1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 148 int ioccmd, struct linkblk *li, boolean_t doconsist); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 153 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 154 queue_t *q, mblk_t *mp, boolean_t need_up); 155 static void ipsq_delete(ipsq_t *); 156 157 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 158 boolean_t initialize); 159 static void ipif_check_bcast_ires(ipif_t *test_ipif); 160 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 161 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 162 boolean_t isv6); 163 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 164 static void ipif_delete_cache_ire(ire_t *, char *); 165 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 166 static void ipif_free(ipif_t *ipif); 167 static void ipif_free_tail(ipif_t *ipif); 168 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 169 static void ipif_multicast_down(ipif_t *ipif); 170 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 171 static void ipif_set_default(ipif_t *ipif); 172 static int ipif_set_values(queue_t *q, mblk_t *mp, 173 char *interf_name, uint_t *ppa); 174 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 175 queue_t *q); 176 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 177 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 179 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 /* 259 * if we go over the memory footprint limit more than once in this msec 260 * interval, we'll start pruning aggressively. 261 */ 262 int ip_min_frag_prune_time = 0; 263 264 /* 265 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 266 * and the IPsec DOI 267 */ 268 #define MAX_IPSEC_ALGS 256 269 270 #define BITSPERBYTE 8 271 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 272 273 #define IPSEC_ALG_ENABLE(algs, algid) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 typedef uint8_t ipsec_capab_elem_t; 282 283 /* 284 * Per-algorithm parameters. Note that at present, only encryption 285 * algorithms have variable keysize (IKE does not provide a way to negotiate 286 * auth algorithm keysize). 287 * 288 * All sizes here are in bits. 289 */ 290 typedef struct 291 { 292 uint16_t minkeylen; 293 uint16_t maxkeylen; 294 } ipsec_capab_algparm_t; 295 296 /* 297 * Per-ill capabilities. 298 */ 299 struct ill_ipsec_capab_s { 300 ipsec_capab_elem_t *encr_hw_algs; 301 ipsec_capab_elem_t *auth_hw_algs; 302 uint32_t algs_size; /* size of _hw_algs in bytes */ 303 /* algorithm key lengths */ 304 ipsec_capab_algparm_t *encr_algparm; 305 uint32_t encr_algparm_size; 306 uint32_t encr_algparm_end; 307 }; 308 309 /* 310 * The field values are larger than strictly necessary for simple 311 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 312 */ 313 static area_t ip_area_template = { 314 AR_ENTRY_ADD, /* area_cmd */ 315 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 316 /* area_name_offset */ 317 /* area_name_length temporarily holds this structure length */ 318 sizeof (area_t), /* area_name_length */ 319 IP_ARP_PROTO_TYPE, /* area_proto */ 320 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 321 IP_ADDR_LEN, /* area_proto_addr_length */ 322 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 323 /* area_proto_mask_offset */ 324 0, /* area_flags */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 326 /* area_hw_addr_offset */ 327 /* Zero length hw_addr_length means 'use your idea of the address' */ 328 0 /* area_hw_addr_length */ 329 }; 330 331 /* 332 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 333 * support 334 */ 335 static area_t ip6_area_template = { 336 AR_ENTRY_ADD, /* area_cmd */ 337 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 338 /* area_name_offset */ 339 /* area_name_length temporarily holds this structure length */ 340 sizeof (area_t), /* area_name_length */ 341 IP_ARP_PROTO_TYPE, /* area_proto */ 342 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 343 IPV6_ADDR_LEN, /* area_proto_addr_length */ 344 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 345 /* area_proto_mask_offset */ 346 0, /* area_flags */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 348 /* area_hw_addr_offset */ 349 /* Zero length hw_addr_length means 'use your idea of the address' */ 350 0 /* area_hw_addr_length */ 351 }; 352 353 static ared_t ip_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IP_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IP_ADDR_LEN 360 }; 361 362 static ared_t ip6_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IPV6_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IPV6_ADDR_LEN 369 }; 370 371 /* 372 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 373 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 374 * areq is used). 375 */ 376 static areq_t ip_areq_template = { 377 AR_ENTRY_QUERY, /* cmd */ 378 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 379 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 380 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 381 sizeof (areq_t), /* target addr offset */ 382 IP_ADDR_LEN, /* target addr_length */ 383 0, /* flags */ 384 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 385 IP_ADDR_LEN, /* sender addr length */ 386 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 387 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 388 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 389 /* anything else filled in by the code */ 390 }; 391 392 static arc_t ip_aru_template = { 393 AR_INTERFACE_UP, 394 sizeof (arc_t), /* Name offset */ 395 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 396 }; 397 398 static arc_t ip_ard_template = { 399 AR_INTERFACE_DOWN, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_aron_template = { 405 AR_INTERFACE_ON, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aroff_template = { 411 AR_INTERFACE_OFF, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 417 static arma_t ip_arma_multi_template = { 418 AR_MAPPING_ADD, 419 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 420 /* Name offset */ 421 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 422 IP_ARP_PROTO_TYPE, 423 sizeof (arma_t), /* proto_addr_offset */ 424 IP_ADDR_LEN, /* proto_addr_length */ 425 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 426 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 427 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 428 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 429 IP_MAX_HW_LEN, /* hw_addr_length */ 430 0, /* hw_mapping_start */ 431 }; 432 433 static ipft_t ip_ioctl_ftbl[] = { 434 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 435 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 436 IPFT_F_NO_REPLY }, 437 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 440 { 0 } 441 }; 442 443 /* Simple ICMP IP Header Template */ 444 static ipha_t icmp_ipha = { 445 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 446 }; 447 448 /* Flag descriptors for ip_ipif_report */ 449 static nv_t ipif_nv_tbl[] = { 450 { IPIF_UP, "UP" }, 451 { IPIF_BROADCAST, "BROADCAST" }, 452 { ILLF_DEBUG, "DEBUG" }, 453 { PHYI_LOOPBACK, "LOOPBACK" }, 454 { IPIF_POINTOPOINT, "POINTOPOINT" }, 455 { ILLF_NOTRAILERS, "NOTRAILERS" }, 456 { PHYI_RUNNING, "RUNNING" }, 457 { ILLF_NOARP, "NOARP" }, 458 { PHYI_PROMISC, "PROMISC" }, 459 { PHYI_ALLMULTI, "ALLMULTI" }, 460 { PHYI_INTELLIGENT, "INTELLIGENT" }, 461 { ILLF_MULTICAST, "MULTICAST" }, 462 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 463 { IPIF_UNNUMBERED, "UNNUMBERED" }, 464 { IPIF_DHCPRUNNING, "DHCP" }, 465 { IPIF_PRIVATE, "PRIVATE" }, 466 { IPIF_NOXMIT, "NOXMIT" }, 467 { IPIF_NOLOCAL, "NOLOCAL" }, 468 { IPIF_DEPRECATED, "DEPRECATED" }, 469 { IPIF_PREFERRED, "PREFERRED" }, 470 { IPIF_TEMPORARY, "TEMPORARY" }, 471 { IPIF_ADDRCONF, "ADDRCONF" }, 472 { PHYI_VIRTUAL, "VIRTUAL" }, 473 { ILLF_ROUTER, "ROUTER" }, 474 { ILLF_NONUD, "NONUD" }, 475 { IPIF_ANYCAST, "ANYCAST" }, 476 { ILLF_NORTEXCH, "NORTEXCH" }, 477 { ILLF_IPV4, "IPV4" }, 478 { ILLF_IPV6, "IPV6" }, 479 { IPIF_NOFAILOVER, "NOFAILOVER" }, 480 { PHYI_FAILED, "FAILED" }, 481 { PHYI_STANDBY, "STANDBY" }, 482 { PHYI_INACTIVE, "INACTIVE" }, 483 { PHYI_OFFLINE, "OFFLINE" }, 484 }; 485 486 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 487 488 static ip_m_t ip_m_tbl[] = { 489 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 490 ip_ether_v6intfid }, 491 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 492 ip_nodef_v6intfid }, 493 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 494 ip_nodef_v6intfid }, 495 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_nodef_v6intfid }, 497 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 500 ip_ib_v6intfid }, 501 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 502 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid } 504 }; 505 506 static ill_t ill_null; /* Empty ILL for init. */ 507 char ipif_loopback_name[] = "lo0"; 508 static char *ipv4_forward_suffix = ":ip_forwarding"; 509 static char *ipv6_forward_suffix = ":ip6_forwarding"; 510 static sin6_t sin6_null; /* Zero address for quick clears */ 511 static sin_t sin_null; /* Zero address for quick clears */ 512 513 /* When set search for unused ipif_seqid */ 514 static ipif_t ipif_zero; 515 516 /* 517 * ppa arena is created after these many 518 * interfaces have been plumbed. 519 */ 520 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 521 522 /* 523 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 524 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 525 * set through platform specific code (Niagara/Ontario). 526 */ 527 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 528 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 529 530 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 531 532 static uint_t 533 ipif_rand(ip_stack_t *ipst) 534 { 535 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 536 12345; 537 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 538 } 539 540 /* 541 * Allocate per-interface mibs. 542 * Returns true if ok. False otherwise. 543 * ipsq may not yet be allocated (loopback case ). 544 */ 545 static boolean_t 546 ill_allocate_mibs(ill_t *ill) 547 { 548 /* Already allocated? */ 549 if (ill->ill_ip_mib != NULL) { 550 if (ill->ill_isv6) 551 ASSERT(ill->ill_icmp6_mib != NULL); 552 return (B_TRUE); 553 } 554 555 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 556 KM_NOSLEEP); 557 if (ill->ill_ip_mib == NULL) { 558 return (B_FALSE); 559 } 560 561 /* Setup static information */ 562 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 563 sizeof (mib2_ipIfStatsEntry_t)); 564 if (ill->ill_isv6) { 565 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 566 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 567 sizeof (mib2_ipv6AddrEntry_t)); 568 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 569 sizeof (mib2_ipv6RouteEntry_t)); 570 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 571 sizeof (mib2_ipv6NetToMediaEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 573 sizeof (ipv6_member_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 575 sizeof (ipv6_grpsrc_t)); 576 } else { 577 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 578 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 579 sizeof (mib2_ipAddrEntry_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 581 sizeof (mib2_ipRouteEntry_t)); 582 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 583 sizeof (mib2_ipNetToMediaEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 585 sizeof (ip_member_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 587 sizeof (ip_grpsrc_t)); 588 589 /* 590 * For a v4 ill, we are done at this point, because per ill 591 * icmp mibs are only used for v6. 592 */ 593 return (B_TRUE); 594 } 595 596 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_icmp6_mib == NULL) { 599 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 600 ill->ill_ip_mib = NULL; 601 return (B_FALSE); 602 } 603 /* static icmp info */ 604 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 605 sizeof (mib2_ipv6IfIcmpEntry_t); 606 /* 607 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 608 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 609 * -> ill_phyint_reinit 610 */ 611 return (B_TRUE); 612 } 613 614 /* 615 * Common code for preparation of ARP commands. Two points to remember: 616 * 1) The ill_name is tacked on at the end of the allocated space so 617 * the templates name_offset field must contain the total space 618 * to allocate less the name length. 619 * 620 * 2) The templates name_length field should contain the *template* 621 * length. We use it as a parameter to bcopy() and then write 622 * the real ill_name_length into the name_length field of the copy. 623 * (Always called as writer.) 624 */ 625 mblk_t * 626 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 627 { 628 arc_t *arc = (arc_t *)template; 629 char *cp; 630 int len; 631 mblk_t *mp; 632 uint_t name_length = ill->ill_name_length; 633 uint_t template_len = arc->arc_name_length; 634 635 len = arc->arc_name_offset + name_length; 636 mp = allocb(len, BPRI_HI); 637 if (mp == NULL) 638 return (NULL); 639 cp = (char *)mp->b_rptr; 640 mp->b_wptr = (uchar_t *)&cp[len]; 641 if (template_len) 642 bcopy(template, cp, template_len); 643 if (len > template_len) 644 bzero(&cp[template_len], len - template_len); 645 mp->b_datap->db_type = M_PROTO; 646 647 arc = (arc_t *)cp; 648 arc->arc_name_length = name_length; 649 cp = (char *)arc + arc->arc_name_offset; 650 bcopy(ill->ill_name, cp, name_length); 651 652 if (addr) { 653 area_t *area = (area_t *)mp->b_rptr; 654 655 cp = (char *)area + area->area_proto_addr_offset; 656 bcopy(addr, cp, area->area_proto_addr_length); 657 if (area->area_cmd == AR_ENTRY_ADD) { 658 cp = (char *)area; 659 len = area->area_proto_addr_length; 660 if (area->area_proto_mask_offset) 661 cp += area->area_proto_mask_offset; 662 else 663 cp += area->area_proto_addr_offset + len; 664 while (len-- > 0) 665 *cp++ = (char)~0; 666 } 667 } 668 return (mp); 669 } 670 671 mblk_t * 672 ipif_area_alloc(ipif_t *ipif) 673 { 674 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 675 (char *)&ipif->ipif_lcl_addr)); 676 } 677 678 mblk_t * 679 ipif_ared_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 687 { 688 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 689 (char *)&addr)); 690 } 691 692 /* 693 * Completely vaporize a lower level tap and all associated interfaces. 694 * ill_delete is called only out of ip_close when the device control 695 * stream is being closed. 696 */ 697 void 698 ill_delete(ill_t *ill) 699 { 700 ipif_t *ipif; 701 ill_t *prev_ill; 702 ip_stack_t *ipst = ill->ill_ipst; 703 704 /* 705 * ill_delete may be forcibly entering the ipsq. The previous 706 * ioctl may not have completed and may need to be aborted. 707 * ipsq_flush takes care of it. If we don't need to enter the 708 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 709 * ill_delete_tail is sufficient. 710 */ 711 ipsq_flush(ill); 712 713 /* 714 * Nuke all interfaces. ipif_free will take down the interface, 715 * remove it from the list, and free the data structure. 716 * Walk down the ipif list and remove the logical interfaces 717 * first before removing the main ipif. We can't unplumb 718 * zeroth interface first in the case of IPv6 as reset_conn_ill 719 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 720 * POINTOPOINT. 721 * 722 * If ill_ipif was not properly initialized (i.e low on memory), 723 * then no interfaces to clean up. In this case just clean up the 724 * ill. 725 */ 726 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 727 ipif_free(ipif); 728 729 /* 730 * Used only by ill_arp_on and ill_arp_off, which are writers. 731 * So nobody can be using this mp now. Free the mp allocated for 732 * honoring ILLF_NOARP 733 */ 734 freemsg(ill->ill_arp_on_mp); 735 ill->ill_arp_on_mp = NULL; 736 737 /* Clean up msgs on pending upcalls for mrouted */ 738 reset_mrt_ill(ill); 739 740 /* 741 * ipif_free -> reset_conn_ipif will remove all multicast 742 * references for IPv4. For IPv6, we need to do it here as 743 * it points only at ills. 744 */ 745 reset_conn_ill(ill); 746 747 /* 748 * ill_down will arrange to blow off any IRE's dependent on this 749 * ILL, and shut down fragmentation reassembly. 750 */ 751 ill_down(ill); 752 753 /* Let SCTP know, so that it can remove this from its list. */ 754 sctp_update_ill(ill, SCTP_ILL_REMOVE); 755 756 /* 757 * If an address on this ILL is being used as a source address then 758 * clear out the pointers in other ILLs that point to this ILL. 759 */ 760 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 761 if (ill->ill_usesrc_grp_next != NULL) { 762 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 763 ill_disband_usesrc_group(ill); 764 } else { /* consumer of the usesrc ILL */ 765 prev_ill = ill_prev_usesrc(ill); 766 prev_ill->ill_usesrc_grp_next = 767 ill->ill_usesrc_grp_next; 768 } 769 } 770 rw_exit(&ipst->ips_ill_g_usesrc_lock); 771 } 772 773 static void 774 ipif_non_duplicate(ipif_t *ipif) 775 { 776 ill_t *ill = ipif->ipif_ill; 777 mutex_enter(&ill->ill_lock); 778 if (ipif->ipif_flags & IPIF_DUPLICATE) { 779 ipif->ipif_flags &= ~IPIF_DUPLICATE; 780 ASSERT(ill->ill_ipif_dup_count > 0); 781 ill->ill_ipif_dup_count--; 782 } 783 mutex_exit(&ill->ill_lock); 784 } 785 786 /* 787 * ill_delete_tail is called from ip_modclose after all references 788 * to the closing ill are gone. The wait is done in ip_modclose 789 */ 790 void 791 ill_delete_tail(ill_t *ill) 792 { 793 mblk_t **mpp; 794 ipif_t *ipif; 795 ip_stack_t *ipst = ill->ill_ipst; 796 797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 798 ipif_non_duplicate(ipif); 799 ipif_down_tail(ipif); 800 } 801 802 ASSERT(ill->ill_ipif_dup_count == 0 && 803 ill->ill_arp_down_mp == NULL && 804 ill->ill_arp_del_mapping_mp == NULL); 805 806 /* 807 * If polling capability is enabled (which signifies direct 808 * upcall into IP and driver has ill saved as a handle), 809 * we need to make sure that unbind has completed before we 810 * let the ill disappear and driver no longer has any reference 811 * to this ill. 812 */ 813 mutex_enter(&ill->ill_lock); 814 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 815 cv_wait(&ill->ill_cv, &ill->ill_lock); 816 mutex_exit(&ill->ill_lock); 817 818 /* 819 * Clean up polling and soft ring capabilities 820 */ 821 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 822 ill_capability_dls_disable(ill); 823 824 if (ill->ill_net_type != IRE_LOOPBACK) 825 qprocsoff(ill->ill_rq); 826 827 /* 828 * We do an ipsq_flush once again now. New messages could have 829 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 830 * could also have landed up if an ioctl thread had looked up 831 * the ill before we set the ILL_CONDEMNED flag, but not yet 832 * enqueued the ioctl when we did the ipsq_flush last time. 833 */ 834 ipsq_flush(ill); 835 836 /* 837 * Free capabilities. 838 */ 839 if (ill->ill_ipsec_capab_ah != NULL) { 840 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 841 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 842 ill->ill_ipsec_capab_ah = NULL; 843 } 844 845 if (ill->ill_ipsec_capab_esp != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 848 ill->ill_ipsec_capab_esp = NULL; 849 } 850 851 if (ill->ill_mdt_capab != NULL) { 852 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 853 ill->ill_mdt_capab = NULL; 854 } 855 856 if (ill->ill_hcksum_capab != NULL) { 857 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 858 ill->ill_hcksum_capab = NULL; 859 } 860 861 if (ill->ill_zerocopy_capab != NULL) { 862 kmem_free(ill->ill_zerocopy_capab, 863 sizeof (ill_zerocopy_capab_t)); 864 ill->ill_zerocopy_capab = NULL; 865 } 866 867 if (ill->ill_lso_capab != NULL) { 868 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 869 ill->ill_lso_capab = NULL; 870 } 871 872 if (ill->ill_dls_capab != NULL) { 873 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 874 ill->ill_dls_capab->ill_unbind_conn = NULL; 875 kmem_free(ill->ill_dls_capab, 876 sizeof (ill_dls_capab_t) + 877 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 878 ill->ill_dls_capab = NULL; 879 } 880 881 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 882 883 while (ill->ill_ipif != NULL) 884 ipif_free_tail(ill->ill_ipif); 885 886 /* 887 * We have removed all references to ilm from conn and the ones joined 888 * within the kernel. 889 * 890 * We don't walk conns, mrts and ires because 891 * 892 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 893 * 2) ill_down ->ill_downi walks all the ires and cleans up 894 * ill references. 895 */ 896 ASSERT(ilm_walk_ill(ill) == 0); 897 /* 898 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 899 * could free the phyint. No more reference to the phyint after this 900 * point. 901 */ 902 (void) ill_glist_delete(ill); 903 904 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 905 if (ill->ill_ndd_name != NULL) 906 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 907 rw_exit(&ipst->ips_ip_g_nd_lock); 908 909 910 if (ill->ill_frag_ptr != NULL) { 911 uint_t count; 912 913 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 914 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 915 } 916 mi_free(ill->ill_frag_ptr); 917 ill->ill_frag_ptr = NULL; 918 ill->ill_frag_hash_tbl = NULL; 919 } 920 921 freemsg(ill->ill_nd_lla_mp); 922 /* Free all retained control messages. */ 923 mpp = &ill->ill_first_mp_to_free; 924 do { 925 while (mpp[0]) { 926 mblk_t *mp; 927 mblk_t *mp1; 928 929 mp = mpp[0]; 930 mpp[0] = mp->b_next; 931 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 932 mp1->b_next = NULL; 933 mp1->b_prev = NULL; 934 } 935 freemsg(mp); 936 } 937 } while (mpp++ != &ill->ill_last_mp_to_free); 938 939 ill_free_mib(ill); 940 /* Drop refcnt here */ 941 netstack_rele(ill->ill_ipst->ips_netstack); 942 ill->ill_ipst = NULL; 943 944 ILL_TRACE_CLEANUP(ill); 945 } 946 947 static void 948 ill_free_mib(ill_t *ill) 949 { 950 ip_stack_t *ipst = ill->ill_ipst; 951 952 /* 953 * MIB statistics must not be lost, so when an interface 954 * goes away the counter values will be added to the global 955 * MIBs. 956 */ 957 if (ill->ill_ip_mib != NULL) { 958 if (ill->ill_isv6) { 959 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 960 ill->ill_ip_mib); 961 } else { 962 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 963 ill->ill_ip_mib); 964 } 965 966 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 967 ill->ill_ip_mib = NULL; 968 } 969 if (ill->ill_icmp6_mib != NULL) { 970 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 971 ill->ill_icmp6_mib); 972 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 973 ill->ill_icmp6_mib = NULL; 974 } 975 } 976 977 /* 978 * Concatenate together a physical address and a sap. 979 * 980 * Sap_lengths are interpreted as follows: 981 * sap_length == 0 ==> no sap 982 * sap_length > 0 ==> sap is at the head of the dlpi address 983 * sap_length < 0 ==> sap is at the tail of the dlpi address 984 */ 985 static void 986 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 987 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 988 { 989 uint16_t sap_addr = (uint16_t)sap_src; 990 991 if (sap_length == 0) { 992 if (phys_src == NULL) 993 bzero(dst, phys_length); 994 else 995 bcopy(phys_src, dst, phys_length); 996 } else if (sap_length < 0) { 997 if (phys_src == NULL) 998 bzero(dst, phys_length); 999 else 1000 bcopy(phys_src, dst, phys_length); 1001 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1002 } else { 1003 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1004 if (phys_src == NULL) 1005 bzero((char *)dst + sap_length, phys_length); 1006 else 1007 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1008 } 1009 } 1010 1011 /* 1012 * Generate a dl_unitdata_req mblk for the device and address given. 1013 * addr_length is the length of the physical portion of the address. 1014 * If addr is NULL include an all zero address of the specified length. 1015 * TRUE? In any case, addr_length is taken to be the entire length of the 1016 * dlpi address, including the absolute value of sap_length. 1017 */ 1018 mblk_t * 1019 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1020 t_scalar_t sap_length) 1021 { 1022 dl_unitdata_req_t *dlur; 1023 mblk_t *mp; 1024 t_scalar_t abs_sap_length; /* absolute value */ 1025 1026 abs_sap_length = ABS(sap_length); 1027 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1028 DL_UNITDATA_REQ); 1029 if (mp == NULL) 1030 return (NULL); 1031 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1032 /* HACK: accomodate incompatible DLPI drivers */ 1033 if (addr_length == 8) 1034 addr_length = 6; 1035 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1036 dlur->dl_dest_addr_offset = sizeof (*dlur); 1037 dlur->dl_priority.dl_min = 0; 1038 dlur->dl_priority.dl_max = 0; 1039 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1040 (uchar_t *)&dlur[1]); 1041 return (mp); 1042 } 1043 1044 /* 1045 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1046 * Return an error if we already have 1 or more ioctls in progress. 1047 * This is used only for non-exclusive ioctls. Currently this is used 1048 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1049 * and thus need to use ipsq_pending_mp_add. 1050 */ 1051 boolean_t 1052 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1053 { 1054 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1055 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1056 /* 1057 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1058 */ 1059 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1060 (add_mp->b_datap->db_type == M_IOCTL)); 1061 1062 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1063 /* 1064 * Return error if the conn has started closing. The conn 1065 * could have finished cleaning up the pending mp list, 1066 * If so we should not add another mp to the list negating 1067 * the cleanup. 1068 */ 1069 if (connp->conn_state_flags & CONN_CLOSING) 1070 return (B_FALSE); 1071 /* 1072 * Add the pending mp to the head of the list, chained by b_next. 1073 * Note down the conn on which the ioctl request came, in b_prev. 1074 * This will be used to later get the conn, when we get a response 1075 * on the ill queue, from some other module (typically arp) 1076 */ 1077 add_mp->b_next = (void *)ill->ill_pending_mp; 1078 add_mp->b_queue = CONNP_TO_WQ(connp); 1079 ill->ill_pending_mp = add_mp; 1080 if (connp != NULL) 1081 connp->conn_oper_pending_ill = ill; 1082 return (B_TRUE); 1083 } 1084 1085 /* 1086 * Retrieve the ill_pending_mp and return it. We have to walk the list 1087 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1088 */ 1089 mblk_t * 1090 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1091 { 1092 mblk_t *prev = NULL; 1093 mblk_t *curr = NULL; 1094 uint_t id; 1095 conn_t *connp; 1096 1097 /* 1098 * When the conn closes, conn_ioctl_cleanup needs to clean 1099 * up the pending mp, but it does not know the ioc_id and 1100 * passes in a zero for it. 1101 */ 1102 mutex_enter(&ill->ill_lock); 1103 if (ioc_id != 0) 1104 *connpp = NULL; 1105 1106 /* Search the list for the appropriate ioctl based on ioc_id */ 1107 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1108 prev = curr, curr = curr->b_next) { 1109 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1110 connp = Q_TO_CONN(curr->b_queue); 1111 /* Match based on the ioc_id or based on the conn */ 1112 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1113 break; 1114 } 1115 1116 if (curr != NULL) { 1117 /* Unlink the mblk from the pending mp list */ 1118 if (prev != NULL) { 1119 prev->b_next = curr->b_next; 1120 } else { 1121 ASSERT(ill->ill_pending_mp == curr); 1122 ill->ill_pending_mp = curr->b_next; 1123 } 1124 1125 /* 1126 * conn refcnt must have been bumped up at the start of 1127 * the ioctl. So we can safely access the conn. 1128 */ 1129 ASSERT(CONN_Q(curr->b_queue)); 1130 *connpp = Q_TO_CONN(curr->b_queue); 1131 curr->b_next = NULL; 1132 curr->b_queue = NULL; 1133 } 1134 1135 mutex_exit(&ill->ill_lock); 1136 1137 return (curr); 1138 } 1139 1140 /* 1141 * Add the pending mp to the list. There can be only 1 pending mp 1142 * in the list. Any exclusive ioctl that needs to wait for a response 1143 * from another module or driver needs to use this function to set 1144 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1145 * the other module/driver. This is also used while waiting for the 1146 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1147 */ 1148 boolean_t 1149 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1150 int waitfor) 1151 { 1152 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1153 1154 ASSERT(IAM_WRITER_IPIF(ipif)); 1155 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1156 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1157 ASSERT(ipsq->ipsq_pending_mp == NULL); 1158 /* 1159 * The caller may be using a different ipif than the one passed into 1160 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1161 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1162 * that `ipsq_current_ipif == ipif'. 1163 */ 1164 ASSERT(ipsq->ipsq_current_ipif != NULL); 1165 1166 /* 1167 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1168 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1169 */ 1170 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1171 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1172 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1173 1174 if (connp != NULL) { 1175 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1176 /* 1177 * Return error if the conn has started closing. The conn 1178 * could have finished cleaning up the pending mp list, 1179 * If so we should not add another mp to the list negating 1180 * the cleanup. 1181 */ 1182 if (connp->conn_state_flags & CONN_CLOSING) 1183 return (B_FALSE); 1184 } 1185 mutex_enter(&ipsq->ipsq_lock); 1186 ipsq->ipsq_pending_ipif = ipif; 1187 /* 1188 * Note down the queue in b_queue. This will be returned by 1189 * ipsq_pending_mp_get. Caller will then use these values to restart 1190 * the processing 1191 */ 1192 add_mp->b_next = NULL; 1193 add_mp->b_queue = q; 1194 ipsq->ipsq_pending_mp = add_mp; 1195 ipsq->ipsq_waitfor = waitfor; 1196 1197 if (connp != NULL) 1198 connp->conn_oper_pending_ill = ipif->ipif_ill; 1199 mutex_exit(&ipsq->ipsq_lock); 1200 return (B_TRUE); 1201 } 1202 1203 /* 1204 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1205 * queued in the list. 1206 */ 1207 mblk_t * 1208 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1209 { 1210 mblk_t *curr = NULL; 1211 1212 mutex_enter(&ipsq->ipsq_lock); 1213 *connpp = NULL; 1214 if (ipsq->ipsq_pending_mp == NULL) { 1215 mutex_exit(&ipsq->ipsq_lock); 1216 return (NULL); 1217 } 1218 1219 /* There can be only 1 such excl message */ 1220 curr = ipsq->ipsq_pending_mp; 1221 ASSERT(curr != NULL && curr->b_next == NULL); 1222 ipsq->ipsq_pending_ipif = NULL; 1223 ipsq->ipsq_pending_mp = NULL; 1224 ipsq->ipsq_waitfor = 0; 1225 mutex_exit(&ipsq->ipsq_lock); 1226 1227 if (CONN_Q(curr->b_queue)) { 1228 /* 1229 * This mp did a refhold on the conn, at the start of the ioctl. 1230 * So we can safely return a pointer to the conn to the caller. 1231 */ 1232 *connpp = Q_TO_CONN(curr->b_queue); 1233 } else { 1234 *connpp = NULL; 1235 } 1236 curr->b_next = NULL; 1237 curr->b_prev = NULL; 1238 return (curr); 1239 } 1240 1241 /* 1242 * Cleanup the ioctl mp queued in ipsq_pending_mp 1243 * - Called in the ill_delete path 1244 * - Called in the M_ERROR or M_HANGUP path on the ill. 1245 * - Called in the conn close path. 1246 */ 1247 boolean_t 1248 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1249 { 1250 mblk_t *mp; 1251 ipsq_t *ipsq; 1252 queue_t *q; 1253 ipif_t *ipif; 1254 1255 ASSERT(IAM_WRITER_ILL(ill)); 1256 ipsq = ill->ill_phyint->phyint_ipsq; 1257 mutex_enter(&ipsq->ipsq_lock); 1258 /* 1259 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1260 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1261 * even if it is meant for another ill, since we have to enqueue 1262 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1263 * If connp is non-null we are called from the conn close path. 1264 */ 1265 mp = ipsq->ipsq_pending_mp; 1266 if (mp == NULL || (connp != NULL && 1267 mp->b_queue != CONNP_TO_WQ(connp))) { 1268 mutex_exit(&ipsq->ipsq_lock); 1269 return (B_FALSE); 1270 } 1271 /* Now remove from the ipsq_pending_mp */ 1272 ipsq->ipsq_pending_mp = NULL; 1273 q = mp->b_queue; 1274 mp->b_next = NULL; 1275 mp->b_prev = NULL; 1276 mp->b_queue = NULL; 1277 1278 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1279 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1280 if (ill->ill_move_in_progress) { 1281 ILL_CLEAR_MOVE(ill); 1282 } else if (ill->ill_up_ipifs) { 1283 ill_group_cleanup(ill); 1284 } 1285 1286 ipif = ipsq->ipsq_pending_ipif; 1287 ipsq->ipsq_pending_ipif = NULL; 1288 ipsq->ipsq_waitfor = 0; 1289 ipsq->ipsq_current_ipif = NULL; 1290 ipsq->ipsq_current_ioctl = 0; 1291 mutex_exit(&ipsq->ipsq_lock); 1292 1293 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1294 if (connp == NULL) { 1295 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1296 } else { 1297 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1298 mutex_enter(&ipif->ipif_ill->ill_lock); 1299 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1300 mutex_exit(&ipif->ipif_ill->ill_lock); 1301 } 1302 } else { 1303 /* 1304 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1305 * be just inet_freemsg. we have to restart it 1306 * otherwise the thread will be stuck. 1307 */ 1308 inet_freemsg(mp); 1309 } 1310 return (B_TRUE); 1311 } 1312 1313 /* 1314 * The ill is closing. Cleanup all the pending mps. Called exclusively 1315 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1316 * knows this ill, and hence nobody can add an mp to this list 1317 */ 1318 static void 1319 ill_pending_mp_cleanup(ill_t *ill) 1320 { 1321 mblk_t *mp; 1322 queue_t *q; 1323 1324 ASSERT(IAM_WRITER_ILL(ill)); 1325 1326 mutex_enter(&ill->ill_lock); 1327 /* 1328 * Every mp on the pending mp list originating from an ioctl 1329 * added 1 to the conn refcnt, at the start of the ioctl. 1330 * So bump it down now. See comments in ip_wput_nondata() 1331 */ 1332 while (ill->ill_pending_mp != NULL) { 1333 mp = ill->ill_pending_mp; 1334 ill->ill_pending_mp = mp->b_next; 1335 mutex_exit(&ill->ill_lock); 1336 1337 q = mp->b_queue; 1338 ASSERT(CONN_Q(q)); 1339 mp->b_next = NULL; 1340 mp->b_prev = NULL; 1341 mp->b_queue = NULL; 1342 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1343 mutex_enter(&ill->ill_lock); 1344 } 1345 ill->ill_pending_ipif = NULL; 1346 1347 mutex_exit(&ill->ill_lock); 1348 } 1349 1350 /* 1351 * Called in the conn close path and ill delete path 1352 */ 1353 static void 1354 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1355 { 1356 ipsq_t *ipsq; 1357 mblk_t *prev; 1358 mblk_t *curr; 1359 mblk_t *next; 1360 queue_t *q; 1361 mblk_t *tmp_list = NULL; 1362 1363 ASSERT(IAM_WRITER_ILL(ill)); 1364 if (connp != NULL) 1365 q = CONNP_TO_WQ(connp); 1366 else 1367 q = ill->ill_wq; 1368 1369 ipsq = ill->ill_phyint->phyint_ipsq; 1370 /* 1371 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1372 * In the case of ioctl from a conn, there can be only 1 mp 1373 * queued on the ipsq. If an ill is being unplumbed, only messages 1374 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1375 * ioctls meant for this ill form conn's are not flushed. They will 1376 * be processed during ipsq_exit and will not find the ill and will 1377 * return error. 1378 */ 1379 mutex_enter(&ipsq->ipsq_lock); 1380 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1381 curr = next) { 1382 next = curr->b_next; 1383 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1384 /* Unlink the mblk from the pending mp list */ 1385 if (prev != NULL) { 1386 prev->b_next = curr->b_next; 1387 } else { 1388 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1389 ipsq->ipsq_xopq_mphead = curr->b_next; 1390 } 1391 if (ipsq->ipsq_xopq_mptail == curr) 1392 ipsq->ipsq_xopq_mptail = prev; 1393 /* 1394 * Create a temporary list and release the ipsq lock 1395 * New elements are added to the head of the tmp_list 1396 */ 1397 curr->b_next = tmp_list; 1398 tmp_list = curr; 1399 } else { 1400 prev = curr; 1401 } 1402 } 1403 mutex_exit(&ipsq->ipsq_lock); 1404 1405 while (tmp_list != NULL) { 1406 curr = tmp_list; 1407 tmp_list = curr->b_next; 1408 curr->b_next = NULL; 1409 curr->b_prev = NULL; 1410 curr->b_queue = NULL; 1411 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1412 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1413 CONN_CLOSE : NO_COPYOUT, NULL); 1414 } else { 1415 /* 1416 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1417 * this can't be just inet_freemsg. we have to 1418 * restart it otherwise the thread will be stuck. 1419 */ 1420 inet_freemsg(curr); 1421 } 1422 } 1423 } 1424 1425 /* 1426 * This conn has started closing. Cleanup any pending ioctl from this conn. 1427 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1428 */ 1429 void 1430 conn_ioctl_cleanup(conn_t *connp) 1431 { 1432 mblk_t *curr; 1433 ipsq_t *ipsq; 1434 ill_t *ill; 1435 boolean_t refheld; 1436 1437 /* 1438 * Is any exclusive ioctl pending ? If so clean it up. If the 1439 * ioctl has not yet started, the mp is pending in the list headed by 1440 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1441 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1442 * is currently executing now the mp is not queued anywhere but 1443 * conn_oper_pending_ill is null. The conn close will wait 1444 * till the conn_ref drops to zero. 1445 */ 1446 mutex_enter(&connp->conn_lock); 1447 ill = connp->conn_oper_pending_ill; 1448 if (ill == NULL) { 1449 mutex_exit(&connp->conn_lock); 1450 return; 1451 } 1452 1453 curr = ill_pending_mp_get(ill, &connp, 0); 1454 if (curr != NULL) { 1455 mutex_exit(&connp->conn_lock); 1456 CONN_DEC_REF(connp); 1457 inet_freemsg(curr); 1458 return; 1459 } 1460 /* 1461 * We may not be able to refhold the ill if the ill/ipif 1462 * is changing. But we need to make sure that the ill will 1463 * not vanish. So we just bump up the ill_waiter count. 1464 */ 1465 refheld = ill_waiter_inc(ill); 1466 mutex_exit(&connp->conn_lock); 1467 if (refheld) { 1468 if (ipsq_enter(ill, B_TRUE)) { 1469 ill_waiter_dcr(ill); 1470 /* 1471 * Check whether this ioctl has started and is 1472 * pending now in ipsq_pending_mp. If it is not 1473 * found there then check whether this ioctl has 1474 * not even started and is in the ipsq_xopq list. 1475 */ 1476 if (!ipsq_pending_mp_cleanup(ill, connp)) 1477 ipsq_xopq_mp_cleanup(ill, connp); 1478 ipsq = ill->ill_phyint->phyint_ipsq; 1479 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1480 return; 1481 } 1482 } 1483 1484 /* 1485 * The ill is also closing and we could not bump up the 1486 * ill_waiter_count or we could not enter the ipsq. Leave 1487 * the cleanup to ill_delete 1488 */ 1489 mutex_enter(&connp->conn_lock); 1490 while (connp->conn_oper_pending_ill != NULL) 1491 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1492 mutex_exit(&connp->conn_lock); 1493 if (refheld) 1494 ill_waiter_dcr(ill); 1495 } 1496 1497 /* 1498 * ipcl_walk function for cleaning up conn_*_ill fields. 1499 */ 1500 static void 1501 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1502 { 1503 ill_t *ill = (ill_t *)arg; 1504 ire_t *ire; 1505 1506 mutex_enter(&connp->conn_lock); 1507 if (connp->conn_multicast_ill == ill) { 1508 /* Revert to late binding */ 1509 connp->conn_multicast_ill = NULL; 1510 connp->conn_orig_multicast_ifindex = 0; 1511 } 1512 if (connp->conn_incoming_ill == ill) 1513 connp->conn_incoming_ill = NULL; 1514 if (connp->conn_outgoing_ill == ill) 1515 connp->conn_outgoing_ill = NULL; 1516 if (connp->conn_outgoing_pill == ill) 1517 connp->conn_outgoing_pill = NULL; 1518 if (connp->conn_nofailover_ill == ill) 1519 connp->conn_nofailover_ill = NULL; 1520 if (connp->conn_xmit_if_ill == ill) 1521 connp->conn_xmit_if_ill = NULL; 1522 if (connp->conn_ire_cache != NULL) { 1523 ire = connp->conn_ire_cache; 1524 /* 1525 * ip_newroute creates IRE_CACHE with ire_stq coming from 1526 * interface X and ipif coming from interface Y, if interface 1527 * X and Y are part of the same IPMPgroup. Thus whenever 1528 * interface X goes down, remove all references to it by 1529 * checking both on ire_ipif and ire_stq. 1530 */ 1531 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1532 (ire->ire_type == IRE_CACHE && 1533 ire->ire_stq == ill->ill_wq)) { 1534 connp->conn_ire_cache = NULL; 1535 mutex_exit(&connp->conn_lock); 1536 ire_refrele_notr(ire); 1537 return; 1538 } 1539 } 1540 mutex_exit(&connp->conn_lock); 1541 1542 } 1543 1544 /* ARGSUSED */ 1545 void 1546 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1547 { 1548 ill_t *ill = q->q_ptr; 1549 ipif_t *ipif; 1550 1551 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1552 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1553 ipif_non_duplicate(ipif); 1554 ipif_down_tail(ipif); 1555 } 1556 freemsg(mp); 1557 ipsq_current_finish(ipsq); 1558 } 1559 1560 /* 1561 * ill_down_start is called when we want to down this ill and bring it up again 1562 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1563 * all interfaces, but don't tear down any plumbing. 1564 */ 1565 boolean_t 1566 ill_down_start(queue_t *q, mblk_t *mp) 1567 { 1568 ill_t *ill = q->q_ptr; 1569 ipif_t *ipif; 1570 1571 ASSERT(IAM_WRITER_ILL(ill)); 1572 1573 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1574 (void) ipif_down(ipif, NULL, NULL); 1575 1576 ill_down(ill); 1577 1578 (void) ipsq_pending_mp_cleanup(ill, NULL); 1579 1580 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1581 1582 /* 1583 * Atomically test and add the pending mp if references are active. 1584 */ 1585 mutex_enter(&ill->ill_lock); 1586 if (!ill_is_quiescent(ill)) { 1587 /* call cannot fail since `conn_t *' argument is NULL */ 1588 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1589 mp, ILL_DOWN); 1590 mutex_exit(&ill->ill_lock); 1591 return (B_FALSE); 1592 } 1593 mutex_exit(&ill->ill_lock); 1594 return (B_TRUE); 1595 } 1596 1597 static void 1598 ill_down(ill_t *ill) 1599 { 1600 ip_stack_t *ipst = ill->ill_ipst; 1601 1602 /* Blow off any IREs dependent on this ILL. */ 1603 ire_walk(ill_downi, (char *)ill, ipst); 1604 1605 /* Remove any conn_*_ill depending on this ill */ 1606 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1607 1608 if (ill->ill_group != NULL) { 1609 illgrp_delete(ill); 1610 } 1611 } 1612 1613 /* 1614 * ire_walk routine used to delete every IRE that depends on queues 1615 * associated with 'ill'. (Always called as writer.) 1616 */ 1617 static void 1618 ill_downi(ire_t *ire, char *ill_arg) 1619 { 1620 ill_t *ill = (ill_t *)ill_arg; 1621 1622 /* 1623 * ip_newroute creates IRE_CACHE with ire_stq coming from 1624 * interface X and ipif coming from interface Y, if interface 1625 * X and Y are part of the same IPMP group. Thus whenever interface 1626 * X goes down, remove all references to it by checking both 1627 * on ire_ipif and ire_stq. 1628 */ 1629 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1630 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1631 ire_delete(ire); 1632 } 1633 } 1634 1635 /* 1636 * Remove ire/nce from the fastpath list. 1637 */ 1638 void 1639 ill_fastpath_nack(ill_t *ill) 1640 { 1641 nce_fastpath_list_dispatch(ill, NULL, NULL); 1642 } 1643 1644 /* Consume an M_IOCACK of the fastpath probe. */ 1645 void 1646 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1647 { 1648 mblk_t *mp1 = mp; 1649 1650 /* 1651 * If this was the first attempt turn on the fastpath probing. 1652 */ 1653 mutex_enter(&ill->ill_lock); 1654 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1655 ill->ill_dlpi_fastpath_state = IDS_OK; 1656 mutex_exit(&ill->ill_lock); 1657 1658 /* Free the M_IOCACK mblk, hold on to the data */ 1659 mp = mp->b_cont; 1660 freeb(mp1); 1661 if (mp == NULL) 1662 return; 1663 if (mp->b_cont != NULL) { 1664 /* 1665 * Update all IRE's or NCE's that are waiting for 1666 * fastpath update. 1667 */ 1668 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1669 mp1 = mp->b_cont; 1670 freeb(mp); 1671 mp = mp1; 1672 } else { 1673 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1674 } 1675 1676 freeb(mp); 1677 } 1678 1679 /* 1680 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1681 * The data portion of the request is a dl_unitdata_req_t template for 1682 * what we would send downstream in the absence of a fastpath confirmation. 1683 */ 1684 int 1685 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1686 { 1687 struct iocblk *ioc; 1688 mblk_t *mp; 1689 1690 if (dlur_mp == NULL) 1691 return (EINVAL); 1692 1693 mutex_enter(&ill->ill_lock); 1694 switch (ill->ill_dlpi_fastpath_state) { 1695 case IDS_FAILED: 1696 /* 1697 * Driver NAKed the first fastpath ioctl - assume it doesn't 1698 * support it. 1699 */ 1700 mutex_exit(&ill->ill_lock); 1701 return (ENOTSUP); 1702 case IDS_UNKNOWN: 1703 /* This is the first probe */ 1704 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1705 break; 1706 default: 1707 break; 1708 } 1709 mutex_exit(&ill->ill_lock); 1710 1711 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1712 return (EAGAIN); 1713 1714 mp->b_cont = copyb(dlur_mp); 1715 if (mp->b_cont == NULL) { 1716 freeb(mp); 1717 return (EAGAIN); 1718 } 1719 1720 ioc = (struct iocblk *)mp->b_rptr; 1721 ioc->ioc_count = msgdsize(mp->b_cont); 1722 1723 putnext(ill->ill_wq, mp); 1724 return (0); 1725 } 1726 1727 void 1728 ill_capability_probe(ill_t *ill) 1729 { 1730 /* 1731 * Do so only if negotiation is enabled, capabilities are unknown, 1732 * and a capability negotiation is not already in progress. 1733 */ 1734 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1735 ill->ill_dlpi_capab_state != IDS_RENEG) 1736 return; 1737 1738 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1739 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1740 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1741 } 1742 1743 void 1744 ill_capability_reset(ill_t *ill) 1745 { 1746 mblk_t *sc_mp = NULL; 1747 mblk_t *tmp; 1748 1749 /* 1750 * Note here that we reset the state to UNKNOWN, and later send 1751 * down the DL_CAPABILITY_REQ without first setting the state to 1752 * INPROGRESS. We do this in order to distinguish the 1753 * DL_CAPABILITY_ACK response which may come back in response to 1754 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1755 * also handle the case where the driver doesn't send us back 1756 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1757 * requires the state to be in UNKNOWN anyway. In any case, all 1758 * features are turned off until the state reaches IDS_OK. 1759 */ 1760 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1761 1762 /* 1763 * Disable sub-capabilities and request a list of sub-capability 1764 * messages which will be sent down to the driver. Each handler 1765 * allocates the corresponding dl_capability_sub_t inside an 1766 * mblk, and links it to the existing sc_mp mblk, or return it 1767 * as sc_mp if it's the first sub-capability (the passed in 1768 * sc_mp is NULL). Upon returning from all capability handlers, 1769 * sc_mp will be pulled-up, before passing it downstream. 1770 */ 1771 ill_capability_mdt_reset(ill, &sc_mp); 1772 ill_capability_hcksum_reset(ill, &sc_mp); 1773 ill_capability_zerocopy_reset(ill, &sc_mp); 1774 ill_capability_ipsec_reset(ill, &sc_mp); 1775 ill_capability_dls_reset(ill, &sc_mp); 1776 ill_capability_lso_reset(ill, &sc_mp); 1777 1778 /* Nothing to send down in order to disable the capabilities? */ 1779 if (sc_mp == NULL) 1780 return; 1781 1782 tmp = msgpullup(sc_mp, -1); 1783 freemsg(sc_mp); 1784 if ((sc_mp = tmp) == NULL) { 1785 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1786 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1787 return; 1788 } 1789 1790 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1791 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1792 } 1793 1794 /* 1795 * Request or set new-style hardware capabilities supported by DLS provider. 1796 */ 1797 static void 1798 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1799 { 1800 mblk_t *mp; 1801 dl_capability_req_t *capb; 1802 size_t size = 0; 1803 uint8_t *ptr; 1804 1805 if (reqp != NULL) 1806 size = MBLKL(reqp); 1807 1808 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1809 if (mp == NULL) { 1810 freemsg(reqp); 1811 return; 1812 } 1813 ptr = mp->b_rptr; 1814 1815 capb = (dl_capability_req_t *)ptr; 1816 ptr += sizeof (dl_capability_req_t); 1817 1818 if (reqp != NULL) { 1819 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1820 capb->dl_sub_length = size; 1821 bcopy(reqp->b_rptr, ptr, size); 1822 ptr += size; 1823 mp->b_cont = reqp->b_cont; 1824 freeb(reqp); 1825 } 1826 ASSERT(ptr == mp->b_wptr); 1827 1828 ill_dlpi_send(ill, mp); 1829 } 1830 1831 static void 1832 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1833 { 1834 dl_capab_id_t *id_ic; 1835 uint_t sub_dl_cap = outers->dl_cap; 1836 dl_capability_sub_t *inners; 1837 uint8_t *capend; 1838 1839 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1840 1841 /* 1842 * Note: range checks here are not absolutely sufficient to 1843 * make us robust against malformed messages sent by drivers; 1844 * this is in keeping with the rest of IP's dlpi handling. 1845 * (Remember, it's coming from something else in the kernel 1846 * address space) 1847 */ 1848 1849 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1850 if (capend > mp->b_wptr) { 1851 cmn_err(CE_WARN, "ill_capability_id_ack: " 1852 "malformed sub-capability too long for mblk"); 1853 return; 1854 } 1855 1856 id_ic = (dl_capab_id_t *)(outers + 1); 1857 1858 if (outers->dl_length < sizeof (*id_ic) || 1859 (inners = &id_ic->id_subcap, 1860 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1861 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1862 "encapsulated capab type %d too long for mblk", 1863 inners->dl_cap); 1864 return; 1865 } 1866 1867 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1868 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1869 "isn't as expected; pass-thru module(s) detected, " 1870 "discarding capability\n", inners->dl_cap)); 1871 return; 1872 } 1873 1874 /* Process the encapsulated sub-capability */ 1875 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1876 } 1877 1878 /* 1879 * Process Multidata Transmit capability negotiation ack received from a 1880 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1881 * DL_CAPABILITY_ACK message. 1882 */ 1883 static void 1884 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1885 { 1886 mblk_t *nmp = NULL; 1887 dl_capability_req_t *oc; 1888 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1889 ill_mdt_capab_t **ill_mdt_capab; 1890 uint_t sub_dl_cap = isub->dl_cap; 1891 uint8_t *capend; 1892 1893 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1894 1895 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1896 1897 /* 1898 * Note: range checks here are not absolutely sufficient to 1899 * make us robust against malformed messages sent by drivers; 1900 * this is in keeping with the rest of IP's dlpi handling. 1901 * (Remember, it's coming from something else in the kernel 1902 * address space) 1903 */ 1904 1905 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1906 if (capend > mp->b_wptr) { 1907 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1908 "malformed sub-capability too long for mblk"); 1909 return; 1910 } 1911 1912 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1913 1914 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1915 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1916 "unsupported MDT sub-capability (version %d, expected %d)", 1917 mdt_ic->mdt_version, MDT_VERSION_2); 1918 return; 1919 } 1920 1921 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1922 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1923 "capability isn't as expected; pass-thru module(s) " 1924 "detected, discarding capability\n")); 1925 return; 1926 } 1927 1928 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1929 1930 if (*ill_mdt_capab == NULL) { 1931 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1932 KM_NOSLEEP); 1933 1934 if (*ill_mdt_capab == NULL) { 1935 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1936 "could not enable MDT version %d " 1937 "for %s (ENOMEM)\n", MDT_VERSION_2, 1938 ill->ill_name); 1939 return; 1940 } 1941 } 1942 1943 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1944 "MDT version %d (%d bytes leading, %d bytes trailing " 1945 "header spaces, %d max pld bufs, %d span limit)\n", 1946 ill->ill_name, MDT_VERSION_2, 1947 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1948 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1949 1950 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1951 (*ill_mdt_capab)->ill_mdt_on = 1; 1952 /* 1953 * Round the following values to the nearest 32-bit; ULP 1954 * may further adjust them to accomodate for additional 1955 * protocol headers. We pass these values to ULP during 1956 * bind time. 1957 */ 1958 (*ill_mdt_capab)->ill_mdt_hdr_head = 1959 roundup(mdt_ic->mdt_hdr_head, 4); 1960 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1961 roundup(mdt_ic->mdt_hdr_tail, 4); 1962 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1963 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1964 1965 ill->ill_capabilities |= ILL_CAPAB_MDT; 1966 } else { 1967 uint_t size; 1968 uchar_t *rptr; 1969 1970 size = sizeof (dl_capability_req_t) + 1971 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1972 1973 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1974 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1975 "could not enable MDT for %s (ENOMEM)\n", 1976 ill->ill_name); 1977 return; 1978 } 1979 1980 rptr = nmp->b_rptr; 1981 /* initialize dl_capability_req_t */ 1982 oc = (dl_capability_req_t *)nmp->b_rptr; 1983 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1984 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1985 sizeof (dl_capab_mdt_t); 1986 nmp->b_rptr += sizeof (dl_capability_req_t); 1987 1988 /* initialize dl_capability_sub_t */ 1989 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1990 nmp->b_rptr += sizeof (*isub); 1991 1992 /* initialize dl_capab_mdt_t */ 1993 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 1994 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 1995 1996 nmp->b_rptr = rptr; 1997 1998 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 1999 "to enable MDT version %d\n", ill->ill_name, 2000 MDT_VERSION_2)); 2001 2002 /* set ENABLE flag */ 2003 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2004 2005 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2006 ill_dlpi_send(ill, nmp); 2007 } 2008 } 2009 2010 static void 2011 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2012 { 2013 mblk_t *mp; 2014 dl_capab_mdt_t *mdt_subcap; 2015 dl_capability_sub_t *dl_subcap; 2016 int size; 2017 2018 if (!ILL_MDT_CAPABLE(ill)) 2019 return; 2020 2021 ASSERT(ill->ill_mdt_capab != NULL); 2022 /* 2023 * Clear the capability flag for MDT but retain the ill_mdt_capab 2024 * structure since it's possible that another thread is still 2025 * referring to it. The structure only gets deallocated when 2026 * we destroy the ill. 2027 */ 2028 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2029 2030 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2031 2032 mp = allocb(size, BPRI_HI); 2033 if (mp == NULL) { 2034 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2035 "request to disable MDT\n")); 2036 return; 2037 } 2038 2039 mp->b_wptr = mp->b_rptr + size; 2040 2041 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2042 dl_subcap->dl_cap = DL_CAPAB_MDT; 2043 dl_subcap->dl_length = sizeof (*mdt_subcap); 2044 2045 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2046 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2047 mdt_subcap->mdt_flags = 0; 2048 mdt_subcap->mdt_hdr_head = 0; 2049 mdt_subcap->mdt_hdr_tail = 0; 2050 2051 if (*sc_mp != NULL) 2052 linkb(*sc_mp, mp); 2053 else 2054 *sc_mp = mp; 2055 } 2056 2057 /* 2058 * Send a DL_NOTIFY_REQ to the specified ill to enable 2059 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2060 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2061 * acceleration. 2062 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2063 */ 2064 static boolean_t 2065 ill_enable_promisc_notify(ill_t *ill) 2066 { 2067 mblk_t *mp; 2068 dl_notify_req_t *req; 2069 2070 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2071 2072 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2073 if (mp == NULL) 2074 return (B_FALSE); 2075 2076 req = (dl_notify_req_t *)mp->b_rptr; 2077 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2078 DL_NOTE_PROMISC_OFF_PHYS; 2079 2080 ill_dlpi_send(ill, mp); 2081 2082 return (B_TRUE); 2083 } 2084 2085 2086 /* 2087 * Allocate an IPsec capability request which will be filled by our 2088 * caller to turn on support for one or more algorithms. 2089 */ 2090 static mblk_t * 2091 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2092 { 2093 mblk_t *nmp; 2094 dl_capability_req_t *ocap; 2095 dl_capab_ipsec_t *ocip; 2096 dl_capab_ipsec_t *icip; 2097 uint8_t *ptr; 2098 icip = (dl_capab_ipsec_t *)(isub + 1); 2099 2100 /* 2101 * The first time around, we send a DL_NOTIFY_REQ to enable 2102 * PROMISC_ON/OFF notification from the provider. We need to 2103 * do this before enabling the algorithms to avoid leakage of 2104 * cleartext packets. 2105 */ 2106 2107 if (!ill_enable_promisc_notify(ill)) 2108 return (NULL); 2109 2110 /* 2111 * Allocate new mblk which will contain a new capability 2112 * request to enable the capabilities. 2113 */ 2114 2115 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2116 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2117 if (nmp == NULL) 2118 return (NULL); 2119 2120 ptr = nmp->b_rptr; 2121 2122 /* initialize dl_capability_req_t */ 2123 ocap = (dl_capability_req_t *)ptr; 2124 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2125 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2126 ptr += sizeof (dl_capability_req_t); 2127 2128 /* initialize dl_capability_sub_t */ 2129 bcopy(isub, ptr, sizeof (*isub)); 2130 ptr += sizeof (*isub); 2131 2132 /* initialize dl_capab_ipsec_t */ 2133 ocip = (dl_capab_ipsec_t *)ptr; 2134 bcopy(icip, ocip, sizeof (*icip)); 2135 2136 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2137 return (nmp); 2138 } 2139 2140 /* 2141 * Process an IPsec capability negotiation ack received from a DLS Provider. 2142 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2143 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2144 */ 2145 static void 2146 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2147 { 2148 dl_capab_ipsec_t *icip; 2149 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2150 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2151 uint_t cipher, nciphers; 2152 mblk_t *nmp; 2153 uint_t alg_len; 2154 boolean_t need_sadb_dump; 2155 uint_t sub_dl_cap = isub->dl_cap; 2156 ill_ipsec_capab_t **ill_capab; 2157 uint64_t ill_capab_flag; 2158 uint8_t *capend, *ciphend; 2159 boolean_t sadb_resync; 2160 2161 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2162 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2163 2164 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2165 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2166 ill_capab_flag = ILL_CAPAB_AH; 2167 } else { 2168 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2169 ill_capab_flag = ILL_CAPAB_ESP; 2170 } 2171 2172 /* 2173 * If the ill capability structure exists, then this incoming 2174 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2175 * If this is so, then we'd need to resynchronize the SADB 2176 * after re-enabling the offloaded ciphers. 2177 */ 2178 sadb_resync = (*ill_capab != NULL); 2179 2180 /* 2181 * Note: range checks here are not absolutely sufficient to 2182 * make us robust against malformed messages sent by drivers; 2183 * this is in keeping with the rest of IP's dlpi handling. 2184 * (Remember, it's coming from something else in the kernel 2185 * address space) 2186 */ 2187 2188 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2189 if (capend > mp->b_wptr) { 2190 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2191 "malformed sub-capability too long for mblk"); 2192 return; 2193 } 2194 2195 /* 2196 * There are two types of acks we process here: 2197 * 1. acks in reply to a (first form) generic capability req 2198 * (no ENABLE flag set) 2199 * 2. acks in reply to a ENABLE capability req. 2200 * (ENABLE flag set) 2201 * 2202 * We process the subcapability passed as argument as follows: 2203 * 1 do initializations 2204 * 1.1 initialize nmp = NULL 2205 * 1.2 set need_sadb_dump to B_FALSE 2206 * 2 for each cipher in subcapability: 2207 * 2.1 if ENABLE flag is set: 2208 * 2.1.1 update per-ill ipsec capabilities info 2209 * 2.1.2 set need_sadb_dump to B_TRUE 2210 * 2.2 if ENABLE flag is not set: 2211 * 2.2.1 if nmp is NULL: 2212 * 2.2.1.1 allocate and initialize nmp 2213 * 2.2.1.2 init current pos in nmp 2214 * 2.2.2 copy current cipher to current pos in nmp 2215 * 2.2.3 set ENABLE flag in nmp 2216 * 2.2.4 update current pos 2217 * 3 if nmp is not equal to NULL, send enable request 2218 * 3.1 send capability request 2219 * 4 if need_sadb_dump is B_TRUE 2220 * 4.1 enable promiscuous on/off notifications 2221 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2222 * AH or ESP SA's to interface. 2223 */ 2224 2225 nmp = NULL; 2226 oalg = NULL; 2227 need_sadb_dump = B_FALSE; 2228 icip = (dl_capab_ipsec_t *)(isub + 1); 2229 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2230 2231 nciphers = icip->cip_nciphers; 2232 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2233 2234 if (ciphend > capend) { 2235 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2236 "too many ciphers for sub-capability len"); 2237 return; 2238 } 2239 2240 for (cipher = 0; cipher < nciphers; cipher++) { 2241 alg_len = sizeof (dl_capab_ipsec_alg_t); 2242 2243 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2244 /* 2245 * TBD: when we provide a way to disable capabilities 2246 * from above, need to manage the request-pending state 2247 * and fail if we were not expecting this ACK. 2248 */ 2249 IPSECHW_DEBUG(IPSECHW_CAPAB, 2250 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2251 2252 /* 2253 * Update IPsec capabilities for this ill 2254 */ 2255 2256 if (*ill_capab == NULL) { 2257 IPSECHW_DEBUG(IPSECHW_CAPAB, 2258 ("ill_capability_ipsec_ack: " 2259 "allocating ipsec_capab for ill\n")); 2260 *ill_capab = ill_ipsec_capab_alloc(); 2261 2262 if (*ill_capab == NULL) { 2263 cmn_err(CE_WARN, 2264 "ill_capability_ipsec_ack: " 2265 "could not enable IPsec Hardware " 2266 "acceleration for %s (ENOMEM)\n", 2267 ill->ill_name); 2268 return; 2269 } 2270 } 2271 2272 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2273 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2274 2275 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2276 cmn_err(CE_WARN, 2277 "ill_capability_ipsec_ack: " 2278 "malformed IPsec algorithm id %d", 2279 ialg->alg_prim); 2280 continue; 2281 } 2282 2283 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2284 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2285 ialg->alg_prim); 2286 } else { 2287 ipsec_capab_algparm_t *alp; 2288 2289 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2290 ialg->alg_prim); 2291 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2292 ialg->alg_prim)) { 2293 cmn_err(CE_WARN, 2294 "ill_capability_ipsec_ack: " 2295 "no space for IPsec alg id %d", 2296 ialg->alg_prim); 2297 continue; 2298 } 2299 alp = &((*ill_capab)->encr_algparm[ 2300 ialg->alg_prim]); 2301 alp->minkeylen = ialg->alg_minbits; 2302 alp->maxkeylen = ialg->alg_maxbits; 2303 } 2304 ill->ill_capabilities |= ill_capab_flag; 2305 /* 2306 * indicate that a capability was enabled, which 2307 * will be used below to kick off a SADB dump 2308 * to the ill. 2309 */ 2310 need_sadb_dump = B_TRUE; 2311 } else { 2312 IPSECHW_DEBUG(IPSECHW_CAPAB, 2313 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2314 ialg->alg_prim)); 2315 2316 if (nmp == NULL) { 2317 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2318 if (nmp == NULL) { 2319 /* 2320 * Sending the PROMISC_ON/OFF 2321 * notification request failed. 2322 * We cannot enable the algorithms 2323 * since the Provider will not 2324 * notify IP of promiscous mode 2325 * changes, which could lead 2326 * to leakage of packets. 2327 */ 2328 cmn_err(CE_WARN, 2329 "ill_capability_ipsec_ack: " 2330 "could not enable IPsec Hardware " 2331 "acceleration for %s (ENOMEM)\n", 2332 ill->ill_name); 2333 return; 2334 } 2335 /* ptr to current output alg specifier */ 2336 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2337 } 2338 2339 /* 2340 * Copy current alg specifier, set ENABLE 2341 * flag, and advance to next output alg. 2342 * For now we enable all IPsec capabilities. 2343 */ 2344 ASSERT(oalg != NULL); 2345 bcopy(ialg, oalg, alg_len); 2346 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2347 nmp->b_wptr += alg_len; 2348 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2349 } 2350 2351 /* move to next input algorithm specifier */ 2352 ialg = (dl_capab_ipsec_alg_t *) 2353 ((char *)ialg + alg_len); 2354 } 2355 2356 if (nmp != NULL) 2357 /* 2358 * nmp points to a DL_CAPABILITY_REQ message to enable 2359 * IPsec hardware acceleration. 2360 */ 2361 ill_dlpi_send(ill, nmp); 2362 2363 if (need_sadb_dump) 2364 /* 2365 * An acknowledgement corresponding to a request to 2366 * enable acceleration was received, notify SADB. 2367 */ 2368 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2369 } 2370 2371 /* 2372 * Given an mblk with enough space in it, create sub-capability entries for 2373 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2374 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2375 * in preparation for the reset the DL_CAPABILITY_REQ message. 2376 */ 2377 static void 2378 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2379 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2380 { 2381 dl_capab_ipsec_t *oipsec; 2382 dl_capab_ipsec_alg_t *oalg; 2383 dl_capability_sub_t *dl_subcap; 2384 int i, k; 2385 2386 ASSERT(nciphers > 0); 2387 ASSERT(ill_cap != NULL); 2388 ASSERT(mp != NULL); 2389 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2390 2391 /* dl_capability_sub_t for "stype" */ 2392 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2393 dl_subcap->dl_cap = stype; 2394 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2395 mp->b_wptr += sizeof (dl_capability_sub_t); 2396 2397 /* dl_capab_ipsec_t for "stype" */ 2398 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2399 oipsec->cip_version = 1; 2400 oipsec->cip_nciphers = nciphers; 2401 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2402 2403 /* create entries for "stype" AUTH ciphers */ 2404 for (i = 0; i < ill_cap->algs_size; i++) { 2405 for (k = 0; k < BITSPERBYTE; k++) { 2406 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2407 continue; 2408 2409 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2410 bzero((void *)oalg, sizeof (*oalg)); 2411 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2412 oalg->alg_prim = k + (BITSPERBYTE * i); 2413 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2414 } 2415 } 2416 /* create entries for "stype" ENCR ciphers */ 2417 for (i = 0; i < ill_cap->algs_size; i++) { 2418 for (k = 0; k < BITSPERBYTE; k++) { 2419 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2420 continue; 2421 2422 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2423 bzero((void *)oalg, sizeof (*oalg)); 2424 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2425 oalg->alg_prim = k + (BITSPERBYTE * i); 2426 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2427 } 2428 } 2429 } 2430 2431 /* 2432 * Macro to count number of 1s in a byte (8-bit word). The total count is 2433 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2434 * POPC instruction, but our macro is more flexible for an arbitrary length 2435 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2436 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2437 * stays that way, we can reduce the number of iterations required. 2438 */ 2439 #define COUNT_1S(val, sum) { \ 2440 uint8_t x = val & 0xff; \ 2441 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2442 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2443 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2444 } 2445 2446 /* ARGSUSED */ 2447 static void 2448 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2449 { 2450 mblk_t *mp; 2451 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2452 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2453 uint64_t ill_capabilities = ill->ill_capabilities; 2454 int ah_cnt = 0, esp_cnt = 0; 2455 int ah_len = 0, esp_len = 0; 2456 int i, size = 0; 2457 2458 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2459 return; 2460 2461 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2462 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2463 2464 /* Find out the number of ciphers for AH */ 2465 if (cap_ah != NULL) { 2466 for (i = 0; i < cap_ah->algs_size; i++) { 2467 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2468 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2469 } 2470 if (ah_cnt > 0) { 2471 size += sizeof (dl_capability_sub_t) + 2472 sizeof (dl_capab_ipsec_t); 2473 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2474 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2475 size += ah_len; 2476 } 2477 } 2478 2479 /* Find out the number of ciphers for ESP */ 2480 if (cap_esp != NULL) { 2481 for (i = 0; i < cap_esp->algs_size; i++) { 2482 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2483 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2484 } 2485 if (esp_cnt > 0) { 2486 size += sizeof (dl_capability_sub_t) + 2487 sizeof (dl_capab_ipsec_t); 2488 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2489 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2490 size += esp_len; 2491 } 2492 } 2493 2494 if (size == 0) { 2495 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2496 "there's nothing to reset\n")); 2497 return; 2498 } 2499 2500 mp = allocb(size, BPRI_HI); 2501 if (mp == NULL) { 2502 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2503 "request to disable IPSEC Hardware Acceleration\n")); 2504 return; 2505 } 2506 2507 /* 2508 * Clear the capability flags for IPSec HA but retain the ill 2509 * capability structures since it's possible that another thread 2510 * is still referring to them. The structures only get deallocated 2511 * when we destroy the ill. 2512 * 2513 * Various places check the flags to see if the ill is capable of 2514 * hardware acceleration, and by clearing them we ensure that new 2515 * outbound IPSec packets are sent down encrypted. 2516 */ 2517 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2518 2519 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2520 if (ah_cnt > 0) { 2521 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2522 cap_ah, mp); 2523 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2524 } 2525 2526 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2527 if (esp_cnt > 0) { 2528 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2529 cap_esp, mp); 2530 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2531 } 2532 2533 /* 2534 * At this point we've composed a bunch of sub-capabilities to be 2535 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2536 * by the caller. Upon receiving this reset message, the driver 2537 * must stop inbound decryption (by destroying all inbound SAs) 2538 * and let the corresponding packets come in encrypted. 2539 */ 2540 2541 if (*sc_mp != NULL) 2542 linkb(*sc_mp, mp); 2543 else 2544 *sc_mp = mp; 2545 } 2546 2547 static void 2548 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2549 boolean_t encapsulated) 2550 { 2551 boolean_t legacy = B_FALSE; 2552 2553 /* 2554 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2555 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2556 * instructed the driver to disable its advertised capabilities, 2557 * so there's no point in accepting any response at this moment. 2558 */ 2559 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2560 return; 2561 2562 /* 2563 * Note that only the following two sub-capabilities may be 2564 * considered as "legacy", since their original definitions 2565 * do not incorporate the dl_mid_t module ID token, and hence 2566 * may require the use of the wrapper sub-capability. 2567 */ 2568 switch (subp->dl_cap) { 2569 case DL_CAPAB_IPSEC_AH: 2570 case DL_CAPAB_IPSEC_ESP: 2571 legacy = B_TRUE; 2572 break; 2573 } 2574 2575 /* 2576 * For legacy sub-capabilities which don't incorporate a queue_t 2577 * pointer in their structures, discard them if we detect that 2578 * there are intermediate modules in between IP and the driver. 2579 */ 2580 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2581 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2582 "%d discarded; %d module(s) present below IP\n", 2583 subp->dl_cap, ill->ill_lmod_cnt)); 2584 return; 2585 } 2586 2587 switch (subp->dl_cap) { 2588 case DL_CAPAB_IPSEC_AH: 2589 case DL_CAPAB_IPSEC_ESP: 2590 ill_capability_ipsec_ack(ill, mp, subp); 2591 break; 2592 case DL_CAPAB_MDT: 2593 ill_capability_mdt_ack(ill, mp, subp); 2594 break; 2595 case DL_CAPAB_HCKSUM: 2596 ill_capability_hcksum_ack(ill, mp, subp); 2597 break; 2598 case DL_CAPAB_ZEROCOPY: 2599 ill_capability_zerocopy_ack(ill, mp, subp); 2600 break; 2601 case DL_CAPAB_POLL: 2602 if (!SOFT_RINGS_ENABLED()) 2603 ill_capability_dls_ack(ill, mp, subp); 2604 break; 2605 case DL_CAPAB_SOFT_RING: 2606 if (SOFT_RINGS_ENABLED()) 2607 ill_capability_dls_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_LSO: 2610 ill_capability_lso_ack(ill, mp, subp); 2611 break; 2612 default: 2613 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2614 subp->dl_cap)); 2615 } 2616 } 2617 2618 /* 2619 * As part of negotiating polling capability, the driver tells us 2620 * the default (or normal) blanking interval and packet threshold 2621 * (the receive timer fires if blanking interval is reached or 2622 * the packet threshold is reached). 2623 * 2624 * As part of manipulating the polling interval, we always use our 2625 * estimated interval (avg service time * number of packets queued 2626 * on the squeue) but we try to blank for a minimum of 2627 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2628 * packet threshold during this time. When we are not in polling mode 2629 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2630 * rr_min_blank_ratio but up the packet cnt by a ratio of 2631 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2632 * possible although for a shorter interval. 2633 */ 2634 #define RR_MAX_BLANK_RATIO 20 2635 #define RR_MIN_BLANK_RATIO 10 2636 #define RR_MAX_PKT_CNT_RATIO 3 2637 #define RR_MIN_PKT_CNT_RATIO 3 2638 2639 /* 2640 * These can be tuned via /etc/system. 2641 */ 2642 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2643 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2644 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2645 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2646 2647 static mac_resource_handle_t 2648 ill_ring_add(void *arg, mac_resource_t *mrp) 2649 { 2650 ill_t *ill = (ill_t *)arg; 2651 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2652 ill_rx_ring_t *rx_ring; 2653 int ip_rx_index; 2654 2655 ASSERT(mrp != NULL); 2656 if (mrp->mr_type != MAC_RX_FIFO) { 2657 return (NULL); 2658 } 2659 ASSERT(ill != NULL); 2660 ASSERT(ill->ill_dls_capab != NULL); 2661 2662 mutex_enter(&ill->ill_lock); 2663 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2664 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2665 ASSERT(rx_ring != NULL); 2666 2667 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2668 time_t normal_blank_time = 2669 mrfp->mrf_normal_blank_time; 2670 uint_t normal_pkt_cnt = 2671 mrfp->mrf_normal_pkt_count; 2672 2673 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2674 2675 rx_ring->rr_blank = mrfp->mrf_blank; 2676 rx_ring->rr_handle = mrfp->mrf_arg; 2677 rx_ring->rr_ill = ill; 2678 rx_ring->rr_normal_blank_time = normal_blank_time; 2679 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2680 2681 rx_ring->rr_max_blank_time = 2682 normal_blank_time * rr_max_blank_ratio; 2683 rx_ring->rr_min_blank_time = 2684 normal_blank_time * rr_min_blank_ratio; 2685 rx_ring->rr_max_pkt_cnt = 2686 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2687 rx_ring->rr_min_pkt_cnt = 2688 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2689 2690 rx_ring->rr_ring_state = ILL_RING_INUSE; 2691 mutex_exit(&ill->ill_lock); 2692 2693 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2694 (int), ip_rx_index); 2695 return ((mac_resource_handle_t)rx_ring); 2696 } 2697 } 2698 2699 /* 2700 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2701 * we have devices which can overwhelm this limit, ILL_MAX_RING 2702 * should be made configurable. Meanwhile it cause no panic because 2703 * driver will pass ip_input a NULL handle which will make 2704 * IP allocate the default squeue and Polling mode will not 2705 * be used for this ring. 2706 */ 2707 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2708 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2709 2710 mutex_exit(&ill->ill_lock); 2711 return (NULL); 2712 } 2713 2714 static boolean_t 2715 ill_capability_dls_init(ill_t *ill) 2716 { 2717 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2718 conn_t *connp; 2719 size_t sz; 2720 ip_stack_t *ipst = ill->ill_ipst; 2721 2722 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2723 if (ill_dls == NULL) { 2724 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2725 "soft_ring enabled for ill=%s (%p) but data " 2726 "structs uninitialized\n", ill->ill_name, 2727 (void *)ill); 2728 } 2729 return (B_TRUE); 2730 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2731 if (ill_dls == NULL) { 2732 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2733 "polling enabled for ill=%s (%p) but data " 2734 "structs uninitialized\n", ill->ill_name, 2735 (void *)ill); 2736 } 2737 return (B_TRUE); 2738 } 2739 2740 if (ill_dls != NULL) { 2741 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2742 /* Soft_Ring or polling is being re-enabled */ 2743 2744 connp = ill_dls->ill_unbind_conn; 2745 ASSERT(rx_ring != NULL); 2746 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2747 bzero((void *)rx_ring, 2748 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2749 ill_dls->ill_ring_tbl = rx_ring; 2750 ill_dls->ill_unbind_conn = connp; 2751 return (B_TRUE); 2752 } 2753 2754 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2755 ipst->ips_netstack)) == NULL) 2756 return (B_FALSE); 2757 2758 sz = sizeof (ill_dls_capab_t); 2759 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2760 2761 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2762 if (ill_dls == NULL) { 2763 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2764 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2765 (void *)ill); 2766 CONN_DEC_REF(connp); 2767 return (B_FALSE); 2768 } 2769 2770 /* Allocate space to hold ring table */ 2771 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2772 ill->ill_dls_capab = ill_dls; 2773 ill_dls->ill_unbind_conn = connp; 2774 return (B_TRUE); 2775 } 2776 2777 /* 2778 * ill_capability_dls_disable: disable soft_ring and/or polling 2779 * capability. Since any of the rings might already be in use, need 2780 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2781 * direct calls if necessary. 2782 */ 2783 static void 2784 ill_capability_dls_disable(ill_t *ill) 2785 { 2786 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2787 2788 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2789 ip_squeue_clean_all(ill); 2790 ill_dls->ill_tx = NULL; 2791 ill_dls->ill_tx_handle = NULL; 2792 ill_dls->ill_dls_change_status = NULL; 2793 ill_dls->ill_dls_bind = NULL; 2794 ill_dls->ill_dls_unbind = NULL; 2795 } 2796 2797 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2798 } 2799 2800 static void 2801 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2802 dl_capability_sub_t *isub) 2803 { 2804 uint_t size; 2805 uchar_t *rptr; 2806 dl_capab_dls_t dls, *odls; 2807 ill_dls_capab_t *ill_dls; 2808 mblk_t *nmp = NULL; 2809 dl_capability_req_t *ocap; 2810 uint_t sub_dl_cap = isub->dl_cap; 2811 2812 if (!ill_capability_dls_init(ill)) 2813 return; 2814 ill_dls = ill->ill_dls_capab; 2815 2816 /* Copy locally to get the members aligned */ 2817 bcopy((void *)idls, (void *)&dls, 2818 sizeof (dl_capab_dls_t)); 2819 2820 /* Get the tx function and handle from dld */ 2821 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2822 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2823 2824 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2825 ill_dls->ill_dls_change_status = 2826 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2827 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2828 ill_dls->ill_dls_unbind = 2829 (ip_dls_unbind_t)dls.dls_ring_unbind; 2830 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2831 } 2832 2833 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2834 isub->dl_length; 2835 2836 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2837 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2838 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2839 ill->ill_name, (void *)ill); 2840 return; 2841 } 2842 2843 /* initialize dl_capability_req_t */ 2844 rptr = nmp->b_rptr; 2845 ocap = (dl_capability_req_t *)rptr; 2846 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2847 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2848 rptr += sizeof (dl_capability_req_t); 2849 2850 /* initialize dl_capability_sub_t */ 2851 bcopy(isub, rptr, sizeof (*isub)); 2852 rptr += sizeof (*isub); 2853 2854 odls = (dl_capab_dls_t *)rptr; 2855 rptr += sizeof (dl_capab_dls_t); 2856 2857 /* initialize dl_capab_dls_t to be sent down */ 2858 dls.dls_rx_handle = (uintptr_t)ill; 2859 dls.dls_rx = (uintptr_t)ip_input; 2860 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2861 2862 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2863 dls.dls_ring_cnt = ip_soft_rings_cnt; 2864 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2865 dls.dls_flags = SOFT_RING_ENABLE; 2866 } else { 2867 dls.dls_flags = POLL_ENABLE; 2868 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2869 "to enable polling\n", ill->ill_name)); 2870 } 2871 bcopy((void *)&dls, (void *)odls, 2872 sizeof (dl_capab_dls_t)); 2873 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2874 /* 2875 * nmp points to a DL_CAPABILITY_REQ message to 2876 * enable either soft_ring or polling 2877 */ 2878 ill_dlpi_send(ill, nmp); 2879 } 2880 2881 static void 2882 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2883 { 2884 mblk_t *mp; 2885 dl_capab_dls_t *idls; 2886 dl_capability_sub_t *dl_subcap; 2887 int size; 2888 2889 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2890 return; 2891 2892 ASSERT(ill->ill_dls_capab != NULL); 2893 2894 size = sizeof (*dl_subcap) + sizeof (*idls); 2895 2896 mp = allocb(size, BPRI_HI); 2897 if (mp == NULL) { 2898 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2899 "request to disable soft_ring\n")); 2900 return; 2901 } 2902 2903 mp->b_wptr = mp->b_rptr + size; 2904 2905 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2906 dl_subcap->dl_length = sizeof (*idls); 2907 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2908 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2909 else 2910 dl_subcap->dl_cap = DL_CAPAB_POLL; 2911 2912 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2913 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2914 idls->dls_flags = SOFT_RING_DISABLE; 2915 else 2916 idls->dls_flags = POLL_DISABLE; 2917 2918 if (*sc_mp != NULL) 2919 linkb(*sc_mp, mp); 2920 else 2921 *sc_mp = mp; 2922 } 2923 2924 /* 2925 * Process a soft_ring/poll capability negotiation ack received 2926 * from a DLS Provider.isub must point to the sub-capability 2927 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2928 */ 2929 static void 2930 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2931 { 2932 dl_capab_dls_t *idls; 2933 uint_t sub_dl_cap = isub->dl_cap; 2934 uint8_t *capend; 2935 2936 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2937 sub_dl_cap == DL_CAPAB_POLL); 2938 2939 if (ill->ill_isv6) 2940 return; 2941 2942 /* 2943 * Note: range checks here are not absolutely sufficient to 2944 * make us robust against malformed messages sent by drivers; 2945 * this is in keeping with the rest of IP's dlpi handling. 2946 * (Remember, it's coming from something else in the kernel 2947 * address space) 2948 */ 2949 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2950 if (capend > mp->b_wptr) { 2951 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2952 "malformed sub-capability too long for mblk"); 2953 return; 2954 } 2955 2956 /* 2957 * There are two types of acks we process here: 2958 * 1. acks in reply to a (first form) generic capability req 2959 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2960 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2961 * capability req. 2962 */ 2963 idls = (dl_capab_dls_t *)(isub + 1); 2964 2965 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2966 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2967 "capability isn't as expected; pass-thru " 2968 "module(s) detected, discarding capability\n")); 2969 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2970 /* 2971 * This is a capability renegotitation case. 2972 * The interface better be unusable at this 2973 * point other wise bad things will happen 2974 * if we disable direct calls on a running 2975 * and up interface. 2976 */ 2977 ill_capability_dls_disable(ill); 2978 } 2979 return; 2980 } 2981 2982 switch (idls->dls_flags) { 2983 default: 2984 /* Disable if unknown flag */ 2985 case SOFT_RING_DISABLE: 2986 case POLL_DISABLE: 2987 ill_capability_dls_disable(ill); 2988 break; 2989 case SOFT_RING_CAPABLE: 2990 case POLL_CAPABLE: 2991 /* 2992 * If the capability was already enabled, its safe 2993 * to disable it first to get rid of stale information 2994 * and then start enabling it again. 2995 */ 2996 ill_capability_dls_disable(ill); 2997 ill_capability_dls_capable(ill, idls, isub); 2998 break; 2999 case SOFT_RING_ENABLE: 3000 case POLL_ENABLE: 3001 mutex_enter(&ill->ill_lock); 3002 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3003 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3004 ASSERT(ill->ill_dls_capab != NULL); 3005 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3006 } 3007 if (sub_dl_cap == DL_CAPAB_POLL && 3008 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3009 ASSERT(ill->ill_dls_capab != NULL); 3010 ill->ill_capabilities |= ILL_CAPAB_POLL; 3011 ip1dbg(("ill_capability_dls_ack: interface %s " 3012 "has enabled polling\n", ill->ill_name)); 3013 } 3014 mutex_exit(&ill->ill_lock); 3015 break; 3016 } 3017 } 3018 3019 /* 3020 * Process a hardware checksum offload capability negotiation ack received 3021 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3022 * of a DL_CAPABILITY_ACK message. 3023 */ 3024 static void 3025 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3026 { 3027 dl_capability_req_t *ocap; 3028 dl_capab_hcksum_t *ihck, *ohck; 3029 ill_hcksum_capab_t **ill_hcksum; 3030 mblk_t *nmp = NULL; 3031 uint_t sub_dl_cap = isub->dl_cap; 3032 uint8_t *capend; 3033 3034 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3035 3036 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3037 3038 /* 3039 * Note: range checks here are not absolutely sufficient to 3040 * make us robust against malformed messages sent by drivers; 3041 * this is in keeping with the rest of IP's dlpi handling. 3042 * (Remember, it's coming from something else in the kernel 3043 * address space) 3044 */ 3045 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3046 if (capend > mp->b_wptr) { 3047 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3048 "malformed sub-capability too long for mblk"); 3049 return; 3050 } 3051 3052 /* 3053 * There are two types of acks we process here: 3054 * 1. acks in reply to a (first form) generic capability req 3055 * (no ENABLE flag set) 3056 * 2. acks in reply to a ENABLE capability req. 3057 * (ENABLE flag set) 3058 */ 3059 ihck = (dl_capab_hcksum_t *)(isub + 1); 3060 3061 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3062 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3063 "unsupported hardware checksum " 3064 "sub-capability (version %d, expected %d)", 3065 ihck->hcksum_version, HCKSUM_VERSION_1); 3066 return; 3067 } 3068 3069 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3070 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3071 "checksum capability isn't as expected; pass-thru " 3072 "module(s) detected, discarding capability\n")); 3073 return; 3074 } 3075 3076 #define CURR_HCKSUM_CAPAB \ 3077 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3078 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3079 3080 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3081 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3082 /* do ENABLE processing */ 3083 if (*ill_hcksum == NULL) { 3084 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3085 KM_NOSLEEP); 3086 3087 if (*ill_hcksum == NULL) { 3088 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3089 "could not enable hcksum version %d " 3090 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3091 ill->ill_name); 3092 return; 3093 } 3094 } 3095 3096 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3097 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3098 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3099 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3100 "has enabled hardware checksumming\n ", 3101 ill->ill_name)); 3102 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3103 /* 3104 * Enabling hardware checksum offload 3105 * Currently IP supports {TCP,UDP}/IPv4 3106 * partial and full cksum offload and 3107 * IPv4 header checksum offload. 3108 * Allocate new mblk which will 3109 * contain a new capability request 3110 * to enable hardware checksum offload. 3111 */ 3112 uint_t size; 3113 uchar_t *rptr; 3114 3115 size = sizeof (dl_capability_req_t) + 3116 sizeof (dl_capability_sub_t) + isub->dl_length; 3117 3118 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3119 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3120 "could not enable hardware cksum for %s (ENOMEM)\n", 3121 ill->ill_name); 3122 return; 3123 } 3124 3125 rptr = nmp->b_rptr; 3126 /* initialize dl_capability_req_t */ 3127 ocap = (dl_capability_req_t *)nmp->b_rptr; 3128 ocap->dl_sub_offset = 3129 sizeof (dl_capability_req_t); 3130 ocap->dl_sub_length = 3131 sizeof (dl_capability_sub_t) + 3132 isub->dl_length; 3133 nmp->b_rptr += sizeof (dl_capability_req_t); 3134 3135 /* initialize dl_capability_sub_t */ 3136 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3137 nmp->b_rptr += sizeof (*isub); 3138 3139 /* initialize dl_capab_hcksum_t */ 3140 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3141 bcopy(ihck, ohck, sizeof (*ihck)); 3142 3143 nmp->b_rptr = rptr; 3144 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3145 3146 /* Set ENABLE flag */ 3147 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3148 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3149 3150 /* 3151 * nmp points to a DL_CAPABILITY_REQ message to enable 3152 * hardware checksum acceleration. 3153 */ 3154 ill_dlpi_send(ill, nmp); 3155 } else { 3156 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3157 "advertised %x hardware checksum capability flags\n", 3158 ill->ill_name, ihck->hcksum_txflags)); 3159 } 3160 } 3161 3162 static void 3163 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3164 { 3165 mblk_t *mp; 3166 dl_capab_hcksum_t *hck_subcap; 3167 dl_capability_sub_t *dl_subcap; 3168 int size; 3169 3170 if (!ILL_HCKSUM_CAPABLE(ill)) 3171 return; 3172 3173 ASSERT(ill->ill_hcksum_capab != NULL); 3174 /* 3175 * Clear the capability flag for hardware checksum offload but 3176 * retain the ill_hcksum_capab structure since it's possible that 3177 * another thread is still referring to it. The structure only 3178 * gets deallocated when we destroy the ill. 3179 */ 3180 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3181 3182 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3183 3184 mp = allocb(size, BPRI_HI); 3185 if (mp == NULL) { 3186 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3187 "request to disable hardware checksum offload\n")); 3188 return; 3189 } 3190 3191 mp->b_wptr = mp->b_rptr + size; 3192 3193 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3194 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3195 dl_subcap->dl_length = sizeof (*hck_subcap); 3196 3197 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3198 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3199 hck_subcap->hcksum_txflags = 0; 3200 3201 if (*sc_mp != NULL) 3202 linkb(*sc_mp, mp); 3203 else 3204 *sc_mp = mp; 3205 } 3206 3207 static void 3208 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3209 { 3210 mblk_t *nmp = NULL; 3211 dl_capability_req_t *oc; 3212 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3213 ill_zerocopy_capab_t **ill_zerocopy_capab; 3214 uint_t sub_dl_cap = isub->dl_cap; 3215 uint8_t *capend; 3216 3217 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3218 3219 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3220 3221 /* 3222 * Note: range checks here are not absolutely sufficient to 3223 * make us robust against malformed messages sent by drivers; 3224 * this is in keeping with the rest of IP's dlpi handling. 3225 * (Remember, it's coming from something else in the kernel 3226 * address space) 3227 */ 3228 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3229 if (capend > mp->b_wptr) { 3230 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3231 "malformed sub-capability too long for mblk"); 3232 return; 3233 } 3234 3235 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3236 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3237 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3238 "unsupported ZEROCOPY sub-capability (version %d, " 3239 "expected %d)", zc_ic->zerocopy_version, 3240 ZEROCOPY_VERSION_1); 3241 return; 3242 } 3243 3244 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3245 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3246 "capability isn't as expected; pass-thru module(s) " 3247 "detected, discarding capability\n")); 3248 return; 3249 } 3250 3251 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3252 if (*ill_zerocopy_capab == NULL) { 3253 *ill_zerocopy_capab = 3254 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3255 KM_NOSLEEP); 3256 3257 if (*ill_zerocopy_capab == NULL) { 3258 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3259 "could not enable Zero-copy version %d " 3260 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3261 ill->ill_name); 3262 return; 3263 } 3264 } 3265 3266 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3267 "supports Zero-copy version %d\n", ill->ill_name, 3268 ZEROCOPY_VERSION_1)); 3269 3270 (*ill_zerocopy_capab)->ill_zerocopy_version = 3271 zc_ic->zerocopy_version; 3272 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3273 zc_ic->zerocopy_flags; 3274 3275 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3276 } else { 3277 uint_t size; 3278 uchar_t *rptr; 3279 3280 size = sizeof (dl_capability_req_t) + 3281 sizeof (dl_capability_sub_t) + 3282 sizeof (dl_capab_zerocopy_t); 3283 3284 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3285 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3286 "could not enable zerocopy for %s (ENOMEM)\n", 3287 ill->ill_name); 3288 return; 3289 } 3290 3291 rptr = nmp->b_rptr; 3292 /* initialize dl_capability_req_t */ 3293 oc = (dl_capability_req_t *)rptr; 3294 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3295 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3296 sizeof (dl_capab_zerocopy_t); 3297 rptr += sizeof (dl_capability_req_t); 3298 3299 /* initialize dl_capability_sub_t */ 3300 bcopy(isub, rptr, sizeof (*isub)); 3301 rptr += sizeof (*isub); 3302 3303 /* initialize dl_capab_zerocopy_t */ 3304 zc_oc = (dl_capab_zerocopy_t *)rptr; 3305 *zc_oc = *zc_ic; 3306 3307 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3308 "to enable zero-copy version %d\n", ill->ill_name, 3309 ZEROCOPY_VERSION_1)); 3310 3311 /* set VMSAFE_MEM flag */ 3312 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3313 3314 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3315 ill_dlpi_send(ill, nmp); 3316 } 3317 } 3318 3319 static void 3320 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3321 { 3322 mblk_t *mp; 3323 dl_capab_zerocopy_t *zerocopy_subcap; 3324 dl_capability_sub_t *dl_subcap; 3325 int size; 3326 3327 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3328 return; 3329 3330 ASSERT(ill->ill_zerocopy_capab != NULL); 3331 /* 3332 * Clear the capability flag for Zero-copy but retain the 3333 * ill_zerocopy_capab structure since it's possible that another 3334 * thread is still referring to it. The structure only gets 3335 * deallocated when we destroy the ill. 3336 */ 3337 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3338 3339 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3340 3341 mp = allocb(size, BPRI_HI); 3342 if (mp == NULL) { 3343 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3344 "request to disable Zero-copy\n")); 3345 return; 3346 } 3347 3348 mp->b_wptr = mp->b_rptr + size; 3349 3350 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3351 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3352 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3353 3354 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3355 zerocopy_subcap->zerocopy_version = 3356 ill->ill_zerocopy_capab->ill_zerocopy_version; 3357 zerocopy_subcap->zerocopy_flags = 0; 3358 3359 if (*sc_mp != NULL) 3360 linkb(*sc_mp, mp); 3361 else 3362 *sc_mp = mp; 3363 } 3364 3365 /* 3366 * Process Large Segment Offload capability negotiation ack received from a 3367 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3368 * DL_CAPABILITY_ACK message. 3369 */ 3370 static void 3371 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3372 { 3373 mblk_t *nmp = NULL; 3374 dl_capability_req_t *oc; 3375 dl_capab_lso_t *lso_ic, *lso_oc; 3376 ill_lso_capab_t **ill_lso_capab; 3377 uint_t sub_dl_cap = isub->dl_cap; 3378 uint8_t *capend; 3379 3380 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3381 3382 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3383 3384 /* 3385 * Note: range checks here are not absolutely sufficient to 3386 * make us robust against malformed messages sent by drivers; 3387 * this is in keeping with the rest of IP's dlpi handling. 3388 * (Remember, it's coming from something else in the kernel 3389 * address space) 3390 */ 3391 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3392 if (capend > mp->b_wptr) { 3393 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3394 "malformed sub-capability too long for mblk"); 3395 return; 3396 } 3397 3398 lso_ic = (dl_capab_lso_t *)(isub + 1); 3399 3400 if (lso_ic->lso_version != LSO_VERSION_1) { 3401 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3402 "unsupported LSO sub-capability (version %d, expected %d)", 3403 lso_ic->lso_version, LSO_VERSION_1); 3404 return; 3405 } 3406 3407 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3408 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3409 "capability isn't as expected; pass-thru module(s) " 3410 "detected, discarding capability\n")); 3411 return; 3412 } 3413 3414 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3415 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3416 if (*ill_lso_capab == NULL) { 3417 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3418 KM_NOSLEEP); 3419 3420 if (*ill_lso_capab == NULL) { 3421 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3422 "could not enable LSO version %d " 3423 "for %s (ENOMEM)\n", LSO_VERSION_1, 3424 ill->ill_name); 3425 return; 3426 } 3427 } 3428 3429 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3430 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3431 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3432 ill->ill_capabilities |= ILL_CAPAB_LSO; 3433 3434 ip1dbg(("ill_capability_lso_ack: interface %s " 3435 "has enabled LSO\n ", ill->ill_name)); 3436 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3437 uint_t size; 3438 uchar_t *rptr; 3439 3440 size = sizeof (dl_capability_req_t) + 3441 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3442 3443 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3444 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3445 "could not enable LSO for %s (ENOMEM)\n", 3446 ill->ill_name); 3447 return; 3448 } 3449 3450 rptr = nmp->b_rptr; 3451 /* initialize dl_capability_req_t */ 3452 oc = (dl_capability_req_t *)nmp->b_rptr; 3453 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3454 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3455 sizeof (dl_capab_lso_t); 3456 nmp->b_rptr += sizeof (dl_capability_req_t); 3457 3458 /* initialize dl_capability_sub_t */ 3459 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3460 nmp->b_rptr += sizeof (*isub); 3461 3462 /* initialize dl_capab_lso_t */ 3463 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3464 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3465 3466 nmp->b_rptr = rptr; 3467 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3468 3469 /* set ENABLE flag */ 3470 lso_oc->lso_flags |= LSO_TX_ENABLE; 3471 3472 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3473 ill_dlpi_send(ill, nmp); 3474 } else { 3475 ip1dbg(("ill_capability_lso_ack: interface %s has " 3476 "advertised %x LSO capability flags\n", 3477 ill->ill_name, lso_ic->lso_flags)); 3478 } 3479 } 3480 3481 3482 static void 3483 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3484 { 3485 mblk_t *mp; 3486 dl_capab_lso_t *lso_subcap; 3487 dl_capability_sub_t *dl_subcap; 3488 int size; 3489 3490 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3491 return; 3492 3493 ASSERT(ill->ill_lso_capab != NULL); 3494 /* 3495 * Clear the capability flag for LSO but retain the 3496 * ill_lso_capab structure since it's possible that another 3497 * thread is still referring to it. The structure only gets 3498 * deallocated when we destroy the ill. 3499 */ 3500 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3501 3502 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3503 3504 mp = allocb(size, BPRI_HI); 3505 if (mp == NULL) { 3506 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3507 "request to disable LSO\n")); 3508 return; 3509 } 3510 3511 mp->b_wptr = mp->b_rptr + size; 3512 3513 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3514 dl_subcap->dl_cap = DL_CAPAB_LSO; 3515 dl_subcap->dl_length = sizeof (*lso_subcap); 3516 3517 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3518 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3519 lso_subcap->lso_flags = 0; 3520 3521 if (*sc_mp != NULL) 3522 linkb(*sc_mp, mp); 3523 else 3524 *sc_mp = mp; 3525 } 3526 3527 /* 3528 * Consume a new-style hardware capabilities negotiation ack. 3529 * Called from ip_rput_dlpi_writer(). 3530 */ 3531 void 3532 ill_capability_ack(ill_t *ill, mblk_t *mp) 3533 { 3534 dl_capability_ack_t *capp; 3535 dl_capability_sub_t *subp, *endp; 3536 3537 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3538 ill->ill_dlpi_capab_state = IDS_OK; 3539 3540 capp = (dl_capability_ack_t *)mp->b_rptr; 3541 3542 if (capp->dl_sub_length == 0) 3543 /* no new-style capabilities */ 3544 return; 3545 3546 /* make sure the driver supplied correct dl_sub_length */ 3547 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3548 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3549 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3550 return; 3551 } 3552 3553 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3554 /* 3555 * There are sub-capabilities. Process the ones we know about. 3556 * Loop until we don't have room for another sub-cap header.. 3557 */ 3558 for (subp = SC(capp, capp->dl_sub_offset), 3559 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3560 subp <= endp; 3561 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3562 3563 switch (subp->dl_cap) { 3564 case DL_CAPAB_ID_WRAPPER: 3565 ill_capability_id_ack(ill, mp, subp); 3566 break; 3567 default: 3568 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3569 break; 3570 } 3571 } 3572 #undef SC 3573 } 3574 3575 /* 3576 * This routine is called to scan the fragmentation reassembly table for 3577 * the specified ILL for any packets that are starting to smell. 3578 * dead_interval is the maximum time in seconds that will be tolerated. It 3579 * will either be the value specified in ip_g_frag_timeout, or zero if the 3580 * ILL is shutting down and it is time to blow everything off. 3581 * 3582 * It returns the number of seconds (as a time_t) that the next frag timer 3583 * should be scheduled for, 0 meaning that the timer doesn't need to be 3584 * re-started. Note that the method of calculating next_timeout isn't 3585 * entirely accurate since time will flow between the time we grab 3586 * current_time and the time we schedule the next timeout. This isn't a 3587 * big problem since this is the timer for sending an ICMP reassembly time 3588 * exceeded messages, and it doesn't have to be exactly accurate. 3589 * 3590 * This function is 3591 * sometimes called as writer, although this is not required. 3592 */ 3593 time_t 3594 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3595 { 3596 ipfb_t *ipfb; 3597 ipfb_t *endp; 3598 ipf_t *ipf; 3599 ipf_t *ipfnext; 3600 mblk_t *mp; 3601 time_t current_time = gethrestime_sec(); 3602 time_t next_timeout = 0; 3603 uint32_t hdr_length; 3604 mblk_t *send_icmp_head; 3605 mblk_t *send_icmp_head_v6; 3606 zoneid_t zoneid; 3607 ip_stack_t *ipst = ill->ill_ipst; 3608 3609 ipfb = ill->ill_frag_hash_tbl; 3610 if (ipfb == NULL) 3611 return (B_FALSE); 3612 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3613 /* Walk the frag hash table. */ 3614 for (; ipfb < endp; ipfb++) { 3615 send_icmp_head = NULL; 3616 send_icmp_head_v6 = NULL; 3617 mutex_enter(&ipfb->ipfb_lock); 3618 while ((ipf = ipfb->ipfb_ipf) != 0) { 3619 time_t frag_time = current_time - ipf->ipf_timestamp; 3620 time_t frag_timeout; 3621 3622 if (frag_time < dead_interval) { 3623 /* 3624 * There are some outstanding fragments 3625 * that will timeout later. Make note of 3626 * the time so that we can reschedule the 3627 * next timeout appropriately. 3628 */ 3629 frag_timeout = dead_interval - frag_time; 3630 if (next_timeout == 0 || 3631 frag_timeout < next_timeout) { 3632 next_timeout = frag_timeout; 3633 } 3634 break; 3635 } 3636 /* Time's up. Get it out of here. */ 3637 hdr_length = ipf->ipf_nf_hdr_len; 3638 ipfnext = ipf->ipf_hash_next; 3639 if (ipfnext) 3640 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3641 *ipf->ipf_ptphn = ipfnext; 3642 mp = ipf->ipf_mp->b_cont; 3643 for (; mp; mp = mp->b_cont) { 3644 /* Extra points for neatness. */ 3645 IP_REASS_SET_START(mp, 0); 3646 IP_REASS_SET_END(mp, 0); 3647 } 3648 mp = ipf->ipf_mp->b_cont; 3649 ill->ill_frag_count -= ipf->ipf_count; 3650 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3651 ipfb->ipfb_count -= ipf->ipf_count; 3652 ASSERT(ipfb->ipfb_frag_pkts > 0); 3653 ipfb->ipfb_frag_pkts--; 3654 /* 3655 * We do not send any icmp message from here because 3656 * we currently are holding the ipfb_lock for this 3657 * hash chain. If we try and send any icmp messages 3658 * from here we may end up via a put back into ip 3659 * trying to get the same lock, causing a recursive 3660 * mutex panic. Instead we build a list and send all 3661 * the icmp messages after we have dropped the lock. 3662 */ 3663 if (ill->ill_isv6) { 3664 if (hdr_length != 0) { 3665 mp->b_next = send_icmp_head_v6; 3666 send_icmp_head_v6 = mp; 3667 } else { 3668 freemsg(mp); 3669 } 3670 } else { 3671 if (hdr_length != 0) { 3672 mp->b_next = send_icmp_head; 3673 send_icmp_head = mp; 3674 } else { 3675 freemsg(mp); 3676 } 3677 } 3678 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3679 freeb(ipf->ipf_mp); 3680 } 3681 mutex_exit(&ipfb->ipfb_lock); 3682 /* 3683 * Now need to send any icmp messages that we delayed from 3684 * above. 3685 */ 3686 while (send_icmp_head_v6 != NULL) { 3687 ip6_t *ip6h; 3688 3689 mp = send_icmp_head_v6; 3690 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3691 mp->b_next = NULL; 3692 if (mp->b_datap->db_type == M_CTL) 3693 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3694 else 3695 ip6h = (ip6_t *)mp->b_rptr; 3696 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3697 ill, ipst); 3698 if (zoneid == ALL_ZONES) { 3699 freemsg(mp); 3700 } else { 3701 icmp_time_exceeded_v6(ill->ill_wq, mp, 3702 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3703 B_FALSE, zoneid, ipst); 3704 } 3705 } 3706 while (send_icmp_head != NULL) { 3707 ipaddr_t dst; 3708 3709 mp = send_icmp_head; 3710 send_icmp_head = send_icmp_head->b_next; 3711 mp->b_next = NULL; 3712 3713 if (mp->b_datap->db_type == M_CTL) 3714 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3715 else 3716 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3717 3718 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3719 if (zoneid == ALL_ZONES) { 3720 freemsg(mp); 3721 } else { 3722 icmp_time_exceeded(ill->ill_wq, mp, 3723 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3724 ipst); 3725 } 3726 } 3727 } 3728 /* 3729 * A non-dying ILL will use the return value to decide whether to 3730 * restart the frag timer, and for how long. 3731 */ 3732 return (next_timeout); 3733 } 3734 3735 /* 3736 * This routine is called when the approximate count of mblk memory used 3737 * for the specified ILL has exceeded max_count. 3738 */ 3739 void 3740 ill_frag_prune(ill_t *ill, uint_t max_count) 3741 { 3742 ipfb_t *ipfb; 3743 ipf_t *ipf; 3744 size_t count; 3745 3746 /* 3747 * If we are here within ip_min_frag_prune_time msecs remove 3748 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3749 * ill_frag_free_num_pkts. 3750 */ 3751 mutex_enter(&ill->ill_lock); 3752 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3753 (ip_min_frag_prune_time != 0 ? 3754 ip_min_frag_prune_time : msec_per_tick)) { 3755 3756 ill->ill_frag_free_num_pkts++; 3757 3758 } else { 3759 ill->ill_frag_free_num_pkts = 0; 3760 } 3761 ill->ill_last_frag_clean_time = lbolt; 3762 mutex_exit(&ill->ill_lock); 3763 3764 /* 3765 * free ill_frag_free_num_pkts oldest packets from each bucket. 3766 */ 3767 if (ill->ill_frag_free_num_pkts != 0) { 3768 int ix; 3769 3770 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3771 ipfb = &ill->ill_frag_hash_tbl[ix]; 3772 mutex_enter(&ipfb->ipfb_lock); 3773 if (ipfb->ipfb_ipf != NULL) { 3774 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3775 ill->ill_frag_free_num_pkts); 3776 } 3777 mutex_exit(&ipfb->ipfb_lock); 3778 } 3779 } 3780 /* 3781 * While the reassembly list for this ILL is too big, prune a fragment 3782 * queue by age, oldest first. Note that the per ILL count is 3783 * approximate, while the per frag hash bucket counts are accurate. 3784 */ 3785 while (ill->ill_frag_count > max_count) { 3786 int ix; 3787 ipfb_t *oipfb = NULL; 3788 uint_t oldest = UINT_MAX; 3789 3790 count = 0; 3791 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3792 ipfb = &ill->ill_frag_hash_tbl[ix]; 3793 mutex_enter(&ipfb->ipfb_lock); 3794 ipf = ipfb->ipfb_ipf; 3795 if (ipf != NULL && ipf->ipf_gen < oldest) { 3796 oldest = ipf->ipf_gen; 3797 oipfb = ipfb; 3798 } 3799 count += ipfb->ipfb_count; 3800 mutex_exit(&ipfb->ipfb_lock); 3801 } 3802 /* Refresh the per ILL count */ 3803 ill->ill_frag_count = count; 3804 if (oipfb == NULL) { 3805 ill->ill_frag_count = 0; 3806 break; 3807 } 3808 if (count <= max_count) 3809 return; /* Somebody beat us to it, nothing to do */ 3810 mutex_enter(&oipfb->ipfb_lock); 3811 ipf = oipfb->ipfb_ipf; 3812 if (ipf != NULL) { 3813 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3814 } 3815 mutex_exit(&oipfb->ipfb_lock); 3816 } 3817 } 3818 3819 /* 3820 * free 'free_cnt' fragmented packets starting at ipf. 3821 */ 3822 void 3823 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3824 { 3825 size_t count; 3826 mblk_t *mp; 3827 mblk_t *tmp; 3828 ipf_t **ipfp = ipf->ipf_ptphn; 3829 3830 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3831 ASSERT(ipfp != NULL); 3832 ASSERT(ipf != NULL); 3833 3834 while (ipf != NULL && free_cnt-- > 0) { 3835 count = ipf->ipf_count; 3836 mp = ipf->ipf_mp; 3837 ipf = ipf->ipf_hash_next; 3838 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3839 IP_REASS_SET_START(tmp, 0); 3840 IP_REASS_SET_END(tmp, 0); 3841 } 3842 ill->ill_frag_count -= count; 3843 ASSERT(ipfb->ipfb_count >= count); 3844 ipfb->ipfb_count -= count; 3845 ASSERT(ipfb->ipfb_frag_pkts > 0); 3846 ipfb->ipfb_frag_pkts--; 3847 freemsg(mp); 3848 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3849 } 3850 3851 if (ipf) 3852 ipf->ipf_ptphn = ipfp; 3853 ipfp[0] = ipf; 3854 } 3855 3856 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3857 "obsolete and may be removed in a future release of Solaris. Use " \ 3858 "ifconfig(1M) to manipulate the forwarding status of an interface." 3859 3860 /* 3861 * For obsolete per-interface forwarding configuration; 3862 * called in response to ND_GET. 3863 */ 3864 /* ARGSUSED */ 3865 static int 3866 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3867 { 3868 ill_t *ill = (ill_t *)cp; 3869 3870 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3871 3872 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3873 return (0); 3874 } 3875 3876 /* 3877 * For obsolete per-interface forwarding configuration; 3878 * called in response to ND_SET. 3879 */ 3880 /* ARGSUSED */ 3881 static int 3882 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3883 cred_t *ioc_cr) 3884 { 3885 long value; 3886 int retval; 3887 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3888 3889 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3890 3891 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3892 value < 0 || value > 1) { 3893 return (EINVAL); 3894 } 3895 3896 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3897 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3898 rw_exit(&ipst->ips_ill_g_lock); 3899 return (retval); 3900 } 3901 3902 /* 3903 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3904 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3905 * up RTS_IFINFO routing socket messages for each interface whose flags we 3906 * change. 3907 */ 3908 int 3909 ill_forward_set(ill_t *ill, boolean_t enable) 3910 { 3911 ill_group_t *illgrp; 3912 ip_stack_t *ipst = ill->ill_ipst; 3913 3914 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3915 3916 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3917 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3918 return (0); 3919 3920 if (IS_LOOPBACK(ill)) 3921 return (EINVAL); 3922 3923 /* 3924 * If the ill is in an IPMP group, set the forwarding policy on all 3925 * members of the group to the same value. 3926 */ 3927 illgrp = ill->ill_group; 3928 if (illgrp != NULL) { 3929 ill_t *tmp_ill; 3930 3931 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3932 tmp_ill = tmp_ill->ill_group_next) { 3933 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3934 (enable ? "Enabling" : "Disabling"), 3935 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3936 tmp_ill->ill_name)); 3937 mutex_enter(&tmp_ill->ill_lock); 3938 if (enable) 3939 tmp_ill->ill_flags |= ILLF_ROUTER; 3940 else 3941 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3942 mutex_exit(&tmp_ill->ill_lock); 3943 if (tmp_ill->ill_isv6) 3944 ill_set_nce_router_flags(tmp_ill, enable); 3945 /* Notify routing socket listeners of this change. */ 3946 ip_rts_ifmsg(tmp_ill->ill_ipif); 3947 } 3948 } else { 3949 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3950 (enable ? "Enabling" : "Disabling"), 3951 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3952 mutex_enter(&ill->ill_lock); 3953 if (enable) 3954 ill->ill_flags |= ILLF_ROUTER; 3955 else 3956 ill->ill_flags &= ~ILLF_ROUTER; 3957 mutex_exit(&ill->ill_lock); 3958 if (ill->ill_isv6) 3959 ill_set_nce_router_flags(ill, enable); 3960 /* Notify routing socket listeners of this change. */ 3961 ip_rts_ifmsg(ill->ill_ipif); 3962 } 3963 3964 return (0); 3965 } 3966 3967 /* 3968 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3969 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3970 * set or clear. 3971 */ 3972 static void 3973 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3974 { 3975 ipif_t *ipif; 3976 nce_t *nce; 3977 3978 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3979 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3980 if (nce != NULL) { 3981 mutex_enter(&nce->nce_lock); 3982 if (enable) 3983 nce->nce_flags |= NCE_F_ISROUTER; 3984 else 3985 nce->nce_flags &= ~NCE_F_ISROUTER; 3986 mutex_exit(&nce->nce_lock); 3987 NCE_REFRELE(nce); 3988 } 3989 } 3990 } 3991 3992 /* 3993 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3994 * for this ill. Make sure the v6/v4 question has been answered about this 3995 * ill. The creation of this ndd variable is only for backwards compatibility. 3996 * The preferred way to control per-interface IP forwarding is through the 3997 * ILLF_ROUTER interface flag. 3998 */ 3999 static int 4000 ill_set_ndd_name(ill_t *ill) 4001 { 4002 char *suffix; 4003 ip_stack_t *ipst = ill->ill_ipst; 4004 4005 ASSERT(IAM_WRITER_ILL(ill)); 4006 4007 if (ill->ill_isv6) 4008 suffix = ipv6_forward_suffix; 4009 else 4010 suffix = ipv4_forward_suffix; 4011 4012 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4013 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4014 /* 4015 * Copies over the '\0'. 4016 * Note that strlen(suffix) is always bounded. 4017 */ 4018 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4019 strlen(suffix) + 1); 4020 4021 /* 4022 * Use of the nd table requires holding the reader lock. 4023 * Modifying the nd table thru nd_load/nd_unload requires 4024 * the writer lock. 4025 */ 4026 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4027 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4028 nd_ill_forward_set, (caddr_t)ill)) { 4029 /* 4030 * If the nd_load failed, it only meant that it could not 4031 * allocate a new bunch of room for further NDD expansion. 4032 * Because of that, the ill_ndd_name will be set to 0, and 4033 * this interface is at the mercy of the global ip_forwarding 4034 * variable. 4035 */ 4036 rw_exit(&ipst->ips_ip_g_nd_lock); 4037 ill->ill_ndd_name = NULL; 4038 return (ENOMEM); 4039 } 4040 rw_exit(&ipst->ips_ip_g_nd_lock); 4041 return (0); 4042 } 4043 4044 /* 4045 * Intializes the context structure and returns the first ill in the list 4046 * cuurently start_list and end_list can have values: 4047 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4048 * IP_V4_G_HEAD Traverse IPV4 list only. 4049 * IP_V6_G_HEAD Traverse IPV6 list only. 4050 */ 4051 4052 /* 4053 * We don't check for CONDEMNED ills here. Caller must do that if 4054 * necessary under the ill lock. 4055 */ 4056 ill_t * 4057 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4058 ip_stack_t *ipst) 4059 { 4060 ill_if_t *ifp; 4061 ill_t *ill; 4062 avl_tree_t *avl_tree; 4063 4064 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4065 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4066 4067 /* 4068 * setup the lists to search 4069 */ 4070 if (end_list != MAX_G_HEADS) { 4071 ctx->ctx_current_list = start_list; 4072 ctx->ctx_last_list = end_list; 4073 } else { 4074 ctx->ctx_last_list = MAX_G_HEADS - 1; 4075 ctx->ctx_current_list = 0; 4076 } 4077 4078 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4079 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4080 if (ifp != (ill_if_t *) 4081 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4082 avl_tree = &ifp->illif_avl_by_ppa; 4083 ill = avl_first(avl_tree); 4084 /* 4085 * ill is guaranteed to be non NULL or ifp should have 4086 * not existed. 4087 */ 4088 ASSERT(ill != NULL); 4089 return (ill); 4090 } 4091 ctx->ctx_current_list++; 4092 } 4093 4094 return (NULL); 4095 } 4096 4097 /* 4098 * returns the next ill in the list. ill_first() must have been called 4099 * before calling ill_next() or bad things will happen. 4100 */ 4101 4102 /* 4103 * We don't check for CONDEMNED ills here. Caller must do that if 4104 * necessary under the ill lock. 4105 */ 4106 ill_t * 4107 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4108 { 4109 ill_if_t *ifp; 4110 ill_t *ill; 4111 ip_stack_t *ipst = lastill->ill_ipst; 4112 4113 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4114 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4115 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4116 AVL_AFTER)) != NULL) { 4117 return (ill); 4118 } 4119 4120 /* goto next ill_ifp in the list. */ 4121 ifp = lastill->ill_ifptr->illif_next; 4122 4123 /* make sure not at end of circular list */ 4124 while (ifp == 4125 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4126 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4127 return (NULL); 4128 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4129 } 4130 4131 return (avl_first(&ifp->illif_avl_by_ppa)); 4132 } 4133 4134 /* 4135 * Check interface name for correct format which is name+ppa. 4136 * name can contain characters and digits, the right most digits 4137 * make up the ppa number. use of octal is not allowed, name must contain 4138 * a ppa, return pointer to the start of ppa. 4139 * In case of error return NULL. 4140 */ 4141 static char * 4142 ill_get_ppa_ptr(char *name) 4143 { 4144 int namelen = mi_strlen(name); 4145 4146 int len = namelen; 4147 4148 name += len; 4149 while (len > 0) { 4150 name--; 4151 if (*name < '0' || *name > '9') 4152 break; 4153 len--; 4154 } 4155 4156 /* empty string, all digits, or no trailing digits */ 4157 if (len == 0 || len == (int)namelen) 4158 return (NULL); 4159 4160 name++; 4161 /* check for attempted use of octal */ 4162 if (*name == '0' && len != (int)namelen - 1) 4163 return (NULL); 4164 return (name); 4165 } 4166 4167 /* 4168 * use avl tree to locate the ill. 4169 */ 4170 static ill_t * 4171 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4172 ipsq_func_t func, int *error, ip_stack_t *ipst) 4173 { 4174 char *ppa_ptr = NULL; 4175 int len; 4176 uint_t ppa; 4177 ill_t *ill = NULL; 4178 ill_if_t *ifp; 4179 int list; 4180 ipsq_t *ipsq; 4181 4182 if (error != NULL) 4183 *error = 0; 4184 4185 /* 4186 * get ppa ptr 4187 */ 4188 if (isv6) 4189 list = IP_V6_G_HEAD; 4190 else 4191 list = IP_V4_G_HEAD; 4192 4193 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4194 if (error != NULL) 4195 *error = ENXIO; 4196 return (NULL); 4197 } 4198 4199 len = ppa_ptr - name + 1; 4200 4201 ppa = stoi(&ppa_ptr); 4202 4203 ifp = IP_VX_ILL_G_LIST(list, ipst); 4204 4205 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4206 /* 4207 * match is done on len - 1 as the name is not null 4208 * terminated it contains ppa in addition to the interface 4209 * name. 4210 */ 4211 if ((ifp->illif_name_len == len) && 4212 bcmp(ifp->illif_name, name, len - 1) == 0) { 4213 break; 4214 } else { 4215 ifp = ifp->illif_next; 4216 } 4217 } 4218 4219 4220 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4221 /* 4222 * Even the interface type does not exist. 4223 */ 4224 if (error != NULL) 4225 *error = ENXIO; 4226 return (NULL); 4227 } 4228 4229 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4230 if (ill != NULL) { 4231 /* 4232 * The block comment at the start of ipif_down 4233 * explains the use of the macros used below 4234 */ 4235 GRAB_CONN_LOCK(q); 4236 mutex_enter(&ill->ill_lock); 4237 if (ILL_CAN_LOOKUP(ill)) { 4238 ill_refhold_locked(ill); 4239 mutex_exit(&ill->ill_lock); 4240 RELEASE_CONN_LOCK(q); 4241 return (ill); 4242 } else if (ILL_CAN_WAIT(ill, q)) { 4243 ipsq = ill->ill_phyint->phyint_ipsq; 4244 mutex_enter(&ipsq->ipsq_lock); 4245 mutex_exit(&ill->ill_lock); 4246 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4247 mutex_exit(&ipsq->ipsq_lock); 4248 RELEASE_CONN_LOCK(q); 4249 *error = EINPROGRESS; 4250 return (NULL); 4251 } 4252 mutex_exit(&ill->ill_lock); 4253 RELEASE_CONN_LOCK(q); 4254 } 4255 if (error != NULL) 4256 *error = ENXIO; 4257 return (NULL); 4258 } 4259 4260 /* 4261 * comparison function for use with avl. 4262 */ 4263 static int 4264 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4265 { 4266 uint_t ppa; 4267 uint_t ill_ppa; 4268 4269 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4270 4271 ppa = *((uint_t *)ppa_ptr); 4272 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4273 /* 4274 * We want the ill with the lowest ppa to be on the 4275 * top. 4276 */ 4277 if (ill_ppa < ppa) 4278 return (1); 4279 if (ill_ppa > ppa) 4280 return (-1); 4281 return (0); 4282 } 4283 4284 /* 4285 * remove an interface type from the global list. 4286 */ 4287 static void 4288 ill_delete_interface_type(ill_if_t *interface) 4289 { 4290 ASSERT(interface != NULL); 4291 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4292 4293 avl_destroy(&interface->illif_avl_by_ppa); 4294 if (interface->illif_ppa_arena != NULL) 4295 vmem_destroy(interface->illif_ppa_arena); 4296 4297 remque(interface); 4298 4299 mi_free(interface); 4300 } 4301 4302 /* Defined in ip_netinfo.c */ 4303 extern ddi_taskq_t *eventq_queue_nic; 4304 4305 /* 4306 * remove ill from the global list. 4307 */ 4308 static void 4309 ill_glist_delete(ill_t *ill) 4310 { 4311 char *nicname; 4312 size_t nicnamelen; 4313 hook_nic_event_t *info; 4314 ip_stack_t *ipst; 4315 4316 if (ill == NULL) 4317 return; 4318 ipst = ill->ill_ipst; 4319 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4320 4321 if (ill->ill_name != NULL) { 4322 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4323 if (nicname != NULL) { 4324 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4325 nicnamelen = ill->ill_name_length; 4326 } 4327 } else { 4328 nicname = NULL; 4329 nicnamelen = 0; 4330 } 4331 4332 /* 4333 * If the ill was never inserted into the AVL tree 4334 * we skip the if branch. 4335 */ 4336 if (ill->ill_ifptr != NULL) { 4337 /* 4338 * remove from AVL tree and free ppa number 4339 */ 4340 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4341 4342 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4343 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4344 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4345 } 4346 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4347 ill_delete_interface_type(ill->ill_ifptr); 4348 } 4349 4350 /* 4351 * Indicate ill is no longer in the list. 4352 */ 4353 ill->ill_ifptr = NULL; 4354 ill->ill_name_length = 0; 4355 ill->ill_name[0] = '\0'; 4356 ill->ill_ppa = UINT_MAX; 4357 } 4358 4359 /* 4360 * Run the unplumb hook after the NIC has disappeared from being 4361 * visible so that attempts to revalidate its existance will fail. 4362 * 4363 * This needs to be run inside the ill_g_lock perimeter to ensure 4364 * that the ordering of delivered events to listeners matches the 4365 * order of them in the kernel. 4366 */ 4367 if ((info = ill->ill_nic_event_info) != NULL) { 4368 if (info->hne_event != NE_DOWN) { 4369 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4370 "attached for %s\n", info->hne_event, 4371 ill->ill_name)); 4372 if (info->hne_data != NULL) 4373 kmem_free(info->hne_data, info->hne_datalen); 4374 kmem_free(info, sizeof (hook_nic_event_t)); 4375 } else { 4376 if (ddi_taskq_dispatch(eventq_queue_nic, 4377 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4378 == DDI_FAILURE) { 4379 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4380 "failed\n")); 4381 if (info->hne_data != NULL) 4382 kmem_free(info->hne_data, 4383 info->hne_datalen); 4384 kmem_free(info, sizeof (hook_nic_event_t)); 4385 } 4386 } 4387 } 4388 4389 /* Generate NE_UNPLUMB event for ill_name. */ 4390 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4391 if (info != NULL) { 4392 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4393 info->hne_lif = 0; 4394 info->hne_event = NE_UNPLUMB; 4395 info->hne_data = nicname; 4396 info->hne_datalen = nicnamelen; 4397 info->hne_family = ill->ill_isv6 ? 4398 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4399 } else { 4400 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4401 "information for %s (ENOMEM)\n", ill->ill_name)); 4402 if (nicname != NULL) 4403 kmem_free(nicname, nicnamelen); 4404 } 4405 4406 ill->ill_nic_event_info = info; 4407 4408 ill_phyint_free(ill); 4409 rw_exit(&ipst->ips_ill_g_lock); 4410 } 4411 4412 /* 4413 * allocate a ppa, if the number of plumbed interfaces of this type are 4414 * less than ill_no_arena do a linear search to find a unused ppa. 4415 * When the number goes beyond ill_no_arena switch to using an arena. 4416 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4417 * is the return value for an error condition, so allocation starts at one 4418 * and is decremented by one. 4419 */ 4420 static int 4421 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4422 { 4423 ill_t *tmp_ill; 4424 uint_t start, end; 4425 int ppa; 4426 4427 if (ifp->illif_ppa_arena == NULL && 4428 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4429 /* 4430 * Create an arena. 4431 */ 4432 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4433 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4434 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4435 /* allocate what has already been assigned */ 4436 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4437 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4438 tmp_ill, AVL_AFTER)) { 4439 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4440 1, /* size */ 4441 1, /* align/quantum */ 4442 0, /* phase */ 4443 0, /* nocross */ 4444 /* minaddr */ 4445 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4446 /* maxaddr */ 4447 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4448 VM_NOSLEEP|VM_FIRSTFIT); 4449 if (ppa == 0) { 4450 ip1dbg(("ill_alloc_ppa: ppa allocation" 4451 " failed while switching")); 4452 vmem_destroy(ifp->illif_ppa_arena); 4453 ifp->illif_ppa_arena = NULL; 4454 break; 4455 } 4456 } 4457 } 4458 4459 if (ifp->illif_ppa_arena != NULL) { 4460 if (ill->ill_ppa == UINT_MAX) { 4461 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4462 1, VM_NOSLEEP|VM_FIRSTFIT); 4463 if (ppa == 0) 4464 return (EAGAIN); 4465 ill->ill_ppa = --ppa; 4466 } else { 4467 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4468 1, /* size */ 4469 1, /* align/quantum */ 4470 0, /* phase */ 4471 0, /* nocross */ 4472 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4473 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4474 VM_NOSLEEP|VM_FIRSTFIT); 4475 /* 4476 * Most likely the allocation failed because 4477 * the requested ppa was in use. 4478 */ 4479 if (ppa == 0) 4480 return (EEXIST); 4481 } 4482 return (0); 4483 } 4484 4485 /* 4486 * No arena is in use and not enough (>ill_no_arena) interfaces have 4487 * been plumbed to create one. Do a linear search to get a unused ppa. 4488 */ 4489 if (ill->ill_ppa == UINT_MAX) { 4490 end = UINT_MAX - 1; 4491 start = 0; 4492 } else { 4493 end = start = ill->ill_ppa; 4494 } 4495 4496 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4497 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4498 if (start++ >= end) { 4499 if (ill->ill_ppa == UINT_MAX) 4500 return (EAGAIN); 4501 else 4502 return (EEXIST); 4503 } 4504 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4505 } 4506 ill->ill_ppa = start; 4507 return (0); 4508 } 4509 4510 /* 4511 * Insert ill into the list of configured ill's. Once this function completes, 4512 * the ill is globally visible and is available through lookups. More precisely 4513 * this happens after the caller drops the ill_g_lock. 4514 */ 4515 static int 4516 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4517 { 4518 ill_if_t *ill_interface; 4519 avl_index_t where = 0; 4520 int error; 4521 int name_length; 4522 int index; 4523 boolean_t check_length = B_FALSE; 4524 ip_stack_t *ipst = ill->ill_ipst; 4525 4526 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4527 4528 name_length = mi_strlen(name) + 1; 4529 4530 if (isv6) 4531 index = IP_V6_G_HEAD; 4532 else 4533 index = IP_V4_G_HEAD; 4534 4535 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4536 /* 4537 * Search for interface type based on name 4538 */ 4539 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4540 if ((ill_interface->illif_name_len == name_length) && 4541 (strcmp(ill_interface->illif_name, name) == 0)) { 4542 break; 4543 } 4544 ill_interface = ill_interface->illif_next; 4545 } 4546 4547 /* 4548 * Interface type not found, create one. 4549 */ 4550 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4551 4552 ill_g_head_t ghead; 4553 4554 /* 4555 * allocate ill_if_t structure 4556 */ 4557 4558 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4559 if (ill_interface == NULL) { 4560 return (ENOMEM); 4561 } 4562 4563 4564 4565 (void) strcpy(ill_interface->illif_name, name); 4566 ill_interface->illif_name_len = name_length; 4567 4568 avl_create(&ill_interface->illif_avl_by_ppa, 4569 ill_compare_ppa, sizeof (ill_t), 4570 offsetof(struct ill_s, ill_avl_byppa)); 4571 4572 /* 4573 * link the structure in the back to maintain order 4574 * of configuration for ifconfig output. 4575 */ 4576 ghead = ipst->ips_ill_g_heads[index]; 4577 insque(ill_interface, ghead.ill_g_list_tail); 4578 4579 } 4580 4581 if (ill->ill_ppa == UINT_MAX) 4582 check_length = B_TRUE; 4583 4584 error = ill_alloc_ppa(ill_interface, ill); 4585 if (error != 0) { 4586 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4587 ill_delete_interface_type(ill->ill_ifptr); 4588 return (error); 4589 } 4590 4591 /* 4592 * When the ppa is choosen by the system, check that there is 4593 * enough space to insert ppa. if a specific ppa was passed in this 4594 * check is not required as the interface name passed in will have 4595 * the right ppa in it. 4596 */ 4597 if (check_length) { 4598 /* 4599 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4600 */ 4601 char buf[sizeof (uint_t) * 3]; 4602 4603 /* 4604 * convert ppa to string to calculate the amount of space 4605 * required for it in the name. 4606 */ 4607 numtos(ill->ill_ppa, buf); 4608 4609 /* Do we have enough space to insert ppa ? */ 4610 4611 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4612 /* Free ppa and interface type struct */ 4613 if (ill_interface->illif_ppa_arena != NULL) { 4614 vmem_free(ill_interface->illif_ppa_arena, 4615 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4616 } 4617 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4618 0) { 4619 ill_delete_interface_type(ill->ill_ifptr); 4620 } 4621 4622 return (EINVAL); 4623 } 4624 } 4625 4626 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4627 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4628 4629 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4630 &where); 4631 ill->ill_ifptr = ill_interface; 4632 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4633 4634 ill_phyint_reinit(ill); 4635 return (0); 4636 } 4637 4638 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4639 static boolean_t 4640 ipsq_init(ill_t *ill) 4641 { 4642 ipsq_t *ipsq; 4643 4644 /* Init the ipsq and impicitly enter as writer */ 4645 ill->ill_phyint->phyint_ipsq = 4646 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4647 if (ill->ill_phyint->phyint_ipsq == NULL) 4648 return (B_FALSE); 4649 ipsq = ill->ill_phyint->phyint_ipsq; 4650 ipsq->ipsq_phyint_list = ill->ill_phyint; 4651 ill->ill_phyint->phyint_ipsq_next = NULL; 4652 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4653 ipsq->ipsq_refs = 1; 4654 ipsq->ipsq_writer = curthread; 4655 ipsq->ipsq_reentry_cnt = 1; 4656 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4657 #ifdef ILL_DEBUG 4658 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4659 #endif 4660 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4661 return (B_TRUE); 4662 } 4663 4664 /* 4665 * ill_init is called by ip_open when a device control stream is opened. 4666 * It does a few initializations, and shoots a DL_INFO_REQ message down 4667 * to the driver. The response is later picked up in ip_rput_dlpi and 4668 * used to set up default mechanisms for talking to the driver. (Always 4669 * called as writer.) 4670 * 4671 * If this function returns error, ip_open will call ip_close which in 4672 * turn will call ill_delete to clean up any memory allocated here that 4673 * is not yet freed. 4674 */ 4675 int 4676 ill_init(queue_t *q, ill_t *ill) 4677 { 4678 int count; 4679 dl_info_req_t *dlir; 4680 mblk_t *info_mp; 4681 uchar_t *frag_ptr; 4682 4683 /* 4684 * The ill is initialized to zero by mi_alloc*(). In addition 4685 * some fields already contain valid values, initialized in 4686 * ip_open(), before we reach here. 4687 */ 4688 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4689 4690 ill->ill_rq = q; 4691 ill->ill_wq = WR(q); 4692 4693 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4694 BPRI_HI); 4695 if (info_mp == NULL) 4696 return (ENOMEM); 4697 4698 /* 4699 * Allocate sufficient space to contain our fragment hash table and 4700 * the device name. 4701 */ 4702 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4703 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4704 if (frag_ptr == NULL) { 4705 freemsg(info_mp); 4706 return (ENOMEM); 4707 } 4708 ill->ill_frag_ptr = frag_ptr; 4709 ill->ill_frag_free_num_pkts = 0; 4710 ill->ill_last_frag_clean_time = 0; 4711 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4712 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4713 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4714 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4715 NULL, MUTEX_DEFAULT, NULL); 4716 } 4717 4718 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4719 if (ill->ill_phyint == NULL) { 4720 freemsg(info_mp); 4721 mi_free(frag_ptr); 4722 return (ENOMEM); 4723 } 4724 4725 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4726 /* 4727 * For now pretend this is a v4 ill. We need to set phyint_ill* 4728 * at this point because of the following reason. If we can't 4729 * enter the ipsq at some point and cv_wait, the writer that 4730 * wakes us up tries to locate us using the list of all phyints 4731 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4732 * If we don't set it now, we risk a missed wakeup. 4733 */ 4734 ill->ill_phyint->phyint_illv4 = ill; 4735 ill->ill_ppa = UINT_MAX; 4736 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4737 4738 if (!ipsq_init(ill)) { 4739 freemsg(info_mp); 4740 mi_free(frag_ptr); 4741 mi_free(ill->ill_phyint); 4742 return (ENOMEM); 4743 } 4744 4745 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4746 4747 4748 /* Frag queue limit stuff */ 4749 ill->ill_frag_count = 0; 4750 ill->ill_ipf_gen = 0; 4751 4752 ill->ill_global_timer = INFINITY; 4753 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4754 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4755 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4756 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4757 4758 /* 4759 * Initialize IPv6 configuration variables. The IP module is always 4760 * opened as an IPv4 module. Instead tracking down the cases where 4761 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4762 * here for convenience, this has no effect until the ill is set to do 4763 * IPv6. 4764 */ 4765 ill->ill_reachable_time = ND_REACHABLE_TIME; 4766 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4767 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4768 ill->ill_max_buf = ND_MAX_Q; 4769 ill->ill_refcnt = 0; 4770 4771 /* Send down the Info Request to the driver. */ 4772 info_mp->b_datap->db_type = M_PCPROTO; 4773 dlir = (dl_info_req_t *)info_mp->b_rptr; 4774 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4775 dlir->dl_primitive = DL_INFO_REQ; 4776 4777 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4778 4779 qprocson(q); 4780 ill_dlpi_send(ill, info_mp); 4781 4782 return (0); 4783 } 4784 4785 /* 4786 * ill_dls_info 4787 * creates datalink socket info from the device. 4788 */ 4789 int 4790 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4791 { 4792 size_t len; 4793 ill_t *ill = ipif->ipif_ill; 4794 4795 sdl->sdl_family = AF_LINK; 4796 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4797 sdl->sdl_type = ill->ill_type; 4798 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4799 len = strlen(sdl->sdl_data); 4800 ASSERT(len < 256); 4801 sdl->sdl_nlen = (uchar_t)len; 4802 sdl->sdl_alen = ill->ill_phys_addr_length; 4803 sdl->sdl_slen = 0; 4804 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4805 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4806 4807 return (sizeof (struct sockaddr_dl)); 4808 } 4809 4810 /* 4811 * ill_xarp_info 4812 * creates xarp info from the device. 4813 */ 4814 static int 4815 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4816 { 4817 sdl->sdl_family = AF_LINK; 4818 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4819 sdl->sdl_type = ill->ill_type; 4820 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4821 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4822 sdl->sdl_alen = ill->ill_phys_addr_length; 4823 sdl->sdl_slen = 0; 4824 return (sdl->sdl_nlen); 4825 } 4826 4827 static int 4828 loopback_kstat_update(kstat_t *ksp, int rw) 4829 { 4830 kstat_named_t *kn; 4831 netstackid_t stackid; 4832 netstack_t *ns; 4833 ip_stack_t *ipst; 4834 4835 if (ksp == NULL || ksp->ks_data == NULL) 4836 return (EIO); 4837 4838 if (rw == KSTAT_WRITE) 4839 return (EACCES); 4840 4841 kn = KSTAT_NAMED_PTR(ksp); 4842 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4843 4844 ns = netstack_find_by_stackid(stackid); 4845 if (ns == NULL) 4846 return (-1); 4847 4848 ipst = ns->netstack_ip; 4849 if (ipst == NULL) { 4850 netstack_rele(ns); 4851 return (-1); 4852 } 4853 kn[0].value.ui32 = ipst->ips_loopback_packets; 4854 kn[1].value.ui32 = ipst->ips_loopback_packets; 4855 netstack_rele(ns); 4856 return (0); 4857 } 4858 4859 4860 /* 4861 * Has ifindex been plumbed already. 4862 * Compares both phyint_ifindex and phyint_group_ifindex. 4863 */ 4864 static boolean_t 4865 phyint_exists(uint_t index, ip_stack_t *ipst) 4866 { 4867 phyint_t *phyi; 4868 4869 ASSERT(index != 0); 4870 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4871 /* 4872 * Indexes are stored in the phyint - a common structure 4873 * to both IPv4 and IPv6. 4874 */ 4875 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4876 for (; phyi != NULL; 4877 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4878 phyi, AVL_AFTER)) { 4879 if (phyi->phyint_ifindex == index || 4880 phyi->phyint_group_ifindex == index) 4881 return (B_TRUE); 4882 } 4883 return (B_FALSE); 4884 } 4885 4886 /* Pick a unique ifindex */ 4887 boolean_t 4888 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4889 { 4890 uint_t starting_index; 4891 4892 if (!ipst->ips_ill_index_wrap) { 4893 *indexp = ipst->ips_ill_index++; 4894 if (ipst->ips_ill_index == 0) { 4895 /* Reached the uint_t limit Next time wrap */ 4896 ipst->ips_ill_index_wrap = B_TRUE; 4897 } 4898 return (B_TRUE); 4899 } 4900 4901 /* 4902 * Start reusing unused indexes. Note that we hold the ill_g_lock 4903 * at this point and don't want to call any function that attempts 4904 * to get the lock again. 4905 */ 4906 starting_index = ipst->ips_ill_index++; 4907 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4908 if (ipst->ips_ill_index != 0 && 4909 !phyint_exists(ipst->ips_ill_index, ipst)) { 4910 /* found unused index - use it */ 4911 *indexp = ipst->ips_ill_index; 4912 return (B_TRUE); 4913 } 4914 } 4915 4916 /* 4917 * all interface indicies are inuse. 4918 */ 4919 return (B_FALSE); 4920 } 4921 4922 /* 4923 * Assign a unique interface index for the phyint. 4924 */ 4925 static boolean_t 4926 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4927 { 4928 ASSERT(phyi->phyint_ifindex == 0); 4929 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4930 } 4931 4932 /* 4933 * Return a pointer to the ill which matches the supplied name. Note that 4934 * the ill name length includes the null termination character. (May be 4935 * called as writer.) 4936 * If do_alloc and the interface is "lo0" it will be automatically created. 4937 * Cannot bump up reference on condemned ills. So dup detect can't be done 4938 * using this func. 4939 */ 4940 ill_t * 4941 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4942 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4943 ip_stack_t *ipst) 4944 { 4945 ill_t *ill; 4946 ipif_t *ipif; 4947 kstat_named_t *kn; 4948 boolean_t isloopback; 4949 ipsq_t *old_ipsq; 4950 in6_addr_t ov6addr; 4951 4952 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4953 4954 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4955 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4956 rw_exit(&ipst->ips_ill_g_lock); 4957 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4958 return (ill); 4959 4960 /* 4961 * Couldn't find it. Does this happen to be a lookup for the 4962 * loopback device and are we allowed to allocate it? 4963 */ 4964 if (!isloopback || !do_alloc) 4965 return (NULL); 4966 4967 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4968 4969 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4970 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4971 rw_exit(&ipst->ips_ill_g_lock); 4972 return (ill); 4973 } 4974 4975 /* Create the loopback device on demand */ 4976 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4977 sizeof (ipif_loopback_name), BPRI_MED)); 4978 if (ill == NULL) 4979 goto done; 4980 4981 *ill = ill_null; 4982 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4983 ill->ill_ipst = ipst; 4984 netstack_hold(ipst->ips_netstack); 4985 /* 4986 * For exclusive stacks we set the zoneid to zero 4987 * to make IP operate as if in the global zone. 4988 */ 4989 ill->ill_zoneid = GLOBAL_ZONEID; 4990 4991 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4992 if (ill->ill_phyint == NULL) 4993 goto done; 4994 4995 if (isv6) 4996 ill->ill_phyint->phyint_illv6 = ill; 4997 else 4998 ill->ill_phyint->phyint_illv4 = ill; 4999 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5000 ill->ill_max_frag = IP_LOOPBACK_MTU; 5001 /* Add room for tcp+ip headers */ 5002 if (isv6) { 5003 ill->ill_isv6 = B_TRUE; 5004 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5005 } else { 5006 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5007 } 5008 if (!ill_allocate_mibs(ill)) 5009 goto done; 5010 ill->ill_max_mtu = ill->ill_max_frag; 5011 /* 5012 * ipif_loopback_name can't be pointed at directly because its used 5013 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5014 * from the glist, ill_glist_delete() sets the first character of 5015 * ill_name to '\0'. 5016 */ 5017 ill->ill_name = (char *)ill + sizeof (*ill); 5018 (void) strcpy(ill->ill_name, ipif_loopback_name); 5019 ill->ill_name_length = sizeof (ipif_loopback_name); 5020 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5021 5022 ill->ill_global_timer = INFINITY; 5023 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5024 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5025 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5026 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5027 5028 /* No resolver here. */ 5029 ill->ill_net_type = IRE_LOOPBACK; 5030 5031 /* Initialize the ipsq */ 5032 if (!ipsq_init(ill)) 5033 goto done; 5034 5035 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5036 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5037 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5038 #ifdef ILL_DEBUG 5039 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5040 #endif 5041 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5042 if (ipif == NULL) 5043 goto done; 5044 5045 ill->ill_flags = ILLF_MULTICAST; 5046 5047 ov6addr = ipif->ipif_v6lcl_addr; 5048 /* Set up default loopback address and mask. */ 5049 if (!isv6) { 5050 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5051 5052 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5053 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5054 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5055 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5056 ipif->ipif_v6subnet); 5057 ill->ill_flags |= ILLF_IPV4; 5058 } else { 5059 ipif->ipif_v6lcl_addr = ipv6_loopback; 5060 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5061 ipif->ipif_v6net_mask = ipv6_all_ones; 5062 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5063 ipif->ipif_v6subnet); 5064 ill->ill_flags |= ILLF_IPV6; 5065 } 5066 5067 /* 5068 * Chain us in at the end of the ill list. hold the ill 5069 * before we make it globally visible. 1 for the lookup. 5070 */ 5071 ill->ill_refcnt = 0; 5072 ill_refhold(ill); 5073 5074 ill->ill_frag_count = 0; 5075 ill->ill_frag_free_num_pkts = 0; 5076 ill->ill_last_frag_clean_time = 0; 5077 5078 old_ipsq = ill->ill_phyint->phyint_ipsq; 5079 5080 if (ill_glist_insert(ill, "lo", isv6) != 0) 5081 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5082 5083 /* Let SCTP know so that it can add this to its list */ 5084 sctp_update_ill(ill, SCTP_ILL_INSERT); 5085 5086 /* 5087 * We have already assigned ipif_v6lcl_addr above, but we need to 5088 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5089 * requires to be after ill_glist_insert() since we need the 5090 * ill_index set. Pass on ipv6_loopback as the old address. 5091 */ 5092 sctp_update_ipif_addr(ipif, ov6addr); 5093 5094 /* 5095 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5096 */ 5097 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5098 /* Loopback ills aren't in any IPMP group */ 5099 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5100 ipsq_delete(old_ipsq); 5101 } 5102 5103 /* 5104 * Delay this till the ipif is allocated as ipif_allocate 5105 * de-references ill_phyint for getting the ifindex. We 5106 * can't do this before ipif_allocate because ill_phyint_reinit 5107 * -> phyint_assign_ifindex expects ipif to be present. 5108 */ 5109 mutex_enter(&ill->ill_phyint->phyint_lock); 5110 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5111 mutex_exit(&ill->ill_phyint->phyint_lock); 5112 5113 if (ipst->ips_loopback_ksp == NULL) { 5114 /* Export loopback interface statistics */ 5115 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5116 ipif_loopback_name, "net", 5117 KSTAT_TYPE_NAMED, 2, 0, 5118 ipst->ips_netstack->netstack_stackid); 5119 if (ipst->ips_loopback_ksp != NULL) { 5120 ipst->ips_loopback_ksp->ks_update = 5121 loopback_kstat_update; 5122 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5123 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5124 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5125 ipst->ips_loopback_ksp->ks_private = 5126 (void *)(uintptr_t)ipst->ips_netstack-> 5127 netstack_stackid; 5128 kstat_install(ipst->ips_loopback_ksp); 5129 } 5130 } 5131 5132 if (error != NULL) 5133 *error = 0; 5134 *did_alloc = B_TRUE; 5135 rw_exit(&ipst->ips_ill_g_lock); 5136 return (ill); 5137 done: 5138 if (ill != NULL) { 5139 if (ill->ill_phyint != NULL) { 5140 ipsq_t *ipsq; 5141 5142 ipsq = ill->ill_phyint->phyint_ipsq; 5143 if (ipsq != NULL) { 5144 ipsq->ipsq_ipst = NULL; 5145 kmem_free(ipsq, sizeof (ipsq_t)); 5146 } 5147 mi_free(ill->ill_phyint); 5148 } 5149 ill_free_mib(ill); 5150 if (ill->ill_ipst != NULL) 5151 netstack_rele(ill->ill_ipst->ips_netstack); 5152 mi_free(ill); 5153 } 5154 rw_exit(&ipst->ips_ill_g_lock); 5155 if (error != NULL) 5156 *error = ENOMEM; 5157 return (NULL); 5158 } 5159 5160 /* 5161 * For IPP calls - use the ip_stack_t for global stack. 5162 */ 5163 ill_t * 5164 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5165 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5166 { 5167 ip_stack_t *ipst; 5168 ill_t *ill; 5169 5170 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5171 if (ipst == NULL) { 5172 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5173 return (NULL); 5174 } 5175 5176 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5177 netstack_rele(ipst->ips_netstack); 5178 return (ill); 5179 } 5180 5181 /* 5182 * Return a pointer to the ill which matches the index and IP version type. 5183 */ 5184 ill_t * 5185 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5186 ipsq_func_t func, int *err, ip_stack_t *ipst) 5187 { 5188 ill_t *ill; 5189 ipsq_t *ipsq; 5190 phyint_t *phyi; 5191 5192 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5193 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5194 5195 if (err != NULL) 5196 *err = 0; 5197 5198 /* 5199 * Indexes are stored in the phyint - a common structure 5200 * to both IPv4 and IPv6. 5201 */ 5202 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5203 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5204 (void *) &index, NULL); 5205 if (phyi != NULL) { 5206 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5207 if (ill != NULL) { 5208 /* 5209 * The block comment at the start of ipif_down 5210 * explains the use of the macros used below 5211 */ 5212 GRAB_CONN_LOCK(q); 5213 mutex_enter(&ill->ill_lock); 5214 if (ILL_CAN_LOOKUP(ill)) { 5215 ill_refhold_locked(ill); 5216 mutex_exit(&ill->ill_lock); 5217 RELEASE_CONN_LOCK(q); 5218 rw_exit(&ipst->ips_ill_g_lock); 5219 return (ill); 5220 } else if (ILL_CAN_WAIT(ill, q)) { 5221 ipsq = ill->ill_phyint->phyint_ipsq; 5222 mutex_enter(&ipsq->ipsq_lock); 5223 rw_exit(&ipst->ips_ill_g_lock); 5224 mutex_exit(&ill->ill_lock); 5225 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5226 mutex_exit(&ipsq->ipsq_lock); 5227 RELEASE_CONN_LOCK(q); 5228 *err = EINPROGRESS; 5229 return (NULL); 5230 } 5231 RELEASE_CONN_LOCK(q); 5232 mutex_exit(&ill->ill_lock); 5233 } 5234 } 5235 rw_exit(&ipst->ips_ill_g_lock); 5236 if (err != NULL) 5237 *err = ENXIO; 5238 return (NULL); 5239 } 5240 5241 /* 5242 * Return the ifindex next in sequence after the passed in ifindex. 5243 * If there is no next ifindex for the given protocol, return 0. 5244 */ 5245 uint_t 5246 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5247 { 5248 phyint_t *phyi; 5249 phyint_t *phyi_initial; 5250 uint_t ifindex; 5251 5252 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5253 5254 if (index == 0) { 5255 phyi = avl_first( 5256 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5257 } else { 5258 phyi = phyi_initial = avl_find( 5259 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5260 (void *) &index, NULL); 5261 } 5262 5263 for (; phyi != NULL; 5264 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5265 phyi, AVL_AFTER)) { 5266 /* 5267 * If we're not returning the first interface in the tree 5268 * and we still haven't moved past the phyint_t that 5269 * corresponds to index, avl_walk needs to be called again 5270 */ 5271 if (!((index != 0) && (phyi == phyi_initial))) { 5272 if (isv6) { 5273 if ((phyi->phyint_illv6) && 5274 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5275 (phyi->phyint_illv6->ill_isv6 == 1)) 5276 break; 5277 } else { 5278 if ((phyi->phyint_illv4) && 5279 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5280 (phyi->phyint_illv4->ill_isv6 == 0)) 5281 break; 5282 } 5283 } 5284 } 5285 5286 rw_exit(&ipst->ips_ill_g_lock); 5287 5288 if (phyi != NULL) 5289 ifindex = phyi->phyint_ifindex; 5290 else 5291 ifindex = 0; 5292 5293 return (ifindex); 5294 } 5295 5296 5297 /* 5298 * Return the ifindex for the named interface. 5299 * If there is no next ifindex for the interface, return 0. 5300 */ 5301 uint_t 5302 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5303 { 5304 phyint_t *phyi; 5305 avl_index_t where = 0; 5306 uint_t ifindex; 5307 5308 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5309 5310 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5311 name, &where)) == NULL) { 5312 rw_exit(&ipst->ips_ill_g_lock); 5313 return (0); 5314 } 5315 5316 ifindex = phyi->phyint_ifindex; 5317 5318 rw_exit(&ipst->ips_ill_g_lock); 5319 5320 return (ifindex); 5321 } 5322 5323 5324 /* 5325 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5326 * that gives a running thread a reference to the ill. This reference must be 5327 * released by the thread when it is done accessing the ill and related 5328 * objects. ill_refcnt can not be used to account for static references 5329 * such as other structures pointing to an ill. Callers must generally 5330 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5331 * or be sure that the ill is not being deleted or changing state before 5332 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5333 * ill won't change any of its critical state such as address, netmask etc. 5334 */ 5335 void 5336 ill_refhold(ill_t *ill) 5337 { 5338 mutex_enter(&ill->ill_lock); 5339 ill->ill_refcnt++; 5340 ILL_TRACE_REF(ill); 5341 mutex_exit(&ill->ill_lock); 5342 } 5343 5344 void 5345 ill_refhold_locked(ill_t *ill) 5346 { 5347 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5348 ill->ill_refcnt++; 5349 ILL_TRACE_REF(ill); 5350 } 5351 5352 int 5353 ill_check_and_refhold(ill_t *ill) 5354 { 5355 mutex_enter(&ill->ill_lock); 5356 if (ILL_CAN_LOOKUP(ill)) { 5357 ill_refhold_locked(ill); 5358 mutex_exit(&ill->ill_lock); 5359 return (0); 5360 } 5361 mutex_exit(&ill->ill_lock); 5362 return (ILL_LOOKUP_FAILED); 5363 } 5364 5365 /* 5366 * Must not be called while holding any locks. Otherwise if this is 5367 * the last reference to be released, there is a chance of recursive mutex 5368 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5369 * to restart an ioctl. 5370 */ 5371 void 5372 ill_refrele(ill_t *ill) 5373 { 5374 mutex_enter(&ill->ill_lock); 5375 ASSERT(ill->ill_refcnt != 0); 5376 ill->ill_refcnt--; 5377 ILL_UNTRACE_REF(ill); 5378 if (ill->ill_refcnt != 0) { 5379 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5380 mutex_exit(&ill->ill_lock); 5381 return; 5382 } 5383 5384 /* Drops the ill_lock */ 5385 ipif_ill_refrele_tail(ill); 5386 } 5387 5388 /* 5389 * Obtain a weak reference count on the ill. This reference ensures the 5390 * ill won't be freed, but the ill may change any of its critical state 5391 * such as netmask, address etc. Returns an error if the ill has started 5392 * closing. 5393 */ 5394 boolean_t 5395 ill_waiter_inc(ill_t *ill) 5396 { 5397 mutex_enter(&ill->ill_lock); 5398 if (ill->ill_state_flags & ILL_CONDEMNED) { 5399 mutex_exit(&ill->ill_lock); 5400 return (B_FALSE); 5401 } 5402 ill->ill_waiters++; 5403 mutex_exit(&ill->ill_lock); 5404 return (B_TRUE); 5405 } 5406 5407 void 5408 ill_waiter_dcr(ill_t *ill) 5409 { 5410 mutex_enter(&ill->ill_lock); 5411 ill->ill_waiters--; 5412 if (ill->ill_waiters == 0) 5413 cv_broadcast(&ill->ill_cv); 5414 mutex_exit(&ill->ill_lock); 5415 } 5416 5417 /* 5418 * Named Dispatch routine to produce a formatted report on all ILLs. 5419 * This report is accessed by using the ndd utility to "get" ND variable 5420 * "ip_ill_status". 5421 */ 5422 /* ARGSUSED */ 5423 int 5424 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5425 { 5426 ill_t *ill; 5427 ill_walk_context_t ctx; 5428 ip_stack_t *ipst; 5429 5430 ipst = CONNQ_TO_IPST(q); 5431 5432 (void) mi_mpprintf(mp, 5433 "ILL " MI_COL_HDRPAD_STR 5434 /* 01234567[89ABCDEF] */ 5435 "rq " MI_COL_HDRPAD_STR 5436 /* 01234567[89ABCDEF] */ 5437 "wq " MI_COL_HDRPAD_STR 5438 /* 01234567[89ABCDEF] */ 5439 "upcnt mxfrg err name"); 5440 /* 12345 12345 123 xxxxxxxx */ 5441 5442 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5443 ill = ILL_START_WALK_ALL(&ctx, ipst); 5444 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5445 (void) mi_mpprintf(mp, 5446 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5447 "%05u %05u %03d %s", 5448 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5449 ill->ill_ipif_up_count, 5450 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5451 } 5452 rw_exit(&ipst->ips_ill_g_lock); 5453 5454 return (0); 5455 } 5456 5457 /* 5458 * Named Dispatch routine to produce a formatted report on all IPIFs. 5459 * This report is accessed by using the ndd utility to "get" ND variable 5460 * "ip_ipif_status". 5461 */ 5462 /* ARGSUSED */ 5463 int 5464 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5465 { 5466 char buf1[INET6_ADDRSTRLEN]; 5467 char buf2[INET6_ADDRSTRLEN]; 5468 char buf3[INET6_ADDRSTRLEN]; 5469 char buf4[INET6_ADDRSTRLEN]; 5470 char buf5[INET6_ADDRSTRLEN]; 5471 char buf6[INET6_ADDRSTRLEN]; 5472 char buf[LIFNAMSIZ]; 5473 ill_t *ill; 5474 ipif_t *ipif; 5475 nv_t *nvp; 5476 uint64_t flags; 5477 zoneid_t zoneid; 5478 ill_walk_context_t ctx; 5479 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5480 5481 (void) mi_mpprintf(mp, 5482 "IPIF metric mtu in/out/forward name zone flags...\n" 5483 "\tlocal address\n" 5484 "\tsrc address\n" 5485 "\tsubnet\n" 5486 "\tmask\n" 5487 "\tbroadcast\n" 5488 "\tp-p-dst"); 5489 5490 ASSERT(q->q_next == NULL); 5491 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5492 5493 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5494 ill = ILL_START_WALK_ALL(&ctx, ipst); 5495 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5496 for (ipif = ill->ill_ipif; ipif != NULL; 5497 ipif = ipif->ipif_next) { 5498 if (zoneid != GLOBAL_ZONEID && 5499 zoneid != ipif->ipif_zoneid && 5500 ipif->ipif_zoneid != ALL_ZONES) 5501 continue; 5502 5503 ipif_get_name(ipif, buf, sizeof (buf)); 5504 (void) mi_mpprintf(mp, 5505 MI_COL_PTRFMT_STR 5506 "%04u %05u %u/%u/%u %s %d", 5507 (void *)ipif, 5508 ipif->ipif_metric, ipif->ipif_mtu, 5509 ipif->ipif_ib_pkt_count, 5510 ipif->ipif_ob_pkt_count, 5511 ipif->ipif_fo_pkt_count, 5512 buf, 5513 ipif->ipif_zoneid); 5514 5515 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5516 ipif->ipif_ill->ill_phyint->phyint_flags; 5517 5518 /* Tack on text strings for any flags. */ 5519 nvp = ipif_nv_tbl; 5520 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5521 if (nvp->nv_value & flags) 5522 (void) mi_mpprintf_nr(mp, " %s", 5523 nvp->nv_name); 5524 } 5525 (void) mi_mpprintf(mp, 5526 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5527 inet_ntop(AF_INET6, 5528 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5529 inet_ntop(AF_INET6, 5530 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5531 inet_ntop(AF_INET6, 5532 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5533 inet_ntop(AF_INET6, 5534 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5535 inet_ntop(AF_INET6, 5536 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5537 inet_ntop(AF_INET6, 5538 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5539 } 5540 } 5541 rw_exit(&ipst->ips_ill_g_lock); 5542 return (0); 5543 } 5544 5545 /* 5546 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5547 * driver. We construct best guess defaults for lower level information that 5548 * we need. If an interface is brought up without injection of any overriding 5549 * information from outside, we have to be ready to go with these defaults. 5550 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5551 * we primarely want the dl_provider_style. 5552 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5553 * at which point we assume the other part of the information is valid. 5554 */ 5555 void 5556 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5557 { 5558 uchar_t *brdcst_addr; 5559 uint_t brdcst_addr_length, phys_addr_length; 5560 t_scalar_t sap_length; 5561 dl_info_ack_t *dlia; 5562 ip_m_t *ipm; 5563 dl_qos_cl_sel1_t *sel1; 5564 5565 ASSERT(IAM_WRITER_ILL(ill)); 5566 5567 /* 5568 * Till the ill is fully up ILL_CHANGING will be set and 5569 * the ill is not globally visible. So no need for a lock. 5570 */ 5571 dlia = (dl_info_ack_t *)mp->b_rptr; 5572 ill->ill_mactype = dlia->dl_mac_type; 5573 5574 ipm = ip_m_lookup(dlia->dl_mac_type); 5575 if (ipm == NULL) { 5576 ipm = ip_m_lookup(DL_OTHER); 5577 ASSERT(ipm != NULL); 5578 } 5579 ill->ill_media = ipm; 5580 5581 /* 5582 * When the new DLPI stuff is ready we'll pull lengths 5583 * from dlia. 5584 */ 5585 if (dlia->dl_version == DL_VERSION_2) { 5586 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5587 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5588 brdcst_addr_length); 5589 if (brdcst_addr == NULL) { 5590 brdcst_addr_length = 0; 5591 } 5592 sap_length = dlia->dl_sap_length; 5593 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5594 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5595 brdcst_addr_length, sap_length, phys_addr_length)); 5596 } else { 5597 brdcst_addr_length = 6; 5598 brdcst_addr = ip_six_byte_all_ones; 5599 sap_length = -2; 5600 phys_addr_length = brdcst_addr_length; 5601 } 5602 5603 ill->ill_bcast_addr_length = brdcst_addr_length; 5604 ill->ill_phys_addr_length = phys_addr_length; 5605 ill->ill_sap_length = sap_length; 5606 ill->ill_max_frag = dlia->dl_max_sdu; 5607 ill->ill_max_mtu = ill->ill_max_frag; 5608 5609 ill->ill_type = ipm->ip_m_type; 5610 5611 if (!ill->ill_dlpi_style_set) { 5612 if (dlia->dl_provider_style == DL_STYLE2) 5613 ill->ill_needs_attach = 1; 5614 5615 /* 5616 * Allocate the first ipif on this ill. We don't delay it 5617 * further as ioctl handling assumes atleast one ipif to 5618 * be present. 5619 * 5620 * At this point we don't know whether the ill is v4 or v6. 5621 * We will know this whan the SIOCSLIFNAME happens and 5622 * the correct value for ill_isv6 will be assigned in 5623 * ipif_set_values(). We need to hold the ill lock and 5624 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5625 * the wakeup. 5626 */ 5627 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5628 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5629 mutex_enter(&ill->ill_lock); 5630 ASSERT(ill->ill_dlpi_style_set == 0); 5631 ill->ill_dlpi_style_set = 1; 5632 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5633 cv_broadcast(&ill->ill_cv); 5634 mutex_exit(&ill->ill_lock); 5635 freemsg(mp); 5636 return; 5637 } 5638 ASSERT(ill->ill_ipif != NULL); 5639 /* 5640 * We know whether it is IPv4 or IPv6 now, as this is the 5641 * second DL_INFO_ACK we are recieving in response to the 5642 * DL_INFO_REQ sent in ipif_set_values. 5643 */ 5644 if (ill->ill_isv6) 5645 ill->ill_sap = IP6_DL_SAP; 5646 else 5647 ill->ill_sap = IP_DL_SAP; 5648 /* 5649 * Set ipif_mtu which is used to set the IRE's 5650 * ire_max_frag value. The driver could have sent 5651 * a different mtu from what it sent last time. No 5652 * need to call ipif_mtu_change because IREs have 5653 * not yet been created. 5654 */ 5655 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5656 /* 5657 * Clear all the flags that were set based on ill_bcast_addr_length 5658 * and ill_phys_addr_length (in ipif_set_values) as these could have 5659 * changed now and we need to re-evaluate. 5660 */ 5661 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5662 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5663 5664 /* 5665 * Free ill_resolver_mp and ill_bcast_mp as things could have 5666 * changed now. 5667 */ 5668 if (ill->ill_bcast_addr_length == 0) { 5669 if (ill->ill_resolver_mp != NULL) 5670 freemsg(ill->ill_resolver_mp); 5671 if (ill->ill_bcast_mp != NULL) 5672 freemsg(ill->ill_bcast_mp); 5673 if (ill->ill_flags & ILLF_XRESOLV) 5674 ill->ill_net_type = IRE_IF_RESOLVER; 5675 else 5676 ill->ill_net_type = IRE_IF_NORESOLVER; 5677 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5678 ill->ill_phys_addr_length, 5679 ill->ill_sap, 5680 ill->ill_sap_length); 5681 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5682 5683 if (ill->ill_isv6) 5684 /* 5685 * Note: xresolv interfaces will eventually need NOARP 5686 * set here as well, but that will require those 5687 * external resolvers to have some knowledge of 5688 * that flag and act appropriately. Not to be changed 5689 * at present. 5690 */ 5691 ill->ill_flags |= ILLF_NONUD; 5692 else 5693 ill->ill_flags |= ILLF_NOARP; 5694 5695 if (ill->ill_phys_addr_length == 0) { 5696 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5697 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5698 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5699 } else { 5700 /* pt-pt supports multicast. */ 5701 ill->ill_flags |= ILLF_MULTICAST; 5702 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5703 } 5704 } 5705 } else { 5706 ill->ill_net_type = IRE_IF_RESOLVER; 5707 if (ill->ill_bcast_mp != NULL) 5708 freemsg(ill->ill_bcast_mp); 5709 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5710 ill->ill_bcast_addr_length, ill->ill_sap, 5711 ill->ill_sap_length); 5712 /* 5713 * Later detect lack of DLPI driver multicast 5714 * capability by catching DL_ENABMULTI errors in 5715 * ip_rput_dlpi. 5716 */ 5717 ill->ill_flags |= ILLF_MULTICAST; 5718 if (!ill->ill_isv6) 5719 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5720 } 5721 /* By default an interface does not support any CoS marking */ 5722 ill->ill_flags &= ~ILLF_COS_ENABLED; 5723 5724 /* 5725 * If we get QoS information in DL_INFO_ACK, the device supports 5726 * some form of CoS marking, set ILLF_COS_ENABLED. 5727 */ 5728 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5729 dlia->dl_qos_length); 5730 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5731 ill->ill_flags |= ILLF_COS_ENABLED; 5732 } 5733 5734 /* Clear any previous error indication. */ 5735 ill->ill_error = 0; 5736 freemsg(mp); 5737 } 5738 5739 /* 5740 * Perform various checks to verify that an address would make sense as a 5741 * local, remote, or subnet interface address. 5742 */ 5743 static boolean_t 5744 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5745 { 5746 ipaddr_t net_mask; 5747 5748 /* 5749 * Don't allow all zeroes, all ones or experimental address, but allow 5750 * all ones netmask. 5751 */ 5752 if ((net_mask = ip_net_mask(addr)) == 0) 5753 return (B_FALSE); 5754 /* A given netmask overrides the "guess" netmask */ 5755 if (subnet_mask != 0) 5756 net_mask = subnet_mask; 5757 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5758 (addr == (addr | ~net_mask)))) { 5759 return (B_FALSE); 5760 } 5761 if (CLASSD(addr)) 5762 return (B_FALSE); 5763 5764 return (B_TRUE); 5765 } 5766 5767 #define V6_IPIF_LINKLOCAL(p) \ 5768 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5769 5770 /* 5771 * Compare two given ipifs and check if the second one is better than 5772 * the first one using the order of preference (not taking deprecated 5773 * into acount) specified in ipif_lookup_multicast(). 5774 */ 5775 static boolean_t 5776 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5777 { 5778 /* Check the least preferred first. */ 5779 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5780 /* If both ipifs are the same, use the first one. */ 5781 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5782 return (B_FALSE); 5783 else 5784 return (B_TRUE); 5785 } 5786 5787 /* For IPv6, check for link local address. */ 5788 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5789 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5790 V6_IPIF_LINKLOCAL(new_ipif)) { 5791 /* The second one is equal or less preferred. */ 5792 return (B_FALSE); 5793 } else { 5794 return (B_TRUE); 5795 } 5796 } 5797 5798 /* Then check for point to point interface. */ 5799 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5800 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5801 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5802 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5803 return (B_FALSE); 5804 } else { 5805 return (B_TRUE); 5806 } 5807 } 5808 5809 /* old_ipif is a normal interface, so no need to use the new one. */ 5810 return (B_FALSE); 5811 } 5812 5813 /* 5814 * Find any non-virtual, not condemned, and up multicast capable interface 5815 * given an IP instance and zoneid. Order of preference is: 5816 * 5817 * 1. normal 5818 * 1.1 normal, but deprecated 5819 * 2. point to point 5820 * 2.1 point to point, but deprecated 5821 * 3. link local 5822 * 3.1 link local, but deprecated 5823 * 4. loopback. 5824 */ 5825 ipif_t * 5826 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5827 { 5828 ill_t *ill; 5829 ill_walk_context_t ctx; 5830 ipif_t *ipif; 5831 ipif_t *saved_ipif = NULL; 5832 ipif_t *dep_ipif = NULL; 5833 5834 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5835 if (isv6) 5836 ill = ILL_START_WALK_V6(&ctx, ipst); 5837 else 5838 ill = ILL_START_WALK_V4(&ctx, ipst); 5839 5840 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5841 mutex_enter(&ill->ill_lock); 5842 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5843 !(ill->ill_flags & ILLF_MULTICAST)) { 5844 mutex_exit(&ill->ill_lock); 5845 continue; 5846 } 5847 for (ipif = ill->ill_ipif; ipif != NULL; 5848 ipif = ipif->ipif_next) { 5849 if (zoneid != ipif->ipif_zoneid && 5850 zoneid != ALL_ZONES && 5851 ipif->ipif_zoneid != ALL_ZONES) { 5852 continue; 5853 } 5854 if (!(ipif->ipif_flags & IPIF_UP) || 5855 !IPIF_CAN_LOOKUP(ipif)) { 5856 continue; 5857 } 5858 5859 /* 5860 * Found one candidate. If it is deprecated, 5861 * remember it in dep_ipif. If it is not deprecated, 5862 * remember it in saved_ipif. 5863 */ 5864 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5865 if (dep_ipif == NULL) { 5866 dep_ipif = ipif; 5867 } else if (ipif_comp_multi(dep_ipif, ipif, 5868 isv6)) { 5869 /* 5870 * If the previous dep_ipif does not 5871 * belong to the same ill, we've done 5872 * a ipif_refhold() on it. So we need 5873 * to release it. 5874 */ 5875 if (dep_ipif->ipif_ill != ill) 5876 ipif_refrele(dep_ipif); 5877 dep_ipif = ipif; 5878 } 5879 continue; 5880 } 5881 if (saved_ipif == NULL) { 5882 saved_ipif = ipif; 5883 } else { 5884 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5885 if (saved_ipif->ipif_ill != ill) 5886 ipif_refrele(saved_ipif); 5887 saved_ipif = ipif; 5888 } 5889 } 5890 } 5891 /* 5892 * Before going to the next ill, do a ipif_refhold() on the 5893 * saved ones. 5894 */ 5895 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5896 ipif_refhold_locked(saved_ipif); 5897 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5898 ipif_refhold_locked(dep_ipif); 5899 mutex_exit(&ill->ill_lock); 5900 } 5901 rw_exit(&ipst->ips_ill_g_lock); 5902 5903 /* 5904 * If we have only the saved_ipif, return it. But if we have both 5905 * saved_ipif and dep_ipif, check to see which one is better. 5906 */ 5907 if (saved_ipif != NULL) { 5908 if (dep_ipif != NULL) { 5909 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5910 ipif_refrele(saved_ipif); 5911 return (dep_ipif); 5912 } else { 5913 ipif_refrele(dep_ipif); 5914 return (saved_ipif); 5915 } 5916 } 5917 return (saved_ipif); 5918 } else { 5919 return (dep_ipif); 5920 } 5921 } 5922 5923 /* 5924 * This function is called when an application does not specify an interface 5925 * to be used for multicast traffic (joining a group/sending data). It 5926 * calls ire_lookup_multi() to look for an interface route for the 5927 * specified multicast group. Doing this allows the administrator to add 5928 * prefix routes for multicast to indicate which interface to be used for 5929 * multicast traffic in the above scenario. The route could be for all 5930 * multicast (224.0/4), for a single multicast group (a /32 route) or 5931 * anything in between. If there is no such multicast route, we just find 5932 * any multicast capable interface and return it. The returned ipif 5933 * is refhold'ed. 5934 */ 5935 ipif_t * 5936 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5937 { 5938 ire_t *ire; 5939 ipif_t *ipif; 5940 5941 ire = ire_lookup_multi(group, zoneid, ipst); 5942 if (ire != NULL) { 5943 ipif = ire->ire_ipif; 5944 ipif_refhold(ipif); 5945 ire_refrele(ire); 5946 return (ipif); 5947 } 5948 5949 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5950 } 5951 5952 /* 5953 * Look for an ipif with the specified interface address and destination. 5954 * The destination address is used only for matching point-to-point interfaces. 5955 */ 5956 ipif_t * 5957 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5958 ipsq_func_t func, int *error, ip_stack_t *ipst) 5959 { 5960 ipif_t *ipif; 5961 ill_t *ill; 5962 ill_walk_context_t ctx; 5963 ipsq_t *ipsq; 5964 5965 if (error != NULL) 5966 *error = 0; 5967 5968 /* 5969 * First match all the point-to-point interfaces 5970 * before looking at non-point-to-point interfaces. 5971 * This is done to avoid returning non-point-to-point 5972 * ipif instead of unnumbered point-to-point ipif. 5973 */ 5974 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5975 ill = ILL_START_WALK_V4(&ctx, ipst); 5976 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5977 GRAB_CONN_LOCK(q); 5978 mutex_enter(&ill->ill_lock); 5979 for (ipif = ill->ill_ipif; ipif != NULL; 5980 ipif = ipif->ipif_next) { 5981 /* Allow the ipif to be down */ 5982 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5983 (ipif->ipif_lcl_addr == if_addr) && 5984 (ipif->ipif_pp_dst_addr == dst)) { 5985 /* 5986 * The block comment at the start of ipif_down 5987 * explains the use of the macros used below 5988 */ 5989 if (IPIF_CAN_LOOKUP(ipif)) { 5990 ipif_refhold_locked(ipif); 5991 mutex_exit(&ill->ill_lock); 5992 RELEASE_CONN_LOCK(q); 5993 rw_exit(&ipst->ips_ill_g_lock); 5994 return (ipif); 5995 } else if (IPIF_CAN_WAIT(ipif, q)) { 5996 ipsq = ill->ill_phyint->phyint_ipsq; 5997 mutex_enter(&ipsq->ipsq_lock); 5998 mutex_exit(&ill->ill_lock); 5999 rw_exit(&ipst->ips_ill_g_lock); 6000 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6001 ill); 6002 mutex_exit(&ipsq->ipsq_lock); 6003 RELEASE_CONN_LOCK(q); 6004 *error = EINPROGRESS; 6005 return (NULL); 6006 } 6007 } 6008 } 6009 mutex_exit(&ill->ill_lock); 6010 RELEASE_CONN_LOCK(q); 6011 } 6012 rw_exit(&ipst->ips_ill_g_lock); 6013 6014 /* lookup the ipif based on interface address */ 6015 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6016 ipst); 6017 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6018 return (ipif); 6019 } 6020 6021 /* 6022 * Look for an ipif with the specified address. For point-point links 6023 * we look for matches on either the destination address and the local 6024 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6025 * is set. 6026 * Matches on a specific ill if match_ill is set. 6027 */ 6028 ipif_t * 6029 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6030 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6031 { 6032 ipif_t *ipif; 6033 ill_t *ill; 6034 boolean_t ptp = B_FALSE; 6035 ipsq_t *ipsq; 6036 ill_walk_context_t ctx; 6037 6038 if (error != NULL) 6039 *error = 0; 6040 6041 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6042 /* 6043 * Repeat twice, first based on local addresses and 6044 * next time for pointopoint. 6045 */ 6046 repeat: 6047 ill = ILL_START_WALK_V4(&ctx, ipst); 6048 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6049 if (match_ill != NULL && ill != match_ill) { 6050 continue; 6051 } 6052 GRAB_CONN_LOCK(q); 6053 mutex_enter(&ill->ill_lock); 6054 for (ipif = ill->ill_ipif; ipif != NULL; 6055 ipif = ipif->ipif_next) { 6056 if (zoneid != ALL_ZONES && 6057 zoneid != ipif->ipif_zoneid && 6058 ipif->ipif_zoneid != ALL_ZONES) 6059 continue; 6060 /* Allow the ipif to be down */ 6061 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6062 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6063 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6064 (ipif->ipif_pp_dst_addr == addr))) { 6065 /* 6066 * The block comment at the start of ipif_down 6067 * explains the use of the macros used below 6068 */ 6069 if (IPIF_CAN_LOOKUP(ipif)) { 6070 ipif_refhold_locked(ipif); 6071 mutex_exit(&ill->ill_lock); 6072 RELEASE_CONN_LOCK(q); 6073 rw_exit(&ipst->ips_ill_g_lock); 6074 return (ipif); 6075 } else if (IPIF_CAN_WAIT(ipif, q)) { 6076 ipsq = ill->ill_phyint->phyint_ipsq; 6077 mutex_enter(&ipsq->ipsq_lock); 6078 mutex_exit(&ill->ill_lock); 6079 rw_exit(&ipst->ips_ill_g_lock); 6080 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6081 ill); 6082 mutex_exit(&ipsq->ipsq_lock); 6083 RELEASE_CONN_LOCK(q); 6084 *error = EINPROGRESS; 6085 return (NULL); 6086 } 6087 } 6088 } 6089 mutex_exit(&ill->ill_lock); 6090 RELEASE_CONN_LOCK(q); 6091 } 6092 6093 /* If we already did the ptp case, then we are done */ 6094 if (ptp) { 6095 rw_exit(&ipst->ips_ill_g_lock); 6096 if (error != NULL) 6097 *error = ENXIO; 6098 return (NULL); 6099 } 6100 ptp = B_TRUE; 6101 goto repeat; 6102 } 6103 6104 /* 6105 * Look for an ipif with the specified address. For point-point links 6106 * we look for matches on either the destination address and the local 6107 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6108 * is set. 6109 * Matches on a specific ill if match_ill is set. 6110 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6111 */ 6112 zoneid_t 6113 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6114 { 6115 zoneid_t zoneid; 6116 ipif_t *ipif; 6117 ill_t *ill; 6118 boolean_t ptp = B_FALSE; 6119 ill_walk_context_t ctx; 6120 6121 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6122 /* 6123 * Repeat twice, first based on local addresses and 6124 * next time for pointopoint. 6125 */ 6126 repeat: 6127 ill = ILL_START_WALK_V4(&ctx, ipst); 6128 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6129 if (match_ill != NULL && ill != match_ill) { 6130 continue; 6131 } 6132 mutex_enter(&ill->ill_lock); 6133 for (ipif = ill->ill_ipif; ipif != NULL; 6134 ipif = ipif->ipif_next) { 6135 /* Allow the ipif to be down */ 6136 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6137 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6138 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6139 (ipif->ipif_pp_dst_addr == addr)) && 6140 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6141 zoneid = ipif->ipif_zoneid; 6142 mutex_exit(&ill->ill_lock); 6143 rw_exit(&ipst->ips_ill_g_lock); 6144 /* 6145 * If ipif_zoneid was ALL_ZONES then we have 6146 * a trusted extensions shared IP address. 6147 * In that case GLOBAL_ZONEID works to send. 6148 */ 6149 if (zoneid == ALL_ZONES) 6150 zoneid = GLOBAL_ZONEID; 6151 return (zoneid); 6152 } 6153 } 6154 mutex_exit(&ill->ill_lock); 6155 } 6156 6157 /* If we already did the ptp case, then we are done */ 6158 if (ptp) { 6159 rw_exit(&ipst->ips_ill_g_lock); 6160 return (ALL_ZONES); 6161 } 6162 ptp = B_TRUE; 6163 goto repeat; 6164 } 6165 6166 /* 6167 * Look for an ipif that matches the specified remote address i.e. the 6168 * ipif that would receive the specified packet. 6169 * First look for directly connected interfaces and then do a recursive 6170 * IRE lookup and pick the first ipif corresponding to the source address in the 6171 * ire. 6172 * Returns: held ipif 6173 */ 6174 ipif_t * 6175 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6176 { 6177 ipif_t *ipif; 6178 ire_t *ire; 6179 ip_stack_t *ipst = ill->ill_ipst; 6180 6181 ASSERT(!ill->ill_isv6); 6182 6183 /* 6184 * Someone could be changing this ipif currently or change it 6185 * after we return this. Thus a few packets could use the old 6186 * old values. However structure updates/creates (ire, ilg, ilm etc) 6187 * will atomically be updated or cleaned up with the new value 6188 * Thus we don't need a lock to check the flags or other attrs below. 6189 */ 6190 mutex_enter(&ill->ill_lock); 6191 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6192 if (!IPIF_CAN_LOOKUP(ipif)) 6193 continue; 6194 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6195 ipif->ipif_zoneid != ALL_ZONES) 6196 continue; 6197 /* Allow the ipif to be down */ 6198 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6199 if ((ipif->ipif_pp_dst_addr == addr) || 6200 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6201 ipif->ipif_lcl_addr == addr)) { 6202 ipif_refhold_locked(ipif); 6203 mutex_exit(&ill->ill_lock); 6204 return (ipif); 6205 } 6206 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6207 ipif_refhold_locked(ipif); 6208 mutex_exit(&ill->ill_lock); 6209 return (ipif); 6210 } 6211 } 6212 mutex_exit(&ill->ill_lock); 6213 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6214 NULL, MATCH_IRE_RECURSIVE, ipst); 6215 if (ire != NULL) { 6216 /* 6217 * The callers of this function wants to know the 6218 * interface on which they have to send the replies 6219 * back. For IRE_CACHES that have ire_stq and ire_ipif 6220 * derived from different ills, we really don't care 6221 * what we return here. 6222 */ 6223 ipif = ire->ire_ipif; 6224 if (ipif != NULL) { 6225 ipif_refhold(ipif); 6226 ire_refrele(ire); 6227 return (ipif); 6228 } 6229 ire_refrele(ire); 6230 } 6231 /* Pick the first interface */ 6232 ipif = ipif_get_next_ipif(NULL, ill); 6233 return (ipif); 6234 } 6235 6236 /* 6237 * This func does not prevent refcnt from increasing. But if 6238 * the caller has taken steps to that effect, then this func 6239 * can be used to determine whether the ill has become quiescent 6240 */ 6241 boolean_t 6242 ill_is_quiescent(ill_t *ill) 6243 { 6244 ipif_t *ipif; 6245 6246 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6247 6248 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6249 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6250 return (B_FALSE); 6251 } 6252 } 6253 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6254 ill->ill_nce_cnt != 0) { 6255 return (B_FALSE); 6256 } 6257 return (B_TRUE); 6258 } 6259 6260 /* 6261 * This func does not prevent refcnt from increasing. But if 6262 * the caller has taken steps to that effect, then this func 6263 * can be used to determine whether the ipif has become quiescent 6264 */ 6265 static boolean_t 6266 ipif_is_quiescent(ipif_t *ipif) 6267 { 6268 ill_t *ill; 6269 6270 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6271 6272 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6273 return (B_FALSE); 6274 } 6275 6276 ill = ipif->ipif_ill; 6277 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6278 ill->ill_logical_down) { 6279 return (B_TRUE); 6280 } 6281 6282 /* This is the last ipif going down or being deleted on this ill */ 6283 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6284 return (B_FALSE); 6285 } 6286 6287 return (B_TRUE); 6288 } 6289 6290 /* 6291 * This func does not prevent refcnt from increasing. But if 6292 * the caller has taken steps to that effect, then this func 6293 * can be used to determine whether the ipifs marked with IPIF_MOVING 6294 * have become quiescent and can be moved in a failover/failback. 6295 */ 6296 static ipif_t * 6297 ill_quiescent_to_move(ill_t *ill) 6298 { 6299 ipif_t *ipif; 6300 6301 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6302 6303 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6304 if (ipif->ipif_state_flags & IPIF_MOVING) { 6305 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6306 return (ipif); 6307 } 6308 } 6309 } 6310 return (NULL); 6311 } 6312 6313 /* 6314 * The ipif/ill/ire has been refreled. Do the tail processing. 6315 * Determine if the ipif or ill in question has become quiescent and if so 6316 * wakeup close and/or restart any queued pending ioctl that is waiting 6317 * for the ipif_down (or ill_down) 6318 */ 6319 void 6320 ipif_ill_refrele_tail(ill_t *ill) 6321 { 6322 mblk_t *mp; 6323 conn_t *connp; 6324 ipsq_t *ipsq; 6325 ipif_t *ipif; 6326 dl_notify_ind_t *dlindp; 6327 6328 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6329 6330 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6331 ill_is_quiescent(ill)) { 6332 /* ill_close may be waiting */ 6333 cv_broadcast(&ill->ill_cv); 6334 } 6335 6336 /* ipsq can't change because ill_lock is held */ 6337 ipsq = ill->ill_phyint->phyint_ipsq; 6338 if (ipsq->ipsq_waitfor == 0) { 6339 /* Not waiting for anything, just return. */ 6340 mutex_exit(&ill->ill_lock); 6341 return; 6342 } 6343 ASSERT(ipsq->ipsq_pending_mp != NULL && 6344 ipsq->ipsq_pending_ipif != NULL); 6345 /* 6346 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6347 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6348 * be zero for restarting an ioctl that ends up downing the ill. 6349 */ 6350 ipif = ipsq->ipsq_pending_ipif; 6351 if (ipif->ipif_ill != ill) { 6352 /* The ioctl is pending on some other ill. */ 6353 mutex_exit(&ill->ill_lock); 6354 return; 6355 } 6356 6357 switch (ipsq->ipsq_waitfor) { 6358 case IPIF_DOWN: 6359 case IPIF_FREE: 6360 if (!ipif_is_quiescent(ipif)) { 6361 mutex_exit(&ill->ill_lock); 6362 return; 6363 } 6364 break; 6365 6366 case ILL_DOWN: 6367 case ILL_FREE: 6368 /* 6369 * case ILL_FREE arises only for loopback. otherwise ill_delete 6370 * waits synchronously in ip_close, and no message is queued in 6371 * ipsq_pending_mp at all in this case 6372 */ 6373 if (!ill_is_quiescent(ill)) { 6374 mutex_exit(&ill->ill_lock); 6375 return; 6376 } 6377 6378 break; 6379 6380 case ILL_MOVE_OK: 6381 if (ill_quiescent_to_move(ill) != NULL) { 6382 mutex_exit(&ill->ill_lock); 6383 return; 6384 } 6385 6386 break; 6387 default: 6388 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6389 (void *)ipsq, ipsq->ipsq_waitfor); 6390 } 6391 6392 /* 6393 * Incr refcnt for the qwriter_ip call below which 6394 * does a refrele 6395 */ 6396 ill_refhold_locked(ill); 6397 mutex_exit(&ill->ill_lock); 6398 6399 mp = ipsq_pending_mp_get(ipsq, &connp); 6400 ASSERT(mp != NULL); 6401 6402 /* 6403 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6404 * we can only get here when the current operation decides it 6405 * it needs to quiesce via ipsq_pending_mp_add(). 6406 */ 6407 switch (mp->b_datap->db_type) { 6408 case M_PCPROTO: 6409 case M_PROTO: 6410 /* 6411 * For now, only DL_NOTIFY_IND messages can use this facility. 6412 */ 6413 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6414 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6415 6416 switch (dlindp->dl_notification) { 6417 case DL_NOTE_PHYS_ADDR: 6418 qwriter_ip(ill, ill->ill_rq, mp, 6419 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6420 return; 6421 default: 6422 ASSERT(0); 6423 } 6424 break; 6425 6426 case M_ERROR: 6427 case M_HANGUP: 6428 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6429 B_TRUE); 6430 return; 6431 6432 case M_IOCTL: 6433 case M_IOCDATA: 6434 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6435 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6436 return; 6437 6438 default: 6439 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6440 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6441 } 6442 } 6443 6444 #ifdef ILL_DEBUG 6445 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6446 void 6447 th_trace_rrecord(th_trace_t *th_trace) 6448 { 6449 tr_buf_t *tr_buf; 6450 uint_t lastref; 6451 6452 lastref = th_trace->th_trace_lastref; 6453 lastref++; 6454 if (lastref == TR_BUF_MAX) 6455 lastref = 0; 6456 th_trace->th_trace_lastref = lastref; 6457 tr_buf = &th_trace->th_trbuf[lastref]; 6458 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6459 } 6460 6461 th_trace_t * 6462 th_trace_ipif_lookup(ipif_t *ipif) 6463 { 6464 int bucket_id; 6465 th_trace_t *th_trace; 6466 6467 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6468 6469 bucket_id = IP_TR_HASH(curthread); 6470 ASSERT(bucket_id < IP_TR_HASH_MAX); 6471 6472 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6473 th_trace = th_trace->th_next) { 6474 if (th_trace->th_id == curthread) 6475 return (th_trace); 6476 } 6477 return (NULL); 6478 } 6479 6480 void 6481 ipif_trace_ref(ipif_t *ipif) 6482 { 6483 int bucket_id; 6484 th_trace_t *th_trace; 6485 6486 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6487 6488 if (ipif->ipif_trace_disable) 6489 return; 6490 6491 /* 6492 * Attempt to locate the trace buffer for the curthread. 6493 * If it does not exist, then allocate a new trace buffer 6494 * and link it in list of trace bufs for this ipif, at the head 6495 */ 6496 th_trace = th_trace_ipif_lookup(ipif); 6497 if (th_trace == NULL) { 6498 bucket_id = IP_TR_HASH(curthread); 6499 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6500 KM_NOSLEEP); 6501 if (th_trace == NULL) { 6502 ipif->ipif_trace_disable = B_TRUE; 6503 ipif_trace_cleanup(ipif); 6504 return; 6505 } 6506 th_trace->th_id = curthread; 6507 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6508 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6509 if (th_trace->th_next != NULL) 6510 th_trace->th_next->th_prev = &th_trace->th_next; 6511 ipif->ipif_trace[bucket_id] = th_trace; 6512 } 6513 ASSERT(th_trace->th_refcnt >= 0 && 6514 th_trace->th_refcnt < TR_BUF_MAX -1); 6515 th_trace->th_refcnt++; 6516 th_trace_rrecord(th_trace); 6517 } 6518 6519 void 6520 ipif_untrace_ref(ipif_t *ipif) 6521 { 6522 th_trace_t *th_trace; 6523 6524 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6525 6526 if (ipif->ipif_trace_disable) 6527 return; 6528 th_trace = th_trace_ipif_lookup(ipif); 6529 ASSERT(th_trace != NULL); 6530 ASSERT(th_trace->th_refcnt > 0); 6531 6532 th_trace->th_refcnt--; 6533 th_trace_rrecord(th_trace); 6534 } 6535 6536 th_trace_t * 6537 th_trace_ill_lookup(ill_t *ill) 6538 { 6539 th_trace_t *th_trace; 6540 int bucket_id; 6541 6542 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6543 6544 bucket_id = IP_TR_HASH(curthread); 6545 ASSERT(bucket_id < IP_TR_HASH_MAX); 6546 6547 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6548 th_trace = th_trace->th_next) { 6549 if (th_trace->th_id == curthread) 6550 return (th_trace); 6551 } 6552 return (NULL); 6553 } 6554 6555 void 6556 ill_trace_ref(ill_t *ill) 6557 { 6558 int bucket_id; 6559 th_trace_t *th_trace; 6560 6561 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6562 if (ill->ill_trace_disable) 6563 return; 6564 /* 6565 * Attempt to locate the trace buffer for the curthread. 6566 * If it does not exist, then allocate a new trace buffer 6567 * and link it in list of trace bufs for this ill, at the head 6568 */ 6569 th_trace = th_trace_ill_lookup(ill); 6570 if (th_trace == NULL) { 6571 bucket_id = IP_TR_HASH(curthread); 6572 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6573 KM_NOSLEEP); 6574 if (th_trace == NULL) { 6575 ill->ill_trace_disable = B_TRUE; 6576 ill_trace_cleanup(ill); 6577 return; 6578 } 6579 th_trace->th_id = curthread; 6580 th_trace->th_next = ill->ill_trace[bucket_id]; 6581 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6582 if (th_trace->th_next != NULL) 6583 th_trace->th_next->th_prev = &th_trace->th_next; 6584 ill->ill_trace[bucket_id] = th_trace; 6585 } 6586 ASSERT(th_trace->th_refcnt >= 0 && 6587 th_trace->th_refcnt < TR_BUF_MAX - 1); 6588 6589 th_trace->th_refcnt++; 6590 th_trace_rrecord(th_trace); 6591 } 6592 6593 void 6594 ill_untrace_ref(ill_t *ill) 6595 { 6596 th_trace_t *th_trace; 6597 6598 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6599 6600 if (ill->ill_trace_disable) 6601 return; 6602 th_trace = th_trace_ill_lookup(ill); 6603 ASSERT(th_trace != NULL); 6604 ASSERT(th_trace->th_refcnt > 0); 6605 6606 th_trace->th_refcnt--; 6607 th_trace_rrecord(th_trace); 6608 } 6609 6610 /* 6611 * Verify that this thread has no refs to the ipif and free 6612 * the trace buffers 6613 */ 6614 /* ARGSUSED */ 6615 void 6616 ipif_thread_exit(ipif_t *ipif, void *dummy) 6617 { 6618 th_trace_t *th_trace; 6619 6620 mutex_enter(&ipif->ipif_ill->ill_lock); 6621 6622 th_trace = th_trace_ipif_lookup(ipif); 6623 if (th_trace == NULL) { 6624 mutex_exit(&ipif->ipif_ill->ill_lock); 6625 return; 6626 } 6627 ASSERT(th_trace->th_refcnt == 0); 6628 /* unlink th_trace and free it */ 6629 *th_trace->th_prev = th_trace->th_next; 6630 if (th_trace->th_next != NULL) 6631 th_trace->th_next->th_prev = th_trace->th_prev; 6632 th_trace->th_next = NULL; 6633 th_trace->th_prev = NULL; 6634 kmem_free(th_trace, sizeof (th_trace_t)); 6635 6636 mutex_exit(&ipif->ipif_ill->ill_lock); 6637 } 6638 6639 /* 6640 * Verify that this thread has no refs to the ill and free 6641 * the trace buffers 6642 */ 6643 /* ARGSUSED */ 6644 void 6645 ill_thread_exit(ill_t *ill, void *dummy) 6646 { 6647 th_trace_t *th_trace; 6648 6649 mutex_enter(&ill->ill_lock); 6650 6651 th_trace = th_trace_ill_lookup(ill); 6652 if (th_trace == NULL) { 6653 mutex_exit(&ill->ill_lock); 6654 return; 6655 } 6656 ASSERT(th_trace->th_refcnt == 0); 6657 /* unlink th_trace and free it */ 6658 *th_trace->th_prev = th_trace->th_next; 6659 if (th_trace->th_next != NULL) 6660 th_trace->th_next->th_prev = th_trace->th_prev; 6661 th_trace->th_next = NULL; 6662 th_trace->th_prev = NULL; 6663 kmem_free(th_trace, sizeof (th_trace_t)); 6664 6665 mutex_exit(&ill->ill_lock); 6666 } 6667 #endif 6668 6669 #ifdef ILL_DEBUG 6670 void 6671 ip_thread_exit_stack(ip_stack_t *ipst) 6672 { 6673 ill_t *ill; 6674 ipif_t *ipif; 6675 ill_walk_context_t ctx; 6676 6677 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6678 ill = ILL_START_WALK_ALL(&ctx, ipst); 6679 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6680 for (ipif = ill->ill_ipif; ipif != NULL; 6681 ipif = ipif->ipif_next) { 6682 ipif_thread_exit(ipif, NULL); 6683 } 6684 ill_thread_exit(ill, NULL); 6685 } 6686 rw_exit(&ipst->ips_ill_g_lock); 6687 6688 ire_walk(ire_thread_exit, NULL, ipst); 6689 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6690 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6691 } 6692 6693 /* 6694 * This is a function which is called from thread_exit 6695 * that can be used to debug reference count issues in IP. See comment in 6696 * <inet/ip.h> on how it is used. 6697 */ 6698 void 6699 ip_thread_exit(void) 6700 { 6701 netstack_t *ns; 6702 6703 ns = netstack_get_current(); 6704 if (ns != NULL) { 6705 ip_thread_exit_stack(ns->netstack_ip); 6706 netstack_rele(ns); 6707 } 6708 } 6709 6710 /* 6711 * Called when ipif is unplumbed or when memory alloc fails 6712 */ 6713 void 6714 ipif_trace_cleanup(ipif_t *ipif) 6715 { 6716 int i; 6717 th_trace_t *th_trace; 6718 th_trace_t *th_trace_next; 6719 6720 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6721 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6722 th_trace = th_trace_next) { 6723 th_trace_next = th_trace->th_next; 6724 kmem_free(th_trace, sizeof (th_trace_t)); 6725 } 6726 ipif->ipif_trace[i] = NULL; 6727 } 6728 } 6729 6730 /* 6731 * Called when ill is unplumbed or when memory alloc fails 6732 */ 6733 void 6734 ill_trace_cleanup(ill_t *ill) 6735 { 6736 int i; 6737 th_trace_t *th_trace; 6738 th_trace_t *th_trace_next; 6739 6740 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6741 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6742 th_trace = th_trace_next) { 6743 th_trace_next = th_trace->th_next; 6744 kmem_free(th_trace, sizeof (th_trace_t)); 6745 } 6746 ill->ill_trace[i] = NULL; 6747 } 6748 } 6749 6750 #else 6751 void ip_thread_exit(void) {} 6752 #endif 6753 6754 void 6755 ipif_refhold_locked(ipif_t *ipif) 6756 { 6757 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6758 ipif->ipif_refcnt++; 6759 IPIF_TRACE_REF(ipif); 6760 } 6761 6762 void 6763 ipif_refhold(ipif_t *ipif) 6764 { 6765 ill_t *ill; 6766 6767 ill = ipif->ipif_ill; 6768 mutex_enter(&ill->ill_lock); 6769 ipif->ipif_refcnt++; 6770 IPIF_TRACE_REF(ipif); 6771 mutex_exit(&ill->ill_lock); 6772 } 6773 6774 /* 6775 * Must not be called while holding any locks. Otherwise if this is 6776 * the last reference to be released there is a chance of recursive mutex 6777 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6778 * to restart an ioctl. 6779 */ 6780 void 6781 ipif_refrele(ipif_t *ipif) 6782 { 6783 ill_t *ill; 6784 6785 ill = ipif->ipif_ill; 6786 6787 mutex_enter(&ill->ill_lock); 6788 ASSERT(ipif->ipif_refcnt != 0); 6789 ipif->ipif_refcnt--; 6790 IPIF_UNTRACE_REF(ipif); 6791 if (ipif->ipif_refcnt != 0) { 6792 mutex_exit(&ill->ill_lock); 6793 return; 6794 } 6795 6796 /* Drops the ill_lock */ 6797 ipif_ill_refrele_tail(ill); 6798 } 6799 6800 ipif_t * 6801 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6802 { 6803 ipif_t *ipif; 6804 6805 mutex_enter(&ill->ill_lock); 6806 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6807 ipif != NULL; ipif = ipif->ipif_next) { 6808 if (!IPIF_CAN_LOOKUP(ipif)) 6809 continue; 6810 ipif_refhold_locked(ipif); 6811 mutex_exit(&ill->ill_lock); 6812 return (ipif); 6813 } 6814 mutex_exit(&ill->ill_lock); 6815 return (NULL); 6816 } 6817 6818 /* 6819 * TODO: make this table extendible at run time 6820 * Return a pointer to the mac type info for 'mac_type' 6821 */ 6822 static ip_m_t * 6823 ip_m_lookup(t_uscalar_t mac_type) 6824 { 6825 ip_m_t *ipm; 6826 6827 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6828 if (ipm->ip_m_mac_type == mac_type) 6829 return (ipm); 6830 return (NULL); 6831 } 6832 6833 /* 6834 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6835 * ipif_arg is passed in to associate it with the correct interface. 6836 * We may need to restart this operation if the ipif cannot be looked up 6837 * due to an exclusive operation that is currently in progress. The restart 6838 * entry point is specified by 'func' 6839 */ 6840 int 6841 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6842 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6843 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6844 struct rtsa_s *sp, ip_stack_t *ipst) 6845 { 6846 ire_t *ire; 6847 ire_t *gw_ire = NULL; 6848 ipif_t *ipif = NULL; 6849 boolean_t ipif_refheld = B_FALSE; 6850 uint_t type; 6851 int match_flags = MATCH_IRE_TYPE; 6852 int error; 6853 tsol_gc_t *gc = NULL; 6854 tsol_gcgrp_t *gcgrp = NULL; 6855 boolean_t gcgrp_xtraref = B_FALSE; 6856 6857 ip1dbg(("ip_rt_add:")); 6858 6859 if (ire_arg != NULL) 6860 *ire_arg = NULL; 6861 6862 /* 6863 * If this is the case of RTF_HOST being set, then we set the netmask 6864 * to all ones (regardless if one was supplied). 6865 */ 6866 if (flags & RTF_HOST) 6867 mask = IP_HOST_MASK; 6868 6869 /* 6870 * Prevent routes with a zero gateway from being created (since 6871 * interfaces can currently be plumbed and brought up no assigned 6872 * address). 6873 */ 6874 if (gw_addr == 0) 6875 return (ENETUNREACH); 6876 /* 6877 * Get the ipif, if any, corresponding to the gw_addr 6878 */ 6879 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6880 ipst); 6881 if (ipif != NULL) { 6882 if (IS_VNI(ipif->ipif_ill)) { 6883 ipif_refrele(ipif); 6884 return (EINVAL); 6885 } 6886 ipif_refheld = B_TRUE; 6887 } else if (error == EINPROGRESS) { 6888 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6889 return (EINPROGRESS); 6890 } else { 6891 error = 0; 6892 } 6893 6894 if (ipif != NULL) { 6895 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6896 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6897 } else { 6898 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6899 } 6900 6901 /* 6902 * GateD will attempt to create routes with a loopback interface 6903 * address as the gateway and with RTF_GATEWAY set. We allow 6904 * these routes to be added, but create them as interface routes 6905 * since the gateway is an interface address. 6906 */ 6907 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6908 flags &= ~RTF_GATEWAY; 6909 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6910 mask == IP_HOST_MASK) { 6911 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6912 ALL_ZONES, NULL, match_flags, ipst); 6913 if (ire != NULL) { 6914 ire_refrele(ire); 6915 if (ipif_refheld) 6916 ipif_refrele(ipif); 6917 return (EEXIST); 6918 } 6919 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6920 "for 0x%x\n", (void *)ipif, 6921 ipif->ipif_ire_type, 6922 ntohl(ipif->ipif_lcl_addr))); 6923 ire = ire_create( 6924 (uchar_t *)&dst_addr, /* dest address */ 6925 (uchar_t *)&mask, /* mask */ 6926 (uchar_t *)&ipif->ipif_src_addr, 6927 NULL, /* no gateway */ 6928 &ipif->ipif_mtu, 6929 NULL, 6930 ipif->ipif_rq, /* recv-from queue */ 6931 NULL, /* no send-to queue */ 6932 ipif->ipif_ire_type, /* LOOPBACK */ 6933 ipif, 6934 0, 6935 0, 6936 0, 6937 (ipif->ipif_flags & IPIF_PRIVATE) ? 6938 RTF_PRIVATE : 0, 6939 &ire_uinfo_null, 6940 NULL, 6941 NULL, 6942 ipst); 6943 6944 if (ire == NULL) { 6945 if (ipif_refheld) 6946 ipif_refrele(ipif); 6947 return (ENOMEM); 6948 } 6949 error = ire_add(&ire, q, mp, func, B_FALSE); 6950 if (error == 0) 6951 goto save_ire; 6952 if (ipif_refheld) 6953 ipif_refrele(ipif); 6954 return (error); 6955 6956 } 6957 } 6958 6959 /* 6960 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6961 * and the gateway address provided is one of the system's interface 6962 * addresses. By using the routing socket interface and supplying an 6963 * RTA_IFP sockaddr with an interface index, an alternate method of 6964 * specifying an interface route to be created is available which uses 6965 * the interface index that specifies the outgoing interface rather than 6966 * the address of an outgoing interface (which may not be able to 6967 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6968 * flag, routes can be specified which not only specify the next-hop to 6969 * be used when routing to a certain prefix, but also which outgoing 6970 * interface should be used. 6971 * 6972 * Previously, interfaces would have unique addresses assigned to them 6973 * and so the address assigned to a particular interface could be used 6974 * to identify a particular interface. One exception to this was the 6975 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6976 * 6977 * With the advent of IPv6 and its link-local addresses, this 6978 * restriction was relaxed and interfaces could share addresses between 6979 * themselves. In fact, typically all of the link-local interfaces on 6980 * an IPv6 node or router will have the same link-local address. In 6981 * order to differentiate between these interfaces, the use of an 6982 * interface index is necessary and this index can be carried inside a 6983 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6984 * of using the interface index, however, is that all of the ipif's that 6985 * are part of an ill have the same index and so the RTA_IFP sockaddr 6986 * cannot be used to differentiate between ipif's (or logical 6987 * interfaces) that belong to the same ill (physical interface). 6988 * 6989 * For example, in the following case involving IPv4 interfaces and 6990 * logical interfaces 6991 * 6992 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6993 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6994 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6995 * 6996 * the ipif's corresponding to each of these interface routes can be 6997 * uniquely identified by the "gateway" (actually interface address). 6998 * 6999 * In this case involving multiple IPv6 default routes to a particular 7000 * link-local gateway, the use of RTA_IFP is necessary to specify which 7001 * default route is of interest: 7002 * 7003 * default fe80::123:4567:89ab:cdef U if0 7004 * default fe80::123:4567:89ab:cdef U if1 7005 */ 7006 7007 /* RTF_GATEWAY not set */ 7008 if (!(flags & RTF_GATEWAY)) { 7009 queue_t *stq; 7010 7011 if (sp != NULL) { 7012 ip2dbg(("ip_rt_add: gateway security attributes " 7013 "cannot be set with interface route\n")); 7014 if (ipif_refheld) 7015 ipif_refrele(ipif); 7016 return (EINVAL); 7017 } 7018 7019 /* 7020 * As the interface index specified with the RTA_IFP sockaddr is 7021 * the same for all ipif's off of an ill, the matching logic 7022 * below uses MATCH_IRE_ILL if such an index was specified. 7023 * This means that routes sharing the same prefix when added 7024 * using a RTA_IFP sockaddr must have distinct interface 7025 * indices (namely, they must be on distinct ill's). 7026 * 7027 * On the other hand, since the gateway address will usually be 7028 * different for each ipif on the system, the matching logic 7029 * uses MATCH_IRE_IPIF in the case of a traditional interface 7030 * route. This means that interface routes for the same prefix 7031 * can be created if they belong to distinct ipif's and if a 7032 * RTA_IFP sockaddr is not present. 7033 */ 7034 if (ipif_arg != NULL) { 7035 if (ipif_refheld) { 7036 ipif_refrele(ipif); 7037 ipif_refheld = B_FALSE; 7038 } 7039 ipif = ipif_arg; 7040 match_flags |= MATCH_IRE_ILL; 7041 } else { 7042 /* 7043 * Check the ipif corresponding to the gw_addr 7044 */ 7045 if (ipif == NULL) 7046 return (ENETUNREACH); 7047 match_flags |= MATCH_IRE_IPIF; 7048 } 7049 ASSERT(ipif != NULL); 7050 7051 /* 7052 * We check for an existing entry at this point. 7053 * 7054 * Since a netmask isn't passed in via the ioctl interface 7055 * (SIOCADDRT), we don't check for a matching netmask in that 7056 * case. 7057 */ 7058 if (!ioctl_msg) 7059 match_flags |= MATCH_IRE_MASK; 7060 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7061 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7062 if (ire != NULL) { 7063 ire_refrele(ire); 7064 if (ipif_refheld) 7065 ipif_refrele(ipif); 7066 return (EEXIST); 7067 } 7068 7069 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7070 ? ipif->ipif_rq : ipif->ipif_wq; 7071 7072 /* 7073 * Create a copy of the IRE_LOOPBACK, 7074 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7075 * the modified address and netmask. 7076 */ 7077 ire = ire_create( 7078 (uchar_t *)&dst_addr, 7079 (uint8_t *)&mask, 7080 (uint8_t *)&ipif->ipif_src_addr, 7081 NULL, 7082 &ipif->ipif_mtu, 7083 NULL, 7084 NULL, 7085 stq, 7086 ipif->ipif_net_type, 7087 ipif, 7088 0, 7089 0, 7090 0, 7091 flags, 7092 &ire_uinfo_null, 7093 NULL, 7094 NULL, 7095 ipst); 7096 if (ire == NULL) { 7097 if (ipif_refheld) 7098 ipif_refrele(ipif); 7099 return (ENOMEM); 7100 } 7101 7102 /* 7103 * Some software (for example, GateD and Sun Cluster) attempts 7104 * to create (what amount to) IRE_PREFIX routes with the 7105 * loopback address as the gateway. This is primarily done to 7106 * set up prefixes with the RTF_REJECT flag set (for example, 7107 * when generating aggregate routes.) 7108 * 7109 * If the IRE type (as defined by ipif->ipif_net_type) is 7110 * IRE_LOOPBACK, then we map the request into a 7111 * IRE_IF_NORESOLVER. 7112 * 7113 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7114 * routine, but rather using ire_create() directly. 7115 * 7116 */ 7117 if (ipif->ipif_net_type == IRE_LOOPBACK) 7118 ire->ire_type = IRE_IF_NORESOLVER; 7119 7120 error = ire_add(&ire, q, mp, func, B_FALSE); 7121 if (error == 0) 7122 goto save_ire; 7123 7124 /* 7125 * In the result of failure, ire_add() will have already 7126 * deleted the ire in question, so there is no need to 7127 * do that here. 7128 */ 7129 if (ipif_refheld) 7130 ipif_refrele(ipif); 7131 return (error); 7132 } 7133 if (ipif_refheld) { 7134 ipif_refrele(ipif); 7135 ipif_refheld = B_FALSE; 7136 } 7137 7138 /* 7139 * Get an interface IRE for the specified gateway. 7140 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7141 * gateway, it is currently unreachable and we fail the request 7142 * accordingly. 7143 */ 7144 ipif = ipif_arg; 7145 if (ipif_arg != NULL) 7146 match_flags |= MATCH_IRE_ILL; 7147 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7148 ALL_ZONES, 0, NULL, match_flags, ipst); 7149 if (gw_ire == NULL) 7150 return (ENETUNREACH); 7151 7152 /* 7153 * We create one of three types of IREs as a result of this request 7154 * based on the netmask. A netmask of all ones (which is automatically 7155 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7156 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7157 * created. Otherwise, an IRE_PREFIX route is created for the 7158 * destination prefix. 7159 */ 7160 if (mask == IP_HOST_MASK) 7161 type = IRE_HOST; 7162 else if (mask == 0) 7163 type = IRE_DEFAULT; 7164 else 7165 type = IRE_PREFIX; 7166 7167 /* check for a duplicate entry */ 7168 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7169 NULL, ALL_ZONES, 0, NULL, 7170 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7171 if (ire != NULL) { 7172 ire_refrele(gw_ire); 7173 ire_refrele(ire); 7174 return (EEXIST); 7175 } 7176 7177 /* Security attribute exists */ 7178 if (sp != NULL) { 7179 tsol_gcgrp_addr_t ga; 7180 7181 /* find or create the gateway credentials group */ 7182 ga.ga_af = AF_INET; 7183 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7184 7185 /* we hold reference to it upon success */ 7186 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7187 if (gcgrp == NULL) { 7188 ire_refrele(gw_ire); 7189 return (ENOMEM); 7190 } 7191 7192 /* 7193 * Create and add the security attribute to the group; a 7194 * reference to the group is made upon allocating a new 7195 * entry successfully. If it finds an already-existing 7196 * entry for the security attribute in the group, it simply 7197 * returns it and no new reference is made to the group. 7198 */ 7199 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7200 if (gc == NULL) { 7201 /* release reference held by gcgrp_lookup */ 7202 GCGRP_REFRELE(gcgrp); 7203 ire_refrele(gw_ire); 7204 return (ENOMEM); 7205 } 7206 } 7207 7208 /* Create the IRE. */ 7209 ire = ire_create( 7210 (uchar_t *)&dst_addr, /* dest address */ 7211 (uchar_t *)&mask, /* mask */ 7212 /* src address assigned by the caller? */ 7213 (uchar_t *)(((src_addr != INADDR_ANY) && 7214 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7215 (uchar_t *)&gw_addr, /* gateway address */ 7216 &gw_ire->ire_max_frag, 7217 NULL, /* no src nce */ 7218 NULL, /* no recv-from queue */ 7219 NULL, /* no send-to queue */ 7220 (ushort_t)type, /* IRE type */ 7221 ipif_arg, 7222 0, 7223 0, 7224 0, 7225 flags, 7226 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7227 gc, /* security attribute */ 7228 NULL, 7229 ipst); 7230 7231 /* 7232 * The ire holds a reference to the 'gc' and the 'gc' holds a 7233 * reference to the 'gcgrp'. We can now release the extra reference 7234 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7235 */ 7236 if (gcgrp_xtraref) 7237 GCGRP_REFRELE(gcgrp); 7238 if (ire == NULL) { 7239 if (gc != NULL) 7240 GC_REFRELE(gc); 7241 ire_refrele(gw_ire); 7242 return (ENOMEM); 7243 } 7244 7245 /* 7246 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7247 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7248 */ 7249 7250 /* Add the new IRE. */ 7251 error = ire_add(&ire, q, mp, func, B_FALSE); 7252 if (error != 0) { 7253 /* 7254 * In the result of failure, ire_add() will have already 7255 * deleted the ire in question, so there is no need to 7256 * do that here. 7257 */ 7258 ire_refrele(gw_ire); 7259 return (error); 7260 } 7261 7262 if (flags & RTF_MULTIRT) { 7263 /* 7264 * Invoke the CGTP (multirouting) filtering module 7265 * to add the dst address in the filtering database. 7266 * Replicated inbound packets coming from that address 7267 * will be filtered to discard the duplicates. 7268 * It is not necessary to call the CGTP filter hook 7269 * when the dst address is a broadcast or multicast, 7270 * because an IP source address cannot be a broadcast 7271 * or a multicast. 7272 */ 7273 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7274 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7275 if (ire_dst != NULL) { 7276 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7277 ire_refrele(ire_dst); 7278 goto save_ire; 7279 } 7280 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7281 !CLASSD(ire->ire_addr)) { 7282 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7283 ipst->ips_netstack->netstack_stackid, 7284 ire->ire_addr, 7285 ire->ire_gateway_addr, 7286 ire->ire_src_addr, 7287 gw_ire->ire_src_addr); 7288 if (res != 0) { 7289 ire_refrele(gw_ire); 7290 ire_delete(ire); 7291 return (res); 7292 } 7293 } 7294 } 7295 7296 /* 7297 * Now that the prefix IRE entry has been created, delete any 7298 * existing gateway IRE cache entries as well as any IRE caches 7299 * using the gateway, and force them to be created through 7300 * ip_newroute. 7301 */ 7302 if (gc != NULL) { 7303 ASSERT(gcgrp != NULL); 7304 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7305 } 7306 7307 save_ire: 7308 if (gw_ire != NULL) { 7309 ire_refrele(gw_ire); 7310 } 7311 if (ipif != NULL) { 7312 /* 7313 * Save enough information so that we can recreate the IRE if 7314 * the interface goes down and then up. The metrics associated 7315 * with the route will be saved as well when rts_setmetrics() is 7316 * called after the IRE has been created. In the case where 7317 * memory cannot be allocated, none of this information will be 7318 * saved. 7319 */ 7320 ipif_save_ire(ipif, ire); 7321 } 7322 if (ioctl_msg) 7323 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7324 if (ire_arg != NULL) { 7325 /* 7326 * Store the ire that was successfully added into where ire_arg 7327 * points to so that callers don't have to look it up 7328 * themselves (but they are responsible for ire_refrele()ing 7329 * the ire when they are finished with it). 7330 */ 7331 *ire_arg = ire; 7332 } else { 7333 ire_refrele(ire); /* Held in ire_add */ 7334 } 7335 if (ipif_refheld) 7336 ipif_refrele(ipif); 7337 return (0); 7338 } 7339 7340 /* 7341 * ip_rt_delete is called to delete an IPv4 route. 7342 * ipif_arg is passed in to associate it with the correct interface. 7343 * We may need to restart this operation if the ipif cannot be looked up 7344 * due to an exclusive operation that is currently in progress. The restart 7345 * entry point is specified by 'func' 7346 */ 7347 /* ARGSUSED4 */ 7348 int 7349 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7350 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7351 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7352 { 7353 ire_t *ire = NULL; 7354 ipif_t *ipif; 7355 boolean_t ipif_refheld = B_FALSE; 7356 uint_t type; 7357 uint_t match_flags = MATCH_IRE_TYPE; 7358 int err = 0; 7359 7360 ip1dbg(("ip_rt_delete:")); 7361 /* 7362 * If this is the case of RTF_HOST being set, then we set the netmask 7363 * to all ones. Otherwise, we use the netmask if one was supplied. 7364 */ 7365 if (flags & RTF_HOST) { 7366 mask = IP_HOST_MASK; 7367 match_flags |= MATCH_IRE_MASK; 7368 } else if (rtm_addrs & RTA_NETMASK) { 7369 match_flags |= MATCH_IRE_MASK; 7370 } 7371 7372 /* 7373 * Note that RTF_GATEWAY is never set on a delete, therefore 7374 * we check if the gateway address is one of our interfaces first, 7375 * and fall back on RTF_GATEWAY routes. 7376 * 7377 * This makes it possible to delete an original 7378 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7379 * 7380 * As the interface index specified with the RTA_IFP sockaddr is the 7381 * same for all ipif's off of an ill, the matching logic below uses 7382 * MATCH_IRE_ILL if such an index was specified. This means a route 7383 * sharing the same prefix and interface index as the the route 7384 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7385 * is specified in the request. 7386 * 7387 * On the other hand, since the gateway address will usually be 7388 * different for each ipif on the system, the matching logic 7389 * uses MATCH_IRE_IPIF in the case of a traditional interface 7390 * route. This means that interface routes for the same prefix can be 7391 * uniquely identified if they belong to distinct ipif's and if a 7392 * RTA_IFP sockaddr is not present. 7393 * 7394 * For more detail on specifying routes by gateway address and by 7395 * interface index, see the comments in ip_rt_add(). 7396 */ 7397 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7398 ipst); 7399 if (ipif != NULL) 7400 ipif_refheld = B_TRUE; 7401 else if (err == EINPROGRESS) 7402 return (err); 7403 else 7404 err = 0; 7405 if (ipif != NULL) { 7406 if (ipif_arg != NULL) { 7407 if (ipif_refheld) { 7408 ipif_refrele(ipif); 7409 ipif_refheld = B_FALSE; 7410 } 7411 ipif = ipif_arg; 7412 match_flags |= MATCH_IRE_ILL; 7413 } else { 7414 match_flags |= MATCH_IRE_IPIF; 7415 } 7416 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7417 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7418 ALL_ZONES, NULL, match_flags, ipst); 7419 } 7420 if (ire == NULL) { 7421 ire = ire_ftable_lookup(dst_addr, mask, 0, 7422 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7423 match_flags, ipst); 7424 } 7425 } 7426 7427 if (ire == NULL) { 7428 /* 7429 * At this point, the gateway address is not one of our own 7430 * addresses or a matching interface route was not found. We 7431 * set the IRE type to lookup based on whether 7432 * this is a host route, a default route or just a prefix. 7433 * 7434 * If an ipif_arg was passed in, then the lookup is based on an 7435 * interface index so MATCH_IRE_ILL is added to match_flags. 7436 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7437 * set as the route being looked up is not a traditional 7438 * interface route. 7439 */ 7440 match_flags &= ~MATCH_IRE_IPIF; 7441 match_flags |= MATCH_IRE_GW; 7442 if (ipif_arg != NULL) 7443 match_flags |= MATCH_IRE_ILL; 7444 if (mask == IP_HOST_MASK) 7445 type = IRE_HOST; 7446 else if (mask == 0) 7447 type = IRE_DEFAULT; 7448 else 7449 type = IRE_PREFIX; 7450 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7451 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7452 } 7453 7454 if (ipif_refheld) 7455 ipif_refrele(ipif); 7456 7457 /* ipif is not refheld anymore */ 7458 if (ire == NULL) 7459 return (ESRCH); 7460 7461 if (ire->ire_flags & RTF_MULTIRT) { 7462 /* 7463 * Invoke the CGTP (multirouting) filtering module 7464 * to remove the dst address from the filtering database. 7465 * Packets coming from that address will no longer be 7466 * filtered to remove duplicates. 7467 */ 7468 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7469 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7470 ipst->ips_netstack->netstack_stackid, 7471 ire->ire_addr, ire->ire_gateway_addr); 7472 } 7473 ip_cgtp_bcast_delete(ire, ipst); 7474 } 7475 7476 ipif = ire->ire_ipif; 7477 if (ipif != NULL) 7478 ipif_remove_ire(ipif, ire); 7479 if (ioctl_msg) 7480 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7481 ire_delete(ire); 7482 ire_refrele(ire); 7483 return (err); 7484 } 7485 7486 /* 7487 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7488 */ 7489 /* ARGSUSED */ 7490 int 7491 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7492 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7493 { 7494 ipaddr_t dst_addr; 7495 ipaddr_t gw_addr; 7496 ipaddr_t mask; 7497 int error = 0; 7498 mblk_t *mp1; 7499 struct rtentry *rt; 7500 ipif_t *ipif = NULL; 7501 ip_stack_t *ipst; 7502 7503 ASSERT(q->q_next == NULL); 7504 ipst = CONNQ_TO_IPST(q); 7505 7506 ip1dbg(("ip_siocaddrt:")); 7507 /* Existence of mp1 verified in ip_wput_nondata */ 7508 mp1 = mp->b_cont->b_cont; 7509 rt = (struct rtentry *)mp1->b_rptr; 7510 7511 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7512 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7513 7514 /* 7515 * If the RTF_HOST flag is on, this is a request to assign a gateway 7516 * to a particular host address. In this case, we set the netmask to 7517 * all ones for the particular destination address. Otherwise, 7518 * determine the netmask to be used based on dst_addr and the interfaces 7519 * in use. 7520 */ 7521 if (rt->rt_flags & RTF_HOST) { 7522 mask = IP_HOST_MASK; 7523 } else { 7524 /* 7525 * Note that ip_subnet_mask returns a zero mask in the case of 7526 * default (an all-zeroes address). 7527 */ 7528 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7529 } 7530 7531 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7532 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7533 if (ipif != NULL) 7534 ipif_refrele(ipif); 7535 return (error); 7536 } 7537 7538 /* 7539 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7540 */ 7541 /* ARGSUSED */ 7542 int 7543 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7544 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7545 { 7546 ipaddr_t dst_addr; 7547 ipaddr_t gw_addr; 7548 ipaddr_t mask; 7549 int error; 7550 mblk_t *mp1; 7551 struct rtentry *rt; 7552 ipif_t *ipif = NULL; 7553 ip_stack_t *ipst; 7554 7555 ASSERT(q->q_next == NULL); 7556 ipst = CONNQ_TO_IPST(q); 7557 7558 ip1dbg(("ip_siocdelrt:")); 7559 /* Existence of mp1 verified in ip_wput_nondata */ 7560 mp1 = mp->b_cont->b_cont; 7561 rt = (struct rtentry *)mp1->b_rptr; 7562 7563 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7564 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7565 7566 /* 7567 * If the RTF_HOST flag is on, this is a request to delete a gateway 7568 * to a particular host address. In this case, we set the netmask to 7569 * all ones for the particular destination address. Otherwise, 7570 * determine the netmask to be used based on dst_addr and the interfaces 7571 * in use. 7572 */ 7573 if (rt->rt_flags & RTF_HOST) { 7574 mask = IP_HOST_MASK; 7575 } else { 7576 /* 7577 * Note that ip_subnet_mask returns a zero mask in the case of 7578 * default (an all-zeroes address). 7579 */ 7580 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7581 } 7582 7583 error = ip_rt_delete(dst_addr, mask, gw_addr, 7584 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7585 mp, ip_process_ioctl, ipst); 7586 if (ipif != NULL) 7587 ipif_refrele(ipif); 7588 return (error); 7589 } 7590 7591 /* 7592 * Enqueue the mp onto the ipsq, chained by b_next. 7593 * b_prev stores the function to be executed later, and b_queue the queue 7594 * where this mp originated. 7595 */ 7596 void 7597 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7598 ill_t *pending_ill) 7599 { 7600 conn_t *connp = NULL; 7601 7602 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7603 ASSERT(func != NULL); 7604 7605 mp->b_queue = q; 7606 mp->b_prev = (void *)func; 7607 mp->b_next = NULL; 7608 7609 switch (type) { 7610 case CUR_OP: 7611 if (ipsq->ipsq_mptail != NULL) { 7612 ASSERT(ipsq->ipsq_mphead != NULL); 7613 ipsq->ipsq_mptail->b_next = mp; 7614 } else { 7615 ASSERT(ipsq->ipsq_mphead == NULL); 7616 ipsq->ipsq_mphead = mp; 7617 } 7618 ipsq->ipsq_mptail = mp; 7619 break; 7620 7621 case NEW_OP: 7622 if (ipsq->ipsq_xopq_mptail != NULL) { 7623 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7624 ipsq->ipsq_xopq_mptail->b_next = mp; 7625 } else { 7626 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7627 ipsq->ipsq_xopq_mphead = mp; 7628 } 7629 ipsq->ipsq_xopq_mptail = mp; 7630 break; 7631 default: 7632 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7633 } 7634 7635 if (CONN_Q(q) && pending_ill != NULL) { 7636 connp = Q_TO_CONN(q); 7637 7638 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7639 connp->conn_oper_pending_ill = pending_ill; 7640 } 7641 } 7642 7643 /* 7644 * Return the mp at the head of the ipsq. After emptying the ipsq 7645 * look at the next ioctl, if this ioctl is complete. Otherwise 7646 * return, we will resume when we complete the current ioctl. 7647 * The current ioctl will wait till it gets a response from the 7648 * driver below. 7649 */ 7650 static mblk_t * 7651 ipsq_dq(ipsq_t *ipsq) 7652 { 7653 mblk_t *mp; 7654 7655 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7656 7657 mp = ipsq->ipsq_mphead; 7658 if (mp != NULL) { 7659 ipsq->ipsq_mphead = mp->b_next; 7660 if (ipsq->ipsq_mphead == NULL) 7661 ipsq->ipsq_mptail = NULL; 7662 mp->b_next = NULL; 7663 return (mp); 7664 } 7665 if (ipsq->ipsq_current_ipif != NULL) 7666 return (NULL); 7667 mp = ipsq->ipsq_xopq_mphead; 7668 if (mp != NULL) { 7669 ipsq->ipsq_xopq_mphead = mp->b_next; 7670 if (ipsq->ipsq_xopq_mphead == NULL) 7671 ipsq->ipsq_xopq_mptail = NULL; 7672 mp->b_next = NULL; 7673 return (mp); 7674 } 7675 return (NULL); 7676 } 7677 7678 /* 7679 * Enter the ipsq corresponding to ill, by waiting synchronously till 7680 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7681 * will have to drain completely before ipsq_enter returns success. 7682 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7683 * and the ipsq_exit logic will start the next enqueued ioctl after 7684 * completion of the current ioctl. If 'force' is used, we don't wait 7685 * for the enqueued ioctls. This is needed when a conn_close wants to 7686 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7687 * of an ill can also use this option. But we dont' use it currently. 7688 */ 7689 #define ENTER_SQ_WAIT_TICKS 100 7690 boolean_t 7691 ipsq_enter(ill_t *ill, boolean_t force) 7692 { 7693 ipsq_t *ipsq; 7694 boolean_t waited_enough = B_FALSE; 7695 7696 /* 7697 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7698 * Since the <ill-ipsq> assocs could change while we wait for the 7699 * writer, it is easier to wait on a fixed global rather than try to 7700 * cv_wait on a changing ipsq. 7701 */ 7702 mutex_enter(&ill->ill_lock); 7703 for (;;) { 7704 if (ill->ill_state_flags & ILL_CONDEMNED) { 7705 mutex_exit(&ill->ill_lock); 7706 return (B_FALSE); 7707 } 7708 7709 ipsq = ill->ill_phyint->phyint_ipsq; 7710 mutex_enter(&ipsq->ipsq_lock); 7711 if (ipsq->ipsq_writer == NULL && 7712 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7713 break; 7714 } else if (ipsq->ipsq_writer != NULL) { 7715 mutex_exit(&ipsq->ipsq_lock); 7716 cv_wait(&ill->ill_cv, &ill->ill_lock); 7717 } else { 7718 mutex_exit(&ipsq->ipsq_lock); 7719 if (force) { 7720 (void) cv_timedwait(&ill->ill_cv, 7721 &ill->ill_lock, 7722 lbolt + ENTER_SQ_WAIT_TICKS); 7723 waited_enough = B_TRUE; 7724 continue; 7725 } else { 7726 cv_wait(&ill->ill_cv, &ill->ill_lock); 7727 } 7728 } 7729 } 7730 7731 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7732 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7733 ipsq->ipsq_writer = curthread; 7734 ipsq->ipsq_reentry_cnt++; 7735 #ifdef ILL_DEBUG 7736 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7737 #endif 7738 mutex_exit(&ipsq->ipsq_lock); 7739 mutex_exit(&ill->ill_lock); 7740 return (B_TRUE); 7741 } 7742 7743 /* 7744 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7745 * certain critical operations like plumbing (i.e. most set ioctls), 7746 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7747 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7748 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7749 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7750 * threads executing in the ipsq. Responses from the driver pertain to the 7751 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7752 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7753 * 7754 * If a thread does not want to reenter the ipsq when it is already writer, 7755 * it must make sure that the specified reentry point to be called later 7756 * when the ipsq is empty, nor any code path starting from the specified reentry 7757 * point must never ever try to enter the ipsq again. Otherwise it can lead 7758 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7759 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7760 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7761 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7762 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7763 * ioctl if the current ioctl has completed. If the current ioctl is still 7764 * in progress it simply returns. The current ioctl could be waiting for 7765 * a response from another module (arp_ or the driver or could be waiting for 7766 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7767 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7768 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7769 * ipsq_current_ipif is clear which happens only on ioctl completion. 7770 */ 7771 7772 /* 7773 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7774 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7775 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7776 * completion. 7777 */ 7778 ipsq_t * 7779 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7780 ipsq_func_t func, int type, boolean_t reentry_ok) 7781 { 7782 ipsq_t *ipsq; 7783 7784 /* Only 1 of ipif or ill can be specified */ 7785 ASSERT((ipif != NULL) ^ (ill != NULL)); 7786 if (ipif != NULL) 7787 ill = ipif->ipif_ill; 7788 7789 /* 7790 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7791 * ipsq of an ill can't change when ill_lock is held. 7792 */ 7793 GRAB_CONN_LOCK(q); 7794 mutex_enter(&ill->ill_lock); 7795 ipsq = ill->ill_phyint->phyint_ipsq; 7796 mutex_enter(&ipsq->ipsq_lock); 7797 7798 /* 7799 * 1. Enter the ipsq if we are already writer and reentry is ok. 7800 * (Note: If the caller does not specify reentry_ok then neither 7801 * 'func' nor any of its callees must ever attempt to enter the ipsq 7802 * again. Otherwise it can lead to an infinite loop 7803 * 2. Enter the ipsq if there is no current writer and this attempted 7804 * entry is part of the current ioctl or operation 7805 * 3. Enter the ipsq if there is no current writer and this is a new 7806 * ioctl (or operation) and the ioctl (or operation) queue is 7807 * empty and there is no ioctl (or operation) currently in progress 7808 */ 7809 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7810 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7811 ipsq->ipsq_current_ipif == NULL))) || 7812 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7813 /* Success. */ 7814 ipsq->ipsq_reentry_cnt++; 7815 ipsq->ipsq_writer = curthread; 7816 mutex_exit(&ipsq->ipsq_lock); 7817 mutex_exit(&ill->ill_lock); 7818 RELEASE_CONN_LOCK(q); 7819 #ifdef ILL_DEBUG 7820 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7821 #endif 7822 return (ipsq); 7823 } 7824 7825 ipsq_enq(ipsq, q, mp, func, type, ill); 7826 7827 mutex_exit(&ipsq->ipsq_lock); 7828 mutex_exit(&ill->ill_lock); 7829 RELEASE_CONN_LOCK(q); 7830 return (NULL); 7831 } 7832 7833 /* 7834 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7835 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7836 * cannot be entered, the mp is queued for completion. 7837 */ 7838 void 7839 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7840 boolean_t reentry_ok) 7841 { 7842 ipsq_t *ipsq; 7843 7844 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7845 7846 /* 7847 * Drop the caller's refhold on the ill. This is safe since we either 7848 * entered the IPSQ (and thus are exclusive), or failed to enter the 7849 * IPSQ, in which case we return without accessing ill anymore. This 7850 * is needed because func needs to see the correct refcount. 7851 * e.g. removeif can work only then. 7852 */ 7853 ill_refrele(ill); 7854 if (ipsq != NULL) { 7855 (*func)(ipsq, q, mp, NULL); 7856 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7857 } 7858 } 7859 7860 /* 7861 * If there are more than ILL_GRP_CNT ills in a group, 7862 * we use kmem alloc'd buffers, else use the stack 7863 */ 7864 #define ILL_GRP_CNT 14 7865 /* 7866 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7867 * Called by a thread that is currently exclusive on this ipsq. 7868 */ 7869 void 7870 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7871 { 7872 queue_t *q; 7873 mblk_t *mp; 7874 ipsq_func_t func; 7875 int next; 7876 ill_t **ill_list = NULL; 7877 size_t ill_list_size = 0; 7878 int cnt = 0; 7879 boolean_t need_ipsq_free = B_FALSE; 7880 ip_stack_t *ipst = ipsq->ipsq_ipst; 7881 7882 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7883 mutex_enter(&ipsq->ipsq_lock); 7884 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7885 if (ipsq->ipsq_reentry_cnt != 1) { 7886 ipsq->ipsq_reentry_cnt--; 7887 mutex_exit(&ipsq->ipsq_lock); 7888 return; 7889 } 7890 7891 mp = ipsq_dq(ipsq); 7892 while (mp != NULL) { 7893 again: 7894 mutex_exit(&ipsq->ipsq_lock); 7895 func = (ipsq_func_t)mp->b_prev; 7896 q = (queue_t *)mp->b_queue; 7897 mp->b_prev = NULL; 7898 mp->b_queue = NULL; 7899 7900 /* 7901 * If 'q' is an conn queue, it is valid, since we did a 7902 * a refhold on the connp, at the start of the ioctl. 7903 * If 'q' is an ill queue, it is valid, since close of an 7904 * ill will clean up the 'ipsq'. 7905 */ 7906 (*func)(ipsq, q, mp, NULL); 7907 7908 mutex_enter(&ipsq->ipsq_lock); 7909 mp = ipsq_dq(ipsq); 7910 } 7911 7912 mutex_exit(&ipsq->ipsq_lock); 7913 7914 /* 7915 * Need to grab the locks in the right order. Need to 7916 * atomically check (under ipsq_lock) that there are no 7917 * messages before relinquishing the ipsq. Also need to 7918 * atomically wakeup waiters on ill_cv while holding ill_lock. 7919 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7920 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7921 * to grab ill_g_lock as writer. 7922 */ 7923 rw_enter(&ipst->ips_ill_g_lock, 7924 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7925 7926 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7927 if (ipsq->ipsq_refs != 0) { 7928 /* At most 2 ills v4/v6 per phyint */ 7929 cnt = ipsq->ipsq_refs << 1; 7930 ill_list_size = cnt * sizeof (ill_t *); 7931 /* 7932 * If memory allocation fails, we will do the split 7933 * the next time ipsq_exit is called for whatever reason. 7934 * As long as the ipsq_split flag is set the need to 7935 * split is remembered. 7936 */ 7937 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7938 if (ill_list != NULL) 7939 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7940 } 7941 mutex_enter(&ipsq->ipsq_lock); 7942 mp = ipsq_dq(ipsq); 7943 if (mp != NULL) { 7944 /* oops, some message has landed up, we can't get out */ 7945 if (ill_list != NULL) 7946 ill_unlock_ills(ill_list, cnt); 7947 rw_exit(&ipst->ips_ill_g_lock); 7948 if (ill_list != NULL) 7949 kmem_free(ill_list, ill_list_size); 7950 ill_list = NULL; 7951 ill_list_size = 0; 7952 cnt = 0; 7953 goto again; 7954 } 7955 7956 /* 7957 * Split only if no ioctl is pending and if memory alloc succeeded 7958 * above. 7959 */ 7960 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7961 ill_list != NULL) { 7962 /* 7963 * No new ill can join this ipsq since we are holding the 7964 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7965 * ipsq. ill_split_ipsq may fail due to memory shortage. 7966 * If so we will retry on the next ipsq_exit. 7967 */ 7968 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7969 } 7970 7971 /* 7972 * We are holding the ipsq lock, hence no new messages can 7973 * land up on the ipsq, and there are no messages currently. 7974 * Now safe to get out. Wake up waiters and relinquish ipsq 7975 * atomically while holding ill locks. 7976 */ 7977 ipsq->ipsq_writer = NULL; 7978 ipsq->ipsq_reentry_cnt--; 7979 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7980 #ifdef ILL_DEBUG 7981 ipsq->ipsq_depth = 0; 7982 #endif 7983 mutex_exit(&ipsq->ipsq_lock); 7984 /* 7985 * For IPMP this should wake up all ills in this ipsq. 7986 * We need to hold the ill_lock while waking up waiters to 7987 * avoid missed wakeups. But there is no need to acquire all 7988 * the ill locks and then wakeup. If we have not acquired all 7989 * the locks (due to memory failure above) ill_signal_ipsq_ills 7990 * wakes up ills one at a time after getting the right ill_lock 7991 */ 7992 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7993 if (ill_list != NULL) 7994 ill_unlock_ills(ill_list, cnt); 7995 if (ipsq->ipsq_refs == 0) 7996 need_ipsq_free = B_TRUE; 7997 rw_exit(&ipst->ips_ill_g_lock); 7998 if (ill_list != 0) 7999 kmem_free(ill_list, ill_list_size); 8000 8001 if (need_ipsq_free) { 8002 /* 8003 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8004 * looked up. ipsq can be looked up only thru ill or phyint 8005 * and there are no ills/phyint on this ipsq. 8006 */ 8007 ipsq_delete(ipsq); 8008 } 8009 /* 8010 * Now start any igmp or mld timers that could not be started 8011 * while inside the ipsq. The timers can't be started while inside 8012 * the ipsq, since igmp_start_timers may need to call untimeout() 8013 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8014 * there could be a deadlock since the timeout handlers 8015 * mld_timeout_handler / igmp_timeout_handler also synchronously 8016 * wait in ipsq_enter() trying to get the ipsq. 8017 * 8018 * However there is one exception to the above. If this thread is 8019 * itself the igmp/mld timeout handler thread, then we don't want 8020 * to start any new timer until the current handler is done. The 8021 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8022 * all others pass B_TRUE. 8023 */ 8024 if (start_igmp_timer) { 8025 mutex_enter(&ipst->ips_igmp_timer_lock); 8026 next = ipst->ips_igmp_deferred_next; 8027 ipst->ips_igmp_deferred_next = INFINITY; 8028 mutex_exit(&ipst->ips_igmp_timer_lock); 8029 8030 if (next != INFINITY) 8031 igmp_start_timers(next, ipst); 8032 } 8033 8034 if (start_mld_timer) { 8035 mutex_enter(&ipst->ips_mld_timer_lock); 8036 next = ipst->ips_mld_deferred_next; 8037 ipst->ips_mld_deferred_next = INFINITY; 8038 mutex_exit(&ipst->ips_mld_timer_lock); 8039 8040 if (next != INFINITY) 8041 mld_start_timers(next, ipst); 8042 } 8043 } 8044 8045 /* 8046 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8047 * and `ioccmd'. 8048 */ 8049 void 8050 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8051 { 8052 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8053 8054 mutex_enter(&ipsq->ipsq_lock); 8055 ASSERT(ipsq->ipsq_current_ipif == NULL); 8056 ASSERT(ipsq->ipsq_current_ioctl == 0); 8057 ipsq->ipsq_current_ipif = ipif; 8058 ipsq->ipsq_current_ioctl = ioccmd; 8059 mutex_exit(&ipsq->ipsq_lock); 8060 } 8061 8062 /* 8063 * Finish the current exclusive operation on `ipsq'. Note that other 8064 * operations will not be able to proceed until an ipsq_exit() is done. 8065 */ 8066 void 8067 ipsq_current_finish(ipsq_t *ipsq) 8068 { 8069 ipif_t *ipif = ipsq->ipsq_current_ipif; 8070 8071 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8072 8073 /* 8074 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8075 * (but we're careful to never set IPIF_CHANGING in that case). 8076 */ 8077 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8078 mutex_enter(&ipif->ipif_ill->ill_lock); 8079 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8080 8081 /* Send any queued event */ 8082 ill_nic_info_dispatch(ipif->ipif_ill); 8083 mutex_exit(&ipif->ipif_ill->ill_lock); 8084 } 8085 8086 mutex_enter(&ipsq->ipsq_lock); 8087 ASSERT(ipsq->ipsq_current_ipif != NULL); 8088 ipsq->ipsq_current_ipif = NULL; 8089 ipsq->ipsq_current_ioctl = 0; 8090 mutex_exit(&ipsq->ipsq_lock); 8091 } 8092 8093 /* 8094 * The ill is closing. Flush all messages on the ipsq that originated 8095 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8096 * for this ill since ipsq_enter could not have entered until then. 8097 * New messages can't be queued since the CONDEMNED flag is set. 8098 */ 8099 static void 8100 ipsq_flush(ill_t *ill) 8101 { 8102 queue_t *q; 8103 mblk_t *prev; 8104 mblk_t *mp; 8105 mblk_t *mp_next; 8106 ipsq_t *ipsq; 8107 8108 ASSERT(IAM_WRITER_ILL(ill)); 8109 ipsq = ill->ill_phyint->phyint_ipsq; 8110 /* 8111 * Flush any messages sent up by the driver. 8112 */ 8113 mutex_enter(&ipsq->ipsq_lock); 8114 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8115 mp_next = mp->b_next; 8116 q = mp->b_queue; 8117 if (q == ill->ill_rq || q == ill->ill_wq) { 8118 /* Remove the mp from the ipsq */ 8119 if (prev == NULL) 8120 ipsq->ipsq_mphead = mp->b_next; 8121 else 8122 prev->b_next = mp->b_next; 8123 if (ipsq->ipsq_mptail == mp) { 8124 ASSERT(mp_next == NULL); 8125 ipsq->ipsq_mptail = prev; 8126 } 8127 inet_freemsg(mp); 8128 } else { 8129 prev = mp; 8130 } 8131 } 8132 mutex_exit(&ipsq->ipsq_lock); 8133 (void) ipsq_pending_mp_cleanup(ill, NULL); 8134 ipsq_xopq_mp_cleanup(ill, NULL); 8135 ill_pending_mp_cleanup(ill); 8136 } 8137 8138 /* ARGSUSED */ 8139 int 8140 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8141 ip_ioctl_cmd_t *ipip, void *ifreq) 8142 { 8143 ill_t *ill; 8144 struct lifreq *lifr = (struct lifreq *)ifreq; 8145 boolean_t isv6; 8146 conn_t *connp; 8147 ip_stack_t *ipst; 8148 8149 connp = Q_TO_CONN(q); 8150 ipst = connp->conn_netstack->netstack_ip; 8151 isv6 = connp->conn_af_isv6; 8152 /* 8153 * Set original index. 8154 * Failover and failback move logical interfaces 8155 * from one physical interface to another. The 8156 * original index indicates the parent of a logical 8157 * interface, in other words, the physical interface 8158 * the logical interface will be moved back to on 8159 * failback. 8160 */ 8161 8162 /* 8163 * Don't allow the original index to be changed 8164 * for non-failover addresses, autoconfigured 8165 * addresses, or IPv6 link local addresses. 8166 */ 8167 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8168 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8169 return (EINVAL); 8170 } 8171 /* 8172 * The new original index must be in use by some 8173 * physical interface. 8174 */ 8175 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8176 NULL, NULL, ipst); 8177 if (ill == NULL) 8178 return (ENXIO); 8179 ill_refrele(ill); 8180 8181 ipif->ipif_orig_ifindex = lifr->lifr_index; 8182 /* 8183 * When this ipif gets failed back, don't 8184 * preserve the original id, as it is no 8185 * longer applicable. 8186 */ 8187 ipif->ipif_orig_ipifid = 0; 8188 /* 8189 * For IPv4, change the original index of any 8190 * multicast addresses associated with the 8191 * ipif to the new value. 8192 */ 8193 if (!isv6) { 8194 ilm_t *ilm; 8195 8196 mutex_enter(&ipif->ipif_ill->ill_lock); 8197 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8198 ilm = ilm->ilm_next) { 8199 if (ilm->ilm_ipif == ipif) { 8200 ilm->ilm_orig_ifindex = lifr->lifr_index; 8201 } 8202 } 8203 mutex_exit(&ipif->ipif_ill->ill_lock); 8204 } 8205 return (0); 8206 } 8207 8208 /* ARGSUSED */ 8209 int 8210 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8211 ip_ioctl_cmd_t *ipip, void *ifreq) 8212 { 8213 struct lifreq *lifr = (struct lifreq *)ifreq; 8214 8215 /* 8216 * Get the original interface index i.e the one 8217 * before FAILOVER if it ever happened. 8218 */ 8219 lifr->lifr_index = ipif->ipif_orig_ifindex; 8220 return (0); 8221 } 8222 8223 /* 8224 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8225 * refhold and return the associated ipif 8226 */ 8227 /* ARGSUSED */ 8228 int 8229 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8230 cmd_info_t *ci, ipsq_func_t func) 8231 { 8232 boolean_t exists; 8233 struct iftun_req *ta; 8234 ipif_t *ipif; 8235 ill_t *ill; 8236 boolean_t isv6; 8237 mblk_t *mp1; 8238 int error; 8239 conn_t *connp; 8240 ip_stack_t *ipst; 8241 8242 /* Existence verified in ip_wput_nondata */ 8243 mp1 = mp->b_cont->b_cont; 8244 ta = (struct iftun_req *)mp1->b_rptr; 8245 /* 8246 * Null terminate the string to protect against buffer 8247 * overrun. String was generated by user code and may not 8248 * be trusted. 8249 */ 8250 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8251 8252 connp = Q_TO_CONN(q); 8253 isv6 = connp->conn_af_isv6; 8254 ipst = connp->conn_netstack->netstack_ip; 8255 8256 /* Disallows implicit create */ 8257 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8258 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8259 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8260 if (ipif == NULL) 8261 return (error); 8262 8263 if (ipif->ipif_id != 0) { 8264 /* 8265 * We really don't want to set/get tunnel parameters 8266 * on virtual tunnel interfaces. Only allow the 8267 * base tunnel to do these. 8268 */ 8269 ipif_refrele(ipif); 8270 return (EINVAL); 8271 } 8272 8273 /* 8274 * Send down to tunnel mod for ioctl processing. 8275 * Will finish ioctl in ip_rput_other(). 8276 */ 8277 ill = ipif->ipif_ill; 8278 if (ill->ill_net_type == IRE_LOOPBACK) { 8279 ipif_refrele(ipif); 8280 return (EOPNOTSUPP); 8281 } 8282 8283 if (ill->ill_wq == NULL) { 8284 ipif_refrele(ipif); 8285 return (ENXIO); 8286 } 8287 /* 8288 * Mark the ioctl as coming from an IPv6 interface for 8289 * tun's convenience. 8290 */ 8291 if (ill->ill_isv6) 8292 ta->ifta_flags |= 0x80000000; 8293 ci->ci_ipif = ipif; 8294 return (0); 8295 } 8296 8297 /* 8298 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8299 * and return the associated ipif. 8300 * Return value: 8301 * Non zero: An error has occurred. ci may not be filled out. 8302 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8303 * a held ipif in ci.ci_ipif. 8304 */ 8305 int 8306 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8307 cmd_info_t *ci, ipsq_func_t func) 8308 { 8309 sin_t *sin; 8310 sin6_t *sin6; 8311 char *name; 8312 struct ifreq *ifr; 8313 struct lifreq *lifr; 8314 ipif_t *ipif = NULL; 8315 ill_t *ill; 8316 conn_t *connp; 8317 boolean_t isv6; 8318 boolean_t exists; 8319 int err; 8320 mblk_t *mp1; 8321 zoneid_t zoneid; 8322 ip_stack_t *ipst; 8323 8324 if (q->q_next != NULL) { 8325 ill = (ill_t *)q->q_ptr; 8326 isv6 = ill->ill_isv6; 8327 connp = NULL; 8328 zoneid = ALL_ZONES; 8329 ipst = ill->ill_ipst; 8330 } else { 8331 ill = NULL; 8332 connp = Q_TO_CONN(q); 8333 isv6 = connp->conn_af_isv6; 8334 zoneid = connp->conn_zoneid; 8335 if (zoneid == GLOBAL_ZONEID) { 8336 /* global zone can access ipifs in all zones */ 8337 zoneid = ALL_ZONES; 8338 } 8339 ipst = connp->conn_netstack->netstack_ip; 8340 } 8341 8342 /* Has been checked in ip_wput_nondata */ 8343 mp1 = mp->b_cont->b_cont; 8344 8345 if (ipip->ipi_cmd_type == IF_CMD) { 8346 /* This a old style SIOC[GS]IF* command */ 8347 ifr = (struct ifreq *)mp1->b_rptr; 8348 /* 8349 * Null terminate the string to protect against buffer 8350 * overrun. String was generated by user code and may not 8351 * be trusted. 8352 */ 8353 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8354 sin = (sin_t *)&ifr->ifr_addr; 8355 name = ifr->ifr_name; 8356 ci->ci_sin = sin; 8357 ci->ci_sin6 = NULL; 8358 ci->ci_lifr = (struct lifreq *)ifr; 8359 } else { 8360 /* This a new style SIOC[GS]LIF* command */ 8361 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8362 lifr = (struct lifreq *)mp1->b_rptr; 8363 /* 8364 * Null terminate the string to protect against buffer 8365 * overrun. String was generated by user code and may not 8366 * be trusted. 8367 */ 8368 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8369 name = lifr->lifr_name; 8370 sin = (sin_t *)&lifr->lifr_addr; 8371 sin6 = (sin6_t *)&lifr->lifr_addr; 8372 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8373 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8374 LIFNAMSIZ); 8375 } 8376 ci->ci_sin = sin; 8377 ci->ci_sin6 = sin6; 8378 ci->ci_lifr = lifr; 8379 } 8380 8381 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8382 /* 8383 * The ioctl will be failed if the ioctl comes down 8384 * an conn stream 8385 */ 8386 if (ill == NULL) { 8387 /* 8388 * Not an ill queue, return EINVAL same as the 8389 * old error code. 8390 */ 8391 return (ENXIO); 8392 } 8393 ipif = ill->ill_ipif; 8394 ipif_refhold(ipif); 8395 } else { 8396 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8397 &exists, isv6, zoneid, 8398 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8399 ipst); 8400 if (ipif == NULL) { 8401 if (err == EINPROGRESS) 8402 return (err); 8403 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8404 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8405 /* 8406 * Need to try both v4 and v6 since this 8407 * ioctl can come down either v4 or v6 8408 * socket. The lifreq.lifr_family passed 8409 * down by this ioctl is AF_UNSPEC. 8410 */ 8411 ipif = ipif_lookup_on_name(name, 8412 mi_strlen(name), B_FALSE, &exists, !isv6, 8413 zoneid, (connp == NULL) ? q : 8414 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8415 if (err == EINPROGRESS) 8416 return (err); 8417 } 8418 err = 0; /* Ensure we don't use it below */ 8419 } 8420 } 8421 8422 /* 8423 * Old style [GS]IFCMD does not admit IPv6 ipif 8424 */ 8425 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8426 ipif_refrele(ipif); 8427 return (ENXIO); 8428 } 8429 8430 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8431 name[0] == '\0') { 8432 /* 8433 * Handle a or a SIOC?IF* with a null name 8434 * during plumb (on the ill queue before the I_PLINK). 8435 */ 8436 ipif = ill->ill_ipif; 8437 ipif_refhold(ipif); 8438 } 8439 8440 if (ipif == NULL) 8441 return (ENXIO); 8442 8443 /* 8444 * Allow only GET operations if this ipif has been created 8445 * temporarily due to a MOVE operation. 8446 */ 8447 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8448 ipif_refrele(ipif); 8449 return (EINVAL); 8450 } 8451 8452 ci->ci_ipif = ipif; 8453 return (0); 8454 } 8455 8456 /* 8457 * Return the total number of ipifs. 8458 */ 8459 static uint_t 8460 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8461 { 8462 uint_t numifs = 0; 8463 ill_t *ill; 8464 ill_walk_context_t ctx; 8465 ipif_t *ipif; 8466 8467 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8468 ill = ILL_START_WALK_V4(&ctx, ipst); 8469 8470 while (ill != NULL) { 8471 for (ipif = ill->ill_ipif; ipif != NULL; 8472 ipif = ipif->ipif_next) { 8473 if (ipif->ipif_zoneid == zoneid || 8474 ipif->ipif_zoneid == ALL_ZONES) 8475 numifs++; 8476 } 8477 ill = ill_next(&ctx, ill); 8478 } 8479 rw_exit(&ipst->ips_ill_g_lock); 8480 return (numifs); 8481 } 8482 8483 /* 8484 * Return the total number of ipifs. 8485 */ 8486 static uint_t 8487 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8488 { 8489 uint_t numifs = 0; 8490 ill_t *ill; 8491 ipif_t *ipif; 8492 ill_walk_context_t ctx; 8493 8494 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8495 8496 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8497 if (family == AF_INET) 8498 ill = ILL_START_WALK_V4(&ctx, ipst); 8499 else if (family == AF_INET6) 8500 ill = ILL_START_WALK_V6(&ctx, ipst); 8501 else 8502 ill = ILL_START_WALK_ALL(&ctx, ipst); 8503 8504 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8505 for (ipif = ill->ill_ipif; ipif != NULL; 8506 ipif = ipif->ipif_next) { 8507 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8508 !(lifn_flags & LIFC_NOXMIT)) 8509 continue; 8510 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8511 !(lifn_flags & LIFC_TEMPORARY)) 8512 continue; 8513 if (((ipif->ipif_flags & 8514 (IPIF_NOXMIT|IPIF_NOLOCAL| 8515 IPIF_DEPRECATED)) || 8516 IS_LOOPBACK(ill) || 8517 !(ipif->ipif_flags & IPIF_UP)) && 8518 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8519 continue; 8520 8521 if (zoneid != ipif->ipif_zoneid && 8522 ipif->ipif_zoneid != ALL_ZONES && 8523 (zoneid != GLOBAL_ZONEID || 8524 !(lifn_flags & LIFC_ALLZONES))) 8525 continue; 8526 8527 numifs++; 8528 } 8529 } 8530 rw_exit(&ipst->ips_ill_g_lock); 8531 return (numifs); 8532 } 8533 8534 uint_t 8535 ip_get_lifsrcofnum(ill_t *ill) 8536 { 8537 uint_t numifs = 0; 8538 ill_t *ill_head = ill; 8539 ip_stack_t *ipst = ill->ill_ipst; 8540 8541 /* 8542 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8543 * other thread may be trying to relink the ILLs in this usesrc group 8544 * and adjusting the ill_usesrc_grp_next pointers 8545 */ 8546 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8547 if ((ill->ill_usesrc_ifindex == 0) && 8548 (ill->ill_usesrc_grp_next != NULL)) { 8549 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8550 ill = ill->ill_usesrc_grp_next) 8551 numifs++; 8552 } 8553 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8554 8555 return (numifs); 8556 } 8557 8558 /* Null values are passed in for ipif, sin, and ifreq */ 8559 /* ARGSUSED */ 8560 int 8561 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8562 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8563 { 8564 int *nump; 8565 conn_t *connp = Q_TO_CONN(q); 8566 8567 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8568 8569 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8570 nump = (int *)mp->b_cont->b_cont->b_rptr; 8571 8572 *nump = ip_get_numifs(connp->conn_zoneid, 8573 connp->conn_netstack->netstack_ip); 8574 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8575 return (0); 8576 } 8577 8578 /* Null values are passed in for ipif, sin, and ifreq */ 8579 /* ARGSUSED */ 8580 int 8581 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8582 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8583 { 8584 struct lifnum *lifn; 8585 mblk_t *mp1; 8586 conn_t *connp = Q_TO_CONN(q); 8587 8588 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8589 8590 /* Existence checked in ip_wput_nondata */ 8591 mp1 = mp->b_cont->b_cont; 8592 8593 lifn = (struct lifnum *)mp1->b_rptr; 8594 switch (lifn->lifn_family) { 8595 case AF_UNSPEC: 8596 case AF_INET: 8597 case AF_INET6: 8598 break; 8599 default: 8600 return (EAFNOSUPPORT); 8601 } 8602 8603 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8604 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8605 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8606 return (0); 8607 } 8608 8609 /* ARGSUSED */ 8610 int 8611 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8612 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8613 { 8614 STRUCT_HANDLE(ifconf, ifc); 8615 mblk_t *mp1; 8616 struct iocblk *iocp; 8617 struct ifreq *ifr; 8618 ill_walk_context_t ctx; 8619 ill_t *ill; 8620 ipif_t *ipif; 8621 struct sockaddr_in *sin; 8622 int32_t ifclen; 8623 zoneid_t zoneid; 8624 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8625 8626 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8627 8628 ip1dbg(("ip_sioctl_get_ifconf")); 8629 /* Existence verified in ip_wput_nondata */ 8630 mp1 = mp->b_cont->b_cont; 8631 iocp = (struct iocblk *)mp->b_rptr; 8632 zoneid = Q_TO_CONN(q)->conn_zoneid; 8633 8634 /* 8635 * The original SIOCGIFCONF passed in a struct ifconf which specified 8636 * the user buffer address and length into which the list of struct 8637 * ifreqs was to be copied. Since AT&T Streams does not seem to 8638 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8639 * the SIOCGIFCONF operation was redefined to simply provide 8640 * a large output buffer into which we are supposed to jam the ifreq 8641 * array. The same ioctl command code was used, despite the fact that 8642 * both the applications and the kernel code had to change, thus making 8643 * it impossible to support both interfaces. 8644 * 8645 * For reasons not good enough to try to explain, the following 8646 * algorithm is used for deciding what to do with one of these: 8647 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8648 * form with the output buffer coming down as the continuation message. 8649 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8650 * and we have to copy in the ifconf structure to find out how big the 8651 * output buffer is and where to copy out to. Sure no problem... 8652 * 8653 */ 8654 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8655 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8656 int numifs = 0; 8657 size_t ifc_bufsize; 8658 8659 /* 8660 * Must be (better be!) continuation of a TRANSPARENT 8661 * IOCTL. We just copied in the ifconf structure. 8662 */ 8663 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8664 (struct ifconf *)mp1->b_rptr); 8665 8666 /* 8667 * Allocate a buffer to hold requested information. 8668 * 8669 * If ifc_len is larger than what is needed, we only 8670 * allocate what we will use. 8671 * 8672 * If ifc_len is smaller than what is needed, return 8673 * EINVAL. 8674 * 8675 * XXX: the ill_t structure can hava 2 counters, for 8676 * v4 and v6 (not just ill_ipif_up_count) to store the 8677 * number of interfaces for a device, so we don't need 8678 * to count them here... 8679 */ 8680 numifs = ip_get_numifs(zoneid, ipst); 8681 8682 ifclen = STRUCT_FGET(ifc, ifc_len); 8683 ifc_bufsize = numifs * sizeof (struct ifreq); 8684 if (ifc_bufsize > ifclen) { 8685 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8686 /* old behaviour */ 8687 return (EINVAL); 8688 } else { 8689 ifc_bufsize = ifclen; 8690 } 8691 } 8692 8693 mp1 = mi_copyout_alloc(q, mp, 8694 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8695 if (mp1 == NULL) 8696 return (ENOMEM); 8697 8698 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8699 } 8700 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8701 /* 8702 * the SIOCGIFCONF ioctl only knows about 8703 * IPv4 addresses, so don't try to tell 8704 * it about interfaces with IPv6-only 8705 * addresses. (Last parm 'isv6' is B_FALSE) 8706 */ 8707 8708 ifr = (struct ifreq *)mp1->b_rptr; 8709 8710 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8711 ill = ILL_START_WALK_V4(&ctx, ipst); 8712 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8713 for (ipif = ill->ill_ipif; ipif != NULL; 8714 ipif = ipif->ipif_next) { 8715 if (zoneid != ipif->ipif_zoneid && 8716 ipif->ipif_zoneid != ALL_ZONES) 8717 continue; 8718 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8719 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8720 /* old behaviour */ 8721 rw_exit(&ipst->ips_ill_g_lock); 8722 return (EINVAL); 8723 } else { 8724 goto if_copydone; 8725 } 8726 } 8727 ipif_get_name(ipif, ifr->ifr_name, 8728 sizeof (ifr->ifr_name)); 8729 sin = (sin_t *)&ifr->ifr_addr; 8730 *sin = sin_null; 8731 sin->sin_family = AF_INET; 8732 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8733 ifr++; 8734 } 8735 } 8736 if_copydone: 8737 rw_exit(&ipst->ips_ill_g_lock); 8738 mp1->b_wptr = (uchar_t *)ifr; 8739 8740 if (STRUCT_BUF(ifc) != NULL) { 8741 STRUCT_FSET(ifc, ifc_len, 8742 (int)((uchar_t *)ifr - mp1->b_rptr)); 8743 } 8744 return (0); 8745 } 8746 8747 /* 8748 * Get the interfaces using the address hosted on the interface passed in, 8749 * as a source adddress 8750 */ 8751 /* ARGSUSED */ 8752 int 8753 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8754 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8755 { 8756 mblk_t *mp1; 8757 ill_t *ill, *ill_head; 8758 ipif_t *ipif, *orig_ipif; 8759 int numlifs = 0; 8760 size_t lifs_bufsize, lifsmaxlen; 8761 struct lifreq *lifr; 8762 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8763 uint_t ifindex; 8764 zoneid_t zoneid; 8765 int err = 0; 8766 boolean_t isv6 = B_FALSE; 8767 struct sockaddr_in *sin; 8768 struct sockaddr_in6 *sin6; 8769 STRUCT_HANDLE(lifsrcof, lifs); 8770 ip_stack_t *ipst; 8771 8772 ipst = CONNQ_TO_IPST(q); 8773 8774 ASSERT(q->q_next == NULL); 8775 8776 zoneid = Q_TO_CONN(q)->conn_zoneid; 8777 8778 /* Existence verified in ip_wput_nondata */ 8779 mp1 = mp->b_cont->b_cont; 8780 8781 /* 8782 * Must be (better be!) continuation of a TRANSPARENT 8783 * IOCTL. We just copied in the lifsrcof structure. 8784 */ 8785 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8786 (struct lifsrcof *)mp1->b_rptr); 8787 8788 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8789 return (EINVAL); 8790 8791 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8792 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8793 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8794 ip_process_ioctl, &err, ipst); 8795 if (ipif == NULL) { 8796 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8797 ifindex)); 8798 return (err); 8799 } 8800 8801 8802 /* Allocate a buffer to hold requested information */ 8803 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8804 lifs_bufsize = numlifs * sizeof (struct lifreq); 8805 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8806 /* The actual size needed is always returned in lifs_len */ 8807 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8808 8809 /* If the amount we need is more than what is passed in, abort */ 8810 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8811 ipif_refrele(ipif); 8812 return (0); 8813 } 8814 8815 mp1 = mi_copyout_alloc(q, mp, 8816 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8817 if (mp1 == NULL) { 8818 ipif_refrele(ipif); 8819 return (ENOMEM); 8820 } 8821 8822 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8823 bzero(mp1->b_rptr, lifs_bufsize); 8824 8825 lifr = (struct lifreq *)mp1->b_rptr; 8826 8827 ill = ill_head = ipif->ipif_ill; 8828 orig_ipif = ipif; 8829 8830 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8831 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8832 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8833 8834 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8835 for (; (ill != NULL) && (ill != ill_head); 8836 ill = ill->ill_usesrc_grp_next) { 8837 8838 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8839 break; 8840 8841 ipif = ill->ill_ipif; 8842 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8843 if (ipif->ipif_isv6) { 8844 sin6 = (sin6_t *)&lifr->lifr_addr; 8845 *sin6 = sin6_null; 8846 sin6->sin6_family = AF_INET6; 8847 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8848 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8849 &ipif->ipif_v6net_mask); 8850 } else { 8851 sin = (sin_t *)&lifr->lifr_addr; 8852 *sin = sin_null; 8853 sin->sin_family = AF_INET; 8854 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8855 lifr->lifr_addrlen = ip_mask_to_plen( 8856 ipif->ipif_net_mask); 8857 } 8858 lifr++; 8859 } 8860 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8861 rw_exit(&ipst->ips_ill_g_lock); 8862 ipif_refrele(orig_ipif); 8863 mp1->b_wptr = (uchar_t *)lifr; 8864 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8865 8866 return (0); 8867 } 8868 8869 /* ARGSUSED */ 8870 int 8871 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8872 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8873 { 8874 mblk_t *mp1; 8875 int list; 8876 ill_t *ill; 8877 ipif_t *ipif; 8878 int flags; 8879 int numlifs = 0; 8880 size_t lifc_bufsize; 8881 struct lifreq *lifr; 8882 sa_family_t family; 8883 struct sockaddr_in *sin; 8884 struct sockaddr_in6 *sin6; 8885 ill_walk_context_t ctx; 8886 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8887 int32_t lifclen; 8888 zoneid_t zoneid; 8889 STRUCT_HANDLE(lifconf, lifc); 8890 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8891 8892 ip1dbg(("ip_sioctl_get_lifconf")); 8893 8894 ASSERT(q->q_next == NULL); 8895 8896 zoneid = Q_TO_CONN(q)->conn_zoneid; 8897 8898 /* Existence verified in ip_wput_nondata */ 8899 mp1 = mp->b_cont->b_cont; 8900 8901 /* 8902 * An extended version of SIOCGIFCONF that takes an 8903 * additional address family and flags field. 8904 * AF_UNSPEC retrieve both IPv4 and IPv6. 8905 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8906 * interfaces are omitted. 8907 * Similarly, IPIF_TEMPORARY interfaces are omitted 8908 * unless LIFC_TEMPORARY is specified. 8909 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8910 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8911 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8912 * has priority over LIFC_NOXMIT. 8913 */ 8914 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8915 8916 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8917 return (EINVAL); 8918 8919 /* 8920 * Must be (better be!) continuation of a TRANSPARENT 8921 * IOCTL. We just copied in the lifconf structure. 8922 */ 8923 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8924 8925 family = STRUCT_FGET(lifc, lifc_family); 8926 flags = STRUCT_FGET(lifc, lifc_flags); 8927 8928 switch (family) { 8929 case AF_UNSPEC: 8930 /* 8931 * walk all ILL's. 8932 */ 8933 list = MAX_G_HEADS; 8934 break; 8935 case AF_INET: 8936 /* 8937 * walk only IPV4 ILL's. 8938 */ 8939 list = IP_V4_G_HEAD; 8940 break; 8941 case AF_INET6: 8942 /* 8943 * walk only IPV6 ILL's. 8944 */ 8945 list = IP_V6_G_HEAD; 8946 break; 8947 default: 8948 return (EAFNOSUPPORT); 8949 } 8950 8951 /* 8952 * Allocate a buffer to hold requested information. 8953 * 8954 * If lifc_len is larger than what is needed, we only 8955 * allocate what we will use. 8956 * 8957 * If lifc_len is smaller than what is needed, return 8958 * EINVAL. 8959 */ 8960 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8961 lifc_bufsize = numlifs * sizeof (struct lifreq); 8962 lifclen = STRUCT_FGET(lifc, lifc_len); 8963 if (lifc_bufsize > lifclen) { 8964 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8965 return (EINVAL); 8966 else 8967 lifc_bufsize = lifclen; 8968 } 8969 8970 mp1 = mi_copyout_alloc(q, mp, 8971 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8972 if (mp1 == NULL) 8973 return (ENOMEM); 8974 8975 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8976 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8977 8978 lifr = (struct lifreq *)mp1->b_rptr; 8979 8980 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8981 ill = ill_first(list, list, &ctx, ipst); 8982 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8983 for (ipif = ill->ill_ipif; ipif != NULL; 8984 ipif = ipif->ipif_next) { 8985 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8986 !(flags & LIFC_NOXMIT)) 8987 continue; 8988 8989 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8990 !(flags & LIFC_TEMPORARY)) 8991 continue; 8992 8993 if (((ipif->ipif_flags & 8994 (IPIF_NOXMIT|IPIF_NOLOCAL| 8995 IPIF_DEPRECATED)) || 8996 IS_LOOPBACK(ill) || 8997 !(ipif->ipif_flags & IPIF_UP)) && 8998 (flags & LIFC_EXTERNAL_SOURCE)) 8999 continue; 9000 9001 if (zoneid != ipif->ipif_zoneid && 9002 ipif->ipif_zoneid != ALL_ZONES && 9003 (zoneid != GLOBAL_ZONEID || 9004 !(flags & LIFC_ALLZONES))) 9005 continue; 9006 9007 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9008 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9009 rw_exit(&ipst->ips_ill_g_lock); 9010 return (EINVAL); 9011 } else { 9012 goto lif_copydone; 9013 } 9014 } 9015 9016 ipif_get_name(ipif, lifr->lifr_name, 9017 sizeof (lifr->lifr_name)); 9018 if (ipif->ipif_isv6) { 9019 sin6 = (sin6_t *)&lifr->lifr_addr; 9020 *sin6 = sin6_null; 9021 sin6->sin6_family = AF_INET6; 9022 sin6->sin6_addr = 9023 ipif->ipif_v6lcl_addr; 9024 lifr->lifr_addrlen = 9025 ip_mask_to_plen_v6( 9026 &ipif->ipif_v6net_mask); 9027 } else { 9028 sin = (sin_t *)&lifr->lifr_addr; 9029 *sin = sin_null; 9030 sin->sin_family = AF_INET; 9031 sin->sin_addr.s_addr = 9032 ipif->ipif_lcl_addr; 9033 lifr->lifr_addrlen = 9034 ip_mask_to_plen( 9035 ipif->ipif_net_mask); 9036 } 9037 lifr++; 9038 } 9039 } 9040 lif_copydone: 9041 rw_exit(&ipst->ips_ill_g_lock); 9042 9043 mp1->b_wptr = (uchar_t *)lifr; 9044 if (STRUCT_BUF(lifc) != NULL) { 9045 STRUCT_FSET(lifc, lifc_len, 9046 (int)((uchar_t *)lifr - mp1->b_rptr)); 9047 } 9048 return (0); 9049 } 9050 9051 /* ARGSUSED */ 9052 int 9053 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9054 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9055 { 9056 ip_stack_t *ipst; 9057 9058 if (q->q_next == NULL) 9059 ipst = CONNQ_TO_IPST(q); 9060 else 9061 ipst = ILLQ_TO_IPST(q); 9062 9063 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9064 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9065 return (0); 9066 } 9067 9068 static void 9069 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9070 { 9071 ip6_asp_t *table; 9072 size_t table_size; 9073 mblk_t *data_mp; 9074 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9075 ip_stack_t *ipst; 9076 9077 if (q->q_next == NULL) 9078 ipst = CONNQ_TO_IPST(q); 9079 else 9080 ipst = ILLQ_TO_IPST(q); 9081 9082 /* These two ioctls are I_STR only */ 9083 if (iocp->ioc_count == TRANSPARENT) { 9084 miocnak(q, mp, 0, EINVAL); 9085 return; 9086 } 9087 9088 data_mp = mp->b_cont; 9089 if (data_mp == NULL) { 9090 /* The user passed us a NULL argument */ 9091 table = NULL; 9092 table_size = iocp->ioc_count; 9093 } else { 9094 /* 9095 * The user provided a table. The stream head 9096 * may have copied in the user data in chunks, 9097 * so make sure everything is pulled up 9098 * properly. 9099 */ 9100 if (MBLKL(data_mp) < iocp->ioc_count) { 9101 mblk_t *new_data_mp; 9102 if ((new_data_mp = msgpullup(data_mp, -1)) == 9103 NULL) { 9104 miocnak(q, mp, 0, ENOMEM); 9105 return; 9106 } 9107 freemsg(data_mp); 9108 data_mp = new_data_mp; 9109 mp->b_cont = data_mp; 9110 } 9111 table = (ip6_asp_t *)data_mp->b_rptr; 9112 table_size = iocp->ioc_count; 9113 } 9114 9115 switch (iocp->ioc_cmd) { 9116 case SIOCGIP6ADDRPOLICY: 9117 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9118 if (iocp->ioc_rval == -1) 9119 iocp->ioc_error = EINVAL; 9120 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9121 else if (table != NULL && 9122 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9123 ip6_asp_t *src = table; 9124 ip6_asp32_t *dst = (void *)table; 9125 int count = table_size / sizeof (ip6_asp_t); 9126 int i; 9127 9128 /* 9129 * We need to do an in-place shrink of the array 9130 * to match the alignment attributes of the 9131 * 32-bit ABI looking at it. 9132 */ 9133 /* LINTED: logical expression always true: op "||" */ 9134 ASSERT(sizeof (*src) > sizeof (*dst)); 9135 for (i = 1; i < count; i++) 9136 bcopy(src + i, dst + i, sizeof (*dst)); 9137 } 9138 #endif 9139 break; 9140 9141 case SIOCSIP6ADDRPOLICY: 9142 ASSERT(mp->b_prev == NULL); 9143 mp->b_prev = (void *)q; 9144 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9145 /* 9146 * We pass in the datamodel here so that the ip6_asp_replace() 9147 * routine can handle converting from 32-bit to native formats 9148 * where necessary. 9149 * 9150 * A better way to handle this might be to convert the inbound 9151 * data structure here, and hang it off a new 'mp'; thus the 9152 * ip6_asp_replace() logic would always be dealing with native 9153 * format data structures.. 9154 * 9155 * (An even simpler way to handle these ioctls is to just 9156 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9157 * and just recompile everything that depends on it.) 9158 */ 9159 #endif 9160 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9161 iocp->ioc_flag & IOC_MODELS); 9162 return; 9163 } 9164 9165 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9166 qreply(q, mp); 9167 } 9168 9169 static void 9170 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9171 { 9172 mblk_t *data_mp; 9173 struct dstinforeq *dir; 9174 uint8_t *end, *cur; 9175 in6_addr_t *daddr, *saddr; 9176 ipaddr_t v4daddr; 9177 ire_t *ire; 9178 char *slabel, *dlabel; 9179 boolean_t isipv4; 9180 int match_ire; 9181 ill_t *dst_ill; 9182 ipif_t *src_ipif, *ire_ipif; 9183 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9184 zoneid_t zoneid; 9185 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9186 9187 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9188 zoneid = Q_TO_CONN(q)->conn_zoneid; 9189 9190 /* 9191 * This ioctl is I_STR only, and must have a 9192 * data mblk following the M_IOCTL mblk. 9193 */ 9194 data_mp = mp->b_cont; 9195 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9196 miocnak(q, mp, 0, EINVAL); 9197 return; 9198 } 9199 9200 if (MBLKL(data_mp) < iocp->ioc_count) { 9201 mblk_t *new_data_mp; 9202 9203 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9204 miocnak(q, mp, 0, ENOMEM); 9205 return; 9206 } 9207 freemsg(data_mp); 9208 data_mp = new_data_mp; 9209 mp->b_cont = data_mp; 9210 } 9211 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9212 9213 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9214 end - cur >= sizeof (struct dstinforeq); 9215 cur += sizeof (struct dstinforeq)) { 9216 dir = (struct dstinforeq *)cur; 9217 daddr = &dir->dir_daddr; 9218 saddr = &dir->dir_saddr; 9219 9220 /* 9221 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9222 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9223 * and ipif_select_source[_v6]() do not. 9224 */ 9225 dir->dir_dscope = ip_addr_scope_v6(daddr); 9226 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9227 9228 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9229 if (isipv4) { 9230 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9231 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9232 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9233 } else { 9234 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9235 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9236 } 9237 if (ire == NULL) { 9238 dir->dir_dreachable = 0; 9239 9240 /* move on to next dst addr */ 9241 continue; 9242 } 9243 dir->dir_dreachable = 1; 9244 9245 ire_ipif = ire->ire_ipif; 9246 if (ire_ipif == NULL) 9247 goto next_dst; 9248 9249 /* 9250 * We expect to get back an interface ire or a 9251 * gateway ire cache entry. For both types, the 9252 * output interface is ire_ipif->ipif_ill. 9253 */ 9254 dst_ill = ire_ipif->ipif_ill; 9255 dir->dir_dmactype = dst_ill->ill_mactype; 9256 9257 if (isipv4) { 9258 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9259 } else { 9260 src_ipif = ipif_select_source_v6(dst_ill, 9261 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9262 zoneid); 9263 } 9264 if (src_ipif == NULL) 9265 goto next_dst; 9266 9267 *saddr = src_ipif->ipif_v6lcl_addr; 9268 dir->dir_sscope = ip_addr_scope_v6(saddr); 9269 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9270 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9271 dir->dir_sdeprecated = 9272 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9273 ipif_refrele(src_ipif); 9274 next_dst: 9275 ire_refrele(ire); 9276 } 9277 miocack(q, mp, iocp->ioc_count, 0); 9278 } 9279 9280 9281 /* 9282 * Check if this is an address assigned to this machine. 9283 * Skips interfaces that are down by using ire checks. 9284 * Translates mapped addresses to v4 addresses and then 9285 * treats them as such, returning true if the v4 address 9286 * associated with this mapped address is configured. 9287 * Note: Applications will have to be careful what they do 9288 * with the response; use of mapped addresses limits 9289 * what can be done with the socket, especially with 9290 * respect to socket options and ioctls - neither IPv4 9291 * options nor IPv6 sticky options/ancillary data options 9292 * may be used. 9293 */ 9294 /* ARGSUSED */ 9295 int 9296 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9297 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9298 { 9299 struct sioc_addrreq *sia; 9300 sin_t *sin; 9301 ire_t *ire; 9302 mblk_t *mp1; 9303 zoneid_t zoneid; 9304 ip_stack_t *ipst; 9305 9306 ip1dbg(("ip_sioctl_tmyaddr")); 9307 9308 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9309 zoneid = Q_TO_CONN(q)->conn_zoneid; 9310 ipst = CONNQ_TO_IPST(q); 9311 9312 /* Existence verified in ip_wput_nondata */ 9313 mp1 = mp->b_cont->b_cont; 9314 sia = (struct sioc_addrreq *)mp1->b_rptr; 9315 sin = (sin_t *)&sia->sa_addr; 9316 switch (sin->sin_family) { 9317 case AF_INET6: { 9318 sin6_t *sin6 = (sin6_t *)sin; 9319 9320 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9321 ipaddr_t v4_addr; 9322 9323 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9324 v4_addr); 9325 ire = ire_ctable_lookup(v4_addr, 0, 9326 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9327 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9328 } else { 9329 in6_addr_t v6addr; 9330 9331 v6addr = sin6->sin6_addr; 9332 ire = ire_ctable_lookup_v6(&v6addr, 0, 9333 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9334 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9335 } 9336 break; 9337 } 9338 case AF_INET: { 9339 ipaddr_t v4addr; 9340 9341 v4addr = sin->sin_addr.s_addr; 9342 ire = ire_ctable_lookup(v4addr, 0, 9343 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9344 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9345 break; 9346 } 9347 default: 9348 return (EAFNOSUPPORT); 9349 } 9350 if (ire != NULL) { 9351 sia->sa_res = 1; 9352 ire_refrele(ire); 9353 } else { 9354 sia->sa_res = 0; 9355 } 9356 return (0); 9357 } 9358 9359 /* 9360 * Check if this is an address assigned on-link i.e. neighbor, 9361 * and makes sure it's reachable from the current zone. 9362 * Returns true for my addresses as well. 9363 * Translates mapped addresses to v4 addresses and then 9364 * treats them as such, returning true if the v4 address 9365 * associated with this mapped address is configured. 9366 * Note: Applications will have to be careful what they do 9367 * with the response; use of mapped addresses limits 9368 * what can be done with the socket, especially with 9369 * respect to socket options and ioctls - neither IPv4 9370 * options nor IPv6 sticky options/ancillary data options 9371 * may be used. 9372 */ 9373 /* ARGSUSED */ 9374 int 9375 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9376 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9377 { 9378 struct sioc_addrreq *sia; 9379 sin_t *sin; 9380 mblk_t *mp1; 9381 ire_t *ire = NULL; 9382 zoneid_t zoneid; 9383 ip_stack_t *ipst; 9384 9385 ip1dbg(("ip_sioctl_tonlink")); 9386 9387 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9388 zoneid = Q_TO_CONN(q)->conn_zoneid; 9389 ipst = CONNQ_TO_IPST(q); 9390 9391 /* Existence verified in ip_wput_nondata */ 9392 mp1 = mp->b_cont->b_cont; 9393 sia = (struct sioc_addrreq *)mp1->b_rptr; 9394 sin = (sin_t *)&sia->sa_addr; 9395 9396 /* 9397 * Match addresses with a zero gateway field to avoid 9398 * routes going through a router. 9399 * Exclude broadcast and multicast addresses. 9400 */ 9401 switch (sin->sin_family) { 9402 case AF_INET6: { 9403 sin6_t *sin6 = (sin6_t *)sin; 9404 9405 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9406 ipaddr_t v4_addr; 9407 9408 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9409 v4_addr); 9410 if (!CLASSD(v4_addr)) { 9411 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9412 NULL, NULL, zoneid, NULL, 9413 MATCH_IRE_GW, ipst); 9414 } 9415 } else { 9416 in6_addr_t v6addr; 9417 in6_addr_t v6gw; 9418 9419 v6addr = sin6->sin6_addr; 9420 v6gw = ipv6_all_zeros; 9421 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9422 ire = ire_route_lookup_v6(&v6addr, 0, 9423 &v6gw, 0, NULL, NULL, zoneid, 9424 NULL, MATCH_IRE_GW, ipst); 9425 } 9426 } 9427 break; 9428 } 9429 case AF_INET: { 9430 ipaddr_t v4addr; 9431 9432 v4addr = sin->sin_addr.s_addr; 9433 if (!CLASSD(v4addr)) { 9434 ire = ire_route_lookup(v4addr, 0, 0, 0, 9435 NULL, NULL, zoneid, NULL, 9436 MATCH_IRE_GW, ipst); 9437 } 9438 break; 9439 } 9440 default: 9441 return (EAFNOSUPPORT); 9442 } 9443 sia->sa_res = 0; 9444 if (ire != NULL) { 9445 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9446 IRE_LOCAL|IRE_LOOPBACK)) { 9447 sia->sa_res = 1; 9448 } 9449 ire_refrele(ire); 9450 } 9451 return (0); 9452 } 9453 9454 /* 9455 * TBD: implement when kernel maintaines a list of site prefixes. 9456 */ 9457 /* ARGSUSED */ 9458 int 9459 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9460 ip_ioctl_cmd_t *ipip, void *ifreq) 9461 { 9462 return (ENXIO); 9463 } 9464 9465 /* ARGSUSED */ 9466 int 9467 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9468 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9469 { 9470 ill_t *ill; 9471 mblk_t *mp1; 9472 conn_t *connp; 9473 boolean_t success; 9474 9475 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9476 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9477 /* ioctl comes down on an conn */ 9478 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9479 connp = Q_TO_CONN(q); 9480 9481 mp->b_datap->db_type = M_IOCTL; 9482 9483 /* 9484 * Send down a copy. (copymsg does not copy b_next/b_prev). 9485 * The original mp contains contaminated b_next values due to 'mi', 9486 * which is needed to do the mi_copy_done. Unfortunately if we 9487 * send down the original mblk itself and if we are popped due to an 9488 * an unplumb before the response comes back from tunnel, 9489 * the streamhead (which does a freemsg) will see this contaminated 9490 * message and the assertion in freemsg about non-null b_next/b_prev 9491 * will panic a DEBUG kernel. 9492 */ 9493 mp1 = copymsg(mp); 9494 if (mp1 == NULL) 9495 return (ENOMEM); 9496 9497 ill = ipif->ipif_ill; 9498 mutex_enter(&connp->conn_lock); 9499 mutex_enter(&ill->ill_lock); 9500 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9501 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9502 mp, 0); 9503 } else { 9504 success = ill_pending_mp_add(ill, connp, mp); 9505 } 9506 mutex_exit(&ill->ill_lock); 9507 mutex_exit(&connp->conn_lock); 9508 9509 if (success) { 9510 ip1dbg(("sending down tunparam request ")); 9511 putnext(ill->ill_wq, mp1); 9512 return (EINPROGRESS); 9513 } else { 9514 /* The conn has started closing */ 9515 freemsg(mp1); 9516 return (EINTR); 9517 } 9518 } 9519 9520 /* 9521 * ARP IOCTLs. 9522 * How does IP get in the business of fronting ARP configuration/queries? 9523 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9524 * are by tradition passed in through a datagram socket. That lands in IP. 9525 * As it happens, this is just as well since the interface is quite crude in 9526 * that it passes in no information about protocol or hardware types, or 9527 * interface association. After making the protocol assumption, IP is in 9528 * the position to look up the name of the ILL, which ARP will need, and 9529 * format a request that can be handled by ARP. The request is passed up 9530 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9531 * back a response. ARP supports its own set of more general IOCTLs, in 9532 * case anyone is interested. 9533 */ 9534 /* ARGSUSED */ 9535 int 9536 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9537 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9538 { 9539 mblk_t *mp1; 9540 mblk_t *mp2; 9541 mblk_t *pending_mp; 9542 ipaddr_t ipaddr; 9543 area_t *area; 9544 struct iocblk *iocp; 9545 conn_t *connp; 9546 struct arpreq *ar; 9547 struct xarpreq *xar; 9548 int flags, alength; 9549 char *lladdr; 9550 ip_stack_t *ipst; 9551 ill_t *ill = ipif->ipif_ill; 9552 boolean_t if_arp_ioctl = B_FALSE; 9553 9554 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9555 connp = Q_TO_CONN(q); 9556 ipst = connp->conn_netstack->netstack_ip; 9557 9558 if (ipip->ipi_cmd_type == XARP_CMD) { 9559 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9560 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9561 ar = NULL; 9562 9563 flags = xar->xarp_flags; 9564 lladdr = LLADDR(&xar->xarp_ha); 9565 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9566 /* 9567 * Validate against user's link layer address length 9568 * input and name and addr length limits. 9569 */ 9570 alength = ill->ill_phys_addr_length; 9571 if (ipip->ipi_cmd == SIOCSXARP) { 9572 if (alength != xar->xarp_ha.sdl_alen || 9573 (alength + xar->xarp_ha.sdl_nlen > 9574 sizeof (xar->xarp_ha.sdl_data))) 9575 return (EINVAL); 9576 } 9577 } else { 9578 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9579 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9580 xar = NULL; 9581 9582 flags = ar->arp_flags; 9583 lladdr = ar->arp_ha.sa_data; 9584 /* 9585 * Theoretically, the sa_family could tell us what link 9586 * layer type this operation is trying to deal with. By 9587 * common usage AF_UNSPEC means ethernet. We'll assume 9588 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9589 * for now. Our new SIOC*XARP ioctls can be used more 9590 * generally. 9591 * 9592 * If the underlying media happens to have a non 6 byte 9593 * address, arp module will fail set/get, but the del 9594 * operation will succeed. 9595 */ 9596 alength = 6; 9597 if ((ipip->ipi_cmd != SIOCDARP) && 9598 (alength != ill->ill_phys_addr_length)) { 9599 return (EINVAL); 9600 } 9601 } 9602 9603 /* 9604 * We are going to pass up to ARP a packet chain that looks 9605 * like: 9606 * 9607 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9608 * 9609 * Get a copy of the original IOCTL mblk to head the chain, 9610 * to be sent up (in mp1). Also get another copy to store 9611 * in the ill_pending_mp list, for matching the response 9612 * when it comes back from ARP. 9613 */ 9614 mp1 = copyb(mp); 9615 pending_mp = copymsg(mp); 9616 if (mp1 == NULL || pending_mp == NULL) { 9617 if (mp1 != NULL) 9618 freeb(mp1); 9619 if (pending_mp != NULL) 9620 inet_freemsg(pending_mp); 9621 return (ENOMEM); 9622 } 9623 9624 ipaddr = sin->sin_addr.s_addr; 9625 9626 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9627 (caddr_t)&ipaddr); 9628 if (mp2 == NULL) { 9629 freeb(mp1); 9630 inet_freemsg(pending_mp); 9631 return (ENOMEM); 9632 } 9633 /* Put together the chain. */ 9634 mp1->b_cont = mp2; 9635 mp1->b_datap->db_type = M_IOCTL; 9636 mp2->b_cont = mp; 9637 mp2->b_datap->db_type = M_DATA; 9638 9639 iocp = (struct iocblk *)mp1->b_rptr; 9640 9641 /* 9642 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9643 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9644 * cp_private field (or cp_rval on 32-bit systems) in place of the 9645 * ioc_count field; set ioc_count to be correct. 9646 */ 9647 iocp->ioc_count = MBLKL(mp1->b_cont); 9648 9649 /* 9650 * Set the proper command in the ARP message. 9651 * Convert the SIOC{G|S|D}ARP calls into our 9652 * AR_ENTRY_xxx calls. 9653 */ 9654 area = (area_t *)mp2->b_rptr; 9655 switch (iocp->ioc_cmd) { 9656 case SIOCDARP: 9657 case SIOCDXARP: 9658 /* 9659 * We defer deleting the corresponding IRE until 9660 * we return from arp. 9661 */ 9662 area->area_cmd = AR_ENTRY_DELETE; 9663 area->area_proto_mask_offset = 0; 9664 break; 9665 case SIOCGARP: 9666 case SIOCGXARP: 9667 area->area_cmd = AR_ENTRY_SQUERY; 9668 area->area_proto_mask_offset = 0; 9669 break; 9670 case SIOCSARP: 9671 case SIOCSXARP: 9672 /* 9673 * Delete the corresponding ire to make sure IP will 9674 * pick up any change from arp. 9675 */ 9676 if (!if_arp_ioctl) { 9677 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9678 } else { 9679 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9680 if (ipif != NULL) { 9681 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9682 ipst); 9683 ipif_refrele(ipif); 9684 } 9685 } 9686 break; 9687 } 9688 iocp->ioc_cmd = area->area_cmd; 9689 9690 /* 9691 * Fill in the rest of the ARP operation fields. 9692 */ 9693 area->area_hw_addr_length = alength; 9694 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9695 9696 /* Translate the flags. */ 9697 if (flags & ATF_PERM) 9698 area->area_flags |= ACE_F_PERMANENT; 9699 if (flags & ATF_PUBL) 9700 area->area_flags |= ACE_F_PUBLISH; 9701 if (flags & ATF_AUTHORITY) 9702 area->area_flags |= ACE_F_AUTHORITY; 9703 9704 /* 9705 * Before sending 'mp' to ARP, we have to clear the b_next 9706 * and b_prev. Otherwise if STREAMS encounters such a message 9707 * in freemsg(), (because ARP can close any time) it can cause 9708 * a panic. But mi code needs the b_next and b_prev values of 9709 * mp->b_cont, to complete the ioctl. So we store it here 9710 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9711 * when the response comes down from ARP. 9712 */ 9713 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9714 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9715 mp->b_cont->b_next = NULL; 9716 mp->b_cont->b_prev = NULL; 9717 9718 mutex_enter(&connp->conn_lock); 9719 mutex_enter(&ill->ill_lock); 9720 /* conn has not yet started closing, hence this can't fail */ 9721 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9722 mutex_exit(&ill->ill_lock); 9723 mutex_exit(&connp->conn_lock); 9724 9725 /* 9726 * Up to ARP it goes. The response will come back in ip_wput() as an 9727 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9728 */ 9729 putnext(ill->ill_rq, mp1); 9730 return (EINPROGRESS); 9731 } 9732 9733 /* 9734 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9735 * the associated sin and refhold and return the associated ipif via `ci'. 9736 */ 9737 int 9738 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9739 cmd_info_t *ci, ipsq_func_t func) 9740 { 9741 mblk_t *mp1; 9742 int err; 9743 sin_t *sin; 9744 conn_t *connp; 9745 ipif_t *ipif; 9746 ire_t *ire = NULL; 9747 ill_t *ill = NULL; 9748 boolean_t exists; 9749 ip_stack_t *ipst; 9750 struct arpreq *ar; 9751 struct xarpreq *xar; 9752 struct sockaddr_dl *sdl; 9753 9754 /* ioctl comes down on a conn */ 9755 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9756 connp = Q_TO_CONN(q); 9757 if (connp->conn_af_isv6) 9758 return (ENXIO); 9759 9760 ipst = connp->conn_netstack->netstack_ip; 9761 9762 /* Verified in ip_wput_nondata */ 9763 mp1 = mp->b_cont->b_cont; 9764 9765 if (ipip->ipi_cmd_type == XARP_CMD) { 9766 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9767 xar = (struct xarpreq *)mp1->b_rptr; 9768 sin = (sin_t *)&xar->xarp_pa; 9769 sdl = &xar->xarp_ha; 9770 9771 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9772 return (ENXIO); 9773 if (sdl->sdl_nlen >= LIFNAMSIZ) 9774 return (EINVAL); 9775 } else { 9776 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9777 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9778 ar = (struct arpreq *)mp1->b_rptr; 9779 sin = (sin_t *)&ar->arp_pa; 9780 } 9781 9782 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9783 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9784 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9785 mp, func, &err, ipst); 9786 if (ipif == NULL) 9787 return (err); 9788 if (ipif->ipif_id != 0 || 9789 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9790 ipif_refrele(ipif); 9791 return (ENXIO); 9792 } 9793 } else { 9794 /* 9795 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9796 * 0: use the IP address to figure out the ill. In the IPMP 9797 * case, a simple forwarding table lookup will return the 9798 * IRE_IF_RESOLVER for the first interface in the group, which 9799 * might not be the interface on which the requested IP 9800 * address was resolved due to the ill selection algorithm 9801 * (see ip_newroute_get_dst_ill()). So we do a cache table 9802 * lookup first: if the IRE cache entry for the IP address is 9803 * still there, it will contain the ill pointer for the right 9804 * interface, so we use that. If the cache entry has been 9805 * flushed, we fall back to the forwarding table lookup. This 9806 * should be rare enough since IRE cache entries have a longer 9807 * life expectancy than ARP cache entries. 9808 */ 9809 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9810 ipst); 9811 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9812 ((ill = ire_to_ill(ire)) == NULL) || 9813 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9814 if (ire != NULL) 9815 ire_refrele(ire); 9816 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9817 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9818 NULL, MATCH_IRE_TYPE, ipst); 9819 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9820 9821 if (ire != NULL) 9822 ire_refrele(ire); 9823 return (ENXIO); 9824 } 9825 } 9826 ASSERT(ire != NULL && ill != NULL); 9827 ipif = ill->ill_ipif; 9828 ipif_refhold(ipif); 9829 ire_refrele(ire); 9830 } 9831 ci->ci_sin = sin; 9832 ci->ci_ipif = ipif; 9833 return (0); 9834 } 9835 9836 /* 9837 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9838 * atomically set/clear the muxids. Also complete the ioctl by acking or 9839 * naking it. Note that the code is structured such that the link type, 9840 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9841 * its clones use the persistent link, while pppd(1M) and perhaps many 9842 * other daemons may use non-persistent link. When combined with some 9843 * ill_t states, linking and unlinking lower streams may be used as 9844 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9845 */ 9846 /* ARGSUSED */ 9847 void 9848 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9849 { 9850 mblk_t *mp1, *mp2; 9851 struct linkblk *li; 9852 struct ipmx_s *ipmxp; 9853 ill_t *ill; 9854 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9855 int err = 0; 9856 boolean_t entered_ipsq = B_FALSE; 9857 boolean_t islink; 9858 ip_stack_t *ipst; 9859 9860 if (CONN_Q(q)) 9861 ipst = CONNQ_TO_IPST(q); 9862 else 9863 ipst = ILLQ_TO_IPST(q); 9864 9865 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9866 ioccmd == I_LINK || ioccmd == I_UNLINK); 9867 9868 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9869 9870 mp1 = mp->b_cont; /* This is the linkblk info */ 9871 li = (struct linkblk *)mp1->b_rptr; 9872 9873 /* 9874 * ARP has added this special mblk, and the utility is asking us 9875 * to perform consistency checks, and also atomically set the 9876 * muxid. Ifconfig is an example. It achieves this by using 9877 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9878 * to /dev/udp[6] stream for use as the mux when plinking the IP 9879 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9880 * and other comments in this routine for more details. 9881 */ 9882 mp2 = mp1->b_cont; /* This is added by ARP */ 9883 9884 /* 9885 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9886 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9887 * get the special mblk above. For backward compatibility, we 9888 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9889 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9890 * not atomic, and can leave the streams unplumbable if the utility 9891 * is interrupted before it does the SIOCSLIFMUXID. 9892 */ 9893 if (mp2 == NULL) { 9894 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9895 if (err == EINPROGRESS) 9896 return; 9897 goto done; 9898 } 9899 9900 /* 9901 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9902 * ARP has appended this last mblk to tell us whether the lower stream 9903 * is an arp-dev stream or an IP module stream. 9904 */ 9905 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9906 if (ipmxp->ipmx_arpdev_stream) { 9907 /* 9908 * The lower stream is the arp-dev stream. 9909 */ 9910 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9911 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9912 if (ill == NULL) { 9913 if (err == EINPROGRESS) 9914 return; 9915 err = EINVAL; 9916 goto done; 9917 } 9918 9919 if (ipsq == NULL) { 9920 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9921 NEW_OP, B_TRUE); 9922 if (ipsq == NULL) { 9923 ill_refrele(ill); 9924 return; 9925 } 9926 entered_ipsq = B_TRUE; 9927 } 9928 ASSERT(IAM_WRITER_ILL(ill)); 9929 ill_refrele(ill); 9930 9931 /* 9932 * To ensure consistency between IP and ARP, the following 9933 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9934 * This is because the muxid's are stored in the IP stream on 9935 * the ill. 9936 * 9937 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9938 * the ARP stream. On an arp-dev stream, IP checks that it is 9939 * not yet plinked, and it also checks that the corresponding 9940 * IP stream is already plinked. 9941 * 9942 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9943 * punlinking the IP stream. IP does not allow punlink of the 9944 * IP stream unless the arp stream has been punlinked. 9945 */ 9946 if ((islink && 9947 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9948 (!islink && ill->ill_arp_muxid != li->l_index)) { 9949 err = EINVAL; 9950 goto done; 9951 } 9952 ill->ill_arp_muxid = islink ? li->l_index : 0; 9953 } else { 9954 /* 9955 * The lower stream is probably an IP module stream. Do 9956 * consistency checking. 9957 */ 9958 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9959 if (err == EINPROGRESS) 9960 return; 9961 } 9962 done: 9963 if (err == 0) 9964 miocack(q, mp, 0, 0); 9965 else 9966 miocnak(q, mp, 0, err); 9967 9968 /* Conn was refheld in ip_sioctl_copyin_setup */ 9969 if (CONN_Q(q)) 9970 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9971 if (entered_ipsq) 9972 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9973 } 9974 9975 /* 9976 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9977 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9978 * module stream). If `doconsist' is set, then do the extended consistency 9979 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9980 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9981 * an error code on failure. 9982 */ 9983 static int 9984 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9985 struct linkblk *li, boolean_t doconsist) 9986 { 9987 ill_t *ill; 9988 queue_t *ipwq, *dwq; 9989 const char *name; 9990 struct qinit *qinfo; 9991 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9992 boolean_t entered_ipsq = B_FALSE; 9993 9994 /* 9995 * Walk the lower stream to verify it's the IP module stream. 9996 * The IP module is identified by its name, wput function, 9997 * and non-NULL q_next. STREAMS ensures that the lower stream 9998 * (li->l_qbot) will not vanish until this ioctl completes. 9999 */ 10000 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10001 qinfo = ipwq->q_qinfo; 10002 name = qinfo->qi_minfo->mi_idname; 10003 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10004 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10005 break; 10006 } 10007 } 10008 10009 /* 10010 * If this isn't an IP module stream, bail. 10011 */ 10012 if (ipwq == NULL) 10013 return (0); 10014 10015 ill = ipwq->q_ptr; 10016 ASSERT(ill != NULL); 10017 10018 if (ipsq == NULL) { 10019 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10020 NEW_OP, B_TRUE); 10021 if (ipsq == NULL) 10022 return (EINPROGRESS); 10023 entered_ipsq = B_TRUE; 10024 } 10025 ASSERT(IAM_WRITER_ILL(ill)); 10026 10027 if (doconsist) { 10028 /* 10029 * Consistency checking requires that I_{P}LINK occurs 10030 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10031 * occurs prior to clearing ill_arp_muxid. 10032 */ 10033 if ((islink && ill->ill_ip_muxid != 0) || 10034 (!islink && ill->ill_arp_muxid != 0)) { 10035 if (entered_ipsq) 10036 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10037 return (EINVAL); 10038 } 10039 } 10040 10041 /* 10042 * As part of I_{P}LINKing, stash the number of downstream modules and 10043 * the read queue of the module immediately below IP in the ill. 10044 * These are used during the capability negotiation below. 10045 */ 10046 ill->ill_lmod_rq = NULL; 10047 ill->ill_lmod_cnt = 0; 10048 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10049 ill->ill_lmod_rq = RD(dwq); 10050 for (; dwq != NULL; dwq = dwq->q_next) 10051 ill->ill_lmod_cnt++; 10052 } 10053 10054 if (doconsist) 10055 ill->ill_ip_muxid = islink ? li->l_index : 0; 10056 10057 /* 10058 * If there's at least one up ipif on this ill, then we're bound to 10059 * the underlying driver via DLPI. In that case, renegotiate 10060 * capabilities to account for any possible change in modules 10061 * interposed between IP and the driver. 10062 */ 10063 if (ill->ill_ipif_up_count > 0) { 10064 if (islink) 10065 ill_capability_probe(ill); 10066 else 10067 ill_capability_reset(ill); 10068 } 10069 10070 if (entered_ipsq) 10071 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10072 10073 return (0); 10074 } 10075 10076 /* 10077 * Search the ioctl command in the ioctl tables and return a pointer 10078 * to the ioctl command information. The ioctl command tables are 10079 * static and fully populated at compile time. 10080 */ 10081 ip_ioctl_cmd_t * 10082 ip_sioctl_lookup(int ioc_cmd) 10083 { 10084 int index; 10085 ip_ioctl_cmd_t *ipip; 10086 ip_ioctl_cmd_t *ipip_end; 10087 10088 if (ioc_cmd == IPI_DONTCARE) 10089 return (NULL); 10090 10091 /* 10092 * Do a 2 step search. First search the indexed table 10093 * based on the least significant byte of the ioctl cmd. 10094 * If we don't find a match, then search the misc table 10095 * serially. 10096 */ 10097 index = ioc_cmd & 0xFF; 10098 if (index < ip_ndx_ioctl_count) { 10099 ipip = &ip_ndx_ioctl_table[index]; 10100 if (ipip->ipi_cmd == ioc_cmd) { 10101 /* Found a match in the ndx table */ 10102 return (ipip); 10103 } 10104 } 10105 10106 /* Search the misc table */ 10107 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10108 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10109 if (ipip->ipi_cmd == ioc_cmd) 10110 /* Found a match in the misc table */ 10111 return (ipip); 10112 } 10113 10114 return (NULL); 10115 } 10116 10117 /* 10118 * Wrapper function for resuming deferred ioctl processing 10119 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10120 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10121 */ 10122 /* ARGSUSED */ 10123 void 10124 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10125 void *dummy_arg) 10126 { 10127 ip_sioctl_copyin_setup(q, mp); 10128 } 10129 10130 /* 10131 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10132 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10133 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10134 * We establish here the size of the block to be copied in. mi_copyin 10135 * arranges for this to happen, an processing continues in ip_wput with 10136 * an M_IOCDATA message. 10137 */ 10138 void 10139 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10140 { 10141 int copyin_size; 10142 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10143 ip_ioctl_cmd_t *ipip; 10144 cred_t *cr; 10145 ip_stack_t *ipst; 10146 10147 if (CONN_Q(q)) 10148 ipst = CONNQ_TO_IPST(q); 10149 else 10150 ipst = ILLQ_TO_IPST(q); 10151 10152 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10153 if (ipip == NULL) { 10154 /* 10155 * The ioctl is not one we understand or own. 10156 * Pass it along to be processed down stream, 10157 * if this is a module instance of IP, else nak 10158 * the ioctl. 10159 */ 10160 if (q->q_next == NULL) { 10161 goto nak; 10162 } else { 10163 putnext(q, mp); 10164 return; 10165 } 10166 } 10167 10168 /* 10169 * If this is deferred, then we will do all the checks when we 10170 * come back. 10171 */ 10172 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10173 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10174 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10175 return; 10176 } 10177 10178 /* 10179 * Only allow a very small subset of IP ioctls on this stream if 10180 * IP is a module and not a driver. Allowing ioctls to be processed 10181 * in this case may cause assert failures or data corruption. 10182 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10183 * ioctls allowed on an IP module stream, after which this stream 10184 * normally becomes a multiplexor (at which time the stream head 10185 * will fail all ioctls). 10186 */ 10187 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10188 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10189 /* 10190 * Pass common Streams ioctls which the IP 10191 * module does not own or consume along to 10192 * be processed down stream. 10193 */ 10194 putnext(q, mp); 10195 return; 10196 } else { 10197 goto nak; 10198 } 10199 } 10200 10201 /* Make sure we have ioctl data to process. */ 10202 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10203 goto nak; 10204 10205 /* 10206 * Prefer dblk credential over ioctl credential; some synthesized 10207 * ioctls have kcred set because there's no way to crhold() 10208 * a credential in some contexts. (ioc_cr is not crfree() by 10209 * the framework; the caller of ioctl needs to hold the reference 10210 * for the duration of the call). 10211 */ 10212 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10213 10214 /* Make sure normal users don't send down privileged ioctls */ 10215 if ((ipip->ipi_flags & IPI_PRIV) && 10216 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10217 /* We checked the privilege earlier but log it here */ 10218 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10219 return; 10220 } 10221 10222 /* 10223 * The ioctl command tables can only encode fixed length 10224 * ioctl data. If the length is variable, the table will 10225 * encode the length as zero. Such special cases are handled 10226 * below in the switch. 10227 */ 10228 if (ipip->ipi_copyin_size != 0) { 10229 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10230 return; 10231 } 10232 10233 switch (iocp->ioc_cmd) { 10234 case O_SIOCGIFCONF: 10235 case SIOCGIFCONF: 10236 /* 10237 * This IOCTL is hilarious. See comments in 10238 * ip_sioctl_get_ifconf for the story. 10239 */ 10240 if (iocp->ioc_count == TRANSPARENT) 10241 copyin_size = SIZEOF_STRUCT(ifconf, 10242 iocp->ioc_flag); 10243 else 10244 copyin_size = iocp->ioc_count; 10245 mi_copyin(q, mp, NULL, copyin_size); 10246 return; 10247 10248 case O_SIOCGLIFCONF: 10249 case SIOCGLIFCONF: 10250 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10251 mi_copyin(q, mp, NULL, copyin_size); 10252 return; 10253 10254 case SIOCGLIFSRCOF: 10255 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10256 mi_copyin(q, mp, NULL, copyin_size); 10257 return; 10258 case SIOCGIP6ADDRPOLICY: 10259 ip_sioctl_ip6addrpolicy(q, mp); 10260 ip6_asp_table_refrele(ipst); 10261 return; 10262 10263 case SIOCSIP6ADDRPOLICY: 10264 ip_sioctl_ip6addrpolicy(q, mp); 10265 return; 10266 10267 case SIOCGDSTINFO: 10268 ip_sioctl_dstinfo(q, mp); 10269 ip6_asp_table_refrele(ipst); 10270 return; 10271 10272 case I_PLINK: 10273 case I_PUNLINK: 10274 case I_LINK: 10275 case I_UNLINK: 10276 /* 10277 * We treat non-persistent link similarly as the persistent 10278 * link case, in terms of plumbing/unplumbing, as well as 10279 * dynamic re-plumbing events indicator. See comments 10280 * in ip_sioctl_plink() for more. 10281 * 10282 * Request can be enqueued in the 'ipsq' while waiting 10283 * to become exclusive. So bump up the conn ref. 10284 */ 10285 if (CONN_Q(q)) 10286 CONN_INC_REF(Q_TO_CONN(q)); 10287 ip_sioctl_plink(NULL, q, mp, NULL); 10288 return; 10289 10290 case ND_GET: 10291 case ND_SET: 10292 /* 10293 * Use of the nd table requires holding the reader lock. 10294 * Modifying the nd table thru nd_load/nd_unload requires 10295 * the writer lock. 10296 */ 10297 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10298 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10299 rw_exit(&ipst->ips_ip_g_nd_lock); 10300 10301 if (iocp->ioc_error) 10302 iocp->ioc_count = 0; 10303 mp->b_datap->db_type = M_IOCACK; 10304 qreply(q, mp); 10305 return; 10306 } 10307 rw_exit(&ipst->ips_ip_g_nd_lock); 10308 /* 10309 * We don't understand this subioctl of ND_GET / ND_SET. 10310 * Maybe intended for some driver / module below us 10311 */ 10312 if (q->q_next) { 10313 putnext(q, mp); 10314 } else { 10315 iocp->ioc_error = ENOENT; 10316 mp->b_datap->db_type = M_IOCNAK; 10317 iocp->ioc_count = 0; 10318 qreply(q, mp); 10319 } 10320 return; 10321 10322 case IP_IOCTL: 10323 ip_wput_ioctl(q, mp); 10324 return; 10325 default: 10326 cmn_err(CE_PANIC, "should not happen "); 10327 } 10328 nak: 10329 if (mp->b_cont != NULL) { 10330 freemsg(mp->b_cont); 10331 mp->b_cont = NULL; 10332 } 10333 iocp->ioc_error = EINVAL; 10334 mp->b_datap->db_type = M_IOCNAK; 10335 iocp->ioc_count = 0; 10336 qreply(q, mp); 10337 } 10338 10339 /* ip_wput hands off ARP IOCTL responses to us */ 10340 void 10341 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10342 { 10343 struct arpreq *ar; 10344 struct xarpreq *xar; 10345 area_t *area; 10346 mblk_t *area_mp; 10347 struct iocblk *iocp; 10348 mblk_t *orig_ioc_mp, *tmp; 10349 struct iocblk *orig_iocp; 10350 ill_t *ill; 10351 conn_t *connp = NULL; 10352 uint_t ioc_id; 10353 mblk_t *pending_mp; 10354 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10355 int *flagsp; 10356 char *storage = NULL; 10357 sin_t *sin; 10358 ipaddr_t addr; 10359 int err; 10360 ip_stack_t *ipst; 10361 10362 ill = q->q_ptr; 10363 ASSERT(ill != NULL); 10364 ipst = ill->ill_ipst; 10365 10366 /* 10367 * We should get back from ARP a packet chain that looks like: 10368 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10369 */ 10370 if (!(area_mp = mp->b_cont) || 10371 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10372 !(orig_ioc_mp = area_mp->b_cont) || 10373 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10374 freemsg(mp); 10375 return; 10376 } 10377 10378 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10379 10380 tmp = (orig_ioc_mp->b_cont)->b_cont; 10381 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10382 (orig_iocp->ioc_cmd == SIOCSXARP) || 10383 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10384 x_arp_ioctl = B_TRUE; 10385 xar = (struct xarpreq *)tmp->b_rptr; 10386 sin = (sin_t *)&xar->xarp_pa; 10387 flagsp = &xar->xarp_flags; 10388 storage = xar->xarp_ha.sdl_data; 10389 if (xar->xarp_ha.sdl_nlen != 0) 10390 ifx_arp_ioctl = B_TRUE; 10391 } else { 10392 ar = (struct arpreq *)tmp->b_rptr; 10393 sin = (sin_t *)&ar->arp_pa; 10394 flagsp = &ar->arp_flags; 10395 storage = ar->arp_ha.sa_data; 10396 } 10397 10398 iocp = (struct iocblk *)mp->b_rptr; 10399 10400 /* 10401 * Pick out the originating queue based on the ioc_id. 10402 */ 10403 ioc_id = iocp->ioc_id; 10404 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10405 if (pending_mp == NULL) { 10406 ASSERT(connp == NULL); 10407 inet_freemsg(mp); 10408 return; 10409 } 10410 ASSERT(connp != NULL); 10411 q = CONNP_TO_WQ(connp); 10412 10413 /* Uncouple the internally generated IOCTL from the original one */ 10414 area = (area_t *)area_mp->b_rptr; 10415 area_mp->b_cont = NULL; 10416 10417 /* 10418 * Restore the b_next and b_prev used by mi code. This is needed 10419 * to complete the ioctl using mi* functions. We stored them in 10420 * the pending mp prior to sending the request to ARP. 10421 */ 10422 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10423 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10424 inet_freemsg(pending_mp); 10425 10426 /* 10427 * We're done if there was an error or if this is not an SIOCG{X}ARP 10428 * Catch the case where there is an IRE_CACHE by no entry in the 10429 * arp table. 10430 */ 10431 addr = sin->sin_addr.s_addr; 10432 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10433 ire_t *ire; 10434 dl_unitdata_req_t *dlup; 10435 mblk_t *llmp; 10436 int addr_len; 10437 ill_t *ipsqill = NULL; 10438 10439 if (ifx_arp_ioctl) { 10440 /* 10441 * There's no need to lookup the ill, since 10442 * we've already done that when we started 10443 * processing the ioctl and sent the message 10444 * to ARP on that ill. So use the ill that 10445 * is stored in q->q_ptr. 10446 */ 10447 ipsqill = ill; 10448 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10449 ipsqill->ill_ipif, ALL_ZONES, 10450 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10451 } else { 10452 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10453 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10454 if (ire != NULL) 10455 ipsqill = ire_to_ill(ire); 10456 } 10457 10458 if ((x_arp_ioctl) && (ipsqill != NULL)) 10459 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10460 10461 if (ire != NULL) { 10462 /* 10463 * Since the ire obtained from cachetable is used for 10464 * mac addr copying below, treat an incomplete ire as if 10465 * as if we never found it. 10466 */ 10467 if (ire->ire_nce != NULL && 10468 ire->ire_nce->nce_state != ND_REACHABLE) { 10469 ire_refrele(ire); 10470 ire = NULL; 10471 ipsqill = NULL; 10472 goto errack; 10473 } 10474 *flagsp = ATF_INUSE; 10475 llmp = (ire->ire_nce != NULL ? 10476 ire->ire_nce->nce_res_mp : NULL); 10477 if (llmp != NULL && ipsqill != NULL) { 10478 uchar_t *macaddr; 10479 10480 addr_len = ipsqill->ill_phys_addr_length; 10481 if (x_arp_ioctl && ((addr_len + 10482 ipsqill->ill_name_length) > 10483 sizeof (xar->xarp_ha.sdl_data))) { 10484 ire_refrele(ire); 10485 freemsg(mp); 10486 ip_ioctl_finish(q, orig_ioc_mp, 10487 EINVAL, NO_COPYOUT, NULL); 10488 return; 10489 } 10490 *flagsp |= ATF_COM; 10491 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10492 if (ipsqill->ill_sap_length < 0) 10493 macaddr = llmp->b_rptr + 10494 dlup->dl_dest_addr_offset; 10495 else 10496 macaddr = llmp->b_rptr + 10497 dlup->dl_dest_addr_offset + 10498 ipsqill->ill_sap_length; 10499 /* 10500 * For SIOCGARP, MAC address length 10501 * validation has already been done 10502 * before the ioctl was issued to ARP to 10503 * allow it to progress only on 6 byte 10504 * addressable (ethernet like) media. Thus 10505 * the mac address copying can not overwrite 10506 * the sa_data area below. 10507 */ 10508 bcopy(macaddr, storage, addr_len); 10509 } 10510 /* Ditch the internal IOCTL. */ 10511 freemsg(mp); 10512 ire_refrele(ire); 10513 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10514 return; 10515 } 10516 } 10517 10518 /* 10519 * Delete the coresponding IRE_CACHE if any. 10520 * Reset the error if there was one (in case there was no entry 10521 * in arp.) 10522 */ 10523 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10524 ipif_t *ipintf = NULL; 10525 10526 if (ifx_arp_ioctl) { 10527 /* 10528 * There's no need to lookup the ill, since 10529 * we've already done that when we started 10530 * processing the ioctl and sent the message 10531 * to ARP on that ill. So use the ill that 10532 * is stored in q->q_ptr. 10533 */ 10534 ipintf = ill->ill_ipif; 10535 } 10536 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10537 /* 10538 * The address in "addr" may be an entry for a 10539 * router. If that's true, then any off-net 10540 * IRE_CACHE entries that go through the router 10541 * with address "addr" must be clobbered. Use 10542 * ire_walk to achieve this goal. 10543 */ 10544 if (ifx_arp_ioctl) 10545 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10546 ire_delete_cache_gw, (char *)&addr, ill); 10547 else 10548 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10549 ALL_ZONES, ipst); 10550 iocp->ioc_error = 0; 10551 } 10552 } 10553 errack: 10554 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10555 err = iocp->ioc_error; 10556 freemsg(mp); 10557 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10558 return; 10559 } 10560 10561 /* 10562 * Completion of an SIOCG{X}ARP. Translate the information from 10563 * the area_t into the struct {x}arpreq. 10564 */ 10565 if (x_arp_ioctl) { 10566 storage += ill_xarp_info(&xar->xarp_ha, ill); 10567 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10568 sizeof (xar->xarp_ha.sdl_data)) { 10569 freemsg(mp); 10570 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10571 NULL); 10572 return; 10573 } 10574 } 10575 *flagsp = ATF_INUSE; 10576 if (area->area_flags & ACE_F_PERMANENT) 10577 *flagsp |= ATF_PERM; 10578 if (area->area_flags & ACE_F_PUBLISH) 10579 *flagsp |= ATF_PUBL; 10580 if (area->area_flags & ACE_F_AUTHORITY) 10581 *flagsp |= ATF_AUTHORITY; 10582 if (area->area_hw_addr_length != 0) { 10583 *flagsp |= ATF_COM; 10584 /* 10585 * For SIOCGARP, MAC address length validation has 10586 * already been done before the ioctl was issued to ARP 10587 * to allow it to progress only on 6 byte addressable 10588 * (ethernet like) media. Thus the mac address copying 10589 * can not overwrite the sa_data area below. 10590 */ 10591 bcopy((char *)area + area->area_hw_addr_offset, 10592 storage, area->area_hw_addr_length); 10593 } 10594 10595 /* Ditch the internal IOCTL. */ 10596 freemsg(mp); 10597 /* Complete the original. */ 10598 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10599 } 10600 10601 /* 10602 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10603 * interface) create the next available logical interface for this 10604 * physical interface. 10605 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10606 * ipif with the specified name. 10607 * 10608 * If the address family is not AF_UNSPEC then set the address as well. 10609 * 10610 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10611 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10612 * 10613 * Executed as a writer on the ill or ill group. 10614 * So no lock is needed to traverse the ipif chain, or examine the 10615 * phyint flags. 10616 */ 10617 /* ARGSUSED */ 10618 int 10619 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10620 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10621 { 10622 mblk_t *mp1; 10623 struct lifreq *lifr; 10624 boolean_t isv6; 10625 boolean_t exists; 10626 char *name; 10627 char *endp; 10628 char *cp; 10629 int namelen; 10630 ipif_t *ipif; 10631 long id; 10632 ipsq_t *ipsq; 10633 ill_t *ill; 10634 sin_t *sin; 10635 int err = 0; 10636 boolean_t found_sep = B_FALSE; 10637 conn_t *connp; 10638 zoneid_t zoneid; 10639 int orig_ifindex = 0; 10640 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10641 10642 ASSERT(q->q_next == NULL); 10643 ip1dbg(("ip_sioctl_addif\n")); 10644 /* Existence of mp1 has been checked in ip_wput_nondata */ 10645 mp1 = mp->b_cont->b_cont; 10646 /* 10647 * Null terminate the string to protect against buffer 10648 * overrun. String was generated by user code and may not 10649 * be trusted. 10650 */ 10651 lifr = (struct lifreq *)mp1->b_rptr; 10652 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10653 name = lifr->lifr_name; 10654 ASSERT(CONN_Q(q)); 10655 connp = Q_TO_CONN(q); 10656 isv6 = connp->conn_af_isv6; 10657 zoneid = connp->conn_zoneid; 10658 namelen = mi_strlen(name); 10659 if (namelen == 0) 10660 return (EINVAL); 10661 10662 exists = B_FALSE; 10663 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10664 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10665 /* 10666 * Allow creating lo0 using SIOCLIFADDIF. 10667 * can't be any other writer thread. So can pass null below 10668 * for the last 4 args to ipif_lookup_name. 10669 */ 10670 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10671 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10672 /* Prevent any further action */ 10673 if (ipif == NULL) { 10674 return (ENOBUFS); 10675 } else if (!exists) { 10676 /* We created the ipif now and as writer */ 10677 ipif_refrele(ipif); 10678 return (0); 10679 } else { 10680 ill = ipif->ipif_ill; 10681 ill_refhold(ill); 10682 ipif_refrele(ipif); 10683 } 10684 } else { 10685 /* Look for a colon in the name. */ 10686 endp = &name[namelen]; 10687 for (cp = endp; --cp > name; ) { 10688 if (*cp == IPIF_SEPARATOR_CHAR) { 10689 found_sep = B_TRUE; 10690 /* 10691 * Reject any non-decimal aliases for plumbing 10692 * of logical interfaces. Aliases with leading 10693 * zeroes are also rejected as they introduce 10694 * ambiguity in the naming of the interfaces. 10695 * Comparing with "0" takes care of all such 10696 * cases. 10697 */ 10698 if ((strncmp("0", cp+1, 1)) == 0) 10699 return (EINVAL); 10700 10701 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10702 id <= 0 || *endp != '\0') { 10703 return (EINVAL); 10704 } 10705 *cp = '\0'; 10706 break; 10707 } 10708 } 10709 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10710 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10711 if (found_sep) 10712 *cp = IPIF_SEPARATOR_CHAR; 10713 if (ill == NULL) 10714 return (err); 10715 } 10716 10717 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10718 B_TRUE); 10719 10720 /* 10721 * Release the refhold due to the lookup, now that we are excl 10722 * or we are just returning 10723 */ 10724 ill_refrele(ill); 10725 10726 if (ipsq == NULL) 10727 return (EINPROGRESS); 10728 10729 /* 10730 * If the interface is failed, inactive or offlined, look for a working 10731 * interface in the ill group and create the ipif there. If we can't 10732 * find a good interface, create the ipif anyway so that in.mpathd can 10733 * move it to the first repaired interface. 10734 */ 10735 if ((ill->ill_phyint->phyint_flags & 10736 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10737 ill->ill_phyint->phyint_groupname_len != 0) { 10738 phyint_t *phyi; 10739 char *groupname = ill->ill_phyint->phyint_groupname; 10740 10741 /* 10742 * We're looking for a working interface, but it doesn't matter 10743 * if it's up or down; so instead of following the group lists, 10744 * we look at each physical interface and compare the groupname. 10745 * We're only interested in interfaces with IPv4 (resp. IPv6) 10746 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10747 * Otherwise we create the ipif on the failed interface. 10748 */ 10749 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10750 phyi = avl_first(&ipst->ips_phyint_g_list-> 10751 phyint_list_avl_by_index); 10752 for (; phyi != NULL; 10753 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10754 phyint_list_avl_by_index, 10755 phyi, AVL_AFTER)) { 10756 if (phyi->phyint_groupname_len == 0) 10757 continue; 10758 ASSERT(phyi->phyint_groupname != NULL); 10759 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10760 !(phyi->phyint_flags & 10761 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10762 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10763 (phyi->phyint_illv4 != NULL))) { 10764 break; 10765 } 10766 } 10767 rw_exit(&ipst->ips_ill_g_lock); 10768 10769 if (phyi != NULL) { 10770 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10771 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10772 phyi->phyint_illv4); 10773 } 10774 } 10775 10776 /* 10777 * We are now exclusive on the ipsq, so an ill move will be serialized 10778 * before or after us. 10779 */ 10780 ASSERT(IAM_WRITER_ILL(ill)); 10781 ASSERT(ill->ill_move_in_progress == B_FALSE); 10782 10783 if (found_sep && orig_ifindex == 0) { 10784 /* Now see if there is an IPIF with this unit number. */ 10785 for (ipif = ill->ill_ipif; ipif != NULL; 10786 ipif = ipif->ipif_next) { 10787 if (ipif->ipif_id == id) { 10788 err = EEXIST; 10789 goto done; 10790 } 10791 } 10792 } 10793 10794 /* 10795 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10796 * of lo0. We never come here when we plumb lo0:0. It 10797 * happens in ipif_lookup_on_name. 10798 * The specified unit number is ignored when we create the ipif on a 10799 * different interface. However, we save it in ipif_orig_ipifid below so 10800 * that the ipif fails back to the right position. 10801 */ 10802 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10803 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10804 err = ENOBUFS; 10805 goto done; 10806 } 10807 10808 /* Return created name with ioctl */ 10809 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10810 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10811 ip1dbg(("created %s\n", lifr->lifr_name)); 10812 10813 /* Set address */ 10814 sin = (sin_t *)&lifr->lifr_addr; 10815 if (sin->sin_family != AF_UNSPEC) { 10816 err = ip_sioctl_addr(ipif, sin, q, mp, 10817 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10818 } 10819 10820 /* Set ifindex and unit number for failback */ 10821 if (err == 0 && orig_ifindex != 0) { 10822 ipif->ipif_orig_ifindex = orig_ifindex; 10823 if (found_sep) { 10824 ipif->ipif_orig_ipifid = id; 10825 } 10826 } 10827 10828 done: 10829 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10830 return (err); 10831 } 10832 10833 /* 10834 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10835 * interface) delete it based on the IP address (on this physical interface). 10836 * Otherwise delete it based on the ipif_id. 10837 * Also, special handling to allow a removeif of lo0. 10838 */ 10839 /* ARGSUSED */ 10840 int 10841 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10842 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10843 { 10844 conn_t *connp; 10845 ill_t *ill = ipif->ipif_ill; 10846 boolean_t success; 10847 ip_stack_t *ipst; 10848 10849 ipst = CONNQ_TO_IPST(q); 10850 10851 ASSERT(q->q_next == NULL); 10852 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10853 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10854 ASSERT(IAM_WRITER_IPIF(ipif)); 10855 10856 connp = Q_TO_CONN(q); 10857 /* 10858 * Special case for unplumbing lo0 (the loopback physical interface). 10859 * If unplumbing lo0, the incoming address structure has been 10860 * initialized to all zeros. When unplumbing lo0, all its logical 10861 * interfaces must be removed too. 10862 * 10863 * Note that this interface may be called to remove a specific 10864 * loopback logical interface (eg, lo0:1). But in that case 10865 * ipif->ipif_id != 0 so that the code path for that case is the 10866 * same as any other interface (meaning it skips the code directly 10867 * below). 10868 */ 10869 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10870 if (sin->sin_family == AF_UNSPEC && 10871 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10872 /* 10873 * Mark it condemned. No new ref. will be made to ill. 10874 */ 10875 mutex_enter(&ill->ill_lock); 10876 ill->ill_state_flags |= ILL_CONDEMNED; 10877 for (ipif = ill->ill_ipif; ipif != NULL; 10878 ipif = ipif->ipif_next) { 10879 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10880 } 10881 mutex_exit(&ill->ill_lock); 10882 10883 ipif = ill->ill_ipif; 10884 /* unplumb the loopback interface */ 10885 ill_delete(ill); 10886 mutex_enter(&connp->conn_lock); 10887 mutex_enter(&ill->ill_lock); 10888 ASSERT(ill->ill_group == NULL); 10889 10890 /* Are any references to this ill active */ 10891 if (ill_is_quiescent(ill)) { 10892 mutex_exit(&ill->ill_lock); 10893 mutex_exit(&connp->conn_lock); 10894 ill_delete_tail(ill); 10895 mi_free(ill); 10896 return (0); 10897 } 10898 success = ipsq_pending_mp_add(connp, ipif, 10899 CONNP_TO_WQ(connp), mp, ILL_FREE); 10900 mutex_exit(&connp->conn_lock); 10901 mutex_exit(&ill->ill_lock); 10902 if (success) 10903 return (EINPROGRESS); 10904 else 10905 return (EINTR); 10906 } 10907 } 10908 10909 /* 10910 * We are exclusive on the ipsq, so an ill move will be serialized 10911 * before or after us. 10912 */ 10913 ASSERT(ill->ill_move_in_progress == B_FALSE); 10914 10915 if (ipif->ipif_id == 0) { 10916 /* Find based on address */ 10917 if (ipif->ipif_isv6) { 10918 sin6_t *sin6; 10919 10920 if (sin->sin_family != AF_INET6) 10921 return (EAFNOSUPPORT); 10922 10923 sin6 = (sin6_t *)sin; 10924 /* We are a writer, so we should be able to lookup */ 10925 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10926 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10927 if (ipif == NULL) { 10928 /* 10929 * Maybe the address in on another interface in 10930 * the same IPMP group? We check this below. 10931 */ 10932 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10933 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10934 ipst); 10935 } 10936 } else { 10937 ipaddr_t addr; 10938 10939 if (sin->sin_family != AF_INET) 10940 return (EAFNOSUPPORT); 10941 10942 addr = sin->sin_addr.s_addr; 10943 /* We are a writer, so we should be able to lookup */ 10944 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10945 NULL, NULL, NULL, ipst); 10946 if (ipif == NULL) { 10947 /* 10948 * Maybe the address in on another interface in 10949 * the same IPMP group? We check this below. 10950 */ 10951 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10952 NULL, NULL, NULL, NULL, ipst); 10953 } 10954 } 10955 if (ipif == NULL) { 10956 return (EADDRNOTAVAIL); 10957 } 10958 /* 10959 * When the address to be removed is hosted on a different 10960 * interface, we check if the interface is in the same IPMP 10961 * group as the specified one; if so we proceed with the 10962 * removal. 10963 * ill->ill_group is NULL when the ill is down, so we have to 10964 * compare the group names instead. 10965 */ 10966 if (ipif->ipif_ill != ill && 10967 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10968 ill->ill_phyint->phyint_groupname_len == 0 || 10969 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10970 ill->ill_phyint->phyint_groupname) != 0)) { 10971 ipif_refrele(ipif); 10972 return (EADDRNOTAVAIL); 10973 } 10974 10975 /* This is a writer */ 10976 ipif_refrele(ipif); 10977 } 10978 10979 /* 10980 * Can not delete instance zero since it is tied to the ill. 10981 */ 10982 if (ipif->ipif_id == 0) 10983 return (EBUSY); 10984 10985 mutex_enter(&ill->ill_lock); 10986 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10987 mutex_exit(&ill->ill_lock); 10988 10989 ipif_free(ipif); 10990 10991 mutex_enter(&connp->conn_lock); 10992 mutex_enter(&ill->ill_lock); 10993 10994 /* Are any references to this ipif active */ 10995 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10996 mutex_exit(&ill->ill_lock); 10997 mutex_exit(&connp->conn_lock); 10998 ipif_non_duplicate(ipif); 10999 ipif_down_tail(ipif); 11000 ipif_free_tail(ipif); 11001 return (0); 11002 } 11003 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11004 IPIF_FREE); 11005 mutex_exit(&ill->ill_lock); 11006 mutex_exit(&connp->conn_lock); 11007 if (success) 11008 return (EINPROGRESS); 11009 else 11010 return (EINTR); 11011 } 11012 11013 /* 11014 * Restart the removeif ioctl. The refcnt has gone down to 0. 11015 * The ipif is already condemned. So can't find it thru lookups. 11016 */ 11017 /* ARGSUSED */ 11018 int 11019 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11020 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11021 { 11022 ill_t *ill; 11023 11024 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11025 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11026 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11027 ill = ipif->ipif_ill; 11028 ASSERT(IAM_WRITER_ILL(ill)); 11029 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11030 (ill->ill_state_flags & IPIF_CONDEMNED)); 11031 ill_delete_tail(ill); 11032 mi_free(ill); 11033 return (0); 11034 } 11035 11036 ill = ipif->ipif_ill; 11037 ASSERT(IAM_WRITER_IPIF(ipif)); 11038 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11039 11040 ipif_non_duplicate(ipif); 11041 ipif_down_tail(ipif); 11042 ipif_free_tail(ipif); 11043 11044 ILL_UNMARK_CHANGING(ill); 11045 return (0); 11046 } 11047 11048 /* 11049 * Set the local interface address. 11050 * Allow an address of all zero when the interface is down. 11051 */ 11052 /* ARGSUSED */ 11053 int 11054 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11055 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11056 { 11057 int err = 0; 11058 in6_addr_t v6addr; 11059 boolean_t need_up = B_FALSE; 11060 11061 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11062 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11063 11064 ASSERT(IAM_WRITER_IPIF(ipif)); 11065 11066 if (ipif->ipif_isv6) { 11067 sin6_t *sin6; 11068 ill_t *ill; 11069 phyint_t *phyi; 11070 11071 if (sin->sin_family != AF_INET6) 11072 return (EAFNOSUPPORT); 11073 11074 sin6 = (sin6_t *)sin; 11075 v6addr = sin6->sin6_addr; 11076 ill = ipif->ipif_ill; 11077 phyi = ill->ill_phyint; 11078 11079 /* 11080 * Enforce that true multicast interfaces have a link-local 11081 * address for logical unit 0. 11082 */ 11083 if (ipif->ipif_id == 0 && 11084 (ill->ill_flags & ILLF_MULTICAST) && 11085 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11086 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11087 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11088 return (EADDRNOTAVAIL); 11089 } 11090 11091 /* 11092 * up interfaces shouldn't have the unspecified address 11093 * unless they also have the IPIF_NOLOCAL flags set and 11094 * have a subnet assigned. 11095 */ 11096 if ((ipif->ipif_flags & IPIF_UP) && 11097 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11098 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11099 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11100 return (EADDRNOTAVAIL); 11101 } 11102 11103 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11104 return (EADDRNOTAVAIL); 11105 } else { 11106 ipaddr_t addr; 11107 11108 if (sin->sin_family != AF_INET) 11109 return (EAFNOSUPPORT); 11110 11111 addr = sin->sin_addr.s_addr; 11112 11113 /* Allow 0 as the local address. */ 11114 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11115 return (EADDRNOTAVAIL); 11116 11117 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11118 } 11119 11120 11121 /* 11122 * Even if there is no change we redo things just to rerun 11123 * ipif_set_default. 11124 */ 11125 if (ipif->ipif_flags & IPIF_UP) { 11126 /* 11127 * Setting a new local address, make sure 11128 * we have net and subnet bcast ire's for 11129 * the old address if we need them. 11130 */ 11131 if (!ipif->ipif_isv6) 11132 ipif_check_bcast_ires(ipif); 11133 /* 11134 * If the interface is already marked up, 11135 * we call ipif_down which will take care 11136 * of ditching any IREs that have been set 11137 * up based on the old interface address. 11138 */ 11139 err = ipif_logical_down(ipif, q, mp); 11140 if (err == EINPROGRESS) 11141 return (err); 11142 ipif_down_tail(ipif); 11143 need_up = 1; 11144 } 11145 11146 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11147 return (err); 11148 } 11149 11150 int 11151 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11152 boolean_t need_up) 11153 { 11154 in6_addr_t v6addr; 11155 in6_addr_t ov6addr; 11156 ipaddr_t addr; 11157 sin6_t *sin6; 11158 int sinlen; 11159 int err = 0; 11160 ill_t *ill = ipif->ipif_ill; 11161 boolean_t need_dl_down; 11162 boolean_t need_arp_down; 11163 struct iocblk *iocp; 11164 11165 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11166 11167 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11168 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11169 ASSERT(IAM_WRITER_IPIF(ipif)); 11170 11171 /* Must cancel any pending timer before taking the ill_lock */ 11172 if (ipif->ipif_recovery_id != 0) 11173 (void) untimeout(ipif->ipif_recovery_id); 11174 ipif->ipif_recovery_id = 0; 11175 11176 if (ipif->ipif_isv6) { 11177 sin6 = (sin6_t *)sin; 11178 v6addr = sin6->sin6_addr; 11179 sinlen = sizeof (struct sockaddr_in6); 11180 } else { 11181 addr = sin->sin_addr.s_addr; 11182 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11183 sinlen = sizeof (struct sockaddr_in); 11184 } 11185 mutex_enter(&ill->ill_lock); 11186 ov6addr = ipif->ipif_v6lcl_addr; 11187 ipif->ipif_v6lcl_addr = v6addr; 11188 sctp_update_ipif_addr(ipif, ov6addr); 11189 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11190 ipif->ipif_v6src_addr = ipv6_all_zeros; 11191 } else { 11192 ipif->ipif_v6src_addr = v6addr; 11193 } 11194 ipif->ipif_addr_ready = 0; 11195 11196 /* 11197 * If the interface was previously marked as a duplicate, then since 11198 * we've now got a "new" address, it should no longer be considered a 11199 * duplicate -- even if the "new" address is the same as the old one. 11200 * Note that if all ipifs are down, we may have a pending ARP down 11201 * event to handle. This is because we want to recover from duplicates 11202 * and thus delay tearing down ARP until the duplicates have been 11203 * removed or disabled. 11204 */ 11205 need_dl_down = need_arp_down = B_FALSE; 11206 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11207 need_arp_down = !need_up; 11208 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11209 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11210 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11211 need_dl_down = B_TRUE; 11212 } 11213 } 11214 11215 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11216 !ill->ill_is_6to4tun) { 11217 queue_t *wqp = ill->ill_wq; 11218 11219 /* 11220 * The local address of this interface is a 6to4 address, 11221 * check if this interface is in fact a 6to4 tunnel or just 11222 * an interface configured with a 6to4 address. We are only 11223 * interested in the former. 11224 */ 11225 if (wqp != NULL) { 11226 while ((wqp->q_next != NULL) && 11227 (wqp->q_next->q_qinfo != NULL) && 11228 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11229 11230 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11231 == TUN6TO4_MODID) { 11232 /* set for use in IP */ 11233 ill->ill_is_6to4tun = 1; 11234 break; 11235 } 11236 wqp = wqp->q_next; 11237 } 11238 } 11239 } 11240 11241 ipif_set_default(ipif); 11242 11243 /* 11244 * When publishing an interface address change event, we only notify 11245 * the event listeners of the new address. It is assumed that if they 11246 * actively care about the addresses assigned that they will have 11247 * already discovered the previous address assigned (if there was one.) 11248 * 11249 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11250 */ 11251 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11252 hook_nic_event_t *info; 11253 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11254 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11255 "attached for %s\n", info->hne_event, 11256 ill->ill_name)); 11257 if (info->hne_data != NULL) 11258 kmem_free(info->hne_data, info->hne_datalen); 11259 kmem_free(info, sizeof (hook_nic_event_t)); 11260 } 11261 11262 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11263 if (info != NULL) { 11264 ip_stack_t *ipst = ill->ill_ipst; 11265 11266 info->hne_nic = 11267 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11268 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11269 info->hne_event = NE_ADDRESS_CHANGE; 11270 info->hne_family = ipif->ipif_isv6 ? 11271 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11272 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11273 if (info->hne_data != NULL) { 11274 info->hne_datalen = sinlen; 11275 bcopy(sin, info->hne_data, sinlen); 11276 } else { 11277 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11278 "address information for ADDRESS_CHANGE nic" 11279 " event of %s (ENOMEM)\n", 11280 ipif->ipif_ill->ill_name)); 11281 kmem_free(info, sizeof (hook_nic_event_t)); 11282 } 11283 } else 11284 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11285 "ADDRESS_CHANGE nic event information for %s " 11286 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11287 11288 ipif->ipif_ill->ill_nic_event_info = info; 11289 } 11290 11291 mutex_exit(&ill->ill_lock); 11292 11293 if (need_up) { 11294 /* 11295 * Now bring the interface back up. If this 11296 * is the only IPIF for the ILL, ipif_up 11297 * will have to re-bind to the device, so 11298 * we may get back EINPROGRESS, in which 11299 * case, this IOCTL will get completed in 11300 * ip_rput_dlpi when we see the DL_BIND_ACK. 11301 */ 11302 err = ipif_up(ipif, q, mp); 11303 } 11304 11305 if (need_dl_down) 11306 ill_dl_down(ill); 11307 if (need_arp_down) 11308 ipif_arp_down(ipif); 11309 11310 return (err); 11311 } 11312 11313 11314 /* 11315 * Restart entry point to restart the address set operation after the 11316 * refcounts have dropped to zero. 11317 */ 11318 /* ARGSUSED */ 11319 int 11320 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11321 ip_ioctl_cmd_t *ipip, void *ifreq) 11322 { 11323 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11324 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11325 ASSERT(IAM_WRITER_IPIF(ipif)); 11326 ipif_down_tail(ipif); 11327 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11328 } 11329 11330 /* ARGSUSED */ 11331 int 11332 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11333 ip_ioctl_cmd_t *ipip, void *if_req) 11334 { 11335 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11336 struct lifreq *lifr = (struct lifreq *)if_req; 11337 11338 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11339 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11340 /* 11341 * The net mask and address can't change since we have a 11342 * reference to the ipif. So no lock is necessary. 11343 */ 11344 if (ipif->ipif_isv6) { 11345 *sin6 = sin6_null; 11346 sin6->sin6_family = AF_INET6; 11347 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11348 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11349 lifr->lifr_addrlen = 11350 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11351 } else { 11352 *sin = sin_null; 11353 sin->sin_family = AF_INET; 11354 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11355 if (ipip->ipi_cmd_type == LIF_CMD) { 11356 lifr->lifr_addrlen = 11357 ip_mask_to_plen(ipif->ipif_net_mask); 11358 } 11359 } 11360 return (0); 11361 } 11362 11363 /* 11364 * Set the destination address for a pt-pt interface. 11365 */ 11366 /* ARGSUSED */ 11367 int 11368 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11369 ip_ioctl_cmd_t *ipip, void *if_req) 11370 { 11371 int err = 0; 11372 in6_addr_t v6addr; 11373 boolean_t need_up = B_FALSE; 11374 11375 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11376 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11377 ASSERT(IAM_WRITER_IPIF(ipif)); 11378 11379 if (ipif->ipif_isv6) { 11380 sin6_t *sin6; 11381 11382 if (sin->sin_family != AF_INET6) 11383 return (EAFNOSUPPORT); 11384 11385 sin6 = (sin6_t *)sin; 11386 v6addr = sin6->sin6_addr; 11387 11388 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11389 return (EADDRNOTAVAIL); 11390 } else { 11391 ipaddr_t addr; 11392 11393 if (sin->sin_family != AF_INET) 11394 return (EAFNOSUPPORT); 11395 11396 addr = sin->sin_addr.s_addr; 11397 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11398 return (EADDRNOTAVAIL); 11399 11400 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11401 } 11402 11403 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11404 return (0); /* No change */ 11405 11406 if (ipif->ipif_flags & IPIF_UP) { 11407 /* 11408 * If the interface is already marked up, 11409 * we call ipif_down which will take care 11410 * of ditching any IREs that have been set 11411 * up based on the old pp dst address. 11412 */ 11413 err = ipif_logical_down(ipif, q, mp); 11414 if (err == EINPROGRESS) 11415 return (err); 11416 ipif_down_tail(ipif); 11417 need_up = B_TRUE; 11418 } 11419 /* 11420 * could return EINPROGRESS. If so ioctl will complete in 11421 * ip_rput_dlpi_writer 11422 */ 11423 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11424 return (err); 11425 } 11426 11427 static int 11428 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11429 boolean_t need_up) 11430 { 11431 in6_addr_t v6addr; 11432 ill_t *ill = ipif->ipif_ill; 11433 int err = 0; 11434 boolean_t need_dl_down; 11435 boolean_t need_arp_down; 11436 11437 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11438 ipif->ipif_id, (void *)ipif)); 11439 11440 /* Must cancel any pending timer before taking the ill_lock */ 11441 if (ipif->ipif_recovery_id != 0) 11442 (void) untimeout(ipif->ipif_recovery_id); 11443 ipif->ipif_recovery_id = 0; 11444 11445 if (ipif->ipif_isv6) { 11446 sin6_t *sin6; 11447 11448 sin6 = (sin6_t *)sin; 11449 v6addr = sin6->sin6_addr; 11450 } else { 11451 ipaddr_t addr; 11452 11453 addr = sin->sin_addr.s_addr; 11454 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11455 } 11456 mutex_enter(&ill->ill_lock); 11457 /* Set point to point destination address. */ 11458 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11459 /* 11460 * Allow this as a means of creating logical 11461 * pt-pt interfaces on top of e.g. an Ethernet. 11462 * XXX Undocumented HACK for testing. 11463 * pt-pt interfaces are created with NUD disabled. 11464 */ 11465 ipif->ipif_flags |= IPIF_POINTOPOINT; 11466 ipif->ipif_flags &= ~IPIF_BROADCAST; 11467 if (ipif->ipif_isv6) 11468 ill->ill_flags |= ILLF_NONUD; 11469 } 11470 11471 /* 11472 * If the interface was previously marked as a duplicate, then since 11473 * we've now got a "new" address, it should no longer be considered a 11474 * duplicate -- even if the "new" address is the same as the old one. 11475 * Note that if all ipifs are down, we may have a pending ARP down 11476 * event to handle. 11477 */ 11478 need_dl_down = need_arp_down = B_FALSE; 11479 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11480 need_arp_down = !need_up; 11481 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11482 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11483 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11484 need_dl_down = B_TRUE; 11485 } 11486 } 11487 11488 /* Set the new address. */ 11489 ipif->ipif_v6pp_dst_addr = v6addr; 11490 /* Make sure subnet tracks pp_dst */ 11491 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11492 mutex_exit(&ill->ill_lock); 11493 11494 if (need_up) { 11495 /* 11496 * Now bring the interface back up. If this 11497 * is the only IPIF for the ILL, ipif_up 11498 * will have to re-bind to the device, so 11499 * we may get back EINPROGRESS, in which 11500 * case, this IOCTL will get completed in 11501 * ip_rput_dlpi when we see the DL_BIND_ACK. 11502 */ 11503 err = ipif_up(ipif, q, mp); 11504 } 11505 11506 if (need_dl_down) 11507 ill_dl_down(ill); 11508 11509 if (need_arp_down) 11510 ipif_arp_down(ipif); 11511 return (err); 11512 } 11513 11514 /* 11515 * Restart entry point to restart the dstaddress set operation after the 11516 * refcounts have dropped to zero. 11517 */ 11518 /* ARGSUSED */ 11519 int 11520 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11521 ip_ioctl_cmd_t *ipip, void *ifreq) 11522 { 11523 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11524 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11525 ipif_down_tail(ipif); 11526 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11527 } 11528 11529 /* ARGSUSED */ 11530 int 11531 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11532 ip_ioctl_cmd_t *ipip, void *if_req) 11533 { 11534 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11535 11536 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11537 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11538 /* 11539 * Get point to point destination address. The addresses can't 11540 * change since we hold a reference to the ipif. 11541 */ 11542 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11543 return (EADDRNOTAVAIL); 11544 11545 if (ipif->ipif_isv6) { 11546 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11547 *sin6 = sin6_null; 11548 sin6->sin6_family = AF_INET6; 11549 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11550 } else { 11551 *sin = sin_null; 11552 sin->sin_family = AF_INET; 11553 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11554 } 11555 return (0); 11556 } 11557 11558 /* 11559 * part of ipmp, make this func return the active/inactive state and 11560 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11561 */ 11562 /* 11563 * This function either sets or clears the IFF_INACTIVE flag. 11564 * 11565 * As long as there are some addresses or multicast memberships on the 11566 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11567 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11568 * will be used for outbound packets. 11569 * 11570 * Caller needs to verify the validity of setting IFF_INACTIVE. 11571 */ 11572 static void 11573 phyint_inactive(phyint_t *phyi) 11574 { 11575 ill_t *ill_v4; 11576 ill_t *ill_v6; 11577 ipif_t *ipif; 11578 ilm_t *ilm; 11579 11580 ill_v4 = phyi->phyint_illv4; 11581 ill_v6 = phyi->phyint_illv6; 11582 11583 /* 11584 * No need for a lock while traversing the list since iam 11585 * a writer 11586 */ 11587 if (ill_v4 != NULL) { 11588 ASSERT(IAM_WRITER_ILL(ill_v4)); 11589 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11590 ipif = ipif->ipif_next) { 11591 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11592 mutex_enter(&phyi->phyint_lock); 11593 phyi->phyint_flags &= ~PHYI_INACTIVE; 11594 mutex_exit(&phyi->phyint_lock); 11595 return; 11596 } 11597 } 11598 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11599 ilm = ilm->ilm_next) { 11600 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11601 mutex_enter(&phyi->phyint_lock); 11602 phyi->phyint_flags &= ~PHYI_INACTIVE; 11603 mutex_exit(&phyi->phyint_lock); 11604 return; 11605 } 11606 } 11607 } 11608 if (ill_v6 != NULL) { 11609 ill_v6 = phyi->phyint_illv6; 11610 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11611 ipif = ipif->ipif_next) { 11612 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11613 mutex_enter(&phyi->phyint_lock); 11614 phyi->phyint_flags &= ~PHYI_INACTIVE; 11615 mutex_exit(&phyi->phyint_lock); 11616 return; 11617 } 11618 } 11619 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11620 ilm = ilm->ilm_next) { 11621 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11622 mutex_enter(&phyi->phyint_lock); 11623 phyi->phyint_flags &= ~PHYI_INACTIVE; 11624 mutex_exit(&phyi->phyint_lock); 11625 return; 11626 } 11627 } 11628 } 11629 mutex_enter(&phyi->phyint_lock); 11630 phyi->phyint_flags |= PHYI_INACTIVE; 11631 mutex_exit(&phyi->phyint_lock); 11632 } 11633 11634 /* 11635 * This function is called only when the phyint flags change. Currently 11636 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11637 * that we can select a good ill. 11638 */ 11639 static void 11640 ip_redo_nomination(phyint_t *phyi) 11641 { 11642 ill_t *ill_v4; 11643 11644 ill_v4 = phyi->phyint_illv4; 11645 11646 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11647 ASSERT(IAM_WRITER_ILL(ill_v4)); 11648 if (ill_v4->ill_group->illgrp_ill_count > 1) 11649 ill_nominate_bcast_rcv(ill_v4->ill_group); 11650 } 11651 } 11652 11653 /* 11654 * Heuristic to check if ill is INACTIVE. 11655 * Checks if ill has an ipif with an usable ip address. 11656 * 11657 * Return values: 11658 * B_TRUE - ill is INACTIVE; has no usable ipif 11659 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11660 */ 11661 static boolean_t 11662 ill_is_inactive(ill_t *ill) 11663 { 11664 ipif_t *ipif; 11665 11666 /* Check whether it is in an IPMP group */ 11667 if (ill->ill_phyint->phyint_groupname == NULL) 11668 return (B_FALSE); 11669 11670 if (ill->ill_ipif_up_count == 0) 11671 return (B_TRUE); 11672 11673 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11674 uint64_t flags = ipif->ipif_flags; 11675 11676 /* 11677 * This ipif is usable if it is IPIF_UP and not a 11678 * dedicated test address. A dedicated test address 11679 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11680 * (note in particular that V6 test addresses are 11681 * link-local data addresses and thus are marked 11682 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11683 */ 11684 if ((flags & IPIF_UP) && 11685 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11686 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11687 return (B_FALSE); 11688 } 11689 return (B_TRUE); 11690 } 11691 11692 /* 11693 * Set interface flags. 11694 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11695 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11696 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11697 * 11698 * NOTE : We really don't enforce that ipif_id zero should be used 11699 * for setting any flags other than IFF_LOGINT_FLAGS. This 11700 * is because applications generally does SICGLIFFLAGS and 11701 * ORs in the new flags (that affects the logical) and does a 11702 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11703 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11704 * flags that will be turned on is correct with respect to 11705 * ipif_id 0. For backward compatibility reasons, it is not done. 11706 */ 11707 /* ARGSUSED */ 11708 int 11709 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11710 ip_ioctl_cmd_t *ipip, void *if_req) 11711 { 11712 uint64_t turn_on; 11713 uint64_t turn_off; 11714 int err; 11715 boolean_t need_up = B_FALSE; 11716 phyint_t *phyi; 11717 ill_t *ill; 11718 uint64_t intf_flags; 11719 boolean_t phyint_flags_modified = B_FALSE; 11720 uint64_t flags; 11721 struct ifreq *ifr; 11722 struct lifreq *lifr; 11723 boolean_t set_linklocal = B_FALSE; 11724 boolean_t zero_source = B_FALSE; 11725 ip_stack_t *ipst; 11726 11727 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11729 11730 ASSERT(IAM_WRITER_IPIF(ipif)); 11731 11732 ill = ipif->ipif_ill; 11733 phyi = ill->ill_phyint; 11734 ipst = ill->ill_ipst; 11735 11736 if (ipip->ipi_cmd_type == IF_CMD) { 11737 ifr = (struct ifreq *)if_req; 11738 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11739 } else { 11740 lifr = (struct lifreq *)if_req; 11741 flags = lifr->lifr_flags; 11742 } 11743 11744 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11745 11746 /* 11747 * Has the flags been set correctly till now ? 11748 */ 11749 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11750 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11751 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11752 /* 11753 * Compare the new flags to the old, and partition 11754 * into those coming on and those going off. 11755 * For the 16 bit command keep the bits above bit 16 unchanged. 11756 */ 11757 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11758 flags |= intf_flags & ~0xFFFF; 11759 11760 /* 11761 * First check which bits will change and then which will 11762 * go on and off 11763 */ 11764 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11765 if (!turn_on) 11766 return (0); /* No change */ 11767 11768 turn_off = intf_flags & turn_on; 11769 turn_on ^= turn_off; 11770 err = 0; 11771 11772 /* 11773 * Don't allow any bits belonging to the logical interface 11774 * to be set or cleared on the replacement ipif that was 11775 * created temporarily during a MOVE. 11776 */ 11777 if (ipif->ipif_replace_zero && 11778 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11779 return (EINVAL); 11780 } 11781 11782 /* 11783 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11784 * IPv6 interfaces. 11785 */ 11786 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11787 return (EINVAL); 11788 11789 /* 11790 * cannot turn off IFF_NOXMIT on VNI interfaces. 11791 */ 11792 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11793 return (EINVAL); 11794 11795 /* 11796 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11797 * interfaces. It makes no sense in that context. 11798 */ 11799 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11800 return (EINVAL); 11801 11802 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11803 zero_source = B_TRUE; 11804 11805 /* 11806 * For IPv6 ipif_id 0, don't allow the interface to be up without 11807 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11808 * If the link local address isn't set, and can be set, it will get 11809 * set later on in this function. 11810 */ 11811 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11812 (flags & IFF_UP) && !zero_source && 11813 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11814 if (ipif_cant_setlinklocal(ipif)) 11815 return (EINVAL); 11816 set_linklocal = B_TRUE; 11817 } 11818 11819 /* 11820 * ILL cannot be part of a usesrc group and and IPMP group at the 11821 * same time. No need to grab ill_g_usesrc_lock here, see 11822 * synchronization notes in ip.c 11823 */ 11824 if (turn_on & PHYI_STANDBY && 11825 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11826 return (EINVAL); 11827 } 11828 11829 /* 11830 * If we modify physical interface flags, we'll potentially need to 11831 * send up two routing socket messages for the changes (one for the 11832 * IPv4 ill, and another for the IPv6 ill). Note that here. 11833 */ 11834 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11835 phyint_flags_modified = B_TRUE; 11836 11837 /* 11838 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11839 * we need to flush the IRE_CACHES belonging to this ill. 11840 * We handle this case here without doing the DOWN/UP dance 11841 * like it is done for other flags. If some other flags are 11842 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11843 * below will handle it by bringing it down and then 11844 * bringing it UP. 11845 */ 11846 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11847 ill_t *ill_v4, *ill_v6; 11848 11849 ill_v4 = phyi->phyint_illv4; 11850 ill_v6 = phyi->phyint_illv6; 11851 11852 /* 11853 * First set the INACTIVE flag if needed. Then delete the ires. 11854 * ire_add will atomically prevent creating new IRE_CACHEs 11855 * unless hidden flag is set. 11856 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11857 */ 11858 if ((turn_on & PHYI_FAILED) && 11859 ((intf_flags & PHYI_STANDBY) || 11860 !ipst->ips_ipmp_enable_failback)) { 11861 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11862 phyi->phyint_flags &= ~PHYI_INACTIVE; 11863 } 11864 if ((turn_off & PHYI_FAILED) && 11865 ((intf_flags & PHYI_STANDBY) || 11866 (!ipst->ips_ipmp_enable_failback && 11867 ill_is_inactive(ill)))) { 11868 phyint_inactive(phyi); 11869 } 11870 11871 if (turn_on & PHYI_STANDBY) { 11872 /* 11873 * We implicitly set INACTIVE only when STANDBY is set. 11874 * INACTIVE is also set on non-STANDBY phyint when user 11875 * disables FAILBACK using configuration file. 11876 * Do not allow STANDBY to be set on such INACTIVE 11877 * phyint 11878 */ 11879 if (phyi->phyint_flags & PHYI_INACTIVE) 11880 return (EINVAL); 11881 if (!(phyi->phyint_flags & PHYI_FAILED)) 11882 phyint_inactive(phyi); 11883 } 11884 if (turn_off & PHYI_STANDBY) { 11885 if (ipst->ips_ipmp_enable_failback) { 11886 /* 11887 * Reset PHYI_INACTIVE. 11888 */ 11889 phyi->phyint_flags &= ~PHYI_INACTIVE; 11890 } else if (ill_is_inactive(ill) && 11891 !(phyi->phyint_flags & PHYI_FAILED)) { 11892 /* 11893 * Need to set INACTIVE, when user sets 11894 * STANDBY on a non-STANDBY phyint and 11895 * later resets STANDBY 11896 */ 11897 phyint_inactive(phyi); 11898 } 11899 } 11900 /* 11901 * We should always send up a message so that the 11902 * daemons come to know of it. Note that the zeroth 11903 * interface can be down and the check below for IPIF_UP 11904 * will not make sense as we are actually setting 11905 * a phyint flag here. We assume that the ipif used 11906 * is always the zeroth ipif. (ip_rts_ifmsg does not 11907 * send up any message for non-zero ipifs). 11908 */ 11909 phyint_flags_modified = B_TRUE; 11910 11911 if (ill_v4 != NULL) { 11912 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11913 IRE_CACHE, ill_stq_cache_delete, 11914 (char *)ill_v4, ill_v4); 11915 illgrp_reset_schednext(ill_v4); 11916 } 11917 if (ill_v6 != NULL) { 11918 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11919 IRE_CACHE, ill_stq_cache_delete, 11920 (char *)ill_v6, ill_v6); 11921 illgrp_reset_schednext(ill_v6); 11922 } 11923 } 11924 11925 /* 11926 * If ILLF_ROUTER changes, we need to change the ip forwarding 11927 * status of the interface and, if the interface is part of an IPMP 11928 * group, all other interfaces that are part of the same IPMP 11929 * group. 11930 */ 11931 if ((turn_on | turn_off) & ILLF_ROUTER) 11932 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11933 11934 /* 11935 * If the interface is not UP and we are not going to 11936 * bring it UP, record the flags and return. When the 11937 * interface comes UP later, the right actions will be 11938 * taken. 11939 */ 11940 if (!(ipif->ipif_flags & IPIF_UP) && 11941 !(turn_on & IPIF_UP)) { 11942 /* Record new flags in their respective places. */ 11943 mutex_enter(&ill->ill_lock); 11944 mutex_enter(&ill->ill_phyint->phyint_lock); 11945 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11946 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11947 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11948 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11949 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11950 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11951 mutex_exit(&ill->ill_lock); 11952 mutex_exit(&ill->ill_phyint->phyint_lock); 11953 11954 /* 11955 * We do the broadcast and nomination here rather 11956 * than waiting for a FAILOVER/FAILBACK to happen. In 11957 * the case of FAILBACK from INACTIVE standby to the 11958 * interface that has been repaired, PHYI_FAILED has not 11959 * been cleared yet. If there are only two interfaces in 11960 * that group, all we have is a FAILED and INACTIVE 11961 * interface. If we do the nomination soon after a failback, 11962 * the broadcast nomination code would select the 11963 * INACTIVE interface for receiving broadcasts as FAILED is 11964 * not yet cleared. As we don't want STANDBY/INACTIVE to 11965 * receive broadcast packets, we need to redo nomination 11966 * when the FAILED is cleared here. Thus, in general we 11967 * always do the nomination here for FAILED, STANDBY 11968 * and OFFLINE. 11969 */ 11970 if (((turn_on | turn_off) & 11971 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11972 ip_redo_nomination(phyi); 11973 } 11974 if (phyint_flags_modified) { 11975 if (phyi->phyint_illv4 != NULL) { 11976 ip_rts_ifmsg(phyi->phyint_illv4-> 11977 ill_ipif); 11978 } 11979 if (phyi->phyint_illv6 != NULL) { 11980 ip_rts_ifmsg(phyi->phyint_illv6-> 11981 ill_ipif); 11982 } 11983 } 11984 return (0); 11985 } else if (set_linklocal || zero_source) { 11986 mutex_enter(&ill->ill_lock); 11987 if (set_linklocal) 11988 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11989 if (zero_source) 11990 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11991 mutex_exit(&ill->ill_lock); 11992 } 11993 11994 /* 11995 * Disallow IPv6 interfaces coming up that have the unspecified address, 11996 * or point-to-point interfaces with an unspecified destination. We do 11997 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11998 * have a subnet assigned, which is how in.ndpd currently manages its 11999 * onlink prefix list when no addresses are configured with those 12000 * prefixes. 12001 */ 12002 if (ipif->ipif_isv6 && 12003 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12004 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12005 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12006 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12007 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12008 return (EINVAL); 12009 } 12010 12011 /* 12012 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12013 * from being brought up. 12014 */ 12015 if (!ipif->ipif_isv6 && 12016 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12017 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12018 return (EINVAL); 12019 } 12020 12021 /* 12022 * The only flag changes that we currently take specific action on 12023 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12024 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12025 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12026 * the flags and bringing it back up again. 12027 */ 12028 if ((turn_on|turn_off) & 12029 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12030 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12031 /* 12032 * Taking this ipif down, make sure we have 12033 * valid net and subnet bcast ire's for other 12034 * logical interfaces, if we need them. 12035 */ 12036 if (!ipif->ipif_isv6) 12037 ipif_check_bcast_ires(ipif); 12038 12039 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12040 !(turn_off & IPIF_UP)) { 12041 need_up = B_TRUE; 12042 if (ipif->ipif_flags & IPIF_UP) 12043 ill->ill_logical_down = 1; 12044 turn_on &= ~IPIF_UP; 12045 } 12046 err = ipif_down(ipif, q, mp); 12047 ip1dbg(("ipif_down returns %d err ", err)); 12048 if (err == EINPROGRESS) 12049 return (err); 12050 ipif_down_tail(ipif); 12051 } 12052 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12053 } 12054 12055 static int 12056 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12057 boolean_t need_up) 12058 { 12059 ill_t *ill; 12060 phyint_t *phyi; 12061 uint64_t turn_on; 12062 uint64_t turn_off; 12063 uint64_t intf_flags; 12064 boolean_t phyint_flags_modified = B_FALSE; 12065 int err = 0; 12066 boolean_t set_linklocal = B_FALSE; 12067 boolean_t zero_source = B_FALSE; 12068 12069 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12070 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12071 12072 ASSERT(IAM_WRITER_IPIF(ipif)); 12073 12074 ill = ipif->ipif_ill; 12075 phyi = ill->ill_phyint; 12076 12077 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12078 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12079 12080 turn_off = intf_flags & turn_on; 12081 turn_on ^= turn_off; 12082 12083 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12084 phyint_flags_modified = B_TRUE; 12085 12086 /* 12087 * Now we change the flags. Track current value of 12088 * other flags in their respective places. 12089 */ 12090 mutex_enter(&ill->ill_lock); 12091 mutex_enter(&phyi->phyint_lock); 12092 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12093 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12094 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12095 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12096 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12097 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12098 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12099 set_linklocal = B_TRUE; 12100 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12101 } 12102 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12103 zero_source = B_TRUE; 12104 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12105 } 12106 mutex_exit(&ill->ill_lock); 12107 mutex_exit(&phyi->phyint_lock); 12108 12109 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12110 ip_redo_nomination(phyi); 12111 12112 if (set_linklocal) 12113 (void) ipif_setlinklocal(ipif); 12114 12115 if (zero_source) 12116 ipif->ipif_v6src_addr = ipv6_all_zeros; 12117 else 12118 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12119 12120 if (need_up) { 12121 /* 12122 * XXX ipif_up really does not know whether a phyint flags 12123 * was modified or not. So, it sends up information on 12124 * only one routing sockets message. As we don't bring up 12125 * the interface and also set STANDBY/FAILED simultaneously 12126 * it should be okay. 12127 */ 12128 err = ipif_up(ipif, q, mp); 12129 } else { 12130 /* 12131 * Make sure routing socket sees all changes to the flags. 12132 * ipif_up_done* handles this when we use ipif_up. 12133 */ 12134 if (phyint_flags_modified) { 12135 if (phyi->phyint_illv4 != NULL) { 12136 ip_rts_ifmsg(phyi->phyint_illv4-> 12137 ill_ipif); 12138 } 12139 if (phyi->phyint_illv6 != NULL) { 12140 ip_rts_ifmsg(phyi->phyint_illv6-> 12141 ill_ipif); 12142 } 12143 } else { 12144 ip_rts_ifmsg(ipif); 12145 } 12146 /* 12147 * Update the flags in SCTP's IPIF list, ipif_up() will do 12148 * this in need_up case. 12149 */ 12150 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12151 } 12152 return (err); 12153 } 12154 12155 /* 12156 * Restart entry point to restart the flags restart operation after the 12157 * refcounts have dropped to zero. 12158 */ 12159 /* ARGSUSED */ 12160 int 12161 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12162 ip_ioctl_cmd_t *ipip, void *if_req) 12163 { 12164 int err; 12165 struct ifreq *ifr = (struct ifreq *)if_req; 12166 struct lifreq *lifr = (struct lifreq *)if_req; 12167 12168 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12169 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12170 12171 ipif_down_tail(ipif); 12172 if (ipip->ipi_cmd_type == IF_CMD) { 12173 /* 12174 * Since ip_sioctl_flags expects an int and ifr_flags 12175 * is a short we need to cast ifr_flags into an int 12176 * to avoid having sign extension cause bits to get 12177 * set that should not be. 12178 */ 12179 err = ip_sioctl_flags_tail(ipif, 12180 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12181 q, mp, B_TRUE); 12182 } else { 12183 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12184 q, mp, B_TRUE); 12185 } 12186 return (err); 12187 } 12188 12189 /* 12190 * Can operate on either a module or a driver queue. 12191 */ 12192 /* ARGSUSED */ 12193 int 12194 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12195 ip_ioctl_cmd_t *ipip, void *if_req) 12196 { 12197 /* 12198 * Has the flags been set correctly till now ? 12199 */ 12200 ill_t *ill = ipif->ipif_ill; 12201 phyint_t *phyi = ill->ill_phyint; 12202 12203 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12204 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12205 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12206 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12207 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12208 12209 /* 12210 * Need a lock since some flags can be set even when there are 12211 * references to the ipif. 12212 */ 12213 mutex_enter(&ill->ill_lock); 12214 if (ipip->ipi_cmd_type == IF_CMD) { 12215 struct ifreq *ifr = (struct ifreq *)if_req; 12216 12217 /* Get interface flags (low 16 only). */ 12218 ifr->ifr_flags = ((ipif->ipif_flags | 12219 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12220 } else { 12221 struct lifreq *lifr = (struct lifreq *)if_req; 12222 12223 /* Get interface flags. */ 12224 lifr->lifr_flags = ipif->ipif_flags | 12225 ill->ill_flags | phyi->phyint_flags; 12226 } 12227 mutex_exit(&ill->ill_lock); 12228 return (0); 12229 } 12230 12231 /* ARGSUSED */ 12232 int 12233 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12234 ip_ioctl_cmd_t *ipip, void *if_req) 12235 { 12236 int mtu; 12237 int ip_min_mtu; 12238 struct ifreq *ifr; 12239 struct lifreq *lifr; 12240 ire_t *ire; 12241 ip_stack_t *ipst; 12242 12243 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12244 ipif->ipif_id, (void *)ipif)); 12245 if (ipip->ipi_cmd_type == IF_CMD) { 12246 ifr = (struct ifreq *)if_req; 12247 mtu = ifr->ifr_metric; 12248 } else { 12249 lifr = (struct lifreq *)if_req; 12250 mtu = lifr->lifr_mtu; 12251 } 12252 12253 if (ipif->ipif_isv6) 12254 ip_min_mtu = IPV6_MIN_MTU; 12255 else 12256 ip_min_mtu = IP_MIN_MTU; 12257 12258 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12259 return (EINVAL); 12260 12261 /* 12262 * Change the MTU size in all relevant ire's. 12263 * Mtu change Vs. new ire creation - protocol below. 12264 * First change ipif_mtu and the ire_max_frag of the 12265 * interface ire. Then do an ire walk and change the 12266 * ire_max_frag of all affected ires. During ire_add 12267 * under the bucket lock, set the ire_max_frag of the 12268 * new ire being created from the ipif/ire from which 12269 * it is being derived. If an mtu change happens after 12270 * the ire is added, the new ire will be cleaned up. 12271 * Conversely if the mtu change happens before the ire 12272 * is added, ire_add will see the new value of the mtu. 12273 */ 12274 ipif->ipif_mtu = mtu; 12275 ipif->ipif_flags |= IPIF_FIXEDMTU; 12276 12277 if (ipif->ipif_isv6) 12278 ire = ipif_to_ire_v6(ipif); 12279 else 12280 ire = ipif_to_ire(ipif); 12281 if (ire != NULL) { 12282 ire->ire_max_frag = ipif->ipif_mtu; 12283 ire_refrele(ire); 12284 } 12285 ipst = ipif->ipif_ill->ill_ipst; 12286 if (ipif->ipif_flags & IPIF_UP) { 12287 if (ipif->ipif_isv6) 12288 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12289 ipst); 12290 else 12291 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12292 ipst); 12293 } 12294 /* Update the MTU in SCTP's list */ 12295 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12296 return (0); 12297 } 12298 12299 /* Get interface MTU. */ 12300 /* ARGSUSED */ 12301 int 12302 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12303 ip_ioctl_cmd_t *ipip, void *if_req) 12304 { 12305 struct ifreq *ifr; 12306 struct lifreq *lifr; 12307 12308 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12309 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12310 if (ipip->ipi_cmd_type == IF_CMD) { 12311 ifr = (struct ifreq *)if_req; 12312 ifr->ifr_metric = ipif->ipif_mtu; 12313 } else { 12314 lifr = (struct lifreq *)if_req; 12315 lifr->lifr_mtu = ipif->ipif_mtu; 12316 } 12317 return (0); 12318 } 12319 12320 /* Set interface broadcast address. */ 12321 /* ARGSUSED2 */ 12322 int 12323 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12324 ip_ioctl_cmd_t *ipip, void *if_req) 12325 { 12326 ipaddr_t addr; 12327 ire_t *ire; 12328 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12329 12330 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12331 ipif->ipif_id)); 12332 12333 ASSERT(IAM_WRITER_IPIF(ipif)); 12334 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12335 return (EADDRNOTAVAIL); 12336 12337 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12338 12339 if (sin->sin_family != AF_INET) 12340 return (EAFNOSUPPORT); 12341 12342 addr = sin->sin_addr.s_addr; 12343 if (ipif->ipif_flags & IPIF_UP) { 12344 /* 12345 * If we are already up, make sure the new 12346 * broadcast address makes sense. If it does, 12347 * there should be an IRE for it already. 12348 * Don't match on ipif, only on the ill 12349 * since we are sharing these now. Don't use 12350 * MATCH_IRE_ILL_GROUP as we are looking for 12351 * the broadcast ire on this ill and each ill 12352 * in the group has its own broadcast ire. 12353 */ 12354 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12355 ipif, ALL_ZONES, NULL, 12356 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12357 if (ire == NULL) { 12358 return (EINVAL); 12359 } else { 12360 ire_refrele(ire); 12361 } 12362 } 12363 /* 12364 * Changing the broadcast addr for this ipif. 12365 * Make sure we have valid net and subnet bcast 12366 * ire's for other logical interfaces, if needed. 12367 */ 12368 if (addr != ipif->ipif_brd_addr) 12369 ipif_check_bcast_ires(ipif); 12370 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12371 return (0); 12372 } 12373 12374 /* Get interface broadcast address. */ 12375 /* ARGSUSED */ 12376 int 12377 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12378 ip_ioctl_cmd_t *ipip, void *if_req) 12379 { 12380 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12381 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12382 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12383 return (EADDRNOTAVAIL); 12384 12385 /* IPIF_BROADCAST not possible with IPv6 */ 12386 ASSERT(!ipif->ipif_isv6); 12387 *sin = sin_null; 12388 sin->sin_family = AF_INET; 12389 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12390 return (0); 12391 } 12392 12393 /* 12394 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12395 */ 12396 /* ARGSUSED */ 12397 int 12398 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12399 ip_ioctl_cmd_t *ipip, void *if_req) 12400 { 12401 int err = 0; 12402 in6_addr_t v6mask; 12403 12404 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12405 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12406 12407 ASSERT(IAM_WRITER_IPIF(ipif)); 12408 12409 if (ipif->ipif_isv6) { 12410 sin6_t *sin6; 12411 12412 if (sin->sin_family != AF_INET6) 12413 return (EAFNOSUPPORT); 12414 12415 sin6 = (sin6_t *)sin; 12416 v6mask = sin6->sin6_addr; 12417 } else { 12418 ipaddr_t mask; 12419 12420 if (sin->sin_family != AF_INET) 12421 return (EAFNOSUPPORT); 12422 12423 mask = sin->sin_addr.s_addr; 12424 V4MASK_TO_V6(mask, v6mask); 12425 } 12426 12427 /* 12428 * No big deal if the interface isn't already up, or the mask 12429 * isn't really changing, or this is pt-pt. 12430 */ 12431 if (!(ipif->ipif_flags & IPIF_UP) || 12432 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12433 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12434 ipif->ipif_v6net_mask = v6mask; 12435 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12436 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12437 ipif->ipif_v6net_mask, 12438 ipif->ipif_v6subnet); 12439 } 12440 return (0); 12441 } 12442 /* 12443 * Make sure we have valid net and subnet broadcast ire's 12444 * for the old netmask, if needed by other logical interfaces. 12445 */ 12446 if (!ipif->ipif_isv6) 12447 ipif_check_bcast_ires(ipif); 12448 12449 err = ipif_logical_down(ipif, q, mp); 12450 if (err == EINPROGRESS) 12451 return (err); 12452 ipif_down_tail(ipif); 12453 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12454 return (err); 12455 } 12456 12457 static int 12458 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12459 { 12460 in6_addr_t v6mask; 12461 int err = 0; 12462 12463 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12464 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12465 12466 if (ipif->ipif_isv6) { 12467 sin6_t *sin6; 12468 12469 sin6 = (sin6_t *)sin; 12470 v6mask = sin6->sin6_addr; 12471 } else { 12472 ipaddr_t mask; 12473 12474 mask = sin->sin_addr.s_addr; 12475 V4MASK_TO_V6(mask, v6mask); 12476 } 12477 12478 ipif->ipif_v6net_mask = v6mask; 12479 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12480 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12481 ipif->ipif_v6subnet); 12482 } 12483 err = ipif_up(ipif, q, mp); 12484 12485 if (err == 0 || err == EINPROGRESS) { 12486 /* 12487 * The interface must be DL_BOUND if this packet has to 12488 * go out on the wire. Since we only go through a logical 12489 * down and are bound with the driver during an internal 12490 * down/up that is satisfied. 12491 */ 12492 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12493 /* Potentially broadcast an address mask reply. */ 12494 ipif_mask_reply(ipif); 12495 } 12496 } 12497 return (err); 12498 } 12499 12500 /* ARGSUSED */ 12501 int 12502 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12503 ip_ioctl_cmd_t *ipip, void *if_req) 12504 { 12505 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12506 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12507 ipif_down_tail(ipif); 12508 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12509 } 12510 12511 /* Get interface net mask. */ 12512 /* ARGSUSED */ 12513 int 12514 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12515 ip_ioctl_cmd_t *ipip, void *if_req) 12516 { 12517 struct lifreq *lifr = (struct lifreq *)if_req; 12518 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12519 12520 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12521 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12522 12523 /* 12524 * net mask can't change since we have a reference to the ipif. 12525 */ 12526 if (ipif->ipif_isv6) { 12527 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12528 *sin6 = sin6_null; 12529 sin6->sin6_family = AF_INET6; 12530 sin6->sin6_addr = ipif->ipif_v6net_mask; 12531 lifr->lifr_addrlen = 12532 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12533 } else { 12534 *sin = sin_null; 12535 sin->sin_family = AF_INET; 12536 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12537 if (ipip->ipi_cmd_type == LIF_CMD) { 12538 lifr->lifr_addrlen = 12539 ip_mask_to_plen(ipif->ipif_net_mask); 12540 } 12541 } 12542 return (0); 12543 } 12544 12545 /* ARGSUSED */ 12546 int 12547 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12548 ip_ioctl_cmd_t *ipip, void *if_req) 12549 { 12550 12551 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12552 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12553 /* 12554 * Set interface metric. We don't use this for 12555 * anything but we keep track of it in case it is 12556 * important to routing applications or such. 12557 */ 12558 if (ipip->ipi_cmd_type == IF_CMD) { 12559 struct ifreq *ifr; 12560 12561 ifr = (struct ifreq *)if_req; 12562 ipif->ipif_metric = ifr->ifr_metric; 12563 } else { 12564 struct lifreq *lifr; 12565 12566 lifr = (struct lifreq *)if_req; 12567 ipif->ipif_metric = lifr->lifr_metric; 12568 } 12569 return (0); 12570 } 12571 12572 12573 /* ARGSUSED */ 12574 int 12575 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12576 ip_ioctl_cmd_t *ipip, void *if_req) 12577 { 12578 12579 /* Get interface metric. */ 12580 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12581 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12582 if (ipip->ipi_cmd_type == IF_CMD) { 12583 struct ifreq *ifr; 12584 12585 ifr = (struct ifreq *)if_req; 12586 ifr->ifr_metric = ipif->ipif_metric; 12587 } else { 12588 struct lifreq *lifr; 12589 12590 lifr = (struct lifreq *)if_req; 12591 lifr->lifr_metric = ipif->ipif_metric; 12592 } 12593 12594 return (0); 12595 } 12596 12597 /* ARGSUSED */ 12598 int 12599 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12600 ip_ioctl_cmd_t *ipip, void *if_req) 12601 { 12602 12603 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12604 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12605 /* 12606 * Set the muxid returned from I_PLINK. 12607 */ 12608 if (ipip->ipi_cmd_type == IF_CMD) { 12609 struct ifreq *ifr = (struct ifreq *)if_req; 12610 12611 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12612 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12613 } else { 12614 struct lifreq *lifr = (struct lifreq *)if_req; 12615 12616 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12617 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12618 } 12619 return (0); 12620 } 12621 12622 /* ARGSUSED */ 12623 int 12624 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12625 ip_ioctl_cmd_t *ipip, void *if_req) 12626 { 12627 12628 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12629 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12630 /* 12631 * Get the muxid saved in ill for I_PUNLINK. 12632 */ 12633 if (ipip->ipi_cmd_type == IF_CMD) { 12634 struct ifreq *ifr = (struct ifreq *)if_req; 12635 12636 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12637 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12638 } else { 12639 struct lifreq *lifr = (struct lifreq *)if_req; 12640 12641 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12642 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12643 } 12644 return (0); 12645 } 12646 12647 /* 12648 * Set the subnet prefix. Does not modify the broadcast address. 12649 */ 12650 /* ARGSUSED */ 12651 int 12652 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12653 ip_ioctl_cmd_t *ipip, void *if_req) 12654 { 12655 int err = 0; 12656 in6_addr_t v6addr; 12657 in6_addr_t v6mask; 12658 boolean_t need_up = B_FALSE; 12659 int addrlen; 12660 12661 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12662 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12663 12664 ASSERT(IAM_WRITER_IPIF(ipif)); 12665 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12666 12667 if (ipif->ipif_isv6) { 12668 sin6_t *sin6; 12669 12670 if (sin->sin_family != AF_INET6) 12671 return (EAFNOSUPPORT); 12672 12673 sin6 = (sin6_t *)sin; 12674 v6addr = sin6->sin6_addr; 12675 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12676 return (EADDRNOTAVAIL); 12677 } else { 12678 ipaddr_t addr; 12679 12680 if (sin->sin_family != AF_INET) 12681 return (EAFNOSUPPORT); 12682 12683 addr = sin->sin_addr.s_addr; 12684 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12685 return (EADDRNOTAVAIL); 12686 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12687 /* Add 96 bits */ 12688 addrlen += IPV6_ABITS - IP_ABITS; 12689 } 12690 12691 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12692 return (EINVAL); 12693 12694 /* Check if bits in the address is set past the mask */ 12695 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12696 return (EINVAL); 12697 12698 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12699 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12700 return (0); /* No change */ 12701 12702 if (ipif->ipif_flags & IPIF_UP) { 12703 /* 12704 * If the interface is already marked up, 12705 * we call ipif_down which will take care 12706 * of ditching any IREs that have been set 12707 * up based on the old interface address. 12708 */ 12709 err = ipif_logical_down(ipif, q, mp); 12710 if (err == EINPROGRESS) 12711 return (err); 12712 ipif_down_tail(ipif); 12713 need_up = B_TRUE; 12714 } 12715 12716 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12717 return (err); 12718 } 12719 12720 static int 12721 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12722 queue_t *q, mblk_t *mp, boolean_t need_up) 12723 { 12724 ill_t *ill = ipif->ipif_ill; 12725 int err = 0; 12726 12727 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12729 12730 /* Set the new address. */ 12731 mutex_enter(&ill->ill_lock); 12732 ipif->ipif_v6net_mask = v6mask; 12733 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12734 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12735 ipif->ipif_v6subnet); 12736 } 12737 mutex_exit(&ill->ill_lock); 12738 12739 if (need_up) { 12740 /* 12741 * Now bring the interface back up. If this 12742 * is the only IPIF for the ILL, ipif_up 12743 * will have to re-bind to the device, so 12744 * we may get back EINPROGRESS, in which 12745 * case, this IOCTL will get completed in 12746 * ip_rput_dlpi when we see the DL_BIND_ACK. 12747 */ 12748 err = ipif_up(ipif, q, mp); 12749 if (err == EINPROGRESS) 12750 return (err); 12751 } 12752 return (err); 12753 } 12754 12755 /* ARGSUSED */ 12756 int 12757 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12758 ip_ioctl_cmd_t *ipip, void *if_req) 12759 { 12760 int addrlen; 12761 in6_addr_t v6addr; 12762 in6_addr_t v6mask; 12763 struct lifreq *lifr = (struct lifreq *)if_req; 12764 12765 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12766 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12767 ipif_down_tail(ipif); 12768 12769 addrlen = lifr->lifr_addrlen; 12770 if (ipif->ipif_isv6) { 12771 sin6_t *sin6; 12772 12773 sin6 = (sin6_t *)sin; 12774 v6addr = sin6->sin6_addr; 12775 } else { 12776 ipaddr_t addr; 12777 12778 addr = sin->sin_addr.s_addr; 12779 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12780 addrlen += IPV6_ABITS - IP_ABITS; 12781 } 12782 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12783 12784 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12785 } 12786 12787 /* ARGSUSED */ 12788 int 12789 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12790 ip_ioctl_cmd_t *ipip, void *if_req) 12791 { 12792 struct lifreq *lifr = (struct lifreq *)if_req; 12793 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12794 12795 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12796 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12797 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12798 12799 if (ipif->ipif_isv6) { 12800 *sin6 = sin6_null; 12801 sin6->sin6_family = AF_INET6; 12802 sin6->sin6_addr = ipif->ipif_v6subnet; 12803 lifr->lifr_addrlen = 12804 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12805 } else { 12806 *sin = sin_null; 12807 sin->sin_family = AF_INET; 12808 sin->sin_addr.s_addr = ipif->ipif_subnet; 12809 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12810 } 12811 return (0); 12812 } 12813 12814 /* 12815 * Set the IPv6 address token. 12816 */ 12817 /* ARGSUSED */ 12818 int 12819 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12820 ip_ioctl_cmd_t *ipi, void *if_req) 12821 { 12822 ill_t *ill = ipif->ipif_ill; 12823 int err; 12824 in6_addr_t v6addr; 12825 in6_addr_t v6mask; 12826 boolean_t need_up = B_FALSE; 12827 int i; 12828 sin6_t *sin6 = (sin6_t *)sin; 12829 struct lifreq *lifr = (struct lifreq *)if_req; 12830 int addrlen; 12831 12832 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12834 ASSERT(IAM_WRITER_IPIF(ipif)); 12835 12836 addrlen = lifr->lifr_addrlen; 12837 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12838 if (ipif->ipif_id != 0) 12839 return (EINVAL); 12840 12841 if (!ipif->ipif_isv6) 12842 return (EINVAL); 12843 12844 if (addrlen > IPV6_ABITS) 12845 return (EINVAL); 12846 12847 v6addr = sin6->sin6_addr; 12848 12849 /* 12850 * The length of the token is the length from the end. To get 12851 * the proper mask for this, compute the mask of the bits not 12852 * in the token; ie. the prefix, and then xor to get the mask. 12853 */ 12854 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12855 return (EINVAL); 12856 for (i = 0; i < 4; i++) { 12857 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12858 } 12859 12860 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12861 ill->ill_token_length == addrlen) 12862 return (0); /* No change */ 12863 12864 if (ipif->ipif_flags & IPIF_UP) { 12865 err = ipif_logical_down(ipif, q, mp); 12866 if (err == EINPROGRESS) 12867 return (err); 12868 ipif_down_tail(ipif); 12869 need_up = B_TRUE; 12870 } 12871 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12872 return (err); 12873 } 12874 12875 static int 12876 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12877 mblk_t *mp, boolean_t need_up) 12878 { 12879 in6_addr_t v6addr; 12880 in6_addr_t v6mask; 12881 ill_t *ill = ipif->ipif_ill; 12882 int i; 12883 int err = 0; 12884 12885 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12886 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12887 v6addr = sin6->sin6_addr; 12888 /* 12889 * The length of the token is the length from the end. To get 12890 * the proper mask for this, compute the mask of the bits not 12891 * in the token; ie. the prefix, and then xor to get the mask. 12892 */ 12893 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12894 for (i = 0; i < 4; i++) 12895 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12896 12897 mutex_enter(&ill->ill_lock); 12898 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12899 ill->ill_token_length = addrlen; 12900 mutex_exit(&ill->ill_lock); 12901 12902 if (need_up) { 12903 /* 12904 * Now bring the interface back up. If this 12905 * is the only IPIF for the ILL, ipif_up 12906 * will have to re-bind to the device, so 12907 * we may get back EINPROGRESS, in which 12908 * case, this IOCTL will get completed in 12909 * ip_rput_dlpi when we see the DL_BIND_ACK. 12910 */ 12911 err = ipif_up(ipif, q, mp); 12912 if (err == EINPROGRESS) 12913 return (err); 12914 } 12915 return (err); 12916 } 12917 12918 /* ARGSUSED */ 12919 int 12920 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12921 ip_ioctl_cmd_t *ipi, void *if_req) 12922 { 12923 ill_t *ill; 12924 sin6_t *sin6 = (sin6_t *)sin; 12925 struct lifreq *lifr = (struct lifreq *)if_req; 12926 12927 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12928 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12929 if (ipif->ipif_id != 0) 12930 return (EINVAL); 12931 12932 ill = ipif->ipif_ill; 12933 if (!ill->ill_isv6) 12934 return (ENXIO); 12935 12936 *sin6 = sin6_null; 12937 sin6->sin6_family = AF_INET6; 12938 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12939 sin6->sin6_addr = ill->ill_token; 12940 lifr->lifr_addrlen = ill->ill_token_length; 12941 return (0); 12942 } 12943 12944 /* 12945 * Set (hardware) link specific information that might override 12946 * what was acquired through the DL_INFO_ACK. 12947 * The logic is as follows. 12948 * 12949 * become exclusive 12950 * set CHANGING flag 12951 * change mtu on affected IREs 12952 * clear CHANGING flag 12953 * 12954 * An ire add that occurs before the CHANGING flag is set will have its mtu 12955 * changed by the ip_sioctl_lnkinfo. 12956 * 12957 * During the time the CHANGING flag is set, no new ires will be added to the 12958 * bucket, and ire add will fail (due the CHANGING flag). 12959 * 12960 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12961 * before it is added to the bucket. 12962 * 12963 * Obviously only 1 thread can set the CHANGING flag and we need to become 12964 * exclusive to set the flag. 12965 */ 12966 /* ARGSUSED */ 12967 int 12968 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12969 ip_ioctl_cmd_t *ipi, void *if_req) 12970 { 12971 ill_t *ill = ipif->ipif_ill; 12972 ipif_t *nipif; 12973 int ip_min_mtu; 12974 boolean_t mtu_walk = B_FALSE; 12975 struct lifreq *lifr = (struct lifreq *)if_req; 12976 lif_ifinfo_req_t *lir; 12977 ire_t *ire; 12978 12979 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12980 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12981 lir = &lifr->lifr_ifinfo; 12982 ASSERT(IAM_WRITER_IPIF(ipif)); 12983 12984 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12985 if (ipif->ipif_id != 0) 12986 return (EINVAL); 12987 12988 /* Set interface MTU. */ 12989 if (ipif->ipif_isv6) 12990 ip_min_mtu = IPV6_MIN_MTU; 12991 else 12992 ip_min_mtu = IP_MIN_MTU; 12993 12994 /* 12995 * Verify values before we set anything. Allow zero to 12996 * mean unspecified. 12997 */ 12998 if (lir->lir_maxmtu != 0 && 12999 (lir->lir_maxmtu > ill->ill_max_frag || 13000 lir->lir_maxmtu < ip_min_mtu)) 13001 return (EINVAL); 13002 if (lir->lir_reachtime != 0 && 13003 lir->lir_reachtime > ND_MAX_REACHTIME) 13004 return (EINVAL); 13005 if (lir->lir_reachretrans != 0 && 13006 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13007 return (EINVAL); 13008 13009 mutex_enter(&ill->ill_lock); 13010 ill->ill_state_flags |= ILL_CHANGING; 13011 for (nipif = ill->ill_ipif; nipif != NULL; 13012 nipif = nipif->ipif_next) { 13013 nipif->ipif_state_flags |= IPIF_CHANGING; 13014 } 13015 13016 mutex_exit(&ill->ill_lock); 13017 13018 if (lir->lir_maxmtu != 0) { 13019 ill->ill_max_mtu = lir->lir_maxmtu; 13020 ill->ill_mtu_userspecified = 1; 13021 mtu_walk = B_TRUE; 13022 } 13023 13024 if (lir->lir_reachtime != 0) 13025 ill->ill_reachable_time = lir->lir_reachtime; 13026 13027 if (lir->lir_reachretrans != 0) 13028 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13029 13030 ill->ill_max_hops = lir->lir_maxhops; 13031 13032 ill->ill_max_buf = ND_MAX_Q; 13033 13034 if (mtu_walk) { 13035 /* 13036 * Set the MTU on all ipifs associated with this ill except 13037 * for those whose MTU was fixed via SIOCSLIFMTU. 13038 */ 13039 for (nipif = ill->ill_ipif; nipif != NULL; 13040 nipif = nipif->ipif_next) { 13041 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13042 continue; 13043 13044 nipif->ipif_mtu = ill->ill_max_mtu; 13045 13046 if (!(nipif->ipif_flags & IPIF_UP)) 13047 continue; 13048 13049 if (nipif->ipif_isv6) 13050 ire = ipif_to_ire_v6(nipif); 13051 else 13052 ire = ipif_to_ire(nipif); 13053 if (ire != NULL) { 13054 ire->ire_max_frag = ipif->ipif_mtu; 13055 ire_refrele(ire); 13056 } 13057 if (ill->ill_isv6) { 13058 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13059 ipif_mtu_change, (char *)nipif, 13060 ill); 13061 } else { 13062 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13063 ipif_mtu_change, (char *)nipif, 13064 ill); 13065 } 13066 } 13067 } 13068 13069 mutex_enter(&ill->ill_lock); 13070 for (nipif = ill->ill_ipif; nipif != NULL; 13071 nipif = nipif->ipif_next) { 13072 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13073 } 13074 ILL_UNMARK_CHANGING(ill); 13075 mutex_exit(&ill->ill_lock); 13076 13077 return (0); 13078 } 13079 13080 /* ARGSUSED */ 13081 int 13082 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13083 ip_ioctl_cmd_t *ipi, void *if_req) 13084 { 13085 struct lif_ifinfo_req *lir; 13086 ill_t *ill = ipif->ipif_ill; 13087 13088 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13089 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13090 if (ipif->ipif_id != 0) 13091 return (EINVAL); 13092 13093 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13094 lir->lir_maxhops = ill->ill_max_hops; 13095 lir->lir_reachtime = ill->ill_reachable_time; 13096 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13097 lir->lir_maxmtu = ill->ill_max_mtu; 13098 13099 return (0); 13100 } 13101 13102 /* 13103 * Return best guess as to the subnet mask for the specified address. 13104 * Based on the subnet masks for all the configured interfaces. 13105 * 13106 * We end up returning a zero mask in the case of default, multicast or 13107 * experimental. 13108 */ 13109 static ipaddr_t 13110 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13111 { 13112 ipaddr_t net_mask; 13113 ill_t *ill; 13114 ipif_t *ipif; 13115 ill_walk_context_t ctx; 13116 ipif_t *fallback_ipif = NULL; 13117 13118 net_mask = ip_net_mask(addr); 13119 if (net_mask == 0) { 13120 *ipifp = NULL; 13121 return (0); 13122 } 13123 13124 /* Let's check to see if this is maybe a local subnet route. */ 13125 /* this function only applies to IPv4 interfaces */ 13126 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13127 ill = ILL_START_WALK_V4(&ctx, ipst); 13128 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13129 mutex_enter(&ill->ill_lock); 13130 for (ipif = ill->ill_ipif; ipif != NULL; 13131 ipif = ipif->ipif_next) { 13132 if (!IPIF_CAN_LOOKUP(ipif)) 13133 continue; 13134 if (!(ipif->ipif_flags & IPIF_UP)) 13135 continue; 13136 if ((ipif->ipif_subnet & net_mask) == 13137 (addr & net_mask)) { 13138 /* 13139 * Don't trust pt-pt interfaces if there are 13140 * other interfaces. 13141 */ 13142 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13143 if (fallback_ipif == NULL) { 13144 ipif_refhold_locked(ipif); 13145 fallback_ipif = ipif; 13146 } 13147 continue; 13148 } 13149 13150 /* 13151 * Fine. Just assume the same net mask as the 13152 * directly attached subnet interface is using. 13153 */ 13154 ipif_refhold_locked(ipif); 13155 mutex_exit(&ill->ill_lock); 13156 rw_exit(&ipst->ips_ill_g_lock); 13157 if (fallback_ipif != NULL) 13158 ipif_refrele(fallback_ipif); 13159 *ipifp = ipif; 13160 return (ipif->ipif_net_mask); 13161 } 13162 } 13163 mutex_exit(&ill->ill_lock); 13164 } 13165 rw_exit(&ipst->ips_ill_g_lock); 13166 13167 *ipifp = fallback_ipif; 13168 return ((fallback_ipif != NULL) ? 13169 fallback_ipif->ipif_net_mask : net_mask); 13170 } 13171 13172 /* 13173 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13174 */ 13175 static void 13176 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13177 { 13178 IOCP iocp; 13179 ipft_t *ipft; 13180 ipllc_t *ipllc; 13181 mblk_t *mp1; 13182 cred_t *cr; 13183 int error = 0; 13184 conn_t *connp; 13185 13186 ip1dbg(("ip_wput_ioctl")); 13187 iocp = (IOCP)mp->b_rptr; 13188 mp1 = mp->b_cont; 13189 if (mp1 == NULL) { 13190 iocp->ioc_error = EINVAL; 13191 mp->b_datap->db_type = M_IOCNAK; 13192 iocp->ioc_count = 0; 13193 qreply(q, mp); 13194 return; 13195 } 13196 13197 /* 13198 * These IOCTLs provide various control capabilities to 13199 * upstream agents such as ULPs and processes. There 13200 * are currently two such IOCTLs implemented. They 13201 * are used by TCP to provide update information for 13202 * existing IREs and to forcibly delete an IRE for a 13203 * host that is not responding, thereby forcing an 13204 * attempt at a new route. 13205 */ 13206 iocp->ioc_error = EINVAL; 13207 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13208 goto done; 13209 13210 ipllc = (ipllc_t *)mp1->b_rptr; 13211 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13212 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13213 break; 13214 } 13215 /* 13216 * prefer credential from mblk over ioctl; 13217 * see ip_sioctl_copyin_setup 13218 */ 13219 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13220 13221 /* 13222 * Refhold the conn in case the request gets queued up in some lookup 13223 */ 13224 ASSERT(CONN_Q(q)); 13225 connp = Q_TO_CONN(q); 13226 CONN_INC_REF(connp); 13227 if (ipft->ipft_pfi && 13228 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13229 pullupmsg(mp1, ipft->ipft_min_size))) { 13230 error = (*ipft->ipft_pfi)(q, 13231 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13232 } 13233 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13234 /* 13235 * CONN_OPER_PENDING_DONE happens in the function called 13236 * through ipft_pfi above. 13237 */ 13238 return; 13239 } 13240 13241 CONN_OPER_PENDING_DONE(connp); 13242 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13243 freemsg(mp); 13244 return; 13245 } 13246 iocp->ioc_error = error; 13247 13248 done: 13249 mp->b_datap->db_type = M_IOCACK; 13250 if (iocp->ioc_error) 13251 iocp->ioc_count = 0; 13252 qreply(q, mp); 13253 } 13254 13255 /* 13256 * Lookup an ipif using the sequence id (ipif_seqid) 13257 */ 13258 ipif_t * 13259 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13260 { 13261 ipif_t *ipif; 13262 13263 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13264 13265 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13266 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13267 return (ipif); 13268 } 13269 return (NULL); 13270 } 13271 13272 /* 13273 * Assign a unique id for the ipif. This is used later when we send 13274 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13275 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13276 * IRE is added, we verify that ipif has not disappeared. 13277 */ 13278 13279 static void 13280 ipif_assign_seqid(ipif_t *ipif) 13281 { 13282 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13283 13284 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13285 } 13286 13287 /* 13288 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13289 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13290 * be inserted into the first space available in the list. The value of 13291 * ipif_id will then be set to the appropriate value for its position. 13292 */ 13293 static int 13294 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13295 { 13296 ill_t *ill; 13297 ipif_t *tipif; 13298 ipif_t **tipifp; 13299 int id; 13300 ip_stack_t *ipst; 13301 13302 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13303 IAM_WRITER_IPIF(ipif)); 13304 13305 ill = ipif->ipif_ill; 13306 ASSERT(ill != NULL); 13307 ipst = ill->ill_ipst; 13308 13309 /* 13310 * In the case of lo0:0 we already hold the ill_g_lock. 13311 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13312 * ipif_insert. Another such caller is ipif_move. 13313 */ 13314 if (acquire_g_lock) 13315 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13316 if (acquire_ill_lock) 13317 mutex_enter(&ill->ill_lock); 13318 id = ipif->ipif_id; 13319 tipifp = &(ill->ill_ipif); 13320 if (id == -1) { /* need to find a real id */ 13321 id = 0; 13322 while ((tipif = *tipifp) != NULL) { 13323 ASSERT(tipif->ipif_id >= id); 13324 if (tipif->ipif_id != id) 13325 break; /* non-consecutive id */ 13326 id++; 13327 tipifp = &(tipif->ipif_next); 13328 } 13329 /* limit number of logical interfaces */ 13330 if (id >= ipst->ips_ip_addrs_per_if) { 13331 if (acquire_ill_lock) 13332 mutex_exit(&ill->ill_lock); 13333 if (acquire_g_lock) 13334 rw_exit(&ipst->ips_ill_g_lock); 13335 return (-1); 13336 } 13337 ipif->ipif_id = id; /* assign new id */ 13338 } else if (id < ipst->ips_ip_addrs_per_if) { 13339 /* we have a real id; insert ipif in the right place */ 13340 while ((tipif = *tipifp) != NULL) { 13341 ASSERT(tipif->ipif_id != id); 13342 if (tipif->ipif_id > id) 13343 break; /* found correct location */ 13344 tipifp = &(tipif->ipif_next); 13345 } 13346 } else { 13347 if (acquire_ill_lock) 13348 mutex_exit(&ill->ill_lock); 13349 if (acquire_g_lock) 13350 rw_exit(&ipst->ips_ill_g_lock); 13351 return (-1); 13352 } 13353 13354 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13355 13356 ipif->ipif_next = tipif; 13357 *tipifp = ipif; 13358 if (acquire_ill_lock) 13359 mutex_exit(&ill->ill_lock); 13360 if (acquire_g_lock) 13361 rw_exit(&ipst->ips_ill_g_lock); 13362 return (0); 13363 } 13364 13365 static void 13366 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13367 { 13368 ipif_t **ipifp; 13369 ill_t *ill = ipif->ipif_ill; 13370 13371 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13372 if (acquire_ill_lock) 13373 mutex_enter(&ill->ill_lock); 13374 else 13375 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13376 13377 ipifp = &ill->ill_ipif; 13378 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13379 if (*ipifp == ipif) { 13380 *ipifp = ipif->ipif_next; 13381 break; 13382 } 13383 } 13384 13385 if (acquire_ill_lock) 13386 mutex_exit(&ill->ill_lock); 13387 } 13388 13389 /* 13390 * Allocate and initialize a new interface control structure. (Always 13391 * called as writer.) 13392 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13393 * is not part of the global linked list of ills. ipif_seqid is unique 13394 * in the system and to preserve the uniqueness, it is assigned only 13395 * when ill becomes part of the global list. At that point ill will 13396 * have a name. If it doesn't get assigned here, it will get assigned 13397 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13398 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13399 * the interface flags or any other information from the DL_INFO_ACK for 13400 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13401 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13402 * second DL_INFO_ACK comes in from the driver. 13403 */ 13404 static ipif_t * 13405 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13406 { 13407 ipif_t *ipif; 13408 phyint_t *phyi; 13409 13410 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13411 ill->ill_name, id, (void *)ill)); 13412 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13413 13414 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13415 return (NULL); 13416 *ipif = ipif_zero; /* start clean */ 13417 13418 ipif->ipif_ill = ill; 13419 ipif->ipif_id = id; /* could be -1 */ 13420 /* 13421 * Inherit the zoneid from the ill; for the shared stack instance 13422 * this is always the global zone 13423 */ 13424 ipif->ipif_zoneid = ill->ill_zoneid; 13425 13426 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13427 13428 ipif->ipif_refcnt = 0; 13429 ipif->ipif_saved_ire_cnt = 0; 13430 13431 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13432 mi_free(ipif); 13433 return (NULL); 13434 } 13435 /* -1 id should have been replaced by real id */ 13436 id = ipif->ipif_id; 13437 ASSERT(id >= 0); 13438 13439 if (ill->ill_name[0] != '\0') 13440 ipif_assign_seqid(ipif); 13441 13442 /* 13443 * Keep a copy of original id in ipif_orig_ipifid. Failback 13444 * will attempt to restore the original id. The SIOCSLIFOINDEX 13445 * ioctl sets ipif_orig_ipifid to zero. 13446 */ 13447 ipif->ipif_orig_ipifid = id; 13448 13449 /* 13450 * We grab the ill_lock and phyint_lock to protect the flag changes. 13451 * The ipif is still not up and can't be looked up until the 13452 * ioctl completes and the IPIF_CHANGING flag is cleared. 13453 */ 13454 mutex_enter(&ill->ill_lock); 13455 mutex_enter(&ill->ill_phyint->phyint_lock); 13456 /* 13457 * Set the running flag when logical interface zero is created. 13458 * For subsequent logical interfaces, a DLPI link down 13459 * notification message may have cleared the running flag to 13460 * indicate the link is down, so we shouldn't just blindly set it. 13461 */ 13462 if (id == 0) 13463 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13464 ipif->ipif_ire_type = ire_type; 13465 phyi = ill->ill_phyint; 13466 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13467 13468 if (ipif->ipif_isv6) { 13469 ill->ill_flags |= ILLF_IPV6; 13470 } else { 13471 ipaddr_t inaddr_any = INADDR_ANY; 13472 13473 ill->ill_flags |= ILLF_IPV4; 13474 13475 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13476 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13477 &ipif->ipif_v6lcl_addr); 13478 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13479 &ipif->ipif_v6src_addr); 13480 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13481 &ipif->ipif_v6subnet); 13482 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13483 &ipif->ipif_v6net_mask); 13484 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13485 &ipif->ipif_v6brd_addr); 13486 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13487 &ipif->ipif_v6pp_dst_addr); 13488 } 13489 13490 /* 13491 * Don't set the interface flags etc. now, will do it in 13492 * ip_ll_subnet_defaults. 13493 */ 13494 if (!initialize) { 13495 mutex_exit(&ill->ill_lock); 13496 mutex_exit(&ill->ill_phyint->phyint_lock); 13497 return (ipif); 13498 } 13499 ipif->ipif_mtu = ill->ill_max_mtu; 13500 13501 if (ill->ill_bcast_addr_length != 0) { 13502 /* 13503 * Later detect lack of DLPI driver multicast 13504 * capability by catching DL_ENABMULTI errors in 13505 * ip_rput_dlpi. 13506 */ 13507 ill->ill_flags |= ILLF_MULTICAST; 13508 if (!ipif->ipif_isv6) 13509 ipif->ipif_flags |= IPIF_BROADCAST; 13510 } else { 13511 if (ill->ill_net_type != IRE_LOOPBACK) { 13512 if (ipif->ipif_isv6) 13513 /* 13514 * Note: xresolv interfaces will eventually need 13515 * NOARP set here as well, but that will require 13516 * those external resolvers to have some 13517 * knowledge of that flag and act appropriately. 13518 * Not to be changed at present. 13519 */ 13520 ill->ill_flags |= ILLF_NONUD; 13521 else 13522 ill->ill_flags |= ILLF_NOARP; 13523 } 13524 if (ill->ill_phys_addr_length == 0) { 13525 if (ill->ill_media && 13526 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13527 ipif->ipif_flags |= IPIF_NOXMIT; 13528 phyi->phyint_flags |= PHYI_VIRTUAL; 13529 } else { 13530 /* pt-pt supports multicast. */ 13531 ill->ill_flags |= ILLF_MULTICAST; 13532 if (ill->ill_net_type == IRE_LOOPBACK) { 13533 phyi->phyint_flags |= 13534 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13535 } else { 13536 ipif->ipif_flags |= IPIF_POINTOPOINT; 13537 } 13538 } 13539 } 13540 } 13541 mutex_exit(&ill->ill_lock); 13542 mutex_exit(&ill->ill_phyint->phyint_lock); 13543 return (ipif); 13544 } 13545 13546 /* 13547 * If appropriate, send a message up to the resolver delete the entry 13548 * for the address of this interface which is going out of business. 13549 * (Always called as writer). 13550 * 13551 * NOTE : We need to check for NULL mps as some of the fields are 13552 * initialized only for some interface types. See ipif_resolver_up() 13553 * for details. 13554 */ 13555 void 13556 ipif_arp_down(ipif_t *ipif) 13557 { 13558 mblk_t *mp; 13559 ill_t *ill = ipif->ipif_ill; 13560 13561 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13562 ASSERT(IAM_WRITER_IPIF(ipif)); 13563 13564 /* Delete the mapping for the local address */ 13565 mp = ipif->ipif_arp_del_mp; 13566 if (mp != NULL) { 13567 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13568 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13569 putnext(ill->ill_rq, mp); 13570 ipif->ipif_arp_del_mp = NULL; 13571 } 13572 13573 /* 13574 * If this is the last ipif that is going down and there are no 13575 * duplicate addresses we may yet attempt to re-probe, then we need to 13576 * clean up ARP completely. 13577 */ 13578 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13579 13580 /* Send up AR_INTERFACE_DOWN message */ 13581 mp = ill->ill_arp_down_mp; 13582 if (mp != NULL) { 13583 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13584 *(unsigned *)mp->b_rptr, ill->ill_name, 13585 ipif->ipif_id)); 13586 putnext(ill->ill_rq, mp); 13587 ill->ill_arp_down_mp = NULL; 13588 } 13589 13590 /* Tell ARP to delete the multicast mappings */ 13591 mp = ill->ill_arp_del_mapping_mp; 13592 if (mp != NULL) { 13593 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13594 *(unsigned *)mp->b_rptr, ill->ill_name, 13595 ipif->ipif_id)); 13596 putnext(ill->ill_rq, mp); 13597 ill->ill_arp_del_mapping_mp = NULL; 13598 } 13599 } 13600 } 13601 13602 /* 13603 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13604 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13605 * that it wants the add_mp allocated in this function to be returned 13606 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13607 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13608 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13609 * as it does a ipif_arp_down after calling this function - which will 13610 * remove what we add here. 13611 * 13612 * Returns -1 on failures and 0 on success. 13613 */ 13614 int 13615 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13616 { 13617 mblk_t *del_mp = NULL; 13618 mblk_t *add_mp = NULL; 13619 mblk_t *mp; 13620 ill_t *ill = ipif->ipif_ill; 13621 phyint_t *phyi = ill->ill_phyint; 13622 ipaddr_t addr, mask, extract_mask = 0; 13623 arma_t *arma; 13624 uint8_t *maddr, *bphys_addr; 13625 uint32_t hw_start; 13626 dl_unitdata_req_t *dlur; 13627 13628 ASSERT(IAM_WRITER_IPIF(ipif)); 13629 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13630 return (0); 13631 13632 /* 13633 * Delete the existing mapping from ARP. Normally ipif_down 13634 * -> ipif_arp_down should send this up to ARP. The only 13635 * reason we would find this when we are switching from 13636 * Multicast to Broadcast where we did not do a down. 13637 */ 13638 mp = ill->ill_arp_del_mapping_mp; 13639 if (mp != NULL) { 13640 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13641 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13642 putnext(ill->ill_rq, mp); 13643 ill->ill_arp_del_mapping_mp = NULL; 13644 } 13645 13646 if (arp_add_mapping_mp != NULL) 13647 *arp_add_mapping_mp = NULL; 13648 13649 /* 13650 * Check that the address is not to long for the constant 13651 * length reserved in the template arma_t. 13652 */ 13653 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13654 return (-1); 13655 13656 /* Add mapping mblk */ 13657 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13658 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13659 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13660 (caddr_t)&addr); 13661 if (add_mp == NULL) 13662 return (-1); 13663 arma = (arma_t *)add_mp->b_rptr; 13664 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13665 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13666 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13667 13668 /* 13669 * Determine the broadcast address. 13670 */ 13671 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13672 if (ill->ill_sap_length < 0) 13673 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13674 else 13675 bphys_addr = (uchar_t *)dlur + 13676 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13677 /* 13678 * Check PHYI_MULTI_BCAST and length of physical 13679 * address to determine if we use the mapping or the 13680 * broadcast address. 13681 */ 13682 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13683 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13684 bphys_addr, maddr, &hw_start, &extract_mask)) 13685 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13686 13687 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13688 (ill->ill_flags & ILLF_MULTICAST)) { 13689 /* Make sure this will not match the "exact" entry. */ 13690 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13691 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13692 (caddr_t)&addr); 13693 if (del_mp == NULL) { 13694 freemsg(add_mp); 13695 return (-1); 13696 } 13697 bcopy(&extract_mask, (char *)arma + 13698 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13699 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13700 /* Use link-layer broadcast address for MULTI_BCAST */ 13701 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13702 ip2dbg(("ipif_arp_setup_multicast: adding" 13703 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13704 } else { 13705 arma->arma_hw_mapping_start = hw_start; 13706 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13707 " ARP setup for %s\n", ill->ill_name)); 13708 } 13709 } else { 13710 freemsg(add_mp); 13711 ASSERT(del_mp == NULL); 13712 /* It is neither MULTICAST nor MULTI_BCAST */ 13713 return (0); 13714 } 13715 ASSERT(add_mp != NULL && del_mp != NULL); 13716 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13717 ill->ill_arp_del_mapping_mp = del_mp; 13718 if (arp_add_mapping_mp != NULL) { 13719 /* The caller just wants the mblks allocated */ 13720 *arp_add_mapping_mp = add_mp; 13721 } else { 13722 /* The caller wants us to send it to arp */ 13723 putnext(ill->ill_rq, add_mp); 13724 } 13725 return (0); 13726 } 13727 13728 /* 13729 * Get the resolver set up for a new interface address. 13730 * (Always called as writer.) 13731 * Called both for IPv4 and IPv6 interfaces, 13732 * though it only sets up the resolver for v6 13733 * if it's an xresolv interface (one using an external resolver). 13734 * Honors ILLF_NOARP. 13735 * The enumerated value res_act is used to tune the behavior. 13736 * If set to Res_act_initial, then we set up all the resolver 13737 * structures for a new interface. If set to Res_act_move, then 13738 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13739 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13740 * asynchronous hardware address change notification. If set to 13741 * Res_act_defend, then we tell ARP that it needs to send a single 13742 * gratuitous message in defense of the address. 13743 * Returns error on failure. 13744 */ 13745 int 13746 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13747 { 13748 caddr_t addr; 13749 mblk_t *arp_up_mp = NULL; 13750 mblk_t *arp_down_mp = NULL; 13751 mblk_t *arp_add_mp = NULL; 13752 mblk_t *arp_del_mp = NULL; 13753 mblk_t *arp_add_mapping_mp = NULL; 13754 mblk_t *arp_del_mapping_mp = NULL; 13755 ill_t *ill = ipif->ipif_ill; 13756 uchar_t *area_p = NULL; 13757 uchar_t *ared_p = NULL; 13758 int err = ENOMEM; 13759 boolean_t was_dup; 13760 13761 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13762 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13763 ASSERT(IAM_WRITER_IPIF(ipif)); 13764 13765 was_dup = B_FALSE; 13766 if (res_act == Res_act_initial) { 13767 ipif->ipif_addr_ready = 0; 13768 /* 13769 * We're bringing an interface up here. There's no way that we 13770 * should need to shut down ARP now. 13771 */ 13772 mutex_enter(&ill->ill_lock); 13773 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13774 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13775 ill->ill_ipif_dup_count--; 13776 was_dup = B_TRUE; 13777 } 13778 mutex_exit(&ill->ill_lock); 13779 } 13780 if (ipif->ipif_recovery_id != 0) 13781 (void) untimeout(ipif->ipif_recovery_id); 13782 ipif->ipif_recovery_id = 0; 13783 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13784 ipif->ipif_addr_ready = 1; 13785 return (0); 13786 } 13787 /* NDP will set the ipif_addr_ready flag when it's ready */ 13788 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13789 return (0); 13790 13791 if (ill->ill_isv6) { 13792 /* 13793 * External resolver for IPv6 13794 */ 13795 ASSERT(res_act == Res_act_initial); 13796 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13797 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13798 area_p = (uchar_t *)&ip6_area_template; 13799 ared_p = (uchar_t *)&ip6_ared_template; 13800 } 13801 } else { 13802 /* 13803 * IPv4 arp case. If the ARP stream has already started 13804 * closing, fail this request for ARP bringup. Else 13805 * record the fact that an ARP bringup is pending. 13806 */ 13807 mutex_enter(&ill->ill_lock); 13808 if (ill->ill_arp_closing) { 13809 mutex_exit(&ill->ill_lock); 13810 err = EINVAL; 13811 goto failed; 13812 } else { 13813 if (ill->ill_ipif_up_count == 0 && 13814 ill->ill_ipif_dup_count == 0 && !was_dup) 13815 ill->ill_arp_bringup_pending = 1; 13816 mutex_exit(&ill->ill_lock); 13817 } 13818 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13819 addr = (caddr_t)&ipif->ipif_lcl_addr; 13820 area_p = (uchar_t *)&ip_area_template; 13821 ared_p = (uchar_t *)&ip_ared_template; 13822 } 13823 } 13824 13825 /* 13826 * Add an entry for the local address in ARP only if it 13827 * is not UNNUMBERED and the address is not INADDR_ANY. 13828 */ 13829 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13830 area_t *area; 13831 13832 /* Now ask ARP to publish our address. */ 13833 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13834 if (arp_add_mp == NULL) 13835 goto failed; 13836 area = (area_t *)arp_add_mp->b_rptr; 13837 if (res_act != Res_act_initial) { 13838 /* 13839 * Copy the new hardware address and length into 13840 * arp_add_mp to be sent to ARP. 13841 */ 13842 area->area_hw_addr_length = ill->ill_phys_addr_length; 13843 bcopy(ill->ill_phys_addr, 13844 ((char *)area + area->area_hw_addr_offset), 13845 area->area_hw_addr_length); 13846 } 13847 13848 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13849 ACE_F_MYADDR; 13850 13851 if (res_act == Res_act_defend) { 13852 area->area_flags |= ACE_F_DEFEND; 13853 /* 13854 * If we're just defending our address now, then 13855 * there's no need to set up ARP multicast mappings. 13856 * The publish command is enough. 13857 */ 13858 goto done; 13859 } 13860 13861 if (res_act != Res_act_initial) 13862 goto arp_setup_multicast; 13863 13864 /* 13865 * Allocate an ARP deletion message so we know we can tell ARP 13866 * when the interface goes down. 13867 */ 13868 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13869 if (arp_del_mp == NULL) 13870 goto failed; 13871 13872 } else { 13873 if (res_act != Res_act_initial) 13874 goto done; 13875 } 13876 /* 13877 * Need to bring up ARP or setup multicast mapping only 13878 * when the first interface is coming UP. 13879 */ 13880 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13881 was_dup) { 13882 goto done; 13883 } 13884 13885 /* 13886 * Allocate an ARP down message (to be saved) and an ARP up 13887 * message. 13888 */ 13889 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13890 if (arp_down_mp == NULL) 13891 goto failed; 13892 13893 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13894 if (arp_up_mp == NULL) 13895 goto failed; 13896 13897 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13898 goto done; 13899 13900 arp_setup_multicast: 13901 /* 13902 * Setup the multicast mappings. This function initializes 13903 * ill_arp_del_mapping_mp also. This does not need to be done for 13904 * IPv6. 13905 */ 13906 if (!ill->ill_isv6) { 13907 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13908 if (err != 0) 13909 goto failed; 13910 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13911 ASSERT(arp_add_mapping_mp != NULL); 13912 } 13913 13914 done: 13915 if (arp_del_mp != NULL) { 13916 ASSERT(ipif->ipif_arp_del_mp == NULL); 13917 ipif->ipif_arp_del_mp = arp_del_mp; 13918 } 13919 if (arp_down_mp != NULL) { 13920 ASSERT(ill->ill_arp_down_mp == NULL); 13921 ill->ill_arp_down_mp = arp_down_mp; 13922 } 13923 if (arp_del_mapping_mp != NULL) { 13924 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13925 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13926 } 13927 if (arp_up_mp != NULL) { 13928 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13929 ill->ill_name, ipif->ipif_id)); 13930 putnext(ill->ill_rq, arp_up_mp); 13931 } 13932 if (arp_add_mp != NULL) { 13933 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13934 ill->ill_name, ipif->ipif_id)); 13935 /* 13936 * If it's an extended ARP implementation, then we'll wait to 13937 * hear that DAD has finished before using the interface. 13938 */ 13939 if (!ill->ill_arp_extend) 13940 ipif->ipif_addr_ready = 1; 13941 putnext(ill->ill_rq, arp_add_mp); 13942 } else { 13943 ipif->ipif_addr_ready = 1; 13944 } 13945 if (arp_add_mapping_mp != NULL) { 13946 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13947 ill->ill_name, ipif->ipif_id)); 13948 putnext(ill->ill_rq, arp_add_mapping_mp); 13949 } 13950 if (res_act != Res_act_initial) 13951 return (0); 13952 13953 if (ill->ill_flags & ILLF_NOARP) 13954 err = ill_arp_off(ill); 13955 else 13956 err = ill_arp_on(ill); 13957 if (err != 0) { 13958 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13959 freemsg(ipif->ipif_arp_del_mp); 13960 freemsg(ill->ill_arp_down_mp); 13961 freemsg(ill->ill_arp_del_mapping_mp); 13962 ipif->ipif_arp_del_mp = NULL; 13963 ill->ill_arp_down_mp = NULL; 13964 ill->ill_arp_del_mapping_mp = NULL; 13965 return (err); 13966 } 13967 return ((ill->ill_ipif_up_count != 0 || was_dup || 13968 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13969 13970 failed: 13971 ip1dbg(("ipif_resolver_up: FAILED\n")); 13972 freemsg(arp_add_mp); 13973 freemsg(arp_del_mp); 13974 freemsg(arp_add_mapping_mp); 13975 freemsg(arp_up_mp); 13976 freemsg(arp_down_mp); 13977 ill->ill_arp_bringup_pending = 0; 13978 return (err); 13979 } 13980 13981 /* 13982 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13983 * just gone back up. 13984 */ 13985 static void 13986 ipif_arp_start_dad(ipif_t *ipif) 13987 { 13988 ill_t *ill = ipif->ipif_ill; 13989 mblk_t *arp_add_mp; 13990 area_t *area; 13991 13992 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13993 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13994 ipif->ipif_lcl_addr == INADDR_ANY || 13995 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13996 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13997 /* 13998 * If we can't contact ARP for some reason, that's not really a 13999 * problem. Just send out the routing socket notification that 14000 * DAD completion would have done, and continue. 14001 */ 14002 ipif_mask_reply(ipif); 14003 ip_rts_ifmsg(ipif); 14004 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14005 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14006 ipif->ipif_addr_ready = 1; 14007 return; 14008 } 14009 14010 /* Setting the 'unverified' flag restarts DAD */ 14011 area = (area_t *)arp_add_mp->b_rptr; 14012 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14013 ACE_F_UNVERIFIED; 14014 putnext(ill->ill_rq, arp_add_mp); 14015 } 14016 14017 static void 14018 ipif_ndp_start_dad(ipif_t *ipif) 14019 { 14020 nce_t *nce; 14021 14022 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14023 if (nce == NULL) 14024 return; 14025 14026 if (!ndp_restart_dad(nce)) { 14027 /* 14028 * If we can't restart DAD for some reason, that's not really a 14029 * problem. Just send out the routing socket notification that 14030 * DAD completion would have done, and continue. 14031 */ 14032 ip_rts_ifmsg(ipif); 14033 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14034 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14035 ipif->ipif_addr_ready = 1; 14036 } 14037 NCE_REFRELE(nce); 14038 } 14039 14040 /* 14041 * Restart duplicate address detection on all interfaces on the given ill. 14042 * 14043 * This is called when an interface transitions from down to up 14044 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14045 * 14046 * Note that since the underlying physical link has transitioned, we must cause 14047 * at least one routing socket message to be sent here, either via DAD 14048 * completion or just by default on the first ipif. (If we don't do this, then 14049 * in.mpathd will see long delays when doing link-based failure recovery.) 14050 */ 14051 void 14052 ill_restart_dad(ill_t *ill, boolean_t went_up) 14053 { 14054 ipif_t *ipif; 14055 14056 if (ill == NULL) 14057 return; 14058 14059 /* 14060 * If layer two doesn't support duplicate address detection, then just 14061 * send the routing socket message now and be done with it. 14062 */ 14063 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14064 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14065 ip_rts_ifmsg(ill->ill_ipif); 14066 return; 14067 } 14068 14069 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14070 if (went_up) { 14071 if (ipif->ipif_flags & IPIF_UP) { 14072 if (ill->ill_isv6) 14073 ipif_ndp_start_dad(ipif); 14074 else 14075 ipif_arp_start_dad(ipif); 14076 } else if (ill->ill_isv6 && 14077 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14078 /* 14079 * For IPv4, the ARP module itself will 14080 * automatically start the DAD process when it 14081 * sees DL_NOTE_LINK_UP. We respond to the 14082 * AR_CN_READY at the completion of that task. 14083 * For IPv6, we must kick off the bring-up 14084 * process now. 14085 */ 14086 ndp_do_recovery(ipif); 14087 } else { 14088 /* 14089 * Unfortunately, the first ipif is "special" 14090 * and represents the underlying ill in the 14091 * routing socket messages. Thus, when this 14092 * one ipif is down, we must still notify so 14093 * that the user knows the IFF_RUNNING status 14094 * change. (If the first ipif is up, then 14095 * we'll handle eventual routing socket 14096 * notification via DAD completion.) 14097 */ 14098 if (ipif == ill->ill_ipif) 14099 ip_rts_ifmsg(ill->ill_ipif); 14100 } 14101 } else { 14102 /* 14103 * After link down, we'll need to send a new routing 14104 * message when the link comes back, so clear 14105 * ipif_addr_ready. 14106 */ 14107 ipif->ipif_addr_ready = 0; 14108 } 14109 } 14110 14111 /* 14112 * If we've torn down links, then notify the user right away. 14113 */ 14114 if (!went_up) 14115 ip_rts_ifmsg(ill->ill_ipif); 14116 } 14117 14118 /* 14119 * Wakeup all threads waiting to enter the ipsq, and sleeping 14120 * on any of the ills in this ipsq. The ill_lock of the ill 14121 * must be held so that waiters don't miss wakeups 14122 */ 14123 static void 14124 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14125 { 14126 phyint_t *phyint; 14127 14128 phyint = ipsq->ipsq_phyint_list; 14129 while (phyint != NULL) { 14130 if (phyint->phyint_illv4) { 14131 if (!caller_holds_lock) 14132 mutex_enter(&phyint->phyint_illv4->ill_lock); 14133 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14134 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14135 if (!caller_holds_lock) 14136 mutex_exit(&phyint->phyint_illv4->ill_lock); 14137 } 14138 if (phyint->phyint_illv6) { 14139 if (!caller_holds_lock) 14140 mutex_enter(&phyint->phyint_illv6->ill_lock); 14141 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14142 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14143 if (!caller_holds_lock) 14144 mutex_exit(&phyint->phyint_illv6->ill_lock); 14145 } 14146 phyint = phyint->phyint_ipsq_next; 14147 } 14148 } 14149 14150 static ipsq_t * 14151 ipsq_create(char *groupname, ip_stack_t *ipst) 14152 { 14153 ipsq_t *ipsq; 14154 14155 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14156 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14157 if (ipsq == NULL) { 14158 return (NULL); 14159 } 14160 14161 if (groupname != NULL) 14162 (void) strcpy(ipsq->ipsq_name, groupname); 14163 else 14164 ipsq->ipsq_name[0] = '\0'; 14165 14166 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14167 ipsq->ipsq_flags |= IPSQ_GROUP; 14168 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14169 ipst->ips_ipsq_g_head = ipsq; 14170 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14171 return (ipsq); 14172 } 14173 14174 /* 14175 * Return an ipsq correspoding to the groupname. If 'create' is true 14176 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14177 * uniquely with an IPMP group. However during IPMP groupname operations, 14178 * multiple IPMP groups may be associated with a single ipsq. But no 14179 * IPMP group can be associated with more than 1 ipsq at any time. 14180 * For example 14181 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14182 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14183 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14184 * 14185 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14186 * status shown below during the execution of the above command. 14187 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14188 * 14189 * After the completion of the above groupname command we return to the stable 14190 * state shown below. 14191 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14192 * hme4 mpk17-85 ipsq2 mpk17-85 1 14193 * 14194 * Because of the above, we don't search based on the ipsq_name since that 14195 * would miss the correct ipsq during certain windows as shown above. 14196 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14197 * natural state. 14198 */ 14199 static ipsq_t * 14200 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14201 ip_stack_t *ipst) 14202 { 14203 ipsq_t *ipsq; 14204 int group_len; 14205 phyint_t *phyint; 14206 14207 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14208 14209 group_len = strlen(groupname); 14210 ASSERT(group_len != 0); 14211 group_len++; 14212 14213 for (ipsq = ipst->ips_ipsq_g_head; 14214 ipsq != NULL; 14215 ipsq = ipsq->ipsq_next) { 14216 /* 14217 * When an ipsq is being split, and ill_split_ipsq 14218 * calls this function, we exclude it from being considered. 14219 */ 14220 if (ipsq == exclude_ipsq) 14221 continue; 14222 14223 /* 14224 * Compare against the ipsq_name. The groupname change happens 14225 * in 2 phases. The 1st phase merges the from group into 14226 * the to group's ipsq, by calling ill_merge_groups and restarts 14227 * the ioctl. The 2nd phase then locates the ipsq again thru 14228 * ipsq_name. At this point the phyint_groupname has not been 14229 * updated. 14230 */ 14231 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14232 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14233 /* 14234 * Verify that an ipmp groupname is exactly 14235 * part of 1 ipsq and is not found in any other 14236 * ipsq. 14237 */ 14238 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14239 NULL); 14240 return (ipsq); 14241 } 14242 14243 /* 14244 * Comparison against ipsq_name alone is not sufficient. 14245 * In the case when groups are currently being 14246 * merged, the ipsq could hold other IPMP groups temporarily. 14247 * so we walk the phyint list and compare against the 14248 * phyint_groupname as well. 14249 */ 14250 phyint = ipsq->ipsq_phyint_list; 14251 while (phyint != NULL) { 14252 if ((group_len == phyint->phyint_groupname_len) && 14253 (bcmp(phyint->phyint_groupname, groupname, 14254 group_len) == 0)) { 14255 /* 14256 * Verify that an ipmp groupname is exactly 14257 * part of 1 ipsq and is not found in any other 14258 * ipsq. 14259 */ 14260 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14261 ipst) == NULL); 14262 return (ipsq); 14263 } 14264 phyint = phyint->phyint_ipsq_next; 14265 } 14266 } 14267 if (create) 14268 ipsq = ipsq_create(groupname, ipst); 14269 return (ipsq); 14270 } 14271 14272 static void 14273 ipsq_delete(ipsq_t *ipsq) 14274 { 14275 ipsq_t *nipsq; 14276 ipsq_t *pipsq = NULL; 14277 ip_stack_t *ipst = ipsq->ipsq_ipst; 14278 14279 /* 14280 * We don't hold the ipsq lock, but we are sure no new 14281 * messages can land up, since the ipsq_refs is zero. 14282 * i.e. this ipsq is unnamed and no phyint or phyint group 14283 * is associated with this ipsq. (Lookups are based on ill_name 14284 * or phyint_groupname) 14285 */ 14286 ASSERT(ipsq->ipsq_refs == 0); 14287 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14288 ASSERT(ipsq->ipsq_pending_mp == NULL); 14289 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14290 /* 14291 * This is not the ipsq of an IPMP group. 14292 */ 14293 ipsq->ipsq_ipst = NULL; 14294 kmem_free(ipsq, sizeof (ipsq_t)); 14295 return; 14296 } 14297 14298 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14299 14300 /* 14301 * Locate the ipsq before we can remove it from 14302 * the singly linked list of ipsq's. 14303 */ 14304 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14305 nipsq = nipsq->ipsq_next) { 14306 if (nipsq == ipsq) { 14307 break; 14308 } 14309 pipsq = nipsq; 14310 } 14311 14312 ASSERT(nipsq == ipsq); 14313 14314 /* unlink ipsq from the list */ 14315 if (pipsq != NULL) 14316 pipsq->ipsq_next = ipsq->ipsq_next; 14317 else 14318 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14319 ipsq->ipsq_ipst = NULL; 14320 kmem_free(ipsq, sizeof (ipsq_t)); 14321 rw_exit(&ipst->ips_ill_g_lock); 14322 } 14323 14324 static void 14325 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14326 queue_t *q) 14327 { 14328 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14329 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14330 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14331 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14332 ASSERT(current_mp != NULL); 14333 14334 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14335 NEW_OP, NULL); 14336 14337 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14338 new_ipsq->ipsq_xopq_mphead != NULL); 14339 14340 /* 14341 * move from old ipsq to the new ipsq. 14342 */ 14343 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14344 if (old_ipsq->ipsq_xopq_mphead != NULL) 14345 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14346 14347 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14348 } 14349 14350 void 14351 ill_group_cleanup(ill_t *ill) 14352 { 14353 ill_t *ill_v4; 14354 ill_t *ill_v6; 14355 ipif_t *ipif; 14356 14357 ill_v4 = ill->ill_phyint->phyint_illv4; 14358 ill_v6 = ill->ill_phyint->phyint_illv6; 14359 14360 if (ill_v4 != NULL) { 14361 mutex_enter(&ill_v4->ill_lock); 14362 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14363 ipif = ipif->ipif_next) { 14364 IPIF_UNMARK_MOVING(ipif); 14365 } 14366 ill_v4->ill_up_ipifs = B_FALSE; 14367 mutex_exit(&ill_v4->ill_lock); 14368 } 14369 14370 if (ill_v6 != NULL) { 14371 mutex_enter(&ill_v6->ill_lock); 14372 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14373 ipif = ipif->ipif_next) { 14374 IPIF_UNMARK_MOVING(ipif); 14375 } 14376 ill_v6->ill_up_ipifs = B_FALSE; 14377 mutex_exit(&ill_v6->ill_lock); 14378 } 14379 } 14380 /* 14381 * This function is called when an ill has had a change in its group status 14382 * to bring up all the ipifs that were up before the change. 14383 */ 14384 int 14385 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14386 { 14387 ipif_t *ipif; 14388 ill_t *ill_v4; 14389 ill_t *ill_v6; 14390 ill_t *from_ill; 14391 int err = 0; 14392 14393 14394 ASSERT(IAM_WRITER_ILL(ill)); 14395 14396 /* 14397 * Except for ipif_state_flags and ill_state_flags the other 14398 * fields of the ipif/ill that are modified below are protected 14399 * implicitly since we are a writer. We would have tried to down 14400 * even an ipif that was already down, in ill_down_ipifs. So we 14401 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14402 */ 14403 ill_v4 = ill->ill_phyint->phyint_illv4; 14404 ill_v6 = ill->ill_phyint->phyint_illv6; 14405 if (ill_v4 != NULL) { 14406 ill_v4->ill_up_ipifs = B_TRUE; 14407 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14408 ipif = ipif->ipif_next) { 14409 mutex_enter(&ill_v4->ill_lock); 14410 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14411 IPIF_UNMARK_MOVING(ipif); 14412 mutex_exit(&ill_v4->ill_lock); 14413 if (ipif->ipif_was_up) { 14414 if (!(ipif->ipif_flags & IPIF_UP)) 14415 err = ipif_up(ipif, q, mp); 14416 ipif->ipif_was_up = B_FALSE; 14417 if (err != 0) { 14418 /* 14419 * Can there be any other error ? 14420 */ 14421 ASSERT(err == EINPROGRESS); 14422 return (err); 14423 } 14424 } 14425 } 14426 mutex_enter(&ill_v4->ill_lock); 14427 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14428 mutex_exit(&ill_v4->ill_lock); 14429 ill_v4->ill_up_ipifs = B_FALSE; 14430 if (ill_v4->ill_move_in_progress) { 14431 ASSERT(ill_v4->ill_move_peer != NULL); 14432 ill_v4->ill_move_in_progress = B_FALSE; 14433 from_ill = ill_v4->ill_move_peer; 14434 from_ill->ill_move_in_progress = B_FALSE; 14435 from_ill->ill_move_peer = NULL; 14436 mutex_enter(&from_ill->ill_lock); 14437 from_ill->ill_state_flags &= ~ILL_CHANGING; 14438 mutex_exit(&from_ill->ill_lock); 14439 if (ill_v6 == NULL) { 14440 if (from_ill->ill_phyint->phyint_flags & 14441 PHYI_STANDBY) { 14442 phyint_inactive(from_ill->ill_phyint); 14443 } 14444 if (ill_v4->ill_phyint->phyint_flags & 14445 PHYI_STANDBY) { 14446 phyint_inactive(ill_v4->ill_phyint); 14447 } 14448 } 14449 ill_v4->ill_move_peer = NULL; 14450 } 14451 } 14452 14453 if (ill_v6 != NULL) { 14454 ill_v6->ill_up_ipifs = B_TRUE; 14455 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14456 ipif = ipif->ipif_next) { 14457 mutex_enter(&ill_v6->ill_lock); 14458 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14459 IPIF_UNMARK_MOVING(ipif); 14460 mutex_exit(&ill_v6->ill_lock); 14461 if (ipif->ipif_was_up) { 14462 if (!(ipif->ipif_flags & IPIF_UP)) 14463 err = ipif_up(ipif, q, mp); 14464 ipif->ipif_was_up = B_FALSE; 14465 if (err != 0) { 14466 /* 14467 * Can there be any other error ? 14468 */ 14469 ASSERT(err == EINPROGRESS); 14470 return (err); 14471 } 14472 } 14473 } 14474 mutex_enter(&ill_v6->ill_lock); 14475 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14476 mutex_exit(&ill_v6->ill_lock); 14477 ill_v6->ill_up_ipifs = B_FALSE; 14478 if (ill_v6->ill_move_in_progress) { 14479 ASSERT(ill_v6->ill_move_peer != NULL); 14480 ill_v6->ill_move_in_progress = B_FALSE; 14481 from_ill = ill_v6->ill_move_peer; 14482 from_ill->ill_move_in_progress = B_FALSE; 14483 from_ill->ill_move_peer = NULL; 14484 mutex_enter(&from_ill->ill_lock); 14485 from_ill->ill_state_flags &= ~ILL_CHANGING; 14486 mutex_exit(&from_ill->ill_lock); 14487 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14488 phyint_inactive(from_ill->ill_phyint); 14489 } 14490 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14491 phyint_inactive(ill_v6->ill_phyint); 14492 } 14493 ill_v6->ill_move_peer = NULL; 14494 } 14495 } 14496 return (0); 14497 } 14498 14499 /* 14500 * bring down all the approriate ipifs. 14501 */ 14502 /* ARGSUSED */ 14503 static void 14504 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14505 { 14506 ipif_t *ipif; 14507 14508 ASSERT(IAM_WRITER_ILL(ill)); 14509 14510 /* 14511 * Except for ipif_state_flags the other fields of the ipif/ill that 14512 * are modified below are protected implicitly since we are a writer 14513 */ 14514 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14515 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14516 continue; 14517 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14518 /* 14519 * We go through the ipif_down logic even if the ipif 14520 * is already down, since routes can be added based 14521 * on down ipifs. Going through ipif_down once again 14522 * will delete any IREs created based on these routes. 14523 */ 14524 if (ipif->ipif_flags & IPIF_UP) 14525 ipif->ipif_was_up = B_TRUE; 14526 /* 14527 * If called with chk_nofailover true ipif is moving. 14528 */ 14529 mutex_enter(&ill->ill_lock); 14530 if (chk_nofailover) { 14531 ipif->ipif_state_flags |= 14532 IPIF_MOVING | IPIF_CHANGING; 14533 } else { 14534 ipif->ipif_state_flags |= IPIF_CHANGING; 14535 } 14536 mutex_exit(&ill->ill_lock); 14537 /* 14538 * Need to re-create net/subnet bcast ires if 14539 * they are dependent on ipif. 14540 */ 14541 if (!ipif->ipif_isv6) 14542 ipif_check_bcast_ires(ipif); 14543 (void) ipif_logical_down(ipif, NULL, NULL); 14544 ipif_non_duplicate(ipif); 14545 ipif_down_tail(ipif); 14546 } 14547 } 14548 } 14549 14550 #define IPSQ_INC_REF(ipsq, ipst) { \ 14551 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14552 (ipsq)->ipsq_refs++; \ 14553 } 14554 14555 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14556 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14557 (ipsq)->ipsq_refs--; \ 14558 if ((ipsq)->ipsq_refs == 0) \ 14559 (ipsq)->ipsq_name[0] = '\0'; \ 14560 } 14561 14562 /* 14563 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14564 * new_ipsq. 14565 */ 14566 static void 14567 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14568 { 14569 phyint_t *phyint; 14570 phyint_t *next_phyint; 14571 14572 /* 14573 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14574 * writer and the ill_lock of the ill in question. Also the dest 14575 * ipsq can't vanish while we hold the ill_g_lock as writer. 14576 */ 14577 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14578 14579 phyint = cur_ipsq->ipsq_phyint_list; 14580 cur_ipsq->ipsq_phyint_list = NULL; 14581 while (phyint != NULL) { 14582 next_phyint = phyint->phyint_ipsq_next; 14583 IPSQ_DEC_REF(cur_ipsq, ipst); 14584 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14585 new_ipsq->ipsq_phyint_list = phyint; 14586 IPSQ_INC_REF(new_ipsq, ipst); 14587 phyint->phyint_ipsq = new_ipsq; 14588 phyint = next_phyint; 14589 } 14590 } 14591 14592 #define SPLIT_SUCCESS 0 14593 #define SPLIT_NOT_NEEDED 1 14594 #define SPLIT_FAILED 2 14595 14596 int 14597 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14598 ip_stack_t *ipst) 14599 { 14600 ipsq_t *newipsq = NULL; 14601 14602 /* 14603 * Assertions denote pre-requisites for changing the ipsq of 14604 * a phyint 14605 */ 14606 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14607 /* 14608 * <ill-phyint> assocs can't change while ill_g_lock 14609 * is held as writer. See ill_phyint_reinit() 14610 */ 14611 ASSERT(phyint->phyint_illv4 == NULL || 14612 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14613 ASSERT(phyint->phyint_illv6 == NULL || 14614 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14615 14616 if ((phyint->phyint_groupname_len != 14617 (strlen(cur_ipsq->ipsq_name) + 1) || 14618 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14619 phyint->phyint_groupname_len) != 0)) { 14620 /* 14621 * Once we fail in creating a new ipsq due to memory shortage, 14622 * don't attempt to create new ipsq again, based on another 14623 * phyint, since we want all phyints belonging to an IPMP group 14624 * to be in the same ipsq even in the event of mem alloc fails. 14625 */ 14626 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14627 cur_ipsq, ipst); 14628 if (newipsq == NULL) { 14629 /* Memory allocation failure */ 14630 return (SPLIT_FAILED); 14631 } else { 14632 /* ipsq_refs protected by ill_g_lock (writer) */ 14633 IPSQ_DEC_REF(cur_ipsq, ipst); 14634 phyint->phyint_ipsq = newipsq; 14635 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14636 newipsq->ipsq_phyint_list = phyint; 14637 IPSQ_INC_REF(newipsq, ipst); 14638 return (SPLIT_SUCCESS); 14639 } 14640 } 14641 return (SPLIT_NOT_NEEDED); 14642 } 14643 14644 /* 14645 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14646 * to do this split 14647 */ 14648 static int 14649 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14650 { 14651 ipsq_t *newipsq; 14652 14653 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14654 /* 14655 * <ill-phyint> assocs can't change while ill_g_lock 14656 * is held as writer. See ill_phyint_reinit() 14657 */ 14658 14659 ASSERT(phyint->phyint_illv4 == NULL || 14660 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14661 ASSERT(phyint->phyint_illv6 == NULL || 14662 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14663 14664 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14665 phyint->phyint_illv4: phyint->phyint_illv6)) { 14666 /* 14667 * ipsq_init failed due to no memory 14668 * caller will use the same ipsq 14669 */ 14670 return (SPLIT_FAILED); 14671 } 14672 14673 /* ipsq_ref is protected by ill_g_lock (writer) */ 14674 IPSQ_DEC_REF(cur_ipsq, ipst); 14675 14676 /* 14677 * This is a new ipsq that is unknown to the world. 14678 * So we don't need to hold ipsq_lock, 14679 */ 14680 newipsq = phyint->phyint_ipsq; 14681 newipsq->ipsq_writer = NULL; 14682 newipsq->ipsq_reentry_cnt--; 14683 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14684 #ifdef ILL_DEBUG 14685 newipsq->ipsq_depth = 0; 14686 #endif 14687 14688 return (SPLIT_SUCCESS); 14689 } 14690 14691 /* 14692 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14693 * ipsq's representing their individual groups or themselves. Return 14694 * whether split needs to be retried again later. 14695 */ 14696 static boolean_t 14697 ill_split_ipsq(ipsq_t *cur_ipsq) 14698 { 14699 phyint_t *phyint; 14700 phyint_t *next_phyint; 14701 int error; 14702 boolean_t need_retry = B_FALSE; 14703 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14704 14705 phyint = cur_ipsq->ipsq_phyint_list; 14706 cur_ipsq->ipsq_phyint_list = NULL; 14707 while (phyint != NULL) { 14708 next_phyint = phyint->phyint_ipsq_next; 14709 /* 14710 * 'created' will tell us whether the callee actually 14711 * created an ipsq. Lack of memory may force the callee 14712 * to return without creating an ipsq. 14713 */ 14714 if (phyint->phyint_groupname == NULL) { 14715 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14716 } else { 14717 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14718 need_retry, ipst); 14719 } 14720 14721 switch (error) { 14722 case SPLIT_FAILED: 14723 need_retry = B_TRUE; 14724 /* FALLTHRU */ 14725 case SPLIT_NOT_NEEDED: 14726 /* 14727 * Keep it on the list. 14728 */ 14729 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14730 cur_ipsq->ipsq_phyint_list = phyint; 14731 break; 14732 case SPLIT_SUCCESS: 14733 break; 14734 default: 14735 ASSERT(0); 14736 } 14737 14738 phyint = next_phyint; 14739 } 14740 return (need_retry); 14741 } 14742 14743 /* 14744 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14745 * and return the ills in the list. This list will be 14746 * needed to unlock all the ills later on by the caller. 14747 * The <ill-ipsq> associations could change between the 14748 * lock and unlock. Hence the unlock can't traverse the 14749 * ipsq to get the list of ills. 14750 */ 14751 static int 14752 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14753 { 14754 int cnt = 0; 14755 phyint_t *phyint; 14756 ip_stack_t *ipst = ipsq->ipsq_ipst; 14757 14758 /* 14759 * The caller holds ill_g_lock to ensure that the ill memberships 14760 * of the ipsq don't change 14761 */ 14762 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14763 14764 phyint = ipsq->ipsq_phyint_list; 14765 while (phyint != NULL) { 14766 if (phyint->phyint_illv4 != NULL) { 14767 ASSERT(cnt < list_max); 14768 list[cnt++] = phyint->phyint_illv4; 14769 } 14770 if (phyint->phyint_illv6 != NULL) { 14771 ASSERT(cnt < list_max); 14772 list[cnt++] = phyint->phyint_illv6; 14773 } 14774 phyint = phyint->phyint_ipsq_next; 14775 } 14776 ill_lock_ills(list, cnt); 14777 return (cnt); 14778 } 14779 14780 void 14781 ill_lock_ills(ill_t **list, int cnt) 14782 { 14783 int i; 14784 14785 if (cnt > 1) { 14786 boolean_t try_again; 14787 do { 14788 try_again = B_FALSE; 14789 for (i = 0; i < cnt - 1; i++) { 14790 if (list[i] < list[i + 1]) { 14791 ill_t *tmp; 14792 14793 /* swap the elements */ 14794 tmp = list[i]; 14795 list[i] = list[i + 1]; 14796 list[i + 1] = tmp; 14797 try_again = B_TRUE; 14798 } 14799 } 14800 } while (try_again); 14801 } 14802 14803 for (i = 0; i < cnt; i++) { 14804 if (i == 0) { 14805 if (list[i] != NULL) 14806 mutex_enter(&list[i]->ill_lock); 14807 else 14808 return; 14809 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14810 mutex_enter(&list[i]->ill_lock); 14811 } 14812 } 14813 } 14814 14815 void 14816 ill_unlock_ills(ill_t **list, int cnt) 14817 { 14818 int i; 14819 14820 for (i = 0; i < cnt; i++) { 14821 if ((i == 0) && (list[i] != NULL)) { 14822 mutex_exit(&list[i]->ill_lock); 14823 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14824 mutex_exit(&list[i]->ill_lock); 14825 } 14826 } 14827 } 14828 14829 /* 14830 * Merge all the ills from 1 ipsq group into another ipsq group. 14831 * The source ipsq group is specified by the ipsq associated with 14832 * 'from_ill'. The destination ipsq group is specified by the ipsq 14833 * associated with 'to_ill' or 'groupname' respectively. 14834 * Note that ipsq itself does not have a reference count mechanism 14835 * and functions don't look up an ipsq and pass it around. Instead 14836 * functions pass around an ill or groupname, and the ipsq is looked 14837 * up from the ill or groupname and the required operation performed 14838 * atomically with the lookup on the ipsq. 14839 */ 14840 static int 14841 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14842 queue_t *q) 14843 { 14844 ipsq_t *old_ipsq; 14845 ipsq_t *new_ipsq; 14846 ill_t **ill_list; 14847 int cnt; 14848 size_t ill_list_size; 14849 boolean_t became_writer_on_new_sq = B_FALSE; 14850 ip_stack_t *ipst = from_ill->ill_ipst; 14851 14852 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14853 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14854 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14855 14856 /* 14857 * Need to hold ill_g_lock as writer and also the ill_lock to 14858 * change the <ill-ipsq> assoc of an ill. Need to hold the 14859 * ipsq_lock to prevent new messages from landing on an ipsq. 14860 */ 14861 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14862 14863 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14864 if (groupname != NULL) 14865 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14866 else { 14867 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14868 } 14869 14870 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14871 14872 /* 14873 * both groups are on the same ipsq. 14874 */ 14875 if (old_ipsq == new_ipsq) { 14876 rw_exit(&ipst->ips_ill_g_lock); 14877 return (0); 14878 } 14879 14880 cnt = old_ipsq->ipsq_refs << 1; 14881 ill_list_size = cnt * sizeof (ill_t *); 14882 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14883 if (ill_list == NULL) { 14884 rw_exit(&ipst->ips_ill_g_lock); 14885 return (ENOMEM); 14886 } 14887 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14888 14889 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14890 mutex_enter(&new_ipsq->ipsq_lock); 14891 if ((new_ipsq->ipsq_writer == NULL && 14892 new_ipsq->ipsq_current_ipif == NULL) || 14893 (new_ipsq->ipsq_writer == curthread)) { 14894 new_ipsq->ipsq_writer = curthread; 14895 new_ipsq->ipsq_reentry_cnt++; 14896 became_writer_on_new_sq = B_TRUE; 14897 } 14898 14899 /* 14900 * We are holding ill_g_lock as writer and all the ill locks of 14901 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14902 * message can land up on the old ipsq even though we don't hold the 14903 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14904 */ 14905 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14906 14907 /* 14908 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14909 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14910 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14911 */ 14912 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14913 14914 /* 14915 * Mark the new ipsq as needing a split since it is currently 14916 * being shared by more than 1 IPMP group. The split will 14917 * occur at the end of ipsq_exit 14918 */ 14919 new_ipsq->ipsq_split = B_TRUE; 14920 14921 /* Now release all the locks */ 14922 mutex_exit(&new_ipsq->ipsq_lock); 14923 ill_unlock_ills(ill_list, cnt); 14924 rw_exit(&ipst->ips_ill_g_lock); 14925 14926 kmem_free(ill_list, ill_list_size); 14927 14928 /* 14929 * If we succeeded in becoming writer on the new ipsq, then 14930 * drain the new ipsq and start processing all enqueued messages 14931 * including the current ioctl we are processing which is either 14932 * a set groupname or failover/failback. 14933 */ 14934 if (became_writer_on_new_sq) 14935 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14936 14937 /* 14938 * syncq has been changed and all the messages have been moved. 14939 */ 14940 mutex_enter(&old_ipsq->ipsq_lock); 14941 old_ipsq->ipsq_current_ipif = NULL; 14942 old_ipsq->ipsq_current_ioctl = 0; 14943 mutex_exit(&old_ipsq->ipsq_lock); 14944 return (EINPROGRESS); 14945 } 14946 14947 /* 14948 * Delete and add the loopback copy and non-loopback copy of 14949 * the BROADCAST ire corresponding to ill and addr. Used to 14950 * group broadcast ires together when ill becomes part of 14951 * a group. 14952 * 14953 * This function is also called when ill is leaving the group 14954 * so that the ires belonging to the group gets re-grouped. 14955 */ 14956 static void 14957 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14958 { 14959 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14960 ire_t **ire_ptpn = &ire_head; 14961 ip_stack_t *ipst = ill->ill_ipst; 14962 14963 /* 14964 * The loopback and non-loopback IREs are inserted in the order in which 14965 * they're found, on the basis that they are correctly ordered (loopback 14966 * first). 14967 */ 14968 for (;;) { 14969 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14970 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14971 if (ire == NULL) 14972 break; 14973 14974 /* 14975 * we are passing in KM_SLEEP because it is not easy to 14976 * go back to a sane state in case of memory failure. 14977 */ 14978 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14979 ASSERT(nire != NULL); 14980 bzero(nire, sizeof (ire_t)); 14981 /* 14982 * Don't use ire_max_frag directly since we don't 14983 * hold on to 'ire' until we add the new ire 'nire' and 14984 * we don't want the new ire to have a dangling reference 14985 * to 'ire'. The ire_max_frag of a broadcast ire must 14986 * be in sync with the ipif_mtu of the associate ipif. 14987 * For eg. this happens as a result of SIOCSLIFNAME, 14988 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14989 * the driver. A change in ire_max_frag triggered as 14990 * as a result of path mtu discovery, or due to an 14991 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14992 * route change -mtu command does not apply to broadcast ires. 14993 * 14994 * XXX We need a recovery strategy here if ire_init fails 14995 */ 14996 if (ire_init(nire, 14997 (uchar_t *)&ire->ire_addr, 14998 (uchar_t *)&ire->ire_mask, 14999 (uchar_t *)&ire->ire_src_addr, 15000 (uchar_t *)&ire->ire_gateway_addr, 15001 ire->ire_stq == NULL ? &ip_loopback_mtu : 15002 &ire->ire_ipif->ipif_mtu, 15003 ire->ire_nce, 15004 ire->ire_rfq, 15005 ire->ire_stq, 15006 ire->ire_type, 15007 ire->ire_ipif, 15008 ire->ire_cmask, 15009 ire->ire_phandle, 15010 ire->ire_ihandle, 15011 ire->ire_flags, 15012 &ire->ire_uinfo, 15013 NULL, 15014 NULL, 15015 ipst) == NULL) { 15016 cmn_err(CE_PANIC, "ire_init() failed"); 15017 } 15018 ire_delete(ire); 15019 ire_refrele(ire); 15020 15021 /* 15022 * The newly created IREs are inserted at the tail of the list 15023 * starting with ire_head. As we've just allocated them no one 15024 * knows about them so it's safe. 15025 */ 15026 *ire_ptpn = nire; 15027 ire_ptpn = &nire->ire_next; 15028 } 15029 15030 for (nire = ire_head; nire != NULL; nire = nire_next) { 15031 int error; 15032 ire_t *oire; 15033 /* unlink the IRE from our list before calling ire_add() */ 15034 nire_next = nire->ire_next; 15035 nire->ire_next = NULL; 15036 15037 /* ire_add adds the ire at the right place in the list */ 15038 oire = nire; 15039 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15040 ASSERT(error == 0); 15041 ASSERT(oire == nire); 15042 ire_refrele(nire); /* Held in ire_add */ 15043 } 15044 } 15045 15046 /* 15047 * This function is usually called when an ill is inserted in 15048 * a group and all the ipifs are already UP. As all the ipifs 15049 * are already UP, the broadcast ires have already been created 15050 * and been inserted. But, ire_add_v4 would not have grouped properly. 15051 * We need to re-group for the benefit of ip_wput_ire which 15052 * expects BROADCAST ires to be grouped properly to avoid sending 15053 * more than one copy of the broadcast packet per group. 15054 * 15055 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15056 * because when ipif_up_done ends up calling this, ires have 15057 * already been added before illgrp_insert i.e before ill_group 15058 * has been initialized. 15059 */ 15060 static void 15061 ill_group_bcast_for_xmit(ill_t *ill) 15062 { 15063 ill_group_t *illgrp; 15064 ipif_t *ipif; 15065 ipaddr_t addr; 15066 ipaddr_t net_mask; 15067 ipaddr_t subnet_netmask; 15068 15069 illgrp = ill->ill_group; 15070 15071 /* 15072 * This function is called even when an ill is deleted from 15073 * the group. Hence, illgrp could be null. 15074 */ 15075 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15076 return; 15077 15078 /* 15079 * Delete all the BROADCAST ires matching this ill and add 15080 * them back. This time, ire_add_v4 should take care of 15081 * grouping them with others because ill is part of the 15082 * group. 15083 */ 15084 ill_bcast_delete_and_add(ill, 0); 15085 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15086 15087 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15088 15089 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15090 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15091 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15092 } else { 15093 net_mask = htonl(IN_CLASSA_NET); 15094 } 15095 addr = net_mask & ipif->ipif_subnet; 15096 ill_bcast_delete_and_add(ill, addr); 15097 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15098 15099 subnet_netmask = ipif->ipif_net_mask; 15100 addr = ipif->ipif_subnet; 15101 ill_bcast_delete_and_add(ill, addr); 15102 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15103 } 15104 } 15105 15106 /* 15107 * This function is called from illgrp_delete when ill is being deleted 15108 * from the group. 15109 * 15110 * As ill is not there in the group anymore, any address belonging 15111 * to this ill should be cleared of IRE_MARK_NORECV. 15112 */ 15113 static void 15114 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15115 { 15116 ire_t *ire; 15117 irb_t *irb; 15118 ip_stack_t *ipst = ill->ill_ipst; 15119 15120 ASSERT(ill->ill_group == NULL); 15121 15122 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15123 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15124 15125 if (ire != NULL) { 15126 /* 15127 * IPMP and plumbing operations are serialized on the ipsq, so 15128 * no one will insert or delete a broadcast ire under our feet. 15129 */ 15130 irb = ire->ire_bucket; 15131 rw_enter(&irb->irb_lock, RW_READER); 15132 ire_refrele(ire); 15133 15134 for (; ire != NULL; ire = ire->ire_next) { 15135 if (ire->ire_addr != addr) 15136 break; 15137 if (ire_to_ill(ire) != ill) 15138 continue; 15139 15140 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15141 ire->ire_marks &= ~IRE_MARK_NORECV; 15142 } 15143 rw_exit(&irb->irb_lock); 15144 } 15145 } 15146 15147 /* 15148 * This function must be called only after the broadcast ires 15149 * have been grouped together. For a given address addr, nominate 15150 * only one of the ires whose interface is not FAILED or OFFLINE. 15151 * 15152 * This is also called when an ipif goes down, so that we can nominate 15153 * a different ire with the same address for receiving. 15154 */ 15155 static void 15156 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15157 { 15158 irb_t *irb; 15159 ire_t *ire; 15160 ire_t *ire1; 15161 ire_t *save_ire; 15162 ire_t **irep = NULL; 15163 boolean_t first = B_TRUE; 15164 ire_t *clear_ire = NULL; 15165 ire_t *start_ire = NULL; 15166 ire_t *new_lb_ire; 15167 ire_t *new_nlb_ire; 15168 boolean_t new_lb_ire_used = B_FALSE; 15169 boolean_t new_nlb_ire_used = B_FALSE; 15170 uint64_t match_flags; 15171 uint64_t phyi_flags; 15172 boolean_t fallback = B_FALSE; 15173 uint_t max_frag; 15174 15175 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15176 NULL, MATCH_IRE_TYPE, ipst); 15177 /* 15178 * We may not be able to find some ires if a previous 15179 * ire_create failed. This happens when an ipif goes 15180 * down and we are unable to create BROADCAST ires due 15181 * to memory failure. Thus, we have to check for NULL 15182 * below. This should handle the case for LOOPBACK, 15183 * POINTOPOINT and interfaces with some POINTOPOINT 15184 * logicals for which there are no BROADCAST ires. 15185 */ 15186 if (ire == NULL) 15187 return; 15188 /* 15189 * Currently IRE_BROADCASTS are deleted when an ipif 15190 * goes down which runs exclusively. Thus, setting 15191 * IRE_MARK_RCVD should not race with ire_delete marking 15192 * IRE_MARK_CONDEMNED. We grab the lock below just to 15193 * be consistent with other parts of the code that walks 15194 * a given bucket. 15195 */ 15196 save_ire = ire; 15197 irb = ire->ire_bucket; 15198 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15199 if (new_lb_ire == NULL) { 15200 ire_refrele(ire); 15201 return; 15202 } 15203 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15204 if (new_nlb_ire == NULL) { 15205 ire_refrele(ire); 15206 kmem_cache_free(ire_cache, new_lb_ire); 15207 return; 15208 } 15209 IRB_REFHOLD(irb); 15210 rw_enter(&irb->irb_lock, RW_WRITER); 15211 /* 15212 * Get to the first ire matching the address and the 15213 * group. If the address does not match we are done 15214 * as we could not find the IRE. If the address matches 15215 * we should get to the first one matching the group. 15216 */ 15217 while (ire != NULL) { 15218 if (ire->ire_addr != addr || 15219 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15220 break; 15221 } 15222 ire = ire->ire_next; 15223 } 15224 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15225 start_ire = ire; 15226 redo: 15227 while (ire != NULL && ire->ire_addr == addr && 15228 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15229 /* 15230 * The first ire for any address within a group 15231 * should always be the one with IRE_MARK_NORECV cleared 15232 * so that ip_wput_ire can avoid searching for one. 15233 * Note down the insertion point which will be used 15234 * later. 15235 */ 15236 if (first && (irep == NULL)) 15237 irep = ire->ire_ptpn; 15238 /* 15239 * PHYI_FAILED is set when the interface fails. 15240 * This interface might have become good, but the 15241 * daemon has not yet detected. We should still 15242 * not receive on this. PHYI_OFFLINE should never 15243 * be picked as this has been offlined and soon 15244 * be removed. 15245 */ 15246 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15247 if (phyi_flags & PHYI_OFFLINE) { 15248 ire->ire_marks |= IRE_MARK_NORECV; 15249 ire = ire->ire_next; 15250 continue; 15251 } 15252 if (phyi_flags & match_flags) { 15253 ire->ire_marks |= IRE_MARK_NORECV; 15254 ire = ire->ire_next; 15255 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15256 PHYI_INACTIVE) { 15257 fallback = B_TRUE; 15258 } 15259 continue; 15260 } 15261 if (first) { 15262 /* 15263 * We will move this to the front of the list later 15264 * on. 15265 */ 15266 clear_ire = ire; 15267 ire->ire_marks &= ~IRE_MARK_NORECV; 15268 } else { 15269 ire->ire_marks |= IRE_MARK_NORECV; 15270 } 15271 first = B_FALSE; 15272 ire = ire->ire_next; 15273 } 15274 /* 15275 * If we never nominated anybody, try nominating at least 15276 * an INACTIVE, if we found one. Do it only once though. 15277 */ 15278 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15279 fallback) { 15280 match_flags = PHYI_FAILED; 15281 ire = start_ire; 15282 irep = NULL; 15283 goto redo; 15284 } 15285 ire_refrele(save_ire); 15286 15287 /* 15288 * irep non-NULL indicates that we entered the while loop 15289 * above. If clear_ire is at the insertion point, we don't 15290 * have to do anything. clear_ire will be NULL if all the 15291 * interfaces are failed. 15292 * 15293 * We cannot unlink and reinsert the ire at the right place 15294 * in the list since there can be other walkers of this bucket. 15295 * Instead we delete and recreate the ire 15296 */ 15297 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15298 ire_t *clear_ire_stq = NULL; 15299 15300 bzero(new_lb_ire, sizeof (ire_t)); 15301 /* XXX We need a recovery strategy here. */ 15302 if (ire_init(new_lb_ire, 15303 (uchar_t *)&clear_ire->ire_addr, 15304 (uchar_t *)&clear_ire->ire_mask, 15305 (uchar_t *)&clear_ire->ire_src_addr, 15306 (uchar_t *)&clear_ire->ire_gateway_addr, 15307 &clear_ire->ire_max_frag, 15308 NULL, /* let ire_nce_init derive the resolver info */ 15309 clear_ire->ire_rfq, 15310 clear_ire->ire_stq, 15311 clear_ire->ire_type, 15312 clear_ire->ire_ipif, 15313 clear_ire->ire_cmask, 15314 clear_ire->ire_phandle, 15315 clear_ire->ire_ihandle, 15316 clear_ire->ire_flags, 15317 &clear_ire->ire_uinfo, 15318 NULL, 15319 NULL, 15320 ipst) == NULL) 15321 cmn_err(CE_PANIC, "ire_init() failed"); 15322 if (clear_ire->ire_stq == NULL) { 15323 ire_t *ire_next = clear_ire->ire_next; 15324 if (ire_next != NULL && 15325 ire_next->ire_stq != NULL && 15326 ire_next->ire_addr == clear_ire->ire_addr && 15327 ire_next->ire_ipif->ipif_ill == 15328 clear_ire->ire_ipif->ipif_ill) { 15329 clear_ire_stq = ire_next; 15330 15331 bzero(new_nlb_ire, sizeof (ire_t)); 15332 /* XXX We need a recovery strategy here. */ 15333 if (ire_init(new_nlb_ire, 15334 (uchar_t *)&clear_ire_stq->ire_addr, 15335 (uchar_t *)&clear_ire_stq->ire_mask, 15336 (uchar_t *)&clear_ire_stq->ire_src_addr, 15337 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15338 &clear_ire_stq->ire_max_frag, 15339 NULL, 15340 clear_ire_stq->ire_rfq, 15341 clear_ire_stq->ire_stq, 15342 clear_ire_stq->ire_type, 15343 clear_ire_stq->ire_ipif, 15344 clear_ire_stq->ire_cmask, 15345 clear_ire_stq->ire_phandle, 15346 clear_ire_stq->ire_ihandle, 15347 clear_ire_stq->ire_flags, 15348 &clear_ire_stq->ire_uinfo, 15349 NULL, 15350 NULL, 15351 ipst) == NULL) 15352 cmn_err(CE_PANIC, "ire_init() failed"); 15353 } 15354 } 15355 15356 /* 15357 * Delete the ire. We can't call ire_delete() since 15358 * we are holding the bucket lock. We can't release the 15359 * bucket lock since we can't allow irep to change. So just 15360 * mark it CONDEMNED. The IRB_REFRELE will delete the 15361 * ire from the list and do the refrele. 15362 */ 15363 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15364 irb->irb_marks |= IRB_MARK_CONDEMNED; 15365 15366 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15367 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15368 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15369 } 15370 15371 /* 15372 * Also take care of otherfields like ib/ob pkt count 15373 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15374 */ 15375 15376 /* Set the max_frag before adding the ire */ 15377 max_frag = *new_lb_ire->ire_max_fragp; 15378 new_lb_ire->ire_max_fragp = NULL; 15379 new_lb_ire->ire_max_frag = max_frag; 15380 15381 /* Add the new ire's. Insert at *irep */ 15382 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15383 ire1 = *irep; 15384 if (ire1 != NULL) 15385 ire1->ire_ptpn = &new_lb_ire->ire_next; 15386 new_lb_ire->ire_next = ire1; 15387 /* Link the new one in. */ 15388 new_lb_ire->ire_ptpn = irep; 15389 membar_producer(); 15390 *irep = new_lb_ire; 15391 new_lb_ire_used = B_TRUE; 15392 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15393 new_lb_ire->ire_bucket->irb_ire_cnt++; 15394 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15395 15396 if (clear_ire_stq != NULL) { 15397 /* Set the max_frag before adding the ire */ 15398 max_frag = *new_nlb_ire->ire_max_fragp; 15399 new_nlb_ire->ire_max_fragp = NULL; 15400 new_nlb_ire->ire_max_frag = max_frag; 15401 15402 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15403 irep = &new_lb_ire->ire_next; 15404 /* Add the new ire. Insert at *irep */ 15405 ire1 = *irep; 15406 if (ire1 != NULL) 15407 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15408 new_nlb_ire->ire_next = ire1; 15409 /* Link the new one in. */ 15410 new_nlb_ire->ire_ptpn = irep; 15411 membar_producer(); 15412 *irep = new_nlb_ire; 15413 new_nlb_ire_used = B_TRUE; 15414 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15415 ire_stats_inserted); 15416 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15417 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15418 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15419 } 15420 } 15421 rw_exit(&irb->irb_lock); 15422 if (!new_lb_ire_used) 15423 kmem_cache_free(ire_cache, new_lb_ire); 15424 if (!new_nlb_ire_used) 15425 kmem_cache_free(ire_cache, new_nlb_ire); 15426 IRB_REFRELE(irb); 15427 } 15428 15429 /* 15430 * Whenever an ipif goes down we have to renominate a different 15431 * broadcast ire to receive. Whenever an ipif comes up, we need 15432 * to make sure that we have only one nominated to receive. 15433 */ 15434 static void 15435 ipif_renominate_bcast(ipif_t *ipif) 15436 { 15437 ill_t *ill = ipif->ipif_ill; 15438 ipaddr_t subnet_addr; 15439 ipaddr_t net_addr; 15440 ipaddr_t net_mask = 0; 15441 ipaddr_t subnet_netmask; 15442 ipaddr_t addr; 15443 ill_group_t *illgrp; 15444 ip_stack_t *ipst = ill->ill_ipst; 15445 15446 illgrp = ill->ill_group; 15447 /* 15448 * If this is the last ipif going down, it might take 15449 * the ill out of the group. In that case ipif_down -> 15450 * illgrp_delete takes care of doing the nomination. 15451 * ipif_down does not call for this case. 15452 */ 15453 ASSERT(illgrp != NULL); 15454 15455 /* There could not have been any ires associated with this */ 15456 if (ipif->ipif_subnet == 0) 15457 return; 15458 15459 ill_mark_bcast(illgrp, 0, ipst); 15460 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15461 15462 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15463 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15464 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15465 } else { 15466 net_mask = htonl(IN_CLASSA_NET); 15467 } 15468 addr = net_mask & ipif->ipif_subnet; 15469 ill_mark_bcast(illgrp, addr, ipst); 15470 15471 net_addr = ~net_mask | addr; 15472 ill_mark_bcast(illgrp, net_addr, ipst); 15473 15474 subnet_netmask = ipif->ipif_net_mask; 15475 addr = ipif->ipif_subnet; 15476 ill_mark_bcast(illgrp, addr, ipst); 15477 15478 subnet_addr = ~subnet_netmask | addr; 15479 ill_mark_bcast(illgrp, subnet_addr, ipst); 15480 } 15481 15482 /* 15483 * Whenever we form or delete ill groups, we need to nominate one set of 15484 * BROADCAST ires for receiving in the group. 15485 * 15486 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15487 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15488 * for ill_ipif_up_count to be non-zero. This is the only case where 15489 * ill_ipif_up_count is zero and we would still find the ires. 15490 * 15491 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15492 * ipif is UP and we just have to do the nomination. 15493 * 15494 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15495 * from the group. So, we have to do the nomination. 15496 * 15497 * Because of (3), there could be just one ill in the group. But we have 15498 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15499 * Thus, this function does not optimize when there is only one ill as 15500 * it is not correct for (3). 15501 */ 15502 static void 15503 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15504 { 15505 ill_t *ill; 15506 ipif_t *ipif; 15507 ipaddr_t subnet_addr; 15508 ipaddr_t prev_subnet_addr = 0; 15509 ipaddr_t net_addr; 15510 ipaddr_t prev_net_addr = 0; 15511 ipaddr_t net_mask = 0; 15512 ipaddr_t subnet_netmask; 15513 ipaddr_t addr; 15514 ip_stack_t *ipst; 15515 15516 /* 15517 * When the last memeber is leaving, there is nothing to 15518 * nominate. 15519 */ 15520 if (illgrp->illgrp_ill_count == 0) { 15521 ASSERT(illgrp->illgrp_ill == NULL); 15522 return; 15523 } 15524 15525 ill = illgrp->illgrp_ill; 15526 ASSERT(!ill->ill_isv6); 15527 ipst = ill->ill_ipst; 15528 /* 15529 * We assume that ires with same address and belonging to the 15530 * same group, has been grouped together. Nominating a *single* 15531 * ill in the group for sending and receiving broadcast is done 15532 * by making sure that the first BROADCAST ire (which will be 15533 * the one returned by ire_ctable_lookup for ip_rput and the 15534 * one that will be used in ip_wput_ire) will be the one that 15535 * will not have IRE_MARK_NORECV set. 15536 * 15537 * 1) ip_rput checks and discards packets received on ires marked 15538 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15539 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15540 * first ire in the group for every broadcast address in the group. 15541 * ip_rput will accept packets only on the first ire i.e only 15542 * one copy of the ill. 15543 * 15544 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15545 * packet for the whole group. It needs to send out on the ill 15546 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15547 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15548 * the copy echoed back on other port where the ire is not marked 15549 * with IRE_MARK_NORECV. 15550 * 15551 * Note that we just need to have the first IRE either loopback or 15552 * non-loopback (either of them may not exist if ire_create failed 15553 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15554 * always hit the first one and hence will always accept one copy. 15555 * 15556 * We have a broadcast ire per ill for all the unique prefixes 15557 * hosted on that ill. As we don't have a way of knowing the 15558 * unique prefixes on a given ill and hence in the whole group, 15559 * we just call ill_mark_bcast on all the prefixes that exist 15560 * in the group. For the common case of one prefix, the code 15561 * below optimizes by remebering the last address used for 15562 * markng. In the case of multiple prefixes, this will still 15563 * optimize depending the order of prefixes. 15564 * 15565 * The only unique address across the whole group is 0.0.0.0 and 15566 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15567 * the first ire in the bucket for receiving and disables the 15568 * others. 15569 */ 15570 ill_mark_bcast(illgrp, 0, ipst); 15571 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15572 for (; ill != NULL; ill = ill->ill_group_next) { 15573 15574 for (ipif = ill->ill_ipif; ipif != NULL; 15575 ipif = ipif->ipif_next) { 15576 15577 if (!(ipif->ipif_flags & IPIF_UP) || 15578 ipif->ipif_subnet == 0) { 15579 continue; 15580 } 15581 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15582 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15583 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15584 } else { 15585 net_mask = htonl(IN_CLASSA_NET); 15586 } 15587 addr = net_mask & ipif->ipif_subnet; 15588 if (prev_net_addr == 0 || prev_net_addr != addr) { 15589 ill_mark_bcast(illgrp, addr, ipst); 15590 net_addr = ~net_mask | addr; 15591 ill_mark_bcast(illgrp, net_addr, ipst); 15592 } 15593 prev_net_addr = addr; 15594 15595 subnet_netmask = ipif->ipif_net_mask; 15596 addr = ipif->ipif_subnet; 15597 if (prev_subnet_addr == 0 || 15598 prev_subnet_addr != addr) { 15599 ill_mark_bcast(illgrp, addr, ipst); 15600 subnet_addr = ~subnet_netmask | addr; 15601 ill_mark_bcast(illgrp, subnet_addr, ipst); 15602 } 15603 prev_subnet_addr = addr; 15604 } 15605 } 15606 } 15607 15608 /* 15609 * This function is called while forming ill groups. 15610 * 15611 * Currently, we handle only allmulti groups. We want to join 15612 * allmulti on only one of the ills in the groups. In future, 15613 * when we have link aggregation, we may have to join normal 15614 * multicast groups on multiple ills as switch does inbound load 15615 * balancing. Following are the functions that calls this 15616 * function : 15617 * 15618 * 1) ill_recover_multicast : Interface is coming back UP. 15619 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15620 * will call ill_recover_multicast to recover all the multicast 15621 * groups. We need to make sure that only one member is joined 15622 * in the ill group. 15623 * 15624 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15625 * Somebody is joining allmulti. We need to make sure that only one 15626 * member is joined in the group. 15627 * 15628 * 3) illgrp_insert : If allmulti has already joined, we need to make 15629 * sure that only one member is joined in the group. 15630 * 15631 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15632 * allmulti who we have nominated. We need to pick someother ill. 15633 * 15634 * 5) illgrp_delete : The ill we nominated is leaving the group, 15635 * we need to pick a new ill to join the group. 15636 * 15637 * For (1), (2), (5) - we just have to check whether there is 15638 * a good ill joined in the group. If we could not find any ills 15639 * joined the group, we should join. 15640 * 15641 * For (4), the one that was nominated to receive, left the group. 15642 * There could be nobody joined in the group when this function is 15643 * called. 15644 * 15645 * For (3) - we need to explicitly check whether there are multiple 15646 * ills joined in the group. 15647 * 15648 * For simplicity, we don't differentiate any of the above cases. We 15649 * just leave the group if it is joined on any of them and join on 15650 * the first good ill. 15651 */ 15652 int 15653 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15654 { 15655 ilm_t *ilm; 15656 ill_t *ill; 15657 ill_t *fallback_inactive_ill = NULL; 15658 ill_t *fallback_failed_ill = NULL; 15659 int ret = 0; 15660 15661 /* 15662 * Leave the allmulti on all the ills and start fresh. 15663 */ 15664 for (ill = illgrp->illgrp_ill; ill != NULL; 15665 ill = ill->ill_group_next) { 15666 if (ill->ill_join_allmulti) 15667 (void) ip_leave_allmulti(ill->ill_ipif); 15668 } 15669 15670 /* 15671 * Choose a good ill. Fallback to inactive or failed if 15672 * none available. We need to fallback to FAILED in the 15673 * case where we have 2 interfaces in a group - where 15674 * one of them is failed and another is a good one and 15675 * the good one (not marked inactive) is leaving the group. 15676 */ 15677 ret = 0; 15678 for (ill = illgrp->illgrp_ill; ill != NULL; 15679 ill = ill->ill_group_next) { 15680 /* Never pick an offline interface */ 15681 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15682 continue; 15683 15684 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15685 fallback_failed_ill = ill; 15686 continue; 15687 } 15688 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15689 fallback_inactive_ill = ill; 15690 continue; 15691 } 15692 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15693 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15694 ret = ip_join_allmulti(ill->ill_ipif); 15695 /* 15696 * ip_join_allmulti can fail because of memory 15697 * failures. So, make sure we join at least 15698 * on one ill. 15699 */ 15700 if (ill->ill_join_allmulti) 15701 return (0); 15702 } 15703 } 15704 } 15705 if (ret != 0) { 15706 /* 15707 * If we tried nominating above and failed to do so, 15708 * return error. We might have tried multiple times. 15709 * But, return the latest error. 15710 */ 15711 return (ret); 15712 } 15713 if ((ill = fallback_inactive_ill) != NULL) { 15714 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15715 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15716 ret = ip_join_allmulti(ill->ill_ipif); 15717 return (ret); 15718 } 15719 } 15720 } else if ((ill = fallback_failed_ill) != NULL) { 15721 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15722 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15723 ret = ip_join_allmulti(ill->ill_ipif); 15724 return (ret); 15725 } 15726 } 15727 } 15728 return (0); 15729 } 15730 15731 /* 15732 * This function is called from illgrp_delete after it is 15733 * deleted from the group to reschedule responsibilities 15734 * to a different ill. 15735 */ 15736 static void 15737 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15738 { 15739 ilm_t *ilm; 15740 ipif_t *ipif; 15741 ipaddr_t subnet_addr; 15742 ipaddr_t net_addr; 15743 ipaddr_t net_mask = 0; 15744 ipaddr_t subnet_netmask; 15745 ipaddr_t addr; 15746 ip_stack_t *ipst = ill->ill_ipst; 15747 15748 ASSERT(ill->ill_group == NULL); 15749 /* 15750 * Broadcast Responsibility: 15751 * 15752 * 1. If this ill has been nominated for receiving broadcast 15753 * packets, we need to find a new one. Before we find a new 15754 * one, we need to re-group the ires that are part of this new 15755 * group (assumed by ill_nominate_bcast_rcv). We do this by 15756 * calling ill_group_bcast_for_xmit(ill) which will do the right 15757 * thing for us. 15758 * 15759 * 2. If this ill was not nominated for receiving broadcast 15760 * packets, we need to clear the IRE_MARK_NORECV flag 15761 * so that we continue to send up broadcast packets. 15762 */ 15763 if (!ill->ill_isv6) { 15764 /* 15765 * Case 1 above : No optimization here. Just redo the 15766 * nomination. 15767 */ 15768 ill_group_bcast_for_xmit(ill); 15769 ill_nominate_bcast_rcv(illgrp); 15770 15771 /* 15772 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15773 */ 15774 ill_clear_bcast_mark(ill, 0); 15775 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15776 15777 for (ipif = ill->ill_ipif; ipif != NULL; 15778 ipif = ipif->ipif_next) { 15779 15780 if (!(ipif->ipif_flags & IPIF_UP) || 15781 ipif->ipif_subnet == 0) { 15782 continue; 15783 } 15784 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15785 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15786 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15787 } else { 15788 net_mask = htonl(IN_CLASSA_NET); 15789 } 15790 addr = net_mask & ipif->ipif_subnet; 15791 ill_clear_bcast_mark(ill, addr); 15792 15793 net_addr = ~net_mask | addr; 15794 ill_clear_bcast_mark(ill, net_addr); 15795 15796 subnet_netmask = ipif->ipif_net_mask; 15797 addr = ipif->ipif_subnet; 15798 ill_clear_bcast_mark(ill, addr); 15799 15800 subnet_addr = ~subnet_netmask | addr; 15801 ill_clear_bcast_mark(ill, subnet_addr); 15802 } 15803 } 15804 15805 /* 15806 * Multicast Responsibility. 15807 * 15808 * If we have joined allmulti on this one, find a new member 15809 * in the group to join allmulti. As this ill is already part 15810 * of allmulti, we don't have to join on this one. 15811 * 15812 * If we have not joined allmulti on this one, there is no 15813 * responsibility to handoff. But we need to take new 15814 * responsibility i.e, join allmulti on this one if we need 15815 * to. 15816 */ 15817 if (ill->ill_join_allmulti) { 15818 (void) ill_nominate_mcast_rcv(illgrp); 15819 } else { 15820 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15821 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15822 (void) ip_join_allmulti(ill->ill_ipif); 15823 break; 15824 } 15825 } 15826 } 15827 15828 /* 15829 * We intentionally do the flushing of IRE_CACHES only matching 15830 * on the ill and not on groups. Note that we are already deleted 15831 * from the group. 15832 * 15833 * This will make sure that all IRE_CACHES whose stq is pointing 15834 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15835 * deleted and IRE_CACHES that are not pointing at this ill will 15836 * be left alone. 15837 */ 15838 if (ill->ill_isv6) { 15839 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15840 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15841 } else { 15842 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15843 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15844 } 15845 15846 /* 15847 * Some conn may have cached one of the IREs deleted above. By removing 15848 * the ire reference, we clean up the extra reference to the ill held in 15849 * ire->ire_stq. 15850 */ 15851 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15852 15853 /* 15854 * Re-do source address selection for all the members in the 15855 * group, if they borrowed source address from one of the ipifs 15856 * in this ill. 15857 */ 15858 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15859 if (ill->ill_isv6) { 15860 ipif_update_other_ipifs_v6(ipif, illgrp); 15861 } else { 15862 ipif_update_other_ipifs(ipif, illgrp); 15863 } 15864 } 15865 } 15866 15867 /* 15868 * Delete the ill from the group. The caller makes sure that it is 15869 * in a group and it okay to delete from the group. So, we always 15870 * delete here. 15871 */ 15872 static void 15873 illgrp_delete(ill_t *ill) 15874 { 15875 ill_group_t *illgrp; 15876 ill_group_t *tmpg; 15877 ill_t *tmp_ill; 15878 ip_stack_t *ipst = ill->ill_ipst; 15879 15880 /* 15881 * Reset illgrp_ill_schednext if it was pointing at us. 15882 * We need to do this before we set ill_group to NULL. 15883 */ 15884 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15885 mutex_enter(&ill->ill_lock); 15886 15887 illgrp_reset_schednext(ill); 15888 15889 illgrp = ill->ill_group; 15890 15891 /* Delete the ill from illgrp. */ 15892 if (illgrp->illgrp_ill == ill) { 15893 illgrp->illgrp_ill = ill->ill_group_next; 15894 } else { 15895 tmp_ill = illgrp->illgrp_ill; 15896 while (tmp_ill->ill_group_next != ill) { 15897 tmp_ill = tmp_ill->ill_group_next; 15898 ASSERT(tmp_ill != NULL); 15899 } 15900 tmp_ill->ill_group_next = ill->ill_group_next; 15901 } 15902 ill->ill_group = NULL; 15903 ill->ill_group_next = NULL; 15904 15905 illgrp->illgrp_ill_count--; 15906 mutex_exit(&ill->ill_lock); 15907 rw_exit(&ipst->ips_ill_g_lock); 15908 15909 /* 15910 * As this ill is leaving the group, we need to hand off 15911 * the responsibilities to the other ills in the group, if 15912 * this ill had some responsibilities. 15913 */ 15914 15915 ill_handoff_responsibility(ill, illgrp); 15916 15917 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15918 15919 if (illgrp->illgrp_ill_count == 0) { 15920 15921 ASSERT(illgrp->illgrp_ill == NULL); 15922 if (ill->ill_isv6) { 15923 if (illgrp == ipst->ips_illgrp_head_v6) { 15924 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15925 } else { 15926 tmpg = ipst->ips_illgrp_head_v6; 15927 while (tmpg->illgrp_next != illgrp) { 15928 tmpg = tmpg->illgrp_next; 15929 ASSERT(tmpg != NULL); 15930 } 15931 tmpg->illgrp_next = illgrp->illgrp_next; 15932 } 15933 } else { 15934 if (illgrp == ipst->ips_illgrp_head_v4) { 15935 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15936 } else { 15937 tmpg = ipst->ips_illgrp_head_v4; 15938 while (tmpg->illgrp_next != illgrp) { 15939 tmpg = tmpg->illgrp_next; 15940 ASSERT(tmpg != NULL); 15941 } 15942 tmpg->illgrp_next = illgrp->illgrp_next; 15943 } 15944 } 15945 mutex_destroy(&illgrp->illgrp_lock); 15946 mi_free(illgrp); 15947 } 15948 rw_exit(&ipst->ips_ill_g_lock); 15949 15950 /* 15951 * Even though the ill is out of the group its not necessary 15952 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15953 * We will split the ipsq when phyint_groupname is set to NULL. 15954 */ 15955 15956 /* 15957 * Send a routing sockets message if we are deleting from 15958 * groups with names. 15959 */ 15960 if (ill->ill_phyint->phyint_groupname_len != 0) 15961 ip_rts_ifmsg(ill->ill_ipif); 15962 } 15963 15964 /* 15965 * Re-do source address selection. This is normally called when 15966 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15967 * ipif comes up. 15968 */ 15969 void 15970 ill_update_source_selection(ill_t *ill) 15971 { 15972 ipif_t *ipif; 15973 15974 ASSERT(IAM_WRITER_ILL(ill)); 15975 15976 if (ill->ill_group != NULL) 15977 ill = ill->ill_group->illgrp_ill; 15978 15979 for (; ill != NULL; ill = ill->ill_group_next) { 15980 for (ipif = ill->ill_ipif; ipif != NULL; 15981 ipif = ipif->ipif_next) { 15982 if (ill->ill_isv6) 15983 ipif_recreate_interface_routes_v6(NULL, ipif); 15984 else 15985 ipif_recreate_interface_routes(NULL, ipif); 15986 } 15987 } 15988 } 15989 15990 /* 15991 * Insert ill in a group headed by illgrp_head. The caller can either 15992 * pass a groupname in which case we search for a group with the 15993 * same name to insert in or pass a group to insert in. This function 15994 * would only search groups with names. 15995 * 15996 * NOTE : The caller should make sure that there is at least one ipif 15997 * UP on this ill so that illgrp_scheduler can pick this ill 15998 * for outbound packets. If ill_ipif_up_count is zero, we have 15999 * already sent a DL_UNBIND to the driver and we don't want to 16000 * send anymore packets. We don't assert for ipif_up_count 16001 * to be greater than zero, because ipif_up_done wants to call 16002 * this function before bumping up the ipif_up_count. See 16003 * ipif_up_done() for details. 16004 */ 16005 int 16006 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16007 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16008 { 16009 ill_group_t *illgrp; 16010 ill_t *prev_ill; 16011 phyint_t *phyi; 16012 ip_stack_t *ipst = ill->ill_ipst; 16013 16014 ASSERT(ill->ill_group == NULL); 16015 16016 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16017 mutex_enter(&ill->ill_lock); 16018 16019 if (groupname != NULL) { 16020 /* 16021 * Look for a group with a matching groupname to insert. 16022 */ 16023 for (illgrp = *illgrp_head; illgrp != NULL; 16024 illgrp = illgrp->illgrp_next) { 16025 16026 ill_t *tmp_ill; 16027 16028 /* 16029 * If we have an ill_group_t in the list which has 16030 * no ill_t assigned then we must be in the process of 16031 * removing this group. We skip this as illgrp_delete() 16032 * will remove it from the list. 16033 */ 16034 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16035 ASSERT(illgrp->illgrp_ill_count == 0); 16036 continue; 16037 } 16038 16039 ASSERT(tmp_ill->ill_phyint != NULL); 16040 phyi = tmp_ill->ill_phyint; 16041 /* 16042 * Look at groups which has names only. 16043 */ 16044 if (phyi->phyint_groupname_len == 0) 16045 continue; 16046 /* 16047 * Names are stored in the phyint common to both 16048 * IPv4 and IPv6. 16049 */ 16050 if (mi_strcmp(phyi->phyint_groupname, 16051 groupname) == 0) { 16052 break; 16053 } 16054 } 16055 } else { 16056 /* 16057 * If the caller passes in a NULL "grp_to_insert", we 16058 * allocate one below and insert this singleton. 16059 */ 16060 illgrp = grp_to_insert; 16061 } 16062 16063 ill->ill_group_next = NULL; 16064 16065 if (illgrp == NULL) { 16066 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16067 if (illgrp == NULL) { 16068 return (ENOMEM); 16069 } 16070 illgrp->illgrp_next = *illgrp_head; 16071 *illgrp_head = illgrp; 16072 illgrp->illgrp_ill = ill; 16073 illgrp->illgrp_ill_count = 1; 16074 ill->ill_group = illgrp; 16075 /* 16076 * Used in illgrp_scheduler to protect multiple threads 16077 * from traversing the list. 16078 */ 16079 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16080 } else { 16081 ASSERT(ill->ill_net_type == 16082 illgrp->illgrp_ill->ill_net_type); 16083 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16084 16085 /* Insert ill at tail of this group */ 16086 prev_ill = illgrp->illgrp_ill; 16087 while (prev_ill->ill_group_next != NULL) 16088 prev_ill = prev_ill->ill_group_next; 16089 prev_ill->ill_group_next = ill; 16090 ill->ill_group = illgrp; 16091 illgrp->illgrp_ill_count++; 16092 /* 16093 * Inherit group properties. Currently only forwarding 16094 * is the property we try to keep the same with all the 16095 * ills. When there are more, we will abstract this into 16096 * a function. 16097 */ 16098 ill->ill_flags &= ~ILLF_ROUTER; 16099 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16100 } 16101 mutex_exit(&ill->ill_lock); 16102 rw_exit(&ipst->ips_ill_g_lock); 16103 16104 /* 16105 * 1) When ipif_up_done() calls this function, ipif_up_count 16106 * may be zero as it has not yet been bumped. But the ires 16107 * have already been added. So, we do the nomination here 16108 * itself. But, when ip_sioctl_groupname calls this, it checks 16109 * for ill_ipif_up_count != 0. Thus we don't check for 16110 * ill_ipif_up_count here while nominating broadcast ires for 16111 * receive. 16112 * 16113 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16114 * to group them properly as ire_add() has already happened 16115 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16116 * case, we need to do it here anyway. 16117 */ 16118 if (!ill->ill_isv6) { 16119 ill_group_bcast_for_xmit(ill); 16120 ill_nominate_bcast_rcv(illgrp); 16121 } 16122 16123 if (!ipif_is_coming_up) { 16124 /* 16125 * When ipif_up_done() calls this function, the multicast 16126 * groups have not been joined yet. So, there is no point in 16127 * nomination. ip_join_allmulti will handle groups when 16128 * ill_recover_multicast is called from ipif_up_done() later. 16129 */ 16130 (void) ill_nominate_mcast_rcv(illgrp); 16131 /* 16132 * ipif_up_done calls ill_update_source_selection 16133 * anyway. Moreover, we don't want to re-create 16134 * interface routes while ipif_up_done() still has reference 16135 * to them. Refer to ipif_up_done() for more details. 16136 */ 16137 ill_update_source_selection(ill); 16138 } 16139 16140 /* 16141 * Send a routing sockets message if we are inserting into 16142 * groups with names. 16143 */ 16144 if (groupname != NULL) 16145 ip_rts_ifmsg(ill->ill_ipif); 16146 return (0); 16147 } 16148 16149 /* 16150 * Return the first phyint matching the groupname. There could 16151 * be more than one when there are ill groups. 16152 * 16153 * If 'usable' is set, then we exclude ones that are marked with any of 16154 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16155 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16156 * emulation of ipmp. 16157 */ 16158 phyint_t * 16159 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16160 { 16161 phyint_t *phyi; 16162 16163 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16164 /* 16165 * Group names are stored in the phyint - a common structure 16166 * to both IPv4 and IPv6. 16167 */ 16168 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16169 for (; phyi != NULL; 16170 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16171 phyi, AVL_AFTER)) { 16172 if (phyi->phyint_groupname_len == 0) 16173 continue; 16174 /* 16175 * Skip the ones that should not be used since the callers 16176 * sometime use this for sending packets. 16177 */ 16178 if (usable && (phyi->phyint_flags & 16179 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16180 continue; 16181 16182 ASSERT(phyi->phyint_groupname != NULL); 16183 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16184 return (phyi); 16185 } 16186 return (NULL); 16187 } 16188 16189 16190 /* 16191 * Return the first usable phyint matching the group index. By 'usable' 16192 * we exclude ones that are marked ununsable with any of 16193 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16194 * 16195 * Used only for the ipmp/netinfo emulation of ipmp. 16196 */ 16197 phyint_t * 16198 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16199 { 16200 phyint_t *phyi; 16201 16202 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16203 16204 if (!ipst->ips_ipmp_hook_emulation) 16205 return (NULL); 16206 16207 /* 16208 * Group indicies are stored in the phyint - a common structure 16209 * to both IPv4 and IPv6. 16210 */ 16211 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16212 for (; phyi != NULL; 16213 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16214 phyi, AVL_AFTER)) { 16215 /* Ignore the ones that do not have a group */ 16216 if (phyi->phyint_groupname_len == 0) 16217 continue; 16218 16219 ASSERT(phyi->phyint_group_ifindex != 0); 16220 /* 16221 * Skip the ones that should not be used since the callers 16222 * sometime use this for sending packets. 16223 */ 16224 if (phyi->phyint_flags & 16225 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16226 continue; 16227 if (phyi->phyint_group_ifindex == group_ifindex) 16228 return (phyi); 16229 } 16230 return (NULL); 16231 } 16232 16233 16234 /* 16235 * MT notes on creation and deletion of IPMP groups 16236 * 16237 * Creation and deletion of IPMP groups introduce the need to merge or 16238 * split the associated serialization objects i.e the ipsq's. Normally all 16239 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16240 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16241 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16242 * is a need to change the <ill-ipsq> association and we have to operate on both 16243 * the source and destination IPMP groups. For eg. attempting to set the 16244 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16245 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16246 * source or destination IPMP group are mapped to a single ipsq for executing 16247 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16248 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16249 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16250 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16251 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16252 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16253 * 16254 * In the above example the ioctl handling code locates the current ipsq of hme0 16255 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16256 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16257 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16258 * the destination ipsq. If the destination ipsq is not busy, it also enters 16259 * the destination ipsq exclusively. Now the actual groupname setting operation 16260 * can proceed. If the destination ipsq is busy, the operation is enqueued 16261 * on the destination (merged) ipsq and will be handled in the unwind from 16262 * ipsq_exit. 16263 * 16264 * To prevent other threads accessing the ill while the group name change is 16265 * in progres, we bring down the ipifs which also removes the ill from the 16266 * group. The group is changed in phyint and when the first ipif on the ill 16267 * is brought up, the ill is inserted into the right IPMP group by 16268 * illgrp_insert. 16269 */ 16270 /* ARGSUSED */ 16271 int 16272 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16273 ip_ioctl_cmd_t *ipip, void *ifreq) 16274 { 16275 int i; 16276 char *tmp; 16277 int namelen; 16278 ill_t *ill = ipif->ipif_ill; 16279 ill_t *ill_v4, *ill_v6; 16280 int err = 0; 16281 phyint_t *phyi; 16282 phyint_t *phyi_tmp; 16283 struct lifreq *lifr; 16284 mblk_t *mp1; 16285 char *groupname; 16286 ipsq_t *ipsq; 16287 ip_stack_t *ipst = ill->ill_ipst; 16288 16289 ASSERT(IAM_WRITER_IPIF(ipif)); 16290 16291 /* Existance verified in ip_wput_nondata */ 16292 mp1 = mp->b_cont->b_cont; 16293 lifr = (struct lifreq *)mp1->b_rptr; 16294 groupname = lifr->lifr_groupname; 16295 16296 if (ipif->ipif_id != 0) 16297 return (EINVAL); 16298 16299 phyi = ill->ill_phyint; 16300 ASSERT(phyi != NULL); 16301 16302 if (phyi->phyint_flags & PHYI_VIRTUAL) 16303 return (EINVAL); 16304 16305 tmp = groupname; 16306 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16307 ; 16308 16309 if (i == LIFNAMSIZ) { 16310 /* no null termination */ 16311 return (EINVAL); 16312 } 16313 16314 /* 16315 * Calculate the namelen exclusive of the null 16316 * termination character. 16317 */ 16318 namelen = tmp - groupname; 16319 16320 ill_v4 = phyi->phyint_illv4; 16321 ill_v6 = phyi->phyint_illv6; 16322 16323 /* 16324 * ILL cannot be part of a usesrc group and and IPMP group at the 16325 * same time. No need to grab the ill_g_usesrc_lock here, see 16326 * synchronization notes in ip.c 16327 */ 16328 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16329 return (EINVAL); 16330 } 16331 16332 /* 16333 * mark the ill as changing. 16334 * this should queue all new requests on the syncq. 16335 */ 16336 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16337 16338 if (ill_v4 != NULL) 16339 ill_v4->ill_state_flags |= ILL_CHANGING; 16340 if (ill_v6 != NULL) 16341 ill_v6->ill_state_flags |= ILL_CHANGING; 16342 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16343 16344 if (namelen == 0) { 16345 /* 16346 * Null string means remove this interface from the 16347 * existing group. 16348 */ 16349 if (phyi->phyint_groupname_len == 0) { 16350 /* 16351 * Never was in a group. 16352 */ 16353 err = 0; 16354 goto done; 16355 } 16356 16357 /* 16358 * IPv4 or IPv6 may be temporarily out of the group when all 16359 * the ipifs are down. Thus, we need to check for ill_group to 16360 * be non-NULL. 16361 */ 16362 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16363 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16364 mutex_enter(&ill_v4->ill_lock); 16365 if (!ill_is_quiescent(ill_v4)) { 16366 /* 16367 * ipsq_pending_mp_add will not fail since 16368 * connp is NULL 16369 */ 16370 (void) ipsq_pending_mp_add(NULL, 16371 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16372 mutex_exit(&ill_v4->ill_lock); 16373 err = EINPROGRESS; 16374 goto done; 16375 } 16376 mutex_exit(&ill_v4->ill_lock); 16377 } 16378 16379 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16380 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16381 mutex_enter(&ill_v6->ill_lock); 16382 if (!ill_is_quiescent(ill_v6)) { 16383 (void) ipsq_pending_mp_add(NULL, 16384 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16385 mutex_exit(&ill_v6->ill_lock); 16386 err = EINPROGRESS; 16387 goto done; 16388 } 16389 mutex_exit(&ill_v6->ill_lock); 16390 } 16391 16392 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16393 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16394 mutex_enter(&phyi->phyint_lock); 16395 ASSERT(phyi->phyint_groupname != NULL); 16396 mi_free(phyi->phyint_groupname); 16397 phyi->phyint_groupname = NULL; 16398 phyi->phyint_groupname_len = 0; 16399 16400 /* Restore the ifindex used to be the per interface one */ 16401 phyi->phyint_group_ifindex = 0; 16402 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16403 mutex_exit(&phyi->phyint_lock); 16404 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16405 rw_exit(&ipst->ips_ill_g_lock); 16406 err = ill_up_ipifs(ill, q, mp); 16407 16408 /* 16409 * set the split flag so that the ipsq can be split 16410 */ 16411 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16412 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16413 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16414 16415 } else { 16416 if (phyi->phyint_groupname_len != 0) { 16417 ASSERT(phyi->phyint_groupname != NULL); 16418 /* Are we inserting in the same group ? */ 16419 if (mi_strcmp(groupname, 16420 phyi->phyint_groupname) == 0) { 16421 err = 0; 16422 goto done; 16423 } 16424 } 16425 16426 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16427 /* 16428 * Merge ipsq for the group's. 16429 * This check is here as multiple groups/ills might be 16430 * sharing the same ipsq. 16431 * If we have to merege than the operation is restarted 16432 * on the new ipsq. 16433 */ 16434 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16435 if (phyi->phyint_ipsq != ipsq) { 16436 rw_exit(&ipst->ips_ill_g_lock); 16437 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16438 goto done; 16439 } 16440 /* 16441 * Running exclusive on new ipsq. 16442 */ 16443 16444 ASSERT(ipsq != NULL); 16445 ASSERT(ipsq->ipsq_writer == curthread); 16446 16447 /* 16448 * Check whether the ill_type and ill_net_type matches before 16449 * we allocate any memory so that the cleanup is easier. 16450 * 16451 * We can't group dissimilar ones as we can't load spread 16452 * packets across the group because of potential link-level 16453 * header differences. 16454 */ 16455 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16456 if (phyi_tmp != NULL) { 16457 if ((ill_v4 != NULL && 16458 phyi_tmp->phyint_illv4 != NULL) && 16459 ((ill_v4->ill_net_type != 16460 phyi_tmp->phyint_illv4->ill_net_type) || 16461 (ill_v4->ill_type != 16462 phyi_tmp->phyint_illv4->ill_type))) { 16463 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16464 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16465 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16466 rw_exit(&ipst->ips_ill_g_lock); 16467 return (EINVAL); 16468 } 16469 if ((ill_v6 != NULL && 16470 phyi_tmp->phyint_illv6 != NULL) && 16471 ((ill_v6->ill_net_type != 16472 phyi_tmp->phyint_illv6->ill_net_type) || 16473 (ill_v6->ill_type != 16474 phyi_tmp->phyint_illv6->ill_type))) { 16475 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16476 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16477 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16478 rw_exit(&ipst->ips_ill_g_lock); 16479 return (EINVAL); 16480 } 16481 } 16482 16483 rw_exit(&ipst->ips_ill_g_lock); 16484 16485 /* 16486 * bring down all v4 ipifs. 16487 */ 16488 if (ill_v4 != NULL) { 16489 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16490 } 16491 16492 /* 16493 * bring down all v6 ipifs. 16494 */ 16495 if (ill_v6 != NULL) { 16496 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16497 } 16498 16499 /* 16500 * make sure all ipifs are down and there are no active 16501 * references. Call to ipsq_pending_mp_add will not fail 16502 * since connp is NULL. 16503 */ 16504 if (ill_v4 != NULL) { 16505 mutex_enter(&ill_v4->ill_lock); 16506 if (!ill_is_quiescent(ill_v4)) { 16507 (void) ipsq_pending_mp_add(NULL, 16508 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16509 mutex_exit(&ill_v4->ill_lock); 16510 err = EINPROGRESS; 16511 goto done; 16512 } 16513 mutex_exit(&ill_v4->ill_lock); 16514 } 16515 16516 if (ill_v6 != NULL) { 16517 mutex_enter(&ill_v6->ill_lock); 16518 if (!ill_is_quiescent(ill_v6)) { 16519 (void) ipsq_pending_mp_add(NULL, 16520 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16521 mutex_exit(&ill_v6->ill_lock); 16522 err = EINPROGRESS; 16523 goto done; 16524 } 16525 mutex_exit(&ill_v6->ill_lock); 16526 } 16527 16528 /* 16529 * allocate including space for null terminator 16530 * before we insert. 16531 */ 16532 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16533 if (tmp == NULL) 16534 return (ENOMEM); 16535 16536 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16537 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16538 mutex_enter(&phyi->phyint_lock); 16539 if (phyi->phyint_groupname_len != 0) { 16540 ASSERT(phyi->phyint_groupname != NULL); 16541 mi_free(phyi->phyint_groupname); 16542 } 16543 16544 /* 16545 * setup the new group name. 16546 */ 16547 phyi->phyint_groupname = tmp; 16548 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16549 phyi->phyint_groupname_len = namelen + 1; 16550 16551 if (ipst->ips_ipmp_hook_emulation) { 16552 /* 16553 * If the group already exists we use the existing 16554 * group_ifindex, otherwise we pick a new index here. 16555 */ 16556 if (phyi_tmp != NULL) { 16557 phyi->phyint_group_ifindex = 16558 phyi_tmp->phyint_group_ifindex; 16559 } else { 16560 /* XXX We need a recovery strategy here. */ 16561 if (!ip_assign_ifindex( 16562 &phyi->phyint_group_ifindex, ipst)) 16563 cmn_err(CE_PANIC, 16564 "ip_assign_ifindex() failed"); 16565 } 16566 } 16567 /* 16568 * Select whether the netinfo and hook use the per-interface 16569 * or per-group ifindex. 16570 */ 16571 if (ipst->ips_ipmp_hook_emulation) 16572 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16573 else 16574 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16575 16576 if (ipst->ips_ipmp_hook_emulation && 16577 phyi_tmp != NULL) { 16578 /* First phyint in group - group PLUMB event */ 16579 ill_nic_info_plumb(ill, B_TRUE); 16580 } 16581 mutex_exit(&phyi->phyint_lock); 16582 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16583 rw_exit(&ipst->ips_ill_g_lock); 16584 16585 err = ill_up_ipifs(ill, q, mp); 16586 } 16587 16588 done: 16589 /* 16590 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16591 */ 16592 if (err != EINPROGRESS) { 16593 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16594 if (ill_v4 != NULL) 16595 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16596 if (ill_v6 != NULL) 16597 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16598 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16599 } 16600 return (err); 16601 } 16602 16603 /* ARGSUSED */ 16604 int 16605 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16606 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16607 { 16608 ill_t *ill; 16609 phyint_t *phyi; 16610 struct lifreq *lifr; 16611 mblk_t *mp1; 16612 16613 /* Existence verified in ip_wput_nondata */ 16614 mp1 = mp->b_cont->b_cont; 16615 lifr = (struct lifreq *)mp1->b_rptr; 16616 ill = ipif->ipif_ill; 16617 phyi = ill->ill_phyint; 16618 16619 lifr->lifr_groupname[0] = '\0'; 16620 /* 16621 * ill_group may be null if all the interfaces 16622 * are down. But still, the phyint should always 16623 * hold the name. 16624 */ 16625 if (phyi->phyint_groupname_len != 0) { 16626 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16627 phyi->phyint_groupname_len); 16628 } 16629 16630 return (0); 16631 } 16632 16633 16634 typedef struct conn_move_s { 16635 ill_t *cm_from_ill; 16636 ill_t *cm_to_ill; 16637 int cm_ifindex; 16638 } conn_move_t; 16639 16640 /* 16641 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16642 */ 16643 static void 16644 conn_move(conn_t *connp, caddr_t arg) 16645 { 16646 conn_move_t *connm; 16647 int ifindex; 16648 int i; 16649 ill_t *from_ill; 16650 ill_t *to_ill; 16651 ilg_t *ilg; 16652 ilm_t *ret_ilm; 16653 16654 connm = (conn_move_t *)arg; 16655 ifindex = connm->cm_ifindex; 16656 from_ill = connm->cm_from_ill; 16657 to_ill = connm->cm_to_ill; 16658 16659 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16660 16661 /* All multicast fields protected by conn_lock */ 16662 mutex_enter(&connp->conn_lock); 16663 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16664 if ((connp->conn_outgoing_ill == from_ill) && 16665 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16666 connp->conn_outgoing_ill = to_ill; 16667 connp->conn_incoming_ill = to_ill; 16668 } 16669 16670 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16671 16672 if ((connp->conn_multicast_ill == from_ill) && 16673 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16674 connp->conn_multicast_ill = connm->cm_to_ill; 16675 } 16676 16677 /* Change IP_XMIT_IF associations */ 16678 if ((connp->conn_xmit_if_ill == from_ill) && 16679 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16680 connp->conn_xmit_if_ill = to_ill; 16681 } 16682 /* 16683 * Change the ilg_ill to point to the new one. This assumes 16684 * ilm_move_v6 has moved the ilms to new_ill and the driver 16685 * has been told to receive packets on this interface. 16686 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16687 * But when doing a FAILOVER, it might fail with ENOMEM and so 16688 * some ilms may not have moved. We check to see whether 16689 * the ilms have moved to to_ill. We can't check on from_ill 16690 * as in the process of moving, we could have split an ilm 16691 * in to two - which has the same orig_ifindex and v6group. 16692 * 16693 * For IPv4, ilg_ipif moves implicitly. The code below really 16694 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16695 */ 16696 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16697 ilg = &connp->conn_ilg[i]; 16698 if ((ilg->ilg_ill == from_ill) && 16699 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16700 /* ifindex != 0 indicates failback */ 16701 if (ifindex != 0) { 16702 connp->conn_ilg[i].ilg_ill = to_ill; 16703 continue; 16704 } 16705 16706 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16707 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16708 connp->conn_zoneid); 16709 16710 if (ret_ilm != NULL) 16711 connp->conn_ilg[i].ilg_ill = to_ill; 16712 } 16713 } 16714 mutex_exit(&connp->conn_lock); 16715 } 16716 16717 static void 16718 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16719 { 16720 conn_move_t connm; 16721 ip_stack_t *ipst = from_ill->ill_ipst; 16722 16723 connm.cm_from_ill = from_ill; 16724 connm.cm_to_ill = to_ill; 16725 connm.cm_ifindex = ifindex; 16726 16727 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16728 } 16729 16730 /* 16731 * ilm has been moved from from_ill to to_ill. 16732 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16733 * appropriately. 16734 * 16735 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16736 * the code there de-references ipif_ill to get the ill to 16737 * send multicast requests. It does not work as ipif is on its 16738 * move and already moved when this function is called. 16739 * Thus, we need to use from_ill and to_ill send down multicast 16740 * requests. 16741 */ 16742 static void 16743 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16744 { 16745 ipif_t *ipif; 16746 ilm_t *ilm; 16747 16748 /* 16749 * See whether we need to send down DL_ENABMULTI_REQ on 16750 * to_ill as ilm has just been added. 16751 */ 16752 ASSERT(IAM_WRITER_ILL(to_ill)); 16753 ASSERT(IAM_WRITER_ILL(from_ill)); 16754 16755 ILM_WALKER_HOLD(to_ill); 16756 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16757 16758 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16759 continue; 16760 /* 16761 * no locks held, ill/ipif cannot dissappear as long 16762 * as we are writer. 16763 */ 16764 ipif = to_ill->ill_ipif; 16765 /* 16766 * No need to hold any lock as we are the writer and this 16767 * can only be changed by a writer. 16768 */ 16769 ilm->ilm_is_new = B_FALSE; 16770 16771 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16772 ipif->ipif_flags & IPIF_POINTOPOINT) { 16773 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16774 "resolver\n")); 16775 continue; /* Must be IRE_IF_NORESOLVER */ 16776 } 16777 16778 16779 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16780 ip1dbg(("ilm_send_multicast_reqs: " 16781 "to_ill MULTI_BCAST\n")); 16782 goto from; 16783 } 16784 16785 if (to_ill->ill_isv6) 16786 mld_joingroup(ilm); 16787 else 16788 igmp_joingroup(ilm); 16789 16790 if (to_ill->ill_ipif_up_count == 0) { 16791 /* 16792 * Nobody there. All multicast addresses will be 16793 * re-joined when we get the DL_BIND_ACK bringing the 16794 * interface up. 16795 */ 16796 ilm->ilm_notify_driver = B_FALSE; 16797 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16798 goto from; 16799 } 16800 16801 /* 16802 * For allmulti address, we want to join on only one interface. 16803 * Checking for ilm_numentries_v6 is not correct as you may 16804 * find an ilm with zero address on to_ill, but we may not 16805 * have nominated to_ill for receiving. Thus, if we have 16806 * nominated from_ill (ill_join_allmulti is set), nominate 16807 * only if to_ill is not already nominated (to_ill normally 16808 * should not have been nominated if "from_ill" has already 16809 * been nominated. As we don't prevent failovers from happening 16810 * across groups, we don't assert). 16811 */ 16812 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16813 /* 16814 * There is no need to hold ill locks as we are 16815 * writer on both ills and when ill_join_allmulti 16816 * is changed the thread is always a writer. 16817 */ 16818 if (from_ill->ill_join_allmulti && 16819 !to_ill->ill_join_allmulti) { 16820 (void) ip_join_allmulti(to_ill->ill_ipif); 16821 } 16822 } else if (ilm->ilm_notify_driver) { 16823 16824 /* 16825 * This is a newly moved ilm so we need to tell the 16826 * driver about the new group. There can be more than 16827 * one ilm's for the same group in the list each with a 16828 * different orig_ifindex. We have to inform the driver 16829 * once. In ilm_move_v[4,6] we only set the flag 16830 * ilm_notify_driver for the first ilm. 16831 */ 16832 16833 (void) ip_ll_send_enabmulti_req(to_ill, 16834 &ilm->ilm_v6addr); 16835 } 16836 16837 ilm->ilm_notify_driver = B_FALSE; 16838 16839 /* 16840 * See whether we need to send down DL_DISABMULTI_REQ on 16841 * from_ill as ilm has just been removed. 16842 */ 16843 from: 16844 ipif = from_ill->ill_ipif; 16845 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16846 ipif->ipif_flags & IPIF_POINTOPOINT) { 16847 ip1dbg(("ilm_send_multicast_reqs: " 16848 "from_ill not resolver\n")); 16849 continue; /* Must be IRE_IF_NORESOLVER */ 16850 } 16851 16852 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16853 ip1dbg(("ilm_send_multicast_reqs: " 16854 "from_ill MULTI_BCAST\n")); 16855 continue; 16856 } 16857 16858 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16859 if (from_ill->ill_join_allmulti) 16860 (void) ip_leave_allmulti(from_ill->ill_ipif); 16861 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16862 (void) ip_ll_send_disabmulti_req(from_ill, 16863 &ilm->ilm_v6addr); 16864 } 16865 } 16866 ILM_WALKER_RELE(to_ill); 16867 } 16868 16869 /* 16870 * This function is called when all multicast memberships needs 16871 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16872 * called only once unlike the IPv4 counterpart where it is called after 16873 * every logical interface is moved. The reason is due to multicast 16874 * memberships are joined using an interface address in IPv4 while in 16875 * IPv6, interface index is used. 16876 */ 16877 static void 16878 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16879 { 16880 ilm_t *ilm; 16881 ilm_t *ilm_next; 16882 ilm_t *new_ilm; 16883 ilm_t **ilmp; 16884 int count; 16885 char buf[INET6_ADDRSTRLEN]; 16886 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16887 ip_stack_t *ipst = from_ill->ill_ipst; 16888 16889 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16890 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16891 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16892 16893 if (ifindex == 0) { 16894 /* 16895 * Form the solicited node mcast address which is used later. 16896 */ 16897 ipif_t *ipif; 16898 16899 ipif = from_ill->ill_ipif; 16900 ASSERT(ipif->ipif_id == 0); 16901 16902 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16903 } 16904 16905 ilmp = &from_ill->ill_ilm; 16906 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16907 ilm_next = ilm->ilm_next; 16908 16909 if (ilm->ilm_flags & ILM_DELETED) { 16910 ilmp = &ilm->ilm_next; 16911 continue; 16912 } 16913 16914 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16915 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16916 ASSERT(ilm->ilm_orig_ifindex != 0); 16917 if (ilm->ilm_orig_ifindex == ifindex) { 16918 /* 16919 * We are failing back multicast memberships. 16920 * If the same ilm exists in to_ill, it means somebody 16921 * has joined the same group there e.g. ff02::1 16922 * is joined within the kernel when the interfaces 16923 * came UP. 16924 */ 16925 ASSERT(ilm->ilm_ipif == NULL); 16926 if (new_ilm != NULL) { 16927 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16928 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16929 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16930 new_ilm->ilm_is_new = B_TRUE; 16931 } 16932 } else { 16933 /* 16934 * check if we can just move the ilm 16935 */ 16936 if (from_ill->ill_ilm_walker_cnt != 0) { 16937 /* 16938 * We have walkers we cannot move 16939 * the ilm, so allocate a new ilm, 16940 * this (old) ilm will be marked 16941 * ILM_DELETED at the end of the loop 16942 * and will be freed when the 16943 * last walker exits. 16944 */ 16945 new_ilm = (ilm_t *)mi_zalloc 16946 (sizeof (ilm_t)); 16947 if (new_ilm == NULL) { 16948 ip0dbg(("ilm_move_v6: " 16949 "FAILBACK of IPv6" 16950 " multicast address %s : " 16951 "from %s to" 16952 " %s failed : ENOMEM \n", 16953 inet_ntop(AF_INET6, 16954 &ilm->ilm_v6addr, buf, 16955 sizeof (buf)), 16956 from_ill->ill_name, 16957 to_ill->ill_name)); 16958 16959 ilmp = &ilm->ilm_next; 16960 continue; 16961 } 16962 *new_ilm = *ilm; 16963 /* 16964 * we don't want new_ilm linked to 16965 * ilm's filter list. 16966 */ 16967 new_ilm->ilm_filter = NULL; 16968 } else { 16969 /* 16970 * No walkers we can move the ilm. 16971 * lets take it out of the list. 16972 */ 16973 *ilmp = ilm->ilm_next; 16974 ilm->ilm_next = NULL; 16975 new_ilm = ilm; 16976 } 16977 16978 /* 16979 * if this is the first ilm for the group 16980 * set ilm_notify_driver so that we notify the 16981 * driver in ilm_send_multicast_reqs. 16982 */ 16983 if (ilm_lookup_ill_v6(to_ill, 16984 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16985 new_ilm->ilm_notify_driver = B_TRUE; 16986 16987 new_ilm->ilm_ill = to_ill; 16988 /* Add to the to_ill's list */ 16989 new_ilm->ilm_next = to_ill->ill_ilm; 16990 to_ill->ill_ilm = new_ilm; 16991 /* 16992 * set the flag so that mld_joingroup is 16993 * called in ilm_send_multicast_reqs(). 16994 */ 16995 new_ilm->ilm_is_new = B_TRUE; 16996 } 16997 goto bottom; 16998 } else if (ifindex != 0) { 16999 /* 17000 * If this is FAILBACK (ifindex != 0) and the ifindex 17001 * has not matched above, look at the next ilm. 17002 */ 17003 ilmp = &ilm->ilm_next; 17004 continue; 17005 } 17006 /* 17007 * If we are here, it means ifindex is 0. Failover 17008 * everything. 17009 * 17010 * We need to handle solicited node mcast address 17011 * and all_nodes mcast address differently as they 17012 * are joined witin the kenrel (ipif_multicast_up) 17013 * and potentially from the userland. We are called 17014 * after the ipifs of from_ill has been moved. 17015 * If we still find ilms on ill with solicited node 17016 * mcast address or all_nodes mcast address, it must 17017 * belong to the UP interface that has not moved e.g. 17018 * ipif_id 0 with the link local prefix does not move. 17019 * We join this on the new ill accounting for all the 17020 * userland memberships so that applications don't 17021 * see any failure. 17022 * 17023 * We need to make sure that we account only for the 17024 * solicited node and all node multicast addresses 17025 * that was brought UP on these. In the case of 17026 * a failover from A to B, we might have ilms belonging 17027 * to A (ilm_orig_ifindex pointing at A) on B accounting 17028 * for the membership from the userland. If we are failing 17029 * over from B to C now, we will find the ones belonging 17030 * to A on B. These don't account for the ill_ipif_up_count. 17031 * They just move from B to C. The check below on 17032 * ilm_orig_ifindex ensures that. 17033 */ 17034 if ((ilm->ilm_orig_ifindex == 17035 from_ill->ill_phyint->phyint_ifindex) && 17036 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17037 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17038 &ilm->ilm_v6addr))) { 17039 ASSERT(ilm->ilm_refcnt > 0); 17040 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17041 /* 17042 * For indentation reasons, we are not using a 17043 * "else" here. 17044 */ 17045 if (count == 0) { 17046 ilmp = &ilm->ilm_next; 17047 continue; 17048 } 17049 ilm->ilm_refcnt -= count; 17050 if (new_ilm != NULL) { 17051 /* 17052 * Can find one with the same 17053 * ilm_orig_ifindex, if we are failing 17054 * over to a STANDBY. This happens 17055 * when somebody wants to join a group 17056 * on a STANDBY interface and we 17057 * internally join on a different one. 17058 * If we had joined on from_ill then, a 17059 * failover now will find a new ilm 17060 * with this index. 17061 */ 17062 ip1dbg(("ilm_move_v6: FAILOVER, found" 17063 " new ilm on %s, group address %s\n", 17064 to_ill->ill_name, 17065 inet_ntop(AF_INET6, 17066 &ilm->ilm_v6addr, buf, 17067 sizeof (buf)))); 17068 new_ilm->ilm_refcnt += count; 17069 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17070 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17071 new_ilm->ilm_is_new = B_TRUE; 17072 } 17073 } else { 17074 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17075 if (new_ilm == NULL) { 17076 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17077 " multicast address %s : from %s to" 17078 " %s failed : ENOMEM \n", 17079 inet_ntop(AF_INET6, 17080 &ilm->ilm_v6addr, buf, 17081 sizeof (buf)), from_ill->ill_name, 17082 to_ill->ill_name)); 17083 ilmp = &ilm->ilm_next; 17084 continue; 17085 } 17086 *new_ilm = *ilm; 17087 new_ilm->ilm_filter = NULL; 17088 new_ilm->ilm_refcnt = count; 17089 new_ilm->ilm_timer = INFINITY; 17090 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17091 new_ilm->ilm_is_new = B_TRUE; 17092 /* 17093 * If the to_ill has not joined this 17094 * group we need to tell the driver in 17095 * ill_send_multicast_reqs. 17096 */ 17097 if (ilm_lookup_ill_v6(to_ill, 17098 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17099 new_ilm->ilm_notify_driver = B_TRUE; 17100 17101 new_ilm->ilm_ill = to_ill; 17102 /* Add to the to_ill's list */ 17103 new_ilm->ilm_next = to_ill->ill_ilm; 17104 to_ill->ill_ilm = new_ilm; 17105 ASSERT(new_ilm->ilm_ipif == NULL); 17106 } 17107 if (ilm->ilm_refcnt == 0) { 17108 goto bottom; 17109 } else { 17110 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17111 CLEAR_SLIST(new_ilm->ilm_filter); 17112 ilmp = &ilm->ilm_next; 17113 } 17114 continue; 17115 } else { 17116 /* 17117 * ifindex = 0 means, move everything pointing at 17118 * from_ill. We are doing this becuase ill has 17119 * either FAILED or became INACTIVE. 17120 * 17121 * As we would like to move things later back to 17122 * from_ill, we want to retain the identity of this 17123 * ilm. Thus, we don't blindly increment the reference 17124 * count on the ilms matching the address alone. We 17125 * need to match on the ilm_orig_index also. new_ilm 17126 * was obtained by matching ilm_orig_index also. 17127 */ 17128 if (new_ilm != NULL) { 17129 /* 17130 * This is possible only if a previous restore 17131 * was incomplete i.e restore to 17132 * ilm_orig_ifindex left some ilms because 17133 * of some failures. Thus when we are failing 17134 * again, we might find our old friends there. 17135 */ 17136 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17137 " on %s, group address %s\n", 17138 to_ill->ill_name, 17139 inet_ntop(AF_INET6, 17140 &ilm->ilm_v6addr, buf, 17141 sizeof (buf)))); 17142 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17143 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17144 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17145 new_ilm->ilm_is_new = B_TRUE; 17146 } 17147 } else { 17148 if (from_ill->ill_ilm_walker_cnt != 0) { 17149 new_ilm = (ilm_t *) 17150 mi_zalloc(sizeof (ilm_t)); 17151 if (new_ilm == NULL) { 17152 ip0dbg(("ilm_move_v6: " 17153 "FAILOVER of IPv6" 17154 " multicast address %s : " 17155 "from %s to" 17156 " %s failed : ENOMEM \n", 17157 inet_ntop(AF_INET6, 17158 &ilm->ilm_v6addr, buf, 17159 sizeof (buf)), 17160 from_ill->ill_name, 17161 to_ill->ill_name)); 17162 17163 ilmp = &ilm->ilm_next; 17164 continue; 17165 } 17166 *new_ilm = *ilm; 17167 new_ilm->ilm_filter = NULL; 17168 } else { 17169 *ilmp = ilm->ilm_next; 17170 new_ilm = ilm; 17171 } 17172 /* 17173 * If the to_ill has not joined this 17174 * group we need to tell the driver in 17175 * ill_send_multicast_reqs. 17176 */ 17177 if (ilm_lookup_ill_v6(to_ill, 17178 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17179 new_ilm->ilm_notify_driver = B_TRUE; 17180 17181 /* Add to the to_ill's list */ 17182 new_ilm->ilm_next = to_ill->ill_ilm; 17183 to_ill->ill_ilm = new_ilm; 17184 ASSERT(ilm->ilm_ipif == NULL); 17185 new_ilm->ilm_ill = to_ill; 17186 new_ilm->ilm_is_new = B_TRUE; 17187 } 17188 17189 } 17190 17191 bottom: 17192 /* 17193 * Revert multicast filter state to (EXCLUDE, NULL). 17194 * new_ilm->ilm_is_new should already be set if needed. 17195 */ 17196 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17197 CLEAR_SLIST(new_ilm->ilm_filter); 17198 /* 17199 * We allocated/got a new ilm, free the old one. 17200 */ 17201 if (new_ilm != ilm) { 17202 if (from_ill->ill_ilm_walker_cnt == 0) { 17203 *ilmp = ilm->ilm_next; 17204 ilm->ilm_next = NULL; 17205 FREE_SLIST(ilm->ilm_filter); 17206 FREE_SLIST(ilm->ilm_pendsrcs); 17207 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17208 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17209 mi_free((char *)ilm); 17210 } else { 17211 ilm->ilm_flags |= ILM_DELETED; 17212 from_ill->ill_ilm_cleanup_reqd = 1; 17213 ilmp = &ilm->ilm_next; 17214 } 17215 } 17216 } 17217 } 17218 17219 /* 17220 * Move all the multicast memberships to to_ill. Called when 17221 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17222 * different from IPv6 counterpart as multicast memberships are associated 17223 * with ills in IPv6. This function is called after every ipif is moved 17224 * unlike IPv6, where it is moved only once. 17225 */ 17226 static void 17227 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17228 { 17229 ilm_t *ilm; 17230 ilm_t *ilm_next; 17231 ilm_t *new_ilm; 17232 ilm_t **ilmp; 17233 ip_stack_t *ipst = from_ill->ill_ipst; 17234 17235 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17236 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17237 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17238 17239 ilmp = &from_ill->ill_ilm; 17240 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17241 ilm_next = ilm->ilm_next; 17242 17243 if (ilm->ilm_flags & ILM_DELETED) { 17244 ilmp = &ilm->ilm_next; 17245 continue; 17246 } 17247 17248 ASSERT(ilm->ilm_ipif != NULL); 17249 17250 if (ilm->ilm_ipif != ipif) { 17251 ilmp = &ilm->ilm_next; 17252 continue; 17253 } 17254 17255 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17256 htonl(INADDR_ALLHOSTS_GROUP)) { 17257 new_ilm = ilm_lookup_ipif(ipif, 17258 V4_PART_OF_V6(ilm->ilm_v6addr)); 17259 if (new_ilm != NULL) { 17260 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17261 /* 17262 * We still need to deal with the from_ill. 17263 */ 17264 new_ilm->ilm_is_new = B_TRUE; 17265 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17266 CLEAR_SLIST(new_ilm->ilm_filter); 17267 goto delete_ilm; 17268 } 17269 /* 17270 * If we could not find one e.g. ipif is 17271 * still down on to_ill, we add this ilm 17272 * on ill_new to preserve the reference 17273 * count. 17274 */ 17275 } 17276 /* 17277 * When ipifs move, ilms always move with it 17278 * to the NEW ill. Thus we should never be 17279 * able to find ilm till we really move it here. 17280 */ 17281 ASSERT(ilm_lookup_ipif(ipif, 17282 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17283 17284 if (from_ill->ill_ilm_walker_cnt != 0) { 17285 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17286 if (new_ilm == NULL) { 17287 char buf[INET6_ADDRSTRLEN]; 17288 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17289 " multicast address %s : " 17290 "from %s to" 17291 " %s failed : ENOMEM \n", 17292 inet_ntop(AF_INET, 17293 &ilm->ilm_v6addr, buf, 17294 sizeof (buf)), 17295 from_ill->ill_name, 17296 to_ill->ill_name)); 17297 17298 ilmp = &ilm->ilm_next; 17299 continue; 17300 } 17301 *new_ilm = *ilm; 17302 /* We don't want new_ilm linked to ilm's filter list */ 17303 new_ilm->ilm_filter = NULL; 17304 } else { 17305 /* Remove from the list */ 17306 *ilmp = ilm->ilm_next; 17307 new_ilm = ilm; 17308 } 17309 17310 /* 17311 * If we have never joined this group on the to_ill 17312 * make sure we tell the driver. 17313 */ 17314 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17315 ALL_ZONES) == NULL) 17316 new_ilm->ilm_notify_driver = B_TRUE; 17317 17318 /* Add to the to_ill's list */ 17319 new_ilm->ilm_next = to_ill->ill_ilm; 17320 to_ill->ill_ilm = new_ilm; 17321 new_ilm->ilm_is_new = B_TRUE; 17322 17323 /* 17324 * Revert multicast filter state to (EXCLUDE, NULL) 17325 */ 17326 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17327 CLEAR_SLIST(new_ilm->ilm_filter); 17328 17329 /* 17330 * Delete only if we have allocated a new ilm. 17331 */ 17332 if (new_ilm != ilm) { 17333 delete_ilm: 17334 if (from_ill->ill_ilm_walker_cnt == 0) { 17335 /* Remove from the list */ 17336 *ilmp = ilm->ilm_next; 17337 ilm->ilm_next = NULL; 17338 FREE_SLIST(ilm->ilm_filter); 17339 FREE_SLIST(ilm->ilm_pendsrcs); 17340 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17341 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17342 mi_free((char *)ilm); 17343 } else { 17344 ilm->ilm_flags |= ILM_DELETED; 17345 from_ill->ill_ilm_cleanup_reqd = 1; 17346 ilmp = &ilm->ilm_next; 17347 } 17348 } 17349 } 17350 } 17351 17352 static uint_t 17353 ipif_get_id(ill_t *ill, uint_t id) 17354 { 17355 uint_t unit; 17356 ipif_t *tipif; 17357 boolean_t found = B_FALSE; 17358 ip_stack_t *ipst = ill->ill_ipst; 17359 17360 /* 17361 * During failback, we want to go back to the same id 17362 * instead of the smallest id so that the original 17363 * configuration is maintained. id is non-zero in that 17364 * case. 17365 */ 17366 if (id != 0) { 17367 /* 17368 * While failing back, if we still have an ipif with 17369 * MAX_ADDRS_PER_IF, it means this will be replaced 17370 * as soon as we return from this function. It was 17371 * to set to MAX_ADDRS_PER_IF by the caller so that 17372 * we can choose the smallest id. Thus we return zero 17373 * in that case ignoring the hint. 17374 */ 17375 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17376 return (0); 17377 for (tipif = ill->ill_ipif; tipif != NULL; 17378 tipif = tipif->ipif_next) { 17379 if (tipif->ipif_id == id) { 17380 found = B_TRUE; 17381 break; 17382 } 17383 } 17384 /* 17385 * If somebody already plumbed another logical 17386 * with the same id, we won't be able to find it. 17387 */ 17388 if (!found) 17389 return (id); 17390 } 17391 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17392 found = B_FALSE; 17393 for (tipif = ill->ill_ipif; tipif != NULL; 17394 tipif = tipif->ipif_next) { 17395 if (tipif->ipif_id == unit) { 17396 found = B_TRUE; 17397 break; 17398 } 17399 } 17400 if (!found) 17401 break; 17402 } 17403 return (unit); 17404 } 17405 17406 /* ARGSUSED */ 17407 static int 17408 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17409 ipif_t **rep_ipif_ptr) 17410 { 17411 ill_t *from_ill; 17412 ipif_t *rep_ipif; 17413 uint_t unit; 17414 int err = 0; 17415 ipif_t *to_ipif; 17416 struct iocblk *iocp; 17417 boolean_t failback_cmd; 17418 boolean_t remove_ipif; 17419 int rc; 17420 ip_stack_t *ipst; 17421 17422 ASSERT(IAM_WRITER_ILL(to_ill)); 17423 ASSERT(IAM_WRITER_IPIF(ipif)); 17424 17425 iocp = (struct iocblk *)mp->b_rptr; 17426 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17427 remove_ipif = B_FALSE; 17428 17429 from_ill = ipif->ipif_ill; 17430 ipst = from_ill->ill_ipst; 17431 17432 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17433 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17434 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17435 17436 /* 17437 * Don't move LINK LOCAL addresses as they are tied to 17438 * physical interface. 17439 */ 17440 if (from_ill->ill_isv6 && 17441 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17442 ipif->ipif_was_up = B_FALSE; 17443 IPIF_UNMARK_MOVING(ipif); 17444 return (0); 17445 } 17446 17447 /* 17448 * We set the ipif_id to maximum so that the search for 17449 * ipif_id will pick the lowest number i.e 0 in the 17450 * following 2 cases : 17451 * 17452 * 1) We have a replacement ipif at the head of to_ill. 17453 * We can't remove it yet as we can exceed ip_addrs_per_if 17454 * on to_ill and hence the MOVE might fail. We want to 17455 * remove it only if we could move the ipif. Thus, by 17456 * setting it to the MAX value, we make the search in 17457 * ipif_get_id return the zeroth id. 17458 * 17459 * 2) When DR pulls out the NIC and re-plumbs the interface, 17460 * we might just have a zero address plumbed on the ipif 17461 * with zero id in the case of IPv4. We remove that while 17462 * doing the failback. We want to remove it only if we 17463 * could move the ipif. Thus, by setting it to the MAX 17464 * value, we make the search in ipif_get_id return the 17465 * zeroth id. 17466 * 17467 * Both (1) and (2) are done only when when we are moving 17468 * an ipif (either due to failover/failback) which originally 17469 * belonged to this interface i.e the ipif_orig_ifindex is 17470 * the same as to_ill's ifindex. This is needed so that 17471 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17472 * from B -> A (B is being removed from the group) and 17473 * FAILBACK from A -> B restores the original configuration. 17474 * Without the check for orig_ifindex, the second FAILOVER 17475 * could make the ipif belonging to B replace the A's zeroth 17476 * ipif and the subsequent failback re-creating the replacement 17477 * ipif again. 17478 * 17479 * NOTE : We created the replacement ipif when we did a 17480 * FAILOVER (See below). We could check for FAILBACK and 17481 * then look for replacement ipif to be removed. But we don't 17482 * want to do that because we wan't to allow the possibility 17483 * of a FAILOVER from A -> B (which creates the replacement ipif), 17484 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17485 * from B -> A. 17486 */ 17487 to_ipif = to_ill->ill_ipif; 17488 if ((to_ill->ill_phyint->phyint_ifindex == 17489 ipif->ipif_orig_ifindex) && 17490 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17491 ASSERT(to_ipif->ipif_id == 0); 17492 remove_ipif = B_TRUE; 17493 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17494 } 17495 /* 17496 * Find the lowest logical unit number on the to_ill. 17497 * If we are failing back, try to get the original id 17498 * rather than the lowest one so that the original 17499 * configuration is maintained. 17500 * 17501 * XXX need a better scheme for this. 17502 */ 17503 if (failback_cmd) { 17504 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17505 } else { 17506 unit = ipif_get_id(to_ill, 0); 17507 } 17508 17509 /* Reset back to zero in case we fail below */ 17510 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17511 to_ipif->ipif_id = 0; 17512 17513 if (unit == ipst->ips_ip_addrs_per_if) { 17514 ipif->ipif_was_up = B_FALSE; 17515 IPIF_UNMARK_MOVING(ipif); 17516 return (EINVAL); 17517 } 17518 17519 /* 17520 * ipif is ready to move from "from_ill" to "to_ill". 17521 * 17522 * 1) If we are moving ipif with id zero, create a 17523 * replacement ipif for this ipif on from_ill. If this fails 17524 * fail the MOVE operation. 17525 * 17526 * 2) Remove the replacement ipif on to_ill if any. 17527 * We could remove the replacement ipif when we are moving 17528 * the ipif with id zero. But what if somebody already 17529 * unplumbed it ? Thus we always remove it if it is present. 17530 * We want to do it only if we are sure we are going to 17531 * move the ipif to to_ill which is why there are no 17532 * returns due to error till ipif is linked to to_ill. 17533 * Note that the first ipif that we failback will always 17534 * be zero if it is present. 17535 */ 17536 if (ipif->ipif_id == 0) { 17537 ipaddr_t inaddr_any = INADDR_ANY; 17538 17539 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17540 if (rep_ipif == NULL) { 17541 ipif->ipif_was_up = B_FALSE; 17542 IPIF_UNMARK_MOVING(ipif); 17543 return (ENOMEM); 17544 } 17545 *rep_ipif = ipif_zero; 17546 /* 17547 * Before we put the ipif on the list, store the addresses 17548 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17549 * assumes so. This logic is not any different from what 17550 * ipif_allocate does. 17551 */ 17552 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17553 &rep_ipif->ipif_v6lcl_addr); 17554 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17555 &rep_ipif->ipif_v6src_addr); 17556 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17557 &rep_ipif->ipif_v6subnet); 17558 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17559 &rep_ipif->ipif_v6net_mask); 17560 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17561 &rep_ipif->ipif_v6brd_addr); 17562 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17563 &rep_ipif->ipif_v6pp_dst_addr); 17564 /* 17565 * We mark IPIF_NOFAILOVER so that this can never 17566 * move. 17567 */ 17568 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17569 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17570 rep_ipif->ipif_replace_zero = B_TRUE; 17571 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17572 MUTEX_DEFAULT, NULL); 17573 rep_ipif->ipif_id = 0; 17574 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17575 rep_ipif->ipif_ill = from_ill; 17576 rep_ipif->ipif_orig_ifindex = 17577 from_ill->ill_phyint->phyint_ifindex; 17578 /* Insert at head */ 17579 rep_ipif->ipif_next = from_ill->ill_ipif; 17580 from_ill->ill_ipif = rep_ipif; 17581 /* 17582 * We don't really care to let apps know about 17583 * this interface. 17584 */ 17585 } 17586 17587 if (remove_ipif) { 17588 /* 17589 * We set to a max value above for this case to get 17590 * id zero. ASSERT that we did get one. 17591 */ 17592 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17593 rep_ipif = to_ipif; 17594 to_ill->ill_ipif = rep_ipif->ipif_next; 17595 rep_ipif->ipif_next = NULL; 17596 /* 17597 * If some apps scanned and find this interface, 17598 * it is time to let them know, so that they can 17599 * delete it. 17600 */ 17601 17602 *rep_ipif_ptr = rep_ipif; 17603 } 17604 17605 /* Get it out of the ILL interface list. */ 17606 ipif_remove(ipif, B_FALSE); 17607 17608 /* Assign the new ill */ 17609 ipif->ipif_ill = to_ill; 17610 ipif->ipif_id = unit; 17611 /* id has already been checked */ 17612 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17613 ASSERT(rc == 0); 17614 /* Let SCTP update its list */ 17615 sctp_move_ipif(ipif, from_ill, to_ill); 17616 /* 17617 * Handle the failover and failback of ipif_t between 17618 * ill_t that have differing maximum mtu values. 17619 */ 17620 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17621 if (ipif->ipif_saved_mtu == 0) { 17622 /* 17623 * As this ipif_t is moving to an ill_t 17624 * that has a lower ill_max_mtu, its 17625 * ipif_mtu needs to be saved so it can 17626 * be restored during failback or during 17627 * failover to an ill_t which has a 17628 * higher ill_max_mtu. 17629 */ 17630 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17631 ipif->ipif_mtu = to_ill->ill_max_mtu; 17632 } else { 17633 /* 17634 * The ipif_t is, once again, moving to 17635 * an ill_t that has a lower maximum mtu 17636 * value. 17637 */ 17638 ipif->ipif_mtu = to_ill->ill_max_mtu; 17639 } 17640 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17641 ipif->ipif_saved_mtu != 0) { 17642 /* 17643 * The mtu of this ipif_t had to be reduced 17644 * during an earlier failover; this is an 17645 * opportunity for it to be increased (either as 17646 * part of another failover or a failback). 17647 */ 17648 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17649 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17650 ipif->ipif_saved_mtu = 0; 17651 } else { 17652 ipif->ipif_mtu = to_ill->ill_max_mtu; 17653 } 17654 } 17655 17656 /* 17657 * We preserve all the other fields of the ipif including 17658 * ipif_saved_ire_mp. The routes that are saved here will 17659 * be recreated on the new interface and back on the old 17660 * interface when we move back. 17661 */ 17662 ASSERT(ipif->ipif_arp_del_mp == NULL); 17663 17664 return (err); 17665 } 17666 17667 static int 17668 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17669 int ifindex, ipif_t **rep_ipif_ptr) 17670 { 17671 ipif_t *mipif; 17672 ipif_t *ipif_next; 17673 int err; 17674 17675 /* 17676 * We don't really try to MOVE back things if some of the 17677 * operations fail. The daemon will take care of moving again 17678 * later on. 17679 */ 17680 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17681 ipif_next = mipif->ipif_next; 17682 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17683 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17684 17685 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17686 17687 /* 17688 * When the MOVE fails, it is the job of the 17689 * application to take care of this properly 17690 * i.e try again if it is ENOMEM. 17691 */ 17692 if (mipif->ipif_ill != from_ill) { 17693 /* 17694 * ipif has moved. 17695 * 17696 * Move the multicast memberships associated 17697 * with this ipif to the new ill. For IPv6, we 17698 * do it once after all the ipifs are moved 17699 * (in ill_move) as they are not associated 17700 * with ipifs. 17701 * 17702 * We need to move the ilms as the ipif has 17703 * already been moved to a new ill even 17704 * in the case of errors. Neither 17705 * ilm_free(ipif) will find the ilm 17706 * when somebody unplumbs this ipif nor 17707 * ilm_delete(ilm) will be able to find the 17708 * ilm, if we don't move now. 17709 */ 17710 if (!from_ill->ill_isv6) 17711 ilm_move_v4(from_ill, to_ill, mipif); 17712 } 17713 17714 if (err != 0) 17715 return (err); 17716 } 17717 } 17718 return (0); 17719 } 17720 17721 static int 17722 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17723 { 17724 int ifindex; 17725 int err; 17726 struct iocblk *iocp; 17727 ipif_t *ipif; 17728 ipif_t *rep_ipif_ptr = NULL; 17729 ipif_t *from_ipif = NULL; 17730 boolean_t check_rep_if = B_FALSE; 17731 ip_stack_t *ipst = from_ill->ill_ipst; 17732 17733 iocp = (struct iocblk *)mp->b_rptr; 17734 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17735 /* 17736 * Move everything pointing at from_ill to to_ill. 17737 * We acheive this by passing in 0 as ifindex. 17738 */ 17739 ifindex = 0; 17740 } else { 17741 /* 17742 * Move everything pointing at from_ill whose original 17743 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17744 * We acheive this by passing in ifindex rather than 0. 17745 * Multicast vifs, ilgs move implicitly because ipifs move. 17746 */ 17747 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17748 ifindex = to_ill->ill_phyint->phyint_ifindex; 17749 } 17750 17751 /* 17752 * Determine if there is at least one ipif that would move from 17753 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17754 * ipif (if it exists) on the to_ill would be consumed as a result of 17755 * the move, in which case we need to quiesce the replacement ipif also. 17756 */ 17757 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17758 from_ipif = from_ipif->ipif_next) { 17759 if (((ifindex == 0) || 17760 (ifindex == from_ipif->ipif_orig_ifindex)) && 17761 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17762 check_rep_if = B_TRUE; 17763 break; 17764 } 17765 } 17766 17767 17768 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17769 17770 GRAB_ILL_LOCKS(from_ill, to_ill); 17771 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17772 (void) ipsq_pending_mp_add(NULL, ipif, q, 17773 mp, ILL_MOVE_OK); 17774 RELEASE_ILL_LOCKS(from_ill, to_ill); 17775 return (EINPROGRESS); 17776 } 17777 17778 /* Check if the replacement ipif is quiescent to delete */ 17779 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17780 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17781 to_ill->ill_ipif->ipif_state_flags |= 17782 IPIF_MOVING | IPIF_CHANGING; 17783 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17784 (void) ipsq_pending_mp_add(NULL, ipif, q, 17785 mp, ILL_MOVE_OK); 17786 RELEASE_ILL_LOCKS(from_ill, to_ill); 17787 return (EINPROGRESS); 17788 } 17789 } 17790 RELEASE_ILL_LOCKS(from_ill, to_ill); 17791 17792 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17793 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17794 GRAB_ILL_LOCKS(from_ill, to_ill); 17795 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17796 17797 /* ilm_move is done inside ipif_move for IPv4 */ 17798 if (err == 0 && from_ill->ill_isv6) 17799 ilm_move_v6(from_ill, to_ill, ifindex); 17800 17801 RELEASE_ILL_LOCKS(from_ill, to_ill); 17802 rw_exit(&ipst->ips_ill_g_lock); 17803 17804 /* 17805 * send rts messages and multicast messages. 17806 */ 17807 if (rep_ipif_ptr != NULL) { 17808 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17809 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17810 rep_ipif_ptr->ipif_recovery_id = 0; 17811 } 17812 ip_rts_ifmsg(rep_ipif_ptr); 17813 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17814 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17815 mi_free(rep_ipif_ptr); 17816 } 17817 17818 conn_move_ill(from_ill, to_ill, ifindex); 17819 17820 return (err); 17821 } 17822 17823 /* 17824 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17825 * Also checks for the validity of the arguments. 17826 * Note: We are already exclusive inside the from group. 17827 * It is upto the caller to release refcnt on the to_ill's. 17828 */ 17829 static int 17830 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17831 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17832 { 17833 int dst_index; 17834 ipif_t *ipif_v4, *ipif_v6; 17835 struct lifreq *lifr; 17836 mblk_t *mp1; 17837 boolean_t exists; 17838 sin_t *sin; 17839 int err = 0; 17840 ip_stack_t *ipst; 17841 17842 if (CONN_Q(q)) 17843 ipst = CONNQ_TO_IPST(q); 17844 else 17845 ipst = ILLQ_TO_IPST(q); 17846 17847 17848 if ((mp1 = mp->b_cont) == NULL) 17849 return (EPROTO); 17850 17851 if ((mp1 = mp1->b_cont) == NULL) 17852 return (EPROTO); 17853 17854 lifr = (struct lifreq *)mp1->b_rptr; 17855 sin = (sin_t *)&lifr->lifr_addr; 17856 17857 /* 17858 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17859 * specific operations. 17860 */ 17861 if (sin->sin_family != AF_UNSPEC) 17862 return (EINVAL); 17863 17864 /* 17865 * Get ipif with id 0. We are writer on the from ill. So we can pass 17866 * NULLs for the last 4 args and we know the lookup won't fail 17867 * with EINPROGRESS. 17868 */ 17869 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17870 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17871 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17872 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17873 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17874 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17875 17876 if (ipif_v4 == NULL && ipif_v6 == NULL) 17877 return (ENXIO); 17878 17879 if (ipif_v4 != NULL) { 17880 ASSERT(ipif_v4->ipif_refcnt != 0); 17881 if (ipif_v4->ipif_id != 0) { 17882 err = EINVAL; 17883 goto done; 17884 } 17885 17886 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17887 *ill_from_v4 = ipif_v4->ipif_ill; 17888 } 17889 17890 if (ipif_v6 != NULL) { 17891 ASSERT(ipif_v6->ipif_refcnt != 0); 17892 if (ipif_v6->ipif_id != 0) { 17893 err = EINVAL; 17894 goto done; 17895 } 17896 17897 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17898 *ill_from_v6 = ipif_v6->ipif_ill; 17899 } 17900 17901 err = 0; 17902 dst_index = lifr->lifr_movetoindex; 17903 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17904 q, mp, ip_process_ioctl, &err, ipst); 17905 if (err != 0) { 17906 /* 17907 * There could be only v6. 17908 */ 17909 if (err != ENXIO) 17910 goto done; 17911 err = 0; 17912 } 17913 17914 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17915 q, mp, ip_process_ioctl, &err, ipst); 17916 if (err != 0) { 17917 if (err != ENXIO) 17918 goto done; 17919 if (*ill_to_v4 == NULL) { 17920 err = ENXIO; 17921 goto done; 17922 } 17923 err = 0; 17924 } 17925 17926 /* 17927 * If we have something to MOVE i.e "from" not NULL, 17928 * "to" should be non-NULL. 17929 */ 17930 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17931 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17932 err = EINVAL; 17933 } 17934 17935 done: 17936 if (ipif_v4 != NULL) 17937 ipif_refrele(ipif_v4); 17938 if (ipif_v6 != NULL) 17939 ipif_refrele(ipif_v6); 17940 return (err); 17941 } 17942 17943 /* 17944 * FAILOVER and FAILBACK are modelled as MOVE operations. 17945 * 17946 * We don't check whether the MOVE is within the same group or 17947 * not, because this ioctl can be used as a generic mechanism 17948 * to failover from interface A to B, though things will function 17949 * only if they are really part of the same group. Moreover, 17950 * all ipifs may be down and hence temporarily out of the group. 17951 * 17952 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17953 * down first and then V6. For each we wait for the ipif's to become quiescent. 17954 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17955 * have been deleted and there are no active references. Once quiescent the 17956 * ipif's are moved and brought up on the new ill. 17957 * 17958 * Normally the source ill and destination ill belong to the same IPMP group 17959 * and hence the same ipsq_t. In the event they don't belong to the same 17960 * same group the two ipsq's are first merged into one ipsq - that of the 17961 * to_ill. The multicast memberships on the source and destination ill cannot 17962 * change during the move operation since multicast joins/leaves also have to 17963 * execute on the same ipsq and are hence serialized. 17964 */ 17965 /* ARGSUSED */ 17966 int 17967 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17968 ip_ioctl_cmd_t *ipip, void *ifreq) 17969 { 17970 ill_t *ill_to_v4 = NULL; 17971 ill_t *ill_to_v6 = NULL; 17972 ill_t *ill_from_v4 = NULL; 17973 ill_t *ill_from_v6 = NULL; 17974 int err = 0; 17975 17976 /* 17977 * setup from and to ill's, we can get EINPROGRESS only for 17978 * to_ill's. 17979 */ 17980 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17981 &ill_to_v4, &ill_to_v6); 17982 17983 if (err != 0) { 17984 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17985 goto done; 17986 } 17987 17988 /* 17989 * nothing to do. 17990 */ 17991 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17992 goto done; 17993 } 17994 17995 /* 17996 * nothing to do. 17997 */ 17998 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17999 goto done; 18000 } 18001 18002 /* 18003 * Mark the ill as changing. 18004 * ILL_CHANGING flag is cleared when the ipif's are brought up 18005 * in ill_up_ipifs in case of error they are cleared below. 18006 */ 18007 18008 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18009 if (ill_from_v4 != NULL) 18010 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18011 if (ill_from_v6 != NULL) 18012 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18013 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18014 18015 /* 18016 * Make sure that both src and dst are 18017 * in the same syncq group. If not make it happen. 18018 * We are not holding any locks because we are the writer 18019 * on the from_ipsq and we will hold locks in ill_merge_groups 18020 * to protect to_ipsq against changing. 18021 */ 18022 if (ill_from_v4 != NULL) { 18023 if (ill_from_v4->ill_phyint->phyint_ipsq != 18024 ill_to_v4->ill_phyint->phyint_ipsq) { 18025 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18026 NULL, mp, q); 18027 goto err_ret; 18028 18029 } 18030 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18031 } else { 18032 18033 if (ill_from_v6->ill_phyint->phyint_ipsq != 18034 ill_to_v6->ill_phyint->phyint_ipsq) { 18035 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18036 NULL, mp, q); 18037 goto err_ret; 18038 18039 } 18040 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18041 } 18042 18043 /* 18044 * Now that the ipsq's have been merged and we are the writer 18045 * lets mark to_ill as changing as well. 18046 */ 18047 18048 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18049 if (ill_to_v4 != NULL) 18050 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18051 if (ill_to_v6 != NULL) 18052 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18053 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18054 18055 /* 18056 * Its ok for us to proceed with the move even if 18057 * ill_pending_mp is non null on one of the from ill's as the reply 18058 * should not be looking at the ipif, it should only care about the 18059 * ill itself. 18060 */ 18061 18062 /* 18063 * lets move ipv4 first. 18064 */ 18065 if (ill_from_v4 != NULL) { 18066 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18067 ill_from_v4->ill_move_in_progress = B_TRUE; 18068 ill_to_v4->ill_move_in_progress = B_TRUE; 18069 ill_to_v4->ill_move_peer = ill_from_v4; 18070 ill_from_v4->ill_move_peer = ill_to_v4; 18071 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18072 } 18073 18074 /* 18075 * Now lets move ipv6. 18076 */ 18077 if (err == 0 && ill_from_v6 != NULL) { 18078 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18079 ill_from_v6->ill_move_in_progress = B_TRUE; 18080 ill_to_v6->ill_move_in_progress = B_TRUE; 18081 ill_to_v6->ill_move_peer = ill_from_v6; 18082 ill_from_v6->ill_move_peer = ill_to_v6; 18083 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18084 } 18085 18086 err_ret: 18087 /* 18088 * EINPROGRESS means we are waiting for the ipif's that need to be 18089 * moved to become quiescent. 18090 */ 18091 if (err == EINPROGRESS) { 18092 goto done; 18093 } 18094 18095 /* 18096 * if err is set ill_up_ipifs will not be called 18097 * lets clear the flags. 18098 */ 18099 18100 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18101 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18102 /* 18103 * Some of the clearing may be redundant. But it is simple 18104 * not making any extra checks. 18105 */ 18106 if (ill_from_v6 != NULL) { 18107 ill_from_v6->ill_move_in_progress = B_FALSE; 18108 ill_from_v6->ill_move_peer = NULL; 18109 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18110 } 18111 if (ill_from_v4 != NULL) { 18112 ill_from_v4->ill_move_in_progress = B_FALSE; 18113 ill_from_v4->ill_move_peer = NULL; 18114 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18115 } 18116 if (ill_to_v6 != NULL) { 18117 ill_to_v6->ill_move_in_progress = B_FALSE; 18118 ill_to_v6->ill_move_peer = NULL; 18119 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18120 } 18121 if (ill_to_v4 != NULL) { 18122 ill_to_v4->ill_move_in_progress = B_FALSE; 18123 ill_to_v4->ill_move_peer = NULL; 18124 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18125 } 18126 18127 /* 18128 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18129 * Do this always to maintain proper state i.e even in case of errors. 18130 * As phyint_inactive looks at both v4 and v6 interfaces, 18131 * we need not call on both v4 and v6 interfaces. 18132 */ 18133 if (ill_from_v4 != NULL) { 18134 if ((ill_from_v4->ill_phyint->phyint_flags & 18135 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18136 phyint_inactive(ill_from_v4->ill_phyint); 18137 } 18138 } else if (ill_from_v6 != NULL) { 18139 if ((ill_from_v6->ill_phyint->phyint_flags & 18140 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18141 phyint_inactive(ill_from_v6->ill_phyint); 18142 } 18143 } 18144 18145 if (ill_to_v4 != NULL) { 18146 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18147 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18148 } 18149 } else if (ill_to_v6 != NULL) { 18150 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18151 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18152 } 18153 } 18154 18155 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18156 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18157 18158 no_err: 18159 /* 18160 * lets bring the interfaces up on the to_ill. 18161 */ 18162 if (err == 0) { 18163 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18164 q, mp); 18165 } 18166 18167 if (err == 0) { 18168 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18169 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18170 18171 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18172 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18173 } 18174 done: 18175 18176 if (ill_to_v4 != NULL) { 18177 ill_refrele(ill_to_v4); 18178 } 18179 if (ill_to_v6 != NULL) { 18180 ill_refrele(ill_to_v6); 18181 } 18182 18183 return (err); 18184 } 18185 18186 static void 18187 ill_dl_down(ill_t *ill) 18188 { 18189 /* 18190 * The ill is down; unbind but stay attached since we're still 18191 * associated with a PPA. If we have negotiated DLPI capabilites 18192 * with the data link service provider (IDS_OK) then reset them. 18193 * The interval between unbinding and rebinding is potentially 18194 * unbounded hence we cannot assume things will be the same. 18195 * The DLPI capabilities will be probed again when the data link 18196 * is brought up. 18197 */ 18198 mblk_t *mp = ill->ill_unbind_mp; 18199 hook_nic_event_t *info; 18200 18201 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18202 18203 ill->ill_unbind_mp = NULL; 18204 if (mp != NULL) { 18205 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18206 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18207 ill->ill_name)); 18208 mutex_enter(&ill->ill_lock); 18209 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18210 mutex_exit(&ill->ill_lock); 18211 if (ill->ill_dlpi_capab_state == IDS_OK) 18212 ill_capability_reset(ill); 18213 ill_dlpi_send(ill, mp); 18214 } 18215 18216 /* 18217 * Toss all of our multicast memberships. We could keep them, but 18218 * then we'd have to do bookkeeping of any joins and leaves performed 18219 * by the application while the the interface is down (we can't just 18220 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18221 * on a downed interface). 18222 */ 18223 ill_leave_multicast(ill); 18224 18225 mutex_enter(&ill->ill_lock); 18226 18227 ill->ill_dl_up = 0; 18228 18229 if ((info = ill->ill_nic_event_info) != NULL) { 18230 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18231 info->hne_event, ill->ill_name)); 18232 if (info->hne_data != NULL) 18233 kmem_free(info->hne_data, info->hne_datalen); 18234 kmem_free(info, sizeof (hook_nic_event_t)); 18235 } 18236 18237 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18238 if (info != NULL) { 18239 ip_stack_t *ipst = ill->ill_ipst; 18240 18241 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18242 info->hne_lif = 0; 18243 info->hne_event = NE_DOWN; 18244 info->hne_data = NULL; 18245 info->hne_datalen = 0; 18246 info->hne_family = ill->ill_isv6 ? 18247 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18248 } else 18249 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18250 "information for %s (ENOMEM)\n", ill->ill_name)); 18251 18252 ill->ill_nic_event_info = info; 18253 18254 mutex_exit(&ill->ill_lock); 18255 } 18256 18257 static void 18258 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18259 { 18260 union DL_primitives *dlp; 18261 t_uscalar_t prim; 18262 18263 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18264 18265 dlp = (union DL_primitives *)mp->b_rptr; 18266 prim = dlp->dl_primitive; 18267 18268 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18269 dlpi_prim_str(prim), prim, ill->ill_name)); 18270 18271 switch (prim) { 18272 case DL_PHYS_ADDR_REQ: 18273 { 18274 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18275 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18276 break; 18277 } 18278 case DL_BIND_REQ: 18279 mutex_enter(&ill->ill_lock); 18280 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18281 mutex_exit(&ill->ill_lock); 18282 break; 18283 } 18284 18285 /* 18286 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18287 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18288 * we only wait for the ACK of the DL_UNBIND_REQ. 18289 */ 18290 mutex_enter(&ill->ill_lock); 18291 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18292 (prim == DL_UNBIND_REQ)) { 18293 ill->ill_dlpi_pending = prim; 18294 } 18295 mutex_exit(&ill->ill_lock); 18296 18297 putnext(ill->ill_wq, mp); 18298 } 18299 18300 /* 18301 * Helper function for ill_dlpi_send(). 18302 */ 18303 /* ARGSUSED */ 18304 static void 18305 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18306 { 18307 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18308 } 18309 18310 /* 18311 * Send a DLPI control message to the driver but make sure there 18312 * is only one outstanding message. Uses ill_dlpi_pending to tell 18313 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18314 * when an ACK or a NAK is received to process the next queued message. 18315 */ 18316 void 18317 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18318 { 18319 mblk_t **mpp; 18320 18321 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18322 18323 /* 18324 * To ensure that any DLPI requests for current exclusive operation 18325 * are always completely sent before any DLPI messages for other 18326 * operations, require writer access before enqueuing. 18327 */ 18328 if (!IAM_WRITER_ILL(ill)) { 18329 ill_refhold(ill); 18330 /* qwriter_ip() does the ill_refrele() */ 18331 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18332 NEW_OP, B_TRUE); 18333 return; 18334 } 18335 18336 mutex_enter(&ill->ill_lock); 18337 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18338 /* Must queue message. Tail insertion */ 18339 mpp = &ill->ill_dlpi_deferred; 18340 while (*mpp != NULL) 18341 mpp = &((*mpp)->b_next); 18342 18343 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18344 ill->ill_name)); 18345 18346 *mpp = mp; 18347 mutex_exit(&ill->ill_lock); 18348 return; 18349 } 18350 mutex_exit(&ill->ill_lock); 18351 ill_dlpi_dispatch(ill, mp); 18352 } 18353 18354 /* 18355 * Send all deferred DLPI messages without waiting for their ACKs. 18356 */ 18357 void 18358 ill_dlpi_send_deferred(ill_t *ill) 18359 { 18360 mblk_t *mp, *nextmp; 18361 18362 /* 18363 * Clear ill_dlpi_pending so that the message is not queued in 18364 * ill_dlpi_send(). 18365 */ 18366 mutex_enter(&ill->ill_lock); 18367 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18368 mp = ill->ill_dlpi_deferred; 18369 ill->ill_dlpi_deferred = NULL; 18370 mutex_exit(&ill->ill_lock); 18371 18372 for (; mp != NULL; mp = nextmp) { 18373 nextmp = mp->b_next; 18374 mp->b_next = NULL; 18375 ill_dlpi_send(ill, mp); 18376 } 18377 } 18378 18379 /* 18380 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18381 */ 18382 boolean_t 18383 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18384 { 18385 t_uscalar_t prim_pending; 18386 18387 mutex_enter(&ill->ill_lock); 18388 prim_pending = ill->ill_dlpi_pending; 18389 mutex_exit(&ill->ill_lock); 18390 18391 /* 18392 * During teardown, ill_dlpi_send_deferred() will send requests 18393 * without waiting; don't bother printing any warnings in that case. 18394 */ 18395 if (!(ill->ill_flags & ILL_CONDEMNED) && prim_pending != prim) { 18396 if (prim_pending == DL_PRIM_INVAL) { 18397 (void) mi_strlog(ill->ill_rq, 1, 18398 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18399 "unsolicited ack for %s on %s\n", 18400 dlpi_prim_str(prim), ill->ill_name); 18401 } else { 18402 (void) mi_strlog(ill->ill_rq, 1, 18403 SL_CONSOLE|SL_ERROR|SL_TRACE, "ip: received " 18404 "unexpected ack for %s on %s (expecting %s)\n", 18405 dlpi_prim_str(prim), ill->ill_name, 18406 dlpi_prim_str(prim_pending)); 18407 } 18408 } 18409 return (prim_pending == prim); 18410 } 18411 18412 /* 18413 * Called when an DLPI control message has been acked or nacked to 18414 * send down the next queued message (if any). 18415 */ 18416 void 18417 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18418 { 18419 mblk_t *mp; 18420 18421 ASSERT(IAM_WRITER_ILL(ill)); 18422 mutex_enter(&ill->ill_lock); 18423 18424 ASSERT(prim != DL_PRIM_INVAL); 18425 ASSERT(ill->ill_dlpi_pending == prim); 18426 18427 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18428 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18429 18430 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18431 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18432 cv_signal(&ill->ill_cv); 18433 mutex_exit(&ill->ill_lock); 18434 return; 18435 } 18436 18437 ill->ill_dlpi_deferred = mp->b_next; 18438 mp->b_next = NULL; 18439 mutex_exit(&ill->ill_lock); 18440 18441 ill_dlpi_dispatch(ill, mp); 18442 } 18443 18444 void 18445 conn_delete_ire(conn_t *connp, caddr_t arg) 18446 { 18447 ipif_t *ipif = (ipif_t *)arg; 18448 ire_t *ire; 18449 18450 /* 18451 * Look at the cached ires on conns which has pointers to ipifs. 18452 * We just call ire_refrele which clears up the reference 18453 * to ire. Called when a conn closes. Also called from ipif_free 18454 * to cleanup indirect references to the stale ipif via the cached ire. 18455 */ 18456 mutex_enter(&connp->conn_lock); 18457 ire = connp->conn_ire_cache; 18458 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18459 connp->conn_ire_cache = NULL; 18460 mutex_exit(&connp->conn_lock); 18461 IRE_REFRELE_NOTR(ire); 18462 return; 18463 } 18464 mutex_exit(&connp->conn_lock); 18465 18466 } 18467 18468 /* 18469 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18470 * of IREs. Those IREs may have been previously cached in the conn structure. 18471 * This ipcl_walk() walker function releases all references to such IREs based 18472 * on the condemned flag. 18473 */ 18474 /* ARGSUSED */ 18475 void 18476 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18477 { 18478 ire_t *ire; 18479 18480 mutex_enter(&connp->conn_lock); 18481 ire = connp->conn_ire_cache; 18482 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18483 connp->conn_ire_cache = NULL; 18484 mutex_exit(&connp->conn_lock); 18485 IRE_REFRELE_NOTR(ire); 18486 return; 18487 } 18488 mutex_exit(&connp->conn_lock); 18489 } 18490 18491 /* 18492 * Take down a specific interface, but don't lose any information about it. 18493 * Also delete interface from its interface group (ifgrp). 18494 * (Always called as writer.) 18495 * This function goes through the down sequence even if the interface is 18496 * already down. There are 2 reasons. 18497 * a. Currently we permit interface routes that depend on down interfaces 18498 * to be added. This behaviour itself is questionable. However it appears 18499 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18500 * time. We go thru the cleanup in order to remove these routes. 18501 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18502 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18503 * down, but we need to cleanup i.e. do ill_dl_down and 18504 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18505 * 18506 * IP-MT notes: 18507 * 18508 * Model of reference to interfaces. 18509 * 18510 * The following members in ipif_t track references to the ipif. 18511 * int ipif_refcnt; Active reference count 18512 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18513 * The following members in ill_t track references to the ill. 18514 * int ill_refcnt; active refcnt 18515 * uint_t ill_ire_cnt; Number of ires referencing ill 18516 * uint_t ill_nce_cnt; Number of nces referencing ill 18517 * 18518 * Reference to an ipif or ill can be obtained in any of the following ways. 18519 * 18520 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18521 * Pointers to ipif / ill from other data structures viz ire and conn. 18522 * Implicit reference to the ipif / ill by holding a reference to the ire. 18523 * 18524 * The ipif/ill lookup functions return a reference held ipif / ill. 18525 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18526 * This is a purely dynamic reference count associated with threads holding 18527 * references to the ipif / ill. Pointers from other structures do not 18528 * count towards this reference count. 18529 * 18530 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18531 * ipif/ill. This is incremented whenever a new ire is created referencing the 18532 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18533 * actually added to the ire hash table. The count is decremented in 18534 * ire_inactive where the ire is destroyed. 18535 * 18536 * nce's reference ill's thru nce_ill and the count of nce's associated with 18537 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18538 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18539 * table. Similarly it is decremented in ndp_inactive() where the nce 18540 * is destroyed. 18541 * 18542 * Flow of ioctls involving interface down/up 18543 * 18544 * The following is the sequence of an attempt to set some critical flags on an 18545 * up interface. 18546 * ip_sioctl_flags 18547 * ipif_down 18548 * wait for ipif to be quiescent 18549 * ipif_down_tail 18550 * ip_sioctl_flags_tail 18551 * 18552 * All set ioctls that involve down/up sequence would have a skeleton similar 18553 * to the above. All the *tail functions are called after the refcounts have 18554 * dropped to the appropriate values. 18555 * 18556 * The mechanism to quiesce an ipif is as follows. 18557 * 18558 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18559 * on the ipif. Callers either pass a flag requesting wait or the lookup 18560 * functions will return NULL. 18561 * 18562 * Delete all ires referencing this ipif 18563 * 18564 * Any thread attempting to do an ipif_refhold on an ipif that has been 18565 * obtained thru a cached pointer will first make sure that 18566 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18567 * increment the refcount. 18568 * 18569 * The above guarantees that the ipif refcount will eventually come down to 18570 * zero and the ipif will quiesce, once all threads that currently hold a 18571 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18572 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18573 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18574 * drop to zero. 18575 * 18576 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18577 * 18578 * Threads trying to lookup an ipif or ill can pass a flag requesting 18579 * wait and restart if the ipif / ill cannot be looked up currently. 18580 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18581 * failure if the ipif is currently undergoing an exclusive operation, and 18582 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18583 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18584 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18585 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18586 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18587 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18588 * until we release the ipsq_lock, even though the the ill/ipif state flags 18589 * can change after we drop the ill_lock. 18590 * 18591 * An attempt to send out a packet using an ipif that is currently 18592 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18593 * operation and restart it later when the exclusive condition on the ipif ends. 18594 * This is an example of not passing the wait flag to the lookup functions. For 18595 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18596 * out a multicast packet on that ipif will fail while the ipif is 18597 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18598 * currently IPIF_CHANGING will also fail. 18599 */ 18600 int 18601 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18602 { 18603 ill_t *ill = ipif->ipif_ill; 18604 phyint_t *phyi; 18605 conn_t *connp; 18606 boolean_t success; 18607 boolean_t ipif_was_up = B_FALSE; 18608 ip_stack_t *ipst = ill->ill_ipst; 18609 18610 ASSERT(IAM_WRITER_IPIF(ipif)); 18611 18612 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18613 18614 if (ipif->ipif_flags & IPIF_UP) { 18615 mutex_enter(&ill->ill_lock); 18616 ipif->ipif_flags &= ~IPIF_UP; 18617 ASSERT(ill->ill_ipif_up_count > 0); 18618 --ill->ill_ipif_up_count; 18619 mutex_exit(&ill->ill_lock); 18620 ipif_was_up = B_TRUE; 18621 /* Update status in SCTP's list */ 18622 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18623 } 18624 18625 /* 18626 * Blow away memberships we established in ipif_multicast_up(). 18627 */ 18628 ipif_multicast_down(ipif); 18629 18630 /* 18631 * Remove from the mapping for __sin6_src_id. We insert only 18632 * when the address is not INADDR_ANY. As IPv4 addresses are 18633 * stored as mapped addresses, we need to check for mapped 18634 * INADDR_ANY also. 18635 */ 18636 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18637 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18638 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18639 int err; 18640 18641 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18642 ipif->ipif_zoneid, ipst); 18643 if (err != 0) { 18644 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18645 } 18646 } 18647 18648 /* 18649 * Before we delete the ill from the group (if any), we need 18650 * to make sure that we delete all the routes dependent on 18651 * this and also any ipifs dependent on this ipif for 18652 * source address. We need to do before we delete from 18653 * the group because 18654 * 18655 * 1) ipif_down_delete_ire de-references ill->ill_group. 18656 * 18657 * 2) ipif_update_other_ipifs needs to walk the whole group 18658 * for re-doing source address selection. Note that 18659 * ipif_select_source[_v6] called from 18660 * ipif_update_other_ipifs[_v6] will not pick this ipif 18661 * because we have already marked down here i.e cleared 18662 * IPIF_UP. 18663 */ 18664 if (ipif->ipif_isv6) { 18665 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18666 ipst); 18667 } else { 18668 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18669 ipst); 18670 } 18671 18672 /* 18673 * Cleaning up the conn_ire_cache or conns must be done only after the 18674 * ires have been deleted above. Otherwise a thread could end up 18675 * caching an ire in a conn after we have finished the cleanup of the 18676 * conn. The caching is done after making sure that the ire is not yet 18677 * condemned. Also documented in the block comment above ip_output 18678 */ 18679 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18680 /* Also, delete the ires cached in SCTP */ 18681 sctp_ire_cache_flush(ipif); 18682 18683 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18684 nattymod_clean_ipif(ipif); 18685 18686 /* 18687 * Update any other ipifs which have used "our" local address as 18688 * a source address. This entails removing and recreating IRE_INTERFACE 18689 * entries for such ipifs. 18690 */ 18691 if (ipif->ipif_isv6) 18692 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18693 else 18694 ipif_update_other_ipifs(ipif, ill->ill_group); 18695 18696 if (ipif_was_up) { 18697 /* 18698 * Check whether it is last ipif to leave this group. 18699 * If this is the last ipif to leave, we should remove 18700 * this ill from the group as ipif_select_source will not 18701 * be able to find any useful ipifs if this ill is selected 18702 * for load balancing. 18703 * 18704 * For nameless groups, we should call ifgrp_delete if this 18705 * belongs to some group. As this ipif is going down, we may 18706 * need to reconstruct groups. 18707 */ 18708 phyi = ill->ill_phyint; 18709 /* 18710 * If the phyint_groupname_len is 0, it may or may not 18711 * be in the nameless group. If the phyint_groupname_len is 18712 * not 0, then this ill should be part of some group. 18713 * As we always insert this ill in the group if 18714 * phyint_groupname_len is not zero when the first ipif 18715 * comes up (in ipif_up_done), it should be in a group 18716 * when the namelen is not 0. 18717 * 18718 * NOTE : When we delete the ill from the group,it will 18719 * blow away all the IRE_CACHES pointing either at this ipif or 18720 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18721 * should be pointing at this ill. 18722 */ 18723 ASSERT(phyi->phyint_groupname_len == 0 || 18724 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18725 18726 if (phyi->phyint_groupname_len != 0) { 18727 if (ill->ill_ipif_up_count == 0) 18728 illgrp_delete(ill); 18729 } 18730 18731 /* 18732 * If we have deleted some of the broadcast ires associated 18733 * with this ipif, we need to re-nominate somebody else if 18734 * the ires that we deleted were the nominated ones. 18735 */ 18736 if (ill->ill_group != NULL && !ill->ill_isv6) 18737 ipif_renominate_bcast(ipif); 18738 } 18739 18740 /* 18741 * neighbor-discovery or arp entries for this interface. 18742 */ 18743 ipif_ndp_down(ipif); 18744 18745 /* 18746 * If mp is NULL the caller will wait for the appropriate refcnt. 18747 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18748 * and ill_delete -> ipif_free -> ipif_down 18749 */ 18750 if (mp == NULL) { 18751 ASSERT(q == NULL); 18752 return (0); 18753 } 18754 18755 if (CONN_Q(q)) { 18756 connp = Q_TO_CONN(q); 18757 mutex_enter(&connp->conn_lock); 18758 } else { 18759 connp = NULL; 18760 } 18761 mutex_enter(&ill->ill_lock); 18762 /* 18763 * Are there any ire's pointing to this ipif that are still active ? 18764 * If this is the last ipif going down, are there any ire's pointing 18765 * to this ill that are still active ? 18766 */ 18767 if (ipif_is_quiescent(ipif)) { 18768 mutex_exit(&ill->ill_lock); 18769 if (connp != NULL) 18770 mutex_exit(&connp->conn_lock); 18771 return (0); 18772 } 18773 18774 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18775 ill->ill_name, (void *)ill)); 18776 /* 18777 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18778 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18779 * which in turn is called by the last refrele on the ipif/ill/ire. 18780 */ 18781 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18782 if (!success) { 18783 /* The conn is closing. So just return */ 18784 ASSERT(connp != NULL); 18785 mutex_exit(&ill->ill_lock); 18786 mutex_exit(&connp->conn_lock); 18787 return (EINTR); 18788 } 18789 18790 mutex_exit(&ill->ill_lock); 18791 if (connp != NULL) 18792 mutex_exit(&connp->conn_lock); 18793 return (EINPROGRESS); 18794 } 18795 18796 void 18797 ipif_down_tail(ipif_t *ipif) 18798 { 18799 ill_t *ill = ipif->ipif_ill; 18800 18801 /* 18802 * Skip any loopback interface (null wq). 18803 * If this is the last logical interface on the ill 18804 * have ill_dl_down tell the driver we are gone (unbind) 18805 * Note that lun 0 can ipif_down even though 18806 * there are other logical units that are up. 18807 * This occurs e.g. when we change a "significant" IFF_ flag. 18808 */ 18809 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18810 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18811 ill->ill_dl_up) { 18812 ill_dl_down(ill); 18813 } 18814 ill->ill_logical_down = 0; 18815 18816 /* 18817 * Have to be after removing the routes in ipif_down_delete_ire. 18818 */ 18819 if (ipif->ipif_isv6) { 18820 if (ill->ill_flags & ILLF_XRESOLV) 18821 ipif_arp_down(ipif); 18822 } else { 18823 ipif_arp_down(ipif); 18824 } 18825 18826 ip_rts_ifmsg(ipif); 18827 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18828 } 18829 18830 /* 18831 * Bring interface logically down without bringing the physical interface 18832 * down e.g. when the netmask is changed. This avoids long lasting link 18833 * negotiations between an ethernet interface and a certain switches. 18834 */ 18835 static int 18836 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18837 { 18838 /* 18839 * The ill_logical_down flag is a transient flag. It is set here 18840 * and is cleared once the down has completed in ipif_down_tail. 18841 * This flag does not indicate whether the ill stream is in the 18842 * DL_BOUND state with the driver. Instead this flag is used by 18843 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18844 * the driver. The state of the ill stream i.e. whether it is 18845 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18846 */ 18847 ipif->ipif_ill->ill_logical_down = 1; 18848 return (ipif_down(ipif, q, mp)); 18849 } 18850 18851 /* 18852 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18853 * If the usesrc client ILL is already part of a usesrc group or not, 18854 * in either case a ire_stq with the matching usesrc client ILL will 18855 * locate the IRE's that need to be deleted. We want IREs to be created 18856 * with the new source address. 18857 */ 18858 static void 18859 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18860 { 18861 ill_t *ucill = (ill_t *)ill_arg; 18862 18863 ASSERT(IAM_WRITER_ILL(ucill)); 18864 18865 if (ire->ire_stq == NULL) 18866 return; 18867 18868 if ((ire->ire_type == IRE_CACHE) && 18869 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18870 ire_delete(ire); 18871 } 18872 18873 /* 18874 * ire_walk routine to delete every IRE dependent on the interface 18875 * address that is going down. (Always called as writer.) 18876 * Works for both v4 and v6. 18877 * In addition for checking for ire_ipif matches it also checks for 18878 * IRE_CACHE entries which have the same source address as the 18879 * disappearing ipif since ipif_select_source might have picked 18880 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18881 * care of any IRE_INTERFACE with the disappearing source address. 18882 */ 18883 static void 18884 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18885 { 18886 ipif_t *ipif = (ipif_t *)ipif_arg; 18887 ill_t *ire_ill; 18888 ill_t *ipif_ill; 18889 18890 ASSERT(IAM_WRITER_IPIF(ipif)); 18891 if (ire->ire_ipif == NULL) 18892 return; 18893 18894 /* 18895 * For IPv4, we derive source addresses for an IRE from ipif's 18896 * belonging to the same IPMP group as the IRE's outgoing 18897 * interface. If an IRE's outgoing interface isn't in the 18898 * same IPMP group as a particular ipif, then that ipif 18899 * couldn't have been used as a source address for this IRE. 18900 * 18901 * For IPv6, source addresses are only restricted to the IPMP group 18902 * if the IRE is for a link-local address or a multicast address. 18903 * Otherwise, source addresses for an IRE can be chosen from 18904 * interfaces other than the the outgoing interface for that IRE. 18905 * 18906 * For source address selection details, see ipif_select_source() 18907 * and ipif_select_source_v6(). 18908 */ 18909 if (ire->ire_ipversion == IPV4_VERSION || 18910 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18911 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18912 ire_ill = ire->ire_ipif->ipif_ill; 18913 ipif_ill = ipif->ipif_ill; 18914 18915 if (ire_ill->ill_group != ipif_ill->ill_group) { 18916 return; 18917 } 18918 } 18919 18920 18921 if (ire->ire_ipif != ipif) { 18922 /* 18923 * Look for a matching source address. 18924 */ 18925 if (ire->ire_type != IRE_CACHE) 18926 return; 18927 if (ipif->ipif_flags & IPIF_NOLOCAL) 18928 return; 18929 18930 if (ire->ire_ipversion == IPV4_VERSION) { 18931 if (ire->ire_src_addr != ipif->ipif_src_addr) 18932 return; 18933 } else { 18934 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18935 &ipif->ipif_v6lcl_addr)) 18936 return; 18937 } 18938 ire_delete(ire); 18939 return; 18940 } 18941 /* 18942 * ire_delete() will do an ire_flush_cache which will delete 18943 * all ire_ipif matches 18944 */ 18945 ire_delete(ire); 18946 } 18947 18948 /* 18949 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18950 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18951 * 2) when an interface is brought up or down (on that ill). 18952 * This ensures that the IRE_CACHE entries don't retain stale source 18953 * address selection results. 18954 */ 18955 void 18956 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18957 { 18958 ill_t *ill = (ill_t *)ill_arg; 18959 ill_t *ipif_ill; 18960 18961 ASSERT(IAM_WRITER_ILL(ill)); 18962 /* 18963 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18964 * Hence this should be IRE_CACHE. 18965 */ 18966 ASSERT(ire->ire_type == IRE_CACHE); 18967 18968 /* 18969 * We are called for IRE_CACHES whose ire_ipif matches ill. 18970 * We are only interested in IRE_CACHES that has borrowed 18971 * the source address from ill_arg e.g. ipif_up_done[_v6] 18972 * for which we need to look at ire_ipif->ipif_ill match 18973 * with ill. 18974 */ 18975 ASSERT(ire->ire_ipif != NULL); 18976 ipif_ill = ire->ire_ipif->ipif_ill; 18977 if (ipif_ill == ill || (ill->ill_group != NULL && 18978 ipif_ill->ill_group == ill->ill_group)) { 18979 ire_delete(ire); 18980 } 18981 } 18982 18983 /* 18984 * Delete all the ire whose stq references ill_arg. 18985 */ 18986 static void 18987 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18988 { 18989 ill_t *ill = (ill_t *)ill_arg; 18990 ill_t *ire_ill; 18991 18992 ASSERT(IAM_WRITER_ILL(ill)); 18993 /* 18994 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18995 * Hence this should be IRE_CACHE. 18996 */ 18997 ASSERT(ire->ire_type == IRE_CACHE); 18998 18999 /* 19000 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19001 * matches ill. We are only interested in IRE_CACHES that 19002 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19003 * filtering here. 19004 */ 19005 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19006 19007 if (ire_ill == ill) 19008 ire_delete(ire); 19009 } 19010 19011 /* 19012 * This is called when an ill leaves the group. We want to delete 19013 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19014 * pointing at ill. 19015 */ 19016 static void 19017 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19018 { 19019 ill_t *ill = (ill_t *)ill_arg; 19020 19021 ASSERT(IAM_WRITER_ILL(ill)); 19022 ASSERT(ill->ill_group == NULL); 19023 /* 19024 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19025 * Hence this should be IRE_CACHE. 19026 */ 19027 ASSERT(ire->ire_type == IRE_CACHE); 19028 /* 19029 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19030 * matches ill. We are interested in both. 19031 */ 19032 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19033 (ire->ire_ipif->ipif_ill == ill)); 19034 19035 ire_delete(ire); 19036 } 19037 19038 /* 19039 * Initiate deallocate of an IPIF. Always called as writer. Called by 19040 * ill_delete or ip_sioctl_removeif. 19041 */ 19042 static void 19043 ipif_free(ipif_t *ipif) 19044 { 19045 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19046 19047 ASSERT(IAM_WRITER_IPIF(ipif)); 19048 19049 if (ipif->ipif_recovery_id != 0) 19050 (void) untimeout(ipif->ipif_recovery_id); 19051 ipif->ipif_recovery_id = 0; 19052 19053 /* Remove conn references */ 19054 reset_conn_ipif(ipif); 19055 19056 /* 19057 * Make sure we have valid net and subnet broadcast ire's for the 19058 * other ipif's which share them with this ipif. 19059 */ 19060 if (!ipif->ipif_isv6) 19061 ipif_check_bcast_ires(ipif); 19062 19063 /* 19064 * Take down the interface. We can be called either from ill_delete 19065 * or from ip_sioctl_removeif. 19066 */ 19067 (void) ipif_down(ipif, NULL, NULL); 19068 19069 /* 19070 * Now that the interface is down, there's no chance it can still 19071 * become a duplicate. Cancel any timer that may have been set while 19072 * tearing down. 19073 */ 19074 if (ipif->ipif_recovery_id != 0) 19075 (void) untimeout(ipif->ipif_recovery_id); 19076 ipif->ipif_recovery_id = 0; 19077 19078 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19079 /* Remove pointers to this ill in the multicast routing tables */ 19080 reset_mrt_vif_ipif(ipif); 19081 rw_exit(&ipst->ips_ill_g_lock); 19082 } 19083 19084 /* 19085 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19086 * also ill_move(). 19087 */ 19088 static void 19089 ipif_free_tail(ipif_t *ipif) 19090 { 19091 mblk_t *mp; 19092 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19093 19094 /* 19095 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19096 */ 19097 mutex_enter(&ipif->ipif_saved_ire_lock); 19098 mp = ipif->ipif_saved_ire_mp; 19099 ipif->ipif_saved_ire_mp = NULL; 19100 mutex_exit(&ipif->ipif_saved_ire_lock); 19101 freemsg(mp); 19102 19103 /* 19104 * Need to hold both ill_g_lock and ill_lock while 19105 * inserting or removing an ipif from the linked list 19106 * of ipifs hanging off the ill. 19107 */ 19108 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19109 /* 19110 * Remove all IPv4 multicast memberships on the interface now. 19111 * IPv6 is not handled here as the multicast memberships are 19112 * tied to the ill rather than the ipif. 19113 */ 19114 ilm_free(ipif); 19115 19116 /* 19117 * Since we held the ill_g_lock while doing the ilm_free above, 19118 * we can assert the ilms were really deleted and not just marked 19119 * ILM_DELETED. 19120 */ 19121 ASSERT(ilm_walk_ipif(ipif) == 0); 19122 19123 IPIF_TRACE_CLEANUP(ipif); 19124 19125 /* Ask SCTP to take it out of it list */ 19126 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19127 19128 /* Get it out of the ILL interface list. */ 19129 ipif_remove(ipif, B_TRUE); 19130 rw_exit(&ipst->ips_ill_g_lock); 19131 19132 mutex_destroy(&ipif->ipif_saved_ire_lock); 19133 19134 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19135 ASSERT(ipif->ipif_recovery_id == 0); 19136 19137 /* Free the memory. */ 19138 mi_free(ipif); 19139 } 19140 19141 /* 19142 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19143 * is zero. 19144 */ 19145 void 19146 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19147 { 19148 char lbuf[LIFNAMSIZ]; 19149 char *name; 19150 size_t name_len; 19151 19152 buf[0] = '\0'; 19153 name = ipif->ipif_ill->ill_name; 19154 name_len = ipif->ipif_ill->ill_name_length; 19155 if (ipif->ipif_id != 0) { 19156 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19157 ipif->ipif_id); 19158 name = lbuf; 19159 name_len = mi_strlen(name) + 1; 19160 } 19161 len -= 1; 19162 buf[len] = '\0'; 19163 len = MIN(len, name_len); 19164 bcopy(name, buf, len); 19165 } 19166 19167 /* 19168 * Find an IPIF based on the name passed in. Names can be of the 19169 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19170 * The <phys> string can have forms like <dev><#> (e.g., le0), 19171 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19172 * When there is no colon, the implied unit id is zero. <phys> must 19173 * correspond to the name of an ILL. (May be called as writer.) 19174 */ 19175 static ipif_t * 19176 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19177 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19178 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19179 { 19180 char *cp; 19181 char *endp; 19182 long id; 19183 ill_t *ill; 19184 ipif_t *ipif; 19185 uint_t ire_type; 19186 boolean_t did_alloc = B_FALSE; 19187 ipsq_t *ipsq; 19188 19189 if (error != NULL) 19190 *error = 0; 19191 19192 /* 19193 * If the caller wants to us to create the ipif, make sure we have a 19194 * valid zoneid 19195 */ 19196 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19197 19198 if (namelen == 0) { 19199 if (error != NULL) 19200 *error = ENXIO; 19201 return (NULL); 19202 } 19203 19204 *exists = B_FALSE; 19205 /* Look for a colon in the name. */ 19206 endp = &name[namelen]; 19207 for (cp = endp; --cp > name; ) { 19208 if (*cp == IPIF_SEPARATOR_CHAR) 19209 break; 19210 } 19211 19212 if (*cp == IPIF_SEPARATOR_CHAR) { 19213 /* 19214 * Reject any non-decimal aliases for logical 19215 * interfaces. Aliases with leading zeroes 19216 * are also rejected as they introduce ambiguity 19217 * in the naming of the interfaces. 19218 * In order to confirm with existing semantics, 19219 * and to not break any programs/script relying 19220 * on that behaviour, if<0>:0 is considered to be 19221 * a valid interface. 19222 * 19223 * If alias has two or more digits and the first 19224 * is zero, fail. 19225 */ 19226 if (&cp[2] < endp && cp[1] == '0') 19227 return (NULL); 19228 } 19229 19230 if (cp <= name) { 19231 cp = endp; 19232 } else { 19233 *cp = '\0'; 19234 } 19235 19236 /* 19237 * Look up the ILL, based on the portion of the name 19238 * before the slash. ill_lookup_on_name returns a held ill. 19239 * Temporary to check whether ill exists already. If so 19240 * ill_lookup_on_name will clear it. 19241 */ 19242 ill = ill_lookup_on_name(name, do_alloc, isv6, 19243 q, mp, func, error, &did_alloc, ipst); 19244 if (cp != endp) 19245 *cp = IPIF_SEPARATOR_CHAR; 19246 if (ill == NULL) 19247 return (NULL); 19248 19249 /* Establish the unit number in the name. */ 19250 id = 0; 19251 if (cp < endp && *endp == '\0') { 19252 /* If there was a colon, the unit number follows. */ 19253 cp++; 19254 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19255 ill_refrele(ill); 19256 if (error != NULL) 19257 *error = ENXIO; 19258 return (NULL); 19259 } 19260 } 19261 19262 GRAB_CONN_LOCK(q); 19263 mutex_enter(&ill->ill_lock); 19264 /* Now see if there is an IPIF with this unit number. */ 19265 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19266 if (ipif->ipif_id == id) { 19267 if (zoneid != ALL_ZONES && 19268 zoneid != ipif->ipif_zoneid && 19269 ipif->ipif_zoneid != ALL_ZONES) { 19270 mutex_exit(&ill->ill_lock); 19271 RELEASE_CONN_LOCK(q); 19272 ill_refrele(ill); 19273 if (error != NULL) 19274 *error = ENXIO; 19275 return (NULL); 19276 } 19277 /* 19278 * The block comment at the start of ipif_down 19279 * explains the use of the macros used below 19280 */ 19281 if (IPIF_CAN_LOOKUP(ipif)) { 19282 ipif_refhold_locked(ipif); 19283 mutex_exit(&ill->ill_lock); 19284 if (!did_alloc) 19285 *exists = B_TRUE; 19286 /* 19287 * Drop locks before calling ill_refrele 19288 * since it can potentially call into 19289 * ipif_ill_refrele_tail which can end up 19290 * in trying to acquire any lock. 19291 */ 19292 RELEASE_CONN_LOCK(q); 19293 ill_refrele(ill); 19294 return (ipif); 19295 } else if (IPIF_CAN_WAIT(ipif, q)) { 19296 ipsq = ill->ill_phyint->phyint_ipsq; 19297 mutex_enter(&ipsq->ipsq_lock); 19298 mutex_exit(&ill->ill_lock); 19299 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19300 mutex_exit(&ipsq->ipsq_lock); 19301 RELEASE_CONN_LOCK(q); 19302 ill_refrele(ill); 19303 *error = EINPROGRESS; 19304 return (NULL); 19305 } 19306 } 19307 } 19308 RELEASE_CONN_LOCK(q); 19309 19310 if (!do_alloc) { 19311 mutex_exit(&ill->ill_lock); 19312 ill_refrele(ill); 19313 if (error != NULL) 19314 *error = ENXIO; 19315 return (NULL); 19316 } 19317 19318 /* 19319 * If none found, atomically allocate and return a new one. 19320 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19321 * to support "receive only" use of lo0:1 etc. as is still done 19322 * below as an initial guess. 19323 * However, this is now likely to be overriden later in ipif_up_done() 19324 * when we know for sure what address has been configured on the 19325 * interface, since we might have more than one loopback interface 19326 * with a loopback address, e.g. in the case of zones, and all the 19327 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19328 */ 19329 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19330 ire_type = IRE_LOOPBACK; 19331 else 19332 ire_type = IRE_LOCAL; 19333 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19334 if (ipif != NULL) 19335 ipif_refhold_locked(ipif); 19336 else if (error != NULL) 19337 *error = ENOMEM; 19338 mutex_exit(&ill->ill_lock); 19339 ill_refrele(ill); 19340 return (ipif); 19341 } 19342 19343 /* 19344 * This routine is called whenever a new address comes up on an ipif. If 19345 * we are configured to respond to address mask requests, then we are supposed 19346 * to broadcast an address mask reply at this time. This routine is also 19347 * called if we are already up, but a netmask change is made. This is legal 19348 * but might not make the system manager very popular. (May be called 19349 * as writer.) 19350 */ 19351 void 19352 ipif_mask_reply(ipif_t *ipif) 19353 { 19354 icmph_t *icmph; 19355 ipha_t *ipha; 19356 mblk_t *mp; 19357 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19358 19359 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19360 19361 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19362 return; 19363 19364 /* ICMP mask reply is IPv4 only */ 19365 ASSERT(!ipif->ipif_isv6); 19366 /* ICMP mask reply is not for a loopback interface */ 19367 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19368 19369 mp = allocb(REPLY_LEN, BPRI_HI); 19370 if (mp == NULL) 19371 return; 19372 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19373 19374 ipha = (ipha_t *)mp->b_rptr; 19375 bzero(ipha, REPLY_LEN); 19376 *ipha = icmp_ipha; 19377 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19378 ipha->ipha_src = ipif->ipif_src_addr; 19379 ipha->ipha_dst = ipif->ipif_brd_addr; 19380 ipha->ipha_length = htons(REPLY_LEN); 19381 ipha->ipha_ident = 0; 19382 19383 icmph = (icmph_t *)&ipha[1]; 19384 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19385 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19386 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19387 19388 put(ipif->ipif_wq, mp); 19389 19390 #undef REPLY_LEN 19391 } 19392 19393 /* 19394 * When the mtu in the ipif changes, we call this routine through ire_walk 19395 * to update all the relevant IREs. 19396 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19397 */ 19398 static void 19399 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19400 { 19401 ipif_t *ipif = (ipif_t *)ipif_arg; 19402 19403 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19404 return; 19405 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19406 } 19407 19408 /* 19409 * When the mtu in the ill changes, we call this routine through ire_walk 19410 * to update all the relevant IREs. 19411 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19412 */ 19413 void 19414 ill_mtu_change(ire_t *ire, char *ill_arg) 19415 { 19416 ill_t *ill = (ill_t *)ill_arg; 19417 19418 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19419 return; 19420 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19421 } 19422 19423 /* 19424 * Join the ipif specific multicast groups. 19425 * Must be called after a mapping has been set up in the resolver. (Always 19426 * called as writer.) 19427 */ 19428 void 19429 ipif_multicast_up(ipif_t *ipif) 19430 { 19431 int err, index; 19432 ill_t *ill; 19433 19434 ASSERT(IAM_WRITER_IPIF(ipif)); 19435 19436 ill = ipif->ipif_ill; 19437 index = ill->ill_phyint->phyint_ifindex; 19438 19439 ip1dbg(("ipif_multicast_up\n")); 19440 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19441 return; 19442 19443 if (ipif->ipif_isv6) { 19444 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19445 return; 19446 19447 /* Join the all hosts multicast address */ 19448 ip1dbg(("ipif_multicast_up - addmulti\n")); 19449 /* 19450 * Passing B_TRUE means we have to join the multicast 19451 * membership on this interface even though this is 19452 * FAILED. If we join on a different one in the group, 19453 * we will not be able to delete the membership later 19454 * as we currently don't track where we join when we 19455 * join within the kernel unlike applications where 19456 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19457 * for more on this. 19458 */ 19459 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19460 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19461 if (err != 0) { 19462 ip0dbg(("ipif_multicast_up: " 19463 "all_hosts_mcast failed %d\n", 19464 err)); 19465 return; 19466 } 19467 /* 19468 * Enable multicast for the solicited node multicast address 19469 */ 19470 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19471 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19472 19473 ipv6_multi.s6_addr32[3] |= 19474 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19475 19476 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19477 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19478 NULL); 19479 if (err != 0) { 19480 ip0dbg(("ipif_multicast_up: solicited MC" 19481 " failed %d\n", err)); 19482 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19483 ill, ill->ill_phyint->phyint_ifindex, 19484 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19485 return; 19486 } 19487 } 19488 } else { 19489 if (ipif->ipif_lcl_addr == INADDR_ANY) 19490 return; 19491 19492 /* Join the all hosts multicast address */ 19493 ip1dbg(("ipif_multicast_up - addmulti\n")); 19494 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19495 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19496 if (err) { 19497 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19498 return; 19499 } 19500 } 19501 ipif->ipif_multicast_up = 1; 19502 } 19503 19504 /* 19505 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19506 * (Explicit memberships are blown away in ill_leave_multicast() when the 19507 * ill is brought down.) 19508 */ 19509 static void 19510 ipif_multicast_down(ipif_t *ipif) 19511 { 19512 int err; 19513 19514 ASSERT(IAM_WRITER_IPIF(ipif)); 19515 19516 ip1dbg(("ipif_multicast_down\n")); 19517 if (!ipif->ipif_multicast_up) 19518 return; 19519 19520 ip1dbg(("ipif_multicast_down - delmulti\n")); 19521 19522 if (!ipif->ipif_isv6) { 19523 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19524 B_TRUE); 19525 if (err != 0) 19526 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19527 19528 ipif->ipif_multicast_up = 0; 19529 return; 19530 } 19531 19532 /* 19533 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19534 * we should look for ilms on this ill rather than the ones that have 19535 * been failed over here. They are here temporarily. As 19536 * ipif_multicast_up has joined on this ill, we should delete only 19537 * from this ill. 19538 */ 19539 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19540 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19541 B_TRUE, B_TRUE); 19542 if (err != 0) { 19543 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19544 err)); 19545 } 19546 /* 19547 * Disable multicast for the solicited node multicast address 19548 */ 19549 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19550 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19551 19552 ipv6_multi.s6_addr32[3] |= 19553 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19554 19555 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19556 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19557 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19558 19559 if (err != 0) { 19560 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19561 err)); 19562 } 19563 } 19564 19565 ipif->ipif_multicast_up = 0; 19566 } 19567 19568 /* 19569 * Used when an interface comes up to recreate any extra routes on this 19570 * interface. 19571 */ 19572 static ire_t ** 19573 ipif_recover_ire(ipif_t *ipif) 19574 { 19575 mblk_t *mp; 19576 ire_t **ipif_saved_irep; 19577 ire_t **irep; 19578 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19579 19580 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19581 ipif->ipif_id)); 19582 19583 mutex_enter(&ipif->ipif_saved_ire_lock); 19584 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19585 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19586 if (ipif_saved_irep == NULL) { 19587 mutex_exit(&ipif->ipif_saved_ire_lock); 19588 return (NULL); 19589 } 19590 19591 irep = ipif_saved_irep; 19592 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19593 ire_t *ire; 19594 queue_t *rfq; 19595 queue_t *stq; 19596 ifrt_t *ifrt; 19597 uchar_t *src_addr; 19598 uchar_t *gateway_addr; 19599 ushort_t type; 19600 19601 /* 19602 * When the ire was initially created and then added in 19603 * ip_rt_add(), it was created either using ipif->ipif_net_type 19604 * in the case of a traditional interface route, or as one of 19605 * the IRE_OFFSUBNET types (with the exception of 19606 * IRE_HOST types ire which is created by icmp_redirect() and 19607 * which we don't need to save or recover). In the case where 19608 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19609 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19610 * to satisfy software like GateD and Sun Cluster which creates 19611 * routes using the the loopback interface's address as a 19612 * gateway. 19613 * 19614 * As ifrt->ifrt_type reflects the already updated ire_type, 19615 * ire_create() will be called in the same way here as 19616 * in ip_rt_add(), namely using ipif->ipif_net_type when 19617 * the route looks like a traditional interface route (where 19618 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19619 * the saved ifrt->ifrt_type. This means that in the case where 19620 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19621 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19622 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19623 */ 19624 ifrt = (ifrt_t *)mp->b_rptr; 19625 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19626 if (ifrt->ifrt_type & IRE_INTERFACE) { 19627 rfq = NULL; 19628 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19629 ? ipif->ipif_rq : ipif->ipif_wq; 19630 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19631 ? (uint8_t *)&ifrt->ifrt_src_addr 19632 : (uint8_t *)&ipif->ipif_src_addr; 19633 gateway_addr = NULL; 19634 type = ipif->ipif_net_type; 19635 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19636 /* Recover multiroute broadcast IRE. */ 19637 rfq = ipif->ipif_rq; 19638 stq = ipif->ipif_wq; 19639 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19640 ? (uint8_t *)&ifrt->ifrt_src_addr 19641 : (uint8_t *)&ipif->ipif_src_addr; 19642 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19643 type = ifrt->ifrt_type; 19644 } else { 19645 rfq = NULL; 19646 stq = NULL; 19647 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19648 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19649 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19650 type = ifrt->ifrt_type; 19651 } 19652 19653 /* 19654 * Create a copy of the IRE with the saved address and netmask. 19655 */ 19656 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19657 "0x%x/0x%x\n", 19658 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19659 ntohl(ifrt->ifrt_addr), 19660 ntohl(ifrt->ifrt_mask))); 19661 ire = ire_create( 19662 (uint8_t *)&ifrt->ifrt_addr, 19663 (uint8_t *)&ifrt->ifrt_mask, 19664 src_addr, 19665 gateway_addr, 19666 &ifrt->ifrt_max_frag, 19667 NULL, 19668 rfq, 19669 stq, 19670 type, 19671 ipif, 19672 0, 19673 0, 19674 0, 19675 ifrt->ifrt_flags, 19676 &ifrt->ifrt_iulp_info, 19677 NULL, 19678 NULL, 19679 ipst); 19680 19681 if (ire == NULL) { 19682 mutex_exit(&ipif->ipif_saved_ire_lock); 19683 kmem_free(ipif_saved_irep, 19684 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19685 return (NULL); 19686 } 19687 19688 /* 19689 * Some software (for example, GateD and Sun Cluster) attempts 19690 * to create (what amount to) IRE_PREFIX routes with the 19691 * loopback address as the gateway. This is primarily done to 19692 * set up prefixes with the RTF_REJECT flag set (for example, 19693 * when generating aggregate routes.) 19694 * 19695 * If the IRE type (as defined by ipif->ipif_net_type) is 19696 * IRE_LOOPBACK, then we map the request into a 19697 * IRE_IF_NORESOLVER. 19698 */ 19699 if (ipif->ipif_net_type == IRE_LOOPBACK) 19700 ire->ire_type = IRE_IF_NORESOLVER; 19701 /* 19702 * ire held by ire_add, will be refreled' towards the 19703 * the end of ipif_up_done 19704 */ 19705 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19706 *irep = ire; 19707 irep++; 19708 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19709 } 19710 mutex_exit(&ipif->ipif_saved_ire_lock); 19711 return (ipif_saved_irep); 19712 } 19713 19714 /* 19715 * Used to set the netmask and broadcast address to default values when the 19716 * interface is brought up. (Always called as writer.) 19717 */ 19718 static void 19719 ipif_set_default(ipif_t *ipif) 19720 { 19721 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19722 19723 if (!ipif->ipif_isv6) { 19724 /* 19725 * Interface holds an IPv4 address. Default 19726 * mask is the natural netmask. 19727 */ 19728 if (!ipif->ipif_net_mask) { 19729 ipaddr_t v4mask; 19730 19731 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19732 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19733 } 19734 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19735 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19736 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19737 } else { 19738 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19739 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19740 } 19741 /* 19742 * NOTE: SunOS 4.X does this even if the broadcast address 19743 * has been already set thus we do the same here. 19744 */ 19745 if (ipif->ipif_flags & IPIF_BROADCAST) { 19746 ipaddr_t v4addr; 19747 19748 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19749 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19750 } 19751 } else { 19752 /* 19753 * Interface holds an IPv6-only address. Default 19754 * mask is all-ones. 19755 */ 19756 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19757 ipif->ipif_v6net_mask = ipv6_all_ones; 19758 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19759 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19760 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19761 } else { 19762 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19763 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19764 } 19765 } 19766 } 19767 19768 /* 19769 * Return 0 if this address can be used as local address without causing 19770 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19771 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19772 * Special checks are needed to allow the same IPv6 link-local address 19773 * on different ills. 19774 * TODO: allowing the same site-local address on different ill's. 19775 */ 19776 int 19777 ip_addr_availability_check(ipif_t *new_ipif) 19778 { 19779 in6_addr_t our_v6addr; 19780 ill_t *ill; 19781 ipif_t *ipif; 19782 ill_walk_context_t ctx; 19783 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19784 19785 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19786 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19787 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19788 19789 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19790 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19791 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19792 return (0); 19793 19794 our_v6addr = new_ipif->ipif_v6lcl_addr; 19795 19796 if (new_ipif->ipif_isv6) 19797 ill = ILL_START_WALK_V6(&ctx, ipst); 19798 else 19799 ill = ILL_START_WALK_V4(&ctx, ipst); 19800 19801 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19802 for (ipif = ill->ill_ipif; ipif != NULL; 19803 ipif = ipif->ipif_next) { 19804 if ((ipif == new_ipif) || 19805 !(ipif->ipif_flags & IPIF_UP) || 19806 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19807 continue; 19808 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19809 &our_v6addr)) { 19810 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19811 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19812 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19813 ipif->ipif_flags |= IPIF_UNNUMBERED; 19814 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19815 new_ipif->ipif_ill != ill) 19816 continue; 19817 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19818 new_ipif->ipif_ill != ill) 19819 continue; 19820 else if (new_ipif->ipif_zoneid != 19821 ipif->ipif_zoneid && 19822 ipif->ipif_zoneid != ALL_ZONES && 19823 IS_LOOPBACK(ill)) 19824 continue; 19825 else if (new_ipif->ipif_ill == ill) 19826 return (EADDRINUSE); 19827 else 19828 return (EADDRNOTAVAIL); 19829 } 19830 } 19831 } 19832 19833 return (0); 19834 } 19835 19836 /* 19837 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19838 * IREs for the ipif. 19839 * When the routine returns EINPROGRESS then mp has been consumed and 19840 * the ioctl will be acked from ip_rput_dlpi. 19841 */ 19842 static int 19843 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19844 { 19845 ill_t *ill = ipif->ipif_ill; 19846 boolean_t isv6 = ipif->ipif_isv6; 19847 int err = 0; 19848 boolean_t success; 19849 19850 ASSERT(IAM_WRITER_IPIF(ipif)); 19851 19852 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19853 19854 /* Shouldn't get here if it is already up. */ 19855 if (ipif->ipif_flags & IPIF_UP) 19856 return (EALREADY); 19857 19858 /* Skip arp/ndp for any loopback interface. */ 19859 if (ill->ill_wq != NULL) { 19860 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19861 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19862 19863 if (!ill->ill_dl_up) { 19864 /* 19865 * ill_dl_up is not yet set. i.e. we are yet to 19866 * DL_BIND with the driver and this is the first 19867 * logical interface on the ill to become "up". 19868 * Tell the driver to get going (via DL_BIND_REQ). 19869 * Note that changing "significant" IFF_ flags 19870 * address/netmask etc cause a down/up dance, but 19871 * does not cause an unbind (DL_UNBIND) with the driver 19872 */ 19873 return (ill_dl_up(ill, ipif, mp, q)); 19874 } 19875 19876 /* 19877 * ipif_resolver_up may end up sending an 19878 * AR_INTERFACE_UP message to ARP, which would, in 19879 * turn send a DLPI message to the driver. ioctls are 19880 * serialized and so we cannot send more than one 19881 * interface up message at a time. If ipif_resolver_up 19882 * does send an interface up message to ARP, we get 19883 * EINPROGRESS and we will complete in ip_arp_done. 19884 */ 19885 19886 ASSERT(connp != NULL || !CONN_Q(q)); 19887 ASSERT(ipsq->ipsq_pending_mp == NULL); 19888 if (connp != NULL) 19889 mutex_enter(&connp->conn_lock); 19890 mutex_enter(&ill->ill_lock); 19891 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19892 mutex_exit(&ill->ill_lock); 19893 if (connp != NULL) 19894 mutex_exit(&connp->conn_lock); 19895 if (!success) 19896 return (EINTR); 19897 19898 /* 19899 * Crank up IPv6 neighbor discovery 19900 * Unlike ARP, this should complete when 19901 * ipif_ndp_up returns. However, for 19902 * ILLF_XRESOLV interfaces we also send a 19903 * AR_INTERFACE_UP to the external resolver. 19904 * That ioctl will complete in ip_rput. 19905 */ 19906 if (isv6) { 19907 err = ipif_ndp_up(ipif); 19908 if (err != 0) { 19909 if (err != EINPROGRESS) 19910 mp = ipsq_pending_mp_get(ipsq, &connp); 19911 return (err); 19912 } 19913 } 19914 /* Now, ARP */ 19915 err = ipif_resolver_up(ipif, Res_act_initial); 19916 if (err == EINPROGRESS) { 19917 /* We will complete it in ip_arp_done */ 19918 return (err); 19919 } 19920 mp = ipsq_pending_mp_get(ipsq, &connp); 19921 ASSERT(mp != NULL); 19922 if (err != 0) 19923 return (err); 19924 } else { 19925 /* 19926 * Interfaces without underlying hardware don't do duplicate 19927 * address detection. 19928 */ 19929 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19930 ipif->ipif_addr_ready = 1; 19931 } 19932 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19933 } 19934 19935 /* 19936 * Perform a bind for the physical device. 19937 * When the routine returns EINPROGRESS then mp has been consumed and 19938 * the ioctl will be acked from ip_rput_dlpi. 19939 * Allocate an unbind message and save it until ipif_down. 19940 */ 19941 static int 19942 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19943 { 19944 areq_t *areq; 19945 mblk_t *areq_mp = NULL; 19946 mblk_t *bind_mp = NULL; 19947 mblk_t *unbind_mp = NULL; 19948 conn_t *connp; 19949 boolean_t success; 19950 uint16_t sap_addr; 19951 19952 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19953 ASSERT(IAM_WRITER_ILL(ill)); 19954 ASSERT(mp != NULL); 19955 19956 /* Create a resolver cookie for ARP */ 19957 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19958 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19959 if (areq_mp == NULL) 19960 return (ENOMEM); 19961 19962 freemsg(ill->ill_resolver_mp); 19963 ill->ill_resolver_mp = areq_mp; 19964 areq = (areq_t *)areq_mp->b_rptr; 19965 sap_addr = ill->ill_sap; 19966 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19967 } 19968 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19969 DL_BIND_REQ); 19970 if (bind_mp == NULL) 19971 goto bad; 19972 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19973 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19974 19975 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19976 if (unbind_mp == NULL) 19977 goto bad; 19978 19979 /* 19980 * Record state needed to complete this operation when the 19981 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19982 */ 19983 ASSERT(WR(q)->q_next == NULL); 19984 connp = Q_TO_CONN(q); 19985 19986 mutex_enter(&connp->conn_lock); 19987 mutex_enter(&ipif->ipif_ill->ill_lock); 19988 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19989 mutex_exit(&ipif->ipif_ill->ill_lock); 19990 mutex_exit(&connp->conn_lock); 19991 if (!success) 19992 goto bad; 19993 19994 /* 19995 * Save the unbind message for ill_dl_down(); it will be consumed when 19996 * the interface goes down. 19997 */ 19998 ASSERT(ill->ill_unbind_mp == NULL); 19999 ill->ill_unbind_mp = unbind_mp; 20000 20001 ill_dlpi_send(ill, bind_mp); 20002 /* Send down link-layer capabilities probe if not already done. */ 20003 ill_capability_probe(ill); 20004 20005 /* 20006 * Sysid used to rely on the fact that netboots set domainname 20007 * and the like. Now that miniroot boots aren't strictly netboots 20008 * and miniroot network configuration is driven from userland 20009 * these things still need to be set. This situation can be detected 20010 * by comparing the interface being configured here to the one 20011 * dhcack was set to reference by the boot loader. Once sysid is 20012 * converted to use dhcp_ipc_getinfo() this call can go away. 20013 */ 20014 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20015 (strcmp(ill->ill_name, dhcack) == 0) && 20016 (strlen(srpc_domain) == 0)) { 20017 if (dhcpinit() != 0) 20018 cmn_err(CE_WARN, "no cached dhcp response"); 20019 } 20020 20021 /* 20022 * This operation will complete in ip_rput_dlpi with either 20023 * a DL_BIND_ACK or DL_ERROR_ACK. 20024 */ 20025 return (EINPROGRESS); 20026 bad: 20027 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20028 /* 20029 * We don't have to check for possible removal from illgrp 20030 * as we have not yet inserted in illgrp. For groups 20031 * without names, this ipif is still not UP and hence 20032 * this could not have possibly had any influence in forming 20033 * groups. 20034 */ 20035 20036 freemsg(bind_mp); 20037 freemsg(unbind_mp); 20038 return (ENOMEM); 20039 } 20040 20041 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20042 20043 /* 20044 * DLPI and ARP is up. 20045 * Create all the IREs associated with an interface bring up multicast. 20046 * Set the interface flag and finish other initialization 20047 * that potentially had to be differed to after DL_BIND_ACK. 20048 */ 20049 int 20050 ipif_up_done(ipif_t *ipif) 20051 { 20052 ire_t *ire_array[20]; 20053 ire_t **irep = ire_array; 20054 ire_t **irep1; 20055 ipaddr_t net_mask = 0; 20056 ipaddr_t subnet_mask, route_mask; 20057 ill_t *ill = ipif->ipif_ill; 20058 queue_t *stq; 20059 ipif_t *src_ipif; 20060 ipif_t *tmp_ipif; 20061 boolean_t flush_ire_cache = B_TRUE; 20062 int err = 0; 20063 phyint_t *phyi; 20064 ire_t **ipif_saved_irep = NULL; 20065 int ipif_saved_ire_cnt; 20066 int cnt; 20067 boolean_t src_ipif_held = B_FALSE; 20068 boolean_t ire_added = B_FALSE; 20069 boolean_t loopback = B_FALSE; 20070 ip_stack_t *ipst = ill->ill_ipst; 20071 20072 ip1dbg(("ipif_up_done(%s:%u)\n", 20073 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20074 /* Check if this is a loopback interface */ 20075 if (ipif->ipif_ill->ill_wq == NULL) 20076 loopback = B_TRUE; 20077 20078 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20079 /* 20080 * If all other interfaces for this ill are down or DEPRECATED, 20081 * or otherwise unsuitable for source address selection, remove 20082 * any IRE_CACHE entries for this ill to make sure source 20083 * address selection gets to take this new ipif into account. 20084 * No need to hold ill_lock while traversing the ipif list since 20085 * we are writer 20086 */ 20087 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20088 tmp_ipif = tmp_ipif->ipif_next) { 20089 if (((tmp_ipif->ipif_flags & 20090 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20091 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20092 (tmp_ipif == ipif)) 20093 continue; 20094 /* first useable pre-existing interface */ 20095 flush_ire_cache = B_FALSE; 20096 break; 20097 } 20098 if (flush_ire_cache) 20099 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20100 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20101 20102 /* 20103 * Figure out which way the send-to queue should go. Only 20104 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20105 * should show up here. 20106 */ 20107 switch (ill->ill_net_type) { 20108 case IRE_IF_RESOLVER: 20109 stq = ill->ill_rq; 20110 break; 20111 case IRE_IF_NORESOLVER: 20112 case IRE_LOOPBACK: 20113 stq = ill->ill_wq; 20114 break; 20115 default: 20116 return (EINVAL); 20117 } 20118 20119 if (IS_LOOPBACK(ill)) { 20120 /* 20121 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20122 * ipif_lookup_on_name(), but in the case of zones we can have 20123 * several loopback addresses on lo0. So all the interfaces with 20124 * loopback addresses need to be marked IRE_LOOPBACK. 20125 */ 20126 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20127 htonl(INADDR_LOOPBACK)) 20128 ipif->ipif_ire_type = IRE_LOOPBACK; 20129 else 20130 ipif->ipif_ire_type = IRE_LOCAL; 20131 } 20132 20133 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20134 /* 20135 * Can't use our source address. Select a different 20136 * source address for the IRE_INTERFACE and IRE_LOCAL 20137 */ 20138 src_ipif = ipif_select_source(ipif->ipif_ill, 20139 ipif->ipif_subnet, ipif->ipif_zoneid); 20140 if (src_ipif == NULL) 20141 src_ipif = ipif; /* Last resort */ 20142 else 20143 src_ipif_held = B_TRUE; 20144 } else { 20145 src_ipif = ipif; 20146 } 20147 20148 /* Create all the IREs associated with this interface */ 20149 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20150 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20151 20152 /* 20153 * If we're on a labeled system then make sure that zone- 20154 * private addresses have proper remote host database entries. 20155 */ 20156 if (is_system_labeled() && 20157 ipif->ipif_ire_type != IRE_LOOPBACK && 20158 !tsol_check_interface_address(ipif)) 20159 return (EINVAL); 20160 20161 /* Register the source address for __sin6_src_id */ 20162 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20163 ipif->ipif_zoneid, ipst); 20164 if (err != 0) { 20165 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20166 return (err); 20167 } 20168 20169 /* If the interface address is set, create the local IRE. */ 20170 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20171 (void *)ipif, 20172 ipif->ipif_ire_type, 20173 ntohl(ipif->ipif_lcl_addr))); 20174 *irep++ = ire_create( 20175 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20176 (uchar_t *)&ip_g_all_ones, /* mask */ 20177 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20178 NULL, /* no gateway */ 20179 &ip_loopback_mtuplus, /* max frag size */ 20180 NULL, 20181 ipif->ipif_rq, /* recv-from queue */ 20182 NULL, /* no send-to queue */ 20183 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20184 ipif, 20185 0, 20186 0, 20187 0, 20188 (ipif->ipif_flags & IPIF_PRIVATE) ? 20189 RTF_PRIVATE : 0, 20190 &ire_uinfo_null, 20191 NULL, 20192 NULL, 20193 ipst); 20194 } else { 20195 ip1dbg(( 20196 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20197 ipif->ipif_ire_type, 20198 ntohl(ipif->ipif_lcl_addr), 20199 (uint_t)ipif->ipif_flags)); 20200 } 20201 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20202 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20203 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20204 } else { 20205 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20206 } 20207 20208 subnet_mask = ipif->ipif_net_mask; 20209 20210 /* 20211 * If mask was not specified, use natural netmask of 20212 * interface address. Also, store this mask back into the 20213 * ipif struct. 20214 */ 20215 if (subnet_mask == 0) { 20216 subnet_mask = net_mask; 20217 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20218 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20219 ipif->ipif_v6subnet); 20220 } 20221 20222 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20223 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20224 ipif->ipif_subnet != INADDR_ANY) { 20225 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20226 20227 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20228 route_mask = IP_HOST_MASK; 20229 } else { 20230 route_mask = subnet_mask; 20231 } 20232 20233 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20234 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20235 (void *)ipif, (void *)ill, 20236 ill->ill_net_type, 20237 ntohl(ipif->ipif_subnet))); 20238 *irep++ = ire_create( 20239 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20240 (uchar_t *)&route_mask, /* mask */ 20241 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20242 NULL, /* no gateway */ 20243 &ipif->ipif_mtu, /* max frag */ 20244 NULL, 20245 NULL, /* no recv queue */ 20246 stq, /* send-to queue */ 20247 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20248 ipif, 20249 0, 20250 0, 20251 0, 20252 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20253 &ire_uinfo_null, 20254 NULL, 20255 NULL, 20256 ipst); 20257 } 20258 20259 /* 20260 * Create any necessary broadcast IREs. 20261 */ 20262 if ((ipif->ipif_subnet != INADDR_ANY) && 20263 (ipif->ipif_flags & IPIF_BROADCAST)) 20264 irep = ipif_create_bcast_ires(ipif, irep); 20265 20266 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20267 20268 /* If an earlier ire_create failed, get out now */ 20269 for (irep1 = irep; irep1 > ire_array; ) { 20270 irep1--; 20271 if (*irep1 == NULL) { 20272 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20273 err = ENOMEM; 20274 goto bad; 20275 } 20276 } 20277 20278 /* 20279 * Need to atomically check for ip_addr_availablity_check 20280 * under ip_addr_avail_lock, and if it fails got bad, and remove 20281 * from group also.The ill_g_lock is grabbed as reader 20282 * just to make sure no new ills or new ipifs are being added 20283 * to the system while we are checking the uniqueness of addresses. 20284 */ 20285 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20286 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20287 /* Mark it up, and increment counters. */ 20288 ipif->ipif_flags |= IPIF_UP; 20289 ill->ill_ipif_up_count++; 20290 err = ip_addr_availability_check(ipif); 20291 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20292 rw_exit(&ipst->ips_ill_g_lock); 20293 20294 if (err != 0) { 20295 /* 20296 * Our address may already be up on the same ill. In this case, 20297 * the ARP entry for our ipif replaced the one for the other 20298 * ipif. So we don't want to delete it (otherwise the other ipif 20299 * would be unable to send packets). 20300 * ip_addr_availability_check() identifies this case for us and 20301 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20302 * which is the expected error code. 20303 */ 20304 if (err == EADDRINUSE) { 20305 freemsg(ipif->ipif_arp_del_mp); 20306 ipif->ipif_arp_del_mp = NULL; 20307 err = EADDRNOTAVAIL; 20308 } 20309 ill->ill_ipif_up_count--; 20310 ipif->ipif_flags &= ~IPIF_UP; 20311 goto bad; 20312 } 20313 20314 /* 20315 * Add in all newly created IREs. ire_create_bcast() has 20316 * already checked for duplicates of the IRE_BROADCAST type. 20317 * We want to add before we call ifgrp_insert which wants 20318 * to know whether IRE_IF_RESOLVER exists or not. 20319 * 20320 * NOTE : We refrele the ire though we may branch to "bad" 20321 * later on where we do ire_delete. This is okay 20322 * because nobody can delete it as we are running 20323 * exclusively. 20324 */ 20325 for (irep1 = irep; irep1 > ire_array; ) { 20326 irep1--; 20327 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20328 /* 20329 * refheld by ire_add. refele towards the end of the func 20330 */ 20331 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20332 } 20333 ire_added = B_TRUE; 20334 /* 20335 * Form groups if possible. 20336 * 20337 * If we are supposed to be in a ill_group with a name, insert it 20338 * now as we know that at least one ipif is UP. Otherwise form 20339 * nameless groups. 20340 * 20341 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20342 * this ipif into the appropriate interface group, or create a 20343 * new one. If this is already in a nameless group, we try to form 20344 * a bigger group looking at other ills potentially sharing this 20345 * ipif's prefix. 20346 */ 20347 phyi = ill->ill_phyint; 20348 if (phyi->phyint_groupname_len != 0) { 20349 ASSERT(phyi->phyint_groupname != NULL); 20350 if (ill->ill_ipif_up_count == 1) { 20351 ASSERT(ill->ill_group == NULL); 20352 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20353 phyi->phyint_groupname, NULL, B_TRUE); 20354 if (err != 0) { 20355 ip1dbg(("ipif_up_done: illgrp allocation " 20356 "failed, error %d\n", err)); 20357 goto bad; 20358 } 20359 } 20360 ASSERT(ill->ill_group != NULL); 20361 } 20362 20363 /* 20364 * When this is part of group, we need to make sure that 20365 * any broadcast ires created because of this ipif coming 20366 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20367 * so that we don't receive duplicate broadcast packets. 20368 */ 20369 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20370 ipif_renominate_bcast(ipif); 20371 20372 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20373 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20374 ipif_saved_irep = ipif_recover_ire(ipif); 20375 20376 if (!loopback) { 20377 /* 20378 * If the broadcast address has been set, make sure it makes 20379 * sense based on the interface address. 20380 * Only match on ill since we are sharing broadcast addresses. 20381 */ 20382 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20383 (ipif->ipif_flags & IPIF_BROADCAST)) { 20384 ire_t *ire; 20385 20386 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20387 IRE_BROADCAST, ipif, ALL_ZONES, 20388 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20389 20390 if (ire == NULL) { 20391 /* 20392 * If there isn't a matching broadcast IRE, 20393 * revert to the default for this netmask. 20394 */ 20395 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20396 mutex_enter(&ipif->ipif_ill->ill_lock); 20397 ipif_set_default(ipif); 20398 mutex_exit(&ipif->ipif_ill->ill_lock); 20399 } else { 20400 ire_refrele(ire); 20401 } 20402 } 20403 20404 } 20405 20406 /* This is the first interface on this ill */ 20407 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20408 /* 20409 * Need to recover all multicast memberships in the driver. 20410 * This had to be deferred until we had attached. 20411 */ 20412 ill_recover_multicast(ill); 20413 } 20414 /* Join the allhosts multicast address */ 20415 ipif_multicast_up(ipif); 20416 20417 if (!loopback) { 20418 /* 20419 * See whether anybody else would benefit from the 20420 * new ipif that we added. We call this always rather 20421 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20422 * ipif is for the benefit of illgrp_insert (done above) 20423 * which does not do source address selection as it does 20424 * not want to re-create interface routes that we are 20425 * having reference to it here. 20426 */ 20427 ill_update_source_selection(ill); 20428 } 20429 20430 for (irep1 = irep; irep1 > ire_array; ) { 20431 irep1--; 20432 if (*irep1 != NULL) { 20433 /* was held in ire_add */ 20434 ire_refrele(*irep1); 20435 } 20436 } 20437 20438 cnt = ipif_saved_ire_cnt; 20439 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20440 if (*irep1 != NULL) { 20441 /* was held in ire_add */ 20442 ire_refrele(*irep1); 20443 } 20444 } 20445 20446 if (!loopback && ipif->ipif_addr_ready) { 20447 /* Broadcast an address mask reply. */ 20448 ipif_mask_reply(ipif); 20449 } 20450 if (ipif_saved_irep != NULL) { 20451 kmem_free(ipif_saved_irep, 20452 ipif_saved_ire_cnt * sizeof (ire_t *)); 20453 } 20454 if (src_ipif_held) 20455 ipif_refrele(src_ipif); 20456 20457 /* 20458 * This had to be deferred until we had bound. Tell routing sockets and 20459 * others that this interface is up if it looks like the address has 20460 * been validated. Otherwise, if it isn't ready yet, wait for 20461 * duplicate address detection to do its thing. 20462 */ 20463 if (ipif->ipif_addr_ready) { 20464 ip_rts_ifmsg(ipif); 20465 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20466 /* Let SCTP update the status for this ipif */ 20467 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20468 } 20469 return (0); 20470 20471 bad: 20472 ip1dbg(("ipif_up_done: FAILED \n")); 20473 /* 20474 * We don't have to bother removing from ill groups because 20475 * 20476 * 1) For groups with names, we insert only when the first ipif 20477 * comes up. In that case if it fails, it will not be in any 20478 * group. So, we need not try to remove for that case. 20479 * 20480 * 2) For groups without names, either we tried to insert ipif_ill 20481 * in a group as singleton or found some other group to become 20482 * a bigger group. For the former, if it fails we don't have 20483 * anything to do as ipif_ill is not in the group and for the 20484 * latter, there are no failures in illgrp_insert/illgrp_delete 20485 * (ENOMEM can't occur for this. Check ifgrp_insert). 20486 */ 20487 while (irep > ire_array) { 20488 irep--; 20489 if (*irep != NULL) { 20490 ire_delete(*irep); 20491 if (ire_added) 20492 ire_refrele(*irep); 20493 } 20494 } 20495 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20496 20497 if (ipif_saved_irep != NULL) { 20498 kmem_free(ipif_saved_irep, 20499 ipif_saved_ire_cnt * sizeof (ire_t *)); 20500 } 20501 if (src_ipif_held) 20502 ipif_refrele(src_ipif); 20503 20504 ipif_arp_down(ipif); 20505 return (err); 20506 } 20507 20508 /* 20509 * Turn off the ARP with the ILLF_NOARP flag. 20510 */ 20511 static int 20512 ill_arp_off(ill_t *ill) 20513 { 20514 mblk_t *arp_off_mp = NULL; 20515 mblk_t *arp_on_mp = NULL; 20516 20517 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20518 20519 ASSERT(IAM_WRITER_ILL(ill)); 20520 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20521 20522 /* 20523 * If the on message is still around we've already done 20524 * an arp_off without doing an arp_on thus there is no 20525 * work needed. 20526 */ 20527 if (ill->ill_arp_on_mp != NULL) 20528 return (0); 20529 20530 /* 20531 * Allocate an ARP on message (to be saved) and an ARP off message 20532 */ 20533 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20534 if (!arp_off_mp) 20535 return (ENOMEM); 20536 20537 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20538 if (!arp_on_mp) 20539 goto failed; 20540 20541 ASSERT(ill->ill_arp_on_mp == NULL); 20542 ill->ill_arp_on_mp = arp_on_mp; 20543 20544 /* Send an AR_INTERFACE_OFF request */ 20545 putnext(ill->ill_rq, arp_off_mp); 20546 return (0); 20547 failed: 20548 20549 if (arp_off_mp) 20550 freemsg(arp_off_mp); 20551 return (ENOMEM); 20552 } 20553 20554 /* 20555 * Turn on ARP by turning off the ILLF_NOARP flag. 20556 */ 20557 static int 20558 ill_arp_on(ill_t *ill) 20559 { 20560 mblk_t *mp; 20561 20562 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20563 20564 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20565 20566 ASSERT(IAM_WRITER_ILL(ill)); 20567 /* 20568 * Send an AR_INTERFACE_ON request if we have already done 20569 * an arp_off (which allocated the message). 20570 */ 20571 if (ill->ill_arp_on_mp != NULL) { 20572 mp = ill->ill_arp_on_mp; 20573 ill->ill_arp_on_mp = NULL; 20574 putnext(ill->ill_rq, mp); 20575 } 20576 return (0); 20577 } 20578 20579 /* 20580 * Called after either deleting ill from the group or when setting 20581 * FAILED or STANDBY on the interface. 20582 */ 20583 static void 20584 illgrp_reset_schednext(ill_t *ill) 20585 { 20586 ill_group_t *illgrp; 20587 ill_t *save_ill; 20588 20589 ASSERT(IAM_WRITER_ILL(ill)); 20590 /* 20591 * When called from illgrp_delete, ill_group will be non-NULL. 20592 * But when called from ip_sioctl_flags, it could be NULL if 20593 * somebody is setting FAILED/INACTIVE on some interface which 20594 * is not part of a group. 20595 */ 20596 illgrp = ill->ill_group; 20597 if (illgrp == NULL) 20598 return; 20599 if (illgrp->illgrp_ill_schednext != ill) 20600 return; 20601 20602 illgrp->illgrp_ill_schednext = NULL; 20603 save_ill = ill; 20604 /* 20605 * Choose a good ill to be the next one for 20606 * outbound traffic. As the flags FAILED/STANDBY is 20607 * not yet marked when called from ip_sioctl_flags, 20608 * we check for ill separately. 20609 */ 20610 for (ill = illgrp->illgrp_ill; ill != NULL; 20611 ill = ill->ill_group_next) { 20612 if ((ill != save_ill) && 20613 !(ill->ill_phyint->phyint_flags & 20614 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20615 illgrp->illgrp_ill_schednext = ill; 20616 return; 20617 } 20618 } 20619 } 20620 20621 /* 20622 * Given an ill, find the next ill in the group to be scheduled. 20623 * (This should be called by ip_newroute() before ire_create().) 20624 * The passed in ill may be pulled out of the group, after we have picked 20625 * up a different outgoing ill from the same group. However ire add will 20626 * atomically check this. 20627 */ 20628 ill_t * 20629 illgrp_scheduler(ill_t *ill) 20630 { 20631 ill_t *retill; 20632 ill_group_t *illgrp; 20633 int illcnt; 20634 int i; 20635 uint64_t flags; 20636 ip_stack_t *ipst = ill->ill_ipst; 20637 20638 /* 20639 * We don't use a lock to check for the ill_group. If this ill 20640 * is currently being inserted we may end up just returning this 20641 * ill itself. That is ok. 20642 */ 20643 if (ill->ill_group == NULL) { 20644 ill_refhold(ill); 20645 return (ill); 20646 } 20647 20648 /* 20649 * Grab the ill_g_lock as reader to make sure we are dealing with 20650 * a set of stable ills. No ill can be added or deleted or change 20651 * group while we hold the reader lock. 20652 */ 20653 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20654 if ((illgrp = ill->ill_group) == NULL) { 20655 rw_exit(&ipst->ips_ill_g_lock); 20656 ill_refhold(ill); 20657 return (ill); 20658 } 20659 20660 illcnt = illgrp->illgrp_ill_count; 20661 mutex_enter(&illgrp->illgrp_lock); 20662 retill = illgrp->illgrp_ill_schednext; 20663 20664 if (retill == NULL) 20665 retill = illgrp->illgrp_ill; 20666 20667 /* 20668 * We do a circular search beginning at illgrp_ill_schednext 20669 * or illgrp_ill. We don't check the flags against the ill lock 20670 * since it can change anytime. The ire creation will be atomic 20671 * and will fail if the ill is FAILED or OFFLINE. 20672 */ 20673 for (i = 0; i < illcnt; i++) { 20674 flags = retill->ill_phyint->phyint_flags; 20675 20676 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20677 ILL_CAN_LOOKUP(retill)) { 20678 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20679 ill_refhold(retill); 20680 break; 20681 } 20682 retill = retill->ill_group_next; 20683 if (retill == NULL) 20684 retill = illgrp->illgrp_ill; 20685 } 20686 mutex_exit(&illgrp->illgrp_lock); 20687 rw_exit(&ipst->ips_ill_g_lock); 20688 20689 return (i == illcnt ? NULL : retill); 20690 } 20691 20692 /* 20693 * Checks for availbility of a usable source address (if there is one) when the 20694 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20695 * this selection is done regardless of the destination. 20696 */ 20697 boolean_t 20698 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20699 { 20700 uint_t ifindex; 20701 ipif_t *ipif = NULL; 20702 ill_t *uill; 20703 boolean_t isv6; 20704 ip_stack_t *ipst = ill->ill_ipst; 20705 20706 ASSERT(ill != NULL); 20707 20708 isv6 = ill->ill_isv6; 20709 ifindex = ill->ill_usesrc_ifindex; 20710 if (ifindex != 0) { 20711 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20712 NULL, ipst); 20713 if (uill == NULL) 20714 return (NULL); 20715 mutex_enter(&uill->ill_lock); 20716 for (ipif = uill->ill_ipif; ipif != NULL; 20717 ipif = ipif->ipif_next) { 20718 if (!IPIF_CAN_LOOKUP(ipif)) 20719 continue; 20720 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20721 continue; 20722 if (!(ipif->ipif_flags & IPIF_UP)) 20723 continue; 20724 if (ipif->ipif_zoneid != zoneid) 20725 continue; 20726 if ((isv6 && 20727 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20728 (ipif->ipif_lcl_addr == INADDR_ANY)) 20729 continue; 20730 mutex_exit(&uill->ill_lock); 20731 ill_refrele(uill); 20732 return (B_TRUE); 20733 } 20734 mutex_exit(&uill->ill_lock); 20735 ill_refrele(uill); 20736 } 20737 return (B_FALSE); 20738 } 20739 20740 /* 20741 * Determine the best source address given a destination address and an ill. 20742 * Prefers non-deprecated over deprecated but will return a deprecated 20743 * address if there is no other choice. If there is a usable source address 20744 * on the interface pointed to by ill_usesrc_ifindex then that is given 20745 * first preference. 20746 * 20747 * Returns NULL if there is no suitable source address for the ill. 20748 * This only occurs when there is no valid source address for the ill. 20749 */ 20750 ipif_t * 20751 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20752 { 20753 ipif_t *ipif; 20754 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20755 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20756 int index = 0; 20757 boolean_t wrapped = B_FALSE; 20758 boolean_t same_subnet_only = B_FALSE; 20759 boolean_t ipif_same_found, ipif_other_found; 20760 boolean_t specific_found; 20761 ill_t *till, *usill = NULL; 20762 tsol_tpc_t *src_rhtp, *dst_rhtp; 20763 ip_stack_t *ipst = ill->ill_ipst; 20764 20765 if (ill->ill_usesrc_ifindex != 0) { 20766 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20767 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20768 if (usill != NULL) 20769 ill = usill; /* Select source from usesrc ILL */ 20770 else 20771 return (NULL); 20772 } 20773 20774 /* 20775 * If we're dealing with an unlabeled destination on a labeled system, 20776 * make sure that we ignore source addresses that are incompatible with 20777 * the destination's default label. That destination's default label 20778 * must dominate the minimum label on the source address. 20779 */ 20780 dst_rhtp = NULL; 20781 if (is_system_labeled()) { 20782 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20783 if (dst_rhtp == NULL) 20784 return (NULL); 20785 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20786 TPC_RELE(dst_rhtp); 20787 dst_rhtp = NULL; 20788 } 20789 } 20790 20791 /* 20792 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20793 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20794 * After selecting the right ipif, under ill_lock make sure ipif is 20795 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20796 * we retry. Inside the loop we still need to check for CONDEMNED, 20797 * but not under a lock. 20798 */ 20799 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20800 20801 retry: 20802 till = ill; 20803 ipif_arr[0] = NULL; 20804 20805 if (till->ill_group != NULL) 20806 till = till->ill_group->illgrp_ill; 20807 20808 /* 20809 * Choose one good source address from each ill across the group. 20810 * If possible choose a source address in the same subnet as 20811 * the destination address. 20812 * 20813 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20814 * This is okay because of the following. 20815 * 20816 * If PHYI_FAILED is set and we still have non-deprecated 20817 * addresses, it means the addresses have not yet been 20818 * failed over to a different interface. We potentially 20819 * select them to create IRE_CACHES, which will be later 20820 * flushed when the addresses move over. 20821 * 20822 * If PHYI_INACTIVE is set and we still have non-deprecated 20823 * addresses, it means either the user has configured them 20824 * or PHYI_INACTIVE has not been cleared after the addresses 20825 * been moved over. For the former, in.mpathd does a failover 20826 * when the interface becomes INACTIVE and hence we should 20827 * not find them. Once INACTIVE is set, we don't allow them 20828 * to create logical interfaces anymore. For the latter, a 20829 * flush will happen when INACTIVE is cleared which will 20830 * flush the IRE_CACHES. 20831 * 20832 * If PHYI_OFFLINE is set, all the addresses will be failed 20833 * over soon. We potentially select them to create IRE_CACHEs, 20834 * which will be later flushed when the addresses move over. 20835 * 20836 * NOTE : As ipif_select_source is called to borrow source address 20837 * for an ipif that is part of a group, source address selection 20838 * will be re-done whenever the group changes i.e either an 20839 * insertion/deletion in the group. 20840 * 20841 * Fill ipif_arr[] with source addresses, using these rules: 20842 * 20843 * 1. At most one source address from a given ill ends up 20844 * in ipif_arr[] -- that is, at most one of the ipif's 20845 * associated with a given ill ends up in ipif_arr[]. 20846 * 20847 * 2. If there is at least one non-deprecated ipif in the 20848 * IPMP group with a source address on the same subnet as 20849 * our destination, then fill ipif_arr[] only with 20850 * source addresses on the same subnet as our destination. 20851 * Note that because of (1), only the first 20852 * non-deprecated ipif found with a source address 20853 * matching the destination ends up in ipif_arr[]. 20854 * 20855 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20856 * addresses not in the same subnet as our destination. 20857 * Again, because of (1), only the first off-subnet source 20858 * address will be chosen. 20859 * 20860 * 4. If there are no non-deprecated ipifs, then just use 20861 * the source address associated with the last deprecated 20862 * one we find that happens to be on the same subnet, 20863 * otherwise the first one not in the same subnet. 20864 */ 20865 specific_found = B_FALSE; 20866 for (; till != NULL; till = till->ill_group_next) { 20867 ipif_same_found = B_FALSE; 20868 ipif_other_found = B_FALSE; 20869 for (ipif = till->ill_ipif; ipif != NULL; 20870 ipif = ipif->ipif_next) { 20871 if (!IPIF_CAN_LOOKUP(ipif)) 20872 continue; 20873 /* Always skip NOLOCAL and ANYCAST interfaces */ 20874 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20875 continue; 20876 if (!(ipif->ipif_flags & IPIF_UP) || 20877 !ipif->ipif_addr_ready) 20878 continue; 20879 if (ipif->ipif_zoneid != zoneid && 20880 ipif->ipif_zoneid != ALL_ZONES) 20881 continue; 20882 /* 20883 * Interfaces with 0.0.0.0 address are allowed to be UP, 20884 * but are not valid as source addresses. 20885 */ 20886 if (ipif->ipif_lcl_addr == INADDR_ANY) 20887 continue; 20888 20889 /* 20890 * Check compatibility of local address for 20891 * destination's default label if we're on a labeled 20892 * system. Incompatible addresses can't be used at 20893 * all. 20894 */ 20895 if (dst_rhtp != NULL) { 20896 boolean_t incompat; 20897 20898 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20899 IPV4_VERSION, B_FALSE); 20900 if (src_rhtp == NULL) 20901 continue; 20902 incompat = 20903 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20904 src_rhtp->tpc_tp.tp_doi != 20905 dst_rhtp->tpc_tp.tp_doi || 20906 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20907 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20908 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20909 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20910 TPC_RELE(src_rhtp); 20911 if (incompat) 20912 continue; 20913 } 20914 20915 /* 20916 * We prefer not to use all all-zones addresses, if we 20917 * can avoid it, as they pose problems with unlabeled 20918 * destinations. 20919 */ 20920 if (ipif->ipif_zoneid != ALL_ZONES) { 20921 if (!specific_found && 20922 (!same_subnet_only || 20923 (ipif->ipif_net_mask & dst) == 20924 ipif->ipif_subnet)) { 20925 index = 0; 20926 specific_found = B_TRUE; 20927 ipif_other_found = B_FALSE; 20928 } 20929 } else { 20930 if (specific_found) 20931 continue; 20932 } 20933 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20934 if (ipif_dep == NULL || 20935 (ipif->ipif_net_mask & dst) == 20936 ipif->ipif_subnet) 20937 ipif_dep = ipif; 20938 continue; 20939 } 20940 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20941 /* found a source address in the same subnet */ 20942 if (!same_subnet_only) { 20943 same_subnet_only = B_TRUE; 20944 index = 0; 20945 } 20946 ipif_same_found = B_TRUE; 20947 } else { 20948 if (same_subnet_only || ipif_other_found) 20949 continue; 20950 ipif_other_found = B_TRUE; 20951 } 20952 ipif_arr[index++] = ipif; 20953 if (index == MAX_IPIF_SELECT_SOURCE) { 20954 wrapped = B_TRUE; 20955 index = 0; 20956 } 20957 if (ipif_same_found) 20958 break; 20959 } 20960 } 20961 20962 if (ipif_arr[0] == NULL) { 20963 ipif = ipif_dep; 20964 } else { 20965 if (wrapped) 20966 index = MAX_IPIF_SELECT_SOURCE; 20967 ipif = ipif_arr[ipif_rand(ipst) % index]; 20968 ASSERT(ipif != NULL); 20969 } 20970 20971 if (ipif != NULL) { 20972 mutex_enter(&ipif->ipif_ill->ill_lock); 20973 if (!IPIF_CAN_LOOKUP(ipif)) { 20974 mutex_exit(&ipif->ipif_ill->ill_lock); 20975 goto retry; 20976 } 20977 ipif_refhold_locked(ipif); 20978 mutex_exit(&ipif->ipif_ill->ill_lock); 20979 } 20980 20981 rw_exit(&ipst->ips_ill_g_lock); 20982 if (usill != NULL) 20983 ill_refrele(usill); 20984 if (dst_rhtp != NULL) 20985 TPC_RELE(dst_rhtp); 20986 20987 #ifdef DEBUG 20988 if (ipif == NULL) { 20989 char buf1[INET6_ADDRSTRLEN]; 20990 20991 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20992 ill->ill_name, 20993 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20994 } else { 20995 char buf1[INET6_ADDRSTRLEN]; 20996 char buf2[INET6_ADDRSTRLEN]; 20997 20998 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20999 ipif->ipif_ill->ill_name, 21000 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21001 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21002 buf2, sizeof (buf2)))); 21003 } 21004 #endif /* DEBUG */ 21005 return (ipif); 21006 } 21007 21008 21009 /* 21010 * If old_ipif is not NULL, see if ipif was derived from old 21011 * ipif and if so, recreate the interface route by re-doing 21012 * source address selection. This happens when ipif_down -> 21013 * ipif_update_other_ipifs calls us. 21014 * 21015 * If old_ipif is NULL, just redo the source address selection 21016 * if needed. This happens when illgrp_insert or ipif_up_done 21017 * calls us. 21018 */ 21019 static void 21020 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21021 { 21022 ire_t *ire; 21023 ire_t *ipif_ire; 21024 queue_t *stq; 21025 ipif_t *nipif; 21026 ill_t *ill; 21027 boolean_t need_rele = B_FALSE; 21028 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21029 21030 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21031 ASSERT(IAM_WRITER_IPIF(ipif)); 21032 21033 ill = ipif->ipif_ill; 21034 if (!(ipif->ipif_flags & 21035 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21036 /* 21037 * Can't possibly have borrowed the source 21038 * from old_ipif. 21039 */ 21040 return; 21041 } 21042 21043 /* 21044 * Is there any work to be done? No work if the address 21045 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21046 * ipif_select_source() does not borrow addresses from 21047 * NOLOCAL and ANYCAST interfaces). 21048 */ 21049 if ((old_ipif != NULL) && 21050 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21051 (old_ipif->ipif_ill->ill_wq == NULL) || 21052 (old_ipif->ipif_flags & 21053 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21054 return; 21055 } 21056 21057 /* 21058 * Perform the same checks as when creating the 21059 * IRE_INTERFACE in ipif_up_done. 21060 */ 21061 if (!(ipif->ipif_flags & IPIF_UP)) 21062 return; 21063 21064 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21065 (ipif->ipif_subnet == INADDR_ANY)) 21066 return; 21067 21068 ipif_ire = ipif_to_ire(ipif); 21069 if (ipif_ire == NULL) 21070 return; 21071 21072 /* 21073 * We know that ipif uses some other source for its 21074 * IRE_INTERFACE. Is it using the source of this 21075 * old_ipif? 21076 */ 21077 if (old_ipif != NULL && 21078 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21079 ire_refrele(ipif_ire); 21080 return; 21081 } 21082 if (ip_debug > 2) { 21083 /* ip1dbg */ 21084 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21085 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21086 } 21087 21088 stq = ipif_ire->ire_stq; 21089 21090 /* 21091 * Can't use our source address. Select a different 21092 * source address for the IRE_INTERFACE. 21093 */ 21094 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21095 if (nipif == NULL) { 21096 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21097 nipif = ipif; 21098 } else { 21099 need_rele = B_TRUE; 21100 } 21101 21102 ire = ire_create( 21103 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21104 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21105 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21106 NULL, /* no gateway */ 21107 &ipif->ipif_mtu, /* max frag */ 21108 NULL, /* no src nce */ 21109 NULL, /* no recv from queue */ 21110 stq, /* send-to queue */ 21111 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21112 ipif, 21113 0, 21114 0, 21115 0, 21116 0, 21117 &ire_uinfo_null, 21118 NULL, 21119 NULL, 21120 ipst); 21121 21122 if (ire != NULL) { 21123 ire_t *ret_ire; 21124 int error; 21125 21126 /* 21127 * We don't need ipif_ire anymore. We need to delete 21128 * before we add so that ire_add does not detect 21129 * duplicates. 21130 */ 21131 ire_delete(ipif_ire); 21132 ret_ire = ire; 21133 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21134 ASSERT(error == 0); 21135 ASSERT(ire == ret_ire); 21136 /* Held in ire_add */ 21137 ire_refrele(ret_ire); 21138 } 21139 /* 21140 * Either we are falling through from above or could not 21141 * allocate a replacement. 21142 */ 21143 ire_refrele(ipif_ire); 21144 if (need_rele) 21145 ipif_refrele(nipif); 21146 } 21147 21148 /* 21149 * This old_ipif is going away. 21150 * 21151 * Determine if any other ipif's is using our address as 21152 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21153 * IPIF_DEPRECATED). 21154 * Find the IRE_INTERFACE for such ipifs and recreate them 21155 * to use an different source address following the rules in 21156 * ipif_up_done. 21157 * 21158 * This function takes an illgrp as an argument so that illgrp_delete 21159 * can call this to update source address even after deleting the 21160 * old_ipif->ipif_ill from the ill group. 21161 */ 21162 static void 21163 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21164 { 21165 ipif_t *ipif; 21166 ill_t *ill; 21167 char buf[INET6_ADDRSTRLEN]; 21168 21169 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21170 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21171 21172 ill = old_ipif->ipif_ill; 21173 21174 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21175 ill->ill_name, 21176 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21177 buf, sizeof (buf)))); 21178 /* 21179 * If this part of a group, look at all ills as ipif_select_source 21180 * borrows source address across all the ills in the group. 21181 */ 21182 if (illgrp != NULL) 21183 ill = illgrp->illgrp_ill; 21184 21185 for (; ill != NULL; ill = ill->ill_group_next) { 21186 for (ipif = ill->ill_ipif; ipif != NULL; 21187 ipif = ipif->ipif_next) { 21188 21189 if (ipif == old_ipif) 21190 continue; 21191 21192 ipif_recreate_interface_routes(old_ipif, ipif); 21193 } 21194 } 21195 } 21196 21197 /* ARGSUSED */ 21198 int 21199 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21200 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21201 { 21202 /* 21203 * ill_phyint_reinit merged the v4 and v6 into a single 21204 * ipsq. Could also have become part of a ipmp group in the 21205 * process, and we might not have been able to complete the 21206 * operation in ipif_set_values, if we could not become 21207 * exclusive. If so restart it here. 21208 */ 21209 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21210 } 21211 21212 21213 /* 21214 * Can operate on either a module or a driver queue. 21215 * Returns an error if not a module queue. 21216 */ 21217 /* ARGSUSED */ 21218 int 21219 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21220 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21221 { 21222 queue_t *q1 = q; 21223 char *cp; 21224 char interf_name[LIFNAMSIZ]; 21225 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21226 21227 if (q->q_next == NULL) { 21228 ip1dbg(( 21229 "if_unitsel: IF_UNITSEL: no q_next\n")); 21230 return (EINVAL); 21231 } 21232 21233 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21234 return (EALREADY); 21235 21236 do { 21237 q1 = q1->q_next; 21238 } while (q1->q_next); 21239 cp = q1->q_qinfo->qi_minfo->mi_idname; 21240 (void) sprintf(interf_name, "%s%d", cp, ppa); 21241 21242 /* 21243 * Here we are not going to delay the ioack until after 21244 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21245 * original ioctl message before sending the requests. 21246 */ 21247 return (ipif_set_values(q, mp, interf_name, &ppa)); 21248 } 21249 21250 /* ARGSUSED */ 21251 int 21252 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21253 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21254 { 21255 return (ENXIO); 21256 } 21257 21258 /* 21259 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21260 * `irep'. Returns a pointer to the next free `irep' entry (just like 21261 * ire_check_and_create_bcast()). 21262 */ 21263 static ire_t ** 21264 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21265 { 21266 ipaddr_t addr; 21267 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21268 ipaddr_t subnetmask = ipif->ipif_net_mask; 21269 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21270 21271 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21272 21273 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21274 21275 if (ipif->ipif_lcl_addr == INADDR_ANY || 21276 (ipif->ipif_flags & IPIF_NOLOCAL)) 21277 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21278 21279 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21280 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21281 21282 /* 21283 * For backward compatibility, we create net broadcast IREs based on 21284 * the old "IP address class system", since some old machines only 21285 * respond to these class derived net broadcast. However, we must not 21286 * create these net broadcast IREs if the subnetmask is shorter than 21287 * the IP address class based derived netmask. Otherwise, we may 21288 * create a net broadcast address which is the same as an IP address 21289 * on the subnet -- and then TCP will refuse to talk to that address. 21290 */ 21291 if (netmask < subnetmask) { 21292 addr = netmask & ipif->ipif_subnet; 21293 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21294 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21295 flags); 21296 } 21297 21298 /* 21299 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21300 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21301 * created. Creating these broadcast IREs will only create confusion 21302 * as `addr' will be the same as the IP address. 21303 */ 21304 if (subnetmask != 0xFFFFFFFF) { 21305 addr = ipif->ipif_subnet; 21306 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21307 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21308 irep, flags); 21309 } 21310 21311 return (irep); 21312 } 21313 21314 /* 21315 * Broadcast IRE info structure used in the functions below. Since we 21316 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21317 */ 21318 typedef struct bcast_ireinfo { 21319 uchar_t bi_type; /* BCAST_* value from below */ 21320 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21321 bi_needrep:1, /* do we need to replace it? */ 21322 bi_haverep:1, /* have we replaced it? */ 21323 bi_pad:5; 21324 ipaddr_t bi_addr; /* IRE address */ 21325 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21326 } bcast_ireinfo_t; 21327 21328 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21329 21330 /* 21331 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21332 * return B_TRUE if it should immediately be used to recreate the IRE. 21333 */ 21334 static boolean_t 21335 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21336 { 21337 ipaddr_t addr; 21338 21339 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21340 21341 switch (bireinfop->bi_type) { 21342 case BCAST_NET: 21343 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21344 if (addr != bireinfop->bi_addr) 21345 return (B_FALSE); 21346 break; 21347 case BCAST_SUBNET: 21348 if (ipif->ipif_subnet != bireinfop->bi_addr) 21349 return (B_FALSE); 21350 break; 21351 } 21352 21353 bireinfop->bi_needrep = 1; 21354 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21355 if (bireinfop->bi_backup == NULL) 21356 bireinfop->bi_backup = ipif; 21357 return (B_FALSE); 21358 } 21359 return (B_TRUE); 21360 } 21361 21362 /* 21363 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21364 * them ala ire_check_and_create_bcast(). 21365 */ 21366 static ire_t ** 21367 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21368 { 21369 ipaddr_t mask, addr; 21370 21371 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21372 21373 addr = bireinfop->bi_addr; 21374 irep = ire_create_bcast(ipif, addr, irep); 21375 21376 switch (bireinfop->bi_type) { 21377 case BCAST_NET: 21378 mask = ip_net_mask(ipif->ipif_subnet); 21379 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21380 break; 21381 case BCAST_SUBNET: 21382 mask = ipif->ipif_net_mask; 21383 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21384 break; 21385 } 21386 21387 bireinfop->bi_haverep = 1; 21388 return (irep); 21389 } 21390 21391 /* 21392 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21393 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21394 * that are going away are still needed. If so, have ipif_create_bcast() 21395 * recreate them (except for the deprecated case, as explained below). 21396 */ 21397 static ire_t ** 21398 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21399 ire_t **irep) 21400 { 21401 int i; 21402 ipif_t *ipif; 21403 21404 ASSERT(!ill->ill_isv6); 21405 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21406 /* 21407 * Skip this ipif if it's (a) the one being taken down, (b) 21408 * not in the same zone, or (c) has no valid local address. 21409 */ 21410 if (ipif == test_ipif || 21411 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21412 ipif->ipif_subnet == 0 || 21413 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21414 (IPIF_UP|IPIF_BROADCAST)) 21415 continue; 21416 21417 /* 21418 * For each dying IRE that hasn't yet been replaced, see if 21419 * `ipif' needs it and whether the IRE should be recreated on 21420 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21421 * will return B_FALSE even if `ipif' needs the IRE on the 21422 * hopes that we'll later find a needy non-deprecated ipif. 21423 * However, the ipif is recorded in bi_backup for possible 21424 * subsequent use by ipif_check_bcast_ires(). 21425 */ 21426 for (i = 0; i < BCAST_COUNT; i++) { 21427 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21428 continue; 21429 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21430 continue; 21431 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21432 } 21433 21434 /* 21435 * If we've replaced all of the broadcast IREs that are going 21436 * to be taken down, we know we're done. 21437 */ 21438 for (i = 0; i < BCAST_COUNT; i++) { 21439 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21440 break; 21441 } 21442 if (i == BCAST_COUNT) 21443 break; 21444 } 21445 return (irep); 21446 } 21447 21448 /* 21449 * Check if `test_ipif' (which is going away) is associated with any existing 21450 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21451 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21452 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21453 * 21454 * This is necessary because broadcast IREs are shared. In particular, a 21455 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21456 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21457 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21458 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21459 * same zone, they will share the same set of broadcast IREs. 21460 * 21461 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21462 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21463 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21464 */ 21465 static void 21466 ipif_check_bcast_ires(ipif_t *test_ipif) 21467 { 21468 ill_t *ill = test_ipif->ipif_ill; 21469 ire_t *ire, *ire_array[12]; /* see note above */ 21470 ire_t **irep1, **irep = &ire_array[0]; 21471 uint_t i, willdie; 21472 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21473 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21474 21475 ASSERT(!test_ipif->ipif_isv6); 21476 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21477 21478 /* 21479 * No broadcast IREs for the LOOPBACK interface 21480 * or others such as point to point and IPIF_NOXMIT. 21481 */ 21482 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21483 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21484 return; 21485 21486 bzero(bireinfo, sizeof (bireinfo)); 21487 bireinfo[0].bi_type = BCAST_ALLZEROES; 21488 bireinfo[0].bi_addr = 0; 21489 21490 bireinfo[1].bi_type = BCAST_ALLONES; 21491 bireinfo[1].bi_addr = INADDR_BROADCAST; 21492 21493 bireinfo[2].bi_type = BCAST_NET; 21494 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21495 21496 if (test_ipif->ipif_net_mask != 0) 21497 mask = test_ipif->ipif_net_mask; 21498 bireinfo[3].bi_type = BCAST_SUBNET; 21499 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21500 21501 /* 21502 * Figure out what (if any) broadcast IREs will die as a result of 21503 * `test_ipif' going away. If none will die, we're done. 21504 */ 21505 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21506 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21507 test_ipif, ALL_ZONES, NULL, 21508 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21509 if (ire != NULL) { 21510 willdie++; 21511 bireinfo[i].bi_willdie = 1; 21512 ire_refrele(ire); 21513 } 21514 } 21515 21516 if (willdie == 0) 21517 return; 21518 21519 /* 21520 * Walk through all the ipifs that will be affected by the dying IREs, 21521 * and recreate the IREs as necessary. 21522 */ 21523 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21524 21525 /* 21526 * Scan through the set of broadcast IREs and see if there are any 21527 * that we need to replace that have not yet been replaced. If so, 21528 * replace them using the appropriate backup ipif. 21529 */ 21530 for (i = 0; i < BCAST_COUNT; i++) { 21531 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21532 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21533 &bireinfo[i], irep); 21534 } 21535 21536 /* 21537 * If we can't create all of them, don't add any of them. (Code in 21538 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21539 * non-loopback copy and loopback copy for a given address.) 21540 */ 21541 for (irep1 = irep; irep1 > ire_array; ) { 21542 irep1--; 21543 if (*irep1 == NULL) { 21544 ip0dbg(("ipif_check_bcast_ires: can't create " 21545 "IRE_BROADCAST, memory allocation failure\n")); 21546 while (irep > ire_array) { 21547 irep--; 21548 if (*irep != NULL) 21549 ire_delete(*irep); 21550 } 21551 return; 21552 } 21553 } 21554 21555 for (irep1 = irep; irep1 > ire_array; ) { 21556 irep1--; 21557 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21558 ire_refrele(*irep1); /* Held in ire_add */ 21559 } 21560 } 21561 21562 /* 21563 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21564 * from lifr_flags and the name from lifr_name. 21565 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21566 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21567 * Returns EINPROGRESS when mp has been consumed by queueing it on 21568 * ill_pending_mp and the ioctl will complete in ip_rput. 21569 * 21570 * Can operate on either a module or a driver queue. 21571 * Returns an error if not a module queue. 21572 */ 21573 /* ARGSUSED */ 21574 int 21575 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21576 ip_ioctl_cmd_t *ipip, void *if_req) 21577 { 21578 int err; 21579 ill_t *ill; 21580 struct lifreq *lifr = (struct lifreq *)if_req; 21581 21582 ASSERT(ipif != NULL); 21583 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21584 21585 if (q->q_next == NULL) { 21586 ip1dbg(( 21587 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21588 return (EINVAL); 21589 } 21590 21591 ill = (ill_t *)q->q_ptr; 21592 /* 21593 * If we are not writer on 'q' then this interface exists already 21594 * and previous lookups (ipif_extract_lifreq()) found this ipif. 21595 * So return EALREADY 21596 */ 21597 if (ill != ipif->ipif_ill) 21598 return (EALREADY); 21599 21600 if (ill->ill_name[0] != '\0') 21601 return (EALREADY); 21602 21603 /* 21604 * Set all the flags. Allows all kinds of override. Provide some 21605 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21606 * unless there is either multicast/broadcast support in the driver 21607 * or it is a pt-pt link. 21608 */ 21609 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21610 /* Meaningless to IP thus don't allow them to be set. */ 21611 ip1dbg(("ip_setname: EINVAL 1\n")); 21612 return (EINVAL); 21613 } 21614 /* 21615 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21616 * ill_bcast_addr_length info. 21617 */ 21618 if (!ill->ill_needs_attach && 21619 ((lifr->lifr_flags & IFF_MULTICAST) && 21620 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21621 ill->ill_bcast_addr_length == 0)) { 21622 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21623 ip1dbg(("ip_setname: EINVAL 2\n")); 21624 return (EINVAL); 21625 } 21626 if ((lifr->lifr_flags & IFF_BROADCAST) && 21627 ((lifr->lifr_flags & IFF_IPV6) || 21628 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21629 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21630 ip1dbg(("ip_setname: EINVAL 3\n")); 21631 return (EINVAL); 21632 } 21633 if (lifr->lifr_flags & IFF_UP) { 21634 /* Can only be set with SIOCSLIFFLAGS */ 21635 ip1dbg(("ip_setname: EINVAL 4\n")); 21636 return (EINVAL); 21637 } 21638 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21639 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21640 ip1dbg(("ip_setname: EINVAL 5\n")); 21641 return (EINVAL); 21642 } 21643 /* 21644 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21645 */ 21646 if ((lifr->lifr_flags & IFF_XRESOLV) && 21647 !(lifr->lifr_flags & IFF_IPV6) && 21648 !(ipif->ipif_isv6)) { 21649 ip1dbg(("ip_setname: EINVAL 6\n")); 21650 return (EINVAL); 21651 } 21652 21653 /* 21654 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21655 * we have all the flags here. So, we assign rather than we OR. 21656 * We can't OR the flags here because we don't want to set 21657 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21658 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21659 * on lifr_flags value here. 21660 */ 21661 /* 21662 * This ill has not been inserted into the global list. 21663 * So we are still single threaded and don't need any lock 21664 */ 21665 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21666 ~IFF_DUPLICATE; 21667 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21668 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21669 21670 /* We started off as V4. */ 21671 if (ill->ill_flags & ILLF_IPV6) { 21672 ill->ill_phyint->phyint_illv6 = ill; 21673 ill->ill_phyint->phyint_illv4 = NULL; 21674 } 21675 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21676 return (err); 21677 } 21678 21679 /* ARGSUSED */ 21680 int 21681 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21682 ip_ioctl_cmd_t *ipip, void *if_req) 21683 { 21684 /* 21685 * ill_phyint_reinit merged the v4 and v6 into a single 21686 * ipsq. Could also have become part of a ipmp group in the 21687 * process, and we might not have been able to complete the 21688 * slifname in ipif_set_values, if we could not become 21689 * exclusive. If so restart it here 21690 */ 21691 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21692 } 21693 21694 /* 21695 * Return a pointer to the ipif which matches the index, IP version type and 21696 * zoneid. 21697 */ 21698 ipif_t * 21699 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21700 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21701 { 21702 ill_t *ill; 21703 ipsq_t *ipsq; 21704 phyint_t *phyi; 21705 ipif_t *ipif; 21706 21707 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21708 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21709 21710 if (err != NULL) 21711 *err = 0; 21712 21713 /* 21714 * Indexes are stored in the phyint - a common structure 21715 * to both IPv4 and IPv6. 21716 */ 21717 21718 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21719 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 21720 (void *) &index, NULL); 21721 if (phyi != NULL) { 21722 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21723 if (ill == NULL) { 21724 rw_exit(&ipst->ips_ill_g_lock); 21725 if (err != NULL) 21726 *err = ENXIO; 21727 return (NULL); 21728 } 21729 GRAB_CONN_LOCK(q); 21730 mutex_enter(&ill->ill_lock); 21731 if (ILL_CAN_LOOKUP(ill)) { 21732 for (ipif = ill->ill_ipif; ipif != NULL; 21733 ipif = ipif->ipif_next) { 21734 if (IPIF_CAN_LOOKUP(ipif) && 21735 (zoneid == ALL_ZONES || 21736 zoneid == ipif->ipif_zoneid || 21737 ipif->ipif_zoneid == ALL_ZONES)) { 21738 ipif_refhold_locked(ipif); 21739 mutex_exit(&ill->ill_lock); 21740 RELEASE_CONN_LOCK(q); 21741 rw_exit(&ipst->ips_ill_g_lock); 21742 return (ipif); 21743 } 21744 } 21745 } else if (ILL_CAN_WAIT(ill, q)) { 21746 ipsq = ill->ill_phyint->phyint_ipsq; 21747 mutex_enter(&ipsq->ipsq_lock); 21748 rw_exit(&ipst->ips_ill_g_lock); 21749 mutex_exit(&ill->ill_lock); 21750 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21751 mutex_exit(&ipsq->ipsq_lock); 21752 RELEASE_CONN_LOCK(q); 21753 *err = EINPROGRESS; 21754 return (NULL); 21755 } 21756 mutex_exit(&ill->ill_lock); 21757 RELEASE_CONN_LOCK(q); 21758 } 21759 rw_exit(&ipst->ips_ill_g_lock); 21760 if (err != NULL) 21761 *err = ENXIO; 21762 return (NULL); 21763 } 21764 21765 typedef struct conn_change_s { 21766 uint_t cc_old_ifindex; 21767 uint_t cc_new_ifindex; 21768 } conn_change_t; 21769 21770 /* 21771 * ipcl_walk function for changing interface index. 21772 */ 21773 static void 21774 conn_change_ifindex(conn_t *connp, caddr_t arg) 21775 { 21776 conn_change_t *connc; 21777 uint_t old_ifindex; 21778 uint_t new_ifindex; 21779 int i; 21780 ilg_t *ilg; 21781 21782 connc = (conn_change_t *)arg; 21783 old_ifindex = connc->cc_old_ifindex; 21784 new_ifindex = connc->cc_new_ifindex; 21785 21786 if (connp->conn_orig_bound_ifindex == old_ifindex) 21787 connp->conn_orig_bound_ifindex = new_ifindex; 21788 21789 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21790 connp->conn_orig_multicast_ifindex = new_ifindex; 21791 21792 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21793 connp->conn_orig_xmit_ifindex = new_ifindex; 21794 21795 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21796 ilg = &connp->conn_ilg[i]; 21797 if (ilg->ilg_orig_ifindex == old_ifindex) 21798 ilg->ilg_orig_ifindex = new_ifindex; 21799 } 21800 } 21801 21802 /* 21803 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21804 * to new_index if it matches the old_index. 21805 * 21806 * Failovers typically happen within a group of ills. But somebody 21807 * can remove an ill from the group after a failover happened. If 21808 * we are setting the ifindex after this, we potentially need to 21809 * look at all the ills rather than just the ones in the group. 21810 * We cut down the work by looking at matching ill_net_types 21811 * and ill_types as we could not possibly grouped them together. 21812 */ 21813 static void 21814 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21815 { 21816 ill_t *ill; 21817 ipif_t *ipif; 21818 uint_t old_ifindex; 21819 uint_t new_ifindex; 21820 ilm_t *ilm; 21821 ill_walk_context_t ctx; 21822 ip_stack_t *ipst = ill_orig->ill_ipst; 21823 21824 old_ifindex = connc->cc_old_ifindex; 21825 new_ifindex = connc->cc_new_ifindex; 21826 21827 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21828 ill = ILL_START_WALK_ALL(&ctx, ipst); 21829 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21830 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21831 (ill_orig->ill_type != ill->ill_type)) { 21832 continue; 21833 } 21834 for (ipif = ill->ill_ipif; ipif != NULL; 21835 ipif = ipif->ipif_next) { 21836 if (ipif->ipif_orig_ifindex == old_ifindex) 21837 ipif->ipif_orig_ifindex = new_ifindex; 21838 } 21839 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21840 if (ilm->ilm_orig_ifindex == old_ifindex) 21841 ilm->ilm_orig_ifindex = new_ifindex; 21842 } 21843 } 21844 rw_exit(&ipst->ips_ill_g_lock); 21845 } 21846 21847 /* 21848 * We first need to ensure that the new index is unique, and 21849 * then carry the change across both v4 and v6 ill representation 21850 * of the physical interface. 21851 */ 21852 /* ARGSUSED */ 21853 int 21854 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21855 ip_ioctl_cmd_t *ipip, void *ifreq) 21856 { 21857 ill_t *ill; 21858 ill_t *ill_other; 21859 phyint_t *phyi; 21860 int old_index; 21861 conn_change_t connc; 21862 struct ifreq *ifr = (struct ifreq *)ifreq; 21863 struct lifreq *lifr = (struct lifreq *)ifreq; 21864 uint_t index; 21865 ill_t *ill_v4; 21866 ill_t *ill_v6; 21867 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21868 21869 if (ipip->ipi_cmd_type == IF_CMD) 21870 index = ifr->ifr_index; 21871 else 21872 index = lifr->lifr_index; 21873 21874 /* 21875 * Only allow on physical interface. Also, index zero is illegal. 21876 * 21877 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21878 * 21879 * 1) If PHYI_FAILED is set, a failover could have happened which 21880 * implies a possible failback might have to happen. As failback 21881 * depends on the old index, we should fail setting the index. 21882 * 21883 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21884 * any addresses or multicast memberships are failed over to 21885 * a non-STANDBY interface. As failback depends on the old 21886 * index, we should fail setting the index for this case also. 21887 * 21888 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21889 * Be consistent with PHYI_FAILED and fail the ioctl. 21890 */ 21891 ill = ipif->ipif_ill; 21892 phyi = ill->ill_phyint; 21893 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21894 ipif->ipif_id != 0 || index == 0) { 21895 return (EINVAL); 21896 } 21897 old_index = phyi->phyint_ifindex; 21898 21899 /* If the index is not changing, no work to do */ 21900 if (old_index == index) 21901 return (0); 21902 21903 /* 21904 * Use ill_lookup_on_ifindex to determine if the 21905 * new index is unused and if so allow the change. 21906 */ 21907 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21908 ipst); 21909 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21910 ipst); 21911 if (ill_v6 != NULL || ill_v4 != NULL) { 21912 if (ill_v4 != NULL) 21913 ill_refrele(ill_v4); 21914 if (ill_v6 != NULL) 21915 ill_refrele(ill_v6); 21916 return (EBUSY); 21917 } 21918 21919 /* 21920 * The new index is unused. Set it in the phyint. 21921 * Locate the other ill so that we can send a routing 21922 * sockets message. 21923 */ 21924 if (ill->ill_isv6) { 21925 ill_other = phyi->phyint_illv4; 21926 } else { 21927 ill_other = phyi->phyint_illv6; 21928 } 21929 21930 phyi->phyint_ifindex = index; 21931 21932 /* Update SCTP's ILL list */ 21933 sctp_ill_reindex(ill, old_index); 21934 21935 connc.cc_old_ifindex = old_index; 21936 connc.cc_new_ifindex = index; 21937 ip_change_ifindex(ill, &connc); 21938 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21939 21940 /* Send the routing sockets message */ 21941 ip_rts_ifmsg(ipif); 21942 if (ill_other != NULL) 21943 ip_rts_ifmsg(ill_other->ill_ipif); 21944 21945 return (0); 21946 } 21947 21948 /* ARGSUSED */ 21949 int 21950 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21951 ip_ioctl_cmd_t *ipip, void *ifreq) 21952 { 21953 struct ifreq *ifr = (struct ifreq *)ifreq; 21954 struct lifreq *lifr = (struct lifreq *)ifreq; 21955 21956 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21957 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21958 /* Get the interface index */ 21959 if (ipip->ipi_cmd_type == IF_CMD) { 21960 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21961 } else { 21962 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21963 } 21964 return (0); 21965 } 21966 21967 /* ARGSUSED */ 21968 int 21969 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21970 ip_ioctl_cmd_t *ipip, void *ifreq) 21971 { 21972 struct lifreq *lifr = (struct lifreq *)ifreq; 21973 21974 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21976 /* Get the interface zone */ 21977 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21978 lifr->lifr_zoneid = ipif->ipif_zoneid; 21979 return (0); 21980 } 21981 21982 /* 21983 * Set the zoneid of an interface. 21984 */ 21985 /* ARGSUSED */ 21986 int 21987 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21988 ip_ioctl_cmd_t *ipip, void *ifreq) 21989 { 21990 struct lifreq *lifr = (struct lifreq *)ifreq; 21991 int err = 0; 21992 boolean_t need_up = B_FALSE; 21993 zone_t *zptr; 21994 zone_status_t status; 21995 zoneid_t zoneid; 21996 21997 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21998 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21999 if (!is_system_labeled()) 22000 return (ENOTSUP); 22001 zoneid = GLOBAL_ZONEID; 22002 } 22003 22004 /* cannot assign instance zero to a non-global zone */ 22005 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22006 return (ENOTSUP); 22007 22008 /* 22009 * Cannot assign to a zone that doesn't exist or is shutting down. In 22010 * the event of a race with the zone shutdown processing, since IP 22011 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22012 * interface will be cleaned up even if the zone is shut down 22013 * immediately after the status check. If the interface can't be brought 22014 * down right away, and the zone is shut down before the restart 22015 * function is called, we resolve the possible races by rechecking the 22016 * zone status in the restart function. 22017 */ 22018 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22019 return (EINVAL); 22020 status = zone_status_get(zptr); 22021 zone_rele(zptr); 22022 22023 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22024 return (EINVAL); 22025 22026 if (ipif->ipif_flags & IPIF_UP) { 22027 /* 22028 * If the interface is already marked up, 22029 * we call ipif_down which will take care 22030 * of ditching any IREs that have been set 22031 * up based on the old interface address. 22032 */ 22033 err = ipif_logical_down(ipif, q, mp); 22034 if (err == EINPROGRESS) 22035 return (err); 22036 ipif_down_tail(ipif); 22037 need_up = B_TRUE; 22038 } 22039 22040 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22041 return (err); 22042 } 22043 22044 static int 22045 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22046 queue_t *q, mblk_t *mp, boolean_t need_up) 22047 { 22048 int err = 0; 22049 ip_stack_t *ipst; 22050 22051 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22052 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22053 22054 if (CONN_Q(q)) 22055 ipst = CONNQ_TO_IPST(q); 22056 else 22057 ipst = ILLQ_TO_IPST(q); 22058 22059 /* 22060 * For exclusive stacks we don't allow a different zoneid than 22061 * global. 22062 */ 22063 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22064 zoneid != GLOBAL_ZONEID) 22065 return (EINVAL); 22066 22067 /* Set the new zone id. */ 22068 ipif->ipif_zoneid = zoneid; 22069 22070 /* Update sctp list */ 22071 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22072 22073 if (need_up) { 22074 /* 22075 * Now bring the interface back up. If this 22076 * is the only IPIF for the ILL, ipif_up 22077 * will have to re-bind to the device, so 22078 * we may get back EINPROGRESS, in which 22079 * case, this IOCTL will get completed in 22080 * ip_rput_dlpi when we see the DL_BIND_ACK. 22081 */ 22082 err = ipif_up(ipif, q, mp); 22083 } 22084 return (err); 22085 } 22086 22087 /* ARGSUSED */ 22088 int 22089 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22090 ip_ioctl_cmd_t *ipip, void *if_req) 22091 { 22092 struct lifreq *lifr = (struct lifreq *)if_req; 22093 zoneid_t zoneid; 22094 zone_t *zptr; 22095 zone_status_t status; 22096 22097 ASSERT(ipif->ipif_id != 0); 22098 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22099 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22100 zoneid = GLOBAL_ZONEID; 22101 22102 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22103 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22104 22105 /* 22106 * We recheck the zone status to resolve the following race condition: 22107 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22108 * 2) hme0:1 is up and can't be brought down right away; 22109 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22110 * 3) zone "myzone" is halted; the zone status switches to 22111 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22112 * the interfaces to remove - hme0:1 is not returned because it's not 22113 * yet in "myzone", so it won't be removed; 22114 * 4) the restart function for SIOCSLIFZONE is called; without the 22115 * status check here, we would have hme0:1 in "myzone" after it's been 22116 * destroyed. 22117 * Note that if the status check fails, we need to bring the interface 22118 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22119 * ipif_up_done[_v6](). 22120 */ 22121 status = ZONE_IS_UNINITIALIZED; 22122 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22123 status = zone_status_get(zptr); 22124 zone_rele(zptr); 22125 } 22126 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22127 if (ipif->ipif_isv6) { 22128 (void) ipif_up_done_v6(ipif); 22129 } else { 22130 (void) ipif_up_done(ipif); 22131 } 22132 return (EINVAL); 22133 } 22134 22135 ipif_down_tail(ipif); 22136 22137 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22138 B_TRUE)); 22139 } 22140 22141 /* ARGSUSED */ 22142 int 22143 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22144 ip_ioctl_cmd_t *ipip, void *ifreq) 22145 { 22146 struct lifreq *lifr = ifreq; 22147 22148 ASSERT(q->q_next == NULL); 22149 ASSERT(CONN_Q(q)); 22150 22151 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22152 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22153 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22154 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22155 22156 return (0); 22157 } 22158 22159 22160 /* Find the previous ILL in this usesrc group */ 22161 static ill_t * 22162 ill_prev_usesrc(ill_t *uill) 22163 { 22164 ill_t *ill; 22165 22166 for (ill = uill->ill_usesrc_grp_next; 22167 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22168 ill = ill->ill_usesrc_grp_next) 22169 /* do nothing */; 22170 return (ill); 22171 } 22172 22173 /* 22174 * Release all members of the usesrc group. This routine is called 22175 * from ill_delete when the interface being unplumbed is the 22176 * group head. 22177 */ 22178 static void 22179 ill_disband_usesrc_group(ill_t *uill) 22180 { 22181 ill_t *next_ill, *tmp_ill; 22182 ip_stack_t *ipst = uill->ill_ipst; 22183 22184 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22185 next_ill = uill->ill_usesrc_grp_next; 22186 22187 do { 22188 ASSERT(next_ill != NULL); 22189 tmp_ill = next_ill->ill_usesrc_grp_next; 22190 ASSERT(tmp_ill != NULL); 22191 next_ill->ill_usesrc_grp_next = NULL; 22192 next_ill->ill_usesrc_ifindex = 0; 22193 next_ill = tmp_ill; 22194 } while (next_ill->ill_usesrc_ifindex != 0); 22195 uill->ill_usesrc_grp_next = NULL; 22196 } 22197 22198 /* 22199 * Remove the client usesrc ILL from the list and relink to a new list 22200 */ 22201 int 22202 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22203 { 22204 ill_t *ill, *tmp_ill; 22205 ip_stack_t *ipst = ucill->ill_ipst; 22206 22207 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22208 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22209 22210 /* 22211 * Check if the usesrc client ILL passed in is not already 22212 * in use as a usesrc ILL i.e one whose source address is 22213 * in use OR a usesrc ILL is not already in use as a usesrc 22214 * client ILL 22215 */ 22216 if ((ucill->ill_usesrc_ifindex == 0) || 22217 (uill->ill_usesrc_ifindex != 0)) { 22218 return (-1); 22219 } 22220 22221 ill = ill_prev_usesrc(ucill); 22222 ASSERT(ill->ill_usesrc_grp_next != NULL); 22223 22224 /* Remove from the current list */ 22225 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22226 /* Only two elements in the list */ 22227 ASSERT(ill->ill_usesrc_ifindex == 0); 22228 ill->ill_usesrc_grp_next = NULL; 22229 } else { 22230 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22231 } 22232 22233 if (ifindex == 0) { 22234 ucill->ill_usesrc_ifindex = 0; 22235 ucill->ill_usesrc_grp_next = NULL; 22236 return (0); 22237 } 22238 22239 ucill->ill_usesrc_ifindex = ifindex; 22240 tmp_ill = uill->ill_usesrc_grp_next; 22241 uill->ill_usesrc_grp_next = ucill; 22242 ucill->ill_usesrc_grp_next = 22243 (tmp_ill != NULL) ? tmp_ill : uill; 22244 return (0); 22245 } 22246 22247 /* 22248 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22249 * ip.c for locking details. 22250 */ 22251 /* ARGSUSED */ 22252 int 22253 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22254 ip_ioctl_cmd_t *ipip, void *ifreq) 22255 { 22256 struct lifreq *lifr = (struct lifreq *)ifreq; 22257 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22258 ill_flag_changed = B_FALSE; 22259 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22260 int err = 0, ret; 22261 uint_t ifindex; 22262 phyint_t *us_phyint, *us_cli_phyint; 22263 ipsq_t *ipsq = NULL; 22264 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22265 22266 ASSERT(IAM_WRITER_IPIF(ipif)); 22267 ASSERT(q->q_next == NULL); 22268 ASSERT(CONN_Q(q)); 22269 22270 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22271 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22272 22273 ASSERT(us_cli_phyint != NULL); 22274 22275 /* 22276 * If the client ILL is being used for IPMP, abort. 22277 * Note, this can be done before ipsq_try_enter since we are already 22278 * exclusive on this ILL 22279 */ 22280 if ((us_cli_phyint->phyint_groupname != NULL) || 22281 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22282 return (EINVAL); 22283 } 22284 22285 ifindex = lifr->lifr_index; 22286 if (ifindex == 0) { 22287 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22288 /* non usesrc group interface, nothing to reset */ 22289 return (0); 22290 } 22291 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22292 /* valid reset request */ 22293 reset_flg = B_TRUE; 22294 } 22295 22296 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22297 ip_process_ioctl, &err, ipst); 22298 22299 if (usesrc_ill == NULL) { 22300 return (err); 22301 } 22302 22303 /* 22304 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22305 * group nor can either of the interfaces be used for standy. So 22306 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22307 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22308 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22309 * We are already exlusive on this ipsq i.e ipsq corresponding to 22310 * the usesrc_cli_ill 22311 */ 22312 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22313 NEW_OP, B_TRUE); 22314 if (ipsq == NULL) { 22315 err = EINPROGRESS; 22316 /* Operation enqueued on the ipsq of the usesrc ILL */ 22317 goto done; 22318 } 22319 22320 /* Check if the usesrc_ill is used for IPMP */ 22321 us_phyint = usesrc_ill->ill_phyint; 22322 if ((us_phyint->phyint_groupname != NULL) || 22323 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22324 err = EINVAL; 22325 goto done; 22326 } 22327 22328 /* 22329 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22330 * already a client then return EINVAL 22331 */ 22332 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22333 err = EINVAL; 22334 goto done; 22335 } 22336 22337 /* 22338 * If the ill_usesrc_ifindex field is already set to what it needs to 22339 * be then this is a duplicate operation. 22340 */ 22341 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22342 err = 0; 22343 goto done; 22344 } 22345 22346 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22347 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22348 usesrc_ill->ill_isv6)); 22349 22350 /* 22351 * The next step ensures that no new ires will be created referencing 22352 * the client ill, until the ILL_CHANGING flag is cleared. Then 22353 * we go through an ire walk deleting all ire caches that reference 22354 * the client ill. New ires referencing the client ill that are added 22355 * to the ire table before the ILL_CHANGING flag is set, will be 22356 * cleaned up by the ire walk below. Attempt to add new ires referencing 22357 * the client ill while the ILL_CHANGING flag is set will be failed 22358 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22359 * checks (under the ill_g_usesrc_lock) that the ire being added 22360 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22361 * belong to the same usesrc group. 22362 */ 22363 mutex_enter(&usesrc_cli_ill->ill_lock); 22364 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22365 mutex_exit(&usesrc_cli_ill->ill_lock); 22366 ill_flag_changed = B_TRUE; 22367 22368 if (ipif->ipif_isv6) 22369 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22370 ALL_ZONES, ipst); 22371 else 22372 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22373 ALL_ZONES, ipst); 22374 22375 /* 22376 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22377 * and the ill_usesrc_ifindex fields 22378 */ 22379 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22380 22381 if (reset_flg) { 22382 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22383 if (ret != 0) { 22384 err = EINVAL; 22385 } 22386 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22387 goto done; 22388 } 22389 22390 /* 22391 * Four possibilities to consider: 22392 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22393 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22394 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22395 * 4. Both are part of their respective usesrc groups 22396 */ 22397 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22398 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22399 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22400 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22401 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22402 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22403 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22404 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22405 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22406 /* Insert at head of list */ 22407 usesrc_cli_ill->ill_usesrc_grp_next = 22408 usesrc_ill->ill_usesrc_grp_next; 22409 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22410 } else { 22411 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22412 ifindex); 22413 if (ret != 0) 22414 err = EINVAL; 22415 } 22416 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22417 22418 done: 22419 if (ill_flag_changed) { 22420 mutex_enter(&usesrc_cli_ill->ill_lock); 22421 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22422 mutex_exit(&usesrc_cli_ill->ill_lock); 22423 } 22424 if (ipsq != NULL) 22425 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22426 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22427 ill_refrele(usesrc_ill); 22428 return (err); 22429 } 22430 22431 /* 22432 * comparison function used by avl. 22433 */ 22434 static int 22435 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22436 { 22437 22438 uint_t index; 22439 22440 ASSERT(phyip != NULL && index_ptr != NULL); 22441 22442 index = *((uint_t *)index_ptr); 22443 /* 22444 * let the phyint with the lowest index be on top. 22445 */ 22446 if (((phyint_t *)phyip)->phyint_ifindex < index) 22447 return (1); 22448 if (((phyint_t *)phyip)->phyint_ifindex > index) 22449 return (-1); 22450 return (0); 22451 } 22452 22453 /* 22454 * comparison function used by avl. 22455 */ 22456 static int 22457 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22458 { 22459 ill_t *ill; 22460 int res = 0; 22461 22462 ASSERT(phyip != NULL && name_ptr != NULL); 22463 22464 if (((phyint_t *)phyip)->phyint_illv4) 22465 ill = ((phyint_t *)phyip)->phyint_illv4; 22466 else 22467 ill = ((phyint_t *)phyip)->phyint_illv6; 22468 ASSERT(ill != NULL); 22469 22470 res = strcmp(ill->ill_name, (char *)name_ptr); 22471 if (res > 0) 22472 return (1); 22473 else if (res < 0) 22474 return (-1); 22475 return (0); 22476 } 22477 /* 22478 * This function is called from ill_delete when the ill is being 22479 * unplumbed. We remove the reference from the phyint and we also 22480 * free the phyint when there are no more references to it. 22481 */ 22482 static void 22483 ill_phyint_free(ill_t *ill) 22484 { 22485 phyint_t *phyi; 22486 phyint_t *next_phyint; 22487 ipsq_t *cur_ipsq; 22488 ip_stack_t *ipst = ill->ill_ipst; 22489 22490 ASSERT(ill->ill_phyint != NULL); 22491 22492 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22493 phyi = ill->ill_phyint; 22494 ill->ill_phyint = NULL; 22495 /* 22496 * ill_init allocates a phyint always to store the copy 22497 * of flags relevant to phyint. At that point in time, we could 22498 * not assign the name and hence phyint_illv4/v6 could not be 22499 * initialized. Later in ipif_set_values, we assign the name to 22500 * the ill, at which point in time we assign phyint_illv4/v6. 22501 * Thus we don't rely on phyint_illv6 to be initialized always. 22502 */ 22503 if (ill->ill_flags & ILLF_IPV6) { 22504 phyi->phyint_illv6 = NULL; 22505 } else { 22506 phyi->phyint_illv4 = NULL; 22507 } 22508 /* 22509 * ipif_down removes it from the group when the last ipif goes 22510 * down. 22511 */ 22512 ASSERT(ill->ill_group == NULL); 22513 22514 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22515 return; 22516 22517 /* 22518 * Make sure this phyint was put in the list. 22519 */ 22520 if (phyi->phyint_ifindex > 0) { 22521 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22522 phyi); 22523 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22524 phyi); 22525 } 22526 /* 22527 * remove phyint from the ipsq list. 22528 */ 22529 cur_ipsq = phyi->phyint_ipsq; 22530 if (phyi == cur_ipsq->ipsq_phyint_list) { 22531 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22532 } else { 22533 next_phyint = cur_ipsq->ipsq_phyint_list; 22534 while (next_phyint != NULL) { 22535 if (next_phyint->phyint_ipsq_next == phyi) { 22536 next_phyint->phyint_ipsq_next = 22537 phyi->phyint_ipsq_next; 22538 break; 22539 } 22540 next_phyint = next_phyint->phyint_ipsq_next; 22541 } 22542 ASSERT(next_phyint != NULL); 22543 } 22544 IPSQ_DEC_REF(cur_ipsq, ipst); 22545 22546 if (phyi->phyint_groupname_len != 0) { 22547 ASSERT(phyi->phyint_groupname != NULL); 22548 mi_free(phyi->phyint_groupname); 22549 } 22550 mi_free(phyi); 22551 } 22552 22553 /* 22554 * Attach the ill to the phyint structure which can be shared by both 22555 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22556 * function is called from ipif_set_values and ill_lookup_on_name (for 22557 * loopback) where we know the name of the ill. We lookup the ill and if 22558 * there is one present already with the name use that phyint. Otherwise 22559 * reuse the one allocated by ill_init. 22560 */ 22561 static void 22562 ill_phyint_reinit(ill_t *ill) 22563 { 22564 boolean_t isv6 = ill->ill_isv6; 22565 phyint_t *phyi_old; 22566 phyint_t *phyi; 22567 avl_index_t where = 0; 22568 ill_t *ill_other = NULL; 22569 ipsq_t *ipsq; 22570 ip_stack_t *ipst = ill->ill_ipst; 22571 22572 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22573 22574 phyi_old = ill->ill_phyint; 22575 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22576 phyi_old->phyint_illv6 == NULL)); 22577 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22578 phyi_old->phyint_illv4 == NULL)); 22579 ASSERT(phyi_old->phyint_ifindex == 0); 22580 22581 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22582 ill->ill_name, &where); 22583 22584 /* 22585 * 1. We grabbed the ill_g_lock before inserting this ill into 22586 * the global list of ills. So no other thread could have located 22587 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22588 * 2. Now locate the other protocol instance of this ill. 22589 * 3. Now grab both ill locks in the right order, and the phyint lock of 22590 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22591 * of neither ill can change. 22592 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22593 * other ill. 22594 * 5. Release all locks. 22595 */ 22596 22597 /* 22598 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22599 * we are initializing IPv4. 22600 */ 22601 if (phyi != NULL) { 22602 ill_other = (isv6) ? phyi->phyint_illv4 : 22603 phyi->phyint_illv6; 22604 ASSERT(ill_other->ill_phyint != NULL); 22605 ASSERT((isv6 && !ill_other->ill_isv6) || 22606 (!isv6 && ill_other->ill_isv6)); 22607 GRAB_ILL_LOCKS(ill, ill_other); 22608 /* 22609 * We are potentially throwing away phyint_flags which 22610 * could be different from the one that we obtain from 22611 * ill_other->ill_phyint. But it is okay as we are assuming 22612 * that the state maintained within IP is correct. 22613 */ 22614 mutex_enter(&phyi->phyint_lock); 22615 if (isv6) { 22616 ASSERT(phyi->phyint_illv6 == NULL); 22617 phyi->phyint_illv6 = ill; 22618 } else { 22619 ASSERT(phyi->phyint_illv4 == NULL); 22620 phyi->phyint_illv4 = ill; 22621 } 22622 /* 22623 * This is a new ill, currently undergoing SLIFNAME 22624 * So we could not have joined an IPMP group until now. 22625 */ 22626 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22627 phyi_old->phyint_groupname == NULL); 22628 22629 /* 22630 * This phyi_old is going away. Decref ipsq_refs and 22631 * assert it is zero. The ipsq itself will be freed in 22632 * ipsq_exit 22633 */ 22634 ipsq = phyi_old->phyint_ipsq; 22635 IPSQ_DEC_REF(ipsq, ipst); 22636 ASSERT(ipsq->ipsq_refs == 0); 22637 /* Get the singleton phyint out of the ipsq list */ 22638 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22639 ipsq->ipsq_phyint_list = NULL; 22640 phyi_old->phyint_illv4 = NULL; 22641 phyi_old->phyint_illv6 = NULL; 22642 mi_free(phyi_old); 22643 } else { 22644 mutex_enter(&ill->ill_lock); 22645 /* 22646 * We don't need to acquire any lock, since 22647 * the ill is not yet visible globally and we 22648 * have not yet released the ill_g_lock. 22649 */ 22650 phyi = phyi_old; 22651 mutex_enter(&phyi->phyint_lock); 22652 /* XXX We need a recovery strategy here. */ 22653 if (!phyint_assign_ifindex(phyi, ipst)) 22654 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22655 22656 /* No IPMP group yet, thus the hook uses the ifindex */ 22657 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22658 22659 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22660 (void *)phyi, where); 22661 22662 (void) avl_find(&ipst->ips_phyint_g_list-> 22663 phyint_list_avl_by_index, 22664 &phyi->phyint_ifindex, &where); 22665 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22666 (void *)phyi, where); 22667 } 22668 22669 /* 22670 * Reassigning ill_phyint automatically reassigns the ipsq also. 22671 * pending mp is not affected because that is per ill basis. 22672 */ 22673 ill->ill_phyint = phyi; 22674 22675 /* 22676 * Keep the index on ipif_orig_index to be used by FAILOVER. 22677 * We do this here as when the first ipif was allocated, 22678 * ipif_allocate does not know the right interface index. 22679 */ 22680 22681 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22682 /* 22683 * Now that the phyint's ifindex has been assigned, complete the 22684 * remaining 22685 */ 22686 22687 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22688 if (ill->ill_isv6) { 22689 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22690 ill->ill_phyint->phyint_ifindex; 22691 ill->ill_mcast_type = ipst->ips_mld_max_version; 22692 } else { 22693 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22694 } 22695 22696 /* 22697 * Generate an event within the hooks framework to indicate that 22698 * a new interface has just been added to IP. For this event to 22699 * be generated, the network interface must, at least, have an 22700 * ifindex assigned to it. 22701 * 22702 * This needs to be run inside the ill_g_lock perimeter to ensure 22703 * that the ordering of delivered events to listeners matches the 22704 * order of them in the kernel. 22705 * 22706 * This function could be called from ill_lookup_on_name. In that case 22707 * the interface is loopback "lo", which will not generate a NIC event. 22708 */ 22709 if (ill->ill_name_length <= 2 || 22710 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22711 /* 22712 * Generate nic plumb event for ill_name even if 22713 * ipmp_hook_emulation is set. That avoids generating events 22714 * for the ill_names should ipmp_hook_emulation be turned on 22715 * later. 22716 */ 22717 ill_nic_info_plumb(ill, B_FALSE); 22718 } 22719 RELEASE_ILL_LOCKS(ill, ill_other); 22720 mutex_exit(&phyi->phyint_lock); 22721 } 22722 22723 /* 22724 * Allocate a NE_PLUMB nic info event and store in the ill. 22725 * If 'group' is set we do it for the group name, otherwise the ill name. 22726 * It will be sent when we leave the ipsq. 22727 */ 22728 void 22729 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22730 { 22731 phyint_t *phyi = ill->ill_phyint; 22732 ip_stack_t *ipst = ill->ill_ipst; 22733 hook_nic_event_t *info; 22734 char *name; 22735 int namelen; 22736 22737 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22738 22739 if ((info = ill->ill_nic_event_info) != NULL) { 22740 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22741 "attached for %s\n", info->hne_event, 22742 ill->ill_name)); 22743 if (info->hne_data != NULL) 22744 kmem_free(info->hne_data, info->hne_datalen); 22745 kmem_free(info, sizeof (hook_nic_event_t)); 22746 ill->ill_nic_event_info = NULL; 22747 } 22748 22749 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22750 if (info == NULL) { 22751 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22752 "event information for %s (ENOMEM)\n", 22753 ill->ill_name)); 22754 return; 22755 } 22756 22757 if (group) { 22758 ASSERT(phyi->phyint_groupname_len != 0); 22759 namelen = phyi->phyint_groupname_len; 22760 name = phyi->phyint_groupname; 22761 } else { 22762 namelen = ill->ill_name_length; 22763 name = ill->ill_name; 22764 } 22765 22766 info->hne_nic = phyi->phyint_hook_ifindex; 22767 info->hne_lif = 0; 22768 info->hne_event = NE_PLUMB; 22769 info->hne_family = ill->ill_isv6 ? 22770 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22771 22772 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22773 if (info->hne_data != NULL) { 22774 info->hne_datalen = namelen; 22775 bcopy(name, info->hne_data, info->hne_datalen); 22776 } else { 22777 ip2dbg(("ill_nic_info_plumb: could not attach " 22778 "name information for PLUMB nic event " 22779 "of %s (ENOMEM)\n", name)); 22780 kmem_free(info, sizeof (hook_nic_event_t)); 22781 info = NULL; 22782 } 22783 ill->ill_nic_event_info = info; 22784 } 22785 22786 /* 22787 * Unhook the nic event message from the ill and enqueue it 22788 * into the nic event taskq. 22789 */ 22790 void 22791 ill_nic_info_dispatch(ill_t *ill) 22792 { 22793 hook_nic_event_t *info; 22794 22795 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22796 22797 if ((info = ill->ill_nic_event_info) != NULL) { 22798 if (ddi_taskq_dispatch(eventq_queue_nic, 22799 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22800 ip2dbg(("ill_nic_info_dispatch: " 22801 "ddi_taskq_dispatch failed\n")); 22802 if (info->hne_data != NULL) 22803 kmem_free(info->hne_data, info->hne_datalen); 22804 kmem_free(info, sizeof (hook_nic_event_t)); 22805 } 22806 ill->ill_nic_event_info = NULL; 22807 } 22808 } 22809 22810 /* 22811 * Notify any downstream modules of the name of this interface. 22812 * An M_IOCTL is used even though we don't expect a successful reply. 22813 * Any reply message from the driver (presumably an M_IOCNAK) will 22814 * eventually get discarded somewhere upstream. The message format is 22815 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22816 * to IP. 22817 */ 22818 static void 22819 ip_ifname_notify(ill_t *ill, queue_t *q) 22820 { 22821 mblk_t *mp1, *mp2; 22822 struct iocblk *iocp; 22823 struct lifreq *lifr; 22824 22825 mp1 = mkiocb(SIOCSLIFNAME); 22826 if (mp1 == NULL) 22827 return; 22828 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22829 if (mp2 == NULL) { 22830 freeb(mp1); 22831 return; 22832 } 22833 22834 mp1->b_cont = mp2; 22835 iocp = (struct iocblk *)mp1->b_rptr; 22836 iocp->ioc_count = sizeof (struct lifreq); 22837 22838 lifr = (struct lifreq *)mp2->b_rptr; 22839 mp2->b_wptr += sizeof (struct lifreq); 22840 bzero(lifr, sizeof (struct lifreq)); 22841 22842 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22843 lifr->lifr_ppa = ill->ill_ppa; 22844 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22845 22846 putnext(q, mp1); 22847 } 22848 22849 static int 22850 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22851 { 22852 int err; 22853 ip_stack_t *ipst = ill->ill_ipst; 22854 22855 /* Set the obsolete NDD per-interface forwarding name. */ 22856 err = ill_set_ndd_name(ill); 22857 if (err != 0) { 22858 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22859 err); 22860 } 22861 22862 /* Tell downstream modules where they are. */ 22863 ip_ifname_notify(ill, q); 22864 22865 /* 22866 * ill_dl_phys returns EINPROGRESS in the usual case. 22867 * Error cases are ENOMEM ... 22868 */ 22869 err = ill_dl_phys(ill, ipif, mp, q); 22870 22871 /* 22872 * If there is no IRE expiration timer running, get one started. 22873 * igmp and mld timers will be triggered by the first multicast 22874 */ 22875 if (ipst->ips_ip_ire_expire_id == 0) { 22876 /* 22877 * acquire the lock and check again. 22878 */ 22879 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22880 if (ipst->ips_ip_ire_expire_id == 0) { 22881 ipst->ips_ip_ire_expire_id = timeout( 22882 ip_trash_timer_expire, ipst, 22883 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22884 } 22885 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22886 } 22887 22888 if (ill->ill_isv6) { 22889 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22890 if (ipst->ips_mld_slowtimeout_id == 0) { 22891 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22892 (void *)ipst, 22893 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22894 } 22895 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22896 } else { 22897 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22898 if (ipst->ips_igmp_slowtimeout_id == 0) { 22899 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22900 (void *)ipst, 22901 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22902 } 22903 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22904 } 22905 22906 return (err); 22907 } 22908 22909 /* 22910 * Common routine for ppa and ifname setting. Should be called exclusive. 22911 * 22912 * Returns EINPROGRESS when mp has been consumed by queueing it on 22913 * ill_pending_mp and the ioctl will complete in ip_rput. 22914 * 22915 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22916 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22917 * For SLIFNAME, we pass these values back to the userland. 22918 */ 22919 static int 22920 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22921 { 22922 ill_t *ill; 22923 ipif_t *ipif; 22924 ipsq_t *ipsq; 22925 char *ppa_ptr; 22926 char *old_ptr; 22927 char old_char; 22928 int error; 22929 ip_stack_t *ipst; 22930 22931 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22932 ASSERT(q->q_next != NULL); 22933 ASSERT(interf_name != NULL); 22934 22935 ill = (ill_t *)q->q_ptr; 22936 ipst = ill->ill_ipst; 22937 22938 ASSERT(ill->ill_ipst != NULL); 22939 ASSERT(ill->ill_name[0] == '\0'); 22940 ASSERT(IAM_WRITER_ILL(ill)); 22941 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22942 ASSERT(ill->ill_ppa == UINT_MAX); 22943 22944 /* The ppa is sent down by ifconfig or is chosen */ 22945 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22946 return (EINVAL); 22947 } 22948 22949 /* 22950 * make sure ppa passed in is same as ppa in the name. 22951 * This check is not made when ppa == UINT_MAX in that case ppa 22952 * in the name could be anything. System will choose a ppa and 22953 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22954 */ 22955 if (*new_ppa_ptr != UINT_MAX) { 22956 /* stoi changes the pointer */ 22957 old_ptr = ppa_ptr; 22958 /* 22959 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22960 * (they don't have an externally visible ppa). We assign one 22961 * here so that we can manage the interface. Note that in 22962 * the past this value was always 0 for DLPI 1 drivers. 22963 */ 22964 if (*new_ppa_ptr == 0) 22965 *new_ppa_ptr = stoi(&old_ptr); 22966 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22967 return (EINVAL); 22968 } 22969 /* 22970 * terminate string before ppa 22971 * save char at that location. 22972 */ 22973 old_char = ppa_ptr[0]; 22974 ppa_ptr[0] = '\0'; 22975 22976 ill->ill_ppa = *new_ppa_ptr; 22977 /* 22978 * Finish as much work now as possible before calling ill_glist_insert 22979 * which makes the ill globally visible and also merges it with the 22980 * other protocol instance of this phyint. The remaining work is 22981 * done after entering the ipsq which may happen sometime later. 22982 * ill_set_ndd_name occurs after the ill has been made globally visible. 22983 */ 22984 ipif = ill->ill_ipif; 22985 22986 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22987 ipif_assign_seqid(ipif); 22988 22989 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22990 ill->ill_flags |= ILLF_IPV4; 22991 22992 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22993 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22994 22995 if (ill->ill_flags & ILLF_IPV6) { 22996 22997 ill->ill_isv6 = B_TRUE; 22998 if (ill->ill_rq != NULL) { 22999 ill->ill_rq->q_qinfo = &rinit_ipv6; 23000 ill->ill_wq->q_qinfo = &winit_ipv6; 23001 } 23002 23003 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23004 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23005 ipif->ipif_v6src_addr = ipv6_all_zeros; 23006 ipif->ipif_v6subnet = ipv6_all_zeros; 23007 ipif->ipif_v6net_mask = ipv6_all_zeros; 23008 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23009 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23010 /* 23011 * point-to-point or Non-mulicast capable 23012 * interfaces won't do NUD unless explicitly 23013 * configured to do so. 23014 */ 23015 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23016 !(ill->ill_flags & ILLF_MULTICAST)) { 23017 ill->ill_flags |= ILLF_NONUD; 23018 } 23019 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23020 if (ill->ill_flags & ILLF_NOARP) { 23021 /* 23022 * Note: xresolv interfaces will eventually need 23023 * NOARP set here as well, but that will require 23024 * those external resolvers to have some 23025 * knowledge of that flag and act appropriately. 23026 * Not to be changed at present. 23027 */ 23028 ill->ill_flags &= ~ILLF_NOARP; 23029 } 23030 /* 23031 * Set the ILLF_ROUTER flag according to the global 23032 * IPv6 forwarding policy. 23033 */ 23034 if (ipst->ips_ipv6_forward != 0) 23035 ill->ill_flags |= ILLF_ROUTER; 23036 } else if (ill->ill_flags & ILLF_IPV4) { 23037 ill->ill_isv6 = B_FALSE; 23038 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23039 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23040 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23041 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23042 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23043 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23044 /* 23045 * Set the ILLF_ROUTER flag according to the global 23046 * IPv4 forwarding policy. 23047 */ 23048 if (ipst->ips_ip_g_forward != 0) 23049 ill->ill_flags |= ILLF_ROUTER; 23050 } 23051 23052 ASSERT(ill->ill_phyint != NULL); 23053 23054 /* 23055 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23056 * be completed in ill_glist_insert -> ill_phyint_reinit 23057 */ 23058 if (!ill_allocate_mibs(ill)) 23059 return (ENOMEM); 23060 23061 /* 23062 * Pick a default sap until we get the DL_INFO_ACK back from 23063 * the driver. 23064 */ 23065 if (ill->ill_sap == 0) { 23066 if (ill->ill_isv6) 23067 ill->ill_sap = IP6_DL_SAP; 23068 else 23069 ill->ill_sap = IP_DL_SAP; 23070 } 23071 23072 ill->ill_ifname_pending = 1; 23073 ill->ill_ifname_pending_err = 0; 23074 23075 ill_refhold(ill); 23076 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23077 if ((error = ill_glist_insert(ill, interf_name, 23078 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23079 ill->ill_ppa = UINT_MAX; 23080 ill->ill_name[0] = '\0'; 23081 /* 23082 * undo null termination done above. 23083 */ 23084 ppa_ptr[0] = old_char; 23085 rw_exit(&ipst->ips_ill_g_lock); 23086 ill_refrele(ill); 23087 return (error); 23088 } 23089 23090 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23091 23092 /* 23093 * When we return the buffer pointed to by interf_name should contain 23094 * the same name as in ill_name. 23095 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23096 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23097 * so copy full name and update the ppa ptr. 23098 * When ppa passed in != UINT_MAX all values are correct just undo 23099 * null termination, this saves a bcopy. 23100 */ 23101 if (*new_ppa_ptr == UINT_MAX) { 23102 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23103 *new_ppa_ptr = ill->ill_ppa; 23104 } else { 23105 /* 23106 * undo null termination done above. 23107 */ 23108 ppa_ptr[0] = old_char; 23109 } 23110 23111 /* Let SCTP know about this ILL */ 23112 sctp_update_ill(ill, SCTP_ILL_INSERT); 23113 23114 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23115 B_TRUE); 23116 23117 rw_exit(&ipst->ips_ill_g_lock); 23118 ill_refrele(ill); 23119 if (ipsq == NULL) 23120 return (EINPROGRESS); 23121 23122 /* 23123 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23124 */ 23125 if (ipsq->ipsq_current_ipif == NULL) 23126 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23127 else 23128 ASSERT(ipsq->ipsq_current_ipif == ipif); 23129 23130 error = ipif_set_values_tail(ill, ipif, mp, q); 23131 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23132 if (error != 0 && error != EINPROGRESS) { 23133 /* 23134 * restore previous values 23135 */ 23136 ill->ill_isv6 = B_FALSE; 23137 } 23138 return (error); 23139 } 23140 23141 23142 void 23143 ipif_init(ip_stack_t *ipst) 23144 { 23145 hrtime_t hrt; 23146 int i; 23147 23148 /* 23149 * Can't call drv_getparm here as it is too early in the boot. 23150 * As we use ipif_src_random just for picking a different 23151 * source address everytime, this need not be really random. 23152 */ 23153 hrt = gethrtime(); 23154 ipst->ips_ipif_src_random = 23155 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23156 23157 for (i = 0; i < MAX_G_HEADS; i++) { 23158 ipst->ips_ill_g_heads[i].ill_g_list_head = 23159 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23160 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23161 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23162 } 23163 23164 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23165 ill_phyint_compare_index, 23166 sizeof (phyint_t), 23167 offsetof(struct phyint, phyint_avl_by_index)); 23168 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23169 ill_phyint_compare_name, 23170 sizeof (phyint_t), 23171 offsetof(struct phyint, phyint_avl_by_name)); 23172 } 23173 23174 /* 23175 * Lookup the ipif corresponding to the onlink destination address. For 23176 * point-to-point interfaces, it matches with remote endpoint destination 23177 * address. For point-to-multipoint interfaces it only tries to match the 23178 * destination with the interface's subnet address. The longest, most specific 23179 * match is found to take care of such rare network configurations like - 23180 * le0: 129.146.1.1/16 23181 * le1: 129.146.2.2/24 23182 * It is used only by SO_DONTROUTE at the moment. 23183 */ 23184 ipif_t * 23185 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23186 { 23187 ipif_t *ipif, *best_ipif; 23188 ill_t *ill; 23189 ill_walk_context_t ctx; 23190 23191 ASSERT(zoneid != ALL_ZONES); 23192 best_ipif = NULL; 23193 23194 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23195 ill = ILL_START_WALK_V4(&ctx, ipst); 23196 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23197 mutex_enter(&ill->ill_lock); 23198 for (ipif = ill->ill_ipif; ipif != NULL; 23199 ipif = ipif->ipif_next) { 23200 if (!IPIF_CAN_LOOKUP(ipif)) 23201 continue; 23202 if (ipif->ipif_zoneid != zoneid && 23203 ipif->ipif_zoneid != ALL_ZONES) 23204 continue; 23205 /* 23206 * Point-to-point case. Look for exact match with 23207 * destination address. 23208 */ 23209 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23210 if (ipif->ipif_pp_dst_addr == addr) { 23211 ipif_refhold_locked(ipif); 23212 mutex_exit(&ill->ill_lock); 23213 rw_exit(&ipst->ips_ill_g_lock); 23214 if (best_ipif != NULL) 23215 ipif_refrele(best_ipif); 23216 return (ipif); 23217 } 23218 } else if (ipif->ipif_subnet == (addr & 23219 ipif->ipif_net_mask)) { 23220 /* 23221 * Point-to-multipoint case. Looping through to 23222 * find the most specific match. If there are 23223 * multiple best match ipif's then prefer ipif's 23224 * that are UP. If there is only one best match 23225 * ipif and it is DOWN we must still return it. 23226 */ 23227 if ((best_ipif == NULL) || 23228 (ipif->ipif_net_mask > 23229 best_ipif->ipif_net_mask) || 23230 ((ipif->ipif_net_mask == 23231 best_ipif->ipif_net_mask) && 23232 ((ipif->ipif_flags & IPIF_UP) && 23233 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23234 ipif_refhold_locked(ipif); 23235 mutex_exit(&ill->ill_lock); 23236 rw_exit(&ipst->ips_ill_g_lock); 23237 if (best_ipif != NULL) 23238 ipif_refrele(best_ipif); 23239 best_ipif = ipif; 23240 rw_enter(&ipst->ips_ill_g_lock, 23241 RW_READER); 23242 mutex_enter(&ill->ill_lock); 23243 } 23244 } 23245 } 23246 mutex_exit(&ill->ill_lock); 23247 } 23248 rw_exit(&ipst->ips_ill_g_lock); 23249 return (best_ipif); 23250 } 23251 23252 23253 /* 23254 * Save enough information so that we can recreate the IRE if 23255 * the interface goes down and then up. 23256 */ 23257 static void 23258 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23259 { 23260 mblk_t *save_mp; 23261 23262 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23263 if (save_mp != NULL) { 23264 ifrt_t *ifrt; 23265 23266 save_mp->b_wptr += sizeof (ifrt_t); 23267 ifrt = (ifrt_t *)save_mp->b_rptr; 23268 bzero(ifrt, sizeof (ifrt_t)); 23269 ifrt->ifrt_type = ire->ire_type; 23270 ifrt->ifrt_addr = ire->ire_addr; 23271 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23272 ifrt->ifrt_src_addr = ire->ire_src_addr; 23273 ifrt->ifrt_mask = ire->ire_mask; 23274 ifrt->ifrt_flags = ire->ire_flags; 23275 ifrt->ifrt_max_frag = ire->ire_max_frag; 23276 mutex_enter(&ipif->ipif_saved_ire_lock); 23277 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23278 ipif->ipif_saved_ire_mp = save_mp; 23279 ipif->ipif_saved_ire_cnt++; 23280 mutex_exit(&ipif->ipif_saved_ire_lock); 23281 } 23282 } 23283 23284 23285 static void 23286 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23287 { 23288 mblk_t **mpp; 23289 mblk_t *mp; 23290 ifrt_t *ifrt; 23291 23292 /* Remove from ipif_saved_ire_mp list if it is there */ 23293 mutex_enter(&ipif->ipif_saved_ire_lock); 23294 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23295 mpp = &(*mpp)->b_cont) { 23296 /* 23297 * On a given ipif, the triple of address, gateway and 23298 * mask is unique for each saved IRE (in the case of 23299 * ordinary interface routes, the gateway address is 23300 * all-zeroes). 23301 */ 23302 mp = *mpp; 23303 ifrt = (ifrt_t *)mp->b_rptr; 23304 if (ifrt->ifrt_addr == ire->ire_addr && 23305 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23306 ifrt->ifrt_mask == ire->ire_mask) { 23307 *mpp = mp->b_cont; 23308 ipif->ipif_saved_ire_cnt--; 23309 freeb(mp); 23310 break; 23311 } 23312 } 23313 mutex_exit(&ipif->ipif_saved_ire_lock); 23314 } 23315 23316 23317 /* 23318 * IP multirouting broadcast routes handling 23319 * Append CGTP broadcast IREs to regular ones created 23320 * at ifconfig time. 23321 */ 23322 static void 23323 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23324 { 23325 ire_t *ire_prim; 23326 23327 ASSERT(ire != NULL); 23328 ASSERT(ire_dst != NULL); 23329 23330 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23331 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23332 if (ire_prim != NULL) { 23333 /* 23334 * We are in the special case of broadcasts for 23335 * CGTP. We add an IRE_BROADCAST that holds 23336 * the RTF_MULTIRT flag, the destination 23337 * address of ire_dst and the low level 23338 * info of ire_prim. In other words, CGTP 23339 * broadcast is added to the redundant ipif. 23340 */ 23341 ipif_t *ipif_prim; 23342 ire_t *bcast_ire; 23343 23344 ipif_prim = ire_prim->ire_ipif; 23345 23346 ip2dbg(("ip_cgtp_filter_bcast_add: " 23347 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23348 (void *)ire_dst, (void *)ire_prim, 23349 (void *)ipif_prim)); 23350 23351 bcast_ire = ire_create( 23352 (uchar_t *)&ire->ire_addr, 23353 (uchar_t *)&ip_g_all_ones, 23354 (uchar_t *)&ire_dst->ire_src_addr, 23355 (uchar_t *)&ire->ire_gateway_addr, 23356 &ipif_prim->ipif_mtu, 23357 NULL, 23358 ipif_prim->ipif_rq, 23359 ipif_prim->ipif_wq, 23360 IRE_BROADCAST, 23361 ipif_prim, 23362 0, 23363 0, 23364 0, 23365 ire->ire_flags, 23366 &ire_uinfo_null, 23367 NULL, 23368 NULL, 23369 ipst); 23370 23371 if (bcast_ire != NULL) { 23372 23373 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23374 B_FALSE) == 0) { 23375 ip2dbg(("ip_cgtp_filter_bcast_add: " 23376 "added bcast_ire %p\n", 23377 (void *)bcast_ire)); 23378 23379 ipif_save_ire(bcast_ire->ire_ipif, 23380 bcast_ire); 23381 ire_refrele(bcast_ire); 23382 } 23383 } 23384 ire_refrele(ire_prim); 23385 } 23386 } 23387 23388 23389 /* 23390 * IP multirouting broadcast routes handling 23391 * Remove the broadcast ire 23392 */ 23393 static void 23394 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23395 { 23396 ire_t *ire_dst; 23397 23398 ASSERT(ire != NULL); 23399 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23400 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23401 if (ire_dst != NULL) { 23402 ire_t *ire_prim; 23403 23404 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23405 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23406 if (ire_prim != NULL) { 23407 ipif_t *ipif_prim; 23408 ire_t *bcast_ire; 23409 23410 ipif_prim = ire_prim->ire_ipif; 23411 23412 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23413 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23414 (void *)ire_dst, (void *)ire_prim, 23415 (void *)ipif_prim)); 23416 23417 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23418 ire->ire_gateway_addr, 23419 IRE_BROADCAST, 23420 ipif_prim, ALL_ZONES, 23421 NULL, 23422 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23423 MATCH_IRE_MASK, ipst); 23424 23425 if (bcast_ire != NULL) { 23426 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23427 "looked up bcast_ire %p\n", 23428 (void *)bcast_ire)); 23429 ipif_remove_ire(bcast_ire->ire_ipif, 23430 bcast_ire); 23431 ire_delete(bcast_ire); 23432 } 23433 ire_refrele(ire_prim); 23434 } 23435 ire_refrele(ire_dst); 23436 } 23437 } 23438 23439 /* 23440 * IPsec hardware acceleration capabilities related functions. 23441 */ 23442 23443 /* 23444 * Free a per-ill IPsec capabilities structure. 23445 */ 23446 static void 23447 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23448 { 23449 if (capab->auth_hw_algs != NULL) 23450 kmem_free(capab->auth_hw_algs, capab->algs_size); 23451 if (capab->encr_hw_algs != NULL) 23452 kmem_free(capab->encr_hw_algs, capab->algs_size); 23453 if (capab->encr_algparm != NULL) 23454 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23455 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23456 } 23457 23458 /* 23459 * Allocate a new per-ill IPsec capabilities structure. This structure 23460 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23461 * an array which specifies, for each algorithm, whether this algorithm 23462 * is supported by the ill or not. 23463 */ 23464 static ill_ipsec_capab_t * 23465 ill_ipsec_capab_alloc(void) 23466 { 23467 ill_ipsec_capab_t *capab; 23468 uint_t nelems; 23469 23470 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23471 if (capab == NULL) 23472 return (NULL); 23473 23474 /* we need one bit per algorithm */ 23475 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23476 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23477 23478 /* allocate memory to store algorithm flags */ 23479 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23480 if (capab->encr_hw_algs == NULL) 23481 goto nomem; 23482 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23483 if (capab->auth_hw_algs == NULL) 23484 goto nomem; 23485 /* 23486 * Leave encr_algparm NULL for now since we won't need it half 23487 * the time 23488 */ 23489 return (capab); 23490 23491 nomem: 23492 ill_ipsec_capab_free(capab); 23493 return (NULL); 23494 } 23495 23496 /* 23497 * Resize capability array. Since we're exclusive, this is OK. 23498 */ 23499 static boolean_t 23500 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23501 { 23502 ipsec_capab_algparm_t *nalp, *oalp; 23503 uint32_t olen, nlen; 23504 23505 oalp = capab->encr_algparm; 23506 olen = capab->encr_algparm_size; 23507 23508 if (oalp != NULL) { 23509 if (algid < capab->encr_algparm_end) 23510 return (B_TRUE); 23511 } 23512 23513 nlen = (algid + 1) * sizeof (*nalp); 23514 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23515 if (nalp == NULL) 23516 return (B_FALSE); 23517 23518 if (oalp != NULL) { 23519 bcopy(oalp, nalp, olen); 23520 kmem_free(oalp, olen); 23521 } 23522 capab->encr_algparm = nalp; 23523 capab->encr_algparm_size = nlen; 23524 capab->encr_algparm_end = algid + 1; 23525 23526 return (B_TRUE); 23527 } 23528 23529 /* 23530 * Compare the capabilities of the specified ill with the protocol 23531 * and algorithms specified by the SA passed as argument. 23532 * If they match, returns B_TRUE, B_FALSE if they do not match. 23533 * 23534 * The ill can be passed as a pointer to it, or by specifying its index 23535 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23536 * 23537 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23538 * packet is eligible for hardware acceleration, and by 23539 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23540 * to a particular ill. 23541 */ 23542 boolean_t 23543 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23544 ipsa_t *sa, netstack_t *ns) 23545 { 23546 boolean_t sa_isv6; 23547 uint_t algid; 23548 struct ill_ipsec_capab_s *cpp; 23549 boolean_t need_refrele = B_FALSE; 23550 ip_stack_t *ipst = ns->netstack_ip; 23551 23552 if (ill == NULL) { 23553 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23554 NULL, NULL, NULL, ipst); 23555 if (ill == NULL) { 23556 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23557 return (B_FALSE); 23558 } 23559 need_refrele = B_TRUE; 23560 } 23561 23562 /* 23563 * Use the address length specified by the SA to determine 23564 * if it corresponds to a IPv6 address, and fail the matching 23565 * if the isv6 flag passed as argument does not match. 23566 * Note: this check is used for SADB capability checking before 23567 * sending SA information to an ill. 23568 */ 23569 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23570 if (sa_isv6 != ill_isv6) 23571 /* protocol mismatch */ 23572 goto done; 23573 23574 /* 23575 * Check if the ill supports the protocol, algorithm(s) and 23576 * key size(s) specified by the SA, and get the pointers to 23577 * the algorithms supported by the ill. 23578 */ 23579 switch (sa->ipsa_type) { 23580 23581 case SADB_SATYPE_ESP: 23582 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23583 /* ill does not support ESP acceleration */ 23584 goto done; 23585 cpp = ill->ill_ipsec_capab_esp; 23586 algid = sa->ipsa_auth_alg; 23587 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23588 goto done; 23589 algid = sa->ipsa_encr_alg; 23590 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23591 goto done; 23592 if (algid < cpp->encr_algparm_end) { 23593 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23594 if (sa->ipsa_encrkeybits < alp->minkeylen) 23595 goto done; 23596 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23597 goto done; 23598 } 23599 break; 23600 23601 case SADB_SATYPE_AH: 23602 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23603 /* ill does not support AH acceleration */ 23604 goto done; 23605 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23606 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23607 goto done; 23608 break; 23609 } 23610 23611 if (need_refrele) 23612 ill_refrele(ill); 23613 return (B_TRUE); 23614 done: 23615 if (need_refrele) 23616 ill_refrele(ill); 23617 return (B_FALSE); 23618 } 23619 23620 23621 /* 23622 * Add a new ill to the list of IPsec capable ills. 23623 * Called from ill_capability_ipsec_ack() when an ACK was received 23624 * indicating that IPsec hardware processing was enabled for an ill. 23625 * 23626 * ill must point to the ill for which acceleration was enabled. 23627 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23628 */ 23629 static void 23630 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23631 { 23632 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23633 uint_t sa_type; 23634 uint_t ipproto; 23635 ip_stack_t *ipst = ill->ill_ipst; 23636 23637 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23638 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23639 23640 switch (dl_cap) { 23641 case DL_CAPAB_IPSEC_AH: 23642 sa_type = SADB_SATYPE_AH; 23643 ills = &ipst->ips_ipsec_capab_ills_ah; 23644 ipproto = IPPROTO_AH; 23645 break; 23646 case DL_CAPAB_IPSEC_ESP: 23647 sa_type = SADB_SATYPE_ESP; 23648 ills = &ipst->ips_ipsec_capab_ills_esp; 23649 ipproto = IPPROTO_ESP; 23650 break; 23651 } 23652 23653 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23654 23655 /* 23656 * Add ill index to list of hardware accelerators. If 23657 * already in list, do nothing. 23658 */ 23659 for (cur_ill = *ills; cur_ill != NULL && 23660 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23661 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23662 ; 23663 23664 if (cur_ill == NULL) { 23665 /* if this is a new entry for this ill */ 23666 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23667 if (new_ill == NULL) { 23668 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23669 return; 23670 } 23671 23672 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23673 new_ill->ill_isv6 = ill->ill_isv6; 23674 new_ill->next = *ills; 23675 *ills = new_ill; 23676 } else if (!sadb_resync) { 23677 /* not resync'ing SADB and an entry exists for this ill */ 23678 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23679 return; 23680 } 23681 23682 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23683 23684 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23685 /* 23686 * IPsec module for protocol loaded, initiate dump 23687 * of the SADB to this ill. 23688 */ 23689 sadb_ill_download(ill, sa_type); 23690 } 23691 23692 /* 23693 * Remove an ill from the list of IPsec capable ills. 23694 */ 23695 static void 23696 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23697 { 23698 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23699 ip_stack_t *ipst = ill->ill_ipst; 23700 23701 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23702 dl_cap == DL_CAPAB_IPSEC_ESP); 23703 23704 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23705 &ipst->ips_ipsec_capab_ills_esp; 23706 23707 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23708 23709 prev_ill = NULL; 23710 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23711 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23712 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23713 ; 23714 if (cur_ill == NULL) { 23715 /* entry not found */ 23716 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23717 return; 23718 } 23719 if (prev_ill == NULL) { 23720 /* entry at front of list */ 23721 *ills = NULL; 23722 } else { 23723 prev_ill->next = cur_ill->next; 23724 } 23725 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23726 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23727 } 23728 23729 /* 23730 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23731 * supporting the specified IPsec protocol acceleration. 23732 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23733 * We free the mblk and, if sa is non-null, release the held referece. 23734 */ 23735 void 23736 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23737 netstack_t *ns) 23738 { 23739 ipsec_capab_ill_t *ici, *cur_ici; 23740 ill_t *ill; 23741 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23742 ip_stack_t *ipst = ns->netstack_ip; 23743 23744 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23745 ipst->ips_ipsec_capab_ills_esp; 23746 23747 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23748 23749 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23750 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23751 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23752 23753 /* 23754 * Handle the case where the ill goes away while the SADB is 23755 * attempting to send messages. If it's going away, it's 23756 * nuking its shadow SADB, so we don't care.. 23757 */ 23758 23759 if (ill == NULL) 23760 continue; 23761 23762 if (sa != NULL) { 23763 /* 23764 * Make sure capabilities match before 23765 * sending SA to ill. 23766 */ 23767 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23768 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23769 ill_refrele(ill); 23770 continue; 23771 } 23772 23773 mutex_enter(&sa->ipsa_lock); 23774 sa->ipsa_flags |= IPSA_F_HW; 23775 mutex_exit(&sa->ipsa_lock); 23776 } 23777 23778 /* 23779 * Copy template message, and add it to the front 23780 * of the mblk ship list. We want to avoid holding 23781 * the ipsec_capab_ills_lock while sending the 23782 * message to the ills. 23783 * 23784 * The b_next and b_prev are temporarily used 23785 * to build a list of mblks to be sent down, and to 23786 * save the ill to which they must be sent. 23787 */ 23788 nmp = copymsg(mp); 23789 if (nmp == NULL) { 23790 ill_refrele(ill); 23791 continue; 23792 } 23793 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23794 nmp->b_next = mp_ship_list; 23795 mp_ship_list = nmp; 23796 nmp->b_prev = (mblk_t *)ill; 23797 } 23798 23799 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23800 23801 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23802 /* restore the mblk to a sane state */ 23803 next_mp = nmp->b_next; 23804 nmp->b_next = NULL; 23805 ill = (ill_t *)nmp->b_prev; 23806 nmp->b_prev = NULL; 23807 23808 ill_dlpi_send(ill, nmp); 23809 ill_refrele(ill); 23810 } 23811 23812 if (sa != NULL) 23813 IPSA_REFRELE(sa); 23814 freemsg(mp); 23815 } 23816 23817 /* 23818 * Derive an interface id from the link layer address. 23819 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23820 */ 23821 static boolean_t 23822 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23823 { 23824 char *addr; 23825 23826 if (phys_length != ETHERADDRL) 23827 return (B_FALSE); 23828 23829 /* Form EUI-64 like address */ 23830 addr = (char *)&v6addr->s6_addr32[2]; 23831 bcopy((char *)phys_addr, addr, 3); 23832 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23833 addr[3] = (char)0xff; 23834 addr[4] = (char)0xfe; 23835 bcopy((char *)phys_addr + 3, addr + 5, 3); 23836 return (B_TRUE); 23837 } 23838 23839 /* ARGSUSED */ 23840 static boolean_t 23841 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23842 { 23843 return (B_FALSE); 23844 } 23845 23846 /* ARGSUSED */ 23847 static boolean_t 23848 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23849 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23850 { 23851 /* 23852 * Multicast address mappings used over Ethernet/802.X. 23853 * This address is used as a base for mappings. 23854 */ 23855 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23856 0x00, 0x00, 0x00}; 23857 23858 /* 23859 * Extract low order 32 bits from IPv6 multicast address. 23860 * Or that into the link layer address, starting from the 23861 * second byte. 23862 */ 23863 *hw_start = 2; 23864 v6_extract_mask->s6_addr32[0] = 0; 23865 v6_extract_mask->s6_addr32[1] = 0; 23866 v6_extract_mask->s6_addr32[2] = 0; 23867 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23868 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23869 return (B_TRUE); 23870 } 23871 23872 /* 23873 * Indicate by return value whether multicast is supported. If not, 23874 * this code should not touch/change any parameters. 23875 */ 23876 /* ARGSUSED */ 23877 static boolean_t 23878 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23879 uint32_t *hw_start, ipaddr_t *extract_mask) 23880 { 23881 /* 23882 * Multicast address mappings used over Ethernet/802.X. 23883 * This address is used as a base for mappings. 23884 */ 23885 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23886 0x00, 0x00, 0x00 }; 23887 23888 if (phys_length != ETHERADDRL) 23889 return (B_FALSE); 23890 23891 *extract_mask = htonl(0x007fffff); 23892 *hw_start = 2; 23893 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23894 return (B_TRUE); 23895 } 23896 23897 /* 23898 * Derive IPoIB interface id from the link layer address. 23899 */ 23900 static boolean_t 23901 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23902 { 23903 char *addr; 23904 23905 if (phys_length != 20) 23906 return (B_FALSE); 23907 addr = (char *)&v6addr->s6_addr32[2]; 23908 bcopy(phys_addr + 12, addr, 8); 23909 /* 23910 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23911 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23912 * rules. In these cases, the IBA considers these GUIDs to be in 23913 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23914 * required; vendors are required not to assign global EUI-64's 23915 * that differ only in u/l bit values, thus guaranteeing uniqueness 23916 * of the interface identifier. Whether the GUID is in modified 23917 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23918 * bit set to 1. 23919 */ 23920 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23921 return (B_TRUE); 23922 } 23923 23924 /* 23925 * Note on mapping from multicast IP addresses to IPoIB multicast link 23926 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23927 * The format of an IPoIB multicast address is: 23928 * 23929 * 4 byte QPN Scope Sign. Pkey 23930 * +--------------------------------------------+ 23931 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23932 * +--------------------------------------------+ 23933 * 23934 * The Scope and Pkey components are properties of the IBA port and 23935 * network interface. They can be ascertained from the broadcast address. 23936 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23937 */ 23938 23939 static boolean_t 23940 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23941 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23942 { 23943 /* 23944 * Base IPoIB IPv6 multicast address used for mappings. 23945 * Does not contain the IBA scope/Pkey values. 23946 */ 23947 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23948 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23949 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23950 23951 /* 23952 * Extract low order 80 bits from IPv6 multicast address. 23953 * Or that into the link layer address, starting from the 23954 * sixth byte. 23955 */ 23956 *hw_start = 6; 23957 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23958 23959 /* 23960 * Now fill in the IBA scope/Pkey values from the broadcast address. 23961 */ 23962 *(maddr + 5) = *(bphys_addr + 5); 23963 *(maddr + 8) = *(bphys_addr + 8); 23964 *(maddr + 9) = *(bphys_addr + 9); 23965 23966 v6_extract_mask->s6_addr32[0] = 0; 23967 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23968 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23969 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23970 return (B_TRUE); 23971 } 23972 23973 static boolean_t 23974 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23975 uint32_t *hw_start, ipaddr_t *extract_mask) 23976 { 23977 /* 23978 * Base IPoIB IPv4 multicast address used for mappings. 23979 * Does not contain the IBA scope/Pkey values. 23980 */ 23981 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23982 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23983 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23984 23985 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23986 return (B_FALSE); 23987 23988 /* 23989 * Extract low order 28 bits from IPv4 multicast address. 23990 * Or that into the link layer address, starting from the 23991 * sixteenth byte. 23992 */ 23993 *extract_mask = htonl(0x0fffffff); 23994 *hw_start = 16; 23995 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23996 23997 /* 23998 * Now fill in the IBA scope/Pkey values from the broadcast address. 23999 */ 24000 *(maddr + 5) = *(bphys_addr + 5); 24001 *(maddr + 8) = *(bphys_addr + 8); 24002 *(maddr + 9) = *(bphys_addr + 9); 24003 return (B_TRUE); 24004 } 24005 24006 /* 24007 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24008 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24009 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24010 * the link-local address is preferred. 24011 */ 24012 boolean_t 24013 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24014 { 24015 ipif_t *ipif; 24016 ipif_t *maybe_ipif = NULL; 24017 24018 mutex_enter(&ill->ill_lock); 24019 if (ill->ill_state_flags & ILL_CONDEMNED) { 24020 mutex_exit(&ill->ill_lock); 24021 if (ipifp != NULL) 24022 *ipifp = NULL; 24023 return (B_FALSE); 24024 } 24025 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24026 if (!IPIF_CAN_LOOKUP(ipif)) 24027 continue; 24028 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24029 ipif->ipif_zoneid != ALL_ZONES) 24030 continue; 24031 if ((ipif->ipif_flags & flags) != flags) 24032 continue; 24033 24034 if (ipifp == NULL) { 24035 mutex_exit(&ill->ill_lock); 24036 ASSERT(maybe_ipif == NULL); 24037 return (B_TRUE); 24038 } 24039 if (!ill->ill_isv6 || 24040 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24041 ipif_refhold_locked(ipif); 24042 mutex_exit(&ill->ill_lock); 24043 *ipifp = ipif; 24044 return (B_TRUE); 24045 } 24046 if (maybe_ipif == NULL) 24047 maybe_ipif = ipif; 24048 } 24049 if (ipifp != NULL) { 24050 if (maybe_ipif != NULL) 24051 ipif_refhold_locked(maybe_ipif); 24052 *ipifp = maybe_ipif; 24053 } 24054 mutex_exit(&ill->ill_lock); 24055 return (maybe_ipif != NULL); 24056 } 24057 24058 /* 24059 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24060 */ 24061 boolean_t 24062 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24063 { 24064 ill_t *illg; 24065 ip_stack_t *ipst = ill->ill_ipst; 24066 24067 /* 24068 * We look at the passed-in ill first without grabbing ill_g_lock. 24069 */ 24070 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24071 return (B_TRUE); 24072 } 24073 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24074 if (ill->ill_group == NULL) { 24075 /* ill not in a group */ 24076 rw_exit(&ipst->ips_ill_g_lock); 24077 return (B_FALSE); 24078 } 24079 24080 /* 24081 * There's no ipif in the zone on ill, however ill is part of an IPMP 24082 * group. We need to look for an ipif in the zone on all the ills in the 24083 * group. 24084 */ 24085 illg = ill->ill_group->illgrp_ill; 24086 do { 24087 /* 24088 * We don't call ipif_lookup_zoneid() on ill as we already know 24089 * that it's not there. 24090 */ 24091 if (illg != ill && 24092 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24093 break; 24094 } 24095 } while ((illg = illg->ill_group_next) != NULL); 24096 rw_exit(&ipst->ips_ill_g_lock); 24097 return (illg != NULL); 24098 } 24099 24100 /* 24101 * Check if this ill is only being used to send ICMP probes for IPMP 24102 */ 24103 boolean_t 24104 ill_is_probeonly(ill_t *ill) 24105 { 24106 /* 24107 * Check if the interface is FAILED, or INACTIVE 24108 */ 24109 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24110 return (B_TRUE); 24111 24112 return (B_FALSE); 24113 } 24114 24115 /* 24116 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24117 * If a pointer to an ipif_t is returned then the caller will need to do 24118 * an ill_refrele(). 24119 * 24120 * If there is no real interface which matches the ifindex, then it looks 24121 * for a group that has a matching index. In the case of a group match the 24122 * lifidx must be zero. We don't need emulate the logical interfaces 24123 * since IP Filter's use of netinfo doesn't use that. 24124 */ 24125 ipif_t * 24126 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24127 ip_stack_t *ipst) 24128 { 24129 ipif_t *ipif; 24130 ill_t *ill; 24131 24132 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24133 ipst); 24134 24135 if (ill == NULL) { 24136 /* Fallback to group names only if hook_emulation set */ 24137 if (!ipst->ips_ipmp_hook_emulation) 24138 return (NULL); 24139 24140 if (lifidx != 0) 24141 return (NULL); 24142 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24143 if (ill == NULL) 24144 return (NULL); 24145 } 24146 24147 mutex_enter(&ill->ill_lock); 24148 if (ill->ill_state_flags & ILL_CONDEMNED) { 24149 mutex_exit(&ill->ill_lock); 24150 ill_refrele(ill); 24151 return (NULL); 24152 } 24153 24154 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24155 if (!IPIF_CAN_LOOKUP(ipif)) 24156 continue; 24157 if (lifidx == ipif->ipif_id) { 24158 ipif_refhold_locked(ipif); 24159 break; 24160 } 24161 } 24162 24163 mutex_exit(&ill->ill_lock); 24164 ill_refrele(ill); 24165 return (ipif); 24166 } 24167 24168 /* 24169 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24170 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24171 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24172 * for details. 24173 */ 24174 void 24175 ill_fastpath_flush(ill_t *ill) 24176 { 24177 ip_stack_t *ipst = ill->ill_ipst; 24178 24179 nce_fastpath_list_dispatch(ill, NULL, NULL); 24180 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24181 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24182 } 24183 24184 /* 24185 * Set the physical address information for `ill' to the contents of the 24186 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24187 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24188 * EINPROGRESS will be returned. 24189 */ 24190 int 24191 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24192 { 24193 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24194 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24195 24196 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24197 24198 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24199 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24200 /* Changing DL_IPV6_TOKEN is not yet supported */ 24201 return (0); 24202 } 24203 24204 /* 24205 * We need to store up to two copies of `mp' in `ill'. Due to the 24206 * design of ipsq_pending_mp_add(), we can't pass them as separate 24207 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24208 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24209 */ 24210 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24211 freemsg(mp); 24212 return (ENOMEM); 24213 } 24214 24215 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24216 24217 /* 24218 * If we can quiesce the ill, then set the address. If not, then 24219 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24220 */ 24221 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24222 mutex_enter(&ill->ill_lock); 24223 if (!ill_is_quiescent(ill)) { 24224 /* call cannot fail since `conn_t *' argument is NULL */ 24225 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24226 mp, ILL_DOWN); 24227 mutex_exit(&ill->ill_lock); 24228 return (EINPROGRESS); 24229 } 24230 mutex_exit(&ill->ill_lock); 24231 24232 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24233 return (0); 24234 } 24235 24236 /* 24237 * Once the ill associated with `q' has quiesced, set its physical address 24238 * information to the values in `addrmp'. Note that two copies of `addrmp' 24239 * are passed (linked by b_cont), since we sometimes need to save two distinct 24240 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24241 * failure (we'll free the other copy if it's not needed). Since the ill_t 24242 * is quiesced, we know any stale IREs with the old address information have 24243 * already been removed, so we don't need to call ill_fastpath_flush(). 24244 */ 24245 /* ARGSUSED */ 24246 static void 24247 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24248 { 24249 ill_t *ill = q->q_ptr; 24250 mblk_t *addrmp2 = unlinkb(addrmp); 24251 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24252 uint_t addrlen, addroff; 24253 24254 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24255 24256 addroff = dlindp->dl_addr_offset; 24257 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24258 24259 switch (dlindp->dl_data) { 24260 case DL_IPV6_LINK_LAYER_ADDR: 24261 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24262 freemsg(addrmp2); 24263 break; 24264 24265 case DL_CURR_PHYS_ADDR: 24266 freemsg(ill->ill_phys_addr_mp); 24267 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24268 ill->ill_phys_addr_mp = addrmp; 24269 ill->ill_phys_addr_length = addrlen; 24270 24271 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24272 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24273 else 24274 freemsg(addrmp2); 24275 break; 24276 default: 24277 ASSERT(0); 24278 } 24279 24280 /* 24281 * If there are ipifs to bring up, ill_up_ipifs() will return 24282 * EINPROGRESS, and ipsq_current_finish() will be called by 24283 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24284 * brought up. 24285 */ 24286 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24287 ipsq_current_finish(ipsq); 24288 } 24289 24290 /* 24291 * Helper routine for setting the ill_nd_lla fields. 24292 */ 24293 void 24294 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24295 { 24296 freemsg(ill->ill_nd_lla_mp); 24297 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24298 ill->ill_nd_lla_mp = ndmp; 24299 ill->ill_nd_lla_len = addrlen; 24300 } 24301 24302 major_t IP_MAJ; 24303 #define IP "ip" 24304 24305 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24306 #define UDPDEV "/devices/pseudo/udp@0:udp" 24307 24308 /* 24309 * Issue REMOVEIF ioctls to have the loopback interfaces 24310 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24311 * the former going away when the user-level processes in the zone 24312 * are killed * and the latter are cleaned up by the stream head 24313 * str_stack_shutdown callback that undoes all I_PLINKs. 24314 */ 24315 void 24316 ip_loopback_cleanup(ip_stack_t *ipst) 24317 { 24318 int error; 24319 ldi_handle_t lh = NULL; 24320 ldi_ident_t li = NULL; 24321 int rval; 24322 cred_t *cr; 24323 struct strioctl iocb; 24324 struct lifreq lifreq; 24325 24326 IP_MAJ = ddi_name_to_major(IP); 24327 24328 #ifdef NS_DEBUG 24329 (void) printf("ip_loopback_cleanup() stackid %d\n", 24330 ipst->ips_netstack->netstack_stackid); 24331 #endif 24332 24333 bzero(&lifreq, sizeof (lifreq)); 24334 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24335 24336 error = ldi_ident_from_major(IP_MAJ, &li); 24337 if (error) { 24338 #ifdef DEBUG 24339 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24340 error); 24341 #endif 24342 return; 24343 } 24344 24345 cr = zone_get_kcred(netstackid_to_zoneid( 24346 ipst->ips_netstack->netstack_stackid)); 24347 ASSERT(cr != NULL); 24348 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24349 if (error) { 24350 #ifdef DEBUG 24351 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24352 error); 24353 #endif 24354 goto out; 24355 } 24356 iocb.ic_cmd = SIOCLIFREMOVEIF; 24357 iocb.ic_timout = 15; 24358 iocb.ic_len = sizeof (lifreq); 24359 iocb.ic_dp = (char *)&lifreq; 24360 24361 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24362 /* LINTED - statement has no consequent */ 24363 if (error) { 24364 #ifdef NS_DEBUG 24365 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24366 "UDP6 error %d\n", error); 24367 #endif 24368 } 24369 (void) ldi_close(lh, FREAD|FWRITE, cr); 24370 lh = NULL; 24371 24372 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24373 if (error) { 24374 #ifdef NS_DEBUG 24375 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24376 error); 24377 #endif 24378 goto out; 24379 } 24380 24381 iocb.ic_cmd = SIOCLIFREMOVEIF; 24382 iocb.ic_timout = 15; 24383 iocb.ic_len = sizeof (lifreq); 24384 iocb.ic_dp = (char *)&lifreq; 24385 24386 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24387 /* LINTED - statement has no consequent */ 24388 if (error) { 24389 #ifdef NS_DEBUG 24390 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24391 "UDP error %d\n", error); 24392 #endif 24393 } 24394 (void) ldi_close(lh, FREAD|FWRITE, cr); 24395 lh = NULL; 24396 24397 out: 24398 /* Close layered handles */ 24399 if (lh) 24400 (void) ldi_close(lh, FREAD|FWRITE, cr); 24401 if (li) 24402 ldi_ident_release(li); 24403 24404 crfree(cr); 24405 } 24406