.1 update per-ill ipsec capabilities info
2307 	 *	2.1.2 set need_sadb_dump to B_TRUE
2308 	 *   2.2 if ENABLE flag is not set:
2309 	 *	2.2.1 if nmp is NULL:
2310 	 *		2.2.1.1 allocate and initialize nmp
2311 	 *		2.2.1.2 init current pos in nmp
2312 	 *	2.2.2 copy current cipher to current pos in nmp
2313 	 *	2.2.3 set ENABLE flag in nmp
2314 	 *	2.2.4 update current pos
2315 	 * 3 if nmp is not equal to NULL, send enable request
2316 	 *   3.1 send capability request
2317 	 * 4 if need_sadb_dump is B_TRUE
2318 	 *   4.1 enable promiscuous on/off notifications
2319 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2320 	 *	AH or ESP SA's to interface.
2321 	 */
2322 
2323 	nmp = NULL;
2324 	oalg = NULL;
2325 	need_sadb_dump = B_FALSE;
2326 	icip = (dl_capab_ipsec_t *)(isub + 1);
2327 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2328 
2329 	nciphers = icip->cip_nciphers;
2330 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2331 
2332 	if (ciphend > capend) {
2333 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2334 		    "too many ciphers for sub-capability len");
2335 		return;
2336 	}
2337 
2338 	for (cipher = 0; cipher < nciphers; cipher++) {
2339 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2340 
2341 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2342 			/*
2343 			 * TBD: when we provide a way to disable capabilities
2344 			 * from above, need to manage the request-pending state
2345 			 * and fail if we were not expecting this ACK.
2346 			 */
2347 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2348 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2349 
2350 			/*
2351 			 * Update IPsec capabilities for this ill
2352 			 */
2353 
2354 			if (*ill_capab == NULL) {
2355 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2356 				    ("ill_capability_ipsec_ack: "
2357 					"allocating ipsec_capab for ill\n"));
2358 				*ill_capab = ill_ipsec_capab_alloc();
2359 
2360 				if (*ill_capab == NULL) {
2361 					cmn_err(CE_WARN,
2362 					    "ill_capability_ipsec_ack: "
2363 					    "could not enable IPsec Hardware "
2364 					    "acceleration for %s (ENOMEM)\n",
2365 					    ill->ill_name);
2366 					return;
2367 				}
2368 			}
2369 
2370 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2371 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2372 
2373 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2374 				cmn_err(CE_WARN,
2375 				    "ill_capability_ipsec_ack: "
2376 				    "malformed IPsec algorithm id %d",
2377 				    ialg->alg_prim);
2378 				continue;
2379 			}
2380 
2381 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2382 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2383 				    ialg->alg_prim);
2384 			} else {
2385 				ipsec_capab_algparm_t *alp;
2386 
2387 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2388 				    ialg->alg_prim);
2389 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2390 				    ialg->alg_prim)) {
2391 					cmn_err(CE_WARN,
2392 					    "ill_capability_ipsec_ack: "
2393 					    "no space for IPsec alg id %d",
2394 					    ialg->alg_prim);
2395 					continue;
2396 				}
2397 				alp = &((*ill_capab)->encr_algparm[
2398 						ialg->alg_prim]);
2399 				alp->minkeylen = ialg->alg_minbits;
2400 				alp->maxkeylen = ialg->alg_maxbits;
2401 			}
2402 			ill->ill_capabilities |= ill_capab_flag;
2403 			/*
2404 			 * indicate that a capability was enabled, which
2405 			 * will be used below to kick off a SADB dump
2406 			 * to the ill.
2407 			 */
2408 			need_sadb_dump = B_TRUE;
2409 		} else {
2410 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2411 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2412 				ialg->alg_prim));
2413 
2414 			if (nmp == NULL) {
2415 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2416 				if (nmp == NULL) {
2417 					/*
2418 					 * Sending the PROMISC_ON/OFF
2419 					 * notification request failed.
2420 					 * We cannot enable the algorithms
2421 					 * since the Provider will not
2422 					 * notify IP of promiscous mode
2423 					 * changes, which could lead
2424 					 * to leakage of packets.
2425 					 */
2426 					cmn_err(CE_WARN,
2427 					    "ill_capability_ipsec_ack: "
2428 					    "could not enable IPsec Hardware "
2429 					    "acceleration for %s (ENOMEM)\n",
2430 					    ill->ill_name);
2431 					return;
2432 				}
2433 				/* ptr to current output alg specifier */
2434 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2435 			}
2436 
2437 			/*
2438 			 * Copy current alg specifier, set ENABLE
2439 			 * flag, and advance to next output alg.
2440 			 * For now we enable all IPsec capabilities.
2441 			 */
2442 			ASSERT(oalg != NULL);
2443 			bcopy(ialg, oalg, alg_len);
2444 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2445 			nmp->b_wptr += alg_len;
2446 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2447 		}
2448 
2449 		/* move to next input algorithm specifier */
2450 		ialg = (dl_capab_ipsec_alg_t *)
2451 		    ((char *)ialg + alg_len);
2452 	}
2453 
2454 	if (nmp != NULL)
2455 		/*
2456 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2457 		 * IPsec hardware acceleration.
2458 		 */
2459 		ill_dlpi_send(ill, nmp);
2460 
2461 	if (need_sadb_dump)
2462 		/*
2463 		 * An acknowledgement corresponding to a request to
2464 		 * enable acceleration was received, notify SADB.
2465 		 */
2466 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2467 }
2468 
2469 /*
2470  * Given an mblk with enough space in it, create sub-capability entries for
2471  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2472  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2473  * in preparation for the reset the DL_CAPABILITY_REQ message.
2474  */
2475 static void
2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2477     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2478 {
2479 	dl_capab_ipsec_t *oipsec;
2480 	dl_capab_ipsec_alg_t *oalg;
2481 	dl_capability_sub_t *dl_subcap;
2482 	int i, k;
2483 
2484 	ASSERT(nciphers > 0);
2485 	ASSERT(ill_cap != NULL);
2486 	ASSERT(mp != NULL);
2487 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2488 
2489 	/* dl_capability_sub_t for "stype" */
2490 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2491 	dl_subcap->dl_cap = stype;
2492 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2493 	mp->b_wptr += sizeof (dl_capability_sub_t);
2494 
2495 	/* dl_capab_ipsec_t for "stype" */
2496 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2497 	oipsec->cip_version = 1;
2498 	oipsec->cip_nciphers = nciphers;
2499 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2500 
2501 	/* create entries for "stype" AUTH ciphers */
2502 	for (i = 0; i < ill_cap->algs_size; i++) {
2503 		for (k = 0; k < BITSPERBYTE; k++) {
2504 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2505 				continue;
2506 
2507 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2508 			bzero((void *)oalg, sizeof (*oalg));
2509 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2510 			oalg->alg_prim = k + (BITSPERBYTE * i);
2511 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2512 		}
2513 	}
2514 	/* create entries for "stype" ENCR ciphers */
2515 	for (i = 0; i < ill_cap->algs_size; i++) {
2516 		for (k = 0; k < BITSPERBYTE; k++) {
2517 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2518 				continue;
2519 
2520 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2521 			bzero((void *)oalg, sizeof (*oalg));
2522 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2523 			oalg->alg_prim = k + (BITSPERBYTE * i);
2524 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2525 		}
2526 	}
2527 }
2528 
2529 /*
2530  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2531  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2532  * POPC instruction, but our macro is more flexible for an arbitrary length
2533  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2534  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2535  * stays that way, we can reduce the number of iterations required.
2536  */
2537 #define	COUNT_1S(val, sum) {					\
2538 	uint8_t x = val & 0xff;					\
2539 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2540 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2541 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2542 }
2543 
2544 /* ARGSUSED */
2545 static void
2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2547 {
2548 	mblk_t *mp;
2549 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2550 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2551 	uint64_t ill_capabilities = ill->ill_capabilities;
2552 	int ah_cnt = 0, esp_cnt = 0;
2553 	int ah_len = 0, esp_len = 0;
2554 	int i, size = 0;
2555 
2556 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2557 		return;
2558 
2559 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2560 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2561 
2562 	/* Find out the number of ciphers for AH */
2563 	if (cap_ah != NULL) {
2564 		for (i = 0; i < cap_ah->algs_size; i++) {
2565 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2566 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2567 		}
2568 		if (ah_cnt > 0) {
2569 			size += sizeof (dl_capability_sub_t) +
2570 			    sizeof (dl_capab_ipsec_t);
2571 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2572 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2573 			size += ah_len;
2574 		}
2575 	}
2576 
2577 	/* Find out the number of ciphers for ESP */
2578 	if (cap_esp != NULL) {
2579 		for (i = 0; i < cap_esp->algs_size; i++) {
2580 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2581 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2582 		}
2583 		if (esp_cnt > 0) {
2584 			size += sizeof (dl_capability_sub_t) +
2585 			    sizeof (dl_capab_ipsec_t);
2586 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2587 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2588 			size += esp_len;
2589 		}
2590 	}
2591 
2592 	if (size == 0) {
2593 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2594 		    "there's nothing to reset\n"));
2595 		return;
2596 	}
2597 
2598 	mp = allocb(size, BPRI_HI);
2599 	if (mp == NULL) {
2600 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2601 		    "request to disable IPSEC Hardware Acceleration\n"));
2602 		return;
2603 	}
2604 
2605 	/*
2606 	 * Clear the capability flags for IPSec HA but retain the ill
2607 	 * capability structures since it's possible that another thread
2608 	 * is still referring to them.  The structures only get deallocated
2609 	 * when we destroy the ill.
2610 	 *
2611 	 * Various places check the flags to see if the ill is capable of
2612 	 * hardware acceleration, and by clearing them we ensure that new
2613 	 * outbound IPSec packets are sent down encrypted.
2614 	 */
2615 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2616 
2617 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2618 	if (ah_cnt > 0) {
2619 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2620 		    cap_ah, mp);
2621 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2622 	}
2623 
2624 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2625 	if (esp_cnt > 0) {
2626 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2627 		    cap_esp, mp);
2628 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2629 	}
2630 
2631 	/*
2632 	 * At this point we've composed a bunch of sub-capabilities to be
2633 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2634 	 * by the caller.  Upon receiving this reset message, the driver
2635 	 * must stop inbound decryption (by destroying all inbound SAs)
2636 	 * and let the corresponding packets come in encrypted.
2637 	 */
2638 
2639 	if (*sc_mp != NULL)
2640 		linkb(*sc_mp, mp);
2641 	else
2642 		*sc_mp = mp;
2643 }
2644 
2645 static void
2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2647     boolean_t encapsulated)
2648 {
2649 	boolean_t legacy = B_FALSE;
2650 
2651 	/*
2652 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2653 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2654 	 * instructed the driver to disable its advertised capabilities,
2655 	 * so there's no point in accepting any response at this moment.
2656 	 */
2657 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2658 		return;
2659 
2660 	/*
2661 	 * Note that only the following two sub-capabilities may be
2662 	 * considered as "legacy", since their original definitions
2663 	 * do not incorporate the dl_mid_t module ID token, and hence
2664 	 * may require the use of the wrapper sub-capability.
2665 	 */
2666 	switch (subp->dl_cap) {
2667 	case DL_CAPAB_IPSEC_AH:
2668 	case DL_CAPAB_IPSEC_ESP:
2669 		legacy = B_TRUE;
2670 		break;
2671 	}
2672 
2673 	/*
2674 	 * For legacy sub-capabilities which don't incorporate a queue_t
2675 	 * pointer in their structures, discard them if we detect that
2676 	 * there are intermediate modules in between IP and the driver.
2677 	 */
2678 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2679 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2680 		    "%d discarded; %d module(s) present below IP\n",
2681 		    subp->dl_cap, ill->ill_lmod_cnt));
2682 		return;
2683 	}
2684 
2685 	switch (subp->dl_cap) {
2686 	case DL_CAPAB_IPSEC_AH:
2687 	case DL_CAPAB_IPSEC_ESP:
2688 		ill_capability_ipsec_ack(ill, mp, subp);
2689 		break;
2690 	case DL_CAPAB_MDT:
2691 		ill_capability_mdt_ack(ill, mp, subp);
2692 		break;
2693 	case DL_CAPAB_HCKSUM:
2694 		ill_capability_hcksum_ack(ill, mp, subp);
2695 		break;
2696 	case DL_CAPAB_ZEROCOPY:
2697 		ill_capability_zerocopy_ack(ill, mp, subp);
2698 		break;
2699 	case DL_CAPAB_POLL:
2700 		if (!SOFT_RINGS_ENABLED())
2701 			ill_capability_dls_ack(ill, mp, subp);
2702 		break;
2703 	case DL_CAPAB_SOFT_RING:
2704 		if (SOFT_RINGS_ENABLED())
2705 			ill_capability_dls_ack(ill, mp, subp);
2706 		break;
2707 	case DL_CAPAB_LSO:
2708 		ill_capability_lso_ack(ill, mp, subp);
2709 		break;
2710 	default:
2711 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2712 		    subp->dl_cap));
2713 	}
2714 }
2715 
2716 /*
2717  * As part of negotiating polling capability, the driver tells us
2718  * the default (or normal) blanking interval and packet threshold
2719  * (the receive timer fires if blanking interval is reached or
2720  * the packet threshold is reached).
2721  *
2722  * As part of manipulating the polling interval, we always use our
2723  * estimated interval (avg service time * number of packets queued
2724  * on the squeue) but we try to blank for a minimum of
2725  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2726  * packet threshold during this time. When we are not in polling mode
2727  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2728  * rr_min_blank_ratio but up the packet cnt by a ratio of
2729  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2730  * possible although for a shorter interval.
2731  */
2732 #define	RR_MAX_BLANK_RATIO	20
2733 #define	RR_MIN_BLANK_RATIO	10
2734 #define	RR_MAX_PKT_CNT_RATIO	3
2735 #define	RR_MIN_PKT_CNT_RATIO	3
2736 
2737 /*
2738  * These can be tuned via /etc/system.
2739  */
2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2744 
2745 static mac_resource_handle_t
2746 ill_ring_add(void *arg, mac_resource_t *mrp)
2747 {
2748 	ill_t			*ill = (ill_t *)arg;
2749 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2750 	ill_rx_ring_t		*rx_ring;
2751 	int			ip_rx_index;
2752 
2753 	ASSERT(mrp != NULL);
2754 	if (mrp->mr_type != MAC_RX_FIFO) {
2755 		return (NULL);
2756 	}
2757 	ASSERT(ill != NULL);
2758 	ASSERT(ill->ill_dls_capab != NULL);
2759 
2760 	mutex_enter(&ill->ill_lock);
2761 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2762 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2763 		ASSERT(rx_ring != NULL);
2764 
2765 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2766 			time_t normal_blank_time =
2767 			    mrfp->mrf_normal_blank_time;
2768 			uint_t normal_pkt_cnt =
2769 			    mrfp->mrf_normal_pkt_count;
2770 
2771 	bzero(rx_ring, sizeof (ill_rx_ring_t));
2772 
2773 	rx_ring->rr_blank = mrfp->mrf_blank;
2774 	rx_ring->rr_handle = mrfp->mrf_arg;
2775 	rx_ring->rr_ill = ill;
2776 	rx_ring->rr_normal_blank_time = normal_blank_time;
2777 	rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2778 
2779 			rx_ring->rr_max_blank_time =
2780 			    normal_blank_time * rr_max_blank_ratio;
2781 			rx_ring->rr_min_blank_time =
2782 			    normal_blank_time * rr_min_blank_ratio;
2783 			rx_ring->rr_max_pkt_cnt =
2784 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2785 			rx_ring->rr_min_pkt_cnt =
2786 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2787 
2788 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2789 			mutex_exit(&ill->ill_lock);
2790 
2791 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2792 			    (int), ip_rx_index);
2793 			return ((mac_resource_handle_t)rx_ring);
2794 		}
2795 	}
2796 
2797 	/*
2798 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2799 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2800 	 * should be made configurable. Meanwhile it cause no panic because
2801 	 * driver will pass ip_input a NULL handle which will make
2802 	 * IP allocate the default squeue and Polling mode will not
2803 	 * be used for this ring.
2804 	 */
2805 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2806 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2807 
2808 	mutex_exit(&ill->ill_lock);
2809 	return (NULL);
2810 }
2811 
2812 static boolean_t
2813 ill_capability_dls_init(ill_t *ill)
2814 {
2815 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2816 	conn_t 			*connp;
2817 	size_t			sz;
2818 	ip_stack_t *ipst = ill->ill_ipst;
2819 
2820 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2821 		if (ill_dls == NULL) {
2822 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2823 			    "soft_ring enabled for ill=%s (%p) but data "
2824 			    "structs uninitialized\n", ill->ill_name,
2825 			    (void *)ill);
2826 		}
2827 		return (B_TRUE);
2828 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2829 		if (ill_dls == NULL) {
2830 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2831 			    "polling enabled for ill=%s (%p) but data "
2832 			    "structs uninitialized\n", ill->ill_name,
2833 			(void *)ill);
2834 		}
2835 		return (B_TRUE);
2836 	}
2837 
2838 	if (ill_dls != NULL) {
2839 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2840 		/* Soft_Ring or polling is being re-enabled */
2841 
2842 		connp = ill_dls->ill_unbind_conn;
2843 		ASSERT(rx_ring != NULL);
2844 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2845 		bzero((void *)rx_ring,
2846 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2847 		ill_dls->ill_ring_tbl = rx_ring;
2848 		ill_dls->ill_unbind_conn = connp;
2849 		return (B_TRUE);
2850 	}
2851 
2852 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2853 	    ipst->ips_netstack)) == NULL)
2854 		return (B_FALSE);
2855 
2856 	sz = sizeof (ill_dls_capab_t);
2857 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2858 
2859 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2860 	if (ill_dls == NULL) {
2861 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2862 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2863 		    (void *)ill);
2864 		CONN_DEC_REF(connp);
2865 		return (B_FALSE);
2866 	}
2867 
2868 	/* Allocate space to hold ring table */
2869 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2870 	ill->ill_dls_capab = ill_dls;
2871 	ill_dls->ill_unbind_conn = connp;
2872 	return (B_TRUE);
2873 }
2874 
2875 /*
2876  * ill_capability_dls_disable: disable soft_ring and/or polling
2877  * capability. Since any of the rings might already be in use, need
2878  * to call ipsq_clean_all() which gets behind the squeue to disable
2879  * direct calls if necessary.
2880  */
2881 static void
2882 ill_capability_dls_disable(ill_t *ill)
2883 {
2884 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2885 
2886 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2887 		ipsq_clean_all(ill);
2888 		ill_dls->ill_tx = NULL;
2889 		ill_dls->ill_tx_handle = NULL;
2890 		ill_dls->ill_dls_change_status = NULL;
2891 		ill_dls->ill_dls_bind = NULL;
2892 		ill_dls->ill_dls_unbind = NULL;
2893 	}
2894 
2895 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2896 }
2897 
2898 static void
2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2900     dl_capability_sub_t *isub)
2901 {
2902 	uint_t			size;
2903 	uchar_t			*rptr;
2904 	dl_capab_dls_t	dls, *odls;
2905 	ill_dls_capab_t	*ill_dls;
2906 	mblk_t			*nmp = NULL;
2907 	dl_capability_req_t	*ocap;
2908 	uint_t			sub_dl_cap = isub->dl_cap;
2909 
2910 	if (!ill_capability_dls_init(ill))
2911 		return;
2912 	ill_dls = ill->ill_dls_capab;
2913 
2914 	/* Copy locally to get the members aligned */
2915 	bcopy((void *)idls, (void *)&dls,
2916 	    sizeof (dl_capab_dls_t));
2917 
2918 	/* Get the tx function and handle from dld */
2919 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2920 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2921 
2922 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2923 		ill_dls->ill_dls_change_status =
2924 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2925 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2926 		ill_dls->ill_dls_unbind =
2927 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2928 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2929 	}
2930 
2931 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2932 	    isub->dl_length;
2933 
2934 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2935 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2936 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2937 		    ill->ill_name, (void *)ill);
2938 		return;
2939 	}
2940 
2941 	/* initialize dl_capability_req_t */
2942 	rptr = nmp->b_rptr;
2943 	ocap = (dl_capability_req_t *)rptr;
2944 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2945 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2946 	rptr += sizeof (dl_capability_req_t);
2947 
2948 	/* initialize dl_capability_sub_t */
2949 	bcopy(isub, rptr, sizeof (*isub));
2950 	rptr += sizeof (*isub);
2951 
2952 	odls = (dl_capab_dls_t *)rptr;
2953 	rptr += sizeof (dl_capab_dls_t);
2954 
2955 	/* initialize dl_capab_dls_t to be sent down */
2956 	dls.dls_rx_handle = (uintptr_t)ill;
2957 	dls.dls_rx = (uintptr_t)ip_input;
2958 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2959 
2960 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2961 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2962 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2963 		dls.dls_flags = SOFT_RING_ENABLE;
2964 	} else {
2965 		dls.dls_flags = POLL_ENABLE;
2966 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2967 		    "to enable polling\n", ill->ill_name));
2968 	}
2969 	bcopy((void *)&dls, (void *)odls,
2970 	    sizeof (dl_capab_dls_t));
2971 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2972 	/*
2973 	 * nmp points to a DL_CAPABILITY_REQ message to
2974 	 * enable either soft_ring or polling
2975 	 */
2976 	ill_dlpi_send(ill, nmp);
2977 }
2978 
2979 static void
2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2981 {
2982 	mblk_t *mp;
2983 	dl_capab_dls_t *idls;
2984 	dl_capability_sub_t *dl_subcap;
2985 	int size;
2986 
2987 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2988 		return;
2989 
2990 	ASSERT(ill->ill_dls_capab != NULL);
2991 
2992 	size = sizeof (*dl_subcap) + sizeof (*idls);
2993 
2994 	mp = allocb(size, BPRI_HI);
2995 	if (mp == NULL) {
2996 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2997 		    "request to disable soft_ring\n"));
2998 		return;
2999 	}
3000 
3001 	mp->b_wptr = mp->b_rptr + size;
3002 
3003 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3004 	dl_subcap->dl_length = sizeof (*idls);
3005 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
3006 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
3007 	else
3008 		dl_subcap->dl_cap = DL_CAPAB_POLL;
3009 
3010 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
3011 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
3012 		idls->dls_flags = SOFT_RING_DISABLE;
3013 	else
3014 		idls->dls_flags = POLL_DISABLE;
3015 
3016 	if (*sc_mp != NULL)
3017 		linkb(*sc_mp, mp);
3018 	else
3019 		*sc_mp = mp;
3020 }
3021 
3022 /*
3023  * Process a soft_ring/poll capability negotiation ack received
3024  * from a DLS Provider.isub must point to the sub-capability
3025  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
3026  */
3027 static void
3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3029 {
3030 	dl_capab_dls_t		*idls;
3031 	uint_t			sub_dl_cap = isub->dl_cap;
3032 	uint8_t			*capend;
3033 
3034 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
3035 	    sub_dl_cap == DL_CAPAB_POLL);
3036 
3037 	if (ill->ill_isv6)
3038 		return;
3039 
3040 	/*
3041 	 * Note: range checks here are not absolutely sufficient to
3042 	 * make us robust against malformed messages sent by drivers;
3043 	 * this is in keeping with the rest of IP's dlpi handling.
3044 	 * (Remember, it's coming from something else in the kernel
3045 	 * address space)
3046 	 */
3047 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3048 	if (capend > mp->b_wptr) {
3049 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
3050 		    "malformed sub-capability too long for mblk");
3051 		return;
3052 	}
3053 
3054 	/*
3055 	 * There are two types of acks we process here:
3056 	 * 1. acks in reply to a (first form) generic capability req
3057 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
3058 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
3059 	 *    capability req.
3060 	 */
3061 	idls = (dl_capab_dls_t *)(isub + 1);
3062 
3063 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
3064 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
3065 		    "capability isn't as expected; pass-thru "
3066 		    "module(s) detected, discarding capability\n"));
3067 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
3068 			/*
3069 			 * This is a capability renegotitation case.
3070 			 * The interface better be unusable at this
3071 			 * point other wise bad things will happen
3072 			 * if we disable direct calls on a running
3073 			 * and up interface.
3074 			 */
3075 			ill_capability_dls_disable(ill);
3076 		}
3077 		return;
3078 	}
3079 
3080 	switch (idls->dls_flags) {
3081 	default:
3082 		/* Disable if unknown flag */
3083 	case SOFT_RING_DISABLE:
3084 	case POLL_DISABLE:
3085 		ill_capability_dls_disable(ill);
3086 		break;
3087 	case SOFT_RING_CAPABLE:
3088 	case POLL_CAPABLE:
3089 		/*
3090 		 * If the capability was already enabled, its safe
3091 		 * to disable it first to get rid of stale information
3092 		 * and then start enabling it again.
3093 		 */
3094 		ill_capability_dls_disable(ill);
3095 		ill_capability_dls_capable(ill, idls, isub);
3096 		break;
3097 	case SOFT_RING_ENABLE:
3098 	case POLL_ENABLE:
3099 		mutex_enter(&ill->ill_lock);
3100 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3101 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3102 			ASSERT(ill->ill_dls_capab != NULL);
3103 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3104 		}
3105 		if (sub_dl_cap == DL_CAPAB_POLL &&
3106 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3107 			ASSERT(ill->ill_dls_capab != NULL);
3108 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3109 			ip1dbg(("ill_capability_dls_ack: interface %s "
3110 			    "has enabled polling\n", ill->ill_name));
3111 		}
3112 		mutex_exit(&ill->ill_lock);
3113 		break;
3114 	}
3115 }
3116 
3117 /*
3118  * Process a hardware checksum offload capability negotiation ack received
3119  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3120  * of a DL_CAPABILITY_ACK message.
3121  */
3122 static void
3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3124 {
3125 	dl_capability_req_t	*ocap;
3126 	dl_capab_hcksum_t	*ihck, *ohck;
3127 	ill_hcksum_capab_t	**ill_hcksum;
3128 	mblk_t			*nmp = NULL;
3129 	uint_t			sub_dl_cap = isub->dl_cap;
3130 	uint8_t			*capend;
3131 
3132 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3133 
3134 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3135 
3136 	/*
3137 	 * Note: range checks here are not absolutely sufficient to
3138 	 * make us robust against malformed messages sent by drivers;
3139 	 * this is in keeping with the rest of IP's dlpi handling.
3140 	 * (Remember, it's coming from something else in the kernel
3141 	 * address space)
3142 	 */
3143 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3144 	if (capend > mp->b_wptr) {
3145 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3146 		    "malformed sub-capability too long for mblk");
3147 		return;
3148 	}
3149 
3150 	/*
3151 	 * There are two types of acks we process here:
3152 	 * 1. acks in reply to a (first form) generic capability req
3153 	 *    (no ENABLE flag set)
3154 	 * 2. acks in reply to a ENABLE capability req.
3155 	 *    (ENABLE flag set)
3156 	 */
3157 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3158 
3159 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3160 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3161 		    "unsupported hardware checksum "
3162 		    "sub-capability (version %d, expected %d)",
3163 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3164 		return;
3165 	}
3166 
3167 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3168 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3169 		    "checksum capability isn't as expected; pass-thru "
3170 		    "module(s) detected, discarding capability\n"));
3171 		return;
3172 	}
3173 
3174 #define	CURR_HCKSUM_CAPAB				\
3175 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3176 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3177 
3178 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3179 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3180 		/* do ENABLE processing */
3181 		if (*ill_hcksum == NULL) {
3182 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3183 			    KM_NOSLEEP);
3184 
3185 			if (*ill_hcksum == NULL) {
3186 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3187 				    "could not enable hcksum version %d "
3188 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3189 				    ill->ill_name);
3190 				return;
3191 			}
3192 		}
3193 
3194 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3195 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3196 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3197 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3198 		    "has enabled hardware checksumming\n ",
3199 		    ill->ill_name));
3200 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3201 		/*
3202 		 * Enabling hardware checksum offload
3203 		 * Currently IP supports {TCP,UDP}/IPv4
3204 		 * partial and full cksum offload and
3205 		 * IPv4 header checksum offload.
3206 		 * Allocate new mblk which will
3207 		 * contain a new capability request
3208 		 * to enable hardware checksum offload.
3209 		 */
3210 		uint_t	size;
3211 		uchar_t	*rptr;
3212 
3213 		size = sizeof (dl_capability_req_t) +
3214 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3215 
3216 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3217 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3218 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3219 			    ill->ill_name);
3220 			return;
3221 		}
3222 
3223 		rptr = nmp->b_rptr;
3224 		/* initialize dl_capability_req_t */
3225 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3226 		ocap->dl_sub_offset =
3227 		    sizeof (dl_capability_req_t);
3228 		ocap->dl_sub_length =
3229 		    sizeof (dl_capability_sub_t) +
3230 		    isub->dl_length;
3231 		nmp->b_rptr += sizeof (dl_capability_req_t);
3232 
3233 		/* initialize dl_capability_sub_t */
3234 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3235 		nmp->b_rptr += sizeof (*isub);
3236 
3237 		/* initialize dl_capab_hcksum_t */
3238 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3239 		bcopy(ihck, ohck, sizeof (*ihck));
3240 
3241 		nmp->b_rptr = rptr;
3242 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3243 
3244 		/* Set ENABLE flag */
3245 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3246 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3247 
3248 		/*
3249 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3250 		 * hardware checksum acceleration.
3251 		 */
3252 		ill_dlpi_send(ill, nmp);
3253 	} else {
3254 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3255 		    "advertised %x hardware checksum capability flags\n",
3256 		    ill->ill_name, ihck->hcksum_txflags));
3257 	}
3258 }
3259 
3260 static void
3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3262 {
3263 	mblk_t *mp;
3264 	dl_capab_hcksum_t *hck_subcap;
3265 	dl_capability_sub_t *dl_subcap;
3266 	int size;
3267 
3268 	if (!ILL_HCKSUM_CAPABLE(ill))
3269 		return;
3270 
3271 	ASSERT(ill->ill_hcksum_capab != NULL);
3272 	/*
3273 	 * Clear the capability flag for hardware checksum offload but
3274 	 * retain the ill_hcksum_capab structure since it's possible that
3275 	 * another thread is still referring to it.  The structure only
3276 	 * gets deallocated when we destroy the ill.
3277 	 */
3278 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3279 
3280 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3281 
3282 	mp = allocb(size, BPRI_HI);
3283 	if (mp == NULL) {
3284 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3285 		    "request to disable hardware checksum offload\n"));
3286 		return;
3287 	}
3288 
3289 	mp->b_wptr = mp->b_rptr + size;
3290 
3291 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3292 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3293 	dl_subcap->dl_length = sizeof (*hck_subcap);
3294 
3295 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3296 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3297 	hck_subcap->hcksum_txflags = 0;
3298 
3299 	if (*sc_mp != NULL)
3300 		linkb(*sc_mp, mp);
3301 	else
3302 		*sc_mp = mp;
3303 }
3304 
3305 static void
3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3307 {
3308 	mblk_t *nmp = NULL;
3309 	dl_capability_req_t *oc;
3310 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3311 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3312 	uint_t sub_dl_cap = isub->dl_cap;
3313 	uint8_t *capend;
3314 
3315 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3316 
3317 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3318 
3319 	/*
3320 	 * Note: range checks here are not absolutely sufficient to
3321 	 * make us robust against malformed messages sent by drivers;
3322 	 * this is in keeping with the rest of IP's dlpi handling.
3323 	 * (Remember, it's coming from something else in the kernel
3324 	 * address space)
3325 	 */
3326 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3327 	if (capend > mp->b_wptr) {
3328 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3329 		    "malformed sub-capability too long for mblk");
3330 		return;
3331 	}
3332 
3333 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3334 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3335 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3336 		    "unsupported ZEROCOPY sub-capability (version %d, "
3337 		    "expected %d)", zc_ic->zerocopy_version,
3338 		    ZEROCOPY_VERSION_1);
3339 		return;
3340 	}
3341 
3342 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3343 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3344 		    "capability isn't as expected; pass-thru module(s) "
3345 		    "detected, discarding capability\n"));
3346 		return;
3347 	}
3348 
3349 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3350 		if (*ill_zerocopy_capab == NULL) {
3351 			*ill_zerocopy_capab =
3352 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3353 			    KM_NOSLEEP);
3354 
3355 			if (*ill_zerocopy_capab == NULL) {
3356 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3357 				    "could not enable Zero-copy version %d "
3358 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3359 				    ill->ill_name);
3360 				return;
3361 			}
3362 		}
3363 
3364 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3365 		    "supports Zero-copy version %d\n", ill->ill_name,
3366 		    ZEROCOPY_VERSION_1));
3367 
3368 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3369 		    zc_ic->zerocopy_version;
3370 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3371 		    zc_ic->zerocopy_flags;
3372 
3373 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3374 	} else {
3375 		uint_t size;
3376 		uchar_t *rptr;
3377 
3378 		size = sizeof (dl_capability_req_t) +
3379 		    sizeof (dl_capability_sub_t) +
3380 		    sizeof (dl_capab_zerocopy_t);
3381 
3382 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3383 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3384 			    "could not enable zerocopy for %s (ENOMEM)\n",
3385 			    ill->ill_name);
3386 			return;
3387 		}
3388 
3389 		rptr = nmp->b_rptr;
3390 		/* initialize dl_capability_req_t */
3391 		oc = (dl_capability_req_t *)rptr;
3392 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3393 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3394 		    sizeof (dl_capab_zerocopy_t);
3395 		rptr += sizeof (dl_capability_req_t);
3396 
3397 		/* initialize dl_capability_sub_t */
3398 		bcopy(isub, rptr, sizeof (*isub));
3399 		rptr += sizeof (*isub);
3400 
3401 		/* initialize dl_capab_zerocopy_t */
3402 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3403 		*zc_oc = *zc_ic;
3404 
3405 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3406 		    "to enable zero-copy version %d\n", ill->ill_name,
3407 		    ZEROCOPY_VERSION_1));
3408 
3409 		/* set VMSAFE_MEM flag */
3410 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3411 
3412 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3413 		ill_dlpi_send(ill, nmp);
3414 	}
3415 }
3416 
3417 static void
3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3419 {
3420 	mblk_t *mp;
3421 	dl_capab_zerocopy_t *zerocopy_subcap;
3422 	dl_capability_sub_t *dl_subcap;
3423 	int size;
3424 
3425 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3426 		return;
3427 
3428 	ASSERT(ill->ill_zerocopy_capab != NULL);
3429 	/*
3430 	 * Clear the capability flag for Zero-copy but retain the
3431 	 * ill_zerocopy_capab structure since it's possible that another
3432 	 * thread is still referring to it.  The structure only gets
3433 	 * deallocated when we destroy the ill.
3434 	 */
3435 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3436 
3437 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3438 
3439 	mp = allocb(size, BPRI_HI);
3440 	if (mp == NULL) {
3441 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3442 		    "request to disable Zero-copy\n"));
3443 		return;
3444 	}
3445 
3446 	mp->b_wptr = mp->b_rptr + size;
3447 
3448 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3449 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3450 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3451 
3452 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3453 	zerocopy_subcap->zerocopy_version =
3454 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3455 	zerocopy_subcap->zerocopy_flags = 0;
3456 
3457 	if (*sc_mp != NULL)
3458 		linkb(*sc_mp, mp);
3459 	else
3460 		*sc_mp = mp;
3461 }
3462 
3463 /*
3464  * Process Large Segment Offload capability negotiation ack received from a
3465  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3466  * DL_CAPABILITY_ACK message.
3467  */
3468 static void
3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3470 {
3471 	mblk_t *nmp = NULL;
3472 	dl_capability_req_t *oc;
3473 	dl_capab_lso_t *lso_ic, *lso_oc;
3474 	ill_lso_capab_t **ill_lso_capab;
3475 	uint_t sub_dl_cap = isub->dl_cap;
3476 	uint8_t *capend;
3477 
3478 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3479 
3480 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3481 
3482 	/*
3483 	 * Note: range checks here are not absolutely sufficient to
3484 	 * make us robust against malformed messages sent by drivers;
3485 	 * this is in keeping with the rest of IP's dlpi handling.
3486 	 * (Remember, it's coming from something else in the kernel
3487 	 * address space)
3488 	 */
3489 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3490 	if (capend > mp->b_wptr) {
3491 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3492 		    "malformed sub-capability too long for mblk");
3493 		return;
3494 	}
3495 
3496 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3497 
3498 	if (lso_ic->lso_version != LSO_VERSION_1) {
3499 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3500 		    "unsupported LSO sub-capability (version %d, expected %d)",
3501 		    lso_ic->lso_version, LSO_VERSION_1);
3502 		return;
3503 	}
3504 
3505 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3506 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3507 		    "capability isn't as expected; pass-thru module(s) "
3508 		    "detected, discarding capability\n"));
3509 		return;
3510 	}
3511 
3512 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3513 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3514 		if (*ill_lso_capab == NULL) {
3515 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3516 			    KM_NOSLEEP);
3517 
3518 			if (*ill_lso_capab == NULL) {
3519 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3520 				    "could not enable LSO version %d "
3521 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3522 				    ill->ill_name);
3523 				return;
3524 			}
3525 		}
3526 
3527 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3528 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3529 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3530 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3531 
3532 		ip1dbg(("ill_capability_lso_ack: interface %s "
3533 		    "has enabled LSO\n ", ill->ill_name));
3534 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3535 		uint_t size;
3536 		uchar_t *rptr;
3537 
3538 		size = sizeof (dl_capability_req_t) +
3539 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3540 
3541 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3542 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3543 			    "could not enable LSO for %s (ENOMEM)\n",
3544 			    ill->ill_name);
3545 			return;
3546 		}
3547 
3548 		rptr = nmp->b_rptr;
3549 		/* initialize dl_capability_req_t */
3550 		oc = (dl_capability_req_t *)nmp->b_rptr;
3551 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3552 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3553 		    sizeof (dl_capab_lso_t);
3554 		nmp->b_rptr += sizeof (dl_capability_req_t);
3555 
3556 		/* initialize dl_capability_sub_t */
3557 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3558 		nmp->b_rptr += sizeof (*isub);
3559 
3560 		/* initialize dl_capab_lso_t */
3561 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3562 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3563 
3564 		nmp->b_rptr = rptr;
3565 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3566 
3567 		/* set ENABLE flag */
3568 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3569 
3570 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3571 		ill_dlpi_send(ill, nmp);
3572 	} else {
3573 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3574 		    "advertised %x LSO capability flags\n",
3575 		    ill->ill_name, lso_ic->lso_flags));
3576 	}
3577 }
3578 
3579 
3580 static void
3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3582 {
3583 	mblk_t *mp;
3584 	dl_capab_lso_t *lso_subcap;
3585 	dl_capability_sub_t *dl_subcap;
3586 	int size;
3587 
3588 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3589 		return;
3590 
3591 	ASSERT(ill->ill_lso_capab != NULL);
3592 	/*
3593 	 * Clear the capability flag for LSO but retain the
3594 	 * ill_lso_capab structure since it's possible that another
3595 	 * thread is still referring to it.  The structure only gets
3596 	 * deallocated when we destroy the ill.
3597 	 */
3598 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3599 
3600 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3601 
3602 	mp = allocb(size, BPRI_HI);
3603 	if (mp == NULL) {
3604 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3605 		    "request to disable LSO\n"));
3606 		return;
3607 	}
3608 
3609 	mp->b_wptr = mp->b_rptr + size;
3610 
3611 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3612 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3613 	dl_subcap->dl_length = sizeof (*lso_subcap);
3614 
3615 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3616 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3617 	lso_subcap->lso_flags = 0;
3618 
3619 	if (*sc_mp != NULL)
3620 		linkb(*sc_mp, mp);
3621 	else
3622 		*sc_mp = mp;
3623 }
3624 
3625 /*
3626  * Consume a new-style hardware capabilities negotiation ack.
3627  * Called from ip_rput_dlpi_writer().
3628  */
3629 void
3630 ill_capability_ack(ill_t *ill, mblk_t *mp)
3631 {
3632 	dl_capability_ack_t *capp;
3633 	dl_capability_sub_t *subp, *endp;
3634 
3635 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3636 		ill->ill_dlpi_capab_state = IDS_OK;
3637 
3638 	capp = (dl_capability_ack_t *)mp->b_rptr;
3639 
3640 	if (capp->dl_sub_length == 0)
3641 		/* no new-style capabilities */
3642 		return;
3643 
3644 	/* make sure the driver supplied correct dl_sub_length */
3645 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3646 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3647 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3648 		return;
3649 	}
3650 
3651 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3652 	/*
3653 	 * There are sub-capabilities. Process the ones we know about.
3654 	 * Loop until we don't have room for another sub-cap header..
3655 	 */
3656 	for (subp = SC(capp, capp->dl_sub_offset),
3657 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3658 	    subp <= endp;
3659 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3660 
3661 		switch (subp->dl_cap) {
3662 		case DL_CAPAB_ID_WRAPPER:
3663 			ill_capability_id_ack(ill, mp, subp);
3664 			break;
3665 		default:
3666 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3667 			break;
3668 		}
3669 	}
3670 #undef SC
3671 }
3672 
3673 /*
3674  * This routine is called to scan the fragmentation reassembly table for
3675  * the specified ILL for any packets that are starting to smell.
3676  * dead_interval is the maximum time in seconds that will be tolerated.  It
3677  * will either be the value specified in ip_g_frag_timeout, or zero if the
3678  * ILL is shutting down and it is time to blow everything off.
3679  *
3680  * It returns the number of seconds (as a time_t) that the next frag timer
3681  * should be scheduled for, 0 meaning that the timer doesn't need to be
3682  * re-started.  Note that the method of calculating next_timeout isn't
3683  * entirely accurate since time will flow between the time we grab
3684  * current_time and the time we schedule the next timeout.  This isn't a
3685  * big problem since this is the timer for sending an ICMP reassembly time
3686  * exceeded messages, and it doesn't have to be exactly accurate.
3687  *
3688  * This function is
3689  * sometimes called as writer, although this is not required.
3690  */
3691 time_t
3692 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3693 {
3694 	ipfb_t	*ipfb;
3695 	ipfb_t	*endp;
3696 	ipf_t	*ipf;
3697 	ipf_t	*ipfnext;
3698 	mblk_t	*mp;
3699 	time_t	current_time = gethrestime_sec();
3700 	time_t	next_timeout = 0;
3701 	uint32_t	hdr_length;
3702 	mblk_t	*send_icmp_head;
3703 	mblk_t	*send_icmp_head_v6;
3704 	zoneid_t zoneid;
3705 	ip_stack_t *ipst = ill->ill_ipst;
3706 
3707 	ipfb = ill->ill_frag_hash_tbl;
3708 	if (ipfb == NULL)
3709 		return (B_FALSE);
3710 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3711 	/* Walk the frag hash table. */
3712 	for (; ipfb < endp; ipfb++) {
3713 		send_icmp_head = NULL;
3714 		send_icmp_head_v6 = NULL;
3715 		mutex_enter(&ipfb->ipfb_lock);
3716 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3717 			time_t frag_time = current_time - ipf->ipf_timestamp;
3718 			time_t frag_timeout;
3719 
3720 			if (frag_time < dead_interval) {
3721 				/*
3722 				 * There are some outstanding fragments
3723 				 * that will timeout later.  Make note of
3724 				 * the time so that we can reschedule the
3725 				 * next timeout appropriately.
3726 				 */
3727 				frag_timeout = dead_interval - frag_time;
3728 				if (next_timeout == 0 ||
3729 				    frag_timeout < next_timeout) {
3730 					next_timeout = frag_timeout;
3731 				}
3732 				break;
3733 			}
3734 			/* Time's up.  Get it out of here. */
3735 			hdr_length = ipf->ipf_nf_hdr_len;
3736 			ipfnext = ipf->ipf_hash_next;
3737 			if (ipfnext)
3738 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3739 			*ipf->ipf_ptphn = ipfnext;
3740 			mp = ipf->ipf_mp->b_cont;
3741 			for (; mp; mp = mp->b_cont) {
3742 				/* Extra points for neatness. */
3743 				IP_REASS_SET_START(mp, 0);
3744 				IP_REASS_SET_END(mp, 0);
3745 			}
3746 			mp = ipf->ipf_mp->b_cont;
3747 			ill->ill_frag_count -= ipf->ipf_count;
3748 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3749 			ipfb->ipfb_count -= ipf->ipf_count;
3750 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3751 			ipfb->ipfb_frag_pkts--;
3752 			/*
3753 			 * We do not send any icmp message from here because
3754 			 * we currently are holding the ipfb_lock for this
3755 			 * hash chain. If we try and send any icmp messages
3756 			 * from here we may end up via a put back into ip
3757 			 * trying to get the same lock, causing a recursive
3758 			 * mutex panic. Instead we build a list and send all
3759 			 * the icmp messages after we have dropped the lock.
3760 			 */
3761 			if (ill->ill_isv6) {
3762 				if (hdr_length != 0) {
3763 					mp->b_next = send_icmp_head_v6;
3764 					send_icmp_head_v6 = mp;
3765 				} else {
3766 					freemsg(mp);
3767 				}
3768 			} else {
3769 				if (hdr_length != 0) {
3770 					mp->b_next = send_icmp_head;
3771 					send_icmp_head = mp;
3772 				} else {
3773 					freemsg(mp);
3774 				}
3775 			}
3776 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3777 			freeb(ipf->ipf_mp);
3778 		}
3779 		mutex_exit(&ipfb->ipfb_lock);
3780 		/*
3781 		 * Now need to send any icmp messages that we delayed from
3782 		 * above.
3783 		 */
3784 		while (send_icmp_head_v6 != NULL) {
3785 			ip6_t *ip6h;
3786 
3787 			mp = send_icmp_head_v6;
3788 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3789 			mp->b_next = NULL;
3790 			if (mp->b_datap->db_type == M_CTL)
3791 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3792 			else
3793 				ip6h = (ip6_t *)mp->b_rptr;
3794 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3795 			    ill, ipst);
3796 			if (zoneid == ALL_ZONES) {
3797 				freemsg(mp);
3798 			} else {
3799 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3800 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3801 				    B_FALSE, zoneid, ipst);
3802 			}
3803 		}
3804 		while (send_icmp_head != NULL) {
3805 			ipaddr_t dst;
3806 
3807 			mp = send_icmp_head;
3808 			send_icmp_head = send_icmp_head->b_next;
3809 			mp->b_next = NULL;
3810 
3811 			if (mp->b_datap->db_type == M_CTL)
3812 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3813 			else
3814 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3815 
3816 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3817 			if (zoneid == ALL_ZONES) {
3818 				freemsg(mp);
3819 			} else {
3820 				icmp_time_exceeded(ill->ill_wq, mp,
3821 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3822 				    ipst);
3823 			}
3824 		}
3825 	}
3826 	/*
3827 	 * A non-dying ILL will use the return value to decide whether to
3828 	 * restart the frag timer, and for how long.
3829 	 */
3830 	return (next_timeout);
3831 }
3832 
3833 /*
3834  * This routine is called when the approximate count of mblk memory used
3835  * for the specified ILL has exceeded max_count.
3836  */
3837 void
3838 ill_frag_prune(ill_t *ill, uint_t max_count)
3839 {
3840 	ipfb_t	*ipfb;
3841 	ipf_t	*ipf;
3842 	size_t	count;
3843 
3844 	/*
3845 	 * If we are here within ip_min_frag_prune_time msecs remove
3846 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3847 	 * ill_frag_free_num_pkts.
3848 	 */
3849 	mutex_enter(&ill->ill_lock);
3850 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3851 	    (ip_min_frag_prune_time != 0 ?
3852 	    ip_min_frag_prune_time : msec_per_tick)) {
3853 
3854 		ill->ill_frag_free_num_pkts++;
3855 
3856 	} else {
3857 		ill->ill_frag_free_num_pkts = 0;
3858 	}
3859 	ill->ill_last_frag_clean_time = lbolt;
3860 	mutex_exit(&ill->ill_lock);
3861 
3862 	/*
3863 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3864 	 */
3865 	if (ill->ill_frag_free_num_pkts != 0) {
3866 		int ix;
3867 
3868 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3869 			ipfb = &ill->ill_frag_hash_tbl[ix];
3870 			mutex_enter(&ipfb->ipfb_lock);
3871 			if (ipfb->ipfb_ipf != NULL) {
3872 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3873 				    ill->ill_frag_free_num_pkts);
3874 			}
3875 			mutex_exit(&ipfb->ipfb_lock);
3876 		}
3877 	}
3878 	/*
3879 	 * While the reassembly list for this ILL is too big, prune a fragment
3880 	 * queue by age, oldest first.  Note that the per ILL count is
3881 	 * approximate, while the per frag hash bucket counts are accurate.
3882 	 */
3883 	while (ill->ill_frag_count > max_count) {
3884 		int	ix;
3885 		ipfb_t	*oipfb = NULL;
3886 		uint_t	oldest = UINT_MAX;
3887 
3888 		count = 0;
3889 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3890 			ipfb = &ill->ill_frag_hash_tbl[ix];
3891 			mutex_enter(&ipfb->ipfb_lock);
3892 			ipf = ipfb->ipfb_ipf;
3893 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3894 				oldest = ipf->ipf_gen;
3895 				oipfb = ipfb;
3896 			}
3897 			count += ipfb->ipfb_count;
3898 			mutex_exit(&ipfb->ipfb_lock);
3899 		}
3900 		/* Refresh the per ILL count */
3901 		ill->ill_frag_count = count;
3902 		if (oipfb == NULL) {
3903 			ill->ill_frag_count = 0;
3904 			break;
3905 		}
3906 		if (count <= max_count)
3907 			return;	/* Somebody beat us to it, nothing to do */
3908 		mutex_enter(&oipfb->ipfb_lock);
3909 		ipf = oipfb->ipfb_ipf;
3910 		if (ipf != NULL) {
3911 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3912 		}
3913 		mutex_exit(&oipfb->ipfb_lock);
3914 	}
3915 }
3916 
3917 /*
3918  * free 'free_cnt' fragmented packets starting at ipf.
3919  */
3920 void
3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3922 {
3923 	size_t	count;
3924 	mblk_t	*mp;
3925 	mblk_t	*tmp;
3926 	ipf_t **ipfp = ipf->ipf_ptphn;
3927 
3928 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3929 	ASSERT(ipfp != NULL);
3930 	ASSERT(ipf != NULL);
3931 
3932 	while (ipf != NULL && free_cnt-- > 0) {
3933 		count = ipf->ipf_count;
3934 		mp = ipf->ipf_mp;
3935 		ipf = ipf->ipf_hash_next;
3936 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3937 			IP_REASS_SET_START(tmp, 0);
3938 			IP_REASS_SET_END(tmp, 0);
3939 		}
3940 		ill->ill_frag_count -= count;
3941 		ASSERT(ipfb->ipfb_count >= count);
3942 		ipfb->ipfb_count -= count;
3943 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3944 		ipfb->ipfb_frag_pkts--;
3945 		freemsg(mp);
3946 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3947 	}
3948 
3949 	if (ipf)
3950 		ipf->ipf_ptphn = ipfp;
3951 	ipfp[0] = ipf;
3952 }
3953 
3954 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3955 	"obsolete and may be removed in a future release of Solaris.  Use " \
3956 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3957 
3958 /*
3959  * For obsolete per-interface forwarding configuration;
3960  * called in response to ND_GET.
3961  */
3962 /* ARGSUSED */
3963 static int
3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3965 {
3966 	ill_t *ill = (ill_t *)cp;
3967 
3968 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3969 
3970 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3971 	return (0);
3972 }
3973 
3974 /*
3975  * For obsolete per-interface forwarding configuration;
3976  * called in response to ND_SET.
3977  */
3978 /* ARGSUSED */
3979 static int
3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3981     cred_t *ioc_cr)
3982 {
3983 	long value;
3984 	int retval;
3985 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3986 
3987 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3988 
3989 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3990 	    value < 0 || value > 1) {
3991 		return (EINVAL);
3992 	}
3993 
3994 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3995 	retval = ill_forward_set(q, mp, (value != 0), cp);
3996 	rw_exit(&ipst->ips_ill_g_lock);
3997 	return (retval);
3998 }
3999 
4000 /*
4001  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
4002  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
4003  * up RTS_IFINFO routing socket messages for each interface whose flags we
4004  * change.
4005  */
4006 /* ARGSUSED */
4007 int
4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp)
4009 {
4010 	ill_t *ill = (ill_t *)cp;
4011 	ill_group_t *illgrp;
4012 	ip_stack_t	*ipst = ill->ill_ipst;
4013 
4014 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
4015 
4016 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
4017 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)) ||
4018 	    (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK))
4019 		return (EINVAL);
4020 
4021 	/*
4022 	 * If the ill is in an IPMP group, set the forwarding policy on all
4023 	 * members of the group to the same value.
4024 	 */
4025 	illgrp = ill->ill_group;
4026 	if (illgrp != NULL) {
4027 		ill_t *tmp_ill;
4028 
4029 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
4030 		    tmp_ill = tmp_ill->ill_group_next) {
4031 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4032 			    (enable ? "Enabling" : "Disabling"),
4033 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
4034 			    tmp_ill->ill_name));
4035 			mutex_enter(&tmp_ill->ill_lock);
4036 			if (enable)
4037 				tmp_ill->ill_flags |= ILLF_ROUTER;
4038 			else
4039 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
4040 			mutex_exit(&tmp_ill->ill_lock);
4041 			if (tmp_ill->ill_isv6)
4042 				ill_set_nce_router_flags(tmp_ill, enable);
4043 			/* Notify routing socket listeners of this change. */
4044 			ip_rts_ifmsg(tmp_ill->ill_ipif);
4045 		}
4046 	} else {
4047 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4048 		    (enable ? "Enabling" : "Disabling"),
4049 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
4050 		mutex_enter(&ill->ill_lock);
4051 		if (enable)
4052 			ill->ill_flags |= ILLF_ROUTER;
4053 		else
4054 			ill->ill_flags &= ~ILLF_ROUTER;
4055 		mutex_exit(&ill->ill_lock);
4056 		if (ill->ill_isv6)
4057 			ill_set_nce_router_flags(ill, enable);
4058 		/* Notify routing socket listeners of this change. */
4059 		ip_rts_ifmsg(ill->ill_ipif);
4060 	}
4061 
4062 	return (0);
4063 }
4064 
4065 /*
4066  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
4067  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
4068  * set or clear.
4069  */
4070 static void
4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
4072 {
4073 	ipif_t *ipif;
4074 	nce_t *nce;
4075 
4076 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4077 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
4078 		if (nce != NULL) {
4079 			mutex_enter(&nce->nce_lock);
4080 			if (enable)
4081 				nce->nce_flags |= NCE_F_ISROUTER;
4082 			else
4083 				nce->nce_flags &= ~NCE_F_ISROUTER;
4084 			mutex_exit(&nce->nce_lock);
4085 			NCE_REFRELE(nce);
4086 		}
4087 	}
4088 }
4089 
4090 /*
4091  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4092  * for this ill.  Make sure the v6/v4 question has been answered about this
4093  * ill.  The creation of this ndd variable is only for backwards compatibility.
4094  * The preferred way to control per-interface IP forwarding is through the
4095  * ILLF_ROUTER interface flag.
4096  */
4097 static int
4098 ill_set_ndd_name(ill_t *ill)
4099 {
4100 	char *suffix;
4101 	ip_stack_t	*ipst = ill->ill_ipst;
4102 
4103 	ASSERT(IAM_WRITER_ILL(ill));
4104 
4105 	if (ill->ill_isv6)
4106 		suffix = ipv6_forward_suffix;
4107 	else
4108 		suffix = ipv4_forward_suffix;
4109 
4110 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4111 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4112 	/*
4113 	 * Copies over the '\0'.
4114 	 * Note that strlen(suffix) is always bounded.
4115 	 */
4116 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4117 	    strlen(suffix) + 1);
4118 
4119 	/*
4120 	 * Use of the nd table requires holding the reader lock.
4121 	 * Modifying the nd table thru nd_load/nd_unload requires
4122 	 * the writer lock.
4123 	 */
4124 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4125 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4126 	    nd_ill_forward_set, (caddr_t)ill)) {
4127 		/*
4128 		 * If the nd_load failed, it only meant that it could not
4129 		 * allocate a new bunch of room for further NDD expansion.
4130 		 * Because of that, the ill_ndd_name will be set to 0, and
4131 		 * this interface is at the mercy of the global ip_forwarding
4132 		 * variable.
4133 		 */
4134 		rw_exit(&ipst->ips_ip_g_nd_lock);
4135 		ill->ill_ndd_name = NULL;
4136 		return (ENOMEM);
4137 	}
4138 	rw_exit(&ipst->ips_ip_g_nd_lock);
4139 	return (0);
4140 }
4141 
4142 /*
4143  * Intializes the context structure and returns the first ill in the list
4144  * cuurently start_list and end_list can have values:
4145  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4146  * IP_V4_G_HEAD		Traverse IPV4 list only.
4147  * IP_V6_G_HEAD		Traverse IPV6 list only.
4148  */
4149 
4150 /*
4151  * We don't check for CONDEMNED ills here. Caller must do that if
4152  * necessary under the ill lock.
4153  */
4154 ill_t *
4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4156     ip_stack_t *ipst)
4157 {
4158 	ill_if_t *ifp;
4159 	ill_t *ill;
4160 	avl_tree_t *avl_tree;
4161 
4162 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4163 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4164 
4165 	/*
4166 	 * setup the lists to search
4167 	 */
4168 	if (end_list != MAX_G_HEADS) {
4169 		ctx->ctx_current_list = start_list;
4170 		ctx->ctx_last_list = end_list;
4171 	} else {
4172 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4173 		ctx->ctx_current_list = 0;
4174 	}
4175 
4176 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4177 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4178 		if (ifp != (ill_if_t *)
4179 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4180 			avl_tree = &ifp->illif_avl_by_ppa;
4181 			ill = avl_first(avl_tree);
4182 			/*
4183 			 * ill is guaranteed to be non NULL or ifp should have
4184 			 * not existed.
4185 			 */
4186 			ASSERT(ill != NULL);
4187 			return (ill);
4188 		}
4189 		ctx->ctx_current_list++;
4190 	}
4191 
4192 	return (NULL);
4193 }
4194 
4195 /*
4196  * returns the next ill in the list. ill_first() must have been called
4197  * before calling ill_next() or bad things will happen.
4198  */
4199 
4200 /*
4201  * We don't check for CONDEMNED ills here. Caller must do that if
4202  * necessary under the ill lock.
4203  */
4204 ill_t *
4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4206 {
4207 	ill_if_t *ifp;
4208 	ill_t *ill;
4209 	ip_stack_t	*ipst = lastill->ill_ipst;
4210 
4211 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4212 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4213 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4214 	    AVL_AFTER)) != NULL) {
4215 		return (ill);
4216 	}
4217 
4218 	/* goto next ill_ifp in the list. */
4219 	ifp = lastill->ill_ifptr->illif_next;
4220 
4221 	/* make sure not at end of circular list */
4222 	while (ifp ==
4223 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4224 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4225 			return (NULL);
4226 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4227 	}
4228 
4229 	return (avl_first(&ifp->illif_avl_by_ppa));
4230 }
4231 
4232 /*
4233  * Check interface name for correct format which is name+ppa.
4234  * name can contain characters and digits, the right most digits
4235  * make up the ppa number. use of octal is not allowed, name must contain
4236  * a ppa, return pointer to the start of ppa.
4237  * In case of error return NULL.
4238  */
4239 static char *
4240 ill_get_ppa_ptr(char *name)
4241 {
4242 	int namelen = mi_strlen(name);
4243 
4244 	int len = namelen;
4245 
4246 	name += len;
4247 	while (len > 0) {
4248 		name--;
4249 		if (*name < '0' || *name > '9')
4250 			break;
4251 		len--;
4252 	}
4253 
4254 	/* empty string, all digits, or no trailing digits */
4255 	if (len == 0 || len == (int)namelen)
4256 		return (NULL);
4257 
4258 	name++;
4259 	/* check for attempted use of octal */
4260 	if (*name == '0' && len != (int)namelen - 1)
4261 		return (NULL);
4262 	return (name);
4263 }
4264 
4265 /*
4266  * use avl tree to locate the ill.
4267  */
4268 static ill_t *
4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4270     ipsq_func_t func, int *error, ip_stack_t *ipst)
4271 {
4272 	char *ppa_ptr = NULL;
4273 	int len;
4274 	uint_t ppa;
4275 	ill_t *ill = NULL;
4276 	ill_if_t *ifp;
4277 	int list;
4278 	ipsq_t *ipsq;
4279 
4280 	if (error != NULL)
4281 		*error = 0;
4282 
4283 	/*
4284 	 * get ppa ptr
4285 	 */
4286 	if (isv6)
4287 		list = IP_V6_G_HEAD;
4288 	else
4289 		list = IP_V4_G_HEAD;
4290 
4291 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4292 		if (error != NULL)
4293 			*error = ENXIO;
4294 		return (NULL);
4295 	}
4296 
4297 	len = ppa_ptr - name + 1;
4298 
4299 	ppa = stoi(&ppa_ptr);
4300 
4301 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4302 
4303 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4304 		/*
4305 		 * match is done on len - 1 as the name is not null
4306 		 * terminated it contains ppa in addition to the interface
4307 		 * name.
4308 		 */
4309 		if ((ifp->illif_name_len == len) &&
4310 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4311 			break;
4312 		} else {
4313 			ifp = ifp->illif_next;
4314 		}
4315 	}
4316 
4317 
4318 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4319 		/*
4320 		 * Even the interface type does not exist.
4321 		 */
4322 		if (error != NULL)
4323 			*error = ENXIO;
4324 		return (NULL);
4325 	}
4326 
4327 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4328 	if (ill != NULL) {
4329 		/*
4330 		 * The block comment at the start of ipif_down
4331 		 * explains the use of the macros used below
4332 		 */
4333 		GRAB_CONN_LOCK(q);
4334 		mutex_enter(&ill->ill_lock);
4335 		if (ILL_CAN_LOOKUP(ill)) {
4336 			ill_refhold_locked(ill);
4337 			mutex_exit(&ill->ill_lock);
4338 			RELEASE_CONN_LOCK(q);
4339 			return (ill);
4340 		} else if (ILL_CAN_WAIT(ill, q)) {
4341 			ipsq = ill->ill_phyint->phyint_ipsq;
4342 			mutex_enter(&ipsq->ipsq_lock);
4343 			mutex_exit(&ill->ill_lock);
4344 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4345 			mutex_exit(&ipsq->ipsq_lock);
4346 			RELEASE_CONN_LOCK(q);
4347 			*error = EINPROGRESS;
4348 			return (NULL);
4349 		}
4350 		mutex_exit(&ill->ill_lock);
4351 		RELEASE_CONN_LOCK(q);
4352 	}
4353 	if (error != NULL)
4354 		*error = ENXIO;
4355 	return (NULL);
4356 }
4357 
4358 /*
4359  * comparison function for use with avl.
4360  */
4361 static int
4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4363 {
4364 	uint_t ppa;
4365 	uint_t ill_ppa;
4366 
4367 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4368 
4369 	ppa = *((uint_t *)ppa_ptr);
4370 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4371 	/*
4372 	 * We want the ill with the lowest ppa to be on the
4373 	 * top.
4374 	 */
4375 	if (ill_ppa < ppa)
4376 		return (1);
4377 	if (ill_ppa > ppa)
4378 		return (-1);
4379 	return (0);
4380 }
4381 
4382 /*
4383  * remove an interface type from the global list.
4384  */
4385 static void
4386 ill_delete_interface_type(ill_if_t *interface)
4387 {
4388 	ASSERT(interface != NULL);
4389 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4390 
4391 	avl_destroy(&interface->illif_avl_by_ppa);
4392 	if (interface->illif_ppa_arena != NULL)
4393 		vmem_destroy(interface->illif_ppa_arena);
4394 
4395 	remque(interface);
4396 
4397 	mi_free(interface);
4398 }
4399 
4400 /* Defined in ip_netinfo.c */
4401 extern ddi_taskq_t	*eventq_queue_nic;
4402 
4403 /*
4404  * remove ill from the global list.
4405  */
4406 static void
4407 ill_glist_delete(ill_t *ill)
4408 {
4409 	char *nicname;
4410 	size_t nicnamelen;
4411 	hook_nic_event_t *info;
4412 	ip_stack_t	*ipst;
4413 
4414 	if (ill == NULL)
4415 		return;
4416 	ipst = ill->ill_ipst;
4417 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4418 
4419 	if (ill->ill_name != NULL) {
4420 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4421 		if (nicname != NULL) {
4422 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4423 			nicnamelen = ill->ill_name_length;
4424 		}
4425 	} else {
4426 		nicname = NULL;
4427 		nicnamelen = 0;
4428 	}
4429 
4430 	/*
4431 	 * If the ill was never inserted into the AVL tree
4432 	 * we skip the if branch.
4433 	 */
4434 	if (ill->ill_ifptr != NULL) {
4435 		/*
4436 		 * remove from AVL tree and free ppa number
4437 		 */
4438 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4439 
4440 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4441 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4442 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4443 		}
4444 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4445 			ill_delete_interface_type(ill->ill_ifptr);
4446 		}
4447 
4448 		/*
4449 		 * Indicate ill is no longer in the list.
4450 		 */
4451 		ill->ill_ifptr = NULL;
4452 		ill->ill_name_length = 0;
4453 		ill->ill_name[0] = '\0';
4454 		ill->ill_ppa = UINT_MAX;
4455 	}
4456 
4457 	/*
4458 	 * Run the unplumb hook after the NIC has disappeared from being
4459 	 * visible so that attempts to revalidate its existance will fail.
4460 	 *
4461 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4462 	 * that the ordering of delivered events to listeners matches the
4463 	 * order of them in the kernel.
4464 	 */
4465 	if ((info = ill->ill_nic_event_info) != NULL) {
4466 		if (info->hne_event != NE_DOWN) {
4467 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4468 			    "attached for %s\n", info->hne_event,
4469 			    ill->ill_name));
4470 			if (info->hne_data != NULL)
4471 				kmem_free(info->hne_data, info->hne_datalen);
4472 			kmem_free(info, sizeof (hook_nic_event_t));
4473 		} else {
4474 			if (ddi_taskq_dispatch(eventq_queue_nic,
4475 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4476 			    == DDI_FAILURE) {
4477 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4478 				    "failed\n"));
4479 				if (info->hne_data != NULL)
4480 					kmem_free(info->hne_data,
4481 					    info->hne_datalen);
4482 				kmem_free(info, sizeof (hook_nic_event_t));
4483 			}
4484 		}
4485 	}
4486 
4487 	/* Generate NE_UNPLUMB event for ill_name. */
4488 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4489 	if (info != NULL) {
4490 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4491 		info->hne_lif = 0;
4492 		info->hne_event = NE_UNPLUMB;
4493 		info->hne_data = nicname;
4494 		info->hne_datalen = nicnamelen;
4495 		info->hne_family = ill->ill_isv6 ?
4496 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4497 	} else {
4498 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4499 		    "information for %s (ENOMEM)\n", ill->ill_name));
4500 		if (nicname != NULL)
4501 			kmem_free(nicname, nicnamelen);
4502 	}
4503 
4504 	ill->ill_nic_event_info = info;
4505 
4506 	ill_phyint_free(ill);
4507 	rw_exit(&ipst->ips_ill_g_lock);
4508 }
4509 
4510 /*
4511  * allocate a ppa, if the number of plumbed interfaces of this type are
4512  * less than ill_no_arena do a linear search to find a unused ppa.
4513  * When the number goes beyond ill_no_arena switch to using an arena.
4514  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4515  * is the return value for an error condition, so allocation starts at one
4516  * and is decremented by one.
4517  */
4518 static int
4519 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4520 {
4521 	ill_t *tmp_ill;
4522 	uint_t start, end;
4523 	int ppa;
4524 
4525 	if (ifp->illif_ppa_arena == NULL &&
4526 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4527 		/*
4528 		 * Create an arena.
4529 		 */
4530 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4531 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4532 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4533 			/* allocate what has already been assigned */
4534 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4535 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4536 		    tmp_ill, AVL_AFTER)) {
4537 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4538 			    1,		/* size */
4539 			    1,		/* align/quantum */
4540 			    0,		/* phase */
4541 			    0,		/* nocross */
4542 		(void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */
4543 		(void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */
4544 			    VM_NOSLEEP|VM_FIRSTFIT);
4545 			if (ppa == 0) {
4546 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4547 				    " failed while switching"));
4548 				vmem_destroy(ifp->illif_ppa_arena);
4549 				ifp->illif_ppa_arena = NULL;
4550 				break;
4551 			}
4552 		}
4553 	}
4554 
4555 	if (ifp->illif_ppa_arena != NULL) {
4556 		if (ill->ill_ppa == UINT_MAX) {
4557 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4558 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4559 			if (ppa == 0)
4560 				return (EAGAIN);
4561 			ill->ill_ppa = --ppa;
4562 		} else {
4563 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4564 			    1, 		/* size */
4565 			    1, 		/* align/quantum */
4566 			    0, 		/* phase */
4567 			    0, 		/* nocross */
4568 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4569 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4570 			    VM_NOSLEEP|VM_FIRSTFIT);
4571 			/*
4572 			 * Most likely the allocation failed because
4573 			 * the requested ppa was in use.
4574 			 */
4575 			if (ppa == 0)
4576 				return (EEXIST);
4577 		}
4578 		return (0);
4579 	}
4580 
4581 	/*
4582 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4583 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4584 	 */
4585 	if (ill->ill_ppa == UINT_MAX) {
4586 		end = UINT_MAX - 1;
4587 		start = 0;
4588 	} else {
4589 		end = start = ill->ill_ppa;
4590 	}
4591 
4592 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4593 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4594 		if (start++ >= end) {
4595 			if (ill->ill_ppa == UINT_MAX)
4596 				return (EAGAIN);
4597 			else
4598 				return (EEXIST);
4599 		}
4600 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4601 	}
4602 	ill->ill_ppa = start;
4603 	return (0);
4604 }
4605 
4606 /*
4607  * Insert ill into the list of configured ill's. Once this function completes,
4608  * the ill is globally visible and is available through lookups. More precisely
4609  * this happens after the caller drops the ill_g_lock.
4610  */
4611 static int
4612 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4613 {
4614 	ill_if_t *ill_interface;
4615 	avl_index_t where = 0;
4616 	int error;
4617 	int name_length;
4618 	int index;
4619 	boolean_t check_length = B_FALSE;
4620 	ip_stack_t	*ipst = ill->ill_ipst;
4621 
4622 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4623 
4624 	name_length = mi_strlen(name) + 1;
4625 
4626 	if (isv6)
4627 		index = IP_V6_G_HEAD;
4628 	else
4629 		index = IP_V4_G_HEAD;
4630 
4631 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4632 	/*
4633 	 * Search for interface type based on name
4634 	 */
4635 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4636 		if ((ill_interface->illif_name_len == name_length) &&
4637 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4638 			break;
4639 		}
4640 		ill_interface = ill_interface->illif_next;
4641 	}
4642 
4643 	/*
4644 	 * Interface type not found, create one.
4645 	 */
4646 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4647 
4648 		ill_g_head_t ghead;
4649 
4650 		/*
4651 		 * allocate ill_if_t structure
4652 		 */
4653 
4654 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4655 		if (ill_interface == NULL) {
4656 			return (ENOMEM);
4657 		}
4658 
4659 
4660 
4661 		(void) strcpy(ill_interface->illif_name, name);
4662 		ill_interface->illif_name_len = name_length;
4663 
4664 		avl_create(&ill_interface->illif_avl_by_ppa,
4665 		    ill_compare_ppa, sizeof (ill_t),
4666 		    offsetof(struct ill_s, ill_avl_byppa));
4667 
4668 		/*
4669 		 * link the structure in the back to maintain order
4670 		 * of configuration for ifconfig output.
4671 		 */
4672 		ghead = ipst->ips_ill_g_heads[index];
4673 		insque(ill_interface, ghead.ill_g_list_tail);
4674 
4675 	}
4676 
4677 	if (ill->ill_ppa == UINT_MAX)
4678 		check_length = B_TRUE;
4679 
4680 	error = ill_alloc_ppa(ill_interface, ill);
4681 	if (error != 0) {
4682 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4683 			ill_delete_interface_type(ill->ill_ifptr);
4684 		return (error);
4685 	}
4686 
4687 	/*
4688 	 * When the ppa is choosen by the system, check that there is
4689 	 * enough space to insert ppa. if a specific ppa was passed in this
4690 	 * check is not required as the interface name passed in will have
4691 	 * the right ppa in it.
4692 	 */
4693 	if (check_length) {
4694 		/*
4695 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4696 		 */
4697 		char buf[sizeof (uint_t) * 3];
4698 
4699 		/*
4700 		 * convert ppa to string to calculate the amount of space
4701 		 * required for it in the name.
4702 		 */
4703 		numtos(ill->ill_ppa, buf);
4704 
4705 		/* Do we have enough space to insert ppa ? */
4706 
4707 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4708 			/* Free ppa and interface type struct */
4709 			if (ill_interface->illif_ppa_arena != NULL) {
4710 				vmem_free(ill_interface->illif_ppa_arena,
4711 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4712 			}
4713 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4714 			    0) {
4715 				ill_delete_interface_type(ill->ill_ifptr);
4716 			}
4717 
4718 			return (EINVAL);
4719 		}
4720 	}
4721 
4722 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4723 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4724 
4725 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4726 	    &where);
4727 	ill->ill_ifptr = ill_interface;
4728 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4729 
4730 	ill_phyint_reinit(ill);
4731 	return (0);
4732 }
4733 
4734 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4735 static boolean_t
4736 ipsq_init(ill_t *ill)
4737 {
4738 	ipsq_t  *ipsq;
4739 
4740 	/* Init the ipsq and impicitly enter as writer */
4741 	ill->ill_phyint->phyint_ipsq =
4742 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4743 	if (ill->ill_phyint->phyint_ipsq == NULL)
4744 		return (B_FALSE);
4745 	ipsq = ill->ill_phyint->phyint_ipsq;
4746 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4747 	ill->ill_phyint->phyint_ipsq_next = NULL;
4748 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4749 	ipsq->ipsq_refs = 1;
4750 	ipsq->ipsq_writer = curthread;
4751 	ipsq->ipsq_reentry_cnt = 1;
4752 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4753 #ifdef ILL_DEBUG
4754 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH);
4755 #endif
4756 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4757 	return (B_TRUE);
4758 }
4759 
4760 /*
4761  * ill_init is called by ip_open when a device control stream is opened.
4762  * It does a few initializations, and shoots a DL_INFO_REQ message down
4763  * to the driver.  The response is later picked up in ip_rput_dlpi and
4764  * used to set up default mechanisms for talking to the driver.  (Always
4765  * called as writer.)
4766  *
4767  * If this function returns error, ip_open will call ip_close which in
4768  * turn will call ill_delete to clean up any memory allocated here that
4769  * is not yet freed.
4770  */
4771 int
4772 ill_init(queue_t *q, ill_t *ill)
4773 {
4774 	int	count;
4775 	dl_info_req_t	*dlir;
4776 	mblk_t	*info_mp;
4777 	uchar_t *frag_ptr;
4778 
4779 	/*
4780 	 * The ill is initialized to zero by mi_alloc*(). In addition
4781 	 * some fields already contain valid values, initialized in
4782 	 * ip_open(), before we reach here.
4783 	 */
4784 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4785 
4786 	ill->ill_rq = q;
4787 	ill->ill_wq = WR(q);
4788 
4789 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4790 	    BPRI_HI);
4791 	if (info_mp == NULL)
4792 		return (ENOMEM);
4793 
4794 	/*
4795 	 * Allocate sufficient space to contain our fragment hash table and
4796 	 * the device name.
4797 	 */
4798 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4799 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4800 	if (frag_ptr == NULL) {
4801 		freemsg(info_mp);
4802 		return (ENOMEM);
4803 	}
4804 	ill->ill_frag_ptr = frag_ptr;
4805 	ill->ill_frag_free_num_pkts = 0;
4806 	ill->ill_last_frag_clean_time = 0;
4807 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4808 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4809 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4810 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4811 		    NULL, MUTEX_DEFAULT, NULL);
4812 	}
4813 
4814 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4815 	if (ill->ill_phyint == NULL) {
4816 		freemsg(info_mp);
4817 		mi_free(frag_ptr);
4818 		return (ENOMEM);
4819 	}
4820 
4821 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4822 	/*
4823 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4824 	 * at this point because of the following reason. If we can't
4825 	 * enter the ipsq at some point and cv_wait, the writer that
4826 	 * wakes us up tries to locate us using the list of all phyints
4827 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4828 	 * If we don't set it now, we risk a missed wakeup.
4829 	 */
4830 	ill->ill_phyint->phyint_illv4 = ill;
4831 	ill->ill_ppa = UINT_MAX;
4832 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4833 
4834 	if (!ipsq_init(ill)) {
4835 		freemsg(info_mp);
4836 		mi_free(frag_ptr);
4837 		mi_free(ill->ill_phyint);
4838 		return (ENOMEM);
4839 	}
4840 
4841 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4842 
4843 
4844 	/* Frag queue limit stuff */
4845 	ill->ill_frag_count = 0;
4846 	ill->ill_ipf_gen = 0;
4847 
4848 	ill->ill_global_timer = INFINITY;
4849 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
4850 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4851 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4852 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4853 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4854 
4855 	/*
4856 	 * Initialize IPv6 configuration variables.  The IP module is always
4857 	 * opened as an IPv4 module.  Instead tracking down the cases where
4858 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4859 	 * here for convenience, this has no effect until the ill is set to do
4860 	 * IPv6.
4861 	 */
4862 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4863 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4864 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4865 	ill->ill_max_buf = ND_MAX_Q;
4866 	ill->ill_refcnt = 0;
4867 
4868 	/* Send down the Info Request to the driver. */
4869 	info_mp->b_datap->db_type = M_PCPROTO;
4870 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4871 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4872 	dlir->dl_primitive = DL_INFO_REQ;
4873 
4874 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4875 
4876 	qprocson(q);
4877 	ill_dlpi_send(ill, info_mp);
4878 
4879 	return (0);
4880 }
4881 
4882 /*
4883  * ill_dls_info
4884  * creates datalink socket info from the device.
4885  */
4886 int
4887 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4888 {
4889 	size_t	len;
4890 	ill_t	*ill = ipif->ipif_ill;
4891 
4892 	sdl->sdl_family = AF_LINK;
4893 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4894 	sdl->sdl_type = ill->ill_type;
4895 	(void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4896 	len = strlen(sdl->sdl_data);
4897 	ASSERT(len < 256);
4898 	sdl->sdl_nlen = (uchar_t)len;
4899 	sdl->sdl_alen = ill->ill_phys_addr_length;
4900 	sdl->sdl_slen = 0;
4901 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4902 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4903 
4904 	return (sizeof (struct sockaddr_dl));
4905 }
4906 
4907 /*
4908  * ill_xarp_info
4909  * creates xarp info from the device.
4910  */
4911 static int
4912 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4913 {
4914 	sdl->sdl_family = AF_LINK;
4915 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4916 	sdl->sdl_type = ill->ill_type;
4917 	(void) ipif_get_name(ill->ill_ipif, sdl->sdl_data,
4918 	    sizeof (sdl->sdl_data));
4919 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4920 	sdl->sdl_alen = ill->ill_phys_addr_length;
4921 	sdl->sdl_slen = 0;
4922 	return (sdl->sdl_nlen);
4923 }
4924 
4925 static int
4926 loopback_kstat_update(kstat_t *ksp, int rw)
4927 {
4928 	kstat_named_t *kn;
4929 	netstackid_t	stackid;
4930 	netstack_t	*ns;
4931 	ip_stack_t	*ipst;
4932 
4933 	if (ksp == NULL || ksp->ks_data == NULL)
4934 		return (EIO);
4935 
4936 	if (rw == KSTAT_WRITE)
4937 		return (EACCES);
4938 
4939 	kn = KSTAT_NAMED_PTR(ksp);
4940 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4941 
4942 	ns = netstack_find_by_stackid(stackid);
4943 	if (ns == NULL)
4944 		return (-1);
4945 
4946 	ipst = ns->netstack_ip;
4947 	if (ipst == NULL) {
4948 		netstack_rele(ns);
4949 		return (-1);
4950 	}
4951 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4952 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4953 	netstack_rele(ns);
4954 	return (0);
4955 }
4956 
4957 
4958 /*
4959  * Has ifindex been plumbed already.
4960  * Compares both phyint_ifindex and phyint_group_ifindex.
4961  */
4962 static boolean_t
4963 phyint_exists(uint_t index, ip_stack_t *ipst)
4964 {
4965 	phyint_t *phyi;
4966 
4967 	ASSERT(index != 0);
4968 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4969 	/*
4970 	 * Indexes are stored in the phyint - a common structure
4971 	 * to both IPv4 and IPv6.
4972 	 */
4973 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4974 	for (; phyi != NULL;
4975 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4976 	    phyi, AVL_AFTER)) {
4977 		if (phyi->phyint_ifindex == index ||
4978 		    phyi->phyint_group_ifindex == index)
4979 			return (B_TRUE);
4980 	}
4981 	return (B_FALSE);
4982 }
4983 
4984 /* Pick a unique ifindex */
4985 boolean_t
4986 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4987 {
4988 	uint_t starting_index;
4989 
4990 	if (!ipst->ips_ill_index_wrap) {
4991 		*indexp = ipst->ips_ill_index++;
4992 		if (ipst->ips_ill_index == 0) {
4993 			/* Reached the uint_t limit Next time wrap  */
4994 			ipst->ips_ill_index_wrap = B_TRUE;
4995 		}
4996 		return (B_TRUE);
4997 	}
4998 
4999 	/*
5000 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
5001 	 * at this point and don't want to call any function that attempts
5002 	 * to get the lock again.
5003 	 */
5004 	starting_index = ipst->ips_ill_index++;
5005 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
5006 		if (ipst->ips_ill_index != 0 &&
5007 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
5008 			/* found unused index - use it */
5009 			*indexp = ipst->ips_ill_index;
5010 			return (B_TRUE);
5011 		}
5012 	}
5013 
5014 	/*
5015 	 * all interface indicies are inuse.
5016 	 */
5017 	return (B_FALSE);
5018 }
5019 
5020 /*
5021  * Assign a unique interface index for the phyint.
5022  */
5023 static boolean_t
5024 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
5025 {
5026 	ASSERT(phyi->phyint_ifindex == 0);
5027 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
5028 }
5029 
5030 /*
5031  * Return a pointer to the ill which matches the supplied name.  Note that
5032  * the ill name length includes the null termination character.  (May be
5033  * called as writer.)
5034  * If do_alloc and the interface is "lo0" it will be automatically created.
5035  * Cannot bump up reference on condemned ills. So dup detect can't be done
5036  * using this func.
5037  */
5038 ill_t *
5039 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
5040     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
5041     ip_stack_t *ipst)
5042 {
5043 	ill_t	*ill;
5044 	ipif_t	*ipif;
5045 	kstat_named_t	*kn;
5046 	boolean_t isloopback;
5047 	ipsq_t *old_ipsq;
5048 	in6_addr_t ov6addr;
5049 
5050 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
5051 
5052 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5053 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
5054 	rw_exit(&ipst->ips_ill_g_lock);
5055 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
5056 		return (ill);
5057 
5058 	/*
5059 	 * Couldn't find it.  Does this happen to be a lookup for the
5060 	 * loopback device and are we allowed to allocate it?
5061 	 */
5062 	if (!isloopback || !do_alloc)
5063 		return (NULL);
5064 
5065 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
5066 
5067 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
5068 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
5069 		rw_exit(&ipst->ips_ill_g_lock);
5070 		return (ill);
5071 	}
5072 
5073 	/* Create the loopback device on demand */
5074 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
5075 	    sizeof (ipif_loopback_name), BPRI_MED));
5076 	if (ill == NULL)
5077 		goto done;
5078 
5079 	*ill = ill_null;
5080 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
5081 	ill->ill_ipst = ipst;
5082 	netstack_hold(ipst->ips_netstack);
5083 	/*
5084 	 * For exclusive stacks we set the zoneid to zero
5085 	 * to make IP operate as if in the global zone.
5086 	 */
5087 	ill->ill_zoneid = GLOBAL_ZONEID;
5088 
5089 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5090 	if (ill->ill_phyint == NULL)
5091 		goto done;
5092 
5093 	if (isv6)
5094 		ill->ill_phyint->phyint_illv6 = ill;
5095 	else
5096 		ill->ill_phyint->phyint_illv4 = ill;
5097 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5098 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5099 	/* Add room for tcp+ip headers */
5100 	if (isv6) {
5101 		ill->ill_isv6 = B_TRUE;
5102 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5103 	} else {
5104 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5105 	}
5106 	if (!ill_allocate_mibs(ill))
5107 		goto done;
5108 	ill->ill_max_mtu = ill->ill_max_frag;
5109 	/*
5110 	 * ipif_loopback_name can't be pointed at directly because its used
5111 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5112 	 * from the glist, ill_glist_delete() sets the first character of
5113 	 * ill_name to '\0'.
5114 	 */
5115 	ill->ill_name = (char *)ill + sizeof (*ill);
5116 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5117 	ill->ill_name_length = sizeof (ipif_loopback_name);
5118 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5119 
5120 	ill->ill_global_timer = INFINITY;
5121 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
5122 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5123 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5124 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5125 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5126 
5127 	/* No resolver here. */
5128 	ill->ill_net_type = IRE_LOOPBACK;
5129 
5130 	/* Initialize the ipsq */
5131 	if (!ipsq_init(ill))
5132 		goto done;
5133 
5134 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5135 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5136 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5137 #ifdef ILL_DEBUG
5138 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5139 #endif
5140 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5141 	if (ipif == NULL)
5142 		goto done;
5143 
5144 	ill->ill_flags = ILLF_MULTICAST;
5145 
5146 	ov6addr = ipif->ipif_v6lcl_addr;
5147 	/* Set up default loopback address and mask. */
5148 	if (!isv6) {
5149 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5150 
5151 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5152 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5153 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5154 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5155 		    ipif->ipif_v6subnet);
5156 		ill->ill_flags |= ILLF_IPV4;
5157 	} else {
5158 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5159 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5160 		ipif->ipif_v6net_mask = ipv6_all_ones;
5161 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5162 		    ipif->ipif_v6subnet);
5163 		ill->ill_flags |= ILLF_IPV6;
5164 	}
5165 
5166 	/*
5167 	 * Chain us in at the end of the ill list. hold the ill
5168 	 * before we make it globally visible. 1 for the lookup.
5169 	 */
5170 	ill->ill_refcnt = 0;
5171 	ill_refhold(ill);
5172 
5173 	ill->ill_frag_count = 0;
5174 	ill->ill_frag_free_num_pkts = 0;
5175 	ill->ill_last_frag_clean_time = 0;
5176 
5177 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5178 
5179 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5180 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5181 
5182 	/* Let SCTP know so that it can add this to its list */
5183 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5184 
5185 	/*
5186 	 * We have already assigned ipif_v6lcl_addr above, but we need to
5187 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5188 	 * requires to be after ill_glist_insert() since we need the
5189 	 * ill_index set. Pass on ipv6_loopback as the old address.
5190 	 */
5191 	sctp_update_ipif_addr(ipif, ov6addr);
5192 
5193 	/*
5194 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5195 	 */
5196 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5197 		/* Loopback ills aren't in any IPMP group */
5198 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5199 		ipsq_delete(old_ipsq);
5200 	}
5201 
5202 	/*
5203 	 * Delay this till the ipif is allocated as ipif_allocate
5204 	 * de-references ill_phyint for getting the ifindex. We
5205 	 * can't do this before ipif_allocate because ill_phyint_reinit
5206 	 * -> phyint_assign_ifindex expects ipif to be present.
5207 	 */
5208 	mutex_enter(&ill->ill_phyint->phyint_lock);
5209 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5210 	mutex_exit(&ill->ill_phyint->phyint_lock);
5211 
5212 	if (ipst->ips_loopback_ksp == NULL) {
5213 		/* Export loopback interface statistics */
5214 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5215 		    ipif_loopback_name, "net",
5216 		    KSTAT_TYPE_NAMED, 2, 0,
5217 		    ipst->ips_netstack->netstack_stackid);
5218 		if (ipst->ips_loopback_ksp != NULL) {
5219 			ipst->ips_loopback_ksp->ks_update =
5220 			    loopback_kstat_update;
5221 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5222 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5223 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5224 			ipst->ips_loopback_ksp->ks_private =
5225 			    (void *)(uintptr_t)ipst->ips_netstack->
5226 			    netstack_stackid;
5227 			kstat_install(ipst->ips_loopback_ksp);
5228 		}
5229 	}
5230 
5231 	if (error != NULL)
5232 		*error = 0;
5233 	*did_alloc = B_TRUE;
5234 	rw_exit(&ipst->ips_ill_g_lock);
5235 	return (ill);
5236 done:
5237 	if (ill != NULL) {
5238 		if (ill->ill_phyint != NULL) {
5239 			ipsq_t	*ipsq;
5240 
5241 			ipsq = ill->ill_phyint->phyint_ipsq;
5242 			if (ipsq != NULL) {
5243 				ipsq->ipsq_ipst = NULL;
5244 				kmem_free(ipsq, sizeof (ipsq_t));
5245 			}
5246 			mi_free(ill->ill_phyint);
5247 		}
5248 		ill_free_mib(ill);
5249 		if (ill->ill_ipst != NULL)
5250 			netstack_rele(ill->ill_ipst->ips_netstack);
5251 		mi_free(ill);
5252 	}
5253 	rw_exit(&ipst->ips_ill_g_lock);
5254 	if (error != NULL)
5255 		*error = ENOMEM;
5256 	return (NULL);
5257 }
5258 
5259 /*
5260  * For IPP calls - use the ip_stack_t for global stack.
5261  */
5262 ill_t *
5263 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5264     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5265 {
5266 	ip_stack_t	*ipst;
5267 	ill_t		*ill;
5268 
5269 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5270 	if (ipst == NULL) {
5271 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5272 		return (NULL);
5273 	}
5274 
5275 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5276 	netstack_rele(ipst->ips_netstack);
5277 	return (ill);
5278 }
5279 
5280 /*
5281  * Return a pointer to the ill which matches the index and IP version type.
5282  */
5283 ill_t *
5284 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5285     ipsq_func_t func, int *err, ip_stack_t *ipst)
5286 {
5287 	ill_t	*ill;
5288 	ipsq_t  *ipsq;
5289 	phyint_t *phyi;
5290 
5291 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5292 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5293 
5294 	if (err != NULL)
5295 		*err = 0;
5296 
5297 	/*
5298 	 * Indexes are stored in the phyint - a common structure
5299 	 * to both IPv4 and IPv6.
5300 	 */
5301 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5302 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5303 	    (void *) &index, NULL);
5304 	if (phyi != NULL) {
5305 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5306 		if (ill != NULL) {
5307 			/*
5308 			 * The block comment at the start of ipif_down
5309 			 * explains the use of the macros used below
5310 			 */
5311 			GRAB_CONN_LOCK(q);
5312 			mutex_enter(&ill->ill_lock);
5313 			if (ILL_CAN_LOOKUP(ill)) {
5314 				ill_refhold_locked(ill);
5315 				mutex_exit(&ill->ill_lock);
5316 				RELEASE_CONN_LOCK(q);
5317 				rw_exit(&ipst->ips_ill_g_lock);
5318 				return (ill);
5319 			} else if (ILL_CAN_WAIT(ill, q)) {
5320 				ipsq = ill->ill_phyint->phyint_ipsq;
5321 				mutex_enter(&ipsq->ipsq_lock);
5322 				rw_exit(&ipst->ips_ill_g_lock);
5323 				mutex_exit(&ill->ill_lock);
5324 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5325 				mutex_exit(&ipsq->ipsq_lock);
5326 				RELEASE_CONN_LOCK(q);
5327 				*err = EINPROGRESS;
5328 				return (NULL);
5329 			}
5330 			RELEASE_CONN_LOCK(q);
5331 			mutex_exit(&ill->ill_lock);
5332 		}
5333 	}
5334 	rw_exit(&ipst->ips_ill_g_lock);
5335 	if (err != NULL)
5336 		*err = ENXIO;
5337 	return (NULL);
5338 }
5339 
5340 /*
5341  * Return the ifindex next in sequence after the passed in ifindex.
5342  * If there is no next ifindex for the given protocol, return 0.
5343  */
5344 uint_t
5345 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5346 {
5347 	phyint_t *phyi;
5348 	phyint_t *phyi_initial;
5349 	uint_t   ifindex;
5350 
5351 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5352 
5353 	if (index == 0) {
5354 		phyi = avl_first(
5355 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5356 	} else {
5357 		phyi = phyi_initial = avl_find(
5358 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5359 		    (void *) &index, NULL);
5360 	}
5361 
5362 	for (; phyi != NULL;
5363 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5364 	    phyi, AVL_AFTER)) {
5365 		/*
5366 		 * If we're not returning the first interface in the tree
5367 		 * and we still haven't moved past the phyint_t that
5368 		 * corresponds to index, avl_walk needs to be called again
5369 		 */
5370 		if (!((index != 0) && (phyi == phyi_initial))) {
5371 			if (isv6) {
5372 				if ((phyi->phyint_illv6) &&
5373 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5374 				    (phyi->phyint_illv6->ill_isv6 == 1))
5375 					break;
5376 			} else {
5377 				if ((phyi->phyint_illv4) &&
5378 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5379 				    (phyi->phyint_illv4->ill_isv6 == 0))
5380 					break;
5381 			}
5382 		}
5383 	}
5384 
5385 	rw_exit(&ipst->ips_ill_g_lock);
5386 
5387 	if (phyi != NULL)
5388 		ifindex = phyi->phyint_ifindex;
5389 	else
5390 		ifindex = 0;
5391 
5392 	return (ifindex);
5393 }
5394 
5395 
5396 /*
5397  * Return the ifindex for the named interface.
5398  * If there is no next ifindex for the interface, return 0.
5399  */
5400 uint_t
5401 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5402 {
5403 	phyint_t	*phyi;
5404 	avl_index_t	where = 0;
5405 	uint_t		ifindex;
5406 
5407 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5408 
5409 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5410 	    name, &where)) == NULL) {
5411 		rw_exit(&ipst->ips_ill_g_lock);
5412 		return (0);
5413 	}
5414 
5415 	ifindex = phyi->phyint_ifindex;
5416 
5417 	rw_exit(&ipst->ips_ill_g_lock);
5418 
5419 	return (ifindex);
5420 }
5421 
5422 
5423 /*
5424  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5425  * that gives a running thread a reference to the ill. This reference must be
5426  * released by the thread when it is done accessing the ill and related
5427  * objects. ill_refcnt can not be used to account for static references
5428  * such as other structures pointing to an ill. Callers must generally
5429  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5430  * or be sure that the ill is not being deleted or changing state before
5431  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5432  * ill won't change any of its critical state such as address, netmask etc.
5433  */
5434 void
5435 ill_refhold(ill_t *ill)
5436 {
5437 	mutex_enter(&ill->ill_lock);
5438 	ill->ill_refcnt++;
5439 	ILL_TRACE_REF(ill);
5440 	mutex_exit(&ill->ill_lock);
5441 }
5442 
5443 void
5444 ill_refhold_locked(ill_t *ill)
5445 {
5446 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5447 	ill->ill_refcnt++;
5448 	ILL_TRACE_REF(ill);
5449 }
5450 
5451 int
5452 ill_check_and_refhold(ill_t *ill)
5453 {
5454 	mutex_enter(&ill->ill_lock);
5455 	if (ILL_CAN_LOOKUP(ill)) {
5456 		ill_refhold_locked(ill);
5457 		mutex_exit(&ill->ill_lock);
5458 		return (0);
5459 	}
5460 	mutex_exit(&ill->ill_lock);
5461 	return (ILL_LOOKUP_FAILED);
5462 }
5463 
5464 /*
5465  * Must not be called while holding any locks. Otherwise if this is
5466  * the last reference to be released, there is a chance of recursive mutex
5467  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5468  * to restart an ioctl.
5469  */
5470 void
5471 ill_refrele(ill_t *ill)
5472 {
5473 	mutex_enter(&ill->ill_lock);
5474 	ASSERT(ill->ill_refcnt != 0);
5475 	ill->ill_refcnt--;
5476 	ILL_UNTRACE_REF(ill);
5477 	if (ill->ill_refcnt != 0) {
5478 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5479 		mutex_exit(&ill->ill_lock);
5480 		return;
5481 	}
5482 
5483 	/* Drops the ill_lock */
5484 	ipif_ill_refrele_tail(ill);
5485 }
5486 
5487 /*
5488  * Obtain a weak reference count on the ill. This reference ensures the
5489  * ill won't be freed, but the ill may change any of its critical state
5490  * such as netmask, address etc. Returns an error if the ill has started
5491  * closing.
5492  */
5493 boolean_t
5494 ill_waiter_inc(ill_t *ill)
5495 {
5496 	mutex_enter(&ill->ill_lock);
5497 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5498 		mutex_exit(&ill->ill_lock);
5499 		return (B_FALSE);
5500 	}
5501 	ill->ill_waiters++;
5502 	mutex_exit(&ill->ill_lock);
5503 	return (B_TRUE);
5504 }
5505 
5506 void
5507 ill_waiter_dcr(ill_t *ill)
5508 {
5509 	mutex_enter(&ill->ill_lock);
5510 	ill->ill_waiters--;
5511 	if (ill->ill_waiters == 0)
5512 		cv_broadcast(&ill->ill_cv);
5513 	mutex_exit(&ill->ill_lock);
5514 }
5515 
5516 /*
5517  * Named Dispatch routine to produce a formatted report on all ILLs.
5518  * This report is accessed by using the ndd utility to "get" ND variable
5519  * "ip_ill_status".
5520  */
5521 /* ARGSUSED */
5522 int
5523 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5524 {
5525 	ill_t		*ill;
5526 	ill_walk_context_t ctx;
5527 	ip_stack_t	*ipst;
5528 
5529 	ipst = CONNQ_TO_IPST(q);
5530 
5531 	(void) mi_mpprintf(mp,
5532 	    "ILL      " MI_COL_HDRPAD_STR
5533 	/*   01234567[89ABCDEF] */
5534 	    "rq       " MI_COL_HDRPAD_STR
5535 	/*   01234567[89ABCDEF] */
5536 	    "wq       " MI_COL_HDRPAD_STR
5537 	/*   01234567[89ABCDEF] */
5538 	    "upcnt mxfrg err name");
5539 	/*   12345 12345 123 xxxxxxxx  */
5540 
5541 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5542 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5543 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5544 		(void) mi_mpprintf(mp,
5545 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5546 		    "%05u %05u %03d %s",
5547 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5548 		    ill->ill_ipif_up_count,
5549 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5550 	}
5551 	rw_exit(&ipst->ips_ill_g_lock);
5552 
5553 	return (0);
5554 }
5555 
5556 /*
5557  * Named Dispatch routine to produce a formatted report on all IPIFs.
5558  * This report is accessed by using the ndd utility to "get" ND variable
5559  * "ip_ipif_status".
5560  */
5561 /* ARGSUSED */
5562 int
5563 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5564 {
5565 	char	buf1[INET6_ADDRSTRLEN];
5566 	char	buf2[INET6_ADDRSTRLEN];
5567 	char	buf3[INET6_ADDRSTRLEN];
5568 	char	buf4[INET6_ADDRSTRLEN];
5569 	char	buf5[INET6_ADDRSTRLEN];
5570 	char	buf6[INET6_ADDRSTRLEN];
5571 	char	buf[LIFNAMSIZ];
5572 	ill_t	*ill;
5573 	ipif_t	*ipif;
5574 	nv_t	*nvp;
5575 	uint64_t flags;
5576 	zoneid_t zoneid;
5577 	ill_walk_context_t ctx;
5578 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
5579 
5580 	(void) mi_mpprintf(mp,
5581 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5582 	    "\tlocal address\n"
5583 	    "\tsrc address\n"
5584 	    "\tsubnet\n"
5585 	    "\tmask\n"
5586 	    "\tbroadcast\n"
5587 	    "\tp-p-dst");
5588 
5589 	ASSERT(q->q_next == NULL);
5590 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5591 
5592 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5593 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5594 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5595 		for (ipif = ill->ill_ipif; ipif != NULL;
5596 		    ipif = ipif->ipif_next) {
5597 			if (zoneid != GLOBAL_ZONEID &&
5598 			    zoneid != ipif->ipif_zoneid &&
5599 			    ipif->ipif_zoneid != ALL_ZONES)
5600 				continue;
5601 			(void) mi_mpprintf(mp,
5602 			    MI_COL_PTRFMT_STR
5603 			    "%04u %05u %u/%u/%u %s %d",
5604 			    (void *)ipif,
5605 			    ipif->ipif_metric, ipif->ipif_mtu,
5606 			    ipif->ipif_ib_pkt_count,
5607 			    ipif->ipif_ob_pkt_count,
5608 			    ipif->ipif_fo_pkt_count,
5609 			    ipif_get_name(ipif, buf, sizeof (buf)),
5610 			    ipif->ipif_zoneid);
5611 
5612 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5613 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5614 
5615 		/* Tack on text strings for any flags. */
5616 		nvp = ipif_nv_tbl;
5617 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5618 			if (nvp->nv_value & flags)
5619 				(void) mi_mpprintf_nr(mp, " %s",
5620 				    nvp->nv_name);
5621 		}
5622 		(void) mi_mpprintf(mp,
5623 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5624 		    inet_ntop(AF_INET6,
5625 			&ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5626 		    inet_ntop(AF_INET6,
5627 			&ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5628 		    inet_ntop(AF_INET6,
5629 			&ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5630 		    inet_ntop(AF_INET6,
5631 			&ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5632 		    inet_ntop(AF_INET6,
5633 			&ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5634 		    inet_ntop(AF_INET6,
5635 			&ipif->ipif_v6pp_dst_addr,
5636 			buf6, sizeof (buf6)));
5637 		}
5638 	}
5639 	rw_exit(&ipst->ips_ill_g_lock);
5640 	return (0);
5641 }
5642 
5643 /*
5644  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5645  * driver.  We construct best guess defaults for lower level information that
5646  * we need.  If an interface is brought up without injection of any overriding
5647  * information from outside, we have to be ready to go with these defaults.
5648  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5649  * we primarely want the dl_provider_style.
5650  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5651  * at which point we assume the other part of the information is valid.
5652  */
5653 void
5654 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5655 {
5656 	uchar_t		*brdcst_addr;
5657 	uint_t		brdcst_addr_length, phys_addr_length;
5658 	t_scalar_t	sap_length;
5659 	dl_info_ack_t	*dlia;
5660 	ip_m_t		*ipm;
5661 	dl_qos_cl_sel1_t *sel1;
5662 
5663 	ASSERT(IAM_WRITER_ILL(ill));
5664 
5665 	/*
5666 	 * Till the ill is fully up ILL_CHANGING will be set and
5667 	 * the ill is not globally visible. So no need for a lock.
5668 	 */
5669 	dlia = (dl_info_ack_t *)mp->b_rptr;
5670 	ill->ill_mactype = dlia->dl_mac_type;
5671 
5672 	ipm = ip_m_lookup(dlia->dl_mac_type);
5673 	if (ipm == NULL) {
5674 		ipm = ip_m_lookup(DL_OTHER);
5675 		ASSERT(ipm != NULL);
5676 	}
5677 	ill->ill_media = ipm;
5678 
5679 	/*
5680 	 * When the new DLPI stuff is ready we'll pull lengths
5681 	 * from dlia.
5682 	 */
5683 	if (dlia->dl_version == DL_VERSION_2) {
5684 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5685 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5686 		    brdcst_addr_length);
5687 		if (brdcst_addr == NULL) {
5688 			brdcst_addr_length = 0;
5689 		}
5690 		sap_length = dlia->dl_sap_length;
5691 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5692 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5693 		    brdcst_addr_length, sap_length, phys_addr_length));
5694 	} else {
5695 		brdcst_addr_length = 6;
5696 		brdcst_addr = ip_six_byte_all_ones;
5697 		sap_length = -2;
5698 		phys_addr_length = brdcst_addr_length;
5699 	}
5700 
5701 	ill->ill_bcast_addr_length = brdcst_addr_length;
5702 	ill->ill_phys_addr_length = phys_addr_length;
5703 	ill->ill_sap_length = sap_length;
5704 	ill->ill_max_frag = dlia->dl_max_sdu;
5705 	ill->ill_max_mtu = ill->ill_max_frag;
5706 
5707 	ill->ill_type = ipm->ip_m_type;
5708 
5709 	if (!ill->ill_dlpi_style_set) {
5710 		if (dlia->dl_provider_style == DL_STYLE2)
5711 			ill->ill_needs_attach = 1;
5712 
5713 		/*
5714 		 * Allocate the first ipif on this ill. We don't delay it
5715 		 * further as ioctl handling assumes atleast one ipif to
5716 		 * be present.
5717 		 *
5718 		 * At this point we don't know whether the ill is v4 or v6.
5719 		 * We will know this whan the SIOCSLIFNAME happens and
5720 		 * the correct value for ill_isv6 will be assigned in
5721 		 * ipif_set_values(). We need to hold the ill lock and
5722 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5723 		 * the wakeup.
5724 		 */
5725 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5726 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5727 		mutex_enter(&ill->ill_lock);
5728 		ASSERT(ill->ill_dlpi_style_set == 0);
5729 		ill->ill_dlpi_style_set = 1;
5730 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5731 		cv_broadcast(&ill->ill_cv);
5732 		mutex_exit(&ill->ill_lock);
5733 		freemsg(mp);
5734 		return;
5735 	}
5736 	ASSERT(ill->ill_ipif != NULL);
5737 	/*
5738 	 * We know whether it is IPv4 or IPv6 now, as this is the
5739 	 * second DL_INFO_ACK we are recieving in response to the
5740 	 * DL_INFO_REQ sent in ipif_set_values.
5741 	 */
5742 	if (ill->ill_isv6)
5743 		ill->ill_sap = IP6_DL_SAP;
5744 	else
5745 		ill->ill_sap = IP_DL_SAP;
5746 	/*
5747 	 * Set ipif_mtu which is used to set the IRE's
5748 	 * ire_max_frag value. The driver could have sent
5749 	 * a different mtu from what it sent last time. No
5750 	 * need to call ipif_mtu_change because IREs have
5751 	 * not yet been created.
5752 	 */
5753 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5754 	/*
5755 	 * Clear all the flags that were set based on ill_bcast_addr_length
5756 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5757 	 * changed now and we need to re-evaluate.
5758 	 */
5759 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5760 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5761 
5762 	/*
5763 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5764 	 * changed now.
5765 	 */
5766 	if (ill->ill_bcast_addr_length == 0) {
5767 		if (ill->ill_resolver_mp != NULL)
5768 			freemsg(ill->ill_resolver_mp);
5769 		if (ill->ill_bcast_mp != NULL)
5770 			freemsg(ill->ill_bcast_mp);
5771 		if (ill->ill_flags & ILLF_XRESOLV)
5772 			ill->ill_net_type = IRE_IF_RESOLVER;
5773 		else
5774 			ill->ill_net_type = IRE_IF_NORESOLVER;
5775 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5776 		    ill->ill_phys_addr_length,
5777 		    ill->ill_sap,
5778 		    ill->ill_sap_length);
5779 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5780 
5781 		if (ill->ill_isv6)
5782 			/*
5783 			 * Note: xresolv interfaces will eventually need NOARP
5784 			 * set here as well, but that will require those
5785 			 * external resolvers to have some knowledge of
5786 			 * that flag and act appropriately. Not to be changed
5787 			 * at present.
5788 			 */
5789 			ill->ill_flags |= ILLF_NONUD;
5790 		else
5791 			ill->ill_flags |= ILLF_NOARP;
5792 
5793 		if (ill->ill_phys_addr_length == 0) {
5794 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5795 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5796 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5797 			} else {
5798 				/* pt-pt supports multicast. */
5799 				ill->ill_flags |= ILLF_MULTICAST;
5800 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5801 			}
5802 		}
5803 	} else {
5804 		ill->ill_net_type = IRE_IF_RESOLVER;
5805 		if (ill->ill_bcast_mp != NULL)
5806 			freemsg(ill->ill_bcast_mp);
5807 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5808 		    ill->ill_bcast_addr_length, ill->ill_sap,
5809 		    ill->ill_sap_length);
5810 		/*
5811 		 * Later detect lack of DLPI driver multicast
5812 		 * capability by catching DL_ENABMULTI errors in
5813 		 * ip_rput_dlpi.
5814 		 */
5815 		ill->ill_flags |= ILLF_MULTICAST;
5816 		if (!ill->ill_isv6)
5817 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5818 	}
5819 	/* By default an interface does not support any CoS marking */
5820 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5821 
5822 	/*
5823 	 * If we get QoS information in DL_INFO_ACK, the device supports
5824 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5825 	 */
5826 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5827 	    dlia->dl_qos_length);
5828 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5829 		ill->ill_flags |= ILLF_COS_ENABLED;
5830 	}
5831 
5832 	/* Clear any previous error indication. */
5833 	ill->ill_error = 0;
5834 	freemsg(mp);
5835 }
5836 
5837 /*
5838  * Perform various checks to verify that an address would make sense as a
5839  * local, remote, or subnet interface address.
5840  */
5841 static boolean_t
5842 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5843 {
5844 	ipaddr_t	net_mask;
5845 
5846 	/*
5847 	 * Don't allow all zeroes, all ones or experimental address, but allow
5848 	 * all ones netmask.
5849 	 */
5850 	if ((net_mask = ip_net_mask(addr)) == 0)
5851 		return (B_FALSE);
5852 	/* A given netmask overrides the "guess" netmask */
5853 	if (subnet_mask != 0)
5854 		net_mask = subnet_mask;
5855 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5856 	    (addr == (addr | ~net_mask)))) {
5857 		return (B_FALSE);
5858 	}
5859 	if (CLASSD(addr))
5860 		return (B_FALSE);
5861 
5862 	return (B_TRUE);
5863 }
5864 
5865 /*
5866  * ipif_lookup_group
5867  * Returns held ipif
5868  */
5869 ipif_t *
5870 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5871 {
5872 	ire_t	*ire;
5873 	ipif_t	*ipif;
5874 
5875 	ire = ire_lookup_multi(group, zoneid, ipst);
5876 	if (ire == NULL)
5877 		return (NULL);
5878 	ipif = ire->ire_ipif;
5879 	ipif_refhold(ipif);
5880 	ire_refrele(ire);
5881 	return (ipif);
5882 }
5883 
5884 /*
5885  * Look for an ipif with the specified interface address and destination.
5886  * The destination address is used only for matching point-to-point interfaces.
5887  */
5888 ipif_t *
5889 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5890     ipsq_func_t func, int *error, ip_stack_t *ipst)
5891 {
5892 	ipif_t	*ipif;
5893 	ill_t	*ill;
5894 	ill_walk_context_t ctx;
5895 	ipsq_t	*ipsq;
5896 
5897 	if (error != NULL)
5898 		*error = 0;
5899 
5900 	/*
5901 	 * First match all the point-to-point interfaces
5902 	 * before looking at non-point-to-point interfaces.
5903 	 * This is done to avoid returning non-point-to-point
5904 	 * ipif instead of unnumbered point-to-point ipif.
5905 	 */
5906 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5907 	ill = ILL_START_WALK_V4(&ctx, ipst);
5908 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5909 		GRAB_CONN_LOCK(q);
5910 		mutex_enter(&ill->ill_lock);
5911 		for (ipif = ill->ill_ipif; ipif != NULL;
5912 		    ipif = ipif->ipif_next) {
5913 			/* Allow the ipif to be down */
5914 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5915 			    (ipif->ipif_lcl_addr == if_addr) &&
5916 			    (ipif->ipif_pp_dst_addr == dst)) {
5917 				/*
5918 				 * The block comment at the start of ipif_down
5919 				 * explains the use of the macros used below
5920 				 */
5921 				if (IPIF_CAN_LOOKUP(ipif)) {
5922 					ipif_refhold_locked(ipif);
5923 					mutex_exit(&ill->ill_lock);
5924 					RELEASE_CONN_LOCK(q);
5925 					rw_exit(&ipst->ips_ill_g_lock);
5926 					return (ipif);
5927 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5928 					ipsq = ill->ill_phyint->phyint_ipsq;
5929 					mutex_enter(&ipsq->ipsq_lock);
5930 					mutex_exit(&ill->ill_lock);
5931 					rw_exit(&ipst->ips_ill_g_lock);
5932 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5933 						ill);
5934 					mutex_exit(&ipsq->ipsq_lock);
5935 					RELEASE_CONN_LOCK(q);
5936 					*error = EINPROGRESS;
5937 					return (NULL);
5938 				}
5939 			}
5940 		}
5941 		mutex_exit(&ill->ill_lock);
5942 		RELEASE_CONN_LOCK(q);
5943 	}
5944 	rw_exit(&ipst->ips_ill_g_lock);
5945 
5946 	/* lookup the ipif based on interface address */
5947 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
5948 	    ipst);
5949 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5950 	return (ipif);
5951 }
5952 
5953 /*
5954  * Look for an ipif with the specified address. For point-point links
5955  * we look for matches on either the destination address and the local
5956  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5957  * is set.
5958  * Matches on a specific ill if match_ill is set.
5959  */
5960 ipif_t *
5961 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5962     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
5963 {
5964 	ipif_t  *ipif;
5965 	ill_t   *ill;
5966 	boolean_t ptp = B_FALSE;
5967 	ipsq_t	*ipsq;
5968 	ill_walk_context_t	ctx;
5969 
5970 	if (error != NULL)
5971 		*error = 0;
5972 
5973 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5974 	/*
5975 	 * Repeat twice, first based on local addresses and
5976 	 * next time for pointopoint.
5977 	 */
5978 repeat:
5979 	ill = ILL_START_WALK_V4(&ctx, ipst);
5980 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5981 		if (match_ill != NULL && ill != match_ill) {
5982 			continue;
5983 		}
5984 		GRAB_CONN_LOCK(q);
5985 		mutex_enter(&ill->ill_lock);
5986 		for (ipif = ill->ill_ipif; ipif != NULL;
5987 		    ipif = ipif->ipif_next) {
5988 			if (zoneid != ALL_ZONES &&
5989 			    zoneid != ipif->ipif_zoneid &&
5990 			    ipif->ipif_zoneid != ALL_ZONES)
5991 				continue;
5992 			/* Allow the ipif to be down */
5993 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5994 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5995 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5996 			    (ipif->ipif_pp_dst_addr == addr))) {
5997 				/*
5998 				 * The block comment at the start of ipif_down
5999 				 * explains the use of the macros used below
6000 				 */
6001 				if (IPIF_CAN_LOOKUP(ipif)) {
6002 					ipif_refhold_locked(ipif);
6003 					mutex_exit(&ill->ill_lock);
6004 					RELEASE_CONN_LOCK(q);
6005 					rw_exit(&ipst->ips_ill_g_lock);
6006 					return (ipif);
6007 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6008 					ipsq = ill->ill_phyint->phyint_ipsq;
6009 					mutex_enter(&ipsq->ipsq_lock);
6010 					mutex_exit(&ill->ill_lock);
6011 					rw_exit(&ipst->ips_ill_g_lock);
6012 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6013 						ill);
6014 					mutex_exit(&ipsq->ipsq_lock);
6015 					RELEASE_CONN_LOCK(q);
6016 					*error = EINPROGRESS;
6017 					return (NULL);
6018 				}
6019 			}
6020 		}
6021 		mutex_exit(&ill->ill_lock);
6022 		RELEASE_CONN_LOCK(q);
6023 	}
6024 
6025 	/* If we already did the ptp case, then we are done */
6026 	if (ptp) {
6027 		rw_exit(&ipst->ips_ill_g_lock);
6028 		if (error != NULL)
6029 			*error = ENXIO;
6030 		return (NULL);
6031 	}
6032 	ptp = B_TRUE;
6033 	goto repeat;
6034 }
6035 
6036 /*
6037  * Look for an ipif with the specified address. For point-point links
6038  * we look for matches on either the destination address and the local
6039  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6040  * is set.
6041  * Matches on a specific ill if match_ill is set.
6042  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6043  */
6044 zoneid_t
6045 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6046 {
6047 	zoneid_t zoneid;
6048 	ipif_t  *ipif;
6049 	ill_t   *ill;
6050 	boolean_t ptp = B_FALSE;
6051 	ill_walk_context_t	ctx;
6052 
6053 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6054 	/*
6055 	 * Repeat twice, first based on local addresses and
6056 	 * next time for pointopoint.
6057 	 */
6058 repeat:
6059 	ill = ILL_START_WALK_V4(&ctx, ipst);
6060 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6061 		if (match_ill != NULL && ill != match_ill) {
6062 			continue;
6063 		}
6064 		mutex_enter(&ill->ill_lock);
6065 		for (ipif = ill->ill_ipif; ipif != NULL;
6066 		    ipif = ipif->ipif_next) {
6067 			/* Allow the ipif to be down */
6068 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6069 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6070 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6071 			    (ipif->ipif_pp_dst_addr == addr)) &&
6072 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6073 				zoneid = ipif->ipif_zoneid;
6074 				mutex_exit(&ill->ill_lock);
6075 				rw_exit(&ipst->ips_ill_g_lock);
6076 				/*
6077 				 * If ipif_zoneid was ALL_ZONES then we have
6078 				 * a trusted extensions shared IP address.
6079 				 * In that case GLOBAL_ZONEID works to send.
6080 				 */
6081 				if (zoneid == ALL_ZONES)
6082 					zoneid = GLOBAL_ZONEID;
6083 				return (zoneid);
6084 			}
6085 		}
6086 		mutex_exit(&ill->ill_lock);
6087 	}
6088 
6089 	/* If we already did the ptp case, then we are done */
6090 	if (ptp) {
6091 		rw_exit(&ipst->ips_ill_g_lock);
6092 		return (ALL_ZONES);
6093 	}
6094 	ptp = B_TRUE;
6095 	goto repeat;
6096 }
6097 
6098 /*
6099  * Look for an ipif that matches the specified remote address i.e. the
6100  * ipif that would receive the specified packet.
6101  * First look for directly connected interfaces and then do a recursive
6102  * IRE lookup and pick the first ipif corresponding to the source address in the
6103  * ire.
6104  * Returns: held ipif
6105  */
6106 ipif_t *
6107 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6108 {
6109 	ipif_t	*ipif;
6110 	ire_t	*ire;
6111 	ip_stack_t	*ipst = ill->ill_ipst;
6112 
6113 	ASSERT(!ill->ill_isv6);
6114 
6115 	/*
6116 	 * Someone could be changing this ipif currently or change it
6117 	 * after we return this. Thus  a few packets could use the old
6118 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6119 	 * will atomically be updated or cleaned up with the new value
6120 	 * Thus we don't need a lock to check the flags or other attrs below.
6121 	 */
6122 	mutex_enter(&ill->ill_lock);
6123 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6124 		if (!IPIF_CAN_LOOKUP(ipif))
6125 			continue;
6126 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6127 		    ipif->ipif_zoneid != ALL_ZONES)
6128 			continue;
6129 		/* Allow the ipif to be down */
6130 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6131 			if ((ipif->ipif_pp_dst_addr == addr) ||
6132 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6133 			    ipif->ipif_lcl_addr == addr)) {
6134 				ipif_refhold_locked(ipif);
6135 				mutex_exit(&ill->ill_lock);
6136 				return (ipif);
6137 			}
6138 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6139 			ipif_refhold_locked(ipif);
6140 			mutex_exit(&ill->ill_lock);
6141 			return (ipif);
6142 		}
6143 	}
6144 	mutex_exit(&ill->ill_lock);
6145 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6146 	    NULL, MATCH_IRE_RECURSIVE, ipst);
6147 	if (ire != NULL) {
6148 		/*
6149 		 * The callers of this function wants to know the
6150 		 * interface on which they have to send the replies
6151 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6152 		 * derived from different ills, we really don't care
6153 		 * what we return here.
6154 		 */
6155 		ipif = ire->ire_ipif;
6156 		if (ipif != NULL) {
6157 			ipif_refhold(ipif);
6158 			ire_refrele(ire);
6159 			return (ipif);
6160 		}
6161 		ire_refrele(ire);
6162 	}
6163 	/* Pick the first interface */
6164 	ipif = ipif_get_next_ipif(NULL, ill);
6165 	return (ipif);
6166 }
6167 
6168 /*
6169  * This func does not prevent refcnt from increasing. But if
6170  * the caller has taken steps to that effect, then this func
6171  * can be used to determine whether the ill has become quiescent
6172  */
6173 boolean_t
6174 ill_is_quiescent(ill_t *ill)
6175 {
6176 	ipif_t	*ipif;
6177 
6178 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6179 
6180 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6181 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6182 			return (B_FALSE);
6183 		}
6184 	}
6185 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6186 	    ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 ||
6187 	    ill->ill_mrtun_refcnt != 0) {
6188 		return (B_FALSE);
6189 	}
6190 	return (B_TRUE);
6191 }
6192 
6193 /*
6194  * This func does not prevent refcnt from increasing. But if
6195  * the caller has taken steps to that effect, then this func
6196  * can be used to determine whether the ipif has become quiescent
6197  */
6198 static boolean_t
6199 ipif_is_quiescent(ipif_t *ipif)
6200 {
6201 	ill_t *ill;
6202 
6203 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6204 
6205 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6206 		return (B_FALSE);
6207 	}
6208 
6209 	ill = ipif->ipif_ill;
6210 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6211 	    ill->ill_logical_down) {
6212 		return (B_TRUE);
6213 	}
6214 
6215 	/* This is the last ipif going down or being deleted on this ill */
6216 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6217 		return (B_FALSE);
6218 	}
6219 
6220 	return (B_TRUE);
6221 }
6222 
6223 /*
6224  * This func does not prevent refcnt from increasing. But if
6225  * the caller has taken steps to that effect, then this func
6226  * can be used to determine whether the ipifs marked with IPIF_MOVING
6227  * have become quiescent and can be moved in a failover/failback.
6228  */
6229 static ipif_t *
6230 ill_quiescent_to_move(ill_t *ill)
6231 {
6232 	ipif_t  *ipif;
6233 
6234 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6235 
6236 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6237 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6238 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6239 				return (ipif);
6240 			}
6241 		}
6242 	}
6243 	return (NULL);
6244 }
6245 
6246 /*
6247  * The ipif/ill/ire has been refreled. Do the tail processing.
6248  * Determine if the ipif or ill in question has become quiescent and if so
6249  * wakeup close and/or restart any queued pending ioctl that is waiting
6250  * for the ipif_down (or ill_down)
6251  */
6252 void
6253 ipif_ill_refrele_tail(ill_t *ill)
6254 {
6255 	mblk_t	*mp;
6256 	conn_t	*connp;
6257 	ipsq_t	*ipsq;
6258 	ipif_t	*ipif;
6259 	dl_notify_ind_t *dlindp;
6260 
6261 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6262 
6263 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6264 	    ill_is_quiescent(ill)) {
6265 		/* ill_close may be waiting */
6266 		cv_broadcast(&ill->ill_cv);
6267 	}
6268 
6269 	/* ipsq can't change because ill_lock  is held */
6270 	ipsq = ill->ill_phyint->phyint_ipsq;
6271 	if (ipsq->ipsq_waitfor == 0) {
6272 		/* Not waiting for anything, just return. */
6273 		mutex_exit(&ill->ill_lock);
6274 		return;
6275 	}
6276 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6277 		ipsq->ipsq_pending_ipif != NULL);
6278 	/*
6279 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6280 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6281 	 * be zero for restarting an ioctl that ends up downing the ill.
6282 	 */
6283 	ipif = ipsq->ipsq_pending_ipif;
6284 	if (ipif->ipif_ill != ill) {
6285 		/* The ioctl is pending on some other ill. */
6286 		mutex_exit(&ill->ill_lock);
6287 		return;
6288 	}
6289 
6290 	switch (ipsq->ipsq_waitfor) {
6291 	case IPIF_DOWN:
6292 	case IPIF_FREE:
6293 		if (!ipif_is_quiescent(ipif)) {
6294 			mutex_exit(&ill->ill_lock);
6295 			return;
6296 		}
6297 		break;
6298 
6299 	case ILL_DOWN:
6300 	case ILL_FREE:
6301 		/*
6302 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6303 		 * waits synchronously in ip_close, and no message is queued in
6304 		 * ipsq_pending_mp at all in this case
6305 		 */
6306 		if (!ill_is_quiescent(ill)) {
6307 			mutex_exit(&ill->ill_lock);
6308 			return;
6309 		}
6310 
6311 		break;
6312 
6313 	case ILL_MOVE_OK:
6314 		if (ill_quiescent_to_move(ill) != NULL) {
6315 			mutex_exit(&ill->ill_lock);
6316 			return;
6317 		}
6318 
6319 		break;
6320 	default:
6321 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6322 		    (void *)ipsq, ipsq->ipsq_waitfor);
6323 	}
6324 
6325 	/*
6326 	 * Incr refcnt for the qwriter_ip call below which
6327 	 * does a refrele
6328 	 */
6329 	ill_refhold_locked(ill);
6330 	mutex_exit(&ill->ill_lock);
6331 
6332 	mp = ipsq_pending_mp_get(ipsq, &connp);
6333 	ASSERT(mp != NULL);
6334 
6335 	switch (mp->b_datap->db_type) {
6336 	case M_PCPROTO:
6337 	case M_PROTO:
6338 		/*
6339 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6340 		 */
6341 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6342 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6343 
6344 		switch (dlindp->dl_notification) {
6345 		case DL_NOTE_PHYS_ADDR:
6346 			qwriter_ip(NULL, ill, ill->ill_rq, mp,
6347 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6348 			return;
6349 		default:
6350 			ASSERT(0);
6351 		}
6352 		break;
6353 
6354 	case M_ERROR:
6355 	case M_HANGUP:
6356 		qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail,
6357 		    CUR_OP, B_TRUE);
6358 		return;
6359 
6360 	case M_IOCTL:
6361 	case M_IOCDATA:
6362 		qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6363 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6364 		return;
6365 
6366 	default:
6367 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6368 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6369 	}
6370 }
6371 
6372 #ifdef ILL_DEBUG
6373 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6374 void
6375 th_trace_rrecord(th_trace_t *th_trace)
6376 {
6377 	tr_buf_t *tr_buf;
6378 	uint_t lastref;
6379 
6380 	lastref = th_trace->th_trace_lastref;
6381 	lastref++;
6382 	if (lastref == TR_BUF_MAX)
6383 		lastref = 0;
6384 	th_trace->th_trace_lastref = lastref;
6385 	tr_buf = &th_trace->th_trbuf[lastref];
6386 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH);
6387 }
6388 
6389 th_trace_t *
6390 th_trace_ipif_lookup(ipif_t *ipif)
6391 {
6392 	int bucket_id;
6393 	th_trace_t *th_trace;
6394 
6395 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6396 
6397 	bucket_id = IP_TR_HASH(curthread);
6398 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6399 
6400 	for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL;
6401 	    th_trace = th_trace->th_next) {
6402 		if (th_trace->th_id == curthread)
6403 			return (th_trace);
6404 	}
6405 	return (NULL);
6406 }
6407 
6408 void
6409 ipif_trace_ref(ipif_t *ipif)
6410 {
6411 	int bucket_id;
6412 	th_trace_t *th_trace;
6413 
6414 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6415 
6416 	if (ipif->ipif_trace_disable)
6417 		return;
6418 
6419 	/*
6420 	 * Attempt to locate the trace buffer for the curthread.
6421 	 * If it does not exist, then allocate a new trace buffer
6422 	 * and link it in list of trace bufs for this ipif, at the head
6423 	 */
6424 	th_trace = th_trace_ipif_lookup(ipif);
6425 	if (th_trace == NULL) {
6426 		bucket_id = IP_TR_HASH(curthread);
6427 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6428 		    KM_NOSLEEP);
6429 		if (th_trace == NULL) {
6430 			ipif->ipif_trace_disable = B_TRUE;
6431 			ipif_trace_cleanup(ipif);
6432 			return;
6433 		}
6434 		th_trace->th_id = curthread;
6435 		th_trace->th_next = ipif->ipif_trace[bucket_id];
6436 		th_trace->th_prev = &ipif->ipif_trace[bucket_id];
6437 		if (th_trace->th_next != NULL)
6438 			th_trace->th_next->th_prev = &th_trace->th_next;
6439 		ipif->ipif_trace[bucket_id] = th_trace;
6440 	}
6441 	ASSERT(th_trace->th_refcnt >= 0 &&
6442 		th_trace->th_refcnt < TR_BUF_MAX -1);
6443 	th_trace->th_refcnt++;
6444 	th_trace_rrecord(th_trace);
6445 }
6446 
6447 void
6448 ipif_untrace_ref(ipif_t *ipif)
6449 {
6450 	th_trace_t *th_trace;
6451 
6452 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6453 
6454 	if (ipif->ipif_trace_disable)
6455 		return;
6456 	th_trace = th_trace_ipif_lookup(ipif);
6457 	ASSERT(th_trace != NULL);
6458 	ASSERT(th_trace->th_refcnt > 0);
6459 
6460 	th_trace->th_refcnt--;
6461 	th_trace_rrecord(th_trace);
6462 }
6463 
6464 th_trace_t *
6465 th_trace_ill_lookup(ill_t *ill)
6466 {
6467 	th_trace_t *th_trace;
6468 	int bucket_id;
6469 
6470 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6471 
6472 	bucket_id = IP_TR_HASH(curthread);
6473 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6474 
6475 	for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL;
6476 	    th_trace = th_trace->th_next) {
6477 		if (th_trace->th_id == curthread)
6478 			return (th_trace);
6479 	}
6480 	return (NULL);
6481 }
6482 
6483 void
6484 ill_trace_ref(ill_t *ill)
6485 {
6486 	int bucket_id;
6487 	th_trace_t *th_trace;
6488 
6489 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6490 	if (ill->ill_trace_disable)
6491 		return;
6492 	/*
6493 	 * Attempt to locate the trace buffer for the curthread.
6494 	 * If it does not exist, then allocate a new trace buffer
6495 	 * and link it in list of trace bufs for this ill, at the head
6496 	 */
6497 	th_trace = th_trace_ill_lookup(ill);
6498 	if (th_trace == NULL) {
6499 		bucket_id = IP_TR_HASH(curthread);
6500 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6501 		    KM_NOSLEEP);
6502 		if (th_trace == NULL) {
6503 			ill->ill_trace_disable = B_TRUE;
6504 			ill_trace_cleanup(ill);
6505 			return;
6506 		}
6507 		th_trace->th_id = curthread;
6508 		th_trace->th_next = ill->ill_trace[bucket_id];
6509 		th_trace->th_prev = &ill->ill_trace[bucket_id];
6510 		if (th_trace->th_next != NULL)
6511 			th_trace->th_next->th_prev = &th_trace->th_next;
6512 		ill->ill_trace[bucket_id] = th_trace;
6513 	}
6514 	ASSERT(th_trace->th_refcnt >= 0 &&
6515 		th_trace->th_refcnt < TR_BUF_MAX - 1);
6516 
6517 	th_trace->th_refcnt++;
6518 	th_trace_rrecord(th_trace);
6519 }
6520 
6521 void
6522 ill_untrace_ref(ill_t *ill)
6523 {
6524 	th_trace_t *th_trace;
6525 
6526 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6527 
6528 	if (ill->ill_trace_disable)
6529 		return;
6530 	th_trace = th_trace_ill_lookup(ill);
6531 	ASSERT(th_trace != NULL);
6532 	ASSERT(th_trace->th_refcnt > 0);
6533 
6534 	th_trace->th_refcnt--;
6535 	th_trace_rrecord(th_trace);
6536 }
6537 
6538 /*
6539  * Verify that this thread has no refs to the ipif and free
6540  * the trace buffers
6541  */
6542 /* ARGSUSED */
6543 void
6544 ipif_thread_exit(ipif_t *ipif, void *dummy)
6545 {
6546 	th_trace_t *th_trace;
6547 
6548 	mutex_enter(&ipif->ipif_ill->ill_lock);
6549 
6550 	th_trace = th_trace_ipif_lookup(ipif);
6551 	if (th_trace == NULL) {
6552 		mutex_exit(&ipif->ipif_ill->ill_lock);
6553 		return;
6554 	}
6555 	ASSERT(th_trace->th_refcnt == 0);
6556 	/* unlink th_trace and free it */
6557 	*th_trace->th_prev = th_trace->th_next;
6558 	if (th_trace->th_next != NULL)
6559 		th_trace->th_next->th_prev = th_trace->th_prev;
6560 	th_trace->th_next = NULL;
6561 	th_trace->th_prev = NULL;
6562 	kmem_free(th_trace, sizeof (th_trace_t));
6563 
6564 	mutex_exit(&ipif->ipif_ill->ill_lock);
6565 }
6566 
6567 /*
6568  * Verify that this thread has no refs to the ill and free
6569  * the trace buffers
6570  */
6571 /* ARGSUSED */
6572 void
6573 ill_thread_exit(ill_t *ill, void *dummy)
6574 {
6575 	th_trace_t *th_trace;
6576 
6577 	mutex_enter(&ill->ill_lock);
6578 
6579 	th_trace = th_trace_ill_lookup(ill);
6580 	if (th_trace == NULL) {
6581 		mutex_exit(&ill->ill_lock);
6582 		return;
6583 	}
6584 	ASSERT(th_trace->th_refcnt == 0);
6585 	/* unlink th_trace and free it */
6586 	*th_trace->th_prev = th_trace->th_next;
6587 	if (th_trace->th_next != NULL)
6588 		th_trace->th_next->th_prev = th_trace->th_prev;
6589 	th_trace->th_next = NULL;
6590 	th_trace->th_prev = NULL;
6591 	kmem_free(th_trace, sizeof (th_trace_t));
6592 
6593 	mutex_exit(&ill->ill_lock);
6594 }
6595 #endif
6596 
6597 #ifdef ILL_DEBUG
6598 void
6599 ip_thread_exit_stack(ip_stack_t *ipst)
6600 {
6601 	ill_t	*ill;
6602 	ipif_t	*ipif;
6603 	ill_walk_context_t	ctx;
6604 
6605 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6606 	ill = ILL_START_WALK_ALL(&ctx, ipst);
6607 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6608 		for (ipif = ill->ill_ipif; ipif != NULL;
6609 		    ipif = ipif->ipif_next) {
6610 			ipif_thread_exit(ipif, NULL);
6611 		}
6612 		ill_thread_exit(ill, NULL);
6613 	}
6614 	rw_exit(&ipst->ips_ill_g_lock);
6615 
6616 	ire_walk(ire_thread_exit, NULL, ipst);
6617 	ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE);
6618 	ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE);
6619 }
6620 
6621 /*
6622  * This is a function which is called from thread_exit
6623  * that can be used to debug reference count issues in IP. See comment in
6624  * <inet/ip.h> on how it is used.
6625  */
6626 void
6627 ip_thread_exit(void)
6628 {
6629 	netstack_t *ns;
6630 
6631 	ns = netstack_get_current();
6632 	if (ns != NULL) {
6633 		ip_thread_exit_stack(ns->netstack_ip);
6634 		netstack_rele(ns);
6635 	}
6636 }
6637 
6638 /*
6639  * Called when ipif is unplumbed or when memory alloc fails
6640  */
6641 void
6642 ipif_trace_cleanup(ipif_t *ipif)
6643 {
6644 	int	i;
6645 	th_trace_t	*th_trace;
6646 	th_trace_t	*th_trace_next;
6647 
6648 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6649 		for (th_trace = ipif->ipif_trace[i]; th_trace != NULL;
6650 		    th_trace = th_trace_next) {
6651 			th_trace_next = th_trace->th_next;
6652 			kmem_free(th_trace, sizeof (th_trace_t));
6653 		}
6654 		ipif->ipif_trace[i] = NULL;
6655 	}
6656 }
6657 
6658 /*
6659  * Called when ill is unplumbed or when memory alloc fails
6660  */
6661 void
6662 ill_trace_cleanup(ill_t *ill)
6663 {
6664 	int	i;
6665 	th_trace_t	*th_trace;
6666 	th_trace_t	*th_trace_next;
6667 
6668 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6669 		for (th_trace = ill->ill_trace[i]; th_trace != NULL;
6670 		    th_trace = th_trace_next) {
6671 			th_trace_next = th_trace->th_next;
6672 			kmem_free(th_trace, sizeof (th_trace_t));
6673 		}
6674 		ill->ill_trace[i] = NULL;
6675 	}
6676 }
6677 
6678 #else
6679 void ip_thread_exit(void) {}
6680 #endif
6681 
6682 void
6683 ipif_refhold_locked(ipif_t *ipif)
6684 {
6685 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6686 	ipif->ipif_refcnt++;
6687 	IPIF_TRACE_REF(ipif);
6688 }
6689 
6690 void
6691 ipif_refhold(ipif_t *ipif)
6692 {
6693 	ill_t	*ill;
6694 
6695 	ill = ipif->ipif_ill;
6696 	mutex_enter(&ill->ill_lock);
6697 	ipif->ipif_refcnt++;
6698 	IPIF_TRACE_REF(ipif);
6699 	mutex_exit(&ill->ill_lock);
6700 }
6701 
6702 /*
6703  * Must not be called while holding any locks. Otherwise if this is
6704  * the last reference to be released there is a chance of recursive mutex
6705  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6706  * to restart an ioctl.
6707  */
6708 void
6709 ipif_refrele(ipif_t *ipif)
6710 {
6711 	ill_t	*ill;
6712 
6713 	ill = ipif->ipif_ill;
6714 
6715 	mutex_enter(&ill->ill_lock);
6716 	ASSERT(ipif->ipif_refcnt != 0);
6717 	ipif->ipif_refcnt--;
6718 	IPIF_UNTRACE_REF(ipif);
6719 	if (ipif->ipif_refcnt != 0) {
6720 		mutex_exit(&ill->ill_lock);
6721 		return;
6722 	}
6723 
6724 	/* Drops the ill_lock */
6725 	ipif_ill_refrele_tail(ill);
6726 }
6727 
6728 ipif_t *
6729 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6730 {
6731 	ipif_t	*ipif;
6732 
6733 	mutex_enter(&ill->ill_lock);
6734 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6735 	    ipif != NULL; ipif = ipif->ipif_next) {
6736 		if (!IPIF_CAN_LOOKUP(ipif))
6737 			continue;
6738 		ipif_refhold_locked(ipif);
6739 		mutex_exit(&ill->ill_lock);
6740 		return (ipif);
6741 	}
6742 	mutex_exit(&ill->ill_lock);
6743 	return (NULL);
6744 }
6745 
6746 /*
6747  * TODO: make this table extendible at run time
6748  * Return a pointer to the mac type info for 'mac_type'
6749  */
6750 static ip_m_t *
6751 ip_m_lookup(t_uscalar_t mac_type)
6752 {
6753 	ip_m_t	*ipm;
6754 
6755 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6756 		if (ipm->ip_m_mac_type == mac_type)
6757 			return (ipm);
6758 	return (NULL);
6759 }
6760 
6761 /*
6762  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6763  * ipif_arg is passed in to associate it with the correct interface.
6764  * We may need to restart this operation if the ipif cannot be looked up
6765  * due to an exclusive operation that is currently in progress. The restart
6766  * entry point is specified by 'func'
6767  */
6768 int
6769 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6770     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
6771     ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp,
6772     ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst)
6773 {
6774 	ire_t	*ire;
6775 	ire_t	*gw_ire = NULL;
6776 	ipif_t	*ipif = NULL;
6777 	boolean_t ipif_refheld = B_FALSE;
6778 	uint_t	type;
6779 	int	match_flags = MATCH_IRE_TYPE;
6780 	int	error;
6781 	tsol_gc_t *gc = NULL;
6782 	tsol_gcgrp_t *gcgrp = NULL;
6783 	boolean_t gcgrp_xtraref = B_FALSE;
6784 
6785 	ip1dbg(("ip_rt_add:"));
6786 
6787 	if (ire_arg != NULL)
6788 		*ire_arg = NULL;
6789 
6790 	/*
6791 	 * If this is the case of RTF_HOST being set, then we set the netmask
6792 	 * to all ones (regardless if one was supplied).
6793 	 */
6794 	if (flags & RTF_HOST)
6795 		mask = IP_HOST_MASK;
6796 
6797 	/*
6798 	 * Prevent routes with a zero gateway from being created (since
6799 	 * interfaces can currently be plumbed and brought up no assigned
6800 	 * address).
6801 	 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0.
6802 	 */
6803 	if (gw_addr == 0 && src_ipif == NULL)
6804 		return (ENETUNREACH);
6805 	/*
6806 	 * Get the ipif, if any, corresponding to the gw_addr
6807 	 */
6808 	if (gw_addr != 0) {
6809 		ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func,
6810 		    &error, ipst);
6811 		if (ipif != NULL) {
6812 			if (IS_VNI(ipif->ipif_ill)) {
6813 				ipif_refrele(ipif);
6814 				return (EINVAL);
6815 			}
6816 			ipif_refheld = B_TRUE;
6817 		} else if (error == EINPROGRESS) {
6818 			ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6819 			return (EINPROGRESS);
6820 		} else {
6821 			error = 0;
6822 		}
6823 	}
6824 
6825 	if (ipif != NULL) {
6826 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6827 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6828 	} else {
6829 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6830 	}
6831 
6832 	/*
6833 	 * GateD will attempt to create routes with a loopback interface
6834 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6835 	 * these routes to be added, but create them as interface routes
6836 	 * since the gateway is an interface address.
6837 	 */
6838 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6839 		flags &= ~RTF_GATEWAY;
6840 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6841 		    mask == IP_HOST_MASK) {
6842 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6843 			    ALL_ZONES, NULL, match_flags, ipst);
6844 			if (ire != NULL) {
6845 				ire_refrele(ire);
6846 				if (ipif_refheld)
6847 					ipif_refrele(ipif);
6848 				return (EEXIST);
6849 			}
6850 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6851 			    "for 0x%x\n", (void *)ipif,
6852 			    ipif->ipif_ire_type,
6853 			    ntohl(ipif->ipif_lcl_addr)));
6854 			ire = ire_create(
6855 			    (uchar_t *)&dst_addr,	/* dest address */
6856 			    (uchar_t *)&mask,		/* mask */
6857 			    (uchar_t *)&ipif->ipif_src_addr,
6858 			    NULL,			/* no gateway */
6859 			    NULL,
6860 			    &ipif->ipif_mtu,
6861 			    NULL,
6862 			    ipif->ipif_rq,		/* recv-from queue */
6863 			    NULL,			/* no send-to queue */
6864 			    ipif->ipif_ire_type,	/* LOOPBACK */
6865 			    NULL,
6866 			    ipif,
6867 			    NULL,
6868 			    0,
6869 			    0,
6870 			    0,
6871 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6872 			    RTF_PRIVATE : 0,
6873 			    &ire_uinfo_null,
6874 			    NULL,
6875 			    NULL,
6876 			    ipst);
6877 
6878 			if (ire == NULL) {
6879 				if (ipif_refheld)
6880 					ipif_refrele(ipif);
6881 				return (ENOMEM);
6882 			}
6883 			error = ire_add(&ire, q, mp, func, B_FALSE);
6884 			if (error == 0)
6885 				goto save_ire;
6886 			if (ipif_refheld)
6887 				ipif_refrele(ipif);
6888 			return (error);
6889 
6890 		}
6891 	}
6892 
6893 	/*
6894 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6895 	 * and the gateway address provided is one of the system's interface
6896 	 * addresses.  By using the routing socket interface and supplying an
6897 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6898 	 * specifying an interface route to be created is available which uses
6899 	 * the interface index that specifies the outgoing interface rather than
6900 	 * the address of an outgoing interface (which may not be able to
6901 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6902 	 * flag, routes can be specified which not only specify the next-hop to
6903 	 * be used when routing to a certain prefix, but also which outgoing
6904 	 * interface should be used.
6905 	 *
6906 	 * Previously, interfaces would have unique addresses assigned to them
6907 	 * and so the address assigned to a particular interface could be used
6908 	 * to identify a particular interface.  One exception to this was the
6909 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6910 	 *
6911 	 * With the advent of IPv6 and its link-local addresses, this
6912 	 * restriction was relaxed and interfaces could share addresses between
6913 	 * themselves.  In fact, typically all of the link-local interfaces on
6914 	 * an IPv6 node or router will have the same link-local address.  In
6915 	 * order to differentiate between these interfaces, the use of an
6916 	 * interface index is necessary and this index can be carried inside a
6917 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6918 	 * of using the interface index, however, is that all of the ipif's that
6919 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6920 	 * cannot be used to differentiate between ipif's (or logical
6921 	 * interfaces) that belong to the same ill (physical interface).
6922 	 *
6923 	 * For example, in the following case involving IPv4 interfaces and
6924 	 * logical interfaces
6925 	 *
6926 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6927 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6928 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6929 	 *
6930 	 * the ipif's corresponding to each of these interface routes can be
6931 	 * uniquely identified by the "gateway" (actually interface address).
6932 	 *
6933 	 * In this case involving multiple IPv6 default routes to a particular
6934 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6935 	 * default route is of interest:
6936 	 *
6937 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6938 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6939 	 */
6940 
6941 	/* RTF_GATEWAY not set */
6942 	if (!(flags & RTF_GATEWAY)) {
6943 		queue_t	*stq;
6944 		queue_t	*rfq = NULL;
6945 		ill_t	*in_ill = NULL;
6946 
6947 		if (sp != NULL) {
6948 			ip2dbg(("ip_rt_add: gateway security attributes "
6949 			    "cannot be set with interface route\n"));
6950 			if (ipif_refheld)
6951 				ipif_refrele(ipif);
6952 			return (EINVAL);
6953 		}
6954 
6955 		/*
6956 		 * As the interface index specified with the RTA_IFP sockaddr is
6957 		 * the same for all ipif's off of an ill, the matching logic
6958 		 * below uses MATCH_IRE_ILL if such an index was specified.
6959 		 * This means that routes sharing the same prefix when added
6960 		 * using a RTA_IFP sockaddr must have distinct interface
6961 		 * indices (namely, they must be on distinct ill's).
6962 		 *
6963 		 * On the other hand, since the gateway address will usually be
6964 		 * different for each ipif on the system, the matching logic
6965 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6966 		 * route.  This means that interface routes for the same prefix
6967 		 * can be created if they belong to distinct ipif's and if a
6968 		 * RTA_IFP sockaddr is not present.
6969 		 */
6970 		if (ipif_arg != NULL) {
6971 			if (ipif_refheld)  {
6972 				ipif_refrele(ipif);
6973 				ipif_refheld = B_FALSE;
6974 			}
6975 			ipif = ipif_arg;
6976 			match_flags |= MATCH_IRE_ILL;
6977 		} else {
6978 			/*
6979 			 * Check the ipif corresponding to the gw_addr
6980 			 */
6981 			if (ipif == NULL)
6982 				return (ENETUNREACH);
6983 			match_flags |= MATCH_IRE_IPIF;
6984 		}
6985 		ASSERT(ipif != NULL);
6986 		/*
6987 		 * If src_ipif is not NULL, we have to create
6988 		 * an ire with non-null ire_in_ill value
6989 		 */
6990 		if (src_ipif != NULL) {
6991 			in_ill = src_ipif->ipif_ill;
6992 		}
6993 
6994 		/*
6995 		 * We check for an existing entry at this point.
6996 		 *
6997 		 * Since a netmask isn't passed in via the ioctl interface
6998 		 * (SIOCADDRT), we don't check for a matching netmask in that
6999 		 * case.
7000 		 */
7001 		if (!ioctl_msg)
7002 			match_flags |= MATCH_IRE_MASK;
7003 		if (src_ipif != NULL) {
7004 			/* Look up in the special table */
7005 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7006 			    ipif, src_ipif->ipif_ill, match_flags);
7007 		} else {
7008 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7009 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7010 			    NULL, match_flags, ipst);
7011 		}
7012 		if (ire != NULL) {
7013 			ire_refrele(ire);
7014 			if (ipif_refheld)
7015 				ipif_refrele(ipif);
7016 			return (EEXIST);
7017 		}
7018 
7019 		if (src_ipif != NULL) {
7020 			/*
7021 			 * Create the special ire for the IRE table
7022 			 * which hangs out of ire_in_ill. This ire
7023 			 * is in-between IRE_CACHE and IRE_INTERFACE.
7024 			 * Thus rfq is non-NULL.
7025 			 */
7026 			rfq = ipif->ipif_rq;
7027 		}
7028 		/* Create the usual interface ires */
7029 
7030 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7031 		    ? ipif->ipif_rq : ipif->ipif_wq;
7032 
7033 		/*
7034 		 * Create a copy of the IRE_LOOPBACK,
7035 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7036 		 * the modified address and netmask.
7037 		 */
7038 		ire = ire_create(
7039 		    (uchar_t *)&dst_addr,
7040 		    (uint8_t *)&mask,
7041 		    (uint8_t *)&ipif->ipif_src_addr,
7042 		    NULL,
7043 		    NULL,
7044 		    &ipif->ipif_mtu,
7045 		    NULL,
7046 		    rfq,
7047 		    stq,
7048 		    ipif->ipif_net_type,
7049 		    ipif->ipif_resolver_mp,
7050 		    ipif,
7051 		    in_ill,
7052 		    0,
7053 		    0,
7054 		    0,
7055 		    flags,
7056 		    &ire_uinfo_null,
7057 		    NULL,
7058 		    NULL,
7059 		    ipst);
7060 		if (ire == NULL) {
7061 			if (ipif_refheld)
7062 				ipif_refrele(ipif);
7063 			return (ENOMEM);
7064 		}
7065 
7066 		/*
7067 		 * Some software (for example, GateD and Sun Cluster) attempts
7068 		 * to create (what amount to) IRE_PREFIX routes with the
7069 		 * loopback address as the gateway.  This is primarily done to
7070 		 * set up prefixes with the RTF_REJECT flag set (for example,
7071 		 * when generating aggregate routes.)
7072 		 *
7073 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7074 		 * IRE_LOOPBACK, then we map the request into a
7075 		 * IRE_IF_NORESOLVER.
7076 		 *
7077 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7078 		 * routine, but rather using ire_create() directly.
7079 		 *
7080 		 */
7081 		if (ipif->ipif_net_type == IRE_LOOPBACK)
7082 			ire->ire_type = IRE_IF_NORESOLVER;
7083 
7084 		error = ire_add(&ire, q, mp, func, B_FALSE);
7085 		if (error == 0)
7086 			goto save_ire;
7087 
7088 		/*
7089 		 * In the result of failure, ire_add() will have already
7090 		 * deleted the ire in question, so there is no need to
7091 		 * do that here.
7092 		 */
7093 		if (ipif_refheld)
7094 			ipif_refrele(ipif);
7095 		return (error);
7096 	}
7097 	if (ipif_refheld) {
7098 		ipif_refrele(ipif);
7099 		ipif_refheld = B_FALSE;
7100 	}
7101 
7102 	if (src_ipif != NULL) {
7103 		/* RTA_SRCIFP is not supported on RTF_GATEWAY */
7104 		ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n"));
7105 		return (EINVAL);
7106 	}
7107 	/*
7108 	 * Get an interface IRE for the specified gateway.
7109 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7110 	 * gateway, it is currently unreachable and we fail the request
7111 	 * accordingly.
7112 	 */
7113 	ipif = ipif_arg;
7114 	if (ipif_arg != NULL)
7115 		match_flags |= MATCH_IRE_ILL;
7116 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7117 	    ALL_ZONES, 0, NULL, match_flags, ipst);
7118 	if (gw_ire == NULL)
7119 		return (ENETUNREACH);
7120 
7121 	/*
7122 	 * We create one of three types of IREs as a result of this request
7123 	 * based on the netmask.  A netmask of all ones (which is automatically
7124 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7125 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7126 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7127 	 * destination prefix.
7128 	 */
7129 	if (mask == IP_HOST_MASK)
7130 		type = IRE_HOST;
7131 	else if (mask == 0)
7132 		type = IRE_DEFAULT;
7133 	else
7134 		type = IRE_PREFIX;
7135 
7136 	/* check for a duplicate entry */
7137 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7138 	    NULL, ALL_ZONES, 0, NULL,
7139 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7140 	if (ire != NULL) {
7141 		ire_refrele(gw_ire);
7142 		ire_refrele(ire);
7143 		return (EEXIST);
7144 	}
7145 
7146 	/* Security attribute exists */
7147 	if (sp != NULL) {
7148 		tsol_gcgrp_addr_t ga;
7149 
7150 		/* find or create the gateway credentials group */
7151 		ga.ga_af = AF_INET;
7152 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7153 
7154 		/* we hold reference to it upon success */
7155 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7156 		if (gcgrp == NULL) {
7157 			ire_refrele(gw_ire);
7158 			return (ENOMEM);
7159 		}
7160 
7161 		/*
7162 		 * Create and add the security attribute to the group; a
7163 		 * reference to the group is made upon allocating a new
7164 		 * entry successfully.  If it finds an already-existing
7165 		 * entry for the security attribute in the group, it simply
7166 		 * returns it and no new reference is made to the group.
7167 		 */
7168 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7169 		if (gc == NULL) {
7170 			/* release reference held by gcgrp_lookup */
7171 			GCGRP_REFRELE(gcgrp);
7172 			ire_refrele(gw_ire);
7173 			return (ENOMEM);
7174 		}
7175 	}
7176 
7177 	/* Create the IRE. */
7178 	ire = ire_create(
7179 	    (uchar_t *)&dst_addr,		/* dest address */
7180 	    (uchar_t *)&mask,			/* mask */
7181 	    /* src address assigned by the caller? */
7182 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7183 		(flags & RTF_SETSRC)) ?  &src_addr : NULL),
7184 	    (uchar_t *)&gw_addr,		/* gateway address */
7185 	    NULL,				/* no in-srcaddress */
7186 	    &gw_ire->ire_max_frag,
7187 	    NULL,				/* no Fast Path header */
7188 	    NULL,				/* no recv-from queue */
7189 	    NULL,				/* no send-to queue */
7190 	    (ushort_t)type,			/* IRE type */
7191 	    NULL,
7192 	    ipif_arg,
7193 	    NULL,
7194 	    0,
7195 	    0,
7196 	    0,
7197 	    flags,
7198 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7199 	    gc,					/* security attribute */
7200 	    NULL,
7201 	    ipst);
7202 
7203 	/*
7204 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7205 	 * reference to the 'gcgrp'. We can now release the extra reference
7206 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7207 	 */
7208 	if (gcgrp_xtraref)
7209 		GCGRP_REFRELE(gcgrp);
7210 	if (ire == NULL) {
7211 		if (gc != NULL)
7212 			GC_REFRELE(gc);
7213 		ire_refrele(gw_ire);
7214 		return (ENOMEM);
7215 	}
7216 
7217 	/*
7218 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7219 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7220 	 */
7221 
7222 	/* Add the new IRE. */
7223 	error = ire_add(&ire, q, mp, func, B_FALSE);
7224 	if (error != 0) {
7225 		/*
7226 		 * In the result of failure, ire_add() will have already
7227 		 * deleted the ire in question, so there is no need to
7228 		 * do that here.
7229 		 */
7230 		ire_refrele(gw_ire);
7231 		return (error);
7232 	}
7233 
7234 	if (flags & RTF_MULTIRT) {
7235 		/*
7236 		 * Invoke the CGTP (multirouting) filtering module
7237 		 * to add the dst address in the filtering database.
7238 		 * Replicated inbound packets coming from that address
7239 		 * will be filtered to discard the duplicates.
7240 		 * It is not necessary to call the CGTP filter hook
7241 		 * when the dst address is a broadcast or multicast,
7242 		 * because an IP source address cannot be a broadcast
7243 		 * or a multicast.
7244 		 */
7245 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7246 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7247 		if (ire_dst != NULL) {
7248 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
7249 			ire_refrele(ire_dst);
7250 			goto save_ire;
7251 		}
7252 		if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) &&
7253 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
7254 			int res = ip_cgtp_filter_ops->cfo_add_dest_v4(
7255 			    ire->ire_addr,
7256 			    ire->ire_gateway_addr,
7257 			    ire->ire_src_addr,
7258 			    gw_ire->ire_src_addr);
7259 			if (res != 0) {
7260 				ire_refrele(gw_ire);
7261 				ire_delete(ire);
7262 				return (res);
7263 			}
7264 		}
7265 	}
7266 
7267 	/*
7268 	 * Now that the prefix IRE entry has been created, delete any
7269 	 * existing gateway IRE cache entries as well as any IRE caches
7270 	 * using the gateway, and force them to be created through
7271 	 * ip_newroute.
7272 	 */
7273 	if (gc != NULL) {
7274 		ASSERT(gcgrp != NULL);
7275 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7276 	}
7277 
7278 save_ire:
7279 	if (gw_ire != NULL) {
7280 		ire_refrele(gw_ire);
7281 	}
7282 	/*
7283 	 * We do not do save_ire for the routes added with RTA_SRCIFP
7284 	 * flag. This route is only added and deleted by mipagent.
7285 	 * So, for simplicity of design, we refrain from saving
7286 	 * ires that are created with srcif value. This may change
7287 	 * in future if we find more usage of srcifp feature.
7288 	 */
7289 	if (ipif != NULL && src_ipif == NULL) {
7290 		/*
7291 		 * Save enough information so that we can recreate the IRE if
7292 		 * the interface goes down and then up.  The metrics associated
7293 		 * with the route will be saved as well when rts_setmetrics() is
7294 		 * called after the IRE has been created.  In the case where
7295 		 * memory cannot be allocated, none of this information will be
7296 		 * saved.
7297 		 */
7298 		ipif_save_ire(ipif, ire);
7299 	}
7300 	if (ioctl_msg)
7301 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7302 	if (ire_arg != NULL) {
7303 		/*
7304 		 * Store the ire that was successfully added into where ire_arg
7305 		 * points to so that callers don't have to look it up
7306 		 * themselves (but they are responsible for ire_refrele()ing
7307 		 * the ire when they are finished with it).
7308 		 */
7309 		*ire_arg = ire;
7310 	} else {
7311 		ire_refrele(ire);		/* Held in ire_add */
7312 	}
7313 	if (ipif_refheld)
7314 		ipif_refrele(ipif);
7315 	return (0);
7316 }
7317 
7318 /*
7319  * ip_rt_delete is called to delete an IPv4 route.
7320  * ipif_arg is passed in to associate it with the correct interface.
7321  * src_ipif is passed to associate the incoming interface of the packet.
7322  * We may need to restart this operation if the ipif cannot be looked up
7323  * due to an exclusive operation that is currently in progress. The restart
7324  * entry point is specified by 'func'
7325  */
7326 /* ARGSUSED4 */
7327 int
7328 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7329     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
7330     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
7331     ip_stack_t *ipst)
7332 {
7333 	ire_t	*ire = NULL;
7334 	ipif_t	*ipif;
7335 	boolean_t ipif_refheld = B_FALSE;
7336 	uint_t	type;
7337 	uint_t	match_flags = MATCH_IRE_TYPE;
7338 	int	err = 0;
7339 
7340 	ip1dbg(("ip_rt_delete:"));
7341 	/*
7342 	 * If this is the case of RTF_HOST being set, then we set the netmask
7343 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7344 	 */
7345 	if (flags & RTF_HOST) {
7346 		mask = IP_HOST_MASK;
7347 		match_flags |= MATCH_IRE_MASK;
7348 	} else if (rtm_addrs & RTA_NETMASK) {
7349 		match_flags |= MATCH_IRE_MASK;
7350 	}
7351 
7352 	/*
7353 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7354 	 * we check if the gateway address is one of our interfaces first,
7355 	 * and fall back on RTF_GATEWAY routes.
7356 	 *
7357 	 * This makes it possible to delete an original
7358 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7359 	 *
7360 	 * As the interface index specified with the RTA_IFP sockaddr is the
7361 	 * same for all ipif's off of an ill, the matching logic below uses
7362 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7363 	 * sharing the same prefix and interface index as the the route
7364 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7365 	 * is specified in the request.
7366 	 *
7367 	 * On the other hand, since the gateway address will usually be
7368 	 * different for each ipif on the system, the matching logic
7369 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7370 	 * route.  This means that interface routes for the same prefix can be
7371 	 * uniquely identified if they belong to distinct ipif's and if a
7372 	 * RTA_IFP sockaddr is not present.
7373 	 *
7374 	 * For more detail on specifying routes by gateway address and by
7375 	 * interface index, see the comments in ip_rt_add().
7376 	 * gw_addr could be zero in some cases when both RTA_SRCIFP and
7377 	 * RTA_IFP are specified. If RTA_SRCIFP is specified and  both
7378 	 * RTA_IFP and gateway_addr are NULL/zero, then delete will not
7379 	 * succeed.
7380 	 */
7381 	if (src_ipif != NULL) {
7382 		if (ipif_arg == NULL && gw_addr != 0) {
7383 			ipif_arg = ipif_lookup_interface(gw_addr, dst_addr,
7384 			    q, mp, func, &err, ipst);
7385 			if (ipif_arg != NULL)
7386 				ipif_refheld = B_TRUE;
7387 		}
7388 		if (ipif_arg == NULL) {
7389 			err = (err == EINPROGRESS) ? err : ESRCH;
7390 			return (err);
7391 		}
7392 		ipif = ipif_arg;
7393 	} else {
7394 		ipif = ipif_lookup_interface(gw_addr, dst_addr,
7395 			    q, mp, func, &err, ipst);
7396 		if (ipif != NULL)
7397 			ipif_refheld = B_TRUE;
7398 		else if (err == EINPROGRESS)
7399 			return (err);
7400 		else
7401 			err = 0;
7402 	}
7403 	if (ipif != NULL) {
7404 		if (ipif_arg != NULL) {
7405 			if (ipif_refheld) {
7406 				ipif_refrele(ipif);
7407 				ipif_refheld = B_FALSE;
7408 			}
7409 			ipif = ipif_arg;
7410 			match_flags |= MATCH_IRE_ILL;
7411 		} else {
7412 			match_flags |= MATCH_IRE_IPIF;
7413 		}
7414 		if (src_ipif != NULL) {
7415 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7416 			    ipif, src_ipif->ipif_ill, match_flags);
7417 		} else {
7418 			if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7419 				ire = ire_ctable_lookup(dst_addr, 0,
7420 				    IRE_LOOPBACK, ipif, ALL_ZONES, NULL,
7421 				    match_flags, ipst);
7422 			}
7423 			if (ire == NULL) {
7424 				ire = ire_ftable_lookup(dst_addr, mask, 0,
7425 				    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7426 				    NULL, match_flags, ipst);
7427 			}
7428 		}
7429 	}
7430 
7431 	if (ire == NULL) {
7432 		/*
7433 		 * At this point, the gateway address is not one of our own
7434 		 * addresses or a matching interface route was not found.  We
7435 		 * set the IRE type to lookup based on whether
7436 		 * this is a host route, a default route or just a prefix.
7437 		 *
7438 		 * If an ipif_arg was passed in, then the lookup is based on an
7439 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7440 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7441 		 * set as the route being looked up is not a traditional
7442 		 * interface route.
7443 		 * Since we do not add gateway route with srcipif, we don't
7444 		 * expect to find it either.
7445 		 */
7446 		if (src_ipif != NULL) {
7447 			if (ipif_refheld)
7448 				ipif_refrele(ipif);
7449 			return (ESRCH);
7450 		} else {
7451 			match_flags &= ~MATCH_IRE_IPIF;
7452 			match_flags |= MATCH_IRE_GW;
7453 			if (ipif_arg != NULL)
7454 				match_flags |= MATCH_IRE_ILL;
7455 			if (mask == IP_HOST_MASK)
7456 				type = IRE_HOST;
7457 			else if (mask == 0)
7458 				type = IRE_DEFAULT;
7459 			else
7460 				type = IRE_PREFIX;
7461 			ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type,
7462 			    ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags,
7463 			    ipst);
7464 		}
7465 	}
7466 
7467 	if (ipif_refheld)
7468 		ipif_refrele(ipif);
7469 
7470 	/* ipif is not refheld anymore */
7471 	if (ire == NULL)
7472 		return (ESRCH);
7473 
7474 	if (ire->ire_flags & RTF_MULTIRT) {
7475 		/*
7476 		 * Invoke the CGTP (multirouting) filtering module
7477 		 * to remove the dst address from the filtering database.
7478 		 * Packets coming from that address will no longer be
7479 		 * filtered to remove duplicates.
7480 		 */
7481 		if (ip_cgtp_filter_ops != NULL &&
7482 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
7483 			err = ip_cgtp_filter_ops->cfo_del_dest_v4(
7484 			    ire->ire_addr, ire->ire_gateway_addr);
7485 		}
7486 		ip_cgtp_bcast_delete(ire, ipst);
7487 	}
7488 
7489 	ipif = ire->ire_ipif;
7490 	/*
7491 	 * Removing from ipif_saved_ire_mp is not necessary
7492 	 * when src_ipif being non-NULL. ip_rt_add does not
7493 	 * save the ires which src_ipif being non-NULL.
7494 	 */
7495 	if (ipif != NULL && src_ipif == NULL) {
7496 		ipif_remove_ire(ipif, ire);
7497 	}
7498 	if (ioctl_msg)
7499 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7500 	ire_delete(ire);
7501 	ire_refrele(ire);
7502 	return (err);
7503 }
7504 
7505 /*
7506  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7507  */
7508 /* ARGSUSED */
7509 int
7510 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7511     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7512 {
7513 	ipaddr_t dst_addr;
7514 	ipaddr_t gw_addr;
7515 	ipaddr_t mask;
7516 	int error = 0;
7517 	mblk_t *mp1;
7518 	struct rtentry *rt;
7519 	ipif_t *ipif = NULL;
7520 	ip_stack_t	*ipst;
7521 
7522 	ASSERT(q->q_next == NULL);
7523 	ipst = CONNQ_TO_IPST(q);
7524 
7525 	ip1dbg(("ip_siocaddrt:"));
7526 	/* Existence of mp1 verified in ip_wput_nondata */
7527 	mp1 = mp->b_cont->b_cont;
7528 	rt = (struct rtentry *)mp1->b_rptr;
7529 
7530 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7531 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7532 
7533 	/*
7534 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7535 	 * to a particular host address.  In this case, we set the netmask to
7536 	 * all ones for the particular destination address.  Otherwise,
7537 	 * determine the netmask to be used based on dst_addr and the interfaces
7538 	 * in use.
7539 	 */
7540 	if (rt->rt_flags & RTF_HOST) {
7541 		mask = IP_HOST_MASK;
7542 	} else {
7543 		/*
7544 		 * Note that ip_subnet_mask returns a zero mask in the case of
7545 		 * default (an all-zeroes address).
7546 		 */
7547 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7548 	}
7549 
7550 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7551 	    NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7552 	if (ipif != NULL)
7553 		ipif_refrele(ipif);
7554 	return (error);
7555 }
7556 
7557 /*
7558  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7559  */
7560 /* ARGSUSED */
7561 int
7562 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7563     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7564 {
7565 	ipaddr_t dst_addr;
7566 	ipaddr_t gw_addr;
7567 	ipaddr_t mask;
7568 	int error;
7569 	mblk_t *mp1;
7570 	struct rtentry *rt;
7571 	ipif_t *ipif = NULL;
7572 	ip_stack_t	*ipst;
7573 
7574 	ASSERT(q->q_next == NULL);
7575 	ipst = CONNQ_TO_IPST(q);
7576 
7577 	ip1dbg(("ip_siocdelrt:"));
7578 	/* Existence of mp1 verified in ip_wput_nondata */
7579 	mp1 = mp->b_cont->b_cont;
7580 	rt = (struct rtentry *)mp1->b_rptr;
7581 
7582 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7583 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7584 
7585 	/*
7586 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7587 	 * to a particular host address.  In this case, we set the netmask to
7588 	 * all ones for the particular destination address.  Otherwise,
7589 	 * determine the netmask to be used based on dst_addr and the interfaces
7590 	 * in use.
7591 	 */
7592 	if (rt->rt_flags & RTF_HOST) {
7593 		mask = IP_HOST_MASK;
7594 	} else {
7595 		/*
7596 		 * Note that ip_subnet_mask returns a zero mask in the case of
7597 		 * default (an all-zeroes address).
7598 		 */
7599 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7600 	}
7601 
7602 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7603 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL,
7604 	    B_TRUE, q, mp, ip_process_ioctl, ipst);
7605 	if (ipif != NULL)
7606 		ipif_refrele(ipif);
7607 	return (error);
7608 }
7609 
7610 /*
7611  * Enqueue the mp onto the ipsq, chained by b_next.
7612  * b_prev stores the function to be executed later, and b_queue the queue
7613  * where this mp originated.
7614  */
7615 void
7616 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7617     ill_t *pending_ill)
7618 {
7619 	conn_t	*connp = NULL;
7620 
7621 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7622 	ASSERT(func != NULL);
7623 
7624 	mp->b_queue = q;
7625 	mp->b_prev = (void *)func;
7626 	mp->b_next = NULL;
7627 
7628 	switch (type) {
7629 	case CUR_OP:
7630 		if (ipsq->ipsq_mptail != NULL) {
7631 			ASSERT(ipsq->ipsq_mphead != NULL);
7632 			ipsq->ipsq_mptail->b_next = mp;
7633 		} else {
7634 			ASSERT(ipsq->ipsq_mphead == NULL);
7635 			ipsq->ipsq_mphead = mp;
7636 		}
7637 		ipsq->ipsq_mptail = mp;
7638 		break;
7639 
7640 	case NEW_OP:
7641 		if (ipsq->ipsq_xopq_mptail != NULL) {
7642 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7643 			ipsq->ipsq_xopq_mptail->b_next = mp;
7644 		} else {
7645 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7646 			ipsq->ipsq_xopq_mphead = mp;
7647 		}
7648 		ipsq->ipsq_xopq_mptail = mp;
7649 		break;
7650 	default:
7651 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7652 	}
7653 
7654 	if (CONN_Q(q) && pending_ill != NULL) {
7655 		connp = Q_TO_CONN(q);
7656 
7657 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7658 		connp->conn_oper_pending_ill = pending_ill;
7659 	}
7660 }
7661 
7662 /*
7663  * Return the mp at the head of the ipsq. After emptying the ipsq
7664  * look at the next ioctl, if this ioctl is complete. Otherwise
7665  * return, we will resume when we complete the current ioctl.
7666  * The current ioctl will wait till it gets a response from the
7667  * driver below.
7668  */
7669 static mblk_t *
7670 ipsq_dq(ipsq_t *ipsq)
7671 {
7672 	mblk_t	*mp;
7673 
7674 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7675 
7676 	mp = ipsq->ipsq_mphead;
7677 	if (mp != NULL) {
7678 		ipsq->ipsq_mphead = mp->b_next;
7679 		if (ipsq->ipsq_mphead == NULL)
7680 			ipsq->ipsq_mptail = NULL;
7681 		mp->b_next = NULL;
7682 		return (mp);
7683 	}
7684 	if (ipsq->ipsq_current_ipif != NULL)
7685 		return (NULL);
7686 	mp = ipsq->ipsq_xopq_mphead;
7687 	if (mp != NULL) {
7688 		ipsq->ipsq_xopq_mphead = mp->b_next;
7689 		if (ipsq->ipsq_xopq_mphead == NULL)
7690 			ipsq->ipsq_xopq_mptail = NULL;
7691 		mp->b_next = NULL;
7692 		return (mp);
7693 	}
7694 	return (NULL);
7695 }
7696 
7697 /*
7698  * Enter the ipsq corresponding to ill, by waiting synchronously till
7699  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7700  * will have to drain completely before ipsq_enter returns success.
7701  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7702  * and the ipsq_exit logic will start the next enqueued ioctl after
7703  * completion of the current ioctl. If 'force' is used, we don't wait
7704  * for the enqueued ioctls. This is needed when a conn_close wants to
7705  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7706  * of an ill can also use this option. But we dont' use it currently.
7707  */
7708 #define	ENTER_SQ_WAIT_TICKS 100
7709 boolean_t
7710 ipsq_enter(ill_t *ill, boolean_t force)
7711 {
7712 	ipsq_t	*ipsq;
7713 	boolean_t waited_enough = B_FALSE;
7714 
7715 	/*
7716 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7717 	 * Since the <ill-ipsq> assocs could change while we wait for the
7718 	 * writer, it is easier to wait on a fixed global rather than try to
7719 	 * cv_wait on a changing ipsq.
7720 	 */
7721 	mutex_enter(&ill->ill_lock);
7722 	for (;;) {
7723 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7724 			mutex_exit(&ill->ill_lock);
7725 			return (B_FALSE);
7726 		}
7727 
7728 		ipsq = ill->ill_phyint->phyint_ipsq;
7729 		mutex_enter(&ipsq->ipsq_lock);
7730 		if (ipsq->ipsq_writer == NULL &&
7731 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7732 			break;
7733 		} else if (ipsq->ipsq_writer != NULL) {
7734 			mutex_exit(&ipsq->ipsq_lock);
7735 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7736 		} else {
7737 			mutex_exit(&ipsq->ipsq_lock);
7738 			if (force) {
7739 				(void) cv_timedwait(&ill->ill_cv,
7740 				    &ill->ill_lock,
7741 				    lbolt + ENTER_SQ_WAIT_TICKS);
7742 				waited_enough = B_TRUE;
7743 				continue;
7744 			} else {
7745 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7746 			}
7747 		}
7748 	}
7749 
7750 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7751 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7752 	ipsq->ipsq_writer = curthread;
7753 	ipsq->ipsq_reentry_cnt++;
7754 #ifdef ILL_DEBUG
7755 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7756 #endif
7757 	mutex_exit(&ipsq->ipsq_lock);
7758 	mutex_exit(&ill->ill_lock);
7759 	return (B_TRUE);
7760 }
7761 
7762 /*
7763  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7764  * certain critical operations like plumbing (i.e. most set ioctls),
7765  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7766  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7767  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7768  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7769  * threads executing in the ipsq. Responses from the driver pertain to the
7770  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7771  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7772  *
7773  * If a thread does not want to reenter the ipsq when it is already writer,
7774  * it must make sure that the specified reentry point to be called later
7775  * when the ipsq is empty, nor any code path starting from the specified reentry
7776  * point must never ever try to enter the ipsq again. Otherwise it can lead
7777  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7778  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7779  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7780  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7781  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7782  * ioctl if the current ioctl has completed. If the current ioctl is still
7783  * in progress it simply returns. The current ioctl could be waiting for
7784  * a response from another module (arp_ or the driver or could be waiting for
7785  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7786  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7787  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7788  * ipsq_current_ipif is clear which happens only on ioctl completion.
7789  */
7790 
7791 /*
7792  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7793  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7794  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7795  * completion.
7796  */
7797 ipsq_t *
7798 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7799     ipsq_func_t func, int type, boolean_t reentry_ok)
7800 {
7801 	ipsq_t	*ipsq;
7802 
7803 	/* Only 1 of ipif or ill can be specified */
7804 	ASSERT((ipif != NULL) ^ (ill != NULL));
7805 	if (ipif != NULL)
7806 		ill = ipif->ipif_ill;
7807 
7808 	/*
7809 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7810 	 * ipsq of an ill can't change when ill_lock is held.
7811 	 */
7812 	GRAB_CONN_LOCK(q);
7813 	mutex_enter(&ill->ill_lock);
7814 	ipsq = ill->ill_phyint->phyint_ipsq;
7815 	mutex_enter(&ipsq->ipsq_lock);
7816 
7817 	/*
7818 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7819 	 *    (Note: If the caller does not specify reentry_ok then neither
7820 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7821 	 *    again. Otherwise it can lead to an infinite loop
7822 	 * 2. Enter the ipsq if there is no current writer and this attempted
7823 	 *    entry is part of the current ioctl or operation
7824 	 * 3. Enter the ipsq if there is no current writer and this is a new
7825 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7826 	 *    empty and there is no ioctl (or operation) currently in progress
7827 	 */
7828 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7829 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7830 	    ipsq->ipsq_current_ipif == NULL))) ||
7831 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7832 		/* Success. */
7833 		ipsq->ipsq_reentry_cnt++;
7834 		ipsq->ipsq_writer = curthread;
7835 		mutex_exit(&ipsq->ipsq_lock);
7836 		mutex_exit(&ill->ill_lock);
7837 		RELEASE_CONN_LOCK(q);
7838 #ifdef ILL_DEBUG
7839 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7840 #endif
7841 		return (ipsq);
7842 	}
7843 
7844 	ipsq_enq(ipsq, q, mp, func, type, ill);
7845 
7846 	mutex_exit(&ipsq->ipsq_lock);
7847 	mutex_exit(&ill->ill_lock);
7848 	RELEASE_CONN_LOCK(q);
7849 	return (NULL);
7850 }
7851 
7852 /*
7853  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7854  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7855  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7856  * completion.
7857  *
7858  * This function does a refrele on the ipif/ill.
7859  */
7860 void
7861 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7862     ipsq_func_t func, int type, boolean_t reentry_ok)
7863 {
7864 	ipsq_t	*ipsq;
7865 
7866 	ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok);
7867 	/*
7868 	 * Caller must have done a refhold on the ipif. ipif_refrele
7869 	 * happens on the passed ipif. We can do this since we are
7870 	 * already exclusive, or we won't access ipif henceforth, Both
7871 	 * this func and caller will just return if we ipsq_try_enter
7872 	 * fails above. This is needed because func needs to
7873 	 * see the correct refcount. Eg. removeif can work only then.
7874 	 */
7875 	if (ipif != NULL)
7876 		ipif_refrele(ipif);
7877 	else
7878 		ill_refrele(ill);
7879 	if (ipsq != NULL) {
7880 		(*func)(ipsq, q, mp, NULL);
7881 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7882 	}
7883 }
7884 
7885 /*
7886  * If there are more than ILL_GRP_CNT ills in a group,
7887  * we use kmem alloc'd buffers, else use the stack
7888  */
7889 #define	ILL_GRP_CNT	14
7890 /*
7891  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7892  * Called by a thread that is currently exclusive on this ipsq.
7893  */
7894 void
7895 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7896 {
7897 	queue_t	*q;
7898 	mblk_t	*mp;
7899 	ipsq_func_t	func;
7900 	int	next;
7901 	ill_t	**ill_list = NULL;
7902 	size_t	ill_list_size = 0;
7903 	int	cnt = 0;
7904 	boolean_t need_ipsq_free = B_FALSE;
7905 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
7906 
7907 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7908 	mutex_enter(&ipsq->ipsq_lock);
7909 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7910 	if (ipsq->ipsq_reentry_cnt != 1) {
7911 		ipsq->ipsq_reentry_cnt--;
7912 		mutex_exit(&ipsq->ipsq_lock);
7913 		return;
7914 	}
7915 
7916 	mp = ipsq_dq(ipsq);
7917 	while (mp != NULL) {
7918 again:
7919 		mutex_exit(&ipsq->ipsq_lock);
7920 		func = (ipsq_func_t)mp->b_prev;
7921 		q = (queue_t *)mp->b_queue;
7922 		mp->b_prev = NULL;
7923 		mp->b_queue = NULL;
7924 
7925 		/*
7926 		 * If 'q' is an conn queue, it is valid, since we did a
7927 		 * a refhold on the connp, at the start of the ioctl.
7928 		 * If 'q' is an ill queue, it is valid, since close of an
7929 		 * ill will clean up the 'ipsq'.
7930 		 */
7931 		(*func)(ipsq, q, mp, NULL);
7932 
7933 		mutex_enter(&ipsq->ipsq_lock);
7934 		mp = ipsq_dq(ipsq);
7935 	}
7936 
7937 	mutex_exit(&ipsq->ipsq_lock);
7938 
7939 	/*
7940 	 * Need to grab the locks in the right order. Need to
7941 	 * atomically check (under ipsq_lock) that there are no
7942 	 * messages before relinquishing the ipsq. Also need to
7943 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7944 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7945 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7946 	 * to grab ill_g_lock as writer.
7947 	 */
7948 	rw_enter(&ipst->ips_ill_g_lock,
7949 	    ipsq->ipsq_split ? RW_WRITER : RW_READER);
7950 
7951 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7952 	if (ipsq->ipsq_refs != 0) {
7953 		/* At most 2 ills v4/v6 per phyint */
7954 		cnt = ipsq->ipsq_refs << 1;
7955 		ill_list_size = cnt * sizeof (ill_t *);
7956 		/*
7957 		 * If memory allocation fails, we will do the split
7958 		 * the next time ipsq_exit is called for whatever reason.
7959 		 * As long as the ipsq_split flag is set the need to
7960 		 * split is remembered.
7961 		 */
7962 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7963 		if (ill_list != NULL)
7964 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7965 	}
7966 	mutex_enter(&ipsq->ipsq_lock);
7967 	mp = ipsq_dq(ipsq);
7968 	if (mp != NULL) {
7969 		/* oops, some message has landed up, we can't get out */
7970 		if (ill_list != NULL)
7971 			ill_unlock_ills(ill_list, cnt);
7972 		rw_exit(&ipst->ips_ill_g_lock);
7973 		if (ill_list != NULL)
7974 			kmem_free(ill_list, ill_list_size);
7975 		ill_list = NULL;
7976 		ill_list_size = 0;
7977 		cnt = 0;
7978 		goto again;
7979 	}
7980 
7981 	/*
7982 	 * Split only if no ioctl is pending and if memory alloc succeeded
7983 	 * above.
7984 	 */
7985 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7986 		ill_list != NULL) {
7987 		/*
7988 		 * No new ill can join this ipsq since we are holding the
7989 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7990 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7991 		 * If so we will retry on the next ipsq_exit.
7992 		 */
7993 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7994 	}
7995 
7996 	/*
7997 	 * We are holding the ipsq lock, hence no new messages can
7998 	 * land up on the ipsq, and there are no messages currently.
7999 	 * Now safe to get out. Wake up waiters and relinquish ipsq
8000 	 * atomically while holding ill locks.
8001 	 */
8002 	ipsq->ipsq_writer = NULL;
8003 	ipsq->ipsq_reentry_cnt--;
8004 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
8005 #ifdef ILL_DEBUG
8006 	ipsq->ipsq_depth = 0;
8007 #endif
8008 	mutex_exit(&ipsq->ipsq_lock);
8009 	/*
8010 	 * For IPMP this should wake up all ills in this ipsq.
8011 	 * We need to hold the ill_lock while waking up waiters to
8012 	 * avoid missed wakeups. But there is no need to acquire all
8013 	 * the ill locks and then wakeup. If we have not acquired all
8014 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
8015 	 * wakes up ills one at a time after getting the right ill_lock
8016 	 */
8017 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
8018 	if (ill_list != NULL)
8019 		ill_unlock_ills(ill_list, cnt);
8020 	if (ipsq->ipsq_refs == 0)
8021 		need_ipsq_free = B_TRUE;
8022 	rw_exit(&ipst->ips_ill_g_lock);
8023 	if (ill_list != 0)
8024 		kmem_free(ill_list, ill_list_size);
8025 
8026 	if (need_ipsq_free) {
8027 		/*
8028 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
8029 		 * looked up. ipsq can be looked up only thru ill or phyint
8030 		 * and there are no ills/phyint on this ipsq.
8031 		 */
8032 		ipsq_delete(ipsq);
8033 	}
8034 	/*
8035 	 * Now start any igmp or mld timers that could not be started
8036 	 * while inside the ipsq. The timers can't be started while inside
8037 	 * the ipsq, since igmp_start_timers may need to call untimeout()
8038 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
8039 	 * there could be a deadlock since the timeout handlers
8040 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
8041 	 * wait in ipsq_enter() trying to get the ipsq.
8042 	 *
8043 	 * However there is one exception to the above. If this thread is
8044 	 * itself the igmp/mld timeout handler thread, then we don't want
8045 	 * to start any new timer until the current handler is done. The
8046 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
8047 	 * all others pass B_TRUE.
8048 	 */
8049 	if (start_igmp_timer) {
8050 		mutex_enter(&ipst->ips_igmp_timer_lock);
8051 		next = ipst->ips_igmp_deferred_next;
8052 		ipst->ips_igmp_deferred_next = INFINITY;
8053 		mutex_exit(&ipst->ips_igmp_timer_lock);
8054 
8055 		if (next != INFINITY)
8056 			igmp_start_timers(next, ipst);
8057 	}
8058 
8059 	if (start_mld_timer) {
8060 		mutex_enter(&ipst->ips_mld_timer_lock);
8061 		next = ipst->ips_mld_deferred_next;
8062 		ipst->ips_mld_deferred_next = INFINITY;
8063 		mutex_exit(&ipst->ips_mld_timer_lock);
8064 
8065 		if (next != INFINITY)
8066 			mld_start_timers(next, ipst);
8067 	}
8068 }
8069 
8070 /*
8071  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
8072  * and `ioccmd'.
8073  */
8074 void
8075 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
8076 {
8077 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8078 
8079 	mutex_enter(&ipsq->ipsq_lock);
8080 	ASSERT(ipsq->ipsq_current_ipif == NULL);
8081 	ASSERT(ipsq->ipsq_current_ioctl == 0);
8082 	ipsq->ipsq_current_ipif = ipif;
8083 	ipsq->ipsq_current_ioctl = ioccmd;
8084 	mutex_exit(&ipsq->ipsq_lock);
8085 }
8086 
8087 /*
8088  * Finish the current exclusive operation on `ipsq'.  Note that other
8089  * operations will not be able to proceed until an ipsq_exit() is done.
8090  */
8091 void
8092 ipsq_current_finish(ipsq_t *ipsq)
8093 {
8094 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8095 
8096 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8097 
8098 	/*
8099 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8100 	 * (but we're careful to never set IPIF_CHANGING in that case).
8101 	 */
8102 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8103 		mutex_enter(&ipif->ipif_ill->ill_lock);
8104 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8105 
8106 		/* Send any queued event */
8107 		ill_nic_info_dispatch(ipif->ipif_ill);
8108 		mutex_exit(&ipif->ipif_ill->ill_lock);
8109 	}
8110 
8111 	mutex_enter(&ipsq->ipsq_lock);
8112 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8113 	ipsq->ipsq_current_ipif = NULL;
8114 	ipsq->ipsq_current_ioctl = 0;
8115 	mutex_exit(&ipsq->ipsq_lock);
8116 }
8117 
8118 /*
8119  * The ill is closing. Flush all messages on the ipsq that originated
8120  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8121  * for this ill since ipsq_enter could not have entered until then.
8122  * New messages can't be queued since the CONDEMNED flag is set.
8123  */
8124 static void
8125 ipsq_flush(ill_t *ill)
8126 {
8127 	queue_t	*q;
8128 	mblk_t	*prev;
8129 	mblk_t	*mp;
8130 	mblk_t	*mp_next;
8131 	ipsq_t	*ipsq;
8132 
8133 	ASSERT(IAM_WRITER_ILL(ill));
8134 	ipsq = ill->ill_phyint->phyint_ipsq;
8135 	/*
8136 	 * Flush any messages sent up by the driver.
8137 	 */
8138 	mutex_enter(&ipsq->ipsq_lock);
8139 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8140 		mp_next = mp->b_next;
8141 		q = mp->b_queue;
8142 		if (q == ill->ill_rq || q == ill->ill_wq) {
8143 			/* Remove the mp from the ipsq */
8144 			if (prev == NULL)
8145 				ipsq->ipsq_mphead = mp->b_next;
8146 			else
8147 				prev->b_next = mp->b_next;
8148 			if (ipsq->ipsq_mptail == mp) {
8149 				ASSERT(mp_next == NULL);
8150 				ipsq->ipsq_mptail = prev;
8151 			}
8152 			inet_freemsg(mp);
8153 		} else {
8154 			prev = mp;
8155 		}
8156 	}
8157 	mutex_exit(&ipsq->ipsq_lock);
8158 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8159 	ipsq_xopq_mp_cleanup(ill, NULL);
8160 	ill_pending_mp_cleanup(ill);
8161 }
8162 
8163 /*
8164  * Clean up one squeue element. ill_inuse_ref is protected by ill_lock.
8165  * The real cleanup happens behind the squeue via ip_squeue_clean function but
8166  * we need to protect ourselfs from 2 threads trying to cleanup at the same
8167  * time (possible with one port going down for aggr and someone tearing down the
8168  * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock
8169  * to indicate when the cleanup has started (1 ref) and when the cleanup
8170  * is done (0 ref). When a new ring gets assigned to squeue, we start by
8171  * putting 2 ref on ill_inuse_ref.
8172  */
8173 static void
8174 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring)
8175 {
8176 	conn_t *connp;
8177 	squeue_t *sqp;
8178 	mblk_t *mp;
8179 
8180 	ASSERT(rx_ring != NULL);
8181 
8182 	/* Just clean one squeue */
8183 	mutex_enter(&ill->ill_lock);
8184 	/*
8185 	 * Reset the ILL_SOFT_RING_ASSIGN bit so that
8186 	 * ip_squeue_soft_ring_affinty() will not go
8187 	 * ahead with assigning rings.
8188 	 */
8189 	ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN;
8190 	while (rx_ring->rr_ring_state == ILL_RING_INPROC)
8191 		/* Some operations pending on the ring. Wait */
8192 		cv_wait(&ill->ill_cv, &ill->ill_lock);
8193 
8194 	if (rx_ring->rr_ring_state != ILL_RING_INUSE) {
8195 		/*
8196 		 * Someone already trying to clean
8197 		 * this squeue or its already been cleaned.
8198 		 */
8199 		mutex_exit(&ill->ill_lock);
8200 		return;
8201 	}
8202 	sqp = rx_ring->rr_sqp;
8203 
8204 	if (sqp == NULL) {
8205 		/*
8206 		 * The rx_ring never had a squeue assigned to it.
8207 		 * We are under ill_lock so we can clean it up
8208 		 * here itself since no one can get to it.
8209 		 */
8210 		rx_ring->rr_blank = NULL;
8211 		rx_ring->rr_handle = NULL;
8212 		rx_ring->rr_sqp = NULL;
8213 		rx_ring->rr_ring_state = ILL_RING_FREE;
8214 		mutex_exit(&ill->ill_lock);
8215 		return;
8216 	}
8217 
8218 	/* Set the state that its being cleaned */
8219 	rx_ring->rr_ring_state = ILL_RING_BEING_FREED;
8220 	ASSERT(sqp != NULL);
8221 	mutex_exit(&ill->ill_lock);
8222 
8223 	/*
8224 	 * Use the preallocated ill_unbind_conn for this purpose
8225 	 */
8226 	connp = ill->ill_dls_capab->ill_unbind_conn;
8227 
8228 	ASSERT(!connp->conn_tcp->tcp_closemp.b_prev);
8229 	TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15);
8230 	if (connp->conn_tcp->tcp_closemp.b_prev == NULL)
8231 		connp->conn_tcp->tcp_closemp_used = 1;
8232 	else
8233 		connp->conn_tcp->tcp_closemp_used++;
8234 	mp = &connp->conn_tcp->tcp_closemp;
8235 	CONN_INC_REF(connp);
8236 	squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL);
8237 
8238 	mutex_enter(&ill->ill_lock);
8239 	while (rx_ring->rr_ring_state != ILL_RING_FREE)
8240 		cv_wait(&ill->ill_cv, &ill->ill_lock);
8241 
8242 	mutex_exit(&ill->ill_lock);
8243 }
8244 
8245 static void
8246 ipsq_clean_all(ill_t *ill)
8247 {
8248 	int idx;
8249 
8250 	/*
8251 	 * No need to clean if poll_capab isn't set for this ill
8252 	 */
8253 	if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)))
8254 		return;
8255 
8256 	for (idx = 0; idx < ILL_MAX_RINGS; idx++) {
8257 		ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx];
8258 		ipsq_clean_ring(ill, ipr);
8259 	}
8260 
8261 	ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING);
8262 }
8263 
8264 /* ARGSUSED */
8265 int
8266 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8267     ip_ioctl_cmd_t *ipip, void *ifreq)
8268 {
8269 	ill_t	*ill;
8270 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8271 	boolean_t isv6;
8272 	conn_t	*connp;
8273 	ip_stack_t	*ipst;
8274 
8275 	connp = Q_TO_CONN(q);
8276 	ipst = connp->conn_netstack->netstack_ip;
8277 	isv6 = connp->conn_af_isv6;
8278 	/*
8279 	 * Set original index.
8280 	 * Failover and failback move logical interfaces
8281 	 * from one physical interface to another.  The
8282 	 * original index indicates the parent of a logical
8283 	 * interface, in other words, the physical interface
8284 	 * the logical interface will be moved back to on
8285 	 * failback.
8286 	 */
8287 
8288 	/*
8289 	 * Don't allow the original index to be changed
8290 	 * for non-failover addresses, autoconfigured
8291 	 * addresses, or IPv6 link local addresses.
8292 	 */
8293 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8294 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8295 		return (EINVAL);
8296 	}
8297 	/*
8298 	 * The new original index must be in use by some
8299 	 * physical interface.
8300 	 */
8301 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8302 	    NULL, NULL, ipst);
8303 	if (ill == NULL)
8304 		return (ENXIO);
8305 	ill_refrele(ill);
8306 
8307 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8308 	/*
8309 	 * When this ipif gets failed back, don't
8310 	 * preserve the original id, as it is no
8311 	 * longer applicable.
8312 	 */
8313 	ipif->ipif_orig_ipifid = 0;
8314 	/*
8315 	 * For IPv4, change the original index of any
8316 	 * multicast addresses associated with the
8317 	 * ipif to the new value.
8318 	 */
8319 	if (!isv6) {
8320 		ilm_t *ilm;
8321 
8322 		mutex_enter(&ipif->ipif_ill->ill_lock);
8323 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8324 		    ilm = ilm->ilm_next) {
8325 			if (ilm->ilm_ipif == ipif) {
8326 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8327 			}
8328 		}
8329 		mutex_exit(&ipif->ipif_ill->ill_lock);
8330 	}
8331 	return (0);
8332 }
8333 
8334 /* ARGSUSED */
8335 int
8336 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8337     ip_ioctl_cmd_t *ipip, void *ifreq)
8338 {
8339 	struct lifreq *lifr = (struct lifreq *)ifreq;
8340 
8341 	/*
8342 	 * Get the original interface index i.e the one
8343 	 * before FAILOVER if it ever happened.
8344 	 */
8345 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8346 	return (0);
8347 }
8348 
8349 /*
8350  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8351  * refhold and return the associated ipif
8352  */
8353 int
8354 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func)
8355 {
8356 	boolean_t exists;
8357 	struct iftun_req *ta;
8358 	ipif_t	*ipif;
8359 	ill_t	*ill;
8360 	boolean_t isv6;
8361 	mblk_t	*mp1;
8362 	int	error;
8363 	conn_t	*connp;
8364 	ip_stack_t	*ipst;
8365 
8366 	/* Existence verified in ip_wput_nondata */
8367 	mp1 = mp->b_cont->b_cont;
8368 	ta = (struct iftun_req *)mp1->b_rptr;
8369 	/*
8370 	 * Null terminate the string to protect against buffer
8371 	 * overrun. String was generated by user code and may not
8372 	 * be trusted.
8373 	 */
8374 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8375 
8376 	connp = Q_TO_CONN(q);
8377 	isv6 = connp->conn_af_isv6;
8378 	ipst = connp->conn_netstack->netstack_ip;
8379 
8380 	/* Disallows implicit create */
8381 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8382 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8383 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8384 	if (ipif == NULL)
8385 		return (error);
8386 
8387 	if (ipif->ipif_id != 0) {
8388 		/*
8389 		 * We really don't want to set/get tunnel parameters
8390 		 * on virtual tunnel interfaces.  Only allow the
8391 		 * base tunnel to do these.
8392 		 */
8393 		ipif_refrele(ipif);
8394 		return (EINVAL);
8395 	}
8396 
8397 	/*
8398 	 * Send down to tunnel mod for ioctl processing.
8399 	 * Will finish ioctl in ip_rput_other().
8400 	 */
8401 	ill = ipif->ipif_ill;
8402 	if (ill->ill_net_type == IRE_LOOPBACK) {
8403 		ipif_refrele(ipif);
8404 		return (EOPNOTSUPP);
8405 	}
8406 
8407 	if (ill->ill_wq == NULL) {
8408 		ipif_refrele(ipif);
8409 		return (ENXIO);
8410 	}
8411 	/*
8412 	 * Mark the ioctl as coming from an IPv6 interface for
8413 	 * tun's convenience.
8414 	 */
8415 	if (ill->ill_isv6)
8416 		ta->ifta_flags |= 0x80000000;
8417 	*ipifp = ipif;
8418 	return (0);
8419 }
8420 
8421 /*
8422  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8423  * and return the associated ipif.
8424  * Return value:
8425  *	Non zero: An error has occurred. ci may not be filled out.
8426  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8427  *	a held ipif in ci.ci_ipif.
8428  */
8429 int
8430 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags,
8431     cmd_info_t *ci, ipsq_func_t func)
8432 {
8433 	sin_t		*sin;
8434 	sin6_t		*sin6;
8435 	char		*name;
8436 	struct ifreq    *ifr;
8437 	struct lifreq    *lifr;
8438 	ipif_t		*ipif = NULL;
8439 	ill_t		*ill;
8440 	conn_t		*connp;
8441 	boolean_t	isv6;
8442 	struct iocblk   *iocp = (struct iocblk *)mp->b_rptr;
8443 	boolean_t	exists;
8444 	int		err;
8445 	mblk_t		*mp1;
8446 	zoneid_t	zoneid;
8447 	ip_stack_t	*ipst;
8448 
8449 	if (q->q_next != NULL) {
8450 		ill = (ill_t *)q->q_ptr;
8451 		isv6 = ill->ill_isv6;
8452 		connp = NULL;
8453 		zoneid = ALL_ZONES;
8454 		ipst = ill->ill_ipst;
8455 	} else {
8456 		ill = NULL;
8457 		connp = Q_TO_CONN(q);
8458 		isv6 = connp->conn_af_isv6;
8459 		zoneid = connp->conn_zoneid;
8460 		if (zoneid == GLOBAL_ZONEID) {
8461 			/* global zone can access ipifs in all zones */
8462 			zoneid = ALL_ZONES;
8463 		}
8464 		ipst = connp->conn_netstack->netstack_ip;
8465 	}
8466 
8467 	/* Has been checked in ip_wput_nondata */
8468 	mp1 = mp->b_cont->b_cont;
8469 
8470 
8471 	if (cmd_type == IF_CMD) {
8472 		/* This a old style SIOC[GS]IF* command */
8473 		ifr = (struct ifreq *)mp1->b_rptr;
8474 		/*
8475 		 * Null terminate the string to protect against buffer
8476 		 * overrun. String was generated by user code and may not
8477 		 * be trusted.
8478 		 */
8479 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8480 		sin = (sin_t *)&ifr->ifr_addr;
8481 		name = ifr->ifr_name;
8482 		ci->ci_sin = sin;
8483 		ci->ci_sin6 = NULL;
8484 		ci->ci_lifr = (struct lifreq *)ifr;
8485 	} else {
8486 		/* This a new style SIOC[GS]LIF* command */
8487 		ASSERT(cmd_type == LIF_CMD);
8488 		lifr = (struct lifreq *)mp1->b_rptr;
8489 		/*
8490 		 * Null terminate the string to protect against buffer
8491 		 * overrun. String was generated by user code and may not
8492 		 * be trusted.
8493 		 */
8494 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8495 		name = lifr->lifr_name;
8496 		sin = (sin_t *)&lifr->lifr_addr;
8497 		sin6 = (sin6_t *)&lifr->lifr_addr;
8498 		if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) {
8499 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8500 			    LIFNAMSIZ);
8501 		}
8502 		ci->ci_sin = sin;
8503 		ci->ci_sin6 = sin6;
8504 		ci->ci_lifr = lifr;
8505 	}
8506 
8507 	if (iocp->ioc_cmd == SIOCSLIFNAME) {
8508 		/*
8509 		 * The ioctl will be failed if the ioctl comes down
8510 		 * an conn stream
8511 		 */
8512 		if (ill == NULL) {
8513 			/*
8514 			 * Not an ill queue, return EINVAL same as the
8515 			 * old error code.
8516 			 */
8517 			return (ENXIO);
8518 		}
8519 		ipif = ill->ill_ipif;
8520 		ipif_refhold(ipif);
8521 	} else {
8522 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8523 		    &exists, isv6, zoneid,
8524 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8525 		    ipst);
8526 		if (ipif == NULL) {
8527 			if (err == EINPROGRESS)
8528 				return (err);
8529 			if (iocp->ioc_cmd == SIOCLIFFAILOVER ||
8530 			    iocp->ioc_cmd == SIOCLIFFAILBACK) {
8531 				/*
8532 				 * Need to try both v4 and v6 since this
8533 				 * ioctl can come down either v4 or v6
8534 				 * socket. The lifreq.lifr_family passed
8535 				 * down by this ioctl is AF_UNSPEC.
8536 				 */
8537 				ipif = ipif_lookup_on_name(name,
8538 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8539 				    zoneid, (connp == NULL) ? q :
8540 				    CONNP_TO_WQ(connp), mp, func, &err, ipst);
8541 				if (err == EINPROGRESS)
8542 					return (err);
8543 			}
8544 			err = 0;	/* Ensure we don't use it below */
8545 		}
8546 	}
8547 
8548 	/*
8549 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8550 	 */
8551 	if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) {
8552 		ipif_refrele(ipif);
8553 		return (ENXIO);
8554 	}
8555 
8556 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8557 	    name[0] == '\0') {
8558 		/*
8559 		 * Handle a or a SIOC?IF* with a null name
8560 		 * during plumb (on the ill queue before the I_PLINK).
8561 		 */
8562 		ipif = ill->ill_ipif;
8563 		ipif_refhold(ipif);
8564 	}
8565 
8566 	if (ipif == NULL)
8567 		return (ENXIO);
8568 
8569 	/*
8570 	 * Allow only GET operations if this ipif has been created
8571 	 * temporarily due to a MOVE operation.
8572 	 */
8573 	if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) {
8574 		ipif_refrele(ipif);
8575 		return (EINVAL);
8576 	}
8577 
8578 	ci->ci_ipif = ipif;
8579 	return (0);
8580 }
8581 
8582 /*
8583  * Return the total number of ipifs.
8584  */
8585 static uint_t
8586 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8587 {
8588 	uint_t numifs = 0;
8589 	ill_t	*ill;
8590 	ill_walk_context_t	ctx;
8591 	ipif_t	*ipif;
8592 
8593 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8594 	ill = ILL_START_WALK_V4(&ctx, ipst);
8595 
8596 	while (ill != NULL) {
8597 		for (ipif = ill->ill_ipif; ipif != NULL;
8598 		    ipif = ipif->ipif_next) {
8599 			if (ipif->ipif_zoneid == zoneid ||
8600 			    ipif->ipif_zoneid == ALL_ZONES)
8601 				numifs++;
8602 		}
8603 		ill = ill_next(&ctx, ill);
8604 	}
8605 	rw_exit(&ipst->ips_ill_g_lock);
8606 	return (numifs);
8607 }
8608 
8609 /*
8610  * Return the total number of ipifs.
8611  */
8612 static uint_t
8613 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8614 {
8615 	uint_t numifs = 0;
8616 	ill_t	*ill;
8617 	ipif_t	*ipif;
8618 	ill_walk_context_t	ctx;
8619 
8620 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8621 
8622 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8623 	if (family == AF_INET)
8624 		ill = ILL_START_WALK_V4(&ctx, ipst);
8625 	else if (family == AF_INET6)
8626 		ill = ILL_START_WALK_V6(&ctx, ipst);
8627 	else
8628 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8629 
8630 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8631 		for (ipif = ill->ill_ipif; ipif != NULL;
8632 		    ipif = ipif->ipif_next) {
8633 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8634 			    !(lifn_flags & LIFC_NOXMIT))
8635 				continue;
8636 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8637 			    !(lifn_flags & LIFC_TEMPORARY))
8638 				continue;
8639 			if (((ipif->ipif_flags &
8640 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8641 			    IPIF_DEPRECATED)) ||
8642 			    (ill->ill_phyint->phyint_flags &
8643 			    PHYI_LOOPBACK) ||
8644 			    !(ipif->ipif_flags & IPIF_UP)) &&
8645 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8646 				continue;
8647 
8648 			if (zoneid != ipif->ipif_zoneid &&
8649 			    ipif->ipif_zoneid != ALL_ZONES &&
8650 			    (zoneid != GLOBAL_ZONEID ||
8651 			    !(lifn_flags & LIFC_ALLZONES)))
8652 				continue;
8653 
8654 			numifs++;
8655 		}
8656 	}
8657 	rw_exit(&ipst->ips_ill_g_lock);
8658 	return (numifs);
8659 }
8660 
8661 uint_t
8662 ip_get_lifsrcofnum(ill_t *ill)
8663 {
8664 	uint_t numifs = 0;
8665 	ill_t	*ill_head = ill;
8666 	ip_stack_t	*ipst = ill->ill_ipst;
8667 
8668 	/*
8669 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8670 	 * other thread may be trying to relink the ILLs in this usesrc group
8671 	 * and adjusting the ill_usesrc_grp_next pointers
8672 	 */
8673 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8674 	if ((ill->ill_usesrc_ifindex == 0) &&
8675 	    (ill->ill_usesrc_grp_next != NULL)) {
8676 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8677 		    ill = ill->ill_usesrc_grp_next)
8678 			numifs++;
8679 	}
8680 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8681 
8682 	return (numifs);
8683 }
8684 
8685 /* Null values are passed in for ipif, sin, and ifreq */
8686 /* ARGSUSED */
8687 int
8688 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8689     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8690 {
8691 	int *nump;
8692 	conn_t *connp = Q_TO_CONN(q);
8693 
8694 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8695 
8696 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8697 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8698 
8699 	*nump = ip_get_numifs(connp->conn_zoneid,
8700 	    connp->conn_netstack->netstack_ip);
8701 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8702 	return (0);
8703 }
8704 
8705 /* Null values are passed in for ipif, sin, and ifreq */
8706 /* ARGSUSED */
8707 int
8708 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8709     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8710 {
8711 	struct lifnum *lifn;
8712 	mblk_t	*mp1;
8713 	conn_t *connp = Q_TO_CONN(q);
8714 
8715 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8716 
8717 	/* Existence checked in ip_wput_nondata */
8718 	mp1 = mp->b_cont->b_cont;
8719 
8720 	lifn = (struct lifnum *)mp1->b_rptr;
8721 	switch (lifn->lifn_family) {
8722 	case AF_UNSPEC:
8723 	case AF_INET:
8724 	case AF_INET6:
8725 		break;
8726 	default:
8727 		return (EAFNOSUPPORT);
8728 	}
8729 
8730 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8731 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8732 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8733 	return (0);
8734 }
8735 
8736 /* ARGSUSED */
8737 int
8738 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8739     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8740 {
8741 	STRUCT_HANDLE(ifconf, ifc);
8742 	mblk_t *mp1;
8743 	struct iocblk *iocp;
8744 	struct ifreq *ifr;
8745 	ill_walk_context_t	ctx;
8746 	ill_t	*ill;
8747 	ipif_t	*ipif;
8748 	struct sockaddr_in *sin;
8749 	int32_t	ifclen;
8750 	zoneid_t zoneid;
8751 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8752 
8753 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8754 
8755 	ip1dbg(("ip_sioctl_get_ifconf"));
8756 	/* Existence verified in ip_wput_nondata */
8757 	mp1 = mp->b_cont->b_cont;
8758 	iocp = (struct iocblk *)mp->b_rptr;
8759 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8760 
8761 	/*
8762 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8763 	 * the user buffer address and length into which the list of struct
8764 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8765 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8766 	 * the SIOCGIFCONF operation was redefined to simply provide
8767 	 * a large output buffer into which we are supposed to jam the ifreq
8768 	 * array.  The same ioctl command code was used, despite the fact that
8769 	 * both the applications and the kernel code had to change, thus making
8770 	 * it impossible to support both interfaces.
8771 	 *
8772 	 * For reasons not good enough to try to explain, the following
8773 	 * algorithm is used for deciding what to do with one of these:
8774 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8775 	 * form with the output buffer coming down as the continuation message.
8776 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8777 	 * and we have to copy in the ifconf structure to find out how big the
8778 	 * output buffer is and where to copy out to.  Sure no problem...
8779 	 *
8780 	 */
8781 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8782 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8783 		int numifs = 0;
8784 		size_t ifc_bufsize;
8785 
8786 		/*
8787 		 * Must be (better be!) continuation of a TRANSPARENT
8788 		 * IOCTL.  We just copied in the ifconf structure.
8789 		 */
8790 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8791 		    (struct ifconf *)mp1->b_rptr);
8792 
8793 		/*
8794 		 * Allocate a buffer to hold requested information.
8795 		 *
8796 		 * If ifc_len is larger than what is needed, we only
8797 		 * allocate what we will use.
8798 		 *
8799 		 * If ifc_len is smaller than what is needed, return
8800 		 * EINVAL.
8801 		 *
8802 		 * XXX: the ill_t structure can hava 2 counters, for
8803 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8804 		 * number of interfaces for a device, so we don't need
8805 		 * to count them here...
8806 		 */
8807 		numifs = ip_get_numifs(zoneid, ipst);
8808 
8809 		ifclen = STRUCT_FGET(ifc, ifc_len);
8810 		ifc_bufsize = numifs * sizeof (struct ifreq);
8811 		if (ifc_bufsize > ifclen) {
8812 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8813 				/* old behaviour */
8814 				return (EINVAL);
8815 			} else {
8816 				ifc_bufsize = ifclen;
8817 			}
8818 		}
8819 
8820 		mp1 = mi_copyout_alloc(q, mp,
8821 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8822 		if (mp1 == NULL)
8823 			return (ENOMEM);
8824 
8825 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8826 	}
8827 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8828 	/*
8829 	 * the SIOCGIFCONF ioctl only knows about
8830 	 * IPv4 addresses, so don't try to tell
8831 	 * it about interfaces with IPv6-only
8832 	 * addresses. (Last parm 'isv6' is B_FALSE)
8833 	 */
8834 
8835 	ifr = (struct ifreq *)mp1->b_rptr;
8836 
8837 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8838 	ill = ILL_START_WALK_V4(&ctx, ipst);
8839 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8840 		for (ipif = ill->ill_ipif; ipif != NULL;
8841 		    ipif = ipif->ipif_next) {
8842 			if (zoneid != ipif->ipif_zoneid &&
8843 			    ipif->ipif_zoneid != ALL_ZONES)
8844 				continue;
8845 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8846 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8847 					/* old behaviour */
8848 					rw_exit(&ipst->ips_ill_g_lock);
8849 					return (EINVAL);
8850 				} else {
8851 					goto if_copydone;
8852 				}
8853 			}
8854 			(void) ipif_get_name(ipif,
8855 			    ifr->ifr_name,
8856 			    sizeof (ifr->ifr_name));
8857 			sin = (sin_t *)&ifr->ifr_addr;
8858 			*sin = sin_null;
8859 			sin->sin_family = AF_INET;
8860 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8861 			ifr++;
8862 		}
8863 	}
8864 if_copydone:
8865 	rw_exit(&ipst->ips_ill_g_lock);
8866 	mp1->b_wptr = (uchar_t *)ifr;
8867 
8868 	if (STRUCT_BUF(ifc) != NULL) {
8869 		STRUCT_FSET(ifc, ifc_len,
8870 			(int)((uchar_t *)ifr - mp1->b_rptr));
8871 	}
8872 	return (0);
8873 }
8874 
8875 /*
8876  * Get the interfaces using the address hosted on the interface passed in,
8877  * as a source adddress
8878  */
8879 /* ARGSUSED */
8880 int
8881 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8882     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8883 {
8884 	mblk_t *mp1;
8885 	ill_t	*ill, *ill_head;
8886 	ipif_t	*ipif, *orig_ipif;
8887 	int	numlifs = 0;
8888 	size_t	lifs_bufsize, lifsmaxlen;
8889 	struct	lifreq *lifr;
8890 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8891 	uint_t	ifindex;
8892 	zoneid_t zoneid;
8893 	int err = 0;
8894 	boolean_t isv6 = B_FALSE;
8895 	struct	sockaddr_in	*sin;
8896 	struct	sockaddr_in6	*sin6;
8897 	STRUCT_HANDLE(lifsrcof, lifs);
8898 	ip_stack_t		*ipst;
8899 
8900 	ipst = CONNQ_TO_IPST(q);
8901 
8902 	ASSERT(q->q_next == NULL);
8903 
8904 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8905 
8906 	/* Existence verified in ip_wput_nondata */
8907 	mp1 = mp->b_cont->b_cont;
8908 
8909 	/*
8910 	 * Must be (better be!) continuation of a TRANSPARENT
8911 	 * IOCTL.  We just copied in the lifsrcof structure.
8912 	 */
8913 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8914 	    (struct lifsrcof *)mp1->b_rptr);
8915 
8916 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8917 		return (EINVAL);
8918 
8919 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8920 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8921 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8922 	    ip_process_ioctl, &err, ipst);
8923 	if (ipif == NULL) {
8924 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8925 		    ifindex));
8926 		return (err);
8927 	}
8928 
8929 
8930 	/* Allocate a buffer to hold requested information */
8931 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8932 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8933 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8934 	/* The actual size needed is always returned in lifs_len */
8935 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8936 
8937 	/* If the amount we need is more than what is passed in, abort */
8938 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8939 		ipif_refrele(ipif);
8940 		return (0);
8941 	}
8942 
8943 	mp1 = mi_copyout_alloc(q, mp,
8944 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8945 	if (mp1 == NULL) {
8946 		ipif_refrele(ipif);
8947 		return (ENOMEM);
8948 	}
8949 
8950 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8951 	bzero(mp1->b_rptr, lifs_bufsize);
8952 
8953 	lifr = (struct lifreq *)mp1->b_rptr;
8954 
8955 	ill = ill_head = ipif->ipif_ill;
8956 	orig_ipif = ipif;
8957 
8958 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8959 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8960 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8961 
8962 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8963 	for (; (ill != NULL) && (ill != ill_head);
8964 	    ill = ill->ill_usesrc_grp_next) {
8965 
8966 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8967 			break;
8968 
8969 		ipif = ill->ill_ipif;
8970 		(void) ipif_get_name(ipif,
8971 		    lifr->lifr_name, sizeof (lifr->lifr_name));
8972 		if (ipif->ipif_isv6) {
8973 			sin6 = (sin6_t *)&lifr->lifr_addr;
8974 			*sin6 = sin6_null;
8975 			sin6->sin6_family = AF_INET6;
8976 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8977 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8978 			    &ipif->ipif_v6net_mask);
8979 		} else {
8980 			sin = (sin_t *)&lifr->lifr_addr;
8981 			*sin = sin_null;
8982 			sin->sin_family = AF_INET;
8983 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8984 			lifr->lifr_addrlen = ip_mask_to_plen(
8985 			    ipif->ipif_net_mask);
8986 		}
8987 		lifr++;
8988 	}
8989 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8990 	rw_exit(&ipst->ips_ill_g_lock);
8991 	ipif_refrele(orig_ipif);
8992 	mp1->b_wptr = (uchar_t *)lifr;
8993 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8994 
8995 	return (0);
8996 }
8997 
8998 /* ARGSUSED */
8999 int
9000 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
9001     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9002 {
9003 	mblk_t *mp1;
9004 	int	list;
9005 	ill_t	*ill;
9006 	ipif_t	*ipif;
9007 	int	flags;
9008 	int	numlifs = 0;
9009 	size_t	lifc_bufsize;
9010 	struct	lifreq *lifr;
9011 	sa_family_t	family;
9012 	struct	sockaddr_in	*sin;
9013 	struct	sockaddr_in6	*sin6;
9014 	ill_walk_context_t	ctx;
9015 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9016 	int32_t	lifclen;
9017 	zoneid_t zoneid;
9018 	STRUCT_HANDLE(lifconf, lifc);
9019 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9020 
9021 	ip1dbg(("ip_sioctl_get_lifconf"));
9022 
9023 	ASSERT(q->q_next == NULL);
9024 
9025 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9026 
9027 	/* Existence verified in ip_wput_nondata */
9028 	mp1 = mp->b_cont->b_cont;
9029 
9030 	/*
9031 	 * An extended version of SIOCGIFCONF that takes an
9032 	 * additional address family and flags field.
9033 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
9034 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
9035 	 * interfaces are omitted.
9036 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
9037 	 * unless LIFC_TEMPORARY is specified.
9038 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
9039 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
9040 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
9041 	 * has priority over LIFC_NOXMIT.
9042 	 */
9043 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
9044 
9045 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
9046 		return (EINVAL);
9047 
9048 	/*
9049 	 * Must be (better be!) continuation of a TRANSPARENT
9050 	 * IOCTL.  We just copied in the lifconf structure.
9051 	 */
9052 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
9053 
9054 	family = STRUCT_FGET(lifc, lifc_family);
9055 	flags = STRUCT_FGET(lifc, lifc_flags);
9056 
9057 	switch (family) {
9058 	case AF_UNSPEC:
9059 		/*
9060 		 * walk all ILL's.
9061 		 */
9062 		list = MAX_G_HEADS;
9063 		break;
9064 	case AF_INET:
9065 		/*
9066 		 * walk only IPV4 ILL's.
9067 		 */
9068 		list = IP_V4_G_HEAD;
9069 		break;
9070 	case AF_INET6:
9071 		/*
9072 		 * walk only IPV6 ILL's.
9073 		 */
9074 		list = IP_V6_G_HEAD;
9075 		break;
9076 	default:
9077 		return (EAFNOSUPPORT);
9078 	}
9079 
9080 	/*
9081 	 * Allocate a buffer to hold requested information.
9082 	 *
9083 	 * If lifc_len is larger than what is needed, we only
9084 	 * allocate what we will use.
9085 	 *
9086 	 * If lifc_len is smaller than what is needed, return
9087 	 * EINVAL.
9088 	 */
9089 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
9090 	lifc_bufsize = numlifs * sizeof (struct lifreq);
9091 	lifclen = STRUCT_FGET(lifc, lifc_len);
9092 	if (lifc_bufsize > lifclen) {
9093 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
9094 			return (EINVAL);
9095 		else
9096 			lifc_bufsize = lifclen;
9097 	}
9098 
9099 	mp1 = mi_copyout_alloc(q, mp,
9100 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
9101 	if (mp1 == NULL)
9102 		return (ENOMEM);
9103 
9104 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
9105 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
9106 
9107 	lifr = (struct lifreq *)mp1->b_rptr;
9108 
9109 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9110 	ill = ill_first(list, list, &ctx, ipst);
9111 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9112 		for (ipif = ill->ill_ipif; ipif != NULL;
9113 		    ipif = ipif->ipif_next) {
9114 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
9115 			    !(flags & LIFC_NOXMIT))
9116 				continue;
9117 
9118 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
9119 			    !(flags & LIFC_TEMPORARY))
9120 				continue;
9121 
9122 			if (((ipif->ipif_flags &
9123 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
9124 			    IPIF_DEPRECATED)) ||
9125 			    (ill->ill_phyint->phyint_flags &
9126 			    PHYI_LOOPBACK) ||
9127 			    !(ipif->ipif_flags & IPIF_UP)) &&
9128 			    (flags & LIFC_EXTERNAL_SOURCE))
9129 				continue;
9130 
9131 			if (zoneid != ipif->ipif_zoneid &&
9132 			    ipif->ipif_zoneid != ALL_ZONES &&
9133 			    (zoneid != GLOBAL_ZONEID ||
9134 			    !(flags & LIFC_ALLZONES)))
9135 				continue;
9136 
9137 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
9138 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
9139 					rw_exit(&ipst->ips_ill_g_lock);
9140 					return (EINVAL);
9141 				} else {
9142 					goto lif_copydone;
9143 				}
9144 			}
9145 
9146 			(void) ipif_get_name(ipif,
9147 				lifr->lifr_name,
9148 				sizeof (lifr->lifr_name));
9149 			if (ipif->ipif_isv6) {
9150 				sin6 = (sin6_t *)&lifr->lifr_addr;
9151 				*sin6 = sin6_null;
9152 				sin6->sin6_family = AF_INET6;
9153 				sin6->sin6_addr =
9154 				ipif->ipif_v6lcl_addr;
9155 				lifr->lifr_addrlen =
9156 				ip_mask_to_plen_v6(
9157 				    &ipif->ipif_v6net_mask);
9158 			} else {
9159 				sin = (sin_t *)&lifr->lifr_addr;
9160 				*sin = sin_null;
9161 				sin->sin_family = AF_INET;
9162 				sin->sin_addr.s_addr =
9163 				    ipif->ipif_lcl_addr;
9164 				lifr->lifr_addrlen =
9165 				    ip_mask_to_plen(
9166 				    ipif->ipif_net_mask);
9167 			}
9168 			lifr++;
9169 		}
9170 	}
9171 lif_copydone:
9172 	rw_exit(&ipst->ips_ill_g_lock);
9173 
9174 	mp1->b_wptr = (uchar_t *)lifr;
9175 	if (STRUCT_BUF(lifc) != NULL) {
9176 		STRUCT_FSET(lifc, lifc_len,
9177 			(int)((uchar_t *)lifr - mp1->b_rptr));
9178 	}
9179 	return (0);
9180 }
9181 
9182 /* ARGSUSED */
9183 int
9184 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
9185     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9186 {
9187 	ip_stack_t	*ipst;
9188 
9189 	if (q->q_next == NULL)
9190 		ipst = CONNQ_TO_IPST(q);
9191 	else
9192 		ipst = ILLQ_TO_IPST(q);
9193 
9194 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
9195 	ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9196 	return (0);
9197 }
9198 
9199 static void
9200 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9201 {
9202 	ip6_asp_t *table;
9203 	size_t table_size;
9204 	mblk_t *data_mp;
9205 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9206 	ip_stack_t	*ipst;
9207 
9208 	if (q->q_next == NULL)
9209 		ipst = CONNQ_TO_IPST(q);
9210 	else
9211 		ipst = ILLQ_TO_IPST(q);
9212 
9213 	/* These two ioctls are I_STR only */
9214 	if (iocp->ioc_count == TRANSPARENT) {
9215 		miocnak(q, mp, 0, EINVAL);
9216 		return;
9217 	}
9218 
9219 	data_mp = mp->b_cont;
9220 	if (data_mp == NULL) {
9221 		/* The user passed us a NULL argument */
9222 		table = NULL;
9223 		table_size = iocp->ioc_count;
9224 	} else {
9225 		/*
9226 		 * The user provided a table.  The stream head
9227 		 * may have copied in the user data in chunks,
9228 		 * so make sure everything is pulled up
9229 		 * properly.
9230 		 */
9231 		if (MBLKL(data_mp) < iocp->ioc_count) {
9232 			mblk_t *new_data_mp;
9233 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9234 			    NULL) {
9235 				miocnak(q, mp, 0, ENOMEM);
9236 				return;
9237 			}
9238 			freemsg(data_mp);
9239 			data_mp = new_data_mp;
9240 			mp->b_cont = data_mp;
9241 		}
9242 		table = (ip6_asp_t *)data_mp->b_rptr;
9243 		table_size = iocp->ioc_count;
9244 	}
9245 
9246 	switch (iocp->ioc_cmd) {
9247 	case SIOCGIP6ADDRPOLICY:
9248 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9249 		if (iocp->ioc_rval == -1)
9250 			iocp->ioc_error = EINVAL;
9251 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9252 		else if (table != NULL &&
9253 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9254 			ip6_asp_t *src = table;
9255 			ip6_asp32_t *dst = (void *)table;
9256 			int count = table_size / sizeof (ip6_asp_t);
9257 			int i;
9258 
9259 			/*
9260 			 * We need to do an in-place shrink of the array
9261 			 * to match the alignment attributes of the
9262 			 * 32-bit ABI looking at it.
9263 			 */
9264 			/* LINTED: logical expression always true: op "||" */
9265 			ASSERT(sizeof (*src) > sizeof (*dst));
9266 			for (i = 1; i < count; i++)
9267 				bcopy(src + i, dst + i, sizeof (*dst));
9268 		}
9269 #endif
9270 		break;
9271 
9272 	case SIOCSIP6ADDRPOLICY:
9273 		ASSERT(mp->b_prev == NULL);
9274 		mp->b_prev = (void *)q;
9275 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9276 		/*
9277 		 * We pass in the datamodel here so that the ip6_asp_replace()
9278 		 * routine can handle converting from 32-bit to native formats
9279 		 * where necessary.
9280 		 *
9281 		 * A better way to handle this might be to convert the inbound
9282 		 * data structure here, and hang it off a new 'mp'; thus the
9283 		 * ip6_asp_replace() logic would always be dealing with native
9284 		 * format data structures..
9285 		 *
9286 		 * (An even simpler way to handle these ioctls is to just
9287 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9288 		 * and just recompile everything that depends on it.)
9289 		 */
9290 #endif
9291 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9292 		    iocp->ioc_flag & IOC_MODELS);
9293 		return;
9294 	}
9295 
9296 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9297 	qreply(q, mp);
9298 }
9299 
9300 static void
9301 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9302 {
9303 	mblk_t 		*data_mp;
9304 	struct dstinforeq	*dir;
9305 	uint8_t		*end, *cur;
9306 	in6_addr_t	*daddr, *saddr;
9307 	ipaddr_t	v4daddr;
9308 	ire_t		*ire;
9309 	char		*slabel, *dlabel;
9310 	boolean_t	isipv4;
9311 	int		match_ire;
9312 	ill_t		*dst_ill;
9313 	ipif_t		*src_ipif, *ire_ipif;
9314 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9315 	zoneid_t	zoneid;
9316 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
9317 
9318 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9319 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9320 
9321 	/*
9322 	 * This ioctl is I_STR only, and must have a
9323 	 * data mblk following the M_IOCTL mblk.
9324 	 */
9325 	data_mp = mp->b_cont;
9326 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9327 		miocnak(q, mp, 0, EINVAL);
9328 		return;
9329 	}
9330 
9331 	if (MBLKL(data_mp) < iocp->ioc_count) {
9332 		mblk_t *new_data_mp;
9333 
9334 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9335 			miocnak(q, mp, 0, ENOMEM);
9336 			return;
9337 		}
9338 		freemsg(data_mp);
9339 		data_mp = new_data_mp;
9340 		mp->b_cont = data_mp;
9341 	}
9342 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9343 
9344 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9345 	    end - cur >= sizeof (struct dstinforeq);
9346 	    cur += sizeof (struct dstinforeq)) {
9347 		dir = (struct dstinforeq *)cur;
9348 		daddr = &dir->dir_daddr;
9349 		saddr = &dir->dir_saddr;
9350 
9351 		/*
9352 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9353 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9354 		 * and ipif_select_source[_v6]() do not.
9355 		 */
9356 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9357 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9358 
9359 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9360 		if (isipv4) {
9361 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9362 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9363 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9364 		} else {
9365 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9366 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9367 		}
9368 		if (ire == NULL) {
9369 			dir->dir_dreachable = 0;
9370 
9371 			/* move on to next dst addr */
9372 			continue;
9373 		}
9374 		dir->dir_dreachable = 1;
9375 
9376 		ire_ipif = ire->ire_ipif;
9377 		if (ire_ipif == NULL)
9378 			goto next_dst;
9379 
9380 		/*
9381 		 * We expect to get back an interface ire or a
9382 		 * gateway ire cache entry.  For both types, the
9383 		 * output interface is ire_ipif->ipif_ill.
9384 		 */
9385 		dst_ill = ire_ipif->ipif_ill;
9386 		dir->dir_dmactype = dst_ill->ill_mactype;
9387 
9388 		if (isipv4) {
9389 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9390 		} else {
9391 			src_ipif = ipif_select_source_v6(dst_ill,
9392 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9393 			    zoneid);
9394 		}
9395 		if (src_ipif == NULL)
9396 			goto next_dst;
9397 
9398 		*saddr = src_ipif->ipif_v6lcl_addr;
9399 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9400 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9401 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9402 		dir->dir_sdeprecated =
9403 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9404 		ipif_refrele(src_ipif);
9405 next_dst:
9406 		ire_refrele(ire);
9407 	}
9408 	miocack(q, mp, iocp->ioc_count, 0);
9409 }
9410 
9411 
9412 /*
9413  * Check if this is an address assigned to this machine.
9414  * Skips interfaces that are down by using ire checks.
9415  * Translates mapped addresses to v4 addresses and then
9416  * treats them as such, returning true if the v4 address
9417  * associated with this mapped address is configured.
9418  * Note: Applications will have to be careful what they do
9419  * with the response; use of mapped addresses limits
9420  * what can be done with the socket, especially with
9421  * respect to socket options and ioctls - neither IPv4
9422  * options nor IPv6 sticky options/ancillary data options
9423  * may be used.
9424  */
9425 /* ARGSUSED */
9426 int
9427 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9428     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9429 {
9430 	struct sioc_addrreq *sia;
9431 	sin_t *sin;
9432 	ire_t *ire;
9433 	mblk_t *mp1;
9434 	zoneid_t zoneid;
9435 	ip_stack_t	*ipst;
9436 
9437 	ip1dbg(("ip_sioctl_tmyaddr"));
9438 
9439 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9440 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9441 	ipst = CONNQ_TO_IPST(q);
9442 
9443 	/* Existence verified in ip_wput_nondata */
9444 	mp1 = mp->b_cont->b_cont;
9445 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9446 	sin = (sin_t *)&sia->sa_addr;
9447 	switch (sin->sin_family) {
9448 	case AF_INET6: {
9449 		sin6_t *sin6 = (sin6_t *)sin;
9450 
9451 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9452 			ipaddr_t v4_addr;
9453 
9454 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9455 			    v4_addr);
9456 			ire = ire_ctable_lookup(v4_addr, 0,
9457 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9458 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9459 		} else {
9460 			in6_addr_t v6addr;
9461 
9462 			v6addr = sin6->sin6_addr;
9463 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9464 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9465 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9466 		}
9467 		break;
9468 	}
9469 	case AF_INET: {
9470 		ipaddr_t v4addr;
9471 
9472 		v4addr = sin->sin_addr.s_addr;
9473 		ire = ire_ctable_lookup(v4addr, 0,
9474 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9475 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9476 		break;
9477 	}
9478 	default:
9479 		return (EAFNOSUPPORT);
9480 	}
9481 	if (ire != NULL) {
9482 		sia->sa_res = 1;
9483 		ire_refrele(ire);
9484 	} else {
9485 		sia->sa_res = 0;
9486 	}
9487 	return (0);
9488 }
9489 
9490 /*
9491  * Check if this is an address assigned on-link i.e. neighbor,
9492  * and makes sure it's reachable from the current zone.
9493  * Returns true for my addresses as well.
9494  * Translates mapped addresses to v4 addresses and then
9495  * treats them as such, returning true if the v4 address
9496  * associated with this mapped address is configured.
9497  * Note: Applications will have to be careful what they do
9498  * with the response; use of mapped addresses limits
9499  * what can be done with the socket, especially with
9500  * respect to socket options and ioctls - neither IPv4
9501  * options nor IPv6 sticky options/ancillary data options
9502  * may be used.
9503  */
9504 /* ARGSUSED */
9505 int
9506 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9507     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9508 {
9509 	struct sioc_addrreq *sia;
9510 	sin_t *sin;
9511 	mblk_t	*mp1;
9512 	ire_t *ire = NULL;
9513 	zoneid_t zoneid;
9514 	ip_stack_t	*ipst;
9515 
9516 	ip1dbg(("ip_sioctl_tonlink"));
9517 
9518 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9519 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9520 	ipst = CONNQ_TO_IPST(q);
9521 
9522 	/* Existence verified in ip_wput_nondata */
9523 	mp1 = mp->b_cont->b_cont;
9524 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9525 	sin = (sin_t *)&sia->sa_addr;
9526 
9527 	/*
9528 	 * Match addresses with a zero gateway field to avoid
9529 	 * routes going through a router.
9530 	 * Exclude broadcast and multicast addresses.
9531 	 */
9532 	switch (sin->sin_family) {
9533 	case AF_INET6: {
9534 		sin6_t *sin6 = (sin6_t *)sin;
9535 
9536 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9537 			ipaddr_t v4_addr;
9538 
9539 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9540 			    v4_addr);
9541 			if (!CLASSD(v4_addr)) {
9542 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9543 				    NULL, NULL, zoneid, NULL,
9544 				    MATCH_IRE_GW, ipst);
9545 			}
9546 		} else {
9547 			in6_addr_t v6addr;
9548 			in6_addr_t v6gw;
9549 
9550 			v6addr = sin6->sin6_addr;
9551 			v6gw = ipv6_all_zeros;
9552 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9553 				ire = ire_route_lookup_v6(&v6addr, 0,
9554 				    &v6gw, 0, NULL, NULL, zoneid,
9555 				    NULL, MATCH_IRE_GW, ipst);
9556 			}
9557 		}
9558 		break;
9559 	}
9560 	case AF_INET: {
9561 		ipaddr_t v4addr;
9562 
9563 		v4addr = sin->sin_addr.s_addr;
9564 		if (!CLASSD(v4addr)) {
9565 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9566 			    NULL, NULL, zoneid, NULL,
9567 			    MATCH_IRE_GW, ipst);
9568 		}
9569 		break;
9570 	}
9571 	default:
9572 		return (EAFNOSUPPORT);
9573 	}
9574 	sia->sa_res = 0;
9575 	if (ire != NULL) {
9576 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9577 		    IRE_LOCAL|IRE_LOOPBACK)) {
9578 			sia->sa_res = 1;
9579 		}
9580 		ire_refrele(ire);
9581 	}
9582 	return (0);
9583 }
9584 
9585 /*
9586  * TBD: implement when kernel maintaines a list of site prefixes.
9587  */
9588 /* ARGSUSED */
9589 int
9590 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9591     ip_ioctl_cmd_t *ipip, void *ifreq)
9592 {
9593 	return (ENXIO);
9594 }
9595 
9596 /* ARGSUSED */
9597 int
9598 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9599     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9600 {
9601 	ill_t  		*ill;
9602 	mblk_t		*mp1;
9603 	conn_t		*connp;
9604 	boolean_t	success;
9605 
9606 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9607 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9608 	/* ioctl comes down on an conn */
9609 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9610 	connp = Q_TO_CONN(q);
9611 
9612 	mp->b_datap->db_type = M_IOCTL;
9613 
9614 	/*
9615 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9616 	 * The original mp contains contaminated b_next values due to 'mi',
9617 	 * which is needed to do the mi_copy_done. Unfortunately if we
9618 	 * send down the original mblk itself and if we are popped due to an
9619 	 * an unplumb before the response comes back from tunnel,
9620 	 * the streamhead (which does a freemsg) will see this contaminated
9621 	 * message and the assertion in freemsg about non-null b_next/b_prev
9622 	 * will panic a DEBUG kernel.
9623 	 */
9624 	mp1 = copymsg(mp);
9625 	if (mp1 == NULL)
9626 		return (ENOMEM);
9627 
9628 	ill = ipif->ipif_ill;
9629 	mutex_enter(&connp->conn_lock);
9630 	mutex_enter(&ill->ill_lock);
9631 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9632 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9633 		    mp, 0);
9634 	} else {
9635 		success = ill_pending_mp_add(ill, connp, mp);
9636 	}
9637 	mutex_exit(&ill->ill_lock);
9638 	mutex_exit(&connp->conn_lock);
9639 
9640 	if (success) {
9641 		ip1dbg(("sending down tunparam request "));
9642 		putnext(ill->ill_wq, mp1);
9643 		return (EINPROGRESS);
9644 	} else {
9645 		/* The conn has started closing */
9646 		freemsg(mp1);
9647 		return (EINTR);
9648 	}
9649 }
9650 
9651 static int
9652 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin,
9653     boolean_t x_arp_ioctl, boolean_t if_arp_ioctl)
9654 {
9655 	mblk_t *mp1;
9656 	mblk_t *mp2;
9657 	mblk_t *pending_mp;
9658 	ipaddr_t ipaddr;
9659 	area_t *area;
9660 	struct iocblk *iocp;
9661 	conn_t *connp;
9662 	struct arpreq *ar;
9663 	struct xarpreq *xar;
9664 	boolean_t success;
9665 	int flags, alength;
9666 	char *lladdr;
9667 	ip_stack_t	*ipst;
9668 
9669 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9670 	connp = Q_TO_CONN(q);
9671 	ipst = connp->conn_netstack->netstack_ip;
9672 
9673 	iocp = (struct iocblk *)mp->b_rptr;
9674 	/*
9675 	 * ill has already been set depending on whether
9676 	 * bsd style or interface style ioctl.
9677 	 */
9678 	ASSERT(ill != NULL);
9679 
9680 	/*
9681 	 * Is this one of the new SIOC*XARP ioctls?
9682 	 */
9683 	if (x_arp_ioctl) {
9684 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9685 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9686 		ar = NULL;
9687 
9688 		flags = xar->xarp_flags;
9689 		lladdr = LLADDR(&xar->xarp_ha);
9690 		/*
9691 		 * Validate against user's link layer address length
9692 		 * input and name and addr length limits.
9693 		 */
9694 		alength = ill->ill_phys_addr_length;
9695 		if (iocp->ioc_cmd == SIOCSXARP) {
9696 			if (alength != xar->xarp_ha.sdl_alen ||
9697 			    (alength + xar->xarp_ha.sdl_nlen >
9698 			    sizeof (xar->xarp_ha.sdl_data)))
9699 				return (EINVAL);
9700 		}
9701 	} else {
9702 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9703 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9704 		xar = NULL;
9705 
9706 		flags = ar->arp_flags;
9707 		lladdr = ar->arp_ha.sa_data;
9708 		/*
9709 		 * Theoretically, the sa_family could tell us what link
9710 		 * layer type this operation is trying to deal with. By
9711 		 * common usage AF_UNSPEC means ethernet. We'll assume
9712 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9713 		 * for now. Our new SIOC*XARP ioctls can be used more
9714 		 * generally.
9715 		 *
9716 		 * If the underlying media happens to have a non 6 byte
9717 		 * address, arp module will fail set/get, but the del
9718 		 * operation will succeed.
9719 		 */
9720 		alength = 6;
9721 		if ((iocp->ioc_cmd != SIOCDARP) &&
9722 		    (alength != ill->ill_phys_addr_length)) {
9723 			return (EINVAL);
9724 		}
9725 	}
9726 
9727 	/*
9728 	 * We are going to pass up to ARP a packet chain that looks
9729 	 * like:
9730 	 *
9731 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9732 	 *
9733 	 * Get a copy of the original IOCTL mblk to head the chain,
9734 	 * to be sent up (in mp1). Also get another copy to store
9735 	 * in the ill_pending_mp list, for matching the response
9736 	 * when it comes back from ARP.
9737 	 */
9738 	mp1 = copyb(mp);
9739 	pending_mp = copymsg(mp);
9740 	if (mp1 == NULL || pending_mp == NULL) {
9741 		if (mp1 != NULL)
9742 			freeb(mp1);
9743 		if (pending_mp != NULL)
9744 			inet_freemsg(pending_mp);
9745 		return (ENOMEM);
9746 	}
9747 
9748 	ipaddr = sin->sin_addr.s_addr;
9749 
9750 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9751 	    (caddr_t)&ipaddr);
9752 	if (mp2 == NULL) {
9753 		freeb(mp1);
9754 		inet_freemsg(pending_mp);
9755 		return (ENOMEM);
9756 	}
9757 	/* Put together the chain. */
9758 	mp1->b_cont = mp2;
9759 	mp1->b_datap->db_type = M_IOCTL;
9760 	mp2->b_cont = mp;
9761 	mp2->b_datap->db_type = M_DATA;
9762 
9763 	iocp = (struct iocblk *)mp1->b_rptr;
9764 
9765 	/*
9766 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9767 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9768 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9769 	 * ioc_count field; set ioc_count to be correct.
9770 	 */
9771 	iocp->ioc_count = MBLKL(mp1->b_cont);
9772 
9773 	/*
9774 	 * Set the proper command in the ARP message.
9775 	 * Convert the SIOC{G|S|D}ARP calls into our
9776 	 * AR_ENTRY_xxx calls.
9777 	 */
9778 	area = (area_t *)mp2->b_rptr;
9779 	switch (iocp->ioc_cmd) {
9780 	case SIOCDARP:
9781 	case SIOCDXARP:
9782 		/*
9783 		 * We defer deleting the corresponding IRE until
9784 		 * we return from arp.
9785 		 */
9786 		area->area_cmd = AR_ENTRY_DELETE;
9787 		area->area_proto_mask_offset = 0;
9788 		break;
9789 	case SIOCGARP:
9790 	case SIOCGXARP:
9791 		area->area_cmd = AR_ENTRY_SQUERY;
9792 		area->area_proto_mask_offset = 0;
9793 		break;
9794 	case SIOCSARP:
9795 	case SIOCSXARP: {
9796 		/*
9797 		 * Delete the corresponding ire to make sure IP will
9798 		 * pick up any change from arp.
9799 		 */
9800 		if (!if_arp_ioctl) {
9801 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9802 			break;
9803 		} else {
9804 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9805 			if (ipif != NULL) {
9806 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9807 				    ipst);
9808 				ipif_refrele(ipif);
9809 			}
9810 			break;
9811 		}
9812 	}
9813 	}
9814 	iocp->ioc_cmd = area->area_cmd;
9815 
9816 	/*
9817 	 * Before sending 'mp' to ARP, we have to clear the b_next
9818 	 * and b_prev. Otherwise if STREAMS encounters such a message
9819 	 * in freemsg(), (because ARP can close any time) it can cause
9820 	 * a panic. But mi code needs the b_next and b_prev values of
9821 	 * mp->b_cont, to complete the ioctl. So we store it here
9822 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9823 	 * when the response comes down from ARP.
9824 	 */
9825 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9826 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9827 	mp->b_cont->b_next = NULL;
9828 	mp->b_cont->b_prev = NULL;
9829 
9830 	mutex_enter(&connp->conn_lock);
9831 	mutex_enter(&ill->ill_lock);
9832 	/* conn has not yet started closing, hence this can't fail */
9833 	success = ill_pending_mp_add(ill, connp, pending_mp);
9834 	ASSERT(success);
9835 	mutex_exit(&ill->ill_lock);
9836 	mutex_exit(&connp->conn_lock);
9837 
9838 	/*
9839 	 * Fill in the rest of the ARP operation fields.
9840 	 */
9841 	area->area_hw_addr_length = alength;
9842 	bcopy(lladdr,
9843 	    (char *)area + area->area_hw_addr_offset,
9844 	    area->area_hw_addr_length);
9845 	/* Translate the flags. */
9846 	if (flags & ATF_PERM)
9847 		area->area_flags |= ACE_F_PERMANENT;
9848 	if (flags & ATF_PUBL)
9849 		area->area_flags |= ACE_F_PUBLISH;
9850 	if (flags & ATF_AUTHORITY)
9851 		area->area_flags |= ACE_F_AUTHORITY;
9852 
9853 	/*
9854 	 * Up to ARP it goes.  The response will come
9855 	 * back in ip_wput as an M_IOCACK message, and
9856 	 * will be handed to ip_sioctl_iocack for
9857 	 * completion.
9858 	 */
9859 	putnext(ill->ill_rq, mp1);
9860 	return (EINPROGRESS);
9861 }
9862 
9863 /* ARGSUSED */
9864 int
9865 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9866     ip_ioctl_cmd_t *ipip, void *ifreq)
9867 {
9868 	struct xarpreq *xar;
9869 	boolean_t isv6;
9870 	mblk_t	*mp1;
9871 	int	err;
9872 	conn_t	*connp;
9873 	int ifnamelen;
9874 	ire_t	*ire = NULL;
9875 	ill_t	*ill = NULL;
9876 	struct sockaddr_in *sin;
9877 	boolean_t if_arp_ioctl = B_FALSE;
9878 	ip_stack_t	*ipst;
9879 
9880 	/* ioctl comes down on an conn */
9881 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9882 	connp = Q_TO_CONN(q);
9883 	isv6 = connp->conn_af_isv6;
9884 	ipst = connp->conn_netstack->netstack_ip;
9885 
9886 	/* Existance verified in ip_wput_nondata */
9887 	mp1 = mp->b_cont->b_cont;
9888 
9889 	ASSERT(MBLKL(mp1) >= sizeof (*xar));
9890 	xar = (struct xarpreq *)mp1->b_rptr;
9891 	sin = (sin_t *)&xar->xarp_pa;
9892 
9893 	if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) ||
9894 	    (xar->xarp_pa.ss_family != AF_INET))
9895 		return (ENXIO);
9896 
9897 	ifnamelen = xar->xarp_ha.sdl_nlen;
9898 	if (ifnamelen != 0) {
9899 		char	*cptr, cval;
9900 
9901 		if (ifnamelen >= LIFNAMSIZ)
9902 			return (EINVAL);
9903 
9904 		/*
9905 		 * Instead of bcopying a bunch of bytes,
9906 		 * null-terminate the string in-situ.
9907 		 */
9908 		cptr = xar->xarp_ha.sdl_data + ifnamelen;
9909 		cval = *cptr;
9910 		*cptr = '\0';
9911 		ill = ill_lookup_on_name(xar->xarp_ha.sdl_data,
9912 		    B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl,
9913 		    &err, NULL, ipst);
9914 		*cptr = cval;
9915 		if (ill == NULL)
9916 			return (err);
9917 		if (ill->ill_net_type != IRE_IF_RESOLVER) {
9918 			ill_refrele(ill);
9919 			return (ENXIO);
9920 		}
9921 
9922 		if_arp_ioctl = B_TRUE;
9923 	} else {
9924 		/*
9925 		 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves
9926 		 * as an extended BSD ioctl. The kernel uses the IP address
9927 		 * to figure out the network interface.
9928 		 */
9929 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9930 		    ipst);
9931 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9932 		    ((ill = ire_to_ill(ire)) == NULL) ||
9933 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9934 			if (ire != NULL)
9935 				ire_refrele(ire);
9936 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9937 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9938 			    NULL, MATCH_IRE_TYPE, ipst);
9939 			if ((ire == NULL) ||
9940 			    ((ill = ire_to_ill(ire)) == NULL)) {
9941 				if (ire != NULL)
9942 					ire_refrele(ire);
9943 				return (ENXIO);
9944 			}
9945 		}
9946 		ASSERT(ire != NULL && ill != NULL);
9947 	}
9948 
9949 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl);
9950 	if (if_arp_ioctl)
9951 		ill_refrele(ill);
9952 	if (ire != NULL)
9953 		ire_refrele(ire);
9954 
9955 	return (err);
9956 }
9957 
9958 /*
9959  * ARP IOCTLs.
9960  * How does IP get in the business of fronting ARP configuration/queries?
9961  * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9962  * are by tradition passed in through a datagram socket.  That lands in IP.
9963  * As it happens, this is just as well since the interface is quite crude in
9964  * that it passes in no information about protocol or hardware types, or
9965  * interface association.  After making the protocol assumption, IP is in
9966  * the position to look up the name of the ILL, which ARP will need, and
9967  * format a request that can be handled by ARP.	 The request is passed up
9968  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9969  * back a response.  ARP supports its own set of more general IOCTLs, in
9970  * case anyone is interested.
9971  */
9972 /* ARGSUSED */
9973 int
9974 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9975     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9976 {
9977 	struct arpreq *ar;
9978 	struct sockaddr_in *sin;
9979 	ire_t	*ire;
9980 	boolean_t isv6;
9981 	mblk_t	*mp1;
9982 	int	err;
9983 	conn_t	*connp;
9984 	ill_t	*ill;
9985 	ip_stack_t	*ipst;
9986 
9987 	/* ioctl comes down on an conn */
9988 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9989 	connp = Q_TO_CONN(q);
9990 	ipst = CONNQ_TO_IPST(q);
9991 	isv6 = connp->conn_af_isv6;
9992 	if (isv6)
9993 		return (ENXIO);
9994 
9995 	/* Existance verified in ip_wput_nondata */
9996 	mp1 = mp->b_cont->b_cont;
9997 
9998 	ar = (struct arpreq *)mp1->b_rptr;
9999 	sin = (sin_t *)&ar->arp_pa;
10000 
10001 	/*
10002 	 * We need to let ARP know on which interface the IP
10003 	 * address has an ARP mapping. In the IPMP case, a
10004 	 * simple forwarding table lookup will return the
10005 	 * IRE_IF_RESOLVER for the first interface in the group,
10006 	 * which might not be the interface on which the
10007 	 * requested IP address was resolved due to the ill
10008 	 * selection algorithm (see ip_newroute_get_dst_ill()).
10009 	 * So we do a cache table lookup first: if the IRE cache
10010 	 * entry for the IP address is still there, it will
10011 	 * contain the ill pointer for the right interface, so
10012 	 * we use that. If the cache entry has been flushed, we
10013 	 * fall back to the forwarding table lookup. This should
10014 	 * be rare enough since IRE cache entries have a longer
10015 	 * life expectancy than ARP cache entries.
10016 	 */
10017 	ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst);
10018 	if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
10019 	    ((ill = ire_to_ill(ire)) == NULL)) {
10020 		if (ire != NULL)
10021 			ire_refrele(ire);
10022 		ire = ire_ftable_lookup(sin->sin_addr.s_addr,
10023 		    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
10024 		    NULL, MATCH_IRE_TYPE, ipst);
10025 		if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) {
10026 			if (ire != NULL)
10027 				ire_refrele(ire);
10028 			return (ENXIO);
10029 		}
10030 	}
10031 	ASSERT(ire != NULL && ill != NULL);
10032 
10033 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE);
10034 	ire_refrele(ire);
10035 	return (err);
10036 }
10037 
10038 /*
10039  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
10040  * atomically set/clear the muxids. Also complete the ioctl by acking or
10041  * naking it.  Note that the code is structured such that the link type,
10042  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
10043  * its clones use the persistent link, while pppd(1M) and perhaps many
10044  * other daemons may use non-persistent link.  When combined with some
10045  * ill_t states, linking and unlinking lower streams may be used as
10046  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
10047  */
10048 /* ARGSUSED */
10049 void
10050 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
10051 {
10052 	mblk_t *mp1;
10053 	mblk_t *mp2;
10054 	struct linkblk *li;
10055 	queue_t	*ipwq;
10056 	char	*name;
10057 	struct qinit *qinfo;
10058 	struct ipmx_s *ipmxp;
10059 	ill_t	*ill = NULL;
10060 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10061 	int	err = 0;
10062 	boolean_t	entered_ipsq = B_FALSE;
10063 	boolean_t islink;
10064 	queue_t *dwq = NULL;
10065 	ip_stack_t	*ipst;
10066 
10067 	if (CONN_Q(q))
10068 		ipst = CONNQ_TO_IPST(q);
10069 	else
10070 		ipst = ILLQ_TO_IPST(q);
10071 
10072 	ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK ||
10073 	    iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK);
10074 
10075 	islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ?
10076 	    B_TRUE : B_FALSE;
10077 
10078 	mp1 = mp->b_cont;	/* This is the linkblk info */
10079 	li = (struct linkblk *)mp1->b_rptr;
10080 
10081 	/*
10082 	 * ARP has added this special mblk, and the utility is asking us
10083 	 * to perform consistency checks, and also atomically set the
10084 	 * muxid. Ifconfig is an example.  It achieves this by using
10085 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
10086 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
10087 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
10088 	 * and other comments in this routine for more details.
10089 	 */
10090 	mp2 = mp1->b_cont;	/* This is added by ARP */
10091 
10092 	/*
10093 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
10094 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
10095 	 * get the special mblk above.  For backward compatibility, we just
10096 	 * return success.  The utility will use SIOCSLIFMUXID to store
10097 	 * the muxids.  This is not atomic, and can leave the streams
10098 	 * unplumbable if the utility is interrrupted, before it does the
10099 	 * SIOCSLIFMUXID.
10100 	 */
10101 	if (mp2 == NULL) {
10102 		/*
10103 		 * At this point we don't know whether or not this is the
10104 		 * IP module stream or the ARP device stream.  We need to
10105 		 * walk the lower stream in order to find this out, since
10106 		 * the capability negotiation is done only on the IP module
10107 		 * stream.  IP module instance is identified by the module
10108 		 * name IP, non-null q_next, and it's wput not being ip_lwput.
10109 		 * STREAMS ensures that the lower stream (l_qbot) will not
10110 		 * vanish until this ioctl completes. So we can safely walk
10111 		 * the stream or refer to the q_ptr.
10112 		 */
10113 		ipwq = li->l_qbot;
10114 		while (ipwq != NULL) {
10115 			qinfo = ipwq->q_qinfo;
10116 			name = qinfo->qi_minfo->mi_idname;
10117 			if (name != NULL && name[0] != NULL &&
10118 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10119 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10120 			    (ipwq->q_next != NULL)) {
10121 				break;
10122 			}
10123 			ipwq = ipwq->q_next;
10124 		}
10125 		/*
10126 		 * This looks like an IP module stream, so trigger
10127 		 * the capability reset or re-negotiation if necessary.
10128 		 */
10129 		if (ipwq != NULL) {
10130 			ill = ipwq->q_ptr;
10131 			ASSERT(ill != NULL);
10132 
10133 			if (ipsq == NULL) {
10134 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10135 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10136 				if (ipsq == NULL)
10137 					return;
10138 				entered_ipsq = B_TRUE;
10139 			}
10140 			ASSERT(IAM_WRITER_ILL(ill));
10141 			/*
10142 			 * Store the upper read queue of the module
10143 			 * immediately below IP, and count the total
10144 			 * number of lower modules.  Do this only
10145 			 * for I_PLINK or I_LINK event.
10146 			 */
10147 			ill->ill_lmod_rq = NULL;
10148 			ill->ill_lmod_cnt = 0;
10149 			if (islink && (dwq = ipwq->q_next) != NULL) {
10150 				ill->ill_lmod_rq = RD(dwq);
10151 
10152 				while (dwq != NULL) {
10153 					ill->ill_lmod_cnt++;
10154 					dwq = dwq->q_next;
10155 				}
10156 			}
10157 			/*
10158 			 * There's no point in resetting or re-negotiating if
10159 			 * we are not bound to the driver, so only do this if
10160 			 * the DLPI state is idle (up); we assume such state
10161 			 * since ill_ipif_up_count gets incremented in
10162 			 * ipif_up_done(), which is after we are bound to the
10163 			 * driver.  Note that in the case of logical
10164 			 * interfaces, IP won't rebind to the driver unless
10165 			 * the ill_ipif_up_count is 0, meaning that all other
10166 			 * IP interfaces (including the main ipif) are in the
10167 			 * down state.  Because of this, we use such counter
10168 			 * as an indicator, instead of relying on the IPIF_UP
10169 			 * flag, which is per ipif instance.
10170 			 */
10171 			if (ill->ill_ipif_up_count > 0) {
10172 				if (islink)
10173 					ill_capability_probe(ill);
10174 				else
10175 					ill_capability_reset(ill);
10176 			}
10177 		}
10178 		goto done;
10179 	}
10180 
10181 	/*
10182 	 * This is an I_{P}LINK sent down by ifconfig on
10183 	 * /dev/arp. ARP has appended this last (3rd) mblk,
10184 	 * giving more info. STREAMS ensures that the lower
10185 	 * stream (l_qbot) will not vanish until this ioctl
10186 	 * completes. So we can safely walk the stream or refer
10187 	 * to the q_ptr.
10188 	 */
10189 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
10190 	if (ipmxp->ipmx_arpdev_stream) {
10191 		/*
10192 		 * The operation is occuring on the arp-device
10193 		 * stream.
10194 		 */
10195 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
10196 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
10197 		if (ill == NULL) {
10198 			if (err == EINPROGRESS) {
10199 				return;
10200 			} else {
10201 				err = EINVAL;
10202 				goto done;
10203 			}
10204 		}
10205 
10206 		if (ipsq == NULL) {
10207 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
10208 			    NEW_OP, B_TRUE);
10209 			if (ipsq == NULL) {
10210 				ill_refrele(ill);
10211 				return;
10212 			}
10213 			entered_ipsq = B_TRUE;
10214 		}
10215 		ASSERT(IAM_WRITER_ILL(ill));
10216 		ill_refrele(ill);
10217 		/*
10218 		 * To ensure consistency between IP and ARP,
10219 		 * the following LIFO scheme is used in
10220 		 * plink/punlink. (IP first, ARP last).
10221 		 * This is because the muxid's are stored
10222 		 * in the IP stream on the ill.
10223 		 *
10224 		 * I_{P}LINK: ifconfig plinks the IP stream before
10225 		 * plinking the ARP stream. On an arp-dev
10226 		 * stream, IP checks that it is not yet
10227 		 * plinked, and it also checks that the
10228 		 * corresponding IP stream is already plinked.
10229 		 *
10230 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream
10231 		 * before punlinking the IP stream. IP does
10232 		 * not allow punlink of the IP stream unless
10233 		 * the arp stream has been punlinked.
10234 		 *
10235 		 */
10236 		if ((islink &&
10237 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
10238 		    (!islink &&
10239 		    ill->ill_arp_muxid != li->l_index)) {
10240 			err = EINVAL;
10241 			goto done;
10242 		}
10243 		if (islink) {
10244 			ill->ill_arp_muxid = li->l_index;
10245 		} else {
10246 			ill->ill_arp_muxid = 0;
10247 		}
10248 	} else {
10249 		/*
10250 		 * This must be the IP module stream with or
10251 		 * without arp. Walk the stream and locate the
10252 		 * IP module. An IP module instance is
10253 		 * identified by the module name IP, non-null
10254 		 * q_next, and it's wput not being ip_lwput.
10255 		 */
10256 		ipwq = li->l_qbot;
10257 		while (ipwq != NULL) {
10258 			qinfo = ipwq->q_qinfo;
10259 			name = qinfo->qi_minfo->mi_idname;
10260 			if (name != NULL && name[0] != NULL &&
10261 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10262 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10263 			    (ipwq->q_next != NULL)) {
10264 				break;
10265 			}
10266 			ipwq = ipwq->q_next;
10267 		}
10268 		if (ipwq != NULL) {
10269 			ill = ipwq->q_ptr;
10270 			ASSERT(ill != NULL);
10271 
10272 			if (ipsq == NULL) {
10273 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10274 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10275 				if (ipsq == NULL)
10276 					return;
10277 				entered_ipsq = B_TRUE;
10278 			}
10279 			ASSERT(IAM_WRITER_ILL(ill));
10280 			/*
10281 			 * Return error if the ip_mux_id is
10282 			 * non-zero and command is I_{P}LINK.
10283 			 * If command is I_{P}UNLINK, return
10284 			 * error if the arp-devstr is not
10285 			 * yet punlinked.
10286 			 */
10287 			if ((islink && ill->ill_ip_muxid != 0) ||
10288 			    (!islink && ill->ill_arp_muxid != 0)) {
10289 				err = EINVAL;
10290 				goto done;
10291 			}
10292 			ill->ill_lmod_rq = NULL;
10293 			ill->ill_lmod_cnt = 0;
10294 			if (islink) {
10295 				/*
10296 				 * Store the upper read queue of the module
10297 				 * immediately below IP, and count the total
10298 				 * number of lower modules.
10299 				 */
10300 				if ((dwq = ipwq->q_next) != NULL) {
10301 					ill->ill_lmod_rq = RD(dwq);
10302 
10303 					while (dwq != NULL) {
10304 						ill->ill_lmod_cnt++;
10305 						dwq = dwq->q_next;
10306 					}
10307 				}
10308 				ill->ill_ip_muxid = li->l_index;
10309 			} else {
10310 				ill->ill_ip_muxid = 0;
10311 			}
10312 
10313 			/*
10314 			 * See comments above about resetting/re-
10315 			 * negotiating driver sub-capabilities.
10316 			 */
10317 			if (ill->ill_ipif_up_count > 0) {
10318 				if (islink)
10319 					ill_capability_probe(ill);
10320 				else
10321 					ill_capability_reset(ill);
10322 			}
10323 		}
10324 	}
10325 done:
10326 	iocp->ioc_count = 0;
10327 	iocp->ioc_error = err;
10328 	if (err == 0)
10329 		mp->b_datap->db_type = M_IOCACK;
10330 	else
10331 		mp->b_datap->db_type = M_IOCNAK;
10332 	qreply(q, mp);
10333 
10334 	/* Conn was refheld in ip_sioctl_copyin_setup */
10335 	if (CONN_Q(q))
10336 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
10337 	if (entered_ipsq)
10338 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10339 }
10340 
10341 /*
10342  * Search the ioctl command in the ioctl tables and return a pointer
10343  * to the ioctl command information. The ioctl command tables are
10344  * static and fully populated at compile time.
10345  */
10346 ip_ioctl_cmd_t *
10347 ip_sioctl_lookup(int ioc_cmd)
10348 {
10349 	int index;
10350 	ip_ioctl_cmd_t *ipip;
10351 	ip_ioctl_cmd_t *ipip_end;
10352 
10353 	if (ioc_cmd == IPI_DONTCARE)
10354 		return (NULL);
10355 
10356 	/*
10357 	 * Do a 2 step search. First search the indexed table
10358 	 * based on the least significant byte of the ioctl cmd.
10359 	 * If we don't find a match, then search the misc table
10360 	 * serially.
10361 	 */
10362 	index = ioc_cmd & 0xFF;
10363 	if (index < ip_ndx_ioctl_count) {
10364 		ipip = &ip_ndx_ioctl_table[index];
10365 		if (ipip->ipi_cmd == ioc_cmd) {
10366 			/* Found a match in the ndx table */
10367 			return (ipip);
10368 		}
10369 	}
10370 
10371 	/* Search the misc table */
10372 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10373 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10374 		if (ipip->ipi_cmd == ioc_cmd)
10375 			/* Found a match in the misc table */
10376 			return (ipip);
10377 	}
10378 
10379 	return (NULL);
10380 }
10381 
10382 /*
10383  * Wrapper function for resuming deferred ioctl processing
10384  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10385  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10386  */
10387 /* ARGSUSED */
10388 void
10389 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10390     void *dummy_arg)
10391 {
10392 	ip_sioctl_copyin_setup(q, mp);
10393 }
10394 
10395 /*
10396  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10397  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10398  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10399  * We establish here the size of the block to be copied in.  mi_copyin
10400  * arranges for this to happen, an processing continues in ip_wput with
10401  * an M_IOCDATA message.
10402  */
10403 void
10404 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10405 {
10406 	int	copyin_size;
10407 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10408 	ip_ioctl_cmd_t *ipip;
10409 	cred_t *cr;
10410 	ip_stack_t	*ipst;
10411 
10412 	if (CONN_Q(q))
10413 		ipst = CONNQ_TO_IPST(q);
10414 	else
10415 		ipst = ILLQ_TO_IPST(q);
10416 
10417 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10418 	if (ipip == NULL) {
10419 		/*
10420 		 * The ioctl is not one we understand or own.
10421 		 * Pass it along to be processed down stream,
10422 		 * if this is a module instance of IP, else nak
10423 		 * the ioctl.
10424 		 */
10425 		if (q->q_next == NULL) {
10426 			goto nak;
10427 		} else {
10428 			putnext(q, mp);
10429 			return;
10430 		}
10431 	}
10432 
10433 	/*
10434 	 * If this is deferred, then we will do all the checks when we
10435 	 * come back.
10436 	 */
10437 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10438 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10439 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10440 		return;
10441 	}
10442 
10443 	/*
10444 	 * Only allow a very small subset of IP ioctls on this stream if
10445 	 * IP is a module and not a driver. Allowing ioctls to be processed
10446 	 * in this case may cause assert failures or data corruption.
10447 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10448 	 * ioctls allowed on an IP module stream, after which this stream
10449 	 * normally becomes a multiplexor (at which time the stream head
10450 	 * will fail all ioctls).
10451 	 */
10452 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10453 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10454 			/*
10455 			 * Pass common Streams ioctls which the IP
10456 			 * module does not own or consume along to
10457 			 * be processed down stream.
10458 			 */
10459 			putnext(q, mp);
10460 			return;
10461 		} else {
10462 			goto nak;
10463 		}
10464 	}
10465 
10466 	/* Make sure we have ioctl data to process. */
10467 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10468 		goto nak;
10469 
10470 	/*
10471 	 * Prefer dblk credential over ioctl credential; some synthesized
10472 	 * ioctls have kcred set because there's no way to crhold()
10473 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10474 	 * the framework; the caller of ioctl needs to hold the reference
10475 	 * for the duration of the call).
10476 	 */
10477 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10478 
10479 	/* Make sure normal users don't send down privileged ioctls */
10480 	if ((ipip->ipi_flags & IPI_PRIV) &&
10481 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10482 		/* We checked the privilege earlier but log it here */
10483 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10484 		return;
10485 	}
10486 
10487 	/*
10488 	 * The ioctl command tables can only encode fixed length
10489 	 * ioctl data. If the length is variable, the table will
10490 	 * encode the length as zero. Such special cases are handled
10491 	 * below in the switch.
10492 	 */
10493 	if (ipip->ipi_copyin_size != 0) {
10494 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10495 		return;
10496 	}
10497 
10498 	switch (iocp->ioc_cmd) {
10499 	case O_SIOCGIFCONF:
10500 	case SIOCGIFCONF:
10501 		/*
10502 		 * This IOCTL is hilarious.  See comments in
10503 		 * ip_sioctl_get_ifconf for the story.
10504 		 */
10505 		if (iocp->ioc_count == TRANSPARENT)
10506 			copyin_size = SIZEOF_STRUCT(ifconf,
10507 			    iocp->ioc_flag);
10508 		else
10509 			copyin_size = iocp->ioc_count;
10510 		mi_copyin(q, mp, NULL, copyin_size);
10511 		return;
10512 
10513 	case O_SIOCGLIFCONF:
10514 	case SIOCGLIFCONF:
10515 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10516 		mi_copyin(q, mp, NULL, copyin_size);
10517 		return;
10518 
10519 	case SIOCGLIFSRCOF:
10520 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10521 		mi_copyin(q, mp, NULL, copyin_size);
10522 		return;
10523 	case SIOCGIP6ADDRPOLICY:
10524 		ip_sioctl_ip6addrpolicy(q, mp);
10525 		ip6_asp_table_refrele(ipst);
10526 		return;
10527 
10528 	case SIOCSIP6ADDRPOLICY:
10529 		ip_sioctl_ip6addrpolicy(q, mp);
10530 		return;
10531 
10532 	case SIOCGDSTINFO:
10533 		ip_sioctl_dstinfo(q, mp);
10534 		ip6_asp_table_refrele(ipst);
10535 		return;
10536 
10537 	case I_PLINK:
10538 	case I_PUNLINK:
10539 	case I_LINK:
10540 	case I_UNLINK:
10541 		/*
10542 		 * We treat non-persistent link similarly as the persistent
10543 		 * link case, in terms of plumbing/unplumbing, as well as
10544 		 * dynamic re-plumbing events indicator.  See comments
10545 		 * in ip_sioctl_plink() for more.
10546 		 *
10547 		 * Request can be enqueued in the 'ipsq' while waiting
10548 		 * to become exclusive. So bump up the conn ref.
10549 		 */
10550 		if (CONN_Q(q))
10551 			CONN_INC_REF(Q_TO_CONN(q));
10552 		ip_sioctl_plink(NULL, q, mp, NULL);
10553 		return;
10554 
10555 	case ND_GET:
10556 	case ND_SET:
10557 		/*
10558 		 * Use of the nd table requires holding the reader lock.
10559 		 * Modifying the nd table thru nd_load/nd_unload requires
10560 		 * the writer lock.
10561 		 */
10562 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10563 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10564 			rw_exit(&ipst->ips_ip_g_nd_lock);
10565 
10566 			if (iocp->ioc_error)
10567 				iocp->ioc_count = 0;
10568 			mp->b_datap->db_type = M_IOCACK;
10569 			qreply(q, mp);
10570 			return;
10571 		}
10572 		rw_exit(&ipst->ips_ip_g_nd_lock);
10573 		/*
10574 		 * We don't understand this subioctl of ND_GET / ND_SET.
10575 		 * Maybe intended for some driver / module below us
10576 		 */
10577 		if (q->q_next) {
10578 			putnext(q, mp);
10579 		} else {
10580 			iocp->ioc_error = ENOENT;
10581 			mp->b_datap->db_type = M_IOCNAK;
10582 			iocp->ioc_count = 0;
10583 			qreply(q, mp);
10584 		}
10585 		return;
10586 
10587 	case IP_IOCTL:
10588 		ip_wput_ioctl(q, mp);
10589 		return;
10590 	default:
10591 		cmn_err(CE_PANIC, "should not happen ");
10592 	}
10593 nak:
10594 	if (mp->b_cont != NULL) {
10595 		freemsg(mp->b_cont);
10596 		mp->b_cont = NULL;
10597 	}
10598 	iocp->ioc_error = EINVAL;
10599 	mp->b_datap->db_type = M_IOCNAK;
10600 	iocp->ioc_count = 0;
10601 	qreply(q, mp);
10602 }
10603 
10604 /* ip_wput hands off ARP IOCTL responses to us */
10605 void
10606 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10607 {
10608 	struct arpreq *ar;
10609 	struct xarpreq *xar;
10610 	area_t	*area;
10611 	mblk_t	*area_mp;
10612 	struct iocblk *iocp;
10613 	mblk_t	*orig_ioc_mp, *tmp;
10614 	struct iocblk	*orig_iocp;
10615 	ill_t *ill;
10616 	conn_t *connp = NULL;
10617 	uint_t ioc_id;
10618 	mblk_t *pending_mp;
10619 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10620 	int *flagsp;
10621 	char *storage = NULL;
10622 	sin_t *sin;
10623 	ipaddr_t addr;
10624 	int err;
10625 	ip_stack_t *ipst;
10626 
10627 	ill = q->q_ptr;
10628 	ASSERT(ill != NULL);
10629 	ipst = ill->ill_ipst;
10630 
10631 	/*
10632 	 * We should get back from ARP a packet chain that looks like:
10633 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10634 	 */
10635 	if (!(area_mp = mp->b_cont) ||
10636 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10637 	    !(orig_ioc_mp = area_mp->b_cont) ||
10638 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10639 		freemsg(mp);
10640 		return;
10641 	}
10642 
10643 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10644 
10645 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10646 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10647 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10648 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10649 		x_arp_ioctl = B_TRUE;
10650 		xar = (struct xarpreq *)tmp->b_rptr;
10651 		sin = (sin_t *)&xar->xarp_pa;
10652 		flagsp = &xar->xarp_flags;
10653 		storage = xar->xarp_ha.sdl_data;
10654 		if (xar->xarp_ha.sdl_nlen != 0)
10655 			ifx_arp_ioctl = B_TRUE;
10656 	} else {
10657 		ar = (struct arpreq *)tmp->b_rptr;
10658 		sin = (sin_t *)&ar->arp_pa;
10659 		flagsp = &ar->arp_flags;
10660 		storage = ar->arp_ha.sa_data;
10661 	}
10662 
10663 	iocp = (struct iocblk *)mp->b_rptr;
10664 
10665 	/*
10666 	 * Pick out the originating queue based on the ioc_id.
10667 	 */
10668 	ioc_id = iocp->ioc_id;
10669 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10670 	if (pending_mp == NULL) {
10671 		ASSERT(connp == NULL);
10672 		inet_freemsg(mp);
10673 		return;
10674 	}
10675 	ASSERT(connp != NULL);
10676 	q = CONNP_TO_WQ(connp);
10677 
10678 	/* Uncouple the internally generated IOCTL from the original one */
10679 	area = (area_t *)area_mp->b_rptr;
10680 	area_mp->b_cont = NULL;
10681 
10682 	/*
10683 	 * Restore the b_next and b_prev used by mi code. This is needed
10684 	 * to complete the ioctl using mi* functions. We stored them in
10685 	 * the pending mp prior to sending the request to ARP.
10686 	 */
10687 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10688 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10689 	inet_freemsg(pending_mp);
10690 
10691 	/*
10692 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10693 	 * Catch the case where there is an IRE_CACHE by no entry in the
10694 	 * arp table.
10695 	 */
10696 	addr = sin->sin_addr.s_addr;
10697 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10698 		ire_t			*ire;
10699 		dl_unitdata_req_t	*dlup;
10700 		mblk_t			*llmp;
10701 		int			addr_len;
10702 		ill_t			*ipsqill = NULL;
10703 
10704 		if (ifx_arp_ioctl) {
10705 			/*
10706 			 * There's no need to lookup the ill, since
10707 			 * we've already done that when we started
10708 			 * processing the ioctl and sent the message
10709 			 * to ARP on that ill.  So use the ill that
10710 			 * is stored in q->q_ptr.
10711 			 */
10712 			ipsqill = ill;
10713 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10714 			    ipsqill->ill_ipif, ALL_ZONES,
10715 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10716 		} else {
10717 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10718 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10719 			if (ire != NULL)
10720 				ipsqill = ire_to_ill(ire);
10721 		}
10722 
10723 		if ((x_arp_ioctl) && (ipsqill != NULL))
10724 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10725 
10726 		if (ire != NULL) {
10727 			/*
10728 			 * Since the ire obtained from cachetable is used for
10729 			 * mac addr copying below, treat an incomplete ire as if
10730 			 * as if we never found it.
10731 			 */
10732 			if (ire->ire_nce != NULL &&
10733 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10734 				ire_refrele(ire);
10735 				ire = NULL;
10736 				ipsqill = NULL;
10737 				goto errack;
10738 			}
10739 			*flagsp = ATF_INUSE;
10740 			llmp = (ire->ire_nce != NULL ?
10741 			    ire->ire_nce->nce_res_mp : NULL);
10742 			if (llmp != NULL && ipsqill != NULL) {
10743 				uchar_t *macaddr;
10744 
10745 				addr_len = ipsqill->ill_phys_addr_length;
10746 				if (x_arp_ioctl && ((addr_len +
10747 				    ipsqill->ill_name_length) >
10748 				    sizeof (xar->xarp_ha.sdl_data))) {
10749 					ire_refrele(ire);
10750 					freemsg(mp);
10751 					ip_ioctl_finish(q, orig_ioc_mp,
10752 					    EINVAL, NO_COPYOUT, NULL);
10753 					return;
10754 				}
10755 				*flagsp |= ATF_COM;
10756 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10757 				if (ipsqill->ill_sap_length < 0)
10758 					macaddr = llmp->b_rptr +
10759 					    dlup->dl_dest_addr_offset;
10760 				else
10761 					macaddr = llmp->b_rptr +
10762 					    dlup->dl_dest_addr_offset +
10763 					    ipsqill->ill_sap_length;
10764 				/*
10765 				 * For SIOCGARP, MAC address length
10766 				 * validation has already been done
10767 				 * before the ioctl was issued to ARP to
10768 				 * allow it to progress only on 6 byte
10769 				 * addressable (ethernet like) media. Thus
10770 				 * the mac address copying can not overwrite
10771 				 * the sa_data area below.
10772 				 */
10773 				bcopy(macaddr, storage, addr_len);
10774 			}
10775 			/* Ditch the internal IOCTL. */
10776 			freemsg(mp);
10777 			ire_refrele(ire);
10778 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10779 			return;
10780 		}
10781 	}
10782 
10783 	/*
10784 	 * Delete the coresponding IRE_CACHE if any.
10785 	 * Reset the error if there was one (in case there was no entry
10786 	 * in arp.)
10787 	 */
10788 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10789 		ipif_t *ipintf = NULL;
10790 
10791 		if (ifx_arp_ioctl) {
10792 			/*
10793 			 * There's no need to lookup the ill, since
10794 			 * we've already done that when we started
10795 			 * processing the ioctl and sent the message
10796 			 * to ARP on that ill.  So use the ill that
10797 			 * is stored in q->q_ptr.
10798 			 */
10799 			ipintf = ill->ill_ipif;
10800 		}
10801 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10802 			/*
10803 			 * The address in "addr" may be an entry for a
10804 			 * router. If that's true, then any off-net
10805 			 * IRE_CACHE entries that go through the router
10806 			 * with address "addr" must be clobbered. Use
10807 			 * ire_walk to achieve this goal.
10808 			 */
10809 			if (ifx_arp_ioctl)
10810 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10811 				    ire_delete_cache_gw, (char *)&addr, ill);
10812 			else
10813 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10814 				    ALL_ZONES, ipst);
10815 			iocp->ioc_error = 0;
10816 		}
10817 	}
10818 errack:
10819 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10820 		err = iocp->ioc_error;
10821 		freemsg(mp);
10822 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10823 		return;
10824 	}
10825 
10826 	/*
10827 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10828 	 * the area_t into the struct {x}arpreq.
10829 	 */
10830 	if (x_arp_ioctl) {
10831 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10832 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10833 		    sizeof (xar->xarp_ha.sdl_data)) {
10834 			freemsg(mp);
10835 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10836 			    NULL);
10837 			return;
10838 		}
10839 	}
10840 	*flagsp = ATF_INUSE;
10841 	if (area->area_flags & ACE_F_PERMANENT)
10842 		*flagsp |= ATF_PERM;
10843 	if (area->area_flags & ACE_F_PUBLISH)
10844 		*flagsp |= ATF_PUBL;
10845 	if (area->area_flags & ACE_F_AUTHORITY)
10846 		*flagsp |= ATF_AUTHORITY;
10847 	if (area->area_hw_addr_length != 0) {
10848 		*flagsp |= ATF_COM;
10849 		/*
10850 		 * For SIOCGARP, MAC address length validation has
10851 		 * already been done before the ioctl was issued to ARP
10852 		 * to allow it to progress only on 6 byte addressable
10853 		 * (ethernet like) media. Thus the mac address copying
10854 		 * can not overwrite the sa_data area below.
10855 		 */
10856 		bcopy((char *)area + area->area_hw_addr_offset,
10857 		    storage, area->area_hw_addr_length);
10858 	}
10859 
10860 	/* Ditch the internal IOCTL. */
10861 	freemsg(mp);
10862 	/* Complete the original. */
10863 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10864 }
10865 
10866 /*
10867  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10868  * interface) create the next available logical interface for this
10869  * physical interface.
10870  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10871  * ipif with the specified name.
10872  *
10873  * If the address family is not AF_UNSPEC then set the address as well.
10874  *
10875  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10876  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10877  *
10878  * Executed as a writer on the ill or ill group.
10879  * So no lock is needed to traverse the ipif chain, or examine the
10880  * phyint flags.
10881  */
10882 /* ARGSUSED */
10883 int
10884 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10885     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10886 {
10887 	mblk_t	*mp1;
10888 	struct lifreq *lifr;
10889 	boolean_t	isv6;
10890 	boolean_t	exists;
10891 	char 	*name;
10892 	char	*endp;
10893 	char	*cp;
10894 	int	namelen;
10895 	ipif_t	*ipif;
10896 	long	id;
10897 	ipsq_t	*ipsq;
10898 	ill_t	*ill;
10899 	sin_t	*sin;
10900 	int	err = 0;
10901 	boolean_t found_sep = B_FALSE;
10902 	conn_t	*connp;
10903 	zoneid_t zoneid;
10904 	int	orig_ifindex = 0;
10905 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10906 
10907 	ASSERT(q->q_next == NULL);
10908 	ip1dbg(("ip_sioctl_addif\n"));
10909 	/* Existence of mp1 has been checked in ip_wput_nondata */
10910 	mp1 = mp->b_cont->b_cont;
10911 	/*
10912 	 * Null terminate the string to protect against buffer
10913 	 * overrun. String was generated by user code and may not
10914 	 * be trusted.
10915 	 */
10916 	lifr = (struct lifreq *)mp1->b_rptr;
10917 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10918 	name = lifr->lifr_name;
10919 	ASSERT(CONN_Q(q));
10920 	connp = Q_TO_CONN(q);
10921 	isv6 = connp->conn_af_isv6;
10922 	zoneid = connp->conn_zoneid;
10923 	namelen = mi_strlen(name);
10924 	if (namelen == 0)
10925 		return (EINVAL);
10926 
10927 	exists = B_FALSE;
10928 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10929 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10930 		/*
10931 		 * Allow creating lo0 using SIOCLIFADDIF.
10932 		 * can't be any other writer thread. So can pass null below
10933 		 * for the last 4 args to ipif_lookup_name.
10934 		 */
10935 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10936 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10937 		/* Prevent any further action */
10938 		if (ipif == NULL) {
10939 			return (ENOBUFS);
10940 		} else if (!exists) {
10941 			/* We created the ipif now and as writer */
10942 			ipif_refrele(ipif);
10943 			return (0);
10944 		} else {
10945 			ill = ipif->ipif_ill;
10946 			ill_refhold(ill);
10947 			ipif_refrele(ipif);
10948 		}
10949 	} else {
10950 		/* Look for a colon in the name. */
10951 		endp = &name[namelen];
10952 		for (cp = endp; --cp > name; ) {
10953 			if (*cp == IPIF_SEPARATOR_CHAR) {
10954 				found_sep = B_TRUE;
10955 				/*
10956 				 * Reject any non-decimal aliases for plumbing
10957 				 * of logical interfaces. Aliases with leading
10958 				 * zeroes are also rejected as they introduce
10959 				 * ambiguity in the naming of the interfaces.
10960 				 * Comparing with "0" takes care of all such
10961 				 * cases.
10962 				 */
10963 				if ((strncmp("0", cp+1, 1)) == 0)
10964 					return (EINVAL);
10965 
10966 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10967 				    id <= 0 || *endp != '\0') {
10968 					return (EINVAL);
10969 				}
10970 				*cp = '\0';
10971 				break;
10972 			}
10973 		}
10974 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10975 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10976 		if (found_sep)
10977 			*cp = IPIF_SEPARATOR_CHAR;
10978 		if (ill == NULL)
10979 			return (err);
10980 	}
10981 
10982 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10983 	    B_TRUE);
10984 
10985 	/*
10986 	 * Release the refhold due to the lookup, now that we are excl
10987 	 * or we are just returning
10988 	 */
10989 	ill_refrele(ill);
10990 
10991 	if (ipsq == NULL)
10992 		return (EINPROGRESS);
10993 
10994 	/*
10995 	 * If the interface is failed, inactive or offlined, look for a working
10996 	 * interface in the ill group and create the ipif there. If we can't
10997 	 * find a good interface, create the ipif anyway so that in.mpathd can
10998 	 * move it to the first repaired interface.
10999 	 */
11000 	if ((ill->ill_phyint->phyint_flags &
11001 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
11002 	    ill->ill_phyint->phyint_groupname_len != 0) {
11003 		phyint_t *phyi;
11004 		char *groupname = ill->ill_phyint->phyint_groupname;
11005 
11006 		/*
11007 		 * We're looking for a working interface, but it doesn't matter
11008 		 * if it's up or down; so instead of following the group lists,
11009 		 * we look at each physical interface and compare the groupname.
11010 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
11011 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
11012 		 * Otherwise we create the ipif on the failed interface.
11013 		 */
11014 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
11015 		phyi = avl_first(&ipst->ips_phyint_g_list->
11016 		    phyint_list_avl_by_index);
11017 		for (; phyi != NULL;
11018 		    phyi = avl_walk(&ipst->ips_phyint_g_list->
11019 		    phyint_list_avl_by_index,
11020 		    phyi, AVL_AFTER)) {
11021 			if (phyi->phyint_groupname_len == 0)
11022 				continue;
11023 			ASSERT(phyi->phyint_groupname != NULL);
11024 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
11025 			    !(phyi->phyint_flags &
11026 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
11027 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
11028 			    (phyi->phyint_illv4 != NULL))) {
11029 				break;
11030 			}
11031 		}
11032 		rw_exit(&ipst->ips_ill_g_lock);
11033 
11034 		if (phyi != NULL) {
11035 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
11036 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
11037 			    phyi->phyint_illv4);
11038 		}
11039 	}
11040 
11041 	/*
11042 	 * We are now exclusive on the ipsq, so an ill move will be serialized
11043 	 * before or after us.
11044 	 */
11045 	ASSERT(IAM_WRITER_ILL(ill));
11046 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11047 
11048 	if (found_sep && orig_ifindex == 0) {
11049 		/* Now see if there is an IPIF with this unit number. */
11050 		for (ipif = ill->ill_ipif; ipif != NULL;
11051 		    ipif = ipif->ipif_next) {
11052 			if (ipif->ipif_id == id) {
11053 				err = EEXIST;
11054 				goto done;
11055 			}
11056 		}
11057 	}
11058 
11059 	/*
11060 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
11061 	 * of lo0. We never come here when we plumb lo0:0. It
11062 	 * happens in ipif_lookup_on_name.
11063 	 * The specified unit number is ignored when we create the ipif on a
11064 	 * different interface. However, we save it in ipif_orig_ipifid below so
11065 	 * that the ipif fails back to the right position.
11066 	 */
11067 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
11068 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
11069 		err = ENOBUFS;
11070 		goto done;
11071 	}
11072 
11073 	/* Return created name with ioctl */
11074 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
11075 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
11076 	ip1dbg(("created %s\n", lifr->lifr_name));
11077 
11078 	/* Set address */
11079 	sin = (sin_t *)&lifr->lifr_addr;
11080 	if (sin->sin_family != AF_UNSPEC) {
11081 		err = ip_sioctl_addr(ipif, sin, q, mp,
11082 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
11083 	}
11084 
11085 	/* Set ifindex and unit number for failback */
11086 	if (err == 0 && orig_ifindex != 0) {
11087 		ipif->ipif_orig_ifindex = orig_ifindex;
11088 		if (found_sep) {
11089 			ipif->ipif_orig_ipifid = id;
11090 		}
11091 	}
11092 
11093 done:
11094 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
11095 	return (err);
11096 }
11097 
11098 /*
11099  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
11100  * interface) delete it based on the IP address (on this physical interface).
11101  * Otherwise delete it based on the ipif_id.
11102  * Also, special handling to allow a removeif of lo0.
11103  */
11104 /* ARGSUSED */
11105 int
11106 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11107     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11108 {
11109 	conn_t		*connp;
11110 	ill_t		*ill = ipif->ipif_ill;
11111 	boolean_t	 success;
11112 	ip_stack_t	*ipst;
11113 
11114 	ipst = CONNQ_TO_IPST(q);
11115 
11116 	ASSERT(q->q_next == NULL);
11117 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
11118 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11119 	ASSERT(IAM_WRITER_IPIF(ipif));
11120 
11121 	connp = Q_TO_CONN(q);
11122 	/*
11123 	 * Special case for unplumbing lo0 (the loopback physical interface).
11124 	 * If unplumbing lo0, the incoming address structure has been
11125 	 * initialized to all zeros. When unplumbing lo0, all its logical
11126 	 * interfaces must be removed too.
11127 	 *
11128 	 * Note that this interface may be called to remove a specific
11129 	 * loopback logical interface (eg, lo0:1). But in that case
11130 	 * ipif->ipif_id != 0 so that the code path for that case is the
11131 	 * same as any other interface (meaning it skips the code directly
11132 	 * below).
11133 	 */
11134 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11135 		if (sin->sin_family == AF_UNSPEC &&
11136 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
11137 			/*
11138 			 * Mark it condemned. No new ref. will be made to ill.
11139 			 */
11140 			mutex_enter(&ill->ill_lock);
11141 			ill->ill_state_flags |= ILL_CONDEMNED;
11142 			for (ipif = ill->ill_ipif; ipif != NULL;
11143 			    ipif = ipif->ipif_next) {
11144 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
11145 			}
11146 			mutex_exit(&ill->ill_lock);
11147 
11148 			ipif = ill->ill_ipif;
11149 			/* unplumb the loopback interface */
11150 			ill_delete(ill);
11151 			mutex_enter(&connp->conn_lock);
11152 			mutex_enter(&ill->ill_lock);
11153 			ASSERT(ill->ill_group == NULL);
11154 
11155 			/* Are any references to this ill active */
11156 			if (ill_is_quiescent(ill)) {
11157 				mutex_exit(&ill->ill_lock);
11158 				mutex_exit(&connp->conn_lock);
11159 				ill_delete_tail(ill);
11160 				mi_free(ill);
11161 				return (0);
11162 			}
11163 			success = ipsq_pending_mp_add(connp, ipif,
11164 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
11165 			mutex_exit(&connp->conn_lock);
11166 			mutex_exit(&ill->ill_lock);
11167 			if (success)
11168 				return (EINPROGRESS);
11169 			else
11170 				return (EINTR);
11171 		}
11172 	}
11173 
11174 	/*
11175 	 * We are exclusive on the ipsq, so an ill move will be serialized
11176 	 * before or after us.
11177 	 */
11178 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11179 
11180 	if (ipif->ipif_id == 0) {
11181 		/* Find based on address */
11182 		if (ipif->ipif_isv6) {
11183 			sin6_t *sin6;
11184 
11185 			if (sin->sin_family != AF_INET6)
11186 				return (EAFNOSUPPORT);
11187 
11188 			sin6 = (sin6_t *)sin;
11189 			/* We are a writer, so we should be able to lookup */
11190 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11191 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
11192 			if (ipif == NULL) {
11193 				/*
11194 				 * Maybe the address in on another interface in
11195 				 * the same IPMP group? We check this below.
11196 				 */
11197 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11198 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
11199 				    ipst);
11200 			}
11201 		} else {
11202 			ipaddr_t addr;
11203 
11204 			if (sin->sin_family != AF_INET)
11205 				return (EAFNOSUPPORT);
11206 
11207 			addr = sin->sin_addr.s_addr;
11208 			/* We are a writer, so we should be able to lookup */
11209 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
11210 			    NULL, NULL, NULL, ipst);
11211 			if (ipif == NULL) {
11212 				/*
11213 				 * Maybe the address in on another interface in
11214 				 * the same IPMP group? We check this below.
11215 				 */
11216 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
11217 				    NULL, NULL, NULL, NULL, ipst);
11218 			}
11219 		}
11220 		if (ipif == NULL) {
11221 			return (EADDRNOTAVAIL);
11222 		}
11223 		/*
11224 		 * When the address to be removed is hosted on a different
11225 		 * interface, we check if the interface is in the same IPMP
11226 		 * group as the specified one; if so we proceed with the
11227 		 * removal.
11228 		 * ill->ill_group is NULL when the ill is down, so we have to
11229 		 * compare the group names instead.
11230 		 */
11231 		if (ipif->ipif_ill != ill &&
11232 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
11233 		    ill->ill_phyint->phyint_groupname_len == 0 ||
11234 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
11235 		    ill->ill_phyint->phyint_groupname) != 0)) {
11236 			ipif_refrele(ipif);
11237 			return (EADDRNOTAVAIL);
11238 		}
11239 
11240 		/* This is a writer */
11241 		ipif_refrele(ipif);
11242 	}
11243 
11244 	/*
11245 	 * Can not delete instance zero since it is tied to the ill.
11246 	 */
11247 	if (ipif->ipif_id == 0)
11248 		return (EBUSY);
11249 
11250 	mutex_enter(&ill->ill_lock);
11251 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
11252 	mutex_exit(&ill->ill_lock);
11253 
11254 	ipif_free(ipif);
11255 
11256 	mutex_enter(&connp->conn_lock);
11257 	mutex_enter(&ill->ill_lock);
11258 
11259 	/* Are any references to this ipif active */
11260 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
11261 		mutex_exit(&ill->ill_lock);
11262 		mutex_exit(&connp->conn_lock);
11263 		ipif_non_duplicate(ipif);
11264 		ipif_down_tail(ipif);
11265 		ipif_free_tail(ipif);
11266 		return (0);
11267 	}
11268 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
11269 	    IPIF_FREE);
11270 	mutex_exit(&ill->ill_lock);
11271 	mutex_exit(&connp->conn_lock);
11272 	if (success)
11273 		return (EINPROGRESS);
11274 	else
11275 		return (EINTR);
11276 }
11277 
11278 /*
11279  * Restart the removeif ioctl. The refcnt has gone down to 0.
11280  * The ipif is already condemned. So can't find it thru lookups.
11281  */
11282 /* ARGSUSED */
11283 int
11284 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
11285     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11286 {
11287 	ill_t *ill;
11288 
11289 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
11290 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11291 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11292 		ill = ipif->ipif_ill;
11293 		ASSERT(IAM_WRITER_ILL(ill));
11294 		ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) &&
11295 		    (ill->ill_state_flags & IPIF_CONDEMNED));
11296 		ill_delete_tail(ill);
11297 		mi_free(ill);
11298 		return (0);
11299 	}
11300 
11301 	ill = ipif->ipif_ill;
11302 	ASSERT(IAM_WRITER_IPIF(ipif));
11303 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
11304 
11305 	ipif_non_duplicate(ipif);
11306 	ipif_down_tail(ipif);
11307 	ipif_free_tail(ipif);
11308 
11309 	ILL_UNMARK_CHANGING(ill);
11310 	return (0);
11311 }
11312 
11313 /*
11314  * Set the local interface address.
11315  * Allow an address of all zero when the interface is down.
11316  */
11317 /* ARGSUSED */
11318 int
11319 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11320     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
11321 {
11322 	int err = 0;
11323 	in6_addr_t v6addr;
11324 	boolean_t need_up = B_FALSE;
11325 
11326 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
11327 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11328 
11329 	ASSERT(IAM_WRITER_IPIF(ipif));
11330 
11331 	if (ipif->ipif_isv6) {
11332 		sin6_t *sin6;
11333 		ill_t *ill;
11334 		phyint_t *phyi;
11335 
11336 		if (sin->sin_family != AF_INET6)
11337 			return (EAFNOSUPPORT);
11338 
11339 		sin6 = (sin6_t *)sin;
11340 		v6addr = sin6->sin6_addr;
11341 		ill = ipif->ipif_ill;
11342 		phyi = ill->ill_phyint;
11343 
11344 		/*
11345 		 * Enforce that true multicast interfaces have a link-local
11346 		 * address for logical unit 0.
11347 		 */
11348 		if (ipif->ipif_id == 0 &&
11349 		    (ill->ill_flags & ILLF_MULTICAST) &&
11350 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11351 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11352 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11353 			return (EADDRNOTAVAIL);
11354 		}
11355 
11356 		/*
11357 		 * up interfaces shouldn't have the unspecified address
11358 		 * unless they also have the IPIF_NOLOCAL flags set and
11359 		 * have a subnet assigned.
11360 		 */
11361 		if ((ipif->ipif_flags & IPIF_UP) &&
11362 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11363 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11364 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11365 			return (EADDRNOTAVAIL);
11366 		}
11367 
11368 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11369 			return (EADDRNOTAVAIL);
11370 	} else {
11371 		ipaddr_t addr;
11372 
11373 		if (sin->sin_family != AF_INET)
11374 			return (EAFNOSUPPORT);
11375 
11376 		addr = sin->sin_addr.s_addr;
11377 
11378 		/* Allow 0 as the local address. */
11379 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11380 			return (EADDRNOTAVAIL);
11381 
11382 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11383 	}
11384 
11385 
11386 	/*
11387 	 * Even if there is no change we redo things just to rerun
11388 	 * ipif_set_default.
11389 	 */
11390 	if (ipif->ipif_flags & IPIF_UP) {
11391 		/*
11392 		 * Setting a new local address, make sure
11393 		 * we have net and subnet bcast ire's for
11394 		 * the old address if we need them.
11395 		 */
11396 		if (!ipif->ipif_isv6)
11397 			ipif_check_bcast_ires(ipif);
11398 		/*
11399 		 * If the interface is already marked up,
11400 		 * we call ipif_down which will take care
11401 		 * of ditching any IREs that have been set
11402 		 * up based on the old interface address.
11403 		 */
11404 		err = ipif_logical_down(ipif, q, mp);
11405 		if (err == EINPROGRESS)
11406 			return (err);
11407 		ipif_down_tail(ipif);
11408 		need_up = 1;
11409 	}
11410 
11411 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11412 	return (err);
11413 }
11414 
11415 int
11416 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11417     boolean_t need_up)
11418 {
11419 	in6_addr_t v6addr;
11420 	in6_addr_t ov6addr;
11421 	ipaddr_t addr;
11422 	sin6_t	*sin6;
11423 	int	sinlen;
11424 	int	err = 0;
11425 	ill_t	*ill = ipif->ipif_ill;
11426 	boolean_t need_dl_down;
11427 	boolean_t need_arp_down;
11428 	struct iocblk *iocp;
11429 
11430 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11431 
11432 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11433 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11434 	ASSERT(IAM_WRITER_IPIF(ipif));
11435 
11436 	/* Must cancel any pending timer before taking the ill_lock */
11437 	if (ipif->ipif_recovery_id != 0)
11438 		(void) untimeout(ipif->ipif_recovery_id);
11439 	ipif->ipif_recovery_id = 0;
11440 
11441 	if (ipif->ipif_isv6) {
11442 		sin6 = (sin6_t *)sin;
11443 		v6addr = sin6->sin6_addr;
11444 		sinlen = sizeof (struct sockaddr_in6);
11445 	} else {
11446 		addr = sin->sin_addr.s_addr;
11447 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11448 		sinlen = sizeof (struct sockaddr_in);
11449 	}
11450 	mutex_enter(&ill->ill_lock);
11451 	ov6addr = ipif->ipif_v6lcl_addr;
11452 	ipif->ipif_v6lcl_addr = v6addr;
11453 	sctp_update_ipif_addr(ipif, ov6addr);
11454 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11455 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11456 	} else {
11457 		ipif->ipif_v6src_addr = v6addr;
11458 	}
11459 	ipif->ipif_addr_ready = 0;
11460 
11461 	/*
11462 	 * If the interface was previously marked as a duplicate, then since
11463 	 * we've now got a "new" address, it should no longer be considered a
11464 	 * duplicate -- even if the "new" address is the same as the old one.
11465 	 * Note that if all ipifs are down, we may have a pending ARP down
11466 	 * event to handle.  This is because we want to recover from duplicates
11467 	 * and thus delay tearing down ARP until the duplicates have been
11468 	 * removed or disabled.
11469 	 */
11470 	need_dl_down = need_arp_down = B_FALSE;
11471 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11472 		need_arp_down = !need_up;
11473 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11474 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11475 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11476 			need_dl_down = B_TRUE;
11477 		}
11478 	}
11479 
11480 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11481 	    !ill->ill_is_6to4tun) {
11482 		queue_t *wqp = ill->ill_wq;
11483 
11484 		/*
11485 		 * The local address of this interface is a 6to4 address,
11486 		 * check if this interface is in fact a 6to4 tunnel or just
11487 		 * an interface configured with a 6to4 address.  We are only
11488 		 * interested in the former.
11489 		 */
11490 		if (wqp != NULL) {
11491 			while ((wqp->q_next != NULL) &&
11492 			    (wqp->q_next->q_qinfo != NULL) &&
11493 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11494 
11495 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11496 				    == TUN6TO4_MODID) {
11497 					/* set for use in IP */
11498 					ill->ill_is_6to4tun = 1;
11499 					break;
11500 				}
11501 				wqp = wqp->q_next;
11502 			}
11503 		}
11504 	}
11505 
11506 	ipif_set_default(ipif);
11507 
11508 	/*
11509 	 * When publishing an interface address change event, we only notify
11510 	 * the event listeners of the new address.  It is assumed that if they
11511 	 * actively care about the addresses assigned that they will have
11512 	 * already discovered the previous address assigned (if there was one.)
11513 	 *
11514 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11515 	 */
11516 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11517 		hook_nic_event_t *info;
11518 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11519 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11520 			    "attached for %s\n", info->hne_event,
11521 			    ill->ill_name));
11522 			if (info->hne_data != NULL)
11523 				kmem_free(info->hne_data, info->hne_datalen);
11524 			kmem_free(info, sizeof (hook_nic_event_t));
11525 		}
11526 
11527 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11528 		if (info != NULL) {
11529 			ip_stack_t	*ipst = ill->ill_ipst;
11530 
11531 			info->hne_nic =
11532 			    ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11533 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11534 			info->hne_event = NE_ADDRESS_CHANGE;
11535 			info->hne_family = ipif->ipif_isv6 ?
11536 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11537 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11538 			if (info->hne_data != NULL) {
11539 				info->hne_datalen = sinlen;
11540 				bcopy(sin, info->hne_data, sinlen);
11541 			} else {
11542 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11543 				    "address information for ADDRESS_CHANGE nic"
11544 				    " event of %s (ENOMEM)\n",
11545 				    ipif->ipif_ill->ill_name));
11546 				kmem_free(info, sizeof (hook_nic_event_t));
11547 			}
11548 		} else
11549 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11550 			    "ADDRESS_CHANGE nic event information for %s "
11551 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11552 
11553 		ipif->ipif_ill->ill_nic_event_info = info;
11554 	}
11555 
11556 	mutex_exit(&ill->ill_lock);
11557 
11558 	if (need_up) {
11559 		/*
11560 		 * Now bring the interface back up.  If this
11561 		 * is the only IPIF for the ILL, ipif_up
11562 		 * will have to re-bind to the device, so
11563 		 * we may get back EINPROGRESS, in which
11564 		 * case, this IOCTL will get completed in
11565 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11566 		 */
11567 		err = ipif_up(ipif, q, mp);
11568 	}
11569 
11570 	if (need_dl_down)
11571 		ill_dl_down(ill);
11572 	if (need_arp_down)
11573 		ipif_arp_down(ipif);
11574 
11575 	return (err);
11576 }
11577 
11578 
11579 /*
11580  * Restart entry point to restart the address set operation after the
11581  * refcounts have dropped to zero.
11582  */
11583 /* ARGSUSED */
11584 int
11585 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11586     ip_ioctl_cmd_t *ipip, void *ifreq)
11587 {
11588 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11589 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11590 	ASSERT(IAM_WRITER_IPIF(ipif));
11591 	ipif_down_tail(ipif);
11592 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11593 }
11594 
11595 /* ARGSUSED */
11596 int
11597 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11598     ip_ioctl_cmd_t *ipip, void *if_req)
11599 {
11600 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11601 	struct lifreq *lifr = (struct lifreq *)if_req;
11602 
11603 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11604 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11605 	/*
11606 	 * The net mask and address can't change since we have a
11607 	 * reference to the ipif. So no lock is necessary.
11608 	 */
11609 	if (ipif->ipif_isv6) {
11610 		*sin6 = sin6_null;
11611 		sin6->sin6_family = AF_INET6;
11612 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11613 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11614 		lifr->lifr_addrlen =
11615 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11616 	} else {
11617 		*sin = sin_null;
11618 		sin->sin_family = AF_INET;
11619 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11620 		if (ipip->ipi_cmd_type == LIF_CMD) {
11621 			lifr->lifr_addrlen =
11622 			    ip_mask_to_plen(ipif->ipif_net_mask);
11623 		}
11624 	}
11625 	return (0);
11626 }
11627 
11628 /*
11629  * Set the destination address for a pt-pt interface.
11630  */
11631 /* ARGSUSED */
11632 int
11633 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11634     ip_ioctl_cmd_t *ipip, void *if_req)
11635 {
11636 	int err = 0;
11637 	in6_addr_t v6addr;
11638 	boolean_t need_up = B_FALSE;
11639 
11640 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11641 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11642 	ASSERT(IAM_WRITER_IPIF(ipif));
11643 
11644 	if (ipif->ipif_isv6) {
11645 		sin6_t *sin6;
11646 
11647 		if (sin->sin_family != AF_INET6)
11648 			return (EAFNOSUPPORT);
11649 
11650 		sin6 = (sin6_t *)sin;
11651 		v6addr = sin6->sin6_addr;
11652 
11653 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11654 			return (EADDRNOTAVAIL);
11655 	} else {
11656 		ipaddr_t addr;
11657 
11658 		if (sin->sin_family != AF_INET)
11659 			return (EAFNOSUPPORT);
11660 
11661 		addr = sin->sin_addr.s_addr;
11662 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11663 			return (EADDRNOTAVAIL);
11664 
11665 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11666 	}
11667 
11668 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11669 		return (0);	/* No change */
11670 
11671 	if (ipif->ipif_flags & IPIF_UP) {
11672 		/*
11673 		 * If the interface is already marked up,
11674 		 * we call ipif_down which will take care
11675 		 * of ditching any IREs that have been set
11676 		 * up based on the old pp dst address.
11677 		 */
11678 		err = ipif_logical_down(ipif, q, mp);
11679 		if (err == EINPROGRESS)
11680 			return (err);
11681 		ipif_down_tail(ipif);
11682 		need_up = B_TRUE;
11683 	}
11684 	/*
11685 	 * could return EINPROGRESS. If so ioctl will complete in
11686 	 * ip_rput_dlpi_writer
11687 	 */
11688 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11689 	return (err);
11690 }
11691 
11692 static int
11693 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11694     boolean_t need_up)
11695 {
11696 	in6_addr_t v6addr;
11697 	ill_t	*ill = ipif->ipif_ill;
11698 	int	err = 0;
11699 	boolean_t need_dl_down;
11700 	boolean_t need_arp_down;
11701 
11702 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11703 	    ipif->ipif_id, (void *)ipif));
11704 
11705 	/* Must cancel any pending timer before taking the ill_lock */
11706 	if (ipif->ipif_recovery_id != 0)
11707 		(void) untimeout(ipif->ipif_recovery_id);
11708 	ipif->ipif_recovery_id = 0;
11709 
11710 	if (ipif->ipif_isv6) {
11711 		sin6_t *sin6;
11712 
11713 		sin6 = (sin6_t *)sin;
11714 		v6addr = sin6->sin6_addr;
11715 	} else {
11716 		ipaddr_t addr;
11717 
11718 		addr = sin->sin_addr.s_addr;
11719 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11720 	}
11721 	mutex_enter(&ill->ill_lock);
11722 	/* Set point to point destination address. */
11723 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11724 		/*
11725 		 * Allow this as a means of creating logical
11726 		 * pt-pt interfaces on top of e.g. an Ethernet.
11727 		 * XXX Undocumented HACK for testing.
11728 		 * pt-pt interfaces are created with NUD disabled.
11729 		 */
11730 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11731 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11732 		if (ipif->ipif_isv6)
11733 			ill->ill_flags |= ILLF_NONUD;
11734 	}
11735 
11736 	/*
11737 	 * If the interface was previously marked as a duplicate, then since
11738 	 * we've now got a "new" address, it should no longer be considered a
11739 	 * duplicate -- even if the "new" address is the same as the old one.
11740 	 * Note that if all ipifs are down, we may have a pending ARP down
11741 	 * event to handle.
11742 	 */
11743 	need_dl_down = need_arp_down = B_FALSE;
11744 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11745 		need_arp_down = !need_up;
11746 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11747 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11748 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11749 			need_dl_down = B_TRUE;
11750 		}
11751 	}
11752 
11753 	/* Set the new address. */
11754 	ipif->ipif_v6pp_dst_addr = v6addr;
11755 	/* Make sure subnet tracks pp_dst */
11756 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11757 	mutex_exit(&ill->ill_lock);
11758 
11759 	if (need_up) {
11760 		/*
11761 		 * Now bring the interface back up.  If this
11762 		 * is the only IPIF for the ILL, ipif_up
11763 		 * will have to re-bind to the device, so
11764 		 * we may get back EINPROGRESS, in which
11765 		 * case, this IOCTL will get completed in
11766 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11767 		 */
11768 		err = ipif_up(ipif, q, mp);
11769 	}
11770 
11771 	if (need_dl_down)
11772 		ill_dl_down(ill);
11773 
11774 	if (need_arp_down)
11775 		ipif_arp_down(ipif);
11776 	return (err);
11777 }
11778 
11779 /*
11780  * Restart entry point to restart the dstaddress set operation after the
11781  * refcounts have dropped to zero.
11782  */
11783 /* ARGSUSED */
11784 int
11785 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11786     ip_ioctl_cmd_t *ipip, void *ifreq)
11787 {
11788 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11789 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11790 	ipif_down_tail(ipif);
11791 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11792 }
11793 
11794 /* ARGSUSED */
11795 int
11796 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11797     ip_ioctl_cmd_t *ipip, void *if_req)
11798 {
11799 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11800 
11801 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11802 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11803 	/*
11804 	 * Get point to point destination address. The addresses can't
11805 	 * change since we hold a reference to the ipif.
11806 	 */
11807 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11808 		return (EADDRNOTAVAIL);
11809 
11810 	if (ipif->ipif_isv6) {
11811 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11812 		*sin6 = sin6_null;
11813 		sin6->sin6_family = AF_INET6;
11814 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11815 	} else {
11816 		*sin = sin_null;
11817 		sin->sin_family = AF_INET;
11818 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11819 	}
11820 	return (0);
11821 }
11822 
11823 /*
11824  * part of ipmp, make this func return the active/inactive state and
11825  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11826  */
11827 /*
11828  * This function either sets or clears the IFF_INACTIVE flag.
11829  *
11830  * As long as there are some addresses or multicast memberships on the
11831  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11832  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11833  * will be used for outbound packets.
11834  *
11835  * Caller needs to verify the validity of setting IFF_INACTIVE.
11836  */
11837 static void
11838 phyint_inactive(phyint_t *phyi)
11839 {
11840 	ill_t *ill_v4;
11841 	ill_t *ill_v6;
11842 	ipif_t *ipif;
11843 	ilm_t *ilm;
11844 
11845 	ill_v4 = phyi->phyint_illv4;
11846 	ill_v6 = phyi->phyint_illv6;
11847 
11848 	/*
11849 	 * No need for a lock while traversing the list since iam
11850 	 * a writer
11851 	 */
11852 	if (ill_v4 != NULL) {
11853 		ASSERT(IAM_WRITER_ILL(ill_v4));
11854 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11855 		    ipif = ipif->ipif_next) {
11856 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11857 				mutex_enter(&phyi->phyint_lock);
11858 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11859 				mutex_exit(&phyi->phyint_lock);
11860 				return;
11861 			}
11862 		}
11863 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11864 		    ilm = ilm->ilm_next) {
11865 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11866 				mutex_enter(&phyi->phyint_lock);
11867 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11868 				mutex_exit(&phyi->phyint_lock);
11869 				return;
11870 			}
11871 		}
11872 	}
11873 	if (ill_v6 != NULL) {
11874 		ill_v6 = phyi->phyint_illv6;
11875 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11876 		    ipif = ipif->ipif_next) {
11877 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11878 				mutex_enter(&phyi->phyint_lock);
11879 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11880 				mutex_exit(&phyi->phyint_lock);
11881 				return;
11882 			}
11883 		}
11884 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11885 		    ilm = ilm->ilm_next) {
11886 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11887 				mutex_enter(&phyi->phyint_lock);
11888 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11889 				mutex_exit(&phyi->phyint_lock);
11890 				return;
11891 			}
11892 		}
11893 	}
11894 	mutex_enter(&phyi->phyint_lock);
11895 	phyi->phyint_flags |= PHYI_INACTIVE;
11896 	mutex_exit(&phyi->phyint_lock);
11897 }
11898 
11899 /*
11900  * This function is called only when the phyint flags change. Currently
11901  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11902  * that we can select a good ill.
11903  */
11904 static void
11905 ip_redo_nomination(phyint_t *phyi)
11906 {
11907 	ill_t *ill_v4;
11908 
11909 	ill_v4 = phyi->phyint_illv4;
11910 
11911 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11912 		ASSERT(IAM_WRITER_ILL(ill_v4));
11913 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11914 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11915 	}
11916 }
11917 
11918 /*
11919  * Heuristic to check if ill is INACTIVE.
11920  * Checks if ill has an ipif with an usable ip address.
11921  *
11922  * Return values:
11923  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11924  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11925  */
11926 static boolean_t
11927 ill_is_inactive(ill_t *ill)
11928 {
11929 	ipif_t *ipif;
11930 
11931 	/* Check whether it is in an IPMP group */
11932 	if (ill->ill_phyint->phyint_groupname == NULL)
11933 		return (B_FALSE);
11934 
11935 	if (ill->ill_ipif_up_count == 0)
11936 		return (B_TRUE);
11937 
11938 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11939 		uint64_t flags = ipif->ipif_flags;
11940 
11941 		/*
11942 		 * This ipif is usable if it is IPIF_UP and not a
11943 		 * dedicated test address.  A dedicated test address
11944 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11945 		 * (note in particular that V6 test addresses are
11946 		 * link-local data addresses and thus are marked
11947 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11948 		 */
11949 		if ((flags & IPIF_UP) &&
11950 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11951 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11952 			return (B_FALSE);
11953 	}
11954 	return (B_TRUE);
11955 }
11956 
11957 /*
11958  * Set interface flags.
11959  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11960  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11961  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11962  *
11963  * NOTE : We really don't enforce that ipif_id zero should be used
11964  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11965  *	  is because applications generally does SICGLIFFLAGS and
11966  *	  ORs in the new flags (that affects the logical) and does a
11967  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11968  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11969  *	  flags that will be turned on is correct with respect to
11970  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11971  */
11972 /* ARGSUSED */
11973 int
11974 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11975     ip_ioctl_cmd_t *ipip, void *if_req)
11976 {
11977 	uint64_t turn_on;
11978 	uint64_t turn_off;
11979 	int	err;
11980 	boolean_t need_up = B_FALSE;
11981 	phyint_t *phyi;
11982 	ill_t *ill;
11983 	uint64_t intf_flags;
11984 	boolean_t phyint_flags_modified = B_FALSE;
11985 	uint64_t flags;
11986 	struct ifreq *ifr;
11987 	struct lifreq *lifr;
11988 	boolean_t set_linklocal = B_FALSE;
11989 	boolean_t zero_source = B_FALSE;
11990 	ip_stack_t *ipst;
11991 
11992 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11993 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11994 
11995 	ASSERT(IAM_WRITER_IPIF(ipif));
11996 
11997 	ill = ipif->ipif_ill;
11998 	phyi = ill->ill_phyint;
11999 	ipst = ill->ill_ipst;
12000 
12001 	if (ipip->ipi_cmd_type == IF_CMD) {
12002 		ifr = (struct ifreq *)if_req;
12003 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
12004 	} else {
12005 		lifr = (struct lifreq *)if_req;
12006 		flags = lifr->lifr_flags;
12007 	}
12008 
12009 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12010 
12011 	/*
12012 	 * Has the flags been set correctly till now ?
12013 	 */
12014 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12015 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12016 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12017 	/*
12018 	 * Compare the new flags to the old, and partition
12019 	 * into those coming on and those going off.
12020 	 * For the 16 bit command keep the bits above bit 16 unchanged.
12021 	 */
12022 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
12023 		flags |= intf_flags & ~0xFFFF;
12024 
12025 	/*
12026 	 * First check which bits will change and then which will
12027 	 * go on and off
12028 	 */
12029 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
12030 	if (!turn_on)
12031 		return (0);	/* No change */
12032 
12033 	turn_off = intf_flags & turn_on;
12034 	turn_on ^= turn_off;
12035 	err = 0;
12036 
12037 	/*
12038 	 * Don't allow any bits belonging to the logical interface
12039 	 * to be set or cleared on the replacement ipif that was
12040 	 * created temporarily during a MOVE.
12041 	 */
12042 	if (ipif->ipif_replace_zero &&
12043 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
12044 		return (EINVAL);
12045 	}
12046 
12047 	/*
12048 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
12049 	 * IPv6 interfaces.
12050 	 */
12051 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
12052 		return (EINVAL);
12053 
12054 	/*
12055 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
12056 	 * interfaces.  It makes no sense in that context.
12057 	 */
12058 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
12059 		return (EINVAL);
12060 
12061 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
12062 		zero_source = B_TRUE;
12063 
12064 	/*
12065 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
12066 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
12067 	 * If the link local address isn't set, and can be set, it will get
12068 	 * set later on in this function.
12069 	 */
12070 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
12071 	    (flags & IFF_UP) && !zero_source &&
12072 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
12073 		if (ipif_cant_setlinklocal(ipif))
12074 			return (EINVAL);
12075 		set_linklocal = B_TRUE;
12076 	}
12077 
12078 	/*
12079 	 * ILL cannot be part of a usesrc group and and IPMP group at the
12080 	 * same time. No need to grab ill_g_usesrc_lock here, see
12081 	 * synchronization notes in ip.c
12082 	 */
12083 	if (turn_on & PHYI_STANDBY &&
12084 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
12085 		return (EINVAL);
12086 	}
12087 
12088 	/*
12089 	 * If we modify physical interface flags, we'll potentially need to
12090 	 * send up two routing socket messages for the changes (one for the
12091 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
12092 	 */
12093 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
12094 		phyint_flags_modified = B_TRUE;
12095 
12096 	/*
12097 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
12098 	 * we need to flush the IRE_CACHES belonging to this ill.
12099 	 * We handle this case here without doing the DOWN/UP dance
12100 	 * like it is done for other flags. If some other flags are
12101 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
12102 	 * below will handle it by bringing it down and then
12103 	 * bringing it UP.
12104 	 */
12105 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
12106 		ill_t *ill_v4, *ill_v6;
12107 
12108 		ill_v4 = phyi->phyint_illv4;
12109 		ill_v6 = phyi->phyint_illv6;
12110 
12111 		/*
12112 		 * First set the INACTIVE flag if needed. Then delete the ires.
12113 		 * ire_add will atomically prevent creating new IRE_CACHEs
12114 		 * unless hidden flag is set.
12115 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
12116 		 */
12117 		if ((turn_on & PHYI_FAILED) &&
12118 		    ((intf_flags & PHYI_STANDBY) ||
12119 		    !ipst->ips_ipmp_enable_failback)) {
12120 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
12121 			phyi->phyint_flags &= ~PHYI_INACTIVE;
12122 		}
12123 		if ((turn_off & PHYI_FAILED) &&
12124 		    ((intf_flags & PHYI_STANDBY) ||
12125 		    (!ipst->ips_ipmp_enable_failback &&
12126 		    ill_is_inactive(ill)))) {
12127 			phyint_inactive(phyi);
12128 		}
12129 
12130 		if (turn_on & PHYI_STANDBY) {
12131 			/*
12132 			 * We implicitly set INACTIVE only when STANDBY is set.
12133 			 * INACTIVE is also set on non-STANDBY phyint when user
12134 			 * disables FAILBACK using configuration file.
12135 			 * Do not allow STANDBY to be set on such INACTIVE
12136 			 * phyint
12137 			 */
12138 			if (phyi->phyint_flags & PHYI_INACTIVE)
12139 				return (EINVAL);
12140 			if (!(phyi->phyint_flags & PHYI_FAILED))
12141 				phyint_inactive(phyi);
12142 		}
12143 		if (turn_off & PHYI_STANDBY) {
12144 			if (ipst->ips_ipmp_enable_failback) {
12145 				/*
12146 				 * Reset PHYI_INACTIVE.
12147 				 */
12148 				phyi->phyint_flags &= ~PHYI_INACTIVE;
12149 			} else if (ill_is_inactive(ill) &&
12150 			    !(phyi->phyint_flags & PHYI_FAILED)) {
12151 				/*
12152 				 * Need to set INACTIVE, when user sets
12153 				 * STANDBY on a non-STANDBY phyint and
12154 				 * later resets STANDBY
12155 				 */
12156 				phyint_inactive(phyi);
12157 			}
12158 		}
12159 		/*
12160 		 * We should always send up a message so that the
12161 		 * daemons come to know of it. Note that the zeroth
12162 		 * interface can be down and the check below for IPIF_UP
12163 		 * will not make sense as we are actually setting
12164 		 * a phyint flag here. We assume that the ipif used
12165 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
12166 		 * send up any message for non-zero ipifs).
12167 		 */
12168 		phyint_flags_modified = B_TRUE;
12169 
12170 		if (ill_v4 != NULL) {
12171 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12172 			    IRE_CACHE, ill_stq_cache_delete,
12173 			    (char *)ill_v4, ill_v4);
12174 			illgrp_reset_schednext(ill_v4);
12175 		}
12176 		if (ill_v6 != NULL) {
12177 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12178 			    IRE_CACHE, ill_stq_cache_delete,
12179 			    (char *)ill_v6, ill_v6);
12180 			illgrp_reset_schednext(ill_v6);
12181 		}
12182 	}
12183 
12184 	/*
12185 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
12186 	 * status of the interface and, if the interface is part of an IPMP
12187 	 * group, all other interfaces that are part of the same IPMP
12188 	 * group.
12189 	 */
12190 	if ((turn_on | turn_off) & ILLF_ROUTER) {
12191 		(void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0),
12192 		    (caddr_t)ill);
12193 	}
12194 
12195 	/*
12196 	 * If the interface is not UP and we are not going to
12197 	 * bring it UP, record the flags and return. When the
12198 	 * interface comes UP later, the right actions will be
12199 	 * taken.
12200 	 */
12201 	if (!(ipif->ipif_flags & IPIF_UP) &&
12202 	    !(turn_on & IPIF_UP)) {
12203 		/* Record new flags in their respective places. */
12204 		mutex_enter(&ill->ill_lock);
12205 		mutex_enter(&ill->ill_phyint->phyint_lock);
12206 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12207 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12208 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12209 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12210 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12211 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12212 		mutex_exit(&ill->ill_lock);
12213 		mutex_exit(&ill->ill_phyint->phyint_lock);
12214 
12215 		/*
12216 		 * We do the broadcast and nomination here rather
12217 		 * than waiting for a FAILOVER/FAILBACK to happen. In
12218 		 * the case of FAILBACK from INACTIVE standby to the
12219 		 * interface that has been repaired, PHYI_FAILED has not
12220 		 * been cleared yet. If there are only two interfaces in
12221 		 * that group, all we have is a FAILED and INACTIVE
12222 		 * interface. If we do the nomination soon after a failback,
12223 		 * the broadcast nomination code would select the
12224 		 * INACTIVE interface for receiving broadcasts as FAILED is
12225 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
12226 		 * receive broadcast packets, we need to redo nomination
12227 		 * when the FAILED is cleared here. Thus, in general we
12228 		 * always do the nomination here for FAILED, STANDBY
12229 		 * and OFFLINE.
12230 		 */
12231 		if (((turn_on | turn_off) &
12232 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
12233 			ip_redo_nomination(phyi);
12234 		}
12235 		if (phyint_flags_modified) {
12236 			if (phyi->phyint_illv4 != NULL) {
12237 				ip_rts_ifmsg(phyi->phyint_illv4->
12238 				    ill_ipif);
12239 			}
12240 			if (phyi->phyint_illv6 != NULL) {
12241 				ip_rts_ifmsg(phyi->phyint_illv6->
12242 				    ill_ipif);
12243 			}
12244 		}
12245 		return (0);
12246 	} else if (set_linklocal || zero_source) {
12247 		mutex_enter(&ill->ill_lock);
12248 		if (set_linklocal)
12249 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
12250 		if (zero_source)
12251 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
12252 		mutex_exit(&ill->ill_lock);
12253 	}
12254 
12255 	/*
12256 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
12257 	 * or point-to-point interfaces with an unspecified destination. We do
12258 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
12259 	 * have a subnet assigned, which is how in.ndpd currently manages its
12260 	 * onlink prefix list when no addresses are configured with those
12261 	 * prefixes.
12262 	 */
12263 	if (ipif->ipif_isv6 &&
12264 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
12265 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
12266 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
12267 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12268 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
12269 		return (EINVAL);
12270 	}
12271 
12272 	/*
12273 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
12274 	 * from being brought up.
12275 	 */
12276 	if (!ipif->ipif_isv6 &&
12277 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12278 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
12279 		return (EINVAL);
12280 	}
12281 
12282 	/*
12283 	 * The only flag changes that we currently take specific action on
12284 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
12285 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
12286 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
12287 	 * the flags and bringing it back up again.
12288 	 */
12289 	if ((turn_on|turn_off) &
12290 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
12291 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
12292 		/*
12293 		 * Taking this ipif down, make sure we have
12294 		 * valid net and subnet bcast ire's for other
12295 		 * logical interfaces, if we need them.
12296 		 */
12297 		if (!ipif->ipif_isv6)
12298 			ipif_check_bcast_ires(ipif);
12299 
12300 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
12301 		    !(turn_off & IPIF_UP)) {
12302 			need_up = B_TRUE;
12303 			if (ipif->ipif_flags & IPIF_UP)
12304 				ill->ill_logical_down = 1;
12305 			turn_on &= ~IPIF_UP;
12306 		}
12307 		err = ipif_down(ipif, q, mp);
12308 		ip1dbg(("ipif_down returns %d err ", err));
12309 		if (err == EINPROGRESS)
12310 			return (err);
12311 		ipif_down_tail(ipif);
12312 	}
12313 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
12314 }
12315 
12316 static int
12317 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
12318     boolean_t need_up)
12319 {
12320 	ill_t	*ill;
12321 	phyint_t *phyi;
12322 	uint64_t turn_on;
12323 	uint64_t turn_off;
12324 	uint64_t intf_flags;
12325 	boolean_t phyint_flags_modified = B_FALSE;
12326 	int	err = 0;
12327 	boolean_t set_linklocal = B_FALSE;
12328 	boolean_t zero_source = B_FALSE;
12329 
12330 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12331 		ipif->ipif_ill->ill_name, ipif->ipif_id));
12332 
12333 	ASSERT(IAM_WRITER_IPIF(ipif));
12334 
12335 	ill = ipif->ipif_ill;
12336 	phyi = ill->ill_phyint;
12337 
12338 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12339 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12340 
12341 	turn_off = intf_flags & turn_on;
12342 	turn_on ^= turn_off;
12343 
12344 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12345 		phyint_flags_modified = B_TRUE;
12346 
12347 	/*
12348 	 * Now we change the flags. Track current value of
12349 	 * other flags in their respective places.
12350 	 */
12351 	mutex_enter(&ill->ill_lock);
12352 	mutex_enter(&phyi->phyint_lock);
12353 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12354 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12355 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12356 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12357 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12358 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12359 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12360 		set_linklocal = B_TRUE;
12361 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12362 	}
12363 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12364 		zero_source = B_TRUE;
12365 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12366 	}
12367 	mutex_exit(&ill->ill_lock);
12368 	mutex_exit(&phyi->phyint_lock);
12369 
12370 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12371 		ip_redo_nomination(phyi);
12372 
12373 	if (set_linklocal)
12374 		(void) ipif_setlinklocal(ipif);
12375 
12376 	if (zero_source)
12377 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12378 	else
12379 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12380 
12381 	if (need_up) {
12382 		/*
12383 		 * XXX ipif_up really does not know whether a phyint flags
12384 		 * was modified or not. So, it sends up information on
12385 		 * only one routing sockets message. As we don't bring up
12386 		 * the interface and also set STANDBY/FAILED simultaneously
12387 		 * it should be okay.
12388 		 */
12389 		err = ipif_up(ipif, q, mp);
12390 	} else {
12391 		/*
12392 		 * Make sure routing socket sees all changes to the flags.
12393 		 * ipif_up_done* handles this when we use ipif_up.
12394 		 */
12395 		if (phyint_flags_modified) {
12396 			if (phyi->phyint_illv4 != NULL) {
12397 				ip_rts_ifmsg(phyi->phyint_illv4->
12398 				    ill_ipif);
12399 			}
12400 			if (phyi->phyint_illv6 != NULL) {
12401 				ip_rts_ifmsg(phyi->phyint_illv6->
12402 				    ill_ipif);
12403 			}
12404 		} else {
12405 			ip_rts_ifmsg(ipif);
12406 		}
12407 		/*
12408 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
12409 		 * this in need_up case.
12410 		 */
12411 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12412 	}
12413 	return (err);
12414 }
12415 
12416 /*
12417  * Restart entry point to restart the flags restart operation after the
12418  * refcounts have dropped to zero.
12419  */
12420 /* ARGSUSED */
12421 int
12422 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12423     ip_ioctl_cmd_t *ipip, void *if_req)
12424 {
12425 	int	err;
12426 	struct ifreq *ifr = (struct ifreq *)if_req;
12427 	struct lifreq *lifr = (struct lifreq *)if_req;
12428 
12429 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12430 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12431 
12432 	ipif_down_tail(ipif);
12433 	if (ipip->ipi_cmd_type == IF_CMD) {
12434 		/*
12435 		 * Since ip_sioctl_flags expects an int and ifr_flags
12436 		 * is a short we need to cast ifr_flags into an int
12437 		 * to avoid having sign extension cause bits to get
12438 		 * set that should not be.
12439 		 */
12440 		err = ip_sioctl_flags_tail(ipif,
12441 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12442 		    q, mp, B_TRUE);
12443 	} else {
12444 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12445 		    q, mp, B_TRUE);
12446 	}
12447 	return (err);
12448 }
12449 
12450 /*
12451  * Can operate on either a module or a driver queue.
12452  */
12453 /* ARGSUSED */
12454 int
12455 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12456     ip_ioctl_cmd_t *ipip, void *if_req)
12457 {
12458 	/*
12459 	 * Has the flags been set correctly till now ?
12460 	 */
12461 	ill_t *ill = ipif->ipif_ill;
12462 	phyint_t *phyi = ill->ill_phyint;
12463 
12464 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12465 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12466 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12467 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12468 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12469 
12470 	/*
12471 	 * Need a lock since some flags can be set even when there are
12472 	 * references to the ipif.
12473 	 */
12474 	mutex_enter(&ill->ill_lock);
12475 	if (ipip->ipi_cmd_type == IF_CMD) {
12476 		struct ifreq *ifr = (struct ifreq *)if_req;
12477 
12478 		/* Get interface flags (low 16 only). */
12479 		ifr->ifr_flags = ((ipif->ipif_flags |
12480 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12481 	} else {
12482 		struct lifreq *lifr = (struct lifreq *)if_req;
12483 
12484 		/* Get interface flags. */
12485 		lifr->lifr_flags = ipif->ipif_flags |
12486 		    ill->ill_flags | phyi->phyint_flags;
12487 	}
12488 	mutex_exit(&ill->ill_lock);
12489 	return (0);
12490 }
12491 
12492 /* ARGSUSED */
12493 int
12494 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12495     ip_ioctl_cmd_t *ipip, void *if_req)
12496 {
12497 	int mtu;
12498 	int ip_min_mtu;
12499 	struct ifreq	*ifr;
12500 	struct lifreq *lifr;
12501 	ire_t	*ire;
12502 	ip_stack_t *ipst;
12503 
12504 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12505 	    ipif->ipif_id, (void *)ipif));
12506 	if (ipip->ipi_cmd_type == IF_CMD) {
12507 		ifr = (struct ifreq *)if_req;
12508 		mtu = ifr->ifr_metric;
12509 	} else {
12510 		lifr = (struct lifreq *)if_req;
12511 		mtu = lifr->lifr_mtu;
12512 	}
12513 
12514 	if (ipif->ipif_isv6)
12515 		ip_min_mtu = IPV6_MIN_MTU;
12516 	else
12517 		ip_min_mtu = IP_MIN_MTU;
12518 
12519 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12520 		return (EINVAL);
12521 
12522 	/*
12523 	 * Change the MTU size in all relevant ire's.
12524 	 * Mtu change Vs. new ire creation - protocol below.
12525 	 * First change ipif_mtu and the ire_max_frag of the
12526 	 * interface ire. Then do an ire walk and change the
12527 	 * ire_max_frag of all affected ires. During ire_add
12528 	 * under the bucket lock, set the ire_max_frag of the
12529 	 * new ire being created from the ipif/ire from which
12530 	 * it is being derived. If an mtu change happens after
12531 	 * the ire is added, the new ire will be cleaned up.
12532 	 * Conversely if the mtu change happens before the ire
12533 	 * is added, ire_add will see the new value of the mtu.
12534 	 */
12535 	ipif->ipif_mtu = mtu;
12536 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12537 
12538 	if (ipif->ipif_isv6)
12539 		ire = ipif_to_ire_v6(ipif);
12540 	else
12541 		ire = ipif_to_ire(ipif);
12542 	if (ire != NULL) {
12543 		ire->ire_max_frag = ipif->ipif_mtu;
12544 		ire_refrele(ire);
12545 	}
12546 	ipst = ipif->ipif_ill->ill_ipst;
12547 	if (ipif->ipif_flags & IPIF_UP) {
12548 		if (ipif->ipif_isv6)
12549 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12550 			    ipst);
12551 		else
12552 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12553 			    ipst);
12554 	}
12555 	/* Update the MTU in SCTP's list */
12556 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12557 	return (0);
12558 }
12559 
12560 /* Get interface MTU. */
12561 /* ARGSUSED */
12562 int
12563 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12564 	ip_ioctl_cmd_t *ipip, void *if_req)
12565 {
12566 	struct ifreq	*ifr;
12567 	struct lifreq	*lifr;
12568 
12569 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12570 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12571 	if (ipip->ipi_cmd_type == IF_CMD) {
12572 		ifr = (struct ifreq *)if_req;
12573 		ifr->ifr_metric = ipif->ipif_mtu;
12574 	} else {
12575 		lifr = (struct lifreq *)if_req;
12576 		lifr->lifr_mtu = ipif->ipif_mtu;
12577 	}
12578 	return (0);
12579 }
12580 
12581 /* Set interface broadcast address. */
12582 /* ARGSUSED2 */
12583 int
12584 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12585 	ip_ioctl_cmd_t *ipip, void *if_req)
12586 {
12587 	ipaddr_t addr;
12588 	ire_t	*ire;
12589 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12590 
12591 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12592 	    ipif->ipif_id));
12593 
12594 	ASSERT(IAM_WRITER_IPIF(ipif));
12595 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12596 		return (EADDRNOTAVAIL);
12597 
12598 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12599 
12600 	if (sin->sin_family != AF_INET)
12601 		return (EAFNOSUPPORT);
12602 
12603 	addr = sin->sin_addr.s_addr;
12604 	if (ipif->ipif_flags & IPIF_UP) {
12605 		/*
12606 		 * If we are already up, make sure the new
12607 		 * broadcast address makes sense.  If it does,
12608 		 * there should be an IRE for it already.
12609 		 * Don't match on ipif, only on the ill
12610 		 * since we are sharing these now. Don't use
12611 		 * MATCH_IRE_ILL_GROUP as we are looking for
12612 		 * the broadcast ire on this ill and each ill
12613 		 * in the group has its own broadcast ire.
12614 		 */
12615 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12616 		    ipif, ALL_ZONES, NULL,
12617 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12618 		if (ire == NULL) {
12619 			return (EINVAL);
12620 		} else {
12621 			ire_refrele(ire);
12622 		}
12623 	}
12624 	/*
12625 	 * Changing the broadcast addr for this ipif.
12626 	 * Make sure we have valid net and subnet bcast
12627 	 * ire's for other logical interfaces, if needed.
12628 	 */
12629 	if (addr != ipif->ipif_brd_addr)
12630 		ipif_check_bcast_ires(ipif);
12631 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12632 	return (0);
12633 }
12634 
12635 /* Get interface broadcast address. */
12636 /* ARGSUSED */
12637 int
12638 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12639     ip_ioctl_cmd_t *ipip, void *if_req)
12640 {
12641 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12642 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12643 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12644 		return (EADDRNOTAVAIL);
12645 
12646 	/* IPIF_BROADCAST not possible with IPv6 */
12647 	ASSERT(!ipif->ipif_isv6);
12648 	*sin = sin_null;
12649 	sin->sin_family = AF_INET;
12650 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12651 	return (0);
12652 }
12653 
12654 /*
12655  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12656  */
12657 /* ARGSUSED */
12658 int
12659 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12660     ip_ioctl_cmd_t *ipip, void *if_req)
12661 {
12662 	int err = 0;
12663 	in6_addr_t v6mask;
12664 
12665 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12666 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12667 
12668 	ASSERT(IAM_WRITER_IPIF(ipif));
12669 
12670 	if (ipif->ipif_isv6) {
12671 		sin6_t *sin6;
12672 
12673 		if (sin->sin_family != AF_INET6)
12674 			return (EAFNOSUPPORT);
12675 
12676 		sin6 = (sin6_t *)sin;
12677 		v6mask = sin6->sin6_addr;
12678 	} else {
12679 		ipaddr_t mask;
12680 
12681 		if (sin->sin_family != AF_INET)
12682 			return (EAFNOSUPPORT);
12683 
12684 		mask = sin->sin_addr.s_addr;
12685 		V4MASK_TO_V6(mask, v6mask);
12686 	}
12687 
12688 	/*
12689 	 * No big deal if the interface isn't already up, or the mask
12690 	 * isn't really changing, or this is pt-pt.
12691 	 */
12692 	if (!(ipif->ipif_flags & IPIF_UP) ||
12693 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12694 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12695 		ipif->ipif_v6net_mask = v6mask;
12696 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12697 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12698 			    ipif->ipif_v6net_mask,
12699 			    ipif->ipif_v6subnet);
12700 		}
12701 		return (0);
12702 	}
12703 	/*
12704 	 * Make sure we have valid net and subnet broadcast ire's
12705 	 * for the old netmask, if needed by other logical interfaces.
12706 	 */
12707 	if (!ipif->ipif_isv6)
12708 		ipif_check_bcast_ires(ipif);
12709 
12710 	err = ipif_logical_down(ipif, q, mp);
12711 	if (err == EINPROGRESS)
12712 		return (err);
12713 	ipif_down_tail(ipif);
12714 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12715 	return (err);
12716 }
12717 
12718 static int
12719 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12720 {
12721 	in6_addr_t v6mask;
12722 	int err = 0;
12723 
12724 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12725 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12726 
12727 	if (ipif->ipif_isv6) {
12728 		sin6_t *sin6;
12729 
12730 		sin6 = (sin6_t *)sin;
12731 		v6mask = sin6->sin6_addr;
12732 	} else {
12733 		ipaddr_t mask;
12734 
12735 		mask = sin->sin_addr.s_addr;
12736 		V4MASK_TO_V6(mask, v6mask);
12737 	}
12738 
12739 	ipif->ipif_v6net_mask = v6mask;
12740 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12741 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12742 		    ipif->ipif_v6subnet);
12743 	}
12744 	err = ipif_up(ipif, q, mp);
12745 
12746 	if (err == 0 || err == EINPROGRESS) {
12747 		/*
12748 		 * The interface must be DL_BOUND if this packet has to
12749 		 * go out on the wire. Since we only go through a logical
12750 		 * down and are bound with the driver during an internal
12751 		 * down/up that is satisfied.
12752 		 */
12753 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12754 			/* Potentially broadcast an address mask reply. */
12755 			ipif_mask_reply(ipif);
12756 		}
12757 	}
12758 	return (err);
12759 }
12760 
12761 /* ARGSUSED */
12762 int
12763 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12764     ip_ioctl_cmd_t *ipip, void *if_req)
12765 {
12766 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12767 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12768 	ipif_down_tail(ipif);
12769 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12770 }
12771 
12772 /* Get interface net mask. */
12773 /* ARGSUSED */
12774 int
12775 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12776     ip_ioctl_cmd_t *ipip, void *if_req)
12777 {
12778 	struct lifreq *lifr = (struct lifreq *)if_req;
12779 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12780 
12781 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12782 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12783 
12784 	/*
12785 	 * net mask can't change since we have a reference to the ipif.
12786 	 */
12787 	if (ipif->ipif_isv6) {
12788 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12789 		*sin6 = sin6_null;
12790 		sin6->sin6_family = AF_INET6;
12791 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12792 		lifr->lifr_addrlen =
12793 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12794 	} else {
12795 		*sin = sin_null;
12796 		sin->sin_family = AF_INET;
12797 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12798 		if (ipip->ipi_cmd_type == LIF_CMD) {
12799 			lifr->lifr_addrlen =
12800 			    ip_mask_to_plen(ipif->ipif_net_mask);
12801 		}
12802 	}
12803 	return (0);
12804 }
12805 
12806 /* ARGSUSED */
12807 int
12808 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12809     ip_ioctl_cmd_t *ipip, void *if_req)
12810 {
12811 
12812 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12813 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12814 	/*
12815 	 * Set interface metric.  We don't use this for
12816 	 * anything but we keep track of it in case it is
12817 	 * important to routing applications or such.
12818 	 */
12819 	if (ipip->ipi_cmd_type == IF_CMD) {
12820 		struct ifreq    *ifr;
12821 
12822 		ifr = (struct ifreq *)if_req;
12823 		ipif->ipif_metric = ifr->ifr_metric;
12824 	} else {
12825 		struct lifreq   *lifr;
12826 
12827 		lifr = (struct lifreq *)if_req;
12828 		ipif->ipif_metric = lifr->lifr_metric;
12829 	}
12830 	return (0);
12831 }
12832 
12833 
12834 /* ARGSUSED */
12835 int
12836 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12837     ip_ioctl_cmd_t *ipip, void *if_req)
12838 {
12839 
12840 	/* Get interface metric. */
12841 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12842 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12843 	if (ipip->ipi_cmd_type == IF_CMD) {
12844 		struct ifreq    *ifr;
12845 
12846 		ifr = (struct ifreq *)if_req;
12847 		ifr->ifr_metric = ipif->ipif_metric;
12848 	} else {
12849 		struct lifreq   *lifr;
12850 
12851 		lifr = (struct lifreq *)if_req;
12852 		lifr->lifr_metric = ipif->ipif_metric;
12853 	}
12854 
12855 	return (0);
12856 }
12857 
12858 /* ARGSUSED */
12859 int
12860 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12861     ip_ioctl_cmd_t *ipip, void *if_req)
12862 {
12863 
12864 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12865 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12866 	/*
12867 	 * Set the muxid returned from I_PLINK.
12868 	 */
12869 	if (ipip->ipi_cmd_type == IF_CMD) {
12870 		struct ifreq *ifr = (struct ifreq *)if_req;
12871 
12872 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12873 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12874 	} else {
12875 		struct lifreq *lifr = (struct lifreq *)if_req;
12876 
12877 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12878 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12879 	}
12880 	return (0);
12881 }
12882 
12883 /* ARGSUSED */
12884 int
12885 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12886     ip_ioctl_cmd_t *ipip, void *if_req)
12887 {
12888 
12889 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12890 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12891 	/*
12892 	 * Get the muxid saved in ill for I_PUNLINK.
12893 	 */
12894 	if (ipip->ipi_cmd_type == IF_CMD) {
12895 		struct ifreq *ifr = (struct ifreq *)if_req;
12896 
12897 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12898 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12899 	} else {
12900 		struct lifreq *lifr = (struct lifreq *)if_req;
12901 
12902 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12903 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12904 	}
12905 	return (0);
12906 }
12907 
12908 /*
12909  * Set the subnet prefix. Does not modify the broadcast address.
12910  */
12911 /* ARGSUSED */
12912 int
12913 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12914     ip_ioctl_cmd_t *ipip, void *if_req)
12915 {
12916 	int err = 0;
12917 	in6_addr_t v6addr;
12918 	in6_addr_t v6mask;
12919 	boolean_t need_up = B_FALSE;
12920 	int addrlen;
12921 
12922 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12923 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12924 
12925 	ASSERT(IAM_WRITER_IPIF(ipif));
12926 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12927 
12928 	if (ipif->ipif_isv6) {
12929 		sin6_t *sin6;
12930 
12931 		if (sin->sin_family != AF_INET6)
12932 			return (EAFNOSUPPORT);
12933 
12934 		sin6 = (sin6_t *)sin;
12935 		v6addr = sin6->sin6_addr;
12936 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12937 			return (EADDRNOTAVAIL);
12938 	} else {
12939 		ipaddr_t addr;
12940 
12941 		if (sin->sin_family != AF_INET)
12942 			return (EAFNOSUPPORT);
12943 
12944 		addr = sin->sin_addr.s_addr;
12945 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12946 			return (EADDRNOTAVAIL);
12947 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12948 		/* Add 96 bits */
12949 		addrlen += IPV6_ABITS - IP_ABITS;
12950 	}
12951 
12952 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12953 		return (EINVAL);
12954 
12955 	/* Check if bits in the address is set past the mask */
12956 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12957 		return (EINVAL);
12958 
12959 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12960 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12961 		return (0);	/* No change */
12962 
12963 	if (ipif->ipif_flags & IPIF_UP) {
12964 		/*
12965 		 * If the interface is already marked up,
12966 		 * we call ipif_down which will take care
12967 		 * of ditching any IREs that have been set
12968 		 * up based on the old interface address.
12969 		 */
12970 		err = ipif_logical_down(ipif, q, mp);
12971 		if (err == EINPROGRESS)
12972 			return (err);
12973 		ipif_down_tail(ipif);
12974 		need_up = B_TRUE;
12975 	}
12976 
12977 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12978 	return (err);
12979 }
12980 
12981 static int
12982 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12983     queue_t *q, mblk_t *mp, boolean_t need_up)
12984 {
12985 	ill_t	*ill = ipif->ipif_ill;
12986 	int	err = 0;
12987 
12988 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12989 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12990 
12991 	/* Set the new address. */
12992 	mutex_enter(&ill->ill_lock);
12993 	ipif->ipif_v6net_mask = v6mask;
12994 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12995 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12996 		    ipif->ipif_v6subnet);
12997 	}
12998 	mutex_exit(&ill->ill_lock);
12999 
13000 	if (need_up) {
13001 		/*
13002 		 * Now bring the interface back up.  If this
13003 		 * is the only IPIF for the ILL, ipif_up
13004 		 * will have to re-bind to the device, so
13005 		 * we may get back EINPROGRESS, in which
13006 		 * case, this IOCTL will get completed in
13007 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
13008 		 */
13009 		err = ipif_up(ipif, q, mp);
13010 		if (err == EINPROGRESS)
13011 			return (err);
13012 	}
13013 	return (err);
13014 }
13015 
13016 /* ARGSUSED */
13017 int
13018 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13019     ip_ioctl_cmd_t *ipip, void *if_req)
13020 {
13021 	int	addrlen;
13022 	in6_addr_t v6addr;
13023 	in6_addr_t v6mask;
13024 	struct lifreq *lifr = (struct lifreq *)if_req;
13025 
13026 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
13027 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13028 	ipif_down_tail(ipif);
13029 
13030 	addrlen = lifr->lifr_addrlen;
13031 	if (ipif->ipif_isv6) {
13032 		sin6_t *sin6;
13033 
13034 		sin6 = (sin6_t *)sin;
13035 		v6addr = sin6->sin6_addr;
13036 	} else {
13037 		ipaddr_t addr;
13038 
13039 		addr = sin->sin_addr.s_addr;
13040 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
13041 		addrlen += IPV6_ABITS - IP_ABITS;
13042 	}
13043 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
13044 
13045 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
13046 }
13047 
13048 /* ARGSUSED */
13049 int
13050 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13051     ip_ioctl_cmd_t *ipip, void *if_req)
13052 {
13053 	struct lifreq *lifr = (struct lifreq *)if_req;
13054 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
13055 
13056 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
13057 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13058 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
13059 
13060 	if (ipif->ipif_isv6) {
13061 		*sin6 = sin6_null;
13062 		sin6->sin6_family = AF_INET6;
13063 		sin6->sin6_addr = ipif->ipif_v6subnet;
13064 		lifr->lifr_addrlen =
13065 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
13066 	} else {
13067 		*sin = sin_null;
13068 		sin->sin_family = AF_INET;
13069 		sin->sin_addr.s_addr = ipif->ipif_subnet;
13070 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
13071 	}
13072 	return (0);
13073 }
13074 
13075 /*
13076  * Set the IPv6 address token.
13077  */
13078 /* ARGSUSED */
13079 int
13080 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13081     ip_ioctl_cmd_t *ipi, void *if_req)
13082 {
13083 	ill_t *ill = ipif->ipif_ill;
13084 	int err;
13085 	in6_addr_t v6addr;
13086 	in6_addr_t v6mask;
13087 	boolean_t need_up = B_FALSE;
13088 	int i;
13089 	sin6_t *sin6 = (sin6_t *)sin;
13090 	struct lifreq *lifr = (struct lifreq *)if_req;
13091 	int addrlen;
13092 
13093 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
13094 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13095 	ASSERT(IAM_WRITER_IPIF(ipif));
13096 
13097 	addrlen = lifr->lifr_addrlen;
13098 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13099 	if (ipif->ipif_id != 0)
13100 		return (EINVAL);
13101 
13102 	if (!ipif->ipif_isv6)
13103 		return (EINVAL);
13104 
13105 	if (addrlen > IPV6_ABITS)
13106 		return (EINVAL);
13107 
13108 	v6addr = sin6->sin6_addr;
13109 
13110 	/*
13111 	 * The length of the token is the length from the end.  To get
13112 	 * the proper mask for this, compute the mask of the bits not
13113 	 * in the token; ie. the prefix, and then xor to get the mask.
13114 	 */
13115 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
13116 		return (EINVAL);
13117 	for (i = 0; i < 4; i++) {
13118 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13119 	}
13120 
13121 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
13122 	    ill->ill_token_length == addrlen)
13123 		return (0);	/* No change */
13124 
13125 	if (ipif->ipif_flags & IPIF_UP) {
13126 		err = ipif_logical_down(ipif, q, mp);
13127 		if (err == EINPROGRESS)
13128 			return (err);
13129 		ipif_down_tail(ipif);
13130 		need_up = B_TRUE;
13131 	}
13132 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
13133 	return (err);
13134 }
13135 
13136 static int
13137 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
13138     mblk_t *mp, boolean_t need_up)
13139 {
13140 	in6_addr_t v6addr;
13141 	in6_addr_t v6mask;
13142 	ill_t	*ill = ipif->ipif_ill;
13143 	int	i;
13144 	int	err = 0;
13145 
13146 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
13147 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13148 	v6addr = sin6->sin6_addr;
13149 	/*
13150 	 * The length of the token is the length from the end.  To get
13151 	 * the proper mask for this, compute the mask of the bits not
13152 	 * in the token; ie. the prefix, and then xor to get the mask.
13153 	 */
13154 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
13155 	for (i = 0; i < 4; i++)
13156 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13157 
13158 	mutex_enter(&ill->ill_lock);
13159 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
13160 	ill->ill_token_length = addrlen;
13161 	mutex_exit(&ill->ill_lock);
13162 
13163 	if (need_up) {
13164 		/*
13165 		 * Now bring the interface back up.  If this
13166 		 * is the only IPIF for the ILL, ipif_up
13167 		 * will have to re-bind to the device, so
13168 		 * we may get back EINPROGRESS, in which
13169 		 * case, this IOCTL will get completed in
13170 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
13171 		 */
13172 		err = ipif_up(ipif, q, mp);
13173 		if (err == EINPROGRESS)
13174 			return (err);
13175 	}
13176 	return (err);
13177 }
13178 
13179 /* ARGSUSED */
13180 int
13181 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13182     ip_ioctl_cmd_t *ipi, void *if_req)
13183 {
13184 	ill_t *ill;
13185 	sin6_t *sin6 = (sin6_t *)sin;
13186 	struct lifreq *lifr = (struct lifreq *)if_req;
13187 
13188 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
13189 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13190 	if (ipif->ipif_id != 0)
13191 		return (EINVAL);
13192 
13193 	ill = ipif->ipif_ill;
13194 	if (!ill->ill_isv6)
13195 		return (ENXIO);
13196 
13197 	*sin6 = sin6_null;
13198 	sin6->sin6_family = AF_INET6;
13199 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
13200 	sin6->sin6_addr = ill->ill_token;
13201 	lifr->lifr_addrlen = ill->ill_token_length;
13202 	return (0);
13203 }
13204 
13205 /*
13206  * Set (hardware) link specific information that might override
13207  * what was acquired through the DL_INFO_ACK.
13208  * The logic is as follows.
13209  *
13210  * become exclusive
13211  * set CHANGING flag
13212  * change mtu on affected IREs
13213  * clear CHANGING flag
13214  *
13215  * An ire add that occurs before the CHANGING flag is set will have its mtu
13216  * changed by the ip_sioctl_lnkinfo.
13217  *
13218  * During the time the CHANGING flag is set, no new ires will be added to the
13219  * bucket, and ire add will fail (due the CHANGING flag).
13220  *
13221  * An ire add that occurs after the CHANGING flag is set will have the right mtu
13222  * before it is added to the bucket.
13223  *
13224  * Obviously only 1 thread can set the CHANGING flag and we need to become
13225  * exclusive to set the flag.
13226  */
13227 /* ARGSUSED */
13228 int
13229 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13230     ip_ioctl_cmd_t *ipi, void *if_req)
13231 {
13232 	ill_t		*ill = ipif->ipif_ill;
13233 	ipif_t		*nipif;
13234 	int		ip_min_mtu;
13235 	boolean_t	mtu_walk = B_FALSE;
13236 	struct lifreq	*lifr = (struct lifreq *)if_req;
13237 	lif_ifinfo_req_t *lir;
13238 	ire_t		*ire;
13239 
13240 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
13241 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13242 	lir = &lifr->lifr_ifinfo;
13243 	ASSERT(IAM_WRITER_IPIF(ipif));
13244 
13245 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13246 	if (ipif->ipif_id != 0)
13247 		return (EINVAL);
13248 
13249 	/* Set interface MTU. */
13250 	if (ipif->ipif_isv6)
13251 		ip_min_mtu = IPV6_MIN_MTU;
13252 	else
13253 		ip_min_mtu = IP_MIN_MTU;
13254 
13255 	/*
13256 	 * Verify values before we set anything. Allow zero to
13257 	 * mean unspecified.
13258 	 */
13259 	if (lir->lir_maxmtu != 0 &&
13260 	    (lir->lir_maxmtu > ill->ill_max_frag ||
13261 	    lir->lir_maxmtu < ip_min_mtu))
13262 		return (EINVAL);
13263 	if (lir->lir_reachtime != 0 &&
13264 	    lir->lir_reachtime > ND_MAX_REACHTIME)
13265 		return (EINVAL);
13266 	if (lir->lir_reachretrans != 0 &&
13267 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
13268 		return (EINVAL);
13269 
13270 	mutex_enter(&ill->ill_lock);
13271 	ill->ill_state_flags |= ILL_CHANGING;
13272 	for (nipif = ill->ill_ipif; nipif != NULL;
13273 	    nipif = nipif->ipif_next) {
13274 		nipif->ipif_state_flags |= IPIF_CHANGING;
13275 	}
13276 
13277 	mutex_exit(&ill->ill_lock);
13278 
13279 	if (lir->lir_maxmtu != 0) {
13280 		ill->ill_max_mtu = lir->lir_maxmtu;
13281 		ill->ill_mtu_userspecified = 1;
13282 		mtu_walk = B_TRUE;
13283 	}
13284 
13285 	if (lir->lir_reachtime != 0)
13286 		ill->ill_reachable_time = lir->lir_reachtime;
13287 
13288 	if (lir->lir_reachretrans != 0)
13289 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
13290 
13291 	ill->ill_max_hops = lir->lir_maxhops;
13292 
13293 	ill->ill_max_buf = ND_MAX_Q;
13294 
13295 	if (mtu_walk) {
13296 		/*
13297 		 * Set the MTU on all ipifs associated with this ill except
13298 		 * for those whose MTU was fixed via SIOCSLIFMTU.
13299 		 */
13300 		for (nipif = ill->ill_ipif; nipif != NULL;
13301 		    nipif = nipif->ipif_next) {
13302 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
13303 				continue;
13304 
13305 			nipif->ipif_mtu = ill->ill_max_mtu;
13306 
13307 			if (!(nipif->ipif_flags & IPIF_UP))
13308 				continue;
13309 
13310 			if (nipif->ipif_isv6)
13311 				ire = ipif_to_ire_v6(nipif);
13312 			else
13313 				ire = ipif_to_ire(nipif);
13314 			if (ire != NULL) {
13315 				ire->ire_max_frag = ipif->ipif_mtu;
13316 				ire_refrele(ire);
13317 			}
13318 			if (ill->ill_isv6) {
13319 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
13320 				    ipif_mtu_change, (char *)nipif,
13321 				    ill);
13322 			} else {
13323 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
13324 				    ipif_mtu_change, (char *)nipif,
13325 				    ill);
13326 			}
13327 		}
13328 	}
13329 
13330 	mutex_enter(&ill->ill_lock);
13331 	for (nipif = ill->ill_ipif; nipif != NULL;
13332 	    nipif = nipif->ipif_next) {
13333 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13334 	}
13335 	ILL_UNMARK_CHANGING(ill);
13336 	mutex_exit(&ill->ill_lock);
13337 
13338 	return (0);
13339 }
13340 
13341 /* ARGSUSED */
13342 int
13343 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13344     ip_ioctl_cmd_t *ipi, void *if_req)
13345 {
13346 	struct lif_ifinfo_req *lir;
13347 	ill_t *ill = ipif->ipif_ill;
13348 
13349 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13350 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13351 	if (ipif->ipif_id != 0)
13352 		return (EINVAL);
13353 
13354 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13355 	lir->lir_maxhops = ill->ill_max_hops;
13356 	lir->lir_reachtime = ill->ill_reachable_time;
13357 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13358 	lir->lir_maxmtu = ill->ill_max_mtu;
13359 
13360 	return (0);
13361 }
13362 
13363 /*
13364  * Return best guess as to the subnet mask for the specified address.
13365  * Based on the subnet masks for all the configured interfaces.
13366  *
13367  * We end up returning a zero mask in the case of default, multicast or
13368  * experimental.
13369  */
13370 static ipaddr_t
13371 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13372 {
13373 	ipaddr_t net_mask;
13374 	ill_t	*ill;
13375 	ipif_t	*ipif;
13376 	ill_walk_context_t ctx;
13377 	ipif_t	*fallback_ipif = NULL;
13378 
13379 	net_mask = ip_net_mask(addr);
13380 	if (net_mask == 0) {
13381 		*ipifp = NULL;
13382 		return (0);
13383 	}
13384 
13385 	/* Let's check to see if this is maybe a local subnet route. */
13386 	/* this function only applies to IPv4 interfaces */
13387 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13388 	ill = ILL_START_WALK_V4(&ctx, ipst);
13389 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13390 		mutex_enter(&ill->ill_lock);
13391 		for (ipif = ill->ill_ipif; ipif != NULL;
13392 		    ipif = ipif->ipif_next) {
13393 			if (!IPIF_CAN_LOOKUP(ipif))
13394 				continue;
13395 			if (!(ipif->ipif_flags & IPIF_UP))
13396 				continue;
13397 			if ((ipif->ipif_subnet & net_mask) ==
13398 			    (addr & net_mask)) {
13399 				/*
13400 				 * Don't trust pt-pt interfaces if there are
13401 				 * other interfaces.
13402 				 */
13403 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13404 					if (fallback_ipif == NULL) {
13405 						ipif_refhold_locked(ipif);
13406 						fallback_ipif = ipif;
13407 					}
13408 					continue;
13409 				}
13410 
13411 				/*
13412 				 * Fine. Just assume the same net mask as the
13413 				 * directly attached subnet interface is using.
13414 				 */
13415 				ipif_refhold_locked(ipif);
13416 				mutex_exit(&ill->ill_lock);
13417 				rw_exit(&ipst->ips_ill_g_lock);
13418 				if (fallback_ipif != NULL)
13419 					ipif_refrele(fallback_ipif);
13420 				*ipifp = ipif;
13421 				return (ipif->ipif_net_mask);
13422 			}
13423 		}
13424 		mutex_exit(&ill->ill_lock);
13425 	}
13426 	rw_exit(&ipst->ips_ill_g_lock);
13427 
13428 	*ipifp = fallback_ipif;
13429 	return ((fallback_ipif != NULL) ?
13430 	    fallback_ipif->ipif_net_mask : net_mask);
13431 }
13432 
13433 /*
13434  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13435  */
13436 static void
13437 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13438 {
13439 	IOCP	iocp;
13440 	ipft_t	*ipft;
13441 	ipllc_t	*ipllc;
13442 	mblk_t	*mp1;
13443 	cred_t	*cr;
13444 	int	error = 0;
13445 	conn_t	*connp;
13446 
13447 	ip1dbg(("ip_wput_ioctl"));
13448 	iocp = (IOCP)mp->b_rptr;
13449 	mp1 = mp->b_cont;
13450 	if (mp1 == NULL) {
13451 		iocp->ioc_error = EINVAL;
13452 		mp->b_datap->db_type = M_IOCNAK;
13453 		iocp->ioc_count = 0;
13454 		qreply(q, mp);
13455 		return;
13456 	}
13457 
13458 	/*
13459 	 * These IOCTLs provide various control capabilities to
13460 	 * upstream agents such as ULPs and processes.	There
13461 	 * are currently two such IOCTLs implemented.  They
13462 	 * are used by TCP to provide update information for
13463 	 * existing IREs and to forcibly delete an IRE for a
13464 	 * host that is not responding, thereby forcing an
13465 	 * attempt at a new route.
13466 	 */
13467 	iocp->ioc_error = EINVAL;
13468 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13469 		goto done;
13470 
13471 	ipllc = (ipllc_t *)mp1->b_rptr;
13472 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13473 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13474 			break;
13475 	}
13476 	/*
13477 	 * prefer credential from mblk over ioctl;
13478 	 * see ip_sioctl_copyin_setup
13479 	 */
13480 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13481 
13482 	/*
13483 	 * Refhold the conn in case the request gets queued up in some lookup
13484 	 */
13485 	ASSERT(CONN_Q(q));
13486 	connp = Q_TO_CONN(q);
13487 	CONN_INC_REF(connp);
13488 	if (ipft->ipft_pfi &&
13489 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13490 		pullupmsg(mp1, ipft->ipft_min_size))) {
13491 		error = (*ipft->ipft_pfi)(q,
13492 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13493 	}
13494 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13495 		/*
13496 		 * CONN_OPER_PENDING_DONE happens in the function called
13497 		 * through ipft_pfi above.
13498 		 */
13499 		return;
13500 	}
13501 
13502 	CONN_OPER_PENDING_DONE(connp);
13503 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13504 		freemsg(mp);
13505 		return;
13506 	}
13507 	iocp->ioc_error = error;
13508 
13509 done:
13510 	mp->b_datap->db_type = M_IOCACK;
13511 	if (iocp->ioc_error)
13512 		iocp->ioc_count = 0;
13513 	qreply(q, mp);
13514 }
13515 
13516 /*
13517  * Lookup an ipif using the sequence id (ipif_seqid)
13518  */
13519 ipif_t *
13520 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13521 {
13522 	ipif_t *ipif;
13523 
13524 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13525 
13526 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13527 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13528 			return (ipif);
13529 	}
13530 	return (NULL);
13531 }
13532 
13533 /*
13534  * Assign a unique id for the ipif. This is used later when we send
13535  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13536  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13537  * IRE is added, we verify that ipif has not disappeared.
13538  */
13539 
13540 static void
13541 ipif_assign_seqid(ipif_t *ipif)
13542 {
13543 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13544 
13545 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13546 }
13547 
13548 /*
13549  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13550  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13551  * be inserted into the first space available in the list. The value of
13552  * ipif_id will then be set to the appropriate value for its position.
13553  */
13554 static int
13555 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13556 {
13557 	ill_t *ill;
13558 	ipif_t *tipif;
13559 	ipif_t **tipifp;
13560 	int id;
13561 	ip_stack_t	*ipst;
13562 
13563 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13564 	    IAM_WRITER_IPIF(ipif));
13565 
13566 	ill = ipif->ipif_ill;
13567 	ASSERT(ill != NULL);
13568 	ipst = ill->ill_ipst;
13569 
13570 	/*
13571 	 * In the case of lo0:0 we already hold the ill_g_lock.
13572 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13573 	 * ipif_insert. Another such caller is ipif_move.
13574 	 */
13575 	if (acquire_g_lock)
13576 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13577 	if (acquire_ill_lock)
13578 		mutex_enter(&ill->ill_lock);
13579 	id = ipif->ipif_id;
13580 	tipifp = &(ill->ill_ipif);
13581 	if (id == -1) {	/* need to find a real id */
13582 		id = 0;
13583 		while ((tipif = *tipifp) != NULL) {
13584 			ASSERT(tipif->ipif_id >= id);
13585 			if (tipif->ipif_id != id)
13586 				break; /* non-consecutive id */
13587 			id++;
13588 			tipifp = &(tipif->ipif_next);
13589 		}
13590 		/* limit number of logical interfaces */
13591 		if (id >= ipst->ips_ip_addrs_per_if) {
13592 			if (acquire_ill_lock)
13593 				mutex_exit(&ill->ill_lock);
13594 			if (acquire_g_lock)
13595 				rw_exit(&ipst->ips_ill_g_lock);
13596 			return (-1);
13597 		}
13598 		ipif->ipif_id = id; /* assign new id */
13599 	} else if (id < ipst->ips_ip_addrs_per_if) {
13600 		/* we have a real id; insert ipif in the right place */
13601 		while ((tipif = *tipifp) != NULL) {
13602 			ASSERT(tipif->ipif_id != id);
13603 			if (tipif->ipif_id > id)
13604 				break; /* found correct location */
13605 			tipifp = &(tipif->ipif_next);
13606 		}
13607 	} else {
13608 		if (acquire_ill_lock)
13609 			mutex_exit(&ill->ill_lock);
13610 		if (acquire_g_lock)
13611 			rw_exit(&ipst->ips_ill_g_lock);
13612 		return (-1);
13613 	}
13614 
13615 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13616 
13617 	ipif->ipif_next = tipif;
13618 	*tipifp = ipif;
13619 	if (acquire_ill_lock)
13620 		mutex_exit(&ill->ill_lock);
13621 	if (acquire_g_lock)
13622 		rw_exit(&ipst->ips_ill_g_lock);
13623 	return (0);
13624 }
13625 
13626 /*
13627  * Allocate and initialize a new interface control structure.  (Always
13628  * called as writer.)
13629  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13630  * is not part of the global linked list of ills. ipif_seqid is unique
13631  * in the system and to preserve the uniqueness, it is assigned only
13632  * when ill becomes part of the global list. At that point ill will
13633  * have a name. If it doesn't get assigned here, it will get assigned
13634  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13635  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13636  * the interface flags or any other information from the DL_INFO_ACK for
13637  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13638  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13639  * second DL_INFO_ACK comes in from the driver.
13640  */
13641 static ipif_t *
13642 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13643 {
13644 	ipif_t	*ipif;
13645 	phyint_t *phyi;
13646 
13647 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13648 	    ill->ill_name, id, (void *)ill));
13649 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13650 
13651 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13652 		return (NULL);
13653 	*ipif = ipif_zero;	/* start clean */
13654 
13655 	ipif->ipif_ill = ill;
13656 	ipif->ipif_id = id;	/* could be -1 */
13657 	/*
13658 	 * Inherit the zoneid from the ill; for the shared stack instance
13659 	 * this is always the global zone
13660 	 */
13661 	ipif->ipif_zoneid = ill->ill_zoneid;
13662 
13663 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13664 
13665 	ipif->ipif_refcnt = 0;
13666 	ipif->ipif_saved_ire_cnt = 0;
13667 
13668 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13669 		mi_free(ipif);
13670 		return (NULL);
13671 	}
13672 	/* -1 id should have been replaced by real id */
13673 	id = ipif->ipif_id;
13674 	ASSERT(id >= 0);
13675 
13676 	if (ill->ill_name[0] != '\0')
13677 		ipif_assign_seqid(ipif);
13678 
13679 	/*
13680 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13681 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13682 	 * ioctl sets ipif_orig_ipifid to zero.
13683 	 */
13684 	ipif->ipif_orig_ipifid = id;
13685 
13686 	/*
13687 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13688 	 * The ipif is still not up and can't be looked up until the
13689 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13690 	 */
13691 	mutex_enter(&ill->ill_lock);
13692 	mutex_enter(&ill->ill_phyint->phyint_lock);
13693 	/*
13694 	 * Set the running flag when logical interface zero is created.
13695 	 * For subsequent logical interfaces, a DLPI link down
13696 	 * notification message may have cleared the running flag to
13697 	 * indicate the link is down, so we shouldn't just blindly set it.
13698 	 */
13699 	if (id == 0)
13700 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13701 	ipif->ipif_ire_type = ire_type;
13702 	phyi = ill->ill_phyint;
13703 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13704 
13705 	if (ipif->ipif_isv6) {
13706 		ill->ill_flags |= ILLF_IPV6;
13707 	} else {
13708 		ipaddr_t inaddr_any = INADDR_ANY;
13709 
13710 		ill->ill_flags |= ILLF_IPV4;
13711 
13712 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13713 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13714 		    &ipif->ipif_v6lcl_addr);
13715 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13716 		    &ipif->ipif_v6src_addr);
13717 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13718 		    &ipif->ipif_v6subnet);
13719 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13720 		    &ipif->ipif_v6net_mask);
13721 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13722 		    &ipif->ipif_v6brd_addr);
13723 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13724 		    &ipif->ipif_v6pp_dst_addr);
13725 	}
13726 
13727 	/*
13728 	 * Don't set the interface flags etc. now, will do it in
13729 	 * ip_ll_subnet_defaults.
13730 	 */
13731 	if (!initialize) {
13732 		mutex_exit(&ill->ill_lock);
13733 		mutex_exit(&ill->ill_phyint->phyint_lock);
13734 		return (ipif);
13735 	}
13736 	ipif->ipif_mtu = ill->ill_max_mtu;
13737 
13738 	if (ill->ill_bcast_addr_length != 0) {
13739 		/*
13740 		 * Later detect lack of DLPI driver multicast
13741 		 * capability by catching DL_ENABMULTI errors in
13742 		 * ip_rput_dlpi.
13743 		 */
13744 		ill->ill_flags |= ILLF_MULTICAST;
13745 		if (!ipif->ipif_isv6)
13746 			ipif->ipif_flags |= IPIF_BROADCAST;
13747 	} else {
13748 		if (ill->ill_net_type != IRE_LOOPBACK) {
13749 			if (ipif->ipif_isv6)
13750 				/*
13751 				 * Note: xresolv interfaces will eventually need
13752 				 * NOARP set here as well, but that will require
13753 				 * those external resolvers to have some
13754 				 * knowledge of that flag and act appropriately.
13755 				 * Not to be changed at present.
13756 				 */
13757 				ill->ill_flags |= ILLF_NONUD;
13758 			else
13759 				ill->ill_flags |= ILLF_NOARP;
13760 		}
13761 		if (ill->ill_phys_addr_length == 0) {
13762 			if (ill->ill_media &&
13763 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13764 				ipif->ipif_flags |= IPIF_NOXMIT;
13765 				phyi->phyint_flags |= PHYI_VIRTUAL;
13766 			} else {
13767 				/* pt-pt supports multicast. */
13768 				ill->ill_flags |= ILLF_MULTICAST;
13769 				if (ill->ill_net_type == IRE_LOOPBACK) {
13770 					phyi->phyint_flags |=
13771 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13772 				} else {
13773 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13774 				}
13775 			}
13776 		}
13777 	}
13778 	mutex_exit(&ill->ill_lock);
13779 	mutex_exit(&ill->ill_phyint->phyint_lock);
13780 	return (ipif);
13781 }
13782 
13783 /*
13784  * If appropriate, send a message up to the resolver delete the entry
13785  * for the address of this interface which is going out of business.
13786  * (Always called as writer).
13787  *
13788  * NOTE : We need to check for NULL mps as some of the fields are
13789  *	  initialized only for some interface types. See ipif_resolver_up()
13790  *	  for details.
13791  */
13792 void
13793 ipif_arp_down(ipif_t *ipif)
13794 {
13795 	mblk_t	*mp;
13796 	ill_t	*ill = ipif->ipif_ill;
13797 
13798 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13799 	ASSERT(IAM_WRITER_IPIF(ipif));
13800 
13801 	/* Delete the mapping for the local address */
13802 	mp = ipif->ipif_arp_del_mp;
13803 	if (mp != NULL) {
13804 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13805 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13806 		putnext(ill->ill_rq, mp);
13807 		ipif->ipif_arp_del_mp = NULL;
13808 	}
13809 
13810 	/*
13811 	 * If this is the last ipif that is going down and there are no
13812 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13813 	 * clean up ARP completely.
13814 	 */
13815 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13816 
13817 		/* Send up AR_INTERFACE_DOWN message */
13818 		mp = ill->ill_arp_down_mp;
13819 		if (mp != NULL) {
13820 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13821 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13822 			    ipif->ipif_id));
13823 			putnext(ill->ill_rq, mp);
13824 			ill->ill_arp_down_mp = NULL;
13825 		}
13826 
13827 		/* Tell ARP to delete the multicast mappings */
13828 		mp = ill->ill_arp_del_mapping_mp;
13829 		if (mp != NULL) {
13830 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13831 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13832 			    ipif->ipif_id));
13833 			putnext(ill->ill_rq, mp);
13834 			ill->ill_arp_del_mapping_mp = NULL;
13835 		}
13836 	}
13837 }
13838 
13839 /*
13840  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13841  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13842  * that it wants the add_mp allocated in this function to be returned
13843  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13844  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13845  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13846  * as it does a ipif_arp_down after calling this function - which will
13847  * remove what we add here.
13848  *
13849  * Returns -1 on failures and 0 on success.
13850  */
13851 int
13852 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13853 {
13854 	mblk_t	*del_mp = NULL;
13855 	mblk_t *add_mp = NULL;
13856 	mblk_t *mp;
13857 	ill_t	*ill = ipif->ipif_ill;
13858 	phyint_t *phyi = ill->ill_phyint;
13859 	ipaddr_t addr, mask, extract_mask = 0;
13860 	arma_t	*arma;
13861 	uint8_t *maddr, *bphys_addr;
13862 	uint32_t hw_start;
13863 	dl_unitdata_req_t *dlur;
13864 
13865 	ASSERT(IAM_WRITER_IPIF(ipif));
13866 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13867 		return (0);
13868 
13869 	/*
13870 	 * Delete the existing mapping from ARP. Normally ipif_down
13871 	 * -> ipif_arp_down should send this up to ARP. The only
13872 	 * reason we would find this when we are switching from
13873 	 * Multicast to Broadcast where we did not do a down.
13874 	 */
13875 	mp = ill->ill_arp_del_mapping_mp;
13876 	if (mp != NULL) {
13877 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13878 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13879 		putnext(ill->ill_rq, mp);
13880 		ill->ill_arp_del_mapping_mp = NULL;
13881 	}
13882 
13883 	if (arp_add_mapping_mp != NULL)
13884 		*arp_add_mapping_mp = NULL;
13885 
13886 	/*
13887 	 * Check that the address is not to long for the constant
13888 	 * length reserved in the template arma_t.
13889 	 */
13890 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13891 		return (-1);
13892 
13893 	/* Add mapping mblk */
13894 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13895 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13896 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13897 	    (caddr_t)&addr);
13898 	if (add_mp == NULL)
13899 		return (-1);
13900 	arma = (arma_t *)add_mp->b_rptr;
13901 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13902 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13903 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13904 
13905 	/*
13906 	 * Determine the broadcast address.
13907 	 */
13908 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13909 	if (ill->ill_sap_length < 0)
13910 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13911 	else
13912 		bphys_addr = (uchar_t *)dlur +
13913 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13914 	/*
13915 	 * Check PHYI_MULTI_BCAST and length of physical
13916 	 * address to determine if we use the mapping or the
13917 	 * broadcast address.
13918 	 */
13919 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13920 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13921 		    bphys_addr, maddr, &hw_start, &extract_mask))
13922 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13923 
13924 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13925 	    (ill->ill_flags & ILLF_MULTICAST)) {
13926 		/* Make sure this will not match the "exact" entry. */
13927 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13928 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13929 		    (caddr_t)&addr);
13930 		if (del_mp == NULL) {
13931 			freemsg(add_mp);
13932 			return (-1);
13933 		}
13934 		bcopy(&extract_mask, (char *)arma +
13935 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13936 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13937 			/* Use link-layer broadcast address for MULTI_BCAST */
13938 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13939 			ip2dbg(("ipif_arp_setup_multicast: adding"
13940 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13941 		} else {
13942 			arma->arma_hw_mapping_start = hw_start;
13943 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13944 			    " ARP setup for %s\n", ill->ill_name));
13945 		}
13946 	} else {
13947 		freemsg(add_mp);
13948 		ASSERT(del_mp == NULL);
13949 		/* It is neither MULTICAST nor MULTI_BCAST */
13950 		return (0);
13951 	}
13952 	ASSERT(add_mp != NULL && del_mp != NULL);
13953 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13954 	ill->ill_arp_del_mapping_mp = del_mp;
13955 	if (arp_add_mapping_mp != NULL) {
13956 		/* The caller just wants the mblks allocated */
13957 		*arp_add_mapping_mp = add_mp;
13958 	} else {
13959 		/* The caller wants us to send it to arp */
13960 		putnext(ill->ill_rq, add_mp);
13961 	}
13962 	return (0);
13963 }
13964 
13965 /*
13966  * Get the resolver set up for a new interface address.
13967  * (Always called as writer.)
13968  * Called both for IPv4 and IPv6 interfaces,
13969  * though it only sets up the resolver for v6
13970  * if it's an xresolv interface (one using an external resolver).
13971  * Honors ILLF_NOARP.
13972  * The enumerated value res_act is used to tune the behavior.
13973  * If set to Res_act_initial, then we set up all the resolver
13974  * structures for a new interface.  If set to Res_act_move, then
13975  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13976  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13977  * asynchronous hardware address change notification.  If set to
13978  * Res_act_defend, then we tell ARP that it needs to send a single
13979  * gratuitous message in defense of the address.
13980  * Returns error on failure.
13981  */
13982 int
13983 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13984 {
13985 	caddr_t	addr;
13986 	mblk_t	*arp_up_mp = NULL;
13987 	mblk_t	*arp_down_mp = NULL;
13988 	mblk_t	*arp_add_mp = NULL;
13989 	mblk_t	*arp_del_mp = NULL;
13990 	mblk_t	*arp_add_mapping_mp = NULL;
13991 	mblk_t	*arp_del_mapping_mp = NULL;
13992 	ill_t	*ill = ipif->ipif_ill;
13993 	uchar_t	*area_p = NULL;
13994 	uchar_t	*ared_p = NULL;
13995 	int	err = ENOMEM;
13996 	boolean_t was_dup;
13997 
13998 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13999 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
14000 	ASSERT(IAM_WRITER_IPIF(ipif));
14001 
14002 	was_dup = B_FALSE;
14003 	if (res_act == Res_act_initial) {
14004 		ipif->ipif_addr_ready = 0;
14005 		/*
14006 		 * We're bringing an interface up here.  There's no way that we
14007 		 * should need to shut down ARP now.
14008 		 */
14009 		mutex_enter(&ill->ill_lock);
14010 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
14011 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
14012 			ill->ill_ipif_dup_count--;
14013 			was_dup = B_TRUE;
14014 		}
14015 		mutex_exit(&ill->ill_lock);
14016 	}
14017 	if (ipif->ipif_recovery_id != 0)
14018 		(void) untimeout(ipif->ipif_recovery_id);
14019 	ipif->ipif_recovery_id = 0;
14020 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
14021 		ipif->ipif_addr_ready = 1;
14022 		return (0);
14023 	}
14024 	/* NDP will set the ipif_addr_ready flag when it's ready */
14025 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
14026 		return (0);
14027 
14028 	if (ill->ill_isv6) {
14029 		/*
14030 		 * External resolver for IPv6
14031 		 */
14032 		ASSERT(res_act == Res_act_initial);
14033 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
14034 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
14035 			area_p = (uchar_t *)&ip6_area_template;
14036 			ared_p = (uchar_t *)&ip6_ared_template;
14037 		}
14038 	} else {
14039 		/*
14040 		 * IPv4 arp case. If the ARP stream has already started
14041 		 * closing, fail this request for ARP bringup. Else
14042 		 * record the fact that an ARP bringup is pending.
14043 		 */
14044 		mutex_enter(&ill->ill_lock);
14045 		if (ill->ill_arp_closing) {
14046 			mutex_exit(&ill->ill_lock);
14047 			err = EINVAL;
14048 			goto failed;
14049 		} else {
14050 			if (ill->ill_ipif_up_count == 0 &&
14051 			    ill->ill_ipif_dup_count == 0 && !was_dup)
14052 				ill->ill_arp_bringup_pending = 1;
14053 			mutex_exit(&ill->ill_lock);
14054 		}
14055 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
14056 			addr = (caddr_t)&ipif->ipif_lcl_addr;
14057 			area_p = (uchar_t *)&ip_area_template;
14058 			ared_p = (uchar_t *)&ip_ared_template;
14059 		}
14060 	}
14061 
14062 	/*
14063 	 * Add an entry for the local address in ARP only if it
14064 	 * is not UNNUMBERED and the address is not INADDR_ANY.
14065 	 */
14066 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
14067 		area_t *area;
14068 
14069 		/* Now ask ARP to publish our address. */
14070 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
14071 		if (arp_add_mp == NULL)
14072 			goto failed;
14073 		area = (area_t *)arp_add_mp->b_rptr;
14074 		if (res_act != Res_act_initial) {
14075 			/*
14076 			 * Copy the new hardware address and length into
14077 			 * arp_add_mp to be sent to ARP.
14078 			 */
14079 			area->area_hw_addr_length = ill->ill_phys_addr_length;
14080 			bcopy(ill->ill_phys_addr,
14081 			    ((char *)area + area->area_hw_addr_offset),
14082 			    area->area_hw_addr_length);
14083 		}
14084 
14085 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
14086 		    ACE_F_MYADDR;
14087 
14088 		if (res_act == Res_act_defend) {
14089 			area->area_flags |= ACE_F_DEFEND;
14090 			/*
14091 			 * If we're just defending our address now, then
14092 			 * there's no need to set up ARP multicast mappings.
14093 			 * The publish command is enough.
14094 			 */
14095 			goto done;
14096 		}
14097 
14098 		if (res_act != Res_act_initial)
14099 			goto arp_setup_multicast;
14100 
14101 		/*
14102 		 * Allocate an ARP deletion message so we know we can tell ARP
14103 		 * when the interface goes down.
14104 		 */
14105 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
14106 		if (arp_del_mp == NULL)
14107 			goto failed;
14108 
14109 	} else {
14110 		if (res_act != Res_act_initial)
14111 			goto done;
14112 	}
14113 	/*
14114 	 * Need to bring up ARP or setup multicast mapping only
14115 	 * when the first interface is coming UP.
14116 	 */
14117 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
14118 	    was_dup) {
14119 		goto done;
14120 	}
14121 
14122 	/*
14123 	 * Allocate an ARP down message (to be saved) and an ARP up
14124 	 * message.
14125 	 */
14126 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
14127 	if (arp_down_mp == NULL)
14128 		goto failed;
14129 
14130 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
14131 	if (arp_up_mp == NULL)
14132 		goto failed;
14133 
14134 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
14135 		goto done;
14136 
14137 arp_setup_multicast:
14138 	/*
14139 	 * Setup the multicast mappings. This function initializes
14140 	 * ill_arp_del_mapping_mp also. This does not need to be done for
14141 	 * IPv6.
14142 	 */
14143 	if (!ill->ill_isv6) {
14144 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
14145 		if (err != 0)
14146 			goto failed;
14147 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
14148 		ASSERT(arp_add_mapping_mp != NULL);
14149 	}
14150 
14151 done:
14152 	if (arp_del_mp != NULL) {
14153 		ASSERT(ipif->ipif_arp_del_mp == NULL);
14154 		ipif->ipif_arp_del_mp = arp_del_mp;
14155 	}
14156 	if (arp_down_mp != NULL) {
14157 		ASSERT(ill->ill_arp_down_mp == NULL);
14158 		ill->ill_arp_down_mp = arp_down_mp;
14159 	}
14160 	if (arp_del_mapping_mp != NULL) {
14161 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
14162 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
14163 	}
14164 	if (arp_up_mp != NULL) {
14165 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
14166 		    ill->ill_name, ipif->ipif_id));
14167 		putnext(ill->ill_rq, arp_up_mp);
14168 	}
14169 	if (arp_add_mp != NULL) {
14170 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
14171 		    ill->ill_name, ipif->ipif_id));
14172 		/*
14173 		 * If it's an extended ARP implementation, then we'll wait to
14174 		 * hear that DAD has finished before using the interface.
14175 		 */
14176 		if (!ill->ill_arp_extend)
14177 			ipif->ipif_addr_ready = 1;
14178 		putnext(ill->ill_rq, arp_add_mp);
14179 	} else {
14180 		ipif->ipif_addr_ready = 1;
14181 	}
14182 	if (arp_add_mapping_mp != NULL) {
14183 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
14184 		    ill->ill_name, ipif->ipif_id));
14185 		putnext(ill->ill_rq, arp_add_mapping_mp);
14186 	}
14187 	if (res_act != Res_act_initial)
14188 		return (0);
14189 
14190 	if (ill->ill_flags & ILLF_NOARP)
14191 		err = ill_arp_off(ill);
14192 	else
14193 		err = ill_arp_on(ill);
14194 	if (err != 0) {
14195 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
14196 		freemsg(ipif->ipif_arp_del_mp);
14197 		freemsg(ill->ill_arp_down_mp);
14198 		freemsg(ill->ill_arp_del_mapping_mp);
14199 		ipif->ipif_arp_del_mp = NULL;
14200 		ill->ill_arp_down_mp = NULL;
14201 		ill->ill_arp_del_mapping_mp = NULL;
14202 		return (err);
14203 	}
14204 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
14205 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
14206 
14207 failed:
14208 	ip1dbg(("ipif_resolver_up: FAILED\n"));
14209 	freemsg(arp_add_mp);
14210 	freemsg(arp_del_mp);
14211 	freemsg(arp_add_mapping_mp);
14212 	freemsg(arp_up_mp);
14213 	freemsg(arp_down_mp);
14214 	ill->ill_arp_bringup_pending = 0;
14215 	return (err);
14216 }
14217 
14218 /*
14219  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
14220  * just gone back up.
14221  */
14222 static void
14223 ipif_arp_start_dad(ipif_t *ipif)
14224 {
14225 	ill_t *ill = ipif->ipif_ill;
14226 	mblk_t *arp_add_mp;
14227 	area_t *area;
14228 
14229 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
14230 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14231 	    ipif->ipif_lcl_addr == INADDR_ANY ||
14232 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
14233 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
14234 		/*
14235 		 * If we can't contact ARP for some reason, that's not really a
14236 		 * problem.  Just send out the routing socket notification that
14237 		 * DAD completion would have done, and continue.
14238 		 */
14239 		ipif_mask_reply(ipif);
14240 		ip_rts_ifmsg(ipif);
14241 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14242 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14243 		ipif->ipif_addr_ready = 1;
14244 		return;
14245 	}
14246 
14247 	/* Setting the 'unverified' flag restarts DAD */
14248 	area = (area_t *)arp_add_mp->b_rptr;
14249 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
14250 	    ACE_F_UNVERIFIED;
14251 	putnext(ill->ill_rq, arp_add_mp);
14252 }
14253 
14254 static void
14255 ipif_ndp_start_dad(ipif_t *ipif)
14256 {
14257 	nce_t *nce;
14258 
14259 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
14260 	if (nce == NULL)
14261 		return;
14262 
14263 	if (!ndp_restart_dad(nce)) {
14264 		/*
14265 		 * If we can't restart DAD for some reason, that's not really a
14266 		 * problem.  Just send out the routing socket notification that
14267 		 * DAD completion would have done, and continue.
14268 		 */
14269 		ip_rts_ifmsg(ipif);
14270 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14271 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14272 		ipif->ipif_addr_ready = 1;
14273 	}
14274 	NCE_REFRELE(nce);
14275 }
14276 
14277 /*
14278  * Restart duplicate address detection on all interfaces on the given ill.
14279  *
14280  * This is called when an interface transitions from down to up
14281  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
14282  *
14283  * Note that since the underlying physical link has transitioned, we must cause
14284  * at least one routing socket message to be sent here, either via DAD
14285  * completion or just by default on the first ipif.  (If we don't do this, then
14286  * in.mpathd will see long delays when doing link-based failure recovery.)
14287  */
14288 void
14289 ill_restart_dad(ill_t *ill, boolean_t went_up)
14290 {
14291 	ipif_t *ipif;
14292 
14293 	if (ill == NULL)
14294 		return;
14295 
14296 	/*
14297 	 * If layer two doesn't support duplicate address detection, then just
14298 	 * send the routing socket message now and be done with it.
14299 	 */
14300 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14301 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14302 		ip_rts_ifmsg(ill->ill_ipif);
14303 		return;
14304 	}
14305 
14306 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14307 		if (went_up) {
14308 			if (ipif->ipif_flags & IPIF_UP) {
14309 				if (ill->ill_isv6)
14310 					ipif_ndp_start_dad(ipif);
14311 				else
14312 					ipif_arp_start_dad(ipif);
14313 			} else if (ill->ill_isv6 &&
14314 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14315 				/*
14316 				 * For IPv4, the ARP module itself will
14317 				 * automatically start the DAD process when it
14318 				 * sees DL_NOTE_LINK_UP.  We respond to the
14319 				 * AR_CN_READY at the completion of that task.
14320 				 * For IPv6, we must kick off the bring-up
14321 				 * process now.
14322 				 */
14323 				ndp_do_recovery(ipif);
14324 			} else {
14325 				/*
14326 				 * Unfortunately, the first ipif is "special"
14327 				 * and represents the underlying ill in the
14328 				 * routing socket messages.  Thus, when this
14329 				 * one ipif is down, we must still notify so
14330 				 * that the user knows the IFF_RUNNING status
14331 				 * change.  (If the first ipif is up, then
14332 				 * we'll handle eventual routing socket
14333 				 * notification via DAD completion.)
14334 				 */
14335 				if (ipif == ill->ill_ipif)
14336 					ip_rts_ifmsg(ill->ill_ipif);
14337 			}
14338 		} else {
14339 			/*
14340 			 * After link down, we'll need to send a new routing
14341 			 * message when the link comes back, so clear
14342 			 * ipif_addr_ready.
14343 			 */
14344 			ipif->ipif_addr_ready = 0;
14345 		}
14346 	}
14347 
14348 	/*
14349 	 * If we've torn down links, then notify the user right away.
14350 	 */
14351 	if (!went_up)
14352 		ip_rts_ifmsg(ill->ill_ipif);
14353 }
14354 
14355 /*
14356  * Wakeup all threads waiting to enter the ipsq, and sleeping
14357  * on any of the ills in this ipsq. The ill_lock of the ill
14358  * must be held so that waiters don't miss wakeups
14359  */
14360 static void
14361 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14362 {
14363 	phyint_t *phyint;
14364 
14365 	phyint = ipsq->ipsq_phyint_list;
14366 	while (phyint != NULL) {
14367 		if (phyint->phyint_illv4) {
14368 			if (!caller_holds_lock)
14369 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14370 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14371 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14372 			if (!caller_holds_lock)
14373 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14374 		}
14375 		if (phyint->phyint_illv6) {
14376 			if (!caller_holds_lock)
14377 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14378 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14379 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14380 			if (!caller_holds_lock)
14381 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14382 		}
14383 		phyint = phyint->phyint_ipsq_next;
14384 	}
14385 }
14386 
14387 static ipsq_t *
14388 ipsq_create(char *groupname, ip_stack_t *ipst)
14389 {
14390 	ipsq_t	*ipsq;
14391 
14392 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14393 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14394 	if (ipsq == NULL) {
14395 		return (NULL);
14396 	}
14397 
14398 	if (groupname != NULL)
14399 		(void) strcpy(ipsq->ipsq_name, groupname);
14400 	else
14401 		ipsq->ipsq_name[0] = '\0';
14402 
14403 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14404 	ipsq->ipsq_flags |= IPSQ_GROUP;
14405 	ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14406 	ipst->ips_ipsq_g_head = ipsq;
14407 	ipsq->ipsq_ipst = ipst;		/* No netstack_hold */
14408 	return (ipsq);
14409 }
14410 
14411 /*
14412  * Return an ipsq correspoding to the groupname. If 'create' is true
14413  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14414  * uniquely with an IPMP group. However during IPMP groupname operations,
14415  * multiple IPMP groups may be associated with a single ipsq. But no
14416  * IPMP group can be associated with more than 1 ipsq at any time.
14417  * For example
14418  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14419  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14420  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14421  *
14422  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14423  * status shown below during the execution of the above command.
14424  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14425  *
14426  * After the completion of the above groupname command we return to the stable
14427  * state shown below.
14428  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14429  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14430  *
14431  * Because of the above, we don't search based on the ipsq_name since that
14432  * would miss the correct ipsq during certain windows as shown above.
14433  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14434  * natural state.
14435  */
14436 static ipsq_t *
14437 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14438     ip_stack_t *ipst)
14439 {
14440 	ipsq_t	*ipsq;
14441 	int	group_len;
14442 	phyint_t *phyint;
14443 
14444 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14445 
14446 	group_len = strlen(groupname);
14447 	ASSERT(group_len != 0);
14448 	group_len++;
14449 
14450 	for (ipsq = ipst->ips_ipsq_g_head;
14451 	    ipsq != NULL;
14452 	    ipsq = ipsq->ipsq_next) {
14453 		/*
14454 		 * When an ipsq is being split, and ill_split_ipsq
14455 		 * calls this function, we exclude it from being considered.
14456 		 */
14457 		if (ipsq == exclude_ipsq)
14458 			continue;
14459 
14460 		/*
14461 		 * Compare against the ipsq_name. The groupname change happens
14462 		 * in 2 phases. The 1st phase merges the from group into
14463 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14464 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14465 		 * ipsq_name. At this point the phyint_groupname has not been
14466 		 * updated.
14467 		 */
14468 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14469 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14470 			/*
14471 			 * Verify that an ipmp groupname is exactly
14472 			 * part of 1 ipsq and is not found in any other
14473 			 * ipsq.
14474 			 */
14475 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14476 			    NULL);
14477 			return (ipsq);
14478 		}
14479 
14480 		/*
14481 		 * Comparison against ipsq_name alone is not sufficient.
14482 		 * In the case when groups are currently being
14483 		 * merged, the ipsq could hold other IPMP groups temporarily.
14484 		 * so we walk the phyint list and compare against the
14485 		 * phyint_groupname as well.
14486 		 */
14487 		phyint = ipsq->ipsq_phyint_list;
14488 		while (phyint != NULL) {
14489 			if ((group_len == phyint->phyint_groupname_len) &&
14490 			    (bcmp(phyint->phyint_groupname, groupname,
14491 			    group_len) == 0)) {
14492 				/*
14493 				 * Verify that an ipmp groupname is exactly
14494 				 * part of 1 ipsq and is not found in any other
14495 				 * ipsq.
14496 				 */
14497 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14498 				    ipst) == NULL);
14499 				return (ipsq);
14500 			}
14501 			phyint = phyint->phyint_ipsq_next;
14502 		}
14503 	}
14504 	if (create)
14505 		ipsq = ipsq_create(groupname, ipst);
14506 	return (ipsq);
14507 }
14508 
14509 static void
14510 ipsq_delete(ipsq_t *ipsq)
14511 {
14512 	ipsq_t *nipsq;
14513 	ipsq_t *pipsq = NULL;
14514 	ip_stack_t *ipst = ipsq->ipsq_ipst;
14515 
14516 	/*
14517 	 * We don't hold the ipsq lock, but we are sure no new
14518 	 * messages can land up, since the ipsq_refs is zero.
14519 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14520 	 * is associated with this ipsq. (Lookups are based on ill_name
14521 	 * or phyint_groupname)
14522 	 */
14523 	ASSERT(ipsq->ipsq_refs == 0);
14524 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14525 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14526 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14527 		/*
14528 		 * This is not the ipsq of an IPMP group.
14529 		 */
14530 		ipsq->ipsq_ipst = NULL;
14531 		kmem_free(ipsq, sizeof (ipsq_t));
14532 		return;
14533 	}
14534 
14535 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14536 
14537 	/*
14538 	 * Locate the ipsq  before we can remove it from
14539 	 * the singly linked list of ipsq's.
14540 	 */
14541 	for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14542 	    nipsq = nipsq->ipsq_next) {
14543 		if (nipsq == ipsq) {
14544 			break;
14545 		}
14546 		pipsq = nipsq;
14547 	}
14548 
14549 	ASSERT(nipsq == ipsq);
14550 
14551 	/* unlink ipsq from the list */
14552 	if (pipsq != NULL)
14553 		pipsq->ipsq_next = ipsq->ipsq_next;
14554 	else
14555 		ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14556 	ipsq->ipsq_ipst = NULL;
14557 	kmem_free(ipsq, sizeof (ipsq_t));
14558 	rw_exit(&ipst->ips_ill_g_lock);
14559 }
14560 
14561 static void
14562 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14563     queue_t *q)
14564 {
14565 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14566 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14567 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14568 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14569 	ASSERT(current_mp != NULL);
14570 
14571 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14572 		NEW_OP, NULL);
14573 
14574 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14575 	    new_ipsq->ipsq_xopq_mphead != NULL);
14576 
14577 	/*
14578 	 * move from old ipsq to the new ipsq.
14579 	 */
14580 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14581 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14582 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14583 
14584 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14585 }
14586 
14587 void
14588 ill_group_cleanup(ill_t *ill)
14589 {
14590 	ill_t *ill_v4;
14591 	ill_t *ill_v6;
14592 	ipif_t *ipif;
14593 
14594 	ill_v4 = ill->ill_phyint->phyint_illv4;
14595 	ill_v6 = ill->ill_phyint->phyint_illv6;
14596 
14597 	if (ill_v4 != NULL) {
14598 		mutex_enter(&ill_v4->ill_lock);
14599 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14600 		    ipif = ipif->ipif_next) {
14601 			IPIF_UNMARK_MOVING(ipif);
14602 		}
14603 		ill_v4->ill_up_ipifs = B_FALSE;
14604 		mutex_exit(&ill_v4->ill_lock);
14605 	}
14606 
14607 	if (ill_v6 != NULL) {
14608 		mutex_enter(&ill_v6->ill_lock);
14609 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14610 		    ipif = ipif->ipif_next) {
14611 			IPIF_UNMARK_MOVING(ipif);
14612 		}
14613 		ill_v6->ill_up_ipifs = B_FALSE;
14614 		mutex_exit(&ill_v6->ill_lock);
14615 	}
14616 }
14617 /*
14618  * This function is called when an ill has had a change in its group status
14619  * to bring up all the ipifs that were up before the change.
14620  */
14621 int
14622 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14623 {
14624 	ipif_t *ipif;
14625 	ill_t *ill_v4;
14626 	ill_t *ill_v6;
14627 	ill_t *from_ill;
14628 	int err = 0;
14629 
14630 
14631 	ASSERT(IAM_WRITER_ILL(ill));
14632 
14633 	/*
14634 	 * Except for ipif_state_flags and ill_state_flags the other
14635 	 * fields of the ipif/ill that are modified below are protected
14636 	 * implicitly since we are a writer. We would have tried to down
14637 	 * even an ipif that was already down, in ill_down_ipifs. So we
14638 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14639 	 */
14640 	ill_v4 = ill->ill_phyint->phyint_illv4;
14641 	ill_v6 = ill->ill_phyint->phyint_illv6;
14642 	if (ill_v4 != NULL) {
14643 		ill_v4->ill_up_ipifs = B_TRUE;
14644 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14645 		    ipif = ipif->ipif_next) {
14646 			mutex_enter(&ill_v4->ill_lock);
14647 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14648 			IPIF_UNMARK_MOVING(ipif);
14649 			mutex_exit(&ill_v4->ill_lock);
14650 			if (ipif->ipif_was_up) {
14651 				if (!(ipif->ipif_flags & IPIF_UP))
14652 					err = ipif_up(ipif, q, mp);
14653 				ipif->ipif_was_up = B_FALSE;
14654 				if (err != 0) {
14655 					/*
14656 					 * Can there be any other error ?
14657 					 */
14658 					ASSERT(err == EINPROGRESS);
14659 					return (err);
14660 				}
14661 			}
14662 		}
14663 		mutex_enter(&ill_v4->ill_lock);
14664 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14665 		mutex_exit(&ill_v4->ill_lock);
14666 		ill_v4->ill_up_ipifs = B_FALSE;
14667 		if (ill_v4->ill_move_in_progress) {
14668 			ASSERT(ill_v4->ill_move_peer != NULL);
14669 			ill_v4->ill_move_in_progress = B_FALSE;
14670 			from_ill = ill_v4->ill_move_peer;
14671 			from_ill->ill_move_in_progress = B_FALSE;
14672 			from_ill->ill_move_peer = NULL;
14673 			mutex_enter(&from_ill->ill_lock);
14674 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14675 			mutex_exit(&from_ill->ill_lock);
14676 			if (ill_v6 == NULL) {
14677 				if (from_ill->ill_phyint->phyint_flags &
14678 				    PHYI_STANDBY) {
14679 					phyint_inactive(from_ill->ill_phyint);
14680 				}
14681 				if (ill_v4->ill_phyint->phyint_flags &
14682 				    PHYI_STANDBY) {
14683 					phyint_inactive(ill_v4->ill_phyint);
14684 				}
14685 			}
14686 			ill_v4->ill_move_peer = NULL;
14687 		}
14688 	}
14689 
14690 	if (ill_v6 != NULL) {
14691 		ill_v6->ill_up_ipifs = B_TRUE;
14692 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14693 		    ipif = ipif->ipif_next) {
14694 			mutex_enter(&ill_v6->ill_lock);
14695 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14696 			IPIF_UNMARK_MOVING(ipif);
14697 			mutex_exit(&ill_v6->ill_lock);
14698 			if (ipif->ipif_was_up) {
14699 				if (!(ipif->ipif_flags & IPIF_UP))
14700 					err = ipif_up(ipif, q, mp);
14701 				ipif->ipif_was_up = B_FALSE;
14702 				if (err != 0) {
14703 					/*
14704 					 * Can there be any other error ?
14705 					 */
14706 					ASSERT(err == EINPROGRESS);
14707 					return (err);
14708 				}
14709 			}
14710 		}
14711 		mutex_enter(&ill_v6->ill_lock);
14712 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14713 		mutex_exit(&ill_v6->ill_lock);
14714 		ill_v6->ill_up_ipifs = B_FALSE;
14715 		if (ill_v6->ill_move_in_progress) {
14716 			ASSERT(ill_v6->ill_move_peer != NULL);
14717 			ill_v6->ill_move_in_progress = B_FALSE;
14718 			from_ill = ill_v6->ill_move_peer;
14719 			from_ill->ill_move_in_progress = B_FALSE;
14720 			from_ill->ill_move_peer = NULL;
14721 			mutex_enter(&from_ill->ill_lock);
14722 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14723 			mutex_exit(&from_ill->ill_lock);
14724 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14725 				phyint_inactive(from_ill->ill_phyint);
14726 			}
14727 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14728 				phyint_inactive(ill_v6->ill_phyint);
14729 			}
14730 			ill_v6->ill_move_peer = NULL;
14731 		}
14732 	}
14733 	return (0);
14734 }
14735 
14736 /*
14737  * bring down all the approriate ipifs.
14738  */
14739 /* ARGSUSED */
14740 static void
14741 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14742 {
14743 	ipif_t *ipif;
14744 
14745 	ASSERT(IAM_WRITER_ILL(ill));
14746 
14747 	/*
14748 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14749 	 * are modified below are protected implicitly since we are a writer
14750 	 */
14751 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14752 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14753 			continue;
14754 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14755 			/*
14756 			 * We go through the ipif_down logic even if the ipif
14757 			 * is already down, since routes can be added based
14758 			 * on down ipifs. Going through ipif_down once again
14759 			 * will delete any IREs created based on these routes.
14760 			 */
14761 			if (ipif->ipif_flags & IPIF_UP)
14762 				ipif->ipif_was_up = B_TRUE;
14763 			/*
14764 			 * If called with chk_nofailover true ipif is moving.
14765 			 */
14766 			mutex_enter(&ill->ill_lock);
14767 			if (chk_nofailover) {
14768 				ipif->ipif_state_flags |=
14769 					IPIF_MOVING | IPIF_CHANGING;
14770 			} else {
14771 				ipif->ipif_state_flags |= IPIF_CHANGING;
14772 			}
14773 			mutex_exit(&ill->ill_lock);
14774 			/*
14775 			 * Need to re-create net/subnet bcast ires if
14776 			 * they are dependent on ipif.
14777 			 */
14778 			if (!ipif->ipif_isv6)
14779 				ipif_check_bcast_ires(ipif);
14780 			(void) ipif_logical_down(ipif, NULL, NULL);
14781 			ipif_non_duplicate(ipif);
14782 			ipif_down_tail(ipif);
14783 			/*
14784 			 * We don't do ipif_multicast_down for IPv4 in
14785 			 * ipif_down. We need to set this so that
14786 			 * ipif_multicast_up will join the
14787 			 * ALLHOSTS_GROUP on to_ill.
14788 			 */
14789 			ipif->ipif_multicast_up = B_FALSE;
14790 		}
14791 	}
14792 }
14793 
14794 #define	IPSQ_INC_REF(ipsq, ipst)	{			\
14795 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14796 	(ipsq)->ipsq_refs++;				\
14797 }
14798 
14799 #define	IPSQ_DEC_REF(ipsq, ipst)	{			\
14800 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14801 	(ipsq)->ipsq_refs--;				\
14802 	if ((ipsq)->ipsq_refs == 0)				\
14803 		(ipsq)->ipsq_name[0] = '\0'; 		\
14804 }
14805 
14806 /*
14807  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14808  * new_ipsq.
14809  */
14810 static void
14811 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14812 {
14813 	phyint_t *phyint;
14814 	phyint_t *next_phyint;
14815 
14816 	/*
14817 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14818 	 * writer and the ill_lock of the ill in question. Also the dest
14819 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14820 	 */
14821 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14822 
14823 	phyint = cur_ipsq->ipsq_phyint_list;
14824 	cur_ipsq->ipsq_phyint_list = NULL;
14825 	while (phyint != NULL) {
14826 		next_phyint = phyint->phyint_ipsq_next;
14827 		IPSQ_DEC_REF(cur_ipsq, ipst);
14828 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14829 		new_ipsq->ipsq_phyint_list = phyint;
14830 		IPSQ_INC_REF(new_ipsq, ipst);
14831 		phyint->phyint_ipsq = new_ipsq;
14832 		phyint = next_phyint;
14833 	}
14834 }
14835 
14836 #define	SPLIT_SUCCESS		0
14837 #define	SPLIT_NOT_NEEDED	1
14838 #define	SPLIT_FAILED		2
14839 
14840 int
14841 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14842     ip_stack_t *ipst)
14843 {
14844 	ipsq_t *newipsq = NULL;
14845 
14846 	/*
14847 	 * Assertions denote pre-requisites for changing the ipsq of
14848 	 * a phyint
14849 	 */
14850 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14851 	/*
14852 	 * <ill-phyint> assocs can't change while ill_g_lock
14853 	 * is held as writer. See ill_phyint_reinit()
14854 	 */
14855 	ASSERT(phyint->phyint_illv4 == NULL ||
14856 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14857 	ASSERT(phyint->phyint_illv6 == NULL ||
14858 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14859 
14860 	if ((phyint->phyint_groupname_len !=
14861 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14862 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14863 	    phyint->phyint_groupname_len) != 0)) {
14864 		/*
14865 		 * Once we fail in creating a new ipsq due to memory shortage,
14866 		 * don't attempt to create new ipsq again, based on another
14867 		 * phyint, since we want all phyints belonging to an IPMP group
14868 		 * to be in the same ipsq even in the event of mem alloc fails.
14869 		 */
14870 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14871 		    cur_ipsq, ipst);
14872 		if (newipsq == NULL) {
14873 			/* Memory allocation failure */
14874 			return (SPLIT_FAILED);
14875 		} else {
14876 			/* ipsq_refs protected by ill_g_lock (writer) */
14877 			IPSQ_DEC_REF(cur_ipsq, ipst);
14878 			phyint->phyint_ipsq = newipsq;
14879 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14880 			newipsq->ipsq_phyint_list = phyint;
14881 			IPSQ_INC_REF(newipsq, ipst);
14882 			return (SPLIT_SUCCESS);
14883 		}
14884 	}
14885 	return (SPLIT_NOT_NEEDED);
14886 }
14887 
14888 /*
14889  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14890  * to do this split
14891  */
14892 static int
14893 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14894 {
14895 	ipsq_t *newipsq;
14896 
14897 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14898 	/*
14899 	 * <ill-phyint> assocs can't change while ill_g_lock
14900 	 * is held as writer. See ill_phyint_reinit()
14901 	 */
14902 
14903 	ASSERT(phyint->phyint_illv4 == NULL ||
14904 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14905 	ASSERT(phyint->phyint_illv6 == NULL ||
14906 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14907 
14908 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14909 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14910 		/*
14911 		 * ipsq_init failed due to no memory
14912 		 * caller will use the same ipsq
14913 		 */
14914 		return (SPLIT_FAILED);
14915 	}
14916 
14917 	/* ipsq_ref is protected by ill_g_lock (writer) */
14918 	IPSQ_DEC_REF(cur_ipsq, ipst);
14919 
14920 	/*
14921 	 * This is a new ipsq that is unknown to the world.
14922 	 * So we don't need to hold ipsq_lock,
14923 	 */
14924 	newipsq = phyint->phyint_ipsq;
14925 	newipsq->ipsq_writer = NULL;
14926 	newipsq->ipsq_reentry_cnt--;
14927 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14928 #ifdef ILL_DEBUG
14929 	newipsq->ipsq_depth = 0;
14930 #endif
14931 
14932 	return (SPLIT_SUCCESS);
14933 }
14934 
14935 /*
14936  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14937  * ipsq's representing their individual groups or themselves. Return
14938  * whether split needs to be retried again later.
14939  */
14940 static boolean_t
14941 ill_split_ipsq(ipsq_t *cur_ipsq)
14942 {
14943 	phyint_t *phyint;
14944 	phyint_t *next_phyint;
14945 	int	error;
14946 	boolean_t need_retry = B_FALSE;
14947 	ip_stack_t	*ipst = cur_ipsq->ipsq_ipst;
14948 
14949 	phyint = cur_ipsq->ipsq_phyint_list;
14950 	cur_ipsq->ipsq_phyint_list = NULL;
14951 	while (phyint != NULL) {
14952 		next_phyint = phyint->phyint_ipsq_next;
14953 		/*
14954 		 * 'created' will tell us whether the callee actually
14955 		 * created an ipsq. Lack of memory may force the callee
14956 		 * to return without creating an ipsq.
14957 		 */
14958 		if (phyint->phyint_groupname == NULL) {
14959 			error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
14960 		} else {
14961 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14962 					need_retry, ipst);
14963 		}
14964 
14965 		switch (error) {
14966 		case SPLIT_FAILED:
14967 			need_retry = B_TRUE;
14968 			/* FALLTHRU */
14969 		case SPLIT_NOT_NEEDED:
14970 			/*
14971 			 * Keep it on the list.
14972 			 */
14973 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14974 			cur_ipsq->ipsq_phyint_list = phyint;
14975 			break;
14976 		case SPLIT_SUCCESS:
14977 			break;
14978 		default:
14979 			ASSERT(0);
14980 		}
14981 
14982 		phyint = next_phyint;
14983 	}
14984 	return (need_retry);
14985 }
14986 
14987 /*
14988  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14989  * and return the ills in the list. This list will be
14990  * needed to unlock all the ills later on by the caller.
14991  * The <ill-ipsq> associations could change between the
14992  * lock and unlock. Hence the unlock can't traverse the
14993  * ipsq to get the list of ills.
14994  */
14995 static int
14996 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14997 {
14998 	int	cnt = 0;
14999 	phyint_t	*phyint;
15000 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
15001 
15002 	/*
15003 	 * The caller holds ill_g_lock to ensure that the ill memberships
15004 	 * of the ipsq don't change
15005 	 */
15006 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
15007 
15008 	phyint = ipsq->ipsq_phyint_list;
15009 	while (phyint != NULL) {
15010 		if (phyint->phyint_illv4 != NULL) {
15011 			ASSERT(cnt < list_max);
15012 			list[cnt++] = phyint->phyint_illv4;
15013 		}
15014 		if (phyint->phyint_illv6 != NULL) {
15015 			ASSERT(cnt < list_max);
15016 			list[cnt++] = phyint->phyint_illv6;
15017 		}
15018 		phyint = phyint->phyint_ipsq_next;
15019 	}
15020 	ill_lock_ills(list, cnt);
15021 	return (cnt);
15022 }
15023 
15024 void
15025 ill_lock_ills(ill_t **list, int cnt)
15026 {
15027 	int	i;
15028 
15029 	if (cnt > 1) {
15030 		boolean_t try_again;
15031 		do {
15032 			try_again = B_FALSE;
15033 			for (i = 0; i < cnt - 1; i++) {
15034 				if (list[i] < list[i + 1]) {
15035 					ill_t	*tmp;
15036 
15037 					/* swap the elements */
15038 					tmp = list[i];
15039 					list[i] = list[i + 1];
15040 					list[i + 1] = tmp;
15041 					try_again = B_TRUE;
15042 				}
15043 			}
15044 		} while (try_again);
15045 	}
15046 
15047 	for (i = 0; i < cnt; i++) {
15048 		if (i == 0) {
15049 			if (list[i] != NULL)
15050 				mutex_enter(&list[i]->ill_lock);
15051 			else
15052 				return;
15053 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
15054 			mutex_enter(&list[i]->ill_lock);
15055 		}
15056 	}
15057 }
15058 
15059 void
15060 ill_unlock_ills(ill_t **list, int cnt)
15061 {
15062 	int	i;
15063 
15064 	for (i = 0; i < cnt; i++) {
15065 		if ((i == 0) && (list[i] != NULL)) {
15066 			mutex_exit(&list[i]->ill_lock);
15067 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
15068 			mutex_exit(&list[i]->ill_lock);
15069 		}
15070 	}
15071 }
15072 
15073 /*
15074  * Merge all the ills from 1 ipsq group into another ipsq group.
15075  * The source ipsq group is specified by the ipsq associated with
15076  * 'from_ill'. The destination ipsq group is specified by the ipsq
15077  * associated with 'to_ill' or 'groupname' respectively.
15078  * Note that ipsq itself does not have a reference count mechanism
15079  * and functions don't look up an ipsq and pass it around. Instead
15080  * functions pass around an ill or groupname, and the ipsq is looked
15081  * up from the ill or groupname and the required operation performed
15082  * atomically with the lookup on the ipsq.
15083  */
15084 static int
15085 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
15086     queue_t *q)
15087 {
15088 	ipsq_t *old_ipsq;
15089 	ipsq_t *new_ipsq;
15090 	ill_t	**ill_list;
15091 	int	cnt;
15092 	size_t	ill_list_size;
15093 	boolean_t became_writer_on_new_sq = B_FALSE;
15094 	ip_stack_t	*ipst = from_ill->ill_ipst;
15095 
15096 	ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
15097 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
15098 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
15099 
15100 	/*
15101 	 * Need to hold ill_g_lock as writer and also the ill_lock to
15102 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
15103 	 * ipsq_lock to prevent new messages from landing on an ipsq.
15104 	 */
15105 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15106 
15107 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
15108 	if (groupname != NULL)
15109 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
15110 	else {
15111 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
15112 	}
15113 
15114 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
15115 
15116 	/*
15117 	 * both groups are on the same ipsq.
15118 	 */
15119 	if (old_ipsq == new_ipsq) {
15120 		rw_exit(&ipst->ips_ill_g_lock);
15121 		return (0);
15122 	}
15123 
15124 	cnt = old_ipsq->ipsq_refs << 1;
15125 	ill_list_size = cnt * sizeof (ill_t *);
15126 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
15127 	if (ill_list == NULL) {
15128 		rw_exit(&ipst->ips_ill_g_lock);
15129 		return (ENOMEM);
15130 	}
15131 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
15132 
15133 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
15134 	mutex_enter(&new_ipsq->ipsq_lock);
15135 	if ((new_ipsq->ipsq_writer == NULL &&
15136 		new_ipsq->ipsq_current_ipif == NULL) ||
15137 	    (new_ipsq->ipsq_writer == curthread)) {
15138 		new_ipsq->ipsq_writer = curthread;
15139 		new_ipsq->ipsq_reentry_cnt++;
15140 		became_writer_on_new_sq = B_TRUE;
15141 	}
15142 
15143 	/*
15144 	 * We are holding ill_g_lock as writer and all the ill locks of
15145 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
15146 	 * message can land up on the old ipsq even though we don't hold the
15147 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
15148 	 */
15149 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
15150 
15151 	/*
15152 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
15153 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
15154 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
15155 	 */
15156 	ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
15157 
15158 	/*
15159 	 * Mark the new ipsq as needing a split since it is currently
15160 	 * being shared by more than 1 IPMP group. The split will
15161 	 * occur at the end of ipsq_exit
15162 	 */
15163 	new_ipsq->ipsq_split = B_TRUE;
15164 
15165 	/* Now release all the locks */
15166 	mutex_exit(&new_ipsq->ipsq_lock);
15167 	ill_unlock_ills(ill_list, cnt);
15168 	rw_exit(&ipst->ips_ill_g_lock);
15169 
15170 	kmem_free(ill_list, ill_list_size);
15171 
15172 	/*
15173 	 * If we succeeded in becoming writer on the new ipsq, then
15174 	 * drain the new ipsq and start processing  all enqueued messages
15175 	 * including the current ioctl we are processing which is either
15176 	 * a set groupname or failover/failback.
15177 	 */
15178 	if (became_writer_on_new_sq)
15179 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
15180 
15181 	/*
15182 	 * syncq has been changed and all the messages have been moved.
15183 	 */
15184 	mutex_enter(&old_ipsq->ipsq_lock);
15185 	old_ipsq->ipsq_current_ipif = NULL;
15186 	old_ipsq->ipsq_current_ioctl = 0;
15187 	mutex_exit(&old_ipsq->ipsq_lock);
15188 	return (EINPROGRESS);
15189 }
15190 
15191 /*
15192  * Delete and add the loopback copy and non-loopback copy of
15193  * the BROADCAST ire corresponding to ill and addr. Used to
15194  * group broadcast ires together when ill becomes part of
15195  * a group.
15196  *
15197  * This function is also called when ill is leaving the group
15198  * so that the ires belonging to the group gets re-grouped.
15199  */
15200 static void
15201 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
15202 {
15203 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
15204 	ire_t **ire_ptpn = &ire_head;
15205 	ip_stack_t	*ipst = ill->ill_ipst;
15206 
15207 	/*
15208 	 * The loopback and non-loopback IREs are inserted in the order in which
15209 	 * they're found, on the basis that they are correctly ordered (loopback
15210 	 * first).
15211 	 */
15212 	for (;;) {
15213 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15214 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15215 		if (ire == NULL)
15216 			break;
15217 
15218 		/*
15219 		 * we are passing in KM_SLEEP because it is not easy to
15220 		 * go back to a sane state in case of memory failure.
15221 		 */
15222 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
15223 		ASSERT(nire != NULL);
15224 		bzero(nire, sizeof (ire_t));
15225 		/*
15226 		 * Don't use ire_max_frag directly since we don't
15227 		 * hold on to 'ire' until we add the new ire 'nire' and
15228 		 * we don't want the new ire to have a dangling reference
15229 		 * to 'ire'. The ire_max_frag of a broadcast ire must
15230 		 * be in sync with the ipif_mtu of the associate ipif.
15231 		 * For eg. this happens as a result of SIOCSLIFNAME,
15232 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
15233 		 * the driver. A change in ire_max_frag triggered as
15234 		 * as a result of path mtu discovery, or due to an
15235 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
15236 		 * route change -mtu command does not apply to broadcast ires.
15237 		 *
15238 		 * XXX We need a recovery strategy here if ire_init fails
15239 		 */
15240 		if (ire_init(nire,
15241 		    (uchar_t *)&ire->ire_addr,
15242 		    (uchar_t *)&ire->ire_mask,
15243 		    (uchar_t *)&ire->ire_src_addr,
15244 		    (uchar_t *)&ire->ire_gateway_addr,
15245 		    (uchar_t *)&ire->ire_in_src_addr,
15246 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
15247 			&ire->ire_ipif->ipif_mtu,
15248 		    (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL),
15249 		    ire->ire_rfq,
15250 		    ire->ire_stq,
15251 		    ire->ire_type,
15252 		    (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL),
15253 		    ire->ire_ipif,
15254 		    ire->ire_in_ill,
15255 		    ire->ire_cmask,
15256 		    ire->ire_phandle,
15257 		    ire->ire_ihandle,
15258 		    ire->ire_flags,
15259 		    &ire->ire_uinfo,
15260 		    NULL,
15261 		    NULL,
15262 		    ipst) == NULL) {
15263 			cmn_err(CE_PANIC, "ire_init() failed");
15264 		}
15265 		ire_delete(ire);
15266 		ire_refrele(ire);
15267 
15268 		/*
15269 		 * The newly created IREs are inserted at the tail of the list
15270 		 * starting with ire_head. As we've just allocated them no one
15271 		 * knows about them so it's safe.
15272 		 */
15273 		*ire_ptpn = nire;
15274 		ire_ptpn = &nire->ire_next;
15275 	}
15276 
15277 	for (nire = ire_head; nire != NULL; nire = nire_next) {
15278 		int error;
15279 		ire_t *oire;
15280 		/* unlink the IRE from our list before calling ire_add() */
15281 		nire_next = nire->ire_next;
15282 		nire->ire_next = NULL;
15283 
15284 		/* ire_add adds the ire at the right place in the list */
15285 		oire = nire;
15286 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
15287 		ASSERT(error == 0);
15288 		ASSERT(oire == nire);
15289 		ire_refrele(nire);	/* Held in ire_add */
15290 	}
15291 }
15292 
15293 /*
15294  * This function is usually called when an ill is inserted in
15295  * a group and all the ipifs are already UP. As all the ipifs
15296  * are already UP, the broadcast ires have already been created
15297  * and been inserted. But, ire_add_v4 would not have grouped properly.
15298  * We need to re-group for the benefit of ip_wput_ire which
15299  * expects BROADCAST ires to be grouped properly to avoid sending
15300  * more than one copy of the broadcast packet per group.
15301  *
15302  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
15303  *	  because when ipif_up_done ends up calling this, ires have
15304  *        already been added before illgrp_insert i.e before ill_group
15305  *	  has been initialized.
15306  */
15307 static void
15308 ill_group_bcast_for_xmit(ill_t *ill)
15309 {
15310 	ill_group_t *illgrp;
15311 	ipif_t *ipif;
15312 	ipaddr_t addr;
15313 	ipaddr_t net_mask;
15314 	ipaddr_t subnet_netmask;
15315 
15316 	illgrp = ill->ill_group;
15317 
15318 	/*
15319 	 * This function is called even when an ill is deleted from
15320 	 * the group. Hence, illgrp could be null.
15321 	 */
15322 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15323 		return;
15324 
15325 	/*
15326 	 * Delete all the BROADCAST ires matching this ill and add
15327 	 * them back. This time, ire_add_v4 should take care of
15328 	 * grouping them with others because ill is part of the
15329 	 * group.
15330 	 */
15331 	ill_bcast_delete_and_add(ill, 0);
15332 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15333 
15334 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15335 
15336 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15337 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15338 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15339 		} else {
15340 			net_mask = htonl(IN_CLASSA_NET);
15341 		}
15342 		addr = net_mask & ipif->ipif_subnet;
15343 		ill_bcast_delete_and_add(ill, addr);
15344 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15345 
15346 		subnet_netmask = ipif->ipif_net_mask;
15347 		addr = ipif->ipif_subnet;
15348 		ill_bcast_delete_and_add(ill, addr);
15349 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15350 	}
15351 }
15352 
15353 /*
15354  * This function is called from illgrp_delete when ill is being deleted
15355  * from the group.
15356  *
15357  * As ill is not there in the group anymore, any address belonging
15358  * to this ill should be cleared of IRE_MARK_NORECV.
15359  */
15360 static void
15361 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15362 {
15363 	ire_t *ire;
15364 	irb_t *irb;
15365 	ip_stack_t	*ipst = ill->ill_ipst;
15366 
15367 	ASSERT(ill->ill_group == NULL);
15368 
15369 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15370 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15371 
15372 	if (ire != NULL) {
15373 		/*
15374 		 * IPMP and plumbing operations are serialized on the ipsq, so
15375 		 * no one will insert or delete a broadcast ire under our feet.
15376 		 */
15377 		irb = ire->ire_bucket;
15378 		rw_enter(&irb->irb_lock, RW_READER);
15379 		ire_refrele(ire);
15380 
15381 		for (; ire != NULL; ire = ire->ire_next) {
15382 			if (ire->ire_addr != addr)
15383 				break;
15384 			if (ire_to_ill(ire) != ill)
15385 				continue;
15386 
15387 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15388 			ire->ire_marks &= ~IRE_MARK_NORECV;
15389 		}
15390 		rw_exit(&irb->irb_lock);
15391 	}
15392 }
15393 
15394 /*
15395  * This function must be called only after the broadcast ires
15396  * have been grouped together. For a given address addr, nominate
15397  * only one of the ires whose interface is not FAILED or OFFLINE.
15398  *
15399  * This is also called when an ipif goes down, so that we can nominate
15400  * a different ire with the same address for receiving.
15401  */
15402 static void
15403 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15404 {
15405 	irb_t *irb;
15406 	ire_t *ire;
15407 	ire_t *ire1;
15408 	ire_t *save_ire;
15409 	ire_t **irep = NULL;
15410 	boolean_t first = B_TRUE;
15411 	ire_t *clear_ire = NULL;
15412 	ire_t *start_ire = NULL;
15413 	ire_t	*new_lb_ire;
15414 	ire_t	*new_nlb_ire;
15415 	boolean_t new_lb_ire_used = B_FALSE;
15416 	boolean_t new_nlb_ire_used = B_FALSE;
15417 	uint64_t match_flags;
15418 	uint64_t phyi_flags;
15419 	boolean_t fallback = B_FALSE;
15420 	uint_t	max_frag;
15421 
15422 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15423 	    NULL, MATCH_IRE_TYPE, ipst);
15424 	/*
15425 	 * We may not be able to find some ires if a previous
15426 	 * ire_create failed. This happens when an ipif goes
15427 	 * down and we are unable to create BROADCAST ires due
15428 	 * to memory failure. Thus, we have to check for NULL
15429 	 * below. This should handle the case for LOOPBACK,
15430 	 * POINTOPOINT and interfaces with some POINTOPOINT
15431 	 * logicals for which there are no BROADCAST ires.
15432 	 */
15433 	if (ire == NULL)
15434 		return;
15435 	/*
15436 	 * Currently IRE_BROADCASTS are deleted when an ipif
15437 	 * goes down which runs exclusively. Thus, setting
15438 	 * IRE_MARK_RCVD should not race with ire_delete marking
15439 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15440 	 * be consistent with other parts of the code that walks
15441 	 * a given bucket.
15442 	 */
15443 	save_ire = ire;
15444 	irb = ire->ire_bucket;
15445 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15446 	if (new_lb_ire == NULL) {
15447 		ire_refrele(ire);
15448 		return;
15449 	}
15450 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15451 	if (new_nlb_ire == NULL) {
15452 		ire_refrele(ire);
15453 		kmem_cache_free(ire_cache, new_lb_ire);
15454 		return;
15455 	}
15456 	IRB_REFHOLD(irb);
15457 	rw_enter(&irb->irb_lock, RW_WRITER);
15458 	/*
15459 	 * Get to the first ire matching the address and the
15460 	 * group. If the address does not match we are done
15461 	 * as we could not find the IRE. If the address matches
15462 	 * we should get to the first one matching the group.
15463 	 */
15464 	while (ire != NULL) {
15465 		if (ire->ire_addr != addr ||
15466 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15467 			break;
15468 		}
15469 		ire = ire->ire_next;
15470 	}
15471 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15472 	start_ire = ire;
15473 redo:
15474 	while (ire != NULL && ire->ire_addr == addr &&
15475 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15476 		/*
15477 		 * The first ire for any address within a group
15478 		 * should always be the one with IRE_MARK_NORECV cleared
15479 		 * so that ip_wput_ire can avoid searching for one.
15480 		 * Note down the insertion point which will be used
15481 		 * later.
15482 		 */
15483 		if (first && (irep == NULL))
15484 			irep = ire->ire_ptpn;
15485 		/*
15486 		 * PHYI_FAILED is set when the interface fails.
15487 		 * This interface might have become good, but the
15488 		 * daemon has not yet detected. We should still
15489 		 * not receive on this. PHYI_OFFLINE should never
15490 		 * be picked as this has been offlined and soon
15491 		 * be removed.
15492 		 */
15493 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15494 		if (phyi_flags & PHYI_OFFLINE) {
15495 			ire->ire_marks |= IRE_MARK_NORECV;
15496 			ire = ire->ire_next;
15497 			continue;
15498 		}
15499 		if (phyi_flags & match_flags) {
15500 			ire->ire_marks |= IRE_MARK_NORECV;
15501 			ire = ire->ire_next;
15502 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15503 			    PHYI_INACTIVE) {
15504 				fallback = B_TRUE;
15505 			}
15506 			continue;
15507 		}
15508 		if (first) {
15509 			/*
15510 			 * We will move this to the front of the list later
15511 			 * on.
15512 			 */
15513 			clear_ire = ire;
15514 			ire->ire_marks &= ~IRE_MARK_NORECV;
15515 		} else {
15516 			ire->ire_marks |= IRE_MARK_NORECV;
15517 		}
15518 		first = B_FALSE;
15519 		ire = ire->ire_next;
15520 	}
15521 	/*
15522 	 * If we never nominated anybody, try nominating at least
15523 	 * an INACTIVE, if we found one. Do it only once though.
15524 	 */
15525 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15526 	    fallback) {
15527 		match_flags = PHYI_FAILED;
15528 		ire = start_ire;
15529 		irep = NULL;
15530 		goto redo;
15531 	}
15532 	ire_refrele(save_ire);
15533 
15534 	/*
15535 	 * irep non-NULL indicates that we entered the while loop
15536 	 * above. If clear_ire is at the insertion point, we don't
15537 	 * have to do anything. clear_ire will be NULL if all the
15538 	 * interfaces are failed.
15539 	 *
15540 	 * We cannot unlink and reinsert the ire at the right place
15541 	 * in the list since there can be other walkers of this bucket.
15542 	 * Instead we delete and recreate the ire
15543 	 */
15544 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15545 		ire_t *clear_ire_stq = NULL;
15546 		mblk_t *fp_mp = NULL, *res_mp = NULL;
15547 
15548 		bzero(new_lb_ire, sizeof (ire_t));
15549 		if (clear_ire->ire_nce != NULL) {
15550 			fp_mp = clear_ire->ire_nce->nce_fp_mp;
15551 			res_mp = clear_ire->ire_nce->nce_res_mp;
15552 		}
15553 		/* XXX We need a recovery strategy here. */
15554 		if (ire_init(new_lb_ire,
15555 		    (uchar_t *)&clear_ire->ire_addr,
15556 		    (uchar_t *)&clear_ire->ire_mask,
15557 		    (uchar_t *)&clear_ire->ire_src_addr,
15558 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15559 		    (uchar_t *)&clear_ire->ire_in_src_addr,
15560 		    &clear_ire->ire_max_frag,
15561 		    fp_mp,
15562 		    clear_ire->ire_rfq,
15563 		    clear_ire->ire_stq,
15564 		    clear_ire->ire_type,
15565 		    res_mp,
15566 		    clear_ire->ire_ipif,
15567 		    clear_ire->ire_in_ill,
15568 		    clear_ire->ire_cmask,
15569 		    clear_ire->ire_phandle,
15570 		    clear_ire->ire_ihandle,
15571 		    clear_ire->ire_flags,
15572 		    &clear_ire->ire_uinfo,
15573 		    NULL,
15574 		    NULL,
15575 		    ipst) == NULL)
15576 			cmn_err(CE_PANIC, "ire_init() failed");
15577 		if (clear_ire->ire_stq == NULL) {
15578 			ire_t *ire_next = clear_ire->ire_next;
15579 			if (ire_next != NULL &&
15580 			    ire_next->ire_stq != NULL &&
15581 			    ire_next->ire_addr == clear_ire->ire_addr &&
15582 			    ire_next->ire_ipif->ipif_ill ==
15583 			    clear_ire->ire_ipif->ipif_ill) {
15584 				clear_ire_stq = ire_next;
15585 
15586 				bzero(new_nlb_ire, sizeof (ire_t));
15587 				if (clear_ire_stq->ire_nce != NULL) {
15588 					fp_mp =
15589 					    clear_ire_stq->ire_nce->nce_fp_mp;
15590 					res_mp =
15591 					    clear_ire_stq->ire_nce->nce_res_mp;
15592 				} else {
15593 					fp_mp = res_mp = NULL;
15594 				}
15595 				/* XXX We need a recovery strategy here. */
15596 				if (ire_init(new_nlb_ire,
15597 				    (uchar_t *)&clear_ire_stq->ire_addr,
15598 				    (uchar_t *)&clear_ire_stq->ire_mask,
15599 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15600 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15601 				    (uchar_t *)&clear_ire_stq->ire_in_src_addr,
15602 				    &clear_ire_stq->ire_max_frag,
15603 				    fp_mp,
15604 				    clear_ire_stq->ire_rfq,
15605 				    clear_ire_stq->ire_stq,
15606 				    clear_ire_stq->ire_type,
15607 				    res_mp,
15608 				    clear_ire_stq->ire_ipif,
15609 				    clear_ire_stq->ire_in_ill,
15610 				    clear_ire_stq->ire_cmask,
15611 				    clear_ire_stq->ire_phandle,
15612 				    clear_ire_stq->ire_ihandle,
15613 				    clear_ire_stq->ire_flags,
15614 				    &clear_ire_stq->ire_uinfo,
15615 				    NULL,
15616 				    NULL,
15617 				    ipst) == NULL)
15618 					cmn_err(CE_PANIC, "ire_init() failed");
15619 			}
15620 		}
15621 
15622 		/*
15623 		 * Delete the ire. We can't call ire_delete() since
15624 		 * we are holding the bucket lock. We can't release the
15625 		 * bucket lock since we can't allow irep to change. So just
15626 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15627 		 * ire from the list and do the refrele.
15628 		 */
15629 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15630 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15631 
15632 		if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15633 			nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15634 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15635 		}
15636 
15637 		/*
15638 		 * Also take care of otherfields like ib/ob pkt count
15639 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15640 		 */
15641 
15642 		/* Set the max_frag before adding the ire */
15643 		max_frag = *new_lb_ire->ire_max_fragp;
15644 		new_lb_ire->ire_max_fragp = NULL;
15645 		new_lb_ire->ire_max_frag = max_frag;
15646 
15647 		/* Add the new ire's. Insert at *irep */
15648 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15649 		ire1 = *irep;
15650 		if (ire1 != NULL)
15651 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15652 		new_lb_ire->ire_next = ire1;
15653 		/* Link the new one in. */
15654 		new_lb_ire->ire_ptpn = irep;
15655 		membar_producer();
15656 		*irep = new_lb_ire;
15657 		new_lb_ire_used = B_TRUE;
15658 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15659 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15660 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15661 
15662 		if (clear_ire_stq != NULL) {
15663 			/* Set the max_frag before adding the ire */
15664 			max_frag = *new_nlb_ire->ire_max_fragp;
15665 			new_nlb_ire->ire_max_fragp = NULL;
15666 			new_nlb_ire->ire_max_frag = max_frag;
15667 
15668 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15669 			irep = &new_lb_ire->ire_next;
15670 			/* Add the new ire. Insert at *irep */
15671 			ire1 = *irep;
15672 			if (ire1 != NULL)
15673 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15674 			new_nlb_ire->ire_next = ire1;
15675 			/* Link the new one in. */
15676 			new_nlb_ire->ire_ptpn = irep;
15677 			membar_producer();
15678 			*irep = new_nlb_ire;
15679 			new_nlb_ire_used = B_TRUE;
15680 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15681 			    ire_stats_inserted);
15682 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15683 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15684 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15685 		}
15686 	}
15687 	rw_exit(&irb->irb_lock);
15688 	if (!new_lb_ire_used)
15689 		kmem_cache_free(ire_cache, new_lb_ire);
15690 	if (!new_nlb_ire_used)
15691 		kmem_cache_free(ire_cache, new_nlb_ire);
15692 	IRB_REFRELE(irb);
15693 }
15694 
15695 /*
15696  * Whenever an ipif goes down we have to renominate a different
15697  * broadcast ire to receive. Whenever an ipif comes up, we need
15698  * to make sure that we have only one nominated to receive.
15699  */
15700 static void
15701 ipif_renominate_bcast(ipif_t *ipif)
15702 {
15703 	ill_t *ill = ipif->ipif_ill;
15704 	ipaddr_t subnet_addr;
15705 	ipaddr_t net_addr;
15706 	ipaddr_t net_mask = 0;
15707 	ipaddr_t subnet_netmask;
15708 	ipaddr_t addr;
15709 	ill_group_t *illgrp;
15710 	ip_stack_t	*ipst = ill->ill_ipst;
15711 
15712 	illgrp = ill->ill_group;
15713 	/*
15714 	 * If this is the last ipif going down, it might take
15715 	 * the ill out of the group. In that case ipif_down ->
15716 	 * illgrp_delete takes care of doing the nomination.
15717 	 * ipif_down does not call for this case.
15718 	 */
15719 	ASSERT(illgrp != NULL);
15720 
15721 	/* There could not have been any ires associated with this */
15722 	if (ipif->ipif_subnet == 0)
15723 		return;
15724 
15725 	ill_mark_bcast(illgrp, 0, ipst);
15726 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15727 
15728 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15729 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15730 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15731 	} else {
15732 		net_mask = htonl(IN_CLASSA_NET);
15733 	}
15734 	addr = net_mask & ipif->ipif_subnet;
15735 	ill_mark_bcast(illgrp, addr, ipst);
15736 
15737 	net_addr = ~net_mask | addr;
15738 	ill_mark_bcast(illgrp, net_addr, ipst);
15739 
15740 	subnet_netmask = ipif->ipif_net_mask;
15741 	addr = ipif->ipif_subnet;
15742 	ill_mark_bcast(illgrp, addr, ipst);
15743 
15744 	subnet_addr = ~subnet_netmask | addr;
15745 	ill_mark_bcast(illgrp, subnet_addr, ipst);
15746 }
15747 
15748 /*
15749  * Whenever we form or delete ill groups, we need to nominate one set of
15750  * BROADCAST ires for receiving in the group.
15751  *
15752  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15753  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15754  *    for ill_ipif_up_count to be non-zero. This is the only case where
15755  *    ill_ipif_up_count is zero and we would still find the ires.
15756  *
15757  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15758  *    ipif is UP and we just have to do the nomination.
15759  *
15760  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15761  *    from the group. So, we have to do the nomination.
15762  *
15763  * Because of (3), there could be just one ill in the group. But we have
15764  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15765  * Thus, this function does not optimize when there is only one ill as
15766  * it is not correct for (3).
15767  */
15768 static void
15769 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15770 {
15771 	ill_t *ill;
15772 	ipif_t *ipif;
15773 	ipaddr_t subnet_addr;
15774 	ipaddr_t prev_subnet_addr = 0;
15775 	ipaddr_t net_addr;
15776 	ipaddr_t prev_net_addr = 0;
15777 	ipaddr_t net_mask = 0;
15778 	ipaddr_t subnet_netmask;
15779 	ipaddr_t addr;
15780 	ip_stack_t	*ipst;
15781 
15782 	/*
15783 	 * When the last memeber is leaving, there is nothing to
15784 	 * nominate.
15785 	 */
15786 	if (illgrp->illgrp_ill_count == 0) {
15787 		ASSERT(illgrp->illgrp_ill == NULL);
15788 		return;
15789 	}
15790 
15791 	ill = illgrp->illgrp_ill;
15792 	ASSERT(!ill->ill_isv6);
15793 	ipst = ill->ill_ipst;
15794 	/*
15795 	 * We assume that ires with same address and belonging to the
15796 	 * same group, has been grouped together. Nominating a *single*
15797 	 * ill in the group for sending and receiving broadcast is done
15798 	 * by making sure that the first BROADCAST ire (which will be
15799 	 * the one returned by ire_ctable_lookup for ip_rput and the
15800 	 * one that will be used in ip_wput_ire) will be the one that
15801 	 * will not have IRE_MARK_NORECV set.
15802 	 *
15803 	 * 1) ip_rput checks and discards packets received on ires marked
15804 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15805 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15806 	 *    first ire in the group for every broadcast address in the group.
15807 	 *    ip_rput will accept packets only on the first ire i.e only
15808 	 *    one copy of the ill.
15809 	 *
15810 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15811 	 *    packet for the whole group. It needs to send out on the ill
15812 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15813 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15814 	 *    the copy echoed back on other port where the ire is not marked
15815 	 *    with IRE_MARK_NORECV.
15816 	 *
15817 	 * Note that we just need to have the first IRE either loopback or
15818 	 * non-loopback (either of them may not exist if ire_create failed
15819 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15820 	 * always hit the first one and hence will always accept one copy.
15821 	 *
15822 	 * We have a broadcast ire per ill for all the unique prefixes
15823 	 * hosted on that ill. As we don't have a way of knowing the
15824 	 * unique prefixes on a given ill and hence in the whole group,
15825 	 * we just call ill_mark_bcast on all the prefixes that exist
15826 	 * in the group. For the common case of one prefix, the code
15827 	 * below optimizes by remebering the last address used for
15828 	 * markng. In the case of multiple prefixes, this will still
15829 	 * optimize depending the order of prefixes.
15830 	 *
15831 	 * The only unique address across the whole group is 0.0.0.0 and
15832 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15833 	 * the first ire in the bucket for receiving and disables the
15834 	 * others.
15835 	 */
15836 	ill_mark_bcast(illgrp, 0, ipst);
15837 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15838 	for (; ill != NULL; ill = ill->ill_group_next) {
15839 
15840 		for (ipif = ill->ill_ipif; ipif != NULL;
15841 		    ipif = ipif->ipif_next) {
15842 
15843 			if (!(ipif->ipif_flags & IPIF_UP) ||
15844 			    ipif->ipif_subnet == 0) {
15845 				continue;
15846 			}
15847 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15848 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15849 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15850 			} else {
15851 				net_mask = htonl(IN_CLASSA_NET);
15852 			}
15853 			addr = net_mask & ipif->ipif_subnet;
15854 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15855 				ill_mark_bcast(illgrp, addr, ipst);
15856 				net_addr = ~net_mask | addr;
15857 				ill_mark_bcast(illgrp, net_addr, ipst);
15858 			}
15859 			prev_net_addr = addr;
15860 
15861 			subnet_netmask = ipif->ipif_net_mask;
15862 			addr = ipif->ipif_subnet;
15863 			if (prev_subnet_addr == 0 ||
15864 			    prev_subnet_addr != addr) {
15865 				ill_mark_bcast(illgrp, addr, ipst);
15866 				subnet_addr = ~subnet_netmask | addr;
15867 				ill_mark_bcast(illgrp, subnet_addr, ipst);
15868 			}
15869 			prev_subnet_addr = addr;
15870 		}
15871 	}
15872 }
15873 
15874 /*
15875  * This function is called while forming ill groups.
15876  *
15877  * Currently, we handle only allmulti groups. We want to join
15878  * allmulti on only one of the ills in the groups. In future,
15879  * when we have link aggregation, we may have to join normal
15880  * multicast groups on multiple ills as switch does inbound load
15881  * balancing. Following are the functions that calls this
15882  * function :
15883  *
15884  * 1) ill_recover_multicast : Interface is coming back UP.
15885  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15886  *    will call ill_recover_multicast to recover all the multicast
15887  *    groups. We need to make sure that only one member is joined
15888  *    in the ill group.
15889  *
15890  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15891  *    Somebody is joining allmulti. We need to make sure that only one
15892  *    member is joined in the group.
15893  *
15894  * 3) illgrp_insert : If allmulti has already joined, we need to make
15895  *    sure that only one member is joined in the group.
15896  *
15897  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15898  *    allmulti who we have nominated. We need to pick someother ill.
15899  *
15900  * 5) illgrp_delete : The ill we nominated is leaving the group,
15901  *    we need to pick a new ill to join the group.
15902  *
15903  * For (1), (2), (5) - we just have to check whether there is
15904  * a good ill joined in the group. If we could not find any ills
15905  * joined the group, we should join.
15906  *
15907  * For (4), the one that was nominated to receive, left the group.
15908  * There could be nobody joined in the group when this function is
15909  * called.
15910  *
15911  * For (3) - we need to explicitly check whether there are multiple
15912  * ills joined in the group.
15913  *
15914  * For simplicity, we don't differentiate any of the above cases. We
15915  * just leave the group if it is joined on any of them and join on
15916  * the first good ill.
15917  */
15918 int
15919 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15920 {
15921 	ilm_t *ilm;
15922 	ill_t *ill;
15923 	ill_t *fallback_inactive_ill = NULL;
15924 	ill_t *fallback_failed_ill = NULL;
15925 	int ret = 0;
15926 
15927 	/*
15928 	 * Leave the allmulti on all the ills and start fresh.
15929 	 */
15930 	for (ill = illgrp->illgrp_ill; ill != NULL;
15931 	    ill = ill->ill_group_next) {
15932 		if (ill->ill_join_allmulti)
15933 			(void) ip_leave_allmulti(ill->ill_ipif);
15934 	}
15935 
15936 	/*
15937 	 * Choose a good ill. Fallback to inactive or failed if
15938 	 * none available. We need to fallback to FAILED in the
15939 	 * case where we have 2 interfaces in a group - where
15940 	 * one of them is failed and another is a good one and
15941 	 * the good one (not marked inactive) is leaving the group.
15942 	 */
15943 	ret = 0;
15944 	for (ill = illgrp->illgrp_ill; ill != NULL;
15945 	    ill = ill->ill_group_next) {
15946 		/* Never pick an offline interface */
15947 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15948 			continue;
15949 
15950 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15951 			fallback_failed_ill = ill;
15952 			continue;
15953 		}
15954 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15955 			fallback_inactive_ill = ill;
15956 			continue;
15957 		}
15958 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15959 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15960 				ret = ip_join_allmulti(ill->ill_ipif);
15961 				/*
15962 				 * ip_join_allmulti can fail because of memory
15963 				 * failures. So, make sure we join at least
15964 				 * on one ill.
15965 				 */
15966 				if (ill->ill_join_allmulti)
15967 					return (0);
15968 			}
15969 		}
15970 	}
15971 	if (ret != 0) {
15972 		/*
15973 		 * If we tried nominating above and failed to do so,
15974 		 * return error. We might have tried multiple times.
15975 		 * But, return the latest error.
15976 		 */
15977 		return (ret);
15978 	}
15979 	if ((ill = fallback_inactive_ill) != NULL) {
15980 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15981 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15982 				ret = ip_join_allmulti(ill->ill_ipif);
15983 				return (ret);
15984 			}
15985 		}
15986 	} else if ((ill = fallback_failed_ill) != NULL) {
15987 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15988 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15989 				ret = ip_join_allmulti(ill->ill_ipif);
15990 				return (ret);
15991 			}
15992 		}
15993 	}
15994 	return (0);
15995 }
15996 
15997 /*
15998  * This function is called from illgrp_delete after it is
15999  * deleted from the group to reschedule responsibilities
16000  * to a different ill.
16001  */
16002 static void
16003 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
16004 {
16005 	ilm_t	*ilm;
16006 	ipif_t	*ipif;
16007 	ipaddr_t subnet_addr;
16008 	ipaddr_t net_addr;
16009 	ipaddr_t net_mask = 0;
16010 	ipaddr_t subnet_netmask;
16011 	ipaddr_t addr;
16012 	ip_stack_t *ipst = ill->ill_ipst;
16013 
16014 	ASSERT(ill->ill_group == NULL);
16015 	/*
16016 	 * Broadcast Responsibility:
16017 	 *
16018 	 * 1. If this ill has been nominated for receiving broadcast
16019 	 * packets, we need to find a new one. Before we find a new
16020 	 * one, we need to re-group the ires that are part of this new
16021 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
16022 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
16023 	 * thing for us.
16024 	 *
16025 	 * 2. If this ill was not nominated for receiving broadcast
16026 	 * packets, we need to clear the IRE_MARK_NORECV flag
16027 	 * so that we continue to send up broadcast packets.
16028 	 */
16029 	if (!ill->ill_isv6) {
16030 		/*
16031 		 * Case 1 above : No optimization here. Just redo the
16032 		 * nomination.
16033 		 */
16034 		ill_group_bcast_for_xmit(ill);
16035 		ill_nominate_bcast_rcv(illgrp);
16036 
16037 		/*
16038 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
16039 		 */
16040 		ill_clear_bcast_mark(ill, 0);
16041 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
16042 
16043 		for (ipif = ill->ill_ipif; ipif != NULL;
16044 		    ipif = ipif->ipif_next) {
16045 
16046 			if (!(ipif->ipif_flags & IPIF_UP) ||
16047 			    ipif->ipif_subnet == 0) {
16048 				continue;
16049 			}
16050 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16051 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16052 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
16053 			} else {
16054 				net_mask = htonl(IN_CLASSA_NET);
16055 			}
16056 			addr = net_mask & ipif->ipif_subnet;
16057 			ill_clear_bcast_mark(ill, addr);
16058 
16059 			net_addr = ~net_mask | addr;
16060 			ill_clear_bcast_mark(ill, net_addr);
16061 
16062 			subnet_netmask = ipif->ipif_net_mask;
16063 			addr = ipif->ipif_subnet;
16064 			ill_clear_bcast_mark(ill, addr);
16065 
16066 			subnet_addr = ~subnet_netmask | addr;
16067 			ill_clear_bcast_mark(ill, subnet_addr);
16068 		}
16069 	}
16070 
16071 	/*
16072 	 * Multicast Responsibility.
16073 	 *
16074 	 * If we have joined allmulti on this one, find a new member
16075 	 * in the group to join allmulti. As this ill is already part
16076 	 * of allmulti, we don't have to join on this one.
16077 	 *
16078 	 * If we have not joined allmulti on this one, there is no
16079 	 * responsibility to handoff. But we need to take new
16080 	 * responsibility i.e, join allmulti on this one if we need
16081 	 * to.
16082 	 */
16083 	if (ill->ill_join_allmulti) {
16084 		(void) ill_nominate_mcast_rcv(illgrp);
16085 	} else {
16086 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16087 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16088 				(void) ip_join_allmulti(ill->ill_ipif);
16089 				break;
16090 			}
16091 		}
16092 	}
16093 
16094 	/*
16095 	 * We intentionally do the flushing of IRE_CACHES only matching
16096 	 * on the ill and not on groups. Note that we are already deleted
16097 	 * from the group.
16098 	 *
16099 	 * This will make sure that all IRE_CACHES whose stq is pointing
16100 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
16101 	 * deleted and IRE_CACHES that are not pointing at this ill will
16102 	 * be left alone.
16103 	 */
16104 	if (ill->ill_isv6) {
16105 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16106 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
16107 	} else {
16108 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16109 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
16110 	}
16111 
16112 	/*
16113 	 * Some conn may have cached one of the IREs deleted above. By removing
16114 	 * the ire reference, we clean up the extra reference to the ill held in
16115 	 * ire->ire_stq.
16116 	 */
16117 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
16118 
16119 	/*
16120 	 * Re-do source address selection for all the members in the
16121 	 * group, if they borrowed source address from one of the ipifs
16122 	 * in this ill.
16123 	 */
16124 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
16125 		if (ill->ill_isv6) {
16126 			ipif_update_other_ipifs_v6(ipif, illgrp);
16127 		} else {
16128 			ipif_update_other_ipifs(ipif, illgrp);
16129 		}
16130 	}
16131 }
16132 
16133 /*
16134  * Delete the ill from the group. The caller makes sure that it is
16135  * in a group and it okay to delete from the group. So, we always
16136  * delete here.
16137  */
16138 static void
16139 illgrp_delete(ill_t *ill)
16140 {
16141 	ill_group_t *illgrp;
16142 	ill_group_t *tmpg;
16143 	ill_t *tmp_ill;
16144 	ip_stack_t	*ipst = ill->ill_ipst;
16145 
16146 	/*
16147 	 * Reset illgrp_ill_schednext if it was pointing at us.
16148 	 * We need to do this before we set ill_group to NULL.
16149 	 */
16150 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16151 	mutex_enter(&ill->ill_lock);
16152 
16153 	illgrp_reset_schednext(ill);
16154 
16155 	illgrp = ill->ill_group;
16156 
16157 	/* Delete the ill from illgrp. */
16158 	if (illgrp->illgrp_ill == ill) {
16159 		illgrp->illgrp_ill = ill->ill_group_next;
16160 	} else {
16161 		tmp_ill = illgrp->illgrp_ill;
16162 		while (tmp_ill->ill_group_next != ill) {
16163 			tmp_ill = tmp_ill->ill_group_next;
16164 			ASSERT(tmp_ill != NULL);
16165 		}
16166 		tmp_ill->ill_group_next = ill->ill_group_next;
16167 	}
16168 	ill->ill_group = NULL;
16169 	ill->ill_group_next = NULL;
16170 
16171 	illgrp->illgrp_ill_count--;
16172 	mutex_exit(&ill->ill_lock);
16173 	rw_exit(&ipst->ips_ill_g_lock);
16174 
16175 	/*
16176 	 * As this ill is leaving the group, we need to hand off
16177 	 * the responsibilities to the other ills in the group, if
16178 	 * this ill had some responsibilities.
16179 	 */
16180 
16181 	ill_handoff_responsibility(ill, illgrp);
16182 
16183 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16184 
16185 	if (illgrp->illgrp_ill_count == 0) {
16186 
16187 		ASSERT(illgrp->illgrp_ill == NULL);
16188 		if (ill->ill_isv6) {
16189 			if (illgrp == ipst->ips_illgrp_head_v6) {
16190 				ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
16191 			} else {
16192 				tmpg = ipst->ips_illgrp_head_v6;
16193 				while (tmpg->illgrp_next != illgrp) {
16194 					tmpg = tmpg->illgrp_next;
16195 					ASSERT(tmpg != NULL);
16196 				}
16197 				tmpg->illgrp_next = illgrp->illgrp_next;
16198 			}
16199 		} else {
16200 			if (illgrp == ipst->ips_illgrp_head_v4) {
16201 				ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
16202 			} else {
16203 				tmpg = ipst->ips_illgrp_head_v4;
16204 				while (tmpg->illgrp_next != illgrp) {
16205 					tmpg = tmpg->illgrp_next;
16206 					ASSERT(tmpg != NULL);
16207 				}
16208 				tmpg->illgrp_next = illgrp->illgrp_next;
16209 			}
16210 		}
16211 		mutex_destroy(&illgrp->illgrp_lock);
16212 		mi_free(illgrp);
16213 	}
16214 	rw_exit(&ipst->ips_ill_g_lock);
16215 
16216 	/*
16217 	 * Even though the ill is out of the group its not necessary
16218 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
16219 	 * We will split the ipsq when phyint_groupname is set to NULL.
16220 	 */
16221 
16222 	/*
16223 	 * Send a routing sockets message if we are deleting from
16224 	 * groups with names.
16225 	 */
16226 	if (ill->ill_phyint->phyint_groupname_len != 0)
16227 		ip_rts_ifmsg(ill->ill_ipif);
16228 }
16229 
16230 /*
16231  * Re-do source address selection. This is normally called when
16232  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
16233  * ipif comes up.
16234  */
16235 void
16236 ill_update_source_selection(ill_t *ill)
16237 {
16238 	ipif_t *ipif;
16239 
16240 	ASSERT(IAM_WRITER_ILL(ill));
16241 
16242 	if (ill->ill_group != NULL)
16243 		ill = ill->ill_group->illgrp_ill;
16244 
16245 	for (; ill != NULL; ill = ill->ill_group_next) {
16246 		for (ipif = ill->ill_ipif; ipif != NULL;
16247 		    ipif = ipif->ipif_next) {
16248 			if (ill->ill_isv6)
16249 				ipif_recreate_interface_routes_v6(NULL, ipif);
16250 			else
16251 				ipif_recreate_interface_routes(NULL, ipif);
16252 		}
16253 	}
16254 }
16255 
16256 /*
16257  * Insert ill in a group headed by illgrp_head. The caller can either
16258  * pass a groupname in which case we search for a group with the
16259  * same name to insert in or pass a group to insert in. This function
16260  * would only search groups with names.
16261  *
16262  * NOTE : The caller should make sure that there is at least one ipif
16263  *	  UP on this ill so that illgrp_scheduler can pick this ill
16264  *	  for outbound packets. If ill_ipif_up_count is zero, we have
16265  *	  already sent a DL_UNBIND to the driver and we don't want to
16266  *	  send anymore packets. We don't assert for ipif_up_count
16267  *	  to be greater than zero, because ipif_up_done wants to call
16268  *	  this function before bumping up the ipif_up_count. See
16269  *	  ipif_up_done() for details.
16270  */
16271 int
16272 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
16273     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
16274 {
16275 	ill_group_t *illgrp;
16276 	ill_t *prev_ill;
16277 	phyint_t *phyi;
16278 	ip_stack_t	*ipst = ill->ill_ipst;
16279 
16280 	ASSERT(ill->ill_group == NULL);
16281 
16282 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16283 	mutex_enter(&ill->ill_lock);
16284 
16285 	if (groupname != NULL) {
16286 		/*
16287 		 * Look for a group with a matching groupname to insert.
16288 		 */
16289 		for (illgrp = *illgrp_head; illgrp != NULL;
16290 		    illgrp = illgrp->illgrp_next) {
16291 
16292 			ill_t *tmp_ill;
16293 
16294 			/*
16295 			 * If we have an ill_group_t in the list which has
16296 			 * no ill_t assigned then we must be in the process of
16297 			 * removing this group. We skip this as illgrp_delete()
16298 			 * will remove it from the list.
16299 			 */
16300 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
16301 				ASSERT(illgrp->illgrp_ill_count == 0);
16302 				continue;
16303 			}
16304 
16305 			ASSERT(tmp_ill->ill_phyint != NULL);
16306 			phyi = tmp_ill->ill_phyint;
16307 			/*
16308 			 * Look at groups which has names only.
16309 			 */
16310 			if (phyi->phyint_groupname_len == 0)
16311 				continue;
16312 			/*
16313 			 * Names are stored in the phyint common to both
16314 			 * IPv4 and IPv6.
16315 			 */
16316 			if (mi_strcmp(phyi->phyint_groupname,
16317 			    groupname) == 0) {
16318 				break;
16319 			}
16320 		}
16321 	} else {
16322 		/*
16323 		 * If the caller passes in a NULL "grp_to_insert", we
16324 		 * allocate one below and insert this singleton.
16325 		 */
16326 		illgrp = grp_to_insert;
16327 	}
16328 
16329 	ill->ill_group_next = NULL;
16330 
16331 	if (illgrp == NULL) {
16332 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16333 		if (illgrp == NULL) {
16334 			return (ENOMEM);
16335 		}
16336 		illgrp->illgrp_next = *illgrp_head;
16337 		*illgrp_head = illgrp;
16338 		illgrp->illgrp_ill = ill;
16339 		illgrp->illgrp_ill_count = 1;
16340 		ill->ill_group = illgrp;
16341 		/*
16342 		 * Used in illgrp_scheduler to protect multiple threads
16343 		 * from traversing the list.
16344 		 */
16345 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16346 	} else {
16347 		ASSERT(ill->ill_net_type ==
16348 		    illgrp->illgrp_ill->ill_net_type);
16349 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16350 
16351 		/* Insert ill at tail of this group */
16352 		prev_ill = illgrp->illgrp_ill;
16353 		while (prev_ill->ill_group_next != NULL)
16354 			prev_ill = prev_ill->ill_group_next;
16355 		prev_ill->ill_group_next = ill;
16356 		ill->ill_group = illgrp;
16357 		illgrp->illgrp_ill_count++;
16358 		/*
16359 		 * Inherit group properties. Currently only forwarding
16360 		 * is the property we try to keep the same with all the
16361 		 * ills. When there are more, we will abstract this into
16362 		 * a function.
16363 		 */
16364 		ill->ill_flags &= ~ILLF_ROUTER;
16365 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16366 	}
16367 	mutex_exit(&ill->ill_lock);
16368 	rw_exit(&ipst->ips_ill_g_lock);
16369 
16370 	/*
16371 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16372 	 *    may be zero as it has not yet been bumped. But the ires
16373 	 *    have already been added. So, we do the nomination here
16374 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16375 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16376 	 *    ill_ipif_up_count here while nominating broadcast ires for
16377 	 *    receive.
16378 	 *
16379 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16380 	 *    to group them properly as ire_add() has already happened
16381 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16382 	 *    case, we need to do it here anyway.
16383 	 */
16384 	if (!ill->ill_isv6) {
16385 		ill_group_bcast_for_xmit(ill);
16386 		ill_nominate_bcast_rcv(illgrp);
16387 	}
16388 
16389 	if (!ipif_is_coming_up) {
16390 		/*
16391 		 * When ipif_up_done() calls this function, the multicast
16392 		 * groups have not been joined yet. So, there is no point in
16393 		 * nomination. ip_join_allmulti will handle groups when
16394 		 * ill_recover_multicast is called from ipif_up_done() later.
16395 		 */
16396 		(void) ill_nominate_mcast_rcv(illgrp);
16397 		/*
16398 		 * ipif_up_done calls ill_update_source_selection
16399 		 * anyway. Moreover, we don't want to re-create
16400 		 * interface routes while ipif_up_done() still has reference
16401 		 * to them. Refer to ipif_up_done() for more details.
16402 		 */
16403 		ill_update_source_selection(ill);
16404 	}
16405 
16406 	/*
16407 	 * Send a routing sockets message if we are inserting into
16408 	 * groups with names.
16409 	 */
16410 	if (groupname != NULL)
16411 		ip_rts_ifmsg(ill->ill_ipif);
16412 	return (0);
16413 }
16414 
16415 /*
16416  * Return the first phyint matching the groupname. There could
16417  * be more than one when there are ill groups.
16418  *
16419  * If 'usable' is set, then we exclude ones that are marked with any of
16420  * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE).
16421  * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16422  * emulation of ipmp.
16423  */
16424 phyint_t *
16425 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16426 {
16427 	phyint_t *phyi;
16428 
16429 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16430 	/*
16431 	 * Group names are stored in the phyint - a common structure
16432 	 * to both IPv4 and IPv6.
16433 	 */
16434 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16435 	for (; phyi != NULL;
16436 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16437 	    phyi, AVL_AFTER)) {
16438 		if (phyi->phyint_groupname_len == 0)
16439 			continue;
16440 		/*
16441 		 * Skip the ones that should not be used since the callers
16442 		 * sometime use this for sending packets.
16443 		 */
16444 		if (usable && (phyi->phyint_flags &
16445 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE)))
16446 			continue;
16447 
16448 		ASSERT(phyi->phyint_groupname != NULL);
16449 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16450 			return (phyi);
16451 	}
16452 	return (NULL);
16453 }
16454 
16455 
16456 /*
16457  * Return the first usable phyint matching the group index. By 'usable'
16458  * we exclude ones that are marked ununsable with any of
16459  * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE).
16460  *
16461  * Used only for the ipmp/netinfo emulation of ipmp.
16462  */
16463 phyint_t *
16464 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16465 {
16466 	phyint_t *phyi;
16467 
16468 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16469 
16470 	if (!ipst->ips_ipmp_hook_emulation)
16471 		return (NULL);
16472 
16473 	/*
16474 	 * Group indicies are stored in the phyint - a common structure
16475 	 * to both IPv4 and IPv6.
16476 	 */
16477 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16478 	for (; phyi != NULL;
16479 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16480 	    phyi, AVL_AFTER)) {
16481 		/* Ignore the ones that do not have a group */
16482 		if (phyi->phyint_groupname_len == 0)
16483 			continue;
16484 
16485 		ASSERT(phyi->phyint_group_ifindex != 0);
16486 		/*
16487 		 * Skip the ones that should not be used since the callers
16488 		 * sometime use this for sending packets.
16489 		 */
16490 		if (phyi->phyint_flags &
16491 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE))
16492 			continue;
16493 		if (phyi->phyint_group_ifindex == group_ifindex)
16494 			return (phyi);
16495 	}
16496 	return (NULL);
16497 }
16498 
16499 
16500 /*
16501  * MT notes on creation and deletion of IPMP groups
16502  *
16503  * Creation and deletion of IPMP groups introduce the need to merge or
16504  * split the associated serialization objects i.e the ipsq's. Normally all
16505  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16506  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16507  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16508  * is a need to change the <ill-ipsq> association and we have to operate on both
16509  * the source and destination IPMP groups. For eg. attempting to set the
16510  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16511  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16512  * source or destination IPMP group are mapped to a single ipsq for executing
16513  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16514  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16515  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16516  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16517  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16518  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16519  *
16520  * In the above example the ioctl handling code locates the current ipsq of hme0
16521  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16522  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16523  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16524  * the destination ipsq. If the destination ipsq is not busy, it also enters
16525  * the destination ipsq exclusively. Now the actual groupname setting operation
16526  * can proceed. If the destination ipsq is busy, the operation is enqueued
16527  * on the destination (merged) ipsq and will be handled in the unwind from
16528  * ipsq_exit.
16529  *
16530  * To prevent other threads accessing the ill while the group name change is
16531  * in progres, we bring down the ipifs which also removes the ill from the
16532  * group. The group is changed in phyint and when the first ipif on the ill
16533  * is brought up, the ill is inserted into the right IPMP group by
16534  * illgrp_insert.
16535  */
16536 /* ARGSUSED */
16537 int
16538 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16539     ip_ioctl_cmd_t *ipip, void *ifreq)
16540 {
16541 	int i;
16542 	char *tmp;
16543 	int namelen;
16544 	ill_t *ill = ipif->ipif_ill;
16545 	ill_t *ill_v4, *ill_v6;
16546 	int err = 0;
16547 	phyint_t *phyi;
16548 	phyint_t *phyi_tmp;
16549 	struct lifreq *lifr;
16550 	mblk_t	*mp1;
16551 	char *groupname;
16552 	ipsq_t *ipsq;
16553 	ip_stack_t	*ipst = ill->ill_ipst;
16554 
16555 	ASSERT(IAM_WRITER_IPIF(ipif));
16556 
16557 	/* Existance verified in ip_wput_nondata */
16558 	mp1 = mp->b_cont->b_cont;
16559 	lifr = (struct lifreq *)mp1->b_rptr;
16560 	groupname = lifr->lifr_groupname;
16561 
16562 	if (ipif->ipif_id != 0)
16563 		return (EINVAL);
16564 
16565 	phyi = ill->ill_phyint;
16566 	ASSERT(phyi != NULL);
16567 
16568 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16569 		return (EINVAL);
16570 
16571 	tmp = groupname;
16572 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16573 		;
16574 
16575 	if (i == LIFNAMSIZ) {
16576 		/* no null termination */
16577 		return (EINVAL);
16578 	}
16579 
16580 	/*
16581 	 * Calculate the namelen exclusive of the null
16582 	 * termination character.
16583 	 */
16584 	namelen = tmp - groupname;
16585 
16586 	ill_v4 = phyi->phyint_illv4;
16587 	ill_v6 = phyi->phyint_illv6;
16588 
16589 	/*
16590 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16591 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16592 	 * synchronization notes in ip.c
16593 	 */
16594 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16595 		return (EINVAL);
16596 	}
16597 
16598 	/*
16599 	 * mark the ill as changing.
16600 	 * this should queue all new requests on the syncq.
16601 	 */
16602 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16603 
16604 	if (ill_v4 != NULL)
16605 		ill_v4->ill_state_flags |= ILL_CHANGING;
16606 	if (ill_v6 != NULL)
16607 		ill_v6->ill_state_flags |= ILL_CHANGING;
16608 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16609 
16610 	if (namelen == 0) {
16611 		/*
16612 		 * Null string means remove this interface from the
16613 		 * existing group.
16614 		 */
16615 		if (phyi->phyint_groupname_len == 0) {
16616 			/*
16617 			 * Never was in a group.
16618 			 */
16619 			err = 0;
16620 			goto done;
16621 		}
16622 
16623 		/*
16624 		 * IPv4 or IPv6 may be temporarily out of the group when all
16625 		 * the ipifs are down. Thus, we need to check for ill_group to
16626 		 * be non-NULL.
16627 		 */
16628 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16629 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16630 			mutex_enter(&ill_v4->ill_lock);
16631 			if (!ill_is_quiescent(ill_v4)) {
16632 				/*
16633 				 * ipsq_pending_mp_add will not fail since
16634 				 * connp is NULL
16635 				 */
16636 				(void) ipsq_pending_mp_add(NULL,
16637 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16638 				mutex_exit(&ill_v4->ill_lock);
16639 				err = EINPROGRESS;
16640 				goto done;
16641 			}
16642 			mutex_exit(&ill_v4->ill_lock);
16643 		}
16644 
16645 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16646 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16647 			mutex_enter(&ill_v6->ill_lock);
16648 			if (!ill_is_quiescent(ill_v6)) {
16649 				(void) ipsq_pending_mp_add(NULL,
16650 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16651 				mutex_exit(&ill_v6->ill_lock);
16652 				err = EINPROGRESS;
16653 				goto done;
16654 			}
16655 			mutex_exit(&ill_v6->ill_lock);
16656 		}
16657 
16658 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16659 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16660 		mutex_enter(&phyi->phyint_lock);
16661 		ASSERT(phyi->phyint_groupname != NULL);
16662 		mi_free(phyi->phyint_groupname);
16663 		phyi->phyint_groupname = NULL;
16664 		phyi->phyint_groupname_len = 0;
16665 
16666 		/* Restore the ifindex used to be the per interface one */
16667 		phyi->phyint_group_ifindex = 0;
16668 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16669 		mutex_exit(&phyi->phyint_lock);
16670 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16671 		rw_exit(&ipst->ips_ill_g_lock);
16672 		err = ill_up_ipifs(ill, q, mp);
16673 
16674 		/*
16675 		 * set the split flag so that the ipsq can be split
16676 		 */
16677 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16678 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16679 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16680 
16681 	} else {
16682 		if (phyi->phyint_groupname_len != 0) {
16683 			ASSERT(phyi->phyint_groupname != NULL);
16684 			/* Are we inserting in the same group ? */
16685 			if (mi_strcmp(groupname,
16686 			    phyi->phyint_groupname) == 0) {
16687 				err = 0;
16688 				goto done;
16689 			}
16690 		}
16691 
16692 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16693 		/*
16694 		 * Merge ipsq for the group's.
16695 		 * This check is here as multiple groups/ills might be
16696 		 * sharing the same ipsq.
16697 		 * If we have to merege than the operation is restarted
16698 		 * on the new ipsq.
16699 		 */
16700 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16701 		if (phyi->phyint_ipsq != ipsq) {
16702 			rw_exit(&ipst->ips_ill_g_lock);
16703 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16704 			goto done;
16705 		}
16706 		/*
16707 		 * Running exclusive on new ipsq.
16708 		 */
16709 
16710 		ASSERT(ipsq != NULL);
16711 		ASSERT(ipsq->ipsq_writer == curthread);
16712 
16713 		/*
16714 		 * Check whether the ill_type and ill_net_type matches before
16715 		 * we allocate any memory so that the cleanup is easier.
16716 		 *
16717 		 * We can't group dissimilar ones as we can't load spread
16718 		 * packets across the group because of potential link-level
16719 		 * header differences.
16720 		 */
16721 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16722 		if (phyi_tmp != NULL) {
16723 			if ((ill_v4 != NULL &&
16724 			    phyi_tmp->phyint_illv4 != NULL) &&
16725 			    ((ill_v4->ill_net_type !=
16726 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16727 			    (ill_v4->ill_type !=
16728 			    phyi_tmp->phyint_illv4->ill_type))) {
16729 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16730 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16731 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16732 				rw_exit(&ipst->ips_ill_g_lock);
16733 				return (EINVAL);
16734 			}
16735 			if ((ill_v6 != NULL &&
16736 			    phyi_tmp->phyint_illv6 != NULL) &&
16737 			    ((ill_v6->ill_net_type !=
16738 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16739 			    (ill_v6->ill_type !=
16740 			    phyi_tmp->phyint_illv6->ill_type))) {
16741 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16742 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16743 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16744 				rw_exit(&ipst->ips_ill_g_lock);
16745 				return (EINVAL);
16746 			}
16747 		}
16748 
16749 		rw_exit(&ipst->ips_ill_g_lock);
16750 
16751 		/*
16752 		 * bring down all v4 ipifs.
16753 		 */
16754 		if (ill_v4 != NULL) {
16755 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16756 		}
16757 
16758 		/*
16759 		 * bring down all v6 ipifs.
16760 		 */
16761 		if (ill_v6 != NULL) {
16762 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16763 		}
16764 
16765 		/*
16766 		 * make sure all ipifs are down and there are no active
16767 		 * references. Call to ipsq_pending_mp_add will not fail
16768 		 * since connp is NULL.
16769 		 */
16770 		if (ill_v4 != NULL) {
16771 			mutex_enter(&ill_v4->ill_lock);
16772 			if (!ill_is_quiescent(ill_v4)) {
16773 				(void) ipsq_pending_mp_add(NULL,
16774 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16775 				mutex_exit(&ill_v4->ill_lock);
16776 				err = EINPROGRESS;
16777 				goto done;
16778 			}
16779 			mutex_exit(&ill_v4->ill_lock);
16780 		}
16781 
16782 		if (ill_v6 != NULL) {
16783 			mutex_enter(&ill_v6->ill_lock);
16784 			if (!ill_is_quiescent(ill_v6)) {
16785 				(void) ipsq_pending_mp_add(NULL,
16786 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16787 				mutex_exit(&ill_v6->ill_lock);
16788 				err = EINPROGRESS;
16789 				goto done;
16790 			}
16791 			mutex_exit(&ill_v6->ill_lock);
16792 		}
16793 
16794 		/*
16795 		 * allocate including space for null terminator
16796 		 * before we insert.
16797 		 */
16798 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16799 		if (tmp == NULL)
16800 			return (ENOMEM);
16801 
16802 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16803 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16804 		mutex_enter(&phyi->phyint_lock);
16805 		if (phyi->phyint_groupname_len != 0) {
16806 			ASSERT(phyi->phyint_groupname != NULL);
16807 			mi_free(phyi->phyint_groupname);
16808 		}
16809 
16810 		/*
16811 		 * setup the new group name.
16812 		 */
16813 		phyi->phyint_groupname = tmp;
16814 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16815 		phyi->phyint_groupname_len = namelen + 1;
16816 
16817 		if (ipst->ips_ipmp_hook_emulation) {
16818 			/*
16819 			 * If the group already exists we use the existing
16820 			 * group_ifindex, otherwise we pick a new index here.
16821 			 */
16822 			if (phyi_tmp != NULL) {
16823 				phyi->phyint_group_ifindex =
16824 				    phyi_tmp->phyint_group_ifindex;
16825 			} else {
16826 				/* XXX We need a recovery strategy here. */
16827 				if (!ip_assign_ifindex(
16828 				    &phyi->phyint_group_ifindex, ipst))
16829 					cmn_err(CE_PANIC,
16830 					    "ip_assign_ifindex() failed");
16831 			}
16832 		}
16833 		/*
16834 		 * Select whether the netinfo and hook use the per-interface
16835 		 * or per-group ifindex.
16836 		 */
16837 		if (ipst->ips_ipmp_hook_emulation)
16838 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16839 		else
16840 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16841 
16842 		if (ipst->ips_ipmp_hook_emulation &&
16843 		    phyi_tmp != NULL) {
16844 			/* First phyint in group - group PLUMB event */
16845 			ill_nic_info_plumb(ill, B_TRUE);
16846 		}
16847 		mutex_exit(&phyi->phyint_lock);
16848 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16849 		rw_exit(&ipst->ips_ill_g_lock);
16850 
16851 		err = ill_up_ipifs(ill, q, mp);
16852 	}
16853 
16854 done:
16855 	/*
16856 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16857 	 */
16858 	if (err != EINPROGRESS) {
16859 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16860 		if (ill_v4 != NULL)
16861 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16862 		if (ill_v6 != NULL)
16863 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16864 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16865 	}
16866 	return (err);
16867 }
16868 
16869 /* ARGSUSED */
16870 int
16871 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16872     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16873 {
16874 	ill_t *ill;
16875 	phyint_t *phyi;
16876 	struct lifreq *lifr;
16877 	mblk_t	*mp1;
16878 
16879 	/* Existence verified in ip_wput_nondata */
16880 	mp1 = mp->b_cont->b_cont;
16881 	lifr = (struct lifreq *)mp1->b_rptr;
16882 	ill = ipif->ipif_ill;
16883 	phyi = ill->ill_phyint;
16884 
16885 	lifr->lifr_groupname[0] = '\0';
16886 	/*
16887 	 * ill_group may be null if all the interfaces
16888 	 * are down. But still, the phyint should always
16889 	 * hold the name.
16890 	 */
16891 	if (phyi->phyint_groupname_len != 0) {
16892 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16893 		    phyi->phyint_groupname_len);
16894 	}
16895 
16896 	return (0);
16897 }
16898 
16899 
16900 typedef struct conn_move_s {
16901 	ill_t	*cm_from_ill;
16902 	ill_t	*cm_to_ill;
16903 	int	cm_ifindex;
16904 } conn_move_t;
16905 
16906 /*
16907  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16908  */
16909 static void
16910 conn_move(conn_t *connp, caddr_t arg)
16911 {
16912 	conn_move_t *connm;
16913 	int ifindex;
16914 	int i;
16915 	ill_t *from_ill;
16916 	ill_t *to_ill;
16917 	ilg_t *ilg;
16918 	ilm_t *ret_ilm;
16919 
16920 	connm = (conn_move_t *)arg;
16921 	ifindex = connm->cm_ifindex;
16922 	from_ill = connm->cm_from_ill;
16923 	to_ill = connm->cm_to_ill;
16924 
16925 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16926 
16927 	/* All multicast fields protected by conn_lock */
16928 	mutex_enter(&connp->conn_lock);
16929 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16930 	if ((connp->conn_outgoing_ill == from_ill) &&
16931 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16932 		connp->conn_outgoing_ill = to_ill;
16933 		connp->conn_incoming_ill = to_ill;
16934 	}
16935 
16936 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16937 
16938 	if ((connp->conn_multicast_ill == from_ill) &&
16939 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16940 		connp->conn_multicast_ill = connm->cm_to_ill;
16941 	}
16942 
16943 	/* Change IP_XMIT_IF associations */
16944 	if ((connp->conn_xmit_if_ill == from_ill) &&
16945 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16946 		connp->conn_xmit_if_ill = to_ill;
16947 	}
16948 	/*
16949 	 * Change the ilg_ill to point to the new one. This assumes
16950 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16951 	 * has been told to receive packets on this interface.
16952 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16953 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16954 	 * some ilms may not have moved. We check to see whether
16955 	 * the ilms have moved to to_ill. We can't check on from_ill
16956 	 * as in the process of moving, we could have split an ilm
16957 	 * in to two - which has the same orig_ifindex and v6group.
16958 	 *
16959 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16960 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16961 	 */
16962 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16963 		ilg = &connp->conn_ilg[i];
16964 		if ((ilg->ilg_ill == from_ill) &&
16965 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16966 			/* ifindex != 0 indicates failback */
16967 			if (ifindex != 0) {
16968 				connp->conn_ilg[i].ilg_ill = to_ill;
16969 				continue;
16970 			}
16971 
16972 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16973 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16974 			    connp->conn_zoneid);
16975 
16976 			if (ret_ilm != NULL)
16977 				connp->conn_ilg[i].ilg_ill = to_ill;
16978 		}
16979 	}
16980 	mutex_exit(&connp->conn_lock);
16981 }
16982 
16983 static void
16984 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16985 {
16986 	conn_move_t connm;
16987 	ip_stack_t	*ipst = from_ill->ill_ipst;
16988 
16989 	connm.cm_from_ill = from_ill;
16990 	connm.cm_to_ill = to_ill;
16991 	connm.cm_ifindex = ifindex;
16992 
16993 	ipcl_walk(conn_move, (caddr_t)&connm, ipst);
16994 }
16995 
16996 /*
16997  * ilm has been moved from from_ill to to_ill.
16998  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16999  * appropriately.
17000  *
17001  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
17002  *	  the code there de-references ipif_ill to get the ill to
17003  *	  send multicast requests. It does not work as ipif is on its
17004  *	  move and already moved when this function is called.
17005  *	  Thus, we need to use from_ill and to_ill send down multicast
17006  *	  requests.
17007  */
17008 static void
17009 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
17010 {
17011 	ipif_t *ipif;
17012 	ilm_t *ilm;
17013 
17014 	/*
17015 	 * See whether we need to send down DL_ENABMULTI_REQ on
17016 	 * to_ill as ilm has just been added.
17017 	 */
17018 	ASSERT(IAM_WRITER_ILL(to_ill));
17019 	ASSERT(IAM_WRITER_ILL(from_ill));
17020 
17021 	ILM_WALKER_HOLD(to_ill);
17022 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
17023 
17024 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
17025 			continue;
17026 		/*
17027 		 * no locks held, ill/ipif cannot dissappear as long
17028 		 * as we are writer.
17029 		 */
17030 		ipif = to_ill->ill_ipif;
17031 		/*
17032 		 * No need to hold any lock as we are the writer and this
17033 		 * can only be changed by a writer.
17034 		 */
17035 		ilm->ilm_is_new = B_FALSE;
17036 
17037 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
17038 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
17039 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
17040 			    "resolver\n"));
17041 			continue;		/* Must be IRE_IF_NORESOLVER */
17042 		}
17043 
17044 
17045 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
17046 			ip1dbg(("ilm_send_multicast_reqs: "
17047 			    "to_ill MULTI_BCAST\n"));
17048 			goto from;
17049 		}
17050 
17051 		if (to_ill->ill_isv6)
17052 			mld_joingroup(ilm);
17053 		else
17054 			igmp_joingroup(ilm);
17055 
17056 		if (to_ill->ill_ipif_up_count == 0) {
17057 			/*
17058 			 * Nobody there. All multicast addresses will be
17059 			 * re-joined when we get the DL_BIND_ACK bringing the
17060 			 * interface up.
17061 			 */
17062 			ilm->ilm_notify_driver = B_FALSE;
17063 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
17064 			goto from;
17065 		}
17066 
17067 		/*
17068 		 * For allmulti address, we want to join on only one interface.
17069 		 * Checking for ilm_numentries_v6 is not correct as you may
17070 		 * find an ilm with zero address on to_ill, but we may not
17071 		 * have nominated to_ill for receiving. Thus, if we have
17072 		 * nominated from_ill (ill_join_allmulti is set), nominate
17073 		 * only if to_ill is not already nominated (to_ill normally
17074 		 * should not have been nominated if "from_ill" has already
17075 		 * been nominated. As we don't prevent failovers from happening
17076 		 * across groups, we don't assert).
17077 		 */
17078 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
17079 			/*
17080 			 * There is no need to hold ill locks as we are
17081 			 * writer on both ills and when ill_join_allmulti
17082 			 * is changed the thread is always a writer.
17083 			 */
17084 			if (from_ill->ill_join_allmulti &&
17085 			    !to_ill->ill_join_allmulti) {
17086 				(void) ip_join_allmulti(to_ill->ill_ipif);
17087 			}
17088 		} else if (ilm->ilm_notify_driver) {
17089 
17090 			/*
17091 			 * This is a newly moved ilm so we need to tell the
17092 			 * driver about the new group. There can be more than
17093 			 * one ilm's for the same group in the list each with a
17094 			 * different orig_ifindex. We have to inform the driver
17095 			 * once. In ilm_move_v[4,6] we only set the flag
17096 			 * ilm_notify_driver for the first ilm.
17097 			 */
17098 
17099 			(void) ip_ll_send_enabmulti_req(to_ill,
17100 			    &ilm->ilm_v6addr);
17101 		}
17102 
17103 		ilm->ilm_notify_driver = B_FALSE;
17104 
17105 		/*
17106 		 * See whether we need to send down DL_DISABMULTI_REQ on
17107 		 * from_ill as ilm has just been removed.
17108 		 */
17109 from:
17110 		ipif = from_ill->ill_ipif;
17111 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
17112 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
17113 			ip1dbg(("ilm_send_multicast_reqs: "
17114 			    "from_ill not resolver\n"));
17115 			continue;		/* Must be IRE_IF_NORESOLVER */
17116 		}
17117 
17118 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
17119 			ip1dbg(("ilm_send_multicast_reqs: "
17120 			    "from_ill MULTI_BCAST\n"));
17121 			continue;
17122 		}
17123 
17124 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
17125 			if (from_ill->ill_join_allmulti)
17126 			    (void) ip_leave_allmulti(from_ill->ill_ipif);
17127 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
17128 			(void) ip_ll_send_disabmulti_req(from_ill,
17129 		    &ilm->ilm_v6addr);
17130 		}
17131 	}
17132 	ILM_WALKER_RELE(to_ill);
17133 }
17134 
17135 /*
17136  * This function is called when all multicast memberships needs
17137  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
17138  * called only once unlike the IPv4 counterpart where it is called after
17139  * every logical interface is moved. The reason is due to multicast
17140  * memberships are joined using an interface address in IPv4 while in
17141  * IPv6, interface index is used.
17142  */
17143 static void
17144 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
17145 {
17146 	ilm_t	*ilm;
17147 	ilm_t	*ilm_next;
17148 	ilm_t	*new_ilm;
17149 	ilm_t	**ilmp;
17150 	int	count;
17151 	char buf[INET6_ADDRSTRLEN];
17152 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
17153 	ip_stack_t	*ipst = from_ill->ill_ipst;
17154 
17155 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17156 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17157 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17158 
17159 	if (ifindex == 0) {
17160 		/*
17161 		 * Form the solicited node mcast address which is used later.
17162 		 */
17163 		ipif_t *ipif;
17164 
17165 		ipif = from_ill->ill_ipif;
17166 		ASSERT(ipif->ipif_id == 0);
17167 
17168 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
17169 	}
17170 
17171 	ilmp = &from_ill->ill_ilm;
17172 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17173 		ilm_next = ilm->ilm_next;
17174 
17175 		if (ilm->ilm_flags & ILM_DELETED) {
17176 			ilmp = &ilm->ilm_next;
17177 			continue;
17178 		}
17179 
17180 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
17181 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
17182 		ASSERT(ilm->ilm_orig_ifindex != 0);
17183 		if (ilm->ilm_orig_ifindex == ifindex) {
17184 			/*
17185 			 * We are failing back multicast memberships.
17186 			 * If the same ilm exists in to_ill, it means somebody
17187 			 * has joined the same group there e.g. ff02::1
17188 			 * is joined within the kernel when the interfaces
17189 			 * came UP.
17190 			 */
17191 			ASSERT(ilm->ilm_ipif == NULL);
17192 			if (new_ilm != NULL) {
17193 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17194 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17195 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17196 					new_ilm->ilm_is_new = B_TRUE;
17197 				}
17198 			} else {
17199 				/*
17200 				 * check if we can just move the ilm
17201 				 */
17202 				if (from_ill->ill_ilm_walker_cnt != 0) {
17203 					/*
17204 					 * We have walkers we cannot move
17205 					 * the ilm, so allocate a new ilm,
17206 					 * this (old) ilm will be marked
17207 					 * ILM_DELETED at the end of the loop
17208 					 * and will be freed when the
17209 					 * last walker exits.
17210 					 */
17211 					new_ilm = (ilm_t *)mi_zalloc
17212 					    (sizeof (ilm_t));
17213 					if (new_ilm == NULL) {
17214 						ip0dbg(("ilm_move_v6: "
17215 						    "FAILBACK of IPv6"
17216 						    " multicast address %s : "
17217 						    "from %s to"
17218 						    " %s failed : ENOMEM \n",
17219 						    inet_ntop(AF_INET6,
17220 						    &ilm->ilm_v6addr, buf,
17221 						    sizeof (buf)),
17222 						    from_ill->ill_name,
17223 						    to_ill->ill_name));
17224 
17225 							ilmp = &ilm->ilm_next;
17226 							continue;
17227 					}
17228 					*new_ilm = *ilm;
17229 					/*
17230 					 * we don't want new_ilm linked to
17231 					 * ilm's filter list.
17232 					 */
17233 					new_ilm->ilm_filter = NULL;
17234 				} else {
17235 					/*
17236 					 * No walkers we can move the ilm.
17237 					 * lets take it out of the list.
17238 					 */
17239 					*ilmp = ilm->ilm_next;
17240 					ilm->ilm_next = NULL;
17241 					new_ilm = ilm;
17242 				}
17243 
17244 				/*
17245 				 * if this is the first ilm for the group
17246 				 * set ilm_notify_driver so that we notify the
17247 				 * driver in ilm_send_multicast_reqs.
17248 				 */
17249 				if (ilm_lookup_ill_v6(to_ill,
17250 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17251 					new_ilm->ilm_notify_driver = B_TRUE;
17252 
17253 				new_ilm->ilm_ill = to_ill;
17254 				/* Add to the to_ill's list */
17255 				new_ilm->ilm_next = to_ill->ill_ilm;
17256 				to_ill->ill_ilm = new_ilm;
17257 				/*
17258 				 * set the flag so that mld_joingroup is
17259 				 * called in ilm_send_multicast_reqs().
17260 				 */
17261 				new_ilm->ilm_is_new = B_TRUE;
17262 			}
17263 			goto bottom;
17264 		} else if (ifindex != 0) {
17265 			/*
17266 			 * If this is FAILBACK (ifindex != 0) and the ifindex
17267 			 * has not matched above, look at the next ilm.
17268 			 */
17269 			ilmp = &ilm->ilm_next;
17270 			continue;
17271 		}
17272 		/*
17273 		 * If we are here, it means ifindex is 0. Failover
17274 		 * everything.
17275 		 *
17276 		 * We need to handle solicited node mcast address
17277 		 * and all_nodes mcast address differently as they
17278 		 * are joined witin the kenrel (ipif_multicast_up)
17279 		 * and potentially from the userland. We are called
17280 		 * after the ipifs of from_ill has been moved.
17281 		 * If we still find ilms on ill with solicited node
17282 		 * mcast address or all_nodes mcast address, it must
17283 		 * belong to the UP interface that has not moved e.g.
17284 		 * ipif_id 0 with the link local prefix does not move.
17285 		 * We join this on the new ill accounting for all the
17286 		 * userland memberships so that applications don't
17287 		 * see any failure.
17288 		 *
17289 		 * We need to make sure that we account only for the
17290 		 * solicited node and all node multicast addresses
17291 		 * that was brought UP on these. In the case of
17292 		 * a failover from A to B, we might have ilms belonging
17293 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
17294 		 * for the membership from the userland. If we are failing
17295 		 * over from B to C now, we will find the ones belonging
17296 		 * to A on B. These don't account for the ill_ipif_up_count.
17297 		 * They just move from B to C. The check below on
17298 		 * ilm_orig_ifindex ensures that.
17299 		 */
17300 		if ((ilm->ilm_orig_ifindex ==
17301 		    from_ill->ill_phyint->phyint_ifindex) &&
17302 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
17303 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
17304 		    &ilm->ilm_v6addr))) {
17305 			ASSERT(ilm->ilm_refcnt > 0);
17306 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
17307 			/*
17308 			 * For indentation reasons, we are not using a
17309 			 * "else" here.
17310 			 */
17311 			if (count == 0) {
17312 				ilmp = &ilm->ilm_next;
17313 				continue;
17314 			}
17315 			ilm->ilm_refcnt -= count;
17316 			if (new_ilm != NULL) {
17317 				/*
17318 				 * Can find one with the same
17319 				 * ilm_orig_ifindex, if we are failing
17320 				 * over to a STANDBY. This happens
17321 				 * when somebody wants to join a group
17322 				 * on a STANDBY interface and we
17323 				 * internally join on a different one.
17324 				 * If we had joined on from_ill then, a
17325 				 * failover now will find a new ilm
17326 				 * with this index.
17327 				 */
17328 				ip1dbg(("ilm_move_v6: FAILOVER, found"
17329 				    " new ilm on %s, group address %s\n",
17330 				    to_ill->ill_name,
17331 				    inet_ntop(AF_INET6,
17332 				    &ilm->ilm_v6addr, buf,
17333 				    sizeof (buf))));
17334 				new_ilm->ilm_refcnt += count;
17335 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17336 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17337 					new_ilm->ilm_is_new = B_TRUE;
17338 				}
17339 			} else {
17340 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17341 				if (new_ilm == NULL) {
17342 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17343 					    " multicast address %s : from %s to"
17344 					    " %s failed : ENOMEM \n",
17345 					    inet_ntop(AF_INET6,
17346 					    &ilm->ilm_v6addr, buf,
17347 					    sizeof (buf)), from_ill->ill_name,
17348 					    to_ill->ill_name));
17349 					ilmp = &ilm->ilm_next;
17350 					continue;
17351 				}
17352 				*new_ilm = *ilm;
17353 				new_ilm->ilm_filter = NULL;
17354 				new_ilm->ilm_refcnt = count;
17355 				new_ilm->ilm_timer = INFINITY;
17356 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17357 				new_ilm->ilm_is_new = B_TRUE;
17358 				/*
17359 				 * If the to_ill has not joined this
17360 				 * group we need to tell the driver in
17361 				 * ill_send_multicast_reqs.
17362 				 */
17363 				if (ilm_lookup_ill_v6(to_ill,
17364 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17365 					new_ilm->ilm_notify_driver = B_TRUE;
17366 
17367 				new_ilm->ilm_ill = to_ill;
17368 				/* Add to the to_ill's list */
17369 				new_ilm->ilm_next = to_ill->ill_ilm;
17370 				to_ill->ill_ilm = new_ilm;
17371 				ASSERT(new_ilm->ilm_ipif == NULL);
17372 			}
17373 			if (ilm->ilm_refcnt == 0) {
17374 				goto bottom;
17375 			} else {
17376 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17377 				CLEAR_SLIST(new_ilm->ilm_filter);
17378 				ilmp = &ilm->ilm_next;
17379 			}
17380 			continue;
17381 		} else {
17382 			/*
17383 			 * ifindex = 0 means, move everything pointing at
17384 			 * from_ill. We are doing this becuase ill has
17385 			 * either FAILED or became INACTIVE.
17386 			 *
17387 			 * As we would like to move things later back to
17388 			 * from_ill, we want to retain the identity of this
17389 			 * ilm. Thus, we don't blindly increment the reference
17390 			 * count on the ilms matching the address alone. We
17391 			 * need to match on the ilm_orig_index also. new_ilm
17392 			 * was obtained by matching ilm_orig_index also.
17393 			 */
17394 			if (new_ilm != NULL) {
17395 				/*
17396 				 * This is possible only if a previous restore
17397 				 * was incomplete i.e restore to
17398 				 * ilm_orig_ifindex left some ilms because
17399 				 * of some failures. Thus when we are failing
17400 				 * again, we might find our old friends there.
17401 				 */
17402 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17403 				    " on %s, group address %s\n",
17404 				    to_ill->ill_name,
17405 				    inet_ntop(AF_INET6,
17406 				    &ilm->ilm_v6addr, buf,
17407 				    sizeof (buf))));
17408 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17409 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17410 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17411 					new_ilm->ilm_is_new = B_TRUE;
17412 				}
17413 			} else {
17414 				if (from_ill->ill_ilm_walker_cnt != 0) {
17415 					new_ilm = (ilm_t *)
17416 					    mi_zalloc(sizeof (ilm_t));
17417 					if (new_ilm == NULL) {
17418 						ip0dbg(("ilm_move_v6: "
17419 						    "FAILOVER of IPv6"
17420 						    " multicast address %s : "
17421 						    "from %s to"
17422 						    " %s failed : ENOMEM \n",
17423 						    inet_ntop(AF_INET6,
17424 						    &ilm->ilm_v6addr, buf,
17425 						    sizeof (buf)),
17426 						    from_ill->ill_name,
17427 						    to_ill->ill_name));
17428 
17429 							ilmp = &ilm->ilm_next;
17430 							continue;
17431 					}
17432 					*new_ilm = *ilm;
17433 					new_ilm->ilm_filter = NULL;
17434 				} else {
17435 					*ilmp = ilm->ilm_next;
17436 					new_ilm = ilm;
17437 				}
17438 				/*
17439 				 * If the to_ill has not joined this
17440 				 * group we need to tell the driver in
17441 				 * ill_send_multicast_reqs.
17442 				 */
17443 				if (ilm_lookup_ill_v6(to_ill,
17444 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17445 					new_ilm->ilm_notify_driver = B_TRUE;
17446 
17447 				/* Add to the to_ill's list */
17448 				new_ilm->ilm_next = to_ill->ill_ilm;
17449 				to_ill->ill_ilm = new_ilm;
17450 				ASSERT(ilm->ilm_ipif == NULL);
17451 				new_ilm->ilm_ill = to_ill;
17452 				new_ilm->ilm_is_new = B_TRUE;
17453 			}
17454 
17455 		}
17456 
17457 bottom:
17458 		/*
17459 		 * Revert multicast filter state to (EXCLUDE, NULL).
17460 		 * new_ilm->ilm_is_new should already be set if needed.
17461 		 */
17462 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17463 		CLEAR_SLIST(new_ilm->ilm_filter);
17464 		/*
17465 		 * We allocated/got a new ilm, free the old one.
17466 		 */
17467 		if (new_ilm != ilm) {
17468 			if (from_ill->ill_ilm_walker_cnt == 0) {
17469 				*ilmp = ilm->ilm_next;
17470 				ilm->ilm_next = NULL;
17471 				FREE_SLIST(ilm->ilm_filter);
17472 				FREE_SLIST(ilm->ilm_pendsrcs);
17473 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17474 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17475 				mi_free((char *)ilm);
17476 			} else {
17477 				ilm->ilm_flags |= ILM_DELETED;
17478 				from_ill->ill_ilm_cleanup_reqd = 1;
17479 				ilmp = &ilm->ilm_next;
17480 			}
17481 		}
17482 	}
17483 }
17484 
17485 /*
17486  * Move all the multicast memberships to to_ill. Called when
17487  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17488  * different from IPv6 counterpart as multicast memberships are associated
17489  * with ills in IPv6. This function is called after every ipif is moved
17490  * unlike IPv6, where it is moved only once.
17491  */
17492 static void
17493 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17494 {
17495 	ilm_t	*ilm;
17496 	ilm_t	*ilm_next;
17497 	ilm_t	*new_ilm;
17498 	ilm_t	**ilmp;
17499 	ip_stack_t	*ipst = from_ill->ill_ipst;
17500 
17501 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17502 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17503 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17504 
17505 	ilmp = &from_ill->ill_ilm;
17506 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17507 		ilm_next = ilm->ilm_next;
17508 
17509 		if (ilm->ilm_flags & ILM_DELETED) {
17510 			ilmp = &ilm->ilm_next;
17511 			continue;
17512 		}
17513 
17514 		ASSERT(ilm->ilm_ipif != NULL);
17515 
17516 		if (ilm->ilm_ipif != ipif) {
17517 			ilmp = &ilm->ilm_next;
17518 			continue;
17519 		}
17520 
17521 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17522 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17523 			/*
17524 			 * We joined this in ipif_multicast_up
17525 			 * and we never did an ipif_multicast_down
17526 			 * for IPv4. If nobody else from the userland
17527 			 * has reference, we free the ilm, and later
17528 			 * when this ipif comes up on the new ill,
17529 			 * we will join this again.
17530 			 */
17531 			if (--ilm->ilm_refcnt == 0)
17532 				goto delete_ilm;
17533 
17534 			new_ilm = ilm_lookup_ipif(ipif,
17535 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17536 			if (new_ilm != NULL) {
17537 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17538 				/*
17539 				 * We still need to deal with the from_ill.
17540 				 */
17541 				new_ilm->ilm_is_new = B_TRUE;
17542 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17543 				CLEAR_SLIST(new_ilm->ilm_filter);
17544 				goto delete_ilm;
17545 			}
17546 			/*
17547 			 * If we could not find one e.g. ipif is
17548 			 * still down on to_ill, we add this ilm
17549 			 * on ill_new to preserve the reference
17550 			 * count.
17551 			 */
17552 		}
17553 		/*
17554 		 * When ipifs move, ilms always move with it
17555 		 * to the NEW ill. Thus we should never be
17556 		 * able to find ilm till we really move it here.
17557 		 */
17558 		ASSERT(ilm_lookup_ipif(ipif,
17559 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17560 
17561 		if (from_ill->ill_ilm_walker_cnt != 0) {
17562 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17563 			if (new_ilm == NULL) {
17564 				char buf[INET6_ADDRSTRLEN];
17565 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17566 				    " multicast address %s : "
17567 				    "from %s to"
17568 				    " %s failed : ENOMEM \n",
17569 				    inet_ntop(AF_INET,
17570 				    &ilm->ilm_v6addr, buf,
17571 				    sizeof (buf)),
17572 				    from_ill->ill_name,
17573 				    to_ill->ill_name));
17574 
17575 				ilmp = &ilm->ilm_next;
17576 				continue;
17577 			}
17578 			*new_ilm = *ilm;
17579 			/* We don't want new_ilm linked to ilm's filter list */
17580 			new_ilm->ilm_filter = NULL;
17581 		} else {
17582 			/* Remove from the list */
17583 			*ilmp = ilm->ilm_next;
17584 			new_ilm = ilm;
17585 		}
17586 
17587 		/*
17588 		 * If we have never joined this group on the to_ill
17589 		 * make sure we tell the driver.
17590 		 */
17591 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17592 		    ALL_ZONES) == NULL)
17593 			new_ilm->ilm_notify_driver = B_TRUE;
17594 
17595 		/* Add to the to_ill's list */
17596 		new_ilm->ilm_next = to_ill->ill_ilm;
17597 		to_ill->ill_ilm = new_ilm;
17598 		new_ilm->ilm_is_new = B_TRUE;
17599 
17600 		/*
17601 		 * Revert multicast filter state to (EXCLUDE, NULL)
17602 		 */
17603 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17604 		CLEAR_SLIST(new_ilm->ilm_filter);
17605 
17606 		/*
17607 		 * Delete only if we have allocated a new ilm.
17608 		 */
17609 		if (new_ilm != ilm) {
17610 delete_ilm:
17611 			if (from_ill->ill_ilm_walker_cnt == 0) {
17612 				/* Remove from the list */
17613 				*ilmp = ilm->ilm_next;
17614 				ilm->ilm_next = NULL;
17615 				FREE_SLIST(ilm->ilm_filter);
17616 				FREE_SLIST(ilm->ilm_pendsrcs);
17617 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17618 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17619 				mi_free((char *)ilm);
17620 			} else {
17621 				ilm->ilm_flags |= ILM_DELETED;
17622 				from_ill->ill_ilm_cleanup_reqd = 1;
17623 				ilmp = &ilm->ilm_next;
17624 			}
17625 		}
17626 	}
17627 }
17628 
17629 static uint_t
17630 ipif_get_id(ill_t *ill, uint_t id)
17631 {
17632 	uint_t	unit;
17633 	ipif_t	*tipif;
17634 	boolean_t found = B_FALSE;
17635 	ip_stack_t	*ipst = ill->ill_ipst;
17636 
17637 	/*
17638 	 * During failback, we want to go back to the same id
17639 	 * instead of the smallest id so that the original
17640 	 * configuration is maintained. id is non-zero in that
17641 	 * case.
17642 	 */
17643 	if (id != 0) {
17644 		/*
17645 		 * While failing back, if we still have an ipif with
17646 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17647 		 * as soon as we return from this function. It was
17648 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17649 		 * we can choose the smallest id. Thus we return zero
17650 		 * in that case ignoring the hint.
17651 		 */
17652 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17653 			return (0);
17654 		for (tipif = ill->ill_ipif; tipif != NULL;
17655 		    tipif = tipif->ipif_next) {
17656 			if (tipif->ipif_id == id) {
17657 				found = B_TRUE;
17658 				break;
17659 			}
17660 		}
17661 		/*
17662 		 * If somebody already plumbed another logical
17663 		 * with the same id, we won't be able to find it.
17664 		 */
17665 		if (!found)
17666 			return (id);
17667 	}
17668 	for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17669 		found = B_FALSE;
17670 		for (tipif = ill->ill_ipif; tipif != NULL;
17671 		    tipif = tipif->ipif_next) {
17672 			if (tipif->ipif_id == unit) {
17673 				found = B_TRUE;
17674 				break;
17675 			}
17676 		}
17677 		if (!found)
17678 			break;
17679 	}
17680 	return (unit);
17681 }
17682 
17683 /* ARGSUSED */
17684 static int
17685 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17686     ipif_t **rep_ipif_ptr)
17687 {
17688 	ill_t	*from_ill;
17689 	ipif_t	*rep_ipif;
17690 	ipif_t	**ipifp;
17691 	uint_t	unit;
17692 	int err = 0;
17693 	ipif_t	*to_ipif;
17694 	struct iocblk	*iocp;
17695 	boolean_t failback_cmd;
17696 	boolean_t remove_ipif;
17697 	int	rc;
17698 	ip_stack_t	*ipst;
17699 
17700 	ASSERT(IAM_WRITER_ILL(to_ill));
17701 	ASSERT(IAM_WRITER_IPIF(ipif));
17702 
17703 	iocp = (struct iocblk *)mp->b_rptr;
17704 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17705 	remove_ipif = B_FALSE;
17706 
17707 	from_ill = ipif->ipif_ill;
17708 	ipst = from_ill->ill_ipst;
17709 
17710 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17711 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17712 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17713 
17714 	/*
17715 	 * Don't move LINK LOCAL addresses as they are tied to
17716 	 * physical interface.
17717 	 */
17718 	if (from_ill->ill_isv6 &&
17719 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17720 		ipif->ipif_was_up = B_FALSE;
17721 		IPIF_UNMARK_MOVING(ipif);
17722 		return (0);
17723 	}
17724 
17725 	/*
17726 	 * We set the ipif_id to maximum so that the search for
17727 	 * ipif_id will pick the lowest number i.e 0 in the
17728 	 * following 2 cases :
17729 	 *
17730 	 * 1) We have a replacement ipif at the head of to_ill.
17731 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17732 	 *    on to_ill and hence the MOVE might fail. We want to
17733 	 *    remove it only if we could move the ipif. Thus, by
17734 	 *    setting it to the MAX value, we make the search in
17735 	 *    ipif_get_id return the zeroth id.
17736 	 *
17737 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17738 	 *    we might just have a zero address plumbed on the ipif
17739 	 *    with zero id in the case of IPv4. We remove that while
17740 	 *    doing the failback. We want to remove it only if we
17741 	 *    could move the ipif. Thus, by setting it to the MAX
17742 	 *    value, we make the search in ipif_get_id return the
17743 	 *    zeroth id.
17744 	 *
17745 	 * Both (1) and (2) are done only when when we are moving
17746 	 * an ipif (either due to failover/failback) which originally
17747 	 * belonged to this interface i.e the ipif_orig_ifindex is
17748 	 * the same as to_ill's ifindex. This is needed so that
17749 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17750 	 * from B -> A (B is being removed from the group) and
17751 	 * FAILBACK from A -> B restores the original configuration.
17752 	 * Without the check for orig_ifindex, the second FAILOVER
17753 	 * could make the ipif belonging to B replace the A's zeroth
17754 	 * ipif and the subsequent failback re-creating the replacement
17755 	 * ipif again.
17756 	 *
17757 	 * NOTE : We created the replacement ipif when we did a
17758 	 * FAILOVER (See below). We could check for FAILBACK and
17759 	 * then look for replacement ipif to be removed. But we don't
17760 	 * want to do that because we wan't to allow the possibility
17761 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17762 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17763 	 * from B -> A.
17764 	 */
17765 	to_ipif = to_ill->ill_ipif;
17766 	if ((to_ill->ill_phyint->phyint_ifindex ==
17767 	    ipif->ipif_orig_ifindex) &&
17768 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17769 		ASSERT(to_ipif->ipif_id == 0);
17770 		remove_ipif = B_TRUE;
17771 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17772 	}
17773 	/*
17774 	 * Find the lowest logical unit number on the to_ill.
17775 	 * If we are failing back, try to get the original id
17776 	 * rather than the lowest one so that the original
17777 	 * configuration is maintained.
17778 	 *
17779 	 * XXX need a better scheme for this.
17780 	 */
17781 	if (failback_cmd) {
17782 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17783 	} else {
17784 		unit = ipif_get_id(to_ill, 0);
17785 	}
17786 
17787 	/* Reset back to zero in case we fail below */
17788 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17789 		to_ipif->ipif_id = 0;
17790 
17791 	if (unit == ipst->ips_ip_addrs_per_if) {
17792 		ipif->ipif_was_up = B_FALSE;
17793 		IPIF_UNMARK_MOVING(ipif);
17794 		return (EINVAL);
17795 	}
17796 
17797 	/*
17798 	 * ipif is ready to move from "from_ill" to "to_ill".
17799 	 *
17800 	 * 1) If we are moving ipif with id zero, create a
17801 	 *    replacement ipif for this ipif on from_ill. If this fails
17802 	 *    fail the MOVE operation.
17803 	 *
17804 	 * 2) Remove the replacement ipif on to_ill if any.
17805 	 *    We could remove the replacement ipif when we are moving
17806 	 *    the ipif with id zero. But what if somebody already
17807 	 *    unplumbed it ? Thus we always remove it if it is present.
17808 	 *    We want to do it only if we are sure we are going to
17809 	 *    move the ipif to to_ill which is why there are no
17810 	 *    returns due to error till ipif is linked to to_ill.
17811 	 *    Note that the first ipif that we failback will always
17812 	 *    be zero if it is present.
17813 	 */
17814 	if (ipif->ipif_id == 0) {
17815 		ipaddr_t inaddr_any = INADDR_ANY;
17816 
17817 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17818 		if (rep_ipif == NULL) {
17819 			ipif->ipif_was_up = B_FALSE;
17820 			IPIF_UNMARK_MOVING(ipif);
17821 			return (ENOMEM);
17822 		}
17823 		*rep_ipif = ipif_zero;
17824 		/*
17825 		 * Before we put the ipif on the list, store the addresses
17826 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17827 		 * assumes so. This logic is not any different from what
17828 		 * ipif_allocate does.
17829 		 */
17830 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17831 		    &rep_ipif->ipif_v6lcl_addr);
17832 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17833 		    &rep_ipif->ipif_v6src_addr);
17834 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17835 		    &rep_ipif->ipif_v6subnet);
17836 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17837 		    &rep_ipif->ipif_v6net_mask);
17838 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17839 		    &rep_ipif->ipif_v6brd_addr);
17840 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17841 		    &rep_ipif->ipif_v6pp_dst_addr);
17842 		/*
17843 		 * We mark IPIF_NOFAILOVER so that this can never
17844 		 * move.
17845 		 */
17846 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17847 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17848 		rep_ipif->ipif_replace_zero = B_TRUE;
17849 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17850 		    MUTEX_DEFAULT, NULL);
17851 		rep_ipif->ipif_id = 0;
17852 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17853 		rep_ipif->ipif_ill = from_ill;
17854 		rep_ipif->ipif_orig_ifindex =
17855 		    from_ill->ill_phyint->phyint_ifindex;
17856 		/* Insert at head */
17857 		rep_ipif->ipif_next = from_ill->ill_ipif;
17858 		from_ill->ill_ipif = rep_ipif;
17859 		/*
17860 		 * We don't really care to let apps know about
17861 		 * this interface.
17862 		 */
17863 	}
17864 
17865 	if (remove_ipif) {
17866 		/*
17867 		 * We set to a max value above for this case to get
17868 		 * id zero. ASSERT that we did get one.
17869 		 */
17870 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17871 		rep_ipif = to_ipif;
17872 		to_ill->ill_ipif = rep_ipif->ipif_next;
17873 		rep_ipif->ipif_next = NULL;
17874 		/*
17875 		 * If some apps scanned and find this interface,
17876 		 * it is time to let them know, so that they can
17877 		 * delete it.
17878 		 */
17879 
17880 		*rep_ipif_ptr = rep_ipif;
17881 	}
17882 
17883 	/* Get it out of the ILL interface list. */
17884 	ipifp = &ipif->ipif_ill->ill_ipif;
17885 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
17886 		if (*ipifp == ipif) {
17887 			*ipifp = ipif->ipif_next;
17888 			break;
17889 		}
17890 	}
17891 
17892 	/* Assign the new ill */
17893 	ipif->ipif_ill = to_ill;
17894 	ipif->ipif_id = unit;
17895 	/* id has already been checked */
17896 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17897 	ASSERT(rc == 0);
17898 	/* Let SCTP update its list */
17899 	sctp_move_ipif(ipif, from_ill, to_ill);
17900 	/*
17901 	 * Handle the failover and failback of ipif_t between
17902 	 * ill_t that have differing maximum mtu values.
17903 	 */
17904 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17905 		if (ipif->ipif_saved_mtu == 0) {
17906 			/*
17907 			 * As this ipif_t is moving to an ill_t
17908 			 * that has a lower ill_max_mtu, its
17909 			 * ipif_mtu needs to be saved so it can
17910 			 * be restored during failback or during
17911 			 * failover to an ill_t which has a
17912 			 * higher ill_max_mtu.
17913 			 */
17914 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17915 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17916 		} else {
17917 			/*
17918 			 * The ipif_t is, once again, moving to
17919 			 * an ill_t that has a lower maximum mtu
17920 			 * value.
17921 			 */
17922 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17923 		}
17924 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17925 	    ipif->ipif_saved_mtu != 0) {
17926 		/*
17927 		 * The mtu of this ipif_t had to be reduced
17928 		 * during an earlier failover; this is an
17929 		 * opportunity for it to be increased (either as
17930 		 * part of another failover or a failback).
17931 		 */
17932 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17933 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17934 			ipif->ipif_saved_mtu = 0;
17935 		} else {
17936 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17937 		}
17938 	}
17939 
17940 	/*
17941 	 * We preserve all the other fields of the ipif including
17942 	 * ipif_saved_ire_mp. The routes that are saved here will
17943 	 * be recreated on the new interface and back on the old
17944 	 * interface when we move back.
17945 	 */
17946 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17947 
17948 	return (err);
17949 }
17950 
17951 static int
17952 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17953     int ifindex, ipif_t **rep_ipif_ptr)
17954 {
17955 	ipif_t *mipif;
17956 	ipif_t *ipif_next;
17957 	int err;
17958 
17959 	/*
17960 	 * We don't really try to MOVE back things if some of the
17961 	 * operations fail. The daemon will take care of moving again
17962 	 * later on.
17963 	 */
17964 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17965 		ipif_next = mipif->ipif_next;
17966 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17967 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17968 
17969 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17970 
17971 			/*
17972 			 * When the MOVE fails, it is the job of the
17973 			 * application to take care of this properly
17974 			 * i.e try again if it is ENOMEM.
17975 			 */
17976 			if (mipif->ipif_ill != from_ill) {
17977 				/*
17978 				 * ipif has moved.
17979 				 *
17980 				 * Move the multicast memberships associated
17981 				 * with this ipif to the new ill. For IPv6, we
17982 				 * do it once after all the ipifs are moved
17983 				 * (in ill_move) as they are not associated
17984 				 * with ipifs.
17985 				 *
17986 				 * We need to move the ilms as the ipif has
17987 				 * already been moved to a new ill even
17988 				 * in the case of errors. Neither
17989 				 * ilm_free(ipif) will find the ilm
17990 				 * when somebody unplumbs this ipif nor
17991 				 * ilm_delete(ilm) will be able to find the
17992 				 * ilm, if we don't move now.
17993 				 */
17994 				if (!from_ill->ill_isv6)
17995 					ilm_move_v4(from_ill, to_ill, mipif);
17996 			}
17997 
17998 			if (err != 0)
17999 				return (err);
18000 		}
18001 	}
18002 	return (0);
18003 }
18004 
18005 static int
18006 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
18007 {
18008 	int ifindex;
18009 	int err;
18010 	struct iocblk	*iocp;
18011 	ipif_t	*ipif;
18012 	ipif_t *rep_ipif_ptr = NULL;
18013 	ipif_t	*from_ipif = NULL;
18014 	boolean_t check_rep_if = B_FALSE;
18015 	ip_stack_t	*ipst = from_ill->ill_ipst;
18016 
18017 	iocp = (struct iocblk *)mp->b_rptr;
18018 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
18019 		/*
18020 		 * Move everything pointing at from_ill to to_ill.
18021 		 * We acheive this by passing in 0 as ifindex.
18022 		 */
18023 		ifindex = 0;
18024 	} else {
18025 		/*
18026 		 * Move everything pointing at from_ill whose original
18027 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
18028 		 * We acheive this by passing in ifindex rather than 0.
18029 		 * Multicast vifs, ilgs move implicitly because ipifs move.
18030 		 */
18031 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
18032 		ifindex = to_ill->ill_phyint->phyint_ifindex;
18033 	}
18034 
18035 	/*
18036 	 * Determine if there is at least one ipif that would move from
18037 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
18038 	 * ipif (if it exists) on the to_ill would be consumed as a result of
18039 	 * the move, in which case we need to quiesce the replacement ipif also.
18040 	 */
18041 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
18042 	    from_ipif = from_ipif->ipif_next) {
18043 		if (((ifindex == 0) ||
18044 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
18045 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
18046 			check_rep_if = B_TRUE;
18047 			break;
18048 		}
18049 	}
18050 
18051 
18052 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
18053 
18054 	GRAB_ILL_LOCKS(from_ill, to_ill);
18055 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
18056 		(void) ipsq_pending_mp_add(NULL, ipif, q,
18057 		    mp, ILL_MOVE_OK);
18058 		RELEASE_ILL_LOCKS(from_ill, to_ill);
18059 		return (EINPROGRESS);
18060 	}
18061 
18062 	/* Check if the replacement ipif is quiescent to delete */
18063 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
18064 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
18065 		to_ill->ill_ipif->ipif_state_flags |=
18066 		    IPIF_MOVING | IPIF_CHANGING;
18067 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
18068 			(void) ipsq_pending_mp_add(NULL, ipif, q,
18069 			    mp, ILL_MOVE_OK);
18070 			RELEASE_ILL_LOCKS(from_ill, to_ill);
18071 			return (EINPROGRESS);
18072 		}
18073 	}
18074 	RELEASE_ILL_LOCKS(from_ill, to_ill);
18075 
18076 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
18077 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
18078 	GRAB_ILL_LOCKS(from_ill, to_ill);
18079 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
18080 
18081 	/* ilm_move is done inside ipif_move for IPv4 */
18082 	if (err == 0 && from_ill->ill_isv6)
18083 		ilm_move_v6(from_ill, to_ill, ifindex);
18084 
18085 	RELEASE_ILL_LOCKS(from_ill, to_ill);
18086 	rw_exit(&ipst->ips_ill_g_lock);
18087 
18088 	/*
18089 	 * send rts messages and multicast messages.
18090 	 */
18091 	if (rep_ipif_ptr != NULL) {
18092 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
18093 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
18094 			rep_ipif_ptr->ipif_recovery_id = 0;
18095 		}
18096 		ip_rts_ifmsg(rep_ipif_ptr);
18097 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
18098 		IPIF_TRACE_CLEANUP(rep_ipif_ptr);
18099 		mi_free(rep_ipif_ptr);
18100 	}
18101 
18102 	conn_move_ill(from_ill, to_ill, ifindex);
18103 
18104 	return (err);
18105 }
18106 
18107 /*
18108  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
18109  * Also checks for the validity of the arguments.
18110  * Note: We are already exclusive inside the from group.
18111  * It is upto the caller to release refcnt on the to_ill's.
18112  */
18113 static int
18114 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
18115     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
18116 {
18117 	int dst_index;
18118 	ipif_t *ipif_v4, *ipif_v6;
18119 	struct lifreq *lifr;
18120 	mblk_t *mp1;
18121 	boolean_t exists;
18122 	sin_t	*sin;
18123 	int	err = 0;
18124 	ip_stack_t	*ipst;
18125 
18126 	if (CONN_Q(q))
18127 		ipst = CONNQ_TO_IPST(q);
18128 	else
18129 		ipst = ILLQ_TO_IPST(q);
18130 
18131 
18132 	if ((mp1 = mp->b_cont) == NULL)
18133 		return (EPROTO);
18134 
18135 	if ((mp1 = mp1->b_cont) == NULL)
18136 		return (EPROTO);
18137 
18138 	lifr = (struct lifreq *)mp1->b_rptr;
18139 	sin = (sin_t *)&lifr->lifr_addr;
18140 
18141 	/*
18142 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
18143 	 * specific operations.
18144 	 */
18145 	if (sin->sin_family != AF_UNSPEC)
18146 		return (EINVAL);
18147 
18148 	/*
18149 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
18150 	 * NULLs for the last 4 args and we know the lookup won't fail
18151 	 * with EINPROGRESS.
18152 	 */
18153 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
18154 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
18155 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
18156 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
18157 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
18158 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
18159 
18160 	if (ipif_v4 == NULL && ipif_v6 == NULL)
18161 		return (ENXIO);
18162 
18163 	if (ipif_v4 != NULL) {
18164 		ASSERT(ipif_v4->ipif_refcnt != 0);
18165 		if (ipif_v4->ipif_id != 0) {
18166 			err = EINVAL;
18167 			goto done;
18168 		}
18169 
18170 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
18171 		*ill_from_v4 = ipif_v4->ipif_ill;
18172 	}
18173 
18174 	if (ipif_v6 != NULL) {
18175 		ASSERT(ipif_v6->ipif_refcnt != 0);
18176 		if (ipif_v6->ipif_id != 0) {
18177 			err = EINVAL;
18178 			goto done;
18179 		}
18180 
18181 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
18182 		*ill_from_v6 = ipif_v6->ipif_ill;
18183 	}
18184 
18185 	err = 0;
18186 	dst_index = lifr->lifr_movetoindex;
18187 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
18188 	    q, mp, ip_process_ioctl, &err, ipst);
18189 	if (err != 0) {
18190 		/*
18191 		 * There could be only v6.
18192 		 */
18193 		if (err != ENXIO)
18194 			goto done;
18195 		err = 0;
18196 	}
18197 
18198 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
18199 	    q, mp, ip_process_ioctl, &err, ipst);
18200 	if (err != 0) {
18201 		if (err != ENXIO)
18202 			goto done;
18203 		if (*ill_to_v4 == NULL) {
18204 			err = ENXIO;
18205 			goto done;
18206 		}
18207 		err = 0;
18208 	}
18209 
18210 	/*
18211 	 * If we have something to MOVE i.e "from" not NULL,
18212 	 * "to" should be non-NULL.
18213 	 */
18214 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
18215 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
18216 		err = EINVAL;
18217 	}
18218 
18219 done:
18220 	if (ipif_v4 != NULL)
18221 		ipif_refrele(ipif_v4);
18222 	if (ipif_v6 != NULL)
18223 		ipif_refrele(ipif_v6);
18224 	return (err);
18225 }
18226 
18227 /*
18228  * FAILOVER and FAILBACK are modelled as MOVE operations.
18229  *
18230  * We don't check whether the MOVE is within the same group or
18231  * not, because this ioctl can be used as a generic mechanism
18232  * to failover from interface A to B, though things will function
18233  * only if they are really part of the same group. Moreover,
18234  * all ipifs may be down and hence temporarily out of the group.
18235  *
18236  * ipif's that need to be moved are first brought down; V4 ipifs are brought
18237  * down first and then V6.  For each we wait for the ipif's to become quiescent.
18238  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
18239  * have been deleted and there are no active references. Once quiescent the
18240  * ipif's are moved and brought up on the new ill.
18241  *
18242  * Normally the source ill and destination ill belong to the same IPMP group
18243  * and hence the same ipsq_t. In the event they don't belong to the same
18244  * same group the two ipsq's are first merged into one ipsq - that of the
18245  * to_ill. The multicast memberships on the source and destination ill cannot
18246  * change during the move operation since multicast joins/leaves also have to
18247  * execute on the same ipsq and are hence serialized.
18248  */
18249 /* ARGSUSED */
18250 int
18251 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18252     ip_ioctl_cmd_t *ipip, void *ifreq)
18253 {
18254 	ill_t *ill_to_v4 = NULL;
18255 	ill_t *ill_to_v6 = NULL;
18256 	ill_t *ill_from_v4 = NULL;
18257 	ill_t *ill_from_v6 = NULL;
18258 	int err = 0;
18259 
18260 	/*
18261 	 * setup from and to ill's, we can get EINPROGRESS only for
18262 	 * to_ill's.
18263 	 */
18264 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
18265 	    &ill_to_v4, &ill_to_v6);
18266 
18267 	if (err != 0) {
18268 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
18269 		goto done;
18270 	}
18271 
18272 	/*
18273 	 * nothing to do.
18274 	 */
18275 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
18276 		goto done;
18277 	}
18278 
18279 	/*
18280 	 * nothing to do.
18281 	 */
18282 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
18283 		goto done;
18284 	}
18285 
18286 	/*
18287 	 * Mark the ill as changing.
18288 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
18289 	 * in ill_up_ipifs in case of error they are cleared below.
18290 	 */
18291 
18292 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18293 	if (ill_from_v4 != NULL)
18294 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
18295 	if (ill_from_v6 != NULL)
18296 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
18297 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18298 
18299 	/*
18300 	 * Make sure that both src and dst are
18301 	 * in the same syncq group. If not make it happen.
18302 	 * We are not holding any locks because we are the writer
18303 	 * on the from_ipsq and we will hold locks in ill_merge_groups
18304 	 * to protect to_ipsq against changing.
18305 	 */
18306 	if (ill_from_v4 != NULL) {
18307 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
18308 		    ill_to_v4->ill_phyint->phyint_ipsq) {
18309 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
18310 			    NULL, mp, q);
18311 			goto err_ret;
18312 
18313 		}
18314 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
18315 	} else {
18316 
18317 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
18318 		    ill_to_v6->ill_phyint->phyint_ipsq) {
18319 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
18320 			    NULL, mp, q);
18321 			goto err_ret;
18322 
18323 		}
18324 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
18325 	}
18326 
18327 	/*
18328 	 * Now that the ipsq's have been merged and we are the writer
18329 	 * lets mark to_ill as changing as well.
18330 	 */
18331 
18332 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18333 	if (ill_to_v4 != NULL)
18334 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
18335 	if (ill_to_v6 != NULL)
18336 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
18337 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18338 
18339 	/*
18340 	 * Its ok for us to proceed with the move even if
18341 	 * ill_pending_mp is non null on one of the from ill's as the reply
18342 	 * should not be looking at the ipif, it should only care about the
18343 	 * ill itself.
18344 	 */
18345 
18346 	/*
18347 	 * lets move ipv4 first.
18348 	 */
18349 	if (ill_from_v4 != NULL) {
18350 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18351 		ill_from_v4->ill_move_in_progress = B_TRUE;
18352 		ill_to_v4->ill_move_in_progress = B_TRUE;
18353 		ill_to_v4->ill_move_peer = ill_from_v4;
18354 		ill_from_v4->ill_move_peer = ill_to_v4;
18355 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18356 	}
18357 
18358 	/*
18359 	 * Now lets move ipv6.
18360 	 */
18361 	if (err == 0 && ill_from_v6 != NULL) {
18362 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18363 		ill_from_v6->ill_move_in_progress = B_TRUE;
18364 		ill_to_v6->ill_move_in_progress = B_TRUE;
18365 		ill_to_v6->ill_move_peer = ill_from_v6;
18366 		ill_from_v6->ill_move_peer = ill_to_v6;
18367 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18368 	}
18369 
18370 err_ret:
18371 	/*
18372 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18373 	 * moved to become quiescent.
18374 	 */
18375 	if (err == EINPROGRESS) {
18376 		goto done;
18377 	}
18378 
18379 	/*
18380 	 * if err is set ill_up_ipifs will not be called
18381 	 * lets clear the flags.
18382 	 */
18383 
18384 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18385 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18386 	/*
18387 	 * Some of the clearing may be redundant. But it is simple
18388 	 * not making any extra checks.
18389 	 */
18390 	if (ill_from_v6 != NULL) {
18391 		ill_from_v6->ill_move_in_progress = B_FALSE;
18392 		ill_from_v6->ill_move_peer = NULL;
18393 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18394 	}
18395 	if (ill_from_v4 != NULL) {
18396 		ill_from_v4->ill_move_in_progress = B_FALSE;
18397 		ill_from_v4->ill_move_peer = NULL;
18398 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18399 	}
18400 	if (ill_to_v6 != NULL) {
18401 		ill_to_v6->ill_move_in_progress = B_FALSE;
18402 		ill_to_v6->ill_move_peer = NULL;
18403 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18404 	}
18405 	if (ill_to_v4 != NULL) {
18406 		ill_to_v4->ill_move_in_progress = B_FALSE;
18407 		ill_to_v4->ill_move_peer = NULL;
18408 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18409 	}
18410 
18411 	/*
18412 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18413 	 * Do this always to maintain proper state i.e even in case of errors.
18414 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18415 	 * we need not call on both v4 and v6 interfaces.
18416 	 */
18417 	if (ill_from_v4 != NULL) {
18418 		if ((ill_from_v4->ill_phyint->phyint_flags &
18419 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18420 			phyint_inactive(ill_from_v4->ill_phyint);
18421 		}
18422 	} else if (ill_from_v6 != NULL) {
18423 		if ((ill_from_v6->ill_phyint->phyint_flags &
18424 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18425 			phyint_inactive(ill_from_v6->ill_phyint);
18426 		}
18427 	}
18428 
18429 	if (ill_to_v4 != NULL) {
18430 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18431 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18432 		}
18433 	} else if (ill_to_v6 != NULL) {
18434 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18435 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18436 		}
18437 	}
18438 
18439 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18440 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18441 
18442 no_err:
18443 	/*
18444 	 * lets bring the interfaces up on the to_ill.
18445 	 */
18446 	if (err == 0) {
18447 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18448 		    q, mp);
18449 	}
18450 
18451 	if (err == 0) {
18452 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18453 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18454 
18455 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18456 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18457 	}
18458 done:
18459 
18460 	if (ill_to_v4 != NULL) {
18461 		ill_refrele(ill_to_v4);
18462 	}
18463 	if (ill_to_v6 != NULL) {
18464 		ill_refrele(ill_to_v6);
18465 	}
18466 
18467 	return (err);
18468 }
18469 
18470 static void
18471 ill_dl_down(ill_t *ill)
18472 {
18473 	/*
18474 	 * The ill is down; unbind but stay attached since we're still
18475 	 * associated with a PPA. If we have negotiated DLPI capabilites
18476 	 * with the data link service provider (IDS_OK) then reset them.
18477 	 * The interval between unbinding and rebinding is potentially
18478 	 * unbounded hence we cannot assume things will be the same.
18479 	 * The DLPI capabilities will be probed again when the data link
18480 	 * is brought up.
18481 	 */
18482 	mblk_t	*mp = ill->ill_unbind_mp;
18483 	hook_nic_event_t *info;
18484 
18485 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18486 
18487 	ill->ill_unbind_mp = NULL;
18488 	if (mp != NULL) {
18489 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18490 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18491 		    ill->ill_name));
18492 		mutex_enter(&ill->ill_lock);
18493 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18494 		mutex_exit(&ill->ill_lock);
18495 		if (ill->ill_dlpi_capab_state == IDS_OK)
18496 			ill_capability_reset(ill);
18497 		ill_dlpi_send(ill, mp);
18498 	}
18499 
18500 	/*
18501 	 * Toss all of our multicast memberships.  We could keep them, but
18502 	 * then we'd have to do bookkeeping of any joins and leaves performed
18503 	 * by the application while the the interface is down (we can't just
18504 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18505 	 * on a downed interface).
18506 	 */
18507 	ill_leave_multicast(ill);
18508 
18509 	mutex_enter(&ill->ill_lock);
18510 
18511 	ill->ill_dl_up = 0;
18512 
18513 	if ((info = ill->ill_nic_event_info) != NULL) {
18514 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18515 		    info->hne_event, ill->ill_name));
18516 		if (info->hne_data != NULL)
18517 			kmem_free(info->hne_data, info->hne_datalen);
18518 		kmem_free(info, sizeof (hook_nic_event_t));
18519 	}
18520 
18521 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18522 	if (info != NULL) {
18523 		ip_stack_t	*ipst = ill->ill_ipst;
18524 
18525 		info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18526 		info->hne_lif = 0;
18527 		info->hne_event = NE_DOWN;
18528 		info->hne_data = NULL;
18529 		info->hne_datalen = 0;
18530 		info->hne_family = ill->ill_isv6 ?
18531 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18532 	} else
18533 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18534 		    "information for %s (ENOMEM)\n", ill->ill_name));
18535 
18536 	ill->ill_nic_event_info = info;
18537 
18538 	mutex_exit(&ill->ill_lock);
18539 }
18540 
18541 void
18542 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18543 {
18544 	union DL_primitives *dlp;
18545 	t_uscalar_t prim;
18546 
18547 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18548 
18549 	dlp = (union DL_primitives *)mp->b_rptr;
18550 	prim = dlp->dl_primitive;
18551 
18552 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18553 		dlpi_prim_str(prim), prim, ill->ill_name));
18554 
18555 	switch (prim) {
18556 	case DL_PHYS_ADDR_REQ:
18557 	{
18558 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18559 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18560 		break;
18561 	}
18562 	case DL_BIND_REQ:
18563 		mutex_enter(&ill->ill_lock);
18564 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18565 		mutex_exit(&ill->ill_lock);
18566 		break;
18567 	}
18568 
18569 	/*
18570 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18571 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18572 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18573 	 */
18574 	mutex_enter(&ill->ill_lock);
18575 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18576 	    (prim == DL_UNBIND_REQ)) {
18577 		ill->ill_dlpi_pending = prim;
18578 	}
18579 	mutex_exit(&ill->ill_lock);
18580 
18581 	/*
18582 	 * Some drivers send M_FLUSH up to IP as part of unbind
18583 	 * request.  When this M_FLUSH is sent back to the driver,
18584 	 * this can go after we send the detach request if the
18585 	 * M_FLUSH ends up in IP's syncq. To avoid that, we reply
18586 	 * to the M_FLUSH in ip_rput and locally generate another
18587 	 * M_FLUSH for the correctness.  This will get freed in
18588 	 * ip_wput_nondata.
18589 	 */
18590 	if (prim == DL_UNBIND_REQ)
18591 		(void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW);
18592 
18593 	putnext(ill->ill_wq, mp);
18594 }
18595 
18596 /*
18597  * Send a DLPI control message to the driver but make sure there
18598  * is only one outstanding message. Uses ill_dlpi_pending to tell
18599  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18600  * when an ACK or a NAK is received to process the next queued message.
18601  *
18602  * We don't protect ill_dlpi_pending with any lock. This is okay as
18603  * every place where its accessed, ip is exclusive while accessing
18604  * ill_dlpi_pending except when this function is called from ill_init()
18605  */
18606 void
18607 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18608 {
18609 	mblk_t **mpp;
18610 
18611 	ASSERT(IAM_WRITER_ILL(ill));
18612 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18613 
18614 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18615 		/* Must queue message. Tail insertion */
18616 		mpp = &ill->ill_dlpi_deferred;
18617 		while (*mpp != NULL)
18618 			mpp = &((*mpp)->b_next);
18619 
18620 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18621 		    ill->ill_name));
18622 
18623 		*mpp = mp;
18624 		return;
18625 	}
18626 
18627 	ill_dlpi_dispatch(ill, mp);
18628 }
18629 
18630 /*
18631  * Called when an DLPI control message has been acked or nacked to
18632  * send down the next queued message (if any).
18633  */
18634 void
18635 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18636 {
18637 	mblk_t *mp;
18638 
18639 	ASSERT(IAM_WRITER_ILL(ill));
18640 
18641 	ASSERT(prim != DL_PRIM_INVAL);
18642 	if (ill->ill_dlpi_pending != prim) {
18643 		if (ill->ill_dlpi_pending == DL_PRIM_INVAL) {
18644 			(void) mi_strlog(ill->ill_rq, 1,
18645 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18646 			    "ill_dlpi_done: unsolicited ack for %s from %s\n",
18647 			    dlpi_prim_str(prim), ill->ill_name);
18648 		} else {
18649 			(void) mi_strlog(ill->ill_rq, 1,
18650 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18651 			    "ill_dlpi_done: unexpected ack for %s from %s "
18652 			    "(expecting ack for %s)\n",
18653 			    dlpi_prim_str(prim), ill->ill_name,
18654 			    dlpi_prim_str(ill->ill_dlpi_pending));
18655 		}
18656 		return;
18657 	}
18658 
18659 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18660 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18661 
18662 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18663 		mutex_enter(&ill->ill_lock);
18664 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18665 		cv_signal(&ill->ill_cv);
18666 		mutex_exit(&ill->ill_lock);
18667 		return;
18668 	}
18669 
18670 	ill->ill_dlpi_deferred = mp->b_next;
18671 	mp->b_next = NULL;
18672 
18673 	ill_dlpi_dispatch(ill, mp);
18674 }
18675 
18676 void
18677 conn_delete_ire(conn_t *connp, caddr_t arg)
18678 {
18679 	ipif_t	*ipif = (ipif_t *)arg;
18680 	ire_t	*ire;
18681 
18682 	/*
18683 	 * Look at the cached ires on conns which has pointers to ipifs.
18684 	 * We just call ire_refrele which clears up the reference
18685 	 * to ire. Called when a conn closes. Also called from ipif_free
18686 	 * to cleanup indirect references to the stale ipif via the cached ire.
18687 	 */
18688 	mutex_enter(&connp->conn_lock);
18689 	ire = connp->conn_ire_cache;
18690 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18691 		connp->conn_ire_cache = NULL;
18692 		mutex_exit(&connp->conn_lock);
18693 		IRE_REFRELE_NOTR(ire);
18694 		return;
18695 	}
18696 	mutex_exit(&connp->conn_lock);
18697 
18698 }
18699 
18700 /*
18701  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18702  * of IREs. Those IREs may have been previously cached in the conn structure.
18703  * This ipcl_walk() walker function releases all references to such IREs based
18704  * on the condemned flag.
18705  */
18706 /* ARGSUSED */
18707 void
18708 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18709 {
18710 	ire_t	*ire;
18711 
18712 	mutex_enter(&connp->conn_lock);
18713 	ire = connp->conn_ire_cache;
18714 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18715 		connp->conn_ire_cache = NULL;
18716 		mutex_exit(&connp->conn_lock);
18717 		IRE_REFRELE_NOTR(ire);
18718 		return;
18719 	}
18720 	mutex_exit(&connp->conn_lock);
18721 }
18722 
18723 /*
18724  * Take down a specific interface, but don't lose any information about it.
18725  * Also delete interface from its interface group (ifgrp).
18726  * (Always called as writer.)
18727  * This function goes through the down sequence even if the interface is
18728  * already down. There are 2 reasons.
18729  * a. Currently we permit interface routes that depend on down interfaces
18730  *    to be added. This behaviour itself is questionable. However it appears
18731  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18732  *    time. We go thru the cleanup in order to remove these routes.
18733  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18734  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18735  *    down, but we need to cleanup i.e. do ill_dl_down and
18736  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18737  *
18738  * IP-MT notes:
18739  *
18740  * Model of reference to interfaces.
18741  *
18742  * The following members in ipif_t track references to the ipif.
18743  *	int     ipif_refcnt;    Active reference count
18744  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18745  * The following members in ill_t track references to the ill.
18746  *	int             ill_refcnt;     active refcnt
18747  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18748  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18749  *
18750  * Reference to an ipif or ill can be obtained in any of the following ways.
18751  *
18752  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18753  * Pointers to ipif / ill from other data structures viz ire and conn.
18754  * Implicit reference to the ipif / ill by holding a reference to the ire.
18755  *
18756  * The ipif/ill lookup functions return a reference held ipif / ill.
18757  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18758  * This is a purely dynamic reference count associated with threads holding
18759  * references to the ipif / ill. Pointers from other structures do not
18760  * count towards this reference count.
18761  *
18762  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18763  * ipif/ill. This is incremented whenever a new ire is created referencing the
18764  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18765  * actually added to the ire hash table. The count is decremented in
18766  * ire_inactive where the ire is destroyed.
18767  *
18768  * nce's reference ill's thru nce_ill and the count of nce's associated with
18769  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18770  * ndp_add() where the nce is actually added to the table. Similarly it is
18771  * decremented in ndp_inactive where the nce is destroyed.
18772  *
18773  * Flow of ioctls involving interface down/up
18774  *
18775  * The following is the sequence of an attempt to set some critical flags on an
18776  * up interface.
18777  * ip_sioctl_flags
18778  * ipif_down
18779  * wait for ipif to be quiescent
18780  * ipif_down_tail
18781  * ip_sioctl_flags_tail
18782  *
18783  * All set ioctls that involve down/up sequence would have a skeleton similar
18784  * to the above. All the *tail functions are called after the refcounts have
18785  * dropped to the appropriate values.
18786  *
18787  * The mechanism to quiesce an ipif is as follows.
18788  *
18789  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18790  * on the ipif. Callers either pass a flag requesting wait or the lookup
18791  *  functions will return NULL.
18792  *
18793  * Delete all ires referencing this ipif
18794  *
18795  * Any thread attempting to do an ipif_refhold on an ipif that has been
18796  * obtained thru a cached pointer will first make sure that
18797  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18798  * increment the refcount.
18799  *
18800  * The above guarantees that the ipif refcount will eventually come down to
18801  * zero and the ipif will quiesce, once all threads that currently hold a
18802  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18803  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18804  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18805  * drop to zero.
18806  *
18807  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18808  *
18809  * Threads trying to lookup an ipif or ill can pass a flag requesting
18810  * wait and restart if the ipif / ill cannot be looked up currently.
18811  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18812  * failure if the ipif is currently undergoing an exclusive operation, and
18813  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18814  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18815  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18816  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18817  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18818  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18819  * until we release the ipsq_lock, even though the the ill/ipif state flags
18820  * can change after we drop the ill_lock.
18821  *
18822  * An attempt to send out a packet using an ipif that is currently
18823  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18824  * operation and restart it later when the exclusive condition on the ipif ends.
18825  * This is an example of not passing the wait flag to the lookup functions. For
18826  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18827  * out a multicast packet on that ipif will fail while the ipif is
18828  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18829  * currently IPIF_CHANGING will also fail.
18830  */
18831 int
18832 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18833 {
18834 	ill_t		*ill = ipif->ipif_ill;
18835 	phyint_t	*phyi;
18836 	conn_t		*connp;
18837 	boolean_t	success;
18838 	boolean_t	ipif_was_up = B_FALSE;
18839 	ip_stack_t	*ipst = ill->ill_ipst;
18840 
18841 	ASSERT(IAM_WRITER_IPIF(ipif));
18842 
18843 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18844 
18845 	if (ipif->ipif_flags & IPIF_UP) {
18846 		mutex_enter(&ill->ill_lock);
18847 		ipif->ipif_flags &= ~IPIF_UP;
18848 		ASSERT(ill->ill_ipif_up_count > 0);
18849 		--ill->ill_ipif_up_count;
18850 		mutex_exit(&ill->ill_lock);
18851 		ipif_was_up = B_TRUE;
18852 		/* Update status in SCTP's list */
18853 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18854 	}
18855 
18856 	/*
18857 	 * Blow away v6 memberships we established in ipif_multicast_up(); the
18858 	 * v4 ones are left alone (as is the ipif_multicast_up flag, so we
18859 	 * know not to rejoin when the interface is brought back up).
18860 	 */
18861 	if (ipif->ipif_isv6)
18862 		ipif_multicast_down(ipif);
18863 	/*
18864 	 * Remove from the mapping for __sin6_src_id. We insert only
18865 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18866 	 * stored as mapped addresses, we need to check for mapped
18867 	 * INADDR_ANY also.
18868 	 */
18869 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18870 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18871 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18872 		int err;
18873 
18874 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18875 		    ipif->ipif_zoneid, ipst);
18876 		if (err != 0) {
18877 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18878 		}
18879 	}
18880 
18881 	/*
18882 	 * Before we delete the ill from the group (if any), we need
18883 	 * to make sure that we delete all the routes dependent on
18884 	 * this and also any ipifs dependent on this ipif for
18885 	 * source address. We need to do before we delete from
18886 	 * the group because
18887 	 *
18888 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18889 	 *
18890 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18891 	 *    for re-doing source address selection. Note that
18892 	 *    ipif_select_source[_v6] called from
18893 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18894 	 *    because we have already marked down here i.e cleared
18895 	 *    IPIF_UP.
18896 	 */
18897 	if (ipif->ipif_isv6) {
18898 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18899 		    ipst);
18900 	} else {
18901 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18902 		    ipst);
18903 	}
18904 
18905 	/*
18906 	 * Need to add these also to be saved and restored when the
18907 	 * ipif is brought down and up
18908 	 */
18909 	mutex_enter(&ipst->ips_ire_mrtun_lock);
18910 	if (ipst->ips_ire_mrtun_count != 0) {
18911 		mutex_exit(&ipst->ips_ire_mrtun_lock);
18912 		ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire,
18913 		    (char *)ipif, NULL, ipst);
18914 	} else {
18915 		mutex_exit(&ipst->ips_ire_mrtun_lock);
18916 	}
18917 
18918 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
18919 	if (ipst->ips_ire_srcif_table_count > 0) {
18920 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
18921 		ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif,
18922 		    ipst);
18923 	} else {
18924 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
18925 	}
18926 
18927 	/*
18928 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18929 	 * ires have been deleted above. Otherwise a thread could end up
18930 	 * caching an ire in a conn after we have finished the cleanup of the
18931 	 * conn. The caching is done after making sure that the ire is not yet
18932 	 * condemned. Also documented in the block comment above ip_output
18933 	 */
18934 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
18935 	/* Also, delete the ires cached in SCTP */
18936 	sctp_ire_cache_flush(ipif);
18937 
18938 	/* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */
18939 	nattymod_clean_ipif(ipif);
18940 
18941 	/*
18942 	 * Update any other ipifs which have used "our" local address as
18943 	 * a source address. This entails removing and recreating IRE_INTERFACE
18944 	 * entries for such ipifs.
18945 	 */
18946 	if (ipif->ipif_isv6)
18947 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18948 	else
18949 		ipif_update_other_ipifs(ipif, ill->ill_group);
18950 
18951 	if (ipif_was_up) {
18952 		/*
18953 		 * Check whether it is last ipif to leave this group.
18954 		 * If this is the last ipif to leave, we should remove
18955 		 * this ill from the group as ipif_select_source will not
18956 		 * be able to find any useful ipifs if this ill is selected
18957 		 * for load balancing.
18958 		 *
18959 		 * For nameless groups, we should call ifgrp_delete if this
18960 		 * belongs to some group. As this ipif is going down, we may
18961 		 * need to reconstruct groups.
18962 		 */
18963 		phyi = ill->ill_phyint;
18964 		/*
18965 		 * If the phyint_groupname_len is 0, it may or may not
18966 		 * be in the nameless group. If the phyint_groupname_len is
18967 		 * not 0, then this ill should be part of some group.
18968 		 * As we always insert this ill in the group if
18969 		 * phyint_groupname_len is not zero when the first ipif
18970 		 * comes up (in ipif_up_done), it should be in a group
18971 		 * when the namelen is not 0.
18972 		 *
18973 		 * NOTE : When we delete the ill from the group,it will
18974 		 * blow away all the IRE_CACHES pointing either at this ipif or
18975 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18976 		 * should be pointing at this ill.
18977 		 */
18978 		ASSERT(phyi->phyint_groupname_len == 0 ||
18979 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18980 
18981 		if (phyi->phyint_groupname_len != 0) {
18982 			if (ill->ill_ipif_up_count == 0)
18983 				illgrp_delete(ill);
18984 		}
18985 
18986 		/*
18987 		 * If we have deleted some of the broadcast ires associated
18988 		 * with this ipif, we need to re-nominate somebody else if
18989 		 * the ires that we deleted were the nominated ones.
18990 		 */
18991 		if (ill->ill_group != NULL && !ill->ill_isv6)
18992 			ipif_renominate_bcast(ipif);
18993 	}
18994 
18995 	/*
18996 	 * neighbor-discovery or arp entries for this interface.
18997 	 */
18998 	ipif_ndp_down(ipif);
18999 
19000 	/*
19001 	 * If mp is NULL the caller will wait for the appropriate refcnt.
19002 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
19003 	 * and ill_delete -> ipif_free -> ipif_down
19004 	 */
19005 	if (mp == NULL) {
19006 		ASSERT(q == NULL);
19007 		return (0);
19008 	}
19009 
19010 	if (CONN_Q(q)) {
19011 		connp = Q_TO_CONN(q);
19012 		mutex_enter(&connp->conn_lock);
19013 	} else {
19014 		connp = NULL;
19015 	}
19016 	mutex_enter(&ill->ill_lock);
19017 	/*
19018 	 * Are there any ire's pointing to this ipif that are still active ?
19019 	 * If this is the last ipif going down, are there any ire's pointing
19020 	 * to this ill that are still active ?
19021 	 */
19022 	if (ipif_is_quiescent(ipif)) {
19023 		mutex_exit(&ill->ill_lock);
19024 		if (connp != NULL)
19025 			mutex_exit(&connp->conn_lock);
19026 		return (0);
19027 	}
19028 
19029 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
19030 	    ill->ill_name, (void *)ill));
19031 	/*
19032 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
19033 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
19034 	 * which in turn is called by the last refrele on the ipif/ill/ire.
19035 	 */
19036 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
19037 	if (!success) {
19038 		/* The conn is closing. So just return */
19039 		ASSERT(connp != NULL);
19040 		mutex_exit(&ill->ill_lock);
19041 		mutex_exit(&connp->conn_lock);
19042 		return (EINTR);
19043 	}
19044 
19045 	mutex_exit(&ill->ill_lock);
19046 	if (connp != NULL)
19047 		mutex_exit(&connp->conn_lock);
19048 	return (EINPROGRESS);
19049 }
19050 
19051 void
19052 ipif_down_tail(ipif_t *ipif)
19053 {
19054 	ill_t	*ill = ipif->ipif_ill;
19055 
19056 	/*
19057 	 * Skip any loopback interface (null wq).
19058 	 * If this is the last logical interface on the ill
19059 	 * have ill_dl_down tell the driver we are gone (unbind)
19060 	 * Note that lun 0 can ipif_down even though
19061 	 * there are other logical units that are up.
19062 	 * This occurs e.g. when we change a "significant" IFF_ flag.
19063 	 */
19064 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
19065 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
19066 	    ill->ill_dl_up) {
19067 		ill_dl_down(ill);
19068 	}
19069 	ill->ill_logical_down = 0;
19070 
19071 	/*
19072 	 * Have to be after removing the routes in ipif_down_delete_ire.
19073 	 */
19074 	if (ipif->ipif_isv6) {
19075 		if (ill->ill_flags & ILLF_XRESOLV)
19076 			ipif_arp_down(ipif);
19077 	} else {
19078 		ipif_arp_down(ipif);
19079 	}
19080 
19081 	ip_rts_ifmsg(ipif);
19082 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
19083 }
19084 
19085 /*
19086  * Bring interface logically down without bringing the physical interface
19087  * down e.g. when the netmask is changed. This avoids long lasting link
19088  * negotiations between an ethernet interface and a certain switches.
19089  */
19090 static int
19091 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
19092 {
19093 	/*
19094 	 * The ill_logical_down flag is a transient flag. It is set here
19095 	 * and is cleared once the down has completed in ipif_down_tail.
19096 	 * This flag does not indicate whether the ill stream is in the
19097 	 * DL_BOUND state with the driver. Instead this flag is used by
19098 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
19099 	 * the driver. The state of the ill stream i.e. whether it is
19100 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
19101 	 */
19102 	ipif->ipif_ill->ill_logical_down = 1;
19103 	return (ipif_down(ipif, q, mp));
19104 }
19105 
19106 /*
19107  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
19108  * If the usesrc client ILL is already part of a usesrc group or not,
19109  * in either case a ire_stq with the matching usesrc client ILL will
19110  * locate the IRE's that need to be deleted. We want IREs to be created
19111  * with the new source address.
19112  */
19113 static void
19114 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
19115 {
19116 	ill_t	*ucill = (ill_t *)ill_arg;
19117 
19118 	ASSERT(IAM_WRITER_ILL(ucill));
19119 
19120 	if (ire->ire_stq == NULL)
19121 		return;
19122 
19123 	if ((ire->ire_type == IRE_CACHE) &&
19124 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
19125 		ire_delete(ire);
19126 }
19127 
19128 /*
19129  * ire_walk routine to delete every IRE dependent on the interface
19130  * address that is going down.	(Always called as writer.)
19131  * Works for both v4 and v6.
19132  * In addition for checking for ire_ipif matches it also checks for
19133  * IRE_CACHE entries which have the same source address as the
19134  * disappearing ipif since ipif_select_source might have picked
19135  * that source. Note that ipif_down/ipif_update_other_ipifs takes
19136  * care of any IRE_INTERFACE with the disappearing source address.
19137  */
19138 static void
19139 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
19140 {
19141 	ipif_t	*ipif = (ipif_t *)ipif_arg;
19142 	ill_t *ire_ill;
19143 	ill_t *ipif_ill;
19144 
19145 	ASSERT(IAM_WRITER_IPIF(ipif));
19146 	if (ire->ire_ipif == NULL)
19147 		return;
19148 
19149 	/*
19150 	 * For IPv4, we derive source addresses for an IRE from ipif's
19151 	 * belonging to the same IPMP group as the IRE's outgoing
19152 	 * interface.  If an IRE's outgoing interface isn't in the
19153 	 * same IPMP group as a particular ipif, then that ipif
19154 	 * couldn't have been used as a source address for this IRE.
19155 	 *
19156 	 * For IPv6, source addresses are only restricted to the IPMP group
19157 	 * if the IRE is for a link-local address or a multicast address.
19158 	 * Otherwise, source addresses for an IRE can be chosen from
19159 	 * interfaces other than the the outgoing interface for that IRE.
19160 	 *
19161 	 * For source address selection details, see ipif_select_source()
19162 	 * and ipif_select_source_v6().
19163 	 */
19164 	if (ire->ire_ipversion == IPV4_VERSION ||
19165 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
19166 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
19167 		ire_ill = ire->ire_ipif->ipif_ill;
19168 		ipif_ill = ipif->ipif_ill;
19169 
19170 		if (ire_ill->ill_group != ipif_ill->ill_group) {
19171 			return;
19172 		}
19173 	}
19174 
19175 
19176 	if (ire->ire_ipif != ipif) {
19177 		/*
19178 		 * Look for a matching source address.
19179 		 */
19180 		if (ire->ire_type != IRE_CACHE)
19181 			return;
19182 		if (ipif->ipif_flags & IPIF_NOLOCAL)
19183 			return;
19184 
19185 		if (ire->ire_ipversion == IPV4_VERSION) {
19186 			if (ire->ire_src_addr != ipif->ipif_src_addr)
19187 				return;
19188 		} else {
19189 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
19190 			    &ipif->ipif_v6lcl_addr))
19191 				return;
19192 		}
19193 		ire_delete(ire);
19194 		return;
19195 	}
19196 	/*
19197 	 * ire_delete() will do an ire_flush_cache which will delete
19198 	 * all ire_ipif matches
19199 	 */
19200 	ire_delete(ire);
19201 }
19202 
19203 /*
19204  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
19205  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
19206  * 2) when an interface is brought up or down (on that ill).
19207  * This ensures that the IRE_CACHE entries don't retain stale source
19208  * address selection results.
19209  */
19210 void
19211 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
19212 {
19213 	ill_t	*ill = (ill_t *)ill_arg;
19214 	ill_t	*ipif_ill;
19215 
19216 	ASSERT(IAM_WRITER_ILL(ill));
19217 	/*
19218 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19219 	 * Hence this should be IRE_CACHE.
19220 	 */
19221 	ASSERT(ire->ire_type == IRE_CACHE);
19222 
19223 	/*
19224 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
19225 	 * We are only interested in IRE_CACHES that has borrowed
19226 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
19227 	 * for which we need to look at ire_ipif->ipif_ill match
19228 	 * with ill.
19229 	 */
19230 	ASSERT(ire->ire_ipif != NULL);
19231 	ipif_ill = ire->ire_ipif->ipif_ill;
19232 	if (ipif_ill == ill || (ill->ill_group != NULL &&
19233 	    ipif_ill->ill_group == ill->ill_group)) {
19234 		ire_delete(ire);
19235 	}
19236 }
19237 
19238 /*
19239  * Delete all the ire whose stq references ill_arg.
19240  */
19241 static void
19242 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
19243 {
19244 	ill_t	*ill = (ill_t *)ill_arg;
19245 	ill_t	*ire_ill;
19246 
19247 	ASSERT(IAM_WRITER_ILL(ill));
19248 	/*
19249 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19250 	 * Hence this should be IRE_CACHE.
19251 	 */
19252 	ASSERT(ire->ire_type == IRE_CACHE);
19253 
19254 	/*
19255 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
19256 	 * matches ill. We are only interested in IRE_CACHES that
19257 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
19258 	 * filtering here.
19259 	 */
19260 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
19261 
19262 	if (ire_ill == ill)
19263 		ire_delete(ire);
19264 }
19265 
19266 /*
19267  * This is called when an ill leaves the group. We want to delete
19268  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
19269  * pointing at ill.
19270  */
19271 static void
19272 illgrp_cache_delete(ire_t *ire, char *ill_arg)
19273 {
19274 	ill_t	*ill = (ill_t *)ill_arg;
19275 
19276 	ASSERT(IAM_WRITER_ILL(ill));
19277 	ASSERT(ill->ill_group == NULL);
19278 	/*
19279 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19280 	 * Hence this should be IRE_CACHE.
19281 	 */
19282 	ASSERT(ire->ire_type == IRE_CACHE);
19283 	/*
19284 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
19285 	 * matches ill. We are interested in both.
19286 	 */
19287 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
19288 	    (ire->ire_ipif->ipif_ill == ill));
19289 
19290 	ire_delete(ire);
19291 }
19292 
19293 /*
19294  * Initiate deallocate of an IPIF. Always called as writer. Called by
19295  * ill_delete or ip_sioctl_removeif.
19296  */
19297 static void
19298 ipif_free(ipif_t *ipif)
19299 {
19300 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19301 
19302 	ASSERT(IAM_WRITER_IPIF(ipif));
19303 
19304 	if (ipif->ipif_recovery_id != 0)
19305 		(void) untimeout(ipif->ipif_recovery_id);
19306 	ipif->ipif_recovery_id = 0;
19307 
19308 	/* Remove conn references */
19309 	reset_conn_ipif(ipif);
19310 
19311 	/*
19312 	 * Make sure we have valid net and subnet broadcast ire's for the
19313 	 * other ipif's which share them with this ipif.
19314 	 */
19315 	if (!ipif->ipif_isv6)
19316 		ipif_check_bcast_ires(ipif);
19317 
19318 	/*
19319 	 * Take down the interface. We can be called either from ill_delete
19320 	 * or from ip_sioctl_removeif.
19321 	 */
19322 	(void) ipif_down(ipif, NULL, NULL);
19323 
19324 	/*
19325 	 * Now that the interface is down, there's no chance it can still
19326 	 * become a duplicate.  Cancel any timer that may have been set while
19327 	 * tearing down.
19328 	 */
19329 	if (ipif->ipif_recovery_id != 0)
19330 		(void) untimeout(ipif->ipif_recovery_id);
19331 	ipif->ipif_recovery_id = 0;
19332 
19333 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19334 	/* Remove pointers to this ill in the multicast routing tables */
19335 	reset_mrt_vif_ipif(ipif);
19336 	rw_exit(&ipst->ips_ill_g_lock);
19337 }
19338 
19339 /*
19340  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19341  * also ill_move().
19342  */
19343 static void
19344 ipif_free_tail(ipif_t *ipif)
19345 {
19346 	mblk_t	*mp;
19347 	ipif_t	**ipifp;
19348 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19349 
19350 	/*
19351 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19352 	 */
19353 	mutex_enter(&ipif->ipif_saved_ire_lock);
19354 	mp = ipif->ipif_saved_ire_mp;
19355 	ipif->ipif_saved_ire_mp = NULL;
19356 	mutex_exit(&ipif->ipif_saved_ire_lock);
19357 	freemsg(mp);
19358 
19359 	/*
19360 	 * Need to hold both ill_g_lock and ill_lock while
19361 	 * inserting or removing an ipif from the linked list
19362 	 * of ipifs hanging off the ill.
19363 	 */
19364 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19365 	/*
19366 	 * Remove all multicast memberships on the interface now.
19367 	 * This removes IPv4 multicast memberships joined within
19368 	 * the kernel as ipif_down does not do ipif_multicast_down
19369 	 * for IPv4. IPv6 is not handled here as the multicast memberships
19370 	 * are based on ill and not on ipif.
19371 	 */
19372 	ilm_free(ipif);
19373 
19374 	/*
19375 	 * Since we held the ill_g_lock while doing the ilm_free above,
19376 	 * we can assert the ilms were really deleted and not just marked
19377 	 * ILM_DELETED.
19378 	 */
19379 	ASSERT(ilm_walk_ipif(ipif) == 0);
19380 
19381 
19382 	IPIF_TRACE_CLEANUP(ipif);
19383 
19384 	/* Ask SCTP to take it out of it list */
19385 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19386 
19387 	mutex_enter(&ipif->ipif_ill->ill_lock);
19388 	/* Get it out of the ILL interface list. */
19389 	ipifp = &ipif->ipif_ill->ill_ipif;
19390 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
19391 		if (*ipifp == ipif) {
19392 			*ipifp = ipif->ipif_next;
19393 			break;
19394 		}
19395 	}
19396 
19397 	mutex_exit(&ipif->ipif_ill->ill_lock);
19398 	rw_exit(&ipst->ips_ill_g_lock);
19399 
19400 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19401 
19402 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19403 	ASSERT(ipif->ipif_recovery_id == 0);
19404 
19405 	/* Free the memory. */
19406 	mi_free((char *)ipif);
19407 }
19408 
19409 /*
19410  * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero,
19411  * "ill_name" otherwise.
19412  */
19413 char *
19414 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19415 {
19416 	char	lbuf[32];
19417 	char	*name;
19418 	size_t	name_len;
19419 
19420 	buf[0] = '\0';
19421 	if (!ipif)
19422 		return (buf);
19423 	name = ipif->ipif_ill->ill_name;
19424 	name_len = ipif->ipif_ill->ill_name_length;
19425 	if (ipif->ipif_id != 0) {
19426 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19427 		    ipif->ipif_id);
19428 		name = lbuf;
19429 		name_len = mi_strlen(name) + 1;
19430 	}
19431 	len -= 1;
19432 	buf[len] = '\0';
19433 	len = MIN(len, name_len);
19434 	bcopy(name, buf, len);
19435 	return (buf);
19436 }
19437 
19438 /*
19439  * Find an IPIF based on the name passed in.  Names can be of the
19440  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19441  * The <phys> string can have forms like <dev><#> (e.g., le0),
19442  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19443  * When there is no colon, the implied unit id is zero. <phys> must
19444  * correspond to the name of an ILL.  (May be called as writer.)
19445  */
19446 static ipif_t *
19447 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19448     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19449     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19450 {
19451 	char	*cp;
19452 	char	*endp;
19453 	long	id;
19454 	ill_t	*ill;
19455 	ipif_t	*ipif;
19456 	uint_t	ire_type;
19457 	boolean_t did_alloc = B_FALSE;
19458 	ipsq_t	*ipsq;
19459 
19460 	if (error != NULL)
19461 		*error = 0;
19462 
19463 	/*
19464 	 * If the caller wants to us to create the ipif, make sure we have a
19465 	 * valid zoneid
19466 	 */
19467 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19468 
19469 	if (namelen == 0) {
19470 		if (error != NULL)
19471 			*error = ENXIO;
19472 		return (NULL);
19473 	}
19474 
19475 	*exists = B_FALSE;
19476 	/* Look for a colon in the name. */
19477 	endp = &name[namelen];
19478 	for (cp = endp; --cp > name; ) {
19479 		if (*cp == IPIF_SEPARATOR_CHAR)
19480 			break;
19481 	}
19482 
19483 	if (*cp == IPIF_SEPARATOR_CHAR) {
19484 		/*
19485 		 * Reject any non-decimal aliases for logical
19486 		 * interfaces. Aliases with leading zeroes
19487 		 * are also rejected as they introduce ambiguity
19488 		 * in the naming of the interfaces.
19489 		 * In order to confirm with existing semantics,
19490 		 * and to not break any programs/script relying
19491 		 * on that behaviour, if<0>:0 is considered to be
19492 		 * a valid interface.
19493 		 *
19494 		 * If alias has two or more digits and the first
19495 		 * is zero, fail.
19496 		 */
19497 		if (&cp[2] < endp && cp[1] == '0')
19498 			return (NULL);
19499 	}
19500 
19501 	if (cp <= name) {
19502 		cp = endp;
19503 	} else {
19504 		*cp = '\0';
19505 	}
19506 
19507 	/*
19508 	 * Look up the ILL, based on the portion of the name
19509 	 * before the slash. ill_lookup_on_name returns a held ill.
19510 	 * Temporary to check whether ill exists already. If so
19511 	 * ill_lookup_on_name will clear it.
19512 	 */
19513 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19514 	    q, mp, func, error, &did_alloc, ipst);
19515 	if (cp != endp)
19516 		*cp = IPIF_SEPARATOR_CHAR;
19517 	if (ill == NULL)
19518 		return (NULL);
19519 
19520 	/* Establish the unit number in the name. */
19521 	id = 0;
19522 	if (cp < endp && *endp == '\0') {
19523 		/* If there was a colon, the unit number follows. */
19524 		cp++;
19525 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19526 			ill_refrele(ill);
19527 			if (error != NULL)
19528 				*error = ENXIO;
19529 			return (NULL);
19530 		}
19531 	}
19532 
19533 	GRAB_CONN_LOCK(q);
19534 	mutex_enter(&ill->ill_lock);
19535 	/* Now see if there is an IPIF with this unit number. */
19536 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19537 		if (ipif->ipif_id == id) {
19538 			if (zoneid != ALL_ZONES &&
19539 			    zoneid != ipif->ipif_zoneid &&
19540 			    ipif->ipif_zoneid != ALL_ZONES) {
19541 				mutex_exit(&ill->ill_lock);
19542 				RELEASE_CONN_LOCK(q);
19543 				ill_refrele(ill);
19544 				if (error != NULL)
19545 					*error = ENXIO;
19546 				return (NULL);
19547 			}
19548 			/*
19549 			 * The block comment at the start of ipif_down
19550 			 * explains the use of the macros used below
19551 			 */
19552 			if (IPIF_CAN_LOOKUP(ipif)) {
19553 				ipif_refhold_locked(ipif);
19554 				mutex_exit(&ill->ill_lock);
19555 				if (!did_alloc)
19556 					*exists = B_TRUE;
19557 				/*
19558 				 * Drop locks before calling ill_refrele
19559 				 * since it can potentially call into
19560 				 * ipif_ill_refrele_tail which can end up
19561 				 * in trying to acquire any lock.
19562 				 */
19563 				RELEASE_CONN_LOCK(q);
19564 				ill_refrele(ill);
19565 				return (ipif);
19566 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19567 				ipsq = ill->ill_phyint->phyint_ipsq;
19568 				mutex_enter(&ipsq->ipsq_lock);
19569 				mutex_exit(&ill->ill_lock);
19570 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19571 				mutex_exit(&ipsq->ipsq_lock);
19572 				RELEASE_CONN_LOCK(q);
19573 				ill_refrele(ill);
19574 				*error = EINPROGRESS;
19575 				return (NULL);
19576 			}
19577 		}
19578 	}
19579 	RELEASE_CONN_LOCK(q);
19580 
19581 	if (!do_alloc) {
19582 		mutex_exit(&ill->ill_lock);
19583 		ill_refrele(ill);
19584 		if (error != NULL)
19585 			*error = ENXIO;
19586 		return (NULL);
19587 	}
19588 
19589 	/*
19590 	 * If none found, atomically allocate and return a new one.
19591 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19592 	 * to support "receive only" use of lo0:1 etc. as is still done
19593 	 * below as an initial guess.
19594 	 * However, this is now likely to be overriden later in ipif_up_done()
19595 	 * when we know for sure what address has been configured on the
19596 	 * interface, since we might have more than one loopback interface
19597 	 * with a loopback address, e.g. in the case of zones, and all the
19598 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19599 	 */
19600 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19601 		ire_type = IRE_LOOPBACK;
19602 	else
19603 		ire_type = IRE_LOCAL;
19604 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19605 	if (ipif != NULL)
19606 		ipif_refhold_locked(ipif);
19607 	else if (error != NULL)
19608 		*error = ENOMEM;
19609 	mutex_exit(&ill->ill_lock);
19610 	ill_refrele(ill);
19611 	return (ipif);
19612 }
19613 
19614 /*
19615  * This routine is called whenever a new address comes up on an ipif.  If
19616  * we are configured to respond to address mask requests, then we are supposed
19617  * to broadcast an address mask reply at this time.  This routine is also
19618  * called if we are already up, but a netmask change is made.  This is legal
19619  * but might not make the system manager very popular.	(May be called
19620  * as writer.)
19621  */
19622 void
19623 ipif_mask_reply(ipif_t *ipif)
19624 {
19625 	icmph_t	*icmph;
19626 	ipha_t	*ipha;
19627 	mblk_t	*mp;
19628 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19629 
19630 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19631 
19632 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19633 		return;
19634 
19635 	/* ICMP mask reply is IPv4 only */
19636 	ASSERT(!ipif->ipif_isv6);
19637 	/* ICMP mask reply is not for a loopback interface */
19638 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19639 
19640 	mp = allocb(REPLY_LEN, BPRI_HI);
19641 	if (mp == NULL)
19642 		return;
19643 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19644 
19645 	ipha = (ipha_t *)mp->b_rptr;
19646 	bzero(ipha, REPLY_LEN);
19647 	*ipha = icmp_ipha;
19648 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19649 	ipha->ipha_src = ipif->ipif_src_addr;
19650 	ipha->ipha_dst = ipif->ipif_brd_addr;
19651 	ipha->ipha_length = htons(REPLY_LEN);
19652 	ipha->ipha_ident = 0;
19653 
19654 	icmph = (icmph_t *)&ipha[1];
19655 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19656 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19657 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19658 
19659 	put(ipif->ipif_wq, mp);
19660 
19661 #undef	REPLY_LEN
19662 }
19663 
19664 /*
19665  * When the mtu in the ipif changes, we call this routine through ire_walk
19666  * to update all the relevant IREs.
19667  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19668  */
19669 static void
19670 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19671 {
19672 	ipif_t *ipif = (ipif_t *)ipif_arg;
19673 
19674 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19675 		return;
19676 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19677 }
19678 
19679 /*
19680  * When the mtu in the ill changes, we call this routine through ire_walk
19681  * to update all the relevant IREs.
19682  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19683  */
19684 void
19685 ill_mtu_change(ire_t *ire, char *ill_arg)
19686 {
19687 	ill_t	*ill = (ill_t *)ill_arg;
19688 
19689 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19690 		return;
19691 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19692 }
19693 
19694 /*
19695  * Join the ipif specific multicast groups.
19696  * Must be called after a mapping has been set up in the resolver.  (Always
19697  * called as writer.)
19698  */
19699 void
19700 ipif_multicast_up(ipif_t *ipif)
19701 {
19702 	int err, index;
19703 	ill_t *ill;
19704 
19705 	ASSERT(IAM_WRITER_IPIF(ipif));
19706 
19707 	ill = ipif->ipif_ill;
19708 	index = ill->ill_phyint->phyint_ifindex;
19709 
19710 	ip1dbg(("ipif_multicast_up\n"));
19711 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19712 		return;
19713 
19714 	if (ipif->ipif_isv6) {
19715 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19716 			return;
19717 
19718 		/* Join the all hosts multicast address */
19719 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19720 		/*
19721 		 * Passing B_TRUE means we have to join the multicast
19722 		 * membership on this interface even though this is
19723 		 * FAILED. If we join on a different one in the group,
19724 		 * we will not be able to delete the membership later
19725 		 * as we currently don't track where we join when we
19726 		 * join within the kernel unlike applications where
19727 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19728 		 * for more on this.
19729 		 */
19730 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19731 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19732 		if (err != 0) {
19733 			ip0dbg(("ipif_multicast_up: "
19734 			    "all_hosts_mcast failed %d\n",
19735 			    err));
19736 			return;
19737 		}
19738 		/*
19739 		 * Enable multicast for the solicited node multicast address
19740 		 */
19741 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19742 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19743 
19744 			ipv6_multi.s6_addr32[3] |=
19745 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19746 
19747 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19748 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19749 			    NULL);
19750 			if (err != 0) {
19751 				ip0dbg(("ipif_multicast_up: solicited MC"
19752 				    " failed %d\n", err));
19753 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19754 				    ill, ill->ill_phyint->phyint_ifindex,
19755 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19756 				return;
19757 			}
19758 		}
19759 	} else {
19760 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19761 			return;
19762 
19763 		/* Join the all hosts multicast address */
19764 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19765 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19766 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19767 		if (err) {
19768 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19769 			return;
19770 		}
19771 	}
19772 	ipif->ipif_multicast_up = 1;
19773 }
19774 
19775 /*
19776  * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up();
19777  * any explicit memberships are blown away in ill_leave_multicast() when the
19778  * ill is brought down.
19779  */
19780 static void
19781 ipif_multicast_down(ipif_t *ipif)
19782 {
19783 	int err;
19784 
19785 	ASSERT(IAM_WRITER_IPIF(ipif));
19786 
19787 	ip1dbg(("ipif_multicast_down\n"));
19788 	if (!ipif->ipif_multicast_up)
19789 		return;
19790 
19791 	ASSERT(ipif->ipif_isv6);
19792 
19793 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19794 
19795 	/*
19796 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19797 	 * we should look for ilms on this ill rather than the ones that have
19798 	 * been failed over here.  They are here temporarily. As
19799 	 * ipif_multicast_up has joined on this ill, we should delete only
19800 	 * from this ill.
19801 	 */
19802 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19803 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19804 	    B_TRUE, B_TRUE);
19805 	if (err != 0) {
19806 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19807 		    err));
19808 	}
19809 	/*
19810 	 * Disable multicast for the solicited node multicast address
19811 	 */
19812 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19813 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19814 
19815 		ipv6_multi.s6_addr32[3] |=
19816 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19817 
19818 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19819 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19820 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19821 
19822 		if (err != 0) {
19823 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19824 			    err));
19825 		}
19826 	}
19827 
19828 	ipif->ipif_multicast_up = 0;
19829 }
19830 
19831 /*
19832  * Used when an interface comes up to recreate any extra routes on this
19833  * interface.
19834  */
19835 static ire_t **
19836 ipif_recover_ire(ipif_t *ipif)
19837 {
19838 	mblk_t	*mp;
19839 	ire_t	**ipif_saved_irep;
19840 	ire_t	**irep;
19841 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19842 
19843 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19844 	    ipif->ipif_id));
19845 
19846 	mutex_enter(&ipif->ipif_saved_ire_lock);
19847 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19848 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19849 	if (ipif_saved_irep == NULL) {
19850 		mutex_exit(&ipif->ipif_saved_ire_lock);
19851 		return (NULL);
19852 	}
19853 
19854 	irep = ipif_saved_irep;
19855 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19856 		ire_t		*ire;
19857 		queue_t		*rfq;
19858 		queue_t		*stq;
19859 		ifrt_t		*ifrt;
19860 		uchar_t		*src_addr;
19861 		uchar_t		*gateway_addr;
19862 		mblk_t		*resolver_mp;
19863 		ushort_t	type;
19864 
19865 		/*
19866 		 * When the ire was initially created and then added in
19867 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19868 		 * in the case of a traditional interface route, or as one of
19869 		 * the IRE_OFFSUBNET types (with the exception of
19870 		 * IRE_HOST types ire which is created by icmp_redirect() and
19871 		 * which we don't need to save or recover).  In the case where
19872 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19873 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19874 		 * to satisfy software like GateD and Sun Cluster which creates
19875 		 * routes using the the loopback interface's address as a
19876 		 * gateway.
19877 		 *
19878 		 * As ifrt->ifrt_type reflects the already updated ire_type and
19879 		 * since ire_create() expects that IRE_IF_NORESOLVER will have
19880 		 * a valid nce_res_mp field (which doesn't make sense for a
19881 		 * IRE_LOOPBACK), ire_create() will be called in the same way
19882 		 * here as in ip_rt_add(), namely using ipif->ipif_net_type when
19883 		 * the route looks like a traditional interface route (where
19884 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19885 		 * the saved ifrt->ifrt_type.  This means that in the case where
19886 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19887 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19888 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19889 		 */
19890 		ifrt = (ifrt_t *)mp->b_rptr;
19891 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19892 			rfq = NULL;
19893 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19894 			    ? ipif->ipif_rq : ipif->ipif_wq;
19895 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19896 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19897 			    : (uint8_t *)&ipif->ipif_src_addr;
19898 			gateway_addr = NULL;
19899 			resolver_mp = ipif->ipif_resolver_mp;
19900 			type = ipif->ipif_net_type;
19901 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19902 			/* Recover multiroute broadcast IRE. */
19903 			rfq = ipif->ipif_rq;
19904 			stq = ipif->ipif_wq;
19905 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19906 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19907 			    : (uint8_t *)&ipif->ipif_src_addr;
19908 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19909 			resolver_mp = ipif->ipif_bcast_mp;
19910 			type = ifrt->ifrt_type;
19911 		} else {
19912 			rfq = NULL;
19913 			stq = NULL;
19914 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19915 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19916 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19917 			resolver_mp = NULL;
19918 			type = ifrt->ifrt_type;
19919 		}
19920 
19921 		/*
19922 		 * Create a copy of the IRE with the saved address and netmask.
19923 		 */
19924 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19925 		    "0x%x/0x%x\n",
19926 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19927 		    ntohl(ifrt->ifrt_addr),
19928 		    ntohl(ifrt->ifrt_mask)));
19929 		ire = ire_create(
19930 		    (uint8_t *)&ifrt->ifrt_addr,
19931 		    (uint8_t *)&ifrt->ifrt_mask,
19932 		    src_addr,
19933 		    gateway_addr,
19934 		    NULL,
19935 		    &ifrt->ifrt_max_frag,
19936 		    NULL,
19937 		    rfq,
19938 		    stq,
19939 		    type,
19940 		    resolver_mp,
19941 		    ipif,
19942 		    NULL,
19943 		    0,
19944 		    0,
19945 		    0,
19946 		    ifrt->ifrt_flags,
19947 		    &ifrt->ifrt_iulp_info,
19948 		    NULL,
19949 		    NULL,
19950 		    ipst);
19951 
19952 		if (ire == NULL) {
19953 			mutex_exit(&ipif->ipif_saved_ire_lock);
19954 			kmem_free(ipif_saved_irep,
19955 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19956 			return (NULL);
19957 		}
19958 
19959 		/*
19960 		 * Some software (for example, GateD and Sun Cluster) attempts
19961 		 * to create (what amount to) IRE_PREFIX routes with the
19962 		 * loopback address as the gateway.  This is primarily done to
19963 		 * set up prefixes with the RTF_REJECT flag set (for example,
19964 		 * when generating aggregate routes.)
19965 		 *
19966 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19967 		 * IRE_LOOPBACK, then we map the request into a
19968 		 * IRE_IF_NORESOLVER.
19969 		 */
19970 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19971 			ire->ire_type = IRE_IF_NORESOLVER;
19972 		/*
19973 		 * ire held by ire_add, will be refreled' towards the
19974 		 * the end of ipif_up_done
19975 		 */
19976 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19977 		*irep = ire;
19978 		irep++;
19979 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19980 	}
19981 	mutex_exit(&ipif->ipif_saved_ire_lock);
19982 	return (ipif_saved_irep);
19983 }
19984 
19985 /*
19986  * Used to set the netmask and broadcast address to default values when the
19987  * interface is brought up.  (Always called as writer.)
19988  */
19989 static void
19990 ipif_set_default(ipif_t *ipif)
19991 {
19992 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19993 
19994 	if (!ipif->ipif_isv6) {
19995 		/*
19996 		 * Interface holds an IPv4 address. Default
19997 		 * mask is the natural netmask.
19998 		 */
19999 		if (!ipif->ipif_net_mask) {
20000 			ipaddr_t	v4mask;
20001 
20002 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
20003 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
20004 		}
20005 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20006 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20007 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
20008 		} else {
20009 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
20010 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
20011 		}
20012 		/*
20013 		 * NOTE: SunOS 4.X does this even if the broadcast address
20014 		 * has been already set thus we do the same here.
20015 		 */
20016 		if (ipif->ipif_flags & IPIF_BROADCAST) {
20017 			ipaddr_t	v4addr;
20018 
20019 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
20020 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
20021 		}
20022 	} else {
20023 		/*
20024 		 * Interface holds an IPv6-only address.  Default
20025 		 * mask is all-ones.
20026 		 */
20027 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
20028 			ipif->ipif_v6net_mask = ipv6_all_ones;
20029 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20030 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20031 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
20032 		} else {
20033 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
20034 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
20035 		}
20036 	}
20037 }
20038 
20039 /*
20040  * Return 0 if this address can be used as local address without causing
20041  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
20042  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
20043  * Special checks are needed to allow the same IPv6 link-local address
20044  * on different ills.
20045  * TODO: allowing the same site-local address on different ill's.
20046  */
20047 int
20048 ip_addr_availability_check(ipif_t *new_ipif)
20049 {
20050 	in6_addr_t our_v6addr;
20051 	ill_t *ill;
20052 	ipif_t *ipif;
20053 	ill_walk_context_t ctx;
20054 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
20055 
20056 	ASSERT(IAM_WRITER_IPIF(new_ipif));
20057 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
20058 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
20059 
20060 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
20061 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
20062 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
20063 		return (0);
20064 
20065 	our_v6addr = new_ipif->ipif_v6lcl_addr;
20066 
20067 	if (new_ipif->ipif_isv6)
20068 		ill = ILL_START_WALK_V6(&ctx, ipst);
20069 	else
20070 		ill = ILL_START_WALK_V4(&ctx, ipst);
20071 
20072 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
20073 		for (ipif = ill->ill_ipif; ipif != NULL;
20074 		    ipif = ipif->ipif_next) {
20075 			if ((ipif == new_ipif) ||
20076 			    !(ipif->ipif_flags & IPIF_UP) ||
20077 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
20078 				continue;
20079 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
20080 			    &our_v6addr)) {
20081 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
20082 				    new_ipif->ipif_flags |= IPIF_UNNUMBERED;
20083 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
20084 				    ipif->ipif_flags |= IPIF_UNNUMBERED;
20085 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
20086 				    new_ipif->ipif_ill != ill)
20087 					continue;
20088 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
20089 				    new_ipif->ipif_ill != ill)
20090 					continue;
20091 				else if (new_ipif->ipif_zoneid !=
20092 				    ipif->ipif_zoneid &&
20093 				    ipif->ipif_zoneid != ALL_ZONES &&
20094 				    (ill->ill_phyint->phyint_flags &
20095 				    PHYI_LOOPBACK))
20096 					continue;
20097 				else if (new_ipif->ipif_ill == ill)
20098 					return (EADDRINUSE);
20099 				else
20100 					return (EADDRNOTAVAIL);
20101 			}
20102 		}
20103 	}
20104 
20105 	return (0);
20106 }
20107 
20108 /*
20109  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
20110  * IREs for the ipif.
20111  * When the routine returns EINPROGRESS then mp has been consumed and
20112  * the ioctl will be acked from ip_rput_dlpi.
20113  */
20114 static int
20115 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
20116 {
20117 	ill_t	*ill = ipif->ipif_ill;
20118 	boolean_t isv6 = ipif->ipif_isv6;
20119 	int	err = 0;
20120 	boolean_t success;
20121 
20122 	ASSERT(IAM_WRITER_IPIF(ipif));
20123 
20124 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
20125 
20126 	/* Shouldn't get here if it is already up. */
20127 	if (ipif->ipif_flags & IPIF_UP)
20128 		return (EALREADY);
20129 
20130 	/* Skip arp/ndp for any loopback interface. */
20131 	if (ill->ill_wq != NULL) {
20132 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
20133 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
20134 
20135 		if (!ill->ill_dl_up) {
20136 			/*
20137 			 * ill_dl_up is not yet set. i.e. we are yet to
20138 			 * DL_BIND with the driver and this is the first
20139 			 * logical interface on the ill to become "up".
20140 			 * Tell the driver to get going (via DL_BIND_REQ).
20141 			 * Note that changing "significant" IFF_ flags
20142 			 * address/netmask etc cause a down/up dance, but
20143 			 * does not cause an unbind (DL_UNBIND) with the driver
20144 			 */
20145 			return (ill_dl_up(ill, ipif, mp, q));
20146 		}
20147 
20148 		/*
20149 		 * ipif_resolver_up may end up sending an
20150 		 * AR_INTERFACE_UP message to ARP, which would, in
20151 		 * turn send a DLPI message to the driver. ioctls are
20152 		 * serialized and so we cannot send more than one
20153 		 * interface up message at a time. If ipif_resolver_up
20154 		 * does send an interface up message to ARP, we get
20155 		 * EINPROGRESS and we will complete in ip_arp_done.
20156 		 */
20157 
20158 		ASSERT(connp != NULL || !CONN_Q(q));
20159 		ASSERT(ipsq->ipsq_pending_mp == NULL);
20160 		if (connp != NULL)
20161 			mutex_enter(&connp->conn_lock);
20162 		mutex_enter(&ill->ill_lock);
20163 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
20164 		mutex_exit(&ill->ill_lock);
20165 		if (connp != NULL)
20166 			mutex_exit(&connp->conn_lock);
20167 		if (!success)
20168 			return (EINTR);
20169 
20170 		/*
20171 		 * Crank up IPv6 neighbor discovery
20172 		 * Unlike ARP, this should complete when
20173 		 * ipif_ndp_up returns. However, for
20174 		 * ILLF_XRESOLV interfaces we also send a
20175 		 * AR_INTERFACE_UP to the external resolver.
20176 		 * That ioctl will complete in ip_rput.
20177 		 */
20178 		if (isv6) {
20179 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr);
20180 			if (err != 0) {
20181 				if (err != EINPROGRESS)
20182 					mp = ipsq_pending_mp_get(ipsq, &connp);
20183 				return (err);
20184 			}
20185 		}
20186 		/* Now, ARP */
20187 		err = ipif_resolver_up(ipif, Res_act_initial);
20188 		if (err == EINPROGRESS) {
20189 			/* We will complete it in ip_arp_done */
20190 			return (err);
20191 		}
20192 		mp = ipsq_pending_mp_get(ipsq, &connp);
20193 		ASSERT(mp != NULL);
20194 		if (err != 0)
20195 			return (err);
20196 	} else {
20197 		/*
20198 		 * Interfaces without underlying hardware don't do duplicate
20199 		 * address detection.
20200 		 */
20201 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
20202 		ipif->ipif_addr_ready = 1;
20203 	}
20204 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
20205 }
20206 
20207 /*
20208  * Perform a bind for the physical device.
20209  * When the routine returns EINPROGRESS then mp has been consumed and
20210  * the ioctl will be acked from ip_rput_dlpi.
20211  * Allocate an unbind message and save it until ipif_down.
20212  */
20213 static int
20214 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
20215 {
20216 	mblk_t	*areq_mp = NULL;
20217 	mblk_t	*bind_mp = NULL;
20218 	mblk_t	*unbind_mp = NULL;
20219 	conn_t	*connp;
20220 	boolean_t success;
20221 
20222 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
20223 	ASSERT(IAM_WRITER_ILL(ill));
20224 
20225 	ASSERT(mp != NULL);
20226 
20227 	/* Create a resolver cookie for ARP */
20228 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
20229 		areq_t		*areq;
20230 		uint16_t	sap_addr;
20231 
20232 		areq_mp = ill_arp_alloc(ill,
20233 			(uchar_t *)&ip_areq_template, 0);
20234 		if (areq_mp == NULL) {
20235 			return (ENOMEM);
20236 		}
20237 		freemsg(ill->ill_resolver_mp);
20238 		ill->ill_resolver_mp = areq_mp;
20239 		areq = (areq_t *)areq_mp->b_rptr;
20240 		sap_addr = ill->ill_sap;
20241 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
20242 		/*
20243 		 * Wait till we call ill_pending_mp_add to determine
20244 		 * the success before we free the ill_resolver_mp and
20245 		 * attach areq_mp in it's place.
20246 		 */
20247 	}
20248 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
20249 	    DL_BIND_REQ);
20250 	if (bind_mp == NULL)
20251 		goto bad;
20252 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
20253 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
20254 
20255 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
20256 	if (unbind_mp == NULL)
20257 		goto bad;
20258 
20259 	/*
20260 	 * Record state needed to complete this operation when the
20261 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
20262 	 */
20263 	ASSERT(WR(q)->q_next == NULL);
20264 	connp = Q_TO_CONN(q);
20265 
20266 	mutex_enter(&connp->conn_lock);
20267 	mutex_enter(&ipif->ipif_ill->ill_lock);
20268 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
20269 	mutex_exit(&ipif->ipif_ill->ill_lock);
20270 	mutex_exit(&connp->conn_lock);
20271 	if (!success)
20272 		goto bad;
20273 
20274 	/*
20275 	 * Save the unbind message for ill_dl_down(); it will be consumed when
20276 	 * the interface goes down.
20277 	 */
20278 	ASSERT(ill->ill_unbind_mp == NULL);
20279 	ill->ill_unbind_mp = unbind_mp;
20280 
20281 	ill_dlpi_send(ill, bind_mp);
20282 	/* Send down link-layer capabilities probe if not already done. */
20283 	ill_capability_probe(ill);
20284 
20285 	/*
20286 	 * Sysid used to rely on the fact that netboots set domainname
20287 	 * and the like. Now that miniroot boots aren't strictly netboots
20288 	 * and miniroot network configuration is driven from userland
20289 	 * these things still need to be set. This situation can be detected
20290 	 * by comparing the interface being configured here to the one
20291 	 * dhcack was set to reference by the boot loader. Once sysid is
20292 	 * converted to use dhcp_ipc_getinfo() this call can go away.
20293 	 */
20294 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
20295 	    (strcmp(ill->ill_name, dhcack) == 0) &&
20296 	    (strlen(srpc_domain) == 0)) {
20297 		if (dhcpinit() != 0)
20298 			cmn_err(CE_WARN, "no cached dhcp response");
20299 	}
20300 
20301 	/*
20302 	 * This operation will complete in ip_rput_dlpi with either
20303 	 * a DL_BIND_ACK or DL_ERROR_ACK.
20304 	 */
20305 	return (EINPROGRESS);
20306 bad:
20307 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
20308 	/*
20309 	 * We don't have to check for possible removal from illgrp
20310 	 * as we have not yet inserted in illgrp. For groups
20311 	 * without names, this ipif is still not UP and hence
20312 	 * this could not have possibly had any influence in forming
20313 	 * groups.
20314 	 */
20315 
20316 	freemsg(bind_mp);
20317 	freemsg(unbind_mp);
20318 	return (ENOMEM);
20319 }
20320 
20321 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
20322 
20323 /*
20324  * DLPI and ARP is up.
20325  * Create all the IREs associated with an interface bring up multicast.
20326  * Set the interface flag and finish other initialization
20327  * that potentially had to be differed to after DL_BIND_ACK.
20328  */
20329 int
20330 ipif_up_done(ipif_t *ipif)
20331 {
20332 	ire_t	*ire_array[20];
20333 	ire_t	**irep = ire_array;
20334 	ire_t	**irep1;
20335 	ipaddr_t net_mask = 0;
20336 	ipaddr_t subnet_mask, route_mask;
20337 	ill_t	*ill = ipif->ipif_ill;
20338 	queue_t	*stq;
20339 	ipif_t	 *src_ipif;
20340 	ipif_t   *tmp_ipif;
20341 	boolean_t	flush_ire_cache = B_TRUE;
20342 	int	err = 0;
20343 	phyint_t *phyi;
20344 	ire_t	**ipif_saved_irep = NULL;
20345 	int ipif_saved_ire_cnt;
20346 	int	cnt;
20347 	boolean_t	src_ipif_held = B_FALSE;
20348 	boolean_t	ire_added = B_FALSE;
20349 	boolean_t	loopback = B_FALSE;
20350 	ip_stack_t	*ipst = ill->ill_ipst;
20351 
20352 	ip1dbg(("ipif_up_done(%s:%u)\n",
20353 		ipif->ipif_ill->ill_name, ipif->ipif_id));
20354 	/* Check if this is a loopback interface */
20355 	if (ipif->ipif_ill->ill_wq == NULL)
20356 		loopback = B_TRUE;
20357 
20358 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20359 	/*
20360 	 * If all other interfaces for this ill are down or DEPRECATED,
20361 	 * or otherwise unsuitable for source address selection, remove
20362 	 * any IRE_CACHE entries for this ill to make sure source
20363 	 * address selection gets to take this new ipif into account.
20364 	 * No need to hold ill_lock while traversing the ipif list since
20365 	 * we are writer
20366 	 */
20367 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20368 		tmp_ipif = tmp_ipif->ipif_next) {
20369 		if (((tmp_ipif->ipif_flags &
20370 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20371 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20372 		    (tmp_ipif == ipif))
20373 			continue;
20374 		/* first useable pre-existing interface */
20375 		flush_ire_cache = B_FALSE;
20376 		break;
20377 	}
20378 	if (flush_ire_cache)
20379 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20380 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20381 
20382 	/*
20383 	 * Figure out which way the send-to queue should go.  Only
20384 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20385 	 * should show up here.
20386 	 */
20387 	switch (ill->ill_net_type) {
20388 	case IRE_IF_RESOLVER:
20389 		stq = ill->ill_rq;
20390 		break;
20391 	case IRE_IF_NORESOLVER:
20392 	case IRE_LOOPBACK:
20393 		stq = ill->ill_wq;
20394 		break;
20395 	default:
20396 		return (EINVAL);
20397 	}
20398 
20399 	if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) {
20400 		/*
20401 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20402 		 * ipif_lookup_on_name(), but in the case of zones we can have
20403 		 * several loopback addresses on lo0. So all the interfaces with
20404 		 * loopback addresses need to be marked IRE_LOOPBACK.
20405 		 */
20406 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20407 		    htonl(INADDR_LOOPBACK))
20408 			ipif->ipif_ire_type = IRE_LOOPBACK;
20409 		else
20410 			ipif->ipif_ire_type = IRE_LOCAL;
20411 	}
20412 
20413 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20414 		/*
20415 		 * Can't use our source address. Select a different
20416 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20417 		 */
20418 		src_ipif = ipif_select_source(ipif->ipif_ill,
20419 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20420 		if (src_ipif == NULL)
20421 			src_ipif = ipif;	/* Last resort */
20422 		else
20423 			src_ipif_held = B_TRUE;
20424 	} else {
20425 		src_ipif = ipif;
20426 	}
20427 
20428 	/* Create all the IREs associated with this interface */
20429 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20430 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20431 
20432 		/*
20433 		 * If we're on a labeled system then make sure that zone-
20434 		 * private addresses have proper remote host database entries.
20435 		 */
20436 		if (is_system_labeled() &&
20437 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20438 		    !tsol_check_interface_address(ipif))
20439 			return (EINVAL);
20440 
20441 		/* Register the source address for __sin6_src_id */
20442 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20443 		    ipif->ipif_zoneid, ipst);
20444 		if (err != 0) {
20445 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20446 			return (err);
20447 		}
20448 
20449 		/* If the interface address is set, create the local IRE. */
20450 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20451 			(void *)ipif,
20452 			ipif->ipif_ire_type,
20453 			ntohl(ipif->ipif_lcl_addr)));
20454 		*irep++ = ire_create(
20455 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20456 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20457 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20458 		    NULL,				/* no gateway */
20459 		    NULL,
20460 		    &ip_loopback_mtuplus,		/* max frag size */
20461 		    NULL,
20462 		    ipif->ipif_rq,			/* recv-from queue */
20463 		    NULL,				/* no send-to queue */
20464 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20465 		    NULL,
20466 		    ipif,
20467 		    NULL,
20468 		    0,
20469 		    0,
20470 		    0,
20471 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20472 		    RTF_PRIVATE : 0,
20473 		    &ire_uinfo_null,
20474 		    NULL,
20475 		    NULL,
20476 		    ipst);
20477 	} else {
20478 		ip1dbg((
20479 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20480 		    ipif->ipif_ire_type,
20481 		    ntohl(ipif->ipif_lcl_addr),
20482 		    (uint_t)ipif->ipif_flags));
20483 	}
20484 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20485 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20486 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20487 	} else {
20488 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20489 	}
20490 
20491 	subnet_mask = ipif->ipif_net_mask;
20492 
20493 	/*
20494 	 * If mask was not specified, use natural netmask of
20495 	 * interface address. Also, store this mask back into the
20496 	 * ipif struct.
20497 	 */
20498 	if (subnet_mask == 0) {
20499 		subnet_mask = net_mask;
20500 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20501 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20502 		    ipif->ipif_v6subnet);
20503 	}
20504 
20505 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20506 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20507 	    ipif->ipif_subnet != INADDR_ANY) {
20508 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20509 
20510 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20511 			route_mask = IP_HOST_MASK;
20512 		} else {
20513 			route_mask = subnet_mask;
20514 		}
20515 
20516 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20517 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20518 			(void *)ipif, (void *)ill,
20519 			ill->ill_net_type,
20520 			ntohl(ipif->ipif_subnet)));
20521 		*irep++ = ire_create(
20522 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20523 		    (uchar_t *)&route_mask,		/* mask */
20524 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20525 		    NULL,				/* no gateway */
20526 		    NULL,
20527 		    &ipif->ipif_mtu,			/* max frag */
20528 		    NULL,
20529 		    NULL,				/* no recv queue */
20530 		    stq,				/* send-to queue */
20531 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20532 		    ill->ill_resolver_mp,		/* xmit header */
20533 		    ipif,
20534 		    NULL,
20535 		    0,
20536 		    0,
20537 		    0,
20538 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20539 		    &ire_uinfo_null,
20540 		    NULL,
20541 		    NULL,
20542 		    ipst);
20543 	}
20544 
20545 	/*
20546 	 * If the interface address is set, create the broadcast IREs.
20547 	 *
20548 	 * ire_create_bcast checks if the proposed new IRE matches
20549 	 * any existing IRE's with the same physical interface (ILL).
20550 	 * This should get rid of duplicates.
20551 	 * ire_create_bcast also check IPIF_NOXMIT and does not create
20552 	 * any broadcast ires.
20553 	 */
20554 	if ((ipif->ipif_subnet != INADDR_ANY) &&
20555 	    (ipif->ipif_flags & IPIF_BROADCAST)) {
20556 		ipaddr_t addr;
20557 
20558 		ip1dbg(("ipif_up_done: creating broadcast IRE\n"));
20559 		irep = ire_check_and_create_bcast(ipif, 0, irep,
20560 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20561 		irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep,
20562 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20563 
20564 		/*
20565 		 * For backward compatibility, we need to create net
20566 		 * broadcast ire's based on the old "IP address class
20567 		 * system."  The reason is that some old machines only
20568 		 * respond to these class derived net broadcast.
20569 		 *
20570 		 * But we should not create these net broadcast ire's if
20571 		 * the subnet_mask is shorter than the IP address class based
20572 		 * derived netmask.  Otherwise, we may create a net
20573 		 * broadcast address which is the same as an IP address
20574 		 * on the subnet.  Then TCP will refuse to talk to that
20575 		 * address.
20576 		 *
20577 		 * Nor do we need IRE_BROADCAST ire's for the interface
20578 		 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that
20579 		 * interface is already created.  Creating these broadcast
20580 		 * ire's will only create confusion as the "addr" is going
20581 		 * to be same as that of the IP address of the interface.
20582 		 */
20583 		if (net_mask < subnet_mask) {
20584 			addr = net_mask & ipif->ipif_subnet;
20585 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20586 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20587 			irep = ire_check_and_create_bcast(ipif,
20588 			    ~net_mask | addr, irep,
20589 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20590 		}
20591 
20592 		if (subnet_mask != 0xFFFFFFFF) {
20593 			addr = ipif->ipif_subnet;
20594 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20595 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20596 			irep = ire_check_and_create_bcast(ipif,
20597 			    ~subnet_mask|addr, irep,
20598 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20599 		}
20600 	}
20601 
20602 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20603 
20604 	/* If an earlier ire_create failed, get out now */
20605 	for (irep1 = irep; irep1 > ire_array; ) {
20606 		irep1--;
20607 		if (*irep1 == NULL) {
20608 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20609 			err = ENOMEM;
20610 			goto bad;
20611 		}
20612 	}
20613 
20614 	/*
20615 	 * Need to atomically check for ip_addr_availablity_check
20616 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20617 	 * from group also.The ill_g_lock is grabbed as reader
20618 	 * just to make sure no new ills or new ipifs are being added
20619 	 * to the system while we are checking the uniqueness of addresses.
20620 	 */
20621 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20622 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
20623 	/* Mark it up, and increment counters. */
20624 	ipif->ipif_flags |= IPIF_UP;
20625 	ill->ill_ipif_up_count++;
20626 	err = ip_addr_availability_check(ipif);
20627 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
20628 	rw_exit(&ipst->ips_ill_g_lock);
20629 
20630 	if (err != 0) {
20631 		/*
20632 		 * Our address may already be up on the same ill. In this case,
20633 		 * the ARP entry for our ipif replaced the one for the other
20634 		 * ipif. So we don't want to delete it (otherwise the other ipif
20635 		 * would be unable to send packets).
20636 		 * ip_addr_availability_check() identifies this case for us and
20637 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20638 		 * which is the expected error code.
20639 		 */
20640 		if (err == EADDRINUSE) {
20641 			freemsg(ipif->ipif_arp_del_mp);
20642 			ipif->ipif_arp_del_mp = NULL;
20643 			err = EADDRNOTAVAIL;
20644 		}
20645 		ill->ill_ipif_up_count--;
20646 		ipif->ipif_flags &= ~IPIF_UP;
20647 		goto bad;
20648 	}
20649 
20650 	/*
20651 	 * Add in all newly created IREs.  ire_create_bcast() has
20652 	 * already checked for duplicates of the IRE_BROADCAST type.
20653 	 * We want to add before we call ifgrp_insert which wants
20654 	 * to know whether IRE_IF_RESOLVER exists or not.
20655 	 *
20656 	 * NOTE : We refrele the ire though we may branch to "bad"
20657 	 *	  later on where we do ire_delete. This is okay
20658 	 *	  because nobody can delete it as we are running
20659 	 *	  exclusively.
20660 	 */
20661 	for (irep1 = irep; irep1 > ire_array; ) {
20662 		irep1--;
20663 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20664 		/*
20665 		 * refheld by ire_add. refele towards the end of the func
20666 		 */
20667 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20668 	}
20669 	ire_added = B_TRUE;
20670 	/*
20671 	 * Form groups if possible.
20672 	 *
20673 	 * If we are supposed to be in a ill_group with a name, insert it
20674 	 * now as we know that at least one ipif is UP. Otherwise form
20675 	 * nameless groups.
20676 	 *
20677 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20678 	 * this ipif into the appropriate interface group, or create a
20679 	 * new one. If this is already in a nameless group, we try to form
20680 	 * a bigger group looking at other ills potentially sharing this
20681 	 * ipif's prefix.
20682 	 */
20683 	phyi = ill->ill_phyint;
20684 	if (phyi->phyint_groupname_len != 0) {
20685 		ASSERT(phyi->phyint_groupname != NULL);
20686 		if (ill->ill_ipif_up_count == 1) {
20687 			ASSERT(ill->ill_group == NULL);
20688 			err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20689 			    phyi->phyint_groupname, NULL, B_TRUE);
20690 			if (err != 0) {
20691 				ip1dbg(("ipif_up_done: illgrp allocation "
20692 				    "failed, error %d\n", err));
20693 				goto bad;
20694 			}
20695 		}
20696 		ASSERT(ill->ill_group != NULL);
20697 	}
20698 
20699 	/*
20700 	 * When this is part of group, we need to make sure that
20701 	 * any broadcast ires created because of this ipif coming
20702 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20703 	 * so that we don't receive duplicate broadcast packets.
20704 	 */
20705 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20706 		ipif_renominate_bcast(ipif);
20707 
20708 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20709 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20710 	ipif_saved_irep = ipif_recover_ire(ipif);
20711 
20712 	if (!loopback) {
20713 		/*
20714 		 * If the broadcast address has been set, make sure it makes
20715 		 * sense based on the interface address.
20716 		 * Only match on ill since we are sharing broadcast addresses.
20717 		 */
20718 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20719 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20720 			ire_t	*ire;
20721 
20722 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20723 			    IRE_BROADCAST, ipif, ALL_ZONES,
20724 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20725 
20726 			if (ire == NULL) {
20727 				/*
20728 				 * If there isn't a matching broadcast IRE,
20729 				 * revert to the default for this netmask.
20730 				 */
20731 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20732 				mutex_enter(&ipif->ipif_ill->ill_lock);
20733 				ipif_set_default(ipif);
20734 				mutex_exit(&ipif->ipif_ill->ill_lock);
20735 			} else {
20736 				ire_refrele(ire);
20737 			}
20738 		}
20739 
20740 	}
20741 
20742 	/* This is the first interface on this ill */
20743 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20744 		/*
20745 		 * Need to recover all multicast memberships in the driver.
20746 		 * This had to be deferred until we had attached.
20747 		 */
20748 		ill_recover_multicast(ill);
20749 	}
20750 	/* Join the allhosts multicast address */
20751 	ipif_multicast_up(ipif);
20752 
20753 	if (!loopback) {
20754 		/*
20755 		 * See whether anybody else would benefit from the
20756 		 * new ipif that we added. We call this always rather
20757 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20758 		 * ipif is for the benefit of illgrp_insert (done above)
20759 		 * which does not do source address selection as it does
20760 		 * not want to re-create interface routes that we are
20761 		 * having reference to it here.
20762 		 */
20763 		ill_update_source_selection(ill);
20764 	}
20765 
20766 	for (irep1 = irep; irep1 > ire_array; ) {
20767 		irep1--;
20768 		if (*irep1 != NULL) {
20769 			/* was held in ire_add */
20770 			ire_refrele(*irep1);
20771 		}
20772 	}
20773 
20774 	cnt = ipif_saved_ire_cnt;
20775 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20776 		if (*irep1 != NULL) {
20777 			/* was held in ire_add */
20778 			ire_refrele(*irep1);
20779 		}
20780 	}
20781 
20782 	if (!loopback && ipif->ipif_addr_ready) {
20783 		/* Broadcast an address mask reply. */
20784 		ipif_mask_reply(ipif);
20785 	}
20786 	if (ipif_saved_irep != NULL) {
20787 		kmem_free(ipif_saved_irep,
20788 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20789 	}
20790 	if (src_ipif_held)
20791 		ipif_refrele(src_ipif);
20792 
20793 	/*
20794 	 * This had to be deferred until we had bound.  Tell routing sockets and
20795 	 * others that this interface is up if it looks like the address has
20796 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20797 	 * duplicate address detection to do its thing.
20798 	 */
20799 	if (ipif->ipif_addr_ready) {
20800 		ip_rts_ifmsg(ipif);
20801 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20802 		/* Let SCTP update the status for this ipif */
20803 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20804 	}
20805 	return (0);
20806 
20807 bad:
20808 	ip1dbg(("ipif_up_done: FAILED \n"));
20809 	/*
20810 	 * We don't have to bother removing from ill groups because
20811 	 *
20812 	 * 1) For groups with names, we insert only when the first ipif
20813 	 *    comes up. In that case if it fails, it will not be in any
20814 	 *    group. So, we need not try to remove for that case.
20815 	 *
20816 	 * 2) For groups without names, either we tried to insert ipif_ill
20817 	 *    in a group as singleton or found some other group to become
20818 	 *    a bigger group. For the former, if it fails we don't have
20819 	 *    anything to do as ipif_ill is not in the group and for the
20820 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20821 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20822 	 */
20823 	while (irep > ire_array) {
20824 		irep--;
20825 		if (*irep != NULL) {
20826 			ire_delete(*irep);
20827 			if (ire_added)
20828 				ire_refrele(*irep);
20829 		}
20830 	}
20831 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20832 
20833 	if (ipif_saved_irep != NULL) {
20834 		kmem_free(ipif_saved_irep,
20835 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20836 	}
20837 	if (src_ipif_held)
20838 		ipif_refrele(src_ipif);
20839 
20840 	ipif_arp_down(ipif);
20841 	return (err);
20842 }
20843 
20844 /*
20845  * Turn off the ARP with the ILLF_NOARP flag.
20846  */
20847 static int
20848 ill_arp_off(ill_t *ill)
20849 {
20850 	mblk_t	*arp_off_mp = NULL;
20851 	mblk_t	*arp_on_mp = NULL;
20852 
20853 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20854 
20855 	ASSERT(IAM_WRITER_ILL(ill));
20856 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20857 
20858 	/*
20859 	 * If the on message is still around we've already done
20860 	 * an arp_off without doing an arp_on thus there is no
20861 	 * work needed.
20862 	 */
20863 	if (ill->ill_arp_on_mp != NULL)
20864 		return (0);
20865 
20866 	/*
20867 	 * Allocate an ARP on message (to be saved) and an ARP off message
20868 	 */
20869 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20870 	if (!arp_off_mp)
20871 		return (ENOMEM);
20872 
20873 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20874 	if (!arp_on_mp)
20875 		goto failed;
20876 
20877 	ASSERT(ill->ill_arp_on_mp == NULL);
20878 	ill->ill_arp_on_mp = arp_on_mp;
20879 
20880 	/* Send an AR_INTERFACE_OFF request */
20881 	putnext(ill->ill_rq, arp_off_mp);
20882 	return (0);
20883 failed:
20884 
20885 	if (arp_off_mp)
20886 		freemsg(arp_off_mp);
20887 	return (ENOMEM);
20888 }
20889 
20890 /*
20891  * Turn on ARP by turning off the ILLF_NOARP flag.
20892  */
20893 static int
20894 ill_arp_on(ill_t *ill)
20895 {
20896 	mblk_t	*mp;
20897 
20898 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20899 
20900 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20901 
20902 	ASSERT(IAM_WRITER_ILL(ill));
20903 	/*
20904 	 * Send an AR_INTERFACE_ON request if we have already done
20905 	 * an arp_off (which allocated the message).
20906 	 */
20907 	if (ill->ill_arp_on_mp != NULL) {
20908 		mp = ill->ill_arp_on_mp;
20909 		ill->ill_arp_on_mp = NULL;
20910 		putnext(ill->ill_rq, mp);
20911 	}
20912 	return (0);
20913 }
20914 
20915 /*
20916  * Called after either deleting ill from the group or when setting
20917  * FAILED or STANDBY on the interface.
20918  */
20919 static void
20920 illgrp_reset_schednext(ill_t *ill)
20921 {
20922 	ill_group_t *illgrp;
20923 	ill_t *save_ill;
20924 
20925 	ASSERT(IAM_WRITER_ILL(ill));
20926 	/*
20927 	 * When called from illgrp_delete, ill_group will be non-NULL.
20928 	 * But when called from ip_sioctl_flags, it could be NULL if
20929 	 * somebody is setting FAILED/INACTIVE on some interface which
20930 	 * is not part of a group.
20931 	 */
20932 	illgrp = ill->ill_group;
20933 	if (illgrp == NULL)
20934 		return;
20935 	if (illgrp->illgrp_ill_schednext != ill)
20936 		return;
20937 
20938 	illgrp->illgrp_ill_schednext = NULL;
20939 	save_ill = ill;
20940 	/*
20941 	 * Choose a good ill to be the next one for
20942 	 * outbound traffic. As the flags FAILED/STANDBY is
20943 	 * not yet marked when called from ip_sioctl_flags,
20944 	 * we check for ill separately.
20945 	 */
20946 	for (ill = illgrp->illgrp_ill; ill != NULL;
20947 	    ill = ill->ill_group_next) {
20948 		if ((ill != save_ill) &&
20949 		    !(ill->ill_phyint->phyint_flags &
20950 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20951 			illgrp->illgrp_ill_schednext = ill;
20952 			return;
20953 		}
20954 	}
20955 }
20956 
20957 /*
20958  * Given an ill, find the next ill in the group to be scheduled.
20959  * (This should be called by ip_newroute() before ire_create().)
20960  * The passed in ill may be pulled out of the group, after we have picked
20961  * up a different outgoing ill from the same group. However ire add will
20962  * atomically check this.
20963  */
20964 ill_t *
20965 illgrp_scheduler(ill_t *ill)
20966 {
20967 	ill_t *retill;
20968 	ill_group_t *illgrp;
20969 	int illcnt;
20970 	int i;
20971 	uint64_t flags;
20972 	ip_stack_t	*ipst = ill->ill_ipst;
20973 
20974 	/*
20975 	 * We don't use a lock to check for the ill_group. If this ill
20976 	 * is currently being inserted we may end up just returning this
20977 	 * ill itself. That is ok.
20978 	 */
20979 	if (ill->ill_group == NULL) {
20980 		ill_refhold(ill);
20981 		return (ill);
20982 	}
20983 
20984 	/*
20985 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20986 	 * a set of stable ills. No ill can be added or deleted or change
20987 	 * group while we hold the reader lock.
20988 	 */
20989 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20990 	if ((illgrp = ill->ill_group) == NULL) {
20991 		rw_exit(&ipst->ips_ill_g_lock);
20992 		ill_refhold(ill);
20993 		return (ill);
20994 	}
20995 
20996 	illcnt = illgrp->illgrp_ill_count;
20997 	mutex_enter(&illgrp->illgrp_lock);
20998 	retill = illgrp->illgrp_ill_schednext;
20999 
21000 	if (retill == NULL)
21001 		retill = illgrp->illgrp_ill;
21002 
21003 	/*
21004 	 * We do a circular search beginning at illgrp_ill_schednext
21005 	 * or illgrp_ill. We don't check the flags against the ill lock
21006 	 * since it can change anytime. The ire creation will be atomic
21007 	 * and will fail if the ill is FAILED or OFFLINE.
21008 	 */
21009 	for (i = 0; i < illcnt; i++) {
21010 		flags = retill->ill_phyint->phyint_flags;
21011 
21012 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
21013 		    ILL_CAN_LOOKUP(retill)) {
21014 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
21015 			ill_refhold(retill);
21016 			break;
21017 		}
21018 		retill = retill->ill_group_next;
21019 		if (retill == NULL)
21020 			retill = illgrp->illgrp_ill;
21021 	}
21022 	mutex_exit(&illgrp->illgrp_lock);
21023 	rw_exit(&ipst->ips_ill_g_lock);
21024 
21025 	return (i == illcnt ? NULL : retill);
21026 }
21027 
21028 /*
21029  * Checks for availbility of a usable source address (if there is one) when the
21030  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
21031  * this selection is done regardless of the destination.
21032  */
21033 boolean_t
21034 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
21035 {
21036 	uint_t	ifindex;
21037 	ipif_t	*ipif = NULL;
21038 	ill_t	*uill;
21039 	boolean_t isv6;
21040 	ip_stack_t	*ipst = ill->ill_ipst;
21041 
21042 	ASSERT(ill != NULL);
21043 
21044 	isv6 = ill->ill_isv6;
21045 	ifindex = ill->ill_usesrc_ifindex;
21046 	if (ifindex != 0) {
21047 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
21048 		    NULL, ipst);
21049 		if (uill == NULL)
21050 			return (NULL);
21051 		mutex_enter(&uill->ill_lock);
21052 		for (ipif = uill->ill_ipif; ipif != NULL;
21053 		    ipif = ipif->ipif_next) {
21054 			if (!IPIF_CAN_LOOKUP(ipif))
21055 				continue;
21056 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
21057 				continue;
21058 			if (!(ipif->ipif_flags & IPIF_UP))
21059 				continue;
21060 			if (ipif->ipif_zoneid != zoneid)
21061 				continue;
21062 			if ((isv6 &&
21063 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
21064 			    (ipif->ipif_lcl_addr == INADDR_ANY))
21065 				continue;
21066 			mutex_exit(&uill->ill_lock);
21067 			ill_refrele(uill);
21068 			return (B_TRUE);
21069 		}
21070 		mutex_exit(&uill->ill_lock);
21071 		ill_refrele(uill);
21072 	}
21073 	return (B_FALSE);
21074 }
21075 
21076 /*
21077  * Determine the best source address given a destination address and an ill.
21078  * Prefers non-deprecated over deprecated but will return a deprecated
21079  * address if there is no other choice. If there is a usable source address
21080  * on the interface pointed to by ill_usesrc_ifindex then that is given
21081  * first preference.
21082  *
21083  * Returns NULL if there is no suitable source address for the ill.
21084  * This only occurs when there is no valid source address for the ill.
21085  */
21086 ipif_t *
21087 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
21088 {
21089 	ipif_t *ipif;
21090 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
21091 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
21092 	int index = 0;
21093 	boolean_t wrapped = B_FALSE;
21094 	boolean_t same_subnet_only = B_FALSE;
21095 	boolean_t ipif_same_found, ipif_other_found;
21096 	boolean_t specific_found;
21097 	ill_t	*till, *usill = NULL;
21098 	tsol_tpc_t *src_rhtp, *dst_rhtp;
21099 	ip_stack_t	*ipst = ill->ill_ipst;
21100 
21101 	if (ill->ill_usesrc_ifindex != 0) {
21102 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
21103 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
21104 		if (usill != NULL)
21105 			ill = usill;	/* Select source from usesrc ILL */
21106 		else
21107 			return (NULL);
21108 	}
21109 
21110 	/*
21111 	 * If we're dealing with an unlabeled destination on a labeled system,
21112 	 * make sure that we ignore source addresses that are incompatible with
21113 	 * the destination's default label.  That destination's default label
21114 	 * must dominate the minimum label on the source address.
21115 	 */
21116 	dst_rhtp = NULL;
21117 	if (is_system_labeled()) {
21118 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
21119 		if (dst_rhtp == NULL)
21120 			return (NULL);
21121 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
21122 			TPC_RELE(dst_rhtp);
21123 			dst_rhtp = NULL;
21124 		}
21125 	}
21126 
21127 	/*
21128 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
21129 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
21130 	 * After selecting the right ipif, under ill_lock make sure ipif is
21131 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
21132 	 * we retry. Inside the loop we still need to check for CONDEMNED,
21133 	 * but not under a lock.
21134 	 */
21135 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21136 
21137 retry:
21138 	till = ill;
21139 	ipif_arr[0] = NULL;
21140 
21141 	if (till->ill_group != NULL)
21142 		till = till->ill_group->illgrp_ill;
21143 
21144 	/*
21145 	 * Choose one good source address from each ill across the group.
21146 	 * If possible choose a source address in the same subnet as
21147 	 * the destination address.
21148 	 *
21149 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
21150 	 * This is okay because of the following.
21151 	 *
21152 	 *    If PHYI_FAILED is set and we still have non-deprecated
21153 	 *    addresses, it means the addresses have not yet been
21154 	 *    failed over to a different interface. We potentially
21155 	 *    select them to create IRE_CACHES, which will be later
21156 	 *    flushed when the addresses move over.
21157 	 *
21158 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
21159 	 *    addresses, it means either the user has configured them
21160 	 *    or PHYI_INACTIVE has not been cleared after the addresses
21161 	 *    been moved over. For the former, in.mpathd does a failover
21162 	 *    when the interface becomes INACTIVE and hence we should
21163 	 *    not find them. Once INACTIVE is set, we don't allow them
21164 	 *    to create logical interfaces anymore. For the latter, a
21165 	 *    flush will happen when INACTIVE is cleared which will
21166 	 *    flush the IRE_CACHES.
21167 	 *
21168 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
21169 	 *    over soon. We potentially select them to create IRE_CACHEs,
21170 	 *    which will be later flushed when the addresses move over.
21171 	 *
21172 	 * NOTE : As ipif_select_source is called to borrow source address
21173 	 * for an ipif that is part of a group, source address selection
21174 	 * will be re-done whenever the group changes i.e either an
21175 	 * insertion/deletion in the group.
21176 	 *
21177 	 * Fill ipif_arr[] with source addresses, using these rules:
21178 	 *
21179 	 *	1. At most one source address from a given ill ends up
21180 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
21181 	 *	   associated with a given ill ends up in ipif_arr[].
21182 	 *
21183 	 *	2. If there is at least one non-deprecated ipif in the
21184 	 *	   IPMP group with a source address on the same subnet as
21185 	 *	   our destination, then fill ipif_arr[] only with
21186 	 *	   source addresses on the same subnet as our destination.
21187 	 *	   Note that because of (1), only the first
21188 	 *	   non-deprecated ipif found with a source address
21189 	 *	   matching the destination ends up in ipif_arr[].
21190 	 *
21191 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
21192 	 *	   addresses not in the same subnet as our destination.
21193 	 *	   Again, because of (1), only the first off-subnet source
21194 	 *	   address will be chosen.
21195 	 *
21196 	 *	4. If there are no non-deprecated ipifs, then just use
21197 	 *	   the source address associated with the last deprecated
21198 	 *	   one we find that happens to be on the same subnet,
21199 	 *	   otherwise the first one not in the same subnet.
21200 	 */
21201 	specific_found = B_FALSE;
21202 	for (; till != NULL; till = till->ill_group_next) {
21203 		ipif_same_found = B_FALSE;
21204 		ipif_other_found = B_FALSE;
21205 		for (ipif = till->ill_ipif; ipif != NULL;
21206 		    ipif = ipif->ipif_next) {
21207 			if (!IPIF_CAN_LOOKUP(ipif))
21208 				continue;
21209 			/* Always skip NOLOCAL and ANYCAST interfaces */
21210 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
21211 				continue;
21212 			if (!(ipif->ipif_flags & IPIF_UP) ||
21213 			    !ipif->ipif_addr_ready)
21214 				continue;
21215 			if (ipif->ipif_zoneid != zoneid &&
21216 			    ipif->ipif_zoneid != ALL_ZONES)
21217 				continue;
21218 			/*
21219 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
21220 			 * but are not valid as source addresses.
21221 			 */
21222 			if (ipif->ipif_lcl_addr == INADDR_ANY)
21223 				continue;
21224 
21225 			/*
21226 			 * Check compatibility of local address for
21227 			 * destination's default label if we're on a labeled
21228 			 * system.  Incompatible addresses can't be used at
21229 			 * all.
21230 			 */
21231 			if (dst_rhtp != NULL) {
21232 				boolean_t incompat;
21233 
21234 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
21235 				    IPV4_VERSION, B_FALSE);
21236 				if (src_rhtp == NULL)
21237 					continue;
21238 				incompat =
21239 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
21240 				    src_rhtp->tpc_tp.tp_doi !=
21241 				    dst_rhtp->tpc_tp.tp_doi ||
21242 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
21243 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
21244 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
21245 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
21246 				TPC_RELE(src_rhtp);
21247 				if (incompat)
21248 					continue;
21249 			}
21250 
21251 			/*
21252 			 * We prefer not to use all all-zones addresses, if we
21253 			 * can avoid it, as they pose problems with unlabeled
21254 			 * destinations.
21255 			 */
21256 			if (ipif->ipif_zoneid != ALL_ZONES) {
21257 				if (!specific_found &&
21258 				    (!same_subnet_only ||
21259 				    (ipif->ipif_net_mask & dst) ==
21260 				    ipif->ipif_subnet)) {
21261 					index = 0;
21262 					specific_found = B_TRUE;
21263 					ipif_other_found = B_FALSE;
21264 				}
21265 			} else {
21266 				if (specific_found)
21267 					continue;
21268 			}
21269 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
21270 				if (ipif_dep == NULL ||
21271 				    (ipif->ipif_net_mask & dst) ==
21272 				    ipif->ipif_subnet)
21273 					ipif_dep = ipif;
21274 				continue;
21275 			}
21276 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
21277 				/* found a source address in the same subnet */
21278 				if (!same_subnet_only) {
21279 					same_subnet_only = B_TRUE;
21280 					index = 0;
21281 				}
21282 				ipif_same_found = B_TRUE;
21283 			} else {
21284 				if (same_subnet_only || ipif_other_found)
21285 					continue;
21286 				ipif_other_found = B_TRUE;
21287 			}
21288 			ipif_arr[index++] = ipif;
21289 			if (index == MAX_IPIF_SELECT_SOURCE) {
21290 				wrapped = B_TRUE;
21291 				index = 0;
21292 			}
21293 			if (ipif_same_found)
21294 				break;
21295 		}
21296 	}
21297 
21298 	if (ipif_arr[0] == NULL) {
21299 		ipif = ipif_dep;
21300 	} else {
21301 		if (wrapped)
21302 			index = MAX_IPIF_SELECT_SOURCE;
21303 		ipif = ipif_arr[ipif_rand(ipst) % index];
21304 		ASSERT(ipif != NULL);
21305 	}
21306 
21307 	if (ipif != NULL) {
21308 		mutex_enter(&ipif->ipif_ill->ill_lock);
21309 		if (!IPIF_CAN_LOOKUP(ipif)) {
21310 			mutex_exit(&ipif->ipif_ill->ill_lock);
21311 			goto retry;
21312 		}
21313 		ipif_refhold_locked(ipif);
21314 		mutex_exit(&ipif->ipif_ill->ill_lock);
21315 	}
21316 
21317 	rw_exit(&ipst->ips_ill_g_lock);
21318 	if (usill != NULL)
21319 		ill_refrele(usill);
21320 	if (dst_rhtp != NULL)
21321 		TPC_RELE(dst_rhtp);
21322 
21323 #ifdef DEBUG
21324 	if (ipif == NULL) {
21325 		char buf1[INET6_ADDRSTRLEN];
21326 
21327 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
21328 		    ill->ill_name,
21329 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
21330 	} else {
21331 		char buf1[INET6_ADDRSTRLEN];
21332 		char buf2[INET6_ADDRSTRLEN];
21333 
21334 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
21335 		    ipif->ipif_ill->ill_name,
21336 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
21337 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
21338 		    buf2, sizeof (buf2))));
21339 	}
21340 #endif /* DEBUG */
21341 	return (ipif);
21342 }
21343 
21344 
21345 /*
21346  * If old_ipif is not NULL, see if ipif was derived from old
21347  * ipif and if so, recreate the interface route by re-doing
21348  * source address selection. This happens when ipif_down ->
21349  * ipif_update_other_ipifs calls us.
21350  *
21351  * If old_ipif is NULL, just redo the source address selection
21352  * if needed. This happens when illgrp_insert or ipif_up_done
21353  * calls us.
21354  */
21355 static void
21356 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
21357 {
21358 	ire_t *ire;
21359 	ire_t *ipif_ire;
21360 	queue_t *stq;
21361 	ipif_t *nipif;
21362 	ill_t *ill;
21363 	boolean_t need_rele = B_FALSE;
21364 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
21365 
21366 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
21367 	ASSERT(IAM_WRITER_IPIF(ipif));
21368 
21369 	ill = ipif->ipif_ill;
21370 	if (!(ipif->ipif_flags &
21371 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
21372 		/*
21373 		 * Can't possibly have borrowed the source
21374 		 * from old_ipif.
21375 		 */
21376 		return;
21377 	}
21378 
21379 	/*
21380 	 * Is there any work to be done? No work if the address
21381 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21382 	 * ipif_select_source() does not borrow addresses from
21383 	 * NOLOCAL and ANYCAST interfaces).
21384 	 */
21385 	if ((old_ipif != NULL) &&
21386 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21387 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21388 	    (old_ipif->ipif_flags &
21389 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21390 		return;
21391 	}
21392 
21393 	/*
21394 	 * Perform the same checks as when creating the
21395 	 * IRE_INTERFACE in ipif_up_done.
21396 	 */
21397 	if (!(ipif->ipif_flags & IPIF_UP))
21398 		return;
21399 
21400 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21401 	    (ipif->ipif_subnet == INADDR_ANY))
21402 		return;
21403 
21404 	ipif_ire = ipif_to_ire(ipif);
21405 	if (ipif_ire == NULL)
21406 		return;
21407 
21408 	/*
21409 	 * We know that ipif uses some other source for its
21410 	 * IRE_INTERFACE. Is it using the source of this
21411 	 * old_ipif?
21412 	 */
21413 	if (old_ipif != NULL &&
21414 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21415 		ire_refrele(ipif_ire);
21416 		return;
21417 	}
21418 	if (ip_debug > 2) {
21419 		/* ip1dbg */
21420 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21421 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21422 	}
21423 
21424 	stq = ipif_ire->ire_stq;
21425 
21426 	/*
21427 	 * Can't use our source address. Select a different
21428 	 * source address for the IRE_INTERFACE.
21429 	 */
21430 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21431 	if (nipif == NULL) {
21432 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21433 		nipif = ipif;
21434 	} else {
21435 		need_rele = B_TRUE;
21436 	}
21437 
21438 	ire = ire_create(
21439 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21440 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21441 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21442 	    NULL,				/* no gateway */
21443 	    NULL,
21444 	    &ipif->ipif_mtu,			/* max frag */
21445 	    NULL,				/* fast path header */
21446 	    NULL,				/* no recv from queue */
21447 	    stq,				/* send-to queue */
21448 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21449 	    ill->ill_resolver_mp,		/* xmit header */
21450 	    ipif,
21451 	    NULL,
21452 	    0,
21453 	    0,
21454 	    0,
21455 	    0,
21456 	    &ire_uinfo_null,
21457 	    NULL,
21458 	    NULL,
21459 	    ipst);
21460 
21461 	if (ire != NULL) {
21462 		ire_t *ret_ire;
21463 		int error;
21464 
21465 		/*
21466 		 * We don't need ipif_ire anymore. We need to delete
21467 		 * before we add so that ire_add does not detect
21468 		 * duplicates.
21469 		 */
21470 		ire_delete(ipif_ire);
21471 		ret_ire = ire;
21472 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21473 		ASSERT(error == 0);
21474 		ASSERT(ire == ret_ire);
21475 		/* Held in ire_add */
21476 		ire_refrele(ret_ire);
21477 	}
21478 	/*
21479 	 * Either we are falling through from above or could not
21480 	 * allocate a replacement.
21481 	 */
21482 	ire_refrele(ipif_ire);
21483 	if (need_rele)
21484 		ipif_refrele(nipif);
21485 }
21486 
21487 /*
21488  * This old_ipif is going away.
21489  *
21490  * Determine if any other ipif's is using our address as
21491  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21492  * IPIF_DEPRECATED).
21493  * Find the IRE_INTERFACE for such ipifs and recreate them
21494  * to use an different source address following the rules in
21495  * ipif_up_done.
21496  *
21497  * This function takes an illgrp as an argument so that illgrp_delete
21498  * can call this to update source address even after deleting the
21499  * old_ipif->ipif_ill from the ill group.
21500  */
21501 static void
21502 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21503 {
21504 	ipif_t *ipif;
21505 	ill_t *ill;
21506 	char	buf[INET6_ADDRSTRLEN];
21507 
21508 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21509 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21510 
21511 	ill = old_ipif->ipif_ill;
21512 
21513 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21514 	    ill->ill_name,
21515 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21516 	    buf, sizeof (buf))));
21517 	/*
21518 	 * If this part of a group, look at all ills as ipif_select_source
21519 	 * borrows source address across all the ills in the group.
21520 	 */
21521 	if (illgrp != NULL)
21522 		ill = illgrp->illgrp_ill;
21523 
21524 	for (; ill != NULL; ill = ill->ill_group_next) {
21525 		for (ipif = ill->ill_ipif; ipif != NULL;
21526 		    ipif = ipif->ipif_next) {
21527 
21528 			if (ipif == old_ipif)
21529 				continue;
21530 
21531 			ipif_recreate_interface_routes(old_ipif, ipif);
21532 		}
21533 	}
21534 }
21535 
21536 /* ARGSUSED */
21537 int
21538 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21539 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21540 {
21541 	/*
21542 	 * ill_phyint_reinit merged the v4 and v6 into a single
21543 	 * ipsq. Could also have become part of a ipmp group in the
21544 	 * process, and we might not have been able to complete the
21545 	 * operation in ipif_set_values, if we could not become
21546 	 * exclusive.  If so restart it here.
21547 	 */
21548 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21549 }
21550 
21551 
21552 /*
21553  * Can operate on either a module or a driver queue.
21554  * Returns an error if not a module queue.
21555  */
21556 /* ARGSUSED */
21557 int
21558 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21559     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21560 {
21561 	queue_t		*q1 = q;
21562 	char 		*cp;
21563 	char		interf_name[LIFNAMSIZ];
21564 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21565 
21566 	if (q->q_next == NULL) {
21567 		ip1dbg((
21568 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21569 		return (EINVAL);
21570 	}
21571 
21572 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21573 		return (EALREADY);
21574 
21575 	do {
21576 		q1 = q1->q_next;
21577 	} while (q1->q_next);
21578 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21579 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21580 
21581 	/*
21582 	 * Here we are not going to delay the ioack until after
21583 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21584 	 * original ioctl message before sending the requests.
21585 	 */
21586 	return (ipif_set_values(q, mp, interf_name, &ppa));
21587 }
21588 
21589 /* ARGSUSED */
21590 int
21591 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21592     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21593 {
21594 	return (ENXIO);
21595 }
21596 
21597 /*
21598  * Net and subnet broadcast ire's are now specific to the particular
21599  * physical interface (ill) and not to any one locigal interface (ipif).
21600  * However, if a particular logical interface is being taken down, it's
21601  * associated ire's will be taken down as well.  Hence, when we go to
21602  * take down or change the local address, broadcast address or netmask
21603  * of a specific logical interface, we must check to make sure that we
21604  * have valid net and subnet broadcast ire's for the other logical
21605  * interfaces which may have been shared with the logical interface
21606  * being brought down or changed.
21607  *
21608  * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it
21609  * is tied to the first interface coming UP. If that ipif is going down,
21610  * we need to recreate them on the next valid ipif.
21611  *
21612  * Note: assume that the ipif passed in is still up so that it's IRE
21613  * entries are still valid.
21614  */
21615 static void
21616 ipif_check_bcast_ires(ipif_t *test_ipif)
21617 {
21618 	ipif_t	*ipif;
21619 	ire_t	*test_subnet_ire, *test_net_ire;
21620 	ire_t	*test_allzero_ire, *test_allone_ire;
21621 	ire_t	*ire_array[12];
21622 	ire_t	**irep = &ire_array[0];
21623 	ire_t	**irep1;
21624 	ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask;
21625 	ipaddr_t test_net_addr, test_subnet_addr;
21626 	ipaddr_t test_net_mask, test_subnet_mask;
21627 	boolean_t need_net_bcast_ire = B_FALSE;
21628 	boolean_t need_subnet_bcast_ire = B_FALSE;
21629 	boolean_t allzero_bcast_ire_created = B_FALSE;
21630 	boolean_t allone_bcast_ire_created = B_FALSE;
21631 	boolean_t net_bcast_ire_created = B_FALSE;
21632 	boolean_t subnet_bcast_ire_created = B_FALSE;
21633 
21634 	ipif_t  *backup_ipif_net = (ipif_t *)NULL;
21635 	ipif_t  *backup_ipif_subnet = (ipif_t *)NULL;
21636 	ipif_t  *backup_ipif_allzeros = (ipif_t *)NULL;
21637 	ipif_t  *backup_ipif_allones = (ipif_t *)NULL;
21638 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
21639 	ip_stack_t	*ipst = test_ipif->ipif_ill->ill_ipst;
21640 
21641 	ASSERT(!test_ipif->ipif_isv6);
21642 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21643 
21644 	/*
21645 	 * No broadcast IREs for the LOOPBACK interface
21646 	 * or others such as point to point and IPIF_NOXMIT.
21647 	 */
21648 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21649 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21650 		return;
21651 
21652 	test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST,
21653 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21654 	    ipst);
21655 
21656 	test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST,
21657 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21658 	    ipst);
21659 
21660 	test_net_mask = ip_net_mask(test_ipif->ipif_subnet);
21661 	test_subnet_mask = test_ipif->ipif_net_mask;
21662 
21663 	/*
21664 	 * If no net mask set, assume the default based on net class.
21665 	 */
21666 	if (test_subnet_mask == 0)
21667 		test_subnet_mask = test_net_mask;
21668 
21669 	/*
21670 	 * Check if there is a network broadcast ire associated with this ipif
21671 	 */
21672 	test_net_addr = test_net_mask  & test_ipif->ipif_subnet;
21673 	test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST,
21674 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21675 	    ipst);
21676 
21677 	/*
21678 	 * Check if there is a subnet broadcast IRE associated with this ipif
21679 	 */
21680 	test_subnet_addr = test_subnet_mask  & test_ipif->ipif_subnet;
21681 	test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST,
21682 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21683 	    ipst);
21684 
21685 	/*
21686 	 * No broadcast ire's associated with this ipif.
21687 	 */
21688 	if ((test_subnet_ire == NULL) && (test_net_ire == NULL) &&
21689 	    (test_allzero_ire == NULL) && (test_allone_ire == NULL)) {
21690 		return;
21691 	}
21692 
21693 	/*
21694 	 * We have established which bcast ires have to be replaced.
21695 	 * Next we try to locate ipifs that match there ires.
21696 	 * The rules are simple: If we find an ipif that matches on the subnet
21697 	 * address it will also match on the net address, the allzeros and
21698 	 * allones address. Any ipif that matches only on the net address will
21699 	 * also match the allzeros and allones addresses.
21700 	 * The other criterion is the ipif_flags. We look for non-deprecated
21701 	 * (and non-anycast and non-nolocal) ipifs as the best choice.
21702 	 * ipifs with check_flags matching (deprecated, etc) are used only
21703 	 * if good ipifs are not available. While looping, we save existing
21704 	 * deprecated ipifs as backup_ipif.
21705 	 * We loop through all the ipifs for this ill looking for ipifs
21706 	 * whose broadcast addr match the ipif passed in, but do not have
21707 	 * their own broadcast ires. For creating 0.0.0.0 and
21708 	 * 255.255.255.255 we just need an ipif on this ill to create.
21709 	 */
21710 	for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL;
21711 	    ipif = ipif->ipif_next) {
21712 
21713 		ASSERT(!ipif->ipif_isv6);
21714 		/*
21715 		 * Already checked the ipif passed in.
21716 		 */
21717 		if (ipif == test_ipif) {
21718 			continue;
21719 		}
21720 
21721 		/*
21722 		 * We only need to recreate broadcast ires if another ipif in
21723 		 * the same zone uses them. The new ires must be created in the
21724 		 * same zone.
21725 		 */
21726 		if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) {
21727 			continue;
21728 		}
21729 
21730 		/*
21731 		 * Only interested in logical interfaces with valid local
21732 		 * addresses or with the ability to broadcast.
21733 		 */
21734 		if ((ipif->ipif_subnet == 0) ||
21735 		    !(ipif->ipif_flags & IPIF_BROADCAST) ||
21736 		    (ipif->ipif_flags & IPIF_NOXMIT) ||
21737 		    !(ipif->ipif_flags & IPIF_UP)) {
21738 			continue;
21739 		}
21740 		/*
21741 		 * Check if there is a net broadcast ire for this
21742 		 * net address.  If it turns out that the ipif we are
21743 		 * about to take down owns this ire, we must make a
21744 		 * new one because it is potentially going away.
21745 		 */
21746 		if (test_net_ire && (!net_bcast_ire_created)) {
21747 			net_mask = ip_net_mask(ipif->ipif_subnet);
21748 			net_addr = net_mask & ipif->ipif_subnet;
21749 			if (net_addr == test_net_addr) {
21750 				need_net_bcast_ire = B_TRUE;
21751 				/*
21752 				 * Use DEPRECATED ipif only if no good
21753 				 * ires are available. subnet_addr is
21754 				 * a better match than net_addr.
21755 				 */
21756 				if ((ipif->ipif_flags & check_flags) &&
21757 				    (backup_ipif_net == NULL)) {
21758 					backup_ipif_net = ipif;
21759 				}
21760 			}
21761 		}
21762 		/*
21763 		 * Check if there is a subnet broadcast ire for this
21764 		 * net address.  If it turns out that the ipif we are
21765 		 * about to take down owns this ire, we must make a
21766 		 * new one because it is potentially going away.
21767 		 */
21768 		if (test_subnet_ire && (!subnet_bcast_ire_created)) {
21769 			subnet_mask = ipif->ipif_net_mask;
21770 			subnet_addr = ipif->ipif_subnet;
21771 			if (subnet_addr == test_subnet_addr) {
21772 				need_subnet_bcast_ire = B_TRUE;
21773 				if ((ipif->ipif_flags & check_flags) &&
21774 				    (backup_ipif_subnet == NULL)) {
21775 					backup_ipif_subnet = ipif;
21776 				}
21777 			}
21778 		}
21779 
21780 
21781 		/* Short circuit here if this ipif is deprecated */
21782 		if (ipif->ipif_flags & check_flags) {
21783 			if ((test_allzero_ire != NULL) &&
21784 			    (!allzero_bcast_ire_created) &&
21785 			    (backup_ipif_allzeros == NULL)) {
21786 				backup_ipif_allzeros = ipif;
21787 			}
21788 			if ((test_allone_ire != NULL) &&
21789 			    (!allone_bcast_ire_created) &&
21790 			    (backup_ipif_allones == NULL)) {
21791 				backup_ipif_allones = ipif;
21792 			}
21793 			continue;
21794 		}
21795 
21796 		/*
21797 		 * Found an ipif which has the same broadcast ire as the
21798 		 * ipif passed in and the ipif passed in "owns" the ire.
21799 		 * Create new broadcast ire's for this broadcast addr.
21800 		 */
21801 		if (need_net_bcast_ire && !net_bcast_ire_created) {
21802 			irep = ire_create_bcast(ipif, net_addr, irep);
21803 			irep = ire_create_bcast(ipif,
21804 			    ~net_mask | net_addr, irep);
21805 			net_bcast_ire_created = B_TRUE;
21806 		}
21807 		if (need_subnet_bcast_ire && !subnet_bcast_ire_created) {
21808 			irep = ire_create_bcast(ipif, subnet_addr, irep);
21809 			irep = ire_create_bcast(ipif,
21810 			    ~subnet_mask | subnet_addr, irep);
21811 			subnet_bcast_ire_created = B_TRUE;
21812 		}
21813 		if (test_allzero_ire != NULL && !allzero_bcast_ire_created) {
21814 			irep = ire_create_bcast(ipif, 0, irep);
21815 			allzero_bcast_ire_created = B_TRUE;
21816 		}
21817 		if (test_allone_ire != NULL && !allone_bcast_ire_created) {
21818 			irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep);
21819 			allone_bcast_ire_created = B_TRUE;
21820 		}
21821 		/*
21822 		 * Once we have created all the appropriate ires, we
21823 		 * just break out of this loop to add what we have created.
21824 		 * This has been indented similar to ire_match_args for
21825 		 * readability.
21826 		 */
21827 		if (((test_net_ire == NULL) ||
21828 			(net_bcast_ire_created)) &&
21829 		    ((test_subnet_ire == NULL) ||
21830 			(subnet_bcast_ire_created)) &&
21831 		    ((test_allzero_ire == NULL) ||
21832 			(allzero_bcast_ire_created)) &&
21833 		    ((test_allone_ire == NULL) ||
21834 			(allone_bcast_ire_created))) {
21835 			break;
21836 		}
21837 	}
21838 
21839 	/*
21840 	 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs
21841 	 * exist. 6 pairs of bcast ires are needed.
21842 	 * Note - the old ires are deleted in ipif_down.
21843 	 */
21844 	if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) {
21845 		ipif = backup_ipif_net;
21846 		irep = ire_create_bcast(ipif, net_addr, irep);
21847 		irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep);
21848 		net_bcast_ire_created = B_TRUE;
21849 	}
21850 	if (need_subnet_bcast_ire && !subnet_bcast_ire_created &&
21851 	    backup_ipif_subnet) {
21852 		ipif = backup_ipif_subnet;
21853 		irep = ire_create_bcast(ipif, subnet_addr, irep);
21854 		irep = ire_create_bcast(ipif,
21855 		    ~subnet_mask | subnet_addr, irep);
21856 		subnet_bcast_ire_created = B_TRUE;
21857 	}
21858 	if (test_allzero_ire != NULL && !allzero_bcast_ire_created &&
21859 	    backup_ipif_allzeros) {
21860 		irep = ire_create_bcast(backup_ipif_allzeros, 0, irep);
21861 		allzero_bcast_ire_created = B_TRUE;
21862 	}
21863 	if (test_allone_ire != NULL && !allone_bcast_ire_created &&
21864 	    backup_ipif_allones) {
21865 		irep = ire_create_bcast(backup_ipif_allones,
21866 		    INADDR_BROADCAST, irep);
21867 		allone_bcast_ire_created = B_TRUE;
21868 	}
21869 
21870 	/*
21871 	 * If we can't create all of them, don't add any of them.
21872 	 * Code in ip_wput_ire and ire_to_ill assumes that we
21873 	 * always have a non-loopback copy and loopback copy
21874 	 * for a given address.
21875 	 */
21876 	for (irep1 = irep; irep1 > ire_array; ) {
21877 		irep1--;
21878 		if (*irep1 == NULL) {
21879 			ip0dbg(("ipif_check_bcast_ires: can't create "
21880 			    "IRE_BROADCAST, memory allocation failure\n"));
21881 			while (irep > ire_array) {
21882 				irep--;
21883 				if (*irep != NULL)
21884 					ire_delete(*irep);
21885 			}
21886 			goto bad;
21887 		}
21888 	}
21889 	for (irep1 = irep; irep1 > ire_array; ) {
21890 		int error;
21891 
21892 		irep1--;
21893 		error = ire_add(irep1, NULL, NULL, NULL, B_FALSE);
21894 		if (error == 0) {
21895 			ire_refrele(*irep1);		/* Held in ire_add */
21896 		}
21897 	}
21898 bad:
21899 	if (test_allzero_ire != NULL)
21900 		ire_refrele(test_allzero_ire);
21901 	if (test_allone_ire != NULL)
21902 		ire_refrele(test_allone_ire);
21903 	if (test_net_ire != NULL)
21904 		ire_refrele(test_net_ire);
21905 	if (test_subnet_ire != NULL)
21906 		ire_refrele(test_subnet_ire);
21907 }
21908 
21909 /*
21910  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21911  * from lifr_flags and the name from lifr_name.
21912  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21913  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21914  * Returns EINPROGRESS when mp has been consumed by queueing it on
21915  * ill_pending_mp and the ioctl will complete in ip_rput.
21916  *
21917  * Can operate on either a module or a driver queue.
21918  * Returns an error if not a module queue.
21919  */
21920 /* ARGSUSED */
21921 int
21922 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21923     ip_ioctl_cmd_t *ipip, void *if_req)
21924 {
21925 	int	err;
21926 	ill_t	*ill;
21927 	struct lifreq *lifr = (struct lifreq *)if_req;
21928 
21929 	ASSERT(ipif != NULL);
21930 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21931 
21932 	if (q->q_next == NULL) {
21933 		ip1dbg((
21934 		    "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
21935 		return (EINVAL);
21936 	}
21937 
21938 	ill = (ill_t *)q->q_ptr;
21939 	/*
21940 	 * If we are not writer on 'q' then this interface exists already
21941 	 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif.
21942 	 * So return EALREADY
21943 	 */
21944 	if (ill != ipif->ipif_ill)
21945 		return (EALREADY);
21946 
21947 	if (ill->ill_name[0] != '\0')
21948 		return (EALREADY);
21949 
21950 	/*
21951 	 * Set all the flags. Allows all kinds of override. Provide some
21952 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21953 	 * unless there is either multicast/broadcast support in the driver
21954 	 * or it is a pt-pt link.
21955 	 */
21956 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21957 		/* Meaningless to IP thus don't allow them to be set. */
21958 		ip1dbg(("ip_setname: EINVAL 1\n"));
21959 		return (EINVAL);
21960 	}
21961 	/*
21962 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21963 	 * ill_bcast_addr_length info.
21964 	 */
21965 	if (!ill->ill_needs_attach &&
21966 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21967 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21968 	    ill->ill_bcast_addr_length == 0)) {
21969 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21970 		ip1dbg(("ip_setname: EINVAL 2\n"));
21971 		return (EINVAL);
21972 	}
21973 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21974 	    ((lifr->lifr_flags & IFF_IPV6) ||
21975 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21976 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21977 		ip1dbg(("ip_setname: EINVAL 3\n"));
21978 		return (EINVAL);
21979 	}
21980 	if (lifr->lifr_flags & IFF_UP) {
21981 		/* Can only be set with SIOCSLIFFLAGS */
21982 		ip1dbg(("ip_setname: EINVAL 4\n"));
21983 		return (EINVAL);
21984 	}
21985 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21986 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21987 		ip1dbg(("ip_setname: EINVAL 5\n"));
21988 		return (EINVAL);
21989 	}
21990 	/*
21991 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21992 	 */
21993 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21994 	    !(lifr->lifr_flags & IFF_IPV6) &&
21995 	    !(ipif->ipif_isv6)) {
21996 		ip1dbg(("ip_setname: EINVAL 6\n"));
21997 		return (EINVAL);
21998 	}
21999 
22000 	/*
22001 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
22002 	 * we have all the flags here. So, we assign rather than we OR.
22003 	 * We can't OR the flags here because we don't want to set
22004 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
22005 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
22006 	 * on lifr_flags value here.
22007 	 */
22008 	/*
22009 	 * This ill has not been inserted into the global list.
22010 	 * So we are still single threaded and don't need any lock
22011 	 */
22012 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
22013 	    ~IFF_DUPLICATE;
22014 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
22015 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
22016 
22017 	/* We started off as V4. */
22018 	if (ill->ill_flags & ILLF_IPV6) {
22019 		ill->ill_phyint->phyint_illv6 = ill;
22020 		ill->ill_phyint->phyint_illv4 = NULL;
22021 	}
22022 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
22023 	return (err);
22024 }
22025 
22026 /* ARGSUSED */
22027 int
22028 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22029     ip_ioctl_cmd_t *ipip, void *if_req)
22030 {
22031 	/*
22032 	 * ill_phyint_reinit merged the v4 and v6 into a single
22033 	 * ipsq. Could also have become part of a ipmp group in the
22034 	 * process, and we might not have been able to complete the
22035 	 * slifname in ipif_set_values, if we could not become
22036 	 * exclusive.  If so restart it here
22037 	 */
22038 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
22039 }
22040 
22041 /*
22042  * Return a pointer to the ipif which matches the index, IP version type and
22043  * zoneid.
22044  */
22045 ipif_t *
22046 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
22047     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
22048 {
22049 	ill_t	*ill;
22050 	ipsq_t  *ipsq;
22051 	phyint_t *phyi;
22052 	ipif_t	*ipif;
22053 
22054 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
22055 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
22056 
22057 	if (err != NULL)
22058 		*err = 0;
22059 
22060 	/*
22061 	 * Indexes are stored in the phyint - a common structure
22062 	 * to both IPv4 and IPv6.
22063 	 */
22064 
22065 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
22066 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22067 	    (void *) &index, NULL);
22068 	if (phyi != NULL) {
22069 		ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4;
22070 		if (ill == NULL) {
22071 			rw_exit(&ipst->ips_ill_g_lock);
22072 			if (err != NULL)
22073 				*err = ENXIO;
22074 			return (NULL);
22075 		}
22076 		GRAB_CONN_LOCK(q);
22077 		mutex_enter(&ill->ill_lock);
22078 		if (ILL_CAN_LOOKUP(ill)) {
22079 			for (ipif = ill->ill_ipif; ipif != NULL;
22080 			    ipif = ipif->ipif_next) {
22081 				if (IPIF_CAN_LOOKUP(ipif) &&
22082 				    (zoneid == ALL_ZONES ||
22083 				    zoneid == ipif->ipif_zoneid ||
22084 				    ipif->ipif_zoneid == ALL_ZONES)) {
22085 					ipif_refhold_locked(ipif);
22086 					mutex_exit(&ill->ill_lock);
22087 					RELEASE_CONN_LOCK(q);
22088 					rw_exit(&ipst->ips_ill_g_lock);
22089 					return (ipif);
22090 				}
22091 			}
22092 		} else if (ILL_CAN_WAIT(ill, q)) {
22093 			ipsq = ill->ill_phyint->phyint_ipsq;
22094 			mutex_enter(&ipsq->ipsq_lock);
22095 			rw_exit(&ipst->ips_ill_g_lock);
22096 			mutex_exit(&ill->ill_lock);
22097 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
22098 			mutex_exit(&ipsq->ipsq_lock);
22099 			RELEASE_CONN_LOCK(q);
22100 			*err = EINPROGRESS;
22101 			return (NULL);
22102 		}
22103 		mutex_exit(&ill->ill_lock);
22104 		RELEASE_CONN_LOCK(q);
22105 	}
22106 	rw_exit(&ipst->ips_ill_g_lock);
22107 	if (err != NULL)
22108 		*err = ENXIO;
22109 	return (NULL);
22110 }
22111 
22112 typedef struct conn_change_s {
22113 	uint_t cc_old_ifindex;
22114 	uint_t cc_new_ifindex;
22115 } conn_change_t;
22116 
22117 /*
22118  * ipcl_walk function for changing interface index.
22119  */
22120 static void
22121 conn_change_ifindex(conn_t *connp, caddr_t arg)
22122 {
22123 	conn_change_t *connc;
22124 	uint_t old_ifindex;
22125 	uint_t new_ifindex;
22126 	int i;
22127 	ilg_t *ilg;
22128 
22129 	connc = (conn_change_t *)arg;
22130 	old_ifindex = connc->cc_old_ifindex;
22131 	new_ifindex = connc->cc_new_ifindex;
22132 
22133 	if (connp->conn_orig_bound_ifindex == old_ifindex)
22134 		connp->conn_orig_bound_ifindex = new_ifindex;
22135 
22136 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
22137 		connp->conn_orig_multicast_ifindex = new_ifindex;
22138 
22139 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
22140 		connp->conn_orig_xmit_ifindex = new_ifindex;
22141 
22142 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
22143 		ilg = &connp->conn_ilg[i];
22144 		if (ilg->ilg_orig_ifindex == old_ifindex)
22145 			ilg->ilg_orig_ifindex = new_ifindex;
22146 	}
22147 }
22148 
22149 /*
22150  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
22151  * to new_index if it matches the old_index.
22152  *
22153  * Failovers typically happen within a group of ills. But somebody
22154  * can remove an ill from the group after a failover happened. If
22155  * we are setting the ifindex after this, we potentially need to
22156  * look at all the ills rather than just the ones in the group.
22157  * We cut down the work by looking at matching ill_net_types
22158  * and ill_types as we could not possibly grouped them together.
22159  */
22160 static void
22161 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
22162 {
22163 	ill_t *ill;
22164 	ipif_t *ipif;
22165 	uint_t old_ifindex;
22166 	uint_t new_ifindex;
22167 	ilm_t *ilm;
22168 	ill_walk_context_t ctx;
22169 	ip_stack_t	*ipst = ill_orig->ill_ipst;
22170 
22171 	old_ifindex = connc->cc_old_ifindex;
22172 	new_ifindex = connc->cc_new_ifindex;
22173 
22174 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
22175 	ill = ILL_START_WALK_ALL(&ctx, ipst);
22176 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
22177 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
22178 			(ill_orig->ill_type != ill->ill_type)) {
22179 			continue;
22180 		}
22181 		for (ipif = ill->ill_ipif; ipif != NULL;
22182 				ipif = ipif->ipif_next) {
22183 			if (ipif->ipif_orig_ifindex == old_ifindex)
22184 				ipif->ipif_orig_ifindex = new_ifindex;
22185 		}
22186 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
22187 			if (ilm->ilm_orig_ifindex == old_ifindex)
22188 				ilm->ilm_orig_ifindex = new_ifindex;
22189 		}
22190 	}
22191 	rw_exit(&ipst->ips_ill_g_lock);
22192 }
22193 
22194 /*
22195  * We first need to ensure that the new index is unique, and
22196  * then carry the change across both v4 and v6 ill representation
22197  * of the physical interface.
22198  */
22199 /* ARGSUSED */
22200 int
22201 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22202     ip_ioctl_cmd_t *ipip, void *ifreq)
22203 {
22204 	ill_t		*ill;
22205 	ill_t		*ill_other;
22206 	phyint_t	*phyi;
22207 	int		old_index;
22208 	conn_change_t	connc;
22209 	struct ifreq	*ifr = (struct ifreq *)ifreq;
22210 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22211 	uint_t	index;
22212 	ill_t	*ill_v4;
22213 	ill_t	*ill_v6;
22214 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22215 
22216 	if (ipip->ipi_cmd_type == IF_CMD)
22217 		index = ifr->ifr_index;
22218 	else
22219 		index = lifr->lifr_index;
22220 
22221 	/*
22222 	 * Only allow on physical interface. Also, index zero is illegal.
22223 	 *
22224 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
22225 	 *
22226 	 * 1) If PHYI_FAILED is set, a failover could have happened which
22227 	 *    implies a possible failback might have to happen. As failback
22228 	 *    depends on the old index, we should fail setting the index.
22229 	 *
22230 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
22231 	 *    any addresses or multicast memberships are failed over to
22232 	 *    a non-STANDBY interface. As failback depends on the old
22233 	 *    index, we should fail setting the index for this case also.
22234 	 *
22235 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
22236 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
22237 	 */
22238 	ill = ipif->ipif_ill;
22239 	phyi = ill->ill_phyint;
22240 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
22241 	    ipif->ipif_id != 0 || index == 0) {
22242 		return (EINVAL);
22243 	}
22244 	old_index = phyi->phyint_ifindex;
22245 
22246 	/* If the index is not changing, no work to do */
22247 	if (old_index == index)
22248 		return (0);
22249 
22250 	/*
22251 	 * Use ill_lookup_on_ifindex to determine if the
22252 	 * new index is unused and if so allow the change.
22253 	 */
22254 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
22255 	    ipst);
22256 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
22257 	    ipst);
22258 	if (ill_v6 != NULL || ill_v4 != NULL) {
22259 		if (ill_v4 != NULL)
22260 			ill_refrele(ill_v4);
22261 		if (ill_v6 != NULL)
22262 			ill_refrele(ill_v6);
22263 		return (EBUSY);
22264 	}
22265 
22266 	/*
22267 	 * The new index is unused. Set it in the phyint.
22268 	 * Locate the other ill so that we can send a routing
22269 	 * sockets message.
22270 	 */
22271 	if (ill->ill_isv6) {
22272 		ill_other = phyi->phyint_illv4;
22273 	} else {
22274 		ill_other = phyi->phyint_illv6;
22275 	}
22276 
22277 	phyi->phyint_ifindex = index;
22278 
22279 	connc.cc_old_ifindex = old_index;
22280 	connc.cc_new_ifindex = index;
22281 	ip_change_ifindex(ill, &connc);
22282 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
22283 
22284 	/* Send the routing sockets message */
22285 	ip_rts_ifmsg(ipif);
22286 	if (ill_other != NULL)
22287 		ip_rts_ifmsg(ill_other->ill_ipif);
22288 
22289 	return (0);
22290 }
22291 
22292 /* ARGSUSED */
22293 int
22294 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22295     ip_ioctl_cmd_t *ipip, void *ifreq)
22296 {
22297 	struct ifreq	*ifr = (struct ifreq *)ifreq;
22298 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22299 
22300 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
22301 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22302 	/* Get the interface index */
22303 	if (ipip->ipi_cmd_type == IF_CMD) {
22304 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
22305 	} else {
22306 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
22307 	}
22308 	return (0);
22309 }
22310 
22311 /* ARGSUSED */
22312 int
22313 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22314     ip_ioctl_cmd_t *ipip, void *ifreq)
22315 {
22316 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22317 
22318 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
22319 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22320 	/* Get the interface zone */
22321 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22322 	lifr->lifr_zoneid = ipif->ipif_zoneid;
22323 	return (0);
22324 }
22325 
22326 /*
22327  * Set the zoneid of an interface.
22328  */
22329 /* ARGSUSED */
22330 int
22331 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22332     ip_ioctl_cmd_t *ipip, void *ifreq)
22333 {
22334 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22335 	int err = 0;
22336 	boolean_t need_up = B_FALSE;
22337 	zone_t *zptr;
22338 	zone_status_t status;
22339 	zoneid_t zoneid;
22340 
22341 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22342 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
22343 		if (!is_system_labeled())
22344 			return (ENOTSUP);
22345 		zoneid = GLOBAL_ZONEID;
22346 	}
22347 
22348 	/* cannot assign instance zero to a non-global zone */
22349 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
22350 		return (ENOTSUP);
22351 
22352 	/*
22353 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
22354 	 * the event of a race with the zone shutdown processing, since IP
22355 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
22356 	 * interface will be cleaned up even if the zone is shut down
22357 	 * immediately after the status check. If the interface can't be brought
22358 	 * down right away, and the zone is shut down before the restart
22359 	 * function is called, we resolve the possible races by rechecking the
22360 	 * zone status in the restart function.
22361 	 */
22362 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
22363 		return (EINVAL);
22364 	status = zone_status_get(zptr);
22365 	zone_rele(zptr);
22366 
22367 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
22368 		return (EINVAL);
22369 
22370 	if (ipif->ipif_flags & IPIF_UP) {
22371 		/*
22372 		 * If the interface is already marked up,
22373 		 * we call ipif_down which will take care
22374 		 * of ditching any IREs that have been set
22375 		 * up based on the old interface address.
22376 		 */
22377 		err = ipif_logical_down(ipif, q, mp);
22378 		if (err == EINPROGRESS)
22379 			return (err);
22380 		ipif_down_tail(ipif);
22381 		need_up = B_TRUE;
22382 	}
22383 
22384 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
22385 	return (err);
22386 }
22387 
22388 static int
22389 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
22390     queue_t *q, mblk_t *mp, boolean_t need_up)
22391 {
22392 	int	err = 0;
22393 	ip_stack_t	*ipst;
22394 
22395 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
22396 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22397 
22398 	if (CONN_Q(q))
22399 		ipst = CONNQ_TO_IPST(q);
22400 	else
22401 		ipst = ILLQ_TO_IPST(q);
22402 
22403 	/*
22404 	 * For exclusive stacks we don't allow a different zoneid than
22405 	 * global.
22406 	 */
22407 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
22408 	    zoneid != GLOBAL_ZONEID)
22409 		return (EINVAL);
22410 
22411 	/* Set the new zone id. */
22412 	ipif->ipif_zoneid = zoneid;
22413 
22414 	/* Update sctp list */
22415 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
22416 
22417 	if (need_up) {
22418 		/*
22419 		 * Now bring the interface back up.  If this
22420 		 * is the only IPIF for the ILL, ipif_up
22421 		 * will have to re-bind to the device, so
22422 		 * we may get back EINPROGRESS, in which
22423 		 * case, this IOCTL will get completed in
22424 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22425 		 */
22426 		err = ipif_up(ipif, q, mp);
22427 	}
22428 	return (err);
22429 }
22430 
22431 /* ARGSUSED */
22432 int
22433 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22434     ip_ioctl_cmd_t *ipip, void *if_req)
22435 {
22436 	struct lifreq *lifr = (struct lifreq *)if_req;
22437 	zoneid_t zoneid;
22438 	zone_t *zptr;
22439 	zone_status_t status;
22440 
22441 	ASSERT(ipif->ipif_id != 0);
22442 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22443 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22444 		zoneid = GLOBAL_ZONEID;
22445 
22446 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22447 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22448 
22449 	/*
22450 	 * We recheck the zone status to resolve the following race condition:
22451 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22452 	 * 2) hme0:1 is up and can't be brought down right away;
22453 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22454 	 * 3) zone "myzone" is halted; the zone status switches to
22455 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22456 	 * the interfaces to remove - hme0:1 is not returned because it's not
22457 	 * yet in "myzone", so it won't be removed;
22458 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22459 	 * status check here, we would have hme0:1 in "myzone" after it's been
22460 	 * destroyed.
22461 	 * Note that if the status check fails, we need to bring the interface
22462 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22463 	 * ipif_up_done[_v6]().
22464 	 */
22465 	status = ZONE_IS_UNINITIALIZED;
22466 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22467 		status = zone_status_get(zptr);
22468 		zone_rele(zptr);
22469 	}
22470 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22471 		if (ipif->ipif_isv6) {
22472 			(void) ipif_up_done_v6(ipif);
22473 		} else {
22474 			(void) ipif_up_done(ipif);
22475 		}
22476 		return (EINVAL);
22477 	}
22478 
22479 	ipif_down_tail(ipif);
22480 
22481 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22482 	    B_TRUE));
22483 }
22484 
22485 /* ARGSUSED */
22486 int
22487 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22488 	ip_ioctl_cmd_t *ipip, void *ifreq)
22489 {
22490 	struct lifreq	*lifr = ifreq;
22491 
22492 	ASSERT(q->q_next == NULL);
22493 	ASSERT(CONN_Q(q));
22494 
22495 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22496 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22497 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22498 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22499 
22500 	return (0);
22501 }
22502 
22503 
22504 /* Find the previous ILL in this usesrc group */
22505 static ill_t *
22506 ill_prev_usesrc(ill_t *uill)
22507 {
22508 	ill_t *ill;
22509 
22510 	for (ill = uill->ill_usesrc_grp_next;
22511 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22512 	    ill = ill->ill_usesrc_grp_next)
22513 		/* do nothing */;
22514 	return (ill);
22515 }
22516 
22517 /*
22518  * Release all members of the usesrc group. This routine is called
22519  * from ill_delete when the interface being unplumbed is the
22520  * group head.
22521  */
22522 static void
22523 ill_disband_usesrc_group(ill_t *uill)
22524 {
22525 	ill_t *next_ill, *tmp_ill;
22526 	ip_stack_t	*ipst = uill->ill_ipst;
22527 
22528 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22529 	next_ill = uill->ill_usesrc_grp_next;
22530 
22531 	do {
22532 		ASSERT(next_ill != NULL);
22533 		tmp_ill = next_ill->ill_usesrc_grp_next;
22534 		ASSERT(tmp_ill != NULL);
22535 		next_ill->ill_usesrc_grp_next = NULL;
22536 		next_ill->ill_usesrc_ifindex = 0;
22537 		next_ill = tmp_ill;
22538 	} while (next_ill->ill_usesrc_ifindex != 0);
22539 	uill->ill_usesrc_grp_next = NULL;
22540 }
22541 
22542 /*
22543  * Remove the client usesrc ILL from the list and relink to a new list
22544  */
22545 int
22546 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22547 {
22548 	ill_t *ill, *tmp_ill;
22549 	ip_stack_t	*ipst = ucill->ill_ipst;
22550 
22551 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22552 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22553 
22554 	/*
22555 	 * Check if the usesrc client ILL passed in is not already
22556 	 * in use as a usesrc ILL i.e one whose source address is
22557 	 * in use OR a usesrc ILL is not already in use as a usesrc
22558 	 * client ILL
22559 	 */
22560 	if ((ucill->ill_usesrc_ifindex == 0) ||
22561 	    (uill->ill_usesrc_ifindex != 0)) {
22562 		return (-1);
22563 	}
22564 
22565 	ill = ill_prev_usesrc(ucill);
22566 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22567 
22568 	/* Remove from the current list */
22569 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22570 		/* Only two elements in the list */
22571 		ASSERT(ill->ill_usesrc_ifindex == 0);
22572 		ill->ill_usesrc_grp_next = NULL;
22573 	} else {
22574 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22575 	}
22576 
22577 	if (ifindex == 0) {
22578 		ucill->ill_usesrc_ifindex = 0;
22579 		ucill->ill_usesrc_grp_next = NULL;
22580 		return (0);
22581 	}
22582 
22583 	ucill->ill_usesrc_ifindex = ifindex;
22584 	tmp_ill = uill->ill_usesrc_grp_next;
22585 	uill->ill_usesrc_grp_next = ucill;
22586 	ucill->ill_usesrc_grp_next =
22587 	    (tmp_ill != NULL) ? tmp_ill : uill;
22588 	return (0);
22589 }
22590 
22591 /*
22592  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22593  * ip.c for locking details.
22594  */
22595 /* ARGSUSED */
22596 int
22597 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22598     ip_ioctl_cmd_t *ipip, void *ifreq)
22599 {
22600 	struct lifreq *lifr = (struct lifreq *)ifreq;
22601 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22602 	    ill_flag_changed = B_FALSE;
22603 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22604 	int err = 0, ret;
22605 	uint_t ifindex;
22606 	phyint_t *us_phyint, *us_cli_phyint;
22607 	ipsq_t *ipsq = NULL;
22608 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22609 
22610 	ASSERT(IAM_WRITER_IPIF(ipif));
22611 	ASSERT(q->q_next == NULL);
22612 	ASSERT(CONN_Q(q));
22613 
22614 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22615 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22616 
22617 	ASSERT(us_cli_phyint != NULL);
22618 
22619 	/*
22620 	 * If the client ILL is being used for IPMP, abort.
22621 	 * Note, this can be done before ipsq_try_enter since we are already
22622 	 * exclusive on this ILL
22623 	 */
22624 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22625 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22626 		return (EINVAL);
22627 	}
22628 
22629 	ifindex = lifr->lifr_index;
22630 	if (ifindex == 0) {
22631 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22632 			/* non usesrc group interface, nothing to reset */
22633 			return (0);
22634 		}
22635 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22636 		/* valid reset request */
22637 		reset_flg = B_TRUE;
22638 	}
22639 
22640 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22641 	    ip_process_ioctl, &err, ipst);
22642 
22643 	if (usesrc_ill == NULL) {
22644 		return (err);
22645 	}
22646 
22647 	/*
22648 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22649 	 * group nor can either of the interfaces be used for standy. So
22650 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22651 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22652 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22653 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22654 	 * the usesrc_cli_ill
22655 	 */
22656 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22657 	    NEW_OP, B_TRUE);
22658 	if (ipsq == NULL) {
22659 		err = EINPROGRESS;
22660 		/* Operation enqueued on the ipsq of the usesrc ILL */
22661 		goto done;
22662 	}
22663 
22664 	/* Check if the usesrc_ill is used for IPMP */
22665 	us_phyint = usesrc_ill->ill_phyint;
22666 	if ((us_phyint->phyint_groupname != NULL) ||
22667 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22668 		err = EINVAL;
22669 		goto done;
22670 	}
22671 
22672 	/*
22673 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22674 	 * already a client then return EINVAL
22675 	 */
22676 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22677 		err = EINVAL;
22678 		goto done;
22679 	}
22680 
22681 	/*
22682 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22683 	 * be then this is a duplicate operation.
22684 	 */
22685 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22686 		err = 0;
22687 		goto done;
22688 	}
22689 
22690 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22691 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22692 	    usesrc_ill->ill_isv6));
22693 
22694 	/*
22695 	 * The next step ensures that no new ires will be created referencing
22696 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22697 	 * we go through an ire walk deleting all ire caches that reference
22698 	 * the client ill. New ires referencing the client ill that are added
22699 	 * to the ire table before the ILL_CHANGING flag is set, will be
22700 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22701 	 * the client ill while the ILL_CHANGING flag is set will be failed
22702 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22703 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22704 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22705 	 * belong to the same usesrc group.
22706 	 */
22707 	mutex_enter(&usesrc_cli_ill->ill_lock);
22708 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22709 	mutex_exit(&usesrc_cli_ill->ill_lock);
22710 	ill_flag_changed = B_TRUE;
22711 
22712 	if (ipif->ipif_isv6)
22713 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22714 		    ALL_ZONES, ipst);
22715 	else
22716 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22717 		    ALL_ZONES, ipst);
22718 
22719 	/*
22720 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22721 	 * and the ill_usesrc_ifindex fields
22722 	 */
22723 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22724 
22725 	if (reset_flg) {
22726 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22727 		if (ret != 0) {
22728 			err = EINVAL;
22729 		}
22730 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
22731 		goto done;
22732 	}
22733 
22734 	/*
22735 	 * Four possibilities to consider:
22736 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22737 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22738 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22739 	 * 4. Both are part of their respective usesrc groups
22740 	 */
22741 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22742 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22743 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22744 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22745 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22746 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22747 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22748 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22749 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22750 		/* Insert at head of list */
22751 		usesrc_cli_ill->ill_usesrc_grp_next =
22752 		    usesrc_ill->ill_usesrc_grp_next;
22753 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22754 	} else {
22755 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22756 		    ifindex);
22757 		if (ret != 0)
22758 			err = EINVAL;
22759 	}
22760 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
22761 
22762 done:
22763 	if (ill_flag_changed) {
22764 		mutex_enter(&usesrc_cli_ill->ill_lock);
22765 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22766 		mutex_exit(&usesrc_cli_ill->ill_lock);
22767 	}
22768 	if (ipsq != NULL)
22769 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22770 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22771 	ill_refrele(usesrc_ill);
22772 	return (err);
22773 }
22774 
22775 /*
22776  * comparison function used by avl.
22777  */
22778 static int
22779 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22780 {
22781 
22782 	uint_t index;
22783 
22784 	ASSERT(phyip != NULL && index_ptr != NULL);
22785 
22786 	index = *((uint_t *)index_ptr);
22787 	/*
22788 	 * let the phyint with the lowest index be on top.
22789 	 */
22790 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22791 		return (1);
22792 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22793 		return (-1);
22794 	return (0);
22795 }
22796 
22797 /*
22798  * comparison function used by avl.
22799  */
22800 static int
22801 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22802 {
22803 	ill_t *ill;
22804 	int res = 0;
22805 
22806 	ASSERT(phyip != NULL && name_ptr != NULL);
22807 
22808 	if (((phyint_t *)phyip)->phyint_illv4)
22809 		ill = ((phyint_t *)phyip)->phyint_illv4;
22810 	else
22811 		ill = ((phyint_t *)phyip)->phyint_illv6;
22812 	ASSERT(ill != NULL);
22813 
22814 	res = strcmp(ill->ill_name, (char *)name_ptr);
22815 	if (res > 0)
22816 		return (1);
22817 	else if (res < 0)
22818 		return (-1);
22819 	return (0);
22820 }
22821 /*
22822  * This function is called from ill_delete when the ill is being
22823  * unplumbed. We remove the reference from the phyint and we also
22824  * free the phyint when there are no more references to it.
22825  */
22826 static void
22827 ill_phyint_free(ill_t *ill)
22828 {
22829 	phyint_t *phyi;
22830 	phyint_t *next_phyint;
22831 	ipsq_t *cur_ipsq;
22832 	ip_stack_t	*ipst = ill->ill_ipst;
22833 
22834 	ASSERT(ill->ill_phyint != NULL);
22835 
22836 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22837 	phyi = ill->ill_phyint;
22838 	ill->ill_phyint = NULL;
22839 	/*
22840 	 * ill_init allocates a phyint always to store the copy
22841 	 * of flags relevant to phyint. At that point in time, we could
22842 	 * not assign the name and hence phyint_illv4/v6 could not be
22843 	 * initialized. Later in ipif_set_values, we assign the name to
22844 	 * the ill, at which point in time we assign phyint_illv4/v6.
22845 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22846 	 */
22847 	if (ill->ill_flags & ILLF_IPV6) {
22848 		phyi->phyint_illv6 = NULL;
22849 	} else {
22850 		phyi->phyint_illv4 = NULL;
22851 	}
22852 	/*
22853 	 * ipif_down removes it from the group when the last ipif goes
22854 	 * down.
22855 	 */
22856 	ASSERT(ill->ill_group == NULL);
22857 
22858 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22859 		return;
22860 
22861 	/*
22862 	 * Make sure this phyint was put in the list.
22863 	 */
22864 	if (phyi->phyint_ifindex > 0) {
22865 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22866 		    phyi);
22867 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22868 		    phyi);
22869 	}
22870 	/*
22871 	 * remove phyint from the ipsq list.
22872 	 */
22873 	cur_ipsq = phyi->phyint_ipsq;
22874 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22875 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22876 	} else {
22877 		next_phyint = cur_ipsq->ipsq_phyint_list;
22878 		while (next_phyint != NULL) {
22879 			if (next_phyint->phyint_ipsq_next == phyi) {
22880 				next_phyint->phyint_ipsq_next =
22881 					phyi->phyint_ipsq_next;
22882 				break;
22883 			}
22884 			next_phyint = next_phyint->phyint_ipsq_next;
22885 		}
22886 		ASSERT(next_phyint != NULL);
22887 	}
22888 	IPSQ_DEC_REF(cur_ipsq, ipst);
22889 
22890 	if (phyi->phyint_groupname_len != 0) {
22891 		ASSERT(phyi->phyint_groupname != NULL);
22892 		mi_free(phyi->phyint_groupname);
22893 	}
22894 	mi_free(phyi);
22895 }
22896 
22897 /*
22898  * Attach the ill to the phyint structure which can be shared by both
22899  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22900  * function is called from ipif_set_values and ill_lookup_on_name (for
22901  * loopback) where we know the name of the ill. We lookup the ill and if
22902  * there is one present already with the name use that phyint. Otherwise
22903  * reuse the one allocated by ill_init.
22904  */
22905 static void
22906 ill_phyint_reinit(ill_t *ill)
22907 {
22908 	boolean_t isv6 = ill->ill_isv6;
22909 	phyint_t *phyi_old;
22910 	phyint_t *phyi;
22911 	avl_index_t where = 0;
22912 	ill_t	*ill_other = NULL;
22913 	ipsq_t	*ipsq;
22914 	ip_stack_t	*ipst = ill->ill_ipst;
22915 
22916 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22917 
22918 	phyi_old = ill->ill_phyint;
22919 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22920 	    phyi_old->phyint_illv6 == NULL));
22921 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22922 	    phyi_old->phyint_illv4 == NULL));
22923 	ASSERT(phyi_old->phyint_ifindex == 0);
22924 
22925 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22926 	    ill->ill_name, &where);
22927 
22928 	/*
22929 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22930 	 *    the global list of ills. So no other thread could have located
22931 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22932 	 * 2. Now locate the other protocol instance of this ill.
22933 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22934 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22935 	 *    of neither ill can change.
22936 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22937 	 *    other ill.
22938 	 * 5. Release all locks.
22939 	 */
22940 
22941 	/*
22942 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22943 	 * we are initializing IPv4.
22944 	 */
22945 	if (phyi != NULL) {
22946 		ill_other = (isv6) ? phyi->phyint_illv4 :
22947 		    phyi->phyint_illv6;
22948 		ASSERT(ill_other->ill_phyint != NULL);
22949 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22950 		    (!isv6 && ill_other->ill_isv6));
22951 		GRAB_ILL_LOCKS(ill, ill_other);
22952 		/*
22953 		 * We are potentially throwing away phyint_flags which
22954 		 * could be different from the one that we obtain from
22955 		 * ill_other->ill_phyint. But it is okay as we are assuming
22956 		 * that the state maintained within IP is correct.
22957 		 */
22958 		mutex_enter(&phyi->phyint_lock);
22959 		if (isv6) {
22960 			ASSERT(phyi->phyint_illv6 == NULL);
22961 			phyi->phyint_illv6 = ill;
22962 		} else {
22963 			ASSERT(phyi->phyint_illv4 == NULL);
22964 			phyi->phyint_illv4 = ill;
22965 		}
22966 		/*
22967 		 * This is a new ill, currently undergoing SLIFNAME
22968 		 * So we could not have joined an IPMP group until now.
22969 		 */
22970 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22971 		    phyi_old->phyint_groupname == NULL);
22972 
22973 		/*
22974 		 * This phyi_old is going away. Decref ipsq_refs and
22975 		 * assert it is zero. The ipsq itself will be freed in
22976 		 * ipsq_exit
22977 		 */
22978 		ipsq = phyi_old->phyint_ipsq;
22979 		IPSQ_DEC_REF(ipsq, ipst);
22980 		ASSERT(ipsq->ipsq_refs == 0);
22981 		/* Get the singleton phyint out of the ipsq list */
22982 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22983 		ipsq->ipsq_phyint_list = NULL;
22984 		phyi_old->phyint_illv4 = NULL;
22985 		phyi_old->phyint_illv6 = NULL;
22986 		mi_free(phyi_old);
22987 	} else {
22988 		mutex_enter(&ill->ill_lock);
22989 		/*
22990 		 * We don't need to acquire any lock, since
22991 		 * the ill is not yet visible globally  and we
22992 		 * have not yet released the ill_g_lock.
22993 		 */
22994 		phyi = phyi_old;
22995 		mutex_enter(&phyi->phyint_lock);
22996 		/* XXX We need a recovery strategy here. */
22997 		if (!phyint_assign_ifindex(phyi, ipst))
22998 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22999 
23000 		/* No IPMP group yet, thus the hook uses the ifindex */
23001 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
23002 
23003 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23004 		    (void *)phyi, where);
23005 
23006 		(void) avl_find(&ipst->ips_phyint_g_list->
23007 		    phyint_list_avl_by_index,
23008 		    &phyi->phyint_ifindex, &where);
23009 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23010 		    (void *)phyi, where);
23011 	}
23012 
23013 	/*
23014 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
23015 	 * pending mp is not affected because that is per ill basis.
23016 	 */
23017 	ill->ill_phyint = phyi;
23018 
23019 	/*
23020 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
23021 	 * We do this here as when the first ipif was allocated,
23022 	 * ipif_allocate does not know the right interface index.
23023 	 */
23024 
23025 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
23026 	/*
23027 	 * Now that the phyint's ifindex has been assigned, complete the
23028 	 * remaining
23029 	 */
23030 
23031 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
23032 	if (ill->ill_isv6) {
23033 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
23034 		    ill->ill_phyint->phyint_ifindex;
23035 	}
23036 
23037 	/*
23038 	 * Generate an event within the hooks framework to indicate that
23039 	 * a new interface has just been added to IP.  For this event to
23040 	 * be generated, the network interface must, at least, have an
23041 	 * ifindex assigned to it.
23042 	 *
23043 	 * This needs to be run inside the ill_g_lock perimeter to ensure
23044 	 * that the ordering of delivered events to listeners matches the
23045 	 * order of them in the kernel.
23046 	 *
23047 	 * This function could be called from ill_lookup_on_name. In that case
23048 	 * the interface is loopback "lo", which will not generate a NIC event.
23049 	 */
23050 	if (ill->ill_name_length <= 2 ||
23051 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
23052 		/*
23053 		 * Generate nic plumb event for ill_name even if
23054 		 * ipmp_hook_emulation is set. That avoids generating events
23055 		 * for the ill_names should ipmp_hook_emulation be turned on
23056 		 * later.
23057 		 */
23058 		ill_nic_info_plumb(ill, B_FALSE);
23059 	}
23060 	RELEASE_ILL_LOCKS(ill, ill_other);
23061 	mutex_exit(&phyi->phyint_lock);
23062 }
23063 
23064 /*
23065  * Allocate a NE_PLUMB nic info event and store in the ill.
23066  * If 'group' is set we do it for the group name, otherwise the ill name.
23067  * It will be sent when we leave the ipsq.
23068  */
23069 void
23070 ill_nic_info_plumb(ill_t *ill, boolean_t group)
23071 {
23072 	phyint_t	*phyi = ill->ill_phyint;
23073 	ip_stack_t	*ipst = ill->ill_ipst;
23074 	hook_nic_event_t *info;
23075 	char		*name;
23076 	int		namelen;
23077 
23078 	ASSERT(MUTEX_HELD(&ill->ill_lock));
23079 
23080 	if ((info = ill->ill_nic_event_info) != NULL) {
23081 		ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
23082 		    "attached for %s\n", info->hne_event,
23083 		    ill->ill_name));
23084 		if (info->hne_data != NULL)
23085 			kmem_free(info->hne_data, info->hne_datalen);
23086 		kmem_free(info, sizeof (hook_nic_event_t));
23087 		ill->ill_nic_event_info = NULL;
23088 	}
23089 
23090 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
23091 	if (info == NULL) {
23092 		ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
23093 		    "event information for %s (ENOMEM)\n",
23094 		    ill->ill_name));
23095 		return;
23096 	}
23097 
23098 	if (group) {
23099 		ASSERT(phyi->phyint_groupname_len != 0);
23100 		namelen = phyi->phyint_groupname_len;
23101 		name = phyi->phyint_groupname;
23102 	} else {
23103 		namelen = ill->ill_name_length;
23104 		name = ill->ill_name;
23105 	}
23106 
23107 	info->hne_nic = phyi->phyint_hook_ifindex;
23108 	info->hne_lif = 0;
23109 	info->hne_event = NE_PLUMB;
23110 	info->hne_family = ill->ill_isv6 ?
23111 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
23112 
23113 	info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
23114 	if (info->hne_data != NULL) {
23115 		info->hne_datalen = namelen;
23116 		bcopy(name, info->hne_data, info->hne_datalen);
23117 	} else {
23118 		ip2dbg(("ill_nic_info_plumb: could not attach "
23119 		    "name information for PLUMB nic event "
23120 		    "of %s (ENOMEM)\n", name));
23121 		kmem_free(info, sizeof (hook_nic_event_t));
23122 		info = NULL;
23123 	}
23124 	ill->ill_nic_event_info = info;
23125 }
23126 
23127 /*
23128  * Unhook the nic event message from the ill and enqueue it
23129  * into the nic event taskq.
23130  */
23131 void
23132 ill_nic_info_dispatch(ill_t *ill)
23133 {
23134 	hook_nic_event_t *info;
23135 
23136 	ASSERT(MUTEX_HELD(&ill->ill_lock));
23137 
23138 	if ((info = ill->ill_nic_event_info) != NULL) {
23139 		if (ddi_taskq_dispatch(eventq_queue_nic,
23140 		    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
23141 			ip2dbg(("ill_nic_info_dispatch: "
23142 			    "ddi_taskq_dispatch failed\n"));
23143 			if (info->hne_data != NULL)
23144 				kmem_free(info->hne_data, info->hne_datalen);
23145 			kmem_free(info, sizeof (hook_nic_event_t));
23146 		}
23147 		ill->ill_nic_event_info = NULL;
23148 	}
23149 }
23150 
23151 /*
23152  * Notify any downstream modules of the name of this interface.
23153  * An M_IOCTL is used even though we don't expect a successful reply.
23154  * Any reply message from the driver (presumably an M_IOCNAK) will
23155  * eventually get discarded somewhere upstream.  The message format is
23156  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
23157  * to IP.
23158  */
23159 static void
23160 ip_ifname_notify(ill_t *ill, queue_t *q)
23161 {
23162 	mblk_t *mp1, *mp2;
23163 	struct iocblk *iocp;
23164 	struct lifreq *lifr;
23165 
23166 	mp1 = mkiocb(SIOCSLIFNAME);
23167 	if (mp1 == NULL)
23168 		return;
23169 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
23170 	if (mp2 == NULL) {
23171 		freeb(mp1);
23172 		return;
23173 	}
23174 
23175 	mp1->b_cont = mp2;
23176 	iocp = (struct iocblk *)mp1->b_rptr;
23177 	iocp->ioc_count = sizeof (struct lifreq);
23178 
23179 	lifr = (struct lifreq *)mp2->b_rptr;
23180 	mp2->b_wptr += sizeof (struct lifreq);
23181 	bzero(lifr, sizeof (struct lifreq));
23182 
23183 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
23184 	lifr->lifr_ppa = ill->ill_ppa;
23185 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
23186 
23187 	putnext(q, mp1);
23188 }
23189 
23190 static int
23191 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
23192 {
23193 	int err;
23194 	ip_stack_t	*ipst = ill->ill_ipst;
23195 
23196 	/* Set the obsolete NDD per-interface forwarding name. */
23197 	err = ill_set_ndd_name(ill);
23198 	if (err != 0) {
23199 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
23200 		    err);
23201 	}
23202 
23203 	/* Tell downstream modules where they are. */
23204 	ip_ifname_notify(ill, q);
23205 
23206 	/*
23207 	 * ill_dl_phys returns EINPROGRESS in the usual case.
23208 	 * Error cases are ENOMEM ...
23209 	 */
23210 	err = ill_dl_phys(ill, ipif, mp, q);
23211 
23212 	/*
23213 	 * If there is no IRE expiration timer running, get one started.
23214 	 * igmp and mld timers will be triggered by the first multicast
23215 	 */
23216 	if (ipst->ips_ip_ire_expire_id == 0) {
23217 		/*
23218 		 * acquire the lock and check again.
23219 		 */
23220 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
23221 		if (ipst->ips_ip_ire_expire_id == 0) {
23222 			ipst->ips_ip_ire_expire_id = timeout(
23223 			    ip_trash_timer_expire, ipst,
23224 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
23225 		}
23226 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
23227 	}
23228 
23229 	if (ill->ill_isv6) {
23230 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
23231 		if (ipst->ips_mld_slowtimeout_id == 0) {
23232 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
23233 			    (void *)ipst,
23234 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
23235 		}
23236 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
23237 	} else {
23238 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
23239 		if (ipst->ips_igmp_slowtimeout_id == 0) {
23240 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
23241 				(void *)ipst,
23242 				MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
23243 		}
23244 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
23245 	}
23246 
23247 	return (err);
23248 }
23249 
23250 /*
23251  * Common routine for ppa and ifname setting. Should be called exclusive.
23252  *
23253  * Returns EINPROGRESS when mp has been consumed by queueing it on
23254  * ill_pending_mp and the ioctl will complete in ip_rput.
23255  *
23256  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
23257  * the new name and new ppa in lifr_name and lifr_ppa respectively.
23258  * For SLIFNAME, we pass these values back to the userland.
23259  */
23260 static int
23261 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
23262 {
23263 	ill_t	*ill;
23264 	ipif_t	*ipif;
23265 	ipsq_t	*ipsq;
23266 	char	*ppa_ptr;
23267 	char	*old_ptr;
23268 	char	old_char;
23269 	int	error;
23270 	ip_stack_t	*ipst;
23271 
23272 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
23273 	ASSERT(q->q_next != NULL);
23274 	ASSERT(interf_name != NULL);
23275 
23276 	ill = (ill_t *)q->q_ptr;
23277 	ipst = ill->ill_ipst;
23278 
23279 	ASSERT(ill->ill_ipst != NULL);
23280 	ASSERT(ill->ill_name[0] == '\0');
23281 	ASSERT(IAM_WRITER_ILL(ill));
23282 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
23283 	ASSERT(ill->ill_ppa == UINT_MAX);
23284 
23285 	/* The ppa is sent down by ifconfig or is chosen */
23286 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
23287 		return (EINVAL);
23288 	}
23289 
23290 	/*
23291 	 * make sure ppa passed in is same as ppa in the name.
23292 	 * This check is not made when ppa == UINT_MAX in that case ppa
23293 	 * in the name could be anything. System will choose a ppa and
23294 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
23295 	 */
23296 	if (*new_ppa_ptr != UINT_MAX) {
23297 		/* stoi changes the pointer */
23298 		old_ptr = ppa_ptr;
23299 		/*
23300 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
23301 		 * (they don't have an externally visible ppa).  We assign one
23302 		 * here so that we can manage the interface.  Note that in
23303 		 * the past this value was always 0 for DLPI 1 drivers.
23304 		 */
23305 		if (*new_ppa_ptr == 0)
23306 			*new_ppa_ptr = stoi(&old_ptr);
23307 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
23308 			return (EINVAL);
23309 	}
23310 	/*
23311 	 * terminate string before ppa
23312 	 * save char at that location.
23313 	 */
23314 	old_char = ppa_ptr[0];
23315 	ppa_ptr[0] = '\0';
23316 
23317 	ill->ill_ppa = *new_ppa_ptr;
23318 	/*
23319 	 * Finish as much work now as possible before calling ill_glist_insert
23320 	 * which makes the ill globally visible and also merges it with the
23321 	 * other protocol instance of this phyint. The remaining work is
23322 	 * done after entering the ipsq which may happen sometime later.
23323 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
23324 	 */
23325 	ipif = ill->ill_ipif;
23326 
23327 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
23328 	ipif_assign_seqid(ipif);
23329 
23330 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
23331 		ill->ill_flags |= ILLF_IPV4;
23332 
23333 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
23334 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
23335 
23336 	if (ill->ill_flags & ILLF_IPV6) {
23337 
23338 		ill->ill_isv6 = B_TRUE;
23339 		if (ill->ill_rq != NULL) {
23340 			ill->ill_rq->q_qinfo = &rinit_ipv6;
23341 			ill->ill_wq->q_qinfo = &winit_ipv6;
23342 		}
23343 
23344 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
23345 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
23346 		ipif->ipif_v6src_addr = ipv6_all_zeros;
23347 		ipif->ipif_v6subnet = ipv6_all_zeros;
23348 		ipif->ipif_v6net_mask = ipv6_all_zeros;
23349 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
23350 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
23351 		/*
23352 		 * point-to-point or Non-mulicast capable
23353 		 * interfaces won't do NUD unless explicitly
23354 		 * configured to do so.
23355 		 */
23356 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
23357 		    !(ill->ill_flags & ILLF_MULTICAST)) {
23358 			ill->ill_flags |= ILLF_NONUD;
23359 		}
23360 		/* Make sure IPv4 specific flag is not set on IPv6 if */
23361 		if (ill->ill_flags & ILLF_NOARP) {
23362 			/*
23363 			 * Note: xresolv interfaces will eventually need
23364 			 * NOARP set here as well, but that will require
23365 			 * those external resolvers to have some
23366 			 * knowledge of that flag and act appropriately.
23367 			 * Not to be changed at present.
23368 			 */
23369 			ill->ill_flags &= ~ILLF_NOARP;
23370 		}
23371 		/*
23372 		 * Set the ILLF_ROUTER flag according to the global
23373 		 * IPv6 forwarding policy.
23374 		 */
23375 		if (ipst->ips_ipv6_forward != 0)
23376 			ill->ill_flags |= ILLF_ROUTER;
23377 	} else if (ill->ill_flags & ILLF_IPV4) {
23378 		ill->ill_isv6 = B_FALSE;
23379 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
23380 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
23381 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
23382 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
23383 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
23384 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
23385 		/*
23386 		 * Set the ILLF_ROUTER flag according to the global
23387 		 * IPv4 forwarding policy.
23388 		 */
23389 		if (ipst->ips_ip_g_forward != 0)
23390 			ill->ill_flags |= ILLF_ROUTER;
23391 	}
23392 
23393 	ASSERT(ill->ill_phyint != NULL);
23394 
23395 	/*
23396 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
23397 	 * be completed in ill_glist_insert -> ill_phyint_reinit
23398 	 */
23399 	if (!ill_allocate_mibs(ill))
23400 		return (ENOMEM);
23401 
23402 	/*
23403 	 * Pick a default sap until we get the DL_INFO_ACK back from
23404 	 * the driver.
23405 	 */
23406 	if (ill->ill_sap == 0) {
23407 		if (ill->ill_isv6)
23408 			ill->ill_sap  = IP6_DL_SAP;
23409 		else
23410 			ill->ill_sap  = IP_DL_SAP;
23411 	}
23412 
23413 	ill->ill_ifname_pending = 1;
23414 	ill->ill_ifname_pending_err = 0;
23415 
23416 	ill_refhold(ill);
23417 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23418 	if ((error = ill_glist_insert(ill, interf_name,
23419 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23420 		ill->ill_ppa = UINT_MAX;
23421 		ill->ill_name[0] = '\0';
23422 		/*
23423 		 * undo null termination done above.
23424 		 */
23425 		ppa_ptr[0] = old_char;
23426 		rw_exit(&ipst->ips_ill_g_lock);
23427 		ill_refrele(ill);
23428 		return (error);
23429 	}
23430 
23431 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23432 
23433 	/*
23434 	 * When we return the buffer pointed to by interf_name should contain
23435 	 * the same name as in ill_name.
23436 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23437 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23438 	 * so copy full name and update the ppa ptr.
23439 	 * When ppa passed in != UINT_MAX all values are correct just undo
23440 	 * null termination, this saves a bcopy.
23441 	 */
23442 	if (*new_ppa_ptr == UINT_MAX) {
23443 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23444 		*new_ppa_ptr = ill->ill_ppa;
23445 	} else {
23446 		/*
23447 		 * undo null termination done above.
23448 		 */
23449 		ppa_ptr[0] = old_char;
23450 	}
23451 
23452 	/* Let SCTP know about this ILL */
23453 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23454 
23455 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23456 	    B_TRUE);
23457 
23458 	rw_exit(&ipst->ips_ill_g_lock);
23459 	ill_refrele(ill);
23460 	if (ipsq == NULL)
23461 		return (EINPROGRESS);
23462 
23463 	/*
23464 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23465 	 */
23466 	if (ipsq->ipsq_current_ipif == NULL)
23467 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23468 	else
23469 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23470 
23471 	error = ipif_set_values_tail(ill, ipif, mp, q);
23472 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23473 	if (error != 0 && error != EINPROGRESS) {
23474 		/*
23475 		 * restore previous values
23476 		 */
23477 		ill->ill_isv6 = B_FALSE;
23478 	}
23479 	return (error);
23480 }
23481 
23482 
23483 void
23484 ipif_init(ip_stack_t *ipst)
23485 {
23486 	hrtime_t hrt;
23487 	int i;
23488 
23489 	/*
23490 	 * Can't call drv_getparm here as it is too early in the boot.
23491 	 * As we use ipif_src_random just for picking a different
23492 	 * source address everytime, this need not be really random.
23493 	 */
23494 	hrt = gethrtime();
23495 	ipst->ips_ipif_src_random =
23496 	    ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23497 
23498 	for (i = 0; i < MAX_G_HEADS; i++) {
23499 		ipst->ips_ill_g_heads[i].ill_g_list_head =
23500 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23501 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
23502 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23503 	}
23504 
23505 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23506 	    ill_phyint_compare_index,
23507 	    sizeof (phyint_t),
23508 	    offsetof(struct phyint, phyint_avl_by_index));
23509 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23510 	    ill_phyint_compare_name,
23511 	    sizeof (phyint_t),
23512 	    offsetof(struct phyint, phyint_avl_by_name));
23513 }
23514 
23515 /*
23516  * This is called by ip_rt_add when src_addr value is other than zero.
23517  * src_addr signifies the source address of the incoming packet. For
23518  * reverse tunnel route we need to create a source addr based routing
23519  * table. This routine creates ip_mrtun_table if it's empty and then
23520  * it adds the route entry hashed by source address. It verifies that
23521  * the outgoing interface is always a non-resolver interface (tunnel).
23522  */
23523 int
23524 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg,
23525     ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func,
23526     ip_stack_t *ipst)
23527 {
23528 	ire_t   *ire;
23529 	ire_t	*save_ire;
23530 	ipif_t  *ipif;
23531 	ill_t   *in_ill = NULL;
23532 	ill_t	*out_ill;
23533 	queue_t	*stq;
23534 	mblk_t	*dlureq_mp;
23535 	int	error;
23536 
23537 	if (ire_arg != NULL)
23538 		*ire_arg = NULL;
23539 	ASSERT(in_src_addr != INADDR_ANY);
23540 
23541 	ipif = ipif_arg;
23542 	if (ipif != NULL) {
23543 		out_ill = ipif->ipif_ill;
23544 	} else {
23545 		ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n"));
23546 		return (EINVAL);
23547 	}
23548 
23549 	if (src_ipif == NULL) {
23550 		ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n"));
23551 		return (EINVAL);
23552 	}
23553 	in_ill = src_ipif->ipif_ill;
23554 
23555 	/*
23556 	 * Check for duplicates. We don't need to
23557 	 * match out_ill, because the uniqueness of
23558 	 * a route is only dependent on src_addr and
23559 	 * in_ill.
23560 	 */
23561 	ire = ire_mrtun_lookup(in_src_addr, in_ill);
23562 	if (ire != NULL) {
23563 		ire_refrele(ire);
23564 		return (EEXIST);
23565 	}
23566 	if (ipif->ipif_net_type != IRE_IF_NORESOLVER) {
23567 		ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n",
23568 		    ipif->ipif_net_type));
23569 		return (EINVAL);
23570 	}
23571 
23572 	stq = ipif->ipif_wq;
23573 	ASSERT(stq != NULL);
23574 
23575 	/*
23576 	 * The outgoing interface must be non-resolver
23577 	 * interface.
23578 	 */
23579 	dlureq_mp = ill_dlur_gen(NULL,
23580 	    out_ill->ill_phys_addr_length, out_ill->ill_sap,
23581 	    out_ill->ill_sap_length);
23582 
23583 	if (dlureq_mp == NULL) {
23584 		ip1dbg(("ip_newroute: dlureq_mp NULL\n"));
23585 		return (ENOMEM);
23586 	}
23587 
23588 	/* Create the IRE. */
23589 
23590 	ire = ire_create(
23591 	    NULL,				/* Zero dst addr */
23592 	    NULL,				/* Zero mask */
23593 	    NULL,				/* Zero gateway addr */
23594 	    NULL,				/* Zero ipif_src addr */
23595 	    (uint8_t *)&in_src_addr,		/* in_src-addr */
23596 	    &ipif->ipif_mtu,
23597 	    NULL,
23598 	    NULL,				/* rfq */
23599 	    stq,
23600 	    IRE_MIPRTUN,
23601 	    dlureq_mp,
23602 	    ipif,
23603 	    in_ill,
23604 	    0,
23605 	    0,
23606 	    0,
23607 	    flags,
23608 	    &ire_uinfo_null,
23609 	    NULL,
23610 	    NULL,
23611 	    ipst);
23612 
23613 	if (ire == NULL) {
23614 		freeb(dlureq_mp);
23615 		return (ENOMEM);
23616 	}
23617 	ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n",
23618 	    ire->ire_type));
23619 	save_ire = ire;
23620 	ASSERT(save_ire != NULL);
23621 	error = ire_add_mrtun(&ire, q, mp, func);
23622 	/*
23623 	 * If ire_add_mrtun() failed, the ire passed in was freed
23624 	 * so there is no need to do so here.
23625 	 */
23626 	if (error != 0) {
23627 		return (error);
23628 	}
23629 
23630 	/* Duplicate check */
23631 	if (ire != save_ire) {
23632 		/* route already exists by now */
23633 		ire_refrele(ire);
23634 		return (EEXIST);
23635 	}
23636 
23637 	if (ire_arg != NULL) {
23638 		/*
23639 		 * Store the ire that was just added. the caller
23640 		 * ip_rts_request responsible for doing ire_refrele()
23641 		 * on it.
23642 		 */
23643 		*ire_arg = ire;
23644 	} else {
23645 		ire_refrele(ire);	/* held in ire_add_mrtun */
23646 	}
23647 
23648 	return (0);
23649 }
23650 
23651 /*
23652  * It is called by ip_rt_delete() only when mipagent requests to delete
23653  * a reverse tunnel route that was added by ip_mrtun_rt_add() before.
23654  */
23655 
23656 int
23657 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif)
23658 {
23659 	ire_t   *ire = NULL;
23660 
23661 	if (in_src_addr == INADDR_ANY)
23662 		return (EINVAL);
23663 	if (src_ipif == NULL)
23664 		return (EINVAL);
23665 
23666 	/* search if this route exists in the ip_mrtun_table */
23667 	ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill);
23668 	if (ire == NULL) {
23669 		ip2dbg(("ip_mrtun_rt_delete: ire not found\n"));
23670 		return (ESRCH);
23671 	}
23672 	ire_delete(ire);
23673 	ire_refrele(ire);
23674 	return (0);
23675 }
23676 
23677 /*
23678  * Lookup the ipif corresponding to the onlink destination address. For
23679  * point-to-point interfaces, it matches with remote endpoint destination
23680  * address. For point-to-multipoint interfaces it only tries to match the
23681  * destination with the interface's subnet address. The longest, most specific
23682  * match is found to take care of such rare network configurations like -
23683  * le0: 129.146.1.1/16
23684  * le1: 129.146.2.2/24
23685  * It is used only by SO_DONTROUTE at the moment.
23686  */
23687 ipif_t *
23688 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23689 {
23690 	ipif_t	*ipif, *best_ipif;
23691 	ill_t	*ill;
23692 	ill_walk_context_t ctx;
23693 
23694 	ASSERT(zoneid != ALL_ZONES);
23695 	best_ipif = NULL;
23696 
23697 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23698 	ill = ILL_START_WALK_V4(&ctx, ipst);
23699 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23700 		mutex_enter(&ill->ill_lock);
23701 		for (ipif = ill->ill_ipif; ipif != NULL;
23702 		    ipif = ipif->ipif_next) {
23703 			if (!IPIF_CAN_LOOKUP(ipif))
23704 				continue;
23705 			if (ipif->ipif_zoneid != zoneid &&
23706 			    ipif->ipif_zoneid != ALL_ZONES)
23707 				continue;
23708 			/*
23709 			 * Point-to-point case. Look for exact match with
23710 			 * destination address.
23711 			 */
23712 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23713 				if (ipif->ipif_pp_dst_addr == addr) {
23714 					ipif_refhold_locked(ipif);
23715 					mutex_exit(&ill->ill_lock);
23716 					rw_exit(&ipst->ips_ill_g_lock);
23717 					if (best_ipif != NULL)
23718 						ipif_refrele(best_ipif);
23719 					return (ipif);
23720 				}
23721 			} else if (ipif->ipif_subnet == (addr &
23722 			    ipif->ipif_net_mask)) {
23723 				/*
23724 				 * Point-to-multipoint case. Looping through to
23725 				 * find the most specific match. If there are
23726 				 * multiple best match ipif's then prefer ipif's
23727 				 * that are UP. If there is only one best match
23728 				 * ipif and it is DOWN we must still return it.
23729 				 */
23730 				if ((best_ipif == NULL) ||
23731 				    (ipif->ipif_net_mask >
23732 				    best_ipif->ipif_net_mask) ||
23733 				    ((ipif->ipif_net_mask ==
23734 				    best_ipif->ipif_net_mask) &&
23735 				    ((ipif->ipif_flags & IPIF_UP) &&
23736 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23737 					ipif_refhold_locked(ipif);
23738 					mutex_exit(&ill->ill_lock);
23739 					rw_exit(&ipst->ips_ill_g_lock);
23740 					if (best_ipif != NULL)
23741 						ipif_refrele(best_ipif);
23742 					best_ipif = ipif;
23743 					rw_enter(&ipst->ips_ill_g_lock,
23744 					    RW_READER);
23745 					mutex_enter(&ill->ill_lock);
23746 				}
23747 			}
23748 		}
23749 		mutex_exit(&ill->ill_lock);
23750 	}
23751 	rw_exit(&ipst->ips_ill_g_lock);
23752 	return (best_ipif);
23753 }
23754 
23755 
23756 /*
23757  * Save enough information so that we can recreate the IRE if
23758  * the interface goes down and then up.
23759  */
23760 static void
23761 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23762 {
23763 	mblk_t	*save_mp;
23764 
23765 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23766 	if (save_mp != NULL) {
23767 		ifrt_t	*ifrt;
23768 
23769 		save_mp->b_wptr += sizeof (ifrt_t);
23770 		ifrt = (ifrt_t *)save_mp->b_rptr;
23771 		bzero(ifrt, sizeof (ifrt_t));
23772 		ifrt->ifrt_type = ire->ire_type;
23773 		ifrt->ifrt_addr = ire->ire_addr;
23774 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23775 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23776 		ifrt->ifrt_mask = ire->ire_mask;
23777 		ifrt->ifrt_flags = ire->ire_flags;
23778 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23779 		mutex_enter(&ipif->ipif_saved_ire_lock);
23780 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23781 		ipif->ipif_saved_ire_mp = save_mp;
23782 		ipif->ipif_saved_ire_cnt++;
23783 		mutex_exit(&ipif->ipif_saved_ire_lock);
23784 	}
23785 }
23786 
23787 
23788 static void
23789 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23790 {
23791 	mblk_t	**mpp;
23792 	mblk_t	*mp;
23793 	ifrt_t	*ifrt;
23794 
23795 	/* Remove from ipif_saved_ire_mp list if it is there */
23796 	mutex_enter(&ipif->ipif_saved_ire_lock);
23797 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23798 	    mpp = &(*mpp)->b_cont) {
23799 		/*
23800 		 * On a given ipif, the triple of address, gateway and
23801 		 * mask is unique for each saved IRE (in the case of
23802 		 * ordinary interface routes, the gateway address is
23803 		 * all-zeroes).
23804 		 */
23805 		mp = *mpp;
23806 		ifrt = (ifrt_t *)mp->b_rptr;
23807 		if (ifrt->ifrt_addr == ire->ire_addr &&
23808 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23809 		    ifrt->ifrt_mask == ire->ire_mask) {
23810 			*mpp = mp->b_cont;
23811 			ipif->ipif_saved_ire_cnt--;
23812 			freeb(mp);
23813 			break;
23814 		}
23815 	}
23816 	mutex_exit(&ipif->ipif_saved_ire_lock);
23817 }
23818 
23819 
23820 /*
23821  * IP multirouting broadcast routes handling
23822  * Append CGTP broadcast IREs to regular ones created
23823  * at ifconfig time.
23824  */
23825 static void
23826 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23827 {
23828 	ire_t *ire_prim;
23829 
23830 	ASSERT(ire != NULL);
23831 	ASSERT(ire_dst != NULL);
23832 
23833 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23834 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23835 	if (ire_prim != NULL) {
23836 		/*
23837 		 * We are in the special case of broadcasts for
23838 		 * CGTP. We add an IRE_BROADCAST that holds
23839 		 * the RTF_MULTIRT flag, the destination
23840 		 * address of ire_dst and the low level
23841 		 * info of ire_prim. In other words, CGTP
23842 		 * broadcast is added to the redundant ipif.
23843 		 */
23844 		ipif_t *ipif_prim;
23845 		ire_t  *bcast_ire;
23846 
23847 		ipif_prim = ire_prim->ire_ipif;
23848 
23849 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23850 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23851 		    (void *)ire_dst, (void *)ire_prim,
23852 		    (void *)ipif_prim));
23853 
23854 		bcast_ire = ire_create(
23855 		    (uchar_t *)&ire->ire_addr,
23856 		    (uchar_t *)&ip_g_all_ones,
23857 		    (uchar_t *)&ire_dst->ire_src_addr,
23858 		    (uchar_t *)&ire->ire_gateway_addr,
23859 		    NULL,
23860 		    &ipif_prim->ipif_mtu,
23861 		    NULL,
23862 		    ipif_prim->ipif_rq,
23863 		    ipif_prim->ipif_wq,
23864 		    IRE_BROADCAST,
23865 		    ipif_prim->ipif_bcast_mp,
23866 		    ipif_prim,
23867 		    NULL,
23868 		    0,
23869 		    0,
23870 		    0,
23871 		    ire->ire_flags,
23872 		    &ire_uinfo_null,
23873 		    NULL,
23874 		    NULL,
23875 		    ipst);
23876 
23877 		if (bcast_ire != NULL) {
23878 
23879 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23880 			    B_FALSE) == 0) {
23881 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23882 				    "added bcast_ire %p\n",
23883 				    (void *)bcast_ire));
23884 
23885 				ipif_save_ire(bcast_ire->ire_ipif,
23886 				    bcast_ire);
23887 				ire_refrele(bcast_ire);
23888 			}
23889 		}
23890 		ire_refrele(ire_prim);
23891 	}
23892 }
23893 
23894 
23895 /*
23896  * IP multirouting broadcast routes handling
23897  * Remove the broadcast ire
23898  */
23899 static void
23900 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23901 {
23902 	ire_t *ire_dst;
23903 
23904 	ASSERT(ire != NULL);
23905 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23906 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23907 	if (ire_dst != NULL) {
23908 		ire_t *ire_prim;
23909 
23910 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23911 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23912 		if (ire_prim != NULL) {
23913 			ipif_t *ipif_prim;
23914 			ire_t  *bcast_ire;
23915 
23916 			ipif_prim = ire_prim->ire_ipif;
23917 
23918 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23919 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23920 			    (void *)ire_dst, (void *)ire_prim,
23921 			    (void *)ipif_prim));
23922 
23923 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23924 			    ire->ire_gateway_addr,
23925 			    IRE_BROADCAST,
23926 			    ipif_prim, ALL_ZONES,
23927 			    NULL,
23928 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23929 			    MATCH_IRE_MASK, ipst);
23930 
23931 			if (bcast_ire != NULL) {
23932 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23933 				    "looked up bcast_ire %p\n",
23934 				    (void *)bcast_ire));
23935 				ipif_remove_ire(bcast_ire->ire_ipif,
23936 					bcast_ire);
23937 				ire_delete(bcast_ire);
23938 			}
23939 			ire_refrele(ire_prim);
23940 		}
23941 		ire_refrele(ire_dst);
23942 	}
23943 }
23944 
23945 /*
23946  * IPsec hardware acceleration capabilities related functions.
23947  */
23948 
23949 /*
23950  * Free a per-ill IPsec capabilities structure.
23951  */
23952 static void
23953 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23954 {
23955 	if (capab->auth_hw_algs != NULL)
23956 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23957 	if (capab->encr_hw_algs != NULL)
23958 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23959 	if (capab->encr_algparm != NULL)
23960 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23961 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23962 }
23963 
23964 /*
23965  * Allocate a new per-ill IPsec capabilities structure. This structure
23966  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23967  * an array which specifies, for each algorithm, whether this algorithm
23968  * is supported by the ill or not.
23969  */
23970 static ill_ipsec_capab_t *
23971 ill_ipsec_capab_alloc(void)
23972 {
23973 	ill_ipsec_capab_t *capab;
23974 	uint_t nelems;
23975 
23976 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23977 	if (capab == NULL)
23978 		return (NULL);
23979 
23980 	/* we need one bit per algorithm */
23981 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23982 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23983 
23984 	/* allocate memory to store algorithm flags */
23985 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23986 	if (capab->encr_hw_algs == NULL)
23987 		goto nomem;
23988 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23989 	if (capab->auth_hw_algs == NULL)
23990 		goto nomem;
23991 	/*
23992 	 * Leave encr_algparm NULL for now since we won't need it half
23993 	 * the time
23994 	 */
23995 	return (capab);
23996 
23997 nomem:
23998 	ill_ipsec_capab_free(capab);
23999 	return (NULL);
24000 }
24001 
24002 /*
24003  * Resize capability array.  Since we're exclusive, this is OK.
24004  */
24005 static boolean_t
24006 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
24007 {
24008 	ipsec_capab_algparm_t *nalp, *oalp;
24009 	uint32_t olen, nlen;
24010 
24011 	oalp = capab->encr_algparm;
24012 	olen = capab->encr_algparm_size;
24013 
24014 	if (oalp != NULL) {
24015 		if (algid < capab->encr_algparm_end)
24016 			return (B_TRUE);
24017 	}
24018 
24019 	nlen = (algid + 1) * sizeof (*nalp);
24020 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
24021 	if (nalp == NULL)
24022 		return (B_FALSE);
24023 
24024 	if (oalp != NULL) {
24025 		bcopy(oalp, nalp, olen);
24026 		kmem_free(oalp, olen);
24027 	}
24028 	capab->encr_algparm = nalp;
24029 	capab->encr_algparm_size = nlen;
24030 	capab->encr_algparm_end = algid + 1;
24031 
24032 	return (B_TRUE);
24033 }
24034 
24035 /*
24036  * Compare the capabilities of the specified ill with the protocol
24037  * and algorithms specified by the SA passed as argument.
24038  * If they match, returns B_TRUE, B_FALSE if they do not match.
24039  *
24040  * The ill can be passed as a pointer to it, or by specifying its index
24041  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
24042  *
24043  * Called by ipsec_out_is_accelerated() do decide whether an outbound
24044  * packet is eligible for hardware acceleration, and by
24045  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
24046  * to a particular ill.
24047  */
24048 boolean_t
24049 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
24050     ipsa_t *sa, netstack_t *ns)
24051 {
24052 	boolean_t sa_isv6;
24053 	uint_t algid;
24054 	struct ill_ipsec_capab_s *cpp;
24055 	boolean_t need_refrele = B_FALSE;
24056 	ip_stack_t	*ipst = ns->netstack_ip;
24057 
24058 	if (ill == NULL) {
24059 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
24060 		    NULL, NULL, NULL, ipst);
24061 		if (ill == NULL) {
24062 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
24063 			return (B_FALSE);
24064 		}
24065 		need_refrele = B_TRUE;
24066 	}
24067 
24068 	/*
24069 	 * Use the address length specified by the SA to determine
24070 	 * if it corresponds to a IPv6 address, and fail the matching
24071 	 * if the isv6 flag passed as argument does not match.
24072 	 * Note: this check is used for SADB capability checking before
24073 	 * sending SA information to an ill.
24074 	 */
24075 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
24076 	if (sa_isv6 != ill_isv6)
24077 		/* protocol mismatch */
24078 		goto done;
24079 
24080 	/*
24081 	 * Check if the ill supports the protocol, algorithm(s) and
24082 	 * key size(s) specified by the SA, and get the pointers to
24083 	 * the algorithms supported by the ill.
24084 	 */
24085 	switch (sa->ipsa_type) {
24086 
24087 	case SADB_SATYPE_ESP:
24088 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
24089 			/* ill does not support ESP acceleration */
24090 			goto done;
24091 		cpp = ill->ill_ipsec_capab_esp;
24092 		algid = sa->ipsa_auth_alg;
24093 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
24094 			goto done;
24095 		algid = sa->ipsa_encr_alg;
24096 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
24097 			goto done;
24098 		if (algid < cpp->encr_algparm_end) {
24099 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
24100 			if (sa->ipsa_encrkeybits < alp->minkeylen)
24101 				goto done;
24102 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
24103 				goto done;
24104 		}
24105 		break;
24106 
24107 	case SADB_SATYPE_AH:
24108 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
24109 			/* ill does not support AH acceleration */
24110 			goto done;
24111 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
24112 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
24113 			goto done;
24114 		break;
24115 	}
24116 
24117 	if (need_refrele)
24118 		ill_refrele(ill);
24119 	return (B_TRUE);
24120 done:
24121 	if (need_refrele)
24122 		ill_refrele(ill);
24123 	return (B_FALSE);
24124 }
24125 
24126 
24127 /*
24128  * Add a new ill to the list of IPsec capable ills.
24129  * Called from ill_capability_ipsec_ack() when an ACK was received
24130  * indicating that IPsec hardware processing was enabled for an ill.
24131  *
24132  * ill must point to the ill for which acceleration was enabled.
24133  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
24134  */
24135 static void
24136 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
24137 {
24138 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
24139 	uint_t sa_type;
24140 	uint_t ipproto;
24141 	ip_stack_t	*ipst = ill->ill_ipst;
24142 
24143 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
24144 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
24145 
24146 	switch (dl_cap) {
24147 	case DL_CAPAB_IPSEC_AH:
24148 		sa_type = SADB_SATYPE_AH;
24149 		ills = &ipst->ips_ipsec_capab_ills_ah;
24150 		ipproto = IPPROTO_AH;
24151 		break;
24152 	case DL_CAPAB_IPSEC_ESP:
24153 		sa_type = SADB_SATYPE_ESP;
24154 		ills = &ipst->ips_ipsec_capab_ills_esp;
24155 		ipproto = IPPROTO_ESP;
24156 		break;
24157 	}
24158 
24159 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
24160 
24161 	/*
24162 	 * Add ill index to list of hardware accelerators. If
24163 	 * already in list, do nothing.
24164 	 */
24165 	for (cur_ill = *ills; cur_ill != NULL &&
24166 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
24167 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
24168 		;
24169 
24170 	if (cur_ill == NULL) {
24171 		/* if this is a new entry for this ill */
24172 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
24173 		if (new_ill == NULL) {
24174 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24175 			return;
24176 		}
24177 
24178 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
24179 		new_ill->ill_isv6 = ill->ill_isv6;
24180 		new_ill->next = *ills;
24181 		*ills = new_ill;
24182 	} else if (!sadb_resync) {
24183 		/* not resync'ing SADB and an entry exists for this ill */
24184 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24185 		return;
24186 	}
24187 
24188 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24189 
24190 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
24191 		/*
24192 		 * IPsec module for protocol loaded, initiate dump
24193 		 * of the SADB to this ill.
24194 		 */
24195 		sadb_ill_download(ill, sa_type);
24196 }
24197 
24198 /*
24199  * Remove an ill from the list of IPsec capable ills.
24200  */
24201 static void
24202 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
24203 {
24204 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
24205 	ip_stack_t	*ipst = ill->ill_ipst;
24206 
24207 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
24208 	    dl_cap == DL_CAPAB_IPSEC_ESP);
24209 
24210 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
24211 	    &ipst->ips_ipsec_capab_ills_esp;
24212 
24213 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
24214 
24215 	prev_ill = NULL;
24216 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
24217 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
24218 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
24219 		;
24220 	if (cur_ill == NULL) {
24221 		/* entry not found */
24222 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24223 		return;
24224 	}
24225 	if (prev_ill == NULL) {
24226 		/* entry at front of list */
24227 		*ills = NULL;
24228 	} else {
24229 		prev_ill->next = cur_ill->next;
24230 	}
24231 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
24232 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24233 }
24234 
24235 
24236 /*
24237  * Handling of DL_CONTROL_REQ messages that must be sent down to
24238  * an ill while having exclusive access.
24239  */
24240 /* ARGSUSED */
24241 static void
24242 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
24243 {
24244 	ill_t *ill = (ill_t *)q->q_ptr;
24245 
24246 	ill_dlpi_send(ill, mp);
24247 }
24248 
24249 
24250 /*
24251  * Called by SADB to send a DL_CONTROL_REQ message to every ill
24252  * supporting the specified IPsec protocol acceleration.
24253  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
24254  * We free the mblk and, if sa is non-null, release the held referece.
24255  */
24256 void
24257 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
24258     netstack_t *ns)
24259 {
24260 	ipsec_capab_ill_t *ici, *cur_ici;
24261 	ill_t *ill;
24262 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
24263 	ip_stack_t	*ipst = ns->netstack_ip;
24264 
24265 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
24266 	    ipst->ips_ipsec_capab_ills_esp;
24267 
24268 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
24269 
24270 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
24271 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
24272 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
24273 
24274 		/*
24275 		 * Handle the case where the ill goes away while the SADB is
24276 		 * attempting to send messages.  If it's going away, it's
24277 		 * nuking its shadow SADB, so we don't care..
24278 		 */
24279 
24280 		if (ill == NULL)
24281 			continue;
24282 
24283 		if (sa != NULL) {
24284 			/*
24285 			 * Make sure capabilities match before
24286 			 * sending SA to ill.
24287 			 */
24288 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
24289 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
24290 				ill_refrele(ill);
24291 				continue;
24292 			}
24293 
24294 			mutex_enter(&sa->ipsa_lock);
24295 			sa->ipsa_flags |= IPSA_F_HW;
24296 			mutex_exit(&sa->ipsa_lock);
24297 		}
24298 
24299 		/*
24300 		 * Copy template message, and add it to the front
24301 		 * of the mblk ship list. We want to avoid holding
24302 		 * the ipsec_capab_ills_lock while sending the
24303 		 * message to the ills.
24304 		 *
24305 		 * The b_next and b_prev are temporarily used
24306 		 * to build a list of mblks to be sent down, and to
24307 		 * save the ill to which they must be sent.
24308 		 */
24309 		nmp = copymsg(mp);
24310 		if (nmp == NULL) {
24311 			ill_refrele(ill);
24312 			continue;
24313 		}
24314 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
24315 		nmp->b_next = mp_ship_list;
24316 		mp_ship_list = nmp;
24317 		nmp->b_prev = (mblk_t *)ill;
24318 	}
24319 
24320 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24321 
24322 	nmp = mp_ship_list;
24323 	while (nmp != NULL) {
24324 		/* restore the mblk to a sane state */
24325 		next_mp = nmp->b_next;
24326 		nmp->b_next = NULL;
24327 		ill = (ill_t *)nmp->b_prev;
24328 		nmp->b_prev = NULL;
24329 
24330 		/*
24331 		 * Ship the mblk to the ill, must be exclusive. Keep the
24332 		 * reference to the ill as qwriter_ip() does a ill_referele().
24333 		 */
24334 		(void) qwriter_ip(NULL, ill, ill->ill_wq, nmp,
24335 		    ill_ipsec_capab_send_writer, NEW_OP, B_TRUE);
24336 
24337 		nmp = next_mp;
24338 	}
24339 
24340 	if (sa != NULL)
24341 		IPSA_REFRELE(sa);
24342 	freemsg(mp);
24343 }
24344 
24345 
24346 /*
24347  * Derive an interface id from the link layer address.
24348  * Knows about IEEE 802 and IEEE EUI-64 mappings.
24349  */
24350 static boolean_t
24351 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24352 {
24353 	char		*addr;
24354 
24355 	if (phys_length != ETHERADDRL)
24356 		return (B_FALSE);
24357 
24358 	/* Form EUI-64 like address */
24359 	addr = (char *)&v6addr->s6_addr32[2];
24360 	bcopy((char *)phys_addr, addr, 3);
24361 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
24362 	addr[3] = (char)0xff;
24363 	addr[4] = (char)0xfe;
24364 	bcopy((char *)phys_addr + 3, addr + 5, 3);
24365 	return (B_TRUE);
24366 }
24367 
24368 /* ARGSUSED */
24369 static boolean_t
24370 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24371 {
24372 	return (B_FALSE);
24373 }
24374 
24375 /* ARGSUSED */
24376 static boolean_t
24377 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24378     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24379 {
24380 	/*
24381 	 * Multicast address mappings used over Ethernet/802.X.
24382 	 * This address is used as a base for mappings.
24383 	 */
24384 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
24385 	    0x00, 0x00, 0x00};
24386 
24387 	/*
24388 	 * Extract low order 32 bits from IPv6 multicast address.
24389 	 * Or that into the link layer address, starting from the
24390 	 * second byte.
24391 	 */
24392 	*hw_start = 2;
24393 	v6_extract_mask->s6_addr32[0] = 0;
24394 	v6_extract_mask->s6_addr32[1] = 0;
24395 	v6_extract_mask->s6_addr32[2] = 0;
24396 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24397 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
24398 	return (B_TRUE);
24399 }
24400 
24401 /*
24402  * Indicate by return value whether multicast is supported. If not,
24403  * this code should not touch/change any parameters.
24404  */
24405 /* ARGSUSED */
24406 static boolean_t
24407 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24408     uint32_t *hw_start, ipaddr_t *extract_mask)
24409 {
24410 	/*
24411 	 * Multicast address mappings used over Ethernet/802.X.
24412 	 * This address is used as a base for mappings.
24413 	 */
24414 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
24415 	    0x00, 0x00, 0x00 };
24416 
24417 	if (phys_length != ETHERADDRL)
24418 		return (B_FALSE);
24419 
24420 	*extract_mask = htonl(0x007fffff);
24421 	*hw_start = 2;
24422 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
24423 	return (B_TRUE);
24424 }
24425 
24426 /*
24427  * Derive IPoIB interface id from the link layer address.
24428  */
24429 static boolean_t
24430 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24431 {
24432 	char		*addr;
24433 
24434 	if (phys_length != 20)
24435 		return (B_FALSE);
24436 	addr = (char *)&v6addr->s6_addr32[2];
24437 	bcopy(phys_addr + 12, addr, 8);
24438 	/*
24439 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
24440 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
24441 	 * rules. In these cases, the IBA considers these GUIDs to be in
24442 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
24443 	 * required; vendors are required not to assign global EUI-64's
24444 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
24445 	 * of the interface identifier. Whether the GUID is in modified
24446 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
24447 	 * bit set to 1.
24448 	 */
24449 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
24450 	return (B_TRUE);
24451 }
24452 
24453 /*
24454  * Note on mapping from multicast IP addresses to IPoIB multicast link
24455  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
24456  * The format of an IPoIB multicast address is:
24457  *
24458  *  4 byte QPN      Scope Sign.  Pkey
24459  * +--------------------------------------------+
24460  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
24461  * +--------------------------------------------+
24462  *
24463  * The Scope and Pkey components are properties of the IBA port and
24464  * network interface. They can be ascertained from the broadcast address.
24465  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
24466  */
24467 
24468 static boolean_t
24469 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24470     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24471 {
24472 	/*
24473 	 * Base IPoIB IPv6 multicast address used for mappings.
24474 	 * Does not contain the IBA scope/Pkey values.
24475 	 */
24476 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24477 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
24478 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24479 
24480 	/*
24481 	 * Extract low order 80 bits from IPv6 multicast address.
24482 	 * Or that into the link layer address, starting from the
24483 	 * sixth byte.
24484 	 */
24485 	*hw_start = 6;
24486 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
24487 
24488 	/*
24489 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24490 	 */
24491 	*(maddr + 5) = *(bphys_addr + 5);
24492 	*(maddr + 8) = *(bphys_addr + 8);
24493 	*(maddr + 9) = *(bphys_addr + 9);
24494 
24495 	v6_extract_mask->s6_addr32[0] = 0;
24496 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
24497 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
24498 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24499 	return (B_TRUE);
24500 }
24501 
24502 static boolean_t
24503 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24504     uint32_t *hw_start, ipaddr_t *extract_mask)
24505 {
24506 	/*
24507 	 * Base IPoIB IPv4 multicast address used for mappings.
24508 	 * Does not contain the IBA scope/Pkey values.
24509 	 */
24510 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24511 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
24512 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24513 
24514 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
24515 		return (B_FALSE);
24516 
24517 	/*
24518 	 * Extract low order 28 bits from IPv4 multicast address.
24519 	 * Or that into the link layer address, starting from the
24520 	 * sixteenth byte.
24521 	 */
24522 	*extract_mask = htonl(0x0fffffff);
24523 	*hw_start = 16;
24524 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
24525 
24526 	/*
24527 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24528 	 */
24529 	*(maddr + 5) = *(bphys_addr + 5);
24530 	*(maddr + 8) = *(bphys_addr + 8);
24531 	*(maddr + 9) = *(bphys_addr + 9);
24532 	return (B_TRUE);
24533 }
24534 
24535 /*
24536  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
24537  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
24538  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
24539  * the link-local address is preferred.
24540  */
24541 boolean_t
24542 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24543 {
24544 	ipif_t	*ipif;
24545 	ipif_t	*maybe_ipif = NULL;
24546 
24547 	mutex_enter(&ill->ill_lock);
24548 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24549 		mutex_exit(&ill->ill_lock);
24550 		if (ipifp != NULL)
24551 			*ipifp = NULL;
24552 		return (B_FALSE);
24553 	}
24554 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24555 		if (!IPIF_CAN_LOOKUP(ipif))
24556 			continue;
24557 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
24558 		    ipif->ipif_zoneid != ALL_ZONES)
24559 			continue;
24560 		if ((ipif->ipif_flags & flags) != flags)
24561 			continue;
24562 
24563 		if (ipifp == NULL) {
24564 			mutex_exit(&ill->ill_lock);
24565 			ASSERT(maybe_ipif == NULL);
24566 			return (B_TRUE);
24567 		}
24568 		if (!ill->ill_isv6 ||
24569 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
24570 			ipif_refhold_locked(ipif);
24571 			mutex_exit(&ill->ill_lock);
24572 			*ipifp = ipif;
24573 			return (B_TRUE);
24574 		}
24575 		if (maybe_ipif == NULL)
24576 			maybe_ipif = ipif;
24577 	}
24578 	if (ipifp != NULL) {
24579 		if (maybe_ipif != NULL)
24580 			ipif_refhold_locked(maybe_ipif);
24581 		*ipifp = maybe_ipif;
24582 	}
24583 	mutex_exit(&ill->ill_lock);
24584 	return (maybe_ipif != NULL);
24585 }
24586 
24587 /*
24588  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
24589  */
24590 boolean_t
24591 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24592 {
24593 	ill_t *illg;
24594 	ip_stack_t	*ipst = ill->ill_ipst;
24595 
24596 	/*
24597 	 * We look at the passed-in ill first without grabbing ill_g_lock.
24598 	 */
24599 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
24600 		return (B_TRUE);
24601 	}
24602 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
24603 	if (ill->ill_group == NULL) {
24604 		/* ill not in a group */
24605 		rw_exit(&ipst->ips_ill_g_lock);
24606 		return (B_FALSE);
24607 	}
24608 
24609 	/*
24610 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24611 	 * group. We need to look for an ipif in the zone on all the ills in the
24612 	 * group.
24613 	 */
24614 	illg = ill->ill_group->illgrp_ill;
24615 	do {
24616 		/*
24617 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24618 		 * that it's not there.
24619 		 */
24620 		if (illg != ill &&
24621 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24622 			break;
24623 		}
24624 	} while ((illg = illg->ill_group_next) != NULL);
24625 	rw_exit(&ipst->ips_ill_g_lock);
24626 	return (illg != NULL);
24627 }
24628 
24629 /*
24630  * Check if this ill is only being used to send ICMP probes for IPMP
24631  */
24632 boolean_t
24633 ill_is_probeonly(ill_t *ill)
24634 {
24635 	/*
24636 	 * Check if the interface is FAILED, or INACTIVE
24637 	 */
24638 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24639 		return (B_TRUE);
24640 
24641 	return (B_FALSE);
24642 }
24643 
24644 /*
24645  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24646  * If a pointer to an ipif_t is returned then the caller will need to do
24647  * an ill_refrele().
24648  *
24649  * If there is no real interface which matches the ifindex, then it looks
24650  * for a group that has a matching index. In the case of a group match the
24651  * lifidx must be zero. We don't need emulate the logical interfaces
24652  * since IP Filter's use of netinfo doesn't use that.
24653  */
24654 ipif_t *
24655 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24656     ip_stack_t *ipst)
24657 {
24658 	ipif_t *ipif;
24659 	ill_t *ill;
24660 
24661 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24662 	    ipst);
24663 
24664 	if (ill == NULL) {
24665 		/* Fallback to group names only if hook_emulation set */
24666 		if (!ipst->ips_ipmp_hook_emulation)
24667 			return (NULL);
24668 
24669 		if (lifidx != 0)
24670 			return (NULL);
24671 		ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24672 		if (ill == NULL)
24673 			return (NULL);
24674 	}
24675 
24676 	mutex_enter(&ill->ill_lock);
24677 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24678 		mutex_exit(&ill->ill_lock);
24679 		ill_refrele(ill);
24680 		return (NULL);
24681 	}
24682 
24683 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24684 		if (!IPIF_CAN_LOOKUP(ipif))
24685 			continue;
24686 		if (lifidx == ipif->ipif_id) {
24687 			ipif_refhold_locked(ipif);
24688 			break;
24689 		}
24690 	}
24691 
24692 	mutex_exit(&ill->ill_lock);
24693 	ill_refrele(ill);
24694 	return (ipif);
24695 }
24696 
24697 /*
24698  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24699  * There is one exceptions IRE_BROADCAST are difficult to recreate,
24700  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24701  * for details.
24702  */
24703 void
24704 ill_fastpath_flush(ill_t *ill)
24705 {
24706 	ip_stack_t *ipst = ill->ill_ipst;
24707 
24708 	nce_fastpath_list_dispatch(ill, NULL, NULL);
24709 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24710 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24711 }
24712 
24713 /*
24714  * Set the physical address information for `ill' to the contents of the
24715  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24716  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24717  * EINPROGRESS will be returned.
24718  */
24719 int
24720 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24721 {
24722 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24723 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24724 
24725 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24726 
24727 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24728 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24729 		/* Changing DL_IPV6_TOKEN is not yet supported */
24730 		return (0);
24731 	}
24732 
24733 	/*
24734 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24735 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24736 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24737 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24738 	 */
24739 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24740 		freemsg(mp);
24741 		return (ENOMEM);
24742 	}
24743 
24744 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24745 
24746 	/*
24747 	 * If we can quiesce the ill, then set the address.  If not, then
24748 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24749 	 */
24750 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24751 	mutex_enter(&ill->ill_lock);
24752 	if (!ill_is_quiescent(ill)) {
24753 		/* call cannot fail since `conn_t *' argument is NULL */
24754 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24755 		    mp, ILL_DOWN);
24756 		mutex_exit(&ill->ill_lock);
24757 		return (EINPROGRESS);
24758 	}
24759 	mutex_exit(&ill->ill_lock);
24760 
24761 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24762 	return (0);
24763 }
24764 
24765 /*
24766  * Once the ill associated with `q' has quiesced, set its physical address
24767  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24768  * are passed (linked by b_cont), since we sometimes need to save two distinct
24769  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24770  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24771  * is quiesced, we know any stale IREs with the old address information have
24772  * already been removed, so we don't need to call ill_fastpath_flush().
24773  */
24774 /* ARGSUSED */
24775 static void
24776 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24777 {
24778 	ill_t		*ill = q->q_ptr;
24779 	mblk_t		*addrmp2 = unlinkb(addrmp);
24780 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24781 	uint_t		addrlen, addroff;
24782 
24783 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24784 
24785 	addroff	= dlindp->dl_addr_offset;
24786 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24787 
24788 	switch (dlindp->dl_data) {
24789 	case DL_IPV6_LINK_LAYER_ADDR:
24790 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24791 		freemsg(addrmp2);
24792 		break;
24793 
24794 	case DL_CURR_PHYS_ADDR:
24795 		freemsg(ill->ill_phys_addr_mp);
24796 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24797 		ill->ill_phys_addr_mp = addrmp;
24798 		ill->ill_phys_addr_length = addrlen;
24799 
24800 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24801 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24802 		else
24803 			freemsg(addrmp2);
24804 		break;
24805 	default:
24806 		ASSERT(0);
24807 	}
24808 
24809 	/*
24810 	 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero,
24811 	 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer()
24812 	 * or ip_arp_done() when the last ipif is brought up.
24813 	 */
24814 	if (ill_up_ipifs(ill, q, addrmp) == 0)
24815 		ipsq_current_finish(ipsq);
24816 }
24817 
24818 /*
24819  * Helper routine for setting the ill_nd_lla fields.
24820  */
24821 void
24822 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24823 {
24824 	freemsg(ill->ill_nd_lla_mp);
24825 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24826 	ill->ill_nd_lla_mp = ndmp;
24827 	ill->ill_nd_lla_len = addrlen;
24828 }
24829 
24830 
24831 
24832 major_t IP_MAJ;
24833 #define	IP	"ip"
24834 
24835 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
24836 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
24837 
24838 /*
24839  * Issue REMOVEIF ioctls to have the loopback interfaces
24840  * go away.  Other interfaces are either I_LINKed or I_PLINKed;
24841  * the former going away when the user-level processes in the zone
24842  * are killed  * and the latter are cleaned up by the stream head
24843  * str_stack_shutdown callback that undoes all I_PLINKs.
24844  */
24845 void
24846 ip_loopback_cleanup(ip_stack_t *ipst)
24847 {
24848 	int error;
24849 	ldi_handle_t	lh = NULL;
24850 	ldi_ident_t	li = NULL;
24851 	int		rval;
24852 	cred_t		*cr;
24853 	struct strioctl iocb;
24854 	struct lifreq	lifreq;
24855 
24856 	IP_MAJ = ddi_name_to_major(IP);
24857 
24858 #ifdef NS_DEBUG
24859 	(void) printf("ip_loopback_cleanup() stackid %d\n",
24860 	    ipst->ips_netstack->netstack_stackid);
24861 #endif
24862 
24863 	bzero(&lifreq, sizeof (lifreq));
24864 	(void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24865 
24866 	error = ldi_ident_from_major(IP_MAJ, &li);
24867 	if (error) {
24868 #ifdef DEBUG
24869 		printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24870 		    error);
24871 #endif
24872 		return;
24873 	}
24874 
24875 	cr = zone_get_kcred(netstackid_to_zoneid(
24876 		ipst->ips_netstack->netstack_stackid));
24877 	ASSERT(cr != NULL);
24878 	error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24879 	if (error) {
24880 #ifdef DEBUG
24881 		printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24882 		    error);
24883 #endif
24884 		goto out;
24885 	}
24886 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24887 	iocb.ic_timout = 15;
24888 	iocb.ic_len = sizeof (lifreq);
24889 	iocb.ic_dp = (char *)&lifreq;
24890 
24891 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24892 	/* LINTED - statement has no consequent */
24893 	if (error) {
24894 #ifdef NS_DEBUG
24895 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24896 		    "UDP6 error %d\n", error);
24897 #endif
24898 	}
24899 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24900 	lh = NULL;
24901 
24902 	error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24903 	if (error) {
24904 #ifdef NS_DEBUG
24905 		printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24906 		    error);
24907 #endif
24908 		goto out;
24909 	}
24910 
24911 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24912 	iocb.ic_timout = 15;
24913 	iocb.ic_len = sizeof (lifreq);
24914 	iocb.ic_dp = (char *)&lifreq;
24915 
24916 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24917 	/* LINTED - statement has no consequent */
24918 	if (error) {
24919 #ifdef NS_DEBUG
24920 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24921 		    "UDP error %d\n", error);
24922 #endif
24923 	}
24924 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24925 	lh = NULL;
24926 
24927 out:
24928 	/* Close layered handles */
24929 	if (lh)
24930 		(void) ldi_close(lh, FREAD|FWRITE, cr);
24931 	if (li)
24932 		ldi_ident_release(li);
24933 
24934 	crfree(cr);
24935 }
24936