1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #define _SUN_TPI_VERSION 2 52 #include <sys/tihdr.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_rts.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/ip_if.h> 82 #include <inet/ip_impl.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 #include <sys/iphada.h> 91 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 /* The character which tells where the ill_name ends */ 103 #define IPIF_SEPARATOR_CHAR ':' 104 105 /* IP ioctl function table entry */ 106 typedef struct ipft_s { 107 int ipft_cmd; 108 pfi_t ipft_pfi; 109 int ipft_min_size; 110 int ipft_flags; 111 } ipft_t; 112 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 113 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 114 115 typedef struct ip_sock_ar_s { 116 union { 117 area_t ip_sock_area; 118 ared_t ip_sock_ared; 119 areq_t ip_sock_areq; 120 } ip_sock_ar_u; 121 queue_t *ip_sock_ar_q; 122 } ip_sock_ar_t; 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 143 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 146 static void ipsq_flush(ill_t *ill); 147 static void ipsq_clean_all(ill_t *ill); 148 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize); 155 static void ipif_check_bcast_ires(ipif_t *test_ipif); 156 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 157 static void ipif_delete_cache_ire(ire_t *, char *); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_down_tail(ipif_t *ipif); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mask_reply(ipif_t *); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_dls_reset(ill_t *, mblk_t **); 240 static void ill_capability_dls_disable(ill_t *); 241 242 static void illgrp_cache_delete(ire_t *, char *); 243 static void illgrp_delete(ill_t *ill); 244 static void illgrp_reset_schednext(ill_t *ill); 245 246 static ill_t *ill_prev_usesrc(ill_t *); 247 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 248 static void ill_disband_usesrc_group(ill_t *); 249 250 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 251 252 /* 253 * if we go over the memory footprint limit more than once in this msec 254 * interval, we'll start pruning aggressively. 255 */ 256 int ip_min_frag_prune_time = 0; 257 258 /* 259 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 260 * and the IPsec DOI 261 */ 262 #define MAX_IPSEC_ALGS 256 263 264 #define BITSPERBYTE 8 265 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 266 267 #define IPSEC_ALG_ENABLE(algs, algid) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 typedef uint8_t ipsec_capab_elem_t; 276 277 /* 278 * Per-algorithm parameters. Note that at present, only encryption 279 * algorithms have variable keysize (IKE does not provide a way to negotiate 280 * auth algorithm keysize). 281 * 282 * All sizes here are in bits. 283 */ 284 typedef struct 285 { 286 uint16_t minkeylen; 287 uint16_t maxkeylen; 288 } ipsec_capab_algparm_t; 289 290 /* 291 * Per-ill capabilities. 292 */ 293 struct ill_ipsec_capab_s { 294 ipsec_capab_elem_t *encr_hw_algs; 295 ipsec_capab_elem_t *auth_hw_algs; 296 uint32_t algs_size; /* size of _hw_algs in bytes */ 297 /* algorithm key lengths */ 298 ipsec_capab_algparm_t *encr_algparm; 299 uint32_t encr_algparm_size; 300 uint32_t encr_algparm_end; 301 }; 302 303 /* 304 * List of AH and ESP IPsec acceleration capable ills 305 */ 306 typedef struct ipsec_capab_ill_s { 307 uint_t ill_index; 308 boolean_t ill_isv6; 309 struct ipsec_capab_ill_s *next; 310 } ipsec_capab_ill_t; 311 312 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 313 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 314 krwlock_t ipsec_capab_ills_lock; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 6, /* xmit_count */ 394 1000, /* (re)xmit_interval in milliseconds */ 395 4 /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_MIPRUNNING, "MIP" }, 487 { IPIF_NOFAILOVER, "NOFAILOVER" }, 488 { PHYI_FAILED, "FAILED" }, 489 { PHYI_STANDBY, "STANDBY" }, 490 { PHYI_INACTIVE, "INACTIVE" }, 491 { PHYI_OFFLINE, "OFFLINE" }, 492 }; 493 494 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 495 496 static ip_m_t ip_m_tbl[] = { 497 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_ether_v6intfid }, 507 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 508 ip_ib_v6intfid }, 509 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 510 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 511 ip_nodef_v6intfid } 512 }; 513 514 static ill_t ill_null; /* Empty ILL for init. */ 515 char ipif_loopback_name[] = "lo0"; 516 static char *ipv4_forward_suffix = ":ip_forwarding"; 517 static char *ipv6_forward_suffix = ":ip6_forwarding"; 518 static kstat_t *loopback_ksp = NULL; 519 static sin6_t sin6_null; /* Zero address for quick clears */ 520 static sin_t sin_null; /* Zero address for quick clears */ 521 static uint_t ill_index = 1; /* Used to assign interface indicies */ 522 /* When set search for unused index */ 523 static boolean_t ill_index_wrap = B_FALSE; 524 /* When set search for unused ipif_seqid */ 525 static ipif_t ipif_zero; 526 uint_t ipif_src_random; 527 528 /* 529 * For details on the protection offered by these locks please refer 530 * to the notes under the Synchronization section at the start of ip.c 531 */ 532 krwlock_t ill_g_lock; /* The global ill_g_lock */ 533 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 534 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 535 536 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 537 538 /* 539 * illgrp_head/ifgrp_head is protected by IP's perimeter. 540 */ 541 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 542 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 543 544 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 545 546 /* 547 * ppa arena is created after these many 548 * interfaces have been plumbed. 549 */ 550 uint_t ill_no_arena = 12; 551 552 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 553 static phyint_list_t phyint_g_list; /* start of phyint list */ 554 555 /* 556 * Reflects value of FAILBACK variable in IPMP config file 557 * /etc/default/mpathd. Default value is B_TRUE. 558 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 559 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 560 */ 561 static boolean_t ipmp_enable_failback = B_TRUE; 562 563 /* 564 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 565 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 566 * set through platform specific code (Niagara/Ontario). 567 */ 568 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 569 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 570 571 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 572 573 static uint_t 574 ipif_rand(void) 575 { 576 ipif_src_random = ipif_src_random * 1103515245 + 12345; 577 return ((ipif_src_random >> 16) & 0x7fff); 578 } 579 580 /* 581 * Allocate per-interface mibs. Only used for ipv6. 582 * Returns true if ok. False otherwise. 583 * ipsq may not yet be allocated (loopback case ). 584 */ 585 static boolean_t 586 ill_allocate_mibs(ill_t *ill) 587 { 588 ASSERT(ill->ill_isv6); 589 590 /* Already allocated? */ 591 if (ill->ill_ip6_mib != NULL) { 592 ASSERT(ill->ill_icmp6_mib != NULL); 593 return (B_TRUE); 594 } 595 596 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_ip6_mib == NULL) { 599 return (B_FALSE); 600 } 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 605 ill->ill_ip6_mib = NULL; 606 return (B_FALSE); 607 } 608 /* 609 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 /* 674 * Completely vaporize a lower level tap and all associated interfaces. 675 * ill_delete is called only out of ip_close when the device control 676 * stream is being closed. 677 */ 678 void 679 ill_delete(ill_t *ill) 680 { 681 ipif_t *ipif; 682 ill_t *prev_ill; 683 684 /* 685 * ill_delete may be forcibly entering the ipsq. The previous 686 * ioctl may not have completed and may need to be aborted. 687 * ipsq_flush takes care of it. If we don't need to enter the 688 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 689 * ill_delete_tail is sufficient. 690 */ 691 ipsq_flush(ill); 692 693 /* 694 * Nuke all interfaces. ipif_free will take down the interface, 695 * remove it from the list, and free the data structure. 696 * Walk down the ipif list and remove the logical interfaces 697 * first before removing the main ipif. We can't unplumb 698 * zeroth interface first in the case of IPv6 as reset_conn_ill 699 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 700 * POINTOPOINT. 701 * 702 * If ill_ipif was not properly initialized (i.e low on memory), 703 * then no interfaces to clean up. In this case just clean up the 704 * ill. 705 */ 706 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 707 ipif_free(ipif); 708 709 /* 710 * Used only by ill_arp_on and ill_arp_off, which are writers. 711 * So nobody can be using this mp now. Free the mp allocated for 712 * honoring ILLF_NOARP 713 */ 714 freemsg(ill->ill_arp_on_mp); 715 ill->ill_arp_on_mp = NULL; 716 717 /* Clean up msgs on pending upcalls for mrouted */ 718 reset_mrt_ill(ill); 719 720 /* 721 * ipif_free -> reset_conn_ipif will remove all multicast 722 * references for IPv4. For IPv6, we need to do it here as 723 * it points only at ills. 724 */ 725 reset_conn_ill(ill); 726 727 /* 728 * ill_down will arrange to blow off any IRE's dependent on this 729 * ILL, and shut down fragmentation reassembly. 730 */ 731 ill_down(ill); 732 733 /* Let SCTP know, so that it can remove this from its list. */ 734 sctp_update_ill(ill, SCTP_ILL_REMOVE); 735 736 /* 737 * If an address on this ILL is being used as a source address then 738 * clear out the pointers in other ILLs that point to this ILL. 739 */ 740 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 741 if (ill->ill_usesrc_grp_next != NULL) { 742 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 743 ill_disband_usesrc_group(ill); 744 } else { /* consumer of the usesrc ILL */ 745 prev_ill = ill_prev_usesrc(ill); 746 prev_ill->ill_usesrc_grp_next = 747 ill->ill_usesrc_grp_next; 748 } 749 } 750 rw_exit(&ill_g_usesrc_lock); 751 } 752 753 /* 754 * ill_delete_tail is called from ip_modclose after all references 755 * to the closing ill are gone. The wait is done in ip_modclose 756 */ 757 void 758 ill_delete_tail(ill_t *ill) 759 { 760 mblk_t **mpp; 761 ipif_t *ipif; 762 763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 764 ipif_down_tail(ipif); 765 766 /* 767 * If polling capability is enabled (which signifies direct 768 * upcall into IP and driver has ill saved as a handle), 769 * we need to make sure that unbind has completed before we 770 * let the ill disappear and driver no longer has any reference 771 * to this ill. 772 */ 773 mutex_enter(&ill->ill_lock); 774 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 775 cv_wait(&ill->ill_cv, &ill->ill_lock); 776 mutex_exit(&ill->ill_lock); 777 778 /* 779 * Clean up polling and soft ring capabilities 780 */ 781 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 782 ill_capability_dls_disable(ill); 783 784 /* 785 * Send the detach if there's one to send (i.e., if we're above a 786 * style 2 DLPI driver). 787 */ 788 if (ill->ill_detach_mp != NULL) { 789 ill_dlpi_send(ill, ill->ill_detach_mp); 790 ill->ill_detach_mp = NULL; 791 } 792 793 if (ill->ill_net_type != IRE_LOOPBACK) 794 qprocsoff(ill->ill_rq); 795 796 /* 797 * We do an ipsq_flush once again now. New messages could have 798 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 799 * could also have landed up if an ioctl thread had looked up 800 * the ill before we set the ILL_CONDEMNED flag, but not yet 801 * enqueued the ioctl when we did the ipsq_flush last time. 802 */ 803 ipsq_flush(ill); 804 805 /* 806 * Free capabilities. 807 */ 808 if (ill->ill_ipsec_capab_ah != NULL) { 809 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 810 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 811 ill->ill_ipsec_capab_ah = NULL; 812 } 813 814 if (ill->ill_ipsec_capab_esp != NULL) { 815 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 816 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 817 ill->ill_ipsec_capab_esp = NULL; 818 } 819 820 if (ill->ill_mdt_capab != NULL) { 821 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 822 ill->ill_mdt_capab = NULL; 823 } 824 825 if (ill->ill_hcksum_capab != NULL) { 826 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 827 ill->ill_hcksum_capab = NULL; 828 } 829 830 if (ill->ill_zerocopy_capab != NULL) { 831 kmem_free(ill->ill_zerocopy_capab, 832 sizeof (ill_zerocopy_capab_t)); 833 ill->ill_zerocopy_capab = NULL; 834 } 835 836 if (ill->ill_dls_capab != NULL) { 837 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 838 ill->ill_dls_capab->ill_unbind_conn = NULL; 839 kmem_free(ill->ill_dls_capab, 840 sizeof (ill_dls_capab_t) + 841 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 842 ill->ill_dls_capab = NULL; 843 } 844 845 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 846 847 while (ill->ill_ipif != NULL) 848 ipif_free_tail(ill->ill_ipif); 849 850 ill_down_tail(ill); 851 852 /* 853 * We have removed all references to ilm from conn and the ones joined 854 * within the kernel. 855 * 856 * We don't walk conns, mrts and ires because 857 * 858 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 859 * 2) ill_down ->ill_downi walks all the ires and cleans up 860 * ill references. 861 */ 862 ASSERT(ilm_walk_ill(ill) == 0); 863 /* 864 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 865 * could free the phyint. No more reference to the phyint after this 866 * point. 867 */ 868 (void) ill_glist_delete(ill); 869 870 rw_enter(&ip_g_nd_lock, RW_WRITER); 871 if (ill->ill_ndd_name != NULL) 872 nd_unload(&ip_g_nd, ill->ill_ndd_name); 873 rw_exit(&ip_g_nd_lock); 874 875 876 if (ill->ill_frag_ptr != NULL) { 877 uint_t count; 878 879 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 880 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 881 } 882 mi_free(ill->ill_frag_ptr); 883 ill->ill_frag_ptr = NULL; 884 ill->ill_frag_hash_tbl = NULL; 885 } 886 if (ill->ill_nd_lla_mp != NULL) 887 freemsg(ill->ill_nd_lla_mp); 888 /* Free all retained control messages. */ 889 mpp = &ill->ill_first_mp_to_free; 890 do { 891 while (mpp[0]) { 892 mblk_t *mp; 893 mblk_t *mp1; 894 895 mp = mpp[0]; 896 mpp[0] = mp->b_next; 897 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 898 mp1->b_next = NULL; 899 mp1->b_prev = NULL; 900 } 901 freemsg(mp); 902 } 903 } while (mpp++ != &ill->ill_last_mp_to_free); 904 905 ill_free_mib(ill); 906 ILL_TRACE_CLEANUP(ill); 907 } 908 909 static void 910 ill_free_mib(ill_t *ill) 911 { 912 if (ill->ill_ip6_mib != NULL) { 913 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 914 ill->ill_ip6_mib = NULL; 915 } 916 if (ill->ill_icmp6_mib != NULL) { 917 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 918 ill->ill_icmp6_mib = NULL; 919 } 920 } 921 922 /* 923 * Concatenate together a physical address and a sap. 924 * 925 * Sap_lengths are interpreted as follows: 926 * sap_length == 0 ==> no sap 927 * sap_length > 0 ==> sap is at the head of the dlpi address 928 * sap_length < 0 ==> sap is at the tail of the dlpi address 929 */ 930 static void 931 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 932 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 933 { 934 uint16_t sap_addr = (uint16_t)sap_src; 935 936 if (sap_length == 0) { 937 if (phys_src == NULL) 938 bzero(dst, phys_length); 939 else 940 bcopy(phys_src, dst, phys_length); 941 } else if (sap_length < 0) { 942 if (phys_src == NULL) 943 bzero(dst, phys_length); 944 else 945 bcopy(phys_src, dst, phys_length); 946 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 947 } else { 948 bcopy(&sap_addr, dst, sizeof (sap_addr)); 949 if (phys_src == NULL) 950 bzero((char *)dst + sap_length, phys_length); 951 else 952 bcopy(phys_src, (char *)dst + sap_length, phys_length); 953 } 954 } 955 956 /* 957 * Generate a dl_unitdata_req mblk for the device and address given. 958 * addr_length is the length of the physical portion of the address. 959 * If addr is NULL include an all zero address of the specified length. 960 * TRUE? In any case, addr_length is taken to be the entire length of the 961 * dlpi address, including the absolute value of sap_length. 962 */ 963 mblk_t * 964 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 965 t_scalar_t sap_length) 966 { 967 dl_unitdata_req_t *dlur; 968 mblk_t *mp; 969 t_scalar_t abs_sap_length; /* absolute value */ 970 971 abs_sap_length = ABS(sap_length); 972 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 973 DL_UNITDATA_REQ); 974 if (mp == NULL) 975 return (NULL); 976 dlur = (dl_unitdata_req_t *)mp->b_rptr; 977 /* HACK: accomodate incompatible DLPI drivers */ 978 if (addr_length == 8) 979 addr_length = 6; 980 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 981 dlur->dl_dest_addr_offset = sizeof (*dlur); 982 dlur->dl_priority.dl_min = 0; 983 dlur->dl_priority.dl_max = 0; 984 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 985 (uchar_t *)&dlur[1]); 986 return (mp); 987 } 988 989 /* 990 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 991 * Return an error if we already have 1 or more ioctls in progress. 992 * This is used only for non-exclusive ioctls. Currently this is used 993 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 994 * and thus need to use ipsq_pending_mp_add. 995 */ 996 boolean_t 997 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 998 { 999 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1000 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1001 /* 1002 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1003 */ 1004 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1005 (add_mp->b_datap->db_type == M_IOCTL)); 1006 1007 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1008 /* 1009 * Return error if the conn has started closing. The conn 1010 * could have finished cleaning up the pending mp list, 1011 * If so we should not add another mp to the list negating 1012 * the cleanup. 1013 */ 1014 if (connp->conn_state_flags & CONN_CLOSING) 1015 return (B_FALSE); 1016 /* 1017 * Add the pending mp to the head of the list, chained by b_next. 1018 * Note down the conn on which the ioctl request came, in b_prev. 1019 * This will be used to later get the conn, when we get a response 1020 * on the ill queue, from some other module (typically arp) 1021 */ 1022 add_mp->b_next = (void *)ill->ill_pending_mp; 1023 add_mp->b_queue = CONNP_TO_WQ(connp); 1024 ill->ill_pending_mp = add_mp; 1025 if (connp != NULL) 1026 connp->conn_oper_pending_ill = ill; 1027 return (B_TRUE); 1028 } 1029 1030 /* 1031 * Retrieve the ill_pending_mp and return it. We have to walk the list 1032 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1033 */ 1034 mblk_t * 1035 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1036 { 1037 mblk_t *prev = NULL; 1038 mblk_t *curr = NULL; 1039 uint_t id; 1040 conn_t *connp; 1041 1042 /* 1043 * When the conn closes, conn_ioctl_cleanup needs to clean 1044 * up the pending mp, but it does not know the ioc_id and 1045 * passes in a zero for it. 1046 */ 1047 mutex_enter(&ill->ill_lock); 1048 if (ioc_id != 0) 1049 *connpp = NULL; 1050 1051 /* Search the list for the appropriate ioctl based on ioc_id */ 1052 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1053 prev = curr, curr = curr->b_next) { 1054 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1055 connp = Q_TO_CONN(curr->b_queue); 1056 /* Match based on the ioc_id or based on the conn */ 1057 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1058 break; 1059 } 1060 1061 if (curr != NULL) { 1062 /* Unlink the mblk from the pending mp list */ 1063 if (prev != NULL) { 1064 prev->b_next = curr->b_next; 1065 } else { 1066 ASSERT(ill->ill_pending_mp == curr); 1067 ill->ill_pending_mp = curr->b_next; 1068 } 1069 1070 /* 1071 * conn refcnt must have been bumped up at the start of 1072 * the ioctl. So we can safely access the conn. 1073 */ 1074 ASSERT(CONN_Q(curr->b_queue)); 1075 *connpp = Q_TO_CONN(curr->b_queue); 1076 curr->b_next = NULL; 1077 curr->b_queue = NULL; 1078 } 1079 1080 mutex_exit(&ill->ill_lock); 1081 1082 return (curr); 1083 } 1084 1085 /* 1086 * Add the pending mp to the list. There can be only 1 pending mp 1087 * in the list. Any exclusive ioctl that needs to wait for a response 1088 * from another module or driver needs to use this function to set 1089 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1090 * the other module/driver. This is also used while waiting for the 1091 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1092 */ 1093 boolean_t 1094 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1095 int waitfor) 1096 { 1097 ipsq_t *ipsq; 1098 1099 ASSERT(IAM_WRITER_IPIF(ipif)); 1100 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1101 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1102 /* 1103 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1104 * M_ERROR/M_HANGUP from driver 1105 */ 1106 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1107 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1108 1109 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1110 if (connp != NULL) { 1111 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1112 /* 1113 * Return error if the conn has started closing. The conn 1114 * could have finished cleaning up the pending mp list, 1115 * If so we should not add another mp to the list negating 1116 * the cleanup. 1117 */ 1118 if (connp->conn_state_flags & CONN_CLOSING) 1119 return (B_FALSE); 1120 } 1121 mutex_enter(&ipsq->ipsq_lock); 1122 ipsq->ipsq_pending_ipif = ipif; 1123 /* 1124 * Note down the queue in b_queue. This will be returned by 1125 * ipsq_pending_mp_get. Caller will then use these values to restart 1126 * the processing 1127 */ 1128 add_mp->b_next = NULL; 1129 add_mp->b_queue = q; 1130 ipsq->ipsq_pending_mp = add_mp; 1131 ipsq->ipsq_waitfor = waitfor; 1132 /* 1133 * ipsq_current_ipif is needed to restart the operation from 1134 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1135 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1136 * been set until now. 1137 */ 1138 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1139 ASSERT(ipsq->ipsq_current_ipif == NULL); 1140 ipsq->ipsq_current_ipif = ipif; 1141 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1142 } 1143 if (connp != NULL) 1144 connp->conn_oper_pending_ill = ipif->ipif_ill; 1145 mutex_exit(&ipsq->ipsq_lock); 1146 return (B_TRUE); 1147 } 1148 1149 /* 1150 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1151 * queued in the list. 1152 */ 1153 mblk_t * 1154 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1155 { 1156 mblk_t *curr = NULL; 1157 1158 mutex_enter(&ipsq->ipsq_lock); 1159 *connpp = NULL; 1160 if (ipsq->ipsq_pending_mp == NULL) { 1161 mutex_exit(&ipsq->ipsq_lock); 1162 return (NULL); 1163 } 1164 1165 /* There can be only 1 such excl message */ 1166 curr = ipsq->ipsq_pending_mp; 1167 ASSERT(curr != NULL && curr->b_next == NULL); 1168 ipsq->ipsq_pending_ipif = NULL; 1169 ipsq->ipsq_pending_mp = NULL; 1170 ipsq->ipsq_waitfor = 0; 1171 mutex_exit(&ipsq->ipsq_lock); 1172 1173 if (CONN_Q(curr->b_queue)) { 1174 /* 1175 * This mp did a refhold on the conn, at the start of the ioctl. 1176 * So we can safely return a pointer to the conn to the caller. 1177 */ 1178 *connpp = Q_TO_CONN(curr->b_queue); 1179 } else { 1180 *connpp = NULL; 1181 } 1182 curr->b_next = NULL; 1183 curr->b_prev = NULL; 1184 return (curr); 1185 } 1186 1187 /* 1188 * Cleanup the ioctl mp queued in ipsq_pending_mp 1189 * - Called in the ill_delete path 1190 * - Called in the M_ERROR or M_HANGUP path on the ill. 1191 * - Called in the conn close path. 1192 */ 1193 boolean_t 1194 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1195 { 1196 mblk_t *mp; 1197 ipsq_t *ipsq; 1198 queue_t *q; 1199 ipif_t *ipif; 1200 1201 ASSERT(IAM_WRITER_ILL(ill)); 1202 ipsq = ill->ill_phyint->phyint_ipsq; 1203 mutex_enter(&ipsq->ipsq_lock); 1204 /* 1205 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1206 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1207 * even if it is meant for another ill, since we have to enqueue 1208 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1209 * If connp is non-null we are called from the conn close path. 1210 */ 1211 mp = ipsq->ipsq_pending_mp; 1212 if (mp == NULL || (connp != NULL && 1213 mp->b_queue != CONNP_TO_WQ(connp))) { 1214 mutex_exit(&ipsq->ipsq_lock); 1215 return (B_FALSE); 1216 } 1217 /* Now remove from the ipsq_pending_mp */ 1218 ipsq->ipsq_pending_mp = NULL; 1219 q = mp->b_queue; 1220 mp->b_next = NULL; 1221 mp->b_prev = NULL; 1222 mp->b_queue = NULL; 1223 1224 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1225 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1226 if (ill->ill_move_in_progress) { 1227 ILL_CLEAR_MOVE(ill); 1228 } else if (ill->ill_up_ipifs) { 1229 ill_group_cleanup(ill); 1230 } 1231 1232 ipif = ipsq->ipsq_pending_ipif; 1233 ipsq->ipsq_pending_ipif = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 ipsq->ipsq_current_ipif = NULL; 1236 mutex_exit(&ipsq->ipsq_lock); 1237 1238 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1239 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1240 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1241 } else { 1242 /* 1243 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1244 * be just inet_freemsg. we have to restart it 1245 * otherwise the thread will be stuck. 1246 */ 1247 inet_freemsg(mp); 1248 } 1249 return (B_TRUE); 1250 } 1251 1252 /* 1253 * The ill is closing. Cleanup all the pending mps. Called exclusively 1254 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1255 * knows this ill, and hence nobody can add an mp to this list 1256 */ 1257 static void 1258 ill_pending_mp_cleanup(ill_t *ill) 1259 { 1260 mblk_t *mp; 1261 queue_t *q; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 1265 mutex_enter(&ill->ill_lock); 1266 /* 1267 * Every mp on the pending mp list originating from an ioctl 1268 * added 1 to the conn refcnt, at the start of the ioctl. 1269 * So bump it down now. See comments in ip_wput_nondata() 1270 */ 1271 while (ill->ill_pending_mp != NULL) { 1272 mp = ill->ill_pending_mp; 1273 ill->ill_pending_mp = mp->b_next; 1274 mutex_exit(&ill->ill_lock); 1275 1276 q = mp->b_queue; 1277 ASSERT(CONN_Q(q)); 1278 mp->b_next = NULL; 1279 mp->b_prev = NULL; 1280 mp->b_queue = NULL; 1281 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1282 mutex_enter(&ill->ill_lock); 1283 } 1284 ill->ill_pending_ipif = NULL; 1285 1286 mutex_exit(&ill->ill_lock); 1287 } 1288 1289 /* 1290 * Called in the conn close path and ill delete path 1291 */ 1292 static void 1293 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1294 { 1295 ipsq_t *ipsq; 1296 mblk_t *prev; 1297 mblk_t *curr; 1298 mblk_t *next; 1299 queue_t *q; 1300 mblk_t *tmp_list = NULL; 1301 1302 ASSERT(IAM_WRITER_ILL(ill)); 1303 if (connp != NULL) 1304 q = CONNP_TO_WQ(connp); 1305 else 1306 q = ill->ill_wq; 1307 1308 ipsq = ill->ill_phyint->phyint_ipsq; 1309 /* 1310 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1311 * In the case of ioctl from a conn, there can be only 1 mp 1312 * queued on the ipsq. If an ill is being unplumbed, only messages 1313 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1314 * ioctls meant for this ill form conn's are not flushed. They will 1315 * be processed during ipsq_exit and will not find the ill and will 1316 * return error. 1317 */ 1318 mutex_enter(&ipsq->ipsq_lock); 1319 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1320 curr = next) { 1321 next = curr->b_next; 1322 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1323 /* Unlink the mblk from the pending mp list */ 1324 if (prev != NULL) { 1325 prev->b_next = curr->b_next; 1326 } else { 1327 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1328 ipsq->ipsq_xopq_mphead = curr->b_next; 1329 } 1330 if (ipsq->ipsq_xopq_mptail == curr) 1331 ipsq->ipsq_xopq_mptail = prev; 1332 /* 1333 * Create a temporary list and release the ipsq lock 1334 * New elements are added to the head of the tmp_list 1335 */ 1336 curr->b_next = tmp_list; 1337 tmp_list = curr; 1338 } else { 1339 prev = curr; 1340 } 1341 } 1342 mutex_exit(&ipsq->ipsq_lock); 1343 1344 while (tmp_list != NULL) { 1345 curr = tmp_list; 1346 tmp_list = curr->b_next; 1347 curr->b_next = NULL; 1348 curr->b_prev = NULL; 1349 curr->b_queue = NULL; 1350 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1351 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1352 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1353 } else { 1354 /* 1355 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1356 * this can't be just inet_freemsg. we have to 1357 * restart it otherwise the thread will be stuck. 1358 */ 1359 inet_freemsg(curr); 1360 } 1361 } 1362 } 1363 1364 /* 1365 * This conn has started closing. Cleanup any pending ioctl from this conn. 1366 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1367 */ 1368 void 1369 conn_ioctl_cleanup(conn_t *connp) 1370 { 1371 mblk_t *curr; 1372 ipsq_t *ipsq; 1373 ill_t *ill; 1374 boolean_t refheld; 1375 1376 /* 1377 * Is any exclusive ioctl pending ? If so clean it up. If the 1378 * ioctl has not yet started, the mp is pending in the list headed by 1379 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1380 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1381 * is currently executing now the mp is not queued anywhere but 1382 * conn_oper_pending_ill is null. The conn close will wait 1383 * till the conn_ref drops to zero. 1384 */ 1385 mutex_enter(&connp->conn_lock); 1386 ill = connp->conn_oper_pending_ill; 1387 if (ill == NULL) { 1388 mutex_exit(&connp->conn_lock); 1389 return; 1390 } 1391 1392 curr = ill_pending_mp_get(ill, &connp, 0); 1393 if (curr != NULL) { 1394 mutex_exit(&connp->conn_lock); 1395 CONN_DEC_REF(connp); 1396 inet_freemsg(curr); 1397 return; 1398 } 1399 /* 1400 * We may not be able to refhold the ill if the ill/ipif 1401 * is changing. But we need to make sure that the ill will 1402 * not vanish. So we just bump up the ill_waiter count. 1403 */ 1404 refheld = ill_waiter_inc(ill); 1405 mutex_exit(&connp->conn_lock); 1406 if (refheld) { 1407 if (ipsq_enter(ill, B_TRUE)) { 1408 ill_waiter_dcr(ill); 1409 /* 1410 * Check whether this ioctl has started and is 1411 * pending now in ipsq_pending_mp. If it is not 1412 * found there then check whether this ioctl has 1413 * not even started and is in the ipsq_xopq list. 1414 */ 1415 if (!ipsq_pending_mp_cleanup(ill, connp)) 1416 ipsq_xopq_mp_cleanup(ill, connp); 1417 ipsq = ill->ill_phyint->phyint_ipsq; 1418 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1419 return; 1420 } 1421 } 1422 1423 /* 1424 * The ill is also closing and we could not bump up the 1425 * ill_waiter_count or we could not enter the ipsq. Leave 1426 * the cleanup to ill_delete 1427 */ 1428 mutex_enter(&connp->conn_lock); 1429 while (connp->conn_oper_pending_ill != NULL) 1430 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1431 mutex_exit(&connp->conn_lock); 1432 if (refheld) 1433 ill_waiter_dcr(ill); 1434 } 1435 1436 /* 1437 * ipcl_walk function for cleaning up conn_*_ill fields. 1438 */ 1439 static void 1440 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1441 { 1442 ill_t *ill = (ill_t *)arg; 1443 ire_t *ire; 1444 1445 mutex_enter(&connp->conn_lock); 1446 if (connp->conn_multicast_ill == ill) { 1447 /* Revert to late binding */ 1448 connp->conn_multicast_ill = NULL; 1449 connp->conn_orig_multicast_ifindex = 0; 1450 } 1451 if (connp->conn_incoming_ill == ill) 1452 connp->conn_incoming_ill = NULL; 1453 if (connp->conn_outgoing_ill == ill) 1454 connp->conn_outgoing_ill = NULL; 1455 if (connp->conn_outgoing_pill == ill) 1456 connp->conn_outgoing_pill = NULL; 1457 if (connp->conn_nofailover_ill == ill) 1458 connp->conn_nofailover_ill = NULL; 1459 if (connp->conn_xmit_if_ill == ill) 1460 connp->conn_xmit_if_ill = NULL; 1461 if (connp->conn_ire_cache != NULL) { 1462 ire = connp->conn_ire_cache; 1463 /* 1464 * ip_newroute creates IRE_CACHE with ire_stq coming from 1465 * interface X and ipif coming from interface Y, if interface 1466 * X and Y are part of the same IPMPgroup. Thus whenever 1467 * interface X goes down, remove all references to it by 1468 * checking both on ire_ipif and ire_stq. 1469 */ 1470 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1471 (ire->ire_type == IRE_CACHE && 1472 ire->ire_stq == ill->ill_wq)) { 1473 connp->conn_ire_cache = NULL; 1474 mutex_exit(&connp->conn_lock); 1475 ire_refrele_notr(ire); 1476 return; 1477 } 1478 } 1479 mutex_exit(&connp->conn_lock); 1480 1481 } 1482 1483 /* ARGSUSED */ 1484 void 1485 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1486 { 1487 ill_t *ill = q->q_ptr; 1488 ipif_t *ipif; 1489 1490 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1491 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1492 ipif_down_tail(ipif); 1493 ill_down_tail(ill); 1494 freemsg(mp); 1495 ipsq->ipsq_current_ipif = NULL; 1496 } 1497 1498 /* 1499 * ill_down_start is called when we want to down this ill and bring it up again 1500 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1501 * all interfaces, but don't tear down any plumbing. 1502 */ 1503 boolean_t 1504 ill_down_start(queue_t *q, mblk_t *mp) 1505 { 1506 ill_t *ill; 1507 ipif_t *ipif; 1508 1509 ill = q->q_ptr; 1510 1511 ASSERT(IAM_WRITER_ILL(ill)); 1512 1513 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1514 (void) ipif_down(ipif, NULL, NULL); 1515 1516 ill_down(ill); 1517 1518 (void) ipsq_pending_mp_cleanup(ill, NULL); 1519 mutex_enter(&ill->ill_lock); 1520 /* 1521 * Atomically test and add the pending mp if references are 1522 * still active. 1523 */ 1524 if (!ill_is_quiescent(ill)) { 1525 /* 1526 * Get rid of any pending mps and cleanup. Call will 1527 * not fail since we are passing a null connp. 1528 */ 1529 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1530 mp, ILL_DOWN); 1531 mutex_exit(&ill->ill_lock); 1532 return (B_FALSE); 1533 } 1534 mutex_exit(&ill->ill_lock); 1535 return (B_TRUE); 1536 } 1537 1538 static void 1539 ill_down(ill_t *ill) 1540 { 1541 /* Blow off any IREs dependent on this ILL. */ 1542 ire_walk(ill_downi, (char *)ill); 1543 1544 mutex_enter(&ire_mrtun_lock); 1545 if (ire_mrtun_count != 0) { 1546 mutex_exit(&ire_mrtun_lock); 1547 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1548 (char *)ill, NULL); 1549 } else { 1550 mutex_exit(&ire_mrtun_lock); 1551 } 1552 1553 /* 1554 * If any interface based forwarding table exists 1555 * Blow off the ires there dependent on this ill 1556 */ 1557 mutex_enter(&ire_srcif_table_lock); 1558 if (ire_srcif_table_count > 0) { 1559 mutex_exit(&ire_srcif_table_lock); 1560 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1561 } else { 1562 mutex_exit(&ire_srcif_table_lock); 1563 } 1564 1565 /* Remove any conn_*_ill depending on this ill */ 1566 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1567 1568 if (ill->ill_group != NULL) { 1569 illgrp_delete(ill); 1570 } 1571 1572 } 1573 1574 static void 1575 ill_down_tail(ill_t *ill) 1576 { 1577 int i; 1578 1579 /* Destroy ill_srcif_table if it exists */ 1580 /* Lock not reqd really because nobody should be able to access */ 1581 mutex_enter(&ill->ill_lock); 1582 if (ill->ill_srcif_table != NULL) { 1583 ill->ill_srcif_refcnt = 0; 1584 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1585 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1586 } 1587 kmem_free(ill->ill_srcif_table, 1588 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1589 ill->ill_srcif_table = NULL; 1590 ill->ill_srcif_refcnt = 0; 1591 ill->ill_mrtun_refcnt = 0; 1592 } 1593 mutex_exit(&ill->ill_lock); 1594 } 1595 1596 /* 1597 * ire_walk routine used to delete every IRE that depends on queues 1598 * associated with 'ill'. (Always called as writer.) 1599 */ 1600 static void 1601 ill_downi(ire_t *ire, char *ill_arg) 1602 { 1603 ill_t *ill = (ill_t *)ill_arg; 1604 1605 /* 1606 * ip_newroute creates IRE_CACHE with ire_stq coming from 1607 * interface X and ipif coming from interface Y, if interface 1608 * X and Y are part of the same IPMP group. Thus whenever interface 1609 * X goes down, remove all references to it by checking both 1610 * on ire_ipif and ire_stq. 1611 */ 1612 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1613 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1614 ire_delete(ire); 1615 } 1616 } 1617 1618 /* 1619 * A seperate routine for deleting revtun and srcif based routes 1620 * are needed because the ires only deleted when the interface 1621 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1622 * we want to keep mobile IP specific code separate. 1623 */ 1624 static void 1625 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1626 { 1627 ill_t *ill = (ill_t *)ill_arg; 1628 1629 ASSERT(ire->ire_in_ill != NULL); 1630 1631 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1632 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1633 ire_delete(ire); 1634 } 1635 } 1636 1637 /* 1638 * Remove ire/nce from the fastpath list. 1639 */ 1640 void 1641 ill_fastpath_nack(ill_t *ill) 1642 { 1643 if (ill->ill_isv6) { 1644 nce_fastpath_list_dispatch(ill, NULL, NULL); 1645 } else { 1646 ire_fastpath_list_dispatch(ill, NULL, NULL); 1647 } 1648 } 1649 1650 /* Consume an M_IOCACK of the fastpath probe. */ 1651 void 1652 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1653 { 1654 mblk_t *mp1 = mp; 1655 1656 /* 1657 * If this was the first attempt turn on the fastpath probing. 1658 */ 1659 mutex_enter(&ill->ill_lock); 1660 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1661 ill->ill_dlpi_fastpath_state = IDMS_OK; 1662 mutex_exit(&ill->ill_lock); 1663 1664 /* Free the M_IOCACK mblk, hold on to the data */ 1665 mp = mp->b_cont; 1666 freeb(mp1); 1667 if (mp == NULL) 1668 return; 1669 if (mp->b_cont != NULL) { 1670 /* 1671 * Update all IRE's or NCE's that are waiting for 1672 * fastpath update. 1673 */ 1674 if (ill->ill_isv6) { 1675 /* 1676 * update nce's in the fastpath list. 1677 */ 1678 nce_fastpath_list_dispatch(ill, 1679 ndp_fastpath_update, mp); 1680 } else { 1681 1682 /* 1683 * update ire's in the fastpath list. 1684 */ 1685 ire_fastpath_list_dispatch(ill, 1686 ire_fastpath_update, mp); 1687 /* 1688 * Check if we need to traverse reverse tunnel table. 1689 * Since there is only single ire_type (IRE_MIPRTUN) 1690 * in the table, we don't need to match on ire_type. 1691 * We have to check ire_mrtun_count and not the 1692 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1693 * on the incoming ill and here we are dealing with 1694 * outgoing ill. 1695 */ 1696 mutex_enter(&ire_mrtun_lock); 1697 if (ire_mrtun_count != 0) { 1698 mutex_exit(&ire_mrtun_lock); 1699 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1700 (void (*)(ire_t *, void *)) 1701 ire_fastpath_update, mp, ill); 1702 } else { 1703 mutex_exit(&ire_mrtun_lock); 1704 } 1705 } 1706 mp1 = mp->b_cont; 1707 freeb(mp); 1708 mp = mp1; 1709 } else { 1710 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1711 } 1712 1713 freeb(mp); 1714 } 1715 1716 /* 1717 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1718 * The data portion of the request is a dl_unitdata_req_t template for 1719 * what we would send downstream in the absence of a fastpath confirmation. 1720 */ 1721 int 1722 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1723 { 1724 struct iocblk *ioc; 1725 mblk_t *mp; 1726 1727 if (dlur_mp == NULL) 1728 return (EINVAL); 1729 1730 mutex_enter(&ill->ill_lock); 1731 switch (ill->ill_dlpi_fastpath_state) { 1732 case IDMS_FAILED: 1733 /* 1734 * Driver NAKed the first fastpath ioctl - assume it doesn't 1735 * support it. 1736 */ 1737 mutex_exit(&ill->ill_lock); 1738 return (ENOTSUP); 1739 case IDMS_UNKNOWN: 1740 /* This is the first probe */ 1741 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1742 break; 1743 default: 1744 break; 1745 } 1746 mutex_exit(&ill->ill_lock); 1747 1748 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1749 return (EAGAIN); 1750 1751 mp->b_cont = copyb(dlur_mp); 1752 if (mp->b_cont == NULL) { 1753 freeb(mp); 1754 return (EAGAIN); 1755 } 1756 1757 ioc = (struct iocblk *)mp->b_rptr; 1758 ioc->ioc_count = msgdsize(mp->b_cont); 1759 1760 putnext(ill->ill_wq, mp); 1761 return (0); 1762 } 1763 1764 void 1765 ill_capability_probe(ill_t *ill) 1766 { 1767 /* 1768 * Do so only if negotiation is enabled, capabilities are unknown, 1769 * and a capability negotiation is not already in progress. 1770 */ 1771 if (ill->ill_capab_state != IDMS_UNKNOWN && 1772 ill->ill_capab_state != IDMS_RENEG) 1773 return; 1774 1775 ill->ill_capab_state = IDMS_INPROGRESS; 1776 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1777 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1778 } 1779 1780 void 1781 ill_capability_reset(ill_t *ill) 1782 { 1783 mblk_t *sc_mp = NULL; 1784 mblk_t *tmp; 1785 1786 /* 1787 * Note here that we reset the state to UNKNOWN, and later send 1788 * down the DL_CAPABILITY_REQ without first setting the state to 1789 * INPROGRESS. We do this in order to distinguish the 1790 * DL_CAPABILITY_ACK response which may come back in response to 1791 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1792 * also handle the case where the driver doesn't send us back 1793 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1794 * requires the state to be in UNKNOWN anyway. In any case, all 1795 * features are turned off until the state reaches IDMS_OK. 1796 */ 1797 ill->ill_capab_state = IDMS_UNKNOWN; 1798 1799 /* 1800 * Disable sub-capabilities and request a list of sub-capability 1801 * messages which will be sent down to the driver. Each handler 1802 * allocates the corresponding dl_capability_sub_t inside an 1803 * mblk, and links it to the existing sc_mp mblk, or return it 1804 * as sc_mp if it's the first sub-capability (the passed in 1805 * sc_mp is NULL). Upon returning from all capability handlers, 1806 * sc_mp will be pulled-up, before passing it downstream. 1807 */ 1808 ill_capability_mdt_reset(ill, &sc_mp); 1809 ill_capability_hcksum_reset(ill, &sc_mp); 1810 ill_capability_zerocopy_reset(ill, &sc_mp); 1811 ill_capability_ipsec_reset(ill, &sc_mp); 1812 ill_capability_dls_reset(ill, &sc_mp); 1813 1814 /* Nothing to send down in order to disable the capabilities? */ 1815 if (sc_mp == NULL) 1816 return; 1817 1818 tmp = msgpullup(sc_mp, -1); 1819 freemsg(sc_mp); 1820 if ((sc_mp = tmp) == NULL) { 1821 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1822 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1823 return; 1824 } 1825 1826 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1827 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1828 } 1829 1830 /* 1831 * Request or set new-style hardware capabilities supported by DLS provider. 1832 */ 1833 static void 1834 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1835 { 1836 mblk_t *mp; 1837 dl_capability_req_t *capb; 1838 size_t size = 0; 1839 uint8_t *ptr; 1840 1841 if (reqp != NULL) 1842 size = MBLKL(reqp); 1843 1844 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1845 if (mp == NULL) { 1846 freemsg(reqp); 1847 return; 1848 } 1849 ptr = mp->b_rptr; 1850 1851 capb = (dl_capability_req_t *)ptr; 1852 ptr += sizeof (dl_capability_req_t); 1853 1854 if (reqp != NULL) { 1855 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1856 capb->dl_sub_length = size; 1857 bcopy(reqp->b_rptr, ptr, size); 1858 ptr += size; 1859 mp->b_cont = reqp->b_cont; 1860 freeb(reqp); 1861 } 1862 ASSERT(ptr == mp->b_wptr); 1863 1864 ill_dlpi_send(ill, mp); 1865 } 1866 1867 static void 1868 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1869 { 1870 dl_capab_id_t *id_ic; 1871 uint_t sub_dl_cap = outers->dl_cap; 1872 dl_capability_sub_t *inners; 1873 uint8_t *capend; 1874 1875 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1876 1877 /* 1878 * Note: range checks here are not absolutely sufficient to 1879 * make us robust against malformed messages sent by drivers; 1880 * this is in keeping with the rest of IP's dlpi handling. 1881 * (Remember, it's coming from something else in the kernel 1882 * address space) 1883 */ 1884 1885 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1886 if (capend > mp->b_wptr) { 1887 cmn_err(CE_WARN, "ill_capability_id_ack: " 1888 "malformed sub-capability too long for mblk"); 1889 return; 1890 } 1891 1892 id_ic = (dl_capab_id_t *)(outers + 1); 1893 1894 if (outers->dl_length < sizeof (*id_ic) || 1895 (inners = &id_ic->id_subcap, 1896 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1897 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1898 "encapsulated capab type %d too long for mblk", 1899 inners->dl_cap); 1900 return; 1901 } 1902 1903 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1904 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1905 "isn't as expected; pass-thru module(s) detected, " 1906 "discarding capability\n", inners->dl_cap)); 1907 return; 1908 } 1909 1910 /* Process the encapsulated sub-capability */ 1911 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1912 } 1913 1914 /* 1915 * Process Multidata Transmit capability negotiation ack received from a 1916 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1917 * DL_CAPABILITY_ACK message. 1918 */ 1919 static void 1920 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1921 { 1922 mblk_t *nmp = NULL; 1923 dl_capability_req_t *oc; 1924 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1925 ill_mdt_capab_t **ill_mdt_capab; 1926 uint_t sub_dl_cap = isub->dl_cap; 1927 uint8_t *capend; 1928 1929 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1930 1931 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1932 1933 /* 1934 * Note: range checks here are not absolutely sufficient to 1935 * make us robust against malformed messages sent by drivers; 1936 * this is in keeping with the rest of IP's dlpi handling. 1937 * (Remember, it's coming from something else in the kernel 1938 * address space) 1939 */ 1940 1941 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1942 if (capend > mp->b_wptr) { 1943 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1944 "malformed sub-capability too long for mblk"); 1945 return; 1946 } 1947 1948 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1949 1950 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1951 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1952 "unsupported MDT sub-capability (version %d, expected %d)", 1953 mdt_ic->mdt_version, MDT_VERSION_2); 1954 return; 1955 } 1956 1957 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1958 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1959 "capability isn't as expected; pass-thru module(s) " 1960 "detected, discarding capability\n")); 1961 return; 1962 } 1963 1964 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1965 1966 if (*ill_mdt_capab == NULL) { 1967 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1968 KM_NOSLEEP); 1969 1970 if (*ill_mdt_capab == NULL) { 1971 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1972 "could not enable MDT version %d " 1973 "for %s (ENOMEM)\n", MDT_VERSION_2, 1974 ill->ill_name); 1975 return; 1976 } 1977 } 1978 1979 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1980 "MDT version %d (%d bytes leading, %d bytes trailing " 1981 "header spaces, %d max pld bufs, %d span limit)\n", 1982 ill->ill_name, MDT_VERSION_2, 1983 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1984 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1985 1986 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1987 (*ill_mdt_capab)->ill_mdt_on = 1; 1988 /* 1989 * Round the following values to the nearest 32-bit; ULP 1990 * may further adjust them to accomodate for additional 1991 * protocol headers. We pass these values to ULP during 1992 * bind time. 1993 */ 1994 (*ill_mdt_capab)->ill_mdt_hdr_head = 1995 roundup(mdt_ic->mdt_hdr_head, 4); 1996 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1997 roundup(mdt_ic->mdt_hdr_tail, 4); 1998 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1999 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2000 2001 ill->ill_capabilities |= ILL_CAPAB_MDT; 2002 } else { 2003 uint_t size; 2004 uchar_t *rptr; 2005 2006 size = sizeof (dl_capability_req_t) + 2007 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2008 2009 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2010 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2011 "could not enable MDT for %s (ENOMEM)\n", 2012 ill->ill_name); 2013 return; 2014 } 2015 2016 rptr = nmp->b_rptr; 2017 /* initialize dl_capability_req_t */ 2018 oc = (dl_capability_req_t *)nmp->b_rptr; 2019 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2020 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2021 sizeof (dl_capab_mdt_t); 2022 nmp->b_rptr += sizeof (dl_capability_req_t); 2023 2024 /* initialize dl_capability_sub_t */ 2025 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2026 nmp->b_rptr += sizeof (*isub); 2027 2028 /* initialize dl_capab_mdt_t */ 2029 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2030 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2031 2032 nmp->b_rptr = rptr; 2033 2034 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2035 "to enable MDT version %d\n", ill->ill_name, 2036 MDT_VERSION_2)); 2037 2038 /* set ENABLE flag */ 2039 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2040 2041 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2042 ill_dlpi_send(ill, nmp); 2043 } 2044 } 2045 2046 static void 2047 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2048 { 2049 mblk_t *mp; 2050 dl_capab_mdt_t *mdt_subcap; 2051 dl_capability_sub_t *dl_subcap; 2052 int size; 2053 2054 if (!ILL_MDT_CAPABLE(ill)) 2055 return; 2056 2057 ASSERT(ill->ill_mdt_capab != NULL); 2058 /* 2059 * Clear the capability flag for MDT but retain the ill_mdt_capab 2060 * structure since it's possible that another thread is still 2061 * referring to it. The structure only gets deallocated when 2062 * we destroy the ill. 2063 */ 2064 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2065 2066 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2067 2068 mp = allocb(size, BPRI_HI); 2069 if (mp == NULL) { 2070 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2071 "request to disable MDT\n")); 2072 return; 2073 } 2074 2075 mp->b_wptr = mp->b_rptr + size; 2076 2077 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2078 dl_subcap->dl_cap = DL_CAPAB_MDT; 2079 dl_subcap->dl_length = sizeof (*mdt_subcap); 2080 2081 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2082 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2083 mdt_subcap->mdt_flags = 0; 2084 mdt_subcap->mdt_hdr_head = 0; 2085 mdt_subcap->mdt_hdr_tail = 0; 2086 2087 if (*sc_mp != NULL) 2088 linkb(*sc_mp, mp); 2089 else 2090 *sc_mp = mp; 2091 } 2092 2093 /* 2094 * Send a DL_NOTIFY_REQ to the specified ill to enable 2095 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2096 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2097 * acceleration. 2098 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2099 */ 2100 static boolean_t 2101 ill_enable_promisc_notify(ill_t *ill) 2102 { 2103 mblk_t *mp; 2104 dl_notify_req_t *req; 2105 2106 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2107 2108 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2109 if (mp == NULL) 2110 return (B_FALSE); 2111 2112 req = (dl_notify_req_t *)mp->b_rptr; 2113 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2114 DL_NOTE_PROMISC_OFF_PHYS; 2115 2116 ill_dlpi_send(ill, mp); 2117 2118 return (B_TRUE); 2119 } 2120 2121 2122 /* 2123 * Allocate an IPsec capability request which will be filled by our 2124 * caller to turn on support for one or more algorithms. 2125 */ 2126 static mblk_t * 2127 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2128 { 2129 mblk_t *nmp; 2130 dl_capability_req_t *ocap; 2131 dl_capab_ipsec_t *ocip; 2132 dl_capab_ipsec_t *icip; 2133 uint8_t *ptr; 2134 icip = (dl_capab_ipsec_t *)(isub + 1); 2135 2136 /* 2137 * The first time around, we send a DL_NOTIFY_REQ to enable 2138 * PROMISC_ON/OFF notification from the provider. We need to 2139 * do this before enabling the algorithms to avoid leakage of 2140 * cleartext packets. 2141 */ 2142 2143 if (!ill_enable_promisc_notify(ill)) 2144 return (NULL); 2145 2146 /* 2147 * Allocate new mblk which will contain a new capability 2148 * request to enable the capabilities. 2149 */ 2150 2151 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2152 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2153 if (nmp == NULL) 2154 return (NULL); 2155 2156 ptr = nmp->b_rptr; 2157 2158 /* initialize dl_capability_req_t */ 2159 ocap = (dl_capability_req_t *)ptr; 2160 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2161 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2162 ptr += sizeof (dl_capability_req_t); 2163 2164 /* initialize dl_capability_sub_t */ 2165 bcopy(isub, ptr, sizeof (*isub)); 2166 ptr += sizeof (*isub); 2167 2168 /* initialize dl_capab_ipsec_t */ 2169 ocip = (dl_capab_ipsec_t *)ptr; 2170 bcopy(icip, ocip, sizeof (*icip)); 2171 2172 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2173 return (nmp); 2174 } 2175 2176 /* 2177 * Process an IPsec capability negotiation ack received from a DLS Provider. 2178 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2179 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2180 */ 2181 static void 2182 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2183 { 2184 dl_capab_ipsec_t *icip; 2185 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2186 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2187 uint_t cipher, nciphers; 2188 mblk_t *nmp; 2189 uint_t alg_len; 2190 boolean_t need_sadb_dump; 2191 uint_t sub_dl_cap = isub->dl_cap; 2192 ill_ipsec_capab_t **ill_capab; 2193 uint64_t ill_capab_flag; 2194 uint8_t *capend, *ciphend; 2195 boolean_t sadb_resync; 2196 2197 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2198 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2199 2200 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2201 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2202 ill_capab_flag = ILL_CAPAB_AH; 2203 } else { 2204 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2205 ill_capab_flag = ILL_CAPAB_ESP; 2206 } 2207 2208 /* 2209 * If the ill capability structure exists, then this incoming 2210 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2211 * If this is so, then we'd need to resynchronize the SADB 2212 * after re-enabling the offloaded ciphers. 2213 */ 2214 sadb_resync = (*ill_capab != NULL); 2215 2216 /* 2217 * Note: range checks here are not absolutely sufficient to 2218 * make us robust against malformed messages sent by drivers; 2219 * this is in keeping with the rest of IP's dlpi handling. 2220 * (Remember, it's coming from something else in the kernel 2221 * address space) 2222 */ 2223 2224 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2225 if (capend > mp->b_wptr) { 2226 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2227 "malformed sub-capability too long for mblk"); 2228 return; 2229 } 2230 2231 /* 2232 * There are two types of acks we process here: 2233 * 1. acks in reply to a (first form) generic capability req 2234 * (no ENABLE flag set) 2235 * 2. acks in reply to a ENABLE capability req. 2236 * (ENABLE flag set) 2237 * 2238 * We process the subcapability passed as argument as follows: 2239 * 1 do initializations 2240 * 1.1 initialize nmp = NULL 2241 * 1.2 set need_sadb_dump to B_FALSE 2242 * 2 for each cipher in subcapability: 2243 * 2.1 if ENABLE flag is set: 2244 * 2.1.1 update per-ill ipsec capabilities info 2245 * 2.1.2 set need_sadb_dump to B_TRUE 2246 * 2.2 if ENABLE flag is not set: 2247 * 2.2.1 if nmp is NULL: 2248 * 2.2.1.1 allocate and initialize nmp 2249 * 2.2.1.2 init current pos in nmp 2250 * 2.2.2 copy current cipher to current pos in nmp 2251 * 2.2.3 set ENABLE flag in nmp 2252 * 2.2.4 update current pos 2253 * 3 if nmp is not equal to NULL, send enable request 2254 * 3.1 send capability request 2255 * 4 if need_sadb_dump is B_TRUE 2256 * 4.1 enable promiscuous on/off notifications 2257 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2258 * AH or ESP SA's to interface. 2259 */ 2260 2261 nmp = NULL; 2262 oalg = NULL; 2263 need_sadb_dump = B_FALSE; 2264 icip = (dl_capab_ipsec_t *)(isub + 1); 2265 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2266 2267 nciphers = icip->cip_nciphers; 2268 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2269 2270 if (ciphend > capend) { 2271 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2272 "too many ciphers for sub-capability len"); 2273 return; 2274 } 2275 2276 for (cipher = 0; cipher < nciphers; cipher++) { 2277 alg_len = sizeof (dl_capab_ipsec_alg_t); 2278 2279 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2280 /* 2281 * TBD: when we provide a way to disable capabilities 2282 * from above, need to manage the request-pending state 2283 * and fail if we were not expecting this ACK. 2284 */ 2285 IPSECHW_DEBUG(IPSECHW_CAPAB, 2286 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2287 2288 /* 2289 * Update IPsec capabilities for this ill 2290 */ 2291 2292 if (*ill_capab == NULL) { 2293 IPSECHW_DEBUG(IPSECHW_CAPAB, 2294 ("ill_capability_ipsec_ack: " 2295 "allocating ipsec_capab for ill\n")); 2296 *ill_capab = ill_ipsec_capab_alloc(); 2297 2298 if (*ill_capab == NULL) { 2299 cmn_err(CE_WARN, 2300 "ill_capability_ipsec_ack: " 2301 "could not enable IPsec Hardware " 2302 "acceleration for %s (ENOMEM)\n", 2303 ill->ill_name); 2304 return; 2305 } 2306 } 2307 2308 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2309 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2310 2311 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2312 cmn_err(CE_WARN, 2313 "ill_capability_ipsec_ack: " 2314 "malformed IPsec algorithm id %d", 2315 ialg->alg_prim); 2316 continue; 2317 } 2318 2319 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2320 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2321 ialg->alg_prim); 2322 } else { 2323 ipsec_capab_algparm_t *alp; 2324 2325 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2326 ialg->alg_prim); 2327 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2328 ialg->alg_prim)) { 2329 cmn_err(CE_WARN, 2330 "ill_capability_ipsec_ack: " 2331 "no space for IPsec alg id %d", 2332 ialg->alg_prim); 2333 continue; 2334 } 2335 alp = &((*ill_capab)->encr_algparm[ 2336 ialg->alg_prim]); 2337 alp->minkeylen = ialg->alg_minbits; 2338 alp->maxkeylen = ialg->alg_maxbits; 2339 } 2340 ill->ill_capabilities |= ill_capab_flag; 2341 /* 2342 * indicate that a capability was enabled, which 2343 * will be used below to kick off a SADB dump 2344 * to the ill. 2345 */ 2346 need_sadb_dump = B_TRUE; 2347 } else { 2348 IPSECHW_DEBUG(IPSECHW_CAPAB, 2349 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2350 ialg->alg_prim)); 2351 2352 if (nmp == NULL) { 2353 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2354 if (nmp == NULL) { 2355 /* 2356 * Sending the PROMISC_ON/OFF 2357 * notification request failed. 2358 * We cannot enable the algorithms 2359 * since the Provider will not 2360 * notify IP of promiscous mode 2361 * changes, which could lead 2362 * to leakage of packets. 2363 */ 2364 cmn_err(CE_WARN, 2365 "ill_capability_ipsec_ack: " 2366 "could not enable IPsec Hardware " 2367 "acceleration for %s (ENOMEM)\n", 2368 ill->ill_name); 2369 return; 2370 } 2371 /* ptr to current output alg specifier */ 2372 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2373 } 2374 2375 /* 2376 * Copy current alg specifier, set ENABLE 2377 * flag, and advance to next output alg. 2378 * For now we enable all IPsec capabilities. 2379 */ 2380 ASSERT(oalg != NULL); 2381 bcopy(ialg, oalg, alg_len); 2382 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2383 nmp->b_wptr += alg_len; 2384 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2385 } 2386 2387 /* move to next input algorithm specifier */ 2388 ialg = (dl_capab_ipsec_alg_t *) 2389 ((char *)ialg + alg_len); 2390 } 2391 2392 if (nmp != NULL) 2393 /* 2394 * nmp points to a DL_CAPABILITY_REQ message to enable 2395 * IPsec hardware acceleration. 2396 */ 2397 ill_dlpi_send(ill, nmp); 2398 2399 if (need_sadb_dump) 2400 /* 2401 * An acknowledgement corresponding to a request to 2402 * enable acceleration was received, notify SADB. 2403 */ 2404 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2405 } 2406 2407 /* 2408 * Given an mblk with enough space in it, create sub-capability entries for 2409 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2410 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2411 * in preparation for the reset the DL_CAPABILITY_REQ message. 2412 */ 2413 static void 2414 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2415 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2416 { 2417 dl_capab_ipsec_t *oipsec; 2418 dl_capab_ipsec_alg_t *oalg; 2419 dl_capability_sub_t *dl_subcap; 2420 int i, k; 2421 2422 ASSERT(nciphers > 0); 2423 ASSERT(ill_cap != NULL); 2424 ASSERT(mp != NULL); 2425 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2426 2427 /* dl_capability_sub_t for "stype" */ 2428 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2429 dl_subcap->dl_cap = stype; 2430 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2431 mp->b_wptr += sizeof (dl_capability_sub_t); 2432 2433 /* dl_capab_ipsec_t for "stype" */ 2434 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2435 oipsec->cip_version = 1; 2436 oipsec->cip_nciphers = nciphers; 2437 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2438 2439 /* create entries for "stype" AUTH ciphers */ 2440 for (i = 0; i < ill_cap->algs_size; i++) { 2441 for (k = 0; k < BITSPERBYTE; k++) { 2442 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2443 continue; 2444 2445 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2446 bzero((void *)oalg, sizeof (*oalg)); 2447 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2448 oalg->alg_prim = k + (BITSPERBYTE * i); 2449 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2450 } 2451 } 2452 /* create entries for "stype" ENCR ciphers */ 2453 for (i = 0; i < ill_cap->algs_size; i++) { 2454 for (k = 0; k < BITSPERBYTE; k++) { 2455 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2456 continue; 2457 2458 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2459 bzero((void *)oalg, sizeof (*oalg)); 2460 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2461 oalg->alg_prim = k + (BITSPERBYTE * i); 2462 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Macro to count number of 1s in a byte (8-bit word). The total count is 2469 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2470 * POPC instruction, but our macro is more flexible for an arbitrary length 2471 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2472 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2473 * stays that way, we can reduce the number of iterations required. 2474 */ 2475 #define COUNT_1S(val, sum) { \ 2476 uint8_t x = val & 0xff; \ 2477 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2478 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2479 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2480 } 2481 2482 /* ARGSUSED */ 2483 static void 2484 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2485 { 2486 mblk_t *mp; 2487 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2488 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2489 uint64_t ill_capabilities = ill->ill_capabilities; 2490 int ah_cnt = 0, esp_cnt = 0; 2491 int ah_len = 0, esp_len = 0; 2492 int i, size = 0; 2493 2494 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2495 return; 2496 2497 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2498 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2499 2500 /* Find out the number of ciphers for AH */ 2501 if (cap_ah != NULL) { 2502 for (i = 0; i < cap_ah->algs_size; i++) { 2503 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2504 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2505 } 2506 if (ah_cnt > 0) { 2507 size += sizeof (dl_capability_sub_t) + 2508 sizeof (dl_capab_ipsec_t); 2509 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2510 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2511 size += ah_len; 2512 } 2513 } 2514 2515 /* Find out the number of ciphers for ESP */ 2516 if (cap_esp != NULL) { 2517 for (i = 0; i < cap_esp->algs_size; i++) { 2518 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2519 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2520 } 2521 if (esp_cnt > 0) { 2522 size += sizeof (dl_capability_sub_t) + 2523 sizeof (dl_capab_ipsec_t); 2524 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2525 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2526 size += esp_len; 2527 } 2528 } 2529 2530 if (size == 0) { 2531 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2532 "there's nothing to reset\n")); 2533 return; 2534 } 2535 2536 mp = allocb(size, BPRI_HI); 2537 if (mp == NULL) { 2538 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2539 "request to disable IPSEC Hardware Acceleration\n")); 2540 return; 2541 } 2542 2543 /* 2544 * Clear the capability flags for IPSec HA but retain the ill 2545 * capability structures since it's possible that another thread 2546 * is still referring to them. The structures only get deallocated 2547 * when we destroy the ill. 2548 * 2549 * Various places check the flags to see if the ill is capable of 2550 * hardware acceleration, and by clearing them we ensure that new 2551 * outbound IPSec packets are sent down encrypted. 2552 */ 2553 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2554 2555 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2556 if (ah_cnt > 0) { 2557 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2558 cap_ah, mp); 2559 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2560 } 2561 2562 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2563 if (esp_cnt > 0) { 2564 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2565 cap_esp, mp); 2566 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2567 } 2568 2569 /* 2570 * At this point we've composed a bunch of sub-capabilities to be 2571 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2572 * by the caller. Upon receiving this reset message, the driver 2573 * must stop inbound decryption (by destroying all inbound SAs) 2574 * and let the corresponding packets come in encrypted. 2575 */ 2576 2577 if (*sc_mp != NULL) 2578 linkb(*sc_mp, mp); 2579 else 2580 *sc_mp = mp; 2581 } 2582 2583 static void 2584 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2585 boolean_t encapsulated) 2586 { 2587 boolean_t legacy = B_FALSE; 2588 2589 /* 2590 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2591 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2592 * instructed the driver to disable its advertised capabilities, 2593 * so there's no point in accepting any response at this moment. 2594 */ 2595 if (ill->ill_capab_state == IDMS_UNKNOWN) 2596 return; 2597 2598 /* 2599 * Note that only the following two sub-capabilities may be 2600 * considered as "legacy", since their original definitions 2601 * do not incorporate the dl_mid_t module ID token, and hence 2602 * may require the use of the wrapper sub-capability. 2603 */ 2604 switch (subp->dl_cap) { 2605 case DL_CAPAB_IPSEC_AH: 2606 case DL_CAPAB_IPSEC_ESP: 2607 legacy = B_TRUE; 2608 break; 2609 } 2610 2611 /* 2612 * For legacy sub-capabilities which don't incorporate a queue_t 2613 * pointer in their structures, discard them if we detect that 2614 * there are intermediate modules in between IP and the driver. 2615 */ 2616 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2617 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2618 "%d discarded; %d module(s) present below IP\n", 2619 subp->dl_cap, ill->ill_lmod_cnt)); 2620 return; 2621 } 2622 2623 switch (subp->dl_cap) { 2624 case DL_CAPAB_IPSEC_AH: 2625 case DL_CAPAB_IPSEC_ESP: 2626 ill_capability_ipsec_ack(ill, mp, subp); 2627 break; 2628 case DL_CAPAB_MDT: 2629 ill_capability_mdt_ack(ill, mp, subp); 2630 break; 2631 case DL_CAPAB_HCKSUM: 2632 ill_capability_hcksum_ack(ill, mp, subp); 2633 break; 2634 case DL_CAPAB_ZEROCOPY: 2635 ill_capability_zerocopy_ack(ill, mp, subp); 2636 break; 2637 case DL_CAPAB_POLL: 2638 if (!SOFT_RINGS_ENABLED()) 2639 ill_capability_dls_ack(ill, mp, subp); 2640 break; 2641 case DL_CAPAB_SOFT_RING: 2642 if (SOFT_RINGS_ENABLED()) 2643 ill_capability_dls_ack(ill, mp, subp); 2644 break; 2645 default: 2646 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2647 subp->dl_cap)); 2648 } 2649 } 2650 2651 /* 2652 * As part of negotiating polling capability, the driver tells us 2653 * the default (or normal) blanking interval and packet threshold 2654 * (the receive timer fires if blanking interval is reached or 2655 * the packet threshold is reached). 2656 * 2657 * As part of manipulating the polling interval, we always use our 2658 * estimated interval (avg service time * number of packets queued 2659 * on the squeue) but we try to blank for a minimum of 2660 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2661 * packet threshold during this time. When we are not in polling mode 2662 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2663 * rr_min_blank_ratio but up the packet cnt by a ratio of 2664 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2665 * possible although for a shorter interval. 2666 */ 2667 #define RR_MAX_BLANK_RATIO 20 2668 #define RR_MIN_BLANK_RATIO 10 2669 #define RR_MAX_PKT_CNT_RATIO 3 2670 #define RR_MIN_PKT_CNT_RATIO 3 2671 2672 /* 2673 * These can be tuned via /etc/system. 2674 */ 2675 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2676 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2677 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2678 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2679 2680 static mac_resource_handle_t 2681 ill_ring_add(void *arg, mac_resource_t *mrp) 2682 { 2683 ill_t *ill = (ill_t *)arg; 2684 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2685 ill_rx_ring_t *rx_ring; 2686 int ip_rx_index; 2687 2688 ASSERT(mrp != NULL); 2689 if (mrp->mr_type != MAC_RX_FIFO) { 2690 return (NULL); 2691 } 2692 ASSERT(ill != NULL); 2693 ASSERT(ill->ill_dls_capab != NULL); 2694 2695 mutex_enter(&ill->ill_lock); 2696 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2697 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2698 ASSERT(rx_ring != NULL); 2699 2700 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2701 time_t normal_blank_time = 2702 mrfp->mrf_normal_blank_time; 2703 uint_t normal_pkt_cnt = 2704 mrfp->mrf_normal_pkt_count; 2705 2706 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2707 2708 rx_ring->rr_blank = mrfp->mrf_blank; 2709 rx_ring->rr_handle = mrfp->mrf_arg; 2710 rx_ring->rr_ill = ill; 2711 rx_ring->rr_normal_blank_time = normal_blank_time; 2712 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2713 2714 rx_ring->rr_max_blank_time = 2715 normal_blank_time * rr_max_blank_ratio; 2716 rx_ring->rr_min_blank_time = 2717 normal_blank_time * rr_min_blank_ratio; 2718 rx_ring->rr_max_pkt_cnt = 2719 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2720 rx_ring->rr_min_pkt_cnt = 2721 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2722 2723 rx_ring->rr_ring_state = ILL_RING_INUSE; 2724 mutex_exit(&ill->ill_lock); 2725 2726 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2727 (int), ip_rx_index); 2728 return ((mac_resource_handle_t)rx_ring); 2729 } 2730 } 2731 2732 /* 2733 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2734 * we have devices which can overwhelm this limit, ILL_MAX_RING 2735 * should be made configurable. Meanwhile it cause no panic because 2736 * driver will pass ip_input a NULL handle which will make 2737 * IP allocate the default squeue and Polling mode will not 2738 * be used for this ring. 2739 */ 2740 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2741 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2742 2743 mutex_exit(&ill->ill_lock); 2744 return (NULL); 2745 } 2746 2747 static boolean_t 2748 ill_capability_dls_init(ill_t *ill) 2749 { 2750 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2751 conn_t *connp; 2752 size_t sz; 2753 2754 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2755 if (ill_dls == NULL) { 2756 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2757 "soft_ring enabled for ill=%s (%p) but data " 2758 "structs uninitialized\n", ill->ill_name, 2759 (void *)ill); 2760 } 2761 return (B_TRUE); 2762 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2763 if (ill_dls == NULL) { 2764 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2765 "polling enabled for ill=%s (%p) but data " 2766 "structs uninitialized\n", ill->ill_name, 2767 (void *)ill); 2768 } 2769 return (B_TRUE); 2770 } 2771 2772 if (ill_dls != NULL) { 2773 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2774 /* Soft_Ring or polling is being re-enabled */ 2775 2776 connp = ill_dls->ill_unbind_conn; 2777 ASSERT(rx_ring != NULL); 2778 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2779 bzero((void *)rx_ring, 2780 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2781 ill_dls->ill_ring_tbl = rx_ring; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2787 return (B_FALSE); 2788 2789 sz = sizeof (ill_dls_capab_t); 2790 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2791 2792 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2793 if (ill_dls == NULL) { 2794 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2795 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2796 (void *)ill); 2797 CONN_DEC_REF(connp); 2798 return (B_FALSE); 2799 } 2800 2801 /* Allocate space to hold ring table */ 2802 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2803 ill->ill_dls_capab = ill_dls; 2804 ill_dls->ill_unbind_conn = connp; 2805 return (B_TRUE); 2806 } 2807 2808 /* 2809 * ill_capability_dls_disable: disable soft_ring and/or polling 2810 * capability. Since any of the rings might already be in use, need 2811 * to call ipsq_clean_all() which gets behind the squeue to disable 2812 * direct calls if necessary. 2813 */ 2814 static void 2815 ill_capability_dls_disable(ill_t *ill) 2816 { 2817 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2818 2819 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2820 ipsq_clean_all(ill); 2821 ill_dls->ill_tx = NULL; 2822 ill_dls->ill_tx_handle = NULL; 2823 ill_dls->ill_dls_change_status = NULL; 2824 ill_dls->ill_dls_bind = NULL; 2825 ill_dls->ill_dls_unbind = NULL; 2826 } 2827 2828 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2829 } 2830 2831 static void 2832 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2833 dl_capability_sub_t *isub) 2834 { 2835 uint_t size; 2836 uchar_t *rptr; 2837 dl_capab_dls_t dls, *odls; 2838 ill_dls_capab_t *ill_dls; 2839 mblk_t *nmp = NULL; 2840 dl_capability_req_t *ocap; 2841 uint_t sub_dl_cap = isub->dl_cap; 2842 2843 if (!ill_capability_dls_init(ill)) 2844 return; 2845 ill_dls = ill->ill_dls_capab; 2846 2847 /* Copy locally to get the members aligned */ 2848 bcopy((void *)idls, (void *)&dls, 2849 sizeof (dl_capab_dls_t)); 2850 2851 /* Get the tx function and handle from dld */ 2852 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2853 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2854 2855 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2856 ill_dls->ill_dls_change_status = 2857 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2858 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2859 ill_dls->ill_dls_unbind = 2860 (ip_dls_unbind_t)dls.dls_ring_unbind; 2861 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2862 } 2863 2864 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2865 isub->dl_length; 2866 2867 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2868 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2869 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2870 ill->ill_name, (void *)ill); 2871 return; 2872 } 2873 2874 /* initialize dl_capability_req_t */ 2875 rptr = nmp->b_rptr; 2876 ocap = (dl_capability_req_t *)rptr; 2877 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2878 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2879 rptr += sizeof (dl_capability_req_t); 2880 2881 /* initialize dl_capability_sub_t */ 2882 bcopy(isub, rptr, sizeof (*isub)); 2883 rptr += sizeof (*isub); 2884 2885 odls = (dl_capab_dls_t *)rptr; 2886 rptr += sizeof (dl_capab_dls_t); 2887 2888 /* initialize dl_capab_dls_t to be sent down */ 2889 dls.dls_rx_handle = (uintptr_t)ill; 2890 dls.dls_rx = (uintptr_t)ip_input; 2891 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2892 2893 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2894 dls.dls_ring_cnt = ip_soft_rings_cnt; 2895 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2896 dls.dls_flags = SOFT_RING_ENABLE; 2897 } else { 2898 dls.dls_flags = POLL_ENABLE; 2899 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2900 "to enable polling\n", ill->ill_name)); 2901 } 2902 bcopy((void *)&dls, (void *)odls, 2903 sizeof (dl_capab_dls_t)); 2904 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2905 /* 2906 * nmp points to a DL_CAPABILITY_REQ message to 2907 * enable either soft_ring or polling 2908 */ 2909 ill_dlpi_send(ill, nmp); 2910 } 2911 2912 static void 2913 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2914 { 2915 mblk_t *mp; 2916 dl_capab_dls_t *idls; 2917 dl_capability_sub_t *dl_subcap; 2918 int size; 2919 2920 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2921 return; 2922 2923 ASSERT(ill->ill_dls_capab != NULL); 2924 2925 size = sizeof (*dl_subcap) + sizeof (*idls); 2926 2927 mp = allocb(size, BPRI_HI); 2928 if (mp == NULL) { 2929 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2930 "request to disable soft_ring\n")); 2931 return; 2932 } 2933 2934 mp->b_wptr = mp->b_rptr + size; 2935 2936 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2937 dl_subcap->dl_length = sizeof (*idls); 2938 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2939 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2940 else 2941 dl_subcap->dl_cap = DL_CAPAB_POLL; 2942 2943 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2944 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2945 idls->dls_flags = SOFT_RING_DISABLE; 2946 else 2947 idls->dls_flags = POLL_DISABLE; 2948 2949 if (*sc_mp != NULL) 2950 linkb(*sc_mp, mp); 2951 else 2952 *sc_mp = mp; 2953 } 2954 2955 /* 2956 * Process a soft_ring/poll capability negotiation ack received 2957 * from a DLS Provider.isub must point to the sub-capability 2958 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2959 */ 2960 static void 2961 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2962 { 2963 dl_capab_dls_t *idls; 2964 uint_t sub_dl_cap = isub->dl_cap; 2965 uint8_t *capend; 2966 2967 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2968 sub_dl_cap == DL_CAPAB_POLL); 2969 2970 if (ill->ill_isv6) 2971 return; 2972 2973 /* 2974 * Note: range checks here are not absolutely sufficient to 2975 * make us robust against malformed messages sent by drivers; 2976 * this is in keeping with the rest of IP's dlpi handling. 2977 * (Remember, it's coming from something else in the kernel 2978 * address space) 2979 */ 2980 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2981 if (capend > mp->b_wptr) { 2982 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2983 "malformed sub-capability too long for mblk"); 2984 return; 2985 } 2986 2987 /* 2988 * There are two types of acks we process here: 2989 * 1. acks in reply to a (first form) generic capability req 2990 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2991 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2992 * capability req. 2993 */ 2994 idls = (dl_capab_dls_t *)(isub + 1); 2995 2996 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2997 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2998 "capability isn't as expected; pass-thru " 2999 "module(s) detected, discarding capability\n")); 3000 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3001 /* 3002 * This is a capability renegotitation case. 3003 * The interface better be unusable at this 3004 * point other wise bad things will happen 3005 * if we disable direct calls on a running 3006 * and up interface. 3007 */ 3008 ill_capability_dls_disable(ill); 3009 } 3010 return; 3011 } 3012 3013 switch (idls->dls_flags) { 3014 default: 3015 /* Disable if unknown flag */ 3016 case SOFT_RING_DISABLE: 3017 case POLL_DISABLE: 3018 ill_capability_dls_disable(ill); 3019 break; 3020 case SOFT_RING_CAPABLE: 3021 case POLL_CAPABLE: 3022 /* 3023 * If the capability was already enabled, its safe 3024 * to disable it first to get rid of stale information 3025 * and then start enabling it again. 3026 */ 3027 ill_capability_dls_disable(ill); 3028 ill_capability_dls_capable(ill, idls, isub); 3029 break; 3030 case SOFT_RING_ENABLE: 3031 case POLL_ENABLE: 3032 mutex_enter(&ill->ill_lock); 3033 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3034 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3035 ASSERT(ill->ill_dls_capab != NULL); 3036 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3037 } 3038 if (sub_dl_cap == DL_CAPAB_POLL && 3039 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3040 ASSERT(ill->ill_dls_capab != NULL); 3041 ill->ill_capabilities |= ILL_CAPAB_POLL; 3042 ip1dbg(("ill_capability_dls_ack: interface %s " 3043 "has enabled polling\n", ill->ill_name)); 3044 } 3045 mutex_exit(&ill->ill_lock); 3046 break; 3047 } 3048 } 3049 3050 /* 3051 * Process a hardware checksum offload capability negotiation ack received 3052 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3053 * of a DL_CAPABILITY_ACK message. 3054 */ 3055 static void 3056 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3057 { 3058 dl_capability_req_t *ocap; 3059 dl_capab_hcksum_t *ihck, *ohck; 3060 ill_hcksum_capab_t **ill_hcksum; 3061 mblk_t *nmp = NULL; 3062 uint_t sub_dl_cap = isub->dl_cap; 3063 uint8_t *capend; 3064 3065 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3066 3067 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3068 3069 /* 3070 * Note: range checks here are not absolutely sufficient to 3071 * make us robust against malformed messages sent by drivers; 3072 * this is in keeping with the rest of IP's dlpi handling. 3073 * (Remember, it's coming from something else in the kernel 3074 * address space) 3075 */ 3076 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3077 if (capend > mp->b_wptr) { 3078 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3079 "malformed sub-capability too long for mblk"); 3080 return; 3081 } 3082 3083 /* 3084 * There are two types of acks we process here: 3085 * 1. acks in reply to a (first form) generic capability req 3086 * (no ENABLE flag set) 3087 * 2. acks in reply to a ENABLE capability req. 3088 * (ENABLE flag set) 3089 */ 3090 ihck = (dl_capab_hcksum_t *)(isub + 1); 3091 3092 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3093 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3094 "unsupported hardware checksum " 3095 "sub-capability (version %d, expected %d)", 3096 ihck->hcksum_version, HCKSUM_VERSION_1); 3097 return; 3098 } 3099 3100 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3101 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3102 "checksum capability isn't as expected; pass-thru " 3103 "module(s) detected, discarding capability\n")); 3104 return; 3105 } 3106 3107 #define CURR_HCKSUM_CAPAB \ 3108 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3109 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3110 3111 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3112 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3113 /* do ENABLE processing */ 3114 if (*ill_hcksum == NULL) { 3115 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3116 KM_NOSLEEP); 3117 3118 if (*ill_hcksum == NULL) { 3119 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3120 "could not enable hcksum version %d " 3121 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3122 ill->ill_name); 3123 return; 3124 } 3125 } 3126 3127 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3128 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3129 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3130 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3131 "has enabled hardware checksumming\n ", 3132 ill->ill_name)); 3133 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3134 /* 3135 * Enabling hardware checksum offload 3136 * Currently IP supports {TCP,UDP}/IPv4 3137 * partial and full cksum offload and 3138 * IPv4 header checksum offload. 3139 * Allocate new mblk which will 3140 * contain a new capability request 3141 * to enable hardware checksum offload. 3142 */ 3143 uint_t size; 3144 uchar_t *rptr; 3145 3146 size = sizeof (dl_capability_req_t) + 3147 sizeof (dl_capability_sub_t) + isub->dl_length; 3148 3149 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3150 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3151 "could not enable hardware cksum for %s (ENOMEM)\n", 3152 ill->ill_name); 3153 return; 3154 } 3155 3156 rptr = nmp->b_rptr; 3157 /* initialize dl_capability_req_t */ 3158 ocap = (dl_capability_req_t *)nmp->b_rptr; 3159 ocap->dl_sub_offset = 3160 sizeof (dl_capability_req_t); 3161 ocap->dl_sub_length = 3162 sizeof (dl_capability_sub_t) + 3163 isub->dl_length; 3164 nmp->b_rptr += sizeof (dl_capability_req_t); 3165 3166 /* initialize dl_capability_sub_t */ 3167 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3168 nmp->b_rptr += sizeof (*isub); 3169 3170 /* initialize dl_capab_hcksum_t */ 3171 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3172 bcopy(ihck, ohck, sizeof (*ihck)); 3173 3174 nmp->b_rptr = rptr; 3175 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3176 3177 /* Set ENABLE flag */ 3178 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3179 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3180 3181 /* 3182 * nmp points to a DL_CAPABILITY_REQ message to enable 3183 * hardware checksum acceleration. 3184 */ 3185 ill_dlpi_send(ill, nmp); 3186 } else { 3187 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3188 "advertised %x hardware checksum capability flags\n", 3189 ill->ill_name, ihck->hcksum_txflags)); 3190 } 3191 } 3192 3193 static void 3194 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3195 { 3196 mblk_t *mp; 3197 dl_capab_hcksum_t *hck_subcap; 3198 dl_capability_sub_t *dl_subcap; 3199 int size; 3200 3201 if (!ILL_HCKSUM_CAPABLE(ill)) 3202 return; 3203 3204 ASSERT(ill->ill_hcksum_capab != NULL); 3205 /* 3206 * Clear the capability flag for hardware checksum offload but 3207 * retain the ill_hcksum_capab structure since it's possible that 3208 * another thread is still referring to it. The structure only 3209 * gets deallocated when we destroy the ill. 3210 */ 3211 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3212 3213 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3214 3215 mp = allocb(size, BPRI_HI); 3216 if (mp == NULL) { 3217 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3218 "request to disable hardware checksum offload\n")); 3219 return; 3220 } 3221 3222 mp->b_wptr = mp->b_rptr + size; 3223 3224 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3225 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3226 dl_subcap->dl_length = sizeof (*hck_subcap); 3227 3228 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3229 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3230 hck_subcap->hcksum_txflags = 0; 3231 3232 if (*sc_mp != NULL) 3233 linkb(*sc_mp, mp); 3234 else 3235 *sc_mp = mp; 3236 } 3237 3238 static void 3239 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3240 { 3241 mblk_t *nmp = NULL; 3242 dl_capability_req_t *oc; 3243 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3244 ill_zerocopy_capab_t **ill_zerocopy_capab; 3245 uint_t sub_dl_cap = isub->dl_cap; 3246 uint8_t *capend; 3247 3248 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3249 3250 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3251 3252 /* 3253 * Note: range checks here are not absolutely sufficient to 3254 * make us robust against malformed messages sent by drivers; 3255 * this is in keeping with the rest of IP's dlpi handling. 3256 * (Remember, it's coming from something else in the kernel 3257 * address space) 3258 */ 3259 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3260 if (capend > mp->b_wptr) { 3261 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3262 "malformed sub-capability too long for mblk"); 3263 return; 3264 } 3265 3266 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3267 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3268 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3269 "unsupported ZEROCOPY sub-capability (version %d, " 3270 "expected %d)", zc_ic->zerocopy_version, 3271 ZEROCOPY_VERSION_1); 3272 return; 3273 } 3274 3275 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3276 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3277 "capability isn't as expected; pass-thru module(s) " 3278 "detected, discarding capability\n")); 3279 return; 3280 } 3281 3282 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3283 if (*ill_zerocopy_capab == NULL) { 3284 *ill_zerocopy_capab = 3285 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3286 KM_NOSLEEP); 3287 3288 if (*ill_zerocopy_capab == NULL) { 3289 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3290 "could not enable Zero-copy version %d " 3291 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3292 ill->ill_name); 3293 return; 3294 } 3295 } 3296 3297 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3298 "supports Zero-copy version %d\n", ill->ill_name, 3299 ZEROCOPY_VERSION_1)); 3300 3301 (*ill_zerocopy_capab)->ill_zerocopy_version = 3302 zc_ic->zerocopy_version; 3303 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3304 zc_ic->zerocopy_flags; 3305 3306 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3307 } else { 3308 uint_t size; 3309 uchar_t *rptr; 3310 3311 size = sizeof (dl_capability_req_t) + 3312 sizeof (dl_capability_sub_t) + 3313 sizeof (dl_capab_zerocopy_t); 3314 3315 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3316 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3317 "could not enable zerocopy for %s (ENOMEM)\n", 3318 ill->ill_name); 3319 return; 3320 } 3321 3322 rptr = nmp->b_rptr; 3323 /* initialize dl_capability_req_t */ 3324 oc = (dl_capability_req_t *)rptr; 3325 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3326 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3327 sizeof (dl_capab_zerocopy_t); 3328 rptr += sizeof (dl_capability_req_t); 3329 3330 /* initialize dl_capability_sub_t */ 3331 bcopy(isub, rptr, sizeof (*isub)); 3332 rptr += sizeof (*isub); 3333 3334 /* initialize dl_capab_zerocopy_t */ 3335 zc_oc = (dl_capab_zerocopy_t *)rptr; 3336 *zc_oc = *zc_ic; 3337 3338 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3339 "to enable zero-copy version %d\n", ill->ill_name, 3340 ZEROCOPY_VERSION_1)); 3341 3342 /* set VMSAFE_MEM flag */ 3343 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3344 3345 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3346 ill_dlpi_send(ill, nmp); 3347 } 3348 } 3349 3350 static void 3351 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3352 { 3353 mblk_t *mp; 3354 dl_capab_zerocopy_t *zerocopy_subcap; 3355 dl_capability_sub_t *dl_subcap; 3356 int size; 3357 3358 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3359 return; 3360 3361 ASSERT(ill->ill_zerocopy_capab != NULL); 3362 /* 3363 * Clear the capability flag for Zero-copy but retain the 3364 * ill_zerocopy_capab structure since it's possible that another 3365 * thread is still referring to it. The structure only gets 3366 * deallocated when we destroy the ill. 3367 */ 3368 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3369 3370 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3371 3372 mp = allocb(size, BPRI_HI); 3373 if (mp == NULL) { 3374 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3375 "request to disable Zero-copy\n")); 3376 return; 3377 } 3378 3379 mp->b_wptr = mp->b_rptr + size; 3380 3381 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3382 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3383 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3384 3385 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3386 zerocopy_subcap->zerocopy_version = 3387 ill->ill_zerocopy_capab->ill_zerocopy_version; 3388 zerocopy_subcap->zerocopy_flags = 0; 3389 3390 if (*sc_mp != NULL) 3391 linkb(*sc_mp, mp); 3392 else 3393 *sc_mp = mp; 3394 } 3395 3396 /* 3397 * Consume a new-style hardware capabilities negotiation ack. 3398 * Called from ip_rput_dlpi_writer(). 3399 */ 3400 void 3401 ill_capability_ack(ill_t *ill, mblk_t *mp) 3402 { 3403 dl_capability_ack_t *capp; 3404 dl_capability_sub_t *subp, *endp; 3405 3406 if (ill->ill_capab_state == IDMS_INPROGRESS) 3407 ill->ill_capab_state = IDMS_OK; 3408 3409 capp = (dl_capability_ack_t *)mp->b_rptr; 3410 3411 if (capp->dl_sub_length == 0) 3412 /* no new-style capabilities */ 3413 return; 3414 3415 /* make sure the driver supplied correct dl_sub_length */ 3416 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3417 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3418 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3419 return; 3420 } 3421 3422 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3423 /* 3424 * There are sub-capabilities. Process the ones we know about. 3425 * Loop until we don't have room for another sub-cap header.. 3426 */ 3427 for (subp = SC(capp, capp->dl_sub_offset), 3428 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3429 subp <= endp; 3430 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3431 3432 switch (subp->dl_cap) { 3433 case DL_CAPAB_ID_WRAPPER: 3434 ill_capability_id_ack(ill, mp, subp); 3435 break; 3436 default: 3437 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3438 break; 3439 } 3440 } 3441 #undef SC 3442 } 3443 3444 /* 3445 * This routine is called to scan the fragmentation reassembly table for 3446 * the specified ILL for any packets that are starting to smell. 3447 * dead_interval is the maximum time in seconds that will be tolerated. It 3448 * will either be the value specified in ip_g_frag_timeout, or zero if the 3449 * ILL is shutting down and it is time to blow everything off. 3450 * 3451 * It returns the number of seconds (as a time_t) that the next frag timer 3452 * should be scheduled for, 0 meaning that the timer doesn't need to be 3453 * re-started. Note that the method of calculating next_timeout isn't 3454 * entirely accurate since time will flow between the time we grab 3455 * current_time and the time we schedule the next timeout. This isn't a 3456 * big problem since this is the timer for sending an ICMP reassembly time 3457 * exceeded messages, and it doesn't have to be exactly accurate. 3458 * 3459 * This function is 3460 * sometimes called as writer, although this is not required. 3461 */ 3462 time_t 3463 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3464 { 3465 ipfb_t *ipfb; 3466 ipfb_t *endp; 3467 ipf_t *ipf; 3468 ipf_t *ipfnext; 3469 mblk_t *mp; 3470 time_t current_time = gethrestime_sec(); 3471 time_t next_timeout = 0; 3472 uint32_t hdr_length; 3473 mblk_t *send_icmp_head; 3474 mblk_t *send_icmp_head_v6; 3475 3476 ipfb = ill->ill_frag_hash_tbl; 3477 if (ipfb == NULL) 3478 return (B_FALSE); 3479 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3480 /* Walk the frag hash table. */ 3481 for (; ipfb < endp; ipfb++) { 3482 send_icmp_head = NULL; 3483 send_icmp_head_v6 = NULL; 3484 mutex_enter(&ipfb->ipfb_lock); 3485 while ((ipf = ipfb->ipfb_ipf) != 0) { 3486 time_t frag_time = current_time - ipf->ipf_timestamp; 3487 time_t frag_timeout; 3488 3489 if (frag_time < dead_interval) { 3490 /* 3491 * There are some outstanding fragments 3492 * that will timeout later. Make note of 3493 * the time so that we can reschedule the 3494 * next timeout appropriately. 3495 */ 3496 frag_timeout = dead_interval - frag_time; 3497 if (next_timeout == 0 || 3498 frag_timeout < next_timeout) { 3499 next_timeout = frag_timeout; 3500 } 3501 break; 3502 } 3503 /* Time's up. Get it out of here. */ 3504 hdr_length = ipf->ipf_nf_hdr_len; 3505 ipfnext = ipf->ipf_hash_next; 3506 if (ipfnext) 3507 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3508 *ipf->ipf_ptphn = ipfnext; 3509 mp = ipf->ipf_mp->b_cont; 3510 for (; mp; mp = mp->b_cont) { 3511 /* Extra points for neatness. */ 3512 IP_REASS_SET_START(mp, 0); 3513 IP_REASS_SET_END(mp, 0); 3514 } 3515 mp = ipf->ipf_mp->b_cont; 3516 ill->ill_frag_count -= ipf->ipf_count; 3517 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3518 ipfb->ipfb_count -= ipf->ipf_count; 3519 ASSERT(ipfb->ipfb_frag_pkts > 0); 3520 ipfb->ipfb_frag_pkts--; 3521 /* 3522 * We do not send any icmp message from here because 3523 * we currently are holding the ipfb_lock for this 3524 * hash chain. If we try and send any icmp messages 3525 * from here we may end up via a put back into ip 3526 * trying to get the same lock, causing a recursive 3527 * mutex panic. Instead we build a list and send all 3528 * the icmp messages after we have dropped the lock. 3529 */ 3530 if (ill->ill_isv6) { 3531 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3532 if (hdr_length != 0) { 3533 mp->b_next = send_icmp_head_v6; 3534 send_icmp_head_v6 = mp; 3535 } else { 3536 freemsg(mp); 3537 } 3538 } else { 3539 BUMP_MIB(&ip_mib, ipReasmFails); 3540 if (hdr_length != 0) { 3541 mp->b_next = send_icmp_head; 3542 send_icmp_head = mp; 3543 } else { 3544 freemsg(mp); 3545 } 3546 } 3547 freeb(ipf->ipf_mp); 3548 } 3549 mutex_exit(&ipfb->ipfb_lock); 3550 /* 3551 * Now need to send any icmp messages that we delayed from 3552 * above. 3553 */ 3554 while (send_icmp_head_v6 != NULL) { 3555 mp = send_icmp_head_v6; 3556 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3557 mp->b_next = NULL; 3558 icmp_time_exceeded_v6(ill->ill_wq, mp, 3559 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3560 } 3561 while (send_icmp_head != NULL) { 3562 mp = send_icmp_head; 3563 send_icmp_head = send_icmp_head->b_next; 3564 mp->b_next = NULL; 3565 icmp_time_exceeded(ill->ill_wq, mp, 3566 ICMP_REASSEMBLY_TIME_EXCEEDED); 3567 } 3568 } 3569 /* 3570 * A non-dying ILL will use the return value to decide whether to 3571 * restart the frag timer, and for how long. 3572 */ 3573 return (next_timeout); 3574 } 3575 3576 /* 3577 * This routine is called when the approximate count of mblk memory used 3578 * for the specified ILL has exceeded max_count. 3579 */ 3580 void 3581 ill_frag_prune(ill_t *ill, uint_t max_count) 3582 { 3583 ipfb_t *ipfb; 3584 ipf_t *ipf; 3585 size_t count; 3586 3587 /* 3588 * If we are here within ip_min_frag_prune_time msecs remove 3589 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3590 * ill_frag_free_num_pkts. 3591 */ 3592 mutex_enter(&ill->ill_lock); 3593 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3594 (ip_min_frag_prune_time != 0 ? 3595 ip_min_frag_prune_time : msec_per_tick)) { 3596 3597 ill->ill_frag_free_num_pkts++; 3598 3599 } else { 3600 ill->ill_frag_free_num_pkts = 0; 3601 } 3602 ill->ill_last_frag_clean_time = lbolt; 3603 mutex_exit(&ill->ill_lock); 3604 3605 /* 3606 * free ill_frag_free_num_pkts oldest packets from each bucket. 3607 */ 3608 if (ill->ill_frag_free_num_pkts != 0) { 3609 int ix; 3610 3611 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3612 ipfb = &ill->ill_frag_hash_tbl[ix]; 3613 mutex_enter(&ipfb->ipfb_lock); 3614 if (ipfb->ipfb_ipf != NULL) { 3615 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3616 ill->ill_frag_free_num_pkts); 3617 } 3618 mutex_exit(&ipfb->ipfb_lock); 3619 } 3620 } 3621 /* 3622 * While the reassembly list for this ILL is too big, prune a fragment 3623 * queue by age, oldest first. Note that the per ILL count is 3624 * approximate, while the per frag hash bucket counts are accurate. 3625 */ 3626 while (ill->ill_frag_count > max_count) { 3627 int ix; 3628 ipfb_t *oipfb = NULL; 3629 uint_t oldest = UINT_MAX; 3630 3631 count = 0; 3632 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3633 ipfb = &ill->ill_frag_hash_tbl[ix]; 3634 mutex_enter(&ipfb->ipfb_lock); 3635 ipf = ipfb->ipfb_ipf; 3636 if (ipf != NULL && ipf->ipf_gen < oldest) { 3637 oldest = ipf->ipf_gen; 3638 oipfb = ipfb; 3639 } 3640 count += ipfb->ipfb_count; 3641 mutex_exit(&ipfb->ipfb_lock); 3642 } 3643 /* Refresh the per ILL count */ 3644 ill->ill_frag_count = count; 3645 if (oipfb == NULL) { 3646 ill->ill_frag_count = 0; 3647 break; 3648 } 3649 if (count <= max_count) 3650 return; /* Somebody beat us to it, nothing to do */ 3651 mutex_enter(&oipfb->ipfb_lock); 3652 ipf = oipfb->ipfb_ipf; 3653 if (ipf != NULL) { 3654 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3655 } 3656 mutex_exit(&oipfb->ipfb_lock); 3657 } 3658 } 3659 3660 /* 3661 * free 'free_cnt' fragmented packets starting at ipf. 3662 */ 3663 void 3664 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3665 { 3666 size_t count; 3667 mblk_t *mp; 3668 mblk_t *tmp; 3669 ipf_t **ipfp = ipf->ipf_ptphn; 3670 3671 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3672 ASSERT(ipfp != NULL); 3673 ASSERT(ipf != NULL); 3674 3675 while (ipf != NULL && free_cnt-- > 0) { 3676 count = ipf->ipf_count; 3677 mp = ipf->ipf_mp; 3678 ipf = ipf->ipf_hash_next; 3679 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3680 IP_REASS_SET_START(tmp, 0); 3681 IP_REASS_SET_END(tmp, 0); 3682 } 3683 ill->ill_frag_count -= count; 3684 ASSERT(ipfb->ipfb_count >= count); 3685 ipfb->ipfb_count -= count; 3686 ASSERT(ipfb->ipfb_frag_pkts > 0); 3687 ipfb->ipfb_frag_pkts--; 3688 freemsg(mp); 3689 BUMP_MIB(&ip_mib, ipReasmFails); 3690 } 3691 3692 if (ipf) 3693 ipf->ipf_ptphn = ipfp; 3694 ipfp[0] = ipf; 3695 } 3696 3697 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3698 "obsolete and may be removed in a future release of Solaris. Use " \ 3699 "ifconfig(1M) to manipulate the forwarding status of an interface." 3700 3701 /* 3702 * For obsolete per-interface forwarding configuration; 3703 * called in response to ND_GET. 3704 */ 3705 /* ARGSUSED */ 3706 static int 3707 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3708 { 3709 ill_t *ill = (ill_t *)cp; 3710 3711 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3712 3713 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3714 return (0); 3715 } 3716 3717 /* 3718 * For obsolete per-interface forwarding configuration; 3719 * called in response to ND_SET. 3720 */ 3721 /* ARGSUSED */ 3722 static int 3723 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3724 cred_t *ioc_cr) 3725 { 3726 long value; 3727 int retval; 3728 3729 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3730 3731 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3732 value < 0 || value > 1) { 3733 return (EINVAL); 3734 } 3735 3736 rw_enter(&ill_g_lock, RW_READER); 3737 retval = ill_forward_set(q, mp, (value != 0), cp); 3738 rw_exit(&ill_g_lock); 3739 return (retval); 3740 } 3741 3742 /* 3743 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3744 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3745 * up RTS_IFINFO routing socket messages for each interface whose flags we 3746 * change. 3747 */ 3748 /* ARGSUSED */ 3749 int 3750 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3751 { 3752 ill_t *ill = (ill_t *)cp; 3753 ill_group_t *illgrp; 3754 3755 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3756 3757 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3758 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3759 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3760 return (EINVAL); 3761 3762 /* 3763 * If the ill is in an IPMP group, set the forwarding policy on all 3764 * members of the group to the same value. 3765 */ 3766 illgrp = ill->ill_group; 3767 if (illgrp != NULL) { 3768 ill_t *tmp_ill; 3769 3770 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3771 tmp_ill = tmp_ill->ill_group_next) { 3772 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3773 (enable ? "Enabling" : "Disabling"), 3774 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3775 tmp_ill->ill_name)); 3776 mutex_enter(&tmp_ill->ill_lock); 3777 if (enable) 3778 tmp_ill->ill_flags |= ILLF_ROUTER; 3779 else 3780 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3781 mutex_exit(&tmp_ill->ill_lock); 3782 if (tmp_ill->ill_isv6) 3783 ill_set_nce_router_flags(tmp_ill, enable); 3784 /* Notify routing socket listeners of this change. */ 3785 ip_rts_ifmsg(tmp_ill->ill_ipif); 3786 } 3787 } else { 3788 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3789 (enable ? "Enabling" : "Disabling"), 3790 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3791 mutex_enter(&ill->ill_lock); 3792 if (enable) 3793 ill->ill_flags |= ILLF_ROUTER; 3794 else 3795 ill->ill_flags &= ~ILLF_ROUTER; 3796 mutex_exit(&ill->ill_lock); 3797 if (ill->ill_isv6) 3798 ill_set_nce_router_flags(ill, enable); 3799 /* Notify routing socket listeners of this change. */ 3800 ip_rts_ifmsg(ill->ill_ipif); 3801 } 3802 3803 return (0); 3804 } 3805 3806 /* 3807 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3808 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3809 * set or clear. 3810 */ 3811 static void 3812 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3813 { 3814 ipif_t *ipif; 3815 nce_t *nce; 3816 3817 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3818 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3819 if (nce != NULL) { 3820 mutex_enter(&nce->nce_lock); 3821 if (enable) 3822 nce->nce_flags |= NCE_F_ISROUTER; 3823 else 3824 nce->nce_flags &= ~NCE_F_ISROUTER; 3825 mutex_exit(&nce->nce_lock); 3826 NCE_REFRELE(nce); 3827 } 3828 } 3829 } 3830 3831 /* 3832 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3833 * for this ill. Make sure the v6/v4 question has been answered about this 3834 * ill. The creation of this ndd variable is only for backwards compatibility. 3835 * The preferred way to control per-interface IP forwarding is through the 3836 * ILLF_ROUTER interface flag. 3837 */ 3838 static int 3839 ill_set_ndd_name(ill_t *ill) 3840 { 3841 char *suffix; 3842 3843 ASSERT(IAM_WRITER_ILL(ill)); 3844 3845 if (ill->ill_isv6) 3846 suffix = ipv6_forward_suffix; 3847 else 3848 suffix = ipv4_forward_suffix; 3849 3850 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3851 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3852 /* 3853 * Copies over the '\0'. 3854 * Note that strlen(suffix) is always bounded. 3855 */ 3856 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3857 strlen(suffix) + 1); 3858 3859 /* 3860 * Use of the nd table requires holding the reader lock. 3861 * Modifying the nd table thru nd_load/nd_unload requires 3862 * the writer lock. 3863 */ 3864 rw_enter(&ip_g_nd_lock, RW_WRITER); 3865 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3866 nd_ill_forward_set, (caddr_t)ill)) { 3867 /* 3868 * If the nd_load failed, it only meant that it could not 3869 * allocate a new bunch of room for further NDD expansion. 3870 * Because of that, the ill_ndd_name will be set to 0, and 3871 * this interface is at the mercy of the global ip_forwarding 3872 * variable. 3873 */ 3874 rw_exit(&ip_g_nd_lock); 3875 ill->ill_ndd_name = NULL; 3876 return (ENOMEM); 3877 } 3878 rw_exit(&ip_g_nd_lock); 3879 return (0); 3880 } 3881 3882 /* 3883 * Intializes the context structure and returns the first ill in the list 3884 * cuurently start_list and end_list can have values: 3885 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3886 * IP_V4_G_HEAD Traverse IPV4 list only. 3887 * IP_V6_G_HEAD Traverse IPV6 list only. 3888 */ 3889 3890 /* 3891 * We don't check for CONDEMNED ills here. Caller must do that if 3892 * necessary under the ill lock. 3893 */ 3894 ill_t * 3895 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3896 { 3897 ill_if_t *ifp; 3898 ill_t *ill; 3899 avl_tree_t *avl_tree; 3900 3901 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3902 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3903 3904 /* 3905 * setup the lists to search 3906 */ 3907 if (end_list != MAX_G_HEADS) { 3908 ctx->ctx_current_list = start_list; 3909 ctx->ctx_last_list = end_list; 3910 } else { 3911 ctx->ctx_last_list = MAX_G_HEADS - 1; 3912 ctx->ctx_current_list = 0; 3913 } 3914 3915 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3916 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3917 if (ifp != (ill_if_t *) 3918 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3919 avl_tree = &ifp->illif_avl_by_ppa; 3920 ill = avl_first(avl_tree); 3921 /* 3922 * ill is guaranteed to be non NULL or ifp should have 3923 * not existed. 3924 */ 3925 ASSERT(ill != NULL); 3926 return (ill); 3927 } 3928 ctx->ctx_current_list++; 3929 } 3930 3931 return (NULL); 3932 } 3933 3934 /* 3935 * returns the next ill in the list. ill_first() must have been called 3936 * before calling ill_next() or bad things will happen. 3937 */ 3938 3939 /* 3940 * We don't check for CONDEMNED ills here. Caller must do that if 3941 * necessary under the ill lock. 3942 */ 3943 ill_t * 3944 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3945 { 3946 ill_if_t *ifp; 3947 ill_t *ill; 3948 3949 3950 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3951 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3952 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3953 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3954 AVL_AFTER)) != NULL) { 3955 return (ill); 3956 } 3957 3958 /* goto next ill_ifp in the list. */ 3959 ifp = lastill->ill_ifptr->illif_next; 3960 3961 /* make sure not at end of circular list */ 3962 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3963 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3964 return (NULL); 3965 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3966 } 3967 3968 return (avl_first(&ifp->illif_avl_by_ppa)); 3969 } 3970 3971 /* 3972 * Check interface name for correct format which is name+ppa. 3973 * name can contain characters and digits, the right most digits 3974 * make up the ppa number. use of octal is not allowed, name must contain 3975 * a ppa, return pointer to the start of ppa. 3976 * In case of error return NULL. 3977 */ 3978 static char * 3979 ill_get_ppa_ptr(char *name) 3980 { 3981 int namelen = mi_strlen(name); 3982 3983 int len = namelen; 3984 3985 name += len; 3986 while (len > 0) { 3987 name--; 3988 if (*name < '0' || *name > '9') 3989 break; 3990 len--; 3991 } 3992 3993 /* empty string, all digits, or no trailing digits */ 3994 if (len == 0 || len == (int)namelen) 3995 return (NULL); 3996 3997 name++; 3998 /* check for attempted use of octal */ 3999 if (*name == '0' && len != (int)namelen - 1) 4000 return (NULL); 4001 return (name); 4002 } 4003 4004 /* 4005 * use avl tree to locate the ill. 4006 */ 4007 static ill_t * 4008 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4009 ipsq_func_t func, int *error) 4010 { 4011 char *ppa_ptr = NULL; 4012 int len; 4013 uint_t ppa; 4014 ill_t *ill = NULL; 4015 ill_if_t *ifp; 4016 int list; 4017 ipsq_t *ipsq; 4018 4019 if (error != NULL) 4020 *error = 0; 4021 4022 /* 4023 * get ppa ptr 4024 */ 4025 if (isv6) 4026 list = IP_V6_G_HEAD; 4027 else 4028 list = IP_V4_G_HEAD; 4029 4030 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4031 if (error != NULL) 4032 *error = ENXIO; 4033 return (NULL); 4034 } 4035 4036 len = ppa_ptr - name + 1; 4037 4038 ppa = stoi(&ppa_ptr); 4039 4040 ifp = IP_VX_ILL_G_LIST(list); 4041 4042 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4043 /* 4044 * match is done on len - 1 as the name is not null 4045 * terminated it contains ppa in addition to the interface 4046 * name. 4047 */ 4048 if ((ifp->illif_name_len == len) && 4049 bcmp(ifp->illif_name, name, len - 1) == 0) { 4050 break; 4051 } else { 4052 ifp = ifp->illif_next; 4053 } 4054 } 4055 4056 4057 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4058 /* 4059 * Even the interface type does not exist. 4060 */ 4061 if (error != NULL) 4062 *error = ENXIO; 4063 return (NULL); 4064 } 4065 4066 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4067 if (ill != NULL) { 4068 /* 4069 * The block comment at the start of ipif_down 4070 * explains the use of the macros used below 4071 */ 4072 GRAB_CONN_LOCK(q); 4073 mutex_enter(&ill->ill_lock); 4074 if (ILL_CAN_LOOKUP(ill)) { 4075 ill_refhold_locked(ill); 4076 mutex_exit(&ill->ill_lock); 4077 RELEASE_CONN_LOCK(q); 4078 return (ill); 4079 } else if (ILL_CAN_WAIT(ill, q)) { 4080 ipsq = ill->ill_phyint->phyint_ipsq; 4081 mutex_enter(&ipsq->ipsq_lock); 4082 mutex_exit(&ill->ill_lock); 4083 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4084 mutex_exit(&ipsq->ipsq_lock); 4085 RELEASE_CONN_LOCK(q); 4086 *error = EINPROGRESS; 4087 return (NULL); 4088 } 4089 mutex_exit(&ill->ill_lock); 4090 RELEASE_CONN_LOCK(q); 4091 } 4092 if (error != NULL) 4093 *error = ENXIO; 4094 return (NULL); 4095 } 4096 4097 /* 4098 * comparison function for use with avl. 4099 */ 4100 static int 4101 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4102 { 4103 uint_t ppa; 4104 uint_t ill_ppa; 4105 4106 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4107 4108 ppa = *((uint_t *)ppa_ptr); 4109 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4110 /* 4111 * We want the ill with the lowest ppa to be on the 4112 * top. 4113 */ 4114 if (ill_ppa < ppa) 4115 return (1); 4116 if (ill_ppa > ppa) 4117 return (-1); 4118 return (0); 4119 } 4120 4121 /* 4122 * remove an interface type from the global list. 4123 */ 4124 static void 4125 ill_delete_interface_type(ill_if_t *interface) 4126 { 4127 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4128 4129 ASSERT(interface != NULL); 4130 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4131 4132 avl_destroy(&interface->illif_avl_by_ppa); 4133 if (interface->illif_ppa_arena != NULL) 4134 vmem_destroy(interface->illif_ppa_arena); 4135 4136 remque(interface); 4137 4138 mi_free(interface); 4139 } 4140 4141 /* 4142 * remove ill from the global list. 4143 */ 4144 static void 4145 ill_glist_delete(ill_t *ill) 4146 { 4147 if (ill == NULL) 4148 return; 4149 4150 rw_enter(&ill_g_lock, RW_WRITER); 4151 /* 4152 * If the ill was never inserted into the AVL tree 4153 * we skip the if branch. 4154 */ 4155 if (ill->ill_ifptr != NULL) { 4156 /* 4157 * remove from AVL tree and free ppa number 4158 */ 4159 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4160 4161 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4162 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4163 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4164 } 4165 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4166 ill_delete_interface_type(ill->ill_ifptr); 4167 } 4168 4169 /* 4170 * Indicate ill is no longer in the list. 4171 */ 4172 ill->ill_ifptr = NULL; 4173 ill->ill_name_length = 0; 4174 ill->ill_name[0] = '\0'; 4175 ill->ill_ppa = UINT_MAX; 4176 } 4177 ill_phyint_free(ill); 4178 rw_exit(&ill_g_lock); 4179 } 4180 4181 /* 4182 * allocate a ppa, if the number of plumbed interfaces of this type are 4183 * less than ill_no_arena do a linear search to find a unused ppa. 4184 * When the number goes beyond ill_no_arena switch to using an arena. 4185 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4186 * is the return value for an error condition, so allocation starts at one 4187 * and is decremented by one. 4188 */ 4189 static int 4190 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4191 { 4192 ill_t *tmp_ill; 4193 uint_t start, end; 4194 int ppa; 4195 4196 if (ifp->illif_ppa_arena == NULL && 4197 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4198 /* 4199 * Create an arena. 4200 */ 4201 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4202 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4203 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4204 /* allocate what has already been assigned */ 4205 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4206 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4207 tmp_ill, AVL_AFTER)) { 4208 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4209 1, /* size */ 4210 1, /* align/quantum */ 4211 0, /* phase */ 4212 0, /* nocross */ 4213 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4214 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4215 VM_NOSLEEP|VM_FIRSTFIT); 4216 if (ppa == 0) { 4217 ip1dbg(("ill_alloc_ppa: ppa allocation" 4218 " failed while switching")); 4219 vmem_destroy(ifp->illif_ppa_arena); 4220 ifp->illif_ppa_arena = NULL; 4221 break; 4222 } 4223 } 4224 } 4225 4226 if (ifp->illif_ppa_arena != NULL) { 4227 if (ill->ill_ppa == UINT_MAX) { 4228 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4229 1, VM_NOSLEEP|VM_FIRSTFIT); 4230 if (ppa == 0) 4231 return (EAGAIN); 4232 ill->ill_ppa = --ppa; 4233 } else { 4234 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4235 1, /* size */ 4236 1, /* align/quantum */ 4237 0, /* phase */ 4238 0, /* nocross */ 4239 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4240 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4241 VM_NOSLEEP|VM_FIRSTFIT); 4242 /* 4243 * Most likely the allocation failed because 4244 * the requested ppa was in use. 4245 */ 4246 if (ppa == 0) 4247 return (EEXIST); 4248 } 4249 return (0); 4250 } 4251 4252 /* 4253 * No arena is in use and not enough (>ill_no_arena) interfaces have 4254 * been plumbed to create one. Do a linear search to get a unused ppa. 4255 */ 4256 if (ill->ill_ppa == UINT_MAX) { 4257 end = UINT_MAX - 1; 4258 start = 0; 4259 } else { 4260 end = start = ill->ill_ppa; 4261 } 4262 4263 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4264 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4265 if (start++ >= end) { 4266 if (ill->ill_ppa == UINT_MAX) 4267 return (EAGAIN); 4268 else 4269 return (EEXIST); 4270 } 4271 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4272 } 4273 ill->ill_ppa = start; 4274 return (0); 4275 } 4276 4277 /* 4278 * Insert ill into the list of configured ill's. Once this function completes, 4279 * the ill is globally visible and is available through lookups. More precisely 4280 * this happens after the caller drops the ill_g_lock. 4281 */ 4282 static int 4283 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4284 { 4285 ill_if_t *ill_interface; 4286 avl_index_t where = 0; 4287 int error; 4288 int name_length; 4289 int index; 4290 boolean_t check_length = B_FALSE; 4291 4292 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4293 4294 name_length = mi_strlen(name) + 1; 4295 4296 if (isv6) 4297 index = IP_V6_G_HEAD; 4298 else 4299 index = IP_V4_G_HEAD; 4300 4301 ill_interface = IP_VX_ILL_G_LIST(index); 4302 /* 4303 * Search for interface type based on name 4304 */ 4305 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4306 if ((ill_interface->illif_name_len == name_length) && 4307 (strcmp(ill_interface->illif_name, name) == 0)) { 4308 break; 4309 } 4310 ill_interface = ill_interface->illif_next; 4311 } 4312 4313 /* 4314 * Interface type not found, create one. 4315 */ 4316 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4317 4318 ill_g_head_t ghead; 4319 4320 /* 4321 * allocate ill_if_t structure 4322 */ 4323 4324 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4325 if (ill_interface == NULL) { 4326 return (ENOMEM); 4327 } 4328 4329 4330 4331 (void) strcpy(ill_interface->illif_name, name); 4332 ill_interface->illif_name_len = name_length; 4333 4334 avl_create(&ill_interface->illif_avl_by_ppa, 4335 ill_compare_ppa, sizeof (ill_t), 4336 offsetof(struct ill_s, ill_avl_byppa)); 4337 4338 /* 4339 * link the structure in the back to maintain order 4340 * of configuration for ifconfig output. 4341 */ 4342 ghead = ill_g_heads[index]; 4343 insque(ill_interface, ghead.ill_g_list_tail); 4344 4345 } 4346 4347 if (ill->ill_ppa == UINT_MAX) 4348 check_length = B_TRUE; 4349 4350 error = ill_alloc_ppa(ill_interface, ill); 4351 if (error != 0) { 4352 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4353 ill_delete_interface_type(ill->ill_ifptr); 4354 return (error); 4355 } 4356 4357 /* 4358 * When the ppa is choosen by the system, check that there is 4359 * enough space to insert ppa. if a specific ppa was passed in this 4360 * check is not required as the interface name passed in will have 4361 * the right ppa in it. 4362 */ 4363 if (check_length) { 4364 /* 4365 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4366 */ 4367 char buf[sizeof (uint_t) * 3]; 4368 4369 /* 4370 * convert ppa to string to calculate the amount of space 4371 * required for it in the name. 4372 */ 4373 numtos(ill->ill_ppa, buf); 4374 4375 /* Do we have enough space to insert ppa ? */ 4376 4377 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4378 /* Free ppa and interface type struct */ 4379 if (ill_interface->illif_ppa_arena != NULL) { 4380 vmem_free(ill_interface->illif_ppa_arena, 4381 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4382 } 4383 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4384 0) { 4385 ill_delete_interface_type(ill->ill_ifptr); 4386 } 4387 4388 return (EINVAL); 4389 } 4390 } 4391 4392 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4393 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4394 4395 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4396 &where); 4397 ill->ill_ifptr = ill_interface; 4398 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4399 4400 ill_phyint_reinit(ill); 4401 return (0); 4402 } 4403 4404 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4405 static boolean_t 4406 ipsq_init(ill_t *ill) 4407 { 4408 ipsq_t *ipsq; 4409 4410 /* Init the ipsq and impicitly enter as writer */ 4411 ill->ill_phyint->phyint_ipsq = 4412 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4413 if (ill->ill_phyint->phyint_ipsq == NULL) 4414 return (B_FALSE); 4415 ipsq = ill->ill_phyint->phyint_ipsq; 4416 ipsq->ipsq_phyint_list = ill->ill_phyint; 4417 ill->ill_phyint->phyint_ipsq_next = NULL; 4418 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4419 ipsq->ipsq_refs = 1; 4420 ipsq->ipsq_writer = curthread; 4421 ipsq->ipsq_reentry_cnt = 1; 4422 #ifdef ILL_DEBUG 4423 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4424 #endif 4425 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4426 return (B_TRUE); 4427 } 4428 4429 /* 4430 * ill_init is called by ip_open when a device control stream is opened. 4431 * It does a few initializations, and shoots a DL_INFO_REQ message down 4432 * to the driver. The response is later picked up in ip_rput_dlpi and 4433 * used to set up default mechanisms for talking to the driver. (Always 4434 * called as writer.) 4435 * 4436 * If this function returns error, ip_open will call ip_close which in 4437 * turn will call ill_delete to clean up any memory allocated here that 4438 * is not yet freed. 4439 */ 4440 int 4441 ill_init(queue_t *q, ill_t *ill) 4442 { 4443 int count; 4444 dl_info_req_t *dlir; 4445 mblk_t *info_mp; 4446 uchar_t *frag_ptr; 4447 4448 /* 4449 * The ill is initialized to zero by mi_alloc*(). In addition 4450 * some fields already contain valid values, initialized in 4451 * ip_open(), before we reach here. 4452 */ 4453 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4454 4455 ill->ill_rq = q; 4456 ill->ill_wq = WR(q); 4457 4458 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4459 BPRI_HI); 4460 if (info_mp == NULL) 4461 return (ENOMEM); 4462 4463 /* 4464 * Allocate sufficient space to contain our fragment hash table and 4465 * the device name. 4466 */ 4467 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4468 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4469 if (frag_ptr == NULL) { 4470 freemsg(info_mp); 4471 return (ENOMEM); 4472 } 4473 ill->ill_frag_ptr = frag_ptr; 4474 ill->ill_frag_free_num_pkts = 0; 4475 ill->ill_last_frag_clean_time = 0; 4476 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4477 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4478 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4479 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4480 NULL, MUTEX_DEFAULT, NULL); 4481 } 4482 4483 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4484 if (ill->ill_phyint == NULL) { 4485 freemsg(info_mp); 4486 mi_free(frag_ptr); 4487 return (ENOMEM); 4488 } 4489 4490 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4491 /* 4492 * For now pretend this is a v4 ill. We need to set phyint_ill* 4493 * at this point because of the following reason. If we can't 4494 * enter the ipsq at some point and cv_wait, the writer that 4495 * wakes us up tries to locate us using the list of all phyints 4496 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4497 * If we don't set it now, we risk a missed wakeup. 4498 */ 4499 ill->ill_phyint->phyint_illv4 = ill; 4500 ill->ill_ppa = UINT_MAX; 4501 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4502 4503 if (!ipsq_init(ill)) { 4504 freemsg(info_mp); 4505 mi_free(frag_ptr); 4506 mi_free(ill->ill_phyint); 4507 return (ENOMEM); 4508 } 4509 4510 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4511 4512 4513 /* Frag queue limit stuff */ 4514 ill->ill_frag_count = 0; 4515 ill->ill_ipf_gen = 0; 4516 4517 ill->ill_global_timer = INFINITY; 4518 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4519 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4520 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4521 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4522 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4523 4524 /* 4525 * Initialize IPv6 configuration variables. The IP module is always 4526 * opened as an IPv4 module. Instead tracking down the cases where 4527 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4528 * here for convenience, this has no effect until the ill is set to do 4529 * IPv6. 4530 */ 4531 ill->ill_reachable_time = ND_REACHABLE_TIME; 4532 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4533 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4534 ill->ill_max_buf = ND_MAX_Q; 4535 ill->ill_refcnt = 0; 4536 4537 /* Send down the Info Request to the driver. */ 4538 info_mp->b_datap->db_type = M_PCPROTO; 4539 dlir = (dl_info_req_t *)info_mp->b_rptr; 4540 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4541 dlir->dl_primitive = DL_INFO_REQ; 4542 4543 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4544 4545 qprocson(q); 4546 ill_dlpi_send(ill, info_mp); 4547 4548 return (0); 4549 } 4550 4551 /* 4552 * ill_dls_info 4553 * creates datalink socket info from the device. 4554 */ 4555 int 4556 ill_dls_info(struct sockaddr_dl *sdl, ipif_t *ipif) 4557 { 4558 size_t length; 4559 ill_t *ill = ipif->ipif_ill; 4560 4561 sdl->sdl_family = AF_LINK; 4562 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4563 sdl->sdl_type = ipif->ipif_type; 4564 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4565 length = mi_strlen(sdl->sdl_data); 4566 ASSERT(length < 256); 4567 sdl->sdl_nlen = (uchar_t)length; 4568 sdl->sdl_alen = ill->ill_phys_addr_length; 4569 mutex_enter(&ill->ill_lock); 4570 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4571 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4572 ill->ill_phys_addr_length); 4573 } 4574 mutex_exit(&ill->ill_lock); 4575 sdl->sdl_slen = 0; 4576 return (sizeof (struct sockaddr_dl)); 4577 } 4578 4579 /* 4580 * ill_xarp_info 4581 * creates xarp info from the device. 4582 */ 4583 static int 4584 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4585 { 4586 sdl->sdl_family = AF_LINK; 4587 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4588 sdl->sdl_type = ill->ill_type; 4589 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4590 sizeof (sdl->sdl_data)); 4591 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4592 sdl->sdl_alen = ill->ill_phys_addr_length; 4593 sdl->sdl_slen = 0; 4594 return (sdl->sdl_nlen); 4595 } 4596 4597 static int 4598 loopback_kstat_update(kstat_t *ksp, int rw) 4599 { 4600 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4601 4602 if (rw == KSTAT_WRITE) 4603 return (EACCES); 4604 kn[0].value.ui32 = loopback_packets; 4605 kn[1].value.ui32 = loopback_packets; 4606 return (0); 4607 } 4608 4609 4610 /* 4611 * Has ifindex been plumbed already. 4612 */ 4613 static boolean_t 4614 phyint_exists(uint_t index) 4615 { 4616 phyint_t *phyi; 4617 4618 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4619 /* 4620 * Indexes are stored in the phyint - a common structure 4621 * to both IPv4 and IPv6. 4622 */ 4623 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4624 (void *) &index, NULL); 4625 return (phyi != NULL); 4626 } 4627 4628 /* 4629 * Assign a unique interface index for the phyint. 4630 */ 4631 static boolean_t 4632 phyint_assign_ifindex(phyint_t *phyi) 4633 { 4634 uint_t starting_index; 4635 4636 ASSERT(phyi->phyint_ifindex == 0); 4637 if (!ill_index_wrap) { 4638 phyi->phyint_ifindex = ill_index++; 4639 if (ill_index == 0) { 4640 /* Reached the uint_t limit Next time wrap */ 4641 ill_index_wrap = B_TRUE; 4642 } 4643 return (B_TRUE); 4644 } 4645 4646 /* 4647 * Start reusing unused indexes. Note that we hold the ill_g_lock 4648 * at this point and don't want to call any function that attempts 4649 * to get the lock again. 4650 */ 4651 starting_index = ill_index++; 4652 for (; ill_index != starting_index; ill_index++) { 4653 if (ill_index != 0 && !phyint_exists(ill_index)) { 4654 /* found unused index - use it */ 4655 phyi->phyint_ifindex = ill_index; 4656 return (B_TRUE); 4657 } 4658 } 4659 4660 /* 4661 * all interface indicies are inuse. 4662 */ 4663 return (B_FALSE); 4664 } 4665 4666 /* 4667 * Return a pointer to the ill which matches the supplied name. Note that 4668 * the ill name length includes the null termination character. (May be 4669 * called as writer.) 4670 * If do_alloc and the interface is "lo0" it will be automatically created. 4671 * Cannot bump up reference on condemned ills. So dup detect can't be done 4672 * using this func. 4673 */ 4674 ill_t * 4675 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4676 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4677 { 4678 ill_t *ill; 4679 ipif_t *ipif; 4680 kstat_named_t *kn; 4681 boolean_t isloopback; 4682 ipsq_t *old_ipsq; 4683 4684 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4685 4686 rw_enter(&ill_g_lock, RW_READER); 4687 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4688 rw_exit(&ill_g_lock); 4689 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4690 return (ill); 4691 4692 /* 4693 * Couldn't find it. Does this happen to be a lookup for the 4694 * loopback device and are we allowed to allocate it? 4695 */ 4696 if (!isloopback || !do_alloc) 4697 return (NULL); 4698 4699 rw_enter(&ill_g_lock, RW_WRITER); 4700 4701 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4702 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4703 rw_exit(&ill_g_lock); 4704 return (ill); 4705 } 4706 4707 /* Create the loopback device on demand */ 4708 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4709 sizeof (ipif_loopback_name), BPRI_MED)); 4710 if (ill == NULL) 4711 goto done; 4712 4713 *ill = ill_null; 4714 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4715 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4716 if (ill->ill_phyint == NULL) 4717 goto done; 4718 4719 if (isv6) 4720 ill->ill_phyint->phyint_illv6 = ill; 4721 else 4722 ill->ill_phyint->phyint_illv4 = ill; 4723 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4724 ill->ill_max_frag = IP_LOOPBACK_MTU; 4725 /* Add room for tcp+ip headers */ 4726 if (isv6) { 4727 ill->ill_isv6 = B_TRUE; 4728 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4729 if (!ill_allocate_mibs(ill)) 4730 goto done; 4731 } else { 4732 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4733 } 4734 ill->ill_max_mtu = ill->ill_max_frag; 4735 /* 4736 * ipif_loopback_name can't be pointed at directly because its used 4737 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4738 * from the glist, ill_glist_delete() sets the first character of 4739 * ill_name to '\0'. 4740 */ 4741 ill->ill_name = (char *)ill + sizeof (*ill); 4742 (void) strcpy(ill->ill_name, ipif_loopback_name); 4743 ill->ill_name_length = sizeof (ipif_loopback_name); 4744 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4745 4746 ill->ill_global_timer = INFINITY; 4747 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4748 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4749 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4750 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4751 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4752 4753 /* No resolver here. */ 4754 ill->ill_net_type = IRE_LOOPBACK; 4755 4756 /* Initialize the ipsq */ 4757 if (!ipsq_init(ill)) 4758 goto done; 4759 4760 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4761 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4762 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4763 #ifdef ILL_DEBUG 4764 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4765 #endif 4766 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4767 if (ipif == NULL) 4768 goto done; 4769 4770 ill->ill_flags = ILLF_MULTICAST; 4771 4772 /* Set up default loopback address and mask. */ 4773 if (!isv6) { 4774 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4775 4776 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4777 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4778 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4779 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4780 ipif->ipif_v6subnet); 4781 ill->ill_flags |= ILLF_IPV4; 4782 } else { 4783 ipif->ipif_v6lcl_addr = ipv6_loopback; 4784 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4785 ipif->ipif_v6net_mask = ipv6_all_ones; 4786 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4787 ipif->ipif_v6subnet); 4788 ill->ill_flags |= ILLF_IPV6; 4789 } 4790 4791 /* 4792 * Chain us in at the end of the ill list. hold the ill 4793 * before we make it globally visible. 1 for the lookup. 4794 */ 4795 ill->ill_refcnt = 0; 4796 ill_refhold(ill); 4797 4798 ill->ill_frag_count = 0; 4799 ill->ill_frag_free_num_pkts = 0; 4800 ill->ill_last_frag_clean_time = 0; 4801 4802 old_ipsq = ill->ill_phyint->phyint_ipsq; 4803 4804 if (ill_glist_insert(ill, "lo", isv6) != 0) 4805 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4806 4807 /* Let SCTP know so that it can add this to its list */ 4808 sctp_update_ill(ill, SCTP_ILL_INSERT); 4809 4810 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4811 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4812 4813 /* 4814 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4815 */ 4816 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4817 /* Loopback ills aren't in any IPMP group */ 4818 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4819 ipsq_delete(old_ipsq); 4820 } 4821 4822 /* 4823 * Delay this till the ipif is allocated as ipif_allocate 4824 * de-references ill_phyint for getting the ifindex. We 4825 * can't do this before ipif_allocate because ill_phyint_reinit 4826 * -> phyint_assign_ifindex expects ipif to be present. 4827 */ 4828 mutex_enter(&ill->ill_phyint->phyint_lock); 4829 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4830 mutex_exit(&ill->ill_phyint->phyint_lock); 4831 4832 if (loopback_ksp == NULL) { 4833 /* Export loopback interface statistics */ 4834 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4835 KSTAT_TYPE_NAMED, 2, 0); 4836 if (loopback_ksp != NULL) { 4837 loopback_ksp->ks_update = loopback_kstat_update; 4838 kn = KSTAT_NAMED_PTR(loopback_ksp); 4839 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4840 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4841 kstat_install(loopback_ksp); 4842 } 4843 } 4844 4845 if (error != NULL) 4846 *error = 0; 4847 *did_alloc = B_TRUE; 4848 rw_exit(&ill_g_lock); 4849 return (ill); 4850 done: 4851 if (ill != NULL) { 4852 if (ill->ill_phyint != NULL) { 4853 ipsq_t *ipsq; 4854 4855 ipsq = ill->ill_phyint->phyint_ipsq; 4856 if (ipsq != NULL) 4857 kmem_free(ipsq, sizeof (ipsq_t)); 4858 mi_free(ill->ill_phyint); 4859 } 4860 ill_free_mib(ill); 4861 mi_free(ill); 4862 } 4863 rw_exit(&ill_g_lock); 4864 if (error != NULL) 4865 *error = ENOMEM; 4866 return (NULL); 4867 } 4868 4869 /* 4870 * Return a pointer to the ill which matches the index and IP version type. 4871 */ 4872 ill_t * 4873 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4874 ipsq_func_t func, int *err) 4875 { 4876 ill_t *ill; 4877 ipsq_t *ipsq; 4878 phyint_t *phyi; 4879 4880 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4881 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4882 4883 if (err != NULL) 4884 *err = 0; 4885 4886 /* 4887 * Indexes are stored in the phyint - a common structure 4888 * to both IPv4 and IPv6. 4889 */ 4890 rw_enter(&ill_g_lock, RW_READER); 4891 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4892 (void *) &index, NULL); 4893 if (phyi != NULL) { 4894 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4895 if (ill != NULL) { 4896 /* 4897 * The block comment at the start of ipif_down 4898 * explains the use of the macros used below 4899 */ 4900 GRAB_CONN_LOCK(q); 4901 mutex_enter(&ill->ill_lock); 4902 if (ILL_CAN_LOOKUP(ill)) { 4903 ill_refhold_locked(ill); 4904 mutex_exit(&ill->ill_lock); 4905 RELEASE_CONN_LOCK(q); 4906 rw_exit(&ill_g_lock); 4907 return (ill); 4908 } else if (ILL_CAN_WAIT(ill, q)) { 4909 ipsq = ill->ill_phyint->phyint_ipsq; 4910 mutex_enter(&ipsq->ipsq_lock); 4911 rw_exit(&ill_g_lock); 4912 mutex_exit(&ill->ill_lock); 4913 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4914 mutex_exit(&ipsq->ipsq_lock); 4915 RELEASE_CONN_LOCK(q); 4916 *err = EINPROGRESS; 4917 return (NULL); 4918 } 4919 RELEASE_CONN_LOCK(q); 4920 mutex_exit(&ill->ill_lock); 4921 } 4922 } 4923 rw_exit(&ill_g_lock); 4924 if (err != NULL) 4925 *err = ENXIO; 4926 return (NULL); 4927 } 4928 4929 /* 4930 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4931 * that gives a running thread a reference to the ill. This reference must be 4932 * released by the thread when it is done accessing the ill and related 4933 * objects. ill_refcnt can not be used to account for static references 4934 * such as other structures pointing to an ill. Callers must generally 4935 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4936 * or be sure that the ill is not being deleted or changing state before 4937 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4938 * ill won't change any of its critical state such as address, netmask etc. 4939 */ 4940 void 4941 ill_refhold(ill_t *ill) 4942 { 4943 mutex_enter(&ill->ill_lock); 4944 ill->ill_refcnt++; 4945 ILL_TRACE_REF(ill); 4946 mutex_exit(&ill->ill_lock); 4947 } 4948 4949 void 4950 ill_refhold_locked(ill_t *ill) 4951 { 4952 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4953 ill->ill_refcnt++; 4954 ILL_TRACE_REF(ill); 4955 } 4956 4957 int 4958 ill_check_and_refhold(ill_t *ill) 4959 { 4960 mutex_enter(&ill->ill_lock); 4961 if (ILL_CAN_LOOKUP(ill)) { 4962 ill_refhold_locked(ill); 4963 mutex_exit(&ill->ill_lock); 4964 return (0); 4965 } 4966 mutex_exit(&ill->ill_lock); 4967 return (ILL_LOOKUP_FAILED); 4968 } 4969 4970 /* 4971 * Must not be called while holding any locks. Otherwise if this is 4972 * the last reference to be released, there is a chance of recursive mutex 4973 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4974 * to restart an ioctl. 4975 */ 4976 void 4977 ill_refrele(ill_t *ill) 4978 { 4979 mutex_enter(&ill->ill_lock); 4980 ASSERT(ill->ill_refcnt != 0); 4981 ill->ill_refcnt--; 4982 ILL_UNTRACE_REF(ill); 4983 if (ill->ill_refcnt != 0) { 4984 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4985 mutex_exit(&ill->ill_lock); 4986 return; 4987 } 4988 4989 /* Drops the ill_lock */ 4990 ipif_ill_refrele_tail(ill); 4991 } 4992 4993 /* 4994 * Obtain a weak reference count on the ill. This reference ensures the 4995 * ill won't be freed, but the ill may change any of its critical state 4996 * such as netmask, address etc. Returns an error if the ill has started 4997 * closing. 4998 */ 4999 boolean_t 5000 ill_waiter_inc(ill_t *ill) 5001 { 5002 mutex_enter(&ill->ill_lock); 5003 if (ill->ill_state_flags & ILL_CONDEMNED) { 5004 mutex_exit(&ill->ill_lock); 5005 return (B_FALSE); 5006 } 5007 ill->ill_waiters++; 5008 mutex_exit(&ill->ill_lock); 5009 return (B_TRUE); 5010 } 5011 5012 void 5013 ill_waiter_dcr(ill_t *ill) 5014 { 5015 mutex_enter(&ill->ill_lock); 5016 ill->ill_waiters--; 5017 if (ill->ill_waiters == 0) 5018 cv_broadcast(&ill->ill_cv); 5019 mutex_exit(&ill->ill_lock); 5020 } 5021 5022 /* 5023 * Named Dispatch routine to produce a formatted report on all ILLs. 5024 * This report is accessed by using the ndd utility to "get" ND variable 5025 * "ip_ill_status". 5026 */ 5027 /* ARGSUSED */ 5028 int 5029 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5030 { 5031 ill_t *ill; 5032 ill_walk_context_t ctx; 5033 5034 (void) mi_mpprintf(mp, 5035 "ILL " MI_COL_HDRPAD_STR 5036 /* 01234567[89ABCDEF] */ 5037 "rq " MI_COL_HDRPAD_STR 5038 /* 01234567[89ABCDEF] */ 5039 "wq " MI_COL_HDRPAD_STR 5040 /* 01234567[89ABCDEF] */ 5041 "upcnt mxfrg err name"); 5042 /* 12345 12345 123 xxxxxxxx */ 5043 5044 rw_enter(&ill_g_lock, RW_READER); 5045 ill = ILL_START_WALK_ALL(&ctx); 5046 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5047 (void) mi_mpprintf(mp, 5048 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5049 "%05u %05u %03d %s", 5050 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5051 ill->ill_ipif_up_count, 5052 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5053 } 5054 rw_exit(&ill_g_lock); 5055 5056 return (0); 5057 } 5058 5059 /* 5060 * Named Dispatch routine to produce a formatted report on all IPIFs. 5061 * This report is accessed by using the ndd utility to "get" ND variable 5062 * "ip_ipif_status". 5063 */ 5064 /* ARGSUSED */ 5065 int 5066 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5067 { 5068 char buf1[INET6_ADDRSTRLEN]; 5069 char buf2[INET6_ADDRSTRLEN]; 5070 char buf3[INET6_ADDRSTRLEN]; 5071 char buf4[INET6_ADDRSTRLEN]; 5072 char buf5[INET6_ADDRSTRLEN]; 5073 char buf6[INET6_ADDRSTRLEN]; 5074 char buf[LIFNAMSIZ]; 5075 ill_t *ill; 5076 ipif_t *ipif; 5077 nv_t *nvp; 5078 uint64_t flags; 5079 zoneid_t zoneid; 5080 ill_walk_context_t ctx; 5081 5082 (void) mi_mpprintf(mp, 5083 "IPIF metric mtu in/out/forward name zone flags...\n" 5084 "\tlocal address\n" 5085 "\tsrc address\n" 5086 "\tsubnet\n" 5087 "\tmask\n" 5088 "\tbroadcast\n" 5089 "\tp-p-dst"); 5090 5091 ASSERT(q->q_next == NULL); 5092 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5093 5094 rw_enter(&ill_g_lock, RW_READER); 5095 ill = ILL_START_WALK_ALL(&ctx); 5096 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5097 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5098 if (zoneid != GLOBAL_ZONEID && 5099 zoneid != ipif->ipif_zoneid) 5100 continue; 5101 (void) mi_mpprintf(mp, 5102 MI_COL_PTRFMT_STR 5103 "%04u %05u %u/%u/%u %s %d", 5104 (void *)ipif, 5105 ipif->ipif_metric, ipif->ipif_mtu, 5106 ipif->ipif_ib_pkt_count, 5107 ipif->ipif_ob_pkt_count, 5108 ipif->ipif_fo_pkt_count, 5109 ipif_get_name(ipif, buf, sizeof (buf)), 5110 ipif->ipif_zoneid); 5111 5112 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5113 ipif->ipif_ill->ill_phyint->phyint_flags; 5114 5115 /* Tack on text strings for any flags. */ 5116 nvp = ipif_nv_tbl; 5117 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5118 if (nvp->nv_value & flags) 5119 (void) mi_mpprintf_nr(mp, " %s", 5120 nvp->nv_name); 5121 } 5122 (void) mi_mpprintf(mp, 5123 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5124 inet_ntop(AF_INET6, 5125 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5126 inet_ntop(AF_INET6, 5127 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5128 inet_ntop(AF_INET6, 5129 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5130 inet_ntop(AF_INET6, 5131 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5132 inet_ntop(AF_INET6, 5133 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5134 inet_ntop(AF_INET6, 5135 &ipif->ipif_v6pp_dst_addr, 5136 buf6, sizeof (buf6))); 5137 } 5138 } 5139 rw_exit(&ill_g_lock); 5140 return (0); 5141 } 5142 5143 /* 5144 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5145 * driver. We construct best guess defaults for lower level information that 5146 * we need. If an interface is brought up without injection of any overriding 5147 * information from outside, we have to be ready to go with these defaults. 5148 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5149 * we primarely want the dl_provider_style. 5150 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5151 * at which point we assume the other part of the information is valid. 5152 */ 5153 void 5154 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5155 { 5156 uchar_t *brdcst_addr; 5157 uint_t brdcst_addr_length, phys_addr_length; 5158 t_scalar_t sap_length; 5159 dl_info_ack_t *dlia; 5160 ip_m_t *ipm; 5161 dl_qos_cl_sel1_t *sel1; 5162 5163 ASSERT(IAM_WRITER_ILL(ill)); 5164 5165 /* 5166 * Till the ill is fully up ILL_CHANGING will be set and 5167 * the ill is not globally visible. So no need for a lock. 5168 */ 5169 dlia = (dl_info_ack_t *)mp->b_rptr; 5170 ill->ill_mactype = dlia->dl_mac_type; 5171 5172 ipm = ip_m_lookup(dlia->dl_mac_type); 5173 if (ipm == NULL) { 5174 ipm = ip_m_lookup(DL_OTHER); 5175 ASSERT(ipm != NULL); 5176 } 5177 ill->ill_media = ipm; 5178 5179 /* 5180 * When the new DLPI stuff is ready we'll pull lengths 5181 * from dlia. 5182 */ 5183 if (dlia->dl_version == DL_VERSION_2) { 5184 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5185 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5186 brdcst_addr_length); 5187 if (brdcst_addr == NULL) { 5188 brdcst_addr_length = 0; 5189 } 5190 sap_length = dlia->dl_sap_length; 5191 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5192 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5193 brdcst_addr_length, sap_length, phys_addr_length)); 5194 } else { 5195 brdcst_addr_length = 6; 5196 brdcst_addr = ip_six_byte_all_ones; 5197 sap_length = -2; 5198 phys_addr_length = brdcst_addr_length; 5199 } 5200 5201 ill->ill_bcast_addr_length = brdcst_addr_length; 5202 ill->ill_phys_addr_length = phys_addr_length; 5203 ill->ill_sap_length = sap_length; 5204 ill->ill_max_frag = dlia->dl_max_sdu; 5205 ill->ill_max_mtu = ill->ill_max_frag; 5206 5207 ill->ill_type = ipm->ip_m_type; 5208 5209 if (!ill->ill_dlpi_style_set) { 5210 if (dlia->dl_provider_style == DL_STYLE2) 5211 ill->ill_needs_attach = 1; 5212 5213 /* 5214 * Allocate the first ipif on this ill. We don't delay it 5215 * further as ioctl handling assumes atleast one ipif to 5216 * be present. 5217 * 5218 * At this point we don't know whether the ill is v4 or v6. 5219 * We will know this whan the SIOCSLIFNAME happens and 5220 * the correct value for ill_isv6 will be assigned in 5221 * ipif_set_values(). We need to hold the ill lock and 5222 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5223 * the wakeup. 5224 */ 5225 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5226 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5227 mutex_enter(&ill->ill_lock); 5228 ASSERT(ill->ill_dlpi_style_set == 0); 5229 ill->ill_dlpi_style_set = 1; 5230 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5231 cv_broadcast(&ill->ill_cv); 5232 mutex_exit(&ill->ill_lock); 5233 freemsg(mp); 5234 return; 5235 } 5236 ASSERT(ill->ill_ipif != NULL); 5237 /* 5238 * We know whether it is IPv4 or IPv6 now, as this is the 5239 * second DL_INFO_ACK we are recieving in response to the 5240 * DL_INFO_REQ sent in ipif_set_values. 5241 */ 5242 if (ill->ill_isv6) 5243 ill->ill_sap = IP6_DL_SAP; 5244 else 5245 ill->ill_sap = IP_DL_SAP; 5246 /* 5247 * Set ipif_mtu which is used to set the IRE's 5248 * ire_max_frag value. The driver could have sent 5249 * a different mtu from what it sent last time. No 5250 * need to call ipif_mtu_change because IREs have 5251 * not yet been created. 5252 */ 5253 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5254 /* 5255 * Clear all the flags that were set based on ill_bcast_addr_length 5256 * and ill_phys_addr_length (in ipif_set_values) as these could have 5257 * changed now and we need to re-evaluate. 5258 */ 5259 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5260 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5261 5262 /* 5263 * Free ill_resolver_mp and ill_bcast_mp as things could have 5264 * changed now. 5265 */ 5266 if (ill->ill_bcast_addr_length == 0) { 5267 if (ill->ill_resolver_mp != NULL) 5268 freemsg(ill->ill_resolver_mp); 5269 if (ill->ill_bcast_mp != NULL) 5270 freemsg(ill->ill_bcast_mp); 5271 if (ill->ill_flags & ILLF_XRESOLV) 5272 ill->ill_net_type = IRE_IF_RESOLVER; 5273 else 5274 ill->ill_net_type = IRE_IF_NORESOLVER; 5275 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5276 ill->ill_phys_addr_length, 5277 ill->ill_sap, 5278 ill->ill_sap_length); 5279 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5280 5281 if (ill->ill_isv6) 5282 /* 5283 * Note: xresolv interfaces will eventually need NOARP 5284 * set here as well, but that will require those 5285 * external resolvers to have some knowledge of 5286 * that flag and act appropriately. Not to be changed 5287 * at present. 5288 */ 5289 ill->ill_flags |= ILLF_NONUD; 5290 else 5291 ill->ill_flags |= ILLF_NOARP; 5292 5293 if (ill->ill_phys_addr_length == 0) { 5294 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5295 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5296 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5297 } else { 5298 /* pt-pt supports multicast. */ 5299 ill->ill_flags |= ILLF_MULTICAST; 5300 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5301 } 5302 } 5303 } else { 5304 ill->ill_net_type = IRE_IF_RESOLVER; 5305 if (ill->ill_bcast_mp != NULL) 5306 freemsg(ill->ill_bcast_mp); 5307 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5308 ill->ill_bcast_addr_length, ill->ill_sap, 5309 ill->ill_sap_length); 5310 /* 5311 * Later detect lack of DLPI driver multicast 5312 * capability by catching DL_ENABMULTI errors in 5313 * ip_rput_dlpi. 5314 */ 5315 ill->ill_flags |= ILLF_MULTICAST; 5316 if (!ill->ill_isv6) 5317 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5318 } 5319 /* By default an interface does not support any CoS marking */ 5320 ill->ill_flags &= ~ILLF_COS_ENABLED; 5321 5322 /* 5323 * If we get QoS information in DL_INFO_ACK, the device supports 5324 * some form of CoS marking, set ILLF_COS_ENABLED. 5325 */ 5326 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5327 dlia->dl_qos_length); 5328 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5329 ill->ill_flags |= ILLF_COS_ENABLED; 5330 } 5331 5332 /* Clear any previous error indication. */ 5333 ill->ill_error = 0; 5334 freemsg(mp); 5335 } 5336 5337 /* 5338 * Perform various checks to verify that an address would make sense as a 5339 * local, remote, or subnet interface address. 5340 */ 5341 static boolean_t 5342 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5343 { 5344 ipaddr_t net_mask; 5345 5346 /* 5347 * Don't allow all zeroes, all ones or experimental address, but allow 5348 * all ones netmask. 5349 */ 5350 if ((net_mask = ip_net_mask(addr)) == 0) 5351 return (B_FALSE); 5352 /* A given netmask overrides the "guess" netmask */ 5353 if (subnet_mask != 0) 5354 net_mask = subnet_mask; 5355 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5356 (addr == (addr | ~net_mask)))) { 5357 return (B_FALSE); 5358 } 5359 if (CLASSD(addr)) 5360 return (B_FALSE); 5361 5362 return (B_TRUE); 5363 } 5364 5365 /* 5366 * ipif_lookup_group 5367 * Returns held ipif 5368 */ 5369 ipif_t * 5370 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5371 { 5372 ire_t *ire; 5373 ipif_t *ipif; 5374 5375 ire = ire_lookup_multi(group, zoneid); 5376 if (ire == NULL) 5377 return (NULL); 5378 ipif = ire->ire_ipif; 5379 ipif_refhold(ipif); 5380 ire_refrele(ire); 5381 return (ipif); 5382 } 5383 5384 /* 5385 * Look for an ipif with the specified interface address and destination. 5386 * The destination address is used only for matching point-to-point interfaces. 5387 */ 5388 ipif_t * 5389 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5390 ipsq_func_t func, int *error) 5391 { 5392 ipif_t *ipif; 5393 ill_t *ill; 5394 ill_walk_context_t ctx; 5395 ipsq_t *ipsq; 5396 5397 if (error != NULL) 5398 *error = 0; 5399 5400 /* 5401 * First match all the point-to-point interfaces 5402 * before looking at non-point-to-point interfaces. 5403 * This is done to avoid returning non-point-to-point 5404 * ipif instead of unnumbered point-to-point ipif. 5405 */ 5406 rw_enter(&ill_g_lock, RW_READER); 5407 ill = ILL_START_WALK_V4(&ctx); 5408 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5409 GRAB_CONN_LOCK(q); 5410 mutex_enter(&ill->ill_lock); 5411 for (ipif = ill->ill_ipif; ipif != NULL; 5412 ipif = ipif->ipif_next) { 5413 /* Allow the ipif to be down */ 5414 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5415 (ipif->ipif_lcl_addr == if_addr) && 5416 (ipif->ipif_pp_dst_addr == dst)) { 5417 /* 5418 * The block comment at the start of ipif_down 5419 * explains the use of the macros used below 5420 */ 5421 if (IPIF_CAN_LOOKUP(ipif)) { 5422 ipif_refhold_locked(ipif); 5423 mutex_exit(&ill->ill_lock); 5424 RELEASE_CONN_LOCK(q); 5425 rw_exit(&ill_g_lock); 5426 return (ipif); 5427 } else if (IPIF_CAN_WAIT(ipif, q)) { 5428 ipsq = ill->ill_phyint->phyint_ipsq; 5429 mutex_enter(&ipsq->ipsq_lock); 5430 mutex_exit(&ill->ill_lock); 5431 rw_exit(&ill_g_lock); 5432 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5433 ill); 5434 mutex_exit(&ipsq->ipsq_lock); 5435 RELEASE_CONN_LOCK(q); 5436 *error = EINPROGRESS; 5437 return (NULL); 5438 } 5439 } 5440 } 5441 mutex_exit(&ill->ill_lock); 5442 RELEASE_CONN_LOCK(q); 5443 } 5444 rw_exit(&ill_g_lock); 5445 5446 /* lookup the ipif based on interface address */ 5447 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5448 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5449 return (ipif); 5450 } 5451 5452 /* 5453 * Look for an ipif with the specified address. For point-point links 5454 * we look for matches on either the destination address and the local 5455 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5456 * is set. 5457 * Matches on a specific ill if match_ill is set. 5458 */ 5459 ipif_t * 5460 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5461 mblk_t *mp, ipsq_func_t func, int *error) 5462 { 5463 ipif_t *ipif; 5464 ill_t *ill; 5465 boolean_t ptp = B_FALSE; 5466 ipsq_t *ipsq; 5467 ill_walk_context_t ctx; 5468 5469 if (error != NULL) 5470 *error = 0; 5471 5472 rw_enter(&ill_g_lock, RW_READER); 5473 /* 5474 * Repeat twice, first based on local addresses and 5475 * next time for pointopoint. 5476 */ 5477 repeat: 5478 ill = ILL_START_WALK_V4(&ctx); 5479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5480 if (match_ill != NULL && ill != match_ill) { 5481 continue; 5482 } 5483 GRAB_CONN_LOCK(q); 5484 mutex_enter(&ill->ill_lock); 5485 for (ipif = ill->ill_ipif; ipif != NULL; 5486 ipif = ipif->ipif_next) { 5487 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5488 continue; 5489 /* Allow the ipif to be down */ 5490 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5491 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5492 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5493 (ipif->ipif_pp_dst_addr == addr))) { 5494 /* 5495 * The block comment at the start of ipif_down 5496 * explains the use of the macros used below 5497 */ 5498 if (IPIF_CAN_LOOKUP(ipif)) { 5499 ipif_refhold_locked(ipif); 5500 mutex_exit(&ill->ill_lock); 5501 RELEASE_CONN_LOCK(q); 5502 rw_exit(&ill_g_lock); 5503 return (ipif); 5504 } else if (IPIF_CAN_WAIT(ipif, q)) { 5505 ipsq = ill->ill_phyint->phyint_ipsq; 5506 mutex_enter(&ipsq->ipsq_lock); 5507 mutex_exit(&ill->ill_lock); 5508 rw_exit(&ill_g_lock); 5509 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5510 ill); 5511 mutex_exit(&ipsq->ipsq_lock); 5512 RELEASE_CONN_LOCK(q); 5513 *error = EINPROGRESS; 5514 return (NULL); 5515 } 5516 } 5517 } 5518 mutex_exit(&ill->ill_lock); 5519 RELEASE_CONN_LOCK(q); 5520 } 5521 5522 /* Now try the ptp case */ 5523 if (ptp) { 5524 rw_exit(&ill_g_lock); 5525 if (error != NULL) 5526 *error = ENXIO; 5527 return (NULL); 5528 } 5529 ptp = B_TRUE; 5530 goto repeat; 5531 } 5532 5533 /* 5534 * Look for an ipif that matches the specified remote address i.e. the 5535 * ipif that would receive the specified packet. 5536 * First look for directly connected interfaces and then do a recursive 5537 * IRE lookup and pick the first ipif corresponding to the source address in the 5538 * ire. 5539 * Returns: held ipif 5540 */ 5541 ipif_t * 5542 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5543 { 5544 ipif_t *ipif; 5545 ire_t *ire; 5546 5547 ASSERT(!ill->ill_isv6); 5548 5549 /* 5550 * Someone could be changing this ipif currently or change it 5551 * after we return this. Thus a few packets could use the old 5552 * old values. However structure updates/creates (ire, ilg, ilm etc) 5553 * will atomically be updated or cleaned up with the new value 5554 * Thus we don't need a lock to check the flags or other attrs below. 5555 */ 5556 mutex_enter(&ill->ill_lock); 5557 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5558 if (!IPIF_CAN_LOOKUP(ipif)) 5559 continue; 5560 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5561 continue; 5562 /* Allow the ipif to be down */ 5563 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5564 if ((ipif->ipif_pp_dst_addr == addr) || 5565 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5566 ipif->ipif_lcl_addr == addr)) { 5567 ipif_refhold_locked(ipif); 5568 mutex_exit(&ill->ill_lock); 5569 return (ipif); 5570 } 5571 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5572 ipif_refhold_locked(ipif); 5573 mutex_exit(&ill->ill_lock); 5574 return (ipif); 5575 } 5576 } 5577 mutex_exit(&ill->ill_lock); 5578 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5579 MATCH_IRE_RECURSIVE); 5580 if (ire != NULL) { 5581 /* 5582 * The callers of this function wants to know the 5583 * interface on which they have to send the replies 5584 * back. For IRE_CACHES that have ire_stq and ire_ipif 5585 * derived from different ills, we really don't care 5586 * what we return here. 5587 */ 5588 ipif = ire->ire_ipif; 5589 if (ipif != NULL) { 5590 ipif_refhold(ipif); 5591 ire_refrele(ire); 5592 return (ipif); 5593 } 5594 ire_refrele(ire); 5595 } 5596 /* Pick the first interface */ 5597 ipif = ipif_get_next_ipif(NULL, ill); 5598 return (ipif); 5599 } 5600 5601 /* 5602 * This func does not prevent refcnt from increasing. But if 5603 * the caller has taken steps to that effect, then this func 5604 * can be used to determine whether the ill has become quiescent 5605 */ 5606 boolean_t 5607 ill_is_quiescent(ill_t *ill) 5608 { 5609 ipif_t *ipif; 5610 5611 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5612 5613 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5614 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5615 return (B_FALSE); 5616 } 5617 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5618 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5619 ill->ill_mrtun_refcnt != 0) 5620 return (B_FALSE); 5621 return (B_TRUE); 5622 } 5623 5624 /* 5625 * This func does not prevent refcnt from increasing. But if 5626 * the caller has taken steps to that effect, then this func 5627 * can be used to determine whether the ipif has become quiescent 5628 */ 5629 static boolean_t 5630 ipif_is_quiescent(ipif_t *ipif) 5631 { 5632 ill_t *ill; 5633 5634 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5635 5636 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5637 return (B_FALSE); 5638 5639 ill = ipif->ipif_ill; 5640 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5641 return (B_TRUE); 5642 5643 /* This is the last ipif going down or being deleted on this ill */ 5644 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5645 return (B_FALSE); 5646 5647 return (B_TRUE); 5648 } 5649 5650 /* 5651 * This func does not prevent refcnt from increasing. But if 5652 * the caller has taken steps to that effect, then this func 5653 * can be used to determine whether the ipifs marked with IPIF_MOVING 5654 * have become quiescent and can be moved in a failover/failback. 5655 */ 5656 static ipif_t * 5657 ill_quiescent_to_move(ill_t *ill) 5658 { 5659 ipif_t *ipif; 5660 5661 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5662 5663 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5664 if (ipif->ipif_state_flags & IPIF_MOVING) { 5665 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5666 return (ipif); 5667 } 5668 } 5669 } 5670 return (NULL); 5671 } 5672 5673 /* 5674 * The ipif/ill/ire has been refreled. Do the tail processing. 5675 * Determine if the ipif or ill in question has become quiescent and if so 5676 * wakeup close and/or restart any queued pending ioctl that is waiting 5677 * for the ipif_down (or ill_down) 5678 */ 5679 void 5680 ipif_ill_refrele_tail(ill_t *ill) 5681 { 5682 mblk_t *mp; 5683 conn_t *connp; 5684 ipsq_t *ipsq; 5685 ipif_t *ipif; 5686 5687 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5688 5689 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5690 ill_is_quiescent(ill)) { 5691 /* ill_close may be waiting */ 5692 cv_broadcast(&ill->ill_cv); 5693 } 5694 5695 /* ipsq can't change because ill_lock is held */ 5696 ipsq = ill->ill_phyint->phyint_ipsq; 5697 if (ipsq->ipsq_waitfor == 0) { 5698 /* Not waiting for anything, just return. */ 5699 mutex_exit(&ill->ill_lock); 5700 return; 5701 } 5702 ASSERT(ipsq->ipsq_pending_mp != NULL && 5703 ipsq->ipsq_pending_ipif != NULL); 5704 /* 5705 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5706 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5707 * be zero for restarting an ioctl that ends up downing the ill. 5708 */ 5709 ipif = ipsq->ipsq_pending_ipif; 5710 if (ipif->ipif_ill != ill) { 5711 /* The ioctl is pending on some other ill. */ 5712 mutex_exit(&ill->ill_lock); 5713 return; 5714 } 5715 5716 switch (ipsq->ipsq_waitfor) { 5717 case IPIF_DOWN: 5718 case IPIF_FREE: 5719 if (!ipif_is_quiescent(ipif)) { 5720 mutex_exit(&ill->ill_lock); 5721 return; 5722 } 5723 break; 5724 5725 case ILL_DOWN: 5726 case ILL_FREE: 5727 /* 5728 * case ILL_FREE arises only for loopback. otherwise ill_delete 5729 * waits synchronously in ip_close, and no message is queued in 5730 * ipsq_pending_mp at all in this case 5731 */ 5732 if (!ill_is_quiescent(ill)) { 5733 mutex_exit(&ill->ill_lock); 5734 return; 5735 } 5736 5737 break; 5738 5739 case ILL_MOVE_OK: 5740 if (ill_quiescent_to_move(ill) != NULL) { 5741 mutex_exit(&ill->ill_lock); 5742 return; 5743 } 5744 5745 break; 5746 default: 5747 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5748 (void *)ipsq, ipsq->ipsq_waitfor); 5749 } 5750 5751 /* 5752 * Incr refcnt for the qwriter_ip call below which 5753 * does a refrele 5754 */ 5755 ill_refhold_locked(ill); 5756 mutex_exit(&ill->ill_lock); 5757 5758 mp = ipsq_pending_mp_get(ipsq, &connp); 5759 ASSERT(mp != NULL); 5760 5761 switch (mp->b_datap->db_type) { 5762 case M_ERROR: 5763 case M_HANGUP: 5764 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5765 ipif_all_down_tail, CUR_OP, B_TRUE); 5766 return; 5767 5768 case M_IOCTL: 5769 case M_IOCDATA: 5770 (void) qwriter_ip(NULL, ill, 5771 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5772 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5773 return; 5774 5775 default: 5776 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5777 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5778 } 5779 } 5780 5781 #ifdef ILL_DEBUG 5782 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5783 void 5784 th_trace_rrecord(th_trace_t *th_trace) 5785 { 5786 tr_buf_t *tr_buf; 5787 uint_t lastref; 5788 5789 lastref = th_trace->th_trace_lastref; 5790 lastref++; 5791 if (lastref == TR_BUF_MAX) 5792 lastref = 0; 5793 th_trace->th_trace_lastref = lastref; 5794 tr_buf = &th_trace->th_trbuf[lastref]; 5795 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5796 } 5797 5798 th_trace_t * 5799 th_trace_ipif_lookup(ipif_t *ipif) 5800 { 5801 int bucket_id; 5802 th_trace_t *th_trace; 5803 5804 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5805 5806 bucket_id = IP_TR_HASH(curthread); 5807 ASSERT(bucket_id < IP_TR_HASH_MAX); 5808 5809 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5810 th_trace = th_trace->th_next) { 5811 if (th_trace->th_id == curthread) 5812 return (th_trace); 5813 } 5814 return (NULL); 5815 } 5816 5817 void 5818 ipif_trace_ref(ipif_t *ipif) 5819 { 5820 int bucket_id; 5821 th_trace_t *th_trace; 5822 5823 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5824 5825 if (ipif->ipif_trace_disable) 5826 return; 5827 5828 /* 5829 * Attempt to locate the trace buffer for the curthread. 5830 * If it does not exist, then allocate a new trace buffer 5831 * and link it in list of trace bufs for this ipif, at the head 5832 */ 5833 th_trace = th_trace_ipif_lookup(ipif); 5834 if (th_trace == NULL) { 5835 bucket_id = IP_TR_HASH(curthread); 5836 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5837 KM_NOSLEEP); 5838 if (th_trace == NULL) { 5839 ipif->ipif_trace_disable = B_TRUE; 5840 ipif_trace_cleanup(ipif); 5841 return; 5842 } 5843 th_trace->th_id = curthread; 5844 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5845 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5846 if (th_trace->th_next != NULL) 5847 th_trace->th_next->th_prev = &th_trace->th_next; 5848 ipif->ipif_trace[bucket_id] = th_trace; 5849 } 5850 ASSERT(th_trace->th_refcnt >= 0 && 5851 th_trace->th_refcnt < TR_BUF_MAX -1); 5852 th_trace->th_refcnt++; 5853 th_trace_rrecord(th_trace); 5854 } 5855 5856 void 5857 ipif_untrace_ref(ipif_t *ipif) 5858 { 5859 th_trace_t *th_trace; 5860 5861 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5862 5863 if (ipif->ipif_trace_disable) 5864 return; 5865 th_trace = th_trace_ipif_lookup(ipif); 5866 ASSERT(th_trace != NULL); 5867 ASSERT(th_trace->th_refcnt > 0); 5868 5869 th_trace->th_refcnt--; 5870 th_trace_rrecord(th_trace); 5871 } 5872 5873 th_trace_t * 5874 th_trace_ill_lookup(ill_t *ill) 5875 { 5876 th_trace_t *th_trace; 5877 int bucket_id; 5878 5879 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5880 5881 bucket_id = IP_TR_HASH(curthread); 5882 ASSERT(bucket_id < IP_TR_HASH_MAX); 5883 5884 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5885 th_trace = th_trace->th_next) { 5886 if (th_trace->th_id == curthread) 5887 return (th_trace); 5888 } 5889 return (NULL); 5890 } 5891 5892 void 5893 ill_trace_ref(ill_t *ill) 5894 { 5895 int bucket_id; 5896 th_trace_t *th_trace; 5897 5898 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5899 if (ill->ill_trace_disable) 5900 return; 5901 /* 5902 * Attempt to locate the trace buffer for the curthread. 5903 * If it does not exist, then allocate a new trace buffer 5904 * and link it in list of trace bufs for this ill, at the head 5905 */ 5906 th_trace = th_trace_ill_lookup(ill); 5907 if (th_trace == NULL) { 5908 bucket_id = IP_TR_HASH(curthread); 5909 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5910 KM_NOSLEEP); 5911 if (th_trace == NULL) { 5912 ill->ill_trace_disable = B_TRUE; 5913 ill_trace_cleanup(ill); 5914 return; 5915 } 5916 th_trace->th_id = curthread; 5917 th_trace->th_next = ill->ill_trace[bucket_id]; 5918 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5919 if (th_trace->th_next != NULL) 5920 th_trace->th_next->th_prev = &th_trace->th_next; 5921 ill->ill_trace[bucket_id] = th_trace; 5922 } 5923 ASSERT(th_trace->th_refcnt >= 0 && 5924 th_trace->th_refcnt < TR_BUF_MAX - 1); 5925 5926 th_trace->th_refcnt++; 5927 th_trace_rrecord(th_trace); 5928 } 5929 5930 void 5931 ill_untrace_ref(ill_t *ill) 5932 { 5933 th_trace_t *th_trace; 5934 5935 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5936 5937 if (ill->ill_trace_disable) 5938 return; 5939 th_trace = th_trace_ill_lookup(ill); 5940 ASSERT(th_trace != NULL); 5941 ASSERT(th_trace->th_refcnt > 0); 5942 5943 th_trace->th_refcnt--; 5944 th_trace_rrecord(th_trace); 5945 } 5946 5947 /* 5948 * Verify that this thread has no refs to the ipif and free 5949 * the trace buffers 5950 */ 5951 /* ARGSUSED */ 5952 void 5953 ipif_thread_exit(ipif_t *ipif, void *dummy) 5954 { 5955 th_trace_t *th_trace; 5956 5957 mutex_enter(&ipif->ipif_ill->ill_lock); 5958 5959 th_trace = th_trace_ipif_lookup(ipif); 5960 if (th_trace == NULL) { 5961 mutex_exit(&ipif->ipif_ill->ill_lock); 5962 return; 5963 } 5964 ASSERT(th_trace->th_refcnt == 0); 5965 /* unlink th_trace and free it */ 5966 *th_trace->th_prev = th_trace->th_next; 5967 if (th_trace->th_next != NULL) 5968 th_trace->th_next->th_prev = th_trace->th_prev; 5969 th_trace->th_next = NULL; 5970 th_trace->th_prev = NULL; 5971 kmem_free(th_trace, sizeof (th_trace_t)); 5972 5973 mutex_exit(&ipif->ipif_ill->ill_lock); 5974 } 5975 5976 /* 5977 * Verify that this thread has no refs to the ill and free 5978 * the trace buffers 5979 */ 5980 /* ARGSUSED */ 5981 void 5982 ill_thread_exit(ill_t *ill, void *dummy) 5983 { 5984 th_trace_t *th_trace; 5985 5986 mutex_enter(&ill->ill_lock); 5987 5988 th_trace = th_trace_ill_lookup(ill); 5989 if (th_trace == NULL) { 5990 mutex_exit(&ill->ill_lock); 5991 return; 5992 } 5993 ASSERT(th_trace->th_refcnt == 0); 5994 /* unlink th_trace and free it */ 5995 *th_trace->th_prev = th_trace->th_next; 5996 if (th_trace->th_next != NULL) 5997 th_trace->th_next->th_prev = th_trace->th_prev; 5998 th_trace->th_next = NULL; 5999 th_trace->th_prev = NULL; 6000 kmem_free(th_trace, sizeof (th_trace_t)); 6001 6002 mutex_exit(&ill->ill_lock); 6003 } 6004 #endif 6005 6006 #ifdef ILL_DEBUG 6007 void 6008 ip_thread_exit(void) 6009 { 6010 ill_t *ill; 6011 ipif_t *ipif; 6012 ill_walk_context_t ctx; 6013 6014 rw_enter(&ill_g_lock, RW_READER); 6015 ill = ILL_START_WALK_ALL(&ctx); 6016 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6017 for (ipif = ill->ill_ipif; ipif != NULL; 6018 ipif = ipif->ipif_next) { 6019 ipif_thread_exit(ipif, NULL); 6020 } 6021 ill_thread_exit(ill, NULL); 6022 } 6023 rw_exit(&ill_g_lock); 6024 6025 ire_walk(ire_thread_exit, NULL); 6026 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 6027 } 6028 6029 /* 6030 * Called when ipif is unplumbed or when memory alloc fails 6031 */ 6032 void 6033 ipif_trace_cleanup(ipif_t *ipif) 6034 { 6035 int i; 6036 th_trace_t *th_trace; 6037 th_trace_t *th_trace_next; 6038 6039 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6040 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6041 th_trace = th_trace_next) { 6042 th_trace_next = th_trace->th_next; 6043 kmem_free(th_trace, sizeof (th_trace_t)); 6044 } 6045 ipif->ipif_trace[i] = NULL; 6046 } 6047 } 6048 6049 /* 6050 * Called when ill is unplumbed or when memory alloc fails 6051 */ 6052 void 6053 ill_trace_cleanup(ill_t *ill) 6054 { 6055 int i; 6056 th_trace_t *th_trace; 6057 th_trace_t *th_trace_next; 6058 6059 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6060 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6061 th_trace = th_trace_next) { 6062 th_trace_next = th_trace->th_next; 6063 kmem_free(th_trace, sizeof (th_trace_t)); 6064 } 6065 ill->ill_trace[i] = NULL; 6066 } 6067 } 6068 6069 #else 6070 void ip_thread_exit(void) {} 6071 #endif 6072 6073 void 6074 ipif_refhold_locked(ipif_t *ipif) 6075 { 6076 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6077 ipif->ipif_refcnt++; 6078 IPIF_TRACE_REF(ipif); 6079 } 6080 6081 void 6082 ipif_refhold(ipif_t *ipif) 6083 { 6084 ill_t *ill; 6085 6086 ill = ipif->ipif_ill; 6087 mutex_enter(&ill->ill_lock); 6088 ipif->ipif_refcnt++; 6089 IPIF_TRACE_REF(ipif); 6090 mutex_exit(&ill->ill_lock); 6091 } 6092 6093 /* 6094 * Must not be called while holding any locks. Otherwise if this is 6095 * the last reference to be released there is a chance of recursive mutex 6096 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6097 * to restart an ioctl. 6098 */ 6099 void 6100 ipif_refrele(ipif_t *ipif) 6101 { 6102 ill_t *ill; 6103 6104 ill = ipif->ipif_ill; 6105 6106 mutex_enter(&ill->ill_lock); 6107 ASSERT(ipif->ipif_refcnt != 0); 6108 ipif->ipif_refcnt--; 6109 IPIF_UNTRACE_REF(ipif); 6110 if (ipif->ipif_refcnt != 0) { 6111 mutex_exit(&ill->ill_lock); 6112 return; 6113 } 6114 6115 /* Drops the ill_lock */ 6116 ipif_ill_refrele_tail(ill); 6117 } 6118 6119 ipif_t * 6120 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6121 { 6122 ipif_t *ipif; 6123 6124 mutex_enter(&ill->ill_lock); 6125 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6126 ipif != NULL; ipif = ipif->ipif_next) { 6127 if (!IPIF_CAN_LOOKUP(ipif)) 6128 continue; 6129 ipif_refhold_locked(ipif); 6130 mutex_exit(&ill->ill_lock); 6131 return (ipif); 6132 } 6133 mutex_exit(&ill->ill_lock); 6134 return (NULL); 6135 } 6136 6137 /* 6138 * TODO: make this table extendible at run time 6139 * Return a pointer to the mac type info for 'mac_type' 6140 */ 6141 static ip_m_t * 6142 ip_m_lookup(t_uscalar_t mac_type) 6143 { 6144 ip_m_t *ipm; 6145 6146 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6147 if (ipm->ip_m_mac_type == mac_type) 6148 return (ipm); 6149 return (NULL); 6150 } 6151 6152 /* 6153 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6154 * ipif_arg is passed in to associate it with the correct interface. 6155 * We may need to restart this operation if the ipif cannot be looked up 6156 * due to an exclusive operation that is currently in progress. The restart 6157 * entry point is specified by 'func' 6158 */ 6159 int 6160 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6161 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6162 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6163 ipsq_func_t func) 6164 { 6165 ire_t *ire; 6166 ire_t *gw_ire = NULL; 6167 ipif_t *ipif = NULL; 6168 boolean_t ipif_refheld = B_FALSE; 6169 uint_t type; 6170 int match_flags = MATCH_IRE_TYPE; 6171 int error; 6172 6173 ip1dbg(("ip_rt_add:")); 6174 6175 if (ire_arg != NULL) 6176 *ire_arg = NULL; 6177 6178 /* 6179 * If this is the case of RTF_HOST being set, then we set the netmask 6180 * to all ones (regardless if one was supplied). 6181 */ 6182 if (flags & RTF_HOST) 6183 mask = IP_HOST_MASK; 6184 6185 /* 6186 * Prevent routes with a zero gateway from being created (since 6187 * interfaces can currently be plumbed and brought up no assigned 6188 * address). 6189 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6190 */ 6191 if (gw_addr == 0 && src_ipif == NULL) 6192 return (ENETUNREACH); 6193 /* 6194 * Get the ipif, if any, corresponding to the gw_addr 6195 */ 6196 if (gw_addr != 0) { 6197 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6198 &error); 6199 if (ipif != NULL) { 6200 if (IS_VNI(ipif->ipif_ill)) { 6201 ipif_refrele(ipif); 6202 return (EINVAL); 6203 } 6204 ipif_refheld = B_TRUE; 6205 } else if (error == EINPROGRESS) { 6206 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6207 return (EINPROGRESS); 6208 } else { 6209 error = 0; 6210 } 6211 } 6212 6213 if (ipif != NULL) { 6214 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6215 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6216 } else { 6217 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6218 } 6219 6220 /* 6221 * GateD will attempt to create routes with a loopback interface 6222 * address as the gateway and with RTF_GATEWAY set. We allow 6223 * these routes to be added, but create them as interface routes 6224 * since the gateway is an interface address. 6225 */ 6226 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6227 flags &= ~RTF_GATEWAY; 6228 6229 /* 6230 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6231 * and the gateway address provided is one of the system's interface 6232 * addresses. By using the routing socket interface and supplying an 6233 * RTA_IFP sockaddr with an interface index, an alternate method of 6234 * specifying an interface route to be created is available which uses 6235 * the interface index that specifies the outgoing interface rather than 6236 * the address of an outgoing interface (which may not be able to 6237 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6238 * flag, routes can be specified which not only specify the next-hop to 6239 * be used when routing to a certain prefix, but also which outgoing 6240 * interface should be used. 6241 * 6242 * Previously, interfaces would have unique addresses assigned to them 6243 * and so the address assigned to a particular interface could be used 6244 * to identify a particular interface. One exception to this was the 6245 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6246 * 6247 * With the advent of IPv6 and its link-local addresses, this 6248 * restriction was relaxed and interfaces could share addresses between 6249 * themselves. In fact, typically all of the link-local interfaces on 6250 * an IPv6 node or router will have the same link-local address. In 6251 * order to differentiate between these interfaces, the use of an 6252 * interface index is necessary and this index can be carried inside a 6253 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6254 * of using the interface index, however, is that all of the ipif's that 6255 * are part of an ill have the same index and so the RTA_IFP sockaddr 6256 * cannot be used to differentiate between ipif's (or logical 6257 * interfaces) that belong to the same ill (physical interface). 6258 * 6259 * For example, in the following case involving IPv4 interfaces and 6260 * logical interfaces 6261 * 6262 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6263 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6264 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6265 * 6266 * the ipif's corresponding to each of these interface routes can be 6267 * uniquely identified by the "gateway" (actually interface address). 6268 * 6269 * In this case involving multiple IPv6 default routes to a particular 6270 * link-local gateway, the use of RTA_IFP is necessary to specify which 6271 * default route is of interest: 6272 * 6273 * default fe80::123:4567:89ab:cdef U if0 6274 * default fe80::123:4567:89ab:cdef U if1 6275 */ 6276 6277 /* RTF_GATEWAY not set */ 6278 if (!(flags & RTF_GATEWAY)) { 6279 queue_t *stq; 6280 queue_t *rfq = NULL; 6281 ill_t *in_ill = NULL; 6282 6283 /* 6284 * As the interface index specified with the RTA_IFP sockaddr is 6285 * the same for all ipif's off of an ill, the matching logic 6286 * below uses MATCH_IRE_ILL if such an index was specified. 6287 * This means that routes sharing the same prefix when added 6288 * using a RTA_IFP sockaddr must have distinct interface 6289 * indices (namely, they must be on distinct ill's). 6290 * 6291 * On the other hand, since the gateway address will usually be 6292 * different for each ipif on the system, the matching logic 6293 * uses MATCH_IRE_IPIF in the case of a traditional interface 6294 * route. This means that interface routes for the same prefix 6295 * can be created if they belong to distinct ipif's and if a 6296 * RTA_IFP sockaddr is not present. 6297 */ 6298 if (ipif_arg != NULL) { 6299 if (ipif_refheld) { 6300 ipif_refrele(ipif); 6301 ipif_refheld = B_FALSE; 6302 } 6303 ipif = ipif_arg; 6304 match_flags |= MATCH_IRE_ILL; 6305 } else { 6306 /* 6307 * Check the ipif corresponding to the gw_addr 6308 */ 6309 if (ipif == NULL) 6310 return (ENETUNREACH); 6311 match_flags |= MATCH_IRE_IPIF; 6312 } 6313 ASSERT(ipif != NULL); 6314 /* 6315 * If src_ipif is not NULL, we have to create 6316 * an ire with non-null ire_in_ill value 6317 */ 6318 if (src_ipif != NULL) { 6319 in_ill = src_ipif->ipif_ill; 6320 } 6321 6322 /* 6323 * We check for an existing entry at this point. 6324 * 6325 * Since a netmask isn't passed in via the ioctl interface 6326 * (SIOCADDRT), we don't check for a matching netmask in that 6327 * case. 6328 */ 6329 if (!ioctl_msg) 6330 match_flags |= MATCH_IRE_MASK; 6331 if (src_ipif != NULL) { 6332 /* Look up in the special table */ 6333 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6334 ipif, src_ipif->ipif_ill, match_flags); 6335 } else { 6336 ire = ire_ftable_lookup(dst_addr, mask, 0, 6337 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6338 match_flags); 6339 } 6340 if (ire != NULL) { 6341 ire_refrele(ire); 6342 if (ipif_refheld) 6343 ipif_refrele(ipif); 6344 return (EEXIST); 6345 } 6346 6347 if (src_ipif != NULL) { 6348 /* 6349 * Create the special ire for the IRE table 6350 * which hangs out of ire_in_ill. This ire 6351 * is in-between IRE_CACHE and IRE_INTERFACE. 6352 * Thus rfq is non-NULL. 6353 */ 6354 rfq = ipif->ipif_rq; 6355 } 6356 /* Create the usual interface ires */ 6357 6358 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6359 ? ipif->ipif_rq : ipif->ipif_wq; 6360 6361 /* 6362 * Create a copy of the IRE_LOOPBACK, 6363 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6364 * the modified address and netmask. 6365 */ 6366 ire = ire_create( 6367 (uchar_t *)&dst_addr, 6368 (uint8_t *)&mask, 6369 (uint8_t *)&ipif->ipif_src_addr, 6370 NULL, 6371 NULL, 6372 &ipif->ipif_mtu, 6373 NULL, 6374 rfq, 6375 stq, 6376 ipif->ipif_net_type, 6377 ipif->ipif_resolver_mp, 6378 ipif, 6379 in_ill, 6380 0, 6381 0, 6382 0, 6383 flags, 6384 &ire_uinfo_null); 6385 if (ire == NULL) { 6386 if (ipif_refheld) 6387 ipif_refrele(ipif); 6388 return (ENOMEM); 6389 } 6390 6391 /* 6392 * Some software (for example, GateD and Sun Cluster) attempts 6393 * to create (what amount to) IRE_PREFIX routes with the 6394 * loopback address as the gateway. This is primarily done to 6395 * set up prefixes with the RTF_REJECT flag set (for example, 6396 * when generating aggregate routes.) 6397 * 6398 * If the IRE type (as defined by ipif->ipif_net_type) is 6399 * IRE_LOOPBACK, then we map the request into a 6400 * IRE_IF_NORESOLVER. 6401 * 6402 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6403 * routine, but rather using ire_create() directly. 6404 */ 6405 if (ipif->ipif_net_type == IRE_LOOPBACK) 6406 ire->ire_type = IRE_IF_NORESOLVER; 6407 error = ire_add(&ire, q, mp, func); 6408 if (error == 0) 6409 goto save_ire; 6410 6411 /* 6412 * In the result of failure, ire_add() will have already 6413 * deleted the ire in question, so there is no need to 6414 * do that here. 6415 */ 6416 if (ipif_refheld) 6417 ipif_refrele(ipif); 6418 return (error); 6419 } 6420 if (ipif_refheld) { 6421 ipif_refrele(ipif); 6422 ipif_refheld = B_FALSE; 6423 } 6424 6425 if (src_ipif != NULL) { 6426 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6427 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6428 return (EINVAL); 6429 } 6430 /* 6431 * Get an interface IRE for the specified gateway. 6432 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6433 * gateway, it is currently unreachable and we fail the request 6434 * accordingly. 6435 */ 6436 ipif = ipif_arg; 6437 if (ipif_arg != NULL) 6438 match_flags |= MATCH_IRE_ILL; 6439 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6440 ALL_ZONES, 0, match_flags); 6441 if (gw_ire == NULL) 6442 return (ENETUNREACH); 6443 6444 /* 6445 * We create one of three types of IREs as a result of this request 6446 * based on the netmask. A netmask of all ones (which is automatically 6447 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6448 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6449 * created. Otherwise, an IRE_PREFIX route is created for the 6450 * destination prefix. 6451 */ 6452 if (mask == IP_HOST_MASK) 6453 type = IRE_HOST; 6454 else if (mask == 0) 6455 type = IRE_DEFAULT; 6456 else 6457 type = IRE_PREFIX; 6458 6459 /* check for a duplicate entry */ 6460 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6461 NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6462 if (ire != NULL) { 6463 ire_refrele(gw_ire); 6464 ire_refrele(ire); 6465 return (EEXIST); 6466 } 6467 6468 /* Create the IRE. */ 6469 ire = ire_create( 6470 (uchar_t *)&dst_addr, /* dest address */ 6471 (uchar_t *)&mask, /* mask */ 6472 /* src address assigned by the caller? */ 6473 (uchar_t *)(((src_addr != INADDR_ANY) && 6474 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6475 (uchar_t *)&gw_addr, /* gateway address */ 6476 NULL, /* no in-srcaddress */ 6477 &gw_ire->ire_max_frag, 6478 NULL, /* no Fast Path header */ 6479 NULL, /* no recv-from queue */ 6480 NULL, /* no send-to queue */ 6481 (ushort_t)type, /* IRE type */ 6482 NULL, 6483 ipif_arg, 6484 NULL, 6485 0, 6486 0, 6487 0, 6488 flags, 6489 &gw_ire->ire_uinfo); /* Inherit ULP info from gw */ 6490 if (ire == NULL) { 6491 ire_refrele(gw_ire); 6492 return (ENOMEM); 6493 } 6494 6495 /* 6496 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6497 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6498 */ 6499 6500 /* Add the new IRE. */ 6501 error = ire_add(&ire, q, mp, func); 6502 if (error != 0) { 6503 /* 6504 * In the result of failure, ire_add() will have already 6505 * deleted the ire in question, so there is no need to 6506 * do that here. 6507 */ 6508 ire_refrele(gw_ire); 6509 return (error); 6510 } 6511 6512 if (flags & RTF_MULTIRT) { 6513 /* 6514 * Invoke the CGTP (multirouting) filtering module 6515 * to add the dst address in the filtering database. 6516 * Replicated inbound packets coming from that address 6517 * will be filtered to discard the duplicates. 6518 * It is not necessary to call the CGTP filter hook 6519 * when the dst address is a broadcast or multicast, 6520 * because an IP source address cannot be a broadcast 6521 * or a multicast. 6522 */ 6523 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6524 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 6525 if (ire_dst != NULL) { 6526 ip_cgtp_bcast_add(ire, ire_dst); 6527 ire_refrele(ire_dst); 6528 goto save_ire; 6529 } 6530 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6531 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6532 ire->ire_addr, 6533 ire->ire_gateway_addr, 6534 ire->ire_src_addr, 6535 gw_ire->ire_src_addr); 6536 if (res != 0) { 6537 ire_refrele(gw_ire); 6538 ire_delete(ire); 6539 return (res); 6540 } 6541 } 6542 } 6543 6544 save_ire: 6545 if (gw_ire != NULL) { 6546 ire_refrele(gw_ire); 6547 } 6548 /* 6549 * We do not do save_ire for the routes added with RTA_SRCIFP 6550 * flag. This route is only added and deleted by mipagent. 6551 * So, for simplicity of design, we refrain from saving 6552 * ires that are created with srcif value. This may change 6553 * in future if we find more usage of srcifp feature. 6554 */ 6555 if (ipif != NULL && src_ipif == NULL) { 6556 /* 6557 * Save enough information so that we can recreate the IRE if 6558 * the interface goes down and then up. The metrics associated 6559 * with the route will be saved as well when rts_setmetrics() is 6560 * called after the IRE has been created. In the case where 6561 * memory cannot be allocated, none of this information will be 6562 * saved. 6563 */ 6564 ipif_save_ire(ipif, ire); 6565 } 6566 if (ioctl_msg) 6567 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6568 if (ire_arg != NULL) { 6569 /* 6570 * Store the ire that was successfully added into where ire_arg 6571 * points to so that callers don't have to look it up 6572 * themselves (but they are responsible for ire_refrele()ing 6573 * the ire when they are finished with it). 6574 */ 6575 *ire_arg = ire; 6576 } else { 6577 ire_refrele(ire); /* Held in ire_add */ 6578 } 6579 if (ipif_refheld) 6580 ipif_refrele(ipif); 6581 return (0); 6582 } 6583 6584 /* 6585 * ip_rt_delete is called to delete an IPv4 route. 6586 * ipif_arg is passed in to associate it with the correct interface. 6587 * src_ipif is passed to associate the incoming interface of the packet. 6588 * We may need to restart this operation if the ipif cannot be looked up 6589 * due to an exclusive operation that is currently in progress. The restart 6590 * entry point is specified by 'func' 6591 */ 6592 /* ARGSUSED4 */ 6593 int 6594 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6595 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6596 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6597 { 6598 ire_t *ire = NULL; 6599 ipif_t *ipif; 6600 boolean_t ipif_refheld = B_FALSE; 6601 uint_t type; 6602 uint_t match_flags = MATCH_IRE_TYPE; 6603 int err = 0; 6604 6605 ip1dbg(("ip_rt_delete:")); 6606 /* 6607 * If this is the case of RTF_HOST being set, then we set the netmask 6608 * to all ones. Otherwise, we use the netmask if one was supplied. 6609 */ 6610 if (flags & RTF_HOST) { 6611 mask = IP_HOST_MASK; 6612 match_flags |= MATCH_IRE_MASK; 6613 } else if (rtm_addrs & RTA_NETMASK) { 6614 match_flags |= MATCH_IRE_MASK; 6615 } 6616 6617 /* 6618 * Note that RTF_GATEWAY is never set on a delete, therefore 6619 * we check if the gateway address is one of our interfaces first, 6620 * and fall back on RTF_GATEWAY routes. 6621 * 6622 * This makes it possible to delete an original 6623 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6624 * 6625 * As the interface index specified with the RTA_IFP sockaddr is the 6626 * same for all ipif's off of an ill, the matching logic below uses 6627 * MATCH_IRE_ILL if such an index was specified. This means a route 6628 * sharing the same prefix and interface index as the the route 6629 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6630 * is specified in the request. 6631 * 6632 * On the other hand, since the gateway address will usually be 6633 * different for each ipif on the system, the matching logic 6634 * uses MATCH_IRE_IPIF in the case of a traditional interface 6635 * route. This means that interface routes for the same prefix can be 6636 * uniquely identified if they belong to distinct ipif's and if a 6637 * RTA_IFP sockaddr is not present. 6638 * 6639 * For more detail on specifying routes by gateway address and by 6640 * interface index, see the comments in ip_rt_add(). 6641 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6642 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6643 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6644 * succeed. 6645 */ 6646 if (src_ipif != NULL) { 6647 if (ipif_arg == NULL && gw_addr != 0) { 6648 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6649 q, mp, func, &err); 6650 if (ipif_arg != NULL) 6651 ipif_refheld = B_TRUE; 6652 } 6653 if (ipif_arg == NULL) { 6654 err = (err == EINPROGRESS) ? err : ESRCH; 6655 return (err); 6656 } 6657 ipif = ipif_arg; 6658 } else { 6659 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6660 q, mp, func, &err); 6661 if (ipif != NULL) 6662 ipif_refheld = B_TRUE; 6663 else if (err == EINPROGRESS) 6664 return (err); 6665 else 6666 err = 0; 6667 } 6668 if (ipif != NULL) { 6669 if (ipif_arg != NULL) { 6670 if (ipif_refheld) { 6671 ipif_refrele(ipif); 6672 ipif_refheld = B_FALSE; 6673 } 6674 ipif = ipif_arg; 6675 match_flags |= MATCH_IRE_ILL; 6676 } else { 6677 match_flags |= MATCH_IRE_IPIF; 6678 } 6679 if (src_ipif != NULL) { 6680 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6681 ipif, src_ipif->ipif_ill, match_flags); 6682 } else { 6683 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6684 ire = ire_ctable_lookup(dst_addr, 0, 6685 IRE_LOOPBACK, ipif, ALL_ZONES, match_flags); 6686 } 6687 if (ire == NULL) { 6688 ire = ire_ftable_lookup(dst_addr, mask, 0, 6689 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6690 match_flags); 6691 } 6692 } 6693 } 6694 6695 if (ire == NULL) { 6696 /* 6697 * At this point, the gateway address is not one of our own 6698 * addresses or a matching interface route was not found. We 6699 * set the IRE type to lookup based on whether 6700 * this is a host route, a default route or just a prefix. 6701 * 6702 * If an ipif_arg was passed in, then the lookup is based on an 6703 * interface index so MATCH_IRE_ILL is added to match_flags. 6704 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6705 * set as the route being looked up is not a traditional 6706 * interface route. 6707 * Since we do not add gateway route with srcipif, we don't 6708 * expect to find it either. 6709 */ 6710 if (src_ipif != NULL) { 6711 if (ipif_refheld) 6712 ipif_refrele(ipif); 6713 return (ESRCH); 6714 } else { 6715 match_flags &= ~MATCH_IRE_IPIF; 6716 match_flags |= MATCH_IRE_GW; 6717 if (ipif_arg != NULL) 6718 match_flags |= MATCH_IRE_ILL; 6719 if (mask == IP_HOST_MASK) 6720 type = IRE_HOST; 6721 else if (mask == 0) 6722 type = IRE_DEFAULT; 6723 else 6724 type = IRE_PREFIX; 6725 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6726 ipif_arg, NULL, ALL_ZONES, 0, match_flags); 6727 if (ire == NULL && type == IRE_HOST) { 6728 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6729 IRE_HOST_REDIRECT, ipif_arg, NULL, 6730 ALL_ZONES, 0, match_flags); 6731 } 6732 } 6733 } 6734 6735 if (ipif_refheld) 6736 ipif_refrele(ipif); 6737 6738 /* ipif is not refheld anymore */ 6739 if (ire == NULL) 6740 return (ESRCH); 6741 6742 if (ire->ire_flags & RTF_MULTIRT) { 6743 /* 6744 * Invoke the CGTP (multirouting) filtering module 6745 * to remove the dst address from the filtering database. 6746 * Packets coming from that address will no longer be 6747 * filtered to remove duplicates. 6748 */ 6749 if (ip_cgtp_filter_ops != NULL) { 6750 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6751 ire->ire_gateway_addr); 6752 } 6753 ip_cgtp_bcast_delete(ire); 6754 } 6755 6756 ipif = ire->ire_ipif; 6757 /* 6758 * Removing from ipif_saved_ire_mp is not necessary 6759 * when src_ipif being non-NULL. ip_rt_add does not 6760 * save the ires which src_ipif being non-NULL. 6761 */ 6762 if (ipif != NULL && src_ipif == NULL) { 6763 ipif_remove_ire(ipif, ire); 6764 } 6765 if (ioctl_msg) 6766 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6767 ire_delete(ire); 6768 ire_refrele(ire); 6769 return (err); 6770 } 6771 6772 /* 6773 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6774 */ 6775 /* ARGSUSED */ 6776 int 6777 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6778 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6779 { 6780 ipaddr_t dst_addr; 6781 ipaddr_t gw_addr; 6782 ipaddr_t mask; 6783 int error = 0; 6784 mblk_t *mp1; 6785 struct rtentry *rt; 6786 ipif_t *ipif = NULL; 6787 6788 ip1dbg(("ip_siocaddrt:")); 6789 /* Existence of mp1 verified in ip_wput_nondata */ 6790 mp1 = mp->b_cont->b_cont; 6791 rt = (struct rtentry *)mp1->b_rptr; 6792 6793 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6794 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6795 6796 /* 6797 * If the RTF_HOST flag is on, this is a request to assign a gateway 6798 * to a particular host address. In this case, we set the netmask to 6799 * all ones for the particular destination address. Otherwise, 6800 * determine the netmask to be used based on dst_addr and the interfaces 6801 * in use. 6802 */ 6803 if (rt->rt_flags & RTF_HOST) { 6804 mask = IP_HOST_MASK; 6805 } else { 6806 /* 6807 * Note that ip_subnet_mask returns a zero mask in the case of 6808 * default (an all-zeroes address). 6809 */ 6810 mask = ip_subnet_mask(dst_addr, &ipif); 6811 } 6812 6813 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, 6814 NULL, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl); 6815 if (ipif != NULL) 6816 ipif_refrele(ipif); 6817 return (error); 6818 } 6819 6820 /* 6821 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6822 */ 6823 /* ARGSUSED */ 6824 int 6825 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6826 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6827 { 6828 ipaddr_t dst_addr; 6829 ipaddr_t gw_addr; 6830 ipaddr_t mask; 6831 int error; 6832 mblk_t *mp1; 6833 struct rtentry *rt; 6834 ipif_t *ipif = NULL; 6835 6836 ip1dbg(("ip_siocdelrt:")); 6837 /* Existence of mp1 verified in ip_wput_nondata */ 6838 mp1 = mp->b_cont->b_cont; 6839 rt = (struct rtentry *)mp1->b_rptr; 6840 6841 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6842 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6843 6844 /* 6845 * If the RTF_HOST flag is on, this is a request to delete a gateway 6846 * to a particular host address. In this case, we set the netmask to 6847 * all ones for the particular destination address. Otherwise, 6848 * determine the netmask to be used based on dst_addr and the interfaces 6849 * in use. 6850 */ 6851 if (rt->rt_flags & RTF_HOST) { 6852 mask = IP_HOST_MASK; 6853 } else { 6854 /* 6855 * Note that ip_subnet_mask returns a zero mask in the case of 6856 * default (an all-zeroes address). 6857 */ 6858 mask = ip_subnet_mask(dst_addr, &ipif); 6859 } 6860 6861 error = ip_rt_delete(dst_addr, mask, gw_addr, 6862 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6863 B_TRUE, q, mp, ip_process_ioctl); 6864 if (ipif != NULL) 6865 ipif_refrele(ipif); 6866 return (error); 6867 } 6868 6869 /* 6870 * Enqueue the mp onto the ipsq, chained by b_next. 6871 * b_prev stores the function to be executed later, and b_queue the queue 6872 * where this mp originated. 6873 */ 6874 void 6875 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6876 ill_t *pending_ill) 6877 { 6878 conn_t *connp = NULL; 6879 6880 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6881 ASSERT(func != NULL); 6882 6883 mp->b_queue = q; 6884 mp->b_prev = (void *)func; 6885 mp->b_next = NULL; 6886 6887 switch (type) { 6888 case CUR_OP: 6889 if (ipsq->ipsq_mptail != NULL) { 6890 ASSERT(ipsq->ipsq_mphead != NULL); 6891 ipsq->ipsq_mptail->b_next = mp; 6892 } else { 6893 ASSERT(ipsq->ipsq_mphead == NULL); 6894 ipsq->ipsq_mphead = mp; 6895 } 6896 ipsq->ipsq_mptail = mp; 6897 break; 6898 6899 case NEW_OP: 6900 if (ipsq->ipsq_xopq_mptail != NULL) { 6901 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6902 ipsq->ipsq_xopq_mptail->b_next = mp; 6903 } else { 6904 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6905 ipsq->ipsq_xopq_mphead = mp; 6906 } 6907 ipsq->ipsq_xopq_mptail = mp; 6908 break; 6909 default: 6910 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6911 } 6912 6913 if (CONN_Q(q) && pending_ill != NULL) { 6914 connp = Q_TO_CONN(q); 6915 6916 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6917 connp->conn_oper_pending_ill = pending_ill; 6918 } 6919 } 6920 6921 /* 6922 * Return the mp at the head of the ipsq. After emptying the ipsq 6923 * look at the next ioctl, if this ioctl is complete. Otherwise 6924 * return, we will resume when we complete the current ioctl. 6925 * The current ioctl will wait till it gets a response from the 6926 * driver below. 6927 */ 6928 static mblk_t * 6929 ipsq_dq(ipsq_t *ipsq) 6930 { 6931 mblk_t *mp; 6932 6933 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6934 6935 mp = ipsq->ipsq_mphead; 6936 if (mp != NULL) { 6937 ipsq->ipsq_mphead = mp->b_next; 6938 if (ipsq->ipsq_mphead == NULL) 6939 ipsq->ipsq_mptail = NULL; 6940 mp->b_next = NULL; 6941 return (mp); 6942 } 6943 if (ipsq->ipsq_current_ipif != NULL) 6944 return (NULL); 6945 mp = ipsq->ipsq_xopq_mphead; 6946 if (mp != NULL) { 6947 ipsq->ipsq_xopq_mphead = mp->b_next; 6948 if (ipsq->ipsq_xopq_mphead == NULL) 6949 ipsq->ipsq_xopq_mptail = NULL; 6950 mp->b_next = NULL; 6951 return (mp); 6952 } 6953 return (NULL); 6954 } 6955 6956 /* 6957 * Enter the ipsq corresponding to ill, by waiting synchronously till 6958 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6959 * will have to drain completely before ipsq_enter returns success. 6960 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 6961 * and the ipsq_exit logic will start the next enqueued ioctl after 6962 * completion of the current ioctl. If 'force' is used, we don't wait 6963 * for the enqueued ioctls. This is needed when a conn_close wants to 6964 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6965 * of an ill can also use this option. But we dont' use it currently. 6966 */ 6967 #define ENTER_SQ_WAIT_TICKS 100 6968 boolean_t 6969 ipsq_enter(ill_t *ill, boolean_t force) 6970 { 6971 ipsq_t *ipsq; 6972 boolean_t waited_enough = B_FALSE; 6973 6974 /* 6975 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 6976 * Since the <ill-ipsq> assocs could change while we wait for the 6977 * writer, it is easier to wait on a fixed global rather than try to 6978 * cv_wait on a changing ipsq. 6979 */ 6980 mutex_enter(&ill->ill_lock); 6981 for (;;) { 6982 if (ill->ill_state_flags & ILL_CONDEMNED) { 6983 mutex_exit(&ill->ill_lock); 6984 return (B_FALSE); 6985 } 6986 6987 ipsq = ill->ill_phyint->phyint_ipsq; 6988 mutex_enter(&ipsq->ipsq_lock); 6989 if (ipsq->ipsq_writer == NULL && 6990 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 6991 break; 6992 } else if (ipsq->ipsq_writer != NULL) { 6993 mutex_exit(&ipsq->ipsq_lock); 6994 cv_wait(&ill->ill_cv, &ill->ill_lock); 6995 } else { 6996 mutex_exit(&ipsq->ipsq_lock); 6997 if (force) { 6998 (void) cv_timedwait(&ill->ill_cv, 6999 &ill->ill_lock, 7000 lbolt + ENTER_SQ_WAIT_TICKS); 7001 waited_enough = B_TRUE; 7002 continue; 7003 } else { 7004 cv_wait(&ill->ill_cv, &ill->ill_lock); 7005 } 7006 } 7007 } 7008 7009 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7010 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7011 ipsq->ipsq_writer = curthread; 7012 ipsq->ipsq_reentry_cnt++; 7013 #ifdef ILL_DEBUG 7014 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7015 #endif 7016 mutex_exit(&ipsq->ipsq_lock); 7017 mutex_exit(&ill->ill_lock); 7018 return (B_TRUE); 7019 } 7020 7021 /* 7022 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7023 * certain critical operations like plumbing (i.e. most set ioctls), 7024 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7025 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7026 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7027 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7028 * threads executing in the ipsq. Responses from the driver pertain to the 7029 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7030 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7031 * 7032 * If a thread does not want to reenter the ipsq when it is already writer, 7033 * it must make sure that the specified reentry point to be called later 7034 * when the ipsq is empty, nor any code path starting from the specified reentry 7035 * point must never ever try to enter the ipsq again. Otherwise it can lead 7036 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7037 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7038 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7039 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7040 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7041 * ioctl if the current ioctl has completed. If the current ioctl is still 7042 * in progress it simply returns. The current ioctl could be waiting for 7043 * a response from another module (arp_ or the driver or could be waiting for 7044 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7045 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7046 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7047 * ipsq_current_ipif is clear which happens only on ioctl completion. 7048 */ 7049 7050 /* 7051 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7052 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7053 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7054 * completion. 7055 */ 7056 ipsq_t * 7057 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7058 ipsq_func_t func, int type, boolean_t reentry_ok) 7059 { 7060 ipsq_t *ipsq; 7061 7062 /* Only 1 of ipif or ill can be specified */ 7063 ASSERT((ipif != NULL) ^ (ill != NULL)); 7064 if (ipif != NULL) 7065 ill = ipif->ipif_ill; 7066 7067 /* 7068 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7069 * ipsq of an ill can't change when ill_lock is held. 7070 */ 7071 GRAB_CONN_LOCK(q); 7072 mutex_enter(&ill->ill_lock); 7073 ipsq = ill->ill_phyint->phyint_ipsq; 7074 mutex_enter(&ipsq->ipsq_lock); 7075 7076 /* 7077 * 1. Enter the ipsq if we are already writer and reentry is ok. 7078 * (Note: If the caller does not specify reentry_ok then neither 7079 * 'func' nor any of its callees must ever attempt to enter the ipsq 7080 * again. Otherwise it can lead to an infinite loop 7081 * 2. Enter the ipsq if there is no current writer and this attempted 7082 * entry is part of the current ioctl or operation 7083 * 3. Enter the ipsq if there is no current writer and this is a new 7084 * ioctl (or operation) and the ioctl (or operation) queue is 7085 * empty and there is no ioctl (or operation) currently in progress 7086 */ 7087 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7088 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7089 ipsq->ipsq_current_ipif == NULL))) || 7090 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7091 /* Success. */ 7092 ipsq->ipsq_reentry_cnt++; 7093 ipsq->ipsq_writer = curthread; 7094 mutex_exit(&ipsq->ipsq_lock); 7095 mutex_exit(&ill->ill_lock); 7096 RELEASE_CONN_LOCK(q); 7097 #ifdef ILL_DEBUG 7098 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7099 #endif 7100 return (ipsq); 7101 } 7102 7103 ipsq_enq(ipsq, q, mp, func, type, ill); 7104 7105 mutex_exit(&ipsq->ipsq_lock); 7106 mutex_exit(&ill->ill_lock); 7107 RELEASE_CONN_LOCK(q); 7108 return (NULL); 7109 } 7110 7111 /* 7112 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7113 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7114 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7115 * completion. 7116 * 7117 * This function does a refrele on the ipif/ill. 7118 */ 7119 void 7120 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7121 ipsq_func_t func, int type, boolean_t reentry_ok) 7122 { 7123 ipsq_t *ipsq; 7124 7125 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7126 /* 7127 * Caller must have done a refhold on the ipif. ipif_refrele 7128 * happens on the passed ipif. We can do this since we are 7129 * already exclusive, or we won't access ipif henceforth, Both 7130 * this func and caller will just return if we ipsq_try_enter 7131 * fails above. This is needed because func needs to 7132 * see the correct refcount. Eg. removeif can work only then. 7133 */ 7134 if (ipif != NULL) 7135 ipif_refrele(ipif); 7136 else 7137 ill_refrele(ill); 7138 if (ipsq != NULL) { 7139 (*func)(ipsq, q, mp, NULL); 7140 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7141 } 7142 } 7143 7144 /* 7145 * If there are more than ILL_GRP_CNT ills in a group, 7146 * we use kmem alloc'd buffers, else use the stack 7147 */ 7148 #define ILL_GRP_CNT 14 7149 /* 7150 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7151 * Called by a thread that is currently exclusive on this ipsq. 7152 */ 7153 void 7154 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7155 { 7156 queue_t *q; 7157 mblk_t *mp; 7158 ipsq_func_t func; 7159 int next; 7160 ill_t **ill_list = NULL; 7161 size_t ill_list_size = 0; 7162 int cnt = 0; 7163 boolean_t need_ipsq_free = B_FALSE; 7164 7165 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7166 mutex_enter(&ipsq->ipsq_lock); 7167 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7168 if (ipsq->ipsq_reentry_cnt != 1) { 7169 ipsq->ipsq_reentry_cnt--; 7170 mutex_exit(&ipsq->ipsq_lock); 7171 return; 7172 } 7173 7174 mp = ipsq_dq(ipsq); 7175 while (mp != NULL) { 7176 again: 7177 mutex_exit(&ipsq->ipsq_lock); 7178 func = (ipsq_func_t)mp->b_prev; 7179 q = (queue_t *)mp->b_queue; 7180 mp->b_prev = NULL; 7181 mp->b_queue = NULL; 7182 7183 /* 7184 * If 'q' is an conn queue, it is valid, since we did a 7185 * a refhold on the connp, at the start of the ioctl. 7186 * If 'q' is an ill queue, it is valid, since close of an 7187 * ill will clean up the 'ipsq'. 7188 */ 7189 (*func)(ipsq, q, mp, NULL); 7190 7191 mutex_enter(&ipsq->ipsq_lock); 7192 mp = ipsq_dq(ipsq); 7193 } 7194 7195 mutex_exit(&ipsq->ipsq_lock); 7196 7197 /* 7198 * Need to grab the locks in the right order. Need to 7199 * atomically check (under ipsq_lock) that there are no 7200 * messages before relinquishing the ipsq. Also need to 7201 * atomically wakeup waiters on ill_cv while holding ill_lock. 7202 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7203 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7204 * to grab ill_g_lock as writer. 7205 */ 7206 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7207 7208 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7209 if (ipsq->ipsq_refs != 0) { 7210 /* At most 2 ills v4/v6 per phyint */ 7211 cnt = ipsq->ipsq_refs << 1; 7212 ill_list_size = cnt * sizeof (ill_t *); 7213 /* 7214 * If memory allocation fails, we will do the split 7215 * the next time ipsq_exit is called for whatever reason. 7216 * As long as the ipsq_split flag is set the need to 7217 * split is remembered. 7218 */ 7219 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7220 if (ill_list != NULL) 7221 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7222 } 7223 mutex_enter(&ipsq->ipsq_lock); 7224 mp = ipsq_dq(ipsq); 7225 if (mp != NULL) { 7226 /* oops, some message has landed up, we can't get out */ 7227 if (ill_list != NULL) 7228 ill_unlock_ills(ill_list, cnt); 7229 rw_exit(&ill_g_lock); 7230 if (ill_list != NULL) 7231 kmem_free(ill_list, ill_list_size); 7232 ill_list = NULL; 7233 ill_list_size = 0; 7234 cnt = 0; 7235 goto again; 7236 } 7237 7238 /* 7239 * Split only if no ioctl is pending and if memory alloc succeeded 7240 * above. 7241 */ 7242 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7243 ill_list != NULL) { 7244 /* 7245 * No new ill can join this ipsq since we are holding the 7246 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7247 * ipsq. ill_split_ipsq may fail due to memory shortage. 7248 * If so we will retry on the next ipsq_exit. 7249 */ 7250 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7251 } 7252 7253 /* 7254 * We are holding the ipsq lock, hence no new messages can 7255 * land up on the ipsq, and there are no messages currently. 7256 * Now safe to get out. Wake up waiters and relinquish ipsq 7257 * atomically while holding ill locks. 7258 */ 7259 ipsq->ipsq_writer = NULL; 7260 ipsq->ipsq_reentry_cnt--; 7261 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7262 #ifdef ILL_DEBUG 7263 ipsq->ipsq_depth = 0; 7264 #endif 7265 mutex_exit(&ipsq->ipsq_lock); 7266 /* 7267 * For IPMP this should wake up all ills in this ipsq. 7268 * We need to hold the ill_lock while waking up waiters to 7269 * avoid missed wakeups. But there is no need to acquire all 7270 * the ill locks and then wakeup. If we have not acquired all 7271 * the locks (due to memory failure above) ill_signal_ipsq_ills 7272 * wakes up ills one at a time after getting the right ill_lock 7273 */ 7274 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7275 if (ill_list != NULL) 7276 ill_unlock_ills(ill_list, cnt); 7277 if (ipsq->ipsq_refs == 0) 7278 need_ipsq_free = B_TRUE; 7279 rw_exit(&ill_g_lock); 7280 if (ill_list != 0) 7281 kmem_free(ill_list, ill_list_size); 7282 7283 if (need_ipsq_free) { 7284 /* 7285 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7286 * looked up. ipsq can be looked up only thru ill or phyint 7287 * and there are no ills/phyint on this ipsq. 7288 */ 7289 ipsq_delete(ipsq); 7290 } 7291 /* 7292 * Now start any igmp or mld timers that could not be started 7293 * while inside the ipsq. The timers can't be started while inside 7294 * the ipsq, since igmp_start_timers may need to call untimeout() 7295 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7296 * there could be a deadlock since the timeout handlers 7297 * mld_timeout_handler / igmp_timeout_handler also synchronously 7298 * wait in ipsq_enter() trying to get the ipsq. 7299 * 7300 * However there is one exception to the above. If this thread is 7301 * itself the igmp/mld timeout handler thread, then we don't want 7302 * to start any new timer until the current handler is done. The 7303 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7304 * all others pass B_TRUE. 7305 */ 7306 if (start_igmp_timer) { 7307 mutex_enter(&igmp_timer_lock); 7308 next = igmp_deferred_next; 7309 igmp_deferred_next = INFINITY; 7310 mutex_exit(&igmp_timer_lock); 7311 7312 if (next != INFINITY) 7313 igmp_start_timers(next); 7314 } 7315 7316 if (start_mld_timer) { 7317 mutex_enter(&mld_timer_lock); 7318 next = mld_deferred_next; 7319 mld_deferred_next = INFINITY; 7320 mutex_exit(&mld_timer_lock); 7321 7322 if (next != INFINITY) 7323 mld_start_timers(next); 7324 } 7325 } 7326 7327 /* 7328 * The ill is closing. Flush all messages on the ipsq that originated 7329 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7330 * for this ill since ipsq_enter could not have entered until then. 7331 * New messages can't be queued since the CONDEMNED flag is set. 7332 */ 7333 static void 7334 ipsq_flush(ill_t *ill) 7335 { 7336 queue_t *q; 7337 mblk_t *prev; 7338 mblk_t *mp; 7339 mblk_t *mp_next; 7340 ipsq_t *ipsq; 7341 7342 ASSERT(IAM_WRITER_ILL(ill)); 7343 ipsq = ill->ill_phyint->phyint_ipsq; 7344 /* 7345 * Flush any messages sent up by the driver. 7346 */ 7347 mutex_enter(&ipsq->ipsq_lock); 7348 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7349 mp_next = mp->b_next; 7350 q = mp->b_queue; 7351 if (q == ill->ill_rq || q == ill->ill_wq) { 7352 /* Remove the mp from the ipsq */ 7353 if (prev == NULL) 7354 ipsq->ipsq_mphead = mp->b_next; 7355 else 7356 prev->b_next = mp->b_next; 7357 if (ipsq->ipsq_mptail == mp) { 7358 ASSERT(mp_next == NULL); 7359 ipsq->ipsq_mptail = prev; 7360 } 7361 inet_freemsg(mp); 7362 } else { 7363 prev = mp; 7364 } 7365 } 7366 mutex_exit(&ipsq->ipsq_lock); 7367 (void) ipsq_pending_mp_cleanup(ill, NULL); 7368 ipsq_xopq_mp_cleanup(ill, NULL); 7369 ill_pending_mp_cleanup(ill); 7370 } 7371 7372 /* 7373 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7374 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7375 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7376 * time (possible with one port going down for aggr and someone tearing down the 7377 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7378 * to indicate when the cleanup has started (1 ref) and when the cleanup 7379 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7380 * putting 2 ref on ill_inuse_ref. 7381 */ 7382 static void 7383 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7384 { 7385 conn_t *connp; 7386 squeue_t *sqp; 7387 mblk_t *mp; 7388 7389 ASSERT(rx_ring != NULL); 7390 7391 /* Just clean one squeue */ 7392 mutex_enter(&ill->ill_lock); 7393 /* 7394 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7395 * ip_squeue_soft_ring_affinty() will not go 7396 * ahead with assigning rings. 7397 */ 7398 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7399 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7400 /* Some operations pending on the ring. Wait */ 7401 cv_wait(&ill->ill_cv, &ill->ill_lock); 7402 7403 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7404 /* 7405 * Someone already trying to clean 7406 * this squeue or its already been cleaned. 7407 */ 7408 mutex_exit(&ill->ill_lock); 7409 return; 7410 } 7411 sqp = rx_ring->rr_sqp; 7412 7413 if (sqp == NULL) { 7414 /* 7415 * The rx_ring never had a squeue assigned to it. 7416 * We are under ill_lock so we can clean it up 7417 * here itself since no one can get to it. 7418 */ 7419 rx_ring->rr_blank = NULL; 7420 rx_ring->rr_handle = NULL; 7421 rx_ring->rr_sqp = NULL; 7422 rx_ring->rr_ring_state = ILL_RING_FREE; 7423 mutex_exit(&ill->ill_lock); 7424 return; 7425 } 7426 7427 /* Set the state that its being cleaned */ 7428 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7429 ASSERT(sqp != NULL); 7430 mutex_exit(&ill->ill_lock); 7431 7432 /* 7433 * Use the preallocated ill_unbind_conn for this purpose 7434 */ 7435 connp = ill->ill_dls_capab->ill_unbind_conn; 7436 mp = &connp->conn_tcp->tcp_closemp; 7437 CONN_INC_REF(connp); 7438 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7439 7440 mutex_enter(&ill->ill_lock); 7441 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7442 cv_wait(&ill->ill_cv, &ill->ill_lock); 7443 7444 mutex_exit(&ill->ill_lock); 7445 } 7446 7447 static void 7448 ipsq_clean_all(ill_t *ill) 7449 { 7450 int idx; 7451 7452 /* 7453 * No need to clean if poll_capab isn't set for this ill 7454 */ 7455 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7456 return; 7457 7458 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7459 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7460 ipsq_clean_ring(ill, ipr); 7461 } 7462 7463 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7464 } 7465 7466 /* ARGSUSED */ 7467 int 7468 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7469 ip_ioctl_cmd_t *ipip, void *ifreq) 7470 { 7471 ill_t *ill; 7472 struct lifreq *lifr = (struct lifreq *)ifreq; 7473 boolean_t isv6; 7474 conn_t *connp; 7475 7476 connp = Q_TO_CONN(q); 7477 isv6 = connp->conn_af_isv6; 7478 /* 7479 * Set original index. 7480 * Failover and failback move logical interfaces 7481 * from one physical interface to another. The 7482 * original index indicates the parent of a logical 7483 * interface, in other words, the physical interface 7484 * the logical interface will be moved back to on 7485 * failback. 7486 */ 7487 7488 /* 7489 * Don't allow the original index to be changed 7490 * for non-failover addresses, autoconfigured 7491 * addresses, or IPv6 link local addresses. 7492 */ 7493 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7494 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7495 return (EINVAL); 7496 } 7497 /* 7498 * The new original index must be in use by some 7499 * physical interface. 7500 */ 7501 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7502 NULL, NULL); 7503 if (ill == NULL) 7504 return (ENXIO); 7505 ill_refrele(ill); 7506 7507 ipif->ipif_orig_ifindex = lifr->lifr_index; 7508 /* 7509 * When this ipif gets failed back, don't 7510 * preserve the original id, as it is no 7511 * longer applicable. 7512 */ 7513 ipif->ipif_orig_ipifid = 0; 7514 /* 7515 * For IPv4, change the original index of any 7516 * multicast addresses associated with the 7517 * ipif to the new value. 7518 */ 7519 if (!isv6) { 7520 ilm_t *ilm; 7521 7522 mutex_enter(&ipif->ipif_ill->ill_lock); 7523 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7524 ilm = ilm->ilm_next) { 7525 if (ilm->ilm_ipif == ipif) { 7526 ilm->ilm_orig_ifindex = lifr->lifr_index; 7527 } 7528 } 7529 mutex_exit(&ipif->ipif_ill->ill_lock); 7530 } 7531 return (0); 7532 } 7533 7534 /* ARGSUSED */ 7535 int 7536 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7537 ip_ioctl_cmd_t *ipip, void *ifreq) 7538 { 7539 struct lifreq *lifr = (struct lifreq *)ifreq; 7540 7541 /* 7542 * Get the original interface index i.e the one 7543 * before FAILOVER if it ever happened. 7544 */ 7545 lifr->lifr_index = ipif->ipif_orig_ifindex; 7546 return (0); 7547 } 7548 7549 /* 7550 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7551 * refhold and return the associated ipif 7552 */ 7553 int 7554 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7555 { 7556 boolean_t exists; 7557 struct iftun_req *ta; 7558 ipif_t *ipif; 7559 ill_t *ill; 7560 boolean_t isv6; 7561 mblk_t *mp1; 7562 int error; 7563 conn_t *connp; 7564 7565 /* Existence verified in ip_wput_nondata */ 7566 mp1 = mp->b_cont->b_cont; 7567 ta = (struct iftun_req *)mp1->b_rptr; 7568 /* 7569 * Null terminate the string to protect against buffer 7570 * overrun. String was generated by user code and may not 7571 * be trusted. 7572 */ 7573 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7574 7575 connp = Q_TO_CONN(q); 7576 isv6 = connp->conn_af_isv6; 7577 7578 /* Disallows implicit create */ 7579 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7580 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7581 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7582 if (ipif == NULL) 7583 return (error); 7584 7585 if (ipif->ipif_id != 0) { 7586 /* 7587 * We really don't want to set/get tunnel parameters 7588 * on virtual tunnel interfaces. Only allow the 7589 * base tunnel to do these. 7590 */ 7591 ipif_refrele(ipif); 7592 return (EINVAL); 7593 } 7594 7595 /* 7596 * Send down to tunnel mod for ioctl processing. 7597 * Will finish ioctl in ip_rput_other(). 7598 */ 7599 ill = ipif->ipif_ill; 7600 if (ill->ill_net_type == IRE_LOOPBACK) { 7601 ipif_refrele(ipif); 7602 return (EOPNOTSUPP); 7603 } 7604 7605 if (ill->ill_wq == NULL) { 7606 ipif_refrele(ipif); 7607 return (ENXIO); 7608 } 7609 /* 7610 * Mark the ioctl as coming from an IPv6 interface for 7611 * tun's convenience. 7612 */ 7613 if (ill->ill_isv6) 7614 ta->ifta_flags |= 0x80000000; 7615 *ipifp = ipif; 7616 return (0); 7617 } 7618 7619 /* 7620 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7621 * and return the associated ipif. 7622 * Return value: 7623 * Non zero: An error has occurred. ci may not be filled out. 7624 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7625 * a held ipif in ci.ci_ipif. 7626 */ 7627 int 7628 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7629 cmd_info_t *ci, ipsq_func_t func) 7630 { 7631 sin_t *sin; 7632 sin6_t *sin6; 7633 char *name; 7634 struct ifreq *ifr; 7635 struct lifreq *lifr; 7636 ipif_t *ipif = NULL; 7637 ill_t *ill; 7638 conn_t *connp; 7639 boolean_t isv6; 7640 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7641 boolean_t exists; 7642 int err; 7643 mblk_t *mp1; 7644 zoneid_t zoneid; 7645 7646 if (q->q_next != NULL) { 7647 ill = (ill_t *)q->q_ptr; 7648 isv6 = ill->ill_isv6; 7649 connp = NULL; 7650 zoneid = ALL_ZONES; 7651 } else { 7652 ill = NULL; 7653 connp = Q_TO_CONN(q); 7654 isv6 = connp->conn_af_isv6; 7655 zoneid = connp->conn_zoneid; 7656 if (zoneid == GLOBAL_ZONEID) { 7657 /* global zone can access ipifs in all zones */ 7658 zoneid = ALL_ZONES; 7659 } 7660 } 7661 7662 /* Has been checked in ip_wput_nondata */ 7663 mp1 = mp->b_cont->b_cont; 7664 7665 7666 if (cmd_type == IF_CMD) { 7667 /* This a old style SIOC[GS]IF* command */ 7668 ifr = (struct ifreq *)mp1->b_rptr; 7669 /* 7670 * Null terminate the string to protect against buffer 7671 * overrun. String was generated by user code and may not 7672 * be trusted. 7673 */ 7674 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7675 sin = (sin_t *)&ifr->ifr_addr; 7676 name = ifr->ifr_name; 7677 ci->ci_sin = sin; 7678 ci->ci_sin6 = NULL; 7679 ci->ci_lifr = (struct lifreq *)ifr; 7680 } else { 7681 /* This a new style SIOC[GS]LIF* command */ 7682 ASSERT(cmd_type == LIF_CMD); 7683 lifr = (struct lifreq *)mp1->b_rptr; 7684 /* 7685 * Null terminate the string to protect against buffer 7686 * overrun. String was generated by user code and may not 7687 * be trusted. 7688 */ 7689 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7690 name = lifr->lifr_name; 7691 sin = (sin_t *)&lifr->lifr_addr; 7692 sin6 = (sin6_t *)&lifr->lifr_addr; 7693 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7694 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7695 LIFNAMSIZ); 7696 } 7697 ci->ci_sin = sin; 7698 ci->ci_sin6 = sin6; 7699 ci->ci_lifr = lifr; 7700 } 7701 7702 7703 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7704 /* 7705 * The ioctl will be failed if the ioctl comes down 7706 * an conn stream 7707 */ 7708 if (ill == NULL) { 7709 /* 7710 * Not an ill queue, return EINVAL same as the 7711 * old error code. 7712 */ 7713 return (ENXIO); 7714 } 7715 ipif = ill->ill_ipif; 7716 ipif_refhold(ipif); 7717 } else { 7718 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7719 &exists, isv6, zoneid, 7720 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7721 if (ipif == NULL) { 7722 if (err == EINPROGRESS) 7723 return (err); 7724 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7725 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7726 /* 7727 * Need to try both v4 and v6 since this 7728 * ioctl can come down either v4 or v6 7729 * socket. The lifreq.lifr_family passed 7730 * down by this ioctl is AF_UNSPEC. 7731 */ 7732 ipif = ipif_lookup_on_name(name, 7733 mi_strlen(name), B_FALSE, &exists, !isv6, 7734 zoneid, (connp == NULL) ? q : 7735 CONNP_TO_WQ(connp), mp, func, &err); 7736 if (err == EINPROGRESS) 7737 return (err); 7738 } 7739 err = 0; /* Ensure we don't use it below */ 7740 } 7741 } 7742 7743 /* 7744 * Old style [GS]IFCMD does not admit IPv6 ipif 7745 */ 7746 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7747 ipif_refrele(ipif); 7748 return (ENXIO); 7749 } 7750 7751 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7752 name[0] == '\0') { 7753 /* 7754 * Handle a or a SIOC?IF* with a null name 7755 * during plumb (on the ill queue before the I_PLINK). 7756 */ 7757 ipif = ill->ill_ipif; 7758 ipif_refhold(ipif); 7759 } 7760 7761 if (ipif == NULL) 7762 return (ENXIO); 7763 7764 /* 7765 * Allow only GET operations if this ipif has been created 7766 * temporarily due to a MOVE operation. 7767 */ 7768 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7769 ipif_refrele(ipif); 7770 return (EINVAL); 7771 } 7772 7773 ci->ci_ipif = ipif; 7774 return (0); 7775 } 7776 7777 /* 7778 * Return the total number of ipifs. 7779 */ 7780 static uint_t 7781 ip_get_numifs(zoneid_t zoneid) 7782 { 7783 uint_t numifs = 0; 7784 ill_t *ill; 7785 ill_walk_context_t ctx; 7786 ipif_t *ipif; 7787 7788 rw_enter(&ill_g_lock, RW_READER); 7789 ill = ILL_START_WALK_V4(&ctx); 7790 7791 while (ill != NULL) { 7792 for (ipif = ill->ill_ipif; ipif != NULL; 7793 ipif = ipif->ipif_next) { 7794 if (ipif->ipif_zoneid == zoneid) 7795 numifs++; 7796 } 7797 ill = ill_next(&ctx, ill); 7798 } 7799 rw_exit(&ill_g_lock); 7800 return (numifs); 7801 } 7802 7803 /* 7804 * Return the total number of ipifs. 7805 */ 7806 static uint_t 7807 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7808 { 7809 uint_t numifs = 0; 7810 ill_t *ill; 7811 ipif_t *ipif; 7812 ill_walk_context_t ctx; 7813 7814 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7815 7816 rw_enter(&ill_g_lock, RW_READER); 7817 if (family == AF_INET) 7818 ill = ILL_START_WALK_V4(&ctx); 7819 else if (family == AF_INET6) 7820 ill = ILL_START_WALK_V6(&ctx); 7821 else 7822 ill = ILL_START_WALK_ALL(&ctx); 7823 7824 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7825 for (ipif = ill->ill_ipif; ipif != NULL; 7826 ipif = ipif->ipif_next) { 7827 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7828 !(lifn_flags & LIFC_NOXMIT)) 7829 continue; 7830 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7831 !(lifn_flags & LIFC_TEMPORARY)) 7832 continue; 7833 if (((ipif->ipif_flags & 7834 (IPIF_NOXMIT|IPIF_NOLOCAL| 7835 IPIF_DEPRECATED)) || 7836 (ill->ill_phyint->phyint_flags & 7837 PHYI_LOOPBACK) || 7838 !(ipif->ipif_flags & IPIF_UP)) && 7839 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7840 continue; 7841 7842 if (zoneid != ipif->ipif_zoneid && 7843 (zoneid != GLOBAL_ZONEID || 7844 !(lifn_flags & LIFC_ALLZONES))) 7845 continue; 7846 7847 numifs++; 7848 } 7849 } 7850 rw_exit(&ill_g_lock); 7851 return (numifs); 7852 } 7853 7854 uint_t 7855 ip_get_lifsrcofnum(ill_t *ill) 7856 { 7857 uint_t numifs = 0; 7858 ill_t *ill_head = ill; 7859 7860 /* 7861 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7862 * other thread may be trying to relink the ILLs in this usesrc group 7863 * and adjusting the ill_usesrc_grp_next pointers 7864 */ 7865 rw_enter(&ill_g_usesrc_lock, RW_READER); 7866 if ((ill->ill_usesrc_ifindex == 0) && 7867 (ill->ill_usesrc_grp_next != NULL)) { 7868 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7869 ill = ill->ill_usesrc_grp_next) 7870 numifs++; 7871 } 7872 rw_exit(&ill_g_usesrc_lock); 7873 7874 return (numifs); 7875 } 7876 7877 /* Null values are passed in for ipif, sin, and ifreq */ 7878 /* ARGSUSED */ 7879 int 7880 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7881 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7882 { 7883 int *nump; 7884 7885 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7886 7887 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7888 nump = (int *)mp->b_cont->b_cont->b_rptr; 7889 7890 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7891 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7892 return (0); 7893 } 7894 7895 /* Null values are passed in for ipif, sin, and ifreq */ 7896 /* ARGSUSED */ 7897 int 7898 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7899 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7900 { 7901 struct lifnum *lifn; 7902 mblk_t *mp1; 7903 7904 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7905 7906 /* Existence checked in ip_wput_nondata */ 7907 mp1 = mp->b_cont->b_cont; 7908 7909 lifn = (struct lifnum *)mp1->b_rptr; 7910 switch (lifn->lifn_family) { 7911 case AF_UNSPEC: 7912 case AF_INET: 7913 case AF_INET6: 7914 break; 7915 default: 7916 return (EAFNOSUPPORT); 7917 } 7918 7919 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7920 Q_TO_CONN(q)->conn_zoneid); 7921 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7922 return (0); 7923 } 7924 7925 /* ARGSUSED */ 7926 int 7927 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7928 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7929 { 7930 STRUCT_HANDLE(ifconf, ifc); 7931 mblk_t *mp1; 7932 struct iocblk *iocp; 7933 struct ifreq *ifr; 7934 ill_walk_context_t ctx; 7935 ill_t *ill; 7936 ipif_t *ipif; 7937 struct sockaddr_in *sin; 7938 int32_t ifclen; 7939 zoneid_t zoneid; 7940 7941 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7942 7943 ip1dbg(("ip_sioctl_get_ifconf")); 7944 /* Existence verified in ip_wput_nondata */ 7945 mp1 = mp->b_cont->b_cont; 7946 iocp = (struct iocblk *)mp->b_rptr; 7947 zoneid = Q_TO_CONN(q)->conn_zoneid; 7948 7949 /* 7950 * The original SIOCGIFCONF passed in a struct ifconf which specified 7951 * the user buffer address and length into which the list of struct 7952 * ifreqs was to be copied. Since AT&T Streams does not seem to 7953 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7954 * the SIOCGIFCONF operation was redefined to simply provide 7955 * a large output buffer into which we are supposed to jam the ifreq 7956 * array. The same ioctl command code was used, despite the fact that 7957 * both the applications and the kernel code had to change, thus making 7958 * it impossible to support both interfaces. 7959 * 7960 * For reasons not good enough to try to explain, the following 7961 * algorithm is used for deciding what to do with one of these: 7962 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7963 * form with the output buffer coming down as the continuation message. 7964 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7965 * and we have to copy in the ifconf structure to find out how big the 7966 * output buffer is and where to copy out to. Sure no problem... 7967 * 7968 */ 7969 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7970 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7971 int numifs = 0; 7972 size_t ifc_bufsize; 7973 7974 /* 7975 * Must be (better be!) continuation of a TRANSPARENT 7976 * IOCTL. We just copied in the ifconf structure. 7977 */ 7978 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7979 (struct ifconf *)mp1->b_rptr); 7980 7981 /* 7982 * Allocate a buffer to hold requested information. 7983 * 7984 * If ifc_len is larger than what is needed, we only 7985 * allocate what we will use. 7986 * 7987 * If ifc_len is smaller than what is needed, return 7988 * EINVAL. 7989 * 7990 * XXX: the ill_t structure can hava 2 counters, for 7991 * v4 and v6 (not just ill_ipif_up_count) to store the 7992 * number of interfaces for a device, so we don't need 7993 * to count them here... 7994 */ 7995 numifs = ip_get_numifs(zoneid); 7996 7997 ifclen = STRUCT_FGET(ifc, ifc_len); 7998 ifc_bufsize = numifs * sizeof (struct ifreq); 7999 if (ifc_bufsize > ifclen) { 8000 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8001 /* old behaviour */ 8002 return (EINVAL); 8003 } else { 8004 ifc_bufsize = ifclen; 8005 } 8006 } 8007 8008 mp1 = mi_copyout_alloc(q, mp, 8009 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8010 if (mp1 == NULL) 8011 return (ENOMEM); 8012 8013 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8014 } 8015 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8016 /* 8017 * the SIOCGIFCONF ioctl only knows about 8018 * IPv4 addresses, so don't try to tell 8019 * it about interfaces with IPv6-only 8020 * addresses. (Last parm 'isv6' is B_FALSE) 8021 */ 8022 8023 ifr = (struct ifreq *)mp1->b_rptr; 8024 8025 rw_enter(&ill_g_lock, RW_READER); 8026 ill = ILL_START_WALK_V4(&ctx); 8027 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8028 for (ipif = ill->ill_ipif; ipif; 8029 ipif = ipif->ipif_next) { 8030 if (zoneid != ipif->ipif_zoneid) 8031 continue; 8032 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8033 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8034 /* old behaviour */ 8035 rw_exit(&ill_g_lock); 8036 return (EINVAL); 8037 } else { 8038 goto if_copydone; 8039 } 8040 } 8041 (void) ipif_get_name(ipif, 8042 ifr->ifr_name, 8043 sizeof (ifr->ifr_name)); 8044 sin = (sin_t *)&ifr->ifr_addr; 8045 *sin = sin_null; 8046 sin->sin_family = AF_INET; 8047 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8048 ifr++; 8049 } 8050 } 8051 if_copydone: 8052 rw_exit(&ill_g_lock); 8053 mp1->b_wptr = (uchar_t *)ifr; 8054 8055 if (STRUCT_BUF(ifc) != NULL) { 8056 STRUCT_FSET(ifc, ifc_len, 8057 (int)((uchar_t *)ifr - mp1->b_rptr)); 8058 } 8059 return (0); 8060 } 8061 8062 /* 8063 * Get the interfaces using the address hosted on the interface passed in, 8064 * as a source adddress 8065 */ 8066 /* ARGSUSED */ 8067 int 8068 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8069 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8070 { 8071 mblk_t *mp1; 8072 ill_t *ill, *ill_head; 8073 ipif_t *ipif, *orig_ipif; 8074 int numlifs = 0; 8075 size_t lifs_bufsize, lifsmaxlen; 8076 struct lifreq *lifr; 8077 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8078 uint_t ifindex; 8079 zoneid_t zoneid; 8080 int err = 0; 8081 boolean_t isv6 = B_FALSE; 8082 struct sockaddr_in *sin; 8083 struct sockaddr_in6 *sin6; 8084 8085 STRUCT_HANDLE(lifsrcof, lifs); 8086 8087 ASSERT(q->q_next == NULL); 8088 8089 zoneid = Q_TO_CONN(q)->conn_zoneid; 8090 8091 /* Existence verified in ip_wput_nondata */ 8092 mp1 = mp->b_cont->b_cont; 8093 8094 /* 8095 * Must be (better be!) continuation of a TRANSPARENT 8096 * IOCTL. We just copied in the lifsrcof structure. 8097 */ 8098 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8099 (struct lifsrcof *)mp1->b_rptr); 8100 8101 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8102 return (EINVAL); 8103 8104 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8105 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8106 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8107 ip_process_ioctl, &err); 8108 if (ipif == NULL) { 8109 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8110 ifindex)); 8111 return (err); 8112 } 8113 8114 8115 /* Allocate a buffer to hold requested information */ 8116 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8117 lifs_bufsize = numlifs * sizeof (struct lifreq); 8118 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8119 /* The actual size needed is always returned in lifs_len */ 8120 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8121 8122 /* If the amount we need is more than what is passed in, abort */ 8123 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8124 ipif_refrele(ipif); 8125 return (0); 8126 } 8127 8128 mp1 = mi_copyout_alloc(q, mp, 8129 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8130 if (mp1 == NULL) { 8131 ipif_refrele(ipif); 8132 return (ENOMEM); 8133 } 8134 8135 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8136 bzero(mp1->b_rptr, lifs_bufsize); 8137 8138 lifr = (struct lifreq *)mp1->b_rptr; 8139 8140 ill = ill_head = ipif->ipif_ill; 8141 orig_ipif = ipif; 8142 8143 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8144 rw_enter(&ill_g_usesrc_lock, RW_READER); 8145 rw_enter(&ill_g_lock, RW_READER); 8146 8147 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8148 for (; (ill != NULL) && (ill != ill_head); 8149 ill = ill->ill_usesrc_grp_next) { 8150 8151 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8152 break; 8153 8154 ipif = ill->ill_ipif; 8155 (void) ipif_get_name(ipif, 8156 lifr->lifr_name, sizeof (lifr->lifr_name)); 8157 if (ipif->ipif_isv6) { 8158 sin6 = (sin6_t *)&lifr->lifr_addr; 8159 *sin6 = sin6_null; 8160 sin6->sin6_family = AF_INET6; 8161 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8162 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8163 &ipif->ipif_v6net_mask); 8164 } else { 8165 sin = (sin_t *)&lifr->lifr_addr; 8166 *sin = sin_null; 8167 sin->sin_family = AF_INET; 8168 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8169 lifr->lifr_addrlen = ip_mask_to_plen( 8170 ipif->ipif_net_mask); 8171 } 8172 lifr++; 8173 } 8174 rw_exit(&ill_g_usesrc_lock); 8175 rw_exit(&ill_g_lock); 8176 ipif_refrele(orig_ipif); 8177 mp1->b_wptr = (uchar_t *)lifr; 8178 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8179 8180 return (0); 8181 } 8182 8183 /* ARGSUSED */ 8184 int 8185 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8186 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8187 { 8188 mblk_t *mp1; 8189 int list; 8190 ill_t *ill; 8191 ipif_t *ipif; 8192 int flags; 8193 int numlifs = 0; 8194 size_t lifc_bufsize; 8195 struct lifreq *lifr; 8196 sa_family_t family; 8197 struct sockaddr_in *sin; 8198 struct sockaddr_in6 *sin6; 8199 ill_walk_context_t ctx; 8200 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8201 int32_t lifclen; 8202 zoneid_t zoneid; 8203 STRUCT_HANDLE(lifconf, lifc); 8204 8205 ip1dbg(("ip_sioctl_get_lifconf")); 8206 8207 ASSERT(q->q_next == NULL); 8208 8209 zoneid = Q_TO_CONN(q)->conn_zoneid; 8210 8211 /* Existence verified in ip_wput_nondata */ 8212 mp1 = mp->b_cont->b_cont; 8213 8214 /* 8215 * An extended version of SIOCGIFCONF that takes an 8216 * additional address family and flags field. 8217 * AF_UNSPEC retrieve both IPv4 and IPv6. 8218 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8219 * interfaces are omitted. 8220 * Similarly, IPIF_TEMPORARY interfaces are omitted 8221 * unless LIFC_TEMPORARY is specified. 8222 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8223 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8224 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8225 * has priority over LIFC_NOXMIT. 8226 */ 8227 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8228 8229 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8230 return (EINVAL); 8231 8232 /* 8233 * Must be (better be!) continuation of a TRANSPARENT 8234 * IOCTL. We just copied in the lifconf structure. 8235 */ 8236 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8237 8238 family = STRUCT_FGET(lifc, lifc_family); 8239 flags = STRUCT_FGET(lifc, lifc_flags); 8240 8241 switch (family) { 8242 case AF_UNSPEC: 8243 /* 8244 * walk all ILL's. 8245 */ 8246 list = MAX_G_HEADS; 8247 break; 8248 case AF_INET: 8249 /* 8250 * walk only IPV4 ILL's. 8251 */ 8252 list = IP_V4_G_HEAD; 8253 break; 8254 case AF_INET6: 8255 /* 8256 * walk only IPV6 ILL's. 8257 */ 8258 list = IP_V6_G_HEAD; 8259 break; 8260 default: 8261 return (EAFNOSUPPORT); 8262 } 8263 8264 /* 8265 * Allocate a buffer to hold requested information. 8266 * 8267 * If lifc_len is larger than what is needed, we only 8268 * allocate what we will use. 8269 * 8270 * If lifc_len is smaller than what is needed, return 8271 * EINVAL. 8272 */ 8273 numlifs = ip_get_numlifs(family, flags, zoneid); 8274 lifc_bufsize = numlifs * sizeof (struct lifreq); 8275 lifclen = STRUCT_FGET(lifc, lifc_len); 8276 if (lifc_bufsize > lifclen) { 8277 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8278 return (EINVAL); 8279 else 8280 lifc_bufsize = lifclen; 8281 } 8282 8283 mp1 = mi_copyout_alloc(q, mp, 8284 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8285 if (mp1 == NULL) 8286 return (ENOMEM); 8287 8288 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8289 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8290 8291 lifr = (struct lifreq *)mp1->b_rptr; 8292 8293 rw_enter(&ill_g_lock, RW_READER); 8294 ill = ill_first(list, list, &ctx); 8295 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8296 for (ipif = ill->ill_ipif; ipif != NULL; 8297 ipif = ipif->ipif_next) { 8298 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8299 !(flags & LIFC_NOXMIT)) 8300 continue; 8301 8302 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8303 !(flags & LIFC_TEMPORARY)) 8304 continue; 8305 8306 if (((ipif->ipif_flags & 8307 (IPIF_NOXMIT|IPIF_NOLOCAL| 8308 IPIF_DEPRECATED)) || 8309 (ill->ill_phyint->phyint_flags & 8310 PHYI_LOOPBACK) || 8311 !(ipif->ipif_flags & IPIF_UP)) && 8312 (flags & LIFC_EXTERNAL_SOURCE)) 8313 continue; 8314 8315 if (zoneid != ipif->ipif_zoneid && 8316 (zoneid != GLOBAL_ZONEID || 8317 !(flags & LIFC_ALLZONES))) 8318 continue; 8319 8320 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8321 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8322 rw_exit(&ill_g_lock); 8323 return (EINVAL); 8324 } else { 8325 goto lif_copydone; 8326 } 8327 } 8328 8329 (void) ipif_get_name(ipif, 8330 lifr->lifr_name, 8331 sizeof (lifr->lifr_name)); 8332 if (ipif->ipif_isv6) { 8333 sin6 = (sin6_t *)&lifr->lifr_addr; 8334 *sin6 = sin6_null; 8335 sin6->sin6_family = AF_INET6; 8336 sin6->sin6_addr = 8337 ipif->ipif_v6lcl_addr; 8338 lifr->lifr_addrlen = 8339 ip_mask_to_plen_v6( 8340 &ipif->ipif_v6net_mask); 8341 } else { 8342 sin = (sin_t *)&lifr->lifr_addr; 8343 *sin = sin_null; 8344 sin->sin_family = AF_INET; 8345 sin->sin_addr.s_addr = 8346 ipif->ipif_lcl_addr; 8347 lifr->lifr_addrlen = 8348 ip_mask_to_plen( 8349 ipif->ipif_net_mask); 8350 } 8351 lifr++; 8352 } 8353 } 8354 lif_copydone: 8355 rw_exit(&ill_g_lock); 8356 8357 mp1->b_wptr = (uchar_t *)lifr; 8358 if (STRUCT_BUF(lifc) != NULL) { 8359 STRUCT_FSET(lifc, lifc_len, 8360 (int)((uchar_t *)lifr - mp1->b_rptr)); 8361 } 8362 return (0); 8363 } 8364 8365 /* ARGSUSED */ 8366 int 8367 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8368 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8369 { 8370 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8371 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8372 return (0); 8373 } 8374 8375 static void 8376 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8377 { 8378 ip6_asp_t *table; 8379 size_t table_size; 8380 mblk_t *data_mp; 8381 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8382 8383 /* These two ioctls are I_STR only */ 8384 if (iocp->ioc_count == TRANSPARENT) { 8385 miocnak(q, mp, 0, EINVAL); 8386 return; 8387 } 8388 8389 data_mp = mp->b_cont; 8390 if (data_mp == NULL) { 8391 /* The user passed us a NULL argument */ 8392 table = NULL; 8393 table_size = iocp->ioc_count; 8394 } else { 8395 /* 8396 * The user provided a table. The stream head 8397 * may have copied in the user data in chunks, 8398 * so make sure everything is pulled up 8399 * properly. 8400 */ 8401 if (MBLKL(data_mp) < iocp->ioc_count) { 8402 mblk_t *new_data_mp; 8403 if ((new_data_mp = msgpullup(data_mp, -1)) == 8404 NULL) { 8405 miocnak(q, mp, 0, ENOMEM); 8406 return; 8407 } 8408 freemsg(data_mp); 8409 data_mp = new_data_mp; 8410 mp->b_cont = data_mp; 8411 } 8412 table = (ip6_asp_t *)data_mp->b_rptr; 8413 table_size = iocp->ioc_count; 8414 } 8415 8416 switch (iocp->ioc_cmd) { 8417 case SIOCGIP6ADDRPOLICY: 8418 iocp->ioc_rval = ip6_asp_get(table, table_size); 8419 if (iocp->ioc_rval == -1) 8420 iocp->ioc_error = EINVAL; 8421 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8422 else if (table != NULL && 8423 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8424 ip6_asp_t *src = table; 8425 ip6_asp32_t *dst = (void *)table; 8426 int count = table_size / sizeof (ip6_asp_t); 8427 int i; 8428 8429 /* 8430 * We need to do an in-place shrink of the array 8431 * to match the alignment attributes of the 8432 * 32-bit ABI looking at it. 8433 */ 8434 /* LINTED: logical expression always true: op "||" */ 8435 ASSERT(sizeof (*src) > sizeof (*dst)); 8436 for (i = 1; i < count; i++) 8437 bcopy(src + i, dst + i, sizeof (*dst)); 8438 } 8439 #endif 8440 break; 8441 8442 case SIOCSIP6ADDRPOLICY: 8443 ASSERT(mp->b_prev == NULL); 8444 mp->b_prev = (void *)q; 8445 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8446 /* 8447 * We pass in the datamodel here so that the ip6_asp_replace() 8448 * routine can handle converting from 32-bit to native formats 8449 * where necessary. 8450 * 8451 * A better way to handle this might be to convert the inbound 8452 * data structure here, and hang it off a new 'mp'; thus the 8453 * ip6_asp_replace() logic would always be dealing with native 8454 * format data structures.. 8455 * 8456 * (An even simpler way to handle these ioctls is to just 8457 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8458 * and just recompile everything that depends on it.) 8459 */ 8460 #endif 8461 ip6_asp_replace(mp, table, table_size, B_FALSE, 8462 iocp->ioc_flag & IOC_MODELS); 8463 return; 8464 } 8465 8466 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8467 qreply(q, mp); 8468 } 8469 8470 static void 8471 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8472 { 8473 mblk_t *data_mp; 8474 struct dstinforeq *dir; 8475 uint8_t *end, *cur; 8476 in6_addr_t *daddr, *saddr; 8477 ipaddr_t v4daddr; 8478 ire_t *ire; 8479 char *slabel, *dlabel; 8480 boolean_t isipv4; 8481 int match_ire; 8482 ill_t *dst_ill; 8483 ipif_t *src_ipif, *ire_ipif; 8484 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8485 zoneid_t zoneid; 8486 8487 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8488 zoneid = Q_TO_CONN(q)->conn_zoneid; 8489 8490 /* 8491 * This ioctl is I_STR only, and must have a 8492 * data mblk following the M_IOCTL mblk. 8493 */ 8494 data_mp = mp->b_cont; 8495 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8496 miocnak(q, mp, 0, EINVAL); 8497 return; 8498 } 8499 8500 if (MBLKL(data_mp) < iocp->ioc_count) { 8501 mblk_t *new_data_mp; 8502 8503 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8504 miocnak(q, mp, 0, ENOMEM); 8505 return; 8506 } 8507 freemsg(data_mp); 8508 data_mp = new_data_mp; 8509 mp->b_cont = data_mp; 8510 } 8511 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8512 8513 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8514 end - cur >= sizeof (struct dstinforeq); 8515 cur += sizeof (struct dstinforeq)) { 8516 dir = (struct dstinforeq *)cur; 8517 daddr = &dir->dir_daddr; 8518 saddr = &dir->dir_saddr; 8519 8520 /* 8521 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8522 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8523 * and ipif_select_source[_v6]() do not. 8524 */ 8525 dir->dir_dscope = ip_addr_scope_v6(daddr); 8526 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8527 8528 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8529 if (isipv4) { 8530 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8531 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8532 0, NULL, NULL, zoneid, 0, match_ire); 8533 } else { 8534 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8535 0, NULL, NULL, zoneid, 0, match_ire); 8536 } 8537 if (ire == NULL) { 8538 dir->dir_dreachable = 0; 8539 8540 /* move on to next dst addr */ 8541 continue; 8542 } 8543 dir->dir_dreachable = 1; 8544 8545 ire_ipif = ire->ire_ipif; 8546 if (ire_ipif == NULL) 8547 goto next_dst; 8548 8549 /* 8550 * We expect to get back an interface ire or a 8551 * gateway ire cache entry. For both types, the 8552 * output interface is ire_ipif->ipif_ill. 8553 */ 8554 dst_ill = ire_ipif->ipif_ill; 8555 dir->dir_dmactype = dst_ill->ill_mactype; 8556 8557 if (isipv4) { 8558 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8559 } else { 8560 src_ipif = ipif_select_source_v6(dst_ill, 8561 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8562 zoneid); 8563 } 8564 if (src_ipif == NULL) 8565 goto next_dst; 8566 8567 *saddr = src_ipif->ipif_v6lcl_addr; 8568 dir->dir_sscope = ip_addr_scope_v6(saddr); 8569 slabel = ip6_asp_lookup(saddr, NULL); 8570 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8571 dir->dir_sdeprecated = 8572 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8573 ipif_refrele(src_ipif); 8574 next_dst: 8575 ire_refrele(ire); 8576 } 8577 miocack(q, mp, iocp->ioc_count, 0); 8578 } 8579 8580 8581 /* 8582 * Check if this is an address assigned to this machine. 8583 * Skips interfaces that are down by using ire checks. 8584 * Translates mapped addresses to v4 addresses and then 8585 * treats them as such, returning true if the v4 address 8586 * associated with this mapped address is configured. 8587 * Note: Applications will have to be careful what they do 8588 * with the response; use of mapped addresses limits 8589 * what can be done with the socket, especially with 8590 * respect to socket options and ioctls - neither IPv4 8591 * options nor IPv6 sticky options/ancillary data options 8592 * may be used. 8593 */ 8594 /* ARGSUSED */ 8595 int 8596 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8597 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8598 { 8599 struct sioc_addrreq *sia; 8600 sin_t *sin; 8601 ire_t *ire; 8602 mblk_t *mp1; 8603 zoneid_t zoneid; 8604 8605 ip1dbg(("ip_sioctl_tmyaddr")); 8606 8607 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8608 zoneid = Q_TO_CONN(q)->conn_zoneid; 8609 8610 /* Existence verified in ip_wput_nondata */ 8611 mp1 = mp->b_cont->b_cont; 8612 sia = (struct sioc_addrreq *)mp1->b_rptr; 8613 sin = (sin_t *)&sia->sa_addr; 8614 switch (sin->sin_family) { 8615 case AF_INET6: { 8616 sin6_t *sin6 = (sin6_t *)sin; 8617 8618 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8619 ipaddr_t v4_addr; 8620 8621 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8622 v4_addr); 8623 ire = ire_ctable_lookup(v4_addr, 0, 8624 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8625 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8626 } else { 8627 in6_addr_t v6addr; 8628 8629 v6addr = sin6->sin6_addr; 8630 ire = ire_ctable_lookup_v6(&v6addr, 0, 8631 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8632 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8633 } 8634 break; 8635 } 8636 case AF_INET: { 8637 ipaddr_t v4addr; 8638 8639 v4addr = sin->sin_addr.s_addr; 8640 ire = ire_ctable_lookup(v4addr, 0, 8641 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8642 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8643 break; 8644 } 8645 default: 8646 return (EAFNOSUPPORT); 8647 } 8648 if (ire != NULL) { 8649 sia->sa_res = 1; 8650 ire_refrele(ire); 8651 } else { 8652 sia->sa_res = 0; 8653 } 8654 return (0); 8655 } 8656 8657 /* 8658 * Check if this is an address assigned on-link i.e. neighbor, 8659 * and makes sure it's reachable from the current zone. 8660 * Returns true for my addresses as well. 8661 * Translates mapped addresses to v4 addresses and then 8662 * treats them as such, returning true if the v4 address 8663 * associated with this mapped address is configured. 8664 * Note: Applications will have to be careful what they do 8665 * with the response; use of mapped addresses limits 8666 * what can be done with the socket, especially with 8667 * respect to socket options and ioctls - neither IPv4 8668 * options nor IPv6 sticky options/ancillary data options 8669 * may be used. 8670 */ 8671 /* ARGSUSED */ 8672 int 8673 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8674 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8675 { 8676 struct sioc_addrreq *sia; 8677 sin_t *sin; 8678 mblk_t *mp1; 8679 ire_t *ire = NULL; 8680 zoneid_t zoneid; 8681 8682 ip1dbg(("ip_sioctl_tonlink")); 8683 8684 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8685 zoneid = Q_TO_CONN(q)->conn_zoneid; 8686 8687 /* Existence verified in ip_wput_nondata */ 8688 mp1 = mp->b_cont->b_cont; 8689 sia = (struct sioc_addrreq *)mp1->b_rptr; 8690 sin = (sin_t *)&sia->sa_addr; 8691 8692 /* 8693 * Match addresses with a zero gateway field to avoid 8694 * routes going through a router. 8695 * Exclude broadcast and multicast addresses. 8696 */ 8697 switch (sin->sin_family) { 8698 case AF_INET6: { 8699 sin6_t *sin6 = (sin6_t *)sin; 8700 8701 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8702 ipaddr_t v4_addr; 8703 8704 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8705 v4_addr); 8706 if (!CLASSD(v4_addr)) { 8707 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8708 NULL, NULL, zoneid, MATCH_IRE_GW); 8709 } 8710 } else { 8711 in6_addr_t v6addr; 8712 in6_addr_t v6gw; 8713 8714 v6addr = sin6->sin6_addr; 8715 v6gw = ipv6_all_zeros; 8716 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8717 ire = ire_route_lookup_v6(&v6addr, 0, 8718 &v6gw, 0, NULL, NULL, zoneid, 8719 MATCH_IRE_GW); 8720 } 8721 } 8722 break; 8723 } 8724 case AF_INET: { 8725 ipaddr_t v4addr; 8726 8727 v4addr = sin->sin_addr.s_addr; 8728 if (!CLASSD(v4addr)) { 8729 ire = ire_route_lookup(v4addr, 0, 0, 0, 8730 NULL, NULL, zoneid, MATCH_IRE_GW); 8731 } 8732 break; 8733 } 8734 default: 8735 return (EAFNOSUPPORT); 8736 } 8737 sia->sa_res = 0; 8738 if (ire != NULL) { 8739 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8740 IRE_LOCAL|IRE_LOOPBACK)) { 8741 sia->sa_res = 1; 8742 } 8743 ire_refrele(ire); 8744 } 8745 return (0); 8746 } 8747 8748 /* 8749 * TBD: implement when kernel maintaines a list of site prefixes. 8750 */ 8751 /* ARGSUSED */ 8752 int 8753 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8754 ip_ioctl_cmd_t *ipip, void *ifreq) 8755 { 8756 return (ENXIO); 8757 } 8758 8759 /* ARGSUSED */ 8760 int 8761 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8762 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8763 { 8764 ill_t *ill; 8765 mblk_t *mp1; 8766 conn_t *connp; 8767 boolean_t success; 8768 8769 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8770 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8771 /* ioctl comes down on an conn */ 8772 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8773 connp = Q_TO_CONN(q); 8774 8775 mp->b_datap->db_type = M_IOCTL; 8776 8777 /* 8778 * Send down a copy. (copymsg does not copy b_next/b_prev). 8779 * The original mp contains contaminated b_next values due to 'mi', 8780 * which is needed to do the mi_copy_done. Unfortunately if we 8781 * send down the original mblk itself and if we are popped due to an 8782 * an unplumb before the response comes back from tunnel, 8783 * the streamhead (which does a freemsg) will see this contaminated 8784 * message and the assertion in freemsg about non-null b_next/b_prev 8785 * will panic a DEBUG kernel. 8786 */ 8787 mp1 = copymsg(mp); 8788 if (mp1 == NULL) 8789 return (ENOMEM); 8790 8791 ill = ipif->ipif_ill; 8792 mutex_enter(&connp->conn_lock); 8793 mutex_enter(&ill->ill_lock); 8794 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8795 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8796 mp, 0); 8797 } else { 8798 success = ill_pending_mp_add(ill, connp, mp); 8799 } 8800 mutex_exit(&ill->ill_lock); 8801 mutex_exit(&connp->conn_lock); 8802 8803 if (success) { 8804 ip1dbg(("sending down tunparam request ")); 8805 putnext(ill->ill_wq, mp1); 8806 return (EINPROGRESS); 8807 } else { 8808 /* The conn has started closing */ 8809 freemsg(mp1); 8810 return (EINTR); 8811 } 8812 } 8813 8814 static int 8815 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8816 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8817 { 8818 mblk_t *mp1; 8819 mblk_t *mp2; 8820 mblk_t *pending_mp; 8821 ipaddr_t ipaddr; 8822 area_t *area; 8823 struct iocblk *iocp; 8824 conn_t *connp; 8825 struct arpreq *ar; 8826 struct xarpreq *xar; 8827 boolean_t success; 8828 int flags, alength; 8829 char *lladdr; 8830 8831 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8832 connp = Q_TO_CONN(q); 8833 8834 iocp = (struct iocblk *)mp->b_rptr; 8835 /* 8836 * ill has already been set depending on whether 8837 * bsd style or interface style ioctl. 8838 */ 8839 ASSERT(ill != NULL); 8840 8841 /* 8842 * Is this one of the new SIOC*XARP ioctls? 8843 */ 8844 if (x_arp_ioctl) { 8845 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8846 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8847 ar = NULL; 8848 8849 flags = xar->xarp_flags; 8850 lladdr = LLADDR(&xar->xarp_ha); 8851 /* 8852 * Validate against user's link layer address length 8853 * input and name and addr length limits. 8854 */ 8855 alength = ill->ill_phys_addr_length; 8856 if (iocp->ioc_cmd == SIOCSXARP) { 8857 if (alength != xar->xarp_ha.sdl_alen || 8858 (alength + xar->xarp_ha.sdl_nlen > 8859 sizeof (xar->xarp_ha.sdl_data))) 8860 return (EINVAL); 8861 } 8862 } else { 8863 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8864 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8865 xar = NULL; 8866 8867 flags = ar->arp_flags; 8868 lladdr = ar->arp_ha.sa_data; 8869 /* 8870 * Theoretically, the sa_family could tell us what link 8871 * layer type this operation is trying to deal with. By 8872 * common usage AF_UNSPEC means ethernet. We'll assume 8873 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8874 * for now. Our new SIOC*XARP ioctls can be used more 8875 * generally. 8876 * 8877 * If the underlying media happens to have a non 6 byte 8878 * address, arp module will fail set/get, but the del 8879 * operation will succeed. 8880 */ 8881 alength = 6; 8882 if ((iocp->ioc_cmd != SIOCDARP) && 8883 (alength != ill->ill_phys_addr_length)) { 8884 return (EINVAL); 8885 } 8886 } 8887 8888 /* 8889 * We are going to pass up to ARP a packet chain that looks 8890 * like: 8891 * 8892 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8893 * 8894 * Get a copy of the original IOCTL mblk to head the chain, 8895 * to be sent up (in mp1). Also get another copy to store 8896 * in the ill_pending_mp list, for matching the response 8897 * when it comes back from ARP. 8898 */ 8899 mp1 = copyb(mp); 8900 pending_mp = copymsg(mp); 8901 if (mp1 == NULL || pending_mp == NULL) { 8902 if (mp1 != NULL) 8903 freeb(mp1); 8904 if (pending_mp != NULL) 8905 inet_freemsg(pending_mp); 8906 return (ENOMEM); 8907 } 8908 8909 ipaddr = sin->sin_addr.s_addr; 8910 8911 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8912 (caddr_t)&ipaddr); 8913 if (mp2 == NULL) { 8914 freeb(mp1); 8915 inet_freemsg(pending_mp); 8916 return (ENOMEM); 8917 } 8918 /* Put together the chain. */ 8919 mp1->b_cont = mp2; 8920 mp1->b_datap->db_type = M_IOCTL; 8921 mp2->b_cont = mp; 8922 mp2->b_datap->db_type = M_DATA; 8923 8924 iocp = (struct iocblk *)mp1->b_rptr; 8925 8926 /* 8927 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 8928 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 8929 * cp_private field (or cp_rval on 32-bit systems) in place of the 8930 * ioc_count field; set ioc_count to be correct. 8931 */ 8932 iocp->ioc_count = MBLKL(mp1->b_cont); 8933 8934 /* 8935 * Set the proper command in the ARP message. 8936 * Convert the SIOC{G|S|D}ARP calls into our 8937 * AR_ENTRY_xxx calls. 8938 */ 8939 area = (area_t *)mp2->b_rptr; 8940 switch (iocp->ioc_cmd) { 8941 case SIOCDARP: 8942 case SIOCDXARP: 8943 /* 8944 * We defer deleting the corresponding IRE until 8945 * we return from arp. 8946 */ 8947 area->area_cmd = AR_ENTRY_DELETE; 8948 area->area_proto_mask_offset = 0; 8949 break; 8950 case SIOCGARP: 8951 case SIOCGXARP: 8952 area->area_cmd = AR_ENTRY_SQUERY; 8953 area->area_proto_mask_offset = 0; 8954 break; 8955 case SIOCSARP: 8956 case SIOCSXARP: { 8957 /* 8958 * Delete the corresponding ire to make sure IP will 8959 * pick up any change from arp. 8960 */ 8961 if (!if_arp_ioctl) { 8962 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 8963 break; 8964 } else { 8965 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8966 if (ipif != NULL) { 8967 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 8968 ipif_refrele(ipif); 8969 } 8970 break; 8971 } 8972 } 8973 } 8974 iocp->ioc_cmd = area->area_cmd; 8975 8976 /* 8977 * Before sending 'mp' to ARP, we have to clear the b_next 8978 * and b_prev. Otherwise if STREAMS encounters such a message 8979 * in freemsg(), (because ARP can close any time) it can cause 8980 * a panic. But mi code needs the b_next and b_prev values of 8981 * mp->b_cont, to complete the ioctl. So we store it here 8982 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 8983 * when the response comes down from ARP. 8984 */ 8985 pending_mp->b_cont->b_next = mp->b_cont->b_next; 8986 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 8987 mp->b_cont->b_next = NULL; 8988 mp->b_cont->b_prev = NULL; 8989 8990 mutex_enter(&connp->conn_lock); 8991 mutex_enter(&ill->ill_lock); 8992 /* conn has not yet started closing, hence this can't fail */ 8993 success = ill_pending_mp_add(ill, connp, pending_mp); 8994 ASSERT(success); 8995 mutex_exit(&ill->ill_lock); 8996 mutex_exit(&connp->conn_lock); 8997 8998 /* 8999 * Fill in the rest of the ARP operation fields. 9000 */ 9001 area->area_hw_addr_length = alength; 9002 bcopy(lladdr, 9003 (char *)area + area->area_hw_addr_offset, 9004 area->area_hw_addr_length); 9005 /* Translate the flags. */ 9006 if (flags & ATF_PERM) 9007 area->area_flags |= ACE_F_PERMANENT; 9008 if (flags & ATF_PUBL) 9009 area->area_flags |= ACE_F_PUBLISH; 9010 9011 /* 9012 * Up to ARP it goes. The response will come 9013 * back in ip_wput as an M_IOCACK message, and 9014 * will be handed to ip_sioctl_iocack for 9015 * completion. 9016 */ 9017 putnext(ill->ill_rq, mp1); 9018 return (EINPROGRESS); 9019 } 9020 9021 /* ARGSUSED */ 9022 int 9023 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9024 ip_ioctl_cmd_t *ipip, void *ifreq) 9025 { 9026 struct xarpreq *xar; 9027 boolean_t isv6; 9028 mblk_t *mp1; 9029 int err; 9030 conn_t *connp; 9031 int ifnamelen; 9032 ire_t *ire = NULL; 9033 ill_t *ill = NULL; 9034 struct sockaddr_in *sin; 9035 boolean_t if_arp_ioctl = B_FALSE; 9036 9037 /* ioctl comes down on an conn */ 9038 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9039 connp = Q_TO_CONN(q); 9040 isv6 = connp->conn_af_isv6; 9041 9042 /* Existance verified in ip_wput_nondata */ 9043 mp1 = mp->b_cont->b_cont; 9044 9045 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9046 xar = (struct xarpreq *)mp1->b_rptr; 9047 sin = (sin_t *)&xar->xarp_pa; 9048 9049 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9050 (xar->xarp_pa.ss_family != AF_INET)) 9051 return (ENXIO); 9052 9053 ifnamelen = xar->xarp_ha.sdl_nlen; 9054 if (ifnamelen != 0) { 9055 char *cptr, cval; 9056 9057 if (ifnamelen >= LIFNAMSIZ) 9058 return (EINVAL); 9059 9060 /* 9061 * Instead of bcopying a bunch of bytes, 9062 * null-terminate the string in-situ. 9063 */ 9064 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9065 cval = *cptr; 9066 *cptr = '\0'; 9067 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9068 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9069 &err, NULL); 9070 *cptr = cval; 9071 if (ill == NULL) 9072 return (err); 9073 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9074 ill_refrele(ill); 9075 return (ENXIO); 9076 } 9077 9078 if_arp_ioctl = B_TRUE; 9079 } else { 9080 /* 9081 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9082 * as an extended BSD ioctl. The kernel uses the IP address 9083 * to figure out the network interface. 9084 */ 9085 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9086 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9087 ((ill = ire_to_ill(ire)) == NULL) || 9088 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9089 if (ire != NULL) 9090 ire_refrele(ire); 9091 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9092 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9093 MATCH_IRE_TYPE); 9094 if ((ire == NULL) || 9095 ((ill = ire_to_ill(ire)) == NULL)) { 9096 if (ire != NULL) 9097 ire_refrele(ire); 9098 return (ENXIO); 9099 } 9100 } 9101 ASSERT(ire != NULL && ill != NULL); 9102 } 9103 9104 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9105 if (if_arp_ioctl) 9106 ill_refrele(ill); 9107 if (ire != NULL) 9108 ire_refrele(ire); 9109 9110 return (err); 9111 } 9112 9113 /* 9114 * ARP IOCTLs. 9115 * How does IP get in the business of fronting ARP configuration/queries? 9116 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9117 * are by tradition passed in through a datagram socket. That lands in IP. 9118 * As it happens, this is just as well since the interface is quite crude in 9119 * that it passes in no information about protocol or hardware types, or 9120 * interface association. After making the protocol assumption, IP is in 9121 * the position to look up the name of the ILL, which ARP will need, and 9122 * format a request that can be handled by ARP. The request is passed up 9123 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9124 * back a response. ARP supports its own set of more general IOCTLs, in 9125 * case anyone is interested. 9126 */ 9127 /* ARGSUSED */ 9128 int 9129 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9130 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9131 { 9132 struct arpreq *ar; 9133 struct sockaddr_in *sin; 9134 ire_t *ire; 9135 boolean_t isv6; 9136 mblk_t *mp1; 9137 int err; 9138 conn_t *connp; 9139 ill_t *ill; 9140 9141 /* ioctl comes down on an conn */ 9142 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9143 connp = Q_TO_CONN(q); 9144 isv6 = connp->conn_af_isv6; 9145 if (isv6) 9146 return (ENXIO); 9147 9148 /* Existance verified in ip_wput_nondata */ 9149 mp1 = mp->b_cont->b_cont; 9150 9151 ar = (struct arpreq *)mp1->b_rptr; 9152 sin = (sin_t *)&ar->arp_pa; 9153 9154 /* 9155 * We need to let ARP know on which interface the IP 9156 * address has an ARP mapping. In the IPMP case, a 9157 * simple forwarding table lookup will return the 9158 * IRE_IF_RESOLVER for the first interface in the group, 9159 * which might not be the interface on which the 9160 * requested IP address was resolved due to the ill 9161 * selection algorithm (see ip_newroute_get_dst_ill()). 9162 * So we do a cache table lookup first: if the IRE cache 9163 * entry for the IP address is still there, it will 9164 * contain the ill pointer for the right interface, so 9165 * we use that. If the cache entry has been flushed, we 9166 * fall back to the forwarding table lookup. This should 9167 * be rare enough since IRE cache entries have a longer 9168 * life expectancy than ARP cache entries. 9169 */ 9170 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9171 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9172 ((ill = ire_to_ill(ire)) == NULL)) { 9173 if (ire != NULL) 9174 ire_refrele(ire); 9175 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9176 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9177 MATCH_IRE_TYPE); 9178 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9179 if (ire != NULL) 9180 ire_refrele(ire); 9181 return (ENXIO); 9182 } 9183 } 9184 ASSERT(ire != NULL && ill != NULL); 9185 9186 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9187 ire_refrele(ire); 9188 return (err); 9189 } 9190 9191 /* 9192 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9193 * atomically set/clear the muxids. Also complete the ioctl by acking or 9194 * naking it. Note that the code is structured such that the link type, 9195 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9196 * its clones use the persistent link, while pppd(1M) and perhaps many 9197 * other daemons may use non-persistent link. When combined with some 9198 * ill_t states, linking and unlinking lower streams may be used as 9199 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9200 */ 9201 /* ARGSUSED */ 9202 void 9203 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9204 { 9205 mblk_t *mp1; 9206 mblk_t *mp2; 9207 struct linkblk *li; 9208 queue_t *ipwq; 9209 char *name; 9210 struct qinit *qinfo; 9211 struct ipmx_s *ipmxp; 9212 ill_t *ill = NULL; 9213 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9214 int err = 0; 9215 boolean_t entered_ipsq = B_FALSE; 9216 boolean_t islink; 9217 queue_t *dwq = NULL; 9218 9219 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9220 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9221 9222 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9223 B_TRUE : B_FALSE; 9224 9225 mp1 = mp->b_cont; /* This is the linkblk info */ 9226 li = (struct linkblk *)mp1->b_rptr; 9227 9228 /* 9229 * ARP has added this special mblk, and the utility is asking us 9230 * to perform consistency checks, and also atomically set the 9231 * muxid. Ifconfig is an example. It achieves this by using 9232 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9233 * to /dev/udp[6] stream for use as the mux when plinking the IP 9234 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9235 * and other comments in this routine for more details. 9236 */ 9237 mp2 = mp1->b_cont; /* This is added by ARP */ 9238 9239 /* 9240 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9241 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9242 * get the special mblk above. For backward compatibility, we just 9243 * return success. The utility will use SIOCSLIFMUXID to store 9244 * the muxids. This is not atomic, and can leave the streams 9245 * unplumbable if the utility is interrrupted, before it does the 9246 * SIOCSLIFMUXID. 9247 */ 9248 if (mp2 == NULL) { 9249 /* 9250 * At this point we don't know whether or not this is the 9251 * IP module stream or the ARP device stream. We need to 9252 * walk the lower stream in order to find this out, since 9253 * the capability negotiation is done only on the IP module 9254 * stream. IP module instance is identified by the module 9255 * name IP, non-null q_next, and it's wput not being ip_lwput. 9256 * STREAMS ensures that the lower stream (l_qbot) will not 9257 * vanish until this ioctl completes. So we can safely walk 9258 * the stream or refer to the q_ptr. 9259 */ 9260 ipwq = li->l_qbot; 9261 while (ipwq != NULL) { 9262 qinfo = ipwq->q_qinfo; 9263 name = qinfo->qi_minfo->mi_idname; 9264 if (name != NULL && name[0] != NULL && 9265 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9266 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9267 (ipwq->q_next != NULL)) { 9268 break; 9269 } 9270 ipwq = ipwq->q_next; 9271 } 9272 /* 9273 * This looks like an IP module stream, so trigger 9274 * the capability reset or re-negotiation if necessary. 9275 */ 9276 if (ipwq != NULL) { 9277 ill = ipwq->q_ptr; 9278 ASSERT(ill != NULL); 9279 9280 if (ipsq == NULL) { 9281 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9282 ip_sioctl_plink, NEW_OP, B_TRUE); 9283 if (ipsq == NULL) 9284 return; 9285 entered_ipsq = B_TRUE; 9286 } 9287 ASSERT(IAM_WRITER_ILL(ill)); 9288 /* 9289 * Store the upper read queue of the module 9290 * immediately below IP, and count the total 9291 * number of lower modules. Do this only 9292 * for I_PLINK or I_LINK event. 9293 */ 9294 ill->ill_lmod_rq = NULL; 9295 ill->ill_lmod_cnt = 0; 9296 if (islink && (dwq = ipwq->q_next) != NULL) { 9297 ill->ill_lmod_rq = RD(dwq); 9298 9299 while (dwq != NULL) { 9300 ill->ill_lmod_cnt++; 9301 dwq = dwq->q_next; 9302 } 9303 } 9304 /* 9305 * There's no point in resetting or re-negotiating if 9306 * we are not bound to the driver, so only do this if 9307 * the DLPI state is idle (up); we assume such state 9308 * since ill_ipif_up_count gets incremented in 9309 * ipif_up_done(), which is after we are bound to the 9310 * driver. Note that in the case of logical 9311 * interfaces, IP won't rebind to the driver unless 9312 * the ill_ipif_up_count is 0, meaning that all other 9313 * IP interfaces (including the main ipif) are in the 9314 * down state. Because of this, we use such counter 9315 * as an indicator, instead of relying on the IPIF_UP 9316 * flag, which is per ipif instance. 9317 */ 9318 if (ill->ill_ipif_up_count > 0) { 9319 if (islink) 9320 ill_capability_probe(ill); 9321 else 9322 ill_capability_reset(ill); 9323 } 9324 } 9325 goto done; 9326 } 9327 9328 /* 9329 * This is an I_{P}LINK sent down by ifconfig on 9330 * /dev/arp. ARP has appended this last (3rd) mblk, 9331 * giving more info. STREAMS ensures that the lower 9332 * stream (l_qbot) will not vanish until this ioctl 9333 * completes. So we can safely walk the stream or refer 9334 * to the q_ptr. 9335 */ 9336 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9337 if (ipmxp->ipmx_arpdev_stream) { 9338 /* 9339 * The operation is occuring on the arp-device 9340 * stream. 9341 */ 9342 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9343 q, mp, ip_sioctl_plink, &err, NULL); 9344 if (ill == NULL) { 9345 if (err == EINPROGRESS) { 9346 return; 9347 } else { 9348 err = EINVAL; 9349 goto done; 9350 } 9351 } 9352 9353 if (ipsq == NULL) { 9354 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9355 NEW_OP, B_TRUE); 9356 if (ipsq == NULL) { 9357 ill_refrele(ill); 9358 return; 9359 } 9360 entered_ipsq = B_TRUE; 9361 } 9362 ASSERT(IAM_WRITER_ILL(ill)); 9363 ill_refrele(ill); 9364 /* 9365 * To ensure consistency between IP and ARP, 9366 * the following LIFO scheme is used in 9367 * plink/punlink. (IP first, ARP last). 9368 * This is because the muxid's are stored 9369 * in the IP stream on the ill. 9370 * 9371 * I_{P}LINK: ifconfig plinks the IP stream before 9372 * plinking the ARP stream. On an arp-dev 9373 * stream, IP checks that it is not yet 9374 * plinked, and it also checks that the 9375 * corresponding IP stream is already plinked. 9376 * 9377 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9378 * before punlinking the IP stream. IP does 9379 * not allow punlink of the IP stream unless 9380 * the arp stream has been punlinked. 9381 * 9382 */ 9383 if ((islink && 9384 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9385 (!islink && 9386 ill->ill_arp_muxid != li->l_index)) { 9387 err = EINVAL; 9388 goto done; 9389 } 9390 if (islink) { 9391 ill->ill_arp_muxid = li->l_index; 9392 } else { 9393 ill->ill_arp_muxid = 0; 9394 } 9395 } else { 9396 /* 9397 * This must be the IP module stream with or 9398 * without arp. Walk the stream and locate the 9399 * IP module. An IP module instance is 9400 * identified by the module name IP, non-null 9401 * q_next, and it's wput not being ip_lwput. 9402 */ 9403 ipwq = li->l_qbot; 9404 while (ipwq != NULL) { 9405 qinfo = ipwq->q_qinfo; 9406 name = qinfo->qi_minfo->mi_idname; 9407 if (name != NULL && name[0] != NULL && 9408 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9409 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9410 (ipwq->q_next != NULL)) { 9411 break; 9412 } 9413 ipwq = ipwq->q_next; 9414 } 9415 if (ipwq != NULL) { 9416 ill = ipwq->q_ptr; 9417 ASSERT(ill != NULL); 9418 9419 if (ipsq == NULL) { 9420 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9421 ip_sioctl_plink, NEW_OP, B_TRUE); 9422 if (ipsq == NULL) 9423 return; 9424 entered_ipsq = B_TRUE; 9425 } 9426 ASSERT(IAM_WRITER_ILL(ill)); 9427 /* 9428 * Return error if the ip_mux_id is 9429 * non-zero and command is I_{P}LINK. 9430 * If command is I_{P}UNLINK, return 9431 * error if the arp-devstr is not 9432 * yet punlinked. 9433 */ 9434 if ((islink && ill->ill_ip_muxid != 0) || 9435 (!islink && ill->ill_arp_muxid != 0)) { 9436 err = EINVAL; 9437 goto done; 9438 } 9439 ill->ill_lmod_rq = NULL; 9440 ill->ill_lmod_cnt = 0; 9441 if (islink) { 9442 /* 9443 * Store the upper read queue of the module 9444 * immediately below IP, and count the total 9445 * number of lower modules. 9446 */ 9447 if ((dwq = ipwq->q_next) != NULL) { 9448 ill->ill_lmod_rq = RD(dwq); 9449 9450 while (dwq != NULL) { 9451 ill->ill_lmod_cnt++; 9452 dwq = dwq->q_next; 9453 } 9454 } 9455 ill->ill_ip_muxid = li->l_index; 9456 } else { 9457 ill->ill_ip_muxid = 0; 9458 } 9459 9460 /* 9461 * See comments above about resetting/re- 9462 * negotiating driver sub-capabilities. 9463 */ 9464 if (ill->ill_ipif_up_count > 0) { 9465 if (islink) 9466 ill_capability_probe(ill); 9467 else 9468 ill_capability_reset(ill); 9469 } 9470 } 9471 } 9472 done: 9473 iocp->ioc_count = 0; 9474 iocp->ioc_error = err; 9475 if (err == 0) 9476 mp->b_datap->db_type = M_IOCACK; 9477 else 9478 mp->b_datap->db_type = M_IOCNAK; 9479 qreply(q, mp); 9480 9481 /* Conn was refheld in ip_sioctl_copyin_setup */ 9482 if (CONN_Q(q)) 9483 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9484 if (entered_ipsq) 9485 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9486 } 9487 9488 /* 9489 * Search the ioctl command in the ioctl tables and return a pointer 9490 * to the ioctl command information. The ioctl command tables are 9491 * static and fully populated at compile time. 9492 */ 9493 ip_ioctl_cmd_t * 9494 ip_sioctl_lookup(int ioc_cmd) 9495 { 9496 int index; 9497 ip_ioctl_cmd_t *ipip; 9498 ip_ioctl_cmd_t *ipip_end; 9499 9500 if (ioc_cmd == IPI_DONTCARE) 9501 return (NULL); 9502 9503 /* 9504 * Do a 2 step search. First search the indexed table 9505 * based on the least significant byte of the ioctl cmd. 9506 * If we don't find a match, then search the misc table 9507 * serially. 9508 */ 9509 index = ioc_cmd & 0xFF; 9510 if (index < ip_ndx_ioctl_count) { 9511 ipip = &ip_ndx_ioctl_table[index]; 9512 if (ipip->ipi_cmd == ioc_cmd) { 9513 /* Found a match in the ndx table */ 9514 return (ipip); 9515 } 9516 } 9517 9518 /* Search the misc table */ 9519 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9520 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9521 if (ipip->ipi_cmd == ioc_cmd) 9522 /* Found a match in the misc table */ 9523 return (ipip); 9524 } 9525 9526 return (NULL); 9527 } 9528 9529 /* 9530 * Wrapper function for resuming deferred ioctl processing 9531 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9532 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9533 */ 9534 /* ARGSUSED */ 9535 void 9536 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9537 void *dummy_arg) 9538 { 9539 ip_sioctl_copyin_setup(q, mp); 9540 } 9541 9542 /* 9543 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9544 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9545 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9546 * We establish here the size of the block to be copied in. mi_copyin 9547 * arranges for this to happen, an processing continues in ip_wput with 9548 * an M_IOCDATA message. 9549 */ 9550 void 9551 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9552 { 9553 int copyin_size; 9554 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9555 ip_ioctl_cmd_t *ipip; 9556 cred_t *cr; 9557 9558 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9559 if (ipip == NULL) { 9560 /* 9561 * The ioctl is not one we understand or own. 9562 * Pass it along to be processed down stream, 9563 * if this is a module instance of IP, else nak 9564 * the ioctl. 9565 */ 9566 if (q->q_next == NULL) { 9567 goto nak; 9568 } else { 9569 putnext(q, mp); 9570 return; 9571 } 9572 } 9573 9574 /* 9575 * If this is deferred, then we will do all the checks when we 9576 * come back. 9577 */ 9578 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9579 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9580 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9581 return; 9582 } 9583 9584 /* 9585 * Only allow a very small subset of IP ioctls on this stream if 9586 * IP is a module and not a driver. Allowing ioctls to be processed 9587 * in this case may cause assert failures or data corruption. 9588 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9589 * ioctls allowed on an IP module stream, after which this stream 9590 * normally becomes a multiplexor (at which time the stream head 9591 * will fail all ioctls). 9592 */ 9593 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9594 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9595 /* 9596 * Pass common Streams ioctls which the IP 9597 * module does not own or consume along to 9598 * be processed down stream. 9599 */ 9600 putnext(q, mp); 9601 return; 9602 } else { 9603 goto nak; 9604 } 9605 } 9606 9607 /* Make sure we have ioctl data to process. */ 9608 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9609 goto nak; 9610 9611 /* 9612 * Prefer dblk credential over ioctl credential; some synthesized 9613 * ioctls have kcred set because there's no way to crhold() 9614 * a credential in some contexts. (ioc_cr is not crfree() by 9615 * the framework; the caller of ioctl needs to hold the reference 9616 * for the duration of the call). 9617 */ 9618 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9619 9620 /* Make sure normal users don't send down privileged ioctls */ 9621 if ((ipip->ipi_flags & IPI_PRIV) && 9622 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9623 /* We checked the privilege earlier but log it here */ 9624 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9625 return; 9626 } 9627 9628 /* 9629 * The ioctl command tables can only encode fixed length 9630 * ioctl data. If the length is variable, the table will 9631 * encode the length as zero. Such special cases are handled 9632 * below in the switch. 9633 */ 9634 if (ipip->ipi_copyin_size != 0) { 9635 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9636 return; 9637 } 9638 9639 switch (iocp->ioc_cmd) { 9640 case O_SIOCGIFCONF: 9641 case SIOCGIFCONF: 9642 /* 9643 * This IOCTL is hilarious. See comments in 9644 * ip_sioctl_get_ifconf for the story. 9645 */ 9646 if (iocp->ioc_count == TRANSPARENT) 9647 copyin_size = SIZEOF_STRUCT(ifconf, 9648 iocp->ioc_flag); 9649 else 9650 copyin_size = iocp->ioc_count; 9651 mi_copyin(q, mp, NULL, copyin_size); 9652 return; 9653 9654 case O_SIOCGLIFCONF: 9655 case SIOCGLIFCONF: 9656 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9657 mi_copyin(q, mp, NULL, copyin_size); 9658 return; 9659 9660 case SIOCGLIFSRCOF: 9661 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9662 mi_copyin(q, mp, NULL, copyin_size); 9663 return; 9664 case SIOCGIP6ADDRPOLICY: 9665 ip_sioctl_ip6addrpolicy(q, mp); 9666 ip6_asp_table_refrele(); 9667 return; 9668 9669 case SIOCSIP6ADDRPOLICY: 9670 ip_sioctl_ip6addrpolicy(q, mp); 9671 return; 9672 9673 case SIOCGDSTINFO: 9674 ip_sioctl_dstinfo(q, mp); 9675 ip6_asp_table_refrele(); 9676 return; 9677 9678 case I_PLINK: 9679 case I_PUNLINK: 9680 case I_LINK: 9681 case I_UNLINK: 9682 /* 9683 * We treat non-persistent link similarly as the persistent 9684 * link case, in terms of plumbing/unplumbing, as well as 9685 * dynamic re-plumbing events indicator. See comments 9686 * in ip_sioctl_plink() for more. 9687 * 9688 * Request can be enqueued in the 'ipsq' while waiting 9689 * to become exclusive. So bump up the conn ref. 9690 */ 9691 if (CONN_Q(q)) 9692 CONN_INC_REF(Q_TO_CONN(q)); 9693 ip_sioctl_plink(NULL, q, mp, NULL); 9694 return; 9695 9696 case ND_GET: 9697 case ND_SET: 9698 /* 9699 * Use of the nd table requires holding the reader lock. 9700 * Modifying the nd table thru nd_load/nd_unload requires 9701 * the writer lock. 9702 */ 9703 rw_enter(&ip_g_nd_lock, RW_READER); 9704 if (nd_getset(q, ip_g_nd, mp)) { 9705 rw_exit(&ip_g_nd_lock); 9706 9707 if (iocp->ioc_error) 9708 iocp->ioc_count = 0; 9709 mp->b_datap->db_type = M_IOCACK; 9710 qreply(q, mp); 9711 return; 9712 } 9713 rw_exit(&ip_g_nd_lock); 9714 /* 9715 * We don't understand this subioctl of ND_GET / ND_SET. 9716 * Maybe intended for some driver / module below us 9717 */ 9718 if (q->q_next) { 9719 putnext(q, mp); 9720 } else { 9721 iocp->ioc_error = ENOENT; 9722 mp->b_datap->db_type = M_IOCNAK; 9723 iocp->ioc_count = 0; 9724 qreply(q, mp); 9725 } 9726 return; 9727 9728 case IP_IOCTL: 9729 ip_wput_ioctl(q, mp); 9730 return; 9731 default: 9732 cmn_err(CE_PANIC, "should not happen "); 9733 } 9734 nak: 9735 if (mp->b_cont != NULL) { 9736 freemsg(mp->b_cont); 9737 mp->b_cont = NULL; 9738 } 9739 iocp->ioc_error = EINVAL; 9740 mp->b_datap->db_type = M_IOCNAK; 9741 iocp->ioc_count = 0; 9742 qreply(q, mp); 9743 } 9744 9745 /* ip_wput hands off ARP IOCTL responses to us */ 9746 void 9747 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9748 { 9749 struct arpreq *ar; 9750 struct xarpreq *xar; 9751 area_t *area; 9752 mblk_t *area_mp; 9753 struct iocblk *iocp; 9754 mblk_t *orig_ioc_mp, *tmp; 9755 struct iocblk *orig_iocp; 9756 ill_t *ill; 9757 conn_t *connp = NULL; 9758 uint_t ioc_id; 9759 mblk_t *pending_mp; 9760 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9761 int *flagsp; 9762 char *storage = NULL; 9763 sin_t *sin; 9764 ipaddr_t addr; 9765 int err; 9766 9767 ill = q->q_ptr; 9768 ASSERT(ill != NULL); 9769 9770 /* 9771 * We should get back from ARP a packet chain that looks like: 9772 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9773 */ 9774 if (!(area_mp = mp->b_cont) || 9775 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9776 !(orig_ioc_mp = area_mp->b_cont) || 9777 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9778 freemsg(mp); 9779 return; 9780 } 9781 9782 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9783 9784 tmp = (orig_ioc_mp->b_cont)->b_cont; 9785 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9786 (orig_iocp->ioc_cmd == SIOCSXARP) || 9787 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9788 x_arp_ioctl = B_TRUE; 9789 xar = (struct xarpreq *)tmp->b_rptr; 9790 sin = (sin_t *)&xar->xarp_pa; 9791 flagsp = &xar->xarp_flags; 9792 storage = xar->xarp_ha.sdl_data; 9793 if (xar->xarp_ha.sdl_nlen != 0) 9794 ifx_arp_ioctl = B_TRUE; 9795 } else { 9796 ar = (struct arpreq *)tmp->b_rptr; 9797 sin = (sin_t *)&ar->arp_pa; 9798 flagsp = &ar->arp_flags; 9799 storage = ar->arp_ha.sa_data; 9800 } 9801 9802 iocp = (struct iocblk *)mp->b_rptr; 9803 9804 /* 9805 * Pick out the originating queue based on the ioc_id. 9806 */ 9807 ioc_id = iocp->ioc_id; 9808 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9809 if (pending_mp == NULL) { 9810 ASSERT(connp == NULL); 9811 inet_freemsg(mp); 9812 return; 9813 } 9814 ASSERT(connp != NULL); 9815 q = CONNP_TO_WQ(connp); 9816 9817 /* Uncouple the internally generated IOCTL from the original one */ 9818 area = (area_t *)area_mp->b_rptr; 9819 area_mp->b_cont = NULL; 9820 9821 /* 9822 * Restore the b_next and b_prev used by mi code. This is needed 9823 * to complete the ioctl using mi* functions. We stored them in 9824 * the pending mp prior to sending the request to ARP. 9825 */ 9826 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9827 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9828 inet_freemsg(pending_mp); 9829 9830 /* 9831 * We're done if there was an error or if this is not an SIOCG{X}ARP 9832 * Catch the case where there is an IRE_CACHE by no entry in the 9833 * arp table. 9834 */ 9835 addr = sin->sin_addr.s_addr; 9836 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9837 ire_t *ire; 9838 dl_unitdata_req_t *dlup; 9839 mblk_t *llmp; 9840 int addr_len; 9841 ill_t *ipsqill = NULL; 9842 9843 if (ifx_arp_ioctl) { 9844 /* 9845 * There's no need to lookup the ill, since 9846 * we've already done that when we started 9847 * processing the ioctl and sent the message 9848 * to ARP on that ill. So use the ill that 9849 * is stored in q->q_ptr. 9850 */ 9851 ipsqill = ill; 9852 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9853 ipsqill->ill_ipif, ALL_ZONES, 9854 MATCH_IRE_TYPE | MATCH_IRE_ILL); 9855 } else { 9856 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9857 NULL, ALL_ZONES, MATCH_IRE_TYPE); 9858 if (ire != NULL) 9859 ipsqill = ire_to_ill(ire); 9860 } 9861 9862 if ((x_arp_ioctl) && (ipsqill != NULL)) 9863 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9864 9865 if (ire != NULL) { 9866 *flagsp = ATF_INUSE; 9867 llmp = ire->ire_dlureq_mp; 9868 if (llmp != NULL && ipsqill != NULL) { 9869 uchar_t *macaddr; 9870 9871 addr_len = ipsqill->ill_phys_addr_length; 9872 if (x_arp_ioctl && ((addr_len + 9873 ipsqill->ill_name_length) > 9874 sizeof (xar->xarp_ha.sdl_data))) { 9875 ire_refrele(ire); 9876 freemsg(mp); 9877 ip_ioctl_finish(q, orig_ioc_mp, 9878 EINVAL, NO_COPYOUT, NULL, NULL); 9879 return; 9880 } 9881 *flagsp |= ATF_COM; 9882 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9883 if (ipsqill->ill_sap_length < 0) 9884 macaddr = llmp->b_rptr + 9885 dlup->dl_dest_addr_offset; 9886 else 9887 macaddr = llmp->b_rptr + 9888 dlup->dl_dest_addr_offset + 9889 ipsqill->ill_sap_length; 9890 /* 9891 * For SIOCGARP, MAC address length 9892 * validation has already been done 9893 * before the ioctl was issued to ARP to 9894 * allow it to progress only on 6 byte 9895 * addressable (ethernet like) media. Thus 9896 * the mac address copying can not overwrite 9897 * the sa_data area below. 9898 */ 9899 bcopy(macaddr, storage, addr_len); 9900 } 9901 /* Ditch the internal IOCTL. */ 9902 freemsg(mp); 9903 ire_refrele(ire); 9904 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9905 return; 9906 } 9907 } 9908 9909 /* 9910 * Delete the coresponding IRE_CACHE if any. 9911 * Reset the error if there was one (in case there was no entry 9912 * in arp.) 9913 */ 9914 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9915 ipif_t *ipintf = NULL; 9916 9917 if (ifx_arp_ioctl) { 9918 /* 9919 * There's no need to lookup the ill, since 9920 * we've already done that when we started 9921 * processing the ioctl and sent the message 9922 * to ARP on that ill. So use the ill that 9923 * is stored in q->q_ptr. 9924 */ 9925 ipintf = ill->ill_ipif; 9926 } 9927 if (ip_ire_clookup_and_delete(addr, ipintf)) { 9928 /* 9929 * The address in "addr" may be an entry for a 9930 * router. If that's true, then any off-net 9931 * IRE_CACHE entries that go through the router 9932 * with address "addr" must be clobbered. Use 9933 * ire_walk to achieve this goal. 9934 */ 9935 if (ifx_arp_ioctl) 9936 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 9937 ire_delete_cache_gw, (char *)&addr, ill); 9938 else 9939 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 9940 ALL_ZONES); 9941 iocp->ioc_error = 0; 9942 } 9943 } 9944 9945 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 9946 err = iocp->ioc_error; 9947 freemsg(mp); 9948 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 9949 return; 9950 } 9951 9952 /* 9953 * Completion of an SIOCG{X}ARP. Translate the information from 9954 * the area_t into the struct {x}arpreq. 9955 */ 9956 if (x_arp_ioctl) { 9957 storage += ill_xarp_info(&xar->xarp_ha, ill); 9958 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9959 sizeof (xar->xarp_ha.sdl_data)) { 9960 freemsg(mp); 9961 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 9962 NO_COPYOUT, NULL, NULL); 9963 return; 9964 } 9965 } 9966 *flagsp = ATF_INUSE; 9967 if (area->area_flags & ACE_F_PERMANENT) 9968 *flagsp |= ATF_PERM; 9969 if (area->area_flags & ACE_F_PUBLISH) 9970 *flagsp |= ATF_PUBL; 9971 if (area->area_hw_addr_length != 0) { 9972 *flagsp |= ATF_COM; 9973 /* 9974 * For SIOCGARP, MAC address length validation has 9975 * already been done before the ioctl was issued to ARP 9976 * to allow it to progress only on 6 byte addressable 9977 * (ethernet like) media. Thus the mac address copying 9978 * can not overwrite the sa_data area below. 9979 */ 9980 bcopy((char *)area + area->area_hw_addr_offset, 9981 storage, area->area_hw_addr_length); 9982 } 9983 9984 /* Ditch the internal IOCTL. */ 9985 freemsg(mp); 9986 /* Complete the original. */ 9987 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9988 } 9989 9990 /* 9991 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9992 * interface) create the next available logical interface for this 9993 * physical interface. 9994 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9995 * ipif with the specified name. 9996 * 9997 * If the address family is not AF_UNSPEC then set the address as well. 9998 * 9999 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10000 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10001 * 10002 * Executed as a writer on the ill or ill group. 10003 * So no lock is needed to traverse the ipif chain, or examine the 10004 * phyint flags. 10005 */ 10006 /* ARGSUSED */ 10007 int 10008 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10009 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10010 { 10011 mblk_t *mp1; 10012 struct lifreq *lifr; 10013 boolean_t isv6; 10014 boolean_t exists; 10015 char *name; 10016 char *endp; 10017 char *cp; 10018 int namelen; 10019 ipif_t *ipif; 10020 long id; 10021 ipsq_t *ipsq; 10022 ill_t *ill; 10023 sin_t *sin; 10024 int err = 0; 10025 boolean_t found_sep = B_FALSE; 10026 conn_t *connp; 10027 zoneid_t zoneid; 10028 int orig_ifindex = 0; 10029 10030 ip1dbg(("ip_sioctl_addif\n")); 10031 /* Existence of mp1 has been checked in ip_wput_nondata */ 10032 mp1 = mp->b_cont->b_cont; 10033 /* 10034 * Null terminate the string to protect against buffer 10035 * overrun. String was generated by user code and may not 10036 * be trusted. 10037 */ 10038 lifr = (struct lifreq *)mp1->b_rptr; 10039 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10040 name = lifr->lifr_name; 10041 ASSERT(CONN_Q(q)); 10042 connp = Q_TO_CONN(q); 10043 isv6 = connp->conn_af_isv6; 10044 zoneid = connp->conn_zoneid; 10045 namelen = mi_strlen(name); 10046 if (namelen == 0) 10047 return (EINVAL); 10048 10049 exists = B_FALSE; 10050 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10051 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10052 /* 10053 * Allow creating lo0 using SIOCLIFADDIF. 10054 * can't be any other writer thread. So can pass null below 10055 * for the last 4 args to ipif_lookup_name. 10056 */ 10057 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10058 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10059 /* Prevent any further action */ 10060 if (ipif == NULL) { 10061 return (ENOBUFS); 10062 } else if (!exists) { 10063 /* We created the ipif now and as writer */ 10064 ipif_refrele(ipif); 10065 return (0); 10066 } else { 10067 ill = ipif->ipif_ill; 10068 ill_refhold(ill); 10069 ipif_refrele(ipif); 10070 } 10071 } else { 10072 /* Look for a colon in the name. */ 10073 endp = &name[namelen]; 10074 for (cp = endp; --cp > name; ) { 10075 if (*cp == IPIF_SEPARATOR_CHAR) { 10076 found_sep = B_TRUE; 10077 /* 10078 * Reject any non-decimal aliases for plumbing 10079 * of logical interfaces. Aliases with leading 10080 * zeroes are also rejected as they introduce 10081 * ambiguity in the naming of the interfaces. 10082 * Comparing with "0" takes care of all such 10083 * cases. 10084 */ 10085 if ((strncmp("0", cp+1, 1)) == 0) 10086 return (EINVAL); 10087 10088 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10089 id <= 0 || *endp != '\0') { 10090 return (EINVAL); 10091 } 10092 *cp = '\0'; 10093 break; 10094 } 10095 } 10096 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10097 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10098 if (found_sep) 10099 *cp = IPIF_SEPARATOR_CHAR; 10100 if (ill == NULL) 10101 return (err); 10102 } 10103 10104 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10105 B_TRUE); 10106 10107 /* 10108 * Release the refhold due to the lookup, now that we are excl 10109 * or we are just returning 10110 */ 10111 ill_refrele(ill); 10112 10113 if (ipsq == NULL) 10114 return (EINPROGRESS); 10115 10116 /* 10117 * If the interface is failed, inactive or offlined, look for a working 10118 * interface in the ill group and create the ipif there. If we can't 10119 * find a good interface, create the ipif anyway so that in.mpathd can 10120 * move it to the first repaired interface. 10121 */ 10122 if ((ill->ill_phyint->phyint_flags & 10123 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10124 ill->ill_phyint->phyint_groupname_len != 0) { 10125 phyint_t *phyi; 10126 char *groupname = ill->ill_phyint->phyint_groupname; 10127 10128 /* 10129 * We're looking for a working interface, but it doesn't matter 10130 * if it's up or down; so instead of following the group lists, 10131 * we look at each physical interface and compare the groupname. 10132 * We're only interested in interfaces with IPv4 (resp. IPv6) 10133 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10134 * Otherwise we create the ipif on the failed interface. 10135 */ 10136 rw_enter(&ill_g_lock, RW_READER); 10137 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10138 for (; phyi != NULL; 10139 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10140 phyi, AVL_AFTER)) { 10141 if (phyi->phyint_groupname_len == 0) 10142 continue; 10143 ASSERT(phyi->phyint_groupname != NULL); 10144 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10145 !(phyi->phyint_flags & 10146 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10147 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10148 (phyi->phyint_illv4 != NULL))) { 10149 break; 10150 } 10151 } 10152 rw_exit(&ill_g_lock); 10153 10154 if (phyi != NULL) { 10155 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10156 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10157 phyi->phyint_illv4); 10158 } 10159 } 10160 10161 /* 10162 * We are now exclusive on the ipsq, so an ill move will be serialized 10163 * before or after us. 10164 */ 10165 ASSERT(IAM_WRITER_ILL(ill)); 10166 ASSERT(ill->ill_move_in_progress == B_FALSE); 10167 10168 if (found_sep && orig_ifindex == 0) { 10169 /* Now see if there is an IPIF with this unit number. */ 10170 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10171 if (ipif->ipif_id == id) { 10172 err = EEXIST; 10173 goto done; 10174 } 10175 } 10176 } 10177 10178 /* 10179 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10180 * of lo0. We never come here when we plumb lo0:0. It 10181 * happens in ipif_lookup_on_name. 10182 * The specified unit number is ignored when we create the ipif on a 10183 * different interface. However, we save it in ipif_orig_ipifid below so 10184 * that the ipif fails back to the right position. 10185 */ 10186 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10187 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10188 err = ENOBUFS; 10189 goto done; 10190 } 10191 10192 /* Return created name with ioctl */ 10193 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10194 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10195 ip1dbg(("created %s\n", lifr->lifr_name)); 10196 10197 /* Set address */ 10198 sin = (sin_t *)&lifr->lifr_addr; 10199 if (sin->sin_family != AF_UNSPEC) { 10200 err = ip_sioctl_addr(ipif, sin, q, mp, 10201 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10202 } 10203 10204 /* Set ifindex and unit number for failback */ 10205 if (err == 0 && orig_ifindex != 0) { 10206 ipif->ipif_orig_ifindex = orig_ifindex; 10207 if (found_sep) { 10208 ipif->ipif_orig_ipifid = id; 10209 } 10210 } 10211 10212 done: 10213 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10214 return (err); 10215 } 10216 10217 /* 10218 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10219 * interface) delete it based on the IP address (on this physical interface). 10220 * Otherwise delete it based on the ipif_id. 10221 * Also, special handling to allow a removeif of lo0. 10222 */ 10223 /* ARGSUSED */ 10224 int 10225 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10226 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10227 { 10228 conn_t *connp; 10229 ill_t *ill = ipif->ipif_ill; 10230 boolean_t success; 10231 10232 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10233 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10234 ASSERT(IAM_WRITER_IPIF(ipif)); 10235 10236 connp = Q_TO_CONN(q); 10237 /* 10238 * Special case for unplumbing lo0 (the loopback physical interface). 10239 * If unplumbing lo0, the incoming address structure has been 10240 * initialized to all zeros. When unplumbing lo0, all its logical 10241 * interfaces must be removed too. 10242 * 10243 * Note that this interface may be called to remove a specific 10244 * loopback logical interface (eg, lo0:1). But in that case 10245 * ipif->ipif_id != 0 so that the code path for that case is the 10246 * same as any other interface (meaning it skips the code directly 10247 * below). 10248 */ 10249 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10250 if (sin->sin_family == AF_UNSPEC && 10251 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10252 /* 10253 * Mark it condemned. No new ref. will be made to ill. 10254 */ 10255 mutex_enter(&ill->ill_lock); 10256 ill->ill_state_flags |= ILL_CONDEMNED; 10257 for (ipif = ill->ill_ipif; ipif != NULL; 10258 ipif = ipif->ipif_next) { 10259 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10260 } 10261 mutex_exit(&ill->ill_lock); 10262 10263 ipif = ill->ill_ipif; 10264 /* unplumb the loopback interface */ 10265 ill_delete(ill); 10266 mutex_enter(&connp->conn_lock); 10267 mutex_enter(&ill->ill_lock); 10268 ASSERT(ill->ill_group == NULL); 10269 10270 /* Are any references to this ill active */ 10271 if (ill_is_quiescent(ill)) { 10272 mutex_exit(&ill->ill_lock); 10273 mutex_exit(&connp->conn_lock); 10274 ill_delete_tail(ill); 10275 mi_free(ill); 10276 return (0); 10277 } 10278 success = ipsq_pending_mp_add(connp, ipif, 10279 CONNP_TO_WQ(connp), mp, ILL_FREE); 10280 mutex_exit(&connp->conn_lock); 10281 mutex_exit(&ill->ill_lock); 10282 if (success) 10283 return (EINPROGRESS); 10284 else 10285 return (EINTR); 10286 } 10287 } 10288 10289 /* 10290 * We are exclusive on the ipsq, so an ill move will be serialized 10291 * before or after us. 10292 */ 10293 ASSERT(ill->ill_move_in_progress == B_FALSE); 10294 10295 if (ipif->ipif_id == 0) { 10296 /* Find based on address */ 10297 if (ipif->ipif_isv6) { 10298 sin6_t *sin6; 10299 10300 if (sin->sin_family != AF_INET6) 10301 return (EAFNOSUPPORT); 10302 10303 sin6 = (sin6_t *)sin; 10304 /* We are a writer, so we should be able to lookup */ 10305 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10306 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10307 if (ipif == NULL) { 10308 /* 10309 * Maybe the address in on another interface in 10310 * the same IPMP group? We check this below. 10311 */ 10312 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10313 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10314 } 10315 } else { 10316 ipaddr_t addr; 10317 10318 if (sin->sin_family != AF_INET) 10319 return (EAFNOSUPPORT); 10320 10321 addr = sin->sin_addr.s_addr; 10322 /* We are a writer, so we should be able to lookup */ 10323 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10324 NULL, NULL, NULL); 10325 if (ipif == NULL) { 10326 /* 10327 * Maybe the address in on another interface in 10328 * the same IPMP group? We check this below. 10329 */ 10330 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10331 NULL, NULL, NULL, NULL); 10332 } 10333 } 10334 if (ipif == NULL) { 10335 return (EADDRNOTAVAIL); 10336 } 10337 /* 10338 * When the address to be removed is hosted on a different 10339 * interface, we check if the interface is in the same IPMP 10340 * group as the specified one; if so we proceed with the 10341 * removal. 10342 * ill->ill_group is NULL when the ill is down, so we have to 10343 * compare the group names instead. 10344 */ 10345 if (ipif->ipif_ill != ill && 10346 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10347 ill->ill_phyint->phyint_groupname_len == 0 || 10348 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10349 ill->ill_phyint->phyint_groupname) != 0)) { 10350 ipif_refrele(ipif); 10351 return (EADDRNOTAVAIL); 10352 } 10353 10354 /* This is a writer */ 10355 ipif_refrele(ipif); 10356 } 10357 10358 /* 10359 * Can not delete instance zero since it is tied to the ill. 10360 */ 10361 if (ipif->ipif_id == 0) 10362 return (EBUSY); 10363 10364 mutex_enter(&ill->ill_lock); 10365 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10366 mutex_exit(&ill->ill_lock); 10367 10368 ipif_free(ipif); 10369 10370 mutex_enter(&connp->conn_lock); 10371 mutex_enter(&ill->ill_lock); 10372 10373 /* Are any references to this ipif active */ 10374 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10375 mutex_exit(&ill->ill_lock); 10376 mutex_exit(&connp->conn_lock); 10377 ipif_down_tail(ipif); 10378 ipif_free_tail(ipif); 10379 return (0); 10380 } 10381 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10382 IPIF_FREE); 10383 mutex_exit(&ill->ill_lock); 10384 mutex_exit(&connp->conn_lock); 10385 if (success) 10386 return (EINPROGRESS); 10387 else 10388 return (EINTR); 10389 } 10390 10391 /* 10392 * Restart the removeif ioctl. The refcnt has gone down to 0. 10393 * The ipif is already condemned. So can't find it thru lookups. 10394 */ 10395 /* ARGSUSED */ 10396 int 10397 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10398 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10399 { 10400 ill_t *ill; 10401 10402 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10403 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10404 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10405 ill = ipif->ipif_ill; 10406 ASSERT(IAM_WRITER_ILL(ill)); 10407 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10408 (ill->ill_state_flags & IPIF_CONDEMNED)); 10409 ill_delete_tail(ill); 10410 mi_free(ill); 10411 return (0); 10412 } 10413 10414 ill = ipif->ipif_ill; 10415 ASSERT(IAM_WRITER_IPIF(ipif)); 10416 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10417 10418 ipif_down_tail(ipif); 10419 ipif_free_tail(ipif); 10420 10421 ILL_UNMARK_CHANGING(ill); 10422 return (0); 10423 } 10424 10425 /* 10426 * Set the local interface address. 10427 * Allow an address of all zero when the interface is down. 10428 */ 10429 /* ARGSUSED */ 10430 int 10431 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10432 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10433 { 10434 int err = 0; 10435 in6_addr_t v6addr; 10436 boolean_t need_up = B_FALSE; 10437 10438 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10440 10441 ASSERT(IAM_WRITER_IPIF(ipif)); 10442 10443 if (ipif->ipif_isv6) { 10444 sin6_t *sin6; 10445 ill_t *ill; 10446 phyint_t *phyi; 10447 10448 if (sin->sin_family != AF_INET6) 10449 return (EAFNOSUPPORT); 10450 10451 sin6 = (sin6_t *)sin; 10452 v6addr = sin6->sin6_addr; 10453 ill = ipif->ipif_ill; 10454 phyi = ill->ill_phyint; 10455 10456 /* 10457 * Enforce that true multicast interfaces have a link-local 10458 * address for logical unit 0. 10459 */ 10460 if (ipif->ipif_id == 0 && 10461 (ill->ill_flags & ILLF_MULTICAST) && 10462 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10463 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10464 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10465 return (EADDRNOTAVAIL); 10466 } 10467 10468 /* 10469 * up interfaces shouldn't have the unspecified address 10470 * unless they also have the IPIF_NOLOCAL flags set and 10471 * have a subnet assigned. 10472 */ 10473 if ((ipif->ipif_flags & IPIF_UP) && 10474 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10475 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10476 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10477 return (EADDRNOTAVAIL); 10478 } 10479 10480 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10481 return (EADDRNOTAVAIL); 10482 } else { 10483 ipaddr_t addr; 10484 10485 if (sin->sin_family != AF_INET) 10486 return (EAFNOSUPPORT); 10487 10488 addr = sin->sin_addr.s_addr; 10489 10490 /* Allow 0 as the local address. */ 10491 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10492 return (EADDRNOTAVAIL); 10493 10494 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10495 } 10496 10497 10498 /* 10499 * Even if there is no change we redo things just to rerun 10500 * ipif_set_default. 10501 */ 10502 if (ipif->ipif_flags & IPIF_UP) { 10503 /* 10504 * Setting a new local address, make sure 10505 * we have net and subnet bcast ire's for 10506 * the old address if we need them. 10507 */ 10508 if (!ipif->ipif_isv6) 10509 ipif_check_bcast_ires(ipif); 10510 /* 10511 * If the interface is already marked up, 10512 * we call ipif_down which will take care 10513 * of ditching any IREs that have been set 10514 * up based on the old interface address. 10515 */ 10516 err = ipif_logical_down(ipif, q, mp); 10517 if (err == EINPROGRESS) 10518 return (err); 10519 ipif_down_tail(ipif); 10520 need_up = 1; 10521 } 10522 10523 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10524 return (err); 10525 } 10526 10527 int 10528 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10529 boolean_t need_up) 10530 { 10531 in6_addr_t v6addr; 10532 ipaddr_t addr; 10533 sin6_t *sin6; 10534 int err = 0; 10535 10536 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10537 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10538 ASSERT(IAM_WRITER_IPIF(ipif)); 10539 if (ipif->ipif_isv6) { 10540 sin6 = (sin6_t *)sin; 10541 v6addr = sin6->sin6_addr; 10542 } else { 10543 addr = sin->sin_addr.s_addr; 10544 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10545 } 10546 mutex_enter(&ipif->ipif_ill->ill_lock); 10547 ipif->ipif_v6lcl_addr = v6addr; 10548 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10549 ipif->ipif_v6src_addr = ipv6_all_zeros; 10550 } else { 10551 ipif->ipif_v6src_addr = v6addr; 10552 } 10553 10554 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10555 (!ipif->ipif_ill->ill_is_6to4tun)) { 10556 queue_t *wqp = ipif->ipif_ill->ill_wq; 10557 10558 /* 10559 * The local address of this interface is a 6to4 address, 10560 * check if this interface is in fact a 6to4 tunnel or just 10561 * an interface configured with a 6to4 address. We are only 10562 * interested in the former. 10563 */ 10564 if (wqp != NULL) { 10565 while ((wqp->q_next != NULL) && 10566 (wqp->q_next->q_qinfo != NULL) && 10567 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10568 10569 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10570 == TUN6TO4_MODID) { 10571 /* set for use in IP */ 10572 ipif->ipif_ill->ill_is_6to4tun = 1; 10573 break; 10574 } 10575 wqp = wqp->q_next; 10576 } 10577 } 10578 } 10579 10580 ipif_set_default(ipif); 10581 mutex_exit(&ipif->ipif_ill->ill_lock); 10582 10583 if (need_up) { 10584 /* 10585 * Now bring the interface back up. If this 10586 * is the only IPIF for the ILL, ipif_up 10587 * will have to re-bind to the device, so 10588 * we may get back EINPROGRESS, in which 10589 * case, this IOCTL will get completed in 10590 * ip_rput_dlpi when we see the DL_BIND_ACK. 10591 */ 10592 err = ipif_up(ipif, q, mp); 10593 } else { 10594 /* 10595 * Update the IPIF list in SCTP, ipif_up_done() will do it 10596 * if need_up is true. 10597 */ 10598 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10599 } 10600 10601 return (err); 10602 } 10603 10604 10605 /* 10606 * Restart entry point to restart the address set operation after the 10607 * refcounts have dropped to zero. 10608 */ 10609 /* ARGSUSED */ 10610 int 10611 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10612 ip_ioctl_cmd_t *ipip, void *ifreq) 10613 { 10614 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10615 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10616 ASSERT(IAM_WRITER_IPIF(ipif)); 10617 ipif_down_tail(ipif); 10618 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10619 } 10620 10621 /* ARGSUSED */ 10622 int 10623 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10624 ip_ioctl_cmd_t *ipip, void *if_req) 10625 { 10626 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10627 struct lifreq *lifr = (struct lifreq *)if_req; 10628 10629 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10630 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10631 /* 10632 * The net mask and address can't change since we have a 10633 * reference to the ipif. So no lock is necessary. 10634 */ 10635 if (ipif->ipif_isv6) { 10636 *sin6 = sin6_null; 10637 sin6->sin6_family = AF_INET6; 10638 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10639 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10640 lifr->lifr_addrlen = 10641 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10642 } else { 10643 *sin = sin_null; 10644 sin->sin_family = AF_INET; 10645 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10646 if (ipip->ipi_cmd_type == LIF_CMD) { 10647 lifr->lifr_addrlen = 10648 ip_mask_to_plen(ipif->ipif_net_mask); 10649 } 10650 } 10651 return (0); 10652 } 10653 10654 /* 10655 * Set the destination address for a pt-pt interface. 10656 */ 10657 /* ARGSUSED */ 10658 int 10659 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10660 ip_ioctl_cmd_t *ipip, void *if_req) 10661 { 10662 int err = 0; 10663 in6_addr_t v6addr; 10664 boolean_t need_up = B_FALSE; 10665 10666 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10668 ASSERT(IAM_WRITER_IPIF(ipif)); 10669 10670 if (ipif->ipif_isv6) { 10671 sin6_t *sin6; 10672 10673 if (sin->sin_family != AF_INET6) 10674 return (EAFNOSUPPORT); 10675 10676 sin6 = (sin6_t *)sin; 10677 v6addr = sin6->sin6_addr; 10678 10679 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10680 return (EADDRNOTAVAIL); 10681 } else { 10682 ipaddr_t addr; 10683 10684 if (sin->sin_family != AF_INET) 10685 return (EAFNOSUPPORT); 10686 10687 addr = sin->sin_addr.s_addr; 10688 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10689 return (EADDRNOTAVAIL); 10690 10691 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10692 } 10693 10694 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10695 return (0); /* No change */ 10696 10697 if (ipif->ipif_flags & IPIF_UP) { 10698 /* 10699 * If the interface is already marked up, 10700 * we call ipif_down which will take care 10701 * of ditching any IREs that have been set 10702 * up based on the old pp dst address. 10703 */ 10704 err = ipif_logical_down(ipif, q, mp); 10705 if (err == EINPROGRESS) 10706 return (err); 10707 ipif_down_tail(ipif); 10708 need_up = B_TRUE; 10709 } 10710 /* 10711 * could return EINPROGRESS. If so ioctl will complete in 10712 * ip_rput_dlpi_writer 10713 */ 10714 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10715 return (err); 10716 } 10717 10718 static int 10719 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10720 boolean_t need_up) 10721 { 10722 in6_addr_t v6addr; 10723 ill_t *ill = ipif->ipif_ill; 10724 int err = 0; 10725 10726 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10727 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10728 if (ipif->ipif_isv6) { 10729 sin6_t *sin6; 10730 10731 sin6 = (sin6_t *)sin; 10732 v6addr = sin6->sin6_addr; 10733 } else { 10734 ipaddr_t addr; 10735 10736 addr = sin->sin_addr.s_addr; 10737 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10738 } 10739 mutex_enter(&ill->ill_lock); 10740 /* Set point to point destination address. */ 10741 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10742 /* 10743 * Allow this as a means of creating logical 10744 * pt-pt interfaces on top of e.g. an Ethernet. 10745 * XXX Undocumented HACK for testing. 10746 * pt-pt interfaces are created with NUD disabled. 10747 */ 10748 ipif->ipif_flags |= IPIF_POINTOPOINT; 10749 ipif->ipif_flags &= ~IPIF_BROADCAST; 10750 if (ipif->ipif_isv6) 10751 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10752 } 10753 10754 /* Set the new address. */ 10755 ipif->ipif_v6pp_dst_addr = v6addr; 10756 /* Make sure subnet tracks pp_dst */ 10757 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10758 mutex_exit(&ill->ill_lock); 10759 10760 if (need_up) { 10761 /* 10762 * Now bring the interface back up. If this 10763 * is the only IPIF for the ILL, ipif_up 10764 * will have to re-bind to the device, so 10765 * we may get back EINPROGRESS, in which 10766 * case, this IOCTL will get completed in 10767 * ip_rput_dlpi when we see the DL_BIND_ACK. 10768 */ 10769 err = ipif_up(ipif, q, mp); 10770 } 10771 return (err); 10772 } 10773 10774 /* 10775 * Restart entry point to restart the dstaddress set operation after the 10776 * refcounts have dropped to zero. 10777 */ 10778 /* ARGSUSED */ 10779 int 10780 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10781 ip_ioctl_cmd_t *ipip, void *ifreq) 10782 { 10783 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10784 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10785 ipif_down_tail(ipif); 10786 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10787 } 10788 10789 /* ARGSUSED */ 10790 int 10791 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10792 ip_ioctl_cmd_t *ipip, void *if_req) 10793 { 10794 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10795 10796 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10797 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10798 /* 10799 * Get point to point destination address. The addresses can't 10800 * change since we hold a reference to the ipif. 10801 */ 10802 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10803 return (EADDRNOTAVAIL); 10804 10805 if (ipif->ipif_isv6) { 10806 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10807 *sin6 = sin6_null; 10808 sin6->sin6_family = AF_INET6; 10809 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10810 } else { 10811 *sin = sin_null; 10812 sin->sin_family = AF_INET; 10813 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10814 } 10815 return (0); 10816 } 10817 10818 /* 10819 * part of ipmp, make this func return the active/inactive state and 10820 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10821 */ 10822 /* 10823 * This function either sets or clears the IFF_INACTIVE flag. 10824 * 10825 * As long as there are some addresses or multicast memberships on the 10826 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10827 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10828 * will be used for outbound packets. 10829 * 10830 * Caller needs to verify the validity of setting IFF_INACTIVE. 10831 */ 10832 static void 10833 phyint_inactive(phyint_t *phyi) 10834 { 10835 ill_t *ill_v4; 10836 ill_t *ill_v6; 10837 ipif_t *ipif; 10838 ilm_t *ilm; 10839 10840 ill_v4 = phyi->phyint_illv4; 10841 ill_v6 = phyi->phyint_illv6; 10842 10843 /* 10844 * No need for a lock while traversing the list since iam 10845 * a writer 10846 */ 10847 if (ill_v4 != NULL) { 10848 ASSERT(IAM_WRITER_ILL(ill_v4)); 10849 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10850 ipif = ipif->ipif_next) { 10851 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10852 mutex_enter(&phyi->phyint_lock); 10853 phyi->phyint_flags &= ~PHYI_INACTIVE; 10854 mutex_exit(&phyi->phyint_lock); 10855 return; 10856 } 10857 } 10858 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10859 ilm = ilm->ilm_next) { 10860 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10861 mutex_enter(&phyi->phyint_lock); 10862 phyi->phyint_flags &= ~PHYI_INACTIVE; 10863 mutex_exit(&phyi->phyint_lock); 10864 return; 10865 } 10866 } 10867 } 10868 if (ill_v6 != NULL) { 10869 ill_v6 = phyi->phyint_illv6; 10870 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10871 ipif = ipif->ipif_next) { 10872 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10873 mutex_enter(&phyi->phyint_lock); 10874 phyi->phyint_flags &= ~PHYI_INACTIVE; 10875 mutex_exit(&phyi->phyint_lock); 10876 return; 10877 } 10878 } 10879 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10880 ilm = ilm->ilm_next) { 10881 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10882 mutex_enter(&phyi->phyint_lock); 10883 phyi->phyint_flags &= ~PHYI_INACTIVE; 10884 mutex_exit(&phyi->phyint_lock); 10885 return; 10886 } 10887 } 10888 } 10889 mutex_enter(&phyi->phyint_lock); 10890 phyi->phyint_flags |= PHYI_INACTIVE; 10891 mutex_exit(&phyi->phyint_lock); 10892 } 10893 10894 /* 10895 * This function is called only when the phyint flags change. Currently 10896 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10897 * that we can select a good ill. 10898 */ 10899 static void 10900 ip_redo_nomination(phyint_t *phyi) 10901 { 10902 ill_t *ill_v4; 10903 10904 ill_v4 = phyi->phyint_illv4; 10905 10906 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10907 ASSERT(IAM_WRITER_ILL(ill_v4)); 10908 if (ill_v4->ill_group->illgrp_ill_count > 1) 10909 ill_nominate_bcast_rcv(ill_v4->ill_group); 10910 } 10911 } 10912 10913 /* 10914 * Heuristic to check if ill is INACTIVE. 10915 * Checks if ill has an ipif with an usable ip address. 10916 * 10917 * Return values: 10918 * B_TRUE - ill is INACTIVE; has no usable ipif 10919 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 10920 */ 10921 static boolean_t 10922 ill_is_inactive(ill_t *ill) 10923 { 10924 ipif_t *ipif; 10925 10926 /* Check whether it is in an IPMP group */ 10927 if (ill->ill_phyint->phyint_groupname == NULL) 10928 return (B_FALSE); 10929 10930 if (ill->ill_ipif_up_count == 0) 10931 return (B_TRUE); 10932 10933 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 10934 uint64_t flags = ipif->ipif_flags; 10935 10936 /* 10937 * This ipif is usable if it is IPIF_UP and not a 10938 * dedicated test address. A dedicated test address 10939 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 10940 * (note in particular that V6 test addresses are 10941 * link-local data addresses and thus are marked 10942 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 10943 */ 10944 if ((flags & IPIF_UP) && 10945 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 10946 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 10947 return (B_FALSE); 10948 } 10949 return (B_TRUE); 10950 } 10951 10952 /* 10953 * Set interface flags. 10954 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 10955 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 10956 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 10957 * 10958 * NOTE : We really don't enforce that ipif_id zero should be used 10959 * for setting any flags other than IFF_LOGINT_FLAGS. This 10960 * is because applications generally does SICGLIFFLAGS and 10961 * ORs in the new flags (that affects the logical) and does a 10962 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10963 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10964 * flags that will be turned on is correct with respect to 10965 * ipif_id 0. For backward compatibility reasons, it is not done. 10966 */ 10967 /* ARGSUSED */ 10968 int 10969 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10970 ip_ioctl_cmd_t *ipip, void *if_req) 10971 { 10972 uint64_t turn_on; 10973 uint64_t turn_off; 10974 int err; 10975 boolean_t need_up = B_FALSE; 10976 phyint_t *phyi; 10977 ill_t *ill; 10978 uint64_t intf_flags; 10979 boolean_t phyint_flags_modified = B_FALSE; 10980 uint64_t flags; 10981 struct ifreq *ifr; 10982 struct lifreq *lifr; 10983 boolean_t set_linklocal = B_FALSE; 10984 boolean_t zero_source = B_FALSE; 10985 10986 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10987 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10988 10989 ASSERT(IAM_WRITER_IPIF(ipif)); 10990 10991 ill = ipif->ipif_ill; 10992 phyi = ill->ill_phyint; 10993 10994 if (ipip->ipi_cmd_type == IF_CMD) { 10995 ifr = (struct ifreq *)if_req; 10996 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10997 } else { 10998 lifr = (struct lifreq *)if_req; 10999 flags = lifr->lifr_flags; 11000 } 11001 11002 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11003 11004 /* 11005 * Has the flags been set correctly till now ? 11006 */ 11007 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11008 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11009 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11010 /* 11011 * Compare the new flags to the old, and partition 11012 * into those coming on and those going off. 11013 * For the 16 bit command keep the bits above bit 16 unchanged. 11014 */ 11015 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11016 flags |= intf_flags & ~0xFFFF; 11017 11018 /* 11019 * First check which bits will change and then which will 11020 * go on and off 11021 */ 11022 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11023 if (!turn_on) 11024 return (0); /* No change */ 11025 11026 turn_off = intf_flags & turn_on; 11027 turn_on ^= turn_off; 11028 err = 0; 11029 11030 /* 11031 * Don't allow any bits belonging to the logical interface 11032 * to be set or cleared on the replacement ipif that was 11033 * created temporarily during a MOVE. 11034 */ 11035 if (ipif->ipif_replace_zero && 11036 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11037 return (EINVAL); 11038 } 11039 11040 /* 11041 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11042 * IPv6 interfaces. 11043 */ 11044 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11045 return (EINVAL); 11046 11047 /* 11048 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11049 * interfaces. It makes no sense in that context. 11050 */ 11051 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11052 return (EINVAL); 11053 11054 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11055 zero_source = B_TRUE; 11056 11057 /* 11058 * For IPv6 ipif_id 0, don't allow the interface to be up without 11059 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11060 * If the link local address isn't set, and can be set, it will get 11061 * set later on in this function. 11062 */ 11063 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11064 (flags & IFF_UP) && !zero_source && 11065 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11066 if (ipif_cant_setlinklocal(ipif)) 11067 return (EINVAL); 11068 set_linklocal = B_TRUE; 11069 } 11070 11071 /* 11072 * ILL cannot be part of a usesrc group and and IPMP group at the 11073 * same time. No need to grab ill_g_usesrc_lock here, see 11074 * synchronization notes in ip.c 11075 */ 11076 if (turn_on & PHYI_STANDBY && 11077 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11078 return (EINVAL); 11079 } 11080 11081 /* 11082 * If we modify physical interface flags, we'll potentially need to 11083 * send up two routing socket messages for the changes (one for the 11084 * IPv4 ill, and another for the IPv6 ill). Note that here. 11085 */ 11086 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11087 phyint_flags_modified = B_TRUE; 11088 11089 /* 11090 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11091 * we need to flush the IRE_CACHES belonging to this ill. 11092 * We handle this case here without doing the DOWN/UP dance 11093 * like it is done for other flags. If some other flags are 11094 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11095 * below will handle it by bringing it down and then 11096 * bringing it UP. 11097 */ 11098 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11099 ill_t *ill_v4, *ill_v6; 11100 11101 ill_v4 = phyi->phyint_illv4; 11102 ill_v6 = phyi->phyint_illv6; 11103 11104 /* 11105 * First set the INACTIVE flag if needed. Then delete the ires. 11106 * ire_add will atomically prevent creating new IRE_CACHEs 11107 * unless hidden flag is set. 11108 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11109 */ 11110 if ((turn_on & PHYI_FAILED) && 11111 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11112 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11113 phyi->phyint_flags &= ~PHYI_INACTIVE; 11114 } 11115 if ((turn_off & PHYI_FAILED) && 11116 ((intf_flags & PHYI_STANDBY) || 11117 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11118 phyint_inactive(phyi); 11119 } 11120 11121 if (turn_on & PHYI_STANDBY) { 11122 /* 11123 * We implicitly set INACTIVE only when STANDBY is set. 11124 * INACTIVE is also set on non-STANDBY phyint when user 11125 * disables FAILBACK using configuration file. 11126 * Do not allow STANDBY to be set on such INACTIVE 11127 * phyint 11128 */ 11129 if (phyi->phyint_flags & PHYI_INACTIVE) 11130 return (EINVAL); 11131 if (!(phyi->phyint_flags & PHYI_FAILED)) 11132 phyint_inactive(phyi); 11133 } 11134 if (turn_off & PHYI_STANDBY) { 11135 if (ipmp_enable_failback) { 11136 /* 11137 * Reset PHYI_INACTIVE. 11138 */ 11139 phyi->phyint_flags &= ~PHYI_INACTIVE; 11140 } else if (ill_is_inactive(ill) && 11141 !(phyi->phyint_flags & PHYI_FAILED)) { 11142 /* 11143 * Need to set INACTIVE, when user sets 11144 * STANDBY on a non-STANDBY phyint and 11145 * later resets STANDBY 11146 */ 11147 phyint_inactive(phyi); 11148 } 11149 } 11150 /* 11151 * We should always send up a message so that the 11152 * daemons come to know of it. Note that the zeroth 11153 * interface can be down and the check below for IPIF_UP 11154 * will not make sense as we are actually setting 11155 * a phyint flag here. We assume that the ipif used 11156 * is always the zeroth ipif. (ip_rts_ifmsg does not 11157 * send up any message for non-zero ipifs). 11158 */ 11159 phyint_flags_modified = B_TRUE; 11160 11161 if (ill_v4 != NULL) { 11162 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11163 IRE_CACHE, ill_stq_cache_delete, 11164 (char *)ill_v4, ill_v4); 11165 illgrp_reset_schednext(ill_v4); 11166 } 11167 if (ill_v6 != NULL) { 11168 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11169 IRE_CACHE, ill_stq_cache_delete, 11170 (char *)ill_v6, ill_v6); 11171 illgrp_reset_schednext(ill_v6); 11172 } 11173 } 11174 11175 /* 11176 * If ILLF_ROUTER changes, we need to change the ip forwarding 11177 * status of the interface and, if the interface is part of an IPMP 11178 * group, all other interfaces that are part of the same IPMP 11179 * group. 11180 */ 11181 if ((turn_on | turn_off) & ILLF_ROUTER) { 11182 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11183 (caddr_t)ill); 11184 } 11185 11186 /* 11187 * If the interface is not UP and we are not going to 11188 * bring it UP, record the flags and return. When the 11189 * interface comes UP later, the right actions will be 11190 * taken. 11191 */ 11192 if (!(ipif->ipif_flags & IPIF_UP) && 11193 !(turn_on & IPIF_UP)) { 11194 /* Record new flags in their respective places. */ 11195 mutex_enter(&ill->ill_lock); 11196 mutex_enter(&ill->ill_phyint->phyint_lock); 11197 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11198 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11199 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11200 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11201 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11202 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11203 mutex_exit(&ill->ill_lock); 11204 mutex_exit(&ill->ill_phyint->phyint_lock); 11205 11206 /* 11207 * We do the broadcast and nomination here rather 11208 * than waiting for a FAILOVER/FAILBACK to happen. In 11209 * the case of FAILBACK from INACTIVE standby to the 11210 * interface that has been repaired, PHYI_FAILED has not 11211 * been cleared yet. If there are only two interfaces in 11212 * that group, all we have is a FAILED and INACTIVE 11213 * interface. If we do the nomination soon after a failback, 11214 * the broadcast nomination code would select the 11215 * INACTIVE interface for receiving broadcasts as FAILED is 11216 * not yet cleared. As we don't want STANDBY/INACTIVE to 11217 * receive broadcast packets, we need to redo nomination 11218 * when the FAILED is cleared here. Thus, in general we 11219 * always do the nomination here for FAILED, STANDBY 11220 * and OFFLINE. 11221 */ 11222 if (((turn_on | turn_off) & 11223 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11224 ip_redo_nomination(phyi); 11225 } 11226 if (phyint_flags_modified) { 11227 if (phyi->phyint_illv4 != NULL) { 11228 ip_rts_ifmsg(phyi->phyint_illv4-> 11229 ill_ipif); 11230 } 11231 if (phyi->phyint_illv6 != NULL) { 11232 ip_rts_ifmsg(phyi->phyint_illv6-> 11233 ill_ipif); 11234 } 11235 } 11236 return (0); 11237 } else if (set_linklocal || zero_source) { 11238 mutex_enter(&ill->ill_lock); 11239 if (set_linklocal) 11240 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11241 if (zero_source) 11242 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11243 mutex_exit(&ill->ill_lock); 11244 } 11245 11246 /* 11247 * Disallow IPv6 interfaces coming up that have the unspecified address, 11248 * or point-to-point interfaces with an unspecified destination. We do 11249 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11250 * have a subnet assigned, which is how in.ndpd currently manages its 11251 * onlink prefix list when no addresses are configured with those 11252 * prefixes. 11253 */ 11254 if (ipif->ipif_isv6 && 11255 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11256 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11257 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11258 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11259 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11260 return (EINVAL); 11261 } 11262 11263 /* 11264 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11265 * from being brought up. 11266 */ 11267 if (!ipif->ipif_isv6 && 11268 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11269 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11270 return (EINVAL); 11271 } 11272 11273 /* 11274 * The only flag changes that we currently take specific action on 11275 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11276 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11277 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11278 * the flags and bringing it back up again. 11279 */ 11280 if ((turn_on|turn_off) & 11281 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11282 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11283 /* 11284 * Taking this ipif down, make sure we have 11285 * valid net and subnet bcast ire's for other 11286 * logical interfaces, if we need them. 11287 */ 11288 if (!ipif->ipif_isv6) 11289 ipif_check_bcast_ires(ipif); 11290 11291 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11292 !(turn_off & IPIF_UP)) { 11293 need_up = B_TRUE; 11294 if (ipif->ipif_flags & IPIF_UP) 11295 ill->ill_logical_down = 1; 11296 turn_on &= ~IPIF_UP; 11297 } 11298 err = ipif_down(ipif, q, mp); 11299 ip1dbg(("ipif_down returns %d err ", err)); 11300 if (err == EINPROGRESS) 11301 return (err); 11302 ipif_down_tail(ipif); 11303 } 11304 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11305 } 11306 11307 static int 11308 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11309 boolean_t need_up) 11310 { 11311 ill_t *ill; 11312 phyint_t *phyi; 11313 uint64_t turn_on; 11314 uint64_t turn_off; 11315 uint64_t intf_flags; 11316 boolean_t phyint_flags_modified = B_FALSE; 11317 int err = 0; 11318 boolean_t set_linklocal = B_FALSE; 11319 boolean_t zero_source = B_FALSE; 11320 11321 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11322 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11323 11324 ASSERT(IAM_WRITER_IPIF(ipif)); 11325 11326 ill = ipif->ipif_ill; 11327 phyi = ill->ill_phyint; 11328 11329 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11330 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11331 11332 turn_off = intf_flags & turn_on; 11333 turn_on ^= turn_off; 11334 11335 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11336 phyint_flags_modified = B_TRUE; 11337 11338 /* 11339 * Now we change the flags. Track current value of 11340 * other flags in their respective places. 11341 */ 11342 mutex_enter(&ill->ill_lock); 11343 mutex_enter(&phyi->phyint_lock); 11344 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11345 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11346 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11347 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11348 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11349 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11350 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11351 set_linklocal = B_TRUE; 11352 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11353 } 11354 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11355 zero_source = B_TRUE; 11356 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11357 } 11358 mutex_exit(&ill->ill_lock); 11359 mutex_exit(&phyi->phyint_lock); 11360 11361 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11362 ip_redo_nomination(phyi); 11363 11364 if (set_linklocal) 11365 (void) ipif_setlinklocal(ipif); 11366 11367 if (zero_source) 11368 ipif->ipif_v6src_addr = ipv6_all_zeros; 11369 else 11370 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11371 11372 if (need_up) { 11373 /* 11374 * XXX ipif_up really does not know whether a phyint flags 11375 * was modified or not. So, it sends up information on 11376 * only one routing sockets message. As we don't bring up 11377 * the interface and also set STANDBY/FAILED simultaneously 11378 * it should be okay. 11379 */ 11380 err = ipif_up(ipif, q, mp); 11381 } else { 11382 /* 11383 * Make sure routing socket sees all changes to the flags. 11384 * ipif_up_done* handles this when we use ipif_up. 11385 */ 11386 if (phyint_flags_modified) { 11387 if (phyi->phyint_illv4 != NULL) { 11388 ip_rts_ifmsg(phyi->phyint_illv4-> 11389 ill_ipif); 11390 } 11391 if (phyi->phyint_illv6 != NULL) { 11392 ip_rts_ifmsg(phyi->phyint_illv6-> 11393 ill_ipif); 11394 } 11395 } else { 11396 ip_rts_ifmsg(ipif); 11397 } 11398 } 11399 return (err); 11400 } 11401 11402 /* 11403 * Restart entry point to restart the flags restart operation after the 11404 * refcounts have dropped to zero. 11405 */ 11406 /* ARGSUSED */ 11407 int 11408 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11409 ip_ioctl_cmd_t *ipip, void *if_req) 11410 { 11411 int err; 11412 struct ifreq *ifr = (struct ifreq *)if_req; 11413 struct lifreq *lifr = (struct lifreq *)if_req; 11414 11415 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11416 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11417 11418 ipif_down_tail(ipif); 11419 if (ipip->ipi_cmd_type == IF_CMD) { 11420 /* 11421 * Since ip_sioctl_flags expects an int and ifr_flags 11422 * is a short we need to cast ifr_flags into an int 11423 * to avoid having sign extension cause bits to get 11424 * set that should not be. 11425 */ 11426 err = ip_sioctl_flags_tail(ipif, 11427 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11428 q, mp, B_TRUE); 11429 } else { 11430 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11431 q, mp, B_TRUE); 11432 } 11433 return (err); 11434 } 11435 11436 /* ARGSUSED */ 11437 int 11438 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11439 ip_ioctl_cmd_t *ipip, void *if_req) 11440 { 11441 /* 11442 * Has the flags been set correctly till now ? 11443 */ 11444 ill_t *ill = ipif->ipif_ill; 11445 phyint_t *phyi = ill->ill_phyint; 11446 11447 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11448 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11449 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11450 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11451 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11452 11453 /* 11454 * Need a lock since some flags can be set even when there are 11455 * references to the ipif. 11456 */ 11457 mutex_enter(&ill->ill_lock); 11458 if (ipip->ipi_cmd_type == IF_CMD) { 11459 struct ifreq *ifr = (struct ifreq *)if_req; 11460 11461 /* Get interface flags (low 16 only). */ 11462 ifr->ifr_flags = ((ipif->ipif_flags | 11463 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11464 } else { 11465 struct lifreq *lifr = (struct lifreq *)if_req; 11466 11467 /* Get interface flags. */ 11468 lifr->lifr_flags = ipif->ipif_flags | 11469 ill->ill_flags | phyi->phyint_flags; 11470 } 11471 mutex_exit(&ill->ill_lock); 11472 return (0); 11473 } 11474 11475 /* ARGSUSED */ 11476 int 11477 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11478 ip_ioctl_cmd_t *ipip, void *if_req) 11479 { 11480 int mtu; 11481 int ip_min_mtu; 11482 struct ifreq *ifr; 11483 struct lifreq *lifr; 11484 ire_t *ire; 11485 11486 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11487 ipif->ipif_id, (void *)ipif)); 11488 if (ipip->ipi_cmd_type == IF_CMD) { 11489 ifr = (struct ifreq *)if_req; 11490 mtu = ifr->ifr_metric; 11491 } else { 11492 lifr = (struct lifreq *)if_req; 11493 mtu = lifr->lifr_mtu; 11494 } 11495 11496 if (ipif->ipif_isv6) 11497 ip_min_mtu = IPV6_MIN_MTU; 11498 else 11499 ip_min_mtu = IP_MIN_MTU; 11500 11501 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11502 return (EINVAL); 11503 11504 /* 11505 * Change the MTU size in all relevant ire's. 11506 * Mtu change Vs. new ire creation - protocol below. 11507 * First change ipif_mtu and the ire_max_frag of the 11508 * interface ire. Then do an ire walk and change the 11509 * ire_max_frag of all affected ires. During ire_add 11510 * under the bucket lock, set the ire_max_frag of the 11511 * new ire being created from the ipif/ire from which 11512 * it is being derived. If an mtu change happens after 11513 * the ire is added, the new ire will be cleaned up. 11514 * Conversely if the mtu change happens before the ire 11515 * is added, ire_add will see the new value of the mtu. 11516 */ 11517 ipif->ipif_mtu = mtu; 11518 ipif->ipif_flags |= IPIF_FIXEDMTU; 11519 11520 if (ipif->ipif_isv6) 11521 ire = ipif_to_ire_v6(ipif); 11522 else 11523 ire = ipif_to_ire(ipif); 11524 if (ire != NULL) { 11525 ire->ire_max_frag = ipif->ipif_mtu; 11526 ire_refrele(ire); 11527 } 11528 if (ipif->ipif_flags & IPIF_UP) { 11529 if (ipif->ipif_isv6) 11530 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11531 else 11532 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11533 } 11534 /* Update the MTU in SCTP's list */ 11535 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11536 return (0); 11537 } 11538 11539 /* Get interface MTU. */ 11540 /* ARGSUSED */ 11541 int 11542 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11543 ip_ioctl_cmd_t *ipip, void *if_req) 11544 { 11545 struct ifreq *ifr; 11546 struct lifreq *lifr; 11547 11548 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11549 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11550 if (ipip->ipi_cmd_type == IF_CMD) { 11551 ifr = (struct ifreq *)if_req; 11552 ifr->ifr_metric = ipif->ipif_mtu; 11553 } else { 11554 lifr = (struct lifreq *)if_req; 11555 lifr->lifr_mtu = ipif->ipif_mtu; 11556 } 11557 return (0); 11558 } 11559 11560 /* Set interface broadcast address. */ 11561 /* ARGSUSED2 */ 11562 int 11563 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11564 ip_ioctl_cmd_t *ipip, void *if_req) 11565 { 11566 ipaddr_t addr; 11567 ire_t *ire; 11568 11569 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11570 ipif->ipif_id)); 11571 11572 ASSERT(IAM_WRITER_IPIF(ipif)); 11573 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11574 return (EADDRNOTAVAIL); 11575 11576 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11577 11578 if (sin->sin_family != AF_INET) 11579 return (EAFNOSUPPORT); 11580 11581 addr = sin->sin_addr.s_addr; 11582 if (ipif->ipif_flags & IPIF_UP) { 11583 /* 11584 * If we are already up, make sure the new 11585 * broadcast address makes sense. If it does, 11586 * there should be an IRE for it already. 11587 * Don't match on ipif, only on the ill 11588 * since we are sharing these now. Don't use 11589 * MATCH_IRE_ILL_GROUP as we are looking for 11590 * the broadcast ire on this ill and each ill 11591 * in the group has its own broadcast ire. 11592 */ 11593 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11594 ipif, ALL_ZONES, (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11595 if (ire == NULL) { 11596 return (EINVAL); 11597 } else { 11598 ire_refrele(ire); 11599 } 11600 } 11601 /* 11602 * Changing the broadcast addr for this ipif. 11603 * Make sure we have valid net and subnet bcast 11604 * ire's for other logical interfaces, if needed. 11605 */ 11606 if (addr != ipif->ipif_brd_addr) 11607 ipif_check_bcast_ires(ipif); 11608 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11609 return (0); 11610 } 11611 11612 /* Get interface broadcast address. */ 11613 /* ARGSUSED */ 11614 int 11615 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11616 ip_ioctl_cmd_t *ipip, void *if_req) 11617 { 11618 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11619 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11620 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11621 return (EADDRNOTAVAIL); 11622 11623 /* IPIF_BROADCAST not possible with IPv6 */ 11624 ASSERT(!ipif->ipif_isv6); 11625 *sin = sin_null; 11626 sin->sin_family = AF_INET; 11627 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11628 return (0); 11629 } 11630 11631 /* 11632 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11633 */ 11634 /* ARGSUSED */ 11635 int 11636 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11637 ip_ioctl_cmd_t *ipip, void *if_req) 11638 { 11639 int err = 0; 11640 in6_addr_t v6mask; 11641 11642 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11643 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11644 11645 ASSERT(IAM_WRITER_IPIF(ipif)); 11646 11647 if (ipif->ipif_isv6) { 11648 sin6_t *sin6; 11649 11650 if (sin->sin_family != AF_INET6) 11651 return (EAFNOSUPPORT); 11652 11653 sin6 = (sin6_t *)sin; 11654 v6mask = sin6->sin6_addr; 11655 } else { 11656 ipaddr_t mask; 11657 11658 if (sin->sin_family != AF_INET) 11659 return (EAFNOSUPPORT); 11660 11661 mask = sin->sin_addr.s_addr; 11662 V4MASK_TO_V6(mask, v6mask); 11663 } 11664 11665 /* 11666 * No big deal if the interface isn't already up, or the mask 11667 * isn't really changing, or this is pt-pt. 11668 */ 11669 if (!(ipif->ipif_flags & IPIF_UP) || 11670 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11671 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11672 ipif->ipif_v6net_mask = v6mask; 11673 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11674 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11675 ipif->ipif_v6net_mask, 11676 ipif->ipif_v6subnet); 11677 } 11678 return (0); 11679 } 11680 /* 11681 * Make sure we have valid net and subnet broadcast ire's 11682 * for the old netmask, if needed by other logical interfaces. 11683 */ 11684 if (!ipif->ipif_isv6) 11685 ipif_check_bcast_ires(ipif); 11686 11687 err = ipif_logical_down(ipif, q, mp); 11688 if (err == EINPROGRESS) 11689 return (err); 11690 ipif_down_tail(ipif); 11691 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11692 return (err); 11693 } 11694 11695 static int 11696 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11697 { 11698 in6_addr_t v6mask; 11699 int err = 0; 11700 11701 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11702 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11703 11704 if (ipif->ipif_isv6) { 11705 sin6_t *sin6; 11706 11707 sin6 = (sin6_t *)sin; 11708 v6mask = sin6->sin6_addr; 11709 } else { 11710 ipaddr_t mask; 11711 11712 mask = sin->sin_addr.s_addr; 11713 V4MASK_TO_V6(mask, v6mask); 11714 } 11715 11716 ipif->ipif_v6net_mask = v6mask; 11717 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11718 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11719 ipif->ipif_v6subnet); 11720 } 11721 err = ipif_up(ipif, q, mp); 11722 11723 if (err == 0 || err == EINPROGRESS) { 11724 /* 11725 * The interface must be DL_BOUND if this packet has to 11726 * go out on the wire. Since we only go through a logical 11727 * down and are bound with the driver during an internal 11728 * down/up that is satisfied. 11729 */ 11730 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11731 /* Potentially broadcast an address mask reply. */ 11732 ipif_mask_reply(ipif); 11733 } 11734 } 11735 return (err); 11736 } 11737 11738 /* ARGSUSED */ 11739 int 11740 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11741 ip_ioctl_cmd_t *ipip, void *if_req) 11742 { 11743 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11744 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11745 ipif_down_tail(ipif); 11746 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11747 } 11748 11749 /* Get interface net mask. */ 11750 /* ARGSUSED */ 11751 int 11752 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11753 ip_ioctl_cmd_t *ipip, void *if_req) 11754 { 11755 struct lifreq *lifr = (struct lifreq *)if_req; 11756 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11757 11758 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11760 11761 /* 11762 * net mask can't change since we have a reference to the ipif. 11763 */ 11764 if (ipif->ipif_isv6) { 11765 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11766 *sin6 = sin6_null; 11767 sin6->sin6_family = AF_INET6; 11768 sin6->sin6_addr = ipif->ipif_v6net_mask; 11769 lifr->lifr_addrlen = 11770 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11771 } else { 11772 *sin = sin_null; 11773 sin->sin_family = AF_INET; 11774 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11775 if (ipip->ipi_cmd_type == LIF_CMD) { 11776 lifr->lifr_addrlen = 11777 ip_mask_to_plen(ipif->ipif_net_mask); 11778 } 11779 } 11780 return (0); 11781 } 11782 11783 /* ARGSUSED */ 11784 int 11785 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11786 ip_ioctl_cmd_t *ipip, void *if_req) 11787 { 11788 11789 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11790 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11791 /* 11792 * Set interface metric. We don't use this for 11793 * anything but we keep track of it in case it is 11794 * important to routing applications or such. 11795 */ 11796 if (ipip->ipi_cmd_type == IF_CMD) { 11797 struct ifreq *ifr; 11798 11799 ifr = (struct ifreq *)if_req; 11800 ipif->ipif_metric = ifr->ifr_metric; 11801 } else { 11802 struct lifreq *lifr; 11803 11804 lifr = (struct lifreq *)if_req; 11805 ipif->ipif_metric = lifr->lifr_metric; 11806 } 11807 return (0); 11808 } 11809 11810 11811 /* ARGSUSED */ 11812 int 11813 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11814 ip_ioctl_cmd_t *ipip, void *if_req) 11815 { 11816 11817 /* Get interface metric. */ 11818 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11819 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11820 if (ipip->ipi_cmd_type == IF_CMD) { 11821 struct ifreq *ifr; 11822 11823 ifr = (struct ifreq *)if_req; 11824 ifr->ifr_metric = ipif->ipif_metric; 11825 } else { 11826 struct lifreq *lifr; 11827 11828 lifr = (struct lifreq *)if_req; 11829 lifr->lifr_metric = ipif->ipif_metric; 11830 } 11831 11832 return (0); 11833 } 11834 11835 /* ARGSUSED */ 11836 int 11837 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11838 ip_ioctl_cmd_t *ipip, void *if_req) 11839 { 11840 11841 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11842 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11843 /* 11844 * Set the muxid returned from I_PLINK. 11845 */ 11846 if (ipip->ipi_cmd_type == IF_CMD) { 11847 struct ifreq *ifr = (struct ifreq *)if_req; 11848 11849 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11850 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11851 } else { 11852 struct lifreq *lifr = (struct lifreq *)if_req; 11853 11854 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11855 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11856 } 11857 return (0); 11858 } 11859 11860 /* ARGSUSED */ 11861 int 11862 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11863 ip_ioctl_cmd_t *ipip, void *if_req) 11864 { 11865 11866 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11867 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11868 /* 11869 * Get the muxid saved in ill for I_PUNLINK. 11870 */ 11871 if (ipip->ipi_cmd_type == IF_CMD) { 11872 struct ifreq *ifr = (struct ifreq *)if_req; 11873 11874 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11875 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11876 } else { 11877 struct lifreq *lifr = (struct lifreq *)if_req; 11878 11879 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11880 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11881 } 11882 return (0); 11883 } 11884 11885 /* 11886 * Set the subnet prefix. Does not modify the broadcast address. 11887 */ 11888 /* ARGSUSED */ 11889 int 11890 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11891 ip_ioctl_cmd_t *ipip, void *if_req) 11892 { 11893 int err = 0; 11894 in6_addr_t v6addr; 11895 in6_addr_t v6mask; 11896 boolean_t need_up = B_FALSE; 11897 int addrlen; 11898 11899 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11900 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11901 11902 ASSERT(IAM_WRITER_IPIF(ipif)); 11903 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11904 11905 if (ipif->ipif_isv6) { 11906 sin6_t *sin6; 11907 11908 if (sin->sin_family != AF_INET6) 11909 return (EAFNOSUPPORT); 11910 11911 sin6 = (sin6_t *)sin; 11912 v6addr = sin6->sin6_addr; 11913 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11914 return (EADDRNOTAVAIL); 11915 } else { 11916 ipaddr_t addr; 11917 11918 if (sin->sin_family != AF_INET) 11919 return (EAFNOSUPPORT); 11920 11921 addr = sin->sin_addr.s_addr; 11922 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11923 return (EADDRNOTAVAIL); 11924 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11925 /* Add 96 bits */ 11926 addrlen += IPV6_ABITS - IP_ABITS; 11927 } 11928 11929 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11930 return (EINVAL); 11931 11932 /* Check if bits in the address is set past the mask */ 11933 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11934 return (EINVAL); 11935 11936 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11937 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11938 return (0); /* No change */ 11939 11940 if (ipif->ipif_flags & IPIF_UP) { 11941 /* 11942 * If the interface is already marked up, 11943 * we call ipif_down which will take care 11944 * of ditching any IREs that have been set 11945 * up based on the old interface address. 11946 */ 11947 err = ipif_logical_down(ipif, q, mp); 11948 if (err == EINPROGRESS) 11949 return (err); 11950 ipif_down_tail(ipif); 11951 need_up = B_TRUE; 11952 } 11953 11954 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11955 return (err); 11956 } 11957 11958 static int 11959 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11960 queue_t *q, mblk_t *mp, boolean_t need_up) 11961 { 11962 ill_t *ill = ipif->ipif_ill; 11963 int err = 0; 11964 11965 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11966 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11967 11968 /* Set the new address. */ 11969 mutex_enter(&ill->ill_lock); 11970 ipif->ipif_v6net_mask = v6mask; 11971 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11972 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11973 ipif->ipif_v6subnet); 11974 } 11975 mutex_exit(&ill->ill_lock); 11976 11977 if (need_up) { 11978 /* 11979 * Now bring the interface back up. If this 11980 * is the only IPIF for the ILL, ipif_up 11981 * will have to re-bind to the device, so 11982 * we may get back EINPROGRESS, in which 11983 * case, this IOCTL will get completed in 11984 * ip_rput_dlpi when we see the DL_BIND_ACK. 11985 */ 11986 err = ipif_up(ipif, q, mp); 11987 if (err == EINPROGRESS) 11988 return (err); 11989 } 11990 return (err); 11991 } 11992 11993 /* ARGSUSED */ 11994 int 11995 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11996 ip_ioctl_cmd_t *ipip, void *if_req) 11997 { 11998 int addrlen; 11999 in6_addr_t v6addr; 12000 in6_addr_t v6mask; 12001 struct lifreq *lifr = (struct lifreq *)if_req; 12002 12003 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12004 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12005 ipif_down_tail(ipif); 12006 12007 addrlen = lifr->lifr_addrlen; 12008 if (ipif->ipif_isv6) { 12009 sin6_t *sin6; 12010 12011 sin6 = (sin6_t *)sin; 12012 v6addr = sin6->sin6_addr; 12013 } else { 12014 ipaddr_t addr; 12015 12016 addr = sin->sin_addr.s_addr; 12017 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12018 addrlen += IPV6_ABITS - IP_ABITS; 12019 } 12020 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12021 12022 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12023 } 12024 12025 /* ARGSUSED */ 12026 int 12027 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12028 ip_ioctl_cmd_t *ipip, void *if_req) 12029 { 12030 struct lifreq *lifr = (struct lifreq *)if_req; 12031 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12032 12033 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12034 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12035 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12036 12037 if (ipif->ipif_isv6) { 12038 *sin6 = sin6_null; 12039 sin6->sin6_family = AF_INET6; 12040 sin6->sin6_addr = ipif->ipif_v6subnet; 12041 lifr->lifr_addrlen = 12042 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12043 } else { 12044 *sin = sin_null; 12045 sin->sin_family = AF_INET; 12046 sin->sin_addr.s_addr = ipif->ipif_subnet; 12047 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12048 } 12049 return (0); 12050 } 12051 12052 /* 12053 * Set the IPv6 address token. 12054 */ 12055 /* ARGSUSED */ 12056 int 12057 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12058 ip_ioctl_cmd_t *ipi, void *if_req) 12059 { 12060 ill_t *ill = ipif->ipif_ill; 12061 int err; 12062 in6_addr_t v6addr; 12063 in6_addr_t v6mask; 12064 boolean_t need_up = B_FALSE; 12065 int i; 12066 sin6_t *sin6 = (sin6_t *)sin; 12067 struct lifreq *lifr = (struct lifreq *)if_req; 12068 int addrlen; 12069 12070 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12071 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12072 ASSERT(IAM_WRITER_IPIF(ipif)); 12073 12074 addrlen = lifr->lifr_addrlen; 12075 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12076 if (ipif->ipif_id != 0) 12077 return (EINVAL); 12078 12079 if (!ipif->ipif_isv6) 12080 return (EINVAL); 12081 12082 if (addrlen > IPV6_ABITS) 12083 return (EINVAL); 12084 12085 v6addr = sin6->sin6_addr; 12086 12087 /* 12088 * The length of the token is the length from the end. To get 12089 * the proper mask for this, compute the mask of the bits not 12090 * in the token; ie. the prefix, and then xor to get the mask. 12091 */ 12092 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12093 return (EINVAL); 12094 for (i = 0; i < 4; i++) { 12095 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12096 } 12097 12098 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12099 ill->ill_token_length == addrlen) 12100 return (0); /* No change */ 12101 12102 if (ipif->ipif_flags & IPIF_UP) { 12103 err = ipif_logical_down(ipif, q, mp); 12104 if (err == EINPROGRESS) 12105 return (err); 12106 ipif_down_tail(ipif); 12107 need_up = B_TRUE; 12108 } 12109 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12110 return (err); 12111 } 12112 12113 static int 12114 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12115 mblk_t *mp, boolean_t need_up) 12116 { 12117 in6_addr_t v6addr; 12118 in6_addr_t v6mask; 12119 ill_t *ill = ipif->ipif_ill; 12120 int i; 12121 int err = 0; 12122 12123 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12124 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12125 v6addr = sin6->sin6_addr; 12126 /* 12127 * The length of the token is the length from the end. To get 12128 * the proper mask for this, compute the mask of the bits not 12129 * in the token; ie. the prefix, and then xor to get the mask. 12130 */ 12131 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12132 for (i = 0; i < 4; i++) 12133 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12134 12135 mutex_enter(&ill->ill_lock); 12136 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12137 ill->ill_token_length = addrlen; 12138 mutex_exit(&ill->ill_lock); 12139 12140 if (need_up) { 12141 /* 12142 * Now bring the interface back up. If this 12143 * is the only IPIF for the ILL, ipif_up 12144 * will have to re-bind to the device, so 12145 * we may get back EINPROGRESS, in which 12146 * case, this IOCTL will get completed in 12147 * ip_rput_dlpi when we see the DL_BIND_ACK. 12148 */ 12149 err = ipif_up(ipif, q, mp); 12150 if (err == EINPROGRESS) 12151 return (err); 12152 } 12153 return (err); 12154 } 12155 12156 /* ARGSUSED */ 12157 int 12158 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12159 ip_ioctl_cmd_t *ipi, void *if_req) 12160 { 12161 ill_t *ill; 12162 sin6_t *sin6 = (sin6_t *)sin; 12163 struct lifreq *lifr = (struct lifreq *)if_req; 12164 12165 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12166 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12167 if (ipif->ipif_id != 0) 12168 return (EINVAL); 12169 12170 ill = ipif->ipif_ill; 12171 if (!ill->ill_isv6) 12172 return (ENXIO); 12173 12174 *sin6 = sin6_null; 12175 sin6->sin6_family = AF_INET6; 12176 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12177 sin6->sin6_addr = ill->ill_token; 12178 lifr->lifr_addrlen = ill->ill_token_length; 12179 return (0); 12180 } 12181 12182 /* 12183 * Set (hardware) link specific information that might override 12184 * what was acquired through the DL_INFO_ACK. 12185 * The logic is as follows. 12186 * 12187 * become exclusive 12188 * set CHANGING flag 12189 * change mtu on affected IREs 12190 * clear CHANGING flag 12191 * 12192 * An ire add that occurs before the CHANGING flag is set will have its mtu 12193 * changed by the ip_sioctl_lnkinfo. 12194 * 12195 * During the time the CHANGING flag is set, no new ires will be added to the 12196 * bucket, and ire add will fail (due the CHANGING flag). 12197 * 12198 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12199 * before it is added to the bucket. 12200 * 12201 * Obviously only 1 thread can set the CHANGING flag and we need to become 12202 * exclusive to set the flag. 12203 */ 12204 /* ARGSUSED */ 12205 int 12206 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12207 ip_ioctl_cmd_t *ipi, void *if_req) 12208 { 12209 ill_t *ill = ipif->ipif_ill; 12210 ipif_t *nipif; 12211 int ip_min_mtu; 12212 boolean_t mtu_walk = B_FALSE; 12213 struct lifreq *lifr = (struct lifreq *)if_req; 12214 lif_ifinfo_req_t *lir; 12215 ire_t *ire; 12216 12217 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12218 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12219 lir = &lifr->lifr_ifinfo; 12220 ASSERT(IAM_WRITER_IPIF(ipif)); 12221 12222 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12223 if (ipif->ipif_id != 0) 12224 return (EINVAL); 12225 12226 /* Set interface MTU. */ 12227 if (ipif->ipif_isv6) 12228 ip_min_mtu = IPV6_MIN_MTU; 12229 else 12230 ip_min_mtu = IP_MIN_MTU; 12231 12232 /* 12233 * Verify values before we set anything. Allow zero to 12234 * mean unspecified. 12235 */ 12236 if (lir->lir_maxmtu != 0 && 12237 (lir->lir_maxmtu > ill->ill_max_frag || 12238 lir->lir_maxmtu < ip_min_mtu)) 12239 return (EINVAL); 12240 if (lir->lir_reachtime != 0 && 12241 lir->lir_reachtime > ND_MAX_REACHTIME) 12242 return (EINVAL); 12243 if (lir->lir_reachretrans != 0 && 12244 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12245 return (EINVAL); 12246 12247 mutex_enter(&ill->ill_lock); 12248 ill->ill_state_flags |= ILL_CHANGING; 12249 for (nipif = ill->ill_ipif; nipif != NULL; 12250 nipif = nipif->ipif_next) { 12251 nipif->ipif_state_flags |= IPIF_CHANGING; 12252 } 12253 12254 mutex_exit(&ill->ill_lock); 12255 12256 if (lir->lir_maxmtu != 0) { 12257 ill->ill_max_mtu = lir->lir_maxmtu; 12258 ill->ill_mtu_userspecified = 1; 12259 mtu_walk = B_TRUE; 12260 } 12261 12262 if (lir->lir_reachtime != 0) 12263 ill->ill_reachable_time = lir->lir_reachtime; 12264 12265 if (lir->lir_reachretrans != 0) 12266 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12267 12268 ill->ill_max_hops = lir->lir_maxhops; 12269 12270 ill->ill_max_buf = ND_MAX_Q; 12271 12272 if (mtu_walk) { 12273 /* 12274 * Set the MTU on all ipifs associated with this ill except 12275 * for those whose MTU was fixed via SIOCSLIFMTU. 12276 */ 12277 for (nipif = ill->ill_ipif; nipif != NULL; 12278 nipif = nipif->ipif_next) { 12279 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12280 continue; 12281 12282 nipif->ipif_mtu = ill->ill_max_mtu; 12283 12284 if (!(nipif->ipif_flags & IPIF_UP)) 12285 continue; 12286 12287 if (nipif->ipif_isv6) 12288 ire = ipif_to_ire_v6(nipif); 12289 else 12290 ire = ipif_to_ire(nipif); 12291 if (ire != NULL) { 12292 ire->ire_max_frag = ipif->ipif_mtu; 12293 ire_refrele(ire); 12294 } 12295 if (ill->ill_isv6) { 12296 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12297 ipif_mtu_change, (char *)nipif, 12298 ill); 12299 } else { 12300 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12301 ipif_mtu_change, (char *)nipif, 12302 ill); 12303 } 12304 } 12305 } 12306 12307 mutex_enter(&ill->ill_lock); 12308 for (nipif = ill->ill_ipif; nipif != NULL; 12309 nipif = nipif->ipif_next) { 12310 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12311 } 12312 ILL_UNMARK_CHANGING(ill); 12313 mutex_exit(&ill->ill_lock); 12314 12315 return (0); 12316 } 12317 12318 /* ARGSUSED */ 12319 int 12320 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12321 ip_ioctl_cmd_t *ipi, void *if_req) 12322 { 12323 struct lif_ifinfo_req *lir; 12324 ill_t *ill = ipif->ipif_ill; 12325 12326 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12327 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12328 if (ipif->ipif_id != 0) 12329 return (EINVAL); 12330 12331 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12332 lir->lir_maxhops = ill->ill_max_hops; 12333 lir->lir_reachtime = ill->ill_reachable_time; 12334 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12335 lir->lir_maxmtu = ill->ill_max_mtu; 12336 12337 return (0); 12338 } 12339 12340 /* 12341 * Return best guess as to the subnet mask for the specified address. 12342 * Based on the subnet masks for all the configured interfaces. 12343 * 12344 * We end up returning a zero mask in the case of default, multicast or 12345 * experimental. 12346 */ 12347 static ipaddr_t 12348 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12349 { 12350 ipaddr_t net_mask; 12351 ill_t *ill; 12352 ipif_t *ipif; 12353 ill_walk_context_t ctx; 12354 ipif_t *fallback_ipif = NULL; 12355 12356 net_mask = ip_net_mask(addr); 12357 if (net_mask == 0) { 12358 *ipifp = NULL; 12359 return (0); 12360 } 12361 12362 /* Let's check to see if this is maybe a local subnet route. */ 12363 /* this function only applies to IPv4 interfaces */ 12364 rw_enter(&ill_g_lock, RW_READER); 12365 ill = ILL_START_WALK_V4(&ctx); 12366 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12367 mutex_enter(&ill->ill_lock); 12368 for (ipif = ill->ill_ipif; ipif != NULL; 12369 ipif = ipif->ipif_next) { 12370 if (!IPIF_CAN_LOOKUP(ipif)) 12371 continue; 12372 if (!(ipif->ipif_flags & IPIF_UP)) 12373 continue; 12374 if ((ipif->ipif_subnet & net_mask) == 12375 (addr & net_mask)) { 12376 /* 12377 * Don't trust pt-pt interfaces if there are 12378 * other interfaces. 12379 */ 12380 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12381 if (fallback_ipif == NULL) { 12382 ipif_refhold_locked(ipif); 12383 fallback_ipif = ipif; 12384 } 12385 continue; 12386 } 12387 12388 /* 12389 * Fine. Just assume the same net mask as the 12390 * directly attached subnet interface is using. 12391 */ 12392 ipif_refhold_locked(ipif); 12393 mutex_exit(&ill->ill_lock); 12394 rw_exit(&ill_g_lock); 12395 if (fallback_ipif != NULL) 12396 ipif_refrele(fallback_ipif); 12397 *ipifp = ipif; 12398 return (ipif->ipif_net_mask); 12399 } 12400 } 12401 mutex_exit(&ill->ill_lock); 12402 } 12403 rw_exit(&ill_g_lock); 12404 12405 *ipifp = fallback_ipif; 12406 return ((fallback_ipif != NULL) ? 12407 fallback_ipif->ipif_net_mask : net_mask); 12408 } 12409 12410 /* 12411 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12412 */ 12413 static void 12414 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12415 { 12416 IOCP iocp; 12417 ipft_t *ipft; 12418 ipllc_t *ipllc; 12419 mblk_t *mp1; 12420 cred_t *cr; 12421 int error = 0; 12422 conn_t *connp; 12423 12424 ip1dbg(("ip_wput_ioctl")); 12425 iocp = (IOCP)mp->b_rptr; 12426 mp1 = mp->b_cont; 12427 if (mp1 == NULL) { 12428 iocp->ioc_error = EINVAL; 12429 mp->b_datap->db_type = M_IOCNAK; 12430 iocp->ioc_count = 0; 12431 qreply(q, mp); 12432 return; 12433 } 12434 12435 /* 12436 * These IOCTLs provide various control capabilities to 12437 * upstream agents such as ULPs and processes. There 12438 * are currently two such IOCTLs implemented. They 12439 * are used by TCP to provide update information for 12440 * existing IREs and to forcibly delete an IRE for a 12441 * host that is not responding, thereby forcing an 12442 * attempt at a new route. 12443 */ 12444 iocp->ioc_error = EINVAL; 12445 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12446 goto done; 12447 12448 ipllc = (ipllc_t *)mp1->b_rptr; 12449 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12450 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12451 break; 12452 } 12453 /* 12454 * prefer credential from mblk over ioctl; 12455 * see ip_sioctl_copyin_setup 12456 */ 12457 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12458 12459 /* 12460 * Refhold the conn in case the request gets queued up in some lookup 12461 */ 12462 ASSERT(CONN_Q(q)); 12463 connp = Q_TO_CONN(q); 12464 CONN_INC_REF(connp); 12465 if (ipft->ipft_pfi && 12466 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12467 pullupmsg(mp1, ipft->ipft_min_size))) { 12468 error = (*ipft->ipft_pfi)(q, 12469 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12470 } 12471 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12472 /* 12473 * CONN_OPER_PENDING_DONE happens in the function called 12474 * through ipft_pfi above. 12475 */ 12476 return; 12477 } 12478 12479 CONN_OPER_PENDING_DONE(connp); 12480 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12481 freemsg(mp); 12482 return; 12483 } 12484 iocp->ioc_error = error; 12485 12486 done: 12487 mp->b_datap->db_type = M_IOCACK; 12488 if (iocp->ioc_error) 12489 iocp->ioc_count = 0; 12490 qreply(q, mp); 12491 } 12492 12493 /* 12494 * Lookup an ipif using the sequence id (ipif_seqid) 12495 */ 12496 ipif_t * 12497 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12498 { 12499 ipif_t *ipif; 12500 12501 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12502 12503 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12504 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12505 return (ipif); 12506 } 12507 return (NULL); 12508 } 12509 12510 uint64_t ipif_g_seqid; 12511 12512 /* 12513 * Assign a unique id for the ipif. This is used later when we send 12514 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12515 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12516 * IRE is added, we verify that ipif has not disappeared. 12517 */ 12518 12519 static void 12520 ipif_assign_seqid(ipif_t *ipif) 12521 { 12522 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12523 } 12524 12525 /* 12526 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12527 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12528 * be inserted into the first space available in the list. The value of 12529 * ipif_id will then be set to the appropriate value for its position. 12530 */ 12531 static int 12532 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12533 { 12534 ill_t *ill; 12535 ipif_t *tipif; 12536 ipif_t **tipifp; 12537 int id; 12538 12539 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12540 IAM_WRITER_IPIF(ipif)); 12541 12542 ill = ipif->ipif_ill; 12543 ASSERT(ill != NULL); 12544 12545 /* 12546 * In the case of lo0:0 we already hold the ill_g_lock. 12547 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12548 * ipif_insert. Another such caller is ipif_move. 12549 */ 12550 if (acquire_g_lock) 12551 rw_enter(&ill_g_lock, RW_WRITER); 12552 if (acquire_ill_lock) 12553 mutex_enter(&ill->ill_lock); 12554 id = ipif->ipif_id; 12555 tipifp = &(ill->ill_ipif); 12556 if (id == -1) { /* need to find a real id */ 12557 id = 0; 12558 while ((tipif = *tipifp) != NULL) { 12559 ASSERT(tipif->ipif_id >= id); 12560 if (tipif->ipif_id != id) 12561 break; /* non-consecutive id */ 12562 id++; 12563 tipifp = &(tipif->ipif_next); 12564 } 12565 /* limit number of logical interfaces */ 12566 if (id >= ip_addrs_per_if) { 12567 if (acquire_ill_lock) 12568 mutex_exit(&ill->ill_lock); 12569 if (acquire_g_lock) 12570 rw_exit(&ill_g_lock); 12571 return (-1); 12572 } 12573 ipif->ipif_id = id; /* assign new id */ 12574 } else if (id < ip_addrs_per_if) { 12575 /* we have a real id; insert ipif in the right place */ 12576 while ((tipif = *tipifp) != NULL) { 12577 ASSERT(tipif->ipif_id != id); 12578 if (tipif->ipif_id > id) 12579 break; /* found correct location */ 12580 tipifp = &(tipif->ipif_next); 12581 } 12582 } else { 12583 if (acquire_ill_lock) 12584 mutex_exit(&ill->ill_lock); 12585 if (acquire_g_lock) 12586 rw_exit(&ill_g_lock); 12587 return (-1); 12588 } 12589 12590 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12591 12592 ipif->ipif_next = tipif; 12593 *tipifp = ipif; 12594 if (acquire_ill_lock) 12595 mutex_exit(&ill->ill_lock); 12596 if (acquire_g_lock) 12597 rw_exit(&ill_g_lock); 12598 return (0); 12599 } 12600 12601 /* 12602 * Allocate and initialize a new interface control structure. (Always 12603 * called as writer.) 12604 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12605 * is not part of the global linked list of ills. ipif_seqid is unique 12606 * in the system and to preserve the uniqueness, it is assigned only 12607 * when ill becomes part of the global list. At that point ill will 12608 * have a name. If it doesn't get assigned here, it will get assigned 12609 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12610 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12611 * the interface flags or any other information from the DL_INFO_ACK for 12612 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12613 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12614 * second DL_INFO_ACK comes in from the driver. 12615 */ 12616 static ipif_t * 12617 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12618 { 12619 ipif_t *ipif; 12620 phyint_t *phyi; 12621 12622 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12623 ill->ill_name, id, (void *)ill)); 12624 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12625 12626 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12627 return (NULL); 12628 *ipif = ipif_zero; /* start clean */ 12629 12630 ipif->ipif_ill = ill; 12631 ipif->ipif_id = id; /* could be -1 */ 12632 ipif->ipif_zoneid = GLOBAL_ZONEID; 12633 12634 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12635 12636 ipif->ipif_refcnt = 0; 12637 ipif->ipif_saved_ire_cnt = 0; 12638 12639 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12640 mi_free(ipif); 12641 return (NULL); 12642 } 12643 /* -1 id should have been replaced by real id */ 12644 id = ipif->ipif_id; 12645 ASSERT(id >= 0); 12646 12647 if (ill->ill_name[0] != '\0') { 12648 ipif_assign_seqid(ipif); 12649 if (ill->ill_phyint->phyint_ifindex != 0) 12650 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12651 } 12652 /* 12653 * Keep a copy of original id in ipif_orig_ipifid. Failback 12654 * will attempt to restore the original id. The SIOCSLIFOINDEX 12655 * ioctl sets ipif_orig_ipifid to zero. 12656 */ 12657 ipif->ipif_orig_ipifid = id; 12658 12659 /* 12660 * We grab the ill_lock and phyint_lock to protect the flag changes. 12661 * The ipif is still not up and can't be looked up until the 12662 * ioctl completes and the IPIF_CHANGING flag is cleared. 12663 */ 12664 mutex_enter(&ill->ill_lock); 12665 mutex_enter(&ill->ill_phyint->phyint_lock); 12666 /* 12667 * Set the running flag when logical interface zero is created. 12668 * For subsequent logical interfaces, a DLPI link down 12669 * notification message may have cleared the running flag to 12670 * indicate the link is down, so we shouldn't just blindly set it. 12671 */ 12672 if (id == 0) 12673 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12674 ipif->ipif_ire_type = ire_type; 12675 phyi = ill->ill_phyint; 12676 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12677 12678 if (ipif->ipif_isv6) { 12679 ill->ill_flags |= ILLF_IPV6; 12680 } else { 12681 ipaddr_t inaddr_any = INADDR_ANY; 12682 12683 ill->ill_flags |= ILLF_IPV4; 12684 12685 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12686 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12687 &ipif->ipif_v6lcl_addr); 12688 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12689 &ipif->ipif_v6src_addr); 12690 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12691 &ipif->ipif_v6subnet); 12692 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12693 &ipif->ipif_v6net_mask); 12694 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12695 &ipif->ipif_v6brd_addr); 12696 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12697 &ipif->ipif_v6pp_dst_addr); 12698 } 12699 12700 /* 12701 * Don't set the interface flags etc. now, will do it in 12702 * ip_ll_subnet_defaults. 12703 */ 12704 if (!initialize) { 12705 mutex_exit(&ill->ill_lock); 12706 mutex_exit(&ill->ill_phyint->phyint_lock); 12707 return (ipif); 12708 } 12709 ipif->ipif_mtu = ill->ill_max_mtu; 12710 12711 if (ill->ill_bcast_addr_length != 0) { 12712 /* 12713 * Later detect lack of DLPI driver multicast 12714 * capability by catching DL_ENABMULTI errors in 12715 * ip_rput_dlpi. 12716 */ 12717 ill->ill_flags |= ILLF_MULTICAST; 12718 if (!ipif->ipif_isv6) 12719 ipif->ipif_flags |= IPIF_BROADCAST; 12720 } else { 12721 if (ill->ill_net_type != IRE_LOOPBACK) { 12722 if (ipif->ipif_isv6) 12723 /* 12724 * Note: xresolv interfaces will eventually need 12725 * NOARP set here as well, but that will require 12726 * those external resolvers to have some 12727 * knowledge of that flag and act appropriately. 12728 * Not to be changed at present. 12729 */ 12730 ill->ill_flags |= ILLF_NONUD; 12731 else 12732 ill->ill_flags |= ILLF_NOARP; 12733 } 12734 if (ill->ill_phys_addr_length == 0) { 12735 if (ill->ill_media && 12736 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12737 ipif->ipif_flags |= IPIF_NOXMIT; 12738 phyi->phyint_flags |= PHYI_VIRTUAL; 12739 } else { 12740 /* pt-pt supports multicast. */ 12741 ill->ill_flags |= ILLF_MULTICAST; 12742 if (ill->ill_net_type == IRE_LOOPBACK) { 12743 phyi->phyint_flags |= 12744 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12745 } else { 12746 ipif->ipif_flags |= IPIF_POINTOPOINT; 12747 } 12748 } 12749 } 12750 } 12751 mutex_exit(&ill->ill_lock); 12752 mutex_exit(&ill->ill_phyint->phyint_lock); 12753 return (ipif); 12754 } 12755 12756 /* 12757 * If appropriate, send a message up to the resolver delete the entry 12758 * for the address of this interface which is going out of business. 12759 * (Always called as writer). 12760 * 12761 * NOTE : We need to check for NULL mps as some of the fields are 12762 * initialized only for some interface types. See ipif_resolver_up() 12763 * for details. 12764 */ 12765 void 12766 ipif_arp_down(ipif_t *ipif) 12767 { 12768 mblk_t *mp; 12769 12770 ip1dbg(("ipif_arp_down(%s:%u)\n", 12771 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12772 ASSERT(IAM_WRITER_IPIF(ipif)); 12773 12774 /* Delete the mapping for the local address */ 12775 mp = ipif->ipif_arp_del_mp; 12776 if (mp != NULL) { 12777 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12778 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12779 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12780 putnext(ipif->ipif_ill->ill_rq, mp); 12781 ipif->ipif_arp_del_mp = NULL; 12782 } 12783 12784 /* 12785 * If this is the last ipif that is going down, we need 12786 * to clean up ARP completely. 12787 */ 12788 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12789 12790 /* Send up AR_INTERFACE_DOWN message */ 12791 mp = ipif->ipif_ill->ill_arp_down_mp; 12792 if (mp != NULL) { 12793 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12794 dlpi_prim_str(*(int *)mp->b_rptr), 12795 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12796 ipif->ipif_id)); 12797 putnext(ipif->ipif_ill->ill_rq, mp); 12798 ipif->ipif_ill->ill_arp_down_mp = NULL; 12799 } 12800 12801 /* Tell ARP to delete the multicast mappings */ 12802 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12803 if (mp != NULL) { 12804 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12805 dlpi_prim_str(*(int *)mp->b_rptr), 12806 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12807 ipif->ipif_id)); 12808 putnext(ipif->ipif_ill->ill_rq, mp); 12809 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12810 } 12811 } 12812 } 12813 12814 /* 12815 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12816 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12817 * that it wants the add_mp allocated in this function to be returned 12818 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12819 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12820 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12821 * as it does a ipif_arp_down after calling this function - which will 12822 * remove what we add here. 12823 * 12824 * Returns -1 on failures and 0 on success. 12825 */ 12826 int 12827 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12828 { 12829 mblk_t *del_mp = NULL; 12830 mblk_t *add_mp = NULL; 12831 mblk_t *mp; 12832 ill_t *ill = ipif->ipif_ill; 12833 phyint_t *phyi = ill->ill_phyint; 12834 ipaddr_t addr, mask, extract_mask = 0; 12835 arma_t *arma; 12836 uint8_t *maddr, *bphys_addr; 12837 uint32_t hw_start; 12838 dl_unitdata_req_t *dlur; 12839 12840 ASSERT(IAM_WRITER_IPIF(ipif)); 12841 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12842 return (0); 12843 12844 /* 12845 * Delete the existing mapping from ARP. Normally ipif_down 12846 * -> ipif_arp_down should send this up to ARP. The only 12847 * reason we would find this when we are switching from 12848 * Multicast to Broadcast where we did not do a down. 12849 */ 12850 mp = ill->ill_arp_del_mapping_mp; 12851 if (mp != NULL) { 12852 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12853 dlpi_prim_str(*(int *)mp->b_rptr), 12854 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12855 putnext(ill->ill_rq, mp); 12856 ill->ill_arp_del_mapping_mp = NULL; 12857 } 12858 12859 if (arp_add_mapping_mp != NULL) 12860 *arp_add_mapping_mp = NULL; 12861 12862 /* 12863 * Check that the address is not to long for the constant 12864 * length reserved in the template arma_t. 12865 */ 12866 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12867 return (-1); 12868 12869 /* Add mapping mblk */ 12870 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12871 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12872 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12873 (caddr_t)&addr); 12874 if (add_mp == NULL) 12875 return (-1); 12876 arma = (arma_t *)add_mp->b_rptr; 12877 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12878 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12879 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12880 12881 /* 12882 * Determine the broadcast address. 12883 */ 12884 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12885 if (ill->ill_sap_length < 0) 12886 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12887 else 12888 bphys_addr = (uchar_t *)dlur + 12889 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12890 /* 12891 * Check PHYI_MULTI_BCAST and length of physical 12892 * address to determine if we use the mapping or the 12893 * broadcast address. 12894 */ 12895 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12896 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12897 bphys_addr, maddr, &hw_start, &extract_mask)) 12898 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12899 12900 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12901 (ill->ill_flags & ILLF_MULTICAST)) { 12902 /* Make sure this will not match the "exact" entry. */ 12903 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12904 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12905 (caddr_t)&addr); 12906 if (del_mp == NULL) { 12907 freemsg(add_mp); 12908 return (-1); 12909 } 12910 bcopy(&extract_mask, (char *)arma + 12911 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12912 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12913 /* Use link-layer broadcast address for MULTI_BCAST */ 12914 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12915 ip2dbg(("ipif_arp_setup_multicast: adding" 12916 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12917 } else { 12918 arma->arma_hw_mapping_start = hw_start; 12919 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12920 " ARP setup for %s\n", ill->ill_name)); 12921 } 12922 } else { 12923 freemsg(add_mp); 12924 ASSERT(del_mp == NULL); 12925 /* It is neither MULTICAST nor MULTI_BCAST */ 12926 return (0); 12927 } 12928 ASSERT(add_mp != NULL && del_mp != NULL); 12929 ill->ill_arp_del_mapping_mp = del_mp; 12930 if (arp_add_mapping_mp != NULL) { 12931 /* The caller just wants the mblks allocated */ 12932 *arp_add_mapping_mp = add_mp; 12933 } else { 12934 /* The caller wants us to send it to arp */ 12935 putnext(ill->ill_rq, add_mp); 12936 } 12937 return (0); 12938 } 12939 12940 /* 12941 * Get the resolver set up for a new interface address. 12942 * (Always called as writer.) 12943 * Called both for IPv4 and IPv6 interfaces, 12944 * though it only sets up the resolver for v6 12945 * if it's an xresolv interface (one using an external resolver). 12946 * Honors ILLF_NOARP. 12947 * The boolean value arp_just_publish, if B_TRUE, indicates that 12948 * it only needs to send an AR_ENTRY_ADD message up to ARP for 12949 * IPv4 interfaces. Currently, B_TRUE is only set when this 12950 * function is called by ip_rput_dlpi_writer() to handle 12951 * asynchronous hardware address change notification. 12952 * Returns error on failure. 12953 */ 12954 int 12955 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 12956 { 12957 caddr_t addr; 12958 mblk_t *arp_up_mp = NULL; 12959 mblk_t *arp_down_mp = NULL; 12960 mblk_t *arp_add_mp = NULL; 12961 mblk_t *arp_del_mp = NULL; 12962 mblk_t *arp_add_mapping_mp = NULL; 12963 mblk_t *arp_del_mapping_mp = NULL; 12964 ill_t *ill = ipif->ipif_ill; 12965 uchar_t *area_p = NULL; 12966 uchar_t *ared_p = NULL; 12967 int err = ENOMEM; 12968 12969 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12970 ipif->ipif_ill->ill_name, ipif->ipif_id, 12971 (uint_t)ipif->ipif_flags)); 12972 ASSERT(IAM_WRITER_IPIF(ipif)); 12973 12974 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 12975 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 12976 return (0); 12977 } 12978 12979 if (ill->ill_isv6) { 12980 /* 12981 * External resolver for IPv6 12982 */ 12983 ASSERT(!arp_just_publish); 12984 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12985 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 12986 area_p = (uchar_t *)&ip6_area_template; 12987 ared_p = (uchar_t *)&ip6_ared_template; 12988 } 12989 } else { 12990 /* 12991 * IPv4 arp case. If the ARP stream has already started 12992 * closing, fail this request for ARP bringup. Else 12993 * record the fact that an ARP bringup is pending. 12994 */ 12995 mutex_enter(&ill->ill_lock); 12996 if (ill->ill_arp_closing) { 12997 mutex_exit(&ill->ill_lock); 12998 err = EINVAL; 12999 goto failed; 13000 } else { 13001 if (ill->ill_ipif_up_count == 0) 13002 ill->ill_arp_bringup_pending = 1; 13003 mutex_exit(&ill->ill_lock); 13004 } 13005 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13006 addr = (caddr_t)&ipif->ipif_lcl_addr; 13007 area_p = (uchar_t *)&ip_area_template; 13008 ared_p = (uchar_t *)&ip_ared_template; 13009 } 13010 } 13011 13012 /* 13013 * Add an entry for the local address in ARP only if it 13014 * is not UNNUMBERED and the address is not INADDR_ANY. 13015 */ 13016 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 13017 /* Now ask ARP to publish our address. */ 13018 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13019 if (arp_add_mp == NULL) 13020 goto failed; 13021 if (arp_just_publish) { 13022 /* 13023 * Copy the new hardware address and length into 13024 * arp_add_mp to be sent to ARP. 13025 */ 13026 area_t *area = (area_t *)arp_add_mp->b_rptr; 13027 area->area_hw_addr_length = 13028 ill->ill_phys_addr_length; 13029 bcopy((char *)ill->ill_phys_addr, 13030 ((char *)area + area->area_hw_addr_offset), 13031 area->area_hw_addr_length); 13032 } 13033 13034 ((area_t *)arp_add_mp->b_rptr)->area_flags = 13035 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 13036 13037 if (arp_just_publish) 13038 goto arp_setup_multicast; 13039 13040 /* 13041 * Allocate an ARP deletion message so we know we can tell ARP 13042 * when the interface goes down. 13043 */ 13044 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13045 if (arp_del_mp == NULL) 13046 goto failed; 13047 13048 } else { 13049 if (arp_just_publish) 13050 goto done; 13051 } 13052 /* 13053 * Need to bring up ARP or setup multicast mapping only 13054 * when the first interface is coming UP. 13055 */ 13056 if (ill->ill_ipif_up_count != 0) 13057 goto done; 13058 13059 /* 13060 * Allocate an ARP down message (to be saved) and an ARP up 13061 * message. 13062 */ 13063 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13064 if (arp_down_mp == NULL) 13065 goto failed; 13066 13067 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13068 if (arp_up_mp == NULL) 13069 goto failed; 13070 13071 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13072 goto done; 13073 13074 arp_setup_multicast: 13075 /* 13076 * Setup the multicast mappings. This function initializes 13077 * ill_arp_del_mapping_mp also. This does not need to be done for 13078 * IPv6. 13079 */ 13080 if (!ill->ill_isv6) { 13081 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13082 if (err != 0) 13083 goto failed; 13084 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13085 ASSERT(arp_add_mapping_mp != NULL); 13086 } 13087 13088 done:; 13089 if (arp_del_mp != NULL) { 13090 ASSERT(ipif->ipif_arp_del_mp == NULL); 13091 ipif->ipif_arp_del_mp = arp_del_mp; 13092 } 13093 if (arp_down_mp != NULL) { 13094 ASSERT(ill->ill_arp_down_mp == NULL); 13095 ill->ill_arp_down_mp = arp_down_mp; 13096 } 13097 if (arp_del_mapping_mp != NULL) { 13098 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13099 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13100 } 13101 if (arp_up_mp != NULL) { 13102 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13103 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13104 putnext(ill->ill_rq, arp_up_mp); 13105 } 13106 if (arp_add_mp != NULL) { 13107 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13108 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13109 putnext(ill->ill_rq, arp_add_mp); 13110 } 13111 if (arp_add_mapping_mp != NULL) { 13112 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13113 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13114 putnext(ill->ill_rq, arp_add_mapping_mp); 13115 } 13116 if (arp_just_publish) 13117 return (0); 13118 13119 if (ill->ill_flags & ILLF_NOARP) 13120 err = ill_arp_off(ill); 13121 else 13122 err = ill_arp_on(ill); 13123 if (err) { 13124 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13125 freemsg(ipif->ipif_arp_del_mp); 13126 if (arp_down_mp != NULL) 13127 freemsg(ill->ill_arp_down_mp); 13128 if (ill->ill_arp_del_mapping_mp != NULL) 13129 freemsg(ill->ill_arp_del_mapping_mp); 13130 ipif->ipif_arp_del_mp = NULL; 13131 ill->ill_arp_down_mp = NULL; 13132 ill->ill_arp_del_mapping_mp = NULL; 13133 return (err); 13134 } 13135 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 13136 13137 failed:; 13138 ip1dbg(("ipif_resolver_up: FAILED\n")); 13139 freemsg(arp_add_mp); 13140 freemsg(arp_del_mp); 13141 freemsg(arp_add_mapping_mp); 13142 freemsg(arp_up_mp); 13143 freemsg(arp_down_mp); 13144 ill->ill_arp_bringup_pending = 0; 13145 return (err); 13146 } 13147 13148 /* 13149 * Wakeup all threads waiting to enter the ipsq, and sleeping 13150 * on any of the ills in this ipsq. The ill_lock of the ill 13151 * must be held so that waiters don't miss wakeups 13152 */ 13153 static void 13154 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13155 { 13156 phyint_t *phyint; 13157 13158 phyint = ipsq->ipsq_phyint_list; 13159 while (phyint != NULL) { 13160 if (phyint->phyint_illv4) { 13161 if (!caller_holds_lock) 13162 mutex_enter(&phyint->phyint_illv4->ill_lock); 13163 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13164 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13165 if (!caller_holds_lock) 13166 mutex_exit(&phyint->phyint_illv4->ill_lock); 13167 } 13168 if (phyint->phyint_illv6) { 13169 if (!caller_holds_lock) 13170 mutex_enter(&phyint->phyint_illv6->ill_lock); 13171 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13172 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13173 if (!caller_holds_lock) 13174 mutex_exit(&phyint->phyint_illv6->ill_lock); 13175 } 13176 phyint = phyint->phyint_ipsq_next; 13177 } 13178 } 13179 13180 static ipsq_t * 13181 ipsq_create(char *groupname) 13182 { 13183 ipsq_t *ipsq; 13184 13185 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13186 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13187 if (ipsq == NULL) { 13188 return (NULL); 13189 } 13190 13191 if (groupname != NULL) 13192 (void) strcpy(ipsq->ipsq_name, groupname); 13193 else 13194 ipsq->ipsq_name[0] = '\0'; 13195 13196 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13197 ipsq->ipsq_flags |= IPSQ_GROUP; 13198 ipsq->ipsq_next = ipsq_g_head; 13199 ipsq_g_head = ipsq; 13200 return (ipsq); 13201 } 13202 13203 /* 13204 * Return an ipsq correspoding to the groupname. If 'create' is true 13205 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13206 * uniquely with an IPMP group. However during IPMP groupname operations, 13207 * multiple IPMP groups may be associated with a single ipsq. But no 13208 * IPMP group can be associated with more than 1 ipsq at any time. 13209 * For example 13210 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13211 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13212 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13213 * 13214 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13215 * status shown below during the execution of the above command. 13216 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13217 * 13218 * After the completion of the above groupname command we return to the stable 13219 * state shown below. 13220 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13221 * hme4 mpk17-85 ipsq2 mpk17-85 1 13222 * 13223 * Because of the above, we don't search based on the ipsq_name since that 13224 * would miss the correct ipsq during certain windows as shown above. 13225 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13226 * natural state. 13227 */ 13228 static ipsq_t * 13229 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13230 { 13231 ipsq_t *ipsq; 13232 int group_len; 13233 phyint_t *phyint; 13234 13235 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13236 13237 group_len = strlen(groupname); 13238 ASSERT(group_len != 0); 13239 group_len++; 13240 13241 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13242 /* 13243 * When an ipsq is being split, and ill_split_ipsq 13244 * calls this function, we exclude it from being considered. 13245 */ 13246 if (ipsq == exclude_ipsq) 13247 continue; 13248 13249 /* 13250 * Compare against the ipsq_name. The groupname change happens 13251 * in 2 phases. The 1st phase merges the from group into 13252 * the to group's ipsq, by calling ill_merge_groups and restarts 13253 * the ioctl. The 2nd phase then locates the ipsq again thru 13254 * ipsq_name. At this point the phyint_groupname has not been 13255 * updated. 13256 */ 13257 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13258 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13259 /* 13260 * Verify that an ipmp groupname is exactly 13261 * part of 1 ipsq and is not found in any other 13262 * ipsq. 13263 */ 13264 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13265 NULL); 13266 return (ipsq); 13267 } 13268 13269 /* 13270 * Comparison against ipsq_name alone is not sufficient. 13271 * In the case when groups are currently being 13272 * merged, the ipsq could hold other IPMP groups temporarily. 13273 * so we walk the phyint list and compare against the 13274 * phyint_groupname as well. 13275 */ 13276 phyint = ipsq->ipsq_phyint_list; 13277 while (phyint != NULL) { 13278 if ((group_len == phyint->phyint_groupname_len) && 13279 (bcmp(phyint->phyint_groupname, groupname, 13280 group_len) == 0)) { 13281 /* 13282 * Verify that an ipmp groupname is exactly 13283 * part of 1 ipsq and is not found in any other 13284 * ipsq. 13285 */ 13286 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13287 == NULL); 13288 return (ipsq); 13289 } 13290 phyint = phyint->phyint_ipsq_next; 13291 } 13292 } 13293 if (create) 13294 ipsq = ipsq_create(groupname); 13295 return (ipsq); 13296 } 13297 13298 static void 13299 ipsq_delete(ipsq_t *ipsq) 13300 { 13301 ipsq_t *nipsq; 13302 ipsq_t *pipsq = NULL; 13303 13304 /* 13305 * We don't hold the ipsq lock, but we are sure no new 13306 * messages can land up, since the ipsq_refs is zero. 13307 * i.e. this ipsq is unnamed and no phyint or phyint group 13308 * is associated with this ipsq. (Lookups are based on ill_name 13309 * or phyint_group_name) 13310 */ 13311 ASSERT(ipsq->ipsq_refs == 0); 13312 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13313 ASSERT(ipsq->ipsq_pending_mp == NULL); 13314 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13315 /* 13316 * This is not the ipsq of an IPMP group. 13317 */ 13318 kmem_free(ipsq, sizeof (ipsq_t)); 13319 return; 13320 } 13321 13322 rw_enter(&ill_g_lock, RW_WRITER); 13323 13324 /* 13325 * Locate the ipsq before we can remove it from 13326 * the singly linked list of ipsq's. 13327 */ 13328 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13329 if (nipsq == ipsq) { 13330 break; 13331 } 13332 pipsq = nipsq; 13333 } 13334 13335 ASSERT(nipsq == ipsq); 13336 13337 /* unlink ipsq from the list */ 13338 if (pipsq != NULL) 13339 pipsq->ipsq_next = ipsq->ipsq_next; 13340 else 13341 ipsq_g_head = ipsq->ipsq_next; 13342 kmem_free(ipsq, sizeof (ipsq_t)); 13343 rw_exit(&ill_g_lock); 13344 } 13345 13346 static void 13347 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13348 queue_t *q) 13349 13350 { 13351 13352 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13353 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13354 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13355 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13356 ASSERT(current_mp != NULL); 13357 13358 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13359 NEW_OP, NULL); 13360 13361 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13362 new_ipsq->ipsq_xopq_mphead != NULL); 13363 13364 /* 13365 * move from old ipsq to the new ipsq. 13366 */ 13367 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13368 if (old_ipsq->ipsq_xopq_mphead != NULL) 13369 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13370 13371 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13372 } 13373 13374 void 13375 ill_group_cleanup(ill_t *ill) 13376 { 13377 ill_t *ill_v4; 13378 ill_t *ill_v6; 13379 ipif_t *ipif; 13380 13381 ill_v4 = ill->ill_phyint->phyint_illv4; 13382 ill_v6 = ill->ill_phyint->phyint_illv6; 13383 13384 if (ill_v4 != NULL) { 13385 mutex_enter(&ill_v4->ill_lock); 13386 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13387 ipif = ipif->ipif_next) { 13388 IPIF_UNMARK_MOVING(ipif); 13389 } 13390 ill_v4->ill_up_ipifs = B_FALSE; 13391 mutex_exit(&ill_v4->ill_lock); 13392 } 13393 13394 if (ill_v6 != NULL) { 13395 mutex_enter(&ill_v6->ill_lock); 13396 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13397 ipif = ipif->ipif_next) { 13398 IPIF_UNMARK_MOVING(ipif); 13399 } 13400 ill_v6->ill_up_ipifs = B_FALSE; 13401 mutex_exit(&ill_v6->ill_lock); 13402 } 13403 } 13404 /* 13405 * This function is called when an ill has had a change in its group status 13406 * to bring up all the ipifs that were up before the change. 13407 */ 13408 int 13409 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13410 { 13411 ipif_t *ipif; 13412 ill_t *ill_v4; 13413 ill_t *ill_v6; 13414 ill_t *from_ill; 13415 int err = 0; 13416 13417 13418 ASSERT(IAM_WRITER_ILL(ill)); 13419 13420 /* 13421 * Except for ipif_state_flags and ill_state_flags the other 13422 * fields of the ipif/ill that are modified below are protected 13423 * implicitly since we are a writer. We would have tried to down 13424 * even an ipif that was already down, in ill_down_ipifs. So we 13425 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13426 */ 13427 ill_v4 = ill->ill_phyint->phyint_illv4; 13428 ill_v6 = ill->ill_phyint->phyint_illv6; 13429 if (ill_v4 != NULL) { 13430 ill_v4->ill_up_ipifs = B_TRUE; 13431 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13432 ipif = ipif->ipif_next) { 13433 mutex_enter(&ill_v4->ill_lock); 13434 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13435 IPIF_UNMARK_MOVING(ipif); 13436 mutex_exit(&ill_v4->ill_lock); 13437 if (ipif->ipif_was_up) { 13438 if (!(ipif->ipif_flags & IPIF_UP)) 13439 err = ipif_up(ipif, q, mp); 13440 ipif->ipif_was_up = B_FALSE; 13441 if (err != 0) { 13442 /* 13443 * Can there be any other error ? 13444 */ 13445 ASSERT(err == EINPROGRESS); 13446 return (err); 13447 } 13448 } 13449 } 13450 mutex_enter(&ill_v4->ill_lock); 13451 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13452 mutex_exit(&ill_v4->ill_lock); 13453 ill_v4->ill_up_ipifs = B_FALSE; 13454 if (ill_v4->ill_move_in_progress) { 13455 ASSERT(ill_v4->ill_move_peer != NULL); 13456 ill_v4->ill_move_in_progress = B_FALSE; 13457 from_ill = ill_v4->ill_move_peer; 13458 from_ill->ill_move_in_progress = B_FALSE; 13459 from_ill->ill_move_peer = NULL; 13460 mutex_enter(&from_ill->ill_lock); 13461 from_ill->ill_state_flags &= ~ILL_CHANGING; 13462 mutex_exit(&from_ill->ill_lock); 13463 if (ill_v6 == NULL) { 13464 if (from_ill->ill_phyint->phyint_flags & 13465 PHYI_STANDBY) { 13466 phyint_inactive(from_ill->ill_phyint); 13467 } 13468 if (ill_v4->ill_phyint->phyint_flags & 13469 PHYI_STANDBY) { 13470 phyint_inactive(ill_v4->ill_phyint); 13471 } 13472 } 13473 ill_v4->ill_move_peer = NULL; 13474 } 13475 } 13476 13477 if (ill_v6 != NULL) { 13478 ill_v6->ill_up_ipifs = B_TRUE; 13479 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13480 ipif = ipif->ipif_next) { 13481 mutex_enter(&ill_v6->ill_lock); 13482 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13483 IPIF_UNMARK_MOVING(ipif); 13484 mutex_exit(&ill_v6->ill_lock); 13485 if (ipif->ipif_was_up) { 13486 if (!(ipif->ipif_flags & IPIF_UP)) 13487 err = ipif_up(ipif, q, mp); 13488 ipif->ipif_was_up = B_FALSE; 13489 if (err != 0) { 13490 /* 13491 * Can there be any other error ? 13492 */ 13493 ASSERT(err == EINPROGRESS); 13494 return (err); 13495 } 13496 } 13497 } 13498 mutex_enter(&ill_v6->ill_lock); 13499 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13500 mutex_exit(&ill_v6->ill_lock); 13501 ill_v6->ill_up_ipifs = B_FALSE; 13502 if (ill_v6->ill_move_in_progress) { 13503 ASSERT(ill_v6->ill_move_peer != NULL); 13504 ill_v6->ill_move_in_progress = B_FALSE; 13505 from_ill = ill_v6->ill_move_peer; 13506 from_ill->ill_move_in_progress = B_FALSE; 13507 from_ill->ill_move_peer = NULL; 13508 mutex_enter(&from_ill->ill_lock); 13509 from_ill->ill_state_flags &= ~ILL_CHANGING; 13510 mutex_exit(&from_ill->ill_lock); 13511 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13512 phyint_inactive(from_ill->ill_phyint); 13513 } 13514 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13515 phyint_inactive(ill_v6->ill_phyint); 13516 } 13517 ill_v6->ill_move_peer = NULL; 13518 } 13519 } 13520 return (0); 13521 } 13522 13523 /* 13524 * bring down all the approriate ipifs. 13525 */ 13526 /* ARGSUSED */ 13527 static void 13528 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13529 { 13530 ipif_t *ipif; 13531 13532 ASSERT(IAM_WRITER_ILL(ill)); 13533 13534 /* 13535 * Except for ipif_state_flags the other fields of the ipif/ill that 13536 * are modified below are protected implicitly since we are a writer 13537 */ 13538 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13539 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13540 continue; 13541 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13542 /* 13543 * We go through the ipif_down logic even if the ipif 13544 * is already down, since routes can be added based 13545 * on down ipifs. Going through ipif_down once again 13546 * will delete any IREs created based on these routes. 13547 */ 13548 if (ipif->ipif_flags & IPIF_UP) 13549 ipif->ipif_was_up = B_TRUE; 13550 /* 13551 * If called with chk_nofailover true ipif is moving. 13552 */ 13553 mutex_enter(&ill->ill_lock); 13554 if (chk_nofailover) { 13555 ipif->ipif_state_flags |= 13556 IPIF_MOVING | IPIF_CHANGING; 13557 } else { 13558 ipif->ipif_state_flags |= IPIF_CHANGING; 13559 } 13560 mutex_exit(&ill->ill_lock); 13561 /* 13562 * Need to re-create net/subnet bcast ires if 13563 * they are dependent on ipif. 13564 */ 13565 if (!ipif->ipif_isv6) 13566 ipif_check_bcast_ires(ipif); 13567 (void) ipif_logical_down(ipif, NULL, NULL); 13568 ipif_down_tail(ipif); 13569 /* 13570 * We don't do ipif_multicast_down for IPv4 in 13571 * ipif_down. We need to set this so that 13572 * ipif_multicast_up will join the 13573 * ALLHOSTS_GROUP on to_ill. 13574 */ 13575 ipif->ipif_multicast_up = B_FALSE; 13576 } 13577 } 13578 } 13579 13580 #define IPSQ_INC_REF(ipsq) { \ 13581 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13582 (ipsq)->ipsq_refs++; \ 13583 } 13584 13585 #define IPSQ_DEC_REF(ipsq) { \ 13586 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13587 (ipsq)->ipsq_refs--; \ 13588 if ((ipsq)->ipsq_refs == 0) \ 13589 (ipsq)->ipsq_name[0] = '\0'; \ 13590 } 13591 13592 /* 13593 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13594 * new_ipsq. 13595 */ 13596 static void 13597 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13598 { 13599 phyint_t *phyint; 13600 phyint_t *next_phyint; 13601 13602 /* 13603 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13604 * writer and the ill_lock of the ill in question. Also the dest 13605 * ipsq can't vanish while we hold the ill_g_lock as writer. 13606 */ 13607 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13608 13609 phyint = cur_ipsq->ipsq_phyint_list; 13610 cur_ipsq->ipsq_phyint_list = NULL; 13611 while (phyint != NULL) { 13612 next_phyint = phyint->phyint_ipsq_next; 13613 IPSQ_DEC_REF(cur_ipsq); 13614 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13615 new_ipsq->ipsq_phyint_list = phyint; 13616 IPSQ_INC_REF(new_ipsq); 13617 phyint->phyint_ipsq = new_ipsq; 13618 phyint = next_phyint; 13619 } 13620 } 13621 13622 #define SPLIT_SUCCESS 0 13623 #define SPLIT_NOT_NEEDED 1 13624 #define SPLIT_FAILED 2 13625 13626 int 13627 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13628 { 13629 ipsq_t *newipsq = NULL; 13630 13631 /* 13632 * Assertions denote pre-requisites for changing the ipsq of 13633 * a phyint 13634 */ 13635 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13636 /* 13637 * <ill-phyint> assocs can't change while ill_g_lock 13638 * is held as writer. See ill_phyint_reinit() 13639 */ 13640 ASSERT(phyint->phyint_illv4 == NULL || 13641 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13642 ASSERT(phyint->phyint_illv6 == NULL || 13643 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13644 13645 if ((phyint->phyint_groupname_len != 13646 (strlen(cur_ipsq->ipsq_name) + 1) || 13647 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13648 phyint->phyint_groupname_len) != 0)) { 13649 /* 13650 * Once we fail in creating a new ipsq due to memory shortage, 13651 * don't attempt to create new ipsq again, based on another 13652 * phyint, since we want all phyints belonging to an IPMP group 13653 * to be in the same ipsq even in the event of mem alloc fails. 13654 */ 13655 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13656 cur_ipsq); 13657 if (newipsq == NULL) { 13658 /* Memory allocation failure */ 13659 return (SPLIT_FAILED); 13660 } else { 13661 /* ipsq_refs protected by ill_g_lock (writer) */ 13662 IPSQ_DEC_REF(cur_ipsq); 13663 phyint->phyint_ipsq = newipsq; 13664 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13665 newipsq->ipsq_phyint_list = phyint; 13666 IPSQ_INC_REF(newipsq); 13667 return (SPLIT_SUCCESS); 13668 } 13669 } 13670 return (SPLIT_NOT_NEEDED); 13671 } 13672 13673 /* 13674 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13675 * to do this split 13676 */ 13677 static int 13678 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13679 { 13680 ipsq_t *newipsq; 13681 13682 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13683 /* 13684 * <ill-phyint> assocs can't change while ill_g_lock 13685 * is held as writer. See ill_phyint_reinit() 13686 */ 13687 13688 ASSERT(phyint->phyint_illv4 == NULL || 13689 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13690 ASSERT(phyint->phyint_illv6 == NULL || 13691 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13692 13693 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13694 phyint->phyint_illv4: phyint->phyint_illv6)) { 13695 /* 13696 * ipsq_init failed due to no memory 13697 * caller will use the same ipsq 13698 */ 13699 return (SPLIT_FAILED); 13700 } 13701 13702 /* ipsq_ref is protected by ill_g_lock (writer) */ 13703 IPSQ_DEC_REF(cur_ipsq); 13704 13705 /* 13706 * This is a new ipsq that is unknown to the world. 13707 * So we don't need to hold ipsq_lock, 13708 */ 13709 newipsq = phyint->phyint_ipsq; 13710 newipsq->ipsq_writer = NULL; 13711 newipsq->ipsq_reentry_cnt--; 13712 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13713 #ifdef ILL_DEBUG 13714 newipsq->ipsq_depth = 0; 13715 #endif 13716 13717 return (SPLIT_SUCCESS); 13718 } 13719 13720 /* 13721 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13722 * ipsq's representing their individual groups or themselves. Return 13723 * whether split needs to be retried again later. 13724 */ 13725 static boolean_t 13726 ill_split_ipsq(ipsq_t *cur_ipsq) 13727 { 13728 phyint_t *phyint; 13729 phyint_t *next_phyint; 13730 int error; 13731 boolean_t need_retry = B_FALSE; 13732 13733 phyint = cur_ipsq->ipsq_phyint_list; 13734 cur_ipsq->ipsq_phyint_list = NULL; 13735 while (phyint != NULL) { 13736 next_phyint = phyint->phyint_ipsq_next; 13737 /* 13738 * 'created' will tell us whether the callee actually 13739 * created an ipsq. Lack of memory may force the callee 13740 * to return without creating an ipsq. 13741 */ 13742 if (phyint->phyint_groupname == NULL) { 13743 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13744 } else { 13745 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13746 need_retry); 13747 } 13748 13749 switch (error) { 13750 case SPLIT_FAILED: 13751 need_retry = B_TRUE; 13752 /* FALLTHRU */ 13753 case SPLIT_NOT_NEEDED: 13754 /* 13755 * Keep it on the list. 13756 */ 13757 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13758 cur_ipsq->ipsq_phyint_list = phyint; 13759 break; 13760 case SPLIT_SUCCESS: 13761 break; 13762 default: 13763 ASSERT(0); 13764 } 13765 13766 phyint = next_phyint; 13767 } 13768 return (need_retry); 13769 } 13770 13771 /* 13772 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13773 * and return the ills in the list. This list will be 13774 * needed to unlock all the ills later on by the caller. 13775 * The <ill-ipsq> associations could change between the 13776 * lock and unlock. Hence the unlock can't traverse the 13777 * ipsq to get the list of ills. 13778 */ 13779 static int 13780 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13781 { 13782 int cnt = 0; 13783 phyint_t *phyint; 13784 13785 /* 13786 * The caller holds ill_g_lock to ensure that the ill memberships 13787 * of the ipsq don't change 13788 */ 13789 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13790 13791 phyint = ipsq->ipsq_phyint_list; 13792 while (phyint != NULL) { 13793 if (phyint->phyint_illv4 != NULL) { 13794 ASSERT(cnt < list_max); 13795 list[cnt++] = phyint->phyint_illv4; 13796 } 13797 if (phyint->phyint_illv6 != NULL) { 13798 ASSERT(cnt < list_max); 13799 list[cnt++] = phyint->phyint_illv6; 13800 } 13801 phyint = phyint->phyint_ipsq_next; 13802 } 13803 ill_lock_ills(list, cnt); 13804 return (cnt); 13805 } 13806 13807 void 13808 ill_lock_ills(ill_t **list, int cnt) 13809 { 13810 int i; 13811 13812 if (cnt > 1) { 13813 boolean_t try_again; 13814 do { 13815 try_again = B_FALSE; 13816 for (i = 0; i < cnt - 1; i++) { 13817 if (list[i] < list[i + 1]) { 13818 ill_t *tmp; 13819 13820 /* swap the elements */ 13821 tmp = list[i]; 13822 list[i] = list[i + 1]; 13823 list[i + 1] = tmp; 13824 try_again = B_TRUE; 13825 } 13826 } 13827 } while (try_again); 13828 } 13829 13830 for (i = 0; i < cnt; i++) { 13831 if (i == 0) { 13832 if (list[i] != NULL) 13833 mutex_enter(&list[i]->ill_lock); 13834 else 13835 return; 13836 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13837 mutex_enter(&list[i]->ill_lock); 13838 } 13839 } 13840 } 13841 13842 void 13843 ill_unlock_ills(ill_t **list, int cnt) 13844 { 13845 int i; 13846 13847 for (i = 0; i < cnt; i++) { 13848 if ((i == 0) && (list[i] != NULL)) { 13849 mutex_exit(&list[i]->ill_lock); 13850 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13851 mutex_exit(&list[i]->ill_lock); 13852 } 13853 } 13854 } 13855 13856 /* 13857 * Merge all the ills from 1 ipsq group into another ipsq group. 13858 * The source ipsq group is specified by the ipsq associated with 13859 * 'from_ill'. The destination ipsq group is specified by the ipsq 13860 * associated with 'to_ill' or 'groupname' respectively. 13861 * Note that ipsq itself does not have a reference count mechanism 13862 * and functions don't look up an ipsq and pass it around. Instead 13863 * functions pass around an ill or groupname, and the ipsq is looked 13864 * up from the ill or groupname and the required operation performed 13865 * atomically with the lookup on the ipsq. 13866 */ 13867 static int 13868 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13869 queue_t *q) 13870 { 13871 ipsq_t *old_ipsq; 13872 ipsq_t *new_ipsq; 13873 ill_t **ill_list; 13874 int cnt; 13875 size_t ill_list_size; 13876 boolean_t became_writer_on_new_sq = B_FALSE; 13877 13878 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13879 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13880 13881 /* 13882 * Need to hold ill_g_lock as writer and also the ill_lock to 13883 * change the <ill-ipsq> assoc of an ill. Need to hold the 13884 * ipsq_lock to prevent new messages from landing on an ipsq. 13885 */ 13886 rw_enter(&ill_g_lock, RW_WRITER); 13887 13888 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13889 if (groupname != NULL) 13890 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13891 else { 13892 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13893 } 13894 13895 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13896 13897 /* 13898 * both groups are on the same ipsq. 13899 */ 13900 if (old_ipsq == new_ipsq) { 13901 rw_exit(&ill_g_lock); 13902 return (0); 13903 } 13904 13905 cnt = old_ipsq->ipsq_refs << 1; 13906 ill_list_size = cnt * sizeof (ill_t *); 13907 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13908 if (ill_list == NULL) { 13909 rw_exit(&ill_g_lock); 13910 return (ENOMEM); 13911 } 13912 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13913 13914 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13915 mutex_enter(&new_ipsq->ipsq_lock); 13916 if ((new_ipsq->ipsq_writer == NULL && 13917 new_ipsq->ipsq_current_ipif == NULL) || 13918 (new_ipsq->ipsq_writer == curthread)) { 13919 new_ipsq->ipsq_writer = curthread; 13920 new_ipsq->ipsq_reentry_cnt++; 13921 became_writer_on_new_sq = B_TRUE; 13922 } 13923 13924 /* 13925 * We are holding ill_g_lock as writer and all the ill locks of 13926 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 13927 * message can land up on the old ipsq even though we don't hold the 13928 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 13929 */ 13930 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 13931 13932 /* 13933 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 13934 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 13935 * assocs. till we release the ill_g_lock, and hence it can't vanish. 13936 */ 13937 ill_merge_ipsq(old_ipsq, new_ipsq); 13938 13939 /* 13940 * Mark the new ipsq as needing a split since it is currently 13941 * being shared by more than 1 IPMP group. The split will 13942 * occur at the end of ipsq_exit 13943 */ 13944 new_ipsq->ipsq_split = B_TRUE; 13945 13946 /* Now release all the locks */ 13947 mutex_exit(&new_ipsq->ipsq_lock); 13948 ill_unlock_ills(ill_list, cnt); 13949 rw_exit(&ill_g_lock); 13950 13951 kmem_free(ill_list, ill_list_size); 13952 13953 /* 13954 * If we succeeded in becoming writer on the new ipsq, then 13955 * drain the new ipsq and start processing all enqueued messages 13956 * including the current ioctl we are processing which is either 13957 * a set groupname or failover/failback. 13958 */ 13959 if (became_writer_on_new_sq) 13960 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 13961 13962 /* 13963 * syncq has been changed and all the messages have been moved. 13964 */ 13965 mutex_enter(&old_ipsq->ipsq_lock); 13966 old_ipsq->ipsq_current_ipif = NULL; 13967 mutex_exit(&old_ipsq->ipsq_lock); 13968 return (EINPROGRESS); 13969 } 13970 13971 /* 13972 * Delete and add the loopback copy and non-loopback copy of 13973 * the BROADCAST ire corresponding to ill and addr. Used to 13974 * group broadcast ires together when ill becomes part of 13975 * a group. 13976 * 13977 * This function is also called when ill is leaving the group 13978 * so that the ires belonging to the group gets re-grouped. 13979 */ 13980 static void 13981 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 13982 { 13983 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 13984 ire_t **ire_ptpn = &ire_head; 13985 13986 /* 13987 * The loopback and non-loopback IREs are inserted in the order in which 13988 * they're found, on the basis that they are correctly ordered (loopback 13989 * first). 13990 */ 13991 for (;;) { 13992 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13993 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13994 if (ire == NULL) 13995 break; 13996 13997 /* 13998 * we are passing in KM_SLEEP because it is not easy to 13999 * go back to a sane state in case of memory failure. 14000 */ 14001 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14002 ASSERT(nire != NULL); 14003 bzero(nire, sizeof (ire_t)); 14004 /* 14005 * Don't use ire_max_frag directly since we don't 14006 * hold on to 'ire' until we add the new ire 'nire' and 14007 * we don't want the new ire to have a dangling reference 14008 * to 'ire'. The ire_max_frag of a broadcast ire must 14009 * be in sync with the ipif_mtu of the associate ipif. 14010 * For eg. this happens as a result of SIOCSLIFNAME, 14011 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14012 * the driver. A change in ire_max_frag triggered as 14013 * as a result of path mtu discovery, or due to an 14014 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14015 * route change -mtu command does not apply to broadcast ires. 14016 * 14017 * XXX We need a recovery strategy here if ire_init fails 14018 */ 14019 if (ire_init(nire, 14020 (uchar_t *)&ire->ire_addr, 14021 (uchar_t *)&ire->ire_mask, 14022 (uchar_t *)&ire->ire_src_addr, 14023 (uchar_t *)&ire->ire_gateway_addr, 14024 (uchar_t *)&ire->ire_in_src_addr, 14025 ire->ire_stq == NULL ? &ip_loopback_mtu : 14026 &ire->ire_ipif->ipif_mtu, 14027 ire->ire_fp_mp, 14028 ire->ire_rfq, 14029 ire->ire_stq, 14030 ire->ire_type, 14031 ire->ire_dlureq_mp, 14032 ire->ire_ipif, 14033 ire->ire_in_ill, 14034 ire->ire_cmask, 14035 ire->ire_phandle, 14036 ire->ire_ihandle, 14037 ire->ire_flags, 14038 &ire->ire_uinfo) == NULL) { 14039 cmn_err(CE_PANIC, "ire_init() failed"); 14040 } 14041 ire_delete(ire); 14042 ire_refrele(ire); 14043 14044 /* 14045 * The newly created IREs are inserted at the tail of the list 14046 * starting with ire_head. As we've just allocated them no one 14047 * knows about them so it's safe. 14048 */ 14049 *ire_ptpn = nire; 14050 ire_ptpn = &nire->ire_next; 14051 } 14052 14053 for (nire = ire_head; nire != NULL; nire = nire_next) { 14054 int error; 14055 ire_t *oire; 14056 /* unlink the IRE from our list before calling ire_add() */ 14057 nire_next = nire->ire_next; 14058 nire->ire_next = NULL; 14059 14060 /* ire_add adds the ire at the right place in the list */ 14061 oire = nire; 14062 error = ire_add(&nire, NULL, NULL, NULL); 14063 ASSERT(error == 0); 14064 ASSERT(oire == nire); 14065 ire_refrele(nire); /* Held in ire_add */ 14066 } 14067 } 14068 14069 /* 14070 * This function is usually called when an ill is inserted in 14071 * a group and all the ipifs are already UP. As all the ipifs 14072 * are already UP, the broadcast ires have already been created 14073 * and been inserted. But, ire_add_v4 would not have grouped properly. 14074 * We need to re-group for the benefit of ip_wput_ire which 14075 * expects BROADCAST ires to be grouped properly to avoid sending 14076 * more than one copy of the broadcast packet per group. 14077 * 14078 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14079 * because when ipif_up_done ends up calling this, ires have 14080 * already been added before illgrp_insert i.e before ill_group 14081 * has been initialized. 14082 */ 14083 static void 14084 ill_group_bcast_for_xmit(ill_t *ill) 14085 { 14086 ill_group_t *illgrp; 14087 ipif_t *ipif; 14088 ipaddr_t addr; 14089 ipaddr_t net_mask; 14090 ipaddr_t subnet_netmask; 14091 14092 illgrp = ill->ill_group; 14093 14094 /* 14095 * This function is called even when an ill is deleted from 14096 * the group. Hence, illgrp could be null. 14097 */ 14098 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14099 return; 14100 14101 /* 14102 * Delete all the BROADCAST ires matching this ill and add 14103 * them back. This time, ire_add_v4 should take care of 14104 * grouping them with others because ill is part of the 14105 * group. 14106 */ 14107 ill_bcast_delete_and_add(ill, 0); 14108 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14109 14110 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14111 14112 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14113 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14114 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14115 } else { 14116 net_mask = htonl(IN_CLASSA_NET); 14117 } 14118 addr = net_mask & ipif->ipif_subnet; 14119 ill_bcast_delete_and_add(ill, addr); 14120 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14121 14122 subnet_netmask = ipif->ipif_net_mask; 14123 addr = ipif->ipif_subnet; 14124 ill_bcast_delete_and_add(ill, addr); 14125 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14126 } 14127 } 14128 14129 /* 14130 * This function is called from illgrp_delete when ill is being deleted 14131 * from the group. 14132 * 14133 * As ill is not there in the group anymore, any address belonging 14134 * to this ill should be cleared of IRE_MARK_NORECV. 14135 */ 14136 static void 14137 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14138 { 14139 ire_t *ire; 14140 irb_t *irb; 14141 14142 ASSERT(ill->ill_group == NULL); 14143 14144 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14145 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14146 14147 if (ire != NULL) { 14148 /* 14149 * IPMP and plumbing operations are serialized on the ipsq, so 14150 * no one will insert or delete a broadcast ire under our feet. 14151 */ 14152 irb = ire->ire_bucket; 14153 rw_enter(&irb->irb_lock, RW_READER); 14154 ire_refrele(ire); 14155 14156 for (; ire != NULL; ire = ire->ire_next) { 14157 if (ire->ire_addr != addr) 14158 break; 14159 if (ire_to_ill(ire) != ill) 14160 continue; 14161 14162 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14163 ire->ire_marks &= ~IRE_MARK_NORECV; 14164 } 14165 rw_exit(&irb->irb_lock); 14166 } 14167 } 14168 14169 /* 14170 * This function must be called only after the broadcast ires 14171 * have been grouped together. For a given address addr, nominate 14172 * only one of the ires whose interface is not FAILED or OFFLINE. 14173 * 14174 * This is also called when an ipif goes down, so that we can nominate 14175 * a different ire with the same address for receiving. 14176 */ 14177 static void 14178 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14179 { 14180 irb_t *irb; 14181 ire_t *ire; 14182 ire_t *ire1; 14183 ire_t *save_ire; 14184 ire_t **irep = NULL; 14185 boolean_t first = B_TRUE; 14186 ire_t *clear_ire = NULL; 14187 ire_t *start_ire = NULL; 14188 ire_t *new_lb_ire; 14189 ire_t *new_nlb_ire; 14190 boolean_t new_lb_ire_used = B_FALSE; 14191 boolean_t new_nlb_ire_used = B_FALSE; 14192 uint64_t match_flags; 14193 uint64_t phyi_flags; 14194 boolean_t fallback = B_FALSE; 14195 14196 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14197 MATCH_IRE_TYPE); 14198 /* 14199 * We may not be able to find some ires if a previous 14200 * ire_create failed. This happens when an ipif goes 14201 * down and we are unable to create BROADCAST ires due 14202 * to memory failure. Thus, we have to check for NULL 14203 * below. This should handle the case for LOOPBACK, 14204 * POINTOPOINT and interfaces with some POINTOPOINT 14205 * logicals for which there are no BROADCAST ires. 14206 */ 14207 if (ire == NULL) 14208 return; 14209 /* 14210 * Currently IRE_BROADCASTS are deleted when an ipif 14211 * goes down which runs exclusively. Thus, setting 14212 * IRE_MARK_RCVD should not race with ire_delete marking 14213 * IRE_MARK_CONDEMNED. We grab the lock below just to 14214 * be consistent with other parts of the code that walks 14215 * a given bucket. 14216 */ 14217 save_ire = ire; 14218 irb = ire->ire_bucket; 14219 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14220 if (new_lb_ire == NULL) { 14221 ire_refrele(ire); 14222 return; 14223 } 14224 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14225 if (new_nlb_ire == NULL) { 14226 ire_refrele(ire); 14227 kmem_cache_free(ire_cache, new_lb_ire); 14228 return; 14229 } 14230 IRB_REFHOLD(irb); 14231 rw_enter(&irb->irb_lock, RW_WRITER); 14232 /* 14233 * Get to the first ire matching the address and the 14234 * group. If the address does not match we are done 14235 * as we could not find the IRE. If the address matches 14236 * we should get to the first one matching the group. 14237 */ 14238 while (ire != NULL) { 14239 if (ire->ire_addr != addr || 14240 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14241 break; 14242 } 14243 ire = ire->ire_next; 14244 } 14245 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14246 start_ire = ire; 14247 redo: 14248 while (ire != NULL && ire->ire_addr == addr && 14249 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14250 /* 14251 * The first ire for any address within a group 14252 * should always be the one with IRE_MARK_NORECV cleared 14253 * so that ip_wput_ire can avoid searching for one. 14254 * Note down the insertion point which will be used 14255 * later. 14256 */ 14257 if (first && (irep == NULL)) 14258 irep = ire->ire_ptpn; 14259 /* 14260 * PHYI_FAILED is set when the interface fails. 14261 * This interface might have become good, but the 14262 * daemon has not yet detected. We should still 14263 * not receive on this. PHYI_OFFLINE should never 14264 * be picked as this has been offlined and soon 14265 * be removed. 14266 */ 14267 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14268 if (phyi_flags & PHYI_OFFLINE) { 14269 ire->ire_marks |= IRE_MARK_NORECV; 14270 ire = ire->ire_next; 14271 continue; 14272 } 14273 if (phyi_flags & match_flags) { 14274 ire->ire_marks |= IRE_MARK_NORECV; 14275 ire = ire->ire_next; 14276 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14277 PHYI_INACTIVE) { 14278 fallback = B_TRUE; 14279 } 14280 continue; 14281 } 14282 if (first) { 14283 /* 14284 * We will move this to the front of the list later 14285 * on. 14286 */ 14287 clear_ire = ire; 14288 ire->ire_marks &= ~IRE_MARK_NORECV; 14289 } else { 14290 ire->ire_marks |= IRE_MARK_NORECV; 14291 } 14292 first = B_FALSE; 14293 ire = ire->ire_next; 14294 } 14295 /* 14296 * If we never nominated anybody, try nominating at least 14297 * an INACTIVE, if we found one. Do it only once though. 14298 */ 14299 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14300 fallback) { 14301 match_flags = PHYI_FAILED; 14302 ire = start_ire; 14303 irep = NULL; 14304 goto redo; 14305 } 14306 ire_refrele(save_ire); 14307 14308 /* 14309 * irep non-NULL indicates that we entered the while loop 14310 * above. If clear_ire is at the insertion point, we don't 14311 * have to do anything. clear_ire will be NULL if all the 14312 * interfaces are failed. 14313 * 14314 * We cannot unlink and reinsert the ire at the right place 14315 * in the list since there can be other walkers of this bucket. 14316 * Instead we delete and recreate the ire 14317 */ 14318 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14319 ire_t *clear_ire_stq = NULL; 14320 bzero(new_lb_ire, sizeof (ire_t)); 14321 /* XXX We need a recovery strategy here. */ 14322 if (ire_init(new_lb_ire, 14323 (uchar_t *)&clear_ire->ire_addr, 14324 (uchar_t *)&clear_ire->ire_mask, 14325 (uchar_t *)&clear_ire->ire_src_addr, 14326 (uchar_t *)&clear_ire->ire_gateway_addr, 14327 (uchar_t *)&clear_ire->ire_in_src_addr, 14328 &clear_ire->ire_max_frag, 14329 clear_ire->ire_fp_mp, 14330 clear_ire->ire_rfq, 14331 clear_ire->ire_stq, 14332 clear_ire->ire_type, 14333 clear_ire->ire_dlureq_mp, 14334 clear_ire->ire_ipif, 14335 clear_ire->ire_in_ill, 14336 clear_ire->ire_cmask, 14337 clear_ire->ire_phandle, 14338 clear_ire->ire_ihandle, 14339 clear_ire->ire_flags, 14340 &clear_ire->ire_uinfo) == NULL) 14341 cmn_err(CE_PANIC, "ire_init() failed"); 14342 if (clear_ire->ire_stq == NULL) { 14343 ire_t *ire_next = clear_ire->ire_next; 14344 if (ire_next != NULL && 14345 ire_next->ire_stq != NULL && 14346 ire_next->ire_addr == clear_ire->ire_addr && 14347 ire_next->ire_ipif->ipif_ill == 14348 clear_ire->ire_ipif->ipif_ill) { 14349 clear_ire_stq = ire_next; 14350 14351 bzero(new_nlb_ire, sizeof (ire_t)); 14352 /* XXX We need a recovery strategy here. */ 14353 if (ire_init(new_nlb_ire, 14354 (uchar_t *)&clear_ire_stq->ire_addr, 14355 (uchar_t *)&clear_ire_stq->ire_mask, 14356 (uchar_t *)&clear_ire_stq->ire_src_addr, 14357 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14358 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14359 &clear_ire_stq->ire_max_frag, 14360 clear_ire_stq->ire_fp_mp, 14361 clear_ire_stq->ire_rfq, 14362 clear_ire_stq->ire_stq, 14363 clear_ire_stq->ire_type, 14364 clear_ire_stq->ire_dlureq_mp, 14365 clear_ire_stq->ire_ipif, 14366 clear_ire_stq->ire_in_ill, 14367 clear_ire_stq->ire_cmask, 14368 clear_ire_stq->ire_phandle, 14369 clear_ire_stq->ire_ihandle, 14370 clear_ire_stq->ire_flags, 14371 &clear_ire_stq->ire_uinfo) == NULL) 14372 cmn_err(CE_PANIC, "ire_init() failed"); 14373 } 14374 } 14375 14376 /* 14377 * Delete the ire. We can't call ire_delete() since 14378 * we are holding the bucket lock. We can't release the 14379 * bucket lock since we can't allow irep to change. So just 14380 * mark it CONDEMNED. The IRB_REFRELE will delete the 14381 * ire from the list and do the refrele. 14382 */ 14383 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14384 irb->irb_marks |= IRE_MARK_CONDEMNED; 14385 14386 if (clear_ire_stq != NULL) { 14387 ire_fastpath_list_delete( 14388 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14389 clear_ire_stq); 14390 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14391 } 14392 14393 /* 14394 * Also take care of otherfields like ib/ob pkt count 14395 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14396 */ 14397 14398 /* Add the new ire's. Insert at *irep */ 14399 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14400 ire1 = *irep; 14401 if (ire1 != NULL) 14402 ire1->ire_ptpn = &new_lb_ire->ire_next; 14403 new_lb_ire->ire_next = ire1; 14404 /* Link the new one in. */ 14405 new_lb_ire->ire_ptpn = irep; 14406 membar_producer(); 14407 *irep = new_lb_ire; 14408 new_lb_ire_used = B_TRUE; 14409 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14410 new_lb_ire->ire_bucket->irb_ire_cnt++; 14411 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14412 14413 if (clear_ire_stq != NULL) { 14414 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14415 irep = &new_lb_ire->ire_next; 14416 /* Add the new ire. Insert at *irep */ 14417 ire1 = *irep; 14418 if (ire1 != NULL) 14419 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14420 new_nlb_ire->ire_next = ire1; 14421 /* Link the new one in. */ 14422 new_nlb_ire->ire_ptpn = irep; 14423 membar_producer(); 14424 *irep = new_nlb_ire; 14425 new_nlb_ire_used = B_TRUE; 14426 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14427 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14428 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14429 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14430 } 14431 } 14432 rw_exit(&irb->irb_lock); 14433 if (!new_lb_ire_used) 14434 kmem_cache_free(ire_cache, new_lb_ire); 14435 if (!new_nlb_ire_used) 14436 kmem_cache_free(ire_cache, new_nlb_ire); 14437 IRB_REFRELE(irb); 14438 } 14439 14440 /* 14441 * Whenever an ipif goes down we have to renominate a different 14442 * broadcast ire to receive. Whenever an ipif comes up, we need 14443 * to make sure that we have only one nominated to receive. 14444 */ 14445 static void 14446 ipif_renominate_bcast(ipif_t *ipif) 14447 { 14448 ill_t *ill = ipif->ipif_ill; 14449 ipaddr_t subnet_addr; 14450 ipaddr_t net_addr; 14451 ipaddr_t net_mask = 0; 14452 ipaddr_t subnet_netmask; 14453 ipaddr_t addr; 14454 ill_group_t *illgrp; 14455 14456 illgrp = ill->ill_group; 14457 /* 14458 * If this is the last ipif going down, it might take 14459 * the ill out of the group. In that case ipif_down -> 14460 * illgrp_delete takes care of doing the nomination. 14461 * ipif_down does not call for this case. 14462 */ 14463 ASSERT(illgrp != NULL); 14464 14465 /* There could not have been any ires associated with this */ 14466 if (ipif->ipif_subnet == 0) 14467 return; 14468 14469 ill_mark_bcast(illgrp, 0); 14470 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14471 14472 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14473 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14474 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14475 } else { 14476 net_mask = htonl(IN_CLASSA_NET); 14477 } 14478 addr = net_mask & ipif->ipif_subnet; 14479 ill_mark_bcast(illgrp, addr); 14480 14481 net_addr = ~net_mask | addr; 14482 ill_mark_bcast(illgrp, net_addr); 14483 14484 subnet_netmask = ipif->ipif_net_mask; 14485 addr = ipif->ipif_subnet; 14486 ill_mark_bcast(illgrp, addr); 14487 14488 subnet_addr = ~subnet_netmask | addr; 14489 ill_mark_bcast(illgrp, subnet_addr); 14490 } 14491 14492 /* 14493 * Whenever we form or delete ill groups, we need to nominate one set of 14494 * BROADCAST ires for receiving in the group. 14495 * 14496 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14497 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14498 * for ill_ipif_up_count to be non-zero. This is the only case where 14499 * ill_ipif_up_count is zero and we would still find the ires. 14500 * 14501 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14502 * ipif is UP and we just have to do the nomination. 14503 * 14504 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14505 * from the group. So, we have to do the nomination. 14506 * 14507 * Because of (3), there could be just one ill in the group. But we have 14508 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14509 * Thus, this function does not optimize when there is only one ill as 14510 * it is not correct for (3). 14511 */ 14512 static void 14513 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14514 { 14515 ill_t *ill; 14516 ipif_t *ipif; 14517 ipaddr_t subnet_addr; 14518 ipaddr_t prev_subnet_addr = 0; 14519 ipaddr_t net_addr; 14520 ipaddr_t prev_net_addr = 0; 14521 ipaddr_t net_mask = 0; 14522 ipaddr_t subnet_netmask; 14523 ipaddr_t addr; 14524 14525 /* 14526 * When the last memeber is leaving, there is nothing to 14527 * nominate. 14528 */ 14529 if (illgrp->illgrp_ill_count == 0) { 14530 ASSERT(illgrp->illgrp_ill == NULL); 14531 return; 14532 } 14533 14534 ill = illgrp->illgrp_ill; 14535 ASSERT(!ill->ill_isv6); 14536 /* 14537 * We assume that ires with same address and belonging to the 14538 * same group, has been grouped together. Nominating a *single* 14539 * ill in the group for sending and receiving broadcast is done 14540 * by making sure that the first BROADCAST ire (which will be 14541 * the one returned by ire_ctable_lookup for ip_rput and the 14542 * one that will be used in ip_wput_ire) will be the one that 14543 * will not have IRE_MARK_NORECV set. 14544 * 14545 * 1) ip_rput checks and discards packets received on ires marked 14546 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14547 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14548 * first ire in the group for every broadcast address in the group. 14549 * ip_rput will accept packets only on the first ire i.e only 14550 * one copy of the ill. 14551 * 14552 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14553 * packet for the whole group. It needs to send out on the ill 14554 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14555 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14556 * the copy echoed back on other port where the ire is not marked 14557 * with IRE_MARK_NORECV. 14558 * 14559 * Note that we just need to have the first IRE either loopback or 14560 * non-loopback (either of them may not exist if ire_create failed 14561 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14562 * always hit the first one and hence will always accept one copy. 14563 * 14564 * We have a broadcast ire per ill for all the unique prefixes 14565 * hosted on that ill. As we don't have a way of knowing the 14566 * unique prefixes on a given ill and hence in the whole group, 14567 * we just call ill_mark_bcast on all the prefixes that exist 14568 * in the group. For the common case of one prefix, the code 14569 * below optimizes by remebering the last address used for 14570 * markng. In the case of multiple prefixes, this will still 14571 * optimize depending the order of prefixes. 14572 * 14573 * The only unique address across the whole group is 0.0.0.0 and 14574 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14575 * the first ire in the bucket for receiving and disables the 14576 * others. 14577 */ 14578 ill_mark_bcast(illgrp, 0); 14579 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14580 for (; ill != NULL; ill = ill->ill_group_next) { 14581 14582 for (ipif = ill->ill_ipif; ipif != NULL; 14583 ipif = ipif->ipif_next) { 14584 14585 if (!(ipif->ipif_flags & IPIF_UP) || 14586 ipif->ipif_subnet == 0) { 14587 continue; 14588 } 14589 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14590 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14591 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14592 } else { 14593 net_mask = htonl(IN_CLASSA_NET); 14594 } 14595 addr = net_mask & ipif->ipif_subnet; 14596 if (prev_net_addr == 0 || prev_net_addr != addr) { 14597 ill_mark_bcast(illgrp, addr); 14598 net_addr = ~net_mask | addr; 14599 ill_mark_bcast(illgrp, net_addr); 14600 } 14601 prev_net_addr = addr; 14602 14603 subnet_netmask = ipif->ipif_net_mask; 14604 addr = ipif->ipif_subnet; 14605 if (prev_subnet_addr == 0 || 14606 prev_subnet_addr != addr) { 14607 ill_mark_bcast(illgrp, addr); 14608 subnet_addr = ~subnet_netmask | addr; 14609 ill_mark_bcast(illgrp, subnet_addr); 14610 } 14611 prev_subnet_addr = addr; 14612 } 14613 } 14614 } 14615 14616 /* 14617 * This function is called while forming ill groups. 14618 * 14619 * Currently, we handle only allmulti groups. We want to join 14620 * allmulti on only one of the ills in the groups. In future, 14621 * when we have link aggregation, we may have to join normal 14622 * multicast groups on multiple ills as switch does inbound load 14623 * balancing. Following are the functions that calls this 14624 * function : 14625 * 14626 * 1) ill_recover_multicast : Interface is coming back UP. 14627 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14628 * will call ill_recover_multicast to recover all the multicast 14629 * groups. We need to make sure that only one member is joined 14630 * in the ill group. 14631 * 14632 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14633 * Somebody is joining allmulti. We need to make sure that only one 14634 * member is joined in the group. 14635 * 14636 * 3) illgrp_insert : If allmulti has already joined, we need to make 14637 * sure that only one member is joined in the group. 14638 * 14639 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14640 * allmulti who we have nominated. We need to pick someother ill. 14641 * 14642 * 5) illgrp_delete : The ill we nominated is leaving the group, 14643 * we need to pick a new ill to join the group. 14644 * 14645 * For (1), (2), (5) - we just have to check whether there is 14646 * a good ill joined in the group. If we could not find any ills 14647 * joined the group, we should join. 14648 * 14649 * For (4), the one that was nominated to receive, left the group. 14650 * There could be nobody joined in the group when this function is 14651 * called. 14652 * 14653 * For (3) - we need to explicitly check whether there are multiple 14654 * ills joined in the group. 14655 * 14656 * For simplicity, we don't differentiate any of the above cases. We 14657 * just leave the group if it is joined on any of them and join on 14658 * the first good ill. 14659 */ 14660 int 14661 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14662 { 14663 ilm_t *ilm; 14664 ill_t *ill; 14665 ill_t *fallback_inactive_ill = NULL; 14666 ill_t *fallback_failed_ill = NULL; 14667 int ret = 0; 14668 14669 /* 14670 * Leave the allmulti on all the ills and start fresh. 14671 */ 14672 for (ill = illgrp->illgrp_ill; ill != NULL; 14673 ill = ill->ill_group_next) { 14674 if (ill->ill_join_allmulti) 14675 (void) ip_leave_allmulti(ill->ill_ipif); 14676 } 14677 14678 /* 14679 * Choose a good ill. Fallback to inactive or failed if 14680 * none available. We need to fallback to FAILED in the 14681 * case where we have 2 interfaces in a group - where 14682 * one of them is failed and another is a good one and 14683 * the good one (not marked inactive) is leaving the group. 14684 */ 14685 ret = 0; 14686 for (ill = illgrp->illgrp_ill; ill != NULL; 14687 ill = ill->ill_group_next) { 14688 /* Never pick an offline interface */ 14689 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14690 continue; 14691 14692 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14693 fallback_failed_ill = ill; 14694 continue; 14695 } 14696 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14697 fallback_inactive_ill = ill; 14698 continue; 14699 } 14700 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14701 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14702 ret = ip_join_allmulti(ill->ill_ipif); 14703 /* 14704 * ip_join_allmulti can fail because of memory 14705 * failures. So, make sure we join at least 14706 * on one ill. 14707 */ 14708 if (ill->ill_join_allmulti) 14709 return (0); 14710 } 14711 } 14712 } 14713 if (ret != 0) { 14714 /* 14715 * If we tried nominating above and failed to do so, 14716 * return error. We might have tried multiple times. 14717 * But, return the latest error. 14718 */ 14719 return (ret); 14720 } 14721 if ((ill = fallback_inactive_ill) != NULL) { 14722 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14723 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14724 ret = ip_join_allmulti(ill->ill_ipif); 14725 return (ret); 14726 } 14727 } 14728 } else if ((ill = fallback_failed_ill) != NULL) { 14729 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14730 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14731 ret = ip_join_allmulti(ill->ill_ipif); 14732 return (ret); 14733 } 14734 } 14735 } 14736 return (0); 14737 } 14738 14739 /* 14740 * This function is called from illgrp_delete after it is 14741 * deleted from the group to reschedule responsibilities 14742 * to a different ill. 14743 */ 14744 static void 14745 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14746 { 14747 ilm_t *ilm; 14748 ipif_t *ipif; 14749 ipaddr_t subnet_addr; 14750 ipaddr_t net_addr; 14751 ipaddr_t net_mask = 0; 14752 ipaddr_t subnet_netmask; 14753 ipaddr_t addr; 14754 14755 ASSERT(ill->ill_group == NULL); 14756 /* 14757 * Broadcast Responsibility: 14758 * 14759 * 1. If this ill has been nominated for receiving broadcast 14760 * packets, we need to find a new one. Before we find a new 14761 * one, we need to re-group the ires that are part of this new 14762 * group (assumed by ill_nominate_bcast_rcv). We do this by 14763 * calling ill_group_bcast_for_xmit(ill) which will do the right 14764 * thing for us. 14765 * 14766 * 2. If this ill was not nominated for receiving broadcast 14767 * packets, we need to clear the IRE_MARK_NORECV flag 14768 * so that we continue to send up broadcast packets. 14769 */ 14770 if (!ill->ill_isv6) { 14771 /* 14772 * Case 1 above : No optimization here. Just redo the 14773 * nomination. 14774 */ 14775 ill_group_bcast_for_xmit(ill); 14776 ill_nominate_bcast_rcv(illgrp); 14777 14778 /* 14779 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14780 */ 14781 ill_clear_bcast_mark(ill, 0); 14782 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14783 14784 for (ipif = ill->ill_ipif; ipif != NULL; 14785 ipif = ipif->ipif_next) { 14786 14787 if (!(ipif->ipif_flags & IPIF_UP) || 14788 ipif->ipif_subnet == 0) { 14789 continue; 14790 } 14791 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14792 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14793 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14794 } else { 14795 net_mask = htonl(IN_CLASSA_NET); 14796 } 14797 addr = net_mask & ipif->ipif_subnet; 14798 ill_clear_bcast_mark(ill, addr); 14799 14800 net_addr = ~net_mask | addr; 14801 ill_clear_bcast_mark(ill, net_addr); 14802 14803 subnet_netmask = ipif->ipif_net_mask; 14804 addr = ipif->ipif_subnet; 14805 ill_clear_bcast_mark(ill, addr); 14806 14807 subnet_addr = ~subnet_netmask | addr; 14808 ill_clear_bcast_mark(ill, subnet_addr); 14809 } 14810 } 14811 14812 /* 14813 * Multicast Responsibility. 14814 * 14815 * If we have joined allmulti on this one, find a new member 14816 * in the group to join allmulti. As this ill is already part 14817 * of allmulti, we don't have to join on this one. 14818 * 14819 * If we have not joined allmulti on this one, there is no 14820 * responsibility to handoff. But we need to take new 14821 * responsibility i.e, join allmulti on this one if we need 14822 * to. 14823 */ 14824 if (ill->ill_join_allmulti) { 14825 (void) ill_nominate_mcast_rcv(illgrp); 14826 } else { 14827 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14828 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14829 (void) ip_join_allmulti(ill->ill_ipif); 14830 break; 14831 } 14832 } 14833 } 14834 14835 /* 14836 * We intentionally do the flushing of IRE_CACHES only matching 14837 * on the ill and not on groups. Note that we are already deleted 14838 * from the group. 14839 * 14840 * This will make sure that all IRE_CACHES whose stq is pointing 14841 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14842 * deleted and IRE_CACHES that are not pointing at this ill will 14843 * be left alone. 14844 */ 14845 if (ill->ill_isv6) { 14846 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14847 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14848 } else { 14849 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14850 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14851 } 14852 14853 /* 14854 * Some conn may have cached one of the IREs deleted above. By removing 14855 * the ire reference, we clean up the extra reference to the ill held in 14856 * ire->ire_stq. 14857 */ 14858 ipcl_walk(conn_cleanup_stale_ire, NULL); 14859 14860 /* 14861 * Re-do source address selection for all the members in the 14862 * group, if they borrowed source address from one of the ipifs 14863 * in this ill. 14864 */ 14865 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14866 if (ill->ill_isv6) { 14867 ipif_update_other_ipifs_v6(ipif, illgrp); 14868 } else { 14869 ipif_update_other_ipifs(ipif, illgrp); 14870 } 14871 } 14872 } 14873 14874 /* 14875 * Delete the ill from the group. The caller makes sure that it is 14876 * in a group and it okay to delete from the group. So, we always 14877 * delete here. 14878 */ 14879 static void 14880 illgrp_delete(ill_t *ill) 14881 { 14882 ill_group_t *illgrp; 14883 ill_group_t *tmpg; 14884 ill_t *tmp_ill; 14885 14886 /* 14887 * Reset illgrp_ill_schednext if it was pointing at us. 14888 * We need to do this before we set ill_group to NULL. 14889 */ 14890 rw_enter(&ill_g_lock, RW_WRITER); 14891 mutex_enter(&ill->ill_lock); 14892 14893 illgrp_reset_schednext(ill); 14894 14895 illgrp = ill->ill_group; 14896 14897 /* Delete the ill from illgrp. */ 14898 if (illgrp->illgrp_ill == ill) { 14899 illgrp->illgrp_ill = ill->ill_group_next; 14900 } else { 14901 tmp_ill = illgrp->illgrp_ill; 14902 while (tmp_ill->ill_group_next != ill) { 14903 tmp_ill = tmp_ill->ill_group_next; 14904 ASSERT(tmp_ill != NULL); 14905 } 14906 tmp_ill->ill_group_next = ill->ill_group_next; 14907 } 14908 ill->ill_group = NULL; 14909 ill->ill_group_next = NULL; 14910 14911 illgrp->illgrp_ill_count--; 14912 mutex_exit(&ill->ill_lock); 14913 rw_exit(&ill_g_lock); 14914 14915 /* 14916 * As this ill is leaving the group, we need to hand off 14917 * the responsibilities to the other ills in the group, if 14918 * this ill had some responsibilities. 14919 */ 14920 14921 ill_handoff_responsibility(ill, illgrp); 14922 14923 rw_enter(&ill_g_lock, RW_WRITER); 14924 14925 if (illgrp->illgrp_ill_count == 0) { 14926 14927 ASSERT(illgrp->illgrp_ill == NULL); 14928 if (ill->ill_isv6) { 14929 if (illgrp == illgrp_head_v6) { 14930 illgrp_head_v6 = illgrp->illgrp_next; 14931 } else { 14932 tmpg = illgrp_head_v6; 14933 while (tmpg->illgrp_next != illgrp) { 14934 tmpg = tmpg->illgrp_next; 14935 ASSERT(tmpg != NULL); 14936 } 14937 tmpg->illgrp_next = illgrp->illgrp_next; 14938 } 14939 } else { 14940 if (illgrp == illgrp_head_v4) { 14941 illgrp_head_v4 = illgrp->illgrp_next; 14942 } else { 14943 tmpg = illgrp_head_v4; 14944 while (tmpg->illgrp_next != illgrp) { 14945 tmpg = tmpg->illgrp_next; 14946 ASSERT(tmpg != NULL); 14947 } 14948 tmpg->illgrp_next = illgrp->illgrp_next; 14949 } 14950 } 14951 mutex_destroy(&illgrp->illgrp_lock); 14952 mi_free(illgrp); 14953 } 14954 rw_exit(&ill_g_lock); 14955 14956 /* 14957 * Even though the ill is out of the group its not necessary 14958 * to set ipsq_split as TRUE as the ipifs could be down temporarily 14959 * We will split the ipsq when phyint_groupname is set to NULL. 14960 */ 14961 14962 /* 14963 * Send a routing sockets message if we are deleting from 14964 * groups with names. 14965 */ 14966 if (ill->ill_phyint->phyint_groupname_len != 0) 14967 ip_rts_ifmsg(ill->ill_ipif); 14968 } 14969 14970 /* 14971 * Re-do source address selection. This is normally called when 14972 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 14973 * ipif comes up. 14974 */ 14975 void 14976 ill_update_source_selection(ill_t *ill) 14977 { 14978 ipif_t *ipif; 14979 14980 ASSERT(IAM_WRITER_ILL(ill)); 14981 14982 if (ill->ill_group != NULL) 14983 ill = ill->ill_group->illgrp_ill; 14984 14985 for (; ill != NULL; ill = ill->ill_group_next) { 14986 for (ipif = ill->ill_ipif; ipif != NULL; 14987 ipif = ipif->ipif_next) { 14988 if (ill->ill_isv6) 14989 ipif_recreate_interface_routes_v6(NULL, ipif); 14990 else 14991 ipif_recreate_interface_routes(NULL, ipif); 14992 } 14993 } 14994 } 14995 14996 /* 14997 * Insert ill in a group headed by illgrp_head. The caller can either 14998 * pass a groupname in which case we search for a group with the 14999 * same name to insert in or pass a group to insert in. This function 15000 * would only search groups with names. 15001 * 15002 * NOTE : The caller should make sure that there is at least one ipif 15003 * UP on this ill so that illgrp_scheduler can pick this ill 15004 * for outbound packets. If ill_ipif_up_count is zero, we have 15005 * already sent a DL_UNBIND to the driver and we don't want to 15006 * send anymore packets. We don't assert for ipif_up_count 15007 * to be greater than zero, because ipif_up_done wants to call 15008 * this function before bumping up the ipif_up_count. See 15009 * ipif_up_done() for details. 15010 */ 15011 int 15012 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15013 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15014 { 15015 ill_group_t *illgrp; 15016 ill_t *prev_ill; 15017 phyint_t *phyi; 15018 15019 ASSERT(ill->ill_group == NULL); 15020 15021 rw_enter(&ill_g_lock, RW_WRITER); 15022 mutex_enter(&ill->ill_lock); 15023 15024 if (groupname != NULL) { 15025 /* 15026 * Look for a group with a matching groupname to insert. 15027 */ 15028 for (illgrp = *illgrp_head; illgrp != NULL; 15029 illgrp = illgrp->illgrp_next) { 15030 15031 ill_t *tmp_ill; 15032 15033 /* 15034 * If we have an ill_group_t in the list which has 15035 * no ill_t assigned then we must be in the process of 15036 * removing this group. We skip this as illgrp_delete() 15037 * will remove it from the list. 15038 */ 15039 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15040 ASSERT(illgrp->illgrp_ill_count == 0); 15041 continue; 15042 } 15043 15044 ASSERT(tmp_ill->ill_phyint != NULL); 15045 phyi = tmp_ill->ill_phyint; 15046 /* 15047 * Look at groups which has names only. 15048 */ 15049 if (phyi->phyint_groupname_len == 0) 15050 continue; 15051 /* 15052 * Names are stored in the phyint common to both 15053 * IPv4 and IPv6. 15054 */ 15055 if (mi_strcmp(phyi->phyint_groupname, 15056 groupname) == 0) { 15057 break; 15058 } 15059 } 15060 } else { 15061 /* 15062 * If the caller passes in a NULL "grp_to_insert", we 15063 * allocate one below and insert this singleton. 15064 */ 15065 illgrp = grp_to_insert; 15066 } 15067 15068 ill->ill_group_next = NULL; 15069 15070 if (illgrp == NULL) { 15071 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15072 if (illgrp == NULL) { 15073 return (ENOMEM); 15074 } 15075 illgrp->illgrp_next = *illgrp_head; 15076 *illgrp_head = illgrp; 15077 illgrp->illgrp_ill = ill; 15078 illgrp->illgrp_ill_count = 1; 15079 ill->ill_group = illgrp; 15080 /* 15081 * Used in illgrp_scheduler to protect multiple threads 15082 * from traversing the list. 15083 */ 15084 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15085 } else { 15086 ASSERT(ill->ill_net_type == 15087 illgrp->illgrp_ill->ill_net_type); 15088 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15089 15090 /* Insert ill at tail of this group */ 15091 prev_ill = illgrp->illgrp_ill; 15092 while (prev_ill->ill_group_next != NULL) 15093 prev_ill = prev_ill->ill_group_next; 15094 prev_ill->ill_group_next = ill; 15095 ill->ill_group = illgrp; 15096 illgrp->illgrp_ill_count++; 15097 /* 15098 * Inherit group properties. Currently only forwarding 15099 * is the property we try to keep the same with all the 15100 * ills. When there are more, we will abstract this into 15101 * a function. 15102 */ 15103 ill->ill_flags &= ~ILLF_ROUTER; 15104 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15105 } 15106 mutex_exit(&ill->ill_lock); 15107 rw_exit(&ill_g_lock); 15108 15109 /* 15110 * 1) When ipif_up_done() calls this function, ipif_up_count 15111 * may be zero as it has not yet been bumped. But the ires 15112 * have already been added. So, we do the nomination here 15113 * itself. But, when ip_sioctl_groupname calls this, it checks 15114 * for ill_ipif_up_count != 0. Thus we don't check for 15115 * ill_ipif_up_count here while nominating broadcast ires for 15116 * receive. 15117 * 15118 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15119 * to group them properly as ire_add() has already happened 15120 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15121 * case, we need to do it here anyway. 15122 */ 15123 if (!ill->ill_isv6) { 15124 ill_group_bcast_for_xmit(ill); 15125 ill_nominate_bcast_rcv(illgrp); 15126 } 15127 15128 if (!ipif_is_coming_up) { 15129 /* 15130 * When ipif_up_done() calls this function, the multicast 15131 * groups have not been joined yet. So, there is no point in 15132 * nomination. ip_join_allmulti will handle groups when 15133 * ill_recover_multicast is called from ipif_up_done() later. 15134 */ 15135 (void) ill_nominate_mcast_rcv(illgrp); 15136 /* 15137 * ipif_up_done calls ill_update_source_selection 15138 * anyway. Moreover, we don't want to re-create 15139 * interface routes while ipif_up_done() still has reference 15140 * to them. Refer to ipif_up_done() for more details. 15141 */ 15142 ill_update_source_selection(ill); 15143 } 15144 15145 /* 15146 * Send a routing sockets message if we are inserting into 15147 * groups with names. 15148 */ 15149 if (groupname != NULL) 15150 ip_rts_ifmsg(ill->ill_ipif); 15151 return (0); 15152 } 15153 15154 /* 15155 * Return the first phyint matching the groupname. There could 15156 * be more than one when there are ill groups. 15157 * 15158 * Needs work: called only from ip_sioctl_groupname 15159 */ 15160 static phyint_t * 15161 phyint_lookup_group(char *groupname) 15162 { 15163 phyint_t *phyi; 15164 15165 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15166 /* 15167 * Group names are stored in the phyint - a common structure 15168 * to both IPv4 and IPv6. 15169 */ 15170 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15171 for (; phyi != NULL; 15172 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15173 phyi, AVL_AFTER)) { 15174 if (phyi->phyint_groupname_len == 0) 15175 continue; 15176 ASSERT(phyi->phyint_groupname != NULL); 15177 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15178 return (phyi); 15179 } 15180 return (NULL); 15181 } 15182 15183 15184 15185 /* 15186 * MT notes on creation and deletion of IPMP groups 15187 * 15188 * Creation and deletion of IPMP groups introduce the need to merge or 15189 * split the associated serialization objects i.e the ipsq's. Normally all 15190 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15191 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15192 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15193 * is a need to change the <ill-ipsq> association and we have to operate on both 15194 * the source and destination IPMP groups. For eg. attempting to set the 15195 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15196 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15197 * source or destination IPMP group are mapped to a single ipsq for executing 15198 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15199 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15200 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15201 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15202 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15203 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15204 * 15205 * In the above example the ioctl handling code locates the current ipsq of hme0 15206 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15207 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15208 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15209 * the destination ipsq. If the destination ipsq is not busy, it also enters 15210 * the destination ipsq exclusively. Now the actual groupname setting operation 15211 * can proceed. If the destination ipsq is busy, the operation is enqueued 15212 * on the destination (merged) ipsq and will be handled in the unwind from 15213 * ipsq_exit. 15214 * 15215 * To prevent other threads accessing the ill while the group name change is 15216 * in progres, we bring down the ipifs which also removes the ill from the 15217 * group. The group is changed in phyint and when the first ipif on the ill 15218 * is brought up, the ill is inserted into the right IPMP group by 15219 * illgrp_insert. 15220 */ 15221 /* ARGSUSED */ 15222 int 15223 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15224 ip_ioctl_cmd_t *ipip, void *ifreq) 15225 { 15226 int i; 15227 char *tmp; 15228 int namelen; 15229 ill_t *ill = ipif->ipif_ill; 15230 ill_t *ill_v4, *ill_v6; 15231 int err = 0; 15232 phyint_t *phyi; 15233 phyint_t *phyi_tmp; 15234 struct lifreq *lifr; 15235 mblk_t *mp1; 15236 char *groupname; 15237 ipsq_t *ipsq; 15238 15239 ASSERT(IAM_WRITER_IPIF(ipif)); 15240 15241 /* Existance verified in ip_wput_nondata */ 15242 mp1 = mp->b_cont->b_cont; 15243 lifr = (struct lifreq *)mp1->b_rptr; 15244 groupname = lifr->lifr_groupname; 15245 15246 if (ipif->ipif_id != 0) 15247 return (EINVAL); 15248 15249 phyi = ill->ill_phyint; 15250 ASSERT(phyi != NULL); 15251 15252 if (phyi->phyint_flags & PHYI_VIRTUAL) 15253 return (EINVAL); 15254 15255 tmp = groupname; 15256 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15257 ; 15258 15259 if (i == LIFNAMSIZ) { 15260 /* no null termination */ 15261 return (EINVAL); 15262 } 15263 15264 /* 15265 * Calculate the namelen exclusive of the null 15266 * termination character. 15267 */ 15268 namelen = tmp - groupname; 15269 15270 ill_v4 = phyi->phyint_illv4; 15271 ill_v6 = phyi->phyint_illv6; 15272 15273 /* 15274 * ILL cannot be part of a usesrc group and and IPMP group at the 15275 * same time. No need to grab the ill_g_usesrc_lock here, see 15276 * synchronization notes in ip.c 15277 */ 15278 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15279 return (EINVAL); 15280 } 15281 15282 /* 15283 * mark the ill as changing. 15284 * this should queue all new requests on the syncq. 15285 */ 15286 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15287 15288 if (ill_v4 != NULL) 15289 ill_v4->ill_state_flags |= ILL_CHANGING; 15290 if (ill_v6 != NULL) 15291 ill_v6->ill_state_flags |= ILL_CHANGING; 15292 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15293 15294 if (namelen == 0) { 15295 /* 15296 * Null string means remove this interface from the 15297 * existing group. 15298 */ 15299 if (phyi->phyint_groupname_len == 0) { 15300 /* 15301 * Never was in a group. 15302 */ 15303 err = 0; 15304 goto done; 15305 } 15306 15307 /* 15308 * IPv4 or IPv6 may be temporarily out of the group when all 15309 * the ipifs are down. Thus, we need to check for ill_group to 15310 * be non-NULL. 15311 */ 15312 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15313 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15314 mutex_enter(&ill_v4->ill_lock); 15315 if (!ill_is_quiescent(ill_v4)) { 15316 /* 15317 * ipsq_pending_mp_add will not fail since 15318 * connp is NULL 15319 */ 15320 (void) ipsq_pending_mp_add(NULL, 15321 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15322 mutex_exit(&ill_v4->ill_lock); 15323 err = EINPROGRESS; 15324 goto done; 15325 } 15326 mutex_exit(&ill_v4->ill_lock); 15327 } 15328 15329 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15330 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15331 mutex_enter(&ill_v6->ill_lock); 15332 if (!ill_is_quiescent(ill_v6)) { 15333 (void) ipsq_pending_mp_add(NULL, 15334 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15335 mutex_exit(&ill_v6->ill_lock); 15336 err = EINPROGRESS; 15337 goto done; 15338 } 15339 mutex_exit(&ill_v6->ill_lock); 15340 } 15341 15342 rw_enter(&ill_g_lock, RW_WRITER); 15343 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15344 mutex_enter(&phyi->phyint_lock); 15345 ASSERT(phyi->phyint_groupname != NULL); 15346 mi_free(phyi->phyint_groupname); 15347 phyi->phyint_groupname = NULL; 15348 phyi->phyint_groupname_len = 0; 15349 mutex_exit(&phyi->phyint_lock); 15350 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15351 rw_exit(&ill_g_lock); 15352 err = ill_up_ipifs(ill, q, mp); 15353 15354 /* 15355 * set the split flag so that the ipsq can be split 15356 */ 15357 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15358 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15359 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15360 15361 } else { 15362 if (phyi->phyint_groupname_len != 0) { 15363 ASSERT(phyi->phyint_groupname != NULL); 15364 /* Are we inserting in the same group ? */ 15365 if (mi_strcmp(groupname, 15366 phyi->phyint_groupname) == 0) { 15367 err = 0; 15368 goto done; 15369 } 15370 } 15371 15372 rw_enter(&ill_g_lock, RW_READER); 15373 /* 15374 * Merge ipsq for the group's. 15375 * This check is here as multiple groups/ills might be 15376 * sharing the same ipsq. 15377 * If we have to merege than the operation is restarted 15378 * on the new ipsq. 15379 */ 15380 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15381 if (phyi->phyint_ipsq != ipsq) { 15382 rw_exit(&ill_g_lock); 15383 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15384 goto done; 15385 } 15386 /* 15387 * Running exclusive on new ipsq. 15388 */ 15389 15390 ASSERT(ipsq != NULL); 15391 ASSERT(ipsq->ipsq_writer == curthread); 15392 15393 /* 15394 * Check whether the ill_type and ill_net_type matches before 15395 * we allocate any memory so that the cleanup is easier. 15396 * 15397 * We can't group dissimilar ones as we can't load spread 15398 * packets across the group because of potential link-level 15399 * header differences. 15400 */ 15401 phyi_tmp = phyint_lookup_group(groupname); 15402 if (phyi_tmp != NULL) { 15403 if ((ill_v4 != NULL && 15404 phyi_tmp->phyint_illv4 != NULL) && 15405 ((ill_v4->ill_net_type != 15406 phyi_tmp->phyint_illv4->ill_net_type) || 15407 (ill_v4->ill_type != 15408 phyi_tmp->phyint_illv4->ill_type))) { 15409 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15410 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15411 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15412 rw_exit(&ill_g_lock); 15413 return (EINVAL); 15414 } 15415 if ((ill_v6 != NULL && 15416 phyi_tmp->phyint_illv6 != NULL) && 15417 ((ill_v6->ill_net_type != 15418 phyi_tmp->phyint_illv6->ill_net_type) || 15419 (ill_v6->ill_type != 15420 phyi_tmp->phyint_illv6->ill_type))) { 15421 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15422 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15423 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15424 rw_exit(&ill_g_lock); 15425 return (EINVAL); 15426 } 15427 } 15428 15429 rw_exit(&ill_g_lock); 15430 15431 /* 15432 * bring down all v4 ipifs. 15433 */ 15434 if (ill_v4 != NULL) { 15435 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15436 } 15437 15438 /* 15439 * bring down all v6 ipifs. 15440 */ 15441 if (ill_v6 != NULL) { 15442 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15443 } 15444 15445 /* 15446 * make sure all ipifs are down and there are no active 15447 * references. Call to ipsq_pending_mp_add will not fail 15448 * since connp is NULL. 15449 */ 15450 if (ill_v4 != NULL) { 15451 mutex_enter(&ill_v4->ill_lock); 15452 if (!ill_is_quiescent(ill_v4)) { 15453 (void) ipsq_pending_mp_add(NULL, 15454 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15455 mutex_exit(&ill_v4->ill_lock); 15456 err = EINPROGRESS; 15457 goto done; 15458 } 15459 mutex_exit(&ill_v4->ill_lock); 15460 } 15461 15462 if (ill_v6 != NULL) { 15463 mutex_enter(&ill_v6->ill_lock); 15464 if (!ill_is_quiescent(ill_v6)) { 15465 (void) ipsq_pending_mp_add(NULL, 15466 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15467 mutex_exit(&ill_v6->ill_lock); 15468 err = EINPROGRESS; 15469 goto done; 15470 } 15471 mutex_exit(&ill_v6->ill_lock); 15472 } 15473 15474 /* 15475 * allocate including space for null terminator 15476 * before we insert. 15477 */ 15478 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15479 if (tmp == NULL) 15480 return (ENOMEM); 15481 15482 rw_enter(&ill_g_lock, RW_WRITER); 15483 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15484 mutex_enter(&phyi->phyint_lock); 15485 if (phyi->phyint_groupname_len != 0) { 15486 ASSERT(phyi->phyint_groupname != NULL); 15487 mi_free(phyi->phyint_groupname); 15488 } 15489 15490 /* 15491 * setup the new group name. 15492 */ 15493 phyi->phyint_groupname = tmp; 15494 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15495 phyi->phyint_groupname_len = namelen + 1; 15496 mutex_exit(&phyi->phyint_lock); 15497 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15498 rw_exit(&ill_g_lock); 15499 15500 err = ill_up_ipifs(ill, q, mp); 15501 } 15502 15503 done: 15504 /* 15505 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15506 */ 15507 if (err != EINPROGRESS) { 15508 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15509 if (ill_v4 != NULL) 15510 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15511 if (ill_v6 != NULL) 15512 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15513 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15514 } 15515 return (err); 15516 } 15517 15518 /* ARGSUSED */ 15519 int 15520 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15521 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15522 { 15523 ill_t *ill; 15524 phyint_t *phyi; 15525 struct lifreq *lifr; 15526 mblk_t *mp1; 15527 15528 /* Existence verified in ip_wput_nondata */ 15529 mp1 = mp->b_cont->b_cont; 15530 lifr = (struct lifreq *)mp1->b_rptr; 15531 ill = ipif->ipif_ill; 15532 phyi = ill->ill_phyint; 15533 15534 lifr->lifr_groupname[0] = '\0'; 15535 /* 15536 * ill_group may be null if all the interfaces 15537 * are down. But still, the phyint should always 15538 * hold the name. 15539 */ 15540 if (phyi->phyint_groupname_len != 0) { 15541 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15542 phyi->phyint_groupname_len); 15543 } 15544 15545 return (0); 15546 } 15547 15548 15549 typedef struct conn_move_s { 15550 ill_t *cm_from_ill; 15551 ill_t *cm_to_ill; 15552 int cm_ifindex; 15553 } conn_move_t; 15554 15555 /* 15556 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15557 */ 15558 static void 15559 conn_move(conn_t *connp, caddr_t arg) 15560 { 15561 conn_move_t *connm; 15562 int ifindex; 15563 int i; 15564 ill_t *from_ill; 15565 ill_t *to_ill; 15566 ilg_t *ilg; 15567 ilm_t *ret_ilm; 15568 15569 connm = (conn_move_t *)arg; 15570 ifindex = connm->cm_ifindex; 15571 from_ill = connm->cm_from_ill; 15572 to_ill = connm->cm_to_ill; 15573 15574 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15575 15576 /* All multicast fields protected by conn_lock */ 15577 mutex_enter(&connp->conn_lock); 15578 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15579 if ((connp->conn_outgoing_ill == from_ill) && 15580 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15581 connp->conn_outgoing_ill = to_ill; 15582 connp->conn_incoming_ill = to_ill; 15583 } 15584 15585 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15586 15587 if ((connp->conn_multicast_ill == from_ill) && 15588 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15589 connp->conn_multicast_ill = connm->cm_to_ill; 15590 } 15591 15592 /* Change IP_XMIT_IF associations */ 15593 if ((connp->conn_xmit_if_ill == from_ill) && 15594 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15595 connp->conn_xmit_if_ill = to_ill; 15596 } 15597 /* 15598 * Change the ilg_ill to point to the new one. This assumes 15599 * ilm_move_v6 has moved the ilms to new_ill and the driver 15600 * has been told to receive packets on this interface. 15601 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15602 * But when doing a FAILOVER, it might fail with ENOMEM and so 15603 * some ilms may not have moved. We check to see whether 15604 * the ilms have moved to to_ill. We can't check on from_ill 15605 * as in the process of moving, we could have split an ilm 15606 * in to two - which has the same orig_ifindex and v6group. 15607 * 15608 * For IPv4, ilg_ipif moves implicitly. The code below really 15609 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15610 */ 15611 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15612 ilg = &connp->conn_ilg[i]; 15613 if ((ilg->ilg_ill == from_ill) && 15614 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15615 /* ifindex != 0 indicates failback */ 15616 if (ifindex != 0) { 15617 connp->conn_ilg[i].ilg_ill = to_ill; 15618 continue; 15619 } 15620 15621 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15622 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15623 connp->conn_zoneid); 15624 15625 if (ret_ilm != NULL) 15626 connp->conn_ilg[i].ilg_ill = to_ill; 15627 } 15628 } 15629 mutex_exit(&connp->conn_lock); 15630 } 15631 15632 static void 15633 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15634 { 15635 conn_move_t connm; 15636 15637 connm.cm_from_ill = from_ill; 15638 connm.cm_to_ill = to_ill; 15639 connm.cm_ifindex = ifindex; 15640 15641 ipcl_walk(conn_move, (caddr_t)&connm); 15642 } 15643 15644 /* 15645 * ilm has been moved from from_ill to to_ill. 15646 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15647 * appropriately. 15648 * 15649 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15650 * the code there de-references ipif_ill to get the ill to 15651 * send multicast requests. It does not work as ipif is on its 15652 * move and already moved when this function is called. 15653 * Thus, we need to use from_ill and to_ill send down multicast 15654 * requests. 15655 */ 15656 static void 15657 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15658 { 15659 ipif_t *ipif; 15660 ilm_t *ilm; 15661 15662 /* 15663 * See whether we need to send down DL_ENABMULTI_REQ on 15664 * to_ill as ilm has just been added. 15665 */ 15666 ASSERT(IAM_WRITER_ILL(to_ill)); 15667 ASSERT(IAM_WRITER_ILL(from_ill)); 15668 15669 ILM_WALKER_HOLD(to_ill); 15670 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15671 15672 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 15673 continue; 15674 /* 15675 * no locks held, ill/ipif cannot dissappear as long 15676 * as we are writer. 15677 */ 15678 ipif = to_ill->ill_ipif; 15679 /* 15680 * No need to hold any lock as we are the writer and this 15681 * can only be changed by a writer. 15682 */ 15683 ilm->ilm_is_new = B_FALSE; 15684 15685 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15686 ipif->ipif_flags & IPIF_POINTOPOINT) { 15687 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15688 "resolver\n")); 15689 continue; /* Must be IRE_IF_NORESOLVER */ 15690 } 15691 15692 15693 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15694 ip1dbg(("ilm_send_multicast_reqs: " 15695 "to_ill MULTI_BCAST\n")); 15696 goto from; 15697 } 15698 15699 if (to_ill->ill_isv6) 15700 mld_joingroup(ilm); 15701 else 15702 igmp_joingroup(ilm); 15703 15704 if (to_ill->ill_ipif_up_count == 0) { 15705 /* 15706 * Nobody there. All multicast addresses will be 15707 * re-joined when we get the DL_BIND_ACK bringing the 15708 * interface up. 15709 */ 15710 ilm->ilm_notify_driver = B_FALSE; 15711 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15712 goto from; 15713 } 15714 15715 /* 15716 * For allmulti address, we want to join on only one interface. 15717 * Checking for ilm_numentries_v6 is not correct as you may 15718 * find an ilm with zero address on to_ill, but we may not 15719 * have nominated to_ill for receiving. Thus, if we have 15720 * nominated from_ill (ill_join_allmulti is set), nominate 15721 * only if to_ill is not already nominated (to_ill normally 15722 * should not have been nominated if "from_ill" has already 15723 * been nominated. As we don't prevent failovers from happening 15724 * across groups, we don't assert). 15725 */ 15726 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15727 /* 15728 * There is no need to hold ill locks as we are 15729 * writer on both ills and when ill_join_allmulti 15730 * is changed the thread is always a writer. 15731 */ 15732 if (from_ill->ill_join_allmulti && 15733 !to_ill->ill_join_allmulti) { 15734 (void) ip_join_allmulti(to_ill->ill_ipif); 15735 } 15736 } else if (ilm->ilm_notify_driver) { 15737 15738 /* 15739 * This is a newly moved ilm so we need to tell the 15740 * driver about the new group. There can be more than 15741 * one ilm's for the same group in the list each with a 15742 * different orig_ifindex. We have to inform the driver 15743 * once. In ilm_move_v[4,6] we only set the flag 15744 * ilm_notify_driver for the first ilm. 15745 */ 15746 15747 (void) ip_ll_send_enabmulti_req(to_ill, 15748 &ilm->ilm_v6addr); 15749 } 15750 15751 ilm->ilm_notify_driver = B_FALSE; 15752 15753 /* 15754 * See whether we need to send down DL_DISABMULTI_REQ on 15755 * from_ill as ilm has just been removed. 15756 */ 15757 from: 15758 ipif = from_ill->ill_ipif; 15759 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15760 ipif->ipif_flags & IPIF_POINTOPOINT) { 15761 ip1dbg(("ilm_send_multicast_reqs: " 15762 "from_ill not resolver\n")); 15763 continue; /* Must be IRE_IF_NORESOLVER */ 15764 } 15765 15766 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15767 ip1dbg(("ilm_send_multicast_reqs: " 15768 "from_ill MULTI_BCAST\n")); 15769 continue; 15770 } 15771 15772 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15773 if (from_ill->ill_join_allmulti) 15774 (void) ip_leave_allmulti(from_ill->ill_ipif); 15775 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15776 (void) ip_ll_send_disabmulti_req(from_ill, 15777 &ilm->ilm_v6addr); 15778 } 15779 } 15780 ILM_WALKER_RELE(to_ill); 15781 } 15782 15783 /* 15784 * This function is called when all multicast memberships needs 15785 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15786 * called only once unlike the IPv4 counterpart where it is called after 15787 * every logical interface is moved. The reason is due to multicast 15788 * memberships are joined using an interface address in IPv4 while in 15789 * IPv6, interface index is used. 15790 */ 15791 static void 15792 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15793 { 15794 ilm_t *ilm; 15795 ilm_t *ilm_next; 15796 ilm_t *new_ilm; 15797 ilm_t **ilmp; 15798 int count; 15799 char buf[INET6_ADDRSTRLEN]; 15800 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15801 15802 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15803 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15804 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15805 15806 if (ifindex == 0) { 15807 /* 15808 * Form the solicited node mcast address which is used later. 15809 */ 15810 ipif_t *ipif; 15811 15812 ipif = from_ill->ill_ipif; 15813 ASSERT(ipif->ipif_id == 0); 15814 15815 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15816 } 15817 15818 ilmp = &from_ill->ill_ilm; 15819 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 15820 ilm_next = ilm->ilm_next; 15821 15822 if (ilm->ilm_flags & ILM_DELETED) { 15823 ilmp = &ilm->ilm_next; 15824 continue; 15825 } 15826 15827 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15828 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15829 ASSERT(ilm->ilm_orig_ifindex != 0); 15830 if (ilm->ilm_orig_ifindex == ifindex) { 15831 /* 15832 * We are failing back multicast memberships. 15833 * If the same ilm exists in to_ill, it means somebody 15834 * has joined the same group there e.g. ff02::1 15835 * is joined within the kernel when the interfaces 15836 * came UP. 15837 */ 15838 ASSERT(ilm->ilm_ipif == NULL); 15839 if (new_ilm != NULL) { 15840 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15841 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15842 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15843 new_ilm->ilm_is_new = B_TRUE; 15844 } 15845 } else { 15846 /* 15847 * check if we can just move the ilm 15848 */ 15849 if (from_ill->ill_ilm_walker_cnt != 0) { 15850 /* 15851 * We have walkers we cannot move 15852 * the ilm, so allocate a new ilm, 15853 * this (old) ilm will be marked 15854 * ILM_DELETED at the end of the loop 15855 * and will be freed when the 15856 * last walker exits. 15857 */ 15858 new_ilm = (ilm_t *)mi_zalloc 15859 (sizeof (ilm_t)); 15860 if (new_ilm == NULL) { 15861 ip0dbg(("ilm_move_v6: " 15862 "FAILBACK of IPv6" 15863 " multicast address %s : " 15864 "from %s to" 15865 " %s failed : ENOMEM \n", 15866 inet_ntop(AF_INET6, 15867 &ilm->ilm_v6addr, buf, 15868 sizeof (buf)), 15869 from_ill->ill_name, 15870 to_ill->ill_name)); 15871 15872 ilmp = &ilm->ilm_next; 15873 continue; 15874 } 15875 *new_ilm = *ilm; 15876 /* 15877 * we don't want new_ilm linked to 15878 * ilm's filter list. 15879 */ 15880 new_ilm->ilm_filter = NULL; 15881 } else { 15882 /* 15883 * No walkers we can move the ilm. 15884 * lets take it out of the list. 15885 */ 15886 *ilmp = ilm->ilm_next; 15887 ilm->ilm_next = NULL; 15888 new_ilm = ilm; 15889 } 15890 15891 /* 15892 * if this is the first ilm for the group 15893 * set ilm_notify_driver so that we notify the 15894 * driver in ilm_send_multicast_reqs. 15895 */ 15896 if (ilm_lookup_ill_v6(to_ill, 15897 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15898 new_ilm->ilm_notify_driver = B_TRUE; 15899 15900 new_ilm->ilm_ill = to_ill; 15901 /* Add to the to_ill's list */ 15902 new_ilm->ilm_next = to_ill->ill_ilm; 15903 to_ill->ill_ilm = new_ilm; 15904 /* 15905 * set the flag so that mld_joingroup is 15906 * called in ilm_send_multicast_reqs(). 15907 */ 15908 new_ilm->ilm_is_new = B_TRUE; 15909 } 15910 goto bottom; 15911 } else if (ifindex != 0) { 15912 /* 15913 * If this is FAILBACK (ifindex != 0) and the ifindex 15914 * has not matched above, look at the next ilm. 15915 */ 15916 ilmp = &ilm->ilm_next; 15917 continue; 15918 } 15919 /* 15920 * If we are here, it means ifindex is 0. Failover 15921 * everything. 15922 * 15923 * We need to handle solicited node mcast address 15924 * and all_nodes mcast address differently as they 15925 * are joined witin the kenrel (ipif_multicast_up) 15926 * and potentially from the userland. We are called 15927 * after the ipifs of from_ill has been moved. 15928 * If we still find ilms on ill with solicited node 15929 * mcast address or all_nodes mcast address, it must 15930 * belong to the UP interface that has not moved e.g. 15931 * ipif_id 0 with the link local prefix does not move. 15932 * We join this on the new ill accounting for all the 15933 * userland memberships so that applications don't 15934 * see any failure. 15935 * 15936 * We need to make sure that we account only for the 15937 * solicited node and all node multicast addresses 15938 * that was brought UP on these. In the case of 15939 * a failover from A to B, we might have ilms belonging 15940 * to A (ilm_orig_ifindex pointing at A) on B accounting 15941 * for the membership from the userland. If we are failing 15942 * over from B to C now, we will find the ones belonging 15943 * to A on B. These don't account for the ill_ipif_up_count. 15944 * They just move from B to C. The check below on 15945 * ilm_orig_ifindex ensures that. 15946 */ 15947 if ((ilm->ilm_orig_ifindex == 15948 from_ill->ill_phyint->phyint_ifindex) && 15949 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 15950 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 15951 &ilm->ilm_v6addr))) { 15952 ASSERT(ilm->ilm_refcnt > 0); 15953 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 15954 /* 15955 * For indentation reasons, we are not using a 15956 * "else" here. 15957 */ 15958 if (count == 0) { 15959 ilmp = &ilm->ilm_next; 15960 continue; 15961 } 15962 ilm->ilm_refcnt -= count; 15963 if (new_ilm != NULL) { 15964 /* 15965 * Can find one with the same 15966 * ilm_orig_ifindex, if we are failing 15967 * over to a STANDBY. This happens 15968 * when somebody wants to join a group 15969 * on a STANDBY interface and we 15970 * internally join on a different one. 15971 * If we had joined on from_ill then, a 15972 * failover now will find a new ilm 15973 * with this index. 15974 */ 15975 ip1dbg(("ilm_move_v6: FAILOVER, found" 15976 " new ilm on %s, group address %s\n", 15977 to_ill->ill_name, 15978 inet_ntop(AF_INET6, 15979 &ilm->ilm_v6addr, buf, 15980 sizeof (buf)))); 15981 new_ilm->ilm_refcnt += count; 15982 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15983 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15984 new_ilm->ilm_is_new = B_TRUE; 15985 } 15986 } else { 15987 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 15988 if (new_ilm == NULL) { 15989 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 15990 " multicast address %s : from %s to" 15991 " %s failed : ENOMEM \n", 15992 inet_ntop(AF_INET6, 15993 &ilm->ilm_v6addr, buf, 15994 sizeof (buf)), from_ill->ill_name, 15995 to_ill->ill_name)); 15996 ilmp = &ilm->ilm_next; 15997 continue; 15998 } 15999 *new_ilm = *ilm; 16000 new_ilm->ilm_filter = NULL; 16001 new_ilm->ilm_refcnt = count; 16002 new_ilm->ilm_timer = INFINITY; 16003 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16004 new_ilm->ilm_is_new = B_TRUE; 16005 /* 16006 * If the to_ill has not joined this 16007 * group we need to tell the driver in 16008 * ill_send_multicast_reqs. 16009 */ 16010 if (ilm_lookup_ill_v6(to_ill, 16011 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16012 new_ilm->ilm_notify_driver = B_TRUE; 16013 16014 new_ilm->ilm_ill = to_ill; 16015 /* Add to the to_ill's list */ 16016 new_ilm->ilm_next = to_ill->ill_ilm; 16017 to_ill->ill_ilm = new_ilm; 16018 ASSERT(new_ilm->ilm_ipif == NULL); 16019 } 16020 if (ilm->ilm_refcnt == 0) { 16021 goto bottom; 16022 } else { 16023 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16024 CLEAR_SLIST(new_ilm->ilm_filter); 16025 ilmp = &ilm->ilm_next; 16026 } 16027 continue; 16028 } else { 16029 /* 16030 * ifindex = 0 means, move everything pointing at 16031 * from_ill. We are doing this becuase ill has 16032 * either FAILED or became INACTIVE. 16033 * 16034 * As we would like to move things later back to 16035 * from_ill, we want to retain the identity of this 16036 * ilm. Thus, we don't blindly increment the reference 16037 * count on the ilms matching the address alone. We 16038 * need to match on the ilm_orig_index also. new_ilm 16039 * was obtained by matching ilm_orig_index also. 16040 */ 16041 if (new_ilm != NULL) { 16042 /* 16043 * This is possible only if a previous restore 16044 * was incomplete i.e restore to 16045 * ilm_orig_ifindex left some ilms because 16046 * of some failures. Thus when we are failing 16047 * again, we might find our old friends there. 16048 */ 16049 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16050 " on %s, group address %s\n", 16051 to_ill->ill_name, 16052 inet_ntop(AF_INET6, 16053 &ilm->ilm_v6addr, buf, 16054 sizeof (buf)))); 16055 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16056 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16057 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16058 new_ilm->ilm_is_new = B_TRUE; 16059 } 16060 } else { 16061 if (from_ill->ill_ilm_walker_cnt != 0) { 16062 new_ilm = (ilm_t *) 16063 mi_zalloc(sizeof (ilm_t)); 16064 if (new_ilm == NULL) { 16065 ip0dbg(("ilm_move_v6: " 16066 "FAILOVER of IPv6" 16067 " multicast address %s : " 16068 "from %s to" 16069 " %s failed : ENOMEM \n", 16070 inet_ntop(AF_INET6, 16071 &ilm->ilm_v6addr, buf, 16072 sizeof (buf)), 16073 from_ill->ill_name, 16074 to_ill->ill_name)); 16075 16076 ilmp = &ilm->ilm_next; 16077 continue; 16078 } 16079 *new_ilm = *ilm; 16080 new_ilm->ilm_filter = NULL; 16081 } else { 16082 *ilmp = ilm->ilm_next; 16083 new_ilm = ilm; 16084 } 16085 /* 16086 * If the to_ill has not joined this 16087 * group we need to tell the driver in 16088 * ill_send_multicast_reqs. 16089 */ 16090 if (ilm_lookup_ill_v6(to_ill, 16091 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16092 new_ilm->ilm_notify_driver = B_TRUE; 16093 16094 /* Add to the to_ill's list */ 16095 new_ilm->ilm_next = to_ill->ill_ilm; 16096 to_ill->ill_ilm = new_ilm; 16097 ASSERT(ilm->ilm_ipif == NULL); 16098 new_ilm->ilm_ill = to_ill; 16099 new_ilm->ilm_is_new = B_TRUE; 16100 } 16101 16102 } 16103 16104 bottom: 16105 /* 16106 * Revert multicast filter state to (EXCLUDE, NULL). 16107 * new_ilm->ilm_is_new should already be set if needed. 16108 */ 16109 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16110 CLEAR_SLIST(new_ilm->ilm_filter); 16111 /* 16112 * We allocated/got a new ilm, free the old one. 16113 */ 16114 if (new_ilm != ilm) { 16115 if (from_ill->ill_ilm_walker_cnt == 0) { 16116 *ilmp = ilm->ilm_next; 16117 ilm->ilm_next = NULL; 16118 FREE_SLIST(ilm->ilm_filter); 16119 FREE_SLIST(ilm->ilm_pendsrcs); 16120 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16121 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16122 mi_free((char *)ilm); 16123 } else { 16124 ilm->ilm_flags |= ILM_DELETED; 16125 from_ill->ill_ilm_cleanup_reqd = 1; 16126 ilmp = &ilm->ilm_next; 16127 } 16128 } 16129 } 16130 } 16131 16132 /* 16133 * Move all the multicast memberships to to_ill. Called when 16134 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16135 * different from IPv6 counterpart as multicast memberships are associated 16136 * with ills in IPv6. This function is called after every ipif is moved 16137 * unlike IPv6, where it is moved only once. 16138 */ 16139 static void 16140 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16141 { 16142 ilm_t *ilm; 16143 ilm_t *ilm_next; 16144 ilm_t *new_ilm; 16145 ilm_t **ilmp; 16146 16147 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16148 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16149 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16150 16151 ilmp = &from_ill->ill_ilm; 16152 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16153 ilm_next = ilm->ilm_next; 16154 16155 if (ilm->ilm_flags & ILM_DELETED) { 16156 ilmp = &ilm->ilm_next; 16157 continue; 16158 } 16159 16160 ASSERT(ilm->ilm_ipif != NULL); 16161 16162 if (ilm->ilm_ipif != ipif) { 16163 ilmp = &ilm->ilm_next; 16164 continue; 16165 } 16166 16167 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16168 htonl(INADDR_ALLHOSTS_GROUP)) { 16169 /* 16170 * We joined this in ipif_multicast_up 16171 * and we never did an ipif_multicast_down 16172 * for IPv4. If nobody else from the userland 16173 * has reference, we free the ilm, and later 16174 * when this ipif comes up on the new ill, 16175 * we will join this again. 16176 */ 16177 if (--ilm->ilm_refcnt == 0) 16178 goto delete_ilm; 16179 16180 new_ilm = ilm_lookup_ipif(ipif, 16181 V4_PART_OF_V6(ilm->ilm_v6addr)); 16182 if (new_ilm != NULL) { 16183 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16184 /* 16185 * We still need to deal with the from_ill. 16186 */ 16187 new_ilm->ilm_is_new = B_TRUE; 16188 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16189 CLEAR_SLIST(new_ilm->ilm_filter); 16190 goto delete_ilm; 16191 } 16192 /* 16193 * If we could not find one e.g. ipif is 16194 * still down on to_ill, we add this ilm 16195 * on ill_new to preserve the reference 16196 * count. 16197 */ 16198 } 16199 /* 16200 * When ipifs move, ilms always move with it 16201 * to the NEW ill. Thus we should never be 16202 * able to find ilm till we really move it here. 16203 */ 16204 ASSERT(ilm_lookup_ipif(ipif, 16205 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16206 16207 if (from_ill->ill_ilm_walker_cnt != 0) { 16208 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16209 if (new_ilm == NULL) { 16210 char buf[INET6_ADDRSTRLEN]; 16211 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16212 " multicast address %s : " 16213 "from %s to" 16214 " %s failed : ENOMEM \n", 16215 inet_ntop(AF_INET, 16216 &ilm->ilm_v6addr, buf, 16217 sizeof (buf)), 16218 from_ill->ill_name, 16219 to_ill->ill_name)); 16220 16221 ilmp = &ilm->ilm_next; 16222 continue; 16223 } 16224 *new_ilm = *ilm; 16225 /* We don't want new_ilm linked to ilm's filter list */ 16226 new_ilm->ilm_filter = NULL; 16227 } else { 16228 /* Remove from the list */ 16229 *ilmp = ilm->ilm_next; 16230 new_ilm = ilm; 16231 } 16232 16233 /* 16234 * If we have never joined this group on the to_ill 16235 * make sure we tell the driver. 16236 */ 16237 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16238 ALL_ZONES) == NULL) 16239 new_ilm->ilm_notify_driver = B_TRUE; 16240 16241 /* Add to the to_ill's list */ 16242 new_ilm->ilm_next = to_ill->ill_ilm; 16243 to_ill->ill_ilm = new_ilm; 16244 new_ilm->ilm_is_new = B_TRUE; 16245 16246 /* 16247 * Revert multicast filter state to (EXCLUDE, NULL) 16248 */ 16249 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16250 CLEAR_SLIST(new_ilm->ilm_filter); 16251 16252 /* 16253 * Delete only if we have allocated a new ilm. 16254 */ 16255 if (new_ilm != ilm) { 16256 delete_ilm: 16257 if (from_ill->ill_ilm_walker_cnt == 0) { 16258 /* Remove from the list */ 16259 *ilmp = ilm->ilm_next; 16260 ilm->ilm_next = NULL; 16261 FREE_SLIST(ilm->ilm_filter); 16262 FREE_SLIST(ilm->ilm_pendsrcs); 16263 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16264 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16265 mi_free((char *)ilm); 16266 } else { 16267 ilm->ilm_flags |= ILM_DELETED; 16268 from_ill->ill_ilm_cleanup_reqd = 1; 16269 ilmp = &ilm->ilm_next; 16270 } 16271 } 16272 } 16273 } 16274 16275 static uint_t 16276 ipif_get_id(ill_t *ill, uint_t id) 16277 { 16278 uint_t unit; 16279 ipif_t *tipif; 16280 boolean_t found = B_FALSE; 16281 16282 /* 16283 * During failback, we want to go back to the same id 16284 * instead of the smallest id so that the original 16285 * configuration is maintained. id is non-zero in that 16286 * case. 16287 */ 16288 if (id != 0) { 16289 /* 16290 * While failing back, if we still have an ipif with 16291 * MAX_ADDRS_PER_IF, it means this will be replaced 16292 * as soon as we return from this function. It was 16293 * to set to MAX_ADDRS_PER_IF by the caller so that 16294 * we can choose the smallest id. Thus we return zero 16295 * in that case ignoring the hint. 16296 */ 16297 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16298 return (0); 16299 for (tipif = ill->ill_ipif; tipif != NULL; 16300 tipif = tipif->ipif_next) { 16301 if (tipif->ipif_id == id) { 16302 found = B_TRUE; 16303 break; 16304 } 16305 } 16306 /* 16307 * If somebody already plumbed another logical 16308 * with the same id, we won't be able to find it. 16309 */ 16310 if (!found) 16311 return (id); 16312 } 16313 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16314 found = B_FALSE; 16315 for (tipif = ill->ill_ipif; tipif != NULL; 16316 tipif = tipif->ipif_next) { 16317 if (tipif->ipif_id == unit) { 16318 found = B_TRUE; 16319 break; 16320 } 16321 } 16322 if (!found) 16323 break; 16324 } 16325 return (unit); 16326 } 16327 16328 /* ARGSUSED */ 16329 static int 16330 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16331 ipif_t **rep_ipif_ptr) 16332 { 16333 ill_t *from_ill; 16334 ipif_t *rep_ipif; 16335 ipif_t **ipifp; 16336 uint_t unit; 16337 int err = 0; 16338 ipif_t *to_ipif; 16339 struct iocblk *iocp; 16340 boolean_t failback_cmd; 16341 boolean_t remove_ipif; 16342 int rc; 16343 16344 ASSERT(IAM_WRITER_ILL(to_ill)); 16345 ASSERT(IAM_WRITER_IPIF(ipif)); 16346 16347 iocp = (struct iocblk *)mp->b_rptr; 16348 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16349 remove_ipif = B_FALSE; 16350 16351 from_ill = ipif->ipif_ill; 16352 16353 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16354 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16355 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16356 16357 /* 16358 * Don't move LINK LOCAL addresses as they are tied to 16359 * physical interface. 16360 */ 16361 if (from_ill->ill_isv6 && 16362 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16363 ipif->ipif_was_up = B_FALSE; 16364 IPIF_UNMARK_MOVING(ipif); 16365 return (0); 16366 } 16367 16368 /* 16369 * We set the ipif_id to maximum so that the search for 16370 * ipif_id will pick the lowest number i.e 0 in the 16371 * following 2 cases : 16372 * 16373 * 1) We have a replacement ipif at the head of to_ill. 16374 * We can't remove it yet as we can exceed ip_addrs_per_if 16375 * on to_ill and hence the MOVE might fail. We want to 16376 * remove it only if we could move the ipif. Thus, by 16377 * setting it to the MAX value, we make the search in 16378 * ipif_get_id return the zeroth id. 16379 * 16380 * 2) When DR pulls out the NIC and re-plumbs the interface, 16381 * we might just have a zero address plumbed on the ipif 16382 * with zero id in the case of IPv4. We remove that while 16383 * doing the failback. We want to remove it only if we 16384 * could move the ipif. Thus, by setting it to the MAX 16385 * value, we make the search in ipif_get_id return the 16386 * zeroth id. 16387 * 16388 * Both (1) and (2) are done only when when we are moving 16389 * an ipif (either due to failover/failback) which originally 16390 * belonged to this interface i.e the ipif_orig_ifindex is 16391 * the same as to_ill's ifindex. This is needed so that 16392 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16393 * from B -> A (B is being removed from the group) and 16394 * FAILBACK from A -> B restores the original configuration. 16395 * Without the check for orig_ifindex, the second FAILOVER 16396 * could make the ipif belonging to B replace the A's zeroth 16397 * ipif and the subsequent failback re-creating the replacement 16398 * ipif again. 16399 * 16400 * NOTE : We created the replacement ipif when we did a 16401 * FAILOVER (See below). We could check for FAILBACK and 16402 * then look for replacement ipif to be removed. But we don't 16403 * want to do that because we wan't to allow the possibility 16404 * of a FAILOVER from A -> B (which creates the replacement ipif), 16405 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16406 * from B -> A. 16407 */ 16408 to_ipif = to_ill->ill_ipif; 16409 if ((to_ill->ill_phyint->phyint_ifindex == 16410 ipif->ipif_orig_ifindex) && 16411 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16412 ASSERT(to_ipif->ipif_id == 0); 16413 remove_ipif = B_TRUE; 16414 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16415 } 16416 /* 16417 * Find the lowest logical unit number on the to_ill. 16418 * If we are failing back, try to get the original id 16419 * rather than the lowest one so that the original 16420 * configuration is maintained. 16421 * 16422 * XXX need a better scheme for this. 16423 */ 16424 if (failback_cmd) { 16425 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16426 } else { 16427 unit = ipif_get_id(to_ill, 0); 16428 } 16429 16430 /* Reset back to zero in case we fail below */ 16431 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16432 to_ipif->ipif_id = 0; 16433 16434 if (unit == ip_addrs_per_if) { 16435 ipif->ipif_was_up = B_FALSE; 16436 IPIF_UNMARK_MOVING(ipif); 16437 return (EINVAL); 16438 } 16439 16440 /* 16441 * ipif is ready to move from "from_ill" to "to_ill". 16442 * 16443 * 1) If we are moving ipif with id zero, create a 16444 * replacement ipif for this ipif on from_ill. If this fails 16445 * fail the MOVE operation. 16446 * 16447 * 2) Remove the replacement ipif on to_ill if any. 16448 * We could remove the replacement ipif when we are moving 16449 * the ipif with id zero. But what if somebody already 16450 * unplumbed it ? Thus we always remove it if it is present. 16451 * We want to do it only if we are sure we are going to 16452 * move the ipif to to_ill which is why there are no 16453 * returns due to error till ipif is linked to to_ill. 16454 * Note that the first ipif that we failback will always 16455 * be zero if it is present. 16456 */ 16457 if (ipif->ipif_id == 0) { 16458 ipaddr_t inaddr_any = INADDR_ANY; 16459 16460 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16461 if (rep_ipif == NULL) { 16462 ipif->ipif_was_up = B_FALSE; 16463 IPIF_UNMARK_MOVING(ipif); 16464 return (ENOMEM); 16465 } 16466 *rep_ipif = ipif_zero; 16467 /* 16468 * Before we put the ipif on the list, store the addresses 16469 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16470 * assumes so. This logic is not any different from what 16471 * ipif_allocate does. 16472 */ 16473 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16474 &rep_ipif->ipif_v6lcl_addr); 16475 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16476 &rep_ipif->ipif_v6src_addr); 16477 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16478 &rep_ipif->ipif_v6subnet); 16479 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16480 &rep_ipif->ipif_v6net_mask); 16481 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16482 &rep_ipif->ipif_v6brd_addr); 16483 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16484 &rep_ipif->ipif_v6pp_dst_addr); 16485 /* 16486 * We mark IPIF_NOFAILOVER so that this can never 16487 * move. 16488 */ 16489 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16490 rep_ipif->ipif_flags &= ~IPIF_UP; 16491 rep_ipif->ipif_replace_zero = B_TRUE; 16492 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16493 MUTEX_DEFAULT, NULL); 16494 rep_ipif->ipif_id = 0; 16495 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16496 rep_ipif->ipif_ill = from_ill; 16497 rep_ipif->ipif_orig_ifindex = 16498 from_ill->ill_phyint->phyint_ifindex; 16499 /* Insert at head */ 16500 rep_ipif->ipif_next = from_ill->ill_ipif; 16501 from_ill->ill_ipif = rep_ipif; 16502 /* 16503 * We don't really care to let apps know about 16504 * this interface. 16505 */ 16506 } 16507 16508 if (remove_ipif) { 16509 /* 16510 * We set to a max value above for this case to get 16511 * id zero. ASSERT that we did get one. 16512 */ 16513 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16514 rep_ipif = to_ipif; 16515 to_ill->ill_ipif = rep_ipif->ipif_next; 16516 rep_ipif->ipif_next = NULL; 16517 /* 16518 * If some apps scanned and find this interface, 16519 * it is time to let them know, so that they can 16520 * delete it. 16521 */ 16522 16523 *rep_ipif_ptr = rep_ipif; 16524 } 16525 16526 /* Get it out of the ILL interface list. */ 16527 ipifp = &ipif->ipif_ill->ill_ipif; 16528 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16529 if (*ipifp == ipif) { 16530 *ipifp = ipif->ipif_next; 16531 break; 16532 } 16533 } 16534 16535 /* Assign the new ill */ 16536 ipif->ipif_ill = to_ill; 16537 ipif->ipif_id = unit; 16538 /* id has already been checked */ 16539 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16540 ASSERT(rc == 0); 16541 /* Let SCTP update its list */ 16542 sctp_move_ipif(ipif, from_ill, to_ill); 16543 /* 16544 * Handle the failover and failback of ipif_t between 16545 * ill_t that have differing maximum mtu values. 16546 */ 16547 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16548 if (ipif->ipif_saved_mtu == 0) { 16549 /* 16550 * As this ipif_t is moving to an ill_t 16551 * that has a lower ill_max_mtu, its 16552 * ipif_mtu needs to be saved so it can 16553 * be restored during failback or during 16554 * failover to an ill_t which has a 16555 * higher ill_max_mtu. 16556 */ 16557 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16558 ipif->ipif_mtu = to_ill->ill_max_mtu; 16559 } else { 16560 /* 16561 * The ipif_t is, once again, moving to 16562 * an ill_t that has a lower maximum mtu 16563 * value. 16564 */ 16565 ipif->ipif_mtu = to_ill->ill_max_mtu; 16566 } 16567 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16568 ipif->ipif_saved_mtu != 0) { 16569 /* 16570 * The mtu of this ipif_t had to be reduced 16571 * during an earlier failover; this is an 16572 * opportunity for it to be increased (either as 16573 * part of another failover or a failback). 16574 */ 16575 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16576 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16577 ipif->ipif_saved_mtu = 0; 16578 } else { 16579 ipif->ipif_mtu = to_ill->ill_max_mtu; 16580 } 16581 } 16582 16583 /* 16584 * We preserve all the other fields of the ipif including 16585 * ipif_saved_ire_mp. The routes that are saved here will 16586 * be recreated on the new interface and back on the old 16587 * interface when we move back. 16588 */ 16589 ASSERT(ipif->ipif_arp_del_mp == NULL); 16590 16591 return (err); 16592 } 16593 16594 static int 16595 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16596 int ifindex, ipif_t **rep_ipif_ptr) 16597 { 16598 ipif_t *mipif; 16599 ipif_t *ipif_next; 16600 int err; 16601 16602 /* 16603 * We don't really try to MOVE back things if some of the 16604 * operations fail. The daemon will take care of moving again 16605 * later on. 16606 */ 16607 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16608 ipif_next = mipif->ipif_next; 16609 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16610 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16611 16612 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16613 16614 /* 16615 * When the MOVE fails, it is the job of the 16616 * application to take care of this properly 16617 * i.e try again if it is ENOMEM. 16618 */ 16619 if (mipif->ipif_ill != from_ill) { 16620 /* 16621 * ipif has moved. 16622 * 16623 * Move the multicast memberships associated 16624 * with this ipif to the new ill. For IPv6, we 16625 * do it once after all the ipifs are moved 16626 * (in ill_move) as they are not associated 16627 * with ipifs. 16628 * 16629 * We need to move the ilms as the ipif has 16630 * already been moved to a new ill even 16631 * in the case of errors. Neither 16632 * ilm_free(ipif) will find the ilm 16633 * when somebody unplumbs this ipif nor 16634 * ilm_delete(ilm) will be able to find the 16635 * ilm, if we don't move now. 16636 */ 16637 if (!from_ill->ill_isv6) 16638 ilm_move_v4(from_ill, to_ill, mipif); 16639 } 16640 16641 if (err != 0) 16642 return (err); 16643 } 16644 } 16645 return (0); 16646 } 16647 16648 static int 16649 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16650 { 16651 int ifindex; 16652 int err; 16653 struct iocblk *iocp; 16654 ipif_t *ipif; 16655 ipif_t *rep_ipif_ptr = NULL; 16656 ipif_t *from_ipif = NULL; 16657 boolean_t check_rep_if = B_FALSE; 16658 16659 iocp = (struct iocblk *)mp->b_rptr; 16660 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16661 /* 16662 * Move everything pointing at from_ill to to_ill. 16663 * We acheive this by passing in 0 as ifindex. 16664 */ 16665 ifindex = 0; 16666 } else { 16667 /* 16668 * Move everything pointing at from_ill whose original 16669 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16670 * We acheive this by passing in ifindex rather than 0. 16671 * Multicast vifs, ilgs move implicitly because ipifs move. 16672 */ 16673 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16674 ifindex = to_ill->ill_phyint->phyint_ifindex; 16675 } 16676 16677 /* 16678 * Determine if there is at least one ipif that would move from 16679 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16680 * ipif (if it exists) on the to_ill would be consumed as a result of 16681 * the move, in which case we need to quiesce the replacement ipif also. 16682 */ 16683 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16684 from_ipif = from_ipif->ipif_next) { 16685 if (((ifindex == 0) || 16686 (ifindex == from_ipif->ipif_orig_ifindex)) && 16687 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16688 check_rep_if = B_TRUE; 16689 break; 16690 } 16691 } 16692 16693 16694 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16695 16696 GRAB_ILL_LOCKS(from_ill, to_ill); 16697 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16698 (void) ipsq_pending_mp_add(NULL, ipif, q, 16699 mp, ILL_MOVE_OK); 16700 RELEASE_ILL_LOCKS(from_ill, to_ill); 16701 return (EINPROGRESS); 16702 } 16703 16704 /* Check if the replacement ipif is quiescent to delete */ 16705 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16706 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16707 to_ill->ill_ipif->ipif_state_flags |= 16708 IPIF_MOVING | IPIF_CHANGING; 16709 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16710 (void) ipsq_pending_mp_add(NULL, ipif, q, 16711 mp, ILL_MOVE_OK); 16712 RELEASE_ILL_LOCKS(from_ill, to_ill); 16713 return (EINPROGRESS); 16714 } 16715 } 16716 RELEASE_ILL_LOCKS(from_ill, to_ill); 16717 16718 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16719 rw_enter(&ill_g_lock, RW_WRITER); 16720 GRAB_ILL_LOCKS(from_ill, to_ill); 16721 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16722 16723 /* ilm_move is done inside ipif_move for IPv4 */ 16724 if (err == 0 && from_ill->ill_isv6) 16725 ilm_move_v6(from_ill, to_ill, ifindex); 16726 16727 RELEASE_ILL_LOCKS(from_ill, to_ill); 16728 rw_exit(&ill_g_lock); 16729 16730 /* 16731 * send rts messages and multicast messages. 16732 */ 16733 if (rep_ipif_ptr != NULL) { 16734 ip_rts_ifmsg(rep_ipif_ptr); 16735 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16736 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16737 mi_free(rep_ipif_ptr); 16738 } 16739 16740 ilm_send_multicast_reqs(from_ill, to_ill); 16741 16742 conn_move_ill(from_ill, to_ill, ifindex); 16743 16744 return (err); 16745 } 16746 16747 /* 16748 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16749 * Also checks for the validity of the arguments. 16750 * Note: We are already exclusive inside the from group. 16751 * It is upto the caller to release refcnt on the to_ill's. 16752 */ 16753 static int 16754 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16755 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16756 { 16757 int dst_index; 16758 ipif_t *ipif_v4, *ipif_v6; 16759 struct lifreq *lifr; 16760 mblk_t *mp1; 16761 boolean_t exists; 16762 sin_t *sin; 16763 int err = 0; 16764 16765 if ((mp1 = mp->b_cont) == NULL) 16766 return (EPROTO); 16767 16768 if ((mp1 = mp1->b_cont) == NULL) 16769 return (EPROTO); 16770 16771 lifr = (struct lifreq *)mp1->b_rptr; 16772 sin = (sin_t *)&lifr->lifr_addr; 16773 16774 /* 16775 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16776 * specific operations. 16777 */ 16778 if (sin->sin_family != AF_UNSPEC) 16779 return (EINVAL); 16780 16781 /* 16782 * Get ipif with id 0. We are writer on the from ill. So we can pass 16783 * NULLs for the last 4 args and we know the lookup won't fail 16784 * with EINPROGRESS. 16785 */ 16786 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16787 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16788 ALL_ZONES, NULL, NULL, NULL, NULL); 16789 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16790 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16791 ALL_ZONES, NULL, NULL, NULL, NULL); 16792 16793 if (ipif_v4 == NULL && ipif_v6 == NULL) 16794 return (ENXIO); 16795 16796 if (ipif_v4 != NULL) { 16797 ASSERT(ipif_v4->ipif_refcnt != 0); 16798 if (ipif_v4->ipif_id != 0) { 16799 err = EINVAL; 16800 goto done; 16801 } 16802 16803 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16804 *ill_from_v4 = ipif_v4->ipif_ill; 16805 } 16806 16807 if (ipif_v6 != NULL) { 16808 ASSERT(ipif_v6->ipif_refcnt != 0); 16809 if (ipif_v6->ipif_id != 0) { 16810 err = EINVAL; 16811 goto done; 16812 } 16813 16814 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16815 *ill_from_v6 = ipif_v6->ipif_ill; 16816 } 16817 16818 err = 0; 16819 dst_index = lifr->lifr_movetoindex; 16820 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16821 q, mp, ip_process_ioctl, &err); 16822 if (err != 0) { 16823 /* 16824 * There could be only v6. 16825 */ 16826 if (err != ENXIO) 16827 goto done; 16828 err = 0; 16829 } 16830 16831 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16832 q, mp, ip_process_ioctl, &err); 16833 if (err != 0) { 16834 if (err != ENXIO) 16835 goto done; 16836 if (*ill_to_v4 == NULL) { 16837 err = ENXIO; 16838 goto done; 16839 } 16840 err = 0; 16841 } 16842 16843 /* 16844 * If we have something to MOVE i.e "from" not NULL, 16845 * "to" should be non-NULL. 16846 */ 16847 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16848 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16849 err = EINVAL; 16850 } 16851 16852 done: 16853 if (ipif_v4 != NULL) 16854 ipif_refrele(ipif_v4); 16855 if (ipif_v6 != NULL) 16856 ipif_refrele(ipif_v6); 16857 return (err); 16858 } 16859 16860 /* 16861 * FAILOVER and FAILBACK are modelled as MOVE operations. 16862 * 16863 * We don't check whether the MOVE is within the same group or 16864 * not, because this ioctl can be used as a generic mechanism 16865 * to failover from interface A to B, though things will function 16866 * only if they are really part of the same group. Moreover, 16867 * all ipifs may be down and hence temporarily out of the group. 16868 * 16869 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16870 * down first and then V6. For each we wait for the ipif's to become quiescent. 16871 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16872 * have been deleted and there are no active references. Once quiescent the 16873 * ipif's are moved and brought up on the new ill. 16874 * 16875 * Normally the source ill and destination ill belong to the same IPMP group 16876 * and hence the same ipsq_t. In the event they don't belong to the same 16877 * same group the two ipsq's are first merged into one ipsq - that of the 16878 * to_ill. The multicast memberships on the source and destination ill cannot 16879 * change during the move operation since multicast joins/leaves also have to 16880 * execute on the same ipsq and are hence serialized. 16881 */ 16882 /* ARGSUSED */ 16883 int 16884 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16885 ip_ioctl_cmd_t *ipip, void *ifreq) 16886 { 16887 ill_t *ill_to_v4 = NULL; 16888 ill_t *ill_to_v6 = NULL; 16889 ill_t *ill_from_v4 = NULL; 16890 ill_t *ill_from_v6 = NULL; 16891 int err = 0; 16892 16893 /* 16894 * setup from and to ill's, we can get EINPROGRESS only for 16895 * to_ill's. 16896 */ 16897 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16898 &ill_to_v4, &ill_to_v6); 16899 16900 if (err != 0) { 16901 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16902 goto done; 16903 } 16904 16905 /* 16906 * nothing to do. 16907 */ 16908 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16909 goto done; 16910 } 16911 16912 /* 16913 * nothing to do. 16914 */ 16915 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 16916 goto done; 16917 } 16918 16919 /* 16920 * Mark the ill as changing. 16921 * ILL_CHANGING flag is cleared when the ipif's are brought up 16922 * in ill_up_ipifs in case of error they are cleared below. 16923 */ 16924 16925 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16926 if (ill_from_v4 != NULL) 16927 ill_from_v4->ill_state_flags |= ILL_CHANGING; 16928 if (ill_from_v6 != NULL) 16929 ill_from_v6->ill_state_flags |= ILL_CHANGING; 16930 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16931 16932 /* 16933 * Make sure that both src and dst are 16934 * in the same syncq group. If not make it happen. 16935 * We are not holding any locks because we are the writer 16936 * on the from_ipsq and we will hold locks in ill_merge_groups 16937 * to protect to_ipsq against changing. 16938 */ 16939 if (ill_from_v4 != NULL) { 16940 if (ill_from_v4->ill_phyint->phyint_ipsq != 16941 ill_to_v4->ill_phyint->phyint_ipsq) { 16942 err = ill_merge_groups(ill_from_v4, ill_to_v4, 16943 NULL, mp, q); 16944 goto err_ret; 16945 16946 } 16947 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 16948 } else { 16949 16950 if (ill_from_v6->ill_phyint->phyint_ipsq != 16951 ill_to_v6->ill_phyint->phyint_ipsq) { 16952 err = ill_merge_groups(ill_from_v6, ill_to_v6, 16953 NULL, mp, q); 16954 goto err_ret; 16955 16956 } 16957 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 16958 } 16959 16960 /* 16961 * Now that the ipsq's have been merged and we are the writer 16962 * lets mark to_ill as changing as well. 16963 */ 16964 16965 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16966 if (ill_to_v4 != NULL) 16967 ill_to_v4->ill_state_flags |= ILL_CHANGING; 16968 if (ill_to_v6 != NULL) 16969 ill_to_v6->ill_state_flags |= ILL_CHANGING; 16970 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16971 16972 /* 16973 * Its ok for us to proceed with the move even if 16974 * ill_pending_mp is non null on one of the from ill's as the reply 16975 * should not be looking at the ipif, it should only care about the 16976 * ill itself. 16977 */ 16978 16979 /* 16980 * lets move ipv4 first. 16981 */ 16982 if (ill_from_v4 != NULL) { 16983 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 16984 ill_from_v4->ill_move_in_progress = B_TRUE; 16985 ill_to_v4->ill_move_in_progress = B_TRUE; 16986 ill_to_v4->ill_move_peer = ill_from_v4; 16987 ill_from_v4->ill_move_peer = ill_to_v4; 16988 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 16989 } 16990 16991 /* 16992 * Now lets move ipv6. 16993 */ 16994 if (err == 0 && ill_from_v6 != NULL) { 16995 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 16996 ill_from_v6->ill_move_in_progress = B_TRUE; 16997 ill_to_v6->ill_move_in_progress = B_TRUE; 16998 ill_to_v6->ill_move_peer = ill_from_v6; 16999 ill_from_v6->ill_move_peer = ill_to_v6; 17000 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17001 } 17002 17003 err_ret: 17004 /* 17005 * EINPROGRESS means we are waiting for the ipif's that need to be 17006 * moved to become quiescent. 17007 */ 17008 if (err == EINPROGRESS) { 17009 goto done; 17010 } 17011 17012 /* 17013 * if err is set ill_up_ipifs will not be called 17014 * lets clear the flags. 17015 */ 17016 17017 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17018 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17019 /* 17020 * Some of the clearing may be redundant. But it is simple 17021 * not making any extra checks. 17022 */ 17023 if (ill_from_v6 != NULL) { 17024 ill_from_v6->ill_move_in_progress = B_FALSE; 17025 ill_from_v6->ill_move_peer = NULL; 17026 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17027 } 17028 if (ill_from_v4 != NULL) { 17029 ill_from_v4->ill_move_in_progress = B_FALSE; 17030 ill_from_v4->ill_move_peer = NULL; 17031 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17032 } 17033 if (ill_to_v6 != NULL) { 17034 ill_to_v6->ill_move_in_progress = B_FALSE; 17035 ill_to_v6->ill_move_peer = NULL; 17036 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17037 } 17038 if (ill_to_v4 != NULL) { 17039 ill_to_v4->ill_move_in_progress = B_FALSE; 17040 ill_to_v4->ill_move_peer = NULL; 17041 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17042 } 17043 17044 /* 17045 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17046 * Do this always to maintain proper state i.e even in case of errors. 17047 * As phyint_inactive looks at both v4 and v6 interfaces, 17048 * we need not call on both v4 and v6 interfaces. 17049 */ 17050 if (ill_from_v4 != NULL) { 17051 if ((ill_from_v4->ill_phyint->phyint_flags & 17052 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17053 phyint_inactive(ill_from_v4->ill_phyint); 17054 } 17055 } else if (ill_from_v6 != NULL) { 17056 if ((ill_from_v6->ill_phyint->phyint_flags & 17057 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17058 phyint_inactive(ill_from_v6->ill_phyint); 17059 } 17060 } 17061 17062 if (ill_to_v4 != NULL) { 17063 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17064 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17065 } 17066 } else if (ill_to_v6 != NULL) { 17067 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17068 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17069 } 17070 } 17071 17072 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17073 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17074 17075 no_err: 17076 /* 17077 * lets bring the interfaces up on the to_ill. 17078 */ 17079 if (err == 0) { 17080 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17081 q, mp); 17082 } 17083 done: 17084 17085 if (ill_to_v4 != NULL) { 17086 ill_refrele(ill_to_v4); 17087 } 17088 if (ill_to_v6 != NULL) { 17089 ill_refrele(ill_to_v6); 17090 } 17091 17092 return (err); 17093 } 17094 17095 static void 17096 ill_dl_down(ill_t *ill) 17097 { 17098 /* 17099 * The ill is down; unbind but stay attached since we're still 17100 * associated with a PPA. 17101 */ 17102 mblk_t *mp = ill->ill_unbind_mp; 17103 17104 ill->ill_unbind_mp = NULL; 17105 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17106 if (mp != NULL) { 17107 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17108 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17109 ill->ill_name)); 17110 mutex_enter(&ill->ill_lock); 17111 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 17112 mutex_exit(&ill->ill_lock); 17113 ill_dlpi_send(ill, mp); 17114 } 17115 17116 /* 17117 * Toss all of our multicast memberships. We could keep them, but 17118 * then we'd have to do bookkeeping of any joins and leaves performed 17119 * by the application while the the interface is down (we can't just 17120 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17121 * on a downed interface). 17122 */ 17123 ill_leave_multicast(ill); 17124 17125 mutex_enter(&ill->ill_lock); 17126 ill->ill_dl_up = 0; 17127 mutex_exit(&ill->ill_lock); 17128 } 17129 17130 void 17131 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17132 { 17133 union DL_primitives *dlp; 17134 t_uscalar_t prim; 17135 17136 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17137 17138 dlp = (union DL_primitives *)mp->b_rptr; 17139 prim = dlp->dl_primitive; 17140 17141 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17142 dlpi_prim_str(prim), prim, ill->ill_name)); 17143 17144 switch (prim) { 17145 case DL_PHYS_ADDR_REQ: 17146 { 17147 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17148 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17149 break; 17150 } 17151 case DL_BIND_REQ: 17152 mutex_enter(&ill->ill_lock); 17153 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 17154 mutex_exit(&ill->ill_lock); 17155 break; 17156 } 17157 17158 ill->ill_dlpi_pending = prim; 17159 17160 /* 17161 * Some drivers send M_FLUSH up to IP as part of unbind 17162 * request. When this M_FLUSH is sent back to the driver, 17163 * this can go after we send the detach request if the 17164 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17165 * to the M_FLUSH in ip_rput and locally generate another 17166 * M_FLUSH for the correctness. This will get freed in 17167 * ip_wput_nondata. 17168 */ 17169 if (prim == DL_UNBIND_REQ) 17170 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17171 17172 putnext(ill->ill_wq, mp); 17173 } 17174 17175 /* 17176 * Send a DLPI control message to the driver but make sure there 17177 * is only one outstanding message. Uses ill_dlpi_pending to tell 17178 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17179 * when an ACK or a NAK is received to process the next queued message. 17180 * 17181 * We don't protect ill_dlpi_pending with any lock. This is okay as 17182 * every place where its accessed, ip is exclusive while accessing 17183 * ill_dlpi_pending except when this function is called from ill_init() 17184 */ 17185 void 17186 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17187 { 17188 mblk_t **mpp; 17189 17190 ASSERT(IAM_WRITER_ILL(ill)); 17191 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17192 17193 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17194 /* Must queue message. Tail insertion */ 17195 mpp = &ill->ill_dlpi_deferred; 17196 while (*mpp != NULL) 17197 mpp = &((*mpp)->b_next); 17198 17199 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17200 ill->ill_name)); 17201 17202 *mpp = mp; 17203 return; 17204 } 17205 17206 ill_dlpi_dispatch(ill, mp); 17207 } 17208 17209 /* 17210 * Called when an DLPI control message has been acked or nacked to 17211 * send down the next queued message (if any). 17212 */ 17213 void 17214 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17215 { 17216 mblk_t *mp; 17217 17218 ASSERT(IAM_WRITER_ILL(ill)); 17219 17220 ASSERT(prim != DL_PRIM_INVAL); 17221 if (ill->ill_dlpi_pending != prim) { 17222 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17223 (void) mi_strlog(ill->ill_rq, 1, 17224 SL_CONSOLE|SL_ERROR|SL_TRACE, 17225 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17226 dlpi_prim_str(prim), ill->ill_name); 17227 } else { 17228 (void) mi_strlog(ill->ill_rq, 1, 17229 SL_CONSOLE|SL_ERROR|SL_TRACE, 17230 "ill_dlpi_done: unexpected ack for %s from %s " 17231 "(expecting ack for %s)\n", 17232 dlpi_prim_str(prim), ill->ill_name, 17233 dlpi_prim_str(ill->ill_dlpi_pending)); 17234 } 17235 return; 17236 } 17237 17238 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17239 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17240 17241 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17242 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17243 return; 17244 } 17245 17246 ill->ill_dlpi_deferred = mp->b_next; 17247 mp->b_next = NULL; 17248 17249 ill_dlpi_dispatch(ill, mp); 17250 } 17251 17252 void 17253 conn_delete_ire(conn_t *connp, caddr_t arg) 17254 { 17255 ipif_t *ipif = (ipif_t *)arg; 17256 ire_t *ire; 17257 17258 /* 17259 * Look at the cached ires on conns which has pointers to ipifs. 17260 * We just call ire_refrele which clears up the reference 17261 * to ire. Called when a conn closes. Also called from ipif_free 17262 * to cleanup indirect references to the stale ipif via the cached ire. 17263 */ 17264 mutex_enter(&connp->conn_lock); 17265 ire = connp->conn_ire_cache; 17266 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17267 connp->conn_ire_cache = NULL; 17268 mutex_exit(&connp->conn_lock); 17269 IRE_REFRELE_NOTR(ire); 17270 return; 17271 } 17272 mutex_exit(&connp->conn_lock); 17273 17274 } 17275 17276 /* 17277 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17278 * of IREs. Those IREs may have been previously cached in the conn structure. 17279 * This ipcl_walk() walker function releases all references to such IREs based 17280 * on the condemned flag. 17281 */ 17282 /* ARGSUSED */ 17283 void 17284 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17285 { 17286 ire_t *ire; 17287 17288 mutex_enter(&connp->conn_lock); 17289 ire = connp->conn_ire_cache; 17290 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17291 connp->conn_ire_cache = NULL; 17292 mutex_exit(&connp->conn_lock); 17293 IRE_REFRELE_NOTR(ire); 17294 return; 17295 } 17296 mutex_exit(&connp->conn_lock); 17297 } 17298 17299 /* 17300 * Take down a specific interface, but don't lose any information about it. 17301 * Also delete interface from its interface group (ifgrp). 17302 * (Always called as writer.) 17303 * This function goes through the down sequence even if the interface is 17304 * already down. There are 2 reasons. 17305 * a. Currently we permit interface routes that depend on down interfaces 17306 * to be added. This behaviour itself is questionable. However it appears 17307 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17308 * time. We go thru the cleanup in order to remove these routes. 17309 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17310 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17311 * down, but we need to cleanup i.e. do ill_dl_down and 17312 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17313 * 17314 * IP-MT notes: 17315 * 17316 * Model of reference to interfaces. 17317 * 17318 * The following members in ipif_t track references to the ipif. 17319 * int ipif_refcnt; Active reference count 17320 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17321 * The following members in ill_t track references to the ill. 17322 * int ill_refcnt; active refcnt 17323 * uint_t ill_ire_cnt; Number of ires referencing ill 17324 * uint_t ill_nce_cnt; Number of nces referencing ill 17325 * 17326 * Reference to an ipif or ill can be obtained in any of the following ways. 17327 * 17328 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17329 * Pointers to ipif / ill from other data structures viz ire and conn. 17330 * Implicit reference to the ipif / ill by holding a reference to the ire. 17331 * 17332 * The ipif/ill lookup functions return a reference held ipif / ill. 17333 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17334 * This is a purely dynamic reference count associated with threads holding 17335 * references to the ipif / ill. Pointers from other structures do not 17336 * count towards this reference count. 17337 * 17338 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17339 * ipif/ill. This is incremented whenever a new ire is created referencing the 17340 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17341 * actually added to the ire hash table. The count is decremented in 17342 * ire_inactive where the ire is destroyed. 17343 * 17344 * nce's reference ill's thru nce_ill and the count of nce's associated with 17345 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17346 * ndp_add() where the nce is actually added to the table. Similarly it is 17347 * decremented in ndp_inactive where the nce is destroyed. 17348 * 17349 * Flow of ioctls involving interface down/up 17350 * 17351 * The following is the sequence of an attempt to set some critical flags on an 17352 * up interface. 17353 * ip_sioctl_flags 17354 * ipif_down 17355 * wait for ipif to be quiescent 17356 * ipif_down_tail 17357 * ip_sioctl_flags_tail 17358 * 17359 * All set ioctls that involve down/up sequence would have a skeleton similar 17360 * to the above. All the *tail functions are called after the refcounts have 17361 * dropped to the appropriate values. 17362 * 17363 * The mechanism to quiesce an ipif is as follows. 17364 * 17365 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17366 * on the ipif. Callers either pass a flag requesting wait or the lookup 17367 * functions will return NULL. 17368 * 17369 * Delete all ires referencing this ipif 17370 * 17371 * Any thread attempting to do an ipif_refhold on an ipif that has been 17372 * obtained thru a cached pointer will first make sure that 17373 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17374 * increment the refcount. 17375 * 17376 * The above guarantees that the ipif refcount will eventually come down to 17377 * zero and the ipif will quiesce, once all threads that currently hold a 17378 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17379 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17380 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17381 * drop to zero. 17382 * 17383 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17384 * 17385 * Threads trying to lookup an ipif or ill can pass a flag requesting 17386 * wait and restart if the ipif / ill cannot be looked up currently. 17387 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17388 * failure if the ipif is currently undergoing an exclusive operation, and 17389 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17390 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17391 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17392 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17393 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17394 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17395 * until we release the ipsq_lock, even though the the ill/ipif state flags 17396 * can change after we drop the ill_lock. 17397 * 17398 * An attempt to send out a packet using an ipif that is currently 17399 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17400 * operation and restart it later when the exclusive condition on the ipif ends. 17401 * This is an example of not passing the wait flag to the lookup functions. For 17402 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17403 * out a multicast packet on that ipif will fail while the ipif is 17404 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17405 * currently IPIF_CHANGING will also fail. 17406 */ 17407 int 17408 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17409 { 17410 ill_t *ill = ipif->ipif_ill; 17411 phyint_t *phyi; 17412 conn_t *connp; 17413 boolean_t success; 17414 boolean_t ipif_was_up = B_FALSE; 17415 17416 ASSERT(IAM_WRITER_IPIF(ipif)); 17417 17418 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17419 17420 if (ipif->ipif_flags & IPIF_UP) { 17421 mutex_enter(&ill->ill_lock); 17422 ipif->ipif_flags &= ~IPIF_UP; 17423 ASSERT(ill->ill_ipif_up_count > 0); 17424 --ill->ill_ipif_up_count; 17425 mutex_exit(&ill->ill_lock); 17426 ipif_was_up = B_TRUE; 17427 /* Update status in SCTP's list */ 17428 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17429 } 17430 17431 /* 17432 * Blow away v6 memberships we established in ipif_multicast_up(); the 17433 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17434 * know not to rejoin when the interface is brought back up). 17435 */ 17436 if (ipif->ipif_isv6) 17437 ipif_multicast_down(ipif); 17438 /* 17439 * Remove from the mapping for __sin6_src_id. We insert only 17440 * when the address is not INADDR_ANY. As IPv4 addresses are 17441 * stored as mapped addresses, we need to check for mapped 17442 * INADDR_ANY also. 17443 */ 17444 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17445 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17446 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17447 int err; 17448 17449 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17450 ipif->ipif_zoneid); 17451 if (err != 0) { 17452 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17453 } 17454 } 17455 17456 /* 17457 * Before we delete the ill from the group (if any), we need 17458 * to make sure that we delete all the routes dependent on 17459 * this and also any ipifs dependent on this ipif for 17460 * source address. We need to do before we delete from 17461 * the group because 17462 * 17463 * 1) ipif_down_delete_ire de-references ill->ill_group. 17464 * 17465 * 2) ipif_update_other_ipifs needs to walk the whole group 17466 * for re-doing source address selection. Note that 17467 * ipif_select_source[_v6] called from 17468 * ipif_update_other_ipifs[_v6] will not pick this ipif 17469 * because we have already marked down here i.e cleared 17470 * IPIF_UP. 17471 */ 17472 if (ipif->ipif_isv6) 17473 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17474 else 17475 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17476 17477 /* 17478 * Need to add these also to be saved and restored when the 17479 * ipif is brought down and up 17480 */ 17481 mutex_enter(&ire_mrtun_lock); 17482 if (ire_mrtun_count != 0) { 17483 mutex_exit(&ire_mrtun_lock); 17484 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17485 (char *)ipif, NULL); 17486 } else { 17487 mutex_exit(&ire_mrtun_lock); 17488 } 17489 17490 mutex_enter(&ire_srcif_table_lock); 17491 if (ire_srcif_table_count > 0) { 17492 mutex_exit(&ire_srcif_table_lock); 17493 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17494 } else { 17495 mutex_exit(&ire_srcif_table_lock); 17496 } 17497 17498 /* 17499 * Cleaning up the conn_ire_cache or conns must be done only after the 17500 * ires have been deleted above. Otherwise a thread could end up 17501 * caching an ire in a conn after we have finished the cleanup of the 17502 * conn. The caching is done after making sure that the ire is not yet 17503 * condemned. Also documented in the block comment above ip_output 17504 */ 17505 ipcl_walk(conn_cleanup_stale_ire, NULL); 17506 /* Also, delete the ires cached in SCTP */ 17507 sctp_ire_cache_flush(ipif); 17508 17509 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17510 nattymod_clean_ipif(ipif); 17511 17512 /* 17513 * Update any other ipifs which have used "our" local address as 17514 * a source address. This entails removing and recreating IRE_INTERFACE 17515 * entries for such ipifs. 17516 */ 17517 if (ipif->ipif_isv6) 17518 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17519 else 17520 ipif_update_other_ipifs(ipif, ill->ill_group); 17521 17522 if (ipif_was_up) { 17523 /* 17524 * Check whether it is last ipif to leave this group. 17525 * If this is the last ipif to leave, we should remove 17526 * this ill from the group as ipif_select_source will not 17527 * be able to find any useful ipifs if this ill is selected 17528 * for load balancing. 17529 * 17530 * For nameless groups, we should call ifgrp_delete if this 17531 * belongs to some group. As this ipif is going down, we may 17532 * need to reconstruct groups. 17533 */ 17534 phyi = ill->ill_phyint; 17535 /* 17536 * If the phyint_groupname_len is 0, it may or may not 17537 * be in the nameless group. If the phyint_groupname_len is 17538 * not 0, then this ill should be part of some group. 17539 * As we always insert this ill in the group if 17540 * phyint_groupname_len is not zero when the first ipif 17541 * comes up (in ipif_up_done), it should be in a group 17542 * when the namelen is not 0. 17543 * 17544 * NOTE : When we delete the ill from the group,it will 17545 * blow away all the IRE_CACHES pointing either at this ipif or 17546 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17547 * should be pointing at this ill. 17548 */ 17549 ASSERT(phyi->phyint_groupname_len == 0 || 17550 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17551 17552 if (phyi->phyint_groupname_len != 0) { 17553 if (ill->ill_ipif_up_count == 0) 17554 illgrp_delete(ill); 17555 } 17556 17557 /* 17558 * If we have deleted some of the broadcast ires associated 17559 * with this ipif, we need to re-nominate somebody else if 17560 * the ires that we deleted were the nominated ones. 17561 */ 17562 if (ill->ill_group != NULL && !ill->ill_isv6) 17563 ipif_renominate_bcast(ipif); 17564 } 17565 17566 if (ipif->ipif_isv6) 17567 ipif_ndp_down(ipif); 17568 17569 /* 17570 * If mp is NULL the caller will wait for the appropriate refcnt. 17571 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17572 * and ill_delete -> ipif_free -> ipif_down 17573 */ 17574 if (mp == NULL) { 17575 ASSERT(q == NULL); 17576 return (0); 17577 } 17578 17579 if (CONN_Q(q)) { 17580 connp = Q_TO_CONN(q); 17581 mutex_enter(&connp->conn_lock); 17582 } else { 17583 connp = NULL; 17584 } 17585 mutex_enter(&ill->ill_lock); 17586 /* 17587 * Are there any ire's pointing to this ipif that are still active ? 17588 * If this is the last ipif going down, are there any ire's pointing 17589 * to this ill that are still active ? 17590 */ 17591 if (ipif_is_quiescent(ipif)) { 17592 mutex_exit(&ill->ill_lock); 17593 if (connp != NULL) 17594 mutex_exit(&connp->conn_lock); 17595 return (0); 17596 } 17597 17598 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17599 ill->ill_name, (void *)ill)); 17600 /* 17601 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17602 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17603 * which in turn is called by the last refrele on the ipif/ill/ire. 17604 */ 17605 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17606 if (!success) { 17607 /* The conn is closing. So just return */ 17608 ASSERT(connp != NULL); 17609 mutex_exit(&ill->ill_lock); 17610 mutex_exit(&connp->conn_lock); 17611 return (EINTR); 17612 } 17613 17614 mutex_exit(&ill->ill_lock); 17615 if (connp != NULL) 17616 mutex_exit(&connp->conn_lock); 17617 return (EINPROGRESS); 17618 } 17619 17620 static void 17621 ipif_down_tail(ipif_t *ipif) 17622 { 17623 ill_t *ill = ipif->ipif_ill; 17624 17625 /* 17626 * Skip any loopback interface (null wq). 17627 * If this is the last logical interface on the ill 17628 * have ill_dl_down tell the driver we are gone (unbind) 17629 * Note that lun 0 can ipif_down even though 17630 * there are other logical units that are up. 17631 * This occurs e.g. when we change a "significant" IFF_ flag. 17632 */ 17633 if (ipif->ipif_ill->ill_wq != NULL) { 17634 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17635 ill->ill_dl_up) { 17636 ill_dl_down(ill); 17637 } 17638 } 17639 ill->ill_logical_down = 0; 17640 17641 /* 17642 * Have to be after removing the routes in ipif_down_delete_ire. 17643 */ 17644 if (ipif->ipif_isv6) { 17645 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17646 ipif_arp_down(ipif); 17647 } else { 17648 ipif_arp_down(ipif); 17649 } 17650 17651 ip_rts_ifmsg(ipif); 17652 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17653 } 17654 17655 /* 17656 * Bring interface logically down without bringing the physical interface 17657 * down e.g. when the netmask is changed. This avoids long lasting link 17658 * negotiations between an ethernet interface and a certain switches. 17659 */ 17660 static int 17661 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17662 { 17663 /* 17664 * The ill_logical_down flag is a transient flag. It is set here 17665 * and is cleared once the down has completed in ipif_down_tail. 17666 * This flag does not indicate whether the ill stream is in the 17667 * DL_BOUND state with the driver. Instead this flag is used by 17668 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17669 * the driver. The state of the ill stream i.e. whether it is 17670 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17671 */ 17672 ipif->ipif_ill->ill_logical_down = 1; 17673 return (ipif_down(ipif, q, mp)); 17674 } 17675 17676 /* 17677 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17678 * If the usesrc client ILL is already part of a usesrc group or not, 17679 * in either case a ire_stq with the matching usesrc client ILL will 17680 * locate the IRE's that need to be deleted. We want IREs to be created 17681 * with the new source address. 17682 */ 17683 static void 17684 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17685 { 17686 ill_t *ucill = (ill_t *)ill_arg; 17687 17688 ASSERT(IAM_WRITER_ILL(ucill)); 17689 17690 if (ire->ire_stq == NULL) 17691 return; 17692 17693 if ((ire->ire_type == IRE_CACHE) && 17694 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17695 ire_delete(ire); 17696 } 17697 17698 /* 17699 * ire_walk routine to delete every IRE dependent on the interface 17700 * address that is going down. (Always called as writer.) 17701 * Works for both v4 and v6. 17702 * In addition for checking for ire_ipif matches it also checks for 17703 * IRE_CACHE entries which have the same source address as the 17704 * disappearing ipif since ipif_select_source might have picked 17705 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17706 * care of any IRE_INTERFACE with the disappearing source address. 17707 */ 17708 static void 17709 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17710 { 17711 ipif_t *ipif = (ipif_t *)ipif_arg; 17712 ill_t *ire_ill; 17713 ill_t *ipif_ill; 17714 17715 ASSERT(IAM_WRITER_IPIF(ipif)); 17716 if (ire->ire_ipif == NULL) 17717 return; 17718 17719 /* 17720 * For IPv4, we derive source addresses for an IRE from ipif's 17721 * belonging to the same IPMP group as the IRE's outgoing 17722 * interface. If an IRE's outgoing interface isn't in the 17723 * same IPMP group as a particular ipif, then that ipif 17724 * couldn't have been used as a source address for this IRE. 17725 * 17726 * For IPv6, source addresses are only restricted to the IPMP group 17727 * if the IRE is for a link-local address or a multicast address. 17728 * Otherwise, source addresses for an IRE can be chosen from 17729 * interfaces other than the the outgoing interface for that IRE. 17730 * 17731 * For source address selection details, see ipif_select_source() 17732 * and ipif_select_source_v6(). 17733 */ 17734 if (ire->ire_ipversion == IPV4_VERSION || 17735 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17736 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17737 ire_ill = ire->ire_ipif->ipif_ill; 17738 ipif_ill = ipif->ipif_ill; 17739 17740 if (ire_ill->ill_group != ipif_ill->ill_group) { 17741 return; 17742 } 17743 } 17744 17745 17746 if (ire->ire_ipif != ipif) { 17747 /* 17748 * Look for a matching source address. 17749 */ 17750 if (ire->ire_type != IRE_CACHE) 17751 return; 17752 if (ipif->ipif_flags & IPIF_NOLOCAL) 17753 return; 17754 17755 if (ire->ire_ipversion == IPV4_VERSION) { 17756 if (ire->ire_src_addr != ipif->ipif_src_addr) 17757 return; 17758 } else { 17759 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17760 &ipif->ipif_v6lcl_addr)) 17761 return; 17762 } 17763 ire_delete(ire); 17764 return; 17765 } 17766 /* 17767 * ire_delete() will do an ire_flush_cache which will delete 17768 * all ire_ipif matches 17769 */ 17770 ire_delete(ire); 17771 } 17772 17773 /* 17774 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17775 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17776 * 2) when an interface is brought up or down (on that ill). 17777 * This ensures that the IRE_CACHE entries don't retain stale source 17778 * address selection results. 17779 */ 17780 void 17781 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17782 { 17783 ill_t *ill = (ill_t *)ill_arg; 17784 ill_t *ipif_ill; 17785 17786 ASSERT(IAM_WRITER_ILL(ill)); 17787 /* 17788 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17789 * Hence this should be IRE_CACHE. 17790 */ 17791 ASSERT(ire->ire_type == IRE_CACHE); 17792 17793 /* 17794 * We are called for IRE_CACHES whose ire_ipif matches ill. 17795 * We are only interested in IRE_CACHES that has borrowed 17796 * the source address from ill_arg e.g. ipif_up_done[_v6] 17797 * for which we need to look at ire_ipif->ipif_ill match 17798 * with ill. 17799 */ 17800 ASSERT(ire->ire_ipif != NULL); 17801 ipif_ill = ire->ire_ipif->ipif_ill; 17802 if (ipif_ill == ill || (ill->ill_group != NULL && 17803 ipif_ill->ill_group == ill->ill_group)) { 17804 ire_delete(ire); 17805 } 17806 } 17807 17808 /* 17809 * Delete all the ire whose stq references ill_arg. 17810 */ 17811 static void 17812 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17813 { 17814 ill_t *ill = (ill_t *)ill_arg; 17815 ill_t *ire_ill; 17816 17817 ASSERT(IAM_WRITER_ILL(ill)); 17818 /* 17819 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17820 * Hence this should be IRE_CACHE. 17821 */ 17822 ASSERT(ire->ire_type == IRE_CACHE); 17823 17824 /* 17825 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17826 * matches ill. We are only interested in IRE_CACHES that 17827 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17828 * filtering here. 17829 */ 17830 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17831 17832 if (ire_ill == ill) 17833 ire_delete(ire); 17834 } 17835 17836 /* 17837 * This is called when an ill leaves the group. We want to delete 17838 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17839 * pointing at ill. 17840 */ 17841 static void 17842 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17843 { 17844 ill_t *ill = (ill_t *)ill_arg; 17845 17846 ASSERT(IAM_WRITER_ILL(ill)); 17847 ASSERT(ill->ill_group == NULL); 17848 /* 17849 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17850 * Hence this should be IRE_CACHE. 17851 */ 17852 ASSERT(ire->ire_type == IRE_CACHE); 17853 /* 17854 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17855 * matches ill. We are interested in both. 17856 */ 17857 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17858 (ire->ire_ipif->ipif_ill == ill)); 17859 17860 ire_delete(ire); 17861 } 17862 17863 /* 17864 * Initiate deallocate of an IPIF. Always called as writer. Called by 17865 * ill_delete or ip_sioctl_removeif. 17866 */ 17867 static void 17868 ipif_free(ipif_t *ipif) 17869 { 17870 ASSERT(IAM_WRITER_IPIF(ipif)); 17871 17872 /* Remove conn references */ 17873 reset_conn_ipif(ipif); 17874 17875 /* 17876 * Make sure we have valid net and subnet broadcast ire's for the 17877 * other ipif's which share them with this ipif. 17878 */ 17879 if (!ipif->ipif_isv6) 17880 ipif_check_bcast_ires(ipif); 17881 17882 /* 17883 * Take down the interface. We can be called either from ill_delete 17884 * or from ip_sioctl_removeif. 17885 */ 17886 (void) ipif_down(ipif, NULL, NULL); 17887 17888 rw_enter(&ill_g_lock, RW_WRITER); 17889 /* Remove pointers to this ill in the multicast routing tables */ 17890 reset_mrt_vif_ipif(ipif); 17891 rw_exit(&ill_g_lock); 17892 } 17893 17894 static void 17895 ipif_free_tail(ipif_t *ipif) 17896 { 17897 mblk_t *mp; 17898 ipif_t **ipifp; 17899 17900 /* 17901 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17902 */ 17903 mutex_enter(&ipif->ipif_saved_ire_lock); 17904 mp = ipif->ipif_saved_ire_mp; 17905 ipif->ipif_saved_ire_mp = NULL; 17906 mutex_exit(&ipif->ipif_saved_ire_lock); 17907 freemsg(mp); 17908 17909 /* 17910 * Need to hold both ill_g_lock and ill_lock while 17911 * inserting or removing an ipif from the linked list 17912 * of ipifs hanging off the ill. 17913 */ 17914 rw_enter(&ill_g_lock, RW_WRITER); 17915 /* 17916 * Remove all multicast memberships on the interface now. 17917 * This removes IPv4 multicast memberships joined within 17918 * the kernel as ipif_down does not do ipif_multicast_down 17919 * for IPv4. IPv6 is not handled here as the multicast memberships 17920 * are based on ill and not on ipif. 17921 */ 17922 ilm_free(ipif); 17923 17924 /* 17925 * Since we held the ill_g_lock while doing the ilm_free above, 17926 * we can assert the ilms were really deleted and not just marked 17927 * ILM_DELETED. 17928 */ 17929 ASSERT(ilm_walk_ipif(ipif) == 0); 17930 17931 17932 IPIF_TRACE_CLEANUP(ipif); 17933 17934 /* Ask SCTP to take it out of it list */ 17935 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 17936 17937 mutex_enter(&ipif->ipif_ill->ill_lock); 17938 /* Get it out of the ILL interface list. */ 17939 ipifp = &ipif->ipif_ill->ill_ipif; 17940 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17941 if (*ipifp == ipif) { 17942 *ipifp = ipif->ipif_next; 17943 break; 17944 } 17945 } 17946 17947 mutex_exit(&ipif->ipif_ill->ill_lock); 17948 rw_exit(&ill_g_lock); 17949 17950 mutex_destroy(&ipif->ipif_saved_ire_lock); 17951 /* Free the memory. */ 17952 mi_free((char *)ipif); 17953 } 17954 17955 /* 17956 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 17957 * "ill_name" otherwise. 17958 */ 17959 char * 17960 ipif_get_name(ipif_t *ipif, char *buf, int len) 17961 { 17962 char lbuf[32]; 17963 char *name; 17964 size_t name_len; 17965 17966 buf[0] = '\0'; 17967 if (!ipif) 17968 return (buf); 17969 name = ipif->ipif_ill->ill_name; 17970 name_len = ipif->ipif_ill->ill_name_length; 17971 if (ipif->ipif_id != 0) { 17972 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 17973 ipif->ipif_id); 17974 name = lbuf; 17975 name_len = mi_strlen(name) + 1; 17976 } 17977 len -= 1; 17978 buf[len] = '\0'; 17979 len = MIN(len, name_len); 17980 bcopy(name, buf, len); 17981 return (buf); 17982 } 17983 17984 /* 17985 * Find an IPIF based on the name passed in. Names can be of the 17986 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 17987 * The <phys> string can have forms like <dev><#> (e.g., le0), 17988 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 17989 * When there is no colon, the implied unit id is zero. <phys> must 17990 * correspond to the name of an ILL. (May be called as writer.) 17991 */ 17992 static ipif_t * 17993 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 17994 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 17995 mblk_t *mp, ipsq_func_t func, int *error) 17996 { 17997 char *cp; 17998 char *endp; 17999 long id; 18000 ill_t *ill; 18001 ipif_t *ipif; 18002 uint_t ire_type; 18003 boolean_t did_alloc = B_FALSE; 18004 ipsq_t *ipsq; 18005 18006 if (error != NULL) 18007 *error = 0; 18008 18009 /* 18010 * If the caller wants to us to create the ipif, make sure we have a 18011 * valid zoneid 18012 */ 18013 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18014 18015 if (namelen == 0) { 18016 if (error != NULL) 18017 *error = ENXIO; 18018 return (NULL); 18019 } 18020 18021 *exists = B_FALSE; 18022 /* Look for a colon in the name. */ 18023 endp = &name[namelen]; 18024 for (cp = endp; --cp > name; ) { 18025 if (*cp == IPIF_SEPARATOR_CHAR) 18026 break; 18027 } 18028 18029 if (*cp == IPIF_SEPARATOR_CHAR) { 18030 /* 18031 * Reject any non-decimal aliases for logical 18032 * interfaces. Aliases with leading zeroes 18033 * are also rejected as they introduce ambiguity 18034 * in the naming of the interfaces. 18035 * In order to confirm with existing semantics, 18036 * and to not break any programs/script relying 18037 * on that behaviour, if<0>:0 is considered to be 18038 * a valid interface. 18039 * 18040 * If alias has two or more digits and the first 18041 * is zero, fail. 18042 */ 18043 if (&cp[2] < endp && cp[1] == '0') 18044 return (NULL); 18045 } 18046 18047 if (cp <= name) { 18048 cp = endp; 18049 } else { 18050 *cp = '\0'; 18051 } 18052 18053 /* 18054 * Look up the ILL, based on the portion of the name 18055 * before the slash. ill_lookup_on_name returns a held ill. 18056 * Temporary to check whether ill exists already. If so 18057 * ill_lookup_on_name will clear it. 18058 */ 18059 ill = ill_lookup_on_name(name, do_alloc, isv6, 18060 q, mp, func, error, &did_alloc); 18061 if (cp != endp) 18062 *cp = IPIF_SEPARATOR_CHAR; 18063 if (ill == NULL) 18064 return (NULL); 18065 18066 /* Establish the unit number in the name. */ 18067 id = 0; 18068 if (cp < endp && *endp == '\0') { 18069 /* If there was a colon, the unit number follows. */ 18070 cp++; 18071 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18072 ill_refrele(ill); 18073 if (error != NULL) 18074 *error = ENXIO; 18075 return (NULL); 18076 } 18077 } 18078 18079 GRAB_CONN_LOCK(q); 18080 mutex_enter(&ill->ill_lock); 18081 /* Now see if there is an IPIF with this unit number. */ 18082 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 18083 if (ipif->ipif_id == id) { 18084 if (zoneid != ALL_ZONES && 18085 zoneid != ipif->ipif_zoneid) { 18086 mutex_exit(&ill->ill_lock); 18087 RELEASE_CONN_LOCK(q); 18088 ill_refrele(ill); 18089 if (error != NULL) 18090 *error = ENXIO; 18091 return (NULL); 18092 } 18093 /* 18094 * The block comment at the start of ipif_down 18095 * explains the use of the macros used below 18096 */ 18097 if (IPIF_CAN_LOOKUP(ipif)) { 18098 ipif_refhold_locked(ipif); 18099 mutex_exit(&ill->ill_lock); 18100 if (!did_alloc) 18101 *exists = B_TRUE; 18102 /* 18103 * Drop locks before calling ill_refrele 18104 * since it can potentially call into 18105 * ipif_ill_refrele_tail which can end up 18106 * in trying to acquire any lock. 18107 */ 18108 RELEASE_CONN_LOCK(q); 18109 ill_refrele(ill); 18110 return (ipif); 18111 } else if (IPIF_CAN_WAIT(ipif, q)) { 18112 ipsq = ill->ill_phyint->phyint_ipsq; 18113 mutex_enter(&ipsq->ipsq_lock); 18114 mutex_exit(&ill->ill_lock); 18115 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18116 mutex_exit(&ipsq->ipsq_lock); 18117 RELEASE_CONN_LOCK(q); 18118 ill_refrele(ill); 18119 *error = EINPROGRESS; 18120 return (NULL); 18121 } 18122 } 18123 } 18124 RELEASE_CONN_LOCK(q); 18125 18126 if (!do_alloc) { 18127 mutex_exit(&ill->ill_lock); 18128 ill_refrele(ill); 18129 if (error != NULL) 18130 *error = ENXIO; 18131 return (NULL); 18132 } 18133 18134 /* 18135 * If none found, atomically allocate and return a new one. 18136 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18137 * to support "receive only" use of lo0:1 etc. as is still done 18138 * below as an initial guess. 18139 * However, this is now likely to be overriden later in ipif_up_done() 18140 * when we know for sure what address has been configured on the 18141 * interface, since we might have more than one loopback interface 18142 * with a loopback address, e.g. in the case of zones, and all the 18143 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18144 */ 18145 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18146 ire_type = IRE_LOOPBACK; 18147 else 18148 ire_type = IRE_LOCAL; 18149 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18150 if (ipif != NULL) 18151 ipif_refhold_locked(ipif); 18152 else if (error != NULL) 18153 *error = ENOMEM; 18154 mutex_exit(&ill->ill_lock); 18155 ill_refrele(ill); 18156 return (ipif); 18157 } 18158 18159 /* 18160 * This routine is called whenever a new address comes up on an ipif. If 18161 * we are configured to respond to address mask requests, then we are supposed 18162 * to broadcast an address mask reply at this time. This routine is also 18163 * called if we are already up, but a netmask change is made. This is legal 18164 * but might not make the system manager very popular. (May be called 18165 * as writer.) 18166 */ 18167 static void 18168 ipif_mask_reply(ipif_t *ipif) 18169 { 18170 icmph_t *icmph; 18171 ipha_t *ipha; 18172 mblk_t *mp; 18173 18174 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18175 18176 if (!ip_respond_to_address_mask_broadcast) 18177 return; 18178 18179 /* ICMP mask reply is IPv4 only */ 18180 ASSERT(!ipif->ipif_isv6); 18181 /* ICMP mask reply is not for a loopback interface */ 18182 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18183 18184 mp = allocb(REPLY_LEN, BPRI_HI); 18185 if (mp == NULL) 18186 return; 18187 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18188 18189 ipha = (ipha_t *)mp->b_rptr; 18190 bzero(ipha, REPLY_LEN); 18191 *ipha = icmp_ipha; 18192 ipha->ipha_ttl = ip_broadcast_ttl; 18193 ipha->ipha_src = ipif->ipif_src_addr; 18194 ipha->ipha_dst = ipif->ipif_brd_addr; 18195 ipha->ipha_length = htons(REPLY_LEN); 18196 ipha->ipha_ident = 0; 18197 18198 icmph = (icmph_t *)&ipha[1]; 18199 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18200 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18201 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18202 if (icmph->icmph_checksum == 0) 18203 icmph->icmph_checksum = 0xffff; 18204 18205 put(ipif->ipif_wq, mp); 18206 18207 #undef REPLY_LEN 18208 } 18209 18210 /* 18211 * When the mtu in the ipif changes, we call this routine through ire_walk 18212 * to update all the relevant IREs. 18213 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18214 */ 18215 static void 18216 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18217 { 18218 ipif_t *ipif = (ipif_t *)ipif_arg; 18219 18220 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18221 return; 18222 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18223 } 18224 18225 /* 18226 * When the mtu in the ill changes, we call this routine through ire_walk 18227 * to update all the relevant IREs. 18228 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18229 */ 18230 void 18231 ill_mtu_change(ire_t *ire, char *ill_arg) 18232 { 18233 ill_t *ill = (ill_t *)ill_arg; 18234 18235 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18236 return; 18237 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18238 } 18239 18240 /* 18241 * Join the ipif specific multicast groups. 18242 * Must be called after a mapping has been set up in the resolver. (Always 18243 * called as writer.) 18244 */ 18245 void 18246 ipif_multicast_up(ipif_t *ipif) 18247 { 18248 int err, index; 18249 ill_t *ill; 18250 18251 ASSERT(IAM_WRITER_IPIF(ipif)); 18252 18253 ill = ipif->ipif_ill; 18254 index = ill->ill_phyint->phyint_ifindex; 18255 18256 ip1dbg(("ipif_multicast_up\n")); 18257 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18258 return; 18259 18260 if (ipif->ipif_isv6) { 18261 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18262 return; 18263 18264 /* Join the all hosts multicast address */ 18265 ip1dbg(("ipif_multicast_up - addmulti\n")); 18266 /* 18267 * Passing B_TRUE means we have to join the multicast 18268 * membership on this interface even though this is 18269 * FAILED. If we join on a different one in the group, 18270 * we will not be able to delete the membership later 18271 * as we currently don't track where we join when we 18272 * join within the kernel unlike applications where 18273 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18274 * for more on this. 18275 */ 18276 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18277 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18278 if (err != 0) { 18279 ip0dbg(("ipif_multicast_up: " 18280 "all_hosts_mcast failed %d\n", 18281 err)); 18282 return; 18283 } 18284 /* 18285 * Enable multicast for the solicited node multicast address 18286 */ 18287 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18288 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18289 18290 ipv6_multi.s6_addr32[3] |= 18291 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18292 18293 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18294 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18295 NULL); 18296 if (err != 0) { 18297 ip0dbg(("ipif_multicast_up: solicited MC" 18298 " failed %d\n", err)); 18299 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18300 ill, ill->ill_phyint->phyint_ifindex, 18301 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18302 return; 18303 } 18304 } 18305 } else { 18306 if (ipif->ipif_lcl_addr == INADDR_ANY) 18307 return; 18308 18309 /* Join the all hosts multicast address */ 18310 ip1dbg(("ipif_multicast_up - addmulti\n")); 18311 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18312 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18313 if (err) { 18314 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18315 return; 18316 } 18317 } 18318 ipif->ipif_multicast_up = 1; 18319 } 18320 18321 /* 18322 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18323 * any explicit memberships are blown away in ill_leave_multicast() when the 18324 * ill is brought down. 18325 */ 18326 static void 18327 ipif_multicast_down(ipif_t *ipif) 18328 { 18329 int err; 18330 18331 ASSERT(IAM_WRITER_IPIF(ipif)); 18332 18333 ip1dbg(("ipif_multicast_down\n")); 18334 if (!ipif->ipif_multicast_up) 18335 return; 18336 18337 ASSERT(ipif->ipif_isv6); 18338 18339 ip1dbg(("ipif_multicast_down - delmulti\n")); 18340 18341 /* 18342 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18343 * we should look for ilms on this ill rather than the ones that have 18344 * been failed over here. They are here temporarily. As 18345 * ipif_multicast_up has joined on this ill, we should delete only 18346 * from this ill. 18347 */ 18348 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18349 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18350 B_TRUE, B_TRUE); 18351 if (err != 0) { 18352 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18353 err)); 18354 } 18355 /* 18356 * Disable multicast for the solicited node multicast address 18357 */ 18358 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18359 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18360 18361 ipv6_multi.s6_addr32[3] |= 18362 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18363 18364 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18365 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18366 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18367 18368 if (err != 0) { 18369 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18370 err)); 18371 } 18372 } 18373 18374 ipif->ipif_multicast_up = 0; 18375 } 18376 18377 /* 18378 * Used when an interface comes up to recreate any extra routes on this 18379 * interface. 18380 */ 18381 static ire_t ** 18382 ipif_recover_ire(ipif_t *ipif) 18383 { 18384 mblk_t *mp; 18385 ire_t **ipif_saved_irep; 18386 ire_t **irep; 18387 18388 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18389 ipif->ipif_id)); 18390 18391 mutex_enter(&ipif->ipif_saved_ire_lock); 18392 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18393 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18394 if (ipif_saved_irep == NULL) { 18395 mutex_exit(&ipif->ipif_saved_ire_lock); 18396 return (NULL); 18397 } 18398 18399 irep = ipif_saved_irep; 18400 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18401 ire_t *ire; 18402 queue_t *rfq; 18403 queue_t *stq; 18404 ifrt_t *ifrt; 18405 uchar_t *src_addr; 18406 uchar_t *gateway_addr; 18407 mblk_t *resolver_mp; 18408 ushort_t type; 18409 18410 /* 18411 * When the ire was initially created and then added in 18412 * ip_rt_add(), it was created either using ipif->ipif_net_type 18413 * in the case of a traditional interface route, or as one of 18414 * the IRE_OFFSUBNET types (with the exception of 18415 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18416 * which we don't need to save or recover). In the case where 18417 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18418 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18419 * to satisfy software like GateD and Sun Cluster which creates 18420 * routes using the the loopback interface's address as a 18421 * gateway. 18422 * 18423 * As ifrt->ifrt_type reflects the already updated ire_type and 18424 * since ire_create() expects that IRE_IF_NORESOLVER will have 18425 * a valid ire_dlureq_mp field (which doesn't make sense for a 18426 * IRE_LOOPBACK), ire_create() will be called in the same way 18427 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18428 * the route looks like a traditional interface route (where 18429 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18430 * the saved ifrt->ifrt_type. This means that in the case where 18431 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18432 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18433 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18434 */ 18435 ifrt = (ifrt_t *)mp->b_rptr; 18436 if (ifrt->ifrt_type & IRE_INTERFACE) { 18437 rfq = NULL; 18438 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18439 ? ipif->ipif_rq : ipif->ipif_wq; 18440 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18441 ? (uint8_t *)&ifrt->ifrt_src_addr 18442 : (uint8_t *)&ipif->ipif_src_addr; 18443 gateway_addr = NULL; 18444 resolver_mp = ipif->ipif_resolver_mp; 18445 type = ipif->ipif_net_type; 18446 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18447 /* Recover multiroute broadcast IRE. */ 18448 rfq = ipif->ipif_rq; 18449 stq = ipif->ipif_wq; 18450 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18451 ? (uint8_t *)&ifrt->ifrt_src_addr 18452 : (uint8_t *)&ipif->ipif_src_addr; 18453 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18454 resolver_mp = ipif->ipif_bcast_mp; 18455 type = ifrt->ifrt_type; 18456 } else { 18457 rfq = NULL; 18458 stq = NULL; 18459 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18460 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18461 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18462 resolver_mp = NULL; 18463 type = ifrt->ifrt_type; 18464 } 18465 18466 /* 18467 * Create a copy of the IRE with the saved address and netmask. 18468 */ 18469 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18470 "0x%x/0x%x\n", 18471 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18472 ntohl(ifrt->ifrt_addr), 18473 ntohl(ifrt->ifrt_mask))); 18474 ire = ire_create( 18475 (uint8_t *)&ifrt->ifrt_addr, 18476 (uint8_t *)&ifrt->ifrt_mask, 18477 src_addr, 18478 gateway_addr, 18479 NULL, 18480 &ifrt->ifrt_max_frag, 18481 NULL, 18482 rfq, 18483 stq, 18484 type, 18485 resolver_mp, 18486 ipif, 18487 NULL, 18488 0, 18489 0, 18490 0, 18491 ifrt->ifrt_flags, 18492 &ifrt->ifrt_iulp_info); 18493 18494 if (ire == NULL) { 18495 mutex_exit(&ipif->ipif_saved_ire_lock); 18496 kmem_free(ipif_saved_irep, 18497 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18498 return (NULL); 18499 } 18500 18501 /* 18502 * Some software (for example, GateD and Sun Cluster) attempts 18503 * to create (what amount to) IRE_PREFIX routes with the 18504 * loopback address as the gateway. This is primarily done to 18505 * set up prefixes with the RTF_REJECT flag set (for example, 18506 * when generating aggregate routes.) 18507 * 18508 * If the IRE type (as defined by ipif->ipif_net_type) is 18509 * IRE_LOOPBACK, then we map the request into a 18510 * IRE_IF_NORESOLVER. 18511 */ 18512 if (ipif->ipif_net_type == IRE_LOOPBACK) 18513 ire->ire_type = IRE_IF_NORESOLVER; 18514 /* 18515 * ire held by ire_add, will be refreled' towards the 18516 * the end of ipif_up_done 18517 */ 18518 (void) ire_add(&ire, NULL, NULL, NULL); 18519 *irep = ire; 18520 irep++; 18521 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18522 } 18523 mutex_exit(&ipif->ipif_saved_ire_lock); 18524 return (ipif_saved_irep); 18525 } 18526 18527 /* 18528 * Used to set the netmask and broadcast address to default values when the 18529 * interface is brought up. (Always called as writer.) 18530 */ 18531 static void 18532 ipif_set_default(ipif_t *ipif) 18533 { 18534 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18535 18536 if (!ipif->ipif_isv6) { 18537 /* 18538 * Interface holds an IPv4 address. Default 18539 * mask is the natural netmask. 18540 */ 18541 if (!ipif->ipif_net_mask) { 18542 ipaddr_t v4mask; 18543 18544 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18545 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18546 } 18547 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18548 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18549 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18550 } else { 18551 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18552 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18553 } 18554 /* 18555 * NOTE: SunOS 4.X does this even if the broadcast address 18556 * has been already set thus we do the same here. 18557 */ 18558 if (ipif->ipif_flags & IPIF_BROADCAST) { 18559 ipaddr_t v4addr; 18560 18561 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18562 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18563 } 18564 } else { 18565 /* 18566 * Interface holds an IPv6-only address. Default 18567 * mask is all-ones. 18568 */ 18569 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18570 ipif->ipif_v6net_mask = ipv6_all_ones; 18571 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18572 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18573 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18574 } else { 18575 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18576 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18577 } 18578 } 18579 } 18580 18581 /* 18582 * Return 0 if this address can be used as local address without causing 18583 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18584 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18585 * Special checks are needed to allow the same IPv6 link-local address 18586 * on different ills. 18587 * TODO: allowing the same site-local address on different ill's. 18588 */ 18589 int 18590 ip_addr_availability_check(ipif_t *new_ipif) 18591 { 18592 in6_addr_t our_v6addr; 18593 ill_t *ill; 18594 ipif_t *ipif; 18595 ill_walk_context_t ctx; 18596 18597 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18598 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18599 ASSERT(RW_READ_HELD(&ill_g_lock)); 18600 18601 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18602 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18603 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18604 return (0); 18605 18606 our_v6addr = new_ipif->ipif_v6lcl_addr; 18607 18608 if (new_ipif->ipif_isv6) 18609 ill = ILL_START_WALK_V6(&ctx); 18610 else 18611 ill = ILL_START_WALK_V4(&ctx); 18612 18613 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18614 for (ipif = ill->ill_ipif; ipif != NULL; 18615 ipif = ipif->ipif_next) { 18616 if ((ipif == new_ipif) || 18617 !(ipif->ipif_flags & IPIF_UP) || 18618 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18619 continue; 18620 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18621 &our_v6addr)) { 18622 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18623 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18624 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18625 ipif->ipif_flags |= IPIF_UNNUMBERED; 18626 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18627 new_ipif->ipif_ill != ill) 18628 continue; 18629 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18630 new_ipif->ipif_ill != ill) 18631 continue; 18632 else if (new_ipif->ipif_zoneid != 18633 ipif->ipif_zoneid && 18634 (ill->ill_phyint->phyint_flags & 18635 PHYI_LOOPBACK)) 18636 continue; 18637 else if (new_ipif->ipif_ill == ill) 18638 return (EADDRINUSE); 18639 else 18640 return (EADDRNOTAVAIL); 18641 } 18642 } 18643 } 18644 18645 return (0); 18646 } 18647 18648 /* 18649 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18650 * IREs for the ipif. 18651 * When the routine returns EINPROGRESS then mp has been consumed and 18652 * the ioctl will be acked from ip_rput_dlpi. 18653 */ 18654 static int 18655 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18656 { 18657 ill_t *ill = ipif->ipif_ill; 18658 boolean_t isv6 = ipif->ipif_isv6; 18659 int err = 0; 18660 boolean_t success; 18661 18662 ASSERT(IAM_WRITER_IPIF(ipif)); 18663 18664 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18665 18666 /* Shouldn't get here if it is already up. */ 18667 if (ipif->ipif_flags & IPIF_UP) 18668 return (EALREADY); 18669 18670 /* Skip arp/ndp for any loopback interface. */ 18671 if (ill->ill_wq != NULL) { 18672 conn_t *connp = Q_TO_CONN(q); 18673 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18674 18675 if (!ill->ill_dl_up) { 18676 /* 18677 * ill_dl_up is not yet set. i.e. we are yet to 18678 * DL_BIND with the driver and this is the first 18679 * logical interface on the ill to become "up". 18680 * Tell the driver to get going (via DL_BIND_REQ). 18681 * Note that changing "significant" IFF_ flags 18682 * address/netmask etc cause a down/up dance, but 18683 * does not cause an unbind (DL_UNBIND) with the driver 18684 */ 18685 return (ill_dl_up(ill, ipif, mp, q)); 18686 } 18687 18688 /* 18689 * ipif_resolver_up may end up sending an 18690 * AR_INTERFACE_UP message to ARP, which would, in 18691 * turn send a DLPI message to the driver. ioctls are 18692 * serialized and so we cannot send more than one 18693 * interface up message at a time. If ipif_resolver_up 18694 * does send an interface up message to ARP, we get 18695 * EINPROGRESS and we will complete in ip_arp_done. 18696 */ 18697 18698 ASSERT(connp != NULL); 18699 ASSERT(ipsq->ipsq_pending_mp == NULL); 18700 mutex_enter(&connp->conn_lock); 18701 mutex_enter(&ill->ill_lock); 18702 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18703 mutex_exit(&ill->ill_lock); 18704 mutex_exit(&connp->conn_lock); 18705 if (!success) 18706 return (EINTR); 18707 18708 /* 18709 * Crank up IPv6 neighbor discovery 18710 * Unlike ARP, this should complete when 18711 * ipif_ndp_up returns. However, for 18712 * ILLF_XRESOLV interfaces we also send a 18713 * AR_INTERFACE_UP to the external resolver. 18714 * That ioctl will complete in ip_rput. 18715 */ 18716 if (isv6) { 18717 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18718 B_FALSE); 18719 if (err != 0) { 18720 mp = ipsq_pending_mp_get(ipsq, &connp); 18721 return (err); 18722 } 18723 } 18724 /* Now, ARP */ 18725 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18726 EINPROGRESS) { 18727 /* We will complete it in ip_arp_done */ 18728 return (err); 18729 } 18730 mp = ipsq_pending_mp_get(ipsq, &connp); 18731 ASSERT(mp != NULL); 18732 if (err != 0) 18733 return (err); 18734 } 18735 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18736 } 18737 18738 /* 18739 * Perform a bind for the physical device. 18740 * When the routine returns EINPROGRESS then mp has been consumed and 18741 * the ioctl will be acked from ip_rput_dlpi. 18742 * Allocate an unbind message and save it until ipif_down. 18743 */ 18744 static int 18745 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18746 { 18747 mblk_t *areq_mp = NULL; 18748 mblk_t *bind_mp = NULL; 18749 mblk_t *unbind_mp = NULL; 18750 conn_t *connp; 18751 boolean_t success; 18752 18753 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18754 ASSERT(IAM_WRITER_ILL(ill)); 18755 18756 ASSERT(mp != NULL); 18757 18758 /* Create a resolver cookie for ARP */ 18759 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18760 areq_t *areq; 18761 uint16_t sap_addr; 18762 18763 areq_mp = ill_arp_alloc(ill, 18764 (uchar_t *)&ip_areq_template, 0); 18765 if (areq_mp == NULL) { 18766 return (ENOMEM); 18767 } 18768 freemsg(ill->ill_resolver_mp); 18769 ill->ill_resolver_mp = areq_mp; 18770 areq = (areq_t *)areq_mp->b_rptr; 18771 sap_addr = ill->ill_sap; 18772 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18773 /* 18774 * Wait till we call ill_pending_mp_add to determine 18775 * the success before we free the ill_resolver_mp and 18776 * attach areq_mp in it's place. 18777 */ 18778 } 18779 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18780 DL_BIND_REQ); 18781 if (bind_mp == NULL) 18782 goto bad; 18783 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18784 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18785 18786 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18787 if (unbind_mp == NULL) 18788 goto bad; 18789 18790 /* 18791 * Record state needed to complete this operation when the 18792 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18793 */ 18794 if (WR(q)->q_next == NULL) { 18795 connp = Q_TO_CONN(q); 18796 mutex_enter(&connp->conn_lock); 18797 } else { 18798 connp = NULL; 18799 } 18800 mutex_enter(&ipif->ipif_ill->ill_lock); 18801 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18802 mutex_exit(&ipif->ipif_ill->ill_lock); 18803 if (connp != NULL) 18804 mutex_exit(&connp->conn_lock); 18805 if (!success) 18806 goto bad; 18807 18808 /* 18809 * Save the unbind message for ill_dl_down(); it will be consumed when 18810 * the interface goes down. 18811 */ 18812 ASSERT(ill->ill_unbind_mp == NULL); 18813 ill->ill_unbind_mp = unbind_mp; 18814 18815 ill_dlpi_send(ill, bind_mp); 18816 /* Send down link-layer capabilities probe if not already done. */ 18817 ill_capability_probe(ill); 18818 18819 /* 18820 * Sysid used to rely on the fact that netboots set domainname 18821 * and the like. Now that miniroot boots aren't strictly netboots 18822 * and miniroot network configuration is driven from userland 18823 * these things still need to be set. This situation can be detected 18824 * by comparing the interface being configured here to the one 18825 * dhcack was set to reference by the boot loader. Once sysid is 18826 * converted to use dhcp_ipc_getinfo() this call can go away. 18827 */ 18828 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18829 (strcmp(ill->ill_name, dhcack) == 0) && 18830 (strlen(srpc_domain) == 0)) { 18831 if (dhcpinit() != 0) 18832 cmn_err(CE_WARN, "no cached dhcp response"); 18833 } 18834 18835 /* 18836 * This operation will complete in ip_rput_dlpi with either 18837 * a DL_BIND_ACK or DL_ERROR_ACK. 18838 */ 18839 return (EINPROGRESS); 18840 bad: 18841 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18842 /* 18843 * We don't have to check for possible removal from illgrp 18844 * as we have not yet inserted in illgrp. For groups 18845 * without names, this ipif is still not UP and hence 18846 * this could not have possibly had any influence in forming 18847 * groups. 18848 */ 18849 18850 if (bind_mp != NULL) 18851 freemsg(bind_mp); 18852 if (unbind_mp != NULL) 18853 freemsg(unbind_mp); 18854 return (ENOMEM); 18855 } 18856 18857 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18858 18859 /* 18860 * DLPI and ARP is up. 18861 * Create all the IREs associated with an interface bring up multicast. 18862 * Set the interface flag and finish other initialization 18863 * that potentially had to be differed to after DL_BIND_ACK. 18864 */ 18865 int 18866 ipif_up_done(ipif_t *ipif) 18867 { 18868 ire_t *ire_array[20]; 18869 ire_t **irep = ire_array; 18870 ire_t **irep1; 18871 ipaddr_t net_mask = 0; 18872 ipaddr_t subnet_mask, route_mask; 18873 ill_t *ill = ipif->ipif_ill; 18874 queue_t *stq; 18875 ipif_t *src_ipif; 18876 ipif_t *tmp_ipif; 18877 boolean_t flush_ire_cache = B_TRUE; 18878 int err = 0; 18879 phyint_t *phyi; 18880 ire_t **ipif_saved_irep = NULL; 18881 int ipif_saved_ire_cnt; 18882 int cnt; 18883 boolean_t src_ipif_held = B_FALSE; 18884 boolean_t ire_added = B_FALSE; 18885 boolean_t loopback = B_FALSE; 18886 18887 ip1dbg(("ipif_up_done(%s:%u)\n", 18888 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18889 /* Check if this is a loopback interface */ 18890 if (ipif->ipif_ill->ill_wq == NULL) 18891 loopback = B_TRUE; 18892 18893 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18894 /* 18895 * If all other interfaces for this ill are down or DEPRECATED, 18896 * or otherwise unsuitable for source address selection, remove 18897 * any IRE_CACHE entries for this ill to make sure source 18898 * address selection gets to take this new ipif into account. 18899 * No need to hold ill_lock while traversing the ipif list since 18900 * we are writer 18901 */ 18902 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18903 tmp_ipif = tmp_ipif->ipif_next) { 18904 if (((tmp_ipif->ipif_flags & 18905 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18906 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18907 (tmp_ipif == ipif)) 18908 continue; 18909 /* first useable pre-existing interface */ 18910 flush_ire_cache = B_FALSE; 18911 break; 18912 } 18913 if (flush_ire_cache) 18914 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 18915 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 18916 18917 /* 18918 * Figure out which way the send-to queue should go. Only 18919 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 18920 * should show up here. 18921 */ 18922 switch (ill->ill_net_type) { 18923 case IRE_IF_RESOLVER: 18924 stq = ill->ill_rq; 18925 break; 18926 case IRE_IF_NORESOLVER: 18927 case IRE_LOOPBACK: 18928 stq = ill->ill_wq; 18929 break; 18930 default: 18931 return (EINVAL); 18932 } 18933 18934 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 18935 /* 18936 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 18937 * ipif_lookup_on_name(), but in the case of zones we can have 18938 * several loopback addresses on lo0. So all the interfaces with 18939 * loopback addresses need to be marked IRE_LOOPBACK. 18940 */ 18941 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 18942 htonl(INADDR_LOOPBACK)) 18943 ipif->ipif_ire_type = IRE_LOOPBACK; 18944 else 18945 ipif->ipif_ire_type = IRE_LOCAL; 18946 } 18947 18948 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 18949 /* 18950 * Can't use our source address. Select a different 18951 * source address for the IRE_INTERFACE and IRE_LOCAL 18952 */ 18953 src_ipif = ipif_select_source(ipif->ipif_ill, 18954 ipif->ipif_subnet, ipif->ipif_zoneid); 18955 if (src_ipif == NULL) 18956 src_ipif = ipif; /* Last resort */ 18957 else 18958 src_ipif_held = B_TRUE; 18959 } else { 18960 src_ipif = ipif; 18961 } 18962 18963 /* Create all the IREs associated with this interface */ 18964 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18965 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18966 /* Register the source address for __sin6_src_id */ 18967 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 18968 ipif->ipif_zoneid); 18969 if (err != 0) { 18970 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 18971 return (err); 18972 } 18973 /* If the interface address is set, create the local IRE. */ 18974 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 18975 (void *)ipif, 18976 ipif->ipif_ire_type, 18977 ntohl(ipif->ipif_lcl_addr))); 18978 *irep++ = ire_create( 18979 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 18980 (uchar_t *)&ip_g_all_ones, /* mask */ 18981 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 18982 NULL, /* no gateway */ 18983 NULL, 18984 &ip_loopback_mtuplus, /* max frag size */ 18985 NULL, 18986 ipif->ipif_rq, /* recv-from queue */ 18987 NULL, /* no send-to queue */ 18988 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 18989 NULL, 18990 ipif, 18991 NULL, 18992 0, 18993 0, 18994 0, 18995 (ipif->ipif_flags & IPIF_PRIVATE) ? 18996 RTF_PRIVATE : 0, 18997 &ire_uinfo_null); 18998 } else { 18999 ip1dbg(( 19000 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 19001 ipif->ipif_ire_type, 19002 ntohl(ipif->ipif_lcl_addr), 19003 (uint_t)ipif->ipif_flags)); 19004 } 19005 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19006 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19007 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 19008 } else { 19009 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 19010 } 19011 19012 subnet_mask = ipif->ipif_net_mask; 19013 19014 /* 19015 * If mask was not specified, use natural netmask of 19016 * interface address. Also, store this mask back into the 19017 * ipif struct. 19018 */ 19019 if (subnet_mask == 0) { 19020 subnet_mask = net_mask; 19021 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19022 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19023 ipif->ipif_v6subnet); 19024 } 19025 19026 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19027 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19028 ipif->ipif_subnet != INADDR_ANY) { 19029 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19030 19031 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19032 route_mask = IP_HOST_MASK; 19033 } else { 19034 route_mask = subnet_mask; 19035 } 19036 19037 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19038 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19039 (void *)ipif, (void *)ill, 19040 ill->ill_net_type, 19041 ntohl(ipif->ipif_subnet))); 19042 *irep++ = ire_create( 19043 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19044 (uchar_t *)&route_mask, /* mask */ 19045 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19046 NULL, /* no gateway */ 19047 NULL, 19048 &ipif->ipif_mtu, /* max frag */ 19049 NULL, 19050 NULL, /* no recv queue */ 19051 stq, /* send-to queue */ 19052 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19053 ill->ill_resolver_mp, /* xmit header */ 19054 ipif, 19055 NULL, 19056 0, 19057 0, 19058 0, 19059 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19060 &ire_uinfo_null); 19061 } 19062 19063 /* 19064 * If the interface address is set, create the broadcast IREs. 19065 * 19066 * ire_create_bcast checks if the proposed new IRE matches 19067 * any existing IRE's with the same physical interface (ILL). 19068 * This should get rid of duplicates. 19069 * ire_create_bcast also check IPIF_NOXMIT and does not create 19070 * any broadcast ires. 19071 */ 19072 if ((ipif->ipif_subnet != INADDR_ANY) && 19073 (ipif->ipif_flags & IPIF_BROADCAST)) { 19074 ipaddr_t addr; 19075 19076 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19077 irep = ire_check_and_create_bcast(ipif, 0, irep, 19078 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19079 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19080 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19081 19082 /* 19083 * For backward compatibility, we need to create net 19084 * broadcast ire's based on the old "IP address class 19085 * system." The reason is that some old machines only 19086 * respond to these class derived net broadcast. 19087 * 19088 * But we should not create these net broadcast ire's if 19089 * the subnet_mask is shorter than the IP address class based 19090 * derived netmask. Otherwise, we may create a net 19091 * broadcast address which is the same as an IP address 19092 * on the subnet. Then TCP will refuse to talk to that 19093 * address. 19094 * 19095 * Nor do we need IRE_BROADCAST ire's for the interface 19096 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19097 * interface is already created. Creating these broadcast 19098 * ire's will only create confusion as the "addr" is going 19099 * to be same as that of the IP address of the interface. 19100 */ 19101 if (net_mask < subnet_mask) { 19102 addr = net_mask & ipif->ipif_subnet; 19103 irep = ire_check_and_create_bcast(ipif, addr, irep, 19104 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19105 irep = ire_check_and_create_bcast(ipif, 19106 ~net_mask | addr, irep, 19107 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19108 } 19109 19110 if (subnet_mask != 0xFFFFFFFF) { 19111 addr = ipif->ipif_subnet; 19112 irep = ire_check_and_create_bcast(ipif, addr, irep, 19113 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19114 irep = ire_check_and_create_bcast(ipif, 19115 ~subnet_mask|addr, irep, 19116 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19117 } 19118 } 19119 19120 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19121 19122 /* If an earlier ire_create failed, get out now */ 19123 for (irep1 = irep; irep1 > ire_array; ) { 19124 irep1--; 19125 if (*irep1 == NULL) { 19126 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19127 err = ENOMEM; 19128 goto bad; 19129 } 19130 } 19131 19132 /* 19133 * Need to atomically check for ip_addr_availablity_check 19134 * under ip_addr_avail_lock, and if it fails got bad, and remove 19135 * from group also.The ill_g_lock is grabbed as reader 19136 * just to make sure no new ills or new ipifs are being added 19137 * to the system while we are checking the uniqueness of addresses. 19138 */ 19139 rw_enter(&ill_g_lock, RW_READER); 19140 mutex_enter(&ip_addr_avail_lock); 19141 /* Mark it up, and increment counters. */ 19142 ill->ill_ipif_up_count++; 19143 ipif->ipif_flags |= IPIF_UP; 19144 err = ip_addr_availability_check(ipif); 19145 mutex_exit(&ip_addr_avail_lock); 19146 rw_exit(&ill_g_lock); 19147 19148 if (err != 0) { 19149 /* 19150 * Our address may already be up on the same ill. In this case, 19151 * the ARP entry for our ipif replaced the one for the other 19152 * ipif. So we don't want to delete it (otherwise the other ipif 19153 * would be unable to send packets). 19154 * ip_addr_availability_check() identifies this case for us and 19155 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19156 * which is the expected error code. 19157 */ 19158 if (err == EADDRINUSE) { 19159 freemsg(ipif->ipif_arp_del_mp); 19160 ipif->ipif_arp_del_mp = NULL; 19161 err = EADDRNOTAVAIL; 19162 } 19163 ill->ill_ipif_up_count--; 19164 ipif->ipif_flags &= ~IPIF_UP; 19165 goto bad; 19166 } 19167 19168 /* 19169 * Add in all newly created IREs. ire_create_bcast() has 19170 * already checked for duplicates of the IRE_BROADCAST type. 19171 * We want to add before we call ifgrp_insert which wants 19172 * to know whether IRE_IF_RESOLVER exists or not. 19173 * 19174 * NOTE : We refrele the ire though we may branch to "bad" 19175 * later on where we do ire_delete. This is okay 19176 * because nobody can delete it as we are running 19177 * exclusively. 19178 */ 19179 for (irep1 = irep; irep1 > ire_array; ) { 19180 irep1--; 19181 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19182 /* 19183 * refheld by ire_add. refele towards the end of the func 19184 */ 19185 (void) ire_add(irep1, NULL, NULL, NULL); 19186 } 19187 ire_added = B_TRUE; 19188 /* 19189 * Form groups if possible. 19190 * 19191 * If we are supposed to be in a ill_group with a name, insert it 19192 * now as we know that at least one ipif is UP. Otherwise form 19193 * nameless groups. 19194 * 19195 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19196 * this ipif into the appropriate interface group, or create a 19197 * new one. If this is already in a nameless group, we try to form 19198 * a bigger group looking at other ills potentially sharing this 19199 * ipif's prefix. 19200 */ 19201 phyi = ill->ill_phyint; 19202 if (phyi->phyint_groupname_len != 0) { 19203 ASSERT(phyi->phyint_groupname != NULL); 19204 if (ill->ill_ipif_up_count == 1) { 19205 ASSERT(ill->ill_group == NULL); 19206 err = illgrp_insert(&illgrp_head_v4, ill, 19207 phyi->phyint_groupname, NULL, B_TRUE); 19208 if (err != 0) { 19209 ip1dbg(("ipif_up_done: illgrp allocation " 19210 "failed, error %d\n", err)); 19211 goto bad; 19212 } 19213 } 19214 ASSERT(ill->ill_group != NULL); 19215 } 19216 19217 /* 19218 * When this is part of group, we need to make sure that 19219 * any broadcast ires created because of this ipif coming 19220 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19221 * so that we don't receive duplicate broadcast packets. 19222 */ 19223 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19224 ipif_renominate_bcast(ipif); 19225 19226 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19227 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19228 ipif_saved_irep = ipif_recover_ire(ipif); 19229 19230 if (!loopback) { 19231 /* 19232 * If the broadcast address has been set, make sure it makes 19233 * sense based on the interface address. 19234 * Only match on ill since we are sharing broadcast addresses. 19235 */ 19236 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19237 (ipif->ipif_flags & IPIF_BROADCAST)) { 19238 ire_t *ire; 19239 19240 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19241 IRE_BROADCAST, ipif, ALL_ZONES, 19242 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19243 19244 if (ire == NULL) { 19245 /* 19246 * If there isn't a matching broadcast IRE, 19247 * revert to the default for this netmask. 19248 */ 19249 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19250 mutex_enter(&ipif->ipif_ill->ill_lock); 19251 ipif_set_default(ipif); 19252 mutex_exit(&ipif->ipif_ill->ill_lock); 19253 } else { 19254 ire_refrele(ire); 19255 } 19256 } 19257 19258 } 19259 19260 19261 /* This is the first interface on this ill */ 19262 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19263 /* 19264 * Need to recover all multicast memberships in the driver. 19265 * This had to be deferred until we had attached. 19266 */ 19267 ill_recover_multicast(ill); 19268 } 19269 /* Join the allhosts multicast address */ 19270 ipif_multicast_up(ipif); 19271 19272 if (!loopback) { 19273 /* 19274 * See whether anybody else would benefit from the 19275 * new ipif that we added. We call this always rather 19276 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19277 * ipif is for the benefit of illgrp_insert (done above) 19278 * which does not do source address selection as it does 19279 * not want to re-create interface routes that we are 19280 * having reference to it here. 19281 */ 19282 ill_update_source_selection(ill); 19283 } 19284 19285 for (irep1 = irep; irep1 > ire_array; ) { 19286 irep1--; 19287 if (*irep1 != NULL) { 19288 /* was held in ire_add */ 19289 ire_refrele(*irep1); 19290 } 19291 } 19292 19293 cnt = ipif_saved_ire_cnt; 19294 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19295 if (*irep1 != NULL) { 19296 /* was held in ire_add */ 19297 ire_refrele(*irep1); 19298 } 19299 } 19300 19301 /* 19302 * This had to be deferred until we had bound. 19303 * tell routing sockets that this interface is up 19304 */ 19305 ip_rts_ifmsg(ipif); 19306 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19307 19308 if (!loopback) { 19309 /* Broadcast an address mask reply. */ 19310 ipif_mask_reply(ipif); 19311 } 19312 if (ipif_saved_irep != NULL) { 19313 kmem_free(ipif_saved_irep, 19314 ipif_saved_ire_cnt * sizeof (ire_t *)); 19315 } 19316 if (src_ipif_held) 19317 ipif_refrele(src_ipif); 19318 /* Let SCTP update the status for this ipif */ 19319 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19320 return (0); 19321 19322 bad: 19323 ip1dbg(("ipif_up_done: FAILED \n")); 19324 /* 19325 * We don't have to bother removing from ill groups because 19326 * 19327 * 1) For groups with names, we insert only when the first ipif 19328 * comes up. In that case if it fails, it will not be in any 19329 * group. So, we need not try to remove for that case. 19330 * 19331 * 2) For groups without names, either we tried to insert ipif_ill 19332 * in a group as singleton or found some other group to become 19333 * a bigger group. For the former, if it fails we don't have 19334 * anything to do as ipif_ill is not in the group and for the 19335 * latter, there are no failures in illgrp_insert/illgrp_delete 19336 * (ENOMEM can't occur for this. Check ifgrp_insert). 19337 */ 19338 while (irep > ire_array) { 19339 irep--; 19340 if (*irep != NULL) { 19341 ire_delete(*irep); 19342 if (ire_added) 19343 ire_refrele(*irep); 19344 } 19345 } 19346 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19347 19348 if (ipif_saved_irep != NULL) { 19349 kmem_free(ipif_saved_irep, 19350 ipif_saved_ire_cnt * sizeof (ire_t *)); 19351 } 19352 if (src_ipif_held) 19353 ipif_refrele(src_ipif); 19354 19355 ipif_arp_down(ipif); 19356 return (err); 19357 } 19358 19359 /* 19360 * Turn off the ARP with the ILLF_NOARP flag. 19361 */ 19362 static int 19363 ill_arp_off(ill_t *ill) 19364 { 19365 mblk_t *arp_off_mp = NULL; 19366 mblk_t *arp_on_mp = NULL; 19367 19368 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19369 19370 ASSERT(IAM_WRITER_ILL(ill)); 19371 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19372 19373 /* 19374 * If the on message is still around we've already done 19375 * an arp_off without doing an arp_on thus there is no 19376 * work needed. 19377 */ 19378 if (ill->ill_arp_on_mp != NULL) 19379 return (0); 19380 19381 /* 19382 * Allocate an ARP on message (to be saved) and an ARP off message 19383 */ 19384 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19385 if (!arp_off_mp) 19386 return (ENOMEM); 19387 19388 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19389 if (!arp_on_mp) 19390 goto failed; 19391 19392 ASSERT(ill->ill_arp_on_mp == NULL); 19393 ill->ill_arp_on_mp = arp_on_mp; 19394 19395 /* Send an AR_INTERFACE_OFF request */ 19396 putnext(ill->ill_rq, arp_off_mp); 19397 return (0); 19398 failed: 19399 19400 if (arp_off_mp) 19401 freemsg(arp_off_mp); 19402 return (ENOMEM); 19403 } 19404 19405 /* 19406 * Turn on ARP by turning off the ILLF_NOARP flag. 19407 */ 19408 static int 19409 ill_arp_on(ill_t *ill) 19410 { 19411 mblk_t *mp; 19412 19413 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19414 19415 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19416 19417 ASSERT(IAM_WRITER_ILL(ill)); 19418 /* 19419 * Send an AR_INTERFACE_ON request if we have already done 19420 * an arp_off (which allocated the message). 19421 */ 19422 if (ill->ill_arp_on_mp != NULL) { 19423 mp = ill->ill_arp_on_mp; 19424 ill->ill_arp_on_mp = NULL; 19425 putnext(ill->ill_rq, mp); 19426 } 19427 return (0); 19428 } 19429 19430 /* 19431 * Called after either deleting ill from the group or when setting 19432 * FAILED or STANDBY on the interface. 19433 */ 19434 static void 19435 illgrp_reset_schednext(ill_t *ill) 19436 { 19437 ill_group_t *illgrp; 19438 ill_t *save_ill; 19439 19440 ASSERT(IAM_WRITER_ILL(ill)); 19441 /* 19442 * When called from illgrp_delete, ill_group will be non-NULL. 19443 * But when called from ip_sioctl_flags, it could be NULL if 19444 * somebody is setting FAILED/INACTIVE on some interface which 19445 * is not part of a group. 19446 */ 19447 illgrp = ill->ill_group; 19448 if (illgrp == NULL) 19449 return; 19450 if (illgrp->illgrp_ill_schednext != ill) 19451 return; 19452 19453 illgrp->illgrp_ill_schednext = NULL; 19454 save_ill = ill; 19455 /* 19456 * Choose a good ill to be the next one for 19457 * outbound traffic. As the flags FAILED/STANDBY is 19458 * not yet marked when called from ip_sioctl_flags, 19459 * we check for ill separately. 19460 */ 19461 for (ill = illgrp->illgrp_ill; ill != NULL; 19462 ill = ill->ill_group_next) { 19463 if ((ill != save_ill) && 19464 !(ill->ill_phyint->phyint_flags & 19465 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19466 illgrp->illgrp_ill_schednext = ill; 19467 return; 19468 } 19469 } 19470 } 19471 19472 /* 19473 * Given an ill, find the next ill in the group to be scheduled. 19474 * (This should be called by ip_newroute() before ire_create().) 19475 * The passed in ill may be pulled out of the group, after we have picked 19476 * up a different outgoing ill from the same group. However ire add will 19477 * atomically check this. 19478 */ 19479 ill_t * 19480 illgrp_scheduler(ill_t *ill) 19481 { 19482 ill_t *retill; 19483 ill_group_t *illgrp; 19484 int illcnt; 19485 int i; 19486 uint64_t flags; 19487 19488 /* 19489 * We don't use a lock to check for the ill_group. If this ill 19490 * is currently being inserted we may end up just returning this 19491 * ill itself. That is ok. 19492 */ 19493 if (ill->ill_group == NULL) { 19494 ill_refhold(ill); 19495 return (ill); 19496 } 19497 19498 /* 19499 * Grab the ill_g_lock as reader to make sure we are dealing with 19500 * a set of stable ills. No ill can be added or deleted or change 19501 * group while we hold the reader lock. 19502 */ 19503 rw_enter(&ill_g_lock, RW_READER); 19504 if ((illgrp = ill->ill_group) == NULL) { 19505 rw_exit(&ill_g_lock); 19506 ill_refhold(ill); 19507 return (ill); 19508 } 19509 19510 illcnt = illgrp->illgrp_ill_count; 19511 mutex_enter(&illgrp->illgrp_lock); 19512 retill = illgrp->illgrp_ill_schednext; 19513 19514 if (retill == NULL) 19515 retill = illgrp->illgrp_ill; 19516 19517 /* 19518 * We do a circular search beginning at illgrp_ill_schednext 19519 * or illgrp_ill. We don't check the flags against the ill lock 19520 * since it can change anytime. The ire creation will be atomic 19521 * and will fail if the ill is FAILED or OFFLINE. 19522 */ 19523 for (i = 0; i < illcnt; i++) { 19524 flags = retill->ill_phyint->phyint_flags; 19525 19526 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19527 ILL_CAN_LOOKUP(retill)) { 19528 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19529 ill_refhold(retill); 19530 break; 19531 } 19532 retill = retill->ill_group_next; 19533 if (retill == NULL) 19534 retill = illgrp->illgrp_ill; 19535 } 19536 mutex_exit(&illgrp->illgrp_lock); 19537 rw_exit(&ill_g_lock); 19538 19539 return (i == illcnt ? NULL : retill); 19540 } 19541 19542 /* 19543 * Checks for availbility of a usable source address (if there is one) when the 19544 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19545 * this selection is done regardless of the destination. 19546 */ 19547 boolean_t 19548 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19549 { 19550 uint_t ifindex; 19551 ipif_t *ipif = NULL; 19552 ill_t *uill; 19553 boolean_t isv6; 19554 19555 ASSERT(ill != NULL); 19556 19557 isv6 = ill->ill_isv6; 19558 ifindex = ill->ill_usesrc_ifindex; 19559 if (ifindex != 0) { 19560 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19561 NULL); 19562 if (uill == NULL) 19563 return (NULL); 19564 mutex_enter(&uill->ill_lock); 19565 for (ipif = uill->ill_ipif; ipif != NULL; 19566 ipif = ipif->ipif_next) { 19567 if (!IPIF_CAN_LOOKUP(ipif)) 19568 continue; 19569 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19570 continue; 19571 if (!(ipif->ipif_flags & IPIF_UP)) 19572 continue; 19573 if (ipif->ipif_zoneid != zoneid) 19574 continue; 19575 if ((isv6 && 19576 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19577 (ipif->ipif_lcl_addr == INADDR_ANY)) 19578 continue; 19579 mutex_exit(&uill->ill_lock); 19580 ill_refrele(uill); 19581 return (B_TRUE); 19582 } 19583 mutex_exit(&uill->ill_lock); 19584 ill_refrele(uill); 19585 } 19586 return (B_FALSE); 19587 } 19588 19589 /* 19590 * Determine the best source address given a destination address and an ill. 19591 * Prefers non-deprecated over deprecated but will return a deprecated 19592 * address if there is no other choice. If there is a usable source address 19593 * on the interface pointed to by ill_usesrc_ifindex then that is given 19594 * first preference. 19595 * 19596 * Returns NULL if there is no suitable source address for the ill. 19597 * This only occurs when there is no valid source address for the ill. 19598 */ 19599 ipif_t * 19600 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19601 { 19602 ipif_t *ipif; 19603 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19604 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19605 int index = 0; 19606 boolean_t wrapped = B_FALSE; 19607 boolean_t same_subnet_only = B_FALSE; 19608 boolean_t ipif_same_found, ipif_other_found; 19609 ill_t *till, *usill = NULL; 19610 19611 if (ill->ill_usesrc_ifindex != 0) { 19612 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19613 NULL, NULL, NULL, NULL); 19614 if (usill != NULL) 19615 ill = usill; /* Select source from usesrc ILL */ 19616 else 19617 return (NULL); 19618 } 19619 19620 /* 19621 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19622 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19623 * After selecting the right ipif, under ill_lock make sure ipif is 19624 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19625 * we retry. Inside the loop we still need to check for CONDEMNED, 19626 * but not under a lock. 19627 */ 19628 rw_enter(&ill_g_lock, RW_READER); 19629 19630 retry: 19631 till = ill; 19632 ipif_arr[0] = NULL; 19633 19634 if (till->ill_group != NULL) 19635 till = till->ill_group->illgrp_ill; 19636 19637 /* 19638 * Choose one good source address from each ill across the group. 19639 * If possible choose a source address in the same subnet as 19640 * the destination address. 19641 * 19642 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19643 * This is okay because of the following. 19644 * 19645 * If PHYI_FAILED is set and we still have non-deprecated 19646 * addresses, it means the addresses have not yet been 19647 * failed over to a different interface. We potentially 19648 * select them to create IRE_CACHES, which will be later 19649 * flushed when the addresses move over. 19650 * 19651 * If PHYI_INACTIVE is set and we still have non-deprecated 19652 * addresses, it means either the user has configured them 19653 * or PHYI_INACTIVE has not been cleared after the addresses 19654 * been moved over. For the former, in.mpathd does a failover 19655 * when the interface becomes INACTIVE and hence we should 19656 * not find them. Once INACTIVE is set, we don't allow them 19657 * to create logical interfaces anymore. For the latter, a 19658 * flush will happen when INACTIVE is cleared which will 19659 * flush the IRE_CACHES. 19660 * 19661 * If PHYI_OFFLINE is set, all the addresses will be failed 19662 * over soon. We potentially select them to create IRE_CACHEs, 19663 * which will be later flushed when the addresses move over. 19664 * 19665 * NOTE : As ipif_select_source is called to borrow source address 19666 * for an ipif that is part of a group, source address selection 19667 * will be re-done whenever the group changes i.e either an 19668 * insertion/deletion in the group. 19669 * 19670 * Fill ipif_arr[] with source addresses, using these rules: 19671 * 19672 * 1. At most one source address from a given ill ends up 19673 * in ipif_arr[] -- that is, at most one of the ipif's 19674 * associated with a given ill ends up in ipif_arr[]. 19675 * 19676 * 2. If there is at least one non-deprecated ipif in the 19677 * IPMP group with a source address on the same subnet as 19678 * our destination, then fill ipif_arr[] only with 19679 * source addresses on the same subnet as our destination. 19680 * Note that because of (1), only the first 19681 * non-deprecated ipif found with a source address 19682 * matching the destination ends up in ipif_arr[]. 19683 * 19684 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19685 * addresses not in the same subnet as our destination. 19686 * Again, because of (1), only the first off-subnet source 19687 * address will be chosen. 19688 * 19689 * 4. If there are no non-deprecated ipifs, then just use 19690 * the source address associated with the last deprecated 19691 * one we find that happens to be on the same subnet, 19692 * otherwise the first one not in the same subnet. 19693 */ 19694 for (; till != NULL; till = till->ill_group_next) { 19695 ipif_same_found = B_FALSE; 19696 ipif_other_found = B_FALSE; 19697 for (ipif = till->ill_ipif; ipif != NULL; 19698 ipif = ipif->ipif_next) { 19699 if (!IPIF_CAN_LOOKUP(ipif)) 19700 continue; 19701 /* Always skip NOLOCAL and ANYCAST interfaces */ 19702 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19703 continue; 19704 if (!(ipif->ipif_flags & IPIF_UP)) 19705 continue; 19706 if (ipif->ipif_zoneid != zoneid) 19707 continue; 19708 /* 19709 * Interfaces with 0.0.0.0 address are allowed to be UP, 19710 * but are not valid as source addresses. 19711 */ 19712 if (ipif->ipif_lcl_addr == INADDR_ANY) 19713 continue; 19714 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19715 if (ipif_dep == NULL || 19716 (ipif->ipif_net_mask & dst) == 19717 ipif->ipif_subnet) 19718 ipif_dep = ipif; 19719 continue; 19720 } 19721 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19722 /* found a source address in the same subnet */ 19723 if (same_subnet_only == B_FALSE) { 19724 same_subnet_only = B_TRUE; 19725 index = 0; 19726 } 19727 ipif_same_found = B_TRUE; 19728 } else { 19729 if (same_subnet_only == B_TRUE || 19730 ipif_other_found == B_TRUE) 19731 continue; 19732 ipif_other_found = B_TRUE; 19733 } 19734 ipif_arr[index++] = ipif; 19735 if (index == MAX_IPIF_SELECT_SOURCE) { 19736 wrapped = B_TRUE; 19737 index = 0; 19738 } 19739 if (ipif_same_found == B_TRUE) 19740 break; 19741 } 19742 } 19743 19744 if (ipif_arr[0] == NULL) { 19745 ipif = ipif_dep; 19746 } else { 19747 if (wrapped) 19748 index = MAX_IPIF_SELECT_SOURCE; 19749 ipif = ipif_arr[ipif_rand() % index]; 19750 ASSERT(ipif != NULL); 19751 } 19752 19753 if (ipif != NULL) { 19754 mutex_enter(&ipif->ipif_ill->ill_lock); 19755 if (!IPIF_CAN_LOOKUP(ipif)) { 19756 mutex_exit(&ipif->ipif_ill->ill_lock); 19757 goto retry; 19758 } 19759 ipif_refhold_locked(ipif); 19760 mutex_exit(&ipif->ipif_ill->ill_lock); 19761 } 19762 19763 rw_exit(&ill_g_lock); 19764 if (usill != NULL) 19765 ill_refrele(usill); 19766 19767 #ifdef DEBUG 19768 if (ipif == NULL) { 19769 char buf1[INET6_ADDRSTRLEN]; 19770 19771 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19772 ill->ill_name, 19773 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19774 } else { 19775 char buf1[INET6_ADDRSTRLEN]; 19776 char buf2[INET6_ADDRSTRLEN]; 19777 19778 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19779 ipif->ipif_ill->ill_name, 19780 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19781 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19782 buf2, sizeof (buf2)))); 19783 } 19784 #endif /* DEBUG */ 19785 return (ipif); 19786 } 19787 19788 19789 /* 19790 * If old_ipif is not NULL, see if ipif was derived from old 19791 * ipif and if so, recreate the interface route by re-doing 19792 * source address selection. This happens when ipif_down -> 19793 * ipif_update_other_ipifs calls us. 19794 * 19795 * If old_ipif is NULL, just redo the source address selection 19796 * if needed. This happens when illgrp_insert or ipif_up_done 19797 * calls us. 19798 */ 19799 static void 19800 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19801 { 19802 ire_t *ire; 19803 ire_t *ipif_ire; 19804 queue_t *stq; 19805 ipif_t *nipif; 19806 ill_t *ill; 19807 boolean_t need_rele = B_FALSE; 19808 19809 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19810 ASSERT(IAM_WRITER_IPIF(ipif)); 19811 19812 ill = ipif->ipif_ill; 19813 if (!(ipif->ipif_flags & 19814 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19815 /* 19816 * Can't possibly have borrowed the source 19817 * from old_ipif. 19818 */ 19819 return; 19820 } 19821 19822 /* 19823 * Is there any work to be done? No work if the address 19824 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19825 * ipif_select_source() does not borrow addresses from 19826 * NOLOCAL and ANYCAST interfaces). 19827 */ 19828 if ((old_ipif != NULL) && 19829 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 19830 (old_ipif->ipif_ill->ill_wq == NULL) || 19831 (old_ipif->ipif_flags & 19832 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 19833 return; 19834 } 19835 19836 /* 19837 * Perform the same checks as when creating the 19838 * IRE_INTERFACE in ipif_up_done. 19839 */ 19840 if (!(ipif->ipif_flags & IPIF_UP)) 19841 return; 19842 19843 if ((ipif->ipif_flags & IPIF_NOXMIT) || 19844 (ipif->ipif_subnet == INADDR_ANY)) 19845 return; 19846 19847 ipif_ire = ipif_to_ire(ipif); 19848 if (ipif_ire == NULL) 19849 return; 19850 19851 /* 19852 * We know that ipif uses some other source for its 19853 * IRE_INTERFACE. Is it using the source of this 19854 * old_ipif? 19855 */ 19856 if (old_ipif != NULL && 19857 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 19858 ire_refrele(ipif_ire); 19859 return; 19860 } 19861 if (ip_debug > 2) { 19862 /* ip1dbg */ 19863 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 19864 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 19865 } 19866 19867 stq = ipif_ire->ire_stq; 19868 19869 /* 19870 * Can't use our source address. Select a different 19871 * source address for the IRE_INTERFACE. 19872 */ 19873 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 19874 if (nipif == NULL) { 19875 /* Last resort - all ipif's have IPIF_NOLOCAL */ 19876 nipif = ipif; 19877 } else { 19878 need_rele = B_TRUE; 19879 } 19880 19881 ire = ire_create( 19882 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 19883 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 19884 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 19885 NULL, /* no gateway */ 19886 NULL, 19887 &ipif->ipif_mtu, /* max frag */ 19888 NULL, /* fast path header */ 19889 NULL, /* no recv from queue */ 19890 stq, /* send-to queue */ 19891 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19892 ill->ill_resolver_mp, /* xmit header */ 19893 ipif, 19894 NULL, 19895 0, 19896 0, 19897 0, 19898 0, 19899 &ire_uinfo_null); 19900 19901 if (ire != NULL) { 19902 ire_t *ret_ire; 19903 int error; 19904 19905 /* 19906 * We don't need ipif_ire anymore. We need to delete 19907 * before we add so that ire_add does not detect 19908 * duplicates. 19909 */ 19910 ire_delete(ipif_ire); 19911 ret_ire = ire; 19912 error = ire_add(&ret_ire, NULL, NULL, NULL); 19913 ASSERT(error == 0); 19914 ASSERT(ire == ret_ire); 19915 /* Held in ire_add */ 19916 ire_refrele(ret_ire); 19917 } 19918 /* 19919 * Either we are falling through from above or could not 19920 * allocate a replacement. 19921 */ 19922 ire_refrele(ipif_ire); 19923 if (need_rele) 19924 ipif_refrele(nipif); 19925 } 19926 19927 /* 19928 * This old_ipif is going away. 19929 * 19930 * Determine if any other ipif's is using our address as 19931 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 19932 * IPIF_DEPRECATED). 19933 * Find the IRE_INTERFACE for such ipifs and recreate them 19934 * to use an different source address following the rules in 19935 * ipif_up_done. 19936 * 19937 * This function takes an illgrp as an argument so that illgrp_delete 19938 * can call this to update source address even after deleting the 19939 * old_ipif->ipif_ill from the ill group. 19940 */ 19941 static void 19942 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 19943 { 19944 ipif_t *ipif; 19945 ill_t *ill; 19946 char buf[INET6_ADDRSTRLEN]; 19947 19948 ASSERT(IAM_WRITER_IPIF(old_ipif)); 19949 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 19950 19951 ill = old_ipif->ipif_ill; 19952 19953 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 19954 ill->ill_name, 19955 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 19956 buf, sizeof (buf)))); 19957 /* 19958 * If this part of a group, look at all ills as ipif_select_source 19959 * borrows source address across all the ills in the group. 19960 */ 19961 if (illgrp != NULL) 19962 ill = illgrp->illgrp_ill; 19963 19964 for (; ill != NULL; ill = ill->ill_group_next) { 19965 for (ipif = ill->ill_ipif; ipif != NULL; 19966 ipif = ipif->ipif_next) { 19967 19968 if (ipif == old_ipif) 19969 continue; 19970 19971 ipif_recreate_interface_routes(old_ipif, ipif); 19972 } 19973 } 19974 } 19975 19976 /* ARGSUSED */ 19977 int 19978 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19979 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19980 { 19981 /* 19982 * ill_phyint_reinit merged the v4 and v6 into a single 19983 * ipsq. Could also have become part of a ipmp group in the 19984 * process, and we might not have been able to complete the 19985 * operation in ipif_set_values, if we could not become 19986 * exclusive. If so restart it here. 19987 */ 19988 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 19989 } 19990 19991 19992 /* ARGSUSED */ 19993 int 19994 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19995 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19996 { 19997 queue_t *q1 = q; 19998 char *cp; 19999 char interf_name[LIFNAMSIZ]; 20000 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 20001 20002 if (!q->q_next) { 20003 ip1dbg(( 20004 "if_unitsel: IF_UNITSEL: no q_next\n")); 20005 return (EINVAL); 20006 } 20007 20008 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 20009 return (EALREADY); 20010 20011 do { 20012 q1 = q1->q_next; 20013 } while (q1->q_next); 20014 cp = q1->q_qinfo->qi_minfo->mi_idname; 20015 (void) sprintf(interf_name, "%s%d", cp, ppa); 20016 20017 /* 20018 * Here we are not going to delay the ioack until after 20019 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20020 * original ioctl message before sending the requests. 20021 */ 20022 return (ipif_set_values(q, mp, interf_name, &ppa)); 20023 } 20024 20025 /* ARGSUSED */ 20026 int 20027 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20028 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20029 { 20030 return (ENXIO); 20031 } 20032 20033 /* 20034 * Net and subnet broadcast ire's are now specific to the particular 20035 * physical interface (ill) and not to any one locigal interface (ipif). 20036 * However, if a particular logical interface is being taken down, it's 20037 * associated ire's will be taken down as well. Hence, when we go to 20038 * take down or change the local address, broadcast address or netmask 20039 * of a specific logical interface, we must check to make sure that we 20040 * have valid net and subnet broadcast ire's for the other logical 20041 * interfaces which may have been shared with the logical interface 20042 * being brought down or changed. 20043 * 20044 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20045 * is tied to the first interface coming UP. If that ipif is going down, 20046 * we need to recreate them on the next valid ipif. 20047 * 20048 * Note: assume that the ipif passed in is still up so that it's IRE 20049 * entries are still valid. 20050 */ 20051 static void 20052 ipif_check_bcast_ires(ipif_t *test_ipif) 20053 { 20054 ipif_t *ipif; 20055 ire_t *test_subnet_ire, *test_net_ire; 20056 ire_t *test_allzero_ire, *test_allone_ire; 20057 ire_t *ire_array[12]; 20058 ire_t **irep = &ire_array[0]; 20059 ire_t **irep1; 20060 20061 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20062 ipaddr_t test_net_addr, test_subnet_addr; 20063 ipaddr_t test_net_mask, test_subnet_mask; 20064 boolean_t need_net_bcast_ire = B_FALSE; 20065 boolean_t need_subnet_bcast_ire = B_FALSE; 20066 boolean_t allzero_bcast_ire_created = B_FALSE; 20067 boolean_t allone_bcast_ire_created = B_FALSE; 20068 boolean_t net_bcast_ire_created = B_FALSE; 20069 boolean_t subnet_bcast_ire_created = B_FALSE; 20070 20071 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20072 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20073 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20074 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20075 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20076 20077 ASSERT(!test_ipif->ipif_isv6); 20078 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20079 20080 /* 20081 * No broadcast IREs for the LOOPBACK interface 20082 * or others such as point to point and IPIF_NOXMIT. 20083 */ 20084 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20085 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20086 return; 20087 20088 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20089 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20090 20091 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20092 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20093 20094 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20095 test_subnet_mask = test_ipif->ipif_net_mask; 20096 20097 /* 20098 * If no net mask set, assume the default based on net class. 20099 */ 20100 if (test_subnet_mask == 0) 20101 test_subnet_mask = test_net_mask; 20102 20103 /* 20104 * Check if there is a network broadcast ire associated with this ipif 20105 */ 20106 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20107 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20108 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20109 20110 /* 20111 * Check if there is a subnet broadcast IRE associated with this ipif 20112 */ 20113 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20114 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20115 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20116 20117 /* 20118 * No broadcast ire's associated with this ipif. 20119 */ 20120 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20121 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20122 return; 20123 } 20124 20125 /* 20126 * We have established which bcast ires have to be replaced. 20127 * Next we try to locate ipifs that match there ires. 20128 * The rules are simple: If we find an ipif that matches on the subnet 20129 * address it will also match on the net address, the allzeros and 20130 * allones address. Any ipif that matches only on the net address will 20131 * also match the allzeros and allones addresses. 20132 * The other criterion is the ipif_flags. We look for non-deprecated 20133 * (and non-anycast and non-nolocal) ipifs as the best choice. 20134 * ipifs with check_flags matching (deprecated, etc) are used only 20135 * if good ipifs are not available. While looping, we save existing 20136 * deprecated ipifs as backup_ipif. 20137 * We loop through all the ipifs for this ill looking for ipifs 20138 * whose broadcast addr match the ipif passed in, but do not have 20139 * their own broadcast ires. For creating 0.0.0.0 and 20140 * 255.255.255.255 we just need an ipif on this ill to create. 20141 */ 20142 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20143 ipif = ipif->ipif_next) { 20144 20145 ASSERT(!ipif->ipif_isv6); 20146 /* 20147 * Already checked the ipif passed in. 20148 */ 20149 if (ipif == test_ipif) { 20150 continue; 20151 } 20152 20153 /* 20154 * We only need to recreate broadcast ires if another ipif in 20155 * the same zone uses them. The new ires must be created in the 20156 * same zone. 20157 */ 20158 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20159 continue; 20160 } 20161 20162 /* 20163 * Only interested in logical interfaces with valid local 20164 * addresses or with the ability to broadcast. 20165 */ 20166 if ((ipif->ipif_subnet == 0) || 20167 !(ipif->ipif_flags & IPIF_BROADCAST) || 20168 (ipif->ipif_flags & IPIF_NOXMIT) || 20169 !(ipif->ipif_flags & IPIF_UP)) { 20170 continue; 20171 } 20172 /* 20173 * Check if there is a net broadcast ire for this 20174 * net address. If it turns out that the ipif we are 20175 * about to take down owns this ire, we must make a 20176 * new one because it is potentially going away. 20177 */ 20178 if (test_net_ire && (!net_bcast_ire_created)) { 20179 net_mask = ip_net_mask(ipif->ipif_subnet); 20180 net_addr = net_mask & ipif->ipif_subnet; 20181 if (net_addr == test_net_addr) { 20182 need_net_bcast_ire = B_TRUE; 20183 /* 20184 * Use DEPRECATED ipif only if no good 20185 * ires are available. subnet_addr is 20186 * a better match than net_addr. 20187 */ 20188 if ((ipif->ipif_flags & check_flags) && 20189 (backup_ipif_net == NULL)) { 20190 backup_ipif_net = ipif; 20191 } 20192 } 20193 } 20194 /* 20195 * Check if there is a subnet broadcast ire for this 20196 * net address. If it turns out that the ipif we are 20197 * about to take down owns this ire, we must make a 20198 * new one because it is potentially going away. 20199 */ 20200 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20201 subnet_mask = ipif->ipif_net_mask; 20202 subnet_addr = ipif->ipif_subnet; 20203 if (subnet_addr == test_subnet_addr) { 20204 need_subnet_bcast_ire = B_TRUE; 20205 if ((ipif->ipif_flags & check_flags) && 20206 (backup_ipif_subnet == NULL)) { 20207 backup_ipif_subnet = ipif; 20208 } 20209 } 20210 } 20211 20212 20213 /* Short circuit here if this ipif is deprecated */ 20214 if (ipif->ipif_flags & check_flags) { 20215 if ((test_allzero_ire != NULL) && 20216 (!allzero_bcast_ire_created) && 20217 (backup_ipif_allzeros == NULL)) { 20218 backup_ipif_allzeros = ipif; 20219 } 20220 if ((test_allone_ire != NULL) && 20221 (!allone_bcast_ire_created) && 20222 (backup_ipif_allones == NULL)) { 20223 backup_ipif_allones = ipif; 20224 } 20225 continue; 20226 } 20227 20228 /* 20229 * Found an ipif which has the same broadcast ire as the 20230 * ipif passed in and the ipif passed in "owns" the ire. 20231 * Create new broadcast ire's for this broadcast addr. 20232 */ 20233 if (need_net_bcast_ire && !net_bcast_ire_created) { 20234 irep = ire_create_bcast(ipif, net_addr, irep); 20235 irep = ire_create_bcast(ipif, 20236 ~net_mask | net_addr, irep); 20237 net_bcast_ire_created = B_TRUE; 20238 } 20239 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20240 irep = ire_create_bcast(ipif, subnet_addr, irep); 20241 irep = ire_create_bcast(ipif, 20242 ~subnet_mask | subnet_addr, irep); 20243 subnet_bcast_ire_created = B_TRUE; 20244 } 20245 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20246 irep = ire_create_bcast(ipif, 0, irep); 20247 allzero_bcast_ire_created = B_TRUE; 20248 } 20249 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20250 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20251 allone_bcast_ire_created = B_TRUE; 20252 } 20253 /* 20254 * Once we have created all the appropriate ires, we 20255 * just break out of this loop to add what we have created. 20256 * This has been indented similar to ire_match_args for 20257 * readability. 20258 */ 20259 if (((test_net_ire == NULL) || 20260 (net_bcast_ire_created)) && 20261 ((test_subnet_ire == NULL) || 20262 (subnet_bcast_ire_created)) && 20263 ((test_allzero_ire == NULL) || 20264 (allzero_bcast_ire_created)) && 20265 ((test_allone_ire == NULL) || 20266 (allone_bcast_ire_created))) { 20267 break; 20268 } 20269 } 20270 20271 /* 20272 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20273 * exist. 6 pairs of bcast ires are needed. 20274 * Note - the old ires are deleted in ipif_down. 20275 */ 20276 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20277 ipif = backup_ipif_net; 20278 irep = ire_create_bcast(ipif, net_addr, irep); 20279 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20280 net_bcast_ire_created = B_TRUE; 20281 } 20282 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20283 backup_ipif_subnet) { 20284 ipif = backup_ipif_subnet; 20285 irep = ire_create_bcast(ipif, subnet_addr, irep); 20286 irep = ire_create_bcast(ipif, 20287 ~subnet_mask | subnet_addr, irep); 20288 subnet_bcast_ire_created = B_TRUE; 20289 } 20290 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20291 backup_ipif_allzeros) { 20292 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20293 allzero_bcast_ire_created = B_TRUE; 20294 } 20295 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20296 backup_ipif_allones) { 20297 irep = ire_create_bcast(backup_ipif_allones, 20298 INADDR_BROADCAST, irep); 20299 allone_bcast_ire_created = B_TRUE; 20300 } 20301 20302 /* 20303 * If we can't create all of them, don't add any of them. 20304 * Code in ip_wput_ire and ire_to_ill assumes that we 20305 * always have a non-loopback copy and loopback copy 20306 * for a given address. 20307 */ 20308 for (irep1 = irep; irep1 > ire_array; ) { 20309 irep1--; 20310 if (*irep1 == NULL) { 20311 ip0dbg(("ipif_check_bcast_ires: can't create " 20312 "IRE_BROADCAST, memory allocation failure\n")); 20313 while (irep > ire_array) { 20314 irep--; 20315 if (*irep != NULL) 20316 ire_delete(*irep); 20317 } 20318 goto bad; 20319 } 20320 } 20321 for (irep1 = irep; irep1 > ire_array; ) { 20322 int error; 20323 20324 irep1--; 20325 error = ire_add(irep1, NULL, NULL, NULL); 20326 if (error == 0) { 20327 ire_refrele(*irep1); /* Held in ire_add */ 20328 } 20329 } 20330 bad: 20331 if (test_allzero_ire != NULL) 20332 ire_refrele(test_allzero_ire); 20333 if (test_allone_ire != NULL) 20334 ire_refrele(test_allone_ire); 20335 if (test_net_ire != NULL) 20336 ire_refrele(test_net_ire); 20337 if (test_subnet_ire != NULL) 20338 ire_refrele(test_subnet_ire); 20339 } 20340 20341 /* 20342 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20343 * from lifr_flags and the name from lifr_name. 20344 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20345 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20346 * Returns EINPROGRESS when mp has been consumed by queueing it on 20347 * ill_pending_mp and the ioctl will complete in ip_rput. 20348 */ 20349 /* ARGSUSED */ 20350 int 20351 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20352 ip_ioctl_cmd_t *ipip, void *if_req) 20353 { 20354 int err; 20355 ill_t *ill; 20356 struct lifreq *lifr = (struct lifreq *)if_req; 20357 20358 ASSERT(ipif != NULL); 20359 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20360 ASSERT(q->q_next != NULL); 20361 20362 ill = (ill_t *)q->q_ptr; 20363 /* 20364 * If we are not writer on 'q' then this interface exists already 20365 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20366 * So return EALREADY 20367 */ 20368 if (ill != ipif->ipif_ill) 20369 return (EALREADY); 20370 20371 if (ill->ill_name[0] != '\0') 20372 return (EALREADY); 20373 20374 /* 20375 * Set all the flags. Allows all kinds of override. Provide some 20376 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20377 * unless there is either multicast/broadcast support in the driver 20378 * or it is a pt-pt link. 20379 */ 20380 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20381 /* Meaningless to IP thus don't allow them to be set. */ 20382 ip1dbg(("ip_setname: EINVAL 1\n")); 20383 return (EINVAL); 20384 } 20385 /* 20386 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20387 * ill_bcast_addr_length info. 20388 */ 20389 if (!ill->ill_needs_attach && 20390 ((lifr->lifr_flags & IFF_MULTICAST) && 20391 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20392 ill->ill_bcast_addr_length == 0)) { 20393 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20394 ip1dbg(("ip_setname: EINVAL 2\n")); 20395 return (EINVAL); 20396 } 20397 if ((lifr->lifr_flags & IFF_BROADCAST) && 20398 ((lifr->lifr_flags & IFF_IPV6) || 20399 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20400 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20401 ip1dbg(("ip_setname: EINVAL 3\n")); 20402 return (EINVAL); 20403 } 20404 if (lifr->lifr_flags & IFF_UP) { 20405 /* Can only be set with SIOCSLIFFLAGS */ 20406 ip1dbg(("ip_setname: EINVAL 4\n")); 20407 return (EINVAL); 20408 } 20409 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20410 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20411 ip1dbg(("ip_setname: EINVAL 5\n")); 20412 return (EINVAL); 20413 } 20414 /* 20415 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20416 */ 20417 if ((lifr->lifr_flags & IFF_XRESOLV) && 20418 !(lifr->lifr_flags & IFF_IPV6) && 20419 !(ipif->ipif_isv6)) { 20420 ip1dbg(("ip_setname: EINVAL 6\n")); 20421 return (EINVAL); 20422 } 20423 20424 /* 20425 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20426 * we have all the flags here. So, we assign rather than we OR. 20427 * We can't OR the flags here because we don't want to set 20428 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20429 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20430 * on lifr_flags value here. 20431 */ 20432 /* 20433 * This ill has not been inserted into the global list. 20434 * So we are still single threaded and don't need any lock 20435 */ 20436 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20437 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20438 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20439 20440 /* We started off as V4. */ 20441 if (ill->ill_flags & ILLF_IPV6) { 20442 ill->ill_phyint->phyint_illv6 = ill; 20443 ill->ill_phyint->phyint_illv4 = NULL; 20444 } 20445 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20446 return (err); 20447 } 20448 20449 /* ARGSUSED */ 20450 int 20451 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20452 ip_ioctl_cmd_t *ipip, void *if_req) 20453 { 20454 /* 20455 * ill_phyint_reinit merged the v4 and v6 into a single 20456 * ipsq. Could also have become part of a ipmp group in the 20457 * process, and we might not have been able to complete the 20458 * slifname in ipif_set_values, if we could not become 20459 * exclusive. If so restart it here 20460 */ 20461 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20462 } 20463 20464 /* 20465 * Return a pointer to the ipif which matches the index, IP version type and 20466 * zoneid. 20467 */ 20468 ipif_t * 20469 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20470 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20471 { 20472 ill_t *ill; 20473 ipsq_t *ipsq; 20474 phyint_t *phyi; 20475 ipif_t *ipif; 20476 20477 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20478 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20479 20480 if (err != NULL) 20481 *err = 0; 20482 20483 /* 20484 * Indexes are stored in the phyint - a common structure 20485 * to both IPv4 and IPv6. 20486 */ 20487 20488 rw_enter(&ill_g_lock, RW_READER); 20489 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20490 (void *) &index, NULL); 20491 if (phyi != NULL) { 20492 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20493 if (ill == NULL) { 20494 rw_exit(&ill_g_lock); 20495 if (err != NULL) 20496 *err = ENXIO; 20497 return (NULL); 20498 } 20499 GRAB_CONN_LOCK(q); 20500 mutex_enter(&ill->ill_lock); 20501 if (ILL_CAN_LOOKUP(ill)) { 20502 for (ipif = ill->ill_ipif; ipif != NULL; 20503 ipif = ipif->ipif_next) { 20504 if (IPIF_CAN_LOOKUP(ipif) && 20505 (zoneid == ALL_ZONES || 20506 zoneid == ipif->ipif_zoneid)) { 20507 ipif_refhold_locked(ipif); 20508 mutex_exit(&ill->ill_lock); 20509 RELEASE_CONN_LOCK(q); 20510 rw_exit(&ill_g_lock); 20511 return (ipif); 20512 } 20513 } 20514 } else if (ILL_CAN_WAIT(ill, q)) { 20515 ipsq = ill->ill_phyint->phyint_ipsq; 20516 mutex_enter(&ipsq->ipsq_lock); 20517 rw_exit(&ill_g_lock); 20518 mutex_exit(&ill->ill_lock); 20519 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20520 mutex_exit(&ipsq->ipsq_lock); 20521 RELEASE_CONN_LOCK(q); 20522 *err = EINPROGRESS; 20523 return (NULL); 20524 } 20525 mutex_exit(&ill->ill_lock); 20526 RELEASE_CONN_LOCK(q); 20527 } 20528 rw_exit(&ill_g_lock); 20529 if (err != NULL) 20530 *err = ENXIO; 20531 return (NULL); 20532 } 20533 20534 typedef struct conn_change_s { 20535 uint_t cc_old_ifindex; 20536 uint_t cc_new_ifindex; 20537 } conn_change_t; 20538 20539 /* 20540 * ipcl_walk function for changing interface index. 20541 */ 20542 static void 20543 conn_change_ifindex(conn_t *connp, caddr_t arg) 20544 { 20545 conn_change_t *connc; 20546 uint_t old_ifindex; 20547 uint_t new_ifindex; 20548 int i; 20549 ilg_t *ilg; 20550 20551 connc = (conn_change_t *)arg; 20552 old_ifindex = connc->cc_old_ifindex; 20553 new_ifindex = connc->cc_new_ifindex; 20554 20555 if (connp->conn_orig_bound_ifindex == old_ifindex) 20556 connp->conn_orig_bound_ifindex = new_ifindex; 20557 20558 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20559 connp->conn_orig_multicast_ifindex = new_ifindex; 20560 20561 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20562 connp->conn_orig_xmit_ifindex = new_ifindex; 20563 20564 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20565 ilg = &connp->conn_ilg[i]; 20566 if (ilg->ilg_orig_ifindex == old_ifindex) 20567 ilg->ilg_orig_ifindex = new_ifindex; 20568 } 20569 } 20570 20571 /* 20572 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20573 * to new_index if it matches the old_index. 20574 * 20575 * Failovers typically happen within a group of ills. But somebody 20576 * can remove an ill from the group after a failover happened. If 20577 * we are setting the ifindex after this, we potentially need to 20578 * look at all the ills rather than just the ones in the group. 20579 * We cut down the work by looking at matching ill_net_types 20580 * and ill_types as we could not possibly grouped them together. 20581 */ 20582 static void 20583 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20584 { 20585 ill_t *ill; 20586 ipif_t *ipif; 20587 uint_t old_ifindex; 20588 uint_t new_ifindex; 20589 ilm_t *ilm; 20590 ill_walk_context_t ctx; 20591 20592 old_ifindex = connc->cc_old_ifindex; 20593 new_ifindex = connc->cc_new_ifindex; 20594 20595 rw_enter(&ill_g_lock, RW_READER); 20596 ill = ILL_START_WALK_ALL(&ctx); 20597 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20598 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20599 (ill_orig->ill_type != ill->ill_type)) { 20600 continue; 20601 } 20602 for (ipif = ill->ill_ipif; ipif != NULL; 20603 ipif = ipif->ipif_next) { 20604 if (ipif->ipif_orig_ifindex == old_ifindex) 20605 ipif->ipif_orig_ifindex = new_ifindex; 20606 } 20607 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20608 if (ilm->ilm_orig_ifindex == old_ifindex) 20609 ilm->ilm_orig_ifindex = new_ifindex; 20610 } 20611 } 20612 rw_exit(&ill_g_lock); 20613 } 20614 20615 /* 20616 * We first need to ensure that the new index is unique, and 20617 * then carry the change across both v4 and v6 ill representation 20618 * of the physical interface. 20619 */ 20620 /* ARGSUSED */ 20621 int 20622 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20623 ip_ioctl_cmd_t *ipip, void *ifreq) 20624 { 20625 ill_t *ill; 20626 ill_t *ill_other; 20627 phyint_t *phyi; 20628 int old_index; 20629 conn_change_t connc; 20630 struct ifreq *ifr = (struct ifreq *)ifreq; 20631 struct lifreq *lifr = (struct lifreq *)ifreq; 20632 uint_t index; 20633 ill_t *ill_v4; 20634 ill_t *ill_v6; 20635 20636 if (ipip->ipi_cmd_type == IF_CMD) 20637 index = ifr->ifr_index; 20638 else 20639 index = lifr->lifr_index; 20640 20641 /* 20642 * Only allow on physical interface. Also, index zero is illegal. 20643 * 20644 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20645 * 20646 * 1) If PHYI_FAILED is set, a failover could have happened which 20647 * implies a possible failback might have to happen. As failback 20648 * depends on the old index, we should fail setting the index. 20649 * 20650 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20651 * any addresses or multicast memberships are failed over to 20652 * a non-STANDBY interface. As failback depends on the old 20653 * index, we should fail setting the index for this case also. 20654 * 20655 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20656 * Be consistent with PHYI_FAILED and fail the ioctl. 20657 */ 20658 ill = ipif->ipif_ill; 20659 phyi = ill->ill_phyint; 20660 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20661 ipif->ipif_id != 0 || index == 0) { 20662 return (EINVAL); 20663 } 20664 old_index = phyi->phyint_ifindex; 20665 20666 /* If the index is not changing, no work to do */ 20667 if (old_index == index) 20668 return (0); 20669 20670 /* 20671 * Use ill_lookup_on_ifindex to determine if the 20672 * new index is unused and if so allow the change. 20673 */ 20674 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20675 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20676 if (ill_v6 != NULL || ill_v4 != NULL) { 20677 if (ill_v4 != NULL) 20678 ill_refrele(ill_v4); 20679 if (ill_v6 != NULL) 20680 ill_refrele(ill_v6); 20681 return (EBUSY); 20682 } 20683 20684 /* 20685 * The new index is unused. Set it in the phyint. 20686 * Locate the other ill so that we can send a routing 20687 * sockets message. 20688 */ 20689 if (ill->ill_isv6) { 20690 ill_other = phyi->phyint_illv4; 20691 } else { 20692 ill_other = phyi->phyint_illv6; 20693 } 20694 20695 phyi->phyint_ifindex = index; 20696 20697 connc.cc_old_ifindex = old_index; 20698 connc.cc_new_ifindex = index; 20699 ip_change_ifindex(ill, &connc); 20700 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20701 20702 /* Send the routing sockets message */ 20703 ip_rts_ifmsg(ipif); 20704 if (ill_other != NULL) 20705 ip_rts_ifmsg(ill_other->ill_ipif); 20706 20707 return (0); 20708 } 20709 20710 /* ARGSUSED */ 20711 int 20712 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20713 ip_ioctl_cmd_t *ipip, void *ifreq) 20714 { 20715 struct ifreq *ifr = (struct ifreq *)ifreq; 20716 struct lifreq *lifr = (struct lifreq *)ifreq; 20717 20718 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20719 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20720 /* Get the interface index */ 20721 if (ipip->ipi_cmd_type == IF_CMD) { 20722 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20723 } else { 20724 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20725 } 20726 return (0); 20727 } 20728 20729 /* ARGSUSED */ 20730 int 20731 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20732 ip_ioctl_cmd_t *ipip, void *ifreq) 20733 { 20734 struct lifreq *lifr = (struct lifreq *)ifreq; 20735 20736 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20737 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20738 /* Get the interface zone */ 20739 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20740 lifr->lifr_zoneid = ipif->ipif_zoneid; 20741 return (0); 20742 } 20743 20744 /* 20745 * Set the zoneid of an interface. 20746 */ 20747 /* ARGSUSED */ 20748 int 20749 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20750 ip_ioctl_cmd_t *ipip, void *ifreq) 20751 { 20752 struct lifreq *lifr = (struct lifreq *)ifreq; 20753 int err = 0; 20754 boolean_t need_up = B_FALSE; 20755 zone_t *zptr; 20756 zone_status_t status; 20757 zoneid_t zoneid; 20758 20759 /* cannot assign instance zero to a non-global zone */ 20760 if (ipif->ipif_id == 0) 20761 return (ENOTSUP); 20762 20763 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20764 zoneid = lifr->lifr_zoneid; 20765 20766 /* 20767 * Cannot assign to a zone that doesn't exist or is shutting down. In 20768 * the event of a race with the zone shutdown processing, since IP 20769 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20770 * interface will be cleaned up even if the zone is shut down 20771 * immediately after the status check. If the interface can't be brought 20772 * down right away, and the zone is shut down before the restart 20773 * function is called, we resolve the possible races by rechecking the 20774 * zone status in the restart function. 20775 */ 20776 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20777 return (EINVAL); 20778 status = zone_status_get(zptr); 20779 zone_rele(zptr); 20780 20781 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20782 return (EINVAL); 20783 20784 if (ipif->ipif_flags & IPIF_UP) { 20785 /* 20786 * If the interface is already marked up, 20787 * we call ipif_down which will take care 20788 * of ditching any IREs that have been set 20789 * up based on the old interface address. 20790 */ 20791 err = ipif_logical_down(ipif, q, mp); 20792 if (err == EINPROGRESS) 20793 return (err); 20794 ipif_down_tail(ipif); 20795 need_up = B_TRUE; 20796 } 20797 20798 err = ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, need_up); 20799 return (err); 20800 } 20801 20802 static int 20803 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20804 queue_t *q, mblk_t *mp, boolean_t need_up) 20805 { 20806 int err = 0; 20807 20808 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20809 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20810 20811 /* Set the new zone id. */ 20812 ipif->ipif_zoneid = zoneid; 20813 20814 /* Update sctp list */ 20815 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20816 20817 if (need_up) { 20818 /* 20819 * Now bring the interface back up. If this 20820 * is the only IPIF for the ILL, ipif_up 20821 * will have to re-bind to the device, so 20822 * we may get back EINPROGRESS, in which 20823 * case, this IOCTL will get completed in 20824 * ip_rput_dlpi when we see the DL_BIND_ACK. 20825 */ 20826 err = ipif_up(ipif, q, mp); 20827 } 20828 return (err); 20829 } 20830 20831 /* ARGSUSED */ 20832 int 20833 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20834 ip_ioctl_cmd_t *ipip, void *if_req) 20835 { 20836 struct lifreq *lifr = (struct lifreq *)if_req; 20837 zoneid_t zoneid; 20838 zone_t *zptr; 20839 zone_status_t status; 20840 20841 ASSERT(ipif->ipif_id != 0); 20842 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20843 zoneid = lifr->lifr_zoneid; 20844 20845 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 20846 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20847 20848 /* 20849 * We recheck the zone status to resolve the following race condition: 20850 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 20851 * 2) hme0:1 is up and can't be brought down right away; 20852 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 20853 * 3) zone "myzone" is halted; the zone status switches to 20854 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 20855 * the interfaces to remove - hme0:1 is not returned because it's not 20856 * yet in "myzone", so it won't be removed; 20857 * 4) the restart function for SIOCSLIFZONE is called; without the 20858 * status check here, we would have hme0:1 in "myzone" after it's been 20859 * destroyed. 20860 * Note that if the status check fails, we need to bring the interface 20861 * back to its state prior to ip_sioctl_slifzone(), hence the call to 20862 * ipif_up_done[_v6](). 20863 */ 20864 status = ZONE_IS_UNINITIALIZED; 20865 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 20866 status = zone_status_get(zptr); 20867 zone_rele(zptr); 20868 } 20869 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 20870 if (ipif->ipif_isv6) { 20871 (void) ipif_up_done_v6(ipif); 20872 } else { 20873 (void) ipif_up_done(ipif); 20874 } 20875 return (EINVAL); 20876 } 20877 20878 ipif_down_tail(ipif); 20879 20880 return (ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, B_TRUE)); 20881 } 20882 20883 /* ARGSUSED */ 20884 int 20885 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20886 ip_ioctl_cmd_t *ipip, void *ifreq) 20887 { 20888 struct lifreq *lifr = ifreq; 20889 20890 ASSERT(q->q_next == NULL); 20891 ASSERT(CONN_Q(q)); 20892 20893 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 20894 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20895 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 20896 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 20897 20898 return (0); 20899 } 20900 20901 20902 /* Find the previous ILL in this usesrc group */ 20903 static ill_t * 20904 ill_prev_usesrc(ill_t *uill) 20905 { 20906 ill_t *ill; 20907 20908 for (ill = uill->ill_usesrc_grp_next; 20909 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 20910 ill = ill->ill_usesrc_grp_next) 20911 /* do nothing */; 20912 return (ill); 20913 } 20914 20915 /* 20916 * Release all members of the usesrc group. This routine is called 20917 * from ill_delete when the interface being unplumbed is the 20918 * group head. 20919 */ 20920 static void 20921 ill_disband_usesrc_group(ill_t *uill) 20922 { 20923 ill_t *next_ill, *tmp_ill; 20924 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 20925 next_ill = uill->ill_usesrc_grp_next; 20926 20927 do { 20928 ASSERT(next_ill != NULL); 20929 tmp_ill = next_ill->ill_usesrc_grp_next; 20930 ASSERT(tmp_ill != NULL); 20931 next_ill->ill_usesrc_grp_next = NULL; 20932 next_ill->ill_usesrc_ifindex = 0; 20933 next_ill = tmp_ill; 20934 } while (next_ill->ill_usesrc_ifindex != 0); 20935 uill->ill_usesrc_grp_next = NULL; 20936 } 20937 20938 /* 20939 * Remove the client usesrc ILL from the list and relink to a new list 20940 */ 20941 int 20942 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 20943 { 20944 ill_t *ill, *tmp_ill; 20945 20946 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 20947 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 20948 20949 /* 20950 * Check if the usesrc client ILL passed in is not already 20951 * in use as a usesrc ILL i.e one whose source address is 20952 * in use OR a usesrc ILL is not already in use as a usesrc 20953 * client ILL 20954 */ 20955 if ((ucill->ill_usesrc_ifindex == 0) || 20956 (uill->ill_usesrc_ifindex != 0)) { 20957 return (-1); 20958 } 20959 20960 ill = ill_prev_usesrc(ucill); 20961 ASSERT(ill->ill_usesrc_grp_next != NULL); 20962 20963 /* Remove from the current list */ 20964 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 20965 /* Only two elements in the list */ 20966 ASSERT(ill->ill_usesrc_ifindex == 0); 20967 ill->ill_usesrc_grp_next = NULL; 20968 } else { 20969 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 20970 } 20971 20972 if (ifindex == 0) { 20973 ucill->ill_usesrc_ifindex = 0; 20974 ucill->ill_usesrc_grp_next = NULL; 20975 return (0); 20976 } 20977 20978 ucill->ill_usesrc_ifindex = ifindex; 20979 tmp_ill = uill->ill_usesrc_grp_next; 20980 uill->ill_usesrc_grp_next = ucill; 20981 ucill->ill_usesrc_grp_next = 20982 (tmp_ill != NULL) ? tmp_ill : uill; 20983 return (0); 20984 } 20985 20986 /* 20987 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 20988 * ip.c for locking details. 20989 */ 20990 /* ARGSUSED */ 20991 int 20992 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20993 ip_ioctl_cmd_t *ipip, void *ifreq) 20994 { 20995 struct lifreq *lifr = (struct lifreq *)ifreq; 20996 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 20997 ill_flag_changed = B_FALSE; 20998 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 20999 int err = 0, ret; 21000 uint_t ifindex; 21001 phyint_t *us_phyint, *us_cli_phyint; 21002 ipsq_t *ipsq = NULL; 21003 21004 ASSERT(IAM_WRITER_IPIF(ipif)); 21005 ASSERT(q->q_next == NULL); 21006 ASSERT(CONN_Q(q)); 21007 21008 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 21009 us_cli_phyint = usesrc_cli_ill->ill_phyint; 21010 21011 ASSERT(us_cli_phyint != NULL); 21012 21013 /* 21014 * If the client ILL is being used for IPMP, abort. 21015 * Note, this can be done before ipsq_try_enter since we are already 21016 * exclusive on this ILL 21017 */ 21018 if ((us_cli_phyint->phyint_groupname != NULL) || 21019 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21020 return (EINVAL); 21021 } 21022 21023 ifindex = lifr->lifr_index; 21024 if (ifindex == 0) { 21025 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21026 /* non usesrc group interface, nothing to reset */ 21027 return (0); 21028 } 21029 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21030 /* valid reset request */ 21031 reset_flg = B_TRUE; 21032 } 21033 21034 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21035 ip_process_ioctl, &err); 21036 21037 if (usesrc_ill == NULL) { 21038 return (err); 21039 } 21040 21041 /* 21042 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21043 * group nor can either of the interfaces be used for standy. So 21044 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21045 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21046 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21047 * We are already exlusive on this ipsq i.e ipsq corresponding to 21048 * the usesrc_cli_ill 21049 */ 21050 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21051 NEW_OP, B_TRUE); 21052 if (ipsq == NULL) { 21053 err = EINPROGRESS; 21054 /* Operation enqueued on the ipsq of the usesrc ILL */ 21055 goto done; 21056 } 21057 21058 /* Check if the usesrc_ill is used for IPMP */ 21059 us_phyint = usesrc_ill->ill_phyint; 21060 if ((us_phyint->phyint_groupname != NULL) || 21061 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21062 err = EINVAL; 21063 goto done; 21064 } 21065 21066 /* 21067 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21068 * already a client then return EINVAL 21069 */ 21070 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21071 err = EINVAL; 21072 goto done; 21073 } 21074 21075 /* 21076 * If the ill_usesrc_ifindex field is already set to what it needs to 21077 * be then this is a duplicate operation. 21078 */ 21079 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21080 err = 0; 21081 goto done; 21082 } 21083 21084 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21085 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21086 usesrc_ill->ill_isv6)); 21087 21088 /* 21089 * The next step ensures that no new ires will be created referencing 21090 * the client ill, until the ILL_CHANGING flag is cleared. Then 21091 * we go through an ire walk deleting all ire caches that reference 21092 * the client ill. New ires referencing the client ill that are added 21093 * to the ire table before the ILL_CHANGING flag is set, will be 21094 * cleaned up by the ire walk below. Attempt to add new ires referencing 21095 * the client ill while the ILL_CHANGING flag is set will be failed 21096 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21097 * checks (under the ill_g_usesrc_lock) that the ire being added 21098 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21099 * belong to the same usesrc group. 21100 */ 21101 mutex_enter(&usesrc_cli_ill->ill_lock); 21102 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21103 mutex_exit(&usesrc_cli_ill->ill_lock); 21104 ill_flag_changed = B_TRUE; 21105 21106 if (ipif->ipif_isv6) 21107 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21108 ALL_ZONES); 21109 else 21110 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21111 ALL_ZONES); 21112 21113 /* 21114 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21115 * and the ill_usesrc_ifindex fields 21116 */ 21117 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21118 21119 if (reset_flg) { 21120 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21121 if (ret != 0) { 21122 err = EINVAL; 21123 } 21124 rw_exit(&ill_g_usesrc_lock); 21125 goto done; 21126 } 21127 21128 /* 21129 * Four possibilities to consider: 21130 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21131 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21132 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21133 * 4. Both are part of their respective usesrc groups 21134 */ 21135 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21136 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21137 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21138 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21139 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21140 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21141 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21142 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21143 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21144 /* Insert at head of list */ 21145 usesrc_cli_ill->ill_usesrc_grp_next = 21146 usesrc_ill->ill_usesrc_grp_next; 21147 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21148 } else { 21149 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21150 ifindex); 21151 if (ret != 0) 21152 err = EINVAL; 21153 } 21154 rw_exit(&ill_g_usesrc_lock); 21155 21156 done: 21157 if (ill_flag_changed) { 21158 mutex_enter(&usesrc_cli_ill->ill_lock); 21159 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21160 mutex_exit(&usesrc_cli_ill->ill_lock); 21161 } 21162 if (ipsq != NULL) 21163 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21164 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21165 ill_refrele(usesrc_ill); 21166 return (err); 21167 } 21168 21169 /* 21170 * comparison function used by avl. 21171 */ 21172 static int 21173 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21174 { 21175 21176 uint_t index; 21177 21178 ASSERT(phyip != NULL && index_ptr != NULL); 21179 21180 index = *((uint_t *)index_ptr); 21181 /* 21182 * let the phyint with the lowest index be on top. 21183 */ 21184 if (((phyint_t *)phyip)->phyint_ifindex < index) 21185 return (1); 21186 if (((phyint_t *)phyip)->phyint_ifindex > index) 21187 return (-1); 21188 return (0); 21189 } 21190 21191 /* 21192 * comparison function used by avl. 21193 */ 21194 static int 21195 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21196 { 21197 ill_t *ill; 21198 int res = 0; 21199 21200 ASSERT(phyip != NULL && name_ptr != NULL); 21201 21202 if (((phyint_t *)phyip)->phyint_illv4) 21203 ill = ((phyint_t *)phyip)->phyint_illv4; 21204 else 21205 ill = ((phyint_t *)phyip)->phyint_illv6; 21206 ASSERT(ill != NULL); 21207 21208 res = strcmp(ill->ill_name, (char *)name_ptr); 21209 if (res > 0) 21210 return (1); 21211 else if (res < 0) 21212 return (-1); 21213 return (0); 21214 } 21215 /* 21216 * This function is called from ill_delete when the ill is being 21217 * unplumbed. We remove the reference from the phyint and we also 21218 * free the phyint when there are no more references to it. 21219 */ 21220 static void 21221 ill_phyint_free(ill_t *ill) 21222 { 21223 phyint_t *phyi; 21224 phyint_t *next_phyint; 21225 ipsq_t *cur_ipsq; 21226 21227 ASSERT(ill->ill_phyint != NULL); 21228 21229 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21230 phyi = ill->ill_phyint; 21231 ill->ill_phyint = NULL; 21232 /* 21233 * ill_init allocates a phyint always to store the copy 21234 * of flags relevant to phyint. At that point in time, we could 21235 * not assign the name and hence phyint_illv4/v6 could not be 21236 * initialized. Later in ipif_set_values, we assign the name to 21237 * the ill, at which point in time we assign phyint_illv4/v6. 21238 * Thus we don't rely on phyint_illv6 to be initialized always. 21239 */ 21240 if (ill->ill_flags & ILLF_IPV6) { 21241 phyi->phyint_illv6 = NULL; 21242 } else { 21243 phyi->phyint_illv4 = NULL; 21244 } 21245 /* 21246 * ipif_down removes it from the group when the last ipif goes 21247 * down. 21248 */ 21249 ASSERT(ill->ill_group == NULL); 21250 21251 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21252 return; 21253 21254 /* 21255 * Make sure this phyint was put in the list. 21256 */ 21257 if (phyi->phyint_ifindex > 0) { 21258 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21259 phyi); 21260 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21261 phyi); 21262 } 21263 /* 21264 * remove phyint from the ipsq list. 21265 */ 21266 cur_ipsq = phyi->phyint_ipsq; 21267 if (phyi == cur_ipsq->ipsq_phyint_list) { 21268 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21269 } else { 21270 next_phyint = cur_ipsq->ipsq_phyint_list; 21271 while (next_phyint != NULL) { 21272 if (next_phyint->phyint_ipsq_next == phyi) { 21273 next_phyint->phyint_ipsq_next = 21274 phyi->phyint_ipsq_next; 21275 break; 21276 } 21277 next_phyint = next_phyint->phyint_ipsq_next; 21278 } 21279 ASSERT(next_phyint != NULL); 21280 } 21281 IPSQ_DEC_REF(cur_ipsq); 21282 21283 if (phyi->phyint_groupname_len != 0) { 21284 ASSERT(phyi->phyint_groupname != NULL); 21285 mi_free(phyi->phyint_groupname); 21286 } 21287 mi_free(phyi); 21288 } 21289 21290 /* 21291 * Attach the ill to the phyint structure which can be shared by both 21292 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21293 * function is called from ipif_set_values and ill_lookup_on_name (for 21294 * loopback) where we know the name of the ill. We lookup the ill and if 21295 * there is one present already with the name use that phyint. Otherwise 21296 * reuse the one allocated by ill_init. 21297 */ 21298 static void 21299 ill_phyint_reinit(ill_t *ill) 21300 { 21301 boolean_t isv6 = ill->ill_isv6; 21302 phyint_t *phyi_old; 21303 phyint_t *phyi; 21304 avl_index_t where = 0; 21305 ill_t *ill_other = NULL; 21306 ipsq_t *ipsq; 21307 21308 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21309 21310 phyi_old = ill->ill_phyint; 21311 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21312 phyi_old->phyint_illv6 == NULL)); 21313 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21314 phyi_old->phyint_illv4 == NULL)); 21315 ASSERT(phyi_old->phyint_ifindex == 0); 21316 21317 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21318 ill->ill_name, &where); 21319 21320 /* 21321 * 1. We grabbed the ill_g_lock before inserting this ill into 21322 * the global list of ills. So no other thread could have located 21323 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21324 * 2. Now locate the other protocol instance of this ill. 21325 * 3. Now grab both ill locks in the right order, and the phyint lock of 21326 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21327 * of neither ill can change. 21328 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21329 * other ill. 21330 * 5. Release all locks. 21331 */ 21332 21333 /* 21334 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21335 * we are initializing IPv4. 21336 */ 21337 if (phyi != NULL) { 21338 ill_other = (isv6) ? phyi->phyint_illv4 : 21339 phyi->phyint_illv6; 21340 ASSERT(ill_other->ill_phyint != NULL); 21341 ASSERT((isv6 && !ill_other->ill_isv6) || 21342 (!isv6 && ill_other->ill_isv6)); 21343 GRAB_ILL_LOCKS(ill, ill_other); 21344 /* 21345 * We are potentially throwing away phyint_flags which 21346 * could be different from the one that we obtain from 21347 * ill_other->ill_phyint. But it is okay as we are assuming 21348 * that the state maintained within IP is correct. 21349 */ 21350 mutex_enter(&phyi->phyint_lock); 21351 if (isv6) { 21352 ASSERT(phyi->phyint_illv6 == NULL); 21353 phyi->phyint_illv6 = ill; 21354 } else { 21355 ASSERT(phyi->phyint_illv4 == NULL); 21356 phyi->phyint_illv4 = ill; 21357 } 21358 /* 21359 * This is a new ill, currently undergoing SLIFNAME 21360 * So we could not have joined an IPMP group until now. 21361 */ 21362 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21363 phyi_old->phyint_groupname == NULL); 21364 21365 /* 21366 * This phyi_old is going away. Decref ipsq_refs and 21367 * assert it is zero. The ipsq itself will be freed in 21368 * ipsq_exit 21369 */ 21370 ipsq = phyi_old->phyint_ipsq; 21371 IPSQ_DEC_REF(ipsq); 21372 ASSERT(ipsq->ipsq_refs == 0); 21373 /* Get the singleton phyint out of the ipsq list */ 21374 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21375 ipsq->ipsq_phyint_list = NULL; 21376 phyi_old->phyint_illv4 = NULL; 21377 phyi_old->phyint_illv6 = NULL; 21378 mi_free(phyi_old); 21379 } else { 21380 mutex_enter(&ill->ill_lock); 21381 /* 21382 * We don't need to acquire any lock, since 21383 * the ill is not yet visible globally and we 21384 * have not yet released the ill_g_lock. 21385 */ 21386 phyi = phyi_old; 21387 mutex_enter(&phyi->phyint_lock); 21388 /* XXX We need a recovery strategy here. */ 21389 if (!phyint_assign_ifindex(phyi)) 21390 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21391 21392 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21393 (void *)phyi, where); 21394 21395 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21396 &phyi->phyint_ifindex, &where); 21397 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21398 (void *)phyi, where); 21399 } 21400 21401 /* 21402 * Reassigning ill_phyint automatically reassigns the ipsq also. 21403 * pending mp is not affected because that is per ill basis. 21404 */ 21405 ill->ill_phyint = phyi; 21406 21407 /* 21408 * Keep the index on ipif_orig_index to be used by FAILOVER. 21409 * We do this here as when the first ipif was allocated, 21410 * ipif_allocate does not know the right interface index. 21411 */ 21412 21413 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21414 /* 21415 * Now that the phyint's ifindex has been assigned, complete the 21416 * remaining 21417 */ 21418 if (ill->ill_isv6) { 21419 ill->ill_ip6_mib->ipv6IfIndex = 21420 ill->ill_phyint->phyint_ifindex; 21421 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21422 ill->ill_phyint->phyint_ifindex; 21423 } 21424 21425 RELEASE_ILL_LOCKS(ill, ill_other); 21426 mutex_exit(&phyi->phyint_lock); 21427 } 21428 21429 /* 21430 * Notify any downstream modules of the name of this interface. 21431 * An M_IOCTL is used even though we don't expect a successful reply. 21432 * Any reply message from the driver (presumably an M_IOCNAK) will 21433 * eventually get discarded somewhere upstream. The message format is 21434 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21435 * to IP. 21436 */ 21437 static void 21438 ip_ifname_notify(ill_t *ill, queue_t *q) 21439 { 21440 mblk_t *mp1, *mp2; 21441 struct iocblk *iocp; 21442 struct lifreq *lifr; 21443 21444 mp1 = mkiocb(SIOCSLIFNAME); 21445 if (mp1 == NULL) 21446 return; 21447 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21448 if (mp2 == NULL) { 21449 freeb(mp1); 21450 return; 21451 } 21452 21453 mp1->b_cont = mp2; 21454 iocp = (struct iocblk *)mp1->b_rptr; 21455 iocp->ioc_count = sizeof (struct lifreq); 21456 21457 lifr = (struct lifreq *)mp2->b_rptr; 21458 mp2->b_wptr += sizeof (struct lifreq); 21459 bzero(lifr, sizeof (struct lifreq)); 21460 21461 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21462 lifr->lifr_ppa = ill->ill_ppa; 21463 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21464 21465 putnext(q, mp1); 21466 } 21467 21468 static boolean_t ip_trash_timer_started = B_FALSE; 21469 21470 static int 21471 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21472 { 21473 int err; 21474 21475 /* Set the obsolete NDD per-interface forwarding name. */ 21476 err = ill_set_ndd_name(ill); 21477 if (err != 0) { 21478 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21479 err); 21480 } 21481 21482 /* Tell downstream modules where they are. */ 21483 ip_ifname_notify(ill, q); 21484 21485 /* 21486 * ill_dl_phys returns EINPROGRESS in the usual case. 21487 * Error cases are ENOMEM ... 21488 */ 21489 err = ill_dl_phys(ill, ipif, mp, q); 21490 21491 /* 21492 * If there is no IRE expiration timer running, get one started. 21493 * igmp and mld timers will be triggered by the first multicast 21494 */ 21495 if (!ip_trash_timer_started) { 21496 /* 21497 * acquire the lock and check again. 21498 */ 21499 mutex_enter(&ip_trash_timer_lock); 21500 if (!ip_trash_timer_started) { 21501 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21502 MSEC_TO_TICK(ip_timer_interval)); 21503 ip_trash_timer_started = B_TRUE; 21504 } 21505 mutex_exit(&ip_trash_timer_lock); 21506 } 21507 21508 if (ill->ill_isv6) { 21509 mutex_enter(&mld_slowtimeout_lock); 21510 if (mld_slowtimeout_id == 0) { 21511 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21512 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21513 } 21514 mutex_exit(&mld_slowtimeout_lock); 21515 } else { 21516 mutex_enter(&igmp_slowtimeout_lock); 21517 if (igmp_slowtimeout_id == 0) { 21518 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21519 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21520 } 21521 mutex_exit(&igmp_slowtimeout_lock); 21522 } 21523 21524 return (err); 21525 } 21526 21527 /* 21528 * Common routine for ppa and ifname setting. Should be called exclusive. 21529 * 21530 * Returns EINPROGRESS when mp has been consumed by queueing it on 21531 * ill_pending_mp and the ioctl will complete in ip_rput. 21532 * 21533 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21534 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21535 * For SLIFNAME, we pass these values back to the userland. 21536 */ 21537 static int 21538 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21539 { 21540 ill_t *ill; 21541 ipif_t *ipif; 21542 ipsq_t *ipsq; 21543 char *ppa_ptr; 21544 char *old_ptr; 21545 char old_char; 21546 int error; 21547 21548 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21549 ASSERT(q->q_next != NULL); 21550 ASSERT(interf_name != NULL); 21551 21552 ill = (ill_t *)q->q_ptr; 21553 21554 ASSERT(ill->ill_name[0] == '\0'); 21555 ASSERT(IAM_WRITER_ILL(ill)); 21556 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21557 ASSERT(ill->ill_ppa == UINT_MAX); 21558 21559 /* The ppa is sent down by ifconfig or is chosen */ 21560 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21561 return (EINVAL); 21562 } 21563 21564 /* 21565 * make sure ppa passed in is same as ppa in the name. 21566 * This check is not made when ppa == UINT_MAX in that case ppa 21567 * in the name could be anything. System will choose a ppa and 21568 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21569 */ 21570 if (*new_ppa_ptr != UINT_MAX) { 21571 /* stoi changes the pointer */ 21572 old_ptr = ppa_ptr; 21573 /* 21574 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21575 * (they don't have an externally visible ppa). We assign one 21576 * here so that we can manage the interface. Note that in 21577 * the past this value was always 0 for DLPI 1 drivers. 21578 */ 21579 if (*new_ppa_ptr == 0) 21580 *new_ppa_ptr = stoi(&old_ptr); 21581 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21582 return (EINVAL); 21583 } 21584 /* 21585 * terminate string before ppa 21586 * save char at that location. 21587 */ 21588 old_char = ppa_ptr[0]; 21589 ppa_ptr[0] = '\0'; 21590 21591 ill->ill_ppa = *new_ppa_ptr; 21592 /* 21593 * Finish as much work now as possible before calling ill_glist_insert 21594 * which makes the ill globally visible and also merges it with the 21595 * other protocol instance of this phyint. The remaining work is 21596 * done after entering the ipsq which may happen sometime later. 21597 * ill_set_ndd_name occurs after the ill has been made globally visible. 21598 */ 21599 ipif = ill->ill_ipif; 21600 21601 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21602 ipif_assign_seqid(ipif); 21603 21604 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21605 ill->ill_flags |= ILLF_IPV4; 21606 21607 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21608 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21609 21610 if (ill->ill_flags & ILLF_IPV6) { 21611 21612 ill->ill_isv6 = B_TRUE; 21613 if (ill->ill_rq != NULL) { 21614 ill->ill_rq->q_qinfo = &rinit_ipv6; 21615 ill->ill_wq->q_qinfo = &winit_ipv6; 21616 } 21617 21618 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21619 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21620 ipif->ipif_v6src_addr = ipv6_all_zeros; 21621 ipif->ipif_v6subnet = ipv6_all_zeros; 21622 ipif->ipif_v6net_mask = ipv6_all_zeros; 21623 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21624 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21625 /* 21626 * point-to-point or Non-mulicast capable 21627 * interfaces won't do NUD unless explicitly 21628 * configured to do so. 21629 */ 21630 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21631 !(ill->ill_flags & ILLF_MULTICAST)) { 21632 ill->ill_flags |= ILLF_NONUD; 21633 } 21634 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21635 if (ill->ill_flags & ILLF_NOARP) { 21636 /* 21637 * Note: xresolv interfaces will eventually need 21638 * NOARP set here as well, but that will require 21639 * those external resolvers to have some 21640 * knowledge of that flag and act appropriately. 21641 * Not to be changed at present. 21642 */ 21643 ill->ill_flags &= ~ILLF_NOARP; 21644 } 21645 /* 21646 * Set the ILLF_ROUTER flag according to the global 21647 * IPv6 forwarding policy. 21648 */ 21649 if (ipv6_forward != 0) 21650 ill->ill_flags |= ILLF_ROUTER; 21651 } else if (ill->ill_flags & ILLF_IPV4) { 21652 ill->ill_isv6 = B_FALSE; 21653 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21654 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21655 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21656 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21657 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21658 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21659 /* 21660 * Set the ILLF_ROUTER flag according to the global 21661 * IPv4 forwarding policy. 21662 */ 21663 if (ip_g_forward != 0) 21664 ill->ill_flags |= ILLF_ROUTER; 21665 } 21666 21667 ASSERT(ill->ill_phyint != NULL); 21668 21669 /* 21670 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21671 * be completed in ill_glist_insert -> ill_phyint_reinit 21672 */ 21673 if (ill->ill_isv6) { 21674 /* allocate v6 mib */ 21675 if (!ill_allocate_mibs(ill)) 21676 return (ENOMEM); 21677 } 21678 21679 /* 21680 * Pick a default sap until we get the DL_INFO_ACK back from 21681 * the driver. 21682 */ 21683 if (ill->ill_sap == 0) { 21684 if (ill->ill_isv6) 21685 ill->ill_sap = IP6_DL_SAP; 21686 else 21687 ill->ill_sap = IP_DL_SAP; 21688 } 21689 21690 ill->ill_ifname_pending = 1; 21691 ill->ill_ifname_pending_err = 0; 21692 21693 ill_refhold(ill); 21694 rw_enter(&ill_g_lock, RW_WRITER); 21695 if ((error = ill_glist_insert(ill, interf_name, 21696 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21697 ill->ill_ppa = UINT_MAX; 21698 ill->ill_name[0] = '\0'; 21699 /* 21700 * undo null termination done above. 21701 */ 21702 ppa_ptr[0] = old_char; 21703 rw_exit(&ill_g_lock); 21704 ill_refrele(ill); 21705 return (error); 21706 } 21707 21708 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21709 21710 /* 21711 * When we return the buffer pointed to by interf_name should contain 21712 * the same name as in ill_name. 21713 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21714 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21715 * so copy full name and update the ppa ptr. 21716 * When ppa passed in != UINT_MAX all values are correct just undo 21717 * null termination, this saves a bcopy. 21718 */ 21719 if (*new_ppa_ptr == UINT_MAX) { 21720 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21721 *new_ppa_ptr = ill->ill_ppa; 21722 } else { 21723 /* 21724 * undo null termination done above. 21725 */ 21726 ppa_ptr[0] = old_char; 21727 } 21728 21729 /* Let SCTP know about this ILL */ 21730 sctp_update_ill(ill, SCTP_ILL_INSERT); 21731 21732 /* and also about the first ipif */ 21733 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21734 21735 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21736 B_TRUE); 21737 21738 rw_exit(&ill_g_lock); 21739 ill_refrele(ill); 21740 if (ipsq == NULL) 21741 return (EINPROGRESS); 21742 21743 /* 21744 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21745 * due to the phyint merge in ill_phyint_reinit. 21746 */ 21747 ASSERT(ipsq->ipsq_current_ipif == NULL || 21748 ipsq->ipsq_current_ipif == ipif); 21749 ipsq->ipsq_current_ipif = ipif; 21750 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21751 error = ipif_set_values_tail(ill, ipif, mp, q); 21752 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21753 if (error != 0 && error != EINPROGRESS) { 21754 /* 21755 * restore previous values 21756 */ 21757 ill->ill_isv6 = B_FALSE; 21758 } 21759 return (error); 21760 } 21761 21762 21763 extern void (*ip_cleanup_func)(void); 21764 21765 void 21766 ipif_init(void) 21767 { 21768 hrtime_t hrt; 21769 int i; 21770 21771 /* 21772 * Can't call drv_getparm here as it is too early in the boot. 21773 * As we use ipif_src_random just for picking a different 21774 * source address everytime, this need not be really random. 21775 */ 21776 hrt = gethrtime(); 21777 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21778 21779 for (i = 0; i < MAX_G_HEADS; i++) { 21780 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21781 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21782 } 21783 21784 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21785 ill_phyint_compare_index, 21786 sizeof (phyint_t), 21787 offsetof(struct phyint, phyint_avl_by_index)); 21788 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21789 ill_phyint_compare_name, 21790 sizeof (phyint_t), 21791 offsetof(struct phyint, phyint_avl_by_name)); 21792 21793 ip_cleanup_func = ip_thread_exit; 21794 } 21795 21796 /* 21797 * This is called by ip_rt_add when src_addr value is other than zero. 21798 * src_addr signifies the source address of the incoming packet. For 21799 * reverse tunnel route we need to create a source addr based routing 21800 * table. This routine creates ip_mrtun_table if it's empty and then 21801 * it adds the route entry hashed by source address. It verifies that 21802 * the outgoing interface is always a non-resolver interface (tunnel). 21803 */ 21804 int 21805 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21806 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21807 { 21808 ire_t *ire; 21809 ire_t *save_ire; 21810 ipif_t *ipif; 21811 ill_t *in_ill = NULL; 21812 ill_t *out_ill; 21813 queue_t *stq; 21814 mblk_t *dlureq_mp; 21815 int error; 21816 21817 if (ire_arg != NULL) 21818 *ire_arg = NULL; 21819 ASSERT(in_src_addr != INADDR_ANY); 21820 21821 ipif = ipif_arg; 21822 if (ipif != NULL) { 21823 out_ill = ipif->ipif_ill; 21824 } else { 21825 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 21826 return (EINVAL); 21827 } 21828 21829 if (src_ipif == NULL) { 21830 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 21831 return (EINVAL); 21832 } 21833 in_ill = src_ipif->ipif_ill; 21834 21835 /* 21836 * Check for duplicates. We don't need to 21837 * match out_ill, because the uniqueness of 21838 * a route is only dependent on src_addr and 21839 * in_ill. 21840 */ 21841 ire = ire_mrtun_lookup(in_src_addr, in_ill); 21842 if (ire != NULL) { 21843 ire_refrele(ire); 21844 return (EEXIST); 21845 } 21846 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 21847 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 21848 ipif->ipif_net_type)); 21849 return (EINVAL); 21850 } 21851 21852 stq = ipif->ipif_wq; 21853 ASSERT(stq != NULL); 21854 21855 /* 21856 * The outgoing interface must be non-resolver 21857 * interface. 21858 */ 21859 dlureq_mp = ill_dlur_gen(NULL, 21860 out_ill->ill_phys_addr_length, out_ill->ill_sap, 21861 out_ill->ill_sap_length); 21862 21863 if (dlureq_mp == NULL) { 21864 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 21865 return (ENOMEM); 21866 } 21867 21868 /* Create the IRE. */ 21869 21870 ire = ire_create( 21871 NULL, /* Zero dst addr */ 21872 NULL, /* Zero mask */ 21873 NULL, /* Zero gateway addr */ 21874 NULL, /* Zero ipif_src addr */ 21875 (uint8_t *)&in_src_addr, /* in_src-addr */ 21876 &ipif->ipif_mtu, 21877 NULL, 21878 NULL, /* rfq */ 21879 stq, 21880 IRE_MIPRTUN, 21881 dlureq_mp, 21882 ipif, 21883 in_ill, 21884 0, 21885 0, 21886 0, 21887 flags, 21888 &ire_uinfo_null); 21889 21890 if (ire == NULL) 21891 return (ENOMEM); 21892 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 21893 ire->ire_type)); 21894 save_ire = ire; 21895 ASSERT(save_ire != NULL); 21896 error = ire_add_mrtun(&ire, q, mp, func); 21897 /* 21898 * If ire_add_mrtun() failed, the ire passed in was freed 21899 * so there is no need to do so here. 21900 */ 21901 if (error != 0) { 21902 return (error); 21903 } 21904 21905 /* Duplicate check */ 21906 if (ire != save_ire) { 21907 /* route already exists by now */ 21908 ire_refrele(ire); 21909 return (EEXIST); 21910 } 21911 21912 if (ire_arg != NULL) { 21913 /* 21914 * Store the ire that was just added. the caller 21915 * ip_rts_request responsible for doing ire_refrele() 21916 * on it. 21917 */ 21918 *ire_arg = ire; 21919 } else { 21920 ire_refrele(ire); /* held in ire_add_mrtun */ 21921 } 21922 21923 return (0); 21924 } 21925 21926 /* 21927 * It is called by ip_rt_delete() only when mipagent requests to delete 21928 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 21929 */ 21930 21931 int 21932 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 21933 { 21934 ire_t *ire = NULL; 21935 21936 if (in_src_addr == INADDR_ANY) 21937 return (EINVAL); 21938 if (src_ipif == NULL) 21939 return (EINVAL); 21940 21941 /* search if this route exists in the ip_mrtun_table */ 21942 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 21943 if (ire == NULL) { 21944 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 21945 return (ESRCH); 21946 } 21947 ire_delete(ire); 21948 ire_refrele(ire); 21949 return (0); 21950 } 21951 21952 /* 21953 * Lookup the ipif corresponding to the onlink destination address. For 21954 * point-to-point interfaces, it matches with remote endpoint destination 21955 * address. For point-to-multipoint interfaces it only tries to match the 21956 * destination with the interface's subnet address. The longest, most specific 21957 * match is found to take care of such rare network configurations like - 21958 * le0: 129.146.1.1/16 21959 * le1: 129.146.2.2/24 21960 * It is used only by SO_DONTROUTE at the moment. 21961 */ 21962 ipif_t * 21963 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 21964 { 21965 ipif_t *ipif, *best_ipif; 21966 ill_t *ill; 21967 ill_walk_context_t ctx; 21968 21969 ASSERT(zoneid != ALL_ZONES); 21970 best_ipif = NULL; 21971 21972 rw_enter(&ill_g_lock, RW_READER); 21973 ill = ILL_START_WALK_V4(&ctx); 21974 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21975 mutex_enter(&ill->ill_lock); 21976 for (ipif = ill->ill_ipif; ipif != NULL; 21977 ipif = ipif->ipif_next) { 21978 if (!IPIF_CAN_LOOKUP(ipif)) 21979 continue; 21980 if (ipif->ipif_zoneid != zoneid) 21981 continue; 21982 /* 21983 * Point-to-point case. Look for exact match with 21984 * destination address. 21985 */ 21986 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 21987 if (ipif->ipif_pp_dst_addr == addr) { 21988 ipif_refhold_locked(ipif); 21989 mutex_exit(&ill->ill_lock); 21990 rw_exit(&ill_g_lock); 21991 if (best_ipif != NULL) 21992 ipif_refrele(best_ipif); 21993 return (ipif); 21994 } 21995 } else if (ipif->ipif_subnet == (addr & 21996 ipif->ipif_net_mask)) { 21997 /* 21998 * Point-to-multipoint case. Looping through to 21999 * find the most specific match. If there are 22000 * multiple best match ipif's then prefer ipif's 22001 * that are UP. If there is only one best match 22002 * ipif and it is DOWN we must still return it. 22003 */ 22004 if ((best_ipif == NULL) || 22005 (ipif->ipif_net_mask > 22006 best_ipif->ipif_net_mask) || 22007 ((ipif->ipif_net_mask == 22008 best_ipif->ipif_net_mask) && 22009 ((ipif->ipif_flags & IPIF_UP) && 22010 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22011 ipif_refhold_locked(ipif); 22012 mutex_exit(&ill->ill_lock); 22013 rw_exit(&ill_g_lock); 22014 if (best_ipif != NULL) 22015 ipif_refrele(best_ipif); 22016 best_ipif = ipif; 22017 rw_enter(&ill_g_lock, RW_READER); 22018 mutex_enter(&ill->ill_lock); 22019 } 22020 } 22021 } 22022 mutex_exit(&ill->ill_lock); 22023 } 22024 rw_exit(&ill_g_lock); 22025 return (best_ipif); 22026 } 22027 22028 22029 /* 22030 * Save enough information so that we can recreate the IRE if 22031 * the interface goes down and then up. 22032 */ 22033 static void 22034 ipif_save_ire(ipif_t *ipif, ire_t *ire) 22035 { 22036 mblk_t *save_mp; 22037 22038 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 22039 if (save_mp != NULL) { 22040 ifrt_t *ifrt; 22041 22042 save_mp->b_wptr += sizeof (ifrt_t); 22043 ifrt = (ifrt_t *)save_mp->b_rptr; 22044 bzero(ifrt, sizeof (ifrt_t)); 22045 ifrt->ifrt_type = ire->ire_type; 22046 ifrt->ifrt_addr = ire->ire_addr; 22047 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 22048 ifrt->ifrt_src_addr = ire->ire_src_addr; 22049 ifrt->ifrt_mask = ire->ire_mask; 22050 ifrt->ifrt_flags = ire->ire_flags; 22051 ifrt->ifrt_max_frag = ire->ire_max_frag; 22052 mutex_enter(&ipif->ipif_saved_ire_lock); 22053 save_mp->b_cont = ipif->ipif_saved_ire_mp; 22054 ipif->ipif_saved_ire_mp = save_mp; 22055 ipif->ipif_saved_ire_cnt++; 22056 mutex_exit(&ipif->ipif_saved_ire_lock); 22057 } 22058 } 22059 22060 22061 static void 22062 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 22063 { 22064 mblk_t **mpp; 22065 mblk_t *mp; 22066 ifrt_t *ifrt; 22067 22068 /* Remove from ipif_saved_ire_mp list if it is there */ 22069 mutex_enter(&ipif->ipif_saved_ire_lock); 22070 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 22071 mpp = &(*mpp)->b_cont) { 22072 /* 22073 * On a given ipif, the triple of address, gateway and 22074 * mask is unique for each saved IRE (in the case of 22075 * ordinary interface routes, the gateway address is 22076 * all-zeroes). 22077 */ 22078 mp = *mpp; 22079 ifrt = (ifrt_t *)mp->b_rptr; 22080 if (ifrt->ifrt_addr == ire->ire_addr && 22081 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22082 ifrt->ifrt_mask == ire->ire_mask) { 22083 *mpp = mp->b_cont; 22084 ipif->ipif_saved_ire_cnt--; 22085 freeb(mp); 22086 break; 22087 } 22088 } 22089 mutex_exit(&ipif->ipif_saved_ire_lock); 22090 } 22091 22092 22093 /* 22094 * IP multirouting broadcast routes handling 22095 * Append CGTP broadcast IREs to regular ones created 22096 * at ifconfig time. 22097 */ 22098 static void 22099 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22100 { 22101 ire_t *ire_prim; 22102 22103 ASSERT(ire != NULL); 22104 ASSERT(ire_dst != NULL); 22105 22106 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22107 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22108 if (ire_prim != NULL) { 22109 /* 22110 * We are in the special case of broadcasts for 22111 * CGTP. We add an IRE_BROADCAST that holds 22112 * the RTF_MULTIRT flag, the destination 22113 * address of ire_dst and the low level 22114 * info of ire_prim. In other words, CGTP 22115 * broadcast is added to the redundant ipif. 22116 */ 22117 ipif_t *ipif_prim; 22118 ire_t *bcast_ire; 22119 22120 ipif_prim = ire_prim->ire_ipif; 22121 22122 ip2dbg(("ip_cgtp_filter_bcast_add: " 22123 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22124 (void *)ire_dst, (void *)ire_prim, 22125 (void *)ipif_prim)); 22126 22127 bcast_ire = ire_create( 22128 (uchar_t *)&ire->ire_addr, 22129 (uchar_t *)&ip_g_all_ones, 22130 (uchar_t *)&ire_dst->ire_src_addr, 22131 (uchar_t *)&ire->ire_gateway_addr, 22132 NULL, 22133 &ipif_prim->ipif_mtu, 22134 NULL, 22135 ipif_prim->ipif_rq, 22136 ipif_prim->ipif_wq, 22137 IRE_BROADCAST, 22138 ipif_prim->ipif_bcast_mp, 22139 ipif_prim, 22140 NULL, 22141 0, 22142 0, 22143 0, 22144 ire->ire_flags, 22145 &ire_uinfo_null); 22146 22147 if (bcast_ire != NULL) { 22148 22149 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 22150 ip2dbg(("ip_cgtp_filter_bcast_add: " 22151 "added bcast_ire %p\n", 22152 (void *)bcast_ire)); 22153 22154 ipif_save_ire(bcast_ire->ire_ipif, 22155 bcast_ire); 22156 ire_refrele(bcast_ire); 22157 } 22158 } 22159 ire_refrele(ire_prim); 22160 } 22161 } 22162 22163 22164 /* 22165 * IP multirouting broadcast routes handling 22166 * Remove the broadcast ire 22167 */ 22168 static void 22169 ip_cgtp_bcast_delete(ire_t *ire) 22170 { 22171 ire_t *ire_dst; 22172 22173 ASSERT(ire != NULL); 22174 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22175 NULL, NULL, MATCH_IRE_TYPE); 22176 if (ire_dst != NULL) { 22177 ire_t *ire_prim; 22178 22179 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22180 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22181 if (ire_prim != NULL) { 22182 ipif_t *ipif_prim; 22183 ire_t *bcast_ire; 22184 22185 ipif_prim = ire_prim->ire_ipif; 22186 22187 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22188 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22189 (void *)ire_dst, (void *)ire_prim, 22190 (void *)ipif_prim)); 22191 22192 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22193 ire->ire_gateway_addr, 22194 IRE_BROADCAST, 22195 ipif_prim, 22196 NULL, 22197 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22198 MATCH_IRE_MASK); 22199 22200 if (bcast_ire != NULL) { 22201 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22202 "looked up bcast_ire %p\n", 22203 (void *)bcast_ire)); 22204 ipif_remove_ire(bcast_ire->ire_ipif, 22205 bcast_ire); 22206 ire_delete(bcast_ire); 22207 } 22208 ire_refrele(ire_prim); 22209 } 22210 ire_refrele(ire_dst); 22211 } 22212 } 22213 22214 /* 22215 * IPsec hardware acceleration capabilities related functions. 22216 */ 22217 22218 /* 22219 * Free a per-ill IPsec capabilities structure. 22220 */ 22221 static void 22222 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22223 { 22224 if (capab->auth_hw_algs != NULL) 22225 kmem_free(capab->auth_hw_algs, capab->algs_size); 22226 if (capab->encr_hw_algs != NULL) 22227 kmem_free(capab->encr_hw_algs, capab->algs_size); 22228 if (capab->encr_algparm != NULL) 22229 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22230 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22231 } 22232 22233 /* 22234 * Allocate a new per-ill IPsec capabilities structure. This structure 22235 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22236 * an array which specifies, for each algorithm, whether this algorithm 22237 * is supported by the ill or not. 22238 */ 22239 static ill_ipsec_capab_t * 22240 ill_ipsec_capab_alloc(void) 22241 { 22242 ill_ipsec_capab_t *capab; 22243 uint_t nelems; 22244 22245 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22246 if (capab == NULL) 22247 return (NULL); 22248 22249 /* we need one bit per algorithm */ 22250 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22251 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22252 22253 /* allocate memory to store algorithm flags */ 22254 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22255 if (capab->encr_hw_algs == NULL) 22256 goto nomem; 22257 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22258 if (capab->auth_hw_algs == NULL) 22259 goto nomem; 22260 /* 22261 * Leave encr_algparm NULL for now since we won't need it half 22262 * the time 22263 */ 22264 return (capab); 22265 22266 nomem: 22267 ill_ipsec_capab_free(capab); 22268 return (NULL); 22269 } 22270 22271 /* 22272 * Resize capability array. Since we're exclusive, this is OK. 22273 */ 22274 static boolean_t 22275 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22276 { 22277 ipsec_capab_algparm_t *nalp, *oalp; 22278 uint32_t olen, nlen; 22279 22280 oalp = capab->encr_algparm; 22281 olen = capab->encr_algparm_size; 22282 22283 if (oalp != NULL) { 22284 if (algid < capab->encr_algparm_end) 22285 return (B_TRUE); 22286 } 22287 22288 nlen = (algid + 1) * sizeof (*nalp); 22289 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22290 if (nalp == NULL) 22291 return (B_FALSE); 22292 22293 if (oalp != NULL) { 22294 bcopy(oalp, nalp, olen); 22295 kmem_free(oalp, olen); 22296 } 22297 capab->encr_algparm = nalp; 22298 capab->encr_algparm_size = nlen; 22299 capab->encr_algparm_end = algid + 1; 22300 22301 return (B_TRUE); 22302 } 22303 22304 /* 22305 * Compare the capabilities of the specified ill with the protocol 22306 * and algorithms specified by the SA passed as argument. 22307 * If they match, returns B_TRUE, B_FALSE if they do not match. 22308 * 22309 * The ill can be passed as a pointer to it, or by specifying its index 22310 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22311 * 22312 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22313 * packet is eligible for hardware acceleration, and by 22314 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22315 * to a particular ill. 22316 */ 22317 boolean_t 22318 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22319 ipsa_t *sa) 22320 { 22321 boolean_t sa_isv6; 22322 uint_t algid; 22323 struct ill_ipsec_capab_s *cpp; 22324 boolean_t need_refrele = B_FALSE; 22325 22326 if (ill == NULL) { 22327 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22328 NULL, NULL, NULL); 22329 if (ill == NULL) { 22330 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22331 return (B_FALSE); 22332 } 22333 need_refrele = B_TRUE; 22334 } 22335 22336 /* 22337 * Use the address length specified by the SA to determine 22338 * if it corresponds to a IPv6 address, and fail the matching 22339 * if the isv6 flag passed as argument does not match. 22340 * Note: this check is used for SADB capability checking before 22341 * sending SA information to an ill. 22342 */ 22343 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22344 if (sa_isv6 != ill_isv6) 22345 /* protocol mismatch */ 22346 goto done; 22347 22348 /* 22349 * Check if the ill supports the protocol, algorithm(s) and 22350 * key size(s) specified by the SA, and get the pointers to 22351 * the algorithms supported by the ill. 22352 */ 22353 switch (sa->ipsa_type) { 22354 22355 case SADB_SATYPE_ESP: 22356 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22357 /* ill does not support ESP acceleration */ 22358 goto done; 22359 cpp = ill->ill_ipsec_capab_esp; 22360 algid = sa->ipsa_auth_alg; 22361 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22362 goto done; 22363 algid = sa->ipsa_encr_alg; 22364 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22365 goto done; 22366 if (algid < cpp->encr_algparm_end) { 22367 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22368 if (sa->ipsa_encrkeybits < alp->minkeylen) 22369 goto done; 22370 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22371 goto done; 22372 } 22373 break; 22374 22375 case SADB_SATYPE_AH: 22376 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22377 /* ill does not support AH acceleration */ 22378 goto done; 22379 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22380 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22381 goto done; 22382 break; 22383 } 22384 22385 if (need_refrele) 22386 ill_refrele(ill); 22387 return (B_TRUE); 22388 done: 22389 if (need_refrele) 22390 ill_refrele(ill); 22391 return (B_FALSE); 22392 } 22393 22394 22395 /* 22396 * Add a new ill to the list of IPsec capable ills. 22397 * Called from ill_capability_ipsec_ack() when an ACK was received 22398 * indicating that IPsec hardware processing was enabled for an ill. 22399 * 22400 * ill must point to the ill for which acceleration was enabled. 22401 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22402 */ 22403 static void 22404 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22405 { 22406 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22407 uint_t sa_type; 22408 uint_t ipproto; 22409 22410 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22411 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22412 22413 switch (dl_cap) { 22414 case DL_CAPAB_IPSEC_AH: 22415 sa_type = SADB_SATYPE_AH; 22416 ills = &ipsec_capab_ills_ah; 22417 ipproto = IPPROTO_AH; 22418 break; 22419 case DL_CAPAB_IPSEC_ESP: 22420 sa_type = SADB_SATYPE_ESP; 22421 ills = &ipsec_capab_ills_esp; 22422 ipproto = IPPROTO_ESP; 22423 break; 22424 } 22425 22426 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22427 22428 /* 22429 * Add ill index to list of hardware accelerators. If 22430 * already in list, do nothing. 22431 */ 22432 for (cur_ill = *ills; cur_ill != NULL && 22433 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22434 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22435 ; 22436 22437 if (cur_ill == NULL) { 22438 /* if this is a new entry for this ill */ 22439 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22440 if (new_ill == NULL) { 22441 rw_exit(&ipsec_capab_ills_lock); 22442 return; 22443 } 22444 22445 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22446 new_ill->ill_isv6 = ill->ill_isv6; 22447 new_ill->next = *ills; 22448 *ills = new_ill; 22449 } else if (!sadb_resync) { 22450 /* not resync'ing SADB and an entry exists for this ill */ 22451 rw_exit(&ipsec_capab_ills_lock); 22452 return; 22453 } 22454 22455 rw_exit(&ipsec_capab_ills_lock); 22456 22457 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22458 /* 22459 * IPsec module for protocol loaded, initiate dump 22460 * of the SADB to this ill. 22461 */ 22462 sadb_ill_download(ill, sa_type); 22463 } 22464 22465 /* 22466 * Remove an ill from the list of IPsec capable ills. 22467 */ 22468 static void 22469 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22470 { 22471 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22472 22473 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22474 dl_cap == DL_CAPAB_IPSEC_ESP); 22475 22476 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22477 &ipsec_capab_ills_esp; 22478 22479 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22480 22481 prev_ill = NULL; 22482 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22483 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22484 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22485 ; 22486 if (cur_ill == NULL) { 22487 /* entry not found */ 22488 rw_exit(&ipsec_capab_ills_lock); 22489 return; 22490 } 22491 if (prev_ill == NULL) { 22492 /* entry at front of list */ 22493 *ills = NULL; 22494 } else { 22495 prev_ill->next = cur_ill->next; 22496 } 22497 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22498 rw_exit(&ipsec_capab_ills_lock); 22499 } 22500 22501 22502 /* 22503 * Handling of DL_CONTROL_REQ messages that must be sent down to 22504 * an ill while having exclusive access. 22505 */ 22506 /* ARGSUSED */ 22507 static void 22508 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22509 { 22510 ill_t *ill = (ill_t *)q->q_ptr; 22511 22512 ill_dlpi_send(ill, mp); 22513 } 22514 22515 22516 /* 22517 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22518 * supporting the specified IPsec protocol acceleration. 22519 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22520 * We free the mblk and, if sa is non-null, release the held referece. 22521 */ 22522 void 22523 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22524 { 22525 ipsec_capab_ill_t *ici, *cur_ici; 22526 ill_t *ill; 22527 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22528 22529 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22530 ipsec_capab_ills_esp; 22531 22532 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22533 22534 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22535 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22536 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22537 22538 /* 22539 * Handle the case where the ill goes away while the SADB is 22540 * attempting to send messages. If it's going away, it's 22541 * nuking its shadow SADB, so we don't care.. 22542 */ 22543 22544 if (ill == NULL) 22545 continue; 22546 22547 if (sa != NULL) { 22548 /* 22549 * Make sure capabilities match before 22550 * sending SA to ill. 22551 */ 22552 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22553 cur_ici->ill_isv6, sa)) { 22554 ill_refrele(ill); 22555 continue; 22556 } 22557 22558 mutex_enter(&sa->ipsa_lock); 22559 sa->ipsa_flags |= IPSA_F_HW; 22560 mutex_exit(&sa->ipsa_lock); 22561 } 22562 22563 /* 22564 * Copy template message, and add it to the front 22565 * of the mblk ship list. We want to avoid holding 22566 * the ipsec_capab_ills_lock while sending the 22567 * message to the ills. 22568 * 22569 * The b_next and b_prev are temporarily used 22570 * to build a list of mblks to be sent down, and to 22571 * save the ill to which they must be sent. 22572 */ 22573 nmp = copymsg(mp); 22574 if (nmp == NULL) { 22575 ill_refrele(ill); 22576 continue; 22577 } 22578 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22579 nmp->b_next = mp_ship_list; 22580 mp_ship_list = nmp; 22581 nmp->b_prev = (mblk_t *)ill; 22582 } 22583 22584 rw_exit(&ipsec_capab_ills_lock); 22585 22586 nmp = mp_ship_list; 22587 while (nmp != NULL) { 22588 /* restore the mblk to a sane state */ 22589 next_mp = nmp->b_next; 22590 nmp->b_next = NULL; 22591 ill = (ill_t *)nmp->b_prev; 22592 nmp->b_prev = NULL; 22593 22594 /* 22595 * Ship the mblk to the ill, must be exclusive. Keep the 22596 * reference to the ill as qwriter_ip() does a ill_referele(). 22597 */ 22598 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22599 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22600 22601 nmp = next_mp; 22602 } 22603 22604 if (sa != NULL) 22605 IPSA_REFRELE(sa); 22606 freemsg(mp); 22607 } 22608 22609 22610 /* 22611 * Derive an interface id from the link layer address. 22612 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22613 */ 22614 static boolean_t 22615 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22616 { 22617 char *addr; 22618 22619 if (phys_length != ETHERADDRL) 22620 return (B_FALSE); 22621 22622 /* Form EUI-64 like address */ 22623 addr = (char *)&v6addr->s6_addr32[2]; 22624 bcopy((char *)phys_addr, addr, 3); 22625 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22626 addr[3] = (char)0xff; 22627 addr[4] = (char)0xfe; 22628 bcopy((char *)phys_addr + 3, addr + 5, 3); 22629 return (B_TRUE); 22630 } 22631 22632 /* ARGSUSED */ 22633 static boolean_t 22634 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22635 { 22636 return (B_FALSE); 22637 } 22638 22639 /* ARGSUSED */ 22640 static boolean_t 22641 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22642 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22643 { 22644 /* 22645 * Multicast address mappings used over Ethernet/802.X. 22646 * This address is used as a base for mappings. 22647 */ 22648 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22649 0x00, 0x00, 0x00}; 22650 22651 /* 22652 * Extract low order 32 bits from IPv6 multicast address. 22653 * Or that into the link layer address, starting from the 22654 * second byte. 22655 */ 22656 *hw_start = 2; 22657 v6_extract_mask->s6_addr32[0] = 0; 22658 v6_extract_mask->s6_addr32[1] = 0; 22659 v6_extract_mask->s6_addr32[2] = 0; 22660 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22661 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22662 return (B_TRUE); 22663 } 22664 22665 /* 22666 * Indicate by return value whether multicast is supported. If not, 22667 * this code should not touch/change any parameters. 22668 */ 22669 /* ARGSUSED */ 22670 static boolean_t 22671 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22672 uint32_t *hw_start, ipaddr_t *extract_mask) 22673 { 22674 /* 22675 * Multicast address mappings used over Ethernet/802.X. 22676 * This address is used as a base for mappings. 22677 */ 22678 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22679 0x00, 0x00, 0x00 }; 22680 22681 if (phys_length != ETHERADDRL) 22682 return (B_FALSE); 22683 22684 *extract_mask = htonl(0x007fffff); 22685 *hw_start = 2; 22686 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22687 return (B_TRUE); 22688 } 22689 22690 /* 22691 * Derive IPoIB interface id from the link layer address. 22692 */ 22693 static boolean_t 22694 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22695 { 22696 char *addr; 22697 22698 if (phys_length != 20) 22699 return (B_FALSE); 22700 addr = (char *)&v6addr->s6_addr32[2]; 22701 bcopy(phys_addr + 12, addr, 8); 22702 /* 22703 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22704 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22705 * rules. In these cases, the IBA considers these GUIDs to be in 22706 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22707 * required; vendors are required not to assign global EUI-64's 22708 * that differ only in u/l bit values, thus guaranteeing uniqueness 22709 * of the interface identifier. Whether the GUID is in modified 22710 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22711 * bit set to 1. 22712 */ 22713 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22714 return (B_TRUE); 22715 } 22716 22717 /* 22718 * Note on mapping from multicast IP addresses to IPoIB multicast link 22719 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22720 * The format of an IPoIB multicast address is: 22721 * 22722 * 4 byte QPN Scope Sign. Pkey 22723 * +--------------------------------------------+ 22724 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22725 * +--------------------------------------------+ 22726 * 22727 * The Scope and Pkey components are properties of the IBA port and 22728 * network interface. They can be ascertained from the broadcast address. 22729 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22730 */ 22731 22732 static boolean_t 22733 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22734 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22735 { 22736 /* 22737 * Base IPoIB IPv6 multicast address used for mappings. 22738 * Does not contain the IBA scope/Pkey values. 22739 */ 22740 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22741 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22742 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22743 22744 /* 22745 * Extract low order 80 bits from IPv6 multicast address. 22746 * Or that into the link layer address, starting from the 22747 * sixth byte. 22748 */ 22749 *hw_start = 6; 22750 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22751 22752 /* 22753 * Now fill in the IBA scope/Pkey values from the broadcast address. 22754 */ 22755 *(maddr + 5) = *(bphys_addr + 5); 22756 *(maddr + 8) = *(bphys_addr + 8); 22757 *(maddr + 9) = *(bphys_addr + 9); 22758 22759 v6_extract_mask->s6_addr32[0] = 0; 22760 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22761 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22762 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22763 return (B_TRUE); 22764 } 22765 22766 static boolean_t 22767 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22768 uint32_t *hw_start, ipaddr_t *extract_mask) 22769 { 22770 /* 22771 * Base IPoIB IPv4 multicast address used for mappings. 22772 * Does not contain the IBA scope/Pkey values. 22773 */ 22774 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22775 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22776 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22777 22778 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22779 return (B_FALSE); 22780 22781 /* 22782 * Extract low order 28 bits from IPv4 multicast address. 22783 * Or that into the link layer address, starting from the 22784 * sixteenth byte. 22785 */ 22786 *extract_mask = htonl(0x0fffffff); 22787 *hw_start = 16; 22788 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22789 22790 /* 22791 * Now fill in the IBA scope/Pkey values from the broadcast address. 22792 */ 22793 *(maddr + 5) = *(bphys_addr + 5); 22794 *(maddr + 8) = *(bphys_addr + 8); 22795 *(maddr + 9) = *(bphys_addr + 9); 22796 return (B_TRUE); 22797 } 22798 22799 /* 22800 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22801 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22802 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22803 * the link-local address is preferred. 22804 */ 22805 boolean_t 22806 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22807 { 22808 ipif_t *ipif; 22809 ipif_t *maybe_ipif = NULL; 22810 22811 mutex_enter(&ill->ill_lock); 22812 if (ill->ill_state_flags & ILL_CONDEMNED) { 22813 mutex_exit(&ill->ill_lock); 22814 if (ipifp != NULL) 22815 *ipifp = NULL; 22816 return (B_FALSE); 22817 } 22818 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 22819 if (!IPIF_CAN_LOOKUP(ipif)) 22820 continue; 22821 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid) 22822 continue; 22823 if ((ipif->ipif_flags & flags) != flags) 22824 continue; 22825 22826 if (ipifp == NULL) { 22827 mutex_exit(&ill->ill_lock); 22828 ASSERT(maybe_ipif == NULL); 22829 return (B_TRUE); 22830 } 22831 if (!ill->ill_isv6 || 22832 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 22833 ipif_refhold_locked(ipif); 22834 mutex_exit(&ill->ill_lock); 22835 *ipifp = ipif; 22836 return (B_TRUE); 22837 } 22838 if (maybe_ipif == NULL) 22839 maybe_ipif = ipif; 22840 } 22841 if (ipifp != NULL) { 22842 if (maybe_ipif != NULL) 22843 ipif_refhold_locked(maybe_ipif); 22844 *ipifp = maybe_ipif; 22845 } 22846 mutex_exit(&ill->ill_lock); 22847 return (maybe_ipif != NULL); 22848 } 22849 22850 /* 22851 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 22852 */ 22853 boolean_t 22854 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22855 { 22856 ill_t *illg; 22857 22858 /* 22859 * We look at the passed-in ill first without grabbing ill_g_lock. 22860 */ 22861 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 22862 return (B_TRUE); 22863 } 22864 rw_enter(&ill_g_lock, RW_READER); 22865 if (ill->ill_group == NULL) { 22866 /* ill not in a group */ 22867 rw_exit(&ill_g_lock); 22868 return (B_FALSE); 22869 } 22870 22871 /* 22872 * There's no ipif in the zone on ill, however ill is part of an IPMP 22873 * group. We need to look for an ipif in the zone on all the ills in the 22874 * group. 22875 */ 22876 illg = ill->ill_group->illgrp_ill; 22877 do { 22878 /* 22879 * We don't call ipif_lookup_zoneid() on ill as we already know 22880 * that it's not there. 22881 */ 22882 if (illg != ill && 22883 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 22884 break; 22885 } 22886 } while ((illg = illg->ill_group_next) != NULL); 22887 rw_exit(&ill_g_lock); 22888 return (illg != NULL); 22889 } 22890 22891 /* 22892 * Check if this ill is only being used to send ICMP probes for IPMP 22893 */ 22894 boolean_t 22895 ill_is_probeonly(ill_t *ill) 22896 { 22897 /* 22898 * Check if the interface is FAILED, or INACTIVE 22899 */ 22900 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 22901 return (B_TRUE); 22902 22903 return (B_FALSE); 22904 } 22905