1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp, boolean_t need_up); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_multicast_down(ipif_t *ipif); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 182 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 183 184 static int ill_alloc_ppa(ill_if_t *, ill_t *); 185 static int ill_arp_off(ill_t *ill); 186 static int ill_arp_on(ill_t *ill); 187 static void ill_delete_interface_type(ill_if_t *); 188 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 189 static void ill_dl_down(ill_t *ill); 190 static void ill_down(ill_t *ill); 191 static void ill_downi(ire_t *ire, char *ill_arg); 192 static void ill_free_mib(ill_t *ill); 193 static void ill_glist_delete(ill_t *); 194 static boolean_t ill_has_usable_ipif(ill_t *); 195 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 196 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 197 static void ill_phyint_free(ill_t *ill); 198 static void ill_phyint_reinit(ill_t *ill); 199 static void ill_set_nce_router_flags(ill_t *, boolean_t); 200 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 201 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 202 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 203 static void ill_stq_cache_delete(ire_t *, char *); 204 205 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 in6_addr_t *); 209 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 210 ipaddr_t *); 211 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 212 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 in6_addr_t *); 214 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 215 ipaddr_t *); 216 217 static void ipif_save_ire(ipif_t *, ire_t *); 218 static void ipif_remove_ire(ipif_t *, ire_t *); 219 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 220 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 221 222 /* 223 * Per-ill IPsec capabilities management. 224 */ 225 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 226 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 227 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 228 static void ill_ipsec_capab_delete(ill_t *, uint_t); 229 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 230 static void ill_capability_proto(ill_t *, int, mblk_t *); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 243 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static void ill_capability_lso_reset(ill_t *, mblk_t **); 245 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 246 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 247 static void ill_capability_dls_reset(ill_t *, mblk_t **); 248 static void ill_capability_dls_disable(ill_t *); 249 250 static void illgrp_cache_delete(ire_t *, char *); 251 static void illgrp_delete(ill_t *ill); 252 static void illgrp_reset_schednext(ill_t *ill); 253 254 static ill_t *ill_prev_usesrc(ill_t *); 255 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 256 static void ill_disband_usesrc_group(ill_t *); 257 258 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 259 260 #ifdef DEBUG 261 static void ill_trace_cleanup(const ill_t *); 262 static void ipif_trace_cleanup(const ipif_t *); 263 #endif 264 265 /* 266 * if we go over the memory footprint limit more than once in this msec 267 * interval, we'll start pruning aggressively. 268 */ 269 int ip_min_frag_prune_time = 0; 270 271 /* 272 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 273 * and the IPsec DOI 274 */ 275 #define MAX_IPSEC_ALGS 256 276 277 #define BITSPERBYTE 8 278 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 279 280 #define IPSEC_ALG_ENABLE(algs, algid) \ 281 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 282 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 283 284 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 285 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 286 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 287 288 typedef uint8_t ipsec_capab_elem_t; 289 290 /* 291 * Per-algorithm parameters. Note that at present, only encryption 292 * algorithms have variable keysize (IKE does not provide a way to negotiate 293 * auth algorithm keysize). 294 * 295 * All sizes here are in bits. 296 */ 297 typedef struct 298 { 299 uint16_t minkeylen; 300 uint16_t maxkeylen; 301 } ipsec_capab_algparm_t; 302 303 /* 304 * Per-ill capabilities. 305 */ 306 struct ill_ipsec_capab_s { 307 ipsec_capab_elem_t *encr_hw_algs; 308 ipsec_capab_elem_t *auth_hw_algs; 309 uint32_t algs_size; /* size of _hw_algs in bytes */ 310 /* algorithm key lengths */ 311 ipsec_capab_algparm_t *encr_algparm; 312 uint32_t encr_algparm_size; 313 uint32_t encr_algparm_end; 314 }; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static sin6_t sin6_null; /* Zero address for quick clears */ 518 static sin_t sin_null; /* Zero address for quick clears */ 519 520 /* When set search for unused ipif_seqid */ 521 static ipif_t ipif_zero; 522 523 /* 524 * ppa arena is created after these many 525 * interfaces have been plumbed. 526 */ 527 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 528 529 /* 530 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 531 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 532 * set through platform specific code (Niagara/Ontario). 533 */ 534 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 535 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 536 537 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 538 539 static uint_t 540 ipif_rand(ip_stack_t *ipst) 541 { 542 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 543 12345; 544 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 545 } 546 547 /* 548 * Allocate per-interface mibs. 549 * Returns true if ok. False otherwise. 550 * ipsq may not yet be allocated (loopback case ). 551 */ 552 static boolean_t 553 ill_allocate_mibs(ill_t *ill) 554 { 555 /* Already allocated? */ 556 if (ill->ill_ip_mib != NULL) { 557 if (ill->ill_isv6) 558 ASSERT(ill->ill_icmp6_mib != NULL); 559 return (B_TRUE); 560 } 561 562 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 563 KM_NOSLEEP); 564 if (ill->ill_ip_mib == NULL) { 565 return (B_FALSE); 566 } 567 568 /* Setup static information */ 569 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 570 sizeof (mib2_ipIfStatsEntry_t)); 571 if (ill->ill_isv6) { 572 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 573 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 574 sizeof (mib2_ipv6AddrEntry_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 576 sizeof (mib2_ipv6RouteEntry_t)); 577 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 578 sizeof (mib2_ipv6NetToMediaEntry_t)); 579 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 580 sizeof (ipv6_member_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 582 sizeof (ipv6_grpsrc_t)); 583 } else { 584 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 585 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 586 sizeof (mib2_ipAddrEntry_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 588 sizeof (mib2_ipRouteEntry_t)); 589 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 590 sizeof (mib2_ipNetToMediaEntry_t)); 591 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 592 sizeof (ip_member_t)); 593 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 594 sizeof (ip_grpsrc_t)); 595 596 /* 597 * For a v4 ill, we are done at this point, because per ill 598 * icmp mibs are only used for v6. 599 */ 600 return (B_TRUE); 601 } 602 603 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 604 KM_NOSLEEP); 605 if (ill->ill_icmp6_mib == NULL) { 606 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 607 ill->ill_ip_mib = NULL; 608 return (B_FALSE); 609 } 610 /* static icmp info */ 611 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 612 sizeof (mib2_ipv6IfIcmpEntry_t); 613 /* 614 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 615 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 616 * -> ill_phyint_reinit 617 */ 618 return (B_TRUE); 619 } 620 621 /* 622 * Common code for preparation of ARP commands. Two points to remember: 623 * 1) The ill_name is tacked on at the end of the allocated space so 624 * the templates name_offset field must contain the total space 625 * to allocate less the name length. 626 * 627 * 2) The templates name_length field should contain the *template* 628 * length. We use it as a parameter to bcopy() and then write 629 * the real ill_name_length into the name_length field of the copy. 630 * (Always called as writer.) 631 */ 632 mblk_t * 633 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 634 { 635 arc_t *arc = (arc_t *)template; 636 char *cp; 637 int len; 638 mblk_t *mp; 639 uint_t name_length = ill->ill_name_length; 640 uint_t template_len = arc->arc_name_length; 641 642 len = arc->arc_name_offset + name_length; 643 mp = allocb(len, BPRI_HI); 644 if (mp == NULL) 645 return (NULL); 646 cp = (char *)mp->b_rptr; 647 mp->b_wptr = (uchar_t *)&cp[len]; 648 if (template_len) 649 bcopy(template, cp, template_len); 650 if (len > template_len) 651 bzero(&cp[template_len], len - template_len); 652 mp->b_datap->db_type = M_PROTO; 653 654 arc = (arc_t *)cp; 655 arc->arc_name_length = name_length; 656 cp = (char *)arc + arc->arc_name_offset; 657 bcopy(ill->ill_name, cp, name_length); 658 659 if (addr) { 660 area_t *area = (area_t *)mp->b_rptr; 661 662 cp = (char *)area + area->area_proto_addr_offset; 663 bcopy(addr, cp, area->area_proto_addr_length); 664 if (area->area_cmd == AR_ENTRY_ADD) { 665 cp = (char *)area; 666 len = area->area_proto_addr_length; 667 if (area->area_proto_mask_offset) 668 cp += area->area_proto_mask_offset; 669 else 670 cp += area->area_proto_addr_offset + len; 671 while (len-- > 0) 672 *cp++ = (char)~0; 673 } 674 } 675 return (mp); 676 } 677 678 mblk_t * 679 ipif_area_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ipif_ared_alloc(ipif_t *ipif) 687 { 688 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 689 (char *)&ipif->ipif_lcl_addr)); 690 } 691 692 mblk_t * 693 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 694 { 695 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 696 (char *)&addr)); 697 } 698 699 /* 700 * Completely vaporize a lower level tap and all associated interfaces. 701 * ill_delete is called only out of ip_close when the device control 702 * stream is being closed. 703 */ 704 void 705 ill_delete(ill_t *ill) 706 { 707 ipif_t *ipif; 708 ill_t *prev_ill; 709 ip_stack_t *ipst = ill->ill_ipst; 710 711 /* 712 * ill_delete may be forcibly entering the ipsq. The previous 713 * ioctl may not have completed and may need to be aborted. 714 * ipsq_flush takes care of it. If we don't need to enter the 715 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 716 * ill_delete_tail is sufficient. 717 */ 718 ipsq_flush(ill); 719 720 /* 721 * Nuke all interfaces. ipif_free will take down the interface, 722 * remove it from the list, and free the data structure. 723 * Walk down the ipif list and remove the logical interfaces 724 * first before removing the main ipif. We can't unplumb 725 * zeroth interface first in the case of IPv6 as reset_conn_ill 726 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 727 * POINTOPOINT. 728 * 729 * If ill_ipif was not properly initialized (i.e low on memory), 730 * then no interfaces to clean up. In this case just clean up the 731 * ill. 732 */ 733 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 734 ipif_free(ipif); 735 736 /* 737 * Used only by ill_arp_on and ill_arp_off, which are writers. 738 * So nobody can be using this mp now. Free the mp allocated for 739 * honoring ILLF_NOARP 740 */ 741 freemsg(ill->ill_arp_on_mp); 742 ill->ill_arp_on_mp = NULL; 743 744 /* Clean up msgs on pending upcalls for mrouted */ 745 reset_mrt_ill(ill); 746 747 /* 748 * ipif_free -> reset_conn_ipif will remove all multicast 749 * references for IPv4. For IPv6, we need to do it here as 750 * it points only at ills. 751 */ 752 reset_conn_ill(ill); 753 754 /* 755 * ill_down will arrange to blow off any IRE's dependent on this 756 * ILL, and shut down fragmentation reassembly. 757 */ 758 ill_down(ill); 759 760 /* Let SCTP know, so that it can remove this from its list. */ 761 sctp_update_ill(ill, SCTP_ILL_REMOVE); 762 763 /* 764 * If an address on this ILL is being used as a source address then 765 * clear out the pointers in other ILLs that point to this ILL. 766 */ 767 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 768 if (ill->ill_usesrc_grp_next != NULL) { 769 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 770 ill_disband_usesrc_group(ill); 771 } else { /* consumer of the usesrc ILL */ 772 prev_ill = ill_prev_usesrc(ill); 773 prev_ill->ill_usesrc_grp_next = 774 ill->ill_usesrc_grp_next; 775 } 776 } 777 rw_exit(&ipst->ips_ill_g_usesrc_lock); 778 } 779 780 static void 781 ipif_non_duplicate(ipif_t *ipif) 782 { 783 ill_t *ill = ipif->ipif_ill; 784 mutex_enter(&ill->ill_lock); 785 if (ipif->ipif_flags & IPIF_DUPLICATE) { 786 ipif->ipif_flags &= ~IPIF_DUPLICATE; 787 ASSERT(ill->ill_ipif_dup_count > 0); 788 ill->ill_ipif_dup_count--; 789 } 790 mutex_exit(&ill->ill_lock); 791 } 792 793 /* 794 * ill_delete_tail is called from ip_modclose after all references 795 * to the closing ill are gone. The wait is done in ip_modclose 796 */ 797 void 798 ill_delete_tail(ill_t *ill) 799 { 800 mblk_t **mpp; 801 ipif_t *ipif; 802 ip_stack_t *ipst = ill->ill_ipst; 803 804 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 805 ipif_non_duplicate(ipif); 806 ipif_down_tail(ipif); 807 } 808 809 ASSERT(ill->ill_ipif_dup_count == 0 && 810 ill->ill_arp_down_mp == NULL && 811 ill->ill_arp_del_mapping_mp == NULL); 812 813 /* 814 * If polling capability is enabled (which signifies direct 815 * upcall into IP and driver has ill saved as a handle), 816 * we need to make sure that unbind has completed before we 817 * let the ill disappear and driver no longer has any reference 818 * to this ill. 819 */ 820 mutex_enter(&ill->ill_lock); 821 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 822 cv_wait(&ill->ill_cv, &ill->ill_lock); 823 mutex_exit(&ill->ill_lock); 824 825 /* 826 * Clean up polling and soft ring capabilities 827 */ 828 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 829 ill_capability_dls_disable(ill); 830 831 if (ill->ill_net_type != IRE_LOOPBACK) 832 qprocsoff(ill->ill_rq); 833 834 /* 835 * We do an ipsq_flush once again now. New messages could have 836 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 837 * could also have landed up if an ioctl thread had looked up 838 * the ill before we set the ILL_CONDEMNED flag, but not yet 839 * enqueued the ioctl when we did the ipsq_flush last time. 840 */ 841 ipsq_flush(ill); 842 843 /* 844 * Free capabilities. 845 */ 846 if (ill->ill_ipsec_capab_ah != NULL) { 847 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 848 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 849 ill->ill_ipsec_capab_ah = NULL; 850 } 851 852 if (ill->ill_ipsec_capab_esp != NULL) { 853 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 854 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 855 ill->ill_ipsec_capab_esp = NULL; 856 } 857 858 if (ill->ill_mdt_capab != NULL) { 859 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 860 ill->ill_mdt_capab = NULL; 861 } 862 863 if (ill->ill_hcksum_capab != NULL) { 864 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 865 ill->ill_hcksum_capab = NULL; 866 } 867 868 if (ill->ill_zerocopy_capab != NULL) { 869 kmem_free(ill->ill_zerocopy_capab, 870 sizeof (ill_zerocopy_capab_t)); 871 ill->ill_zerocopy_capab = NULL; 872 } 873 874 if (ill->ill_lso_capab != NULL) { 875 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 876 ill->ill_lso_capab = NULL; 877 } 878 879 if (ill->ill_dls_capab != NULL) { 880 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 881 ill->ill_dls_capab->ill_unbind_conn = NULL; 882 kmem_free(ill->ill_dls_capab, 883 sizeof (ill_dls_capab_t) + 884 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 885 ill->ill_dls_capab = NULL; 886 } 887 888 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 889 890 while (ill->ill_ipif != NULL) 891 ipif_free_tail(ill->ill_ipif); 892 893 /* 894 * We have removed all references to ilm from conn and the ones joined 895 * within the kernel. 896 * 897 * We don't walk conns, mrts and ires because 898 * 899 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 900 * 2) ill_down ->ill_downi walks all the ires and cleans up 901 * ill references. 902 */ 903 ASSERT(ilm_walk_ill(ill) == 0); 904 /* 905 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 906 * could free the phyint. No more reference to the phyint after this 907 * point. 908 */ 909 (void) ill_glist_delete(ill); 910 911 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 912 if (ill->ill_ndd_name != NULL) 913 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 914 rw_exit(&ipst->ips_ip_g_nd_lock); 915 916 917 if (ill->ill_frag_ptr != NULL) { 918 uint_t count; 919 920 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 921 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 922 } 923 mi_free(ill->ill_frag_ptr); 924 ill->ill_frag_ptr = NULL; 925 ill->ill_frag_hash_tbl = NULL; 926 } 927 928 freemsg(ill->ill_nd_lla_mp); 929 /* Free all retained control messages. */ 930 mpp = &ill->ill_first_mp_to_free; 931 do { 932 while (mpp[0]) { 933 mblk_t *mp; 934 mblk_t *mp1; 935 936 mp = mpp[0]; 937 mpp[0] = mp->b_next; 938 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 939 mp1->b_next = NULL; 940 mp1->b_prev = NULL; 941 } 942 freemsg(mp); 943 } 944 } while (mpp++ != &ill->ill_last_mp_to_free); 945 946 ill_free_mib(ill); 947 948 #ifdef DEBUG 949 ill_trace_cleanup(ill); 950 #endif 951 952 /* Drop refcnt here */ 953 netstack_rele(ill->ill_ipst->ips_netstack); 954 ill->ill_ipst = NULL; 955 } 956 957 static void 958 ill_free_mib(ill_t *ill) 959 { 960 ip_stack_t *ipst = ill->ill_ipst; 961 962 /* 963 * MIB statistics must not be lost, so when an interface 964 * goes away the counter values will be added to the global 965 * MIBs. 966 */ 967 if (ill->ill_ip_mib != NULL) { 968 if (ill->ill_isv6) { 969 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 970 ill->ill_ip_mib); 971 } else { 972 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 973 ill->ill_ip_mib); 974 } 975 976 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 977 ill->ill_ip_mib = NULL; 978 } 979 if (ill->ill_icmp6_mib != NULL) { 980 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 981 ill->ill_icmp6_mib); 982 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 983 ill->ill_icmp6_mib = NULL; 984 } 985 } 986 987 /* 988 * Concatenate together a physical address and a sap. 989 * 990 * Sap_lengths are interpreted as follows: 991 * sap_length == 0 ==> no sap 992 * sap_length > 0 ==> sap is at the head of the dlpi address 993 * sap_length < 0 ==> sap is at the tail of the dlpi address 994 */ 995 static void 996 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 997 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 998 { 999 uint16_t sap_addr = (uint16_t)sap_src; 1000 1001 if (sap_length == 0) { 1002 if (phys_src == NULL) 1003 bzero(dst, phys_length); 1004 else 1005 bcopy(phys_src, dst, phys_length); 1006 } else if (sap_length < 0) { 1007 if (phys_src == NULL) 1008 bzero(dst, phys_length); 1009 else 1010 bcopy(phys_src, dst, phys_length); 1011 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1012 } else { 1013 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1014 if (phys_src == NULL) 1015 bzero((char *)dst + sap_length, phys_length); 1016 else 1017 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1018 } 1019 } 1020 1021 /* 1022 * Generate a dl_unitdata_req mblk for the device and address given. 1023 * addr_length is the length of the physical portion of the address. 1024 * If addr is NULL include an all zero address of the specified length. 1025 * TRUE? In any case, addr_length is taken to be the entire length of the 1026 * dlpi address, including the absolute value of sap_length. 1027 */ 1028 mblk_t * 1029 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1030 t_scalar_t sap_length) 1031 { 1032 dl_unitdata_req_t *dlur; 1033 mblk_t *mp; 1034 t_scalar_t abs_sap_length; /* absolute value */ 1035 1036 abs_sap_length = ABS(sap_length); 1037 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1038 DL_UNITDATA_REQ); 1039 if (mp == NULL) 1040 return (NULL); 1041 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1042 /* HACK: accomodate incompatible DLPI drivers */ 1043 if (addr_length == 8) 1044 addr_length = 6; 1045 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1046 dlur->dl_dest_addr_offset = sizeof (*dlur); 1047 dlur->dl_priority.dl_min = 0; 1048 dlur->dl_priority.dl_max = 0; 1049 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1050 (uchar_t *)&dlur[1]); 1051 return (mp); 1052 } 1053 1054 /* 1055 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1056 * Return an error if we already have 1 or more ioctls in progress. 1057 * This is used only for non-exclusive ioctls. Currently this is used 1058 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1059 * and thus need to use ipsq_pending_mp_add. 1060 */ 1061 boolean_t 1062 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1063 { 1064 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1065 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1066 /* 1067 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1068 */ 1069 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1070 (add_mp->b_datap->db_type == M_IOCTL)); 1071 1072 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1073 /* 1074 * Return error if the conn has started closing. The conn 1075 * could have finished cleaning up the pending mp list, 1076 * If so we should not add another mp to the list negating 1077 * the cleanup. 1078 */ 1079 if (connp->conn_state_flags & CONN_CLOSING) 1080 return (B_FALSE); 1081 /* 1082 * Add the pending mp to the head of the list, chained by b_next. 1083 * Note down the conn on which the ioctl request came, in b_prev. 1084 * This will be used to later get the conn, when we get a response 1085 * on the ill queue, from some other module (typically arp) 1086 */ 1087 add_mp->b_next = (void *)ill->ill_pending_mp; 1088 add_mp->b_queue = CONNP_TO_WQ(connp); 1089 ill->ill_pending_mp = add_mp; 1090 if (connp != NULL) 1091 connp->conn_oper_pending_ill = ill; 1092 return (B_TRUE); 1093 } 1094 1095 /* 1096 * Retrieve the ill_pending_mp and return it. We have to walk the list 1097 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1098 */ 1099 mblk_t * 1100 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1101 { 1102 mblk_t *prev = NULL; 1103 mblk_t *curr = NULL; 1104 uint_t id; 1105 conn_t *connp; 1106 1107 /* 1108 * When the conn closes, conn_ioctl_cleanup needs to clean 1109 * up the pending mp, but it does not know the ioc_id and 1110 * passes in a zero for it. 1111 */ 1112 mutex_enter(&ill->ill_lock); 1113 if (ioc_id != 0) 1114 *connpp = NULL; 1115 1116 /* Search the list for the appropriate ioctl based on ioc_id */ 1117 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1118 prev = curr, curr = curr->b_next) { 1119 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1120 connp = Q_TO_CONN(curr->b_queue); 1121 /* Match based on the ioc_id or based on the conn */ 1122 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1123 break; 1124 } 1125 1126 if (curr != NULL) { 1127 /* Unlink the mblk from the pending mp list */ 1128 if (prev != NULL) { 1129 prev->b_next = curr->b_next; 1130 } else { 1131 ASSERT(ill->ill_pending_mp == curr); 1132 ill->ill_pending_mp = curr->b_next; 1133 } 1134 1135 /* 1136 * conn refcnt must have been bumped up at the start of 1137 * the ioctl. So we can safely access the conn. 1138 */ 1139 ASSERT(CONN_Q(curr->b_queue)); 1140 *connpp = Q_TO_CONN(curr->b_queue); 1141 curr->b_next = NULL; 1142 curr->b_queue = NULL; 1143 } 1144 1145 mutex_exit(&ill->ill_lock); 1146 1147 return (curr); 1148 } 1149 1150 /* 1151 * Add the pending mp to the list. There can be only 1 pending mp 1152 * in the list. Any exclusive ioctl that needs to wait for a response 1153 * from another module or driver needs to use this function to set 1154 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1155 * the other module/driver. This is also used while waiting for the 1156 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1157 */ 1158 boolean_t 1159 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1160 int waitfor) 1161 { 1162 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1163 1164 ASSERT(IAM_WRITER_IPIF(ipif)); 1165 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1166 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1167 ASSERT(ipsq->ipsq_pending_mp == NULL); 1168 /* 1169 * The caller may be using a different ipif than the one passed into 1170 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1171 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1172 * that `ipsq_current_ipif == ipif'. 1173 */ 1174 ASSERT(ipsq->ipsq_current_ipif != NULL); 1175 1176 /* 1177 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1178 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1179 */ 1180 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1181 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1182 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1183 1184 if (connp != NULL) { 1185 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1186 /* 1187 * Return error if the conn has started closing. The conn 1188 * could have finished cleaning up the pending mp list, 1189 * If so we should not add another mp to the list negating 1190 * the cleanup. 1191 */ 1192 if (connp->conn_state_flags & CONN_CLOSING) 1193 return (B_FALSE); 1194 } 1195 mutex_enter(&ipsq->ipsq_lock); 1196 ipsq->ipsq_pending_ipif = ipif; 1197 /* 1198 * Note down the queue in b_queue. This will be returned by 1199 * ipsq_pending_mp_get. Caller will then use these values to restart 1200 * the processing 1201 */ 1202 add_mp->b_next = NULL; 1203 add_mp->b_queue = q; 1204 ipsq->ipsq_pending_mp = add_mp; 1205 ipsq->ipsq_waitfor = waitfor; 1206 1207 if (connp != NULL) 1208 connp->conn_oper_pending_ill = ipif->ipif_ill; 1209 mutex_exit(&ipsq->ipsq_lock); 1210 return (B_TRUE); 1211 } 1212 1213 /* 1214 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1215 * queued in the list. 1216 */ 1217 mblk_t * 1218 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1219 { 1220 mblk_t *curr = NULL; 1221 1222 mutex_enter(&ipsq->ipsq_lock); 1223 *connpp = NULL; 1224 if (ipsq->ipsq_pending_mp == NULL) { 1225 mutex_exit(&ipsq->ipsq_lock); 1226 return (NULL); 1227 } 1228 1229 /* There can be only 1 such excl message */ 1230 curr = ipsq->ipsq_pending_mp; 1231 ASSERT(curr != NULL && curr->b_next == NULL); 1232 ipsq->ipsq_pending_ipif = NULL; 1233 ipsq->ipsq_pending_mp = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 mutex_exit(&ipsq->ipsq_lock); 1236 1237 if (CONN_Q(curr->b_queue)) { 1238 /* 1239 * This mp did a refhold on the conn, at the start of the ioctl. 1240 * So we can safely return a pointer to the conn to the caller. 1241 */ 1242 *connpp = Q_TO_CONN(curr->b_queue); 1243 } else { 1244 *connpp = NULL; 1245 } 1246 curr->b_next = NULL; 1247 curr->b_prev = NULL; 1248 return (curr); 1249 } 1250 1251 /* 1252 * Cleanup the ioctl mp queued in ipsq_pending_mp 1253 * - Called in the ill_delete path 1254 * - Called in the M_ERROR or M_HANGUP path on the ill. 1255 * - Called in the conn close path. 1256 */ 1257 boolean_t 1258 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1259 { 1260 mblk_t *mp; 1261 ipsq_t *ipsq; 1262 queue_t *q; 1263 ipif_t *ipif; 1264 1265 ASSERT(IAM_WRITER_ILL(ill)); 1266 ipsq = ill->ill_phyint->phyint_ipsq; 1267 mutex_enter(&ipsq->ipsq_lock); 1268 /* 1269 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1270 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1271 * even if it is meant for another ill, since we have to enqueue 1272 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1273 * If connp is non-null we are called from the conn close path. 1274 */ 1275 mp = ipsq->ipsq_pending_mp; 1276 if (mp == NULL || (connp != NULL && 1277 mp->b_queue != CONNP_TO_WQ(connp))) { 1278 mutex_exit(&ipsq->ipsq_lock); 1279 return (B_FALSE); 1280 } 1281 /* Now remove from the ipsq_pending_mp */ 1282 ipsq->ipsq_pending_mp = NULL; 1283 q = mp->b_queue; 1284 mp->b_next = NULL; 1285 mp->b_prev = NULL; 1286 mp->b_queue = NULL; 1287 1288 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1289 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1290 if (ill->ill_move_in_progress) { 1291 ILL_CLEAR_MOVE(ill); 1292 } else if (ill->ill_up_ipifs) { 1293 ill_group_cleanup(ill); 1294 } 1295 1296 ipif = ipsq->ipsq_pending_ipif; 1297 ipsq->ipsq_pending_ipif = NULL; 1298 ipsq->ipsq_waitfor = 0; 1299 ipsq->ipsq_current_ipif = NULL; 1300 ipsq->ipsq_current_ioctl = 0; 1301 mutex_exit(&ipsq->ipsq_lock); 1302 1303 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1304 if (connp == NULL) { 1305 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1306 } else { 1307 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1308 mutex_enter(&ipif->ipif_ill->ill_lock); 1309 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1310 mutex_exit(&ipif->ipif_ill->ill_lock); 1311 } 1312 } else { 1313 /* 1314 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1315 * be just inet_freemsg. we have to restart it 1316 * otherwise the thread will be stuck. 1317 */ 1318 inet_freemsg(mp); 1319 } 1320 return (B_TRUE); 1321 } 1322 1323 /* 1324 * The ill is closing. Cleanup all the pending mps. Called exclusively 1325 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1326 * knows this ill, and hence nobody can add an mp to this list 1327 */ 1328 static void 1329 ill_pending_mp_cleanup(ill_t *ill) 1330 { 1331 mblk_t *mp; 1332 queue_t *q; 1333 1334 ASSERT(IAM_WRITER_ILL(ill)); 1335 1336 mutex_enter(&ill->ill_lock); 1337 /* 1338 * Every mp on the pending mp list originating from an ioctl 1339 * added 1 to the conn refcnt, at the start of the ioctl. 1340 * So bump it down now. See comments in ip_wput_nondata() 1341 */ 1342 while (ill->ill_pending_mp != NULL) { 1343 mp = ill->ill_pending_mp; 1344 ill->ill_pending_mp = mp->b_next; 1345 mutex_exit(&ill->ill_lock); 1346 1347 q = mp->b_queue; 1348 ASSERT(CONN_Q(q)); 1349 mp->b_next = NULL; 1350 mp->b_prev = NULL; 1351 mp->b_queue = NULL; 1352 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1353 mutex_enter(&ill->ill_lock); 1354 } 1355 ill->ill_pending_ipif = NULL; 1356 1357 mutex_exit(&ill->ill_lock); 1358 } 1359 1360 /* 1361 * Called in the conn close path and ill delete path 1362 */ 1363 static void 1364 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1365 { 1366 ipsq_t *ipsq; 1367 mblk_t *prev; 1368 mblk_t *curr; 1369 mblk_t *next; 1370 queue_t *q; 1371 mblk_t *tmp_list = NULL; 1372 1373 ASSERT(IAM_WRITER_ILL(ill)); 1374 if (connp != NULL) 1375 q = CONNP_TO_WQ(connp); 1376 else 1377 q = ill->ill_wq; 1378 1379 ipsq = ill->ill_phyint->phyint_ipsq; 1380 /* 1381 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1382 * In the case of ioctl from a conn, there can be only 1 mp 1383 * queued on the ipsq. If an ill is being unplumbed, only messages 1384 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1385 * ioctls meant for this ill form conn's are not flushed. They will 1386 * be processed during ipsq_exit and will not find the ill and will 1387 * return error. 1388 */ 1389 mutex_enter(&ipsq->ipsq_lock); 1390 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1391 curr = next) { 1392 next = curr->b_next; 1393 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1394 /* Unlink the mblk from the pending mp list */ 1395 if (prev != NULL) { 1396 prev->b_next = curr->b_next; 1397 } else { 1398 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1399 ipsq->ipsq_xopq_mphead = curr->b_next; 1400 } 1401 if (ipsq->ipsq_xopq_mptail == curr) 1402 ipsq->ipsq_xopq_mptail = prev; 1403 /* 1404 * Create a temporary list and release the ipsq lock 1405 * New elements are added to the head of the tmp_list 1406 */ 1407 curr->b_next = tmp_list; 1408 tmp_list = curr; 1409 } else { 1410 prev = curr; 1411 } 1412 } 1413 mutex_exit(&ipsq->ipsq_lock); 1414 1415 while (tmp_list != NULL) { 1416 curr = tmp_list; 1417 tmp_list = curr->b_next; 1418 curr->b_next = NULL; 1419 curr->b_prev = NULL; 1420 curr->b_queue = NULL; 1421 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1422 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1423 CONN_CLOSE : NO_COPYOUT, NULL); 1424 } else { 1425 /* 1426 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1427 * this can't be just inet_freemsg. we have to 1428 * restart it otherwise the thread will be stuck. 1429 */ 1430 inet_freemsg(curr); 1431 } 1432 } 1433 } 1434 1435 /* 1436 * This conn has started closing. Cleanup any pending ioctl from this conn. 1437 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1438 */ 1439 void 1440 conn_ioctl_cleanup(conn_t *connp) 1441 { 1442 mblk_t *curr; 1443 ipsq_t *ipsq; 1444 ill_t *ill; 1445 boolean_t refheld; 1446 1447 /* 1448 * Is any exclusive ioctl pending ? If so clean it up. If the 1449 * ioctl has not yet started, the mp is pending in the list headed by 1450 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1451 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1452 * is currently executing now the mp is not queued anywhere but 1453 * conn_oper_pending_ill is null. The conn close will wait 1454 * till the conn_ref drops to zero. 1455 */ 1456 mutex_enter(&connp->conn_lock); 1457 ill = connp->conn_oper_pending_ill; 1458 if (ill == NULL) { 1459 mutex_exit(&connp->conn_lock); 1460 return; 1461 } 1462 1463 curr = ill_pending_mp_get(ill, &connp, 0); 1464 if (curr != NULL) { 1465 mutex_exit(&connp->conn_lock); 1466 CONN_DEC_REF(connp); 1467 inet_freemsg(curr); 1468 return; 1469 } 1470 /* 1471 * We may not be able to refhold the ill if the ill/ipif 1472 * is changing. But we need to make sure that the ill will 1473 * not vanish. So we just bump up the ill_waiter count. 1474 */ 1475 refheld = ill_waiter_inc(ill); 1476 mutex_exit(&connp->conn_lock); 1477 if (refheld) { 1478 if (ipsq_enter(ill, B_TRUE)) { 1479 ill_waiter_dcr(ill); 1480 /* 1481 * Check whether this ioctl has started and is 1482 * pending now in ipsq_pending_mp. If it is not 1483 * found there then check whether this ioctl has 1484 * not even started and is in the ipsq_xopq list. 1485 */ 1486 if (!ipsq_pending_mp_cleanup(ill, connp)) 1487 ipsq_xopq_mp_cleanup(ill, connp); 1488 ipsq = ill->ill_phyint->phyint_ipsq; 1489 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1490 return; 1491 } 1492 } 1493 1494 /* 1495 * The ill is also closing and we could not bump up the 1496 * ill_waiter_count or we could not enter the ipsq. Leave 1497 * the cleanup to ill_delete 1498 */ 1499 mutex_enter(&connp->conn_lock); 1500 while (connp->conn_oper_pending_ill != NULL) 1501 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1502 mutex_exit(&connp->conn_lock); 1503 if (refheld) 1504 ill_waiter_dcr(ill); 1505 } 1506 1507 /* 1508 * ipcl_walk function for cleaning up conn_*_ill fields. 1509 */ 1510 static void 1511 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1512 { 1513 ill_t *ill = (ill_t *)arg; 1514 ire_t *ire; 1515 1516 mutex_enter(&connp->conn_lock); 1517 if (connp->conn_multicast_ill == ill) { 1518 /* Revert to late binding */ 1519 connp->conn_multicast_ill = NULL; 1520 connp->conn_orig_multicast_ifindex = 0; 1521 } 1522 if (connp->conn_incoming_ill == ill) 1523 connp->conn_incoming_ill = NULL; 1524 if (connp->conn_outgoing_ill == ill) 1525 connp->conn_outgoing_ill = NULL; 1526 if (connp->conn_outgoing_pill == ill) 1527 connp->conn_outgoing_pill = NULL; 1528 if (connp->conn_nofailover_ill == ill) 1529 connp->conn_nofailover_ill = NULL; 1530 if (connp->conn_dhcpinit_ill == ill) { 1531 connp->conn_dhcpinit_ill = NULL; 1532 ASSERT(ill->ill_dhcpinit != 0); 1533 atomic_dec_32(&ill->ill_dhcpinit); 1534 } 1535 if (connp->conn_ire_cache != NULL) { 1536 ire = connp->conn_ire_cache; 1537 /* 1538 * ip_newroute creates IRE_CACHE with ire_stq coming from 1539 * interface X and ipif coming from interface Y, if interface 1540 * X and Y are part of the same IPMPgroup. Thus whenever 1541 * interface X goes down, remove all references to it by 1542 * checking both on ire_ipif and ire_stq. 1543 */ 1544 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1545 (ire->ire_type == IRE_CACHE && 1546 ire->ire_stq == ill->ill_wq)) { 1547 connp->conn_ire_cache = NULL; 1548 mutex_exit(&connp->conn_lock); 1549 ire_refrele_notr(ire); 1550 return; 1551 } 1552 } 1553 mutex_exit(&connp->conn_lock); 1554 1555 } 1556 1557 /* ARGSUSED */ 1558 void 1559 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1560 { 1561 ill_t *ill = q->q_ptr; 1562 ipif_t *ipif; 1563 1564 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1565 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1566 ipif_non_duplicate(ipif); 1567 ipif_down_tail(ipif); 1568 } 1569 freemsg(mp); 1570 ipsq_current_finish(ipsq); 1571 } 1572 1573 /* 1574 * ill_down_start is called when we want to down this ill and bring it up again 1575 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1576 * all interfaces, but don't tear down any plumbing. 1577 */ 1578 boolean_t 1579 ill_down_start(queue_t *q, mblk_t *mp) 1580 { 1581 ill_t *ill = q->q_ptr; 1582 ipif_t *ipif; 1583 1584 ASSERT(IAM_WRITER_ILL(ill)); 1585 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1587 (void) ipif_down(ipif, NULL, NULL); 1588 1589 ill_down(ill); 1590 1591 (void) ipsq_pending_mp_cleanup(ill, NULL); 1592 1593 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1594 1595 /* 1596 * Atomically test and add the pending mp if references are active. 1597 */ 1598 mutex_enter(&ill->ill_lock); 1599 if (!ill_is_quiescent(ill)) { 1600 /* call cannot fail since `conn_t *' argument is NULL */ 1601 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1602 mp, ILL_DOWN); 1603 mutex_exit(&ill->ill_lock); 1604 return (B_FALSE); 1605 } 1606 mutex_exit(&ill->ill_lock); 1607 return (B_TRUE); 1608 } 1609 1610 static void 1611 ill_down(ill_t *ill) 1612 { 1613 ip_stack_t *ipst = ill->ill_ipst; 1614 1615 /* Blow off any IREs dependent on this ILL. */ 1616 ire_walk(ill_downi, (char *)ill, ipst); 1617 1618 /* Remove any conn_*_ill depending on this ill */ 1619 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1620 1621 if (ill->ill_group != NULL) { 1622 illgrp_delete(ill); 1623 } 1624 } 1625 1626 /* 1627 * ire_walk routine used to delete every IRE that depends on queues 1628 * associated with 'ill'. (Always called as writer.) 1629 */ 1630 static void 1631 ill_downi(ire_t *ire, char *ill_arg) 1632 { 1633 ill_t *ill = (ill_t *)ill_arg; 1634 1635 /* 1636 * ip_newroute creates IRE_CACHE with ire_stq coming from 1637 * interface X and ipif coming from interface Y, if interface 1638 * X and Y are part of the same IPMP group. Thus whenever interface 1639 * X goes down, remove all references to it by checking both 1640 * on ire_ipif and ire_stq. 1641 */ 1642 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1643 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1644 ire_delete(ire); 1645 } 1646 } 1647 1648 /* 1649 * Remove ire/nce from the fastpath list. 1650 */ 1651 void 1652 ill_fastpath_nack(ill_t *ill) 1653 { 1654 nce_fastpath_list_dispatch(ill, NULL, NULL); 1655 } 1656 1657 /* Consume an M_IOCACK of the fastpath probe. */ 1658 void 1659 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1660 { 1661 mblk_t *mp1 = mp; 1662 1663 /* 1664 * If this was the first attempt turn on the fastpath probing. 1665 */ 1666 mutex_enter(&ill->ill_lock); 1667 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1668 ill->ill_dlpi_fastpath_state = IDS_OK; 1669 mutex_exit(&ill->ill_lock); 1670 1671 /* Free the M_IOCACK mblk, hold on to the data */ 1672 mp = mp->b_cont; 1673 freeb(mp1); 1674 if (mp == NULL) 1675 return; 1676 if (mp->b_cont != NULL) { 1677 /* 1678 * Update all IRE's or NCE's that are waiting for 1679 * fastpath update. 1680 */ 1681 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1682 mp1 = mp->b_cont; 1683 freeb(mp); 1684 mp = mp1; 1685 } else { 1686 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1687 } 1688 1689 freeb(mp); 1690 } 1691 1692 /* 1693 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1694 * The data portion of the request is a dl_unitdata_req_t template for 1695 * what we would send downstream in the absence of a fastpath confirmation. 1696 */ 1697 int 1698 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1699 { 1700 struct iocblk *ioc; 1701 mblk_t *mp; 1702 1703 if (dlur_mp == NULL) 1704 return (EINVAL); 1705 1706 mutex_enter(&ill->ill_lock); 1707 switch (ill->ill_dlpi_fastpath_state) { 1708 case IDS_FAILED: 1709 /* 1710 * Driver NAKed the first fastpath ioctl - assume it doesn't 1711 * support it. 1712 */ 1713 mutex_exit(&ill->ill_lock); 1714 return (ENOTSUP); 1715 case IDS_UNKNOWN: 1716 /* This is the first probe */ 1717 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1718 break; 1719 default: 1720 break; 1721 } 1722 mutex_exit(&ill->ill_lock); 1723 1724 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1725 return (EAGAIN); 1726 1727 mp->b_cont = copyb(dlur_mp); 1728 if (mp->b_cont == NULL) { 1729 freeb(mp); 1730 return (EAGAIN); 1731 } 1732 1733 ioc = (struct iocblk *)mp->b_rptr; 1734 ioc->ioc_count = msgdsize(mp->b_cont); 1735 1736 putnext(ill->ill_wq, mp); 1737 return (0); 1738 } 1739 1740 void 1741 ill_capability_probe(ill_t *ill) 1742 { 1743 /* 1744 * Do so only if capabilities are still unknown. 1745 */ 1746 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1747 return; 1748 1749 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1750 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1751 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1752 } 1753 1754 void 1755 ill_capability_reset(ill_t *ill) 1756 { 1757 mblk_t *sc_mp = NULL; 1758 mblk_t *tmp; 1759 1760 /* 1761 * Note here that we reset the state to UNKNOWN, and later send 1762 * down the DL_CAPABILITY_REQ without first setting the state to 1763 * INPROGRESS. We do this in order to distinguish the 1764 * DL_CAPABILITY_ACK response which may come back in response to 1765 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1766 * also handle the case where the driver doesn't send us back 1767 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1768 * requires the state to be in UNKNOWN anyway. In any case, all 1769 * features are turned off until the state reaches IDS_OK. 1770 */ 1771 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1772 ill->ill_capab_reneg = B_FALSE; 1773 1774 /* 1775 * Disable sub-capabilities and request a list of sub-capability 1776 * messages which will be sent down to the driver. Each handler 1777 * allocates the corresponding dl_capability_sub_t inside an 1778 * mblk, and links it to the existing sc_mp mblk, or return it 1779 * as sc_mp if it's the first sub-capability (the passed in 1780 * sc_mp is NULL). Upon returning from all capability handlers, 1781 * sc_mp will be pulled-up, before passing it downstream. 1782 */ 1783 ill_capability_mdt_reset(ill, &sc_mp); 1784 ill_capability_hcksum_reset(ill, &sc_mp); 1785 ill_capability_zerocopy_reset(ill, &sc_mp); 1786 ill_capability_ipsec_reset(ill, &sc_mp); 1787 ill_capability_dls_reset(ill, &sc_mp); 1788 ill_capability_lso_reset(ill, &sc_mp); 1789 1790 /* Nothing to send down in order to disable the capabilities? */ 1791 if (sc_mp == NULL) 1792 return; 1793 1794 tmp = msgpullup(sc_mp, -1); 1795 freemsg(sc_mp); 1796 if ((sc_mp = tmp) == NULL) { 1797 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1798 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1799 return; 1800 } 1801 1802 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1803 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1804 } 1805 1806 /* 1807 * Request or set new-style hardware capabilities supported by DLS provider. 1808 */ 1809 static void 1810 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1811 { 1812 mblk_t *mp; 1813 dl_capability_req_t *capb; 1814 size_t size = 0; 1815 uint8_t *ptr; 1816 1817 if (reqp != NULL) 1818 size = MBLKL(reqp); 1819 1820 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1821 if (mp == NULL) { 1822 freemsg(reqp); 1823 return; 1824 } 1825 ptr = mp->b_rptr; 1826 1827 capb = (dl_capability_req_t *)ptr; 1828 ptr += sizeof (dl_capability_req_t); 1829 1830 if (reqp != NULL) { 1831 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1832 capb->dl_sub_length = size; 1833 bcopy(reqp->b_rptr, ptr, size); 1834 ptr += size; 1835 mp->b_cont = reqp->b_cont; 1836 freeb(reqp); 1837 } 1838 ASSERT(ptr == mp->b_wptr); 1839 1840 ill_dlpi_send(ill, mp); 1841 } 1842 1843 static void 1844 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1845 { 1846 dl_capab_id_t *id_ic; 1847 uint_t sub_dl_cap = outers->dl_cap; 1848 dl_capability_sub_t *inners; 1849 uint8_t *capend; 1850 1851 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1852 1853 /* 1854 * Note: range checks here are not absolutely sufficient to 1855 * make us robust against malformed messages sent by drivers; 1856 * this is in keeping with the rest of IP's dlpi handling. 1857 * (Remember, it's coming from something else in the kernel 1858 * address space) 1859 */ 1860 1861 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1862 if (capend > mp->b_wptr) { 1863 cmn_err(CE_WARN, "ill_capability_id_ack: " 1864 "malformed sub-capability too long for mblk"); 1865 return; 1866 } 1867 1868 id_ic = (dl_capab_id_t *)(outers + 1); 1869 1870 if (outers->dl_length < sizeof (*id_ic) || 1871 (inners = &id_ic->id_subcap, 1872 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1873 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1874 "encapsulated capab type %d too long for mblk", 1875 inners->dl_cap); 1876 return; 1877 } 1878 1879 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1880 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1881 "isn't as expected; pass-thru module(s) detected, " 1882 "discarding capability\n", inners->dl_cap)); 1883 return; 1884 } 1885 1886 /* Process the encapsulated sub-capability */ 1887 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1888 } 1889 1890 /* 1891 * Process Multidata Transmit capability negotiation ack received from a 1892 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1893 * DL_CAPABILITY_ACK message. 1894 */ 1895 static void 1896 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1897 { 1898 mblk_t *nmp = NULL; 1899 dl_capability_req_t *oc; 1900 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1901 ill_mdt_capab_t **ill_mdt_capab; 1902 uint_t sub_dl_cap = isub->dl_cap; 1903 uint8_t *capend; 1904 1905 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1906 1907 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1908 1909 /* 1910 * Note: range checks here are not absolutely sufficient to 1911 * make us robust against malformed messages sent by drivers; 1912 * this is in keeping with the rest of IP's dlpi handling. 1913 * (Remember, it's coming from something else in the kernel 1914 * address space) 1915 */ 1916 1917 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1918 if (capend > mp->b_wptr) { 1919 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1920 "malformed sub-capability too long for mblk"); 1921 return; 1922 } 1923 1924 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1925 1926 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1927 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1928 "unsupported MDT sub-capability (version %d, expected %d)", 1929 mdt_ic->mdt_version, MDT_VERSION_2); 1930 return; 1931 } 1932 1933 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1934 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1935 "capability isn't as expected; pass-thru module(s) " 1936 "detected, discarding capability\n")); 1937 return; 1938 } 1939 1940 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1941 1942 if (*ill_mdt_capab == NULL) { 1943 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1944 KM_NOSLEEP); 1945 1946 if (*ill_mdt_capab == NULL) { 1947 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1948 "could not enable MDT version %d " 1949 "for %s (ENOMEM)\n", MDT_VERSION_2, 1950 ill->ill_name); 1951 return; 1952 } 1953 } 1954 1955 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1956 "MDT version %d (%d bytes leading, %d bytes trailing " 1957 "header spaces, %d max pld bufs, %d span limit)\n", 1958 ill->ill_name, MDT_VERSION_2, 1959 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1960 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1961 1962 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1963 (*ill_mdt_capab)->ill_mdt_on = 1; 1964 /* 1965 * Round the following values to the nearest 32-bit; ULP 1966 * may further adjust them to accomodate for additional 1967 * protocol headers. We pass these values to ULP during 1968 * bind time. 1969 */ 1970 (*ill_mdt_capab)->ill_mdt_hdr_head = 1971 roundup(mdt_ic->mdt_hdr_head, 4); 1972 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1973 roundup(mdt_ic->mdt_hdr_tail, 4); 1974 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1975 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1976 1977 ill->ill_capabilities |= ILL_CAPAB_MDT; 1978 } else { 1979 uint_t size; 1980 uchar_t *rptr; 1981 1982 size = sizeof (dl_capability_req_t) + 1983 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1984 1985 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1986 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1987 "could not enable MDT for %s (ENOMEM)\n", 1988 ill->ill_name); 1989 return; 1990 } 1991 1992 rptr = nmp->b_rptr; 1993 /* initialize dl_capability_req_t */ 1994 oc = (dl_capability_req_t *)nmp->b_rptr; 1995 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1996 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1997 sizeof (dl_capab_mdt_t); 1998 nmp->b_rptr += sizeof (dl_capability_req_t); 1999 2000 /* initialize dl_capability_sub_t */ 2001 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2002 nmp->b_rptr += sizeof (*isub); 2003 2004 /* initialize dl_capab_mdt_t */ 2005 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2006 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2007 2008 nmp->b_rptr = rptr; 2009 2010 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2011 "to enable MDT version %d\n", ill->ill_name, 2012 MDT_VERSION_2)); 2013 2014 /* set ENABLE flag */ 2015 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2016 2017 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2018 ill_dlpi_send(ill, nmp); 2019 } 2020 } 2021 2022 static void 2023 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2024 { 2025 mblk_t *mp; 2026 dl_capab_mdt_t *mdt_subcap; 2027 dl_capability_sub_t *dl_subcap; 2028 int size; 2029 2030 if (!ILL_MDT_CAPABLE(ill)) 2031 return; 2032 2033 ASSERT(ill->ill_mdt_capab != NULL); 2034 /* 2035 * Clear the capability flag for MDT but retain the ill_mdt_capab 2036 * structure since it's possible that another thread is still 2037 * referring to it. The structure only gets deallocated when 2038 * we destroy the ill. 2039 */ 2040 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2041 2042 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2043 2044 mp = allocb(size, BPRI_HI); 2045 if (mp == NULL) { 2046 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2047 "request to disable MDT\n")); 2048 return; 2049 } 2050 2051 mp->b_wptr = mp->b_rptr + size; 2052 2053 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2054 dl_subcap->dl_cap = DL_CAPAB_MDT; 2055 dl_subcap->dl_length = sizeof (*mdt_subcap); 2056 2057 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2058 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2059 mdt_subcap->mdt_flags = 0; 2060 mdt_subcap->mdt_hdr_head = 0; 2061 mdt_subcap->mdt_hdr_tail = 0; 2062 2063 if (*sc_mp != NULL) 2064 linkb(*sc_mp, mp); 2065 else 2066 *sc_mp = mp; 2067 } 2068 2069 /* 2070 * Send a DL_NOTIFY_REQ to the specified ill to enable 2071 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2072 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2073 * acceleration. 2074 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2075 */ 2076 static boolean_t 2077 ill_enable_promisc_notify(ill_t *ill) 2078 { 2079 mblk_t *mp; 2080 dl_notify_req_t *req; 2081 2082 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2083 2084 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2085 if (mp == NULL) 2086 return (B_FALSE); 2087 2088 req = (dl_notify_req_t *)mp->b_rptr; 2089 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2090 DL_NOTE_PROMISC_OFF_PHYS; 2091 2092 ill_dlpi_send(ill, mp); 2093 2094 return (B_TRUE); 2095 } 2096 2097 2098 /* 2099 * Allocate an IPsec capability request which will be filled by our 2100 * caller to turn on support for one or more algorithms. 2101 */ 2102 static mblk_t * 2103 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2104 { 2105 mblk_t *nmp; 2106 dl_capability_req_t *ocap; 2107 dl_capab_ipsec_t *ocip; 2108 dl_capab_ipsec_t *icip; 2109 uint8_t *ptr; 2110 icip = (dl_capab_ipsec_t *)(isub + 1); 2111 2112 /* 2113 * The first time around, we send a DL_NOTIFY_REQ to enable 2114 * PROMISC_ON/OFF notification from the provider. We need to 2115 * do this before enabling the algorithms to avoid leakage of 2116 * cleartext packets. 2117 */ 2118 2119 if (!ill_enable_promisc_notify(ill)) 2120 return (NULL); 2121 2122 /* 2123 * Allocate new mblk which will contain a new capability 2124 * request to enable the capabilities. 2125 */ 2126 2127 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2128 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2129 if (nmp == NULL) 2130 return (NULL); 2131 2132 ptr = nmp->b_rptr; 2133 2134 /* initialize dl_capability_req_t */ 2135 ocap = (dl_capability_req_t *)ptr; 2136 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2137 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2138 ptr += sizeof (dl_capability_req_t); 2139 2140 /* initialize dl_capability_sub_t */ 2141 bcopy(isub, ptr, sizeof (*isub)); 2142 ptr += sizeof (*isub); 2143 2144 /* initialize dl_capab_ipsec_t */ 2145 ocip = (dl_capab_ipsec_t *)ptr; 2146 bcopy(icip, ocip, sizeof (*icip)); 2147 2148 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2149 return (nmp); 2150 } 2151 2152 /* 2153 * Process an IPsec capability negotiation ack received from a DLS Provider. 2154 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2155 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2156 */ 2157 static void 2158 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2159 { 2160 dl_capab_ipsec_t *icip; 2161 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2162 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2163 uint_t cipher, nciphers; 2164 mblk_t *nmp; 2165 uint_t alg_len; 2166 boolean_t need_sadb_dump; 2167 uint_t sub_dl_cap = isub->dl_cap; 2168 ill_ipsec_capab_t **ill_capab; 2169 uint64_t ill_capab_flag; 2170 uint8_t *capend, *ciphend; 2171 boolean_t sadb_resync; 2172 2173 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2174 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2175 2176 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2178 ill_capab_flag = ILL_CAPAB_AH; 2179 } else { 2180 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2181 ill_capab_flag = ILL_CAPAB_ESP; 2182 } 2183 2184 /* 2185 * If the ill capability structure exists, then this incoming 2186 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2187 * If this is so, then we'd need to resynchronize the SADB 2188 * after re-enabling the offloaded ciphers. 2189 */ 2190 sadb_resync = (*ill_capab != NULL); 2191 2192 /* 2193 * Note: range checks here are not absolutely sufficient to 2194 * make us robust against malformed messages sent by drivers; 2195 * this is in keeping with the rest of IP's dlpi handling. 2196 * (Remember, it's coming from something else in the kernel 2197 * address space) 2198 */ 2199 2200 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2201 if (capend > mp->b_wptr) { 2202 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2203 "malformed sub-capability too long for mblk"); 2204 return; 2205 } 2206 2207 /* 2208 * There are two types of acks we process here: 2209 * 1. acks in reply to a (first form) generic capability req 2210 * (no ENABLE flag set) 2211 * 2. acks in reply to a ENABLE capability req. 2212 * (ENABLE flag set) 2213 * 2214 * We process the subcapability passed as argument as follows: 2215 * 1 do initializations 2216 * 1.1 initialize nmp = NULL 2217 * 1.2 set need_sadb_dump to B_FALSE 2218 * 2 for each cipher in subcapability: 2219 * 2.1 if ENABLE flag is set: 2220 * 2.1.1 update per-ill ipsec capabilities info 2221 * 2.1.2 set need_sadb_dump to B_TRUE 2222 * 2.2 if ENABLE flag is not set: 2223 * 2.2.1 if nmp is NULL: 2224 * 2.2.1.1 allocate and initialize nmp 2225 * 2.2.1.2 init current pos in nmp 2226 * 2.2.2 copy current cipher to current pos in nmp 2227 * 2.2.3 set ENABLE flag in nmp 2228 * 2.2.4 update current pos 2229 * 3 if nmp is not equal to NULL, send enable request 2230 * 3.1 send capability request 2231 * 4 if need_sadb_dump is B_TRUE 2232 * 4.1 enable promiscuous on/off notifications 2233 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2234 * AH or ESP SA's to interface. 2235 */ 2236 2237 nmp = NULL; 2238 oalg = NULL; 2239 need_sadb_dump = B_FALSE; 2240 icip = (dl_capab_ipsec_t *)(isub + 1); 2241 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2242 2243 nciphers = icip->cip_nciphers; 2244 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2245 2246 if (ciphend > capend) { 2247 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2248 "too many ciphers for sub-capability len"); 2249 return; 2250 } 2251 2252 for (cipher = 0; cipher < nciphers; cipher++) { 2253 alg_len = sizeof (dl_capab_ipsec_alg_t); 2254 2255 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2256 /* 2257 * TBD: when we provide a way to disable capabilities 2258 * from above, need to manage the request-pending state 2259 * and fail if we were not expecting this ACK. 2260 */ 2261 IPSECHW_DEBUG(IPSECHW_CAPAB, 2262 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2263 2264 /* 2265 * Update IPsec capabilities for this ill 2266 */ 2267 2268 if (*ill_capab == NULL) { 2269 IPSECHW_DEBUG(IPSECHW_CAPAB, 2270 ("ill_capability_ipsec_ack: " 2271 "allocating ipsec_capab for ill\n")); 2272 *ill_capab = ill_ipsec_capab_alloc(); 2273 2274 if (*ill_capab == NULL) { 2275 cmn_err(CE_WARN, 2276 "ill_capability_ipsec_ack: " 2277 "could not enable IPsec Hardware " 2278 "acceleration for %s (ENOMEM)\n", 2279 ill->ill_name); 2280 return; 2281 } 2282 } 2283 2284 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2285 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2286 2287 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2288 cmn_err(CE_WARN, 2289 "ill_capability_ipsec_ack: " 2290 "malformed IPsec algorithm id %d", 2291 ialg->alg_prim); 2292 continue; 2293 } 2294 2295 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2296 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2297 ialg->alg_prim); 2298 } else { 2299 ipsec_capab_algparm_t *alp; 2300 2301 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2302 ialg->alg_prim); 2303 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2304 ialg->alg_prim)) { 2305 cmn_err(CE_WARN, 2306 "ill_capability_ipsec_ack: " 2307 "no space for IPsec alg id %d", 2308 ialg->alg_prim); 2309 continue; 2310 } 2311 alp = &((*ill_capab)->encr_algparm[ 2312 ialg->alg_prim]); 2313 alp->minkeylen = ialg->alg_minbits; 2314 alp->maxkeylen = ialg->alg_maxbits; 2315 } 2316 ill->ill_capabilities |= ill_capab_flag; 2317 /* 2318 * indicate that a capability was enabled, which 2319 * will be used below to kick off a SADB dump 2320 * to the ill. 2321 */ 2322 need_sadb_dump = B_TRUE; 2323 } else { 2324 IPSECHW_DEBUG(IPSECHW_CAPAB, 2325 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2326 ialg->alg_prim)); 2327 2328 if (nmp == NULL) { 2329 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2330 if (nmp == NULL) { 2331 /* 2332 * Sending the PROMISC_ON/OFF 2333 * notification request failed. 2334 * We cannot enable the algorithms 2335 * since the Provider will not 2336 * notify IP of promiscous mode 2337 * changes, which could lead 2338 * to leakage of packets. 2339 */ 2340 cmn_err(CE_WARN, 2341 "ill_capability_ipsec_ack: " 2342 "could not enable IPsec Hardware " 2343 "acceleration for %s (ENOMEM)\n", 2344 ill->ill_name); 2345 return; 2346 } 2347 /* ptr to current output alg specifier */ 2348 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2349 } 2350 2351 /* 2352 * Copy current alg specifier, set ENABLE 2353 * flag, and advance to next output alg. 2354 * For now we enable all IPsec capabilities. 2355 */ 2356 ASSERT(oalg != NULL); 2357 bcopy(ialg, oalg, alg_len); 2358 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2359 nmp->b_wptr += alg_len; 2360 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2361 } 2362 2363 /* move to next input algorithm specifier */ 2364 ialg = (dl_capab_ipsec_alg_t *) 2365 ((char *)ialg + alg_len); 2366 } 2367 2368 if (nmp != NULL) 2369 /* 2370 * nmp points to a DL_CAPABILITY_REQ message to enable 2371 * IPsec hardware acceleration. 2372 */ 2373 ill_dlpi_send(ill, nmp); 2374 2375 if (need_sadb_dump) 2376 /* 2377 * An acknowledgement corresponding to a request to 2378 * enable acceleration was received, notify SADB. 2379 */ 2380 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2381 } 2382 2383 /* 2384 * Given an mblk with enough space in it, create sub-capability entries for 2385 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2386 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2387 * in preparation for the reset the DL_CAPABILITY_REQ message. 2388 */ 2389 static void 2390 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2391 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2392 { 2393 dl_capab_ipsec_t *oipsec; 2394 dl_capab_ipsec_alg_t *oalg; 2395 dl_capability_sub_t *dl_subcap; 2396 int i, k; 2397 2398 ASSERT(nciphers > 0); 2399 ASSERT(ill_cap != NULL); 2400 ASSERT(mp != NULL); 2401 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2402 2403 /* dl_capability_sub_t for "stype" */ 2404 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2405 dl_subcap->dl_cap = stype; 2406 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2407 mp->b_wptr += sizeof (dl_capability_sub_t); 2408 2409 /* dl_capab_ipsec_t for "stype" */ 2410 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2411 oipsec->cip_version = 1; 2412 oipsec->cip_nciphers = nciphers; 2413 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2414 2415 /* create entries for "stype" AUTH ciphers */ 2416 for (i = 0; i < ill_cap->algs_size; i++) { 2417 for (k = 0; k < BITSPERBYTE; k++) { 2418 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2419 continue; 2420 2421 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2422 bzero((void *)oalg, sizeof (*oalg)); 2423 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2424 oalg->alg_prim = k + (BITSPERBYTE * i); 2425 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2426 } 2427 } 2428 /* create entries for "stype" ENCR ciphers */ 2429 for (i = 0; i < ill_cap->algs_size; i++) { 2430 for (k = 0; k < BITSPERBYTE; k++) { 2431 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2432 continue; 2433 2434 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2435 bzero((void *)oalg, sizeof (*oalg)); 2436 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2437 oalg->alg_prim = k + (BITSPERBYTE * i); 2438 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Macro to count number of 1s in a byte (8-bit word). The total count is 2445 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2446 * POPC instruction, but our macro is more flexible for an arbitrary length 2447 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2448 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2449 * stays that way, we can reduce the number of iterations required. 2450 */ 2451 #define COUNT_1S(val, sum) { \ 2452 uint8_t x = val & 0xff; \ 2453 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2454 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2455 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2456 } 2457 2458 /* ARGSUSED */ 2459 static void 2460 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2461 { 2462 mblk_t *mp; 2463 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2464 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2465 uint64_t ill_capabilities = ill->ill_capabilities; 2466 int ah_cnt = 0, esp_cnt = 0; 2467 int ah_len = 0, esp_len = 0; 2468 int i, size = 0; 2469 2470 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2471 return; 2472 2473 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2474 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2475 2476 /* Find out the number of ciphers for AH */ 2477 if (cap_ah != NULL) { 2478 for (i = 0; i < cap_ah->algs_size; i++) { 2479 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2480 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2481 } 2482 if (ah_cnt > 0) { 2483 size += sizeof (dl_capability_sub_t) + 2484 sizeof (dl_capab_ipsec_t); 2485 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2486 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2487 size += ah_len; 2488 } 2489 } 2490 2491 /* Find out the number of ciphers for ESP */ 2492 if (cap_esp != NULL) { 2493 for (i = 0; i < cap_esp->algs_size; i++) { 2494 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2495 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2496 } 2497 if (esp_cnt > 0) { 2498 size += sizeof (dl_capability_sub_t) + 2499 sizeof (dl_capab_ipsec_t); 2500 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2501 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2502 size += esp_len; 2503 } 2504 } 2505 2506 if (size == 0) { 2507 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2508 "there's nothing to reset\n")); 2509 return; 2510 } 2511 2512 mp = allocb(size, BPRI_HI); 2513 if (mp == NULL) { 2514 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2515 "request to disable IPSEC Hardware Acceleration\n")); 2516 return; 2517 } 2518 2519 /* 2520 * Clear the capability flags for IPsec HA but retain the ill 2521 * capability structures since it's possible that another thread 2522 * is still referring to them. The structures only get deallocated 2523 * when we destroy the ill. 2524 * 2525 * Various places check the flags to see if the ill is capable of 2526 * hardware acceleration, and by clearing them we ensure that new 2527 * outbound IPsec packets are sent down encrypted. 2528 */ 2529 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2530 2531 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2532 if (ah_cnt > 0) { 2533 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2534 cap_ah, mp); 2535 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2536 } 2537 2538 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2539 if (esp_cnt > 0) { 2540 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2541 cap_esp, mp); 2542 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2543 } 2544 2545 /* 2546 * At this point we've composed a bunch of sub-capabilities to be 2547 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2548 * by the caller. Upon receiving this reset message, the driver 2549 * must stop inbound decryption (by destroying all inbound SAs) 2550 * and let the corresponding packets come in encrypted. 2551 */ 2552 2553 if (*sc_mp != NULL) 2554 linkb(*sc_mp, mp); 2555 else 2556 *sc_mp = mp; 2557 } 2558 2559 static void 2560 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2561 boolean_t encapsulated) 2562 { 2563 boolean_t legacy = B_FALSE; 2564 2565 /* 2566 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2567 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2568 * instructed the driver to disable its advertised capabilities, 2569 * so there's no point in accepting any response at this moment. 2570 */ 2571 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2572 return; 2573 2574 /* 2575 * Note that only the following two sub-capabilities may be 2576 * considered as "legacy", since their original definitions 2577 * do not incorporate the dl_mid_t module ID token, and hence 2578 * may require the use of the wrapper sub-capability. 2579 */ 2580 switch (subp->dl_cap) { 2581 case DL_CAPAB_IPSEC_AH: 2582 case DL_CAPAB_IPSEC_ESP: 2583 legacy = B_TRUE; 2584 break; 2585 } 2586 2587 /* 2588 * For legacy sub-capabilities which don't incorporate a queue_t 2589 * pointer in their structures, discard them if we detect that 2590 * there are intermediate modules in between IP and the driver. 2591 */ 2592 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2593 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2594 "%d discarded; %d module(s) present below IP\n", 2595 subp->dl_cap, ill->ill_lmod_cnt)); 2596 return; 2597 } 2598 2599 switch (subp->dl_cap) { 2600 case DL_CAPAB_IPSEC_AH: 2601 case DL_CAPAB_IPSEC_ESP: 2602 ill_capability_ipsec_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_MDT: 2605 ill_capability_mdt_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_HCKSUM: 2608 ill_capability_hcksum_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_ZEROCOPY: 2611 ill_capability_zerocopy_ack(ill, mp, subp); 2612 break; 2613 case DL_CAPAB_POLL: 2614 if (!SOFT_RINGS_ENABLED()) 2615 ill_capability_dls_ack(ill, mp, subp); 2616 break; 2617 case DL_CAPAB_SOFT_RING: 2618 if (SOFT_RINGS_ENABLED()) 2619 ill_capability_dls_ack(ill, mp, subp); 2620 break; 2621 case DL_CAPAB_LSO: 2622 ill_capability_lso_ack(ill, mp, subp); 2623 break; 2624 default: 2625 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2626 subp->dl_cap)); 2627 } 2628 } 2629 2630 /* 2631 * As part of negotiating polling capability, the driver tells us 2632 * the default (or normal) blanking interval and packet threshold 2633 * (the receive timer fires if blanking interval is reached or 2634 * the packet threshold is reached). 2635 * 2636 * As part of manipulating the polling interval, we always use our 2637 * estimated interval (avg service time * number of packets queued 2638 * on the squeue) but we try to blank for a minimum of 2639 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2640 * packet threshold during this time. When we are not in polling mode 2641 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2642 * rr_min_blank_ratio but up the packet cnt by a ratio of 2643 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2644 * possible although for a shorter interval. 2645 */ 2646 #define RR_MAX_BLANK_RATIO 20 2647 #define RR_MIN_BLANK_RATIO 10 2648 #define RR_MAX_PKT_CNT_RATIO 3 2649 #define RR_MIN_PKT_CNT_RATIO 3 2650 2651 /* 2652 * These can be tuned via /etc/system. 2653 */ 2654 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2655 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2656 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2657 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2658 2659 static mac_resource_handle_t 2660 ill_ring_add(void *arg, mac_resource_t *mrp) 2661 { 2662 ill_t *ill = (ill_t *)arg; 2663 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2664 ill_rx_ring_t *rx_ring; 2665 int ip_rx_index; 2666 2667 ASSERT(mrp != NULL); 2668 if (mrp->mr_type != MAC_RX_FIFO) { 2669 return (NULL); 2670 } 2671 ASSERT(ill != NULL); 2672 ASSERT(ill->ill_dls_capab != NULL); 2673 2674 mutex_enter(&ill->ill_lock); 2675 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2676 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2677 ASSERT(rx_ring != NULL); 2678 2679 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2680 time_t normal_blank_time = 2681 mrfp->mrf_normal_blank_time; 2682 uint_t normal_pkt_cnt = 2683 mrfp->mrf_normal_pkt_count; 2684 2685 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2686 2687 rx_ring->rr_blank = mrfp->mrf_blank; 2688 rx_ring->rr_handle = mrfp->mrf_arg; 2689 rx_ring->rr_ill = ill; 2690 rx_ring->rr_normal_blank_time = normal_blank_time; 2691 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2692 2693 rx_ring->rr_max_blank_time = 2694 normal_blank_time * rr_max_blank_ratio; 2695 rx_ring->rr_min_blank_time = 2696 normal_blank_time * rr_min_blank_ratio; 2697 rx_ring->rr_max_pkt_cnt = 2698 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2699 rx_ring->rr_min_pkt_cnt = 2700 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2701 2702 rx_ring->rr_ring_state = ILL_RING_INUSE; 2703 mutex_exit(&ill->ill_lock); 2704 2705 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2706 (int), ip_rx_index); 2707 return ((mac_resource_handle_t)rx_ring); 2708 } 2709 } 2710 2711 /* 2712 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2713 * we have devices which can overwhelm this limit, ILL_MAX_RING 2714 * should be made configurable. Meanwhile it cause no panic because 2715 * driver will pass ip_input a NULL handle which will make 2716 * IP allocate the default squeue and Polling mode will not 2717 * be used for this ring. 2718 */ 2719 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2720 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2721 2722 mutex_exit(&ill->ill_lock); 2723 return (NULL); 2724 } 2725 2726 static boolean_t 2727 ill_capability_dls_init(ill_t *ill) 2728 { 2729 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2730 conn_t *connp; 2731 size_t sz; 2732 ip_stack_t *ipst = ill->ill_ipst; 2733 2734 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2735 if (ill_dls == NULL) { 2736 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2737 "soft_ring enabled for ill=%s (%p) but data " 2738 "structs uninitialized\n", ill->ill_name, 2739 (void *)ill); 2740 } 2741 return (B_TRUE); 2742 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2743 if (ill_dls == NULL) { 2744 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2745 "polling enabled for ill=%s (%p) but data " 2746 "structs uninitialized\n", ill->ill_name, 2747 (void *)ill); 2748 } 2749 return (B_TRUE); 2750 } 2751 2752 if (ill_dls != NULL) { 2753 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2754 /* Soft_Ring or polling is being re-enabled */ 2755 2756 connp = ill_dls->ill_unbind_conn; 2757 ASSERT(rx_ring != NULL); 2758 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2759 bzero((void *)rx_ring, 2760 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2761 ill_dls->ill_ring_tbl = rx_ring; 2762 ill_dls->ill_unbind_conn = connp; 2763 return (B_TRUE); 2764 } 2765 2766 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2767 ipst->ips_netstack)) == NULL) 2768 return (B_FALSE); 2769 2770 sz = sizeof (ill_dls_capab_t); 2771 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2772 2773 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2774 if (ill_dls == NULL) { 2775 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2776 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2777 (void *)ill); 2778 CONN_DEC_REF(connp); 2779 return (B_FALSE); 2780 } 2781 2782 /* Allocate space to hold ring table */ 2783 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2784 ill->ill_dls_capab = ill_dls; 2785 ill_dls->ill_unbind_conn = connp; 2786 return (B_TRUE); 2787 } 2788 2789 /* 2790 * ill_capability_dls_disable: disable soft_ring and/or polling 2791 * capability. Since any of the rings might already be in use, need 2792 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2793 * direct calls if necessary. 2794 */ 2795 static void 2796 ill_capability_dls_disable(ill_t *ill) 2797 { 2798 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2799 2800 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2801 ip_squeue_clean_all(ill); 2802 ill_dls->ill_tx = NULL; 2803 ill_dls->ill_tx_handle = NULL; 2804 ill_dls->ill_dls_change_status = NULL; 2805 ill_dls->ill_dls_bind = NULL; 2806 ill_dls->ill_dls_unbind = NULL; 2807 } 2808 2809 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2810 } 2811 2812 static void 2813 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2814 dl_capability_sub_t *isub) 2815 { 2816 uint_t size; 2817 uchar_t *rptr; 2818 dl_capab_dls_t dls, *odls; 2819 ill_dls_capab_t *ill_dls; 2820 mblk_t *nmp = NULL; 2821 dl_capability_req_t *ocap; 2822 uint_t sub_dl_cap = isub->dl_cap; 2823 2824 if (!ill_capability_dls_init(ill)) 2825 return; 2826 ill_dls = ill->ill_dls_capab; 2827 2828 /* Copy locally to get the members aligned */ 2829 bcopy((void *)idls, (void *)&dls, 2830 sizeof (dl_capab_dls_t)); 2831 2832 /* Get the tx function and handle from dld */ 2833 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2834 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2835 2836 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2837 ill_dls->ill_dls_change_status = 2838 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2839 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2840 ill_dls->ill_dls_unbind = 2841 (ip_dls_unbind_t)dls.dls_ring_unbind; 2842 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2843 } 2844 2845 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2846 isub->dl_length; 2847 2848 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2849 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2850 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2851 ill->ill_name, (void *)ill); 2852 return; 2853 } 2854 2855 /* initialize dl_capability_req_t */ 2856 rptr = nmp->b_rptr; 2857 ocap = (dl_capability_req_t *)rptr; 2858 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2859 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2860 rptr += sizeof (dl_capability_req_t); 2861 2862 /* initialize dl_capability_sub_t */ 2863 bcopy(isub, rptr, sizeof (*isub)); 2864 rptr += sizeof (*isub); 2865 2866 odls = (dl_capab_dls_t *)rptr; 2867 rptr += sizeof (dl_capab_dls_t); 2868 2869 /* initialize dl_capab_dls_t to be sent down */ 2870 dls.dls_rx_handle = (uintptr_t)ill; 2871 dls.dls_rx = (uintptr_t)ip_input; 2872 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2873 2874 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2875 dls.dls_ring_cnt = ip_soft_rings_cnt; 2876 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2877 dls.dls_flags = SOFT_RING_ENABLE; 2878 } else { 2879 dls.dls_flags = POLL_ENABLE; 2880 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2881 "to enable polling\n", ill->ill_name)); 2882 } 2883 bcopy((void *)&dls, (void *)odls, 2884 sizeof (dl_capab_dls_t)); 2885 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2886 /* 2887 * nmp points to a DL_CAPABILITY_REQ message to 2888 * enable either soft_ring or polling 2889 */ 2890 ill_dlpi_send(ill, nmp); 2891 } 2892 2893 static void 2894 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2895 { 2896 mblk_t *mp; 2897 dl_capab_dls_t *idls; 2898 dl_capability_sub_t *dl_subcap; 2899 int size; 2900 2901 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2902 return; 2903 2904 ASSERT(ill->ill_dls_capab != NULL); 2905 2906 size = sizeof (*dl_subcap) + sizeof (*idls); 2907 2908 mp = allocb(size, BPRI_HI); 2909 if (mp == NULL) { 2910 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2911 "request to disable soft_ring\n")); 2912 return; 2913 } 2914 2915 mp->b_wptr = mp->b_rptr + size; 2916 2917 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2918 dl_subcap->dl_length = sizeof (*idls); 2919 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2920 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2921 else 2922 dl_subcap->dl_cap = DL_CAPAB_POLL; 2923 2924 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2925 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2926 idls->dls_flags = SOFT_RING_DISABLE; 2927 else 2928 idls->dls_flags = POLL_DISABLE; 2929 2930 if (*sc_mp != NULL) 2931 linkb(*sc_mp, mp); 2932 else 2933 *sc_mp = mp; 2934 } 2935 2936 /* 2937 * Process a soft_ring/poll capability negotiation ack received 2938 * from a DLS Provider.isub must point to the sub-capability 2939 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2940 */ 2941 static void 2942 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2943 { 2944 dl_capab_dls_t *idls; 2945 uint_t sub_dl_cap = isub->dl_cap; 2946 uint8_t *capend; 2947 2948 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2949 sub_dl_cap == DL_CAPAB_POLL); 2950 2951 if (ill->ill_isv6) 2952 return; 2953 2954 /* 2955 * Note: range checks here are not absolutely sufficient to 2956 * make us robust against malformed messages sent by drivers; 2957 * this is in keeping with the rest of IP's dlpi handling. 2958 * (Remember, it's coming from something else in the kernel 2959 * address space) 2960 */ 2961 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2962 if (capend > mp->b_wptr) { 2963 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2964 "malformed sub-capability too long for mblk"); 2965 return; 2966 } 2967 2968 /* 2969 * There are two types of acks we process here: 2970 * 1. acks in reply to a (first form) generic capability req 2971 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2972 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2973 * capability req. 2974 */ 2975 idls = (dl_capab_dls_t *)(isub + 1); 2976 2977 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2978 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2979 "capability isn't as expected; pass-thru " 2980 "module(s) detected, discarding capability\n")); 2981 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2982 /* 2983 * This is a capability renegotitation case. 2984 * The interface better be unusable at this 2985 * point other wise bad things will happen 2986 * if we disable direct calls on a running 2987 * and up interface. 2988 */ 2989 ill_capability_dls_disable(ill); 2990 } 2991 return; 2992 } 2993 2994 switch (idls->dls_flags) { 2995 default: 2996 /* Disable if unknown flag */ 2997 case SOFT_RING_DISABLE: 2998 case POLL_DISABLE: 2999 ill_capability_dls_disable(ill); 3000 break; 3001 case SOFT_RING_CAPABLE: 3002 case POLL_CAPABLE: 3003 /* 3004 * If the capability was already enabled, its safe 3005 * to disable it first to get rid of stale information 3006 * and then start enabling it again. 3007 */ 3008 ill_capability_dls_disable(ill); 3009 ill_capability_dls_capable(ill, idls, isub); 3010 break; 3011 case SOFT_RING_ENABLE: 3012 case POLL_ENABLE: 3013 mutex_enter(&ill->ill_lock); 3014 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3015 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3016 ASSERT(ill->ill_dls_capab != NULL); 3017 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3018 } 3019 if (sub_dl_cap == DL_CAPAB_POLL && 3020 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3021 ASSERT(ill->ill_dls_capab != NULL); 3022 ill->ill_capabilities |= ILL_CAPAB_POLL; 3023 ip1dbg(("ill_capability_dls_ack: interface %s " 3024 "has enabled polling\n", ill->ill_name)); 3025 } 3026 mutex_exit(&ill->ill_lock); 3027 break; 3028 } 3029 } 3030 3031 /* 3032 * Process a hardware checksum offload capability negotiation ack received 3033 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3034 * of a DL_CAPABILITY_ACK message. 3035 */ 3036 static void 3037 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3038 { 3039 dl_capability_req_t *ocap; 3040 dl_capab_hcksum_t *ihck, *ohck; 3041 ill_hcksum_capab_t **ill_hcksum; 3042 mblk_t *nmp = NULL; 3043 uint_t sub_dl_cap = isub->dl_cap; 3044 uint8_t *capend; 3045 3046 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3047 3048 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3049 3050 /* 3051 * Note: range checks here are not absolutely sufficient to 3052 * make us robust against malformed messages sent by drivers; 3053 * this is in keeping with the rest of IP's dlpi handling. 3054 * (Remember, it's coming from something else in the kernel 3055 * address space) 3056 */ 3057 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3058 if (capend > mp->b_wptr) { 3059 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3060 "malformed sub-capability too long for mblk"); 3061 return; 3062 } 3063 3064 /* 3065 * There are two types of acks we process here: 3066 * 1. acks in reply to a (first form) generic capability req 3067 * (no ENABLE flag set) 3068 * 2. acks in reply to a ENABLE capability req. 3069 * (ENABLE flag set) 3070 */ 3071 ihck = (dl_capab_hcksum_t *)(isub + 1); 3072 3073 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3074 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3075 "unsupported hardware checksum " 3076 "sub-capability (version %d, expected %d)", 3077 ihck->hcksum_version, HCKSUM_VERSION_1); 3078 return; 3079 } 3080 3081 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3082 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3083 "checksum capability isn't as expected; pass-thru " 3084 "module(s) detected, discarding capability\n")); 3085 return; 3086 } 3087 3088 #define CURR_HCKSUM_CAPAB \ 3089 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3090 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3091 3092 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3093 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3094 /* do ENABLE processing */ 3095 if (*ill_hcksum == NULL) { 3096 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3097 KM_NOSLEEP); 3098 3099 if (*ill_hcksum == NULL) { 3100 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3101 "could not enable hcksum version %d " 3102 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3103 ill->ill_name); 3104 return; 3105 } 3106 } 3107 3108 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3109 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3110 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3111 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3112 "has enabled hardware checksumming\n ", 3113 ill->ill_name)); 3114 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3115 /* 3116 * Enabling hardware checksum offload 3117 * Currently IP supports {TCP,UDP}/IPv4 3118 * partial and full cksum offload and 3119 * IPv4 header checksum offload. 3120 * Allocate new mblk which will 3121 * contain a new capability request 3122 * to enable hardware checksum offload. 3123 */ 3124 uint_t size; 3125 uchar_t *rptr; 3126 3127 size = sizeof (dl_capability_req_t) + 3128 sizeof (dl_capability_sub_t) + isub->dl_length; 3129 3130 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3131 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3132 "could not enable hardware cksum for %s (ENOMEM)\n", 3133 ill->ill_name); 3134 return; 3135 } 3136 3137 rptr = nmp->b_rptr; 3138 /* initialize dl_capability_req_t */ 3139 ocap = (dl_capability_req_t *)nmp->b_rptr; 3140 ocap->dl_sub_offset = 3141 sizeof (dl_capability_req_t); 3142 ocap->dl_sub_length = 3143 sizeof (dl_capability_sub_t) + 3144 isub->dl_length; 3145 nmp->b_rptr += sizeof (dl_capability_req_t); 3146 3147 /* initialize dl_capability_sub_t */ 3148 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3149 nmp->b_rptr += sizeof (*isub); 3150 3151 /* initialize dl_capab_hcksum_t */ 3152 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3153 bcopy(ihck, ohck, sizeof (*ihck)); 3154 3155 nmp->b_rptr = rptr; 3156 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3157 3158 /* Set ENABLE flag */ 3159 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3160 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3161 3162 /* 3163 * nmp points to a DL_CAPABILITY_REQ message to enable 3164 * hardware checksum acceleration. 3165 */ 3166 ill_dlpi_send(ill, nmp); 3167 } else { 3168 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3169 "advertised %x hardware checksum capability flags\n", 3170 ill->ill_name, ihck->hcksum_txflags)); 3171 } 3172 } 3173 3174 static void 3175 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3176 { 3177 mblk_t *mp; 3178 dl_capab_hcksum_t *hck_subcap; 3179 dl_capability_sub_t *dl_subcap; 3180 int size; 3181 3182 if (!ILL_HCKSUM_CAPABLE(ill)) 3183 return; 3184 3185 ASSERT(ill->ill_hcksum_capab != NULL); 3186 /* 3187 * Clear the capability flag for hardware checksum offload but 3188 * retain the ill_hcksum_capab structure since it's possible that 3189 * another thread is still referring to it. The structure only 3190 * gets deallocated when we destroy the ill. 3191 */ 3192 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3193 3194 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3195 3196 mp = allocb(size, BPRI_HI); 3197 if (mp == NULL) { 3198 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3199 "request to disable hardware checksum offload\n")); 3200 return; 3201 } 3202 3203 mp->b_wptr = mp->b_rptr + size; 3204 3205 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3206 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3207 dl_subcap->dl_length = sizeof (*hck_subcap); 3208 3209 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3210 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3211 hck_subcap->hcksum_txflags = 0; 3212 3213 if (*sc_mp != NULL) 3214 linkb(*sc_mp, mp); 3215 else 3216 *sc_mp = mp; 3217 } 3218 3219 static void 3220 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3221 { 3222 mblk_t *nmp = NULL; 3223 dl_capability_req_t *oc; 3224 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3225 ill_zerocopy_capab_t **ill_zerocopy_capab; 3226 uint_t sub_dl_cap = isub->dl_cap; 3227 uint8_t *capend; 3228 3229 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3230 3231 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3232 3233 /* 3234 * Note: range checks here are not absolutely sufficient to 3235 * make us robust against malformed messages sent by drivers; 3236 * this is in keeping with the rest of IP's dlpi handling. 3237 * (Remember, it's coming from something else in the kernel 3238 * address space) 3239 */ 3240 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3241 if (capend > mp->b_wptr) { 3242 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3243 "malformed sub-capability too long for mblk"); 3244 return; 3245 } 3246 3247 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3248 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3249 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3250 "unsupported ZEROCOPY sub-capability (version %d, " 3251 "expected %d)", zc_ic->zerocopy_version, 3252 ZEROCOPY_VERSION_1); 3253 return; 3254 } 3255 3256 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3257 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3258 "capability isn't as expected; pass-thru module(s) " 3259 "detected, discarding capability\n")); 3260 return; 3261 } 3262 3263 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3264 if (*ill_zerocopy_capab == NULL) { 3265 *ill_zerocopy_capab = 3266 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3267 KM_NOSLEEP); 3268 3269 if (*ill_zerocopy_capab == NULL) { 3270 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3271 "could not enable Zero-copy version %d " 3272 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3273 ill->ill_name); 3274 return; 3275 } 3276 } 3277 3278 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3279 "supports Zero-copy version %d\n", ill->ill_name, 3280 ZEROCOPY_VERSION_1)); 3281 3282 (*ill_zerocopy_capab)->ill_zerocopy_version = 3283 zc_ic->zerocopy_version; 3284 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3285 zc_ic->zerocopy_flags; 3286 3287 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3288 } else { 3289 uint_t size; 3290 uchar_t *rptr; 3291 3292 size = sizeof (dl_capability_req_t) + 3293 sizeof (dl_capability_sub_t) + 3294 sizeof (dl_capab_zerocopy_t); 3295 3296 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3297 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3298 "could not enable zerocopy for %s (ENOMEM)\n", 3299 ill->ill_name); 3300 return; 3301 } 3302 3303 rptr = nmp->b_rptr; 3304 /* initialize dl_capability_req_t */ 3305 oc = (dl_capability_req_t *)rptr; 3306 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3307 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3308 sizeof (dl_capab_zerocopy_t); 3309 rptr += sizeof (dl_capability_req_t); 3310 3311 /* initialize dl_capability_sub_t */ 3312 bcopy(isub, rptr, sizeof (*isub)); 3313 rptr += sizeof (*isub); 3314 3315 /* initialize dl_capab_zerocopy_t */ 3316 zc_oc = (dl_capab_zerocopy_t *)rptr; 3317 *zc_oc = *zc_ic; 3318 3319 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3320 "to enable zero-copy version %d\n", ill->ill_name, 3321 ZEROCOPY_VERSION_1)); 3322 3323 /* set VMSAFE_MEM flag */ 3324 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3325 3326 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3327 ill_dlpi_send(ill, nmp); 3328 } 3329 } 3330 3331 static void 3332 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3333 { 3334 mblk_t *mp; 3335 dl_capab_zerocopy_t *zerocopy_subcap; 3336 dl_capability_sub_t *dl_subcap; 3337 int size; 3338 3339 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3340 return; 3341 3342 ASSERT(ill->ill_zerocopy_capab != NULL); 3343 /* 3344 * Clear the capability flag for Zero-copy but retain the 3345 * ill_zerocopy_capab structure since it's possible that another 3346 * thread is still referring to it. The structure only gets 3347 * deallocated when we destroy the ill. 3348 */ 3349 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3350 3351 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3352 3353 mp = allocb(size, BPRI_HI); 3354 if (mp == NULL) { 3355 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3356 "request to disable Zero-copy\n")); 3357 return; 3358 } 3359 3360 mp->b_wptr = mp->b_rptr + size; 3361 3362 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3363 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3364 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3365 3366 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3367 zerocopy_subcap->zerocopy_version = 3368 ill->ill_zerocopy_capab->ill_zerocopy_version; 3369 zerocopy_subcap->zerocopy_flags = 0; 3370 3371 if (*sc_mp != NULL) 3372 linkb(*sc_mp, mp); 3373 else 3374 *sc_mp = mp; 3375 } 3376 3377 /* 3378 * Process Large Segment Offload capability negotiation ack received from a 3379 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3380 * DL_CAPABILITY_ACK message. 3381 */ 3382 static void 3383 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3384 { 3385 mblk_t *nmp = NULL; 3386 dl_capability_req_t *oc; 3387 dl_capab_lso_t *lso_ic, *lso_oc; 3388 ill_lso_capab_t **ill_lso_capab; 3389 uint_t sub_dl_cap = isub->dl_cap; 3390 uint8_t *capend; 3391 3392 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3393 3394 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3395 3396 /* 3397 * Note: range checks here are not absolutely sufficient to 3398 * make us robust against malformed messages sent by drivers; 3399 * this is in keeping with the rest of IP's dlpi handling. 3400 * (Remember, it's coming from something else in the kernel 3401 * address space) 3402 */ 3403 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3404 if (capend > mp->b_wptr) { 3405 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3406 "malformed sub-capability too long for mblk"); 3407 return; 3408 } 3409 3410 lso_ic = (dl_capab_lso_t *)(isub + 1); 3411 3412 if (lso_ic->lso_version != LSO_VERSION_1) { 3413 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3414 "unsupported LSO sub-capability (version %d, expected %d)", 3415 lso_ic->lso_version, LSO_VERSION_1); 3416 return; 3417 } 3418 3419 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3420 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3421 "capability isn't as expected; pass-thru module(s) " 3422 "detected, discarding capability\n")); 3423 return; 3424 } 3425 3426 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3427 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3428 if (*ill_lso_capab == NULL) { 3429 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3430 KM_NOSLEEP); 3431 3432 if (*ill_lso_capab == NULL) { 3433 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3434 "could not enable LSO version %d " 3435 "for %s (ENOMEM)\n", LSO_VERSION_1, 3436 ill->ill_name); 3437 return; 3438 } 3439 } 3440 3441 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3442 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3443 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3444 ill->ill_capabilities |= ILL_CAPAB_LSO; 3445 3446 ip1dbg(("ill_capability_lso_ack: interface %s " 3447 "has enabled LSO\n ", ill->ill_name)); 3448 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3449 uint_t size; 3450 uchar_t *rptr; 3451 3452 size = sizeof (dl_capability_req_t) + 3453 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3454 3455 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3456 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3457 "could not enable LSO for %s (ENOMEM)\n", 3458 ill->ill_name); 3459 return; 3460 } 3461 3462 rptr = nmp->b_rptr; 3463 /* initialize dl_capability_req_t */ 3464 oc = (dl_capability_req_t *)nmp->b_rptr; 3465 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3466 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3467 sizeof (dl_capab_lso_t); 3468 nmp->b_rptr += sizeof (dl_capability_req_t); 3469 3470 /* initialize dl_capability_sub_t */ 3471 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3472 nmp->b_rptr += sizeof (*isub); 3473 3474 /* initialize dl_capab_lso_t */ 3475 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3476 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3477 3478 nmp->b_rptr = rptr; 3479 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3480 3481 /* set ENABLE flag */ 3482 lso_oc->lso_flags |= LSO_TX_ENABLE; 3483 3484 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3485 ill_dlpi_send(ill, nmp); 3486 } else { 3487 ip1dbg(("ill_capability_lso_ack: interface %s has " 3488 "advertised %x LSO capability flags\n", 3489 ill->ill_name, lso_ic->lso_flags)); 3490 } 3491 } 3492 3493 3494 static void 3495 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3496 { 3497 mblk_t *mp; 3498 dl_capab_lso_t *lso_subcap; 3499 dl_capability_sub_t *dl_subcap; 3500 int size; 3501 3502 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3503 return; 3504 3505 ASSERT(ill->ill_lso_capab != NULL); 3506 /* 3507 * Clear the capability flag for LSO but retain the 3508 * ill_lso_capab structure since it's possible that another 3509 * thread is still referring to it. The structure only gets 3510 * deallocated when we destroy the ill. 3511 */ 3512 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3513 3514 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3515 3516 mp = allocb(size, BPRI_HI); 3517 if (mp == NULL) { 3518 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3519 "request to disable LSO\n")); 3520 return; 3521 } 3522 3523 mp->b_wptr = mp->b_rptr + size; 3524 3525 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3526 dl_subcap->dl_cap = DL_CAPAB_LSO; 3527 dl_subcap->dl_length = sizeof (*lso_subcap); 3528 3529 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3530 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3531 lso_subcap->lso_flags = 0; 3532 3533 if (*sc_mp != NULL) 3534 linkb(*sc_mp, mp); 3535 else 3536 *sc_mp = mp; 3537 } 3538 3539 /* 3540 * Consume a new-style hardware capabilities negotiation ack. 3541 * Called from ip_rput_dlpi_writer(). 3542 */ 3543 void 3544 ill_capability_ack(ill_t *ill, mblk_t *mp) 3545 { 3546 dl_capability_ack_t *capp; 3547 dl_capability_sub_t *subp, *endp; 3548 3549 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3550 ill->ill_dlpi_capab_state = IDS_OK; 3551 3552 capp = (dl_capability_ack_t *)mp->b_rptr; 3553 3554 if (capp->dl_sub_length == 0) 3555 /* no new-style capabilities */ 3556 return; 3557 3558 /* make sure the driver supplied correct dl_sub_length */ 3559 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3560 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3561 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3562 return; 3563 } 3564 3565 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3566 /* 3567 * There are sub-capabilities. Process the ones we know about. 3568 * Loop until we don't have room for another sub-cap header.. 3569 */ 3570 for (subp = SC(capp, capp->dl_sub_offset), 3571 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3572 subp <= endp; 3573 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3574 3575 switch (subp->dl_cap) { 3576 case DL_CAPAB_ID_WRAPPER: 3577 ill_capability_id_ack(ill, mp, subp); 3578 break; 3579 default: 3580 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3581 break; 3582 } 3583 } 3584 #undef SC 3585 } 3586 3587 /* 3588 * This routine is called to scan the fragmentation reassembly table for 3589 * the specified ILL for any packets that are starting to smell. 3590 * dead_interval is the maximum time in seconds that will be tolerated. It 3591 * will either be the value specified in ip_g_frag_timeout, or zero if the 3592 * ILL is shutting down and it is time to blow everything off. 3593 * 3594 * It returns the number of seconds (as a time_t) that the next frag timer 3595 * should be scheduled for, 0 meaning that the timer doesn't need to be 3596 * re-started. Note that the method of calculating next_timeout isn't 3597 * entirely accurate since time will flow between the time we grab 3598 * current_time and the time we schedule the next timeout. This isn't a 3599 * big problem since this is the timer for sending an ICMP reassembly time 3600 * exceeded messages, and it doesn't have to be exactly accurate. 3601 * 3602 * This function is 3603 * sometimes called as writer, although this is not required. 3604 */ 3605 time_t 3606 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3607 { 3608 ipfb_t *ipfb; 3609 ipfb_t *endp; 3610 ipf_t *ipf; 3611 ipf_t *ipfnext; 3612 mblk_t *mp; 3613 time_t current_time = gethrestime_sec(); 3614 time_t next_timeout = 0; 3615 uint32_t hdr_length; 3616 mblk_t *send_icmp_head; 3617 mblk_t *send_icmp_head_v6; 3618 zoneid_t zoneid; 3619 ip_stack_t *ipst = ill->ill_ipst; 3620 3621 ipfb = ill->ill_frag_hash_tbl; 3622 if (ipfb == NULL) 3623 return (B_FALSE); 3624 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3625 /* Walk the frag hash table. */ 3626 for (; ipfb < endp; ipfb++) { 3627 send_icmp_head = NULL; 3628 send_icmp_head_v6 = NULL; 3629 mutex_enter(&ipfb->ipfb_lock); 3630 while ((ipf = ipfb->ipfb_ipf) != 0) { 3631 time_t frag_time = current_time - ipf->ipf_timestamp; 3632 time_t frag_timeout; 3633 3634 if (frag_time < dead_interval) { 3635 /* 3636 * There are some outstanding fragments 3637 * that will timeout later. Make note of 3638 * the time so that we can reschedule the 3639 * next timeout appropriately. 3640 */ 3641 frag_timeout = dead_interval - frag_time; 3642 if (next_timeout == 0 || 3643 frag_timeout < next_timeout) { 3644 next_timeout = frag_timeout; 3645 } 3646 break; 3647 } 3648 /* Time's up. Get it out of here. */ 3649 hdr_length = ipf->ipf_nf_hdr_len; 3650 ipfnext = ipf->ipf_hash_next; 3651 if (ipfnext) 3652 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3653 *ipf->ipf_ptphn = ipfnext; 3654 mp = ipf->ipf_mp->b_cont; 3655 for (; mp; mp = mp->b_cont) { 3656 /* Extra points for neatness. */ 3657 IP_REASS_SET_START(mp, 0); 3658 IP_REASS_SET_END(mp, 0); 3659 } 3660 mp = ipf->ipf_mp->b_cont; 3661 ill->ill_frag_count -= ipf->ipf_count; 3662 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3663 ipfb->ipfb_count -= ipf->ipf_count; 3664 ASSERT(ipfb->ipfb_frag_pkts > 0); 3665 ipfb->ipfb_frag_pkts--; 3666 /* 3667 * We do not send any icmp message from here because 3668 * we currently are holding the ipfb_lock for this 3669 * hash chain. If we try and send any icmp messages 3670 * from here we may end up via a put back into ip 3671 * trying to get the same lock, causing a recursive 3672 * mutex panic. Instead we build a list and send all 3673 * the icmp messages after we have dropped the lock. 3674 */ 3675 if (ill->ill_isv6) { 3676 if (hdr_length != 0) { 3677 mp->b_next = send_icmp_head_v6; 3678 send_icmp_head_v6 = mp; 3679 } else { 3680 freemsg(mp); 3681 } 3682 } else { 3683 if (hdr_length != 0) { 3684 mp->b_next = send_icmp_head; 3685 send_icmp_head = mp; 3686 } else { 3687 freemsg(mp); 3688 } 3689 } 3690 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3691 freeb(ipf->ipf_mp); 3692 } 3693 mutex_exit(&ipfb->ipfb_lock); 3694 /* 3695 * Now need to send any icmp messages that we delayed from 3696 * above. 3697 */ 3698 while (send_icmp_head_v6 != NULL) { 3699 ip6_t *ip6h; 3700 3701 mp = send_icmp_head_v6; 3702 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3703 mp->b_next = NULL; 3704 if (mp->b_datap->db_type == M_CTL) 3705 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3706 else 3707 ip6h = (ip6_t *)mp->b_rptr; 3708 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3709 ill, ipst); 3710 if (zoneid == ALL_ZONES) { 3711 freemsg(mp); 3712 } else { 3713 icmp_time_exceeded_v6(ill->ill_wq, mp, 3714 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3715 B_FALSE, zoneid, ipst); 3716 } 3717 } 3718 while (send_icmp_head != NULL) { 3719 ipaddr_t dst; 3720 3721 mp = send_icmp_head; 3722 send_icmp_head = send_icmp_head->b_next; 3723 mp->b_next = NULL; 3724 3725 if (mp->b_datap->db_type == M_CTL) 3726 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3727 else 3728 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3729 3730 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3731 if (zoneid == ALL_ZONES) { 3732 freemsg(mp); 3733 } else { 3734 icmp_time_exceeded(ill->ill_wq, mp, 3735 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3736 ipst); 3737 } 3738 } 3739 } 3740 /* 3741 * A non-dying ILL will use the return value to decide whether to 3742 * restart the frag timer, and for how long. 3743 */ 3744 return (next_timeout); 3745 } 3746 3747 /* 3748 * This routine is called when the approximate count of mblk memory used 3749 * for the specified ILL has exceeded max_count. 3750 */ 3751 void 3752 ill_frag_prune(ill_t *ill, uint_t max_count) 3753 { 3754 ipfb_t *ipfb; 3755 ipf_t *ipf; 3756 size_t count; 3757 3758 /* 3759 * If we are here within ip_min_frag_prune_time msecs remove 3760 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3761 * ill_frag_free_num_pkts. 3762 */ 3763 mutex_enter(&ill->ill_lock); 3764 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3765 (ip_min_frag_prune_time != 0 ? 3766 ip_min_frag_prune_time : msec_per_tick)) { 3767 3768 ill->ill_frag_free_num_pkts++; 3769 3770 } else { 3771 ill->ill_frag_free_num_pkts = 0; 3772 } 3773 ill->ill_last_frag_clean_time = lbolt; 3774 mutex_exit(&ill->ill_lock); 3775 3776 /* 3777 * free ill_frag_free_num_pkts oldest packets from each bucket. 3778 */ 3779 if (ill->ill_frag_free_num_pkts != 0) { 3780 int ix; 3781 3782 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3783 ipfb = &ill->ill_frag_hash_tbl[ix]; 3784 mutex_enter(&ipfb->ipfb_lock); 3785 if (ipfb->ipfb_ipf != NULL) { 3786 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3787 ill->ill_frag_free_num_pkts); 3788 } 3789 mutex_exit(&ipfb->ipfb_lock); 3790 } 3791 } 3792 /* 3793 * While the reassembly list for this ILL is too big, prune a fragment 3794 * queue by age, oldest first. Note that the per ILL count is 3795 * approximate, while the per frag hash bucket counts are accurate. 3796 */ 3797 while (ill->ill_frag_count > max_count) { 3798 int ix; 3799 ipfb_t *oipfb = NULL; 3800 uint_t oldest = UINT_MAX; 3801 3802 count = 0; 3803 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3804 ipfb = &ill->ill_frag_hash_tbl[ix]; 3805 mutex_enter(&ipfb->ipfb_lock); 3806 ipf = ipfb->ipfb_ipf; 3807 if (ipf != NULL && ipf->ipf_gen < oldest) { 3808 oldest = ipf->ipf_gen; 3809 oipfb = ipfb; 3810 } 3811 count += ipfb->ipfb_count; 3812 mutex_exit(&ipfb->ipfb_lock); 3813 } 3814 /* Refresh the per ILL count */ 3815 ill->ill_frag_count = count; 3816 if (oipfb == NULL) { 3817 ill->ill_frag_count = 0; 3818 break; 3819 } 3820 if (count <= max_count) 3821 return; /* Somebody beat us to it, nothing to do */ 3822 mutex_enter(&oipfb->ipfb_lock); 3823 ipf = oipfb->ipfb_ipf; 3824 if (ipf != NULL) { 3825 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3826 } 3827 mutex_exit(&oipfb->ipfb_lock); 3828 } 3829 } 3830 3831 /* 3832 * free 'free_cnt' fragmented packets starting at ipf. 3833 */ 3834 void 3835 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3836 { 3837 size_t count; 3838 mblk_t *mp; 3839 mblk_t *tmp; 3840 ipf_t **ipfp = ipf->ipf_ptphn; 3841 3842 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3843 ASSERT(ipfp != NULL); 3844 ASSERT(ipf != NULL); 3845 3846 while (ipf != NULL && free_cnt-- > 0) { 3847 count = ipf->ipf_count; 3848 mp = ipf->ipf_mp; 3849 ipf = ipf->ipf_hash_next; 3850 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3851 IP_REASS_SET_START(tmp, 0); 3852 IP_REASS_SET_END(tmp, 0); 3853 } 3854 ill->ill_frag_count -= count; 3855 ASSERT(ipfb->ipfb_count >= count); 3856 ipfb->ipfb_count -= count; 3857 ASSERT(ipfb->ipfb_frag_pkts > 0); 3858 ipfb->ipfb_frag_pkts--; 3859 freemsg(mp); 3860 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3861 } 3862 3863 if (ipf) 3864 ipf->ipf_ptphn = ipfp; 3865 ipfp[0] = ipf; 3866 } 3867 3868 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3869 "obsolete and may be removed in a future release of Solaris. Use " \ 3870 "ifconfig(1M) to manipulate the forwarding status of an interface." 3871 3872 /* 3873 * For obsolete per-interface forwarding configuration; 3874 * called in response to ND_GET. 3875 */ 3876 /* ARGSUSED */ 3877 static int 3878 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3879 { 3880 ill_t *ill = (ill_t *)cp; 3881 3882 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3883 3884 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3885 return (0); 3886 } 3887 3888 /* 3889 * For obsolete per-interface forwarding configuration; 3890 * called in response to ND_SET. 3891 */ 3892 /* ARGSUSED */ 3893 static int 3894 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3895 cred_t *ioc_cr) 3896 { 3897 long value; 3898 int retval; 3899 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3900 3901 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3902 3903 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3904 value < 0 || value > 1) { 3905 return (EINVAL); 3906 } 3907 3908 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3909 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3910 rw_exit(&ipst->ips_ill_g_lock); 3911 return (retval); 3912 } 3913 3914 /* 3915 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3916 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3917 * up RTS_IFINFO routing socket messages for each interface whose flags we 3918 * change. 3919 */ 3920 int 3921 ill_forward_set(ill_t *ill, boolean_t enable) 3922 { 3923 ill_group_t *illgrp; 3924 ip_stack_t *ipst = ill->ill_ipst; 3925 3926 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3927 3928 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3929 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3930 return (0); 3931 3932 if (IS_LOOPBACK(ill)) 3933 return (EINVAL); 3934 3935 /* 3936 * If the ill is in an IPMP group, set the forwarding policy on all 3937 * members of the group to the same value. 3938 */ 3939 illgrp = ill->ill_group; 3940 if (illgrp != NULL) { 3941 ill_t *tmp_ill; 3942 3943 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3944 tmp_ill = tmp_ill->ill_group_next) { 3945 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3946 (enable ? "Enabling" : "Disabling"), 3947 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3948 tmp_ill->ill_name)); 3949 mutex_enter(&tmp_ill->ill_lock); 3950 if (enable) 3951 tmp_ill->ill_flags |= ILLF_ROUTER; 3952 else 3953 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3954 mutex_exit(&tmp_ill->ill_lock); 3955 if (tmp_ill->ill_isv6) 3956 ill_set_nce_router_flags(tmp_ill, enable); 3957 /* Notify routing socket listeners of this change. */ 3958 ip_rts_ifmsg(tmp_ill->ill_ipif); 3959 } 3960 } else { 3961 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3962 (enable ? "Enabling" : "Disabling"), 3963 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3964 mutex_enter(&ill->ill_lock); 3965 if (enable) 3966 ill->ill_flags |= ILLF_ROUTER; 3967 else 3968 ill->ill_flags &= ~ILLF_ROUTER; 3969 mutex_exit(&ill->ill_lock); 3970 if (ill->ill_isv6) 3971 ill_set_nce_router_flags(ill, enable); 3972 /* Notify routing socket listeners of this change. */ 3973 ip_rts_ifmsg(ill->ill_ipif); 3974 } 3975 3976 return (0); 3977 } 3978 3979 /* 3980 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3981 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3982 * set or clear. 3983 */ 3984 static void 3985 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3986 { 3987 ipif_t *ipif; 3988 nce_t *nce; 3989 3990 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3991 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3992 if (nce != NULL) { 3993 mutex_enter(&nce->nce_lock); 3994 if (enable) 3995 nce->nce_flags |= NCE_F_ISROUTER; 3996 else 3997 nce->nce_flags &= ~NCE_F_ISROUTER; 3998 mutex_exit(&nce->nce_lock); 3999 NCE_REFRELE(nce); 4000 } 4001 } 4002 } 4003 4004 /* 4005 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4006 * for this ill. Make sure the v6/v4 question has been answered about this 4007 * ill. The creation of this ndd variable is only for backwards compatibility. 4008 * The preferred way to control per-interface IP forwarding is through the 4009 * ILLF_ROUTER interface flag. 4010 */ 4011 static int 4012 ill_set_ndd_name(ill_t *ill) 4013 { 4014 char *suffix; 4015 ip_stack_t *ipst = ill->ill_ipst; 4016 4017 ASSERT(IAM_WRITER_ILL(ill)); 4018 4019 if (ill->ill_isv6) 4020 suffix = ipv6_forward_suffix; 4021 else 4022 suffix = ipv4_forward_suffix; 4023 4024 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4025 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4026 /* 4027 * Copies over the '\0'. 4028 * Note that strlen(suffix) is always bounded. 4029 */ 4030 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4031 strlen(suffix) + 1); 4032 4033 /* 4034 * Use of the nd table requires holding the reader lock. 4035 * Modifying the nd table thru nd_load/nd_unload requires 4036 * the writer lock. 4037 */ 4038 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4039 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4040 nd_ill_forward_set, (caddr_t)ill)) { 4041 /* 4042 * If the nd_load failed, it only meant that it could not 4043 * allocate a new bunch of room for further NDD expansion. 4044 * Because of that, the ill_ndd_name will be set to 0, and 4045 * this interface is at the mercy of the global ip_forwarding 4046 * variable. 4047 */ 4048 rw_exit(&ipst->ips_ip_g_nd_lock); 4049 ill->ill_ndd_name = NULL; 4050 return (ENOMEM); 4051 } 4052 rw_exit(&ipst->ips_ip_g_nd_lock); 4053 return (0); 4054 } 4055 4056 /* 4057 * Intializes the context structure and returns the first ill in the list 4058 * cuurently start_list and end_list can have values: 4059 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4060 * IP_V4_G_HEAD Traverse IPV4 list only. 4061 * IP_V6_G_HEAD Traverse IPV6 list only. 4062 */ 4063 4064 /* 4065 * We don't check for CONDEMNED ills here. Caller must do that if 4066 * necessary under the ill lock. 4067 */ 4068 ill_t * 4069 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4070 ip_stack_t *ipst) 4071 { 4072 ill_if_t *ifp; 4073 ill_t *ill; 4074 avl_tree_t *avl_tree; 4075 4076 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4077 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4078 4079 /* 4080 * setup the lists to search 4081 */ 4082 if (end_list != MAX_G_HEADS) { 4083 ctx->ctx_current_list = start_list; 4084 ctx->ctx_last_list = end_list; 4085 } else { 4086 ctx->ctx_last_list = MAX_G_HEADS - 1; 4087 ctx->ctx_current_list = 0; 4088 } 4089 4090 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4091 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4092 if (ifp != (ill_if_t *) 4093 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4094 avl_tree = &ifp->illif_avl_by_ppa; 4095 ill = avl_first(avl_tree); 4096 /* 4097 * ill is guaranteed to be non NULL or ifp should have 4098 * not existed. 4099 */ 4100 ASSERT(ill != NULL); 4101 return (ill); 4102 } 4103 ctx->ctx_current_list++; 4104 } 4105 4106 return (NULL); 4107 } 4108 4109 /* 4110 * returns the next ill in the list. ill_first() must have been called 4111 * before calling ill_next() or bad things will happen. 4112 */ 4113 4114 /* 4115 * We don't check for CONDEMNED ills here. Caller must do that if 4116 * necessary under the ill lock. 4117 */ 4118 ill_t * 4119 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4120 { 4121 ill_if_t *ifp; 4122 ill_t *ill; 4123 ip_stack_t *ipst = lastill->ill_ipst; 4124 4125 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4126 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4127 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4128 AVL_AFTER)) != NULL) { 4129 return (ill); 4130 } 4131 4132 /* goto next ill_ifp in the list. */ 4133 ifp = lastill->ill_ifptr->illif_next; 4134 4135 /* make sure not at end of circular list */ 4136 while (ifp == 4137 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4138 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4139 return (NULL); 4140 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4141 } 4142 4143 return (avl_first(&ifp->illif_avl_by_ppa)); 4144 } 4145 4146 /* 4147 * Check interface name for correct format which is name+ppa. 4148 * name can contain characters and digits, the right most digits 4149 * make up the ppa number. use of octal is not allowed, name must contain 4150 * a ppa, return pointer to the start of ppa. 4151 * In case of error return NULL. 4152 */ 4153 static char * 4154 ill_get_ppa_ptr(char *name) 4155 { 4156 int namelen = mi_strlen(name); 4157 4158 int len = namelen; 4159 4160 name += len; 4161 while (len > 0) { 4162 name--; 4163 if (*name < '0' || *name > '9') 4164 break; 4165 len--; 4166 } 4167 4168 /* empty string, all digits, or no trailing digits */ 4169 if (len == 0 || len == (int)namelen) 4170 return (NULL); 4171 4172 name++; 4173 /* check for attempted use of octal */ 4174 if (*name == '0' && len != (int)namelen - 1) 4175 return (NULL); 4176 return (name); 4177 } 4178 4179 /* 4180 * use avl tree to locate the ill. 4181 */ 4182 static ill_t * 4183 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4184 ipsq_func_t func, int *error, ip_stack_t *ipst) 4185 { 4186 char *ppa_ptr = NULL; 4187 int len; 4188 uint_t ppa; 4189 ill_t *ill = NULL; 4190 ill_if_t *ifp; 4191 int list; 4192 ipsq_t *ipsq; 4193 4194 if (error != NULL) 4195 *error = 0; 4196 4197 /* 4198 * get ppa ptr 4199 */ 4200 if (isv6) 4201 list = IP_V6_G_HEAD; 4202 else 4203 list = IP_V4_G_HEAD; 4204 4205 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4206 if (error != NULL) 4207 *error = ENXIO; 4208 return (NULL); 4209 } 4210 4211 len = ppa_ptr - name + 1; 4212 4213 ppa = stoi(&ppa_ptr); 4214 4215 ifp = IP_VX_ILL_G_LIST(list, ipst); 4216 4217 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4218 /* 4219 * match is done on len - 1 as the name is not null 4220 * terminated it contains ppa in addition to the interface 4221 * name. 4222 */ 4223 if ((ifp->illif_name_len == len) && 4224 bcmp(ifp->illif_name, name, len - 1) == 0) { 4225 break; 4226 } else { 4227 ifp = ifp->illif_next; 4228 } 4229 } 4230 4231 4232 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4233 /* 4234 * Even the interface type does not exist. 4235 */ 4236 if (error != NULL) 4237 *error = ENXIO; 4238 return (NULL); 4239 } 4240 4241 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4242 if (ill != NULL) { 4243 /* 4244 * The block comment at the start of ipif_down 4245 * explains the use of the macros used below 4246 */ 4247 GRAB_CONN_LOCK(q); 4248 mutex_enter(&ill->ill_lock); 4249 if (ILL_CAN_LOOKUP(ill)) { 4250 ill_refhold_locked(ill); 4251 mutex_exit(&ill->ill_lock); 4252 RELEASE_CONN_LOCK(q); 4253 return (ill); 4254 } else if (ILL_CAN_WAIT(ill, q)) { 4255 ipsq = ill->ill_phyint->phyint_ipsq; 4256 mutex_enter(&ipsq->ipsq_lock); 4257 mutex_exit(&ill->ill_lock); 4258 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4259 mutex_exit(&ipsq->ipsq_lock); 4260 RELEASE_CONN_LOCK(q); 4261 if (error != NULL) 4262 *error = EINPROGRESS; 4263 return (NULL); 4264 } 4265 mutex_exit(&ill->ill_lock); 4266 RELEASE_CONN_LOCK(q); 4267 } 4268 if (error != NULL) 4269 *error = ENXIO; 4270 return (NULL); 4271 } 4272 4273 /* 4274 * comparison function for use with avl. 4275 */ 4276 static int 4277 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4278 { 4279 uint_t ppa; 4280 uint_t ill_ppa; 4281 4282 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4283 4284 ppa = *((uint_t *)ppa_ptr); 4285 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4286 /* 4287 * We want the ill with the lowest ppa to be on the 4288 * top. 4289 */ 4290 if (ill_ppa < ppa) 4291 return (1); 4292 if (ill_ppa > ppa) 4293 return (-1); 4294 return (0); 4295 } 4296 4297 /* 4298 * remove an interface type from the global list. 4299 */ 4300 static void 4301 ill_delete_interface_type(ill_if_t *interface) 4302 { 4303 ASSERT(interface != NULL); 4304 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4305 4306 avl_destroy(&interface->illif_avl_by_ppa); 4307 if (interface->illif_ppa_arena != NULL) 4308 vmem_destroy(interface->illif_ppa_arena); 4309 4310 remque(interface); 4311 4312 mi_free(interface); 4313 } 4314 4315 /* 4316 * remove ill from the global list. 4317 */ 4318 static void 4319 ill_glist_delete(ill_t *ill) 4320 { 4321 hook_nic_event_t *info; 4322 ip_stack_t *ipst; 4323 4324 if (ill == NULL) 4325 return; 4326 ipst = ill->ill_ipst; 4327 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4328 4329 /* 4330 * If the ill was never inserted into the AVL tree 4331 * we skip the if branch. 4332 */ 4333 if (ill->ill_ifptr != NULL) { 4334 /* 4335 * remove from AVL tree and free ppa number 4336 */ 4337 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4338 4339 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4340 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4341 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4342 } 4343 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4344 ill_delete_interface_type(ill->ill_ifptr); 4345 } 4346 4347 /* 4348 * Indicate ill is no longer in the list. 4349 */ 4350 ill->ill_ifptr = NULL; 4351 ill->ill_name_length = 0; 4352 ill->ill_name[0] = '\0'; 4353 ill->ill_ppa = UINT_MAX; 4354 } 4355 4356 /* 4357 * Run the unplumb hook after the NIC has disappeared from being 4358 * visible so that attempts to revalidate its existance will fail. 4359 * 4360 * This needs to be run inside the ill_g_lock perimeter to ensure 4361 * that the ordering of delivered events to listeners matches the 4362 * order of them in the kernel. 4363 */ 4364 info = ill->ill_nic_event_info; 4365 if (info != NULL && info->hne_event == NE_DOWN) { 4366 mutex_enter(&ill->ill_lock); 4367 ill_nic_info_dispatch(ill); 4368 mutex_exit(&ill->ill_lock); 4369 } 4370 4371 /* Generate NE_UNPLUMB event for ill_name. */ 4372 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4373 ill->ill_name_length); 4374 4375 ill_phyint_free(ill); 4376 rw_exit(&ipst->ips_ill_g_lock); 4377 } 4378 4379 /* 4380 * allocate a ppa, if the number of plumbed interfaces of this type are 4381 * less than ill_no_arena do a linear search to find a unused ppa. 4382 * When the number goes beyond ill_no_arena switch to using an arena. 4383 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4384 * is the return value for an error condition, so allocation starts at one 4385 * and is decremented by one. 4386 */ 4387 static int 4388 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4389 { 4390 ill_t *tmp_ill; 4391 uint_t start, end; 4392 int ppa; 4393 4394 if (ifp->illif_ppa_arena == NULL && 4395 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4396 /* 4397 * Create an arena. 4398 */ 4399 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4400 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4401 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4402 /* allocate what has already been assigned */ 4403 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4404 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4405 tmp_ill, AVL_AFTER)) { 4406 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4407 1, /* size */ 4408 1, /* align/quantum */ 4409 0, /* phase */ 4410 0, /* nocross */ 4411 /* minaddr */ 4412 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4413 /* maxaddr */ 4414 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4415 VM_NOSLEEP|VM_FIRSTFIT); 4416 if (ppa == 0) { 4417 ip1dbg(("ill_alloc_ppa: ppa allocation" 4418 " failed while switching")); 4419 vmem_destroy(ifp->illif_ppa_arena); 4420 ifp->illif_ppa_arena = NULL; 4421 break; 4422 } 4423 } 4424 } 4425 4426 if (ifp->illif_ppa_arena != NULL) { 4427 if (ill->ill_ppa == UINT_MAX) { 4428 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4429 1, VM_NOSLEEP|VM_FIRSTFIT); 4430 if (ppa == 0) 4431 return (EAGAIN); 4432 ill->ill_ppa = --ppa; 4433 } else { 4434 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4435 1, /* size */ 4436 1, /* align/quantum */ 4437 0, /* phase */ 4438 0, /* nocross */ 4439 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4440 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4441 VM_NOSLEEP|VM_FIRSTFIT); 4442 /* 4443 * Most likely the allocation failed because 4444 * the requested ppa was in use. 4445 */ 4446 if (ppa == 0) 4447 return (EEXIST); 4448 } 4449 return (0); 4450 } 4451 4452 /* 4453 * No arena is in use and not enough (>ill_no_arena) interfaces have 4454 * been plumbed to create one. Do a linear search to get a unused ppa. 4455 */ 4456 if (ill->ill_ppa == UINT_MAX) { 4457 end = UINT_MAX - 1; 4458 start = 0; 4459 } else { 4460 end = start = ill->ill_ppa; 4461 } 4462 4463 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4464 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4465 if (start++ >= end) { 4466 if (ill->ill_ppa == UINT_MAX) 4467 return (EAGAIN); 4468 else 4469 return (EEXIST); 4470 } 4471 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4472 } 4473 ill->ill_ppa = start; 4474 return (0); 4475 } 4476 4477 /* 4478 * Insert ill into the list of configured ill's. Once this function completes, 4479 * the ill is globally visible and is available through lookups. More precisely 4480 * this happens after the caller drops the ill_g_lock. 4481 */ 4482 static int 4483 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4484 { 4485 ill_if_t *ill_interface; 4486 avl_index_t where = 0; 4487 int error; 4488 int name_length; 4489 int index; 4490 boolean_t check_length = B_FALSE; 4491 ip_stack_t *ipst = ill->ill_ipst; 4492 4493 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4494 4495 name_length = mi_strlen(name) + 1; 4496 4497 if (isv6) 4498 index = IP_V6_G_HEAD; 4499 else 4500 index = IP_V4_G_HEAD; 4501 4502 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4503 /* 4504 * Search for interface type based on name 4505 */ 4506 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4507 if ((ill_interface->illif_name_len == name_length) && 4508 (strcmp(ill_interface->illif_name, name) == 0)) { 4509 break; 4510 } 4511 ill_interface = ill_interface->illif_next; 4512 } 4513 4514 /* 4515 * Interface type not found, create one. 4516 */ 4517 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4518 4519 ill_g_head_t ghead; 4520 4521 /* 4522 * allocate ill_if_t structure 4523 */ 4524 4525 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4526 if (ill_interface == NULL) { 4527 return (ENOMEM); 4528 } 4529 4530 4531 4532 (void) strcpy(ill_interface->illif_name, name); 4533 ill_interface->illif_name_len = name_length; 4534 4535 avl_create(&ill_interface->illif_avl_by_ppa, 4536 ill_compare_ppa, sizeof (ill_t), 4537 offsetof(struct ill_s, ill_avl_byppa)); 4538 4539 /* 4540 * link the structure in the back to maintain order 4541 * of configuration for ifconfig output. 4542 */ 4543 ghead = ipst->ips_ill_g_heads[index]; 4544 insque(ill_interface, ghead.ill_g_list_tail); 4545 4546 } 4547 4548 if (ill->ill_ppa == UINT_MAX) 4549 check_length = B_TRUE; 4550 4551 error = ill_alloc_ppa(ill_interface, ill); 4552 if (error != 0) { 4553 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4554 ill_delete_interface_type(ill->ill_ifptr); 4555 return (error); 4556 } 4557 4558 /* 4559 * When the ppa is choosen by the system, check that there is 4560 * enough space to insert ppa. if a specific ppa was passed in this 4561 * check is not required as the interface name passed in will have 4562 * the right ppa in it. 4563 */ 4564 if (check_length) { 4565 /* 4566 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4567 */ 4568 char buf[sizeof (uint_t) * 3]; 4569 4570 /* 4571 * convert ppa to string to calculate the amount of space 4572 * required for it in the name. 4573 */ 4574 numtos(ill->ill_ppa, buf); 4575 4576 /* Do we have enough space to insert ppa ? */ 4577 4578 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4579 /* Free ppa and interface type struct */ 4580 if (ill_interface->illif_ppa_arena != NULL) { 4581 vmem_free(ill_interface->illif_ppa_arena, 4582 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4583 } 4584 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4585 0) { 4586 ill_delete_interface_type(ill->ill_ifptr); 4587 } 4588 4589 return (EINVAL); 4590 } 4591 } 4592 4593 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4594 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4595 4596 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4597 &where); 4598 ill->ill_ifptr = ill_interface; 4599 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4600 4601 ill_phyint_reinit(ill); 4602 return (0); 4603 } 4604 4605 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4606 static boolean_t 4607 ipsq_init(ill_t *ill) 4608 { 4609 ipsq_t *ipsq; 4610 4611 /* Init the ipsq and impicitly enter as writer */ 4612 ill->ill_phyint->phyint_ipsq = 4613 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4614 if (ill->ill_phyint->phyint_ipsq == NULL) 4615 return (B_FALSE); 4616 ipsq = ill->ill_phyint->phyint_ipsq; 4617 ipsq->ipsq_phyint_list = ill->ill_phyint; 4618 ill->ill_phyint->phyint_ipsq_next = NULL; 4619 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4620 ipsq->ipsq_refs = 1; 4621 ipsq->ipsq_writer = curthread; 4622 ipsq->ipsq_reentry_cnt = 1; 4623 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4624 #ifdef DEBUG 4625 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4626 IPSQ_STACK_DEPTH); 4627 #endif 4628 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4629 return (B_TRUE); 4630 } 4631 4632 /* 4633 * ill_init is called by ip_open when a device control stream is opened. 4634 * It does a few initializations, and shoots a DL_INFO_REQ message down 4635 * to the driver. The response is later picked up in ip_rput_dlpi and 4636 * used to set up default mechanisms for talking to the driver. (Always 4637 * called as writer.) 4638 * 4639 * If this function returns error, ip_open will call ip_close which in 4640 * turn will call ill_delete to clean up any memory allocated here that 4641 * is not yet freed. 4642 */ 4643 int 4644 ill_init(queue_t *q, ill_t *ill) 4645 { 4646 int count; 4647 dl_info_req_t *dlir; 4648 mblk_t *info_mp; 4649 uchar_t *frag_ptr; 4650 4651 /* 4652 * The ill is initialized to zero by mi_alloc*(). In addition 4653 * some fields already contain valid values, initialized in 4654 * ip_open(), before we reach here. 4655 */ 4656 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4657 4658 ill->ill_rq = q; 4659 ill->ill_wq = WR(q); 4660 4661 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4662 BPRI_HI); 4663 if (info_mp == NULL) 4664 return (ENOMEM); 4665 4666 /* 4667 * Allocate sufficient space to contain our fragment hash table and 4668 * the device name. 4669 */ 4670 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4671 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4672 if (frag_ptr == NULL) { 4673 freemsg(info_mp); 4674 return (ENOMEM); 4675 } 4676 ill->ill_frag_ptr = frag_ptr; 4677 ill->ill_frag_free_num_pkts = 0; 4678 ill->ill_last_frag_clean_time = 0; 4679 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4680 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4681 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4682 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4683 NULL, MUTEX_DEFAULT, NULL); 4684 } 4685 4686 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4687 if (ill->ill_phyint == NULL) { 4688 freemsg(info_mp); 4689 mi_free(frag_ptr); 4690 return (ENOMEM); 4691 } 4692 4693 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4694 /* 4695 * For now pretend this is a v4 ill. We need to set phyint_ill* 4696 * at this point because of the following reason. If we can't 4697 * enter the ipsq at some point and cv_wait, the writer that 4698 * wakes us up tries to locate us using the list of all phyints 4699 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4700 * If we don't set it now, we risk a missed wakeup. 4701 */ 4702 ill->ill_phyint->phyint_illv4 = ill; 4703 ill->ill_ppa = UINT_MAX; 4704 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4705 4706 if (!ipsq_init(ill)) { 4707 freemsg(info_mp); 4708 mi_free(frag_ptr); 4709 mi_free(ill->ill_phyint); 4710 return (ENOMEM); 4711 } 4712 4713 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4714 4715 4716 /* Frag queue limit stuff */ 4717 ill->ill_frag_count = 0; 4718 ill->ill_ipf_gen = 0; 4719 4720 ill->ill_global_timer = INFINITY; 4721 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4722 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4723 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4724 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4725 4726 /* 4727 * Initialize IPv6 configuration variables. The IP module is always 4728 * opened as an IPv4 module. Instead tracking down the cases where 4729 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4730 * here for convenience, this has no effect until the ill is set to do 4731 * IPv6. 4732 */ 4733 ill->ill_reachable_time = ND_REACHABLE_TIME; 4734 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4735 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4736 ill->ill_max_buf = ND_MAX_Q; 4737 ill->ill_refcnt = 0; 4738 4739 /* Send down the Info Request to the driver. */ 4740 info_mp->b_datap->db_type = M_PCPROTO; 4741 dlir = (dl_info_req_t *)info_mp->b_rptr; 4742 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4743 dlir->dl_primitive = DL_INFO_REQ; 4744 4745 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4746 4747 qprocson(q); 4748 ill_dlpi_send(ill, info_mp); 4749 4750 return (0); 4751 } 4752 4753 /* 4754 * ill_dls_info 4755 * creates datalink socket info from the device. 4756 */ 4757 int 4758 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4759 { 4760 size_t len; 4761 ill_t *ill = ipif->ipif_ill; 4762 4763 sdl->sdl_family = AF_LINK; 4764 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4765 sdl->sdl_type = ill->ill_type; 4766 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4767 len = strlen(sdl->sdl_data); 4768 ASSERT(len < 256); 4769 sdl->sdl_nlen = (uchar_t)len; 4770 sdl->sdl_alen = ill->ill_phys_addr_length; 4771 sdl->sdl_slen = 0; 4772 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4773 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4774 4775 return (sizeof (struct sockaddr_dl)); 4776 } 4777 4778 /* 4779 * ill_xarp_info 4780 * creates xarp info from the device. 4781 */ 4782 static int 4783 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4784 { 4785 sdl->sdl_family = AF_LINK; 4786 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4787 sdl->sdl_type = ill->ill_type; 4788 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4789 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4790 sdl->sdl_alen = ill->ill_phys_addr_length; 4791 sdl->sdl_slen = 0; 4792 return (sdl->sdl_nlen); 4793 } 4794 4795 static int 4796 loopback_kstat_update(kstat_t *ksp, int rw) 4797 { 4798 kstat_named_t *kn; 4799 netstackid_t stackid; 4800 netstack_t *ns; 4801 ip_stack_t *ipst; 4802 4803 if (ksp == NULL || ksp->ks_data == NULL) 4804 return (EIO); 4805 4806 if (rw == KSTAT_WRITE) 4807 return (EACCES); 4808 4809 kn = KSTAT_NAMED_PTR(ksp); 4810 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4811 4812 ns = netstack_find_by_stackid(stackid); 4813 if (ns == NULL) 4814 return (-1); 4815 4816 ipst = ns->netstack_ip; 4817 if (ipst == NULL) { 4818 netstack_rele(ns); 4819 return (-1); 4820 } 4821 kn[0].value.ui32 = ipst->ips_loopback_packets; 4822 kn[1].value.ui32 = ipst->ips_loopback_packets; 4823 netstack_rele(ns); 4824 return (0); 4825 } 4826 4827 4828 /* 4829 * Has ifindex been plumbed already. 4830 * Compares both phyint_ifindex and phyint_group_ifindex. 4831 */ 4832 static boolean_t 4833 phyint_exists(uint_t index, ip_stack_t *ipst) 4834 { 4835 phyint_t *phyi; 4836 4837 ASSERT(index != 0); 4838 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4839 /* 4840 * Indexes are stored in the phyint - a common structure 4841 * to both IPv4 and IPv6. 4842 */ 4843 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4844 for (; phyi != NULL; 4845 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4846 phyi, AVL_AFTER)) { 4847 if (phyi->phyint_ifindex == index || 4848 phyi->phyint_group_ifindex == index) 4849 return (B_TRUE); 4850 } 4851 return (B_FALSE); 4852 } 4853 4854 /* Pick a unique ifindex */ 4855 boolean_t 4856 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4857 { 4858 uint_t starting_index; 4859 4860 if (!ipst->ips_ill_index_wrap) { 4861 *indexp = ipst->ips_ill_index++; 4862 if (ipst->ips_ill_index == 0) { 4863 /* Reached the uint_t limit Next time wrap */ 4864 ipst->ips_ill_index_wrap = B_TRUE; 4865 } 4866 return (B_TRUE); 4867 } 4868 4869 /* 4870 * Start reusing unused indexes. Note that we hold the ill_g_lock 4871 * at this point and don't want to call any function that attempts 4872 * to get the lock again. 4873 */ 4874 starting_index = ipst->ips_ill_index++; 4875 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4876 if (ipst->ips_ill_index != 0 && 4877 !phyint_exists(ipst->ips_ill_index, ipst)) { 4878 /* found unused index - use it */ 4879 *indexp = ipst->ips_ill_index; 4880 return (B_TRUE); 4881 } 4882 } 4883 4884 /* 4885 * all interface indicies are inuse. 4886 */ 4887 return (B_FALSE); 4888 } 4889 4890 /* 4891 * Assign a unique interface index for the phyint. 4892 */ 4893 static boolean_t 4894 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4895 { 4896 ASSERT(phyi->phyint_ifindex == 0); 4897 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4898 } 4899 4900 /* 4901 * Return a pointer to the ill which matches the supplied name. Note that 4902 * the ill name length includes the null termination character. (May be 4903 * called as writer.) 4904 * If do_alloc and the interface is "lo0" it will be automatically created. 4905 * Cannot bump up reference on condemned ills. So dup detect can't be done 4906 * using this func. 4907 */ 4908 ill_t * 4909 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4910 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4911 ip_stack_t *ipst) 4912 { 4913 ill_t *ill; 4914 ipif_t *ipif; 4915 kstat_named_t *kn; 4916 boolean_t isloopback; 4917 ipsq_t *old_ipsq; 4918 in6_addr_t ov6addr; 4919 4920 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4921 4922 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4923 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4924 rw_exit(&ipst->ips_ill_g_lock); 4925 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4926 return (ill); 4927 4928 /* 4929 * Couldn't find it. Does this happen to be a lookup for the 4930 * loopback device and are we allowed to allocate it? 4931 */ 4932 if (!isloopback || !do_alloc) 4933 return (NULL); 4934 4935 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4936 4937 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4938 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4939 rw_exit(&ipst->ips_ill_g_lock); 4940 return (ill); 4941 } 4942 4943 /* Create the loopback device on demand */ 4944 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4945 sizeof (ipif_loopback_name), BPRI_MED)); 4946 if (ill == NULL) 4947 goto done; 4948 4949 *ill = ill_null; 4950 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4951 ill->ill_ipst = ipst; 4952 netstack_hold(ipst->ips_netstack); 4953 /* 4954 * For exclusive stacks we set the zoneid to zero 4955 * to make IP operate as if in the global zone. 4956 */ 4957 ill->ill_zoneid = GLOBAL_ZONEID; 4958 4959 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4960 if (ill->ill_phyint == NULL) 4961 goto done; 4962 4963 if (isv6) 4964 ill->ill_phyint->phyint_illv6 = ill; 4965 else 4966 ill->ill_phyint->phyint_illv4 = ill; 4967 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4968 ill->ill_max_frag = IP_LOOPBACK_MTU; 4969 /* Add room for tcp+ip headers */ 4970 if (isv6) { 4971 ill->ill_isv6 = B_TRUE; 4972 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4973 } else { 4974 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4975 } 4976 if (!ill_allocate_mibs(ill)) 4977 goto done; 4978 ill->ill_max_mtu = ill->ill_max_frag; 4979 /* 4980 * ipif_loopback_name can't be pointed at directly because its used 4981 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4982 * from the glist, ill_glist_delete() sets the first character of 4983 * ill_name to '\0'. 4984 */ 4985 ill->ill_name = (char *)ill + sizeof (*ill); 4986 (void) strcpy(ill->ill_name, ipif_loopback_name); 4987 ill->ill_name_length = sizeof (ipif_loopback_name); 4988 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4989 4990 ill->ill_global_timer = INFINITY; 4991 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4992 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4993 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4994 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4995 4996 /* No resolver here. */ 4997 ill->ill_net_type = IRE_LOOPBACK; 4998 4999 /* Initialize the ipsq */ 5000 if (!ipsq_init(ill)) 5001 goto done; 5002 5003 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5004 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5005 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5006 #ifdef DEBUG 5007 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5008 #endif 5009 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5010 if (ipif == NULL) 5011 goto done; 5012 5013 ill->ill_flags = ILLF_MULTICAST; 5014 5015 ov6addr = ipif->ipif_v6lcl_addr; 5016 /* Set up default loopback address and mask. */ 5017 if (!isv6) { 5018 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5019 5020 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5021 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5022 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5023 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5024 ipif->ipif_v6subnet); 5025 ill->ill_flags |= ILLF_IPV4; 5026 } else { 5027 ipif->ipif_v6lcl_addr = ipv6_loopback; 5028 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5029 ipif->ipif_v6net_mask = ipv6_all_ones; 5030 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5031 ipif->ipif_v6subnet); 5032 ill->ill_flags |= ILLF_IPV6; 5033 } 5034 5035 /* 5036 * Chain us in at the end of the ill list. hold the ill 5037 * before we make it globally visible. 1 for the lookup. 5038 */ 5039 ill->ill_refcnt = 0; 5040 ill_refhold(ill); 5041 5042 ill->ill_frag_count = 0; 5043 ill->ill_frag_free_num_pkts = 0; 5044 ill->ill_last_frag_clean_time = 0; 5045 5046 old_ipsq = ill->ill_phyint->phyint_ipsq; 5047 5048 if (ill_glist_insert(ill, "lo", isv6) != 0) 5049 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5050 5051 /* Let SCTP know so that it can add this to its list */ 5052 sctp_update_ill(ill, SCTP_ILL_INSERT); 5053 5054 /* 5055 * We have already assigned ipif_v6lcl_addr above, but we need to 5056 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5057 * requires to be after ill_glist_insert() since we need the 5058 * ill_index set. Pass on ipv6_loopback as the old address. 5059 */ 5060 sctp_update_ipif_addr(ipif, ov6addr); 5061 5062 /* 5063 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5064 */ 5065 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5066 /* Loopback ills aren't in any IPMP group */ 5067 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5068 ipsq_delete(old_ipsq); 5069 } 5070 5071 /* 5072 * Delay this till the ipif is allocated as ipif_allocate 5073 * de-references ill_phyint for getting the ifindex. We 5074 * can't do this before ipif_allocate because ill_phyint_reinit 5075 * -> phyint_assign_ifindex expects ipif to be present. 5076 */ 5077 mutex_enter(&ill->ill_phyint->phyint_lock); 5078 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5079 mutex_exit(&ill->ill_phyint->phyint_lock); 5080 5081 if (ipst->ips_loopback_ksp == NULL) { 5082 /* Export loopback interface statistics */ 5083 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5084 ipif_loopback_name, "net", 5085 KSTAT_TYPE_NAMED, 2, 0, 5086 ipst->ips_netstack->netstack_stackid); 5087 if (ipst->ips_loopback_ksp != NULL) { 5088 ipst->ips_loopback_ksp->ks_update = 5089 loopback_kstat_update; 5090 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5091 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5092 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5093 ipst->ips_loopback_ksp->ks_private = 5094 (void *)(uintptr_t)ipst->ips_netstack-> 5095 netstack_stackid; 5096 kstat_install(ipst->ips_loopback_ksp); 5097 } 5098 } 5099 5100 if (error != NULL) 5101 *error = 0; 5102 *did_alloc = B_TRUE; 5103 rw_exit(&ipst->ips_ill_g_lock); 5104 return (ill); 5105 done: 5106 if (ill != NULL) { 5107 if (ill->ill_phyint != NULL) { 5108 ipsq_t *ipsq; 5109 5110 ipsq = ill->ill_phyint->phyint_ipsq; 5111 if (ipsq != NULL) { 5112 ipsq->ipsq_ipst = NULL; 5113 kmem_free(ipsq, sizeof (ipsq_t)); 5114 } 5115 mi_free(ill->ill_phyint); 5116 } 5117 ill_free_mib(ill); 5118 if (ill->ill_ipst != NULL) 5119 netstack_rele(ill->ill_ipst->ips_netstack); 5120 mi_free(ill); 5121 } 5122 rw_exit(&ipst->ips_ill_g_lock); 5123 if (error != NULL) 5124 *error = ENOMEM; 5125 return (NULL); 5126 } 5127 5128 /* 5129 * For IPP calls - use the ip_stack_t for global stack. 5130 */ 5131 ill_t * 5132 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5133 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5134 { 5135 ip_stack_t *ipst; 5136 ill_t *ill; 5137 5138 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5139 if (ipst == NULL) { 5140 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5141 return (NULL); 5142 } 5143 5144 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5145 netstack_rele(ipst->ips_netstack); 5146 return (ill); 5147 } 5148 5149 /* 5150 * Return a pointer to the ill which matches the index and IP version type. 5151 */ 5152 ill_t * 5153 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5154 ipsq_func_t func, int *err, ip_stack_t *ipst) 5155 { 5156 ill_t *ill; 5157 ipsq_t *ipsq; 5158 phyint_t *phyi; 5159 5160 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5161 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5162 5163 if (err != NULL) 5164 *err = 0; 5165 5166 /* 5167 * Indexes are stored in the phyint - a common structure 5168 * to both IPv4 and IPv6. 5169 */ 5170 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5171 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5172 (void *) &index, NULL); 5173 if (phyi != NULL) { 5174 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5175 if (ill != NULL) { 5176 /* 5177 * The block comment at the start of ipif_down 5178 * explains the use of the macros used below 5179 */ 5180 GRAB_CONN_LOCK(q); 5181 mutex_enter(&ill->ill_lock); 5182 if (ILL_CAN_LOOKUP(ill)) { 5183 ill_refhold_locked(ill); 5184 mutex_exit(&ill->ill_lock); 5185 RELEASE_CONN_LOCK(q); 5186 rw_exit(&ipst->ips_ill_g_lock); 5187 return (ill); 5188 } else if (ILL_CAN_WAIT(ill, q)) { 5189 ipsq = ill->ill_phyint->phyint_ipsq; 5190 mutex_enter(&ipsq->ipsq_lock); 5191 rw_exit(&ipst->ips_ill_g_lock); 5192 mutex_exit(&ill->ill_lock); 5193 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5194 mutex_exit(&ipsq->ipsq_lock); 5195 RELEASE_CONN_LOCK(q); 5196 if (err != NULL) 5197 *err = EINPROGRESS; 5198 return (NULL); 5199 } 5200 RELEASE_CONN_LOCK(q); 5201 mutex_exit(&ill->ill_lock); 5202 } 5203 } 5204 rw_exit(&ipst->ips_ill_g_lock); 5205 if (err != NULL) 5206 *err = ENXIO; 5207 return (NULL); 5208 } 5209 5210 /* 5211 * Return the ifindex next in sequence after the passed in ifindex. 5212 * If there is no next ifindex for the given protocol, return 0. 5213 */ 5214 uint_t 5215 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5216 { 5217 phyint_t *phyi; 5218 phyint_t *phyi_initial; 5219 uint_t ifindex; 5220 5221 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5222 5223 if (index == 0) { 5224 phyi = avl_first( 5225 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5226 } else { 5227 phyi = phyi_initial = avl_find( 5228 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5229 (void *) &index, NULL); 5230 } 5231 5232 for (; phyi != NULL; 5233 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5234 phyi, AVL_AFTER)) { 5235 /* 5236 * If we're not returning the first interface in the tree 5237 * and we still haven't moved past the phyint_t that 5238 * corresponds to index, avl_walk needs to be called again 5239 */ 5240 if (!((index != 0) && (phyi == phyi_initial))) { 5241 if (isv6) { 5242 if ((phyi->phyint_illv6) && 5243 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5244 (phyi->phyint_illv6->ill_isv6 == 1)) 5245 break; 5246 } else { 5247 if ((phyi->phyint_illv4) && 5248 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5249 (phyi->phyint_illv4->ill_isv6 == 0)) 5250 break; 5251 } 5252 } 5253 } 5254 5255 rw_exit(&ipst->ips_ill_g_lock); 5256 5257 if (phyi != NULL) 5258 ifindex = phyi->phyint_ifindex; 5259 else 5260 ifindex = 0; 5261 5262 return (ifindex); 5263 } 5264 5265 5266 /* 5267 * Return the ifindex for the named interface. 5268 * If there is no next ifindex for the interface, return 0. 5269 */ 5270 uint_t 5271 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5272 { 5273 phyint_t *phyi; 5274 avl_index_t where = 0; 5275 uint_t ifindex; 5276 5277 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5278 5279 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5280 name, &where)) == NULL) { 5281 rw_exit(&ipst->ips_ill_g_lock); 5282 return (0); 5283 } 5284 5285 ifindex = phyi->phyint_ifindex; 5286 5287 rw_exit(&ipst->ips_ill_g_lock); 5288 5289 return (ifindex); 5290 } 5291 5292 5293 /* 5294 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5295 * that gives a running thread a reference to the ill. This reference must be 5296 * released by the thread when it is done accessing the ill and related 5297 * objects. ill_refcnt can not be used to account for static references 5298 * such as other structures pointing to an ill. Callers must generally 5299 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5300 * or be sure that the ill is not being deleted or changing state before 5301 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5302 * ill won't change any of its critical state such as address, netmask etc. 5303 */ 5304 void 5305 ill_refhold(ill_t *ill) 5306 { 5307 mutex_enter(&ill->ill_lock); 5308 ill->ill_refcnt++; 5309 ILL_TRACE_REF(ill); 5310 mutex_exit(&ill->ill_lock); 5311 } 5312 5313 void 5314 ill_refhold_locked(ill_t *ill) 5315 { 5316 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5317 ill->ill_refcnt++; 5318 ILL_TRACE_REF(ill); 5319 } 5320 5321 int 5322 ill_check_and_refhold(ill_t *ill) 5323 { 5324 mutex_enter(&ill->ill_lock); 5325 if (ILL_CAN_LOOKUP(ill)) { 5326 ill_refhold_locked(ill); 5327 mutex_exit(&ill->ill_lock); 5328 return (0); 5329 } 5330 mutex_exit(&ill->ill_lock); 5331 return (ILL_LOOKUP_FAILED); 5332 } 5333 5334 /* 5335 * Must not be called while holding any locks. Otherwise if this is 5336 * the last reference to be released, there is a chance of recursive mutex 5337 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5338 * to restart an ioctl. 5339 */ 5340 void 5341 ill_refrele(ill_t *ill) 5342 { 5343 mutex_enter(&ill->ill_lock); 5344 ASSERT(ill->ill_refcnt != 0); 5345 ill->ill_refcnt--; 5346 ILL_UNTRACE_REF(ill); 5347 if (ill->ill_refcnt != 0) { 5348 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5349 mutex_exit(&ill->ill_lock); 5350 return; 5351 } 5352 5353 /* Drops the ill_lock */ 5354 ipif_ill_refrele_tail(ill); 5355 } 5356 5357 /* 5358 * Obtain a weak reference count on the ill. This reference ensures the 5359 * ill won't be freed, but the ill may change any of its critical state 5360 * such as netmask, address etc. Returns an error if the ill has started 5361 * closing. 5362 */ 5363 boolean_t 5364 ill_waiter_inc(ill_t *ill) 5365 { 5366 mutex_enter(&ill->ill_lock); 5367 if (ill->ill_state_flags & ILL_CONDEMNED) { 5368 mutex_exit(&ill->ill_lock); 5369 return (B_FALSE); 5370 } 5371 ill->ill_waiters++; 5372 mutex_exit(&ill->ill_lock); 5373 return (B_TRUE); 5374 } 5375 5376 void 5377 ill_waiter_dcr(ill_t *ill) 5378 { 5379 mutex_enter(&ill->ill_lock); 5380 ill->ill_waiters--; 5381 if (ill->ill_waiters == 0) 5382 cv_broadcast(&ill->ill_cv); 5383 mutex_exit(&ill->ill_lock); 5384 } 5385 5386 /* 5387 * Named Dispatch routine to produce a formatted report on all ILLs. 5388 * This report is accessed by using the ndd utility to "get" ND variable 5389 * "ip_ill_status". 5390 */ 5391 /* ARGSUSED */ 5392 int 5393 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5394 { 5395 ill_t *ill; 5396 ill_walk_context_t ctx; 5397 ip_stack_t *ipst; 5398 5399 ipst = CONNQ_TO_IPST(q); 5400 5401 (void) mi_mpprintf(mp, 5402 "ILL " MI_COL_HDRPAD_STR 5403 /* 01234567[89ABCDEF] */ 5404 "rq " MI_COL_HDRPAD_STR 5405 /* 01234567[89ABCDEF] */ 5406 "wq " MI_COL_HDRPAD_STR 5407 /* 01234567[89ABCDEF] */ 5408 "upcnt mxfrg err name"); 5409 /* 12345 12345 123 xxxxxxxx */ 5410 5411 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5412 ill = ILL_START_WALK_ALL(&ctx, ipst); 5413 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5414 (void) mi_mpprintf(mp, 5415 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5416 "%05u %05u %03d %s", 5417 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5418 ill->ill_ipif_up_count, 5419 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5420 } 5421 rw_exit(&ipst->ips_ill_g_lock); 5422 5423 return (0); 5424 } 5425 5426 /* 5427 * Named Dispatch routine to produce a formatted report on all IPIFs. 5428 * This report is accessed by using the ndd utility to "get" ND variable 5429 * "ip_ipif_status". 5430 */ 5431 /* ARGSUSED */ 5432 int 5433 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5434 { 5435 char buf1[INET6_ADDRSTRLEN]; 5436 char buf2[INET6_ADDRSTRLEN]; 5437 char buf3[INET6_ADDRSTRLEN]; 5438 char buf4[INET6_ADDRSTRLEN]; 5439 char buf5[INET6_ADDRSTRLEN]; 5440 char buf6[INET6_ADDRSTRLEN]; 5441 char buf[LIFNAMSIZ]; 5442 ill_t *ill; 5443 ipif_t *ipif; 5444 nv_t *nvp; 5445 uint64_t flags; 5446 zoneid_t zoneid; 5447 ill_walk_context_t ctx; 5448 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5449 5450 (void) mi_mpprintf(mp, 5451 "IPIF metric mtu in/out/forward name zone flags...\n" 5452 "\tlocal address\n" 5453 "\tsrc address\n" 5454 "\tsubnet\n" 5455 "\tmask\n" 5456 "\tbroadcast\n" 5457 "\tp-p-dst"); 5458 5459 ASSERT(q->q_next == NULL); 5460 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5461 5462 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5463 ill = ILL_START_WALK_ALL(&ctx, ipst); 5464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5465 for (ipif = ill->ill_ipif; ipif != NULL; 5466 ipif = ipif->ipif_next) { 5467 if (zoneid != GLOBAL_ZONEID && 5468 zoneid != ipif->ipif_zoneid && 5469 ipif->ipif_zoneid != ALL_ZONES) 5470 continue; 5471 5472 ipif_get_name(ipif, buf, sizeof (buf)); 5473 (void) mi_mpprintf(mp, 5474 MI_COL_PTRFMT_STR 5475 "%04u %05u %u/%u/%u %s %d", 5476 (void *)ipif, 5477 ipif->ipif_metric, ipif->ipif_mtu, 5478 ipif->ipif_ib_pkt_count, 5479 ipif->ipif_ob_pkt_count, 5480 ipif->ipif_fo_pkt_count, 5481 buf, 5482 ipif->ipif_zoneid); 5483 5484 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5485 ipif->ipif_ill->ill_phyint->phyint_flags; 5486 5487 /* Tack on text strings for any flags. */ 5488 nvp = ipif_nv_tbl; 5489 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5490 if (nvp->nv_value & flags) 5491 (void) mi_mpprintf_nr(mp, " %s", 5492 nvp->nv_name); 5493 } 5494 (void) mi_mpprintf(mp, 5495 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5496 inet_ntop(AF_INET6, 5497 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5498 inet_ntop(AF_INET6, 5499 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5500 inet_ntop(AF_INET6, 5501 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5502 inet_ntop(AF_INET6, 5503 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5504 inet_ntop(AF_INET6, 5505 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5506 inet_ntop(AF_INET6, 5507 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5508 } 5509 } 5510 rw_exit(&ipst->ips_ill_g_lock); 5511 return (0); 5512 } 5513 5514 /* 5515 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5516 * driver. We construct best guess defaults for lower level information that 5517 * we need. If an interface is brought up without injection of any overriding 5518 * information from outside, we have to be ready to go with these defaults. 5519 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5520 * we primarely want the dl_provider_style. 5521 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5522 * at which point we assume the other part of the information is valid. 5523 */ 5524 void 5525 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5526 { 5527 uchar_t *brdcst_addr; 5528 uint_t brdcst_addr_length, phys_addr_length; 5529 t_scalar_t sap_length; 5530 dl_info_ack_t *dlia; 5531 ip_m_t *ipm; 5532 dl_qos_cl_sel1_t *sel1; 5533 5534 ASSERT(IAM_WRITER_ILL(ill)); 5535 5536 /* 5537 * Till the ill is fully up ILL_CHANGING will be set and 5538 * the ill is not globally visible. So no need for a lock. 5539 */ 5540 dlia = (dl_info_ack_t *)mp->b_rptr; 5541 ill->ill_mactype = dlia->dl_mac_type; 5542 5543 ipm = ip_m_lookup(dlia->dl_mac_type); 5544 if (ipm == NULL) { 5545 ipm = ip_m_lookup(DL_OTHER); 5546 ASSERT(ipm != NULL); 5547 } 5548 ill->ill_media = ipm; 5549 5550 /* 5551 * When the new DLPI stuff is ready we'll pull lengths 5552 * from dlia. 5553 */ 5554 if (dlia->dl_version == DL_VERSION_2) { 5555 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5556 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5557 brdcst_addr_length); 5558 if (brdcst_addr == NULL) { 5559 brdcst_addr_length = 0; 5560 } 5561 sap_length = dlia->dl_sap_length; 5562 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5563 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5564 brdcst_addr_length, sap_length, phys_addr_length)); 5565 } else { 5566 brdcst_addr_length = 6; 5567 brdcst_addr = ip_six_byte_all_ones; 5568 sap_length = -2; 5569 phys_addr_length = brdcst_addr_length; 5570 } 5571 5572 ill->ill_bcast_addr_length = brdcst_addr_length; 5573 ill->ill_phys_addr_length = phys_addr_length; 5574 ill->ill_sap_length = sap_length; 5575 ill->ill_max_frag = dlia->dl_max_sdu; 5576 ill->ill_max_mtu = ill->ill_max_frag; 5577 5578 ill->ill_type = ipm->ip_m_type; 5579 5580 if (!ill->ill_dlpi_style_set) { 5581 if (dlia->dl_provider_style == DL_STYLE2) 5582 ill->ill_needs_attach = 1; 5583 5584 /* 5585 * Allocate the first ipif on this ill. We don't delay it 5586 * further as ioctl handling assumes atleast one ipif to 5587 * be present. 5588 * 5589 * At this point we don't know whether the ill is v4 or v6. 5590 * We will know this whan the SIOCSLIFNAME happens and 5591 * the correct value for ill_isv6 will be assigned in 5592 * ipif_set_values(). We need to hold the ill lock and 5593 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5594 * the wakeup. 5595 */ 5596 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5597 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5598 mutex_enter(&ill->ill_lock); 5599 ASSERT(ill->ill_dlpi_style_set == 0); 5600 ill->ill_dlpi_style_set = 1; 5601 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5602 cv_broadcast(&ill->ill_cv); 5603 mutex_exit(&ill->ill_lock); 5604 freemsg(mp); 5605 return; 5606 } 5607 ASSERT(ill->ill_ipif != NULL); 5608 /* 5609 * We know whether it is IPv4 or IPv6 now, as this is the 5610 * second DL_INFO_ACK we are recieving in response to the 5611 * DL_INFO_REQ sent in ipif_set_values. 5612 */ 5613 if (ill->ill_isv6) 5614 ill->ill_sap = IP6_DL_SAP; 5615 else 5616 ill->ill_sap = IP_DL_SAP; 5617 /* 5618 * Set ipif_mtu which is used to set the IRE's 5619 * ire_max_frag value. The driver could have sent 5620 * a different mtu from what it sent last time. No 5621 * need to call ipif_mtu_change because IREs have 5622 * not yet been created. 5623 */ 5624 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5625 /* 5626 * Clear all the flags that were set based on ill_bcast_addr_length 5627 * and ill_phys_addr_length (in ipif_set_values) as these could have 5628 * changed now and we need to re-evaluate. 5629 */ 5630 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5631 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5632 5633 /* 5634 * Free ill_resolver_mp and ill_bcast_mp as things could have 5635 * changed now. 5636 */ 5637 if (ill->ill_bcast_addr_length == 0) { 5638 if (ill->ill_resolver_mp != NULL) 5639 freemsg(ill->ill_resolver_mp); 5640 if (ill->ill_bcast_mp != NULL) 5641 freemsg(ill->ill_bcast_mp); 5642 if (ill->ill_flags & ILLF_XRESOLV) 5643 ill->ill_net_type = IRE_IF_RESOLVER; 5644 else 5645 ill->ill_net_type = IRE_IF_NORESOLVER; 5646 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5647 ill->ill_phys_addr_length, 5648 ill->ill_sap, 5649 ill->ill_sap_length); 5650 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5651 5652 if (ill->ill_isv6) 5653 /* 5654 * Note: xresolv interfaces will eventually need NOARP 5655 * set here as well, but that will require those 5656 * external resolvers to have some knowledge of 5657 * that flag and act appropriately. Not to be changed 5658 * at present. 5659 */ 5660 ill->ill_flags |= ILLF_NONUD; 5661 else 5662 ill->ill_flags |= ILLF_NOARP; 5663 5664 if (ill->ill_phys_addr_length == 0) { 5665 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5666 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5667 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5668 } else { 5669 /* pt-pt supports multicast. */ 5670 ill->ill_flags |= ILLF_MULTICAST; 5671 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5672 } 5673 } 5674 } else { 5675 ill->ill_net_type = IRE_IF_RESOLVER; 5676 if (ill->ill_bcast_mp != NULL) 5677 freemsg(ill->ill_bcast_mp); 5678 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5679 ill->ill_bcast_addr_length, ill->ill_sap, 5680 ill->ill_sap_length); 5681 /* 5682 * Later detect lack of DLPI driver multicast 5683 * capability by catching DL_ENABMULTI errors in 5684 * ip_rput_dlpi. 5685 */ 5686 ill->ill_flags |= ILLF_MULTICAST; 5687 if (!ill->ill_isv6) 5688 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5689 } 5690 /* By default an interface does not support any CoS marking */ 5691 ill->ill_flags &= ~ILLF_COS_ENABLED; 5692 5693 /* 5694 * If we get QoS information in DL_INFO_ACK, the device supports 5695 * some form of CoS marking, set ILLF_COS_ENABLED. 5696 */ 5697 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5698 dlia->dl_qos_length); 5699 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5700 ill->ill_flags |= ILLF_COS_ENABLED; 5701 } 5702 5703 /* Clear any previous error indication. */ 5704 ill->ill_error = 0; 5705 freemsg(mp); 5706 } 5707 5708 /* 5709 * Perform various checks to verify that an address would make sense as a 5710 * local, remote, or subnet interface address. 5711 */ 5712 static boolean_t 5713 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5714 { 5715 ipaddr_t net_mask; 5716 5717 /* 5718 * Don't allow all zeroes, or all ones, but allow 5719 * all ones netmask. 5720 */ 5721 if ((net_mask = ip_net_mask(addr)) == 0) 5722 return (B_FALSE); 5723 /* A given netmask overrides the "guess" netmask */ 5724 if (subnet_mask != 0) 5725 net_mask = subnet_mask; 5726 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5727 (addr == (addr | ~net_mask)))) { 5728 return (B_FALSE); 5729 } 5730 5731 /* 5732 * Even if the netmask is all ones, we do not allow address to be 5733 * 255.255.255.255 5734 */ 5735 if (addr == INADDR_BROADCAST) 5736 return (B_FALSE); 5737 5738 if (CLASSD(addr)) 5739 return (B_FALSE); 5740 5741 return (B_TRUE); 5742 } 5743 5744 #define V6_IPIF_LINKLOCAL(p) \ 5745 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5746 5747 /* 5748 * Compare two given ipifs and check if the second one is better than 5749 * the first one using the order of preference (not taking deprecated 5750 * into acount) specified in ipif_lookup_multicast(). 5751 */ 5752 static boolean_t 5753 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5754 { 5755 /* Check the least preferred first. */ 5756 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5757 /* If both ipifs are the same, use the first one. */ 5758 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5759 return (B_FALSE); 5760 else 5761 return (B_TRUE); 5762 } 5763 5764 /* For IPv6, check for link local address. */ 5765 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5766 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5767 V6_IPIF_LINKLOCAL(new_ipif)) { 5768 /* The second one is equal or less preferred. */ 5769 return (B_FALSE); 5770 } else { 5771 return (B_TRUE); 5772 } 5773 } 5774 5775 /* Then check for point to point interface. */ 5776 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5777 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5778 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5779 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5780 return (B_FALSE); 5781 } else { 5782 return (B_TRUE); 5783 } 5784 } 5785 5786 /* old_ipif is a normal interface, so no need to use the new one. */ 5787 return (B_FALSE); 5788 } 5789 5790 /* 5791 * Find any non-virtual, not condemned, and up multicast capable interface 5792 * given an IP instance and zoneid. Order of preference is: 5793 * 5794 * 1. normal 5795 * 1.1 normal, but deprecated 5796 * 2. point to point 5797 * 2.1 point to point, but deprecated 5798 * 3. link local 5799 * 3.1 link local, but deprecated 5800 * 4. loopback. 5801 */ 5802 ipif_t * 5803 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5804 { 5805 ill_t *ill; 5806 ill_walk_context_t ctx; 5807 ipif_t *ipif; 5808 ipif_t *saved_ipif = NULL; 5809 ipif_t *dep_ipif = NULL; 5810 5811 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5812 if (isv6) 5813 ill = ILL_START_WALK_V6(&ctx, ipst); 5814 else 5815 ill = ILL_START_WALK_V4(&ctx, ipst); 5816 5817 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5818 mutex_enter(&ill->ill_lock); 5819 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5820 !(ill->ill_flags & ILLF_MULTICAST)) { 5821 mutex_exit(&ill->ill_lock); 5822 continue; 5823 } 5824 for (ipif = ill->ill_ipif; ipif != NULL; 5825 ipif = ipif->ipif_next) { 5826 if (zoneid != ipif->ipif_zoneid && 5827 zoneid != ALL_ZONES && 5828 ipif->ipif_zoneid != ALL_ZONES) { 5829 continue; 5830 } 5831 if (!(ipif->ipif_flags & IPIF_UP) || 5832 !IPIF_CAN_LOOKUP(ipif)) { 5833 continue; 5834 } 5835 5836 /* 5837 * Found one candidate. If it is deprecated, 5838 * remember it in dep_ipif. If it is not deprecated, 5839 * remember it in saved_ipif. 5840 */ 5841 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5842 if (dep_ipif == NULL) { 5843 dep_ipif = ipif; 5844 } else if (ipif_comp_multi(dep_ipif, ipif, 5845 isv6)) { 5846 /* 5847 * If the previous dep_ipif does not 5848 * belong to the same ill, we've done 5849 * a ipif_refhold() on it. So we need 5850 * to release it. 5851 */ 5852 if (dep_ipif->ipif_ill != ill) 5853 ipif_refrele(dep_ipif); 5854 dep_ipif = ipif; 5855 } 5856 continue; 5857 } 5858 if (saved_ipif == NULL) { 5859 saved_ipif = ipif; 5860 } else { 5861 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5862 if (saved_ipif->ipif_ill != ill) 5863 ipif_refrele(saved_ipif); 5864 saved_ipif = ipif; 5865 } 5866 } 5867 } 5868 /* 5869 * Before going to the next ill, do a ipif_refhold() on the 5870 * saved ones. 5871 */ 5872 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5873 ipif_refhold_locked(saved_ipif); 5874 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5875 ipif_refhold_locked(dep_ipif); 5876 mutex_exit(&ill->ill_lock); 5877 } 5878 rw_exit(&ipst->ips_ill_g_lock); 5879 5880 /* 5881 * If we have only the saved_ipif, return it. But if we have both 5882 * saved_ipif and dep_ipif, check to see which one is better. 5883 */ 5884 if (saved_ipif != NULL) { 5885 if (dep_ipif != NULL) { 5886 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5887 ipif_refrele(saved_ipif); 5888 return (dep_ipif); 5889 } else { 5890 ipif_refrele(dep_ipif); 5891 return (saved_ipif); 5892 } 5893 } 5894 return (saved_ipif); 5895 } else { 5896 return (dep_ipif); 5897 } 5898 } 5899 5900 /* 5901 * This function is called when an application does not specify an interface 5902 * to be used for multicast traffic (joining a group/sending data). It 5903 * calls ire_lookup_multi() to look for an interface route for the 5904 * specified multicast group. Doing this allows the administrator to add 5905 * prefix routes for multicast to indicate which interface to be used for 5906 * multicast traffic in the above scenario. The route could be for all 5907 * multicast (224.0/4), for a single multicast group (a /32 route) or 5908 * anything in between. If there is no such multicast route, we just find 5909 * any multicast capable interface and return it. The returned ipif 5910 * is refhold'ed. 5911 */ 5912 ipif_t * 5913 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5914 { 5915 ire_t *ire; 5916 ipif_t *ipif; 5917 5918 ire = ire_lookup_multi(group, zoneid, ipst); 5919 if (ire != NULL) { 5920 ipif = ire->ire_ipif; 5921 ipif_refhold(ipif); 5922 ire_refrele(ire); 5923 return (ipif); 5924 } 5925 5926 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5927 } 5928 5929 /* 5930 * Look for an ipif with the specified interface address and destination. 5931 * The destination address is used only for matching point-to-point interfaces. 5932 */ 5933 ipif_t * 5934 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5935 ipsq_func_t func, int *error, ip_stack_t *ipst) 5936 { 5937 ipif_t *ipif; 5938 ill_t *ill; 5939 ill_walk_context_t ctx; 5940 ipsq_t *ipsq; 5941 5942 if (error != NULL) 5943 *error = 0; 5944 5945 /* 5946 * First match all the point-to-point interfaces 5947 * before looking at non-point-to-point interfaces. 5948 * This is done to avoid returning non-point-to-point 5949 * ipif instead of unnumbered point-to-point ipif. 5950 */ 5951 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5952 ill = ILL_START_WALK_V4(&ctx, ipst); 5953 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5954 GRAB_CONN_LOCK(q); 5955 mutex_enter(&ill->ill_lock); 5956 for (ipif = ill->ill_ipif; ipif != NULL; 5957 ipif = ipif->ipif_next) { 5958 /* Allow the ipif to be down */ 5959 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5960 (ipif->ipif_lcl_addr == if_addr) && 5961 (ipif->ipif_pp_dst_addr == dst)) { 5962 /* 5963 * The block comment at the start of ipif_down 5964 * explains the use of the macros used below 5965 */ 5966 if (IPIF_CAN_LOOKUP(ipif)) { 5967 ipif_refhold_locked(ipif); 5968 mutex_exit(&ill->ill_lock); 5969 RELEASE_CONN_LOCK(q); 5970 rw_exit(&ipst->ips_ill_g_lock); 5971 return (ipif); 5972 } else if (IPIF_CAN_WAIT(ipif, q)) { 5973 ipsq = ill->ill_phyint->phyint_ipsq; 5974 mutex_enter(&ipsq->ipsq_lock); 5975 mutex_exit(&ill->ill_lock); 5976 rw_exit(&ipst->ips_ill_g_lock); 5977 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5978 ill); 5979 mutex_exit(&ipsq->ipsq_lock); 5980 RELEASE_CONN_LOCK(q); 5981 if (error != NULL) 5982 *error = EINPROGRESS; 5983 return (NULL); 5984 } 5985 } 5986 } 5987 mutex_exit(&ill->ill_lock); 5988 RELEASE_CONN_LOCK(q); 5989 } 5990 rw_exit(&ipst->ips_ill_g_lock); 5991 5992 /* lookup the ipif based on interface address */ 5993 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5994 ipst); 5995 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5996 return (ipif); 5997 } 5998 5999 /* 6000 * Look for an ipif with the specified address. For point-point links 6001 * we look for matches on either the destination address and the local 6002 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6003 * is set. 6004 * Matches on a specific ill if match_ill is set. 6005 */ 6006 ipif_t * 6007 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6008 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6009 { 6010 ipif_t *ipif; 6011 ill_t *ill; 6012 boolean_t ptp = B_FALSE; 6013 ipsq_t *ipsq; 6014 ill_walk_context_t ctx; 6015 6016 if (error != NULL) 6017 *error = 0; 6018 6019 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6020 /* 6021 * Repeat twice, first based on local addresses and 6022 * next time for pointopoint. 6023 */ 6024 repeat: 6025 ill = ILL_START_WALK_V4(&ctx, ipst); 6026 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6027 if (match_ill != NULL && ill != match_ill) { 6028 continue; 6029 } 6030 GRAB_CONN_LOCK(q); 6031 mutex_enter(&ill->ill_lock); 6032 for (ipif = ill->ill_ipif; ipif != NULL; 6033 ipif = ipif->ipif_next) { 6034 if (zoneid != ALL_ZONES && 6035 zoneid != ipif->ipif_zoneid && 6036 ipif->ipif_zoneid != ALL_ZONES) 6037 continue; 6038 /* Allow the ipif to be down */ 6039 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6040 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6041 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6042 (ipif->ipif_pp_dst_addr == addr))) { 6043 /* 6044 * The block comment at the start of ipif_down 6045 * explains the use of the macros used below 6046 */ 6047 if (IPIF_CAN_LOOKUP(ipif)) { 6048 ipif_refhold_locked(ipif); 6049 mutex_exit(&ill->ill_lock); 6050 RELEASE_CONN_LOCK(q); 6051 rw_exit(&ipst->ips_ill_g_lock); 6052 return (ipif); 6053 } else if (IPIF_CAN_WAIT(ipif, q)) { 6054 ipsq = ill->ill_phyint->phyint_ipsq; 6055 mutex_enter(&ipsq->ipsq_lock); 6056 mutex_exit(&ill->ill_lock); 6057 rw_exit(&ipst->ips_ill_g_lock); 6058 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6059 ill); 6060 mutex_exit(&ipsq->ipsq_lock); 6061 RELEASE_CONN_LOCK(q); 6062 if (error != NULL) 6063 *error = EINPROGRESS; 6064 return (NULL); 6065 } 6066 } 6067 } 6068 mutex_exit(&ill->ill_lock); 6069 RELEASE_CONN_LOCK(q); 6070 } 6071 6072 /* If we already did the ptp case, then we are done */ 6073 if (ptp) { 6074 rw_exit(&ipst->ips_ill_g_lock); 6075 if (error != NULL) 6076 *error = ENXIO; 6077 return (NULL); 6078 } 6079 ptp = B_TRUE; 6080 goto repeat; 6081 } 6082 6083 /* 6084 * Look for an ipif with the specified address. For point-point links 6085 * we look for matches on either the destination address and the local 6086 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6087 * is set. 6088 * Matches on a specific ill if match_ill is set. 6089 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6090 */ 6091 zoneid_t 6092 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6093 { 6094 zoneid_t zoneid; 6095 ipif_t *ipif; 6096 ill_t *ill; 6097 boolean_t ptp = B_FALSE; 6098 ill_walk_context_t ctx; 6099 6100 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6101 /* 6102 * Repeat twice, first based on local addresses and 6103 * next time for pointopoint. 6104 */ 6105 repeat: 6106 ill = ILL_START_WALK_V4(&ctx, ipst); 6107 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6108 if (match_ill != NULL && ill != match_ill) { 6109 continue; 6110 } 6111 mutex_enter(&ill->ill_lock); 6112 for (ipif = ill->ill_ipif; ipif != NULL; 6113 ipif = ipif->ipif_next) { 6114 /* Allow the ipif to be down */ 6115 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6116 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6117 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6118 (ipif->ipif_pp_dst_addr == addr)) && 6119 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6120 zoneid = ipif->ipif_zoneid; 6121 mutex_exit(&ill->ill_lock); 6122 rw_exit(&ipst->ips_ill_g_lock); 6123 /* 6124 * If ipif_zoneid was ALL_ZONES then we have 6125 * a trusted extensions shared IP address. 6126 * In that case GLOBAL_ZONEID works to send. 6127 */ 6128 if (zoneid == ALL_ZONES) 6129 zoneid = GLOBAL_ZONEID; 6130 return (zoneid); 6131 } 6132 } 6133 mutex_exit(&ill->ill_lock); 6134 } 6135 6136 /* If we already did the ptp case, then we are done */ 6137 if (ptp) { 6138 rw_exit(&ipst->ips_ill_g_lock); 6139 return (ALL_ZONES); 6140 } 6141 ptp = B_TRUE; 6142 goto repeat; 6143 } 6144 6145 /* 6146 * Look for an ipif that matches the specified remote address i.e. the 6147 * ipif that would receive the specified packet. 6148 * First look for directly connected interfaces and then do a recursive 6149 * IRE lookup and pick the first ipif corresponding to the source address in the 6150 * ire. 6151 * Returns: held ipif 6152 */ 6153 ipif_t * 6154 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6155 { 6156 ipif_t *ipif; 6157 ire_t *ire; 6158 ip_stack_t *ipst = ill->ill_ipst; 6159 6160 ASSERT(!ill->ill_isv6); 6161 6162 /* 6163 * Someone could be changing this ipif currently or change it 6164 * after we return this. Thus a few packets could use the old 6165 * old values. However structure updates/creates (ire, ilg, ilm etc) 6166 * will atomically be updated or cleaned up with the new value 6167 * Thus we don't need a lock to check the flags or other attrs below. 6168 */ 6169 mutex_enter(&ill->ill_lock); 6170 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6171 if (!IPIF_CAN_LOOKUP(ipif)) 6172 continue; 6173 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6174 ipif->ipif_zoneid != ALL_ZONES) 6175 continue; 6176 /* Allow the ipif to be down */ 6177 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6178 if ((ipif->ipif_pp_dst_addr == addr) || 6179 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6180 ipif->ipif_lcl_addr == addr)) { 6181 ipif_refhold_locked(ipif); 6182 mutex_exit(&ill->ill_lock); 6183 return (ipif); 6184 } 6185 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6186 ipif_refhold_locked(ipif); 6187 mutex_exit(&ill->ill_lock); 6188 return (ipif); 6189 } 6190 } 6191 mutex_exit(&ill->ill_lock); 6192 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6193 NULL, MATCH_IRE_RECURSIVE, ipst); 6194 if (ire != NULL) { 6195 /* 6196 * The callers of this function wants to know the 6197 * interface on which they have to send the replies 6198 * back. For IRE_CACHES that have ire_stq and ire_ipif 6199 * derived from different ills, we really don't care 6200 * what we return here. 6201 */ 6202 ipif = ire->ire_ipif; 6203 if (ipif != NULL) { 6204 ipif_refhold(ipif); 6205 ire_refrele(ire); 6206 return (ipif); 6207 } 6208 ire_refrele(ire); 6209 } 6210 /* Pick the first interface */ 6211 ipif = ipif_get_next_ipif(NULL, ill); 6212 return (ipif); 6213 } 6214 6215 /* 6216 * This func does not prevent refcnt from increasing. But if 6217 * the caller has taken steps to that effect, then this func 6218 * can be used to determine whether the ill has become quiescent 6219 */ 6220 static boolean_t 6221 ill_is_quiescent(ill_t *ill) 6222 { 6223 ipif_t *ipif; 6224 6225 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6226 6227 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6228 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6229 return (B_FALSE); 6230 } 6231 } 6232 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6233 return (B_FALSE); 6234 } 6235 return (B_TRUE); 6236 } 6237 6238 boolean_t 6239 ill_is_freeable(ill_t *ill) 6240 { 6241 ipif_t *ipif; 6242 6243 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6244 6245 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6246 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6247 return (B_FALSE); 6248 } 6249 } 6250 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6251 return (B_FALSE); 6252 } 6253 return (B_TRUE); 6254 } 6255 6256 /* 6257 * This func does not prevent refcnt from increasing. But if 6258 * the caller has taken steps to that effect, then this func 6259 * can be used to determine whether the ipif has become quiescent 6260 */ 6261 static boolean_t 6262 ipif_is_quiescent(ipif_t *ipif) 6263 { 6264 ill_t *ill; 6265 6266 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6267 6268 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6269 return (B_FALSE); 6270 } 6271 6272 ill = ipif->ipif_ill; 6273 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6274 ill->ill_logical_down) { 6275 return (B_TRUE); 6276 } 6277 6278 /* This is the last ipif going down or being deleted on this ill */ 6279 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6280 return (B_FALSE); 6281 } 6282 6283 return (B_TRUE); 6284 } 6285 6286 /* 6287 * return true if the ipif can be destroyed: the ipif has to be quiescent 6288 * with zero references from ire/nce/ilm to it. 6289 */ 6290 static boolean_t 6291 ipif_is_freeable(ipif_t *ipif) 6292 { 6293 6294 ill_t *ill; 6295 6296 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6297 6298 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6299 return (B_FALSE); 6300 } 6301 6302 ill = ipif->ipif_ill; 6303 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6304 ill->ill_logical_down) { 6305 return (B_TRUE); 6306 } 6307 6308 /* This is the last ipif going down or being deleted on this ill */ 6309 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6310 return (B_FALSE); 6311 } 6312 6313 return (B_TRUE); 6314 } 6315 6316 /* 6317 * This func does not prevent refcnt from increasing. But if 6318 * the caller has taken steps to that effect, then this func 6319 * can be used to determine whether the ipifs marked with IPIF_MOVING 6320 * have become quiescent and can be moved in a failover/failback. 6321 */ 6322 static ipif_t * 6323 ill_quiescent_to_move(ill_t *ill) 6324 { 6325 ipif_t *ipif; 6326 6327 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6328 6329 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6330 if (ipif->ipif_state_flags & IPIF_MOVING) { 6331 if (ipif->ipif_refcnt != 0 || 6332 !IPIF_DOWN_OK(ipif)) { 6333 return (ipif); 6334 } 6335 } 6336 } 6337 return (NULL); 6338 } 6339 6340 /* 6341 * The ipif/ill/ire has been refreled. Do the tail processing. 6342 * Determine if the ipif or ill in question has become quiescent and if so 6343 * wakeup close and/or restart any queued pending ioctl that is waiting 6344 * for the ipif_down (or ill_down) 6345 */ 6346 void 6347 ipif_ill_refrele_tail(ill_t *ill) 6348 { 6349 mblk_t *mp; 6350 conn_t *connp; 6351 ipsq_t *ipsq; 6352 ipif_t *ipif; 6353 dl_notify_ind_t *dlindp; 6354 6355 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6356 6357 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6358 ill_is_freeable(ill)) { 6359 /* ill_close may be waiting */ 6360 cv_broadcast(&ill->ill_cv); 6361 } 6362 6363 /* ipsq can't change because ill_lock is held */ 6364 ipsq = ill->ill_phyint->phyint_ipsq; 6365 if (ipsq->ipsq_waitfor == 0) { 6366 /* Not waiting for anything, just return. */ 6367 mutex_exit(&ill->ill_lock); 6368 return; 6369 } 6370 ASSERT(ipsq->ipsq_pending_mp != NULL && 6371 ipsq->ipsq_pending_ipif != NULL); 6372 /* 6373 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6374 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6375 * be zero for restarting an ioctl that ends up downing the ill. 6376 */ 6377 ipif = ipsq->ipsq_pending_ipif; 6378 if (ipif->ipif_ill != ill) { 6379 /* The ioctl is pending on some other ill. */ 6380 mutex_exit(&ill->ill_lock); 6381 return; 6382 } 6383 6384 switch (ipsq->ipsq_waitfor) { 6385 case IPIF_DOWN: 6386 if (!ipif_is_quiescent(ipif)) { 6387 mutex_exit(&ill->ill_lock); 6388 return; 6389 } 6390 break; 6391 case IPIF_FREE: 6392 if (!ipif_is_freeable(ipif)) { 6393 mutex_exit(&ill->ill_lock); 6394 return; 6395 } 6396 break; 6397 6398 case ILL_DOWN: 6399 if (!ill_is_quiescent(ill)) { 6400 mutex_exit(&ill->ill_lock); 6401 return; 6402 } 6403 break; 6404 case ILL_FREE: 6405 /* 6406 * case ILL_FREE arises only for loopback. otherwise ill_delete 6407 * waits synchronously in ip_close, and no message is queued in 6408 * ipsq_pending_mp at all in this case 6409 */ 6410 if (!ill_is_freeable(ill)) { 6411 mutex_exit(&ill->ill_lock); 6412 return; 6413 } 6414 break; 6415 6416 case ILL_MOVE_OK: 6417 if (ill_quiescent_to_move(ill) != NULL) { 6418 mutex_exit(&ill->ill_lock); 6419 return; 6420 } 6421 break; 6422 default: 6423 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6424 (void *)ipsq, ipsq->ipsq_waitfor); 6425 } 6426 6427 /* 6428 * Incr refcnt for the qwriter_ip call below which 6429 * does a refrele 6430 */ 6431 ill_refhold_locked(ill); 6432 mp = ipsq_pending_mp_get(ipsq, &connp); 6433 mutex_exit(&ill->ill_lock); 6434 6435 ASSERT(mp != NULL); 6436 /* 6437 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6438 * we can only get here when the current operation decides it 6439 * it needs to quiesce via ipsq_pending_mp_add(). 6440 */ 6441 switch (mp->b_datap->db_type) { 6442 case M_PCPROTO: 6443 case M_PROTO: 6444 /* 6445 * For now, only DL_NOTIFY_IND messages can use this facility. 6446 */ 6447 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6448 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6449 6450 switch (dlindp->dl_notification) { 6451 case DL_NOTE_PHYS_ADDR: 6452 qwriter_ip(ill, ill->ill_rq, mp, 6453 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6454 return; 6455 default: 6456 ASSERT(0); 6457 } 6458 break; 6459 6460 case M_ERROR: 6461 case M_HANGUP: 6462 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6463 B_TRUE); 6464 return; 6465 6466 case M_IOCTL: 6467 case M_IOCDATA: 6468 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6469 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6470 return; 6471 6472 default: 6473 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6474 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6475 } 6476 } 6477 6478 #ifdef DEBUG 6479 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6480 static void 6481 th_trace_rrecord(th_trace_t *th_trace) 6482 { 6483 tr_buf_t *tr_buf; 6484 uint_t lastref; 6485 6486 lastref = th_trace->th_trace_lastref; 6487 lastref++; 6488 if (lastref == TR_BUF_MAX) 6489 lastref = 0; 6490 th_trace->th_trace_lastref = lastref; 6491 tr_buf = &th_trace->th_trbuf[lastref]; 6492 tr_buf->tr_time = lbolt; 6493 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6494 } 6495 6496 static void 6497 th_trace_free(void *value) 6498 { 6499 th_trace_t *th_trace = value; 6500 6501 ASSERT(th_trace->th_refcnt == 0); 6502 kmem_free(th_trace, sizeof (*th_trace)); 6503 } 6504 6505 /* 6506 * Find or create the per-thread hash table used to track object references. 6507 * The ipst argument is NULL if we shouldn't allocate. 6508 * 6509 * Accesses per-thread data, so there's no need to lock here. 6510 */ 6511 static mod_hash_t * 6512 th_trace_gethash(ip_stack_t *ipst) 6513 { 6514 th_hash_t *thh; 6515 6516 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6517 mod_hash_t *mh; 6518 char name[256]; 6519 size_t objsize, rshift; 6520 int retv; 6521 6522 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6523 return (NULL); 6524 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6525 6526 /* 6527 * We use mod_hash_create_extended here rather than the more 6528 * obvious mod_hash_create_ptrhash because the latter has a 6529 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6530 * block. 6531 */ 6532 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6533 MAX(sizeof (ire_t), sizeof (nce_t))); 6534 rshift = highbit(objsize); 6535 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6536 th_trace_free, mod_hash_byptr, (void *)rshift, 6537 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6538 if (mh == NULL) { 6539 kmem_free(thh, sizeof (*thh)); 6540 return (NULL); 6541 } 6542 thh->thh_hash = mh; 6543 thh->thh_ipst = ipst; 6544 /* 6545 * We trace ills, ipifs, ires, and nces. All of these are 6546 * per-IP-stack, so the lock on the thread list is as well. 6547 */ 6548 rw_enter(&ip_thread_rwlock, RW_WRITER); 6549 list_insert_tail(&ip_thread_list, thh); 6550 rw_exit(&ip_thread_rwlock); 6551 retv = tsd_set(ip_thread_data, thh); 6552 ASSERT(retv == 0); 6553 } 6554 return (thh != NULL ? thh->thh_hash : NULL); 6555 } 6556 6557 boolean_t 6558 th_trace_ref(const void *obj, ip_stack_t *ipst) 6559 { 6560 th_trace_t *th_trace; 6561 mod_hash_t *mh; 6562 mod_hash_val_t val; 6563 6564 if ((mh = th_trace_gethash(ipst)) == NULL) 6565 return (B_FALSE); 6566 6567 /* 6568 * Attempt to locate the trace buffer for this obj and thread. 6569 * If it does not exist, then allocate a new trace buffer and 6570 * insert into the hash. 6571 */ 6572 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6573 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6574 if (th_trace == NULL) 6575 return (B_FALSE); 6576 6577 th_trace->th_id = curthread; 6578 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6579 (mod_hash_val_t)th_trace) != 0) { 6580 kmem_free(th_trace, sizeof (th_trace_t)); 6581 return (B_FALSE); 6582 } 6583 } else { 6584 th_trace = (th_trace_t *)val; 6585 } 6586 6587 ASSERT(th_trace->th_refcnt >= 0 && 6588 th_trace->th_refcnt < TR_BUF_MAX - 1); 6589 6590 th_trace->th_refcnt++; 6591 th_trace_rrecord(th_trace); 6592 return (B_TRUE); 6593 } 6594 6595 /* 6596 * For the purpose of tracing a reference release, we assume that global 6597 * tracing is always on and that the same thread initiated the reference hold 6598 * is releasing. 6599 */ 6600 void 6601 th_trace_unref(const void *obj) 6602 { 6603 int retv; 6604 mod_hash_t *mh; 6605 th_trace_t *th_trace; 6606 mod_hash_val_t val; 6607 6608 mh = th_trace_gethash(NULL); 6609 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6610 ASSERT(retv == 0); 6611 th_trace = (th_trace_t *)val; 6612 6613 ASSERT(th_trace->th_refcnt > 0); 6614 th_trace->th_refcnt--; 6615 th_trace_rrecord(th_trace); 6616 } 6617 6618 /* 6619 * If tracing has been disabled, then we assume that the reference counts are 6620 * now useless, and we clear them out before destroying the entries. 6621 */ 6622 void 6623 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6624 { 6625 th_hash_t *thh; 6626 mod_hash_t *mh; 6627 mod_hash_val_t val; 6628 th_trace_t *th_trace; 6629 int retv; 6630 6631 rw_enter(&ip_thread_rwlock, RW_READER); 6632 for (thh = list_head(&ip_thread_list); thh != NULL; 6633 thh = list_next(&ip_thread_list, thh)) { 6634 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6635 &val) == 0) { 6636 th_trace = (th_trace_t *)val; 6637 if (trace_disable) 6638 th_trace->th_refcnt = 0; 6639 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6640 ASSERT(retv == 0); 6641 } 6642 } 6643 rw_exit(&ip_thread_rwlock); 6644 } 6645 6646 void 6647 ipif_trace_ref(ipif_t *ipif) 6648 { 6649 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6650 6651 if (ipif->ipif_trace_disable) 6652 return; 6653 6654 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6655 ipif->ipif_trace_disable = B_TRUE; 6656 ipif_trace_cleanup(ipif); 6657 } 6658 } 6659 6660 void 6661 ipif_untrace_ref(ipif_t *ipif) 6662 { 6663 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6664 6665 if (!ipif->ipif_trace_disable) 6666 th_trace_unref(ipif); 6667 } 6668 6669 void 6670 ill_trace_ref(ill_t *ill) 6671 { 6672 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6673 6674 if (ill->ill_trace_disable) 6675 return; 6676 6677 if (!th_trace_ref(ill, ill->ill_ipst)) { 6678 ill->ill_trace_disable = B_TRUE; 6679 ill_trace_cleanup(ill); 6680 } 6681 } 6682 6683 void 6684 ill_untrace_ref(ill_t *ill) 6685 { 6686 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6687 6688 if (!ill->ill_trace_disable) 6689 th_trace_unref(ill); 6690 } 6691 6692 /* 6693 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6694 * failure, ipif_trace_disable is set. 6695 */ 6696 static void 6697 ipif_trace_cleanup(const ipif_t *ipif) 6698 { 6699 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6700 } 6701 6702 /* 6703 * Called when ill is unplumbed or when memory alloc fails. Note that on 6704 * failure, ill_trace_disable is set. 6705 */ 6706 static void 6707 ill_trace_cleanup(const ill_t *ill) 6708 { 6709 th_trace_cleanup(ill, ill->ill_trace_disable); 6710 } 6711 #endif /* DEBUG */ 6712 6713 void 6714 ipif_refhold_locked(ipif_t *ipif) 6715 { 6716 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6717 ipif->ipif_refcnt++; 6718 IPIF_TRACE_REF(ipif); 6719 } 6720 6721 void 6722 ipif_refhold(ipif_t *ipif) 6723 { 6724 ill_t *ill; 6725 6726 ill = ipif->ipif_ill; 6727 mutex_enter(&ill->ill_lock); 6728 ipif->ipif_refcnt++; 6729 IPIF_TRACE_REF(ipif); 6730 mutex_exit(&ill->ill_lock); 6731 } 6732 6733 /* 6734 * Must not be called while holding any locks. Otherwise if this is 6735 * the last reference to be released there is a chance of recursive mutex 6736 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6737 * to restart an ioctl. 6738 */ 6739 void 6740 ipif_refrele(ipif_t *ipif) 6741 { 6742 ill_t *ill; 6743 6744 ill = ipif->ipif_ill; 6745 6746 mutex_enter(&ill->ill_lock); 6747 ASSERT(ipif->ipif_refcnt != 0); 6748 ipif->ipif_refcnt--; 6749 IPIF_UNTRACE_REF(ipif); 6750 if (ipif->ipif_refcnt != 0) { 6751 mutex_exit(&ill->ill_lock); 6752 return; 6753 } 6754 6755 /* Drops the ill_lock */ 6756 ipif_ill_refrele_tail(ill); 6757 } 6758 6759 ipif_t * 6760 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6761 { 6762 ipif_t *ipif; 6763 6764 mutex_enter(&ill->ill_lock); 6765 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6766 ipif != NULL; ipif = ipif->ipif_next) { 6767 if (!IPIF_CAN_LOOKUP(ipif)) 6768 continue; 6769 ipif_refhold_locked(ipif); 6770 mutex_exit(&ill->ill_lock); 6771 return (ipif); 6772 } 6773 mutex_exit(&ill->ill_lock); 6774 return (NULL); 6775 } 6776 6777 /* 6778 * TODO: make this table extendible at run time 6779 * Return a pointer to the mac type info for 'mac_type' 6780 */ 6781 static ip_m_t * 6782 ip_m_lookup(t_uscalar_t mac_type) 6783 { 6784 ip_m_t *ipm; 6785 6786 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6787 if (ipm->ip_m_mac_type == mac_type) 6788 return (ipm); 6789 return (NULL); 6790 } 6791 6792 /* 6793 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6794 * ipif_arg is passed in to associate it with the correct interface. 6795 * We may need to restart this operation if the ipif cannot be looked up 6796 * due to an exclusive operation that is currently in progress. The restart 6797 * entry point is specified by 'func' 6798 */ 6799 int 6800 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6801 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6802 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6803 struct rtsa_s *sp, ip_stack_t *ipst) 6804 { 6805 ire_t *ire; 6806 ire_t *gw_ire = NULL; 6807 ipif_t *ipif = NULL; 6808 boolean_t ipif_refheld = B_FALSE; 6809 uint_t type; 6810 int match_flags = MATCH_IRE_TYPE; 6811 int error; 6812 tsol_gc_t *gc = NULL; 6813 tsol_gcgrp_t *gcgrp = NULL; 6814 boolean_t gcgrp_xtraref = B_FALSE; 6815 6816 ip1dbg(("ip_rt_add:")); 6817 6818 if (ire_arg != NULL) 6819 *ire_arg = NULL; 6820 6821 /* 6822 * If this is the case of RTF_HOST being set, then we set the netmask 6823 * to all ones (regardless if one was supplied). 6824 */ 6825 if (flags & RTF_HOST) 6826 mask = IP_HOST_MASK; 6827 6828 /* 6829 * Prevent routes with a zero gateway from being created (since 6830 * interfaces can currently be plumbed and brought up no assigned 6831 * address). 6832 */ 6833 if (gw_addr == 0) 6834 return (ENETUNREACH); 6835 /* 6836 * Get the ipif, if any, corresponding to the gw_addr 6837 */ 6838 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6839 ipst); 6840 if (ipif != NULL) { 6841 if (IS_VNI(ipif->ipif_ill)) { 6842 ipif_refrele(ipif); 6843 return (EINVAL); 6844 } 6845 ipif_refheld = B_TRUE; 6846 } else if (error == EINPROGRESS) { 6847 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6848 return (EINPROGRESS); 6849 } else { 6850 error = 0; 6851 } 6852 6853 if (ipif != NULL) { 6854 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6855 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6856 } else { 6857 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6858 } 6859 6860 /* 6861 * GateD will attempt to create routes with a loopback interface 6862 * address as the gateway and with RTF_GATEWAY set. We allow 6863 * these routes to be added, but create them as interface routes 6864 * since the gateway is an interface address. 6865 */ 6866 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6867 flags &= ~RTF_GATEWAY; 6868 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6869 mask == IP_HOST_MASK) { 6870 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6871 ALL_ZONES, NULL, match_flags, ipst); 6872 if (ire != NULL) { 6873 ire_refrele(ire); 6874 if (ipif_refheld) 6875 ipif_refrele(ipif); 6876 return (EEXIST); 6877 } 6878 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6879 "for 0x%x\n", (void *)ipif, 6880 ipif->ipif_ire_type, 6881 ntohl(ipif->ipif_lcl_addr))); 6882 ire = ire_create( 6883 (uchar_t *)&dst_addr, /* dest address */ 6884 (uchar_t *)&mask, /* mask */ 6885 (uchar_t *)&ipif->ipif_src_addr, 6886 NULL, /* no gateway */ 6887 &ipif->ipif_mtu, 6888 NULL, 6889 ipif->ipif_rq, /* recv-from queue */ 6890 NULL, /* no send-to queue */ 6891 ipif->ipif_ire_type, /* LOOPBACK */ 6892 ipif, 6893 0, 6894 0, 6895 0, 6896 (ipif->ipif_flags & IPIF_PRIVATE) ? 6897 RTF_PRIVATE : 0, 6898 &ire_uinfo_null, 6899 NULL, 6900 NULL, 6901 ipst); 6902 6903 if (ire == NULL) { 6904 if (ipif_refheld) 6905 ipif_refrele(ipif); 6906 return (ENOMEM); 6907 } 6908 error = ire_add(&ire, q, mp, func, B_FALSE); 6909 if (error == 0) 6910 goto save_ire; 6911 if (ipif_refheld) 6912 ipif_refrele(ipif); 6913 return (error); 6914 6915 } 6916 } 6917 6918 /* 6919 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6920 * and the gateway address provided is one of the system's interface 6921 * addresses. By using the routing socket interface and supplying an 6922 * RTA_IFP sockaddr with an interface index, an alternate method of 6923 * specifying an interface route to be created is available which uses 6924 * the interface index that specifies the outgoing interface rather than 6925 * the address of an outgoing interface (which may not be able to 6926 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6927 * flag, routes can be specified which not only specify the next-hop to 6928 * be used when routing to a certain prefix, but also which outgoing 6929 * interface should be used. 6930 * 6931 * Previously, interfaces would have unique addresses assigned to them 6932 * and so the address assigned to a particular interface could be used 6933 * to identify a particular interface. One exception to this was the 6934 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6935 * 6936 * With the advent of IPv6 and its link-local addresses, this 6937 * restriction was relaxed and interfaces could share addresses between 6938 * themselves. In fact, typically all of the link-local interfaces on 6939 * an IPv6 node or router will have the same link-local address. In 6940 * order to differentiate between these interfaces, the use of an 6941 * interface index is necessary and this index can be carried inside a 6942 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6943 * of using the interface index, however, is that all of the ipif's that 6944 * are part of an ill have the same index and so the RTA_IFP sockaddr 6945 * cannot be used to differentiate between ipif's (or logical 6946 * interfaces) that belong to the same ill (physical interface). 6947 * 6948 * For example, in the following case involving IPv4 interfaces and 6949 * logical interfaces 6950 * 6951 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6952 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6953 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6954 * 6955 * the ipif's corresponding to each of these interface routes can be 6956 * uniquely identified by the "gateway" (actually interface address). 6957 * 6958 * In this case involving multiple IPv6 default routes to a particular 6959 * link-local gateway, the use of RTA_IFP is necessary to specify which 6960 * default route is of interest: 6961 * 6962 * default fe80::123:4567:89ab:cdef U if0 6963 * default fe80::123:4567:89ab:cdef U if1 6964 */ 6965 6966 /* RTF_GATEWAY not set */ 6967 if (!(flags & RTF_GATEWAY)) { 6968 queue_t *stq; 6969 6970 if (sp != NULL) { 6971 ip2dbg(("ip_rt_add: gateway security attributes " 6972 "cannot be set with interface route\n")); 6973 if (ipif_refheld) 6974 ipif_refrele(ipif); 6975 return (EINVAL); 6976 } 6977 6978 /* 6979 * As the interface index specified with the RTA_IFP sockaddr is 6980 * the same for all ipif's off of an ill, the matching logic 6981 * below uses MATCH_IRE_ILL if such an index was specified. 6982 * This means that routes sharing the same prefix when added 6983 * using a RTA_IFP sockaddr must have distinct interface 6984 * indices (namely, they must be on distinct ill's). 6985 * 6986 * On the other hand, since the gateway address will usually be 6987 * different for each ipif on the system, the matching logic 6988 * uses MATCH_IRE_IPIF in the case of a traditional interface 6989 * route. This means that interface routes for the same prefix 6990 * can be created if they belong to distinct ipif's and if a 6991 * RTA_IFP sockaddr is not present. 6992 */ 6993 if (ipif_arg != NULL) { 6994 if (ipif_refheld) { 6995 ipif_refrele(ipif); 6996 ipif_refheld = B_FALSE; 6997 } 6998 ipif = ipif_arg; 6999 match_flags |= MATCH_IRE_ILL; 7000 } else { 7001 /* 7002 * Check the ipif corresponding to the gw_addr 7003 */ 7004 if (ipif == NULL) 7005 return (ENETUNREACH); 7006 match_flags |= MATCH_IRE_IPIF; 7007 } 7008 ASSERT(ipif != NULL); 7009 7010 /* 7011 * We check for an existing entry at this point. 7012 * 7013 * Since a netmask isn't passed in via the ioctl interface 7014 * (SIOCADDRT), we don't check for a matching netmask in that 7015 * case. 7016 */ 7017 if (!ioctl_msg) 7018 match_flags |= MATCH_IRE_MASK; 7019 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7020 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7021 if (ire != NULL) { 7022 ire_refrele(ire); 7023 if (ipif_refheld) 7024 ipif_refrele(ipif); 7025 return (EEXIST); 7026 } 7027 7028 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7029 ? ipif->ipif_rq : ipif->ipif_wq; 7030 7031 /* 7032 * Create a copy of the IRE_LOOPBACK, 7033 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7034 * the modified address and netmask. 7035 */ 7036 ire = ire_create( 7037 (uchar_t *)&dst_addr, 7038 (uint8_t *)&mask, 7039 (uint8_t *)&ipif->ipif_src_addr, 7040 NULL, 7041 &ipif->ipif_mtu, 7042 NULL, 7043 NULL, 7044 stq, 7045 ipif->ipif_net_type, 7046 ipif, 7047 0, 7048 0, 7049 0, 7050 flags, 7051 &ire_uinfo_null, 7052 NULL, 7053 NULL, 7054 ipst); 7055 if (ire == NULL) { 7056 if (ipif_refheld) 7057 ipif_refrele(ipif); 7058 return (ENOMEM); 7059 } 7060 7061 /* 7062 * Some software (for example, GateD and Sun Cluster) attempts 7063 * to create (what amount to) IRE_PREFIX routes with the 7064 * loopback address as the gateway. This is primarily done to 7065 * set up prefixes with the RTF_REJECT flag set (for example, 7066 * when generating aggregate routes.) 7067 * 7068 * If the IRE type (as defined by ipif->ipif_net_type) is 7069 * IRE_LOOPBACK, then we map the request into a 7070 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7071 * these interface routes, by definition, can only be that. 7072 * 7073 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7074 * routine, but rather using ire_create() directly. 7075 * 7076 */ 7077 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7078 ire->ire_type = IRE_IF_NORESOLVER; 7079 ire->ire_flags |= RTF_BLACKHOLE; 7080 } 7081 7082 error = ire_add(&ire, q, mp, func, B_FALSE); 7083 if (error == 0) 7084 goto save_ire; 7085 7086 /* 7087 * In the result of failure, ire_add() will have already 7088 * deleted the ire in question, so there is no need to 7089 * do that here. 7090 */ 7091 if (ipif_refheld) 7092 ipif_refrele(ipif); 7093 return (error); 7094 } 7095 if (ipif_refheld) { 7096 ipif_refrele(ipif); 7097 ipif_refheld = B_FALSE; 7098 } 7099 7100 /* 7101 * Get an interface IRE for the specified gateway. 7102 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7103 * gateway, it is currently unreachable and we fail the request 7104 * accordingly. 7105 */ 7106 ipif = ipif_arg; 7107 if (ipif_arg != NULL) 7108 match_flags |= MATCH_IRE_ILL; 7109 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7110 ALL_ZONES, 0, NULL, match_flags, ipst); 7111 if (gw_ire == NULL) 7112 return (ENETUNREACH); 7113 7114 /* 7115 * We create one of three types of IREs as a result of this request 7116 * based on the netmask. A netmask of all ones (which is automatically 7117 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7118 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7119 * created. Otherwise, an IRE_PREFIX route is created for the 7120 * destination prefix. 7121 */ 7122 if (mask == IP_HOST_MASK) 7123 type = IRE_HOST; 7124 else if (mask == 0) 7125 type = IRE_DEFAULT; 7126 else 7127 type = IRE_PREFIX; 7128 7129 /* check for a duplicate entry */ 7130 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7131 NULL, ALL_ZONES, 0, NULL, 7132 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7133 if (ire != NULL) { 7134 ire_refrele(gw_ire); 7135 ire_refrele(ire); 7136 return (EEXIST); 7137 } 7138 7139 /* Security attribute exists */ 7140 if (sp != NULL) { 7141 tsol_gcgrp_addr_t ga; 7142 7143 /* find or create the gateway credentials group */ 7144 ga.ga_af = AF_INET; 7145 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7146 7147 /* we hold reference to it upon success */ 7148 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7149 if (gcgrp == NULL) { 7150 ire_refrele(gw_ire); 7151 return (ENOMEM); 7152 } 7153 7154 /* 7155 * Create and add the security attribute to the group; a 7156 * reference to the group is made upon allocating a new 7157 * entry successfully. If it finds an already-existing 7158 * entry for the security attribute in the group, it simply 7159 * returns it and no new reference is made to the group. 7160 */ 7161 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7162 if (gc == NULL) { 7163 /* release reference held by gcgrp_lookup */ 7164 GCGRP_REFRELE(gcgrp); 7165 ire_refrele(gw_ire); 7166 return (ENOMEM); 7167 } 7168 } 7169 7170 /* Create the IRE. */ 7171 ire = ire_create( 7172 (uchar_t *)&dst_addr, /* dest address */ 7173 (uchar_t *)&mask, /* mask */ 7174 /* src address assigned by the caller? */ 7175 (uchar_t *)(((src_addr != INADDR_ANY) && 7176 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7177 (uchar_t *)&gw_addr, /* gateway address */ 7178 &gw_ire->ire_max_frag, 7179 NULL, /* no src nce */ 7180 NULL, /* no recv-from queue */ 7181 NULL, /* no send-to queue */ 7182 (ushort_t)type, /* IRE type */ 7183 ipif_arg, 7184 0, 7185 0, 7186 0, 7187 flags, 7188 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7189 gc, /* security attribute */ 7190 NULL, 7191 ipst); 7192 7193 /* 7194 * The ire holds a reference to the 'gc' and the 'gc' holds a 7195 * reference to the 'gcgrp'. We can now release the extra reference 7196 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7197 */ 7198 if (gcgrp_xtraref) 7199 GCGRP_REFRELE(gcgrp); 7200 if (ire == NULL) { 7201 if (gc != NULL) 7202 GC_REFRELE(gc); 7203 ire_refrele(gw_ire); 7204 return (ENOMEM); 7205 } 7206 7207 /* 7208 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7209 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7210 */ 7211 7212 /* Add the new IRE. */ 7213 error = ire_add(&ire, q, mp, func, B_FALSE); 7214 if (error != 0) { 7215 /* 7216 * In the result of failure, ire_add() will have already 7217 * deleted the ire in question, so there is no need to 7218 * do that here. 7219 */ 7220 ire_refrele(gw_ire); 7221 return (error); 7222 } 7223 7224 if (flags & RTF_MULTIRT) { 7225 /* 7226 * Invoke the CGTP (multirouting) filtering module 7227 * to add the dst address in the filtering database. 7228 * Replicated inbound packets coming from that address 7229 * will be filtered to discard the duplicates. 7230 * It is not necessary to call the CGTP filter hook 7231 * when the dst address is a broadcast or multicast, 7232 * because an IP source address cannot be a broadcast 7233 * or a multicast. 7234 */ 7235 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7236 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7237 if (ire_dst != NULL) { 7238 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7239 ire_refrele(ire_dst); 7240 goto save_ire; 7241 } 7242 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7243 !CLASSD(ire->ire_addr)) { 7244 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7245 ipst->ips_netstack->netstack_stackid, 7246 ire->ire_addr, 7247 ire->ire_gateway_addr, 7248 ire->ire_src_addr, 7249 gw_ire->ire_src_addr); 7250 if (res != 0) { 7251 ire_refrele(gw_ire); 7252 ire_delete(ire); 7253 return (res); 7254 } 7255 } 7256 } 7257 7258 /* 7259 * Now that the prefix IRE entry has been created, delete any 7260 * existing gateway IRE cache entries as well as any IRE caches 7261 * using the gateway, and force them to be created through 7262 * ip_newroute. 7263 */ 7264 if (gc != NULL) { 7265 ASSERT(gcgrp != NULL); 7266 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7267 } 7268 7269 save_ire: 7270 if (gw_ire != NULL) { 7271 ire_refrele(gw_ire); 7272 } 7273 if (ipif != NULL) { 7274 /* 7275 * Save enough information so that we can recreate the IRE if 7276 * the interface goes down and then up. The metrics associated 7277 * with the route will be saved as well when rts_setmetrics() is 7278 * called after the IRE has been created. In the case where 7279 * memory cannot be allocated, none of this information will be 7280 * saved. 7281 */ 7282 ipif_save_ire(ipif, ire); 7283 } 7284 if (ioctl_msg) 7285 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7286 if (ire_arg != NULL) { 7287 /* 7288 * Store the ire that was successfully added into where ire_arg 7289 * points to so that callers don't have to look it up 7290 * themselves (but they are responsible for ire_refrele()ing 7291 * the ire when they are finished with it). 7292 */ 7293 *ire_arg = ire; 7294 } else { 7295 ire_refrele(ire); /* Held in ire_add */ 7296 } 7297 if (ipif_refheld) 7298 ipif_refrele(ipif); 7299 return (0); 7300 } 7301 7302 /* 7303 * ip_rt_delete is called to delete an IPv4 route. 7304 * ipif_arg is passed in to associate it with the correct interface. 7305 * We may need to restart this operation if the ipif cannot be looked up 7306 * due to an exclusive operation that is currently in progress. The restart 7307 * entry point is specified by 'func' 7308 */ 7309 /* ARGSUSED4 */ 7310 int 7311 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7312 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7313 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7314 { 7315 ire_t *ire = NULL; 7316 ipif_t *ipif; 7317 boolean_t ipif_refheld = B_FALSE; 7318 uint_t type; 7319 uint_t match_flags = MATCH_IRE_TYPE; 7320 int err = 0; 7321 7322 ip1dbg(("ip_rt_delete:")); 7323 /* 7324 * If this is the case of RTF_HOST being set, then we set the netmask 7325 * to all ones. Otherwise, we use the netmask if one was supplied. 7326 */ 7327 if (flags & RTF_HOST) { 7328 mask = IP_HOST_MASK; 7329 match_flags |= MATCH_IRE_MASK; 7330 } else if (rtm_addrs & RTA_NETMASK) { 7331 match_flags |= MATCH_IRE_MASK; 7332 } 7333 7334 /* 7335 * Note that RTF_GATEWAY is never set on a delete, therefore 7336 * we check if the gateway address is one of our interfaces first, 7337 * and fall back on RTF_GATEWAY routes. 7338 * 7339 * This makes it possible to delete an original 7340 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7341 * 7342 * As the interface index specified with the RTA_IFP sockaddr is the 7343 * same for all ipif's off of an ill, the matching logic below uses 7344 * MATCH_IRE_ILL if such an index was specified. This means a route 7345 * sharing the same prefix and interface index as the the route 7346 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7347 * is specified in the request. 7348 * 7349 * On the other hand, since the gateway address will usually be 7350 * different for each ipif on the system, the matching logic 7351 * uses MATCH_IRE_IPIF in the case of a traditional interface 7352 * route. This means that interface routes for the same prefix can be 7353 * uniquely identified if they belong to distinct ipif's and if a 7354 * RTA_IFP sockaddr is not present. 7355 * 7356 * For more detail on specifying routes by gateway address and by 7357 * interface index, see the comments in ip_rt_add(). 7358 */ 7359 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7360 ipst); 7361 if (ipif != NULL) 7362 ipif_refheld = B_TRUE; 7363 else if (err == EINPROGRESS) 7364 return (err); 7365 else 7366 err = 0; 7367 if (ipif != NULL) { 7368 if (ipif_arg != NULL) { 7369 if (ipif_refheld) { 7370 ipif_refrele(ipif); 7371 ipif_refheld = B_FALSE; 7372 } 7373 ipif = ipif_arg; 7374 match_flags |= MATCH_IRE_ILL; 7375 } else { 7376 match_flags |= MATCH_IRE_IPIF; 7377 } 7378 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7379 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7380 ALL_ZONES, NULL, match_flags, ipst); 7381 } 7382 if (ire == NULL) { 7383 ire = ire_ftable_lookup(dst_addr, mask, 0, 7384 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7385 match_flags, ipst); 7386 } 7387 } 7388 7389 if (ire == NULL) { 7390 /* 7391 * At this point, the gateway address is not one of our own 7392 * addresses or a matching interface route was not found. We 7393 * set the IRE type to lookup based on whether 7394 * this is a host route, a default route or just a prefix. 7395 * 7396 * If an ipif_arg was passed in, then the lookup is based on an 7397 * interface index so MATCH_IRE_ILL is added to match_flags. 7398 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7399 * set as the route being looked up is not a traditional 7400 * interface route. 7401 */ 7402 match_flags &= ~MATCH_IRE_IPIF; 7403 match_flags |= MATCH_IRE_GW; 7404 if (ipif_arg != NULL) 7405 match_flags |= MATCH_IRE_ILL; 7406 if (mask == IP_HOST_MASK) 7407 type = IRE_HOST; 7408 else if (mask == 0) 7409 type = IRE_DEFAULT; 7410 else 7411 type = IRE_PREFIX; 7412 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7413 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7414 } 7415 7416 if (ipif_refheld) 7417 ipif_refrele(ipif); 7418 7419 /* ipif is not refheld anymore */ 7420 if (ire == NULL) 7421 return (ESRCH); 7422 7423 if (ire->ire_flags & RTF_MULTIRT) { 7424 /* 7425 * Invoke the CGTP (multirouting) filtering module 7426 * to remove the dst address from the filtering database. 7427 * Packets coming from that address will no longer be 7428 * filtered to remove duplicates. 7429 */ 7430 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7431 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7432 ipst->ips_netstack->netstack_stackid, 7433 ire->ire_addr, ire->ire_gateway_addr); 7434 } 7435 ip_cgtp_bcast_delete(ire, ipst); 7436 } 7437 7438 ipif = ire->ire_ipif; 7439 if (ipif != NULL) 7440 ipif_remove_ire(ipif, ire); 7441 if (ioctl_msg) 7442 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7443 ire_delete(ire); 7444 ire_refrele(ire); 7445 return (err); 7446 } 7447 7448 /* 7449 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7450 */ 7451 /* ARGSUSED */ 7452 int 7453 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7454 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7455 { 7456 ipaddr_t dst_addr; 7457 ipaddr_t gw_addr; 7458 ipaddr_t mask; 7459 int error = 0; 7460 mblk_t *mp1; 7461 struct rtentry *rt; 7462 ipif_t *ipif = NULL; 7463 ip_stack_t *ipst; 7464 7465 ASSERT(q->q_next == NULL); 7466 ipst = CONNQ_TO_IPST(q); 7467 7468 ip1dbg(("ip_siocaddrt:")); 7469 /* Existence of mp1 verified in ip_wput_nondata */ 7470 mp1 = mp->b_cont->b_cont; 7471 rt = (struct rtentry *)mp1->b_rptr; 7472 7473 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7474 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7475 7476 /* 7477 * If the RTF_HOST flag is on, this is a request to assign a gateway 7478 * to a particular host address. In this case, we set the netmask to 7479 * all ones for the particular destination address. Otherwise, 7480 * determine the netmask to be used based on dst_addr and the interfaces 7481 * in use. 7482 */ 7483 if (rt->rt_flags & RTF_HOST) { 7484 mask = IP_HOST_MASK; 7485 } else { 7486 /* 7487 * Note that ip_subnet_mask returns a zero mask in the case of 7488 * default (an all-zeroes address). 7489 */ 7490 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7491 } 7492 7493 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7494 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7495 if (ipif != NULL) 7496 ipif_refrele(ipif); 7497 return (error); 7498 } 7499 7500 /* 7501 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7502 */ 7503 /* ARGSUSED */ 7504 int 7505 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7506 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7507 { 7508 ipaddr_t dst_addr; 7509 ipaddr_t gw_addr; 7510 ipaddr_t mask; 7511 int error; 7512 mblk_t *mp1; 7513 struct rtentry *rt; 7514 ipif_t *ipif = NULL; 7515 ip_stack_t *ipst; 7516 7517 ASSERT(q->q_next == NULL); 7518 ipst = CONNQ_TO_IPST(q); 7519 7520 ip1dbg(("ip_siocdelrt:")); 7521 /* Existence of mp1 verified in ip_wput_nondata */ 7522 mp1 = mp->b_cont->b_cont; 7523 rt = (struct rtentry *)mp1->b_rptr; 7524 7525 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7526 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7527 7528 /* 7529 * If the RTF_HOST flag is on, this is a request to delete a gateway 7530 * to a particular host address. In this case, we set the netmask to 7531 * all ones for the particular destination address. Otherwise, 7532 * determine the netmask to be used based on dst_addr and the interfaces 7533 * in use. 7534 */ 7535 if (rt->rt_flags & RTF_HOST) { 7536 mask = IP_HOST_MASK; 7537 } else { 7538 /* 7539 * Note that ip_subnet_mask returns a zero mask in the case of 7540 * default (an all-zeroes address). 7541 */ 7542 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7543 } 7544 7545 error = ip_rt_delete(dst_addr, mask, gw_addr, 7546 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7547 mp, ip_process_ioctl, ipst); 7548 if (ipif != NULL) 7549 ipif_refrele(ipif); 7550 return (error); 7551 } 7552 7553 /* 7554 * Enqueue the mp onto the ipsq, chained by b_next. 7555 * b_prev stores the function to be executed later, and b_queue the queue 7556 * where this mp originated. 7557 */ 7558 void 7559 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7560 ill_t *pending_ill) 7561 { 7562 conn_t *connp = NULL; 7563 7564 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7565 ASSERT(func != NULL); 7566 7567 mp->b_queue = q; 7568 mp->b_prev = (void *)func; 7569 mp->b_next = NULL; 7570 7571 switch (type) { 7572 case CUR_OP: 7573 if (ipsq->ipsq_mptail != NULL) { 7574 ASSERT(ipsq->ipsq_mphead != NULL); 7575 ipsq->ipsq_mptail->b_next = mp; 7576 } else { 7577 ASSERT(ipsq->ipsq_mphead == NULL); 7578 ipsq->ipsq_mphead = mp; 7579 } 7580 ipsq->ipsq_mptail = mp; 7581 break; 7582 7583 case NEW_OP: 7584 if (ipsq->ipsq_xopq_mptail != NULL) { 7585 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7586 ipsq->ipsq_xopq_mptail->b_next = mp; 7587 } else { 7588 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7589 ipsq->ipsq_xopq_mphead = mp; 7590 } 7591 ipsq->ipsq_xopq_mptail = mp; 7592 break; 7593 default: 7594 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7595 } 7596 7597 if (CONN_Q(q) && pending_ill != NULL) { 7598 connp = Q_TO_CONN(q); 7599 7600 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7601 connp->conn_oper_pending_ill = pending_ill; 7602 } 7603 } 7604 7605 /* 7606 * Return the mp at the head of the ipsq. After emptying the ipsq 7607 * look at the next ioctl, if this ioctl is complete. Otherwise 7608 * return, we will resume when we complete the current ioctl. 7609 * The current ioctl will wait till it gets a response from the 7610 * driver below. 7611 */ 7612 static mblk_t * 7613 ipsq_dq(ipsq_t *ipsq) 7614 { 7615 mblk_t *mp; 7616 7617 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7618 7619 mp = ipsq->ipsq_mphead; 7620 if (mp != NULL) { 7621 ipsq->ipsq_mphead = mp->b_next; 7622 if (ipsq->ipsq_mphead == NULL) 7623 ipsq->ipsq_mptail = NULL; 7624 mp->b_next = NULL; 7625 return (mp); 7626 } 7627 if (ipsq->ipsq_current_ipif != NULL) 7628 return (NULL); 7629 mp = ipsq->ipsq_xopq_mphead; 7630 if (mp != NULL) { 7631 ipsq->ipsq_xopq_mphead = mp->b_next; 7632 if (ipsq->ipsq_xopq_mphead == NULL) 7633 ipsq->ipsq_xopq_mptail = NULL; 7634 mp->b_next = NULL; 7635 return (mp); 7636 } 7637 return (NULL); 7638 } 7639 7640 /* 7641 * Enter the ipsq corresponding to ill, by waiting synchronously till 7642 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7643 * will have to drain completely before ipsq_enter returns success. 7644 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7645 * and the ipsq_exit logic will start the next enqueued ioctl after 7646 * completion of the current ioctl. If 'force' is used, we don't wait 7647 * for the enqueued ioctls. This is needed when a conn_close wants to 7648 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7649 * of an ill can also use this option. But we dont' use it currently. 7650 */ 7651 #define ENTER_SQ_WAIT_TICKS 100 7652 boolean_t 7653 ipsq_enter(ill_t *ill, boolean_t force) 7654 { 7655 ipsq_t *ipsq; 7656 boolean_t waited_enough = B_FALSE; 7657 7658 /* 7659 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7660 * Since the <ill-ipsq> assocs could change while we wait for the 7661 * writer, it is easier to wait on a fixed global rather than try to 7662 * cv_wait on a changing ipsq. 7663 */ 7664 mutex_enter(&ill->ill_lock); 7665 for (;;) { 7666 if (ill->ill_state_flags & ILL_CONDEMNED) { 7667 mutex_exit(&ill->ill_lock); 7668 return (B_FALSE); 7669 } 7670 7671 ipsq = ill->ill_phyint->phyint_ipsq; 7672 mutex_enter(&ipsq->ipsq_lock); 7673 if (ipsq->ipsq_writer == NULL && 7674 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7675 break; 7676 } else if (ipsq->ipsq_writer != NULL) { 7677 mutex_exit(&ipsq->ipsq_lock); 7678 cv_wait(&ill->ill_cv, &ill->ill_lock); 7679 } else { 7680 mutex_exit(&ipsq->ipsq_lock); 7681 if (force) { 7682 (void) cv_timedwait(&ill->ill_cv, 7683 &ill->ill_lock, 7684 lbolt + ENTER_SQ_WAIT_TICKS); 7685 waited_enough = B_TRUE; 7686 continue; 7687 } else { 7688 cv_wait(&ill->ill_cv, &ill->ill_lock); 7689 } 7690 } 7691 } 7692 7693 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7694 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7695 ipsq->ipsq_writer = curthread; 7696 ipsq->ipsq_reentry_cnt++; 7697 #ifdef DEBUG 7698 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7699 #endif 7700 mutex_exit(&ipsq->ipsq_lock); 7701 mutex_exit(&ill->ill_lock); 7702 return (B_TRUE); 7703 } 7704 7705 /* 7706 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7707 * certain critical operations like plumbing (i.e. most set ioctls), 7708 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7709 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7710 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7711 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7712 * threads executing in the ipsq. Responses from the driver pertain to the 7713 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7714 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7715 * 7716 * If a thread does not want to reenter the ipsq when it is already writer, 7717 * it must make sure that the specified reentry point to be called later 7718 * when the ipsq is empty, nor any code path starting from the specified reentry 7719 * point must never ever try to enter the ipsq again. Otherwise it can lead 7720 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7721 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7722 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7723 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7724 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7725 * ioctl if the current ioctl has completed. If the current ioctl is still 7726 * in progress it simply returns. The current ioctl could be waiting for 7727 * a response from another module (arp_ or the driver or could be waiting for 7728 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7729 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7730 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7731 * ipsq_current_ipif is clear which happens only on ioctl completion. 7732 */ 7733 7734 /* 7735 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7736 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7737 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7738 * completion. 7739 */ 7740 ipsq_t * 7741 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7742 ipsq_func_t func, int type, boolean_t reentry_ok) 7743 { 7744 ipsq_t *ipsq; 7745 7746 /* Only 1 of ipif or ill can be specified */ 7747 ASSERT((ipif != NULL) ^ (ill != NULL)); 7748 if (ipif != NULL) 7749 ill = ipif->ipif_ill; 7750 7751 /* 7752 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7753 * ipsq of an ill can't change when ill_lock is held. 7754 */ 7755 GRAB_CONN_LOCK(q); 7756 mutex_enter(&ill->ill_lock); 7757 ipsq = ill->ill_phyint->phyint_ipsq; 7758 mutex_enter(&ipsq->ipsq_lock); 7759 7760 /* 7761 * 1. Enter the ipsq if we are already writer and reentry is ok. 7762 * (Note: If the caller does not specify reentry_ok then neither 7763 * 'func' nor any of its callees must ever attempt to enter the ipsq 7764 * again. Otherwise it can lead to an infinite loop 7765 * 2. Enter the ipsq if there is no current writer and this attempted 7766 * entry is part of the current ioctl or operation 7767 * 3. Enter the ipsq if there is no current writer and this is a new 7768 * ioctl (or operation) and the ioctl (or operation) queue is 7769 * empty and there is no ioctl (or operation) currently in progress 7770 */ 7771 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7772 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7773 ipsq->ipsq_current_ipif == NULL))) || 7774 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7775 /* Success. */ 7776 ipsq->ipsq_reentry_cnt++; 7777 ipsq->ipsq_writer = curthread; 7778 mutex_exit(&ipsq->ipsq_lock); 7779 mutex_exit(&ill->ill_lock); 7780 RELEASE_CONN_LOCK(q); 7781 #ifdef DEBUG 7782 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7783 IPSQ_STACK_DEPTH); 7784 #endif 7785 return (ipsq); 7786 } 7787 7788 ipsq_enq(ipsq, q, mp, func, type, ill); 7789 7790 mutex_exit(&ipsq->ipsq_lock); 7791 mutex_exit(&ill->ill_lock); 7792 RELEASE_CONN_LOCK(q); 7793 return (NULL); 7794 } 7795 7796 /* 7797 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7798 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7799 * cannot be entered, the mp is queued for completion. 7800 */ 7801 void 7802 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7803 boolean_t reentry_ok) 7804 { 7805 ipsq_t *ipsq; 7806 7807 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7808 7809 /* 7810 * Drop the caller's refhold on the ill. This is safe since we either 7811 * entered the IPSQ (and thus are exclusive), or failed to enter the 7812 * IPSQ, in which case we return without accessing ill anymore. This 7813 * is needed because func needs to see the correct refcount. 7814 * e.g. removeif can work only then. 7815 */ 7816 ill_refrele(ill); 7817 if (ipsq != NULL) { 7818 (*func)(ipsq, q, mp, NULL); 7819 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7820 } 7821 } 7822 7823 /* 7824 * If there are more than ILL_GRP_CNT ills in a group, 7825 * we use kmem alloc'd buffers, else use the stack 7826 */ 7827 #define ILL_GRP_CNT 14 7828 /* 7829 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7830 * Called by a thread that is currently exclusive on this ipsq. 7831 */ 7832 void 7833 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7834 { 7835 queue_t *q; 7836 mblk_t *mp; 7837 ipsq_func_t func; 7838 int next; 7839 ill_t **ill_list = NULL; 7840 size_t ill_list_size = 0; 7841 int cnt = 0; 7842 boolean_t need_ipsq_free = B_FALSE; 7843 ip_stack_t *ipst = ipsq->ipsq_ipst; 7844 7845 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7846 mutex_enter(&ipsq->ipsq_lock); 7847 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7848 if (ipsq->ipsq_reentry_cnt != 1) { 7849 ipsq->ipsq_reentry_cnt--; 7850 mutex_exit(&ipsq->ipsq_lock); 7851 return; 7852 } 7853 7854 mp = ipsq_dq(ipsq); 7855 while (mp != NULL) { 7856 again: 7857 mutex_exit(&ipsq->ipsq_lock); 7858 func = (ipsq_func_t)mp->b_prev; 7859 q = (queue_t *)mp->b_queue; 7860 mp->b_prev = NULL; 7861 mp->b_queue = NULL; 7862 7863 /* 7864 * If 'q' is an conn queue, it is valid, since we did a 7865 * a refhold on the connp, at the start of the ioctl. 7866 * If 'q' is an ill queue, it is valid, since close of an 7867 * ill will clean up the 'ipsq'. 7868 */ 7869 (*func)(ipsq, q, mp, NULL); 7870 7871 mutex_enter(&ipsq->ipsq_lock); 7872 mp = ipsq_dq(ipsq); 7873 } 7874 7875 mutex_exit(&ipsq->ipsq_lock); 7876 7877 /* 7878 * Need to grab the locks in the right order. Need to 7879 * atomically check (under ipsq_lock) that there are no 7880 * messages before relinquishing the ipsq. Also need to 7881 * atomically wakeup waiters on ill_cv while holding ill_lock. 7882 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7883 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7884 * to grab ill_g_lock as writer. 7885 */ 7886 rw_enter(&ipst->ips_ill_g_lock, 7887 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7888 7889 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7890 if (ipsq->ipsq_refs != 0) { 7891 /* At most 2 ills v4/v6 per phyint */ 7892 cnt = ipsq->ipsq_refs << 1; 7893 ill_list_size = cnt * sizeof (ill_t *); 7894 /* 7895 * If memory allocation fails, we will do the split 7896 * the next time ipsq_exit is called for whatever reason. 7897 * As long as the ipsq_split flag is set the need to 7898 * split is remembered. 7899 */ 7900 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7901 if (ill_list != NULL) 7902 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7903 } 7904 mutex_enter(&ipsq->ipsq_lock); 7905 mp = ipsq_dq(ipsq); 7906 if (mp != NULL) { 7907 /* oops, some message has landed up, we can't get out */ 7908 if (ill_list != NULL) 7909 ill_unlock_ills(ill_list, cnt); 7910 rw_exit(&ipst->ips_ill_g_lock); 7911 if (ill_list != NULL) 7912 kmem_free(ill_list, ill_list_size); 7913 ill_list = NULL; 7914 ill_list_size = 0; 7915 cnt = 0; 7916 goto again; 7917 } 7918 7919 /* 7920 * Split only if no ioctl is pending and if memory alloc succeeded 7921 * above. 7922 */ 7923 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7924 ill_list != NULL) { 7925 /* 7926 * No new ill can join this ipsq since we are holding the 7927 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7928 * ipsq. ill_split_ipsq may fail due to memory shortage. 7929 * If so we will retry on the next ipsq_exit. 7930 */ 7931 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7932 } 7933 7934 /* 7935 * We are holding the ipsq lock, hence no new messages can 7936 * land up on the ipsq, and there are no messages currently. 7937 * Now safe to get out. Wake up waiters and relinquish ipsq 7938 * atomically while holding ill locks. 7939 */ 7940 ipsq->ipsq_writer = NULL; 7941 ipsq->ipsq_reentry_cnt--; 7942 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7943 #ifdef DEBUG 7944 ipsq->ipsq_depth = 0; 7945 #endif 7946 mutex_exit(&ipsq->ipsq_lock); 7947 /* 7948 * For IPMP this should wake up all ills in this ipsq. 7949 * We need to hold the ill_lock while waking up waiters to 7950 * avoid missed wakeups. But there is no need to acquire all 7951 * the ill locks and then wakeup. If we have not acquired all 7952 * the locks (due to memory failure above) ill_signal_ipsq_ills 7953 * wakes up ills one at a time after getting the right ill_lock 7954 */ 7955 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7956 if (ill_list != NULL) 7957 ill_unlock_ills(ill_list, cnt); 7958 if (ipsq->ipsq_refs == 0) 7959 need_ipsq_free = B_TRUE; 7960 rw_exit(&ipst->ips_ill_g_lock); 7961 if (ill_list != 0) 7962 kmem_free(ill_list, ill_list_size); 7963 7964 if (need_ipsq_free) { 7965 /* 7966 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7967 * looked up. ipsq can be looked up only thru ill or phyint 7968 * and there are no ills/phyint on this ipsq. 7969 */ 7970 ipsq_delete(ipsq); 7971 } 7972 /* 7973 * Now start any igmp or mld timers that could not be started 7974 * while inside the ipsq. The timers can't be started while inside 7975 * the ipsq, since igmp_start_timers may need to call untimeout() 7976 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7977 * there could be a deadlock since the timeout handlers 7978 * mld_timeout_handler / igmp_timeout_handler also synchronously 7979 * wait in ipsq_enter() trying to get the ipsq. 7980 * 7981 * However there is one exception to the above. If this thread is 7982 * itself the igmp/mld timeout handler thread, then we don't want 7983 * to start any new timer until the current handler is done. The 7984 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7985 * all others pass B_TRUE. 7986 */ 7987 if (start_igmp_timer) { 7988 mutex_enter(&ipst->ips_igmp_timer_lock); 7989 next = ipst->ips_igmp_deferred_next; 7990 ipst->ips_igmp_deferred_next = INFINITY; 7991 mutex_exit(&ipst->ips_igmp_timer_lock); 7992 7993 if (next != INFINITY) 7994 igmp_start_timers(next, ipst); 7995 } 7996 7997 if (start_mld_timer) { 7998 mutex_enter(&ipst->ips_mld_timer_lock); 7999 next = ipst->ips_mld_deferred_next; 8000 ipst->ips_mld_deferred_next = INFINITY; 8001 mutex_exit(&ipst->ips_mld_timer_lock); 8002 8003 if (next != INFINITY) 8004 mld_start_timers(next, ipst); 8005 } 8006 } 8007 8008 /* 8009 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8010 * and `ioccmd'. 8011 */ 8012 void 8013 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8014 { 8015 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8016 8017 mutex_enter(&ipsq->ipsq_lock); 8018 ASSERT(ipsq->ipsq_current_ipif == NULL); 8019 ASSERT(ipsq->ipsq_current_ioctl == 0); 8020 ipsq->ipsq_current_ipif = ipif; 8021 ipsq->ipsq_current_ioctl = ioccmd; 8022 mutex_exit(&ipsq->ipsq_lock); 8023 } 8024 8025 /* 8026 * Finish the current exclusive operation on `ipsq'. Note that other 8027 * operations will not be able to proceed until an ipsq_exit() is done. 8028 */ 8029 void 8030 ipsq_current_finish(ipsq_t *ipsq) 8031 { 8032 ipif_t *ipif = ipsq->ipsq_current_ipif; 8033 8034 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8035 8036 /* 8037 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8038 * (but we're careful to never set IPIF_CHANGING in that case). 8039 */ 8040 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8041 mutex_enter(&ipif->ipif_ill->ill_lock); 8042 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8043 8044 /* Send any queued event */ 8045 ill_nic_info_dispatch(ipif->ipif_ill); 8046 mutex_exit(&ipif->ipif_ill->ill_lock); 8047 } 8048 8049 mutex_enter(&ipsq->ipsq_lock); 8050 ASSERT(ipsq->ipsq_current_ipif != NULL); 8051 ipsq->ipsq_current_ipif = NULL; 8052 ipsq->ipsq_current_ioctl = 0; 8053 mutex_exit(&ipsq->ipsq_lock); 8054 } 8055 8056 /* 8057 * The ill is closing. Flush all messages on the ipsq that originated 8058 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8059 * for this ill since ipsq_enter could not have entered until then. 8060 * New messages can't be queued since the CONDEMNED flag is set. 8061 */ 8062 static void 8063 ipsq_flush(ill_t *ill) 8064 { 8065 queue_t *q; 8066 mblk_t *prev; 8067 mblk_t *mp; 8068 mblk_t *mp_next; 8069 ipsq_t *ipsq; 8070 8071 ASSERT(IAM_WRITER_ILL(ill)); 8072 ipsq = ill->ill_phyint->phyint_ipsq; 8073 /* 8074 * Flush any messages sent up by the driver. 8075 */ 8076 mutex_enter(&ipsq->ipsq_lock); 8077 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8078 mp_next = mp->b_next; 8079 q = mp->b_queue; 8080 if (q == ill->ill_rq || q == ill->ill_wq) { 8081 /* Remove the mp from the ipsq */ 8082 if (prev == NULL) 8083 ipsq->ipsq_mphead = mp->b_next; 8084 else 8085 prev->b_next = mp->b_next; 8086 if (ipsq->ipsq_mptail == mp) { 8087 ASSERT(mp_next == NULL); 8088 ipsq->ipsq_mptail = prev; 8089 } 8090 inet_freemsg(mp); 8091 } else { 8092 prev = mp; 8093 } 8094 } 8095 mutex_exit(&ipsq->ipsq_lock); 8096 (void) ipsq_pending_mp_cleanup(ill, NULL); 8097 ipsq_xopq_mp_cleanup(ill, NULL); 8098 ill_pending_mp_cleanup(ill); 8099 } 8100 8101 /* ARGSUSED */ 8102 int 8103 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8104 ip_ioctl_cmd_t *ipip, void *ifreq) 8105 { 8106 ill_t *ill; 8107 struct lifreq *lifr = (struct lifreq *)ifreq; 8108 boolean_t isv6; 8109 conn_t *connp; 8110 ip_stack_t *ipst; 8111 8112 connp = Q_TO_CONN(q); 8113 ipst = connp->conn_netstack->netstack_ip; 8114 isv6 = connp->conn_af_isv6; 8115 /* 8116 * Set original index. 8117 * Failover and failback move logical interfaces 8118 * from one physical interface to another. The 8119 * original index indicates the parent of a logical 8120 * interface, in other words, the physical interface 8121 * the logical interface will be moved back to on 8122 * failback. 8123 */ 8124 8125 /* 8126 * Don't allow the original index to be changed 8127 * for non-failover addresses, autoconfigured 8128 * addresses, or IPv6 link local addresses. 8129 */ 8130 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8131 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8132 return (EINVAL); 8133 } 8134 /* 8135 * The new original index must be in use by some 8136 * physical interface. 8137 */ 8138 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8139 NULL, NULL, ipst); 8140 if (ill == NULL) 8141 return (ENXIO); 8142 ill_refrele(ill); 8143 8144 ipif->ipif_orig_ifindex = lifr->lifr_index; 8145 /* 8146 * When this ipif gets failed back, don't 8147 * preserve the original id, as it is no 8148 * longer applicable. 8149 */ 8150 ipif->ipif_orig_ipifid = 0; 8151 /* 8152 * For IPv4, change the original index of any 8153 * multicast addresses associated with the 8154 * ipif to the new value. 8155 */ 8156 if (!isv6) { 8157 ilm_t *ilm; 8158 8159 mutex_enter(&ipif->ipif_ill->ill_lock); 8160 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8161 ilm = ilm->ilm_next) { 8162 if (ilm->ilm_ipif == ipif) { 8163 ilm->ilm_orig_ifindex = lifr->lifr_index; 8164 } 8165 } 8166 mutex_exit(&ipif->ipif_ill->ill_lock); 8167 } 8168 return (0); 8169 } 8170 8171 /* ARGSUSED */ 8172 int 8173 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8174 ip_ioctl_cmd_t *ipip, void *ifreq) 8175 { 8176 struct lifreq *lifr = (struct lifreq *)ifreq; 8177 8178 /* 8179 * Get the original interface index i.e the one 8180 * before FAILOVER if it ever happened. 8181 */ 8182 lifr->lifr_index = ipif->ipif_orig_ifindex; 8183 return (0); 8184 } 8185 8186 /* 8187 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8188 * refhold and return the associated ipif 8189 */ 8190 /* ARGSUSED */ 8191 int 8192 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8193 cmd_info_t *ci, ipsq_func_t func) 8194 { 8195 boolean_t exists; 8196 struct iftun_req *ta; 8197 ipif_t *ipif; 8198 ill_t *ill; 8199 boolean_t isv6; 8200 mblk_t *mp1; 8201 int error; 8202 conn_t *connp; 8203 ip_stack_t *ipst; 8204 8205 /* Existence verified in ip_wput_nondata */ 8206 mp1 = mp->b_cont->b_cont; 8207 ta = (struct iftun_req *)mp1->b_rptr; 8208 /* 8209 * Null terminate the string to protect against buffer 8210 * overrun. String was generated by user code and may not 8211 * be trusted. 8212 */ 8213 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8214 8215 connp = Q_TO_CONN(q); 8216 isv6 = connp->conn_af_isv6; 8217 ipst = connp->conn_netstack->netstack_ip; 8218 8219 /* Disallows implicit create */ 8220 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8221 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8222 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8223 if (ipif == NULL) 8224 return (error); 8225 8226 if (ipif->ipif_id != 0) { 8227 /* 8228 * We really don't want to set/get tunnel parameters 8229 * on virtual tunnel interfaces. Only allow the 8230 * base tunnel to do these. 8231 */ 8232 ipif_refrele(ipif); 8233 return (EINVAL); 8234 } 8235 8236 /* 8237 * Send down to tunnel mod for ioctl processing. 8238 * Will finish ioctl in ip_rput_other(). 8239 */ 8240 ill = ipif->ipif_ill; 8241 if (ill->ill_net_type == IRE_LOOPBACK) { 8242 ipif_refrele(ipif); 8243 return (EOPNOTSUPP); 8244 } 8245 8246 if (ill->ill_wq == NULL) { 8247 ipif_refrele(ipif); 8248 return (ENXIO); 8249 } 8250 /* 8251 * Mark the ioctl as coming from an IPv6 interface for 8252 * tun's convenience. 8253 */ 8254 if (ill->ill_isv6) 8255 ta->ifta_flags |= 0x80000000; 8256 ci->ci_ipif = ipif; 8257 return (0); 8258 } 8259 8260 /* 8261 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8262 * and return the associated ipif. 8263 * Return value: 8264 * Non zero: An error has occurred. ci may not be filled out. 8265 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8266 * a held ipif in ci.ci_ipif. 8267 */ 8268 int 8269 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8270 cmd_info_t *ci, ipsq_func_t func) 8271 { 8272 sin_t *sin; 8273 sin6_t *sin6; 8274 char *name; 8275 struct ifreq *ifr; 8276 struct lifreq *lifr; 8277 ipif_t *ipif = NULL; 8278 ill_t *ill; 8279 conn_t *connp; 8280 boolean_t isv6; 8281 boolean_t exists; 8282 int err; 8283 mblk_t *mp1; 8284 zoneid_t zoneid; 8285 ip_stack_t *ipst; 8286 8287 if (q->q_next != NULL) { 8288 ill = (ill_t *)q->q_ptr; 8289 isv6 = ill->ill_isv6; 8290 connp = NULL; 8291 zoneid = ALL_ZONES; 8292 ipst = ill->ill_ipst; 8293 } else { 8294 ill = NULL; 8295 connp = Q_TO_CONN(q); 8296 isv6 = connp->conn_af_isv6; 8297 zoneid = connp->conn_zoneid; 8298 if (zoneid == GLOBAL_ZONEID) { 8299 /* global zone can access ipifs in all zones */ 8300 zoneid = ALL_ZONES; 8301 } 8302 ipst = connp->conn_netstack->netstack_ip; 8303 } 8304 8305 /* Has been checked in ip_wput_nondata */ 8306 mp1 = mp->b_cont->b_cont; 8307 8308 if (ipip->ipi_cmd_type == IF_CMD) { 8309 /* This a old style SIOC[GS]IF* command */ 8310 ifr = (struct ifreq *)mp1->b_rptr; 8311 /* 8312 * Null terminate the string to protect against buffer 8313 * overrun. String was generated by user code and may not 8314 * be trusted. 8315 */ 8316 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8317 sin = (sin_t *)&ifr->ifr_addr; 8318 name = ifr->ifr_name; 8319 ci->ci_sin = sin; 8320 ci->ci_sin6 = NULL; 8321 ci->ci_lifr = (struct lifreq *)ifr; 8322 } else { 8323 /* This a new style SIOC[GS]LIF* command */ 8324 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8325 lifr = (struct lifreq *)mp1->b_rptr; 8326 /* 8327 * Null terminate the string to protect against buffer 8328 * overrun. String was generated by user code and may not 8329 * be trusted. 8330 */ 8331 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8332 name = lifr->lifr_name; 8333 sin = (sin_t *)&lifr->lifr_addr; 8334 sin6 = (sin6_t *)&lifr->lifr_addr; 8335 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8336 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8337 LIFNAMSIZ); 8338 } 8339 ci->ci_sin = sin; 8340 ci->ci_sin6 = sin6; 8341 ci->ci_lifr = lifr; 8342 } 8343 8344 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8345 /* 8346 * The ioctl will be failed if the ioctl comes down 8347 * an conn stream 8348 */ 8349 if (ill == NULL) { 8350 /* 8351 * Not an ill queue, return EINVAL same as the 8352 * old error code. 8353 */ 8354 return (ENXIO); 8355 } 8356 ipif = ill->ill_ipif; 8357 ipif_refhold(ipif); 8358 } else { 8359 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8360 &exists, isv6, zoneid, 8361 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8362 ipst); 8363 if (ipif == NULL) { 8364 if (err == EINPROGRESS) 8365 return (err); 8366 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8367 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8368 /* 8369 * Need to try both v4 and v6 since this 8370 * ioctl can come down either v4 or v6 8371 * socket. The lifreq.lifr_family passed 8372 * down by this ioctl is AF_UNSPEC. 8373 */ 8374 ipif = ipif_lookup_on_name(name, 8375 mi_strlen(name), B_FALSE, &exists, !isv6, 8376 zoneid, (connp == NULL) ? q : 8377 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8378 if (err == EINPROGRESS) 8379 return (err); 8380 } 8381 err = 0; /* Ensure we don't use it below */ 8382 } 8383 } 8384 8385 /* 8386 * Old style [GS]IFCMD does not admit IPv6 ipif 8387 */ 8388 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8389 ipif_refrele(ipif); 8390 return (ENXIO); 8391 } 8392 8393 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8394 name[0] == '\0') { 8395 /* 8396 * Handle a or a SIOC?IF* with a null name 8397 * during plumb (on the ill queue before the I_PLINK). 8398 */ 8399 ipif = ill->ill_ipif; 8400 ipif_refhold(ipif); 8401 } 8402 8403 if (ipif == NULL) 8404 return (ENXIO); 8405 8406 /* 8407 * Allow only GET operations if this ipif has been created 8408 * temporarily due to a MOVE operation. 8409 */ 8410 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8411 ipif_refrele(ipif); 8412 return (EINVAL); 8413 } 8414 8415 ci->ci_ipif = ipif; 8416 return (0); 8417 } 8418 8419 /* 8420 * Return the total number of ipifs. 8421 */ 8422 static uint_t 8423 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8424 { 8425 uint_t numifs = 0; 8426 ill_t *ill; 8427 ill_walk_context_t ctx; 8428 ipif_t *ipif; 8429 8430 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8431 ill = ILL_START_WALK_V4(&ctx, ipst); 8432 8433 while (ill != NULL) { 8434 for (ipif = ill->ill_ipif; ipif != NULL; 8435 ipif = ipif->ipif_next) { 8436 if (ipif->ipif_zoneid == zoneid || 8437 ipif->ipif_zoneid == ALL_ZONES) 8438 numifs++; 8439 } 8440 ill = ill_next(&ctx, ill); 8441 } 8442 rw_exit(&ipst->ips_ill_g_lock); 8443 return (numifs); 8444 } 8445 8446 /* 8447 * Return the total number of ipifs. 8448 */ 8449 static uint_t 8450 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8451 { 8452 uint_t numifs = 0; 8453 ill_t *ill; 8454 ipif_t *ipif; 8455 ill_walk_context_t ctx; 8456 8457 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8458 8459 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8460 if (family == AF_INET) 8461 ill = ILL_START_WALK_V4(&ctx, ipst); 8462 else if (family == AF_INET6) 8463 ill = ILL_START_WALK_V6(&ctx, ipst); 8464 else 8465 ill = ILL_START_WALK_ALL(&ctx, ipst); 8466 8467 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8468 for (ipif = ill->ill_ipif; ipif != NULL; 8469 ipif = ipif->ipif_next) { 8470 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8471 !(lifn_flags & LIFC_NOXMIT)) 8472 continue; 8473 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8474 !(lifn_flags & LIFC_TEMPORARY)) 8475 continue; 8476 if (((ipif->ipif_flags & 8477 (IPIF_NOXMIT|IPIF_NOLOCAL| 8478 IPIF_DEPRECATED)) || 8479 IS_LOOPBACK(ill) || 8480 !(ipif->ipif_flags & IPIF_UP)) && 8481 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8482 continue; 8483 8484 if (zoneid != ipif->ipif_zoneid && 8485 ipif->ipif_zoneid != ALL_ZONES && 8486 (zoneid != GLOBAL_ZONEID || 8487 !(lifn_flags & LIFC_ALLZONES))) 8488 continue; 8489 8490 numifs++; 8491 } 8492 } 8493 rw_exit(&ipst->ips_ill_g_lock); 8494 return (numifs); 8495 } 8496 8497 uint_t 8498 ip_get_lifsrcofnum(ill_t *ill) 8499 { 8500 uint_t numifs = 0; 8501 ill_t *ill_head = ill; 8502 ip_stack_t *ipst = ill->ill_ipst; 8503 8504 /* 8505 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8506 * other thread may be trying to relink the ILLs in this usesrc group 8507 * and adjusting the ill_usesrc_grp_next pointers 8508 */ 8509 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8510 if ((ill->ill_usesrc_ifindex == 0) && 8511 (ill->ill_usesrc_grp_next != NULL)) { 8512 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8513 ill = ill->ill_usesrc_grp_next) 8514 numifs++; 8515 } 8516 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8517 8518 return (numifs); 8519 } 8520 8521 /* Null values are passed in for ipif, sin, and ifreq */ 8522 /* ARGSUSED */ 8523 int 8524 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8525 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8526 { 8527 int *nump; 8528 conn_t *connp = Q_TO_CONN(q); 8529 8530 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8531 8532 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8533 nump = (int *)mp->b_cont->b_cont->b_rptr; 8534 8535 *nump = ip_get_numifs(connp->conn_zoneid, 8536 connp->conn_netstack->netstack_ip); 8537 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8538 return (0); 8539 } 8540 8541 /* Null values are passed in for ipif, sin, and ifreq */ 8542 /* ARGSUSED */ 8543 int 8544 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8545 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8546 { 8547 struct lifnum *lifn; 8548 mblk_t *mp1; 8549 conn_t *connp = Q_TO_CONN(q); 8550 8551 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8552 8553 /* Existence checked in ip_wput_nondata */ 8554 mp1 = mp->b_cont->b_cont; 8555 8556 lifn = (struct lifnum *)mp1->b_rptr; 8557 switch (lifn->lifn_family) { 8558 case AF_UNSPEC: 8559 case AF_INET: 8560 case AF_INET6: 8561 break; 8562 default: 8563 return (EAFNOSUPPORT); 8564 } 8565 8566 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8567 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8568 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8569 return (0); 8570 } 8571 8572 /* ARGSUSED */ 8573 int 8574 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8575 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8576 { 8577 STRUCT_HANDLE(ifconf, ifc); 8578 mblk_t *mp1; 8579 struct iocblk *iocp; 8580 struct ifreq *ifr; 8581 ill_walk_context_t ctx; 8582 ill_t *ill; 8583 ipif_t *ipif; 8584 struct sockaddr_in *sin; 8585 int32_t ifclen; 8586 zoneid_t zoneid; 8587 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8588 8589 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8590 8591 ip1dbg(("ip_sioctl_get_ifconf")); 8592 /* Existence verified in ip_wput_nondata */ 8593 mp1 = mp->b_cont->b_cont; 8594 iocp = (struct iocblk *)mp->b_rptr; 8595 zoneid = Q_TO_CONN(q)->conn_zoneid; 8596 8597 /* 8598 * The original SIOCGIFCONF passed in a struct ifconf which specified 8599 * the user buffer address and length into which the list of struct 8600 * ifreqs was to be copied. Since AT&T Streams does not seem to 8601 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8602 * the SIOCGIFCONF operation was redefined to simply provide 8603 * a large output buffer into which we are supposed to jam the ifreq 8604 * array. The same ioctl command code was used, despite the fact that 8605 * both the applications and the kernel code had to change, thus making 8606 * it impossible to support both interfaces. 8607 * 8608 * For reasons not good enough to try to explain, the following 8609 * algorithm is used for deciding what to do with one of these: 8610 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8611 * form with the output buffer coming down as the continuation message. 8612 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8613 * and we have to copy in the ifconf structure to find out how big the 8614 * output buffer is and where to copy out to. Sure no problem... 8615 * 8616 */ 8617 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8618 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8619 int numifs = 0; 8620 size_t ifc_bufsize; 8621 8622 /* 8623 * Must be (better be!) continuation of a TRANSPARENT 8624 * IOCTL. We just copied in the ifconf structure. 8625 */ 8626 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8627 (struct ifconf *)mp1->b_rptr); 8628 8629 /* 8630 * Allocate a buffer to hold requested information. 8631 * 8632 * If ifc_len is larger than what is needed, we only 8633 * allocate what we will use. 8634 * 8635 * If ifc_len is smaller than what is needed, return 8636 * EINVAL. 8637 * 8638 * XXX: the ill_t structure can hava 2 counters, for 8639 * v4 and v6 (not just ill_ipif_up_count) to store the 8640 * number of interfaces for a device, so we don't need 8641 * to count them here... 8642 */ 8643 numifs = ip_get_numifs(zoneid, ipst); 8644 8645 ifclen = STRUCT_FGET(ifc, ifc_len); 8646 ifc_bufsize = numifs * sizeof (struct ifreq); 8647 if (ifc_bufsize > ifclen) { 8648 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8649 /* old behaviour */ 8650 return (EINVAL); 8651 } else { 8652 ifc_bufsize = ifclen; 8653 } 8654 } 8655 8656 mp1 = mi_copyout_alloc(q, mp, 8657 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8658 if (mp1 == NULL) 8659 return (ENOMEM); 8660 8661 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8662 } 8663 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8664 /* 8665 * the SIOCGIFCONF ioctl only knows about 8666 * IPv4 addresses, so don't try to tell 8667 * it about interfaces with IPv6-only 8668 * addresses. (Last parm 'isv6' is B_FALSE) 8669 */ 8670 8671 ifr = (struct ifreq *)mp1->b_rptr; 8672 8673 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8674 ill = ILL_START_WALK_V4(&ctx, ipst); 8675 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8676 for (ipif = ill->ill_ipif; ipif != NULL; 8677 ipif = ipif->ipif_next) { 8678 if (zoneid != ipif->ipif_zoneid && 8679 ipif->ipif_zoneid != ALL_ZONES) 8680 continue; 8681 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8682 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8683 /* old behaviour */ 8684 rw_exit(&ipst->ips_ill_g_lock); 8685 return (EINVAL); 8686 } else { 8687 goto if_copydone; 8688 } 8689 } 8690 ipif_get_name(ipif, ifr->ifr_name, 8691 sizeof (ifr->ifr_name)); 8692 sin = (sin_t *)&ifr->ifr_addr; 8693 *sin = sin_null; 8694 sin->sin_family = AF_INET; 8695 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8696 ifr++; 8697 } 8698 } 8699 if_copydone: 8700 rw_exit(&ipst->ips_ill_g_lock); 8701 mp1->b_wptr = (uchar_t *)ifr; 8702 8703 if (STRUCT_BUF(ifc) != NULL) { 8704 STRUCT_FSET(ifc, ifc_len, 8705 (int)((uchar_t *)ifr - mp1->b_rptr)); 8706 } 8707 return (0); 8708 } 8709 8710 /* 8711 * Get the interfaces using the address hosted on the interface passed in, 8712 * as a source adddress 8713 */ 8714 /* ARGSUSED */ 8715 int 8716 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8717 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8718 { 8719 mblk_t *mp1; 8720 ill_t *ill, *ill_head; 8721 ipif_t *ipif, *orig_ipif; 8722 int numlifs = 0; 8723 size_t lifs_bufsize, lifsmaxlen; 8724 struct lifreq *lifr; 8725 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8726 uint_t ifindex; 8727 zoneid_t zoneid; 8728 int err = 0; 8729 boolean_t isv6 = B_FALSE; 8730 struct sockaddr_in *sin; 8731 struct sockaddr_in6 *sin6; 8732 STRUCT_HANDLE(lifsrcof, lifs); 8733 ip_stack_t *ipst; 8734 8735 ipst = CONNQ_TO_IPST(q); 8736 8737 ASSERT(q->q_next == NULL); 8738 8739 zoneid = Q_TO_CONN(q)->conn_zoneid; 8740 8741 /* Existence verified in ip_wput_nondata */ 8742 mp1 = mp->b_cont->b_cont; 8743 8744 /* 8745 * Must be (better be!) continuation of a TRANSPARENT 8746 * IOCTL. We just copied in the lifsrcof structure. 8747 */ 8748 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8749 (struct lifsrcof *)mp1->b_rptr); 8750 8751 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8752 return (EINVAL); 8753 8754 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8755 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8756 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8757 ip_process_ioctl, &err, ipst); 8758 if (ipif == NULL) { 8759 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8760 ifindex)); 8761 return (err); 8762 } 8763 8764 8765 /* Allocate a buffer to hold requested information */ 8766 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8767 lifs_bufsize = numlifs * sizeof (struct lifreq); 8768 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8769 /* The actual size needed is always returned in lifs_len */ 8770 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8771 8772 /* If the amount we need is more than what is passed in, abort */ 8773 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8774 ipif_refrele(ipif); 8775 return (0); 8776 } 8777 8778 mp1 = mi_copyout_alloc(q, mp, 8779 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8780 if (mp1 == NULL) { 8781 ipif_refrele(ipif); 8782 return (ENOMEM); 8783 } 8784 8785 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8786 bzero(mp1->b_rptr, lifs_bufsize); 8787 8788 lifr = (struct lifreq *)mp1->b_rptr; 8789 8790 ill = ill_head = ipif->ipif_ill; 8791 orig_ipif = ipif; 8792 8793 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8794 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8795 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8796 8797 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8798 for (; (ill != NULL) && (ill != ill_head); 8799 ill = ill->ill_usesrc_grp_next) { 8800 8801 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8802 break; 8803 8804 ipif = ill->ill_ipif; 8805 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8806 if (ipif->ipif_isv6) { 8807 sin6 = (sin6_t *)&lifr->lifr_addr; 8808 *sin6 = sin6_null; 8809 sin6->sin6_family = AF_INET6; 8810 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8811 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8812 &ipif->ipif_v6net_mask); 8813 } else { 8814 sin = (sin_t *)&lifr->lifr_addr; 8815 *sin = sin_null; 8816 sin->sin_family = AF_INET; 8817 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8818 lifr->lifr_addrlen = ip_mask_to_plen( 8819 ipif->ipif_net_mask); 8820 } 8821 lifr++; 8822 } 8823 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8824 rw_exit(&ipst->ips_ill_g_lock); 8825 ipif_refrele(orig_ipif); 8826 mp1->b_wptr = (uchar_t *)lifr; 8827 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8828 8829 return (0); 8830 } 8831 8832 /* ARGSUSED */ 8833 int 8834 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8835 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8836 { 8837 mblk_t *mp1; 8838 int list; 8839 ill_t *ill; 8840 ipif_t *ipif; 8841 int flags; 8842 int numlifs = 0; 8843 size_t lifc_bufsize; 8844 struct lifreq *lifr; 8845 sa_family_t family; 8846 struct sockaddr_in *sin; 8847 struct sockaddr_in6 *sin6; 8848 ill_walk_context_t ctx; 8849 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8850 int32_t lifclen; 8851 zoneid_t zoneid; 8852 STRUCT_HANDLE(lifconf, lifc); 8853 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8854 8855 ip1dbg(("ip_sioctl_get_lifconf")); 8856 8857 ASSERT(q->q_next == NULL); 8858 8859 zoneid = Q_TO_CONN(q)->conn_zoneid; 8860 8861 /* Existence verified in ip_wput_nondata */ 8862 mp1 = mp->b_cont->b_cont; 8863 8864 /* 8865 * An extended version of SIOCGIFCONF that takes an 8866 * additional address family and flags field. 8867 * AF_UNSPEC retrieve both IPv4 and IPv6. 8868 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8869 * interfaces are omitted. 8870 * Similarly, IPIF_TEMPORARY interfaces are omitted 8871 * unless LIFC_TEMPORARY is specified. 8872 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8873 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8874 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8875 * has priority over LIFC_NOXMIT. 8876 */ 8877 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8878 8879 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8880 return (EINVAL); 8881 8882 /* 8883 * Must be (better be!) continuation of a TRANSPARENT 8884 * IOCTL. We just copied in the lifconf structure. 8885 */ 8886 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8887 8888 family = STRUCT_FGET(lifc, lifc_family); 8889 flags = STRUCT_FGET(lifc, lifc_flags); 8890 8891 switch (family) { 8892 case AF_UNSPEC: 8893 /* 8894 * walk all ILL's. 8895 */ 8896 list = MAX_G_HEADS; 8897 break; 8898 case AF_INET: 8899 /* 8900 * walk only IPV4 ILL's. 8901 */ 8902 list = IP_V4_G_HEAD; 8903 break; 8904 case AF_INET6: 8905 /* 8906 * walk only IPV6 ILL's. 8907 */ 8908 list = IP_V6_G_HEAD; 8909 break; 8910 default: 8911 return (EAFNOSUPPORT); 8912 } 8913 8914 /* 8915 * Allocate a buffer to hold requested information. 8916 * 8917 * If lifc_len is larger than what is needed, we only 8918 * allocate what we will use. 8919 * 8920 * If lifc_len is smaller than what is needed, return 8921 * EINVAL. 8922 */ 8923 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8924 lifc_bufsize = numlifs * sizeof (struct lifreq); 8925 lifclen = STRUCT_FGET(lifc, lifc_len); 8926 if (lifc_bufsize > lifclen) { 8927 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8928 return (EINVAL); 8929 else 8930 lifc_bufsize = lifclen; 8931 } 8932 8933 mp1 = mi_copyout_alloc(q, mp, 8934 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8935 if (mp1 == NULL) 8936 return (ENOMEM); 8937 8938 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8939 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8940 8941 lifr = (struct lifreq *)mp1->b_rptr; 8942 8943 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8944 ill = ill_first(list, list, &ctx, ipst); 8945 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8946 for (ipif = ill->ill_ipif; ipif != NULL; 8947 ipif = ipif->ipif_next) { 8948 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8949 !(flags & LIFC_NOXMIT)) 8950 continue; 8951 8952 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8953 !(flags & LIFC_TEMPORARY)) 8954 continue; 8955 8956 if (((ipif->ipif_flags & 8957 (IPIF_NOXMIT|IPIF_NOLOCAL| 8958 IPIF_DEPRECATED)) || 8959 IS_LOOPBACK(ill) || 8960 !(ipif->ipif_flags & IPIF_UP)) && 8961 (flags & LIFC_EXTERNAL_SOURCE)) 8962 continue; 8963 8964 if (zoneid != ipif->ipif_zoneid && 8965 ipif->ipif_zoneid != ALL_ZONES && 8966 (zoneid != GLOBAL_ZONEID || 8967 !(flags & LIFC_ALLZONES))) 8968 continue; 8969 8970 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8971 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8972 rw_exit(&ipst->ips_ill_g_lock); 8973 return (EINVAL); 8974 } else { 8975 goto lif_copydone; 8976 } 8977 } 8978 8979 ipif_get_name(ipif, lifr->lifr_name, 8980 sizeof (lifr->lifr_name)); 8981 if (ipif->ipif_isv6) { 8982 sin6 = (sin6_t *)&lifr->lifr_addr; 8983 *sin6 = sin6_null; 8984 sin6->sin6_family = AF_INET6; 8985 sin6->sin6_addr = 8986 ipif->ipif_v6lcl_addr; 8987 lifr->lifr_addrlen = 8988 ip_mask_to_plen_v6( 8989 &ipif->ipif_v6net_mask); 8990 } else { 8991 sin = (sin_t *)&lifr->lifr_addr; 8992 *sin = sin_null; 8993 sin->sin_family = AF_INET; 8994 sin->sin_addr.s_addr = 8995 ipif->ipif_lcl_addr; 8996 lifr->lifr_addrlen = 8997 ip_mask_to_plen( 8998 ipif->ipif_net_mask); 8999 } 9000 lifr++; 9001 } 9002 } 9003 lif_copydone: 9004 rw_exit(&ipst->ips_ill_g_lock); 9005 9006 mp1->b_wptr = (uchar_t *)lifr; 9007 if (STRUCT_BUF(lifc) != NULL) { 9008 STRUCT_FSET(lifc, lifc_len, 9009 (int)((uchar_t *)lifr - mp1->b_rptr)); 9010 } 9011 return (0); 9012 } 9013 9014 /* ARGSUSED */ 9015 int 9016 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9017 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9018 { 9019 ip_stack_t *ipst; 9020 9021 if (q->q_next == NULL) 9022 ipst = CONNQ_TO_IPST(q); 9023 else 9024 ipst = ILLQ_TO_IPST(q); 9025 9026 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9027 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9028 return (0); 9029 } 9030 9031 static void 9032 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9033 { 9034 ip6_asp_t *table; 9035 size_t table_size; 9036 mblk_t *data_mp; 9037 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9038 ip_stack_t *ipst; 9039 9040 if (q->q_next == NULL) 9041 ipst = CONNQ_TO_IPST(q); 9042 else 9043 ipst = ILLQ_TO_IPST(q); 9044 9045 /* These two ioctls are I_STR only */ 9046 if (iocp->ioc_count == TRANSPARENT) { 9047 miocnak(q, mp, 0, EINVAL); 9048 return; 9049 } 9050 9051 data_mp = mp->b_cont; 9052 if (data_mp == NULL) { 9053 /* The user passed us a NULL argument */ 9054 table = NULL; 9055 table_size = iocp->ioc_count; 9056 } else { 9057 /* 9058 * The user provided a table. The stream head 9059 * may have copied in the user data in chunks, 9060 * so make sure everything is pulled up 9061 * properly. 9062 */ 9063 if (MBLKL(data_mp) < iocp->ioc_count) { 9064 mblk_t *new_data_mp; 9065 if ((new_data_mp = msgpullup(data_mp, -1)) == 9066 NULL) { 9067 miocnak(q, mp, 0, ENOMEM); 9068 return; 9069 } 9070 freemsg(data_mp); 9071 data_mp = new_data_mp; 9072 mp->b_cont = data_mp; 9073 } 9074 table = (ip6_asp_t *)data_mp->b_rptr; 9075 table_size = iocp->ioc_count; 9076 } 9077 9078 switch (iocp->ioc_cmd) { 9079 case SIOCGIP6ADDRPOLICY: 9080 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9081 if (iocp->ioc_rval == -1) 9082 iocp->ioc_error = EINVAL; 9083 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9084 else if (table != NULL && 9085 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9086 ip6_asp_t *src = table; 9087 ip6_asp32_t *dst = (void *)table; 9088 int count = table_size / sizeof (ip6_asp_t); 9089 int i; 9090 9091 /* 9092 * We need to do an in-place shrink of the array 9093 * to match the alignment attributes of the 9094 * 32-bit ABI looking at it. 9095 */ 9096 /* LINTED: logical expression always true: op "||" */ 9097 ASSERT(sizeof (*src) > sizeof (*dst)); 9098 for (i = 1; i < count; i++) 9099 bcopy(src + i, dst + i, sizeof (*dst)); 9100 } 9101 #endif 9102 break; 9103 9104 case SIOCSIP6ADDRPOLICY: 9105 ASSERT(mp->b_prev == NULL); 9106 mp->b_prev = (void *)q; 9107 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9108 /* 9109 * We pass in the datamodel here so that the ip6_asp_replace() 9110 * routine can handle converting from 32-bit to native formats 9111 * where necessary. 9112 * 9113 * A better way to handle this might be to convert the inbound 9114 * data structure here, and hang it off a new 'mp'; thus the 9115 * ip6_asp_replace() logic would always be dealing with native 9116 * format data structures.. 9117 * 9118 * (An even simpler way to handle these ioctls is to just 9119 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9120 * and just recompile everything that depends on it.) 9121 */ 9122 #endif 9123 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9124 iocp->ioc_flag & IOC_MODELS); 9125 return; 9126 } 9127 9128 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9129 qreply(q, mp); 9130 } 9131 9132 static void 9133 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9134 { 9135 mblk_t *data_mp; 9136 struct dstinforeq *dir; 9137 uint8_t *end, *cur; 9138 in6_addr_t *daddr, *saddr; 9139 ipaddr_t v4daddr; 9140 ire_t *ire; 9141 char *slabel, *dlabel; 9142 boolean_t isipv4; 9143 int match_ire; 9144 ill_t *dst_ill; 9145 ipif_t *src_ipif, *ire_ipif; 9146 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9147 zoneid_t zoneid; 9148 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9149 9150 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9151 zoneid = Q_TO_CONN(q)->conn_zoneid; 9152 9153 /* 9154 * This ioctl is I_STR only, and must have a 9155 * data mblk following the M_IOCTL mblk. 9156 */ 9157 data_mp = mp->b_cont; 9158 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9159 miocnak(q, mp, 0, EINVAL); 9160 return; 9161 } 9162 9163 if (MBLKL(data_mp) < iocp->ioc_count) { 9164 mblk_t *new_data_mp; 9165 9166 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9167 miocnak(q, mp, 0, ENOMEM); 9168 return; 9169 } 9170 freemsg(data_mp); 9171 data_mp = new_data_mp; 9172 mp->b_cont = data_mp; 9173 } 9174 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9175 9176 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9177 end - cur >= sizeof (struct dstinforeq); 9178 cur += sizeof (struct dstinforeq)) { 9179 dir = (struct dstinforeq *)cur; 9180 daddr = &dir->dir_daddr; 9181 saddr = &dir->dir_saddr; 9182 9183 /* 9184 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9185 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9186 * and ipif_select_source[_v6]() do not. 9187 */ 9188 dir->dir_dscope = ip_addr_scope_v6(daddr); 9189 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9190 9191 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9192 if (isipv4) { 9193 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9194 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9195 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9196 } else { 9197 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9198 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9199 } 9200 if (ire == NULL) { 9201 dir->dir_dreachable = 0; 9202 9203 /* move on to next dst addr */ 9204 continue; 9205 } 9206 dir->dir_dreachable = 1; 9207 9208 ire_ipif = ire->ire_ipif; 9209 if (ire_ipif == NULL) 9210 goto next_dst; 9211 9212 /* 9213 * We expect to get back an interface ire or a 9214 * gateway ire cache entry. For both types, the 9215 * output interface is ire_ipif->ipif_ill. 9216 */ 9217 dst_ill = ire_ipif->ipif_ill; 9218 dir->dir_dmactype = dst_ill->ill_mactype; 9219 9220 if (isipv4) { 9221 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9222 } else { 9223 src_ipif = ipif_select_source_v6(dst_ill, 9224 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9225 zoneid); 9226 } 9227 if (src_ipif == NULL) 9228 goto next_dst; 9229 9230 *saddr = src_ipif->ipif_v6lcl_addr; 9231 dir->dir_sscope = ip_addr_scope_v6(saddr); 9232 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9233 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9234 dir->dir_sdeprecated = 9235 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9236 ipif_refrele(src_ipif); 9237 next_dst: 9238 ire_refrele(ire); 9239 } 9240 miocack(q, mp, iocp->ioc_count, 0); 9241 } 9242 9243 9244 /* 9245 * Check if this is an address assigned to this machine. 9246 * Skips interfaces that are down by using ire checks. 9247 * Translates mapped addresses to v4 addresses and then 9248 * treats them as such, returning true if the v4 address 9249 * associated with this mapped address is configured. 9250 * Note: Applications will have to be careful what they do 9251 * with the response; use of mapped addresses limits 9252 * what can be done with the socket, especially with 9253 * respect to socket options and ioctls - neither IPv4 9254 * options nor IPv6 sticky options/ancillary data options 9255 * may be used. 9256 */ 9257 /* ARGSUSED */ 9258 int 9259 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9260 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9261 { 9262 struct sioc_addrreq *sia; 9263 sin_t *sin; 9264 ire_t *ire; 9265 mblk_t *mp1; 9266 zoneid_t zoneid; 9267 ip_stack_t *ipst; 9268 9269 ip1dbg(("ip_sioctl_tmyaddr")); 9270 9271 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9272 zoneid = Q_TO_CONN(q)->conn_zoneid; 9273 ipst = CONNQ_TO_IPST(q); 9274 9275 /* Existence verified in ip_wput_nondata */ 9276 mp1 = mp->b_cont->b_cont; 9277 sia = (struct sioc_addrreq *)mp1->b_rptr; 9278 sin = (sin_t *)&sia->sa_addr; 9279 switch (sin->sin_family) { 9280 case AF_INET6: { 9281 sin6_t *sin6 = (sin6_t *)sin; 9282 9283 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9284 ipaddr_t v4_addr; 9285 9286 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9287 v4_addr); 9288 ire = ire_ctable_lookup(v4_addr, 0, 9289 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9290 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9291 } else { 9292 in6_addr_t v6addr; 9293 9294 v6addr = sin6->sin6_addr; 9295 ire = ire_ctable_lookup_v6(&v6addr, 0, 9296 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9297 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9298 } 9299 break; 9300 } 9301 case AF_INET: { 9302 ipaddr_t v4addr; 9303 9304 v4addr = sin->sin_addr.s_addr; 9305 ire = ire_ctable_lookup(v4addr, 0, 9306 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9307 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9308 break; 9309 } 9310 default: 9311 return (EAFNOSUPPORT); 9312 } 9313 if (ire != NULL) { 9314 sia->sa_res = 1; 9315 ire_refrele(ire); 9316 } else { 9317 sia->sa_res = 0; 9318 } 9319 return (0); 9320 } 9321 9322 /* 9323 * Check if this is an address assigned on-link i.e. neighbor, 9324 * and makes sure it's reachable from the current zone. 9325 * Returns true for my addresses as well. 9326 * Translates mapped addresses to v4 addresses and then 9327 * treats them as such, returning true if the v4 address 9328 * associated with this mapped address is configured. 9329 * Note: Applications will have to be careful what they do 9330 * with the response; use of mapped addresses limits 9331 * what can be done with the socket, especially with 9332 * respect to socket options and ioctls - neither IPv4 9333 * options nor IPv6 sticky options/ancillary data options 9334 * may be used. 9335 */ 9336 /* ARGSUSED */ 9337 int 9338 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9339 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9340 { 9341 struct sioc_addrreq *sia; 9342 sin_t *sin; 9343 mblk_t *mp1; 9344 ire_t *ire = NULL; 9345 zoneid_t zoneid; 9346 ip_stack_t *ipst; 9347 9348 ip1dbg(("ip_sioctl_tonlink")); 9349 9350 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9351 zoneid = Q_TO_CONN(q)->conn_zoneid; 9352 ipst = CONNQ_TO_IPST(q); 9353 9354 /* Existence verified in ip_wput_nondata */ 9355 mp1 = mp->b_cont->b_cont; 9356 sia = (struct sioc_addrreq *)mp1->b_rptr; 9357 sin = (sin_t *)&sia->sa_addr; 9358 9359 /* 9360 * Match addresses with a zero gateway field to avoid 9361 * routes going through a router. 9362 * Exclude broadcast and multicast addresses. 9363 */ 9364 switch (sin->sin_family) { 9365 case AF_INET6: { 9366 sin6_t *sin6 = (sin6_t *)sin; 9367 9368 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9369 ipaddr_t v4_addr; 9370 9371 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9372 v4_addr); 9373 if (!CLASSD(v4_addr)) { 9374 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9375 NULL, NULL, zoneid, NULL, 9376 MATCH_IRE_GW, ipst); 9377 } 9378 } else { 9379 in6_addr_t v6addr; 9380 in6_addr_t v6gw; 9381 9382 v6addr = sin6->sin6_addr; 9383 v6gw = ipv6_all_zeros; 9384 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9385 ire = ire_route_lookup_v6(&v6addr, 0, 9386 &v6gw, 0, NULL, NULL, zoneid, 9387 NULL, MATCH_IRE_GW, ipst); 9388 } 9389 } 9390 break; 9391 } 9392 case AF_INET: { 9393 ipaddr_t v4addr; 9394 9395 v4addr = sin->sin_addr.s_addr; 9396 if (!CLASSD(v4addr)) { 9397 ire = ire_route_lookup(v4addr, 0, 0, 0, 9398 NULL, NULL, zoneid, NULL, 9399 MATCH_IRE_GW, ipst); 9400 } 9401 break; 9402 } 9403 default: 9404 return (EAFNOSUPPORT); 9405 } 9406 sia->sa_res = 0; 9407 if (ire != NULL) { 9408 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9409 IRE_LOCAL|IRE_LOOPBACK)) { 9410 sia->sa_res = 1; 9411 } 9412 ire_refrele(ire); 9413 } 9414 return (0); 9415 } 9416 9417 /* 9418 * TBD: implement when kernel maintaines a list of site prefixes. 9419 */ 9420 /* ARGSUSED */ 9421 int 9422 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9423 ip_ioctl_cmd_t *ipip, void *ifreq) 9424 { 9425 return (ENXIO); 9426 } 9427 9428 /* ARGSUSED */ 9429 int 9430 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9431 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9432 { 9433 ill_t *ill; 9434 mblk_t *mp1; 9435 conn_t *connp; 9436 boolean_t success; 9437 9438 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9439 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9440 /* ioctl comes down on an conn */ 9441 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9442 connp = Q_TO_CONN(q); 9443 9444 mp->b_datap->db_type = M_IOCTL; 9445 9446 /* 9447 * Send down a copy. (copymsg does not copy b_next/b_prev). 9448 * The original mp contains contaminated b_next values due to 'mi', 9449 * which is needed to do the mi_copy_done. Unfortunately if we 9450 * send down the original mblk itself and if we are popped due to an 9451 * an unplumb before the response comes back from tunnel, 9452 * the streamhead (which does a freemsg) will see this contaminated 9453 * message and the assertion in freemsg about non-null b_next/b_prev 9454 * will panic a DEBUG kernel. 9455 */ 9456 mp1 = copymsg(mp); 9457 if (mp1 == NULL) 9458 return (ENOMEM); 9459 9460 ill = ipif->ipif_ill; 9461 mutex_enter(&connp->conn_lock); 9462 mutex_enter(&ill->ill_lock); 9463 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9464 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9465 mp, 0); 9466 } else { 9467 success = ill_pending_mp_add(ill, connp, mp); 9468 } 9469 mutex_exit(&ill->ill_lock); 9470 mutex_exit(&connp->conn_lock); 9471 9472 if (success) { 9473 ip1dbg(("sending down tunparam request ")); 9474 putnext(ill->ill_wq, mp1); 9475 return (EINPROGRESS); 9476 } else { 9477 /* The conn has started closing */ 9478 freemsg(mp1); 9479 return (EINTR); 9480 } 9481 } 9482 9483 /* 9484 * ARP IOCTLs. 9485 * How does IP get in the business of fronting ARP configuration/queries? 9486 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9487 * are by tradition passed in through a datagram socket. That lands in IP. 9488 * As it happens, this is just as well since the interface is quite crude in 9489 * that it passes in no information about protocol or hardware types, or 9490 * interface association. After making the protocol assumption, IP is in 9491 * the position to look up the name of the ILL, which ARP will need, and 9492 * format a request that can be handled by ARP. The request is passed up 9493 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9494 * back a response. ARP supports its own set of more general IOCTLs, in 9495 * case anyone is interested. 9496 */ 9497 /* ARGSUSED */ 9498 int 9499 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9500 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9501 { 9502 mblk_t *mp1; 9503 mblk_t *mp2; 9504 mblk_t *pending_mp; 9505 ipaddr_t ipaddr; 9506 area_t *area; 9507 struct iocblk *iocp; 9508 conn_t *connp; 9509 struct arpreq *ar; 9510 struct xarpreq *xar; 9511 int flags, alength; 9512 char *lladdr; 9513 ip_stack_t *ipst; 9514 ill_t *ill = ipif->ipif_ill; 9515 boolean_t if_arp_ioctl = B_FALSE; 9516 9517 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9518 connp = Q_TO_CONN(q); 9519 ipst = connp->conn_netstack->netstack_ip; 9520 9521 if (ipip->ipi_cmd_type == XARP_CMD) { 9522 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9523 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9524 ar = NULL; 9525 9526 flags = xar->xarp_flags; 9527 lladdr = LLADDR(&xar->xarp_ha); 9528 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9529 /* 9530 * Validate against user's link layer address length 9531 * input and name and addr length limits. 9532 */ 9533 alength = ill->ill_phys_addr_length; 9534 if (ipip->ipi_cmd == SIOCSXARP) { 9535 if (alength != xar->xarp_ha.sdl_alen || 9536 (alength + xar->xarp_ha.sdl_nlen > 9537 sizeof (xar->xarp_ha.sdl_data))) 9538 return (EINVAL); 9539 } 9540 } else { 9541 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9542 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9543 xar = NULL; 9544 9545 flags = ar->arp_flags; 9546 lladdr = ar->arp_ha.sa_data; 9547 /* 9548 * Theoretically, the sa_family could tell us what link 9549 * layer type this operation is trying to deal with. By 9550 * common usage AF_UNSPEC means ethernet. We'll assume 9551 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9552 * for now. Our new SIOC*XARP ioctls can be used more 9553 * generally. 9554 * 9555 * If the underlying media happens to have a non 6 byte 9556 * address, arp module will fail set/get, but the del 9557 * operation will succeed. 9558 */ 9559 alength = 6; 9560 if ((ipip->ipi_cmd != SIOCDARP) && 9561 (alength != ill->ill_phys_addr_length)) { 9562 return (EINVAL); 9563 } 9564 } 9565 9566 /* 9567 * We are going to pass up to ARP a packet chain that looks 9568 * like: 9569 * 9570 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9571 * 9572 * Get a copy of the original IOCTL mblk to head the chain, 9573 * to be sent up (in mp1). Also get another copy to store 9574 * in the ill_pending_mp list, for matching the response 9575 * when it comes back from ARP. 9576 */ 9577 mp1 = copyb(mp); 9578 pending_mp = copymsg(mp); 9579 if (mp1 == NULL || pending_mp == NULL) { 9580 if (mp1 != NULL) 9581 freeb(mp1); 9582 if (pending_mp != NULL) 9583 inet_freemsg(pending_mp); 9584 return (ENOMEM); 9585 } 9586 9587 ipaddr = sin->sin_addr.s_addr; 9588 9589 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9590 (caddr_t)&ipaddr); 9591 if (mp2 == NULL) { 9592 freeb(mp1); 9593 inet_freemsg(pending_mp); 9594 return (ENOMEM); 9595 } 9596 /* Put together the chain. */ 9597 mp1->b_cont = mp2; 9598 mp1->b_datap->db_type = M_IOCTL; 9599 mp2->b_cont = mp; 9600 mp2->b_datap->db_type = M_DATA; 9601 9602 iocp = (struct iocblk *)mp1->b_rptr; 9603 9604 /* 9605 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9606 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9607 * cp_private field (or cp_rval on 32-bit systems) in place of the 9608 * ioc_count field; set ioc_count to be correct. 9609 */ 9610 iocp->ioc_count = MBLKL(mp1->b_cont); 9611 9612 /* 9613 * Set the proper command in the ARP message. 9614 * Convert the SIOC{G|S|D}ARP calls into our 9615 * AR_ENTRY_xxx calls. 9616 */ 9617 area = (area_t *)mp2->b_rptr; 9618 switch (iocp->ioc_cmd) { 9619 case SIOCDARP: 9620 case SIOCDXARP: 9621 /* 9622 * We defer deleting the corresponding IRE until 9623 * we return from arp. 9624 */ 9625 area->area_cmd = AR_ENTRY_DELETE; 9626 area->area_proto_mask_offset = 0; 9627 break; 9628 case SIOCGARP: 9629 case SIOCGXARP: 9630 area->area_cmd = AR_ENTRY_SQUERY; 9631 area->area_proto_mask_offset = 0; 9632 break; 9633 case SIOCSARP: 9634 case SIOCSXARP: 9635 /* 9636 * Delete the corresponding ire to make sure IP will 9637 * pick up any change from arp. 9638 */ 9639 if (!if_arp_ioctl) { 9640 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9641 } else { 9642 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9643 if (ipif != NULL) { 9644 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9645 ipst); 9646 ipif_refrele(ipif); 9647 } 9648 } 9649 break; 9650 } 9651 iocp->ioc_cmd = area->area_cmd; 9652 9653 /* 9654 * Fill in the rest of the ARP operation fields. 9655 */ 9656 area->area_hw_addr_length = alength; 9657 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9658 9659 /* Translate the flags. */ 9660 if (flags & ATF_PERM) 9661 area->area_flags |= ACE_F_PERMANENT; 9662 if (flags & ATF_PUBL) 9663 area->area_flags |= ACE_F_PUBLISH; 9664 if (flags & ATF_AUTHORITY) 9665 area->area_flags |= ACE_F_AUTHORITY; 9666 9667 /* 9668 * Before sending 'mp' to ARP, we have to clear the b_next 9669 * and b_prev. Otherwise if STREAMS encounters such a message 9670 * in freemsg(), (because ARP can close any time) it can cause 9671 * a panic. But mi code needs the b_next and b_prev values of 9672 * mp->b_cont, to complete the ioctl. So we store it here 9673 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9674 * when the response comes down from ARP. 9675 */ 9676 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9677 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9678 mp->b_cont->b_next = NULL; 9679 mp->b_cont->b_prev = NULL; 9680 9681 mutex_enter(&connp->conn_lock); 9682 mutex_enter(&ill->ill_lock); 9683 /* conn has not yet started closing, hence this can't fail */ 9684 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9685 mutex_exit(&ill->ill_lock); 9686 mutex_exit(&connp->conn_lock); 9687 9688 /* 9689 * Up to ARP it goes. The response will come back in ip_wput() as an 9690 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9691 */ 9692 putnext(ill->ill_rq, mp1); 9693 return (EINPROGRESS); 9694 } 9695 9696 /* 9697 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9698 * the associated sin and refhold and return the associated ipif via `ci'. 9699 */ 9700 int 9701 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9702 cmd_info_t *ci, ipsq_func_t func) 9703 { 9704 mblk_t *mp1; 9705 int err; 9706 sin_t *sin; 9707 conn_t *connp; 9708 ipif_t *ipif; 9709 ire_t *ire = NULL; 9710 ill_t *ill = NULL; 9711 boolean_t exists; 9712 ip_stack_t *ipst; 9713 struct arpreq *ar; 9714 struct xarpreq *xar; 9715 struct sockaddr_dl *sdl; 9716 9717 /* ioctl comes down on a conn */ 9718 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9719 connp = Q_TO_CONN(q); 9720 if (connp->conn_af_isv6) 9721 return (ENXIO); 9722 9723 ipst = connp->conn_netstack->netstack_ip; 9724 9725 /* Verified in ip_wput_nondata */ 9726 mp1 = mp->b_cont->b_cont; 9727 9728 if (ipip->ipi_cmd_type == XARP_CMD) { 9729 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9730 xar = (struct xarpreq *)mp1->b_rptr; 9731 sin = (sin_t *)&xar->xarp_pa; 9732 sdl = &xar->xarp_ha; 9733 9734 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9735 return (ENXIO); 9736 if (sdl->sdl_nlen >= LIFNAMSIZ) 9737 return (EINVAL); 9738 } else { 9739 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9740 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9741 ar = (struct arpreq *)mp1->b_rptr; 9742 sin = (sin_t *)&ar->arp_pa; 9743 } 9744 9745 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9746 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9747 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9748 mp, func, &err, ipst); 9749 if (ipif == NULL) 9750 return (err); 9751 if (ipif->ipif_id != 0 || 9752 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9753 ipif_refrele(ipif); 9754 return (ENXIO); 9755 } 9756 } else { 9757 /* 9758 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9759 * 0: use the IP address to figure out the ill. In the IPMP 9760 * case, a simple forwarding table lookup will return the 9761 * IRE_IF_RESOLVER for the first interface in the group, which 9762 * might not be the interface on which the requested IP 9763 * address was resolved due to the ill selection algorithm 9764 * (see ip_newroute_get_dst_ill()). So we do a cache table 9765 * lookup first: if the IRE cache entry for the IP address is 9766 * still there, it will contain the ill pointer for the right 9767 * interface, so we use that. If the cache entry has been 9768 * flushed, we fall back to the forwarding table lookup. This 9769 * should be rare enough since IRE cache entries have a longer 9770 * life expectancy than ARP cache entries. 9771 */ 9772 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9773 ipst); 9774 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9775 ((ill = ire_to_ill(ire)) == NULL) || 9776 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9777 if (ire != NULL) 9778 ire_refrele(ire); 9779 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9780 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9781 NULL, MATCH_IRE_TYPE, ipst); 9782 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9783 9784 if (ire != NULL) 9785 ire_refrele(ire); 9786 return (ENXIO); 9787 } 9788 } 9789 ASSERT(ire != NULL && ill != NULL); 9790 ipif = ill->ill_ipif; 9791 ipif_refhold(ipif); 9792 ire_refrele(ire); 9793 } 9794 ci->ci_sin = sin; 9795 ci->ci_ipif = ipif; 9796 return (0); 9797 } 9798 9799 /* 9800 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9801 * atomically set/clear the muxids. Also complete the ioctl by acking or 9802 * naking it. Note that the code is structured such that the link type, 9803 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9804 * its clones use the persistent link, while pppd(1M) and perhaps many 9805 * other daemons may use non-persistent link. When combined with some 9806 * ill_t states, linking and unlinking lower streams may be used as 9807 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9808 */ 9809 /* ARGSUSED */ 9810 void 9811 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9812 { 9813 mblk_t *mp1, *mp2; 9814 struct linkblk *li; 9815 struct ipmx_s *ipmxp; 9816 ill_t *ill; 9817 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9818 int err = 0; 9819 boolean_t entered_ipsq = B_FALSE; 9820 boolean_t islink; 9821 ip_stack_t *ipst; 9822 9823 if (CONN_Q(q)) 9824 ipst = CONNQ_TO_IPST(q); 9825 else 9826 ipst = ILLQ_TO_IPST(q); 9827 9828 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9829 ioccmd == I_LINK || ioccmd == I_UNLINK); 9830 9831 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9832 9833 mp1 = mp->b_cont; /* This is the linkblk info */ 9834 li = (struct linkblk *)mp1->b_rptr; 9835 9836 /* 9837 * ARP has added this special mblk, and the utility is asking us 9838 * to perform consistency checks, and also atomically set the 9839 * muxid. Ifconfig is an example. It achieves this by using 9840 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9841 * to /dev/udp[6] stream for use as the mux when plinking the IP 9842 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9843 * and other comments in this routine for more details. 9844 */ 9845 mp2 = mp1->b_cont; /* This is added by ARP */ 9846 9847 /* 9848 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9849 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9850 * get the special mblk above. For backward compatibility, we 9851 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9852 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9853 * not atomic, and can leave the streams unplumbable if the utility 9854 * is interrupted before it does the SIOCSLIFMUXID. 9855 */ 9856 if (mp2 == NULL) { 9857 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9858 if (err == EINPROGRESS) 9859 return; 9860 goto done; 9861 } 9862 9863 /* 9864 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9865 * ARP has appended this last mblk to tell us whether the lower stream 9866 * is an arp-dev stream or an IP module stream. 9867 */ 9868 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9869 if (ipmxp->ipmx_arpdev_stream) { 9870 /* 9871 * The lower stream is the arp-dev stream. 9872 */ 9873 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9874 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9875 if (ill == NULL) { 9876 if (err == EINPROGRESS) 9877 return; 9878 err = EINVAL; 9879 goto done; 9880 } 9881 9882 if (ipsq == NULL) { 9883 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9884 NEW_OP, B_TRUE); 9885 if (ipsq == NULL) { 9886 ill_refrele(ill); 9887 return; 9888 } 9889 entered_ipsq = B_TRUE; 9890 } 9891 ASSERT(IAM_WRITER_ILL(ill)); 9892 ill_refrele(ill); 9893 9894 /* 9895 * To ensure consistency between IP and ARP, the following 9896 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9897 * This is because the muxid's are stored in the IP stream on 9898 * the ill. 9899 * 9900 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9901 * the ARP stream. On an arp-dev stream, IP checks that it is 9902 * not yet plinked, and it also checks that the corresponding 9903 * IP stream is already plinked. 9904 * 9905 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9906 * punlinking the IP stream. IP does not allow punlink of the 9907 * IP stream unless the arp stream has been punlinked. 9908 */ 9909 if ((islink && 9910 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9911 (!islink && ill->ill_arp_muxid != li->l_index)) { 9912 err = EINVAL; 9913 goto done; 9914 } 9915 ill->ill_arp_muxid = islink ? li->l_index : 0; 9916 } else { 9917 /* 9918 * The lower stream is probably an IP module stream. Do 9919 * consistency checking. 9920 */ 9921 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9922 if (err == EINPROGRESS) 9923 return; 9924 } 9925 done: 9926 if (err == 0) 9927 miocack(q, mp, 0, 0); 9928 else 9929 miocnak(q, mp, 0, err); 9930 9931 /* Conn was refheld in ip_sioctl_copyin_setup */ 9932 if (CONN_Q(q)) 9933 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9934 if (entered_ipsq) 9935 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9936 } 9937 9938 /* 9939 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9940 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9941 * module stream). If `doconsist' is set, then do the extended consistency 9942 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9943 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9944 * an error code on failure. 9945 */ 9946 static int 9947 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9948 struct linkblk *li, boolean_t doconsist) 9949 { 9950 ill_t *ill; 9951 queue_t *ipwq, *dwq; 9952 const char *name; 9953 struct qinit *qinfo; 9954 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9955 boolean_t entered_ipsq = B_FALSE; 9956 9957 /* 9958 * Walk the lower stream to verify it's the IP module stream. 9959 * The IP module is identified by its name, wput function, 9960 * and non-NULL q_next. STREAMS ensures that the lower stream 9961 * (li->l_qbot) will not vanish until this ioctl completes. 9962 */ 9963 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9964 qinfo = ipwq->q_qinfo; 9965 name = qinfo->qi_minfo->mi_idname; 9966 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9967 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9968 break; 9969 } 9970 } 9971 9972 /* 9973 * If this isn't an IP module stream, bail. 9974 */ 9975 if (ipwq == NULL) 9976 return (0); 9977 9978 ill = ipwq->q_ptr; 9979 ASSERT(ill != NULL); 9980 9981 if (ipsq == NULL) { 9982 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9983 NEW_OP, B_TRUE); 9984 if (ipsq == NULL) 9985 return (EINPROGRESS); 9986 entered_ipsq = B_TRUE; 9987 } 9988 ASSERT(IAM_WRITER_ILL(ill)); 9989 9990 if (doconsist) { 9991 /* 9992 * Consistency checking requires that I_{P}LINK occurs 9993 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9994 * occurs prior to clearing ill_arp_muxid. 9995 */ 9996 if ((islink && ill->ill_ip_muxid != 0) || 9997 (!islink && ill->ill_arp_muxid != 0)) { 9998 if (entered_ipsq) 9999 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10000 return (EINVAL); 10001 } 10002 } 10003 10004 /* 10005 * As part of I_{P}LINKing, stash the number of downstream modules and 10006 * the read queue of the module immediately below IP in the ill. 10007 * These are used during the capability negotiation below. 10008 */ 10009 ill->ill_lmod_rq = NULL; 10010 ill->ill_lmod_cnt = 0; 10011 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10012 ill->ill_lmod_rq = RD(dwq); 10013 for (; dwq != NULL; dwq = dwq->q_next) 10014 ill->ill_lmod_cnt++; 10015 } 10016 10017 if (doconsist) 10018 ill->ill_ip_muxid = islink ? li->l_index : 0; 10019 10020 /* 10021 * If there's at least one up ipif on this ill, then we're bound to 10022 * the underlying driver via DLPI. In that case, renegotiate 10023 * capabilities to account for any possible change in modules 10024 * interposed between IP and the driver. 10025 */ 10026 if (ill->ill_ipif_up_count > 0) { 10027 if (islink) 10028 ill_capability_probe(ill); 10029 else 10030 ill_capability_reset(ill); 10031 } 10032 10033 if (entered_ipsq) 10034 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10035 10036 return (0); 10037 } 10038 10039 /* 10040 * Search the ioctl command in the ioctl tables and return a pointer 10041 * to the ioctl command information. The ioctl command tables are 10042 * static and fully populated at compile time. 10043 */ 10044 ip_ioctl_cmd_t * 10045 ip_sioctl_lookup(int ioc_cmd) 10046 { 10047 int index; 10048 ip_ioctl_cmd_t *ipip; 10049 ip_ioctl_cmd_t *ipip_end; 10050 10051 if (ioc_cmd == IPI_DONTCARE) 10052 return (NULL); 10053 10054 /* 10055 * Do a 2 step search. First search the indexed table 10056 * based on the least significant byte of the ioctl cmd. 10057 * If we don't find a match, then search the misc table 10058 * serially. 10059 */ 10060 index = ioc_cmd & 0xFF; 10061 if (index < ip_ndx_ioctl_count) { 10062 ipip = &ip_ndx_ioctl_table[index]; 10063 if (ipip->ipi_cmd == ioc_cmd) { 10064 /* Found a match in the ndx table */ 10065 return (ipip); 10066 } 10067 } 10068 10069 /* Search the misc table */ 10070 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10071 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10072 if (ipip->ipi_cmd == ioc_cmd) 10073 /* Found a match in the misc table */ 10074 return (ipip); 10075 } 10076 10077 return (NULL); 10078 } 10079 10080 /* 10081 * Wrapper function for resuming deferred ioctl processing 10082 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10083 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10084 */ 10085 /* ARGSUSED */ 10086 void 10087 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10088 void *dummy_arg) 10089 { 10090 ip_sioctl_copyin_setup(q, mp); 10091 } 10092 10093 /* 10094 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10095 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10096 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10097 * We establish here the size of the block to be copied in. mi_copyin 10098 * arranges for this to happen, an processing continues in ip_wput with 10099 * an M_IOCDATA message. 10100 */ 10101 void 10102 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10103 { 10104 int copyin_size; 10105 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10106 ip_ioctl_cmd_t *ipip; 10107 cred_t *cr; 10108 ip_stack_t *ipst; 10109 10110 if (CONN_Q(q)) 10111 ipst = CONNQ_TO_IPST(q); 10112 else 10113 ipst = ILLQ_TO_IPST(q); 10114 10115 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10116 if (ipip == NULL) { 10117 /* 10118 * The ioctl is not one we understand or own. 10119 * Pass it along to be processed down stream, 10120 * if this is a module instance of IP, else nak 10121 * the ioctl. 10122 */ 10123 if (q->q_next == NULL) { 10124 goto nak; 10125 } else { 10126 putnext(q, mp); 10127 return; 10128 } 10129 } 10130 10131 /* 10132 * If this is deferred, then we will do all the checks when we 10133 * come back. 10134 */ 10135 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10136 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10137 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10138 return; 10139 } 10140 10141 /* 10142 * Only allow a very small subset of IP ioctls on this stream if 10143 * IP is a module and not a driver. Allowing ioctls to be processed 10144 * in this case may cause assert failures or data corruption. 10145 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10146 * ioctls allowed on an IP module stream, after which this stream 10147 * normally becomes a multiplexor (at which time the stream head 10148 * will fail all ioctls). 10149 */ 10150 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10151 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10152 /* 10153 * Pass common Streams ioctls which the IP 10154 * module does not own or consume along to 10155 * be processed down stream. 10156 */ 10157 putnext(q, mp); 10158 return; 10159 } else { 10160 goto nak; 10161 } 10162 } 10163 10164 /* Make sure we have ioctl data to process. */ 10165 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10166 goto nak; 10167 10168 /* 10169 * Prefer dblk credential over ioctl credential; some synthesized 10170 * ioctls have kcred set because there's no way to crhold() 10171 * a credential in some contexts. (ioc_cr is not crfree() by 10172 * the framework; the caller of ioctl needs to hold the reference 10173 * for the duration of the call). 10174 */ 10175 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10176 10177 /* Make sure normal users don't send down privileged ioctls */ 10178 if ((ipip->ipi_flags & IPI_PRIV) && 10179 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10180 /* We checked the privilege earlier but log it here */ 10181 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10182 return; 10183 } 10184 10185 /* 10186 * The ioctl command tables can only encode fixed length 10187 * ioctl data. If the length is variable, the table will 10188 * encode the length as zero. Such special cases are handled 10189 * below in the switch. 10190 */ 10191 if (ipip->ipi_copyin_size != 0) { 10192 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10193 return; 10194 } 10195 10196 switch (iocp->ioc_cmd) { 10197 case O_SIOCGIFCONF: 10198 case SIOCGIFCONF: 10199 /* 10200 * This IOCTL is hilarious. See comments in 10201 * ip_sioctl_get_ifconf for the story. 10202 */ 10203 if (iocp->ioc_count == TRANSPARENT) 10204 copyin_size = SIZEOF_STRUCT(ifconf, 10205 iocp->ioc_flag); 10206 else 10207 copyin_size = iocp->ioc_count; 10208 mi_copyin(q, mp, NULL, copyin_size); 10209 return; 10210 10211 case O_SIOCGLIFCONF: 10212 case SIOCGLIFCONF: 10213 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10214 mi_copyin(q, mp, NULL, copyin_size); 10215 return; 10216 10217 case SIOCGLIFSRCOF: 10218 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10219 mi_copyin(q, mp, NULL, copyin_size); 10220 return; 10221 case SIOCGIP6ADDRPOLICY: 10222 ip_sioctl_ip6addrpolicy(q, mp); 10223 ip6_asp_table_refrele(ipst); 10224 return; 10225 10226 case SIOCSIP6ADDRPOLICY: 10227 ip_sioctl_ip6addrpolicy(q, mp); 10228 return; 10229 10230 case SIOCGDSTINFO: 10231 ip_sioctl_dstinfo(q, mp); 10232 ip6_asp_table_refrele(ipst); 10233 return; 10234 10235 case I_PLINK: 10236 case I_PUNLINK: 10237 case I_LINK: 10238 case I_UNLINK: 10239 /* 10240 * We treat non-persistent link similarly as the persistent 10241 * link case, in terms of plumbing/unplumbing, as well as 10242 * dynamic re-plumbing events indicator. See comments 10243 * in ip_sioctl_plink() for more. 10244 * 10245 * Request can be enqueued in the 'ipsq' while waiting 10246 * to become exclusive. So bump up the conn ref. 10247 */ 10248 if (CONN_Q(q)) 10249 CONN_INC_REF(Q_TO_CONN(q)); 10250 ip_sioctl_plink(NULL, q, mp, NULL); 10251 return; 10252 10253 case ND_GET: 10254 case ND_SET: 10255 /* 10256 * Use of the nd table requires holding the reader lock. 10257 * Modifying the nd table thru nd_load/nd_unload requires 10258 * the writer lock. 10259 */ 10260 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10261 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10262 rw_exit(&ipst->ips_ip_g_nd_lock); 10263 10264 if (iocp->ioc_error) 10265 iocp->ioc_count = 0; 10266 mp->b_datap->db_type = M_IOCACK; 10267 qreply(q, mp); 10268 return; 10269 } 10270 rw_exit(&ipst->ips_ip_g_nd_lock); 10271 /* 10272 * We don't understand this subioctl of ND_GET / ND_SET. 10273 * Maybe intended for some driver / module below us 10274 */ 10275 if (q->q_next) { 10276 putnext(q, mp); 10277 } else { 10278 iocp->ioc_error = ENOENT; 10279 mp->b_datap->db_type = M_IOCNAK; 10280 iocp->ioc_count = 0; 10281 qreply(q, mp); 10282 } 10283 return; 10284 10285 case IP_IOCTL: 10286 ip_wput_ioctl(q, mp); 10287 return; 10288 default: 10289 cmn_err(CE_PANIC, "should not happen "); 10290 } 10291 nak: 10292 if (mp->b_cont != NULL) { 10293 freemsg(mp->b_cont); 10294 mp->b_cont = NULL; 10295 } 10296 iocp->ioc_error = EINVAL; 10297 mp->b_datap->db_type = M_IOCNAK; 10298 iocp->ioc_count = 0; 10299 qreply(q, mp); 10300 } 10301 10302 /* ip_wput hands off ARP IOCTL responses to us */ 10303 void 10304 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10305 { 10306 struct arpreq *ar; 10307 struct xarpreq *xar; 10308 area_t *area; 10309 mblk_t *area_mp; 10310 struct iocblk *iocp; 10311 mblk_t *orig_ioc_mp, *tmp; 10312 struct iocblk *orig_iocp; 10313 ill_t *ill; 10314 conn_t *connp = NULL; 10315 uint_t ioc_id; 10316 mblk_t *pending_mp; 10317 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10318 int *flagsp; 10319 char *storage = NULL; 10320 sin_t *sin; 10321 ipaddr_t addr; 10322 int err; 10323 ip_stack_t *ipst; 10324 10325 ill = q->q_ptr; 10326 ASSERT(ill != NULL); 10327 ipst = ill->ill_ipst; 10328 10329 /* 10330 * We should get back from ARP a packet chain that looks like: 10331 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10332 */ 10333 if (!(area_mp = mp->b_cont) || 10334 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10335 !(orig_ioc_mp = area_mp->b_cont) || 10336 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10337 freemsg(mp); 10338 return; 10339 } 10340 10341 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10342 10343 tmp = (orig_ioc_mp->b_cont)->b_cont; 10344 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10345 (orig_iocp->ioc_cmd == SIOCSXARP) || 10346 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10347 x_arp_ioctl = B_TRUE; 10348 xar = (struct xarpreq *)tmp->b_rptr; 10349 sin = (sin_t *)&xar->xarp_pa; 10350 flagsp = &xar->xarp_flags; 10351 storage = xar->xarp_ha.sdl_data; 10352 if (xar->xarp_ha.sdl_nlen != 0) 10353 ifx_arp_ioctl = B_TRUE; 10354 } else { 10355 ar = (struct arpreq *)tmp->b_rptr; 10356 sin = (sin_t *)&ar->arp_pa; 10357 flagsp = &ar->arp_flags; 10358 storage = ar->arp_ha.sa_data; 10359 } 10360 10361 iocp = (struct iocblk *)mp->b_rptr; 10362 10363 /* 10364 * Pick out the originating queue based on the ioc_id. 10365 */ 10366 ioc_id = iocp->ioc_id; 10367 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10368 if (pending_mp == NULL) { 10369 ASSERT(connp == NULL); 10370 inet_freemsg(mp); 10371 return; 10372 } 10373 ASSERT(connp != NULL); 10374 q = CONNP_TO_WQ(connp); 10375 10376 /* Uncouple the internally generated IOCTL from the original one */ 10377 area = (area_t *)area_mp->b_rptr; 10378 area_mp->b_cont = NULL; 10379 10380 /* 10381 * Restore the b_next and b_prev used by mi code. This is needed 10382 * to complete the ioctl using mi* functions. We stored them in 10383 * the pending mp prior to sending the request to ARP. 10384 */ 10385 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10386 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10387 inet_freemsg(pending_mp); 10388 10389 /* 10390 * We're done if there was an error or if this is not an SIOCG{X}ARP 10391 * Catch the case where there is an IRE_CACHE by no entry in the 10392 * arp table. 10393 */ 10394 addr = sin->sin_addr.s_addr; 10395 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10396 ire_t *ire; 10397 dl_unitdata_req_t *dlup; 10398 mblk_t *llmp; 10399 int addr_len; 10400 ill_t *ipsqill = NULL; 10401 10402 if (ifx_arp_ioctl) { 10403 /* 10404 * There's no need to lookup the ill, since 10405 * we've already done that when we started 10406 * processing the ioctl and sent the message 10407 * to ARP on that ill. So use the ill that 10408 * is stored in q->q_ptr. 10409 */ 10410 ipsqill = ill; 10411 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10412 ipsqill->ill_ipif, ALL_ZONES, 10413 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10414 } else { 10415 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10416 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10417 if (ire != NULL) 10418 ipsqill = ire_to_ill(ire); 10419 } 10420 10421 if ((x_arp_ioctl) && (ipsqill != NULL)) 10422 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10423 10424 if (ire != NULL) { 10425 /* 10426 * Since the ire obtained from cachetable is used for 10427 * mac addr copying below, treat an incomplete ire as if 10428 * as if we never found it. 10429 */ 10430 if (ire->ire_nce != NULL && 10431 ire->ire_nce->nce_state != ND_REACHABLE) { 10432 ire_refrele(ire); 10433 ire = NULL; 10434 ipsqill = NULL; 10435 goto errack; 10436 } 10437 *flagsp = ATF_INUSE; 10438 llmp = (ire->ire_nce != NULL ? 10439 ire->ire_nce->nce_res_mp : NULL); 10440 if (llmp != NULL && ipsqill != NULL) { 10441 uchar_t *macaddr; 10442 10443 addr_len = ipsqill->ill_phys_addr_length; 10444 if (x_arp_ioctl && ((addr_len + 10445 ipsqill->ill_name_length) > 10446 sizeof (xar->xarp_ha.sdl_data))) { 10447 ire_refrele(ire); 10448 freemsg(mp); 10449 ip_ioctl_finish(q, orig_ioc_mp, 10450 EINVAL, NO_COPYOUT, NULL); 10451 return; 10452 } 10453 *flagsp |= ATF_COM; 10454 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10455 if (ipsqill->ill_sap_length < 0) 10456 macaddr = llmp->b_rptr + 10457 dlup->dl_dest_addr_offset; 10458 else 10459 macaddr = llmp->b_rptr + 10460 dlup->dl_dest_addr_offset + 10461 ipsqill->ill_sap_length; 10462 /* 10463 * For SIOCGARP, MAC address length 10464 * validation has already been done 10465 * before the ioctl was issued to ARP to 10466 * allow it to progress only on 6 byte 10467 * addressable (ethernet like) media. Thus 10468 * the mac address copying can not overwrite 10469 * the sa_data area below. 10470 */ 10471 bcopy(macaddr, storage, addr_len); 10472 } 10473 /* Ditch the internal IOCTL. */ 10474 freemsg(mp); 10475 ire_refrele(ire); 10476 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10477 return; 10478 } 10479 } 10480 10481 /* 10482 * Delete the coresponding IRE_CACHE if any. 10483 * Reset the error if there was one (in case there was no entry 10484 * in arp.) 10485 */ 10486 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10487 ipif_t *ipintf = NULL; 10488 10489 if (ifx_arp_ioctl) { 10490 /* 10491 * There's no need to lookup the ill, since 10492 * we've already done that when we started 10493 * processing the ioctl and sent the message 10494 * to ARP on that ill. So use the ill that 10495 * is stored in q->q_ptr. 10496 */ 10497 ipintf = ill->ill_ipif; 10498 } 10499 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10500 /* 10501 * The address in "addr" may be an entry for a 10502 * router. If that's true, then any off-net 10503 * IRE_CACHE entries that go through the router 10504 * with address "addr" must be clobbered. Use 10505 * ire_walk to achieve this goal. 10506 */ 10507 if (ifx_arp_ioctl) 10508 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10509 ire_delete_cache_gw, (char *)&addr, ill); 10510 else 10511 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10512 ALL_ZONES, ipst); 10513 iocp->ioc_error = 0; 10514 } 10515 } 10516 errack: 10517 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10518 err = iocp->ioc_error; 10519 freemsg(mp); 10520 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10521 return; 10522 } 10523 10524 /* 10525 * Completion of an SIOCG{X}ARP. Translate the information from 10526 * the area_t into the struct {x}arpreq. 10527 */ 10528 if (x_arp_ioctl) { 10529 storage += ill_xarp_info(&xar->xarp_ha, ill); 10530 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10531 sizeof (xar->xarp_ha.sdl_data)) { 10532 freemsg(mp); 10533 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10534 NULL); 10535 return; 10536 } 10537 } 10538 *flagsp = ATF_INUSE; 10539 if (area->area_flags & ACE_F_PERMANENT) 10540 *flagsp |= ATF_PERM; 10541 if (area->area_flags & ACE_F_PUBLISH) 10542 *flagsp |= ATF_PUBL; 10543 if (area->area_flags & ACE_F_AUTHORITY) 10544 *flagsp |= ATF_AUTHORITY; 10545 if (area->area_hw_addr_length != 0) { 10546 *flagsp |= ATF_COM; 10547 /* 10548 * For SIOCGARP, MAC address length validation has 10549 * already been done before the ioctl was issued to ARP 10550 * to allow it to progress only on 6 byte addressable 10551 * (ethernet like) media. Thus the mac address copying 10552 * can not overwrite the sa_data area below. 10553 */ 10554 bcopy((char *)area + area->area_hw_addr_offset, 10555 storage, area->area_hw_addr_length); 10556 } 10557 10558 /* Ditch the internal IOCTL. */ 10559 freemsg(mp); 10560 /* Complete the original. */ 10561 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10562 } 10563 10564 /* 10565 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10566 * interface) create the next available logical interface for this 10567 * physical interface. 10568 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10569 * ipif with the specified name. 10570 * 10571 * If the address family is not AF_UNSPEC then set the address as well. 10572 * 10573 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10574 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10575 * 10576 * Executed as a writer on the ill or ill group. 10577 * So no lock is needed to traverse the ipif chain, or examine the 10578 * phyint flags. 10579 */ 10580 /* ARGSUSED */ 10581 int 10582 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10583 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10584 { 10585 mblk_t *mp1; 10586 struct lifreq *lifr; 10587 boolean_t isv6; 10588 boolean_t exists; 10589 char *name; 10590 char *endp; 10591 char *cp; 10592 int namelen; 10593 ipif_t *ipif; 10594 long id; 10595 ipsq_t *ipsq; 10596 ill_t *ill; 10597 sin_t *sin; 10598 int err = 0; 10599 boolean_t found_sep = B_FALSE; 10600 conn_t *connp; 10601 zoneid_t zoneid; 10602 int orig_ifindex = 0; 10603 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10604 10605 ASSERT(q->q_next == NULL); 10606 ip1dbg(("ip_sioctl_addif\n")); 10607 /* Existence of mp1 has been checked in ip_wput_nondata */ 10608 mp1 = mp->b_cont->b_cont; 10609 /* 10610 * Null terminate the string to protect against buffer 10611 * overrun. String was generated by user code and may not 10612 * be trusted. 10613 */ 10614 lifr = (struct lifreq *)mp1->b_rptr; 10615 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10616 name = lifr->lifr_name; 10617 ASSERT(CONN_Q(q)); 10618 connp = Q_TO_CONN(q); 10619 isv6 = connp->conn_af_isv6; 10620 zoneid = connp->conn_zoneid; 10621 namelen = mi_strlen(name); 10622 if (namelen == 0) 10623 return (EINVAL); 10624 10625 exists = B_FALSE; 10626 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10627 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10628 /* 10629 * Allow creating lo0 using SIOCLIFADDIF. 10630 * can't be any other writer thread. So can pass null below 10631 * for the last 4 args to ipif_lookup_name. 10632 */ 10633 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10634 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10635 /* Prevent any further action */ 10636 if (ipif == NULL) { 10637 return (ENOBUFS); 10638 } else if (!exists) { 10639 /* We created the ipif now and as writer */ 10640 ipif_refrele(ipif); 10641 return (0); 10642 } else { 10643 ill = ipif->ipif_ill; 10644 ill_refhold(ill); 10645 ipif_refrele(ipif); 10646 } 10647 } else { 10648 /* Look for a colon in the name. */ 10649 endp = &name[namelen]; 10650 for (cp = endp; --cp > name; ) { 10651 if (*cp == IPIF_SEPARATOR_CHAR) { 10652 found_sep = B_TRUE; 10653 /* 10654 * Reject any non-decimal aliases for plumbing 10655 * of logical interfaces. Aliases with leading 10656 * zeroes are also rejected as they introduce 10657 * ambiguity in the naming of the interfaces. 10658 * Comparing with "0" takes care of all such 10659 * cases. 10660 */ 10661 if ((strncmp("0", cp+1, 1)) == 0) 10662 return (EINVAL); 10663 10664 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10665 id <= 0 || *endp != '\0') { 10666 return (EINVAL); 10667 } 10668 *cp = '\0'; 10669 break; 10670 } 10671 } 10672 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10673 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10674 if (found_sep) 10675 *cp = IPIF_SEPARATOR_CHAR; 10676 if (ill == NULL) 10677 return (err); 10678 } 10679 10680 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10681 B_TRUE); 10682 10683 /* 10684 * Release the refhold due to the lookup, now that we are excl 10685 * or we are just returning 10686 */ 10687 ill_refrele(ill); 10688 10689 if (ipsq == NULL) 10690 return (EINPROGRESS); 10691 10692 /* 10693 * If the interface is failed, inactive or offlined, look for a working 10694 * interface in the ill group and create the ipif there. If we can't 10695 * find a good interface, create the ipif anyway so that in.mpathd can 10696 * move it to the first repaired interface. 10697 */ 10698 if ((ill->ill_phyint->phyint_flags & 10699 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10700 ill->ill_phyint->phyint_groupname_len != 0) { 10701 phyint_t *phyi; 10702 char *groupname = ill->ill_phyint->phyint_groupname; 10703 10704 /* 10705 * We're looking for a working interface, but it doesn't matter 10706 * if it's up or down; so instead of following the group lists, 10707 * we look at each physical interface and compare the groupname. 10708 * We're only interested in interfaces with IPv4 (resp. IPv6) 10709 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10710 * Otherwise we create the ipif on the failed interface. 10711 */ 10712 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10713 phyi = avl_first(&ipst->ips_phyint_g_list-> 10714 phyint_list_avl_by_index); 10715 for (; phyi != NULL; 10716 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10717 phyint_list_avl_by_index, 10718 phyi, AVL_AFTER)) { 10719 if (phyi->phyint_groupname_len == 0) 10720 continue; 10721 ASSERT(phyi->phyint_groupname != NULL); 10722 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10723 !(phyi->phyint_flags & 10724 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10725 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10726 (phyi->phyint_illv4 != NULL))) { 10727 break; 10728 } 10729 } 10730 rw_exit(&ipst->ips_ill_g_lock); 10731 10732 if (phyi != NULL) { 10733 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10734 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10735 phyi->phyint_illv4); 10736 } 10737 } 10738 10739 /* 10740 * We are now exclusive on the ipsq, so an ill move will be serialized 10741 * before or after us. 10742 */ 10743 ASSERT(IAM_WRITER_ILL(ill)); 10744 ASSERT(ill->ill_move_in_progress == B_FALSE); 10745 10746 if (found_sep && orig_ifindex == 0) { 10747 /* Now see if there is an IPIF with this unit number. */ 10748 for (ipif = ill->ill_ipif; ipif != NULL; 10749 ipif = ipif->ipif_next) { 10750 if (ipif->ipif_id == id) { 10751 err = EEXIST; 10752 goto done; 10753 } 10754 } 10755 } 10756 10757 /* 10758 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10759 * of lo0. We never come here when we plumb lo0:0. It 10760 * happens in ipif_lookup_on_name. 10761 * The specified unit number is ignored when we create the ipif on a 10762 * different interface. However, we save it in ipif_orig_ipifid below so 10763 * that the ipif fails back to the right position. 10764 */ 10765 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10766 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10767 err = ENOBUFS; 10768 goto done; 10769 } 10770 10771 /* Return created name with ioctl */ 10772 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10773 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10774 ip1dbg(("created %s\n", lifr->lifr_name)); 10775 10776 /* Set address */ 10777 sin = (sin_t *)&lifr->lifr_addr; 10778 if (sin->sin_family != AF_UNSPEC) { 10779 err = ip_sioctl_addr(ipif, sin, q, mp, 10780 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10781 } 10782 10783 /* Set ifindex and unit number for failback */ 10784 if (err == 0 && orig_ifindex != 0) { 10785 ipif->ipif_orig_ifindex = orig_ifindex; 10786 if (found_sep) { 10787 ipif->ipif_orig_ipifid = id; 10788 } 10789 } 10790 10791 done: 10792 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10793 return (err); 10794 } 10795 10796 /* 10797 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10798 * interface) delete it based on the IP address (on this physical interface). 10799 * Otherwise delete it based on the ipif_id. 10800 * Also, special handling to allow a removeif of lo0. 10801 */ 10802 /* ARGSUSED */ 10803 int 10804 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10805 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10806 { 10807 conn_t *connp; 10808 ill_t *ill = ipif->ipif_ill; 10809 boolean_t success; 10810 ip_stack_t *ipst; 10811 10812 ipst = CONNQ_TO_IPST(q); 10813 10814 ASSERT(q->q_next == NULL); 10815 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10816 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10817 ASSERT(IAM_WRITER_IPIF(ipif)); 10818 10819 connp = Q_TO_CONN(q); 10820 /* 10821 * Special case for unplumbing lo0 (the loopback physical interface). 10822 * If unplumbing lo0, the incoming address structure has been 10823 * initialized to all zeros. When unplumbing lo0, all its logical 10824 * interfaces must be removed too. 10825 * 10826 * Note that this interface may be called to remove a specific 10827 * loopback logical interface (eg, lo0:1). But in that case 10828 * ipif->ipif_id != 0 so that the code path for that case is the 10829 * same as any other interface (meaning it skips the code directly 10830 * below). 10831 */ 10832 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10833 if (sin->sin_family == AF_UNSPEC && 10834 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10835 /* 10836 * Mark it condemned. No new ref. will be made to ill. 10837 */ 10838 mutex_enter(&ill->ill_lock); 10839 ill->ill_state_flags |= ILL_CONDEMNED; 10840 for (ipif = ill->ill_ipif; ipif != NULL; 10841 ipif = ipif->ipif_next) { 10842 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10843 } 10844 mutex_exit(&ill->ill_lock); 10845 10846 ipif = ill->ill_ipif; 10847 /* unplumb the loopback interface */ 10848 ill_delete(ill); 10849 mutex_enter(&connp->conn_lock); 10850 mutex_enter(&ill->ill_lock); 10851 ASSERT(ill->ill_group == NULL); 10852 10853 /* Are any references to this ill active */ 10854 if (ill_is_freeable(ill)) { 10855 mutex_exit(&ill->ill_lock); 10856 mutex_exit(&connp->conn_lock); 10857 ill_delete_tail(ill); 10858 mutex_enter(&ill->ill_lock); 10859 ill_nic_info_dispatch(ill); 10860 mutex_exit(&ill->ill_lock); 10861 mi_free(ill); 10862 return (0); 10863 } 10864 success = ipsq_pending_mp_add(connp, ipif, 10865 CONNP_TO_WQ(connp), mp, ILL_FREE); 10866 mutex_exit(&connp->conn_lock); 10867 mutex_exit(&ill->ill_lock); 10868 if (success) 10869 return (EINPROGRESS); 10870 else 10871 return (EINTR); 10872 } 10873 } 10874 10875 /* 10876 * We are exclusive on the ipsq, so an ill move will be serialized 10877 * before or after us. 10878 */ 10879 ASSERT(ill->ill_move_in_progress == B_FALSE); 10880 10881 if (ipif->ipif_id == 0) { 10882 10883 ipsq_t *ipsq; 10884 10885 /* Find based on address */ 10886 if (ipif->ipif_isv6) { 10887 sin6_t *sin6; 10888 10889 if (sin->sin_family != AF_INET6) 10890 return (EAFNOSUPPORT); 10891 10892 sin6 = (sin6_t *)sin; 10893 /* We are a writer, so we should be able to lookup */ 10894 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10895 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10896 if (ipif == NULL) { 10897 /* 10898 * Maybe the address in on another interface in 10899 * the same IPMP group? We check this below. 10900 */ 10901 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10902 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10903 ipst); 10904 } 10905 } else { 10906 ipaddr_t addr; 10907 10908 if (sin->sin_family != AF_INET) 10909 return (EAFNOSUPPORT); 10910 10911 addr = sin->sin_addr.s_addr; 10912 /* We are a writer, so we should be able to lookup */ 10913 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10914 NULL, NULL, NULL, ipst); 10915 if (ipif == NULL) { 10916 /* 10917 * Maybe the address in on another interface in 10918 * the same IPMP group? We check this below. 10919 */ 10920 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10921 NULL, NULL, NULL, NULL, ipst); 10922 } 10923 } 10924 if (ipif == NULL) { 10925 return (EADDRNOTAVAIL); 10926 } 10927 10928 /* 10929 * It is possible for a user to send an SIOCLIFREMOVEIF with 10930 * lifr_name of the physical interface but with an ip address 10931 * lifr_addr of a logical interface plumbed over it. 10932 * So update ipsq_current_ipif once ipif points to the 10933 * correct interface after doing ipif_lookup_addr(). 10934 */ 10935 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10936 ASSERT(ipsq != NULL); 10937 10938 mutex_enter(&ipsq->ipsq_lock); 10939 ipsq->ipsq_current_ipif = ipif; 10940 mutex_exit(&ipsq->ipsq_lock); 10941 10942 /* 10943 * When the address to be removed is hosted on a different 10944 * interface, we check if the interface is in the same IPMP 10945 * group as the specified one; if so we proceed with the 10946 * removal. 10947 * ill->ill_group is NULL when the ill is down, so we have to 10948 * compare the group names instead. 10949 */ 10950 if (ipif->ipif_ill != ill && 10951 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10952 ill->ill_phyint->phyint_groupname_len == 0 || 10953 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10954 ill->ill_phyint->phyint_groupname) != 0)) { 10955 ipif_refrele(ipif); 10956 return (EADDRNOTAVAIL); 10957 } 10958 10959 /* This is a writer */ 10960 ipif_refrele(ipif); 10961 } 10962 10963 /* 10964 * Can not delete instance zero since it is tied to the ill. 10965 */ 10966 if (ipif->ipif_id == 0) 10967 return (EBUSY); 10968 10969 mutex_enter(&ill->ill_lock); 10970 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10971 mutex_exit(&ill->ill_lock); 10972 10973 ipif_free(ipif); 10974 10975 mutex_enter(&connp->conn_lock); 10976 mutex_enter(&ill->ill_lock); 10977 10978 10979 /* Are any references to this ipif active */ 10980 if (ipif_is_freeable(ipif)) { 10981 mutex_exit(&ill->ill_lock); 10982 mutex_exit(&connp->conn_lock); 10983 ipif_non_duplicate(ipif); 10984 ipif_down_tail(ipif); 10985 ipif_free_tail(ipif); /* frees ipif */ 10986 return (0); 10987 } 10988 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10989 IPIF_FREE); 10990 mutex_exit(&ill->ill_lock); 10991 mutex_exit(&connp->conn_lock); 10992 if (success) 10993 return (EINPROGRESS); 10994 else 10995 return (EINTR); 10996 } 10997 10998 /* 10999 * Restart the removeif ioctl. The refcnt has gone down to 0. 11000 * The ipif is already condemned. So can't find it thru lookups. 11001 */ 11002 /* ARGSUSED */ 11003 int 11004 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11005 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11006 { 11007 ill_t *ill = ipif->ipif_ill; 11008 11009 ASSERT(IAM_WRITER_IPIF(ipif)); 11010 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11011 11012 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11013 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11014 11015 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11016 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11017 ill_delete_tail(ill); 11018 mutex_enter(&ill->ill_lock); 11019 ill_nic_info_dispatch(ill); 11020 mutex_exit(&ill->ill_lock); 11021 mi_free(ill); 11022 return (0); 11023 } 11024 11025 ipif_non_duplicate(ipif); 11026 ipif_down_tail(ipif); 11027 ipif_free_tail(ipif); 11028 11029 ILL_UNMARK_CHANGING(ill); 11030 return (0); 11031 } 11032 11033 /* 11034 * Set the local interface address. 11035 * Allow an address of all zero when the interface is down. 11036 */ 11037 /* ARGSUSED */ 11038 int 11039 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11040 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11041 { 11042 int err = 0; 11043 in6_addr_t v6addr; 11044 boolean_t need_up = B_FALSE; 11045 11046 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11047 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11048 11049 ASSERT(IAM_WRITER_IPIF(ipif)); 11050 11051 if (ipif->ipif_isv6) { 11052 sin6_t *sin6; 11053 ill_t *ill; 11054 phyint_t *phyi; 11055 11056 if (sin->sin_family != AF_INET6) 11057 return (EAFNOSUPPORT); 11058 11059 sin6 = (sin6_t *)sin; 11060 v6addr = sin6->sin6_addr; 11061 ill = ipif->ipif_ill; 11062 phyi = ill->ill_phyint; 11063 11064 /* 11065 * Enforce that true multicast interfaces have a link-local 11066 * address for logical unit 0. 11067 */ 11068 if (ipif->ipif_id == 0 && 11069 (ill->ill_flags & ILLF_MULTICAST) && 11070 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11071 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11072 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11073 return (EADDRNOTAVAIL); 11074 } 11075 11076 /* 11077 * up interfaces shouldn't have the unspecified address 11078 * unless they also have the IPIF_NOLOCAL flags set and 11079 * have a subnet assigned. 11080 */ 11081 if ((ipif->ipif_flags & IPIF_UP) && 11082 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11083 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11084 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11085 return (EADDRNOTAVAIL); 11086 } 11087 11088 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11089 return (EADDRNOTAVAIL); 11090 } else { 11091 ipaddr_t addr; 11092 11093 if (sin->sin_family != AF_INET) 11094 return (EAFNOSUPPORT); 11095 11096 addr = sin->sin_addr.s_addr; 11097 11098 /* Allow 0 as the local address. */ 11099 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11100 return (EADDRNOTAVAIL); 11101 11102 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11103 } 11104 11105 11106 /* 11107 * Even if there is no change we redo things just to rerun 11108 * ipif_set_default. 11109 */ 11110 if (ipif->ipif_flags & IPIF_UP) { 11111 /* 11112 * Setting a new local address, make sure 11113 * we have net and subnet bcast ire's for 11114 * the old address if we need them. 11115 */ 11116 if (!ipif->ipif_isv6) 11117 ipif_check_bcast_ires(ipif); 11118 /* 11119 * If the interface is already marked up, 11120 * we call ipif_down which will take care 11121 * of ditching any IREs that have been set 11122 * up based on the old interface address. 11123 */ 11124 err = ipif_logical_down(ipif, q, mp); 11125 if (err == EINPROGRESS) 11126 return (err); 11127 ipif_down_tail(ipif); 11128 need_up = 1; 11129 } 11130 11131 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11132 return (err); 11133 } 11134 11135 int 11136 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11137 boolean_t need_up) 11138 { 11139 in6_addr_t v6addr; 11140 in6_addr_t ov6addr; 11141 ipaddr_t addr; 11142 sin6_t *sin6; 11143 int sinlen; 11144 int err = 0; 11145 ill_t *ill = ipif->ipif_ill; 11146 boolean_t need_dl_down; 11147 boolean_t need_arp_down; 11148 struct iocblk *iocp; 11149 11150 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11151 11152 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11153 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11154 ASSERT(IAM_WRITER_IPIF(ipif)); 11155 11156 /* Must cancel any pending timer before taking the ill_lock */ 11157 if (ipif->ipif_recovery_id != 0) 11158 (void) untimeout(ipif->ipif_recovery_id); 11159 ipif->ipif_recovery_id = 0; 11160 11161 if (ipif->ipif_isv6) { 11162 sin6 = (sin6_t *)sin; 11163 v6addr = sin6->sin6_addr; 11164 sinlen = sizeof (struct sockaddr_in6); 11165 } else { 11166 addr = sin->sin_addr.s_addr; 11167 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11168 sinlen = sizeof (struct sockaddr_in); 11169 } 11170 mutex_enter(&ill->ill_lock); 11171 ov6addr = ipif->ipif_v6lcl_addr; 11172 ipif->ipif_v6lcl_addr = v6addr; 11173 sctp_update_ipif_addr(ipif, ov6addr); 11174 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11175 ipif->ipif_v6src_addr = ipv6_all_zeros; 11176 } else { 11177 ipif->ipif_v6src_addr = v6addr; 11178 } 11179 ipif->ipif_addr_ready = 0; 11180 11181 /* 11182 * If the interface was previously marked as a duplicate, then since 11183 * we've now got a "new" address, it should no longer be considered a 11184 * duplicate -- even if the "new" address is the same as the old one. 11185 * Note that if all ipifs are down, we may have a pending ARP down 11186 * event to handle. This is because we want to recover from duplicates 11187 * and thus delay tearing down ARP until the duplicates have been 11188 * removed or disabled. 11189 */ 11190 need_dl_down = need_arp_down = B_FALSE; 11191 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11192 need_arp_down = !need_up; 11193 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11194 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11195 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11196 need_dl_down = B_TRUE; 11197 } 11198 } 11199 11200 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11201 !ill->ill_is_6to4tun) { 11202 queue_t *wqp = ill->ill_wq; 11203 11204 /* 11205 * The local address of this interface is a 6to4 address, 11206 * check if this interface is in fact a 6to4 tunnel or just 11207 * an interface configured with a 6to4 address. We are only 11208 * interested in the former. 11209 */ 11210 if (wqp != NULL) { 11211 while ((wqp->q_next != NULL) && 11212 (wqp->q_next->q_qinfo != NULL) && 11213 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11214 11215 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11216 == TUN6TO4_MODID) { 11217 /* set for use in IP */ 11218 ill->ill_is_6to4tun = 1; 11219 break; 11220 } 11221 wqp = wqp->q_next; 11222 } 11223 } 11224 } 11225 11226 ipif_set_default(ipif); 11227 11228 /* 11229 * When publishing an interface address change event, we only notify 11230 * the event listeners of the new address. It is assumed that if they 11231 * actively care about the addresses assigned that they will have 11232 * already discovered the previous address assigned (if there was one.) 11233 * 11234 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11235 */ 11236 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11237 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11238 NE_ADDRESS_CHANGE, sin, sinlen); 11239 } 11240 11241 mutex_exit(&ill->ill_lock); 11242 11243 if (need_up) { 11244 /* 11245 * Now bring the interface back up. If this 11246 * is the only IPIF for the ILL, ipif_up 11247 * will have to re-bind to the device, so 11248 * we may get back EINPROGRESS, in which 11249 * case, this IOCTL will get completed in 11250 * ip_rput_dlpi when we see the DL_BIND_ACK. 11251 */ 11252 err = ipif_up(ipif, q, mp); 11253 } 11254 11255 if (need_dl_down) 11256 ill_dl_down(ill); 11257 if (need_arp_down) 11258 ipif_arp_down(ipif); 11259 11260 return (err); 11261 } 11262 11263 11264 /* 11265 * Restart entry point to restart the address set operation after the 11266 * refcounts have dropped to zero. 11267 */ 11268 /* ARGSUSED */ 11269 int 11270 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11271 ip_ioctl_cmd_t *ipip, void *ifreq) 11272 { 11273 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11274 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11275 ASSERT(IAM_WRITER_IPIF(ipif)); 11276 ipif_down_tail(ipif); 11277 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11278 } 11279 11280 /* ARGSUSED */ 11281 int 11282 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11283 ip_ioctl_cmd_t *ipip, void *if_req) 11284 { 11285 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11286 struct lifreq *lifr = (struct lifreq *)if_req; 11287 11288 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11289 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11290 /* 11291 * The net mask and address can't change since we have a 11292 * reference to the ipif. So no lock is necessary. 11293 */ 11294 if (ipif->ipif_isv6) { 11295 *sin6 = sin6_null; 11296 sin6->sin6_family = AF_INET6; 11297 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11298 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11299 lifr->lifr_addrlen = 11300 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11301 } else { 11302 *sin = sin_null; 11303 sin->sin_family = AF_INET; 11304 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11305 if (ipip->ipi_cmd_type == LIF_CMD) { 11306 lifr->lifr_addrlen = 11307 ip_mask_to_plen(ipif->ipif_net_mask); 11308 } 11309 } 11310 return (0); 11311 } 11312 11313 /* 11314 * Set the destination address for a pt-pt interface. 11315 */ 11316 /* ARGSUSED */ 11317 int 11318 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11319 ip_ioctl_cmd_t *ipip, void *if_req) 11320 { 11321 int err = 0; 11322 in6_addr_t v6addr; 11323 boolean_t need_up = B_FALSE; 11324 11325 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11326 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11327 ASSERT(IAM_WRITER_IPIF(ipif)); 11328 11329 if (ipif->ipif_isv6) { 11330 sin6_t *sin6; 11331 11332 if (sin->sin_family != AF_INET6) 11333 return (EAFNOSUPPORT); 11334 11335 sin6 = (sin6_t *)sin; 11336 v6addr = sin6->sin6_addr; 11337 11338 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11339 return (EADDRNOTAVAIL); 11340 } else { 11341 ipaddr_t addr; 11342 11343 if (sin->sin_family != AF_INET) 11344 return (EAFNOSUPPORT); 11345 11346 addr = sin->sin_addr.s_addr; 11347 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11348 return (EADDRNOTAVAIL); 11349 11350 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11351 } 11352 11353 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11354 return (0); /* No change */ 11355 11356 if (ipif->ipif_flags & IPIF_UP) { 11357 /* 11358 * If the interface is already marked up, 11359 * we call ipif_down which will take care 11360 * of ditching any IREs that have been set 11361 * up based on the old pp dst address. 11362 */ 11363 err = ipif_logical_down(ipif, q, mp); 11364 if (err == EINPROGRESS) 11365 return (err); 11366 ipif_down_tail(ipif); 11367 need_up = B_TRUE; 11368 } 11369 /* 11370 * could return EINPROGRESS. If so ioctl will complete in 11371 * ip_rput_dlpi_writer 11372 */ 11373 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11374 return (err); 11375 } 11376 11377 static int 11378 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11379 boolean_t need_up) 11380 { 11381 in6_addr_t v6addr; 11382 ill_t *ill = ipif->ipif_ill; 11383 int err = 0; 11384 boolean_t need_dl_down; 11385 boolean_t need_arp_down; 11386 11387 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11388 ipif->ipif_id, (void *)ipif)); 11389 11390 /* Must cancel any pending timer before taking the ill_lock */ 11391 if (ipif->ipif_recovery_id != 0) 11392 (void) untimeout(ipif->ipif_recovery_id); 11393 ipif->ipif_recovery_id = 0; 11394 11395 if (ipif->ipif_isv6) { 11396 sin6_t *sin6; 11397 11398 sin6 = (sin6_t *)sin; 11399 v6addr = sin6->sin6_addr; 11400 } else { 11401 ipaddr_t addr; 11402 11403 addr = sin->sin_addr.s_addr; 11404 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11405 } 11406 mutex_enter(&ill->ill_lock); 11407 /* Set point to point destination address. */ 11408 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11409 /* 11410 * Allow this as a means of creating logical 11411 * pt-pt interfaces on top of e.g. an Ethernet. 11412 * XXX Undocumented HACK for testing. 11413 * pt-pt interfaces are created with NUD disabled. 11414 */ 11415 ipif->ipif_flags |= IPIF_POINTOPOINT; 11416 ipif->ipif_flags &= ~IPIF_BROADCAST; 11417 if (ipif->ipif_isv6) 11418 ill->ill_flags |= ILLF_NONUD; 11419 } 11420 11421 /* 11422 * If the interface was previously marked as a duplicate, then since 11423 * we've now got a "new" address, it should no longer be considered a 11424 * duplicate -- even if the "new" address is the same as the old one. 11425 * Note that if all ipifs are down, we may have a pending ARP down 11426 * event to handle. 11427 */ 11428 need_dl_down = need_arp_down = B_FALSE; 11429 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11430 need_arp_down = !need_up; 11431 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11432 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11433 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11434 need_dl_down = B_TRUE; 11435 } 11436 } 11437 11438 /* Set the new address. */ 11439 ipif->ipif_v6pp_dst_addr = v6addr; 11440 /* Make sure subnet tracks pp_dst */ 11441 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11442 mutex_exit(&ill->ill_lock); 11443 11444 if (need_up) { 11445 /* 11446 * Now bring the interface back up. If this 11447 * is the only IPIF for the ILL, ipif_up 11448 * will have to re-bind to the device, so 11449 * we may get back EINPROGRESS, in which 11450 * case, this IOCTL will get completed in 11451 * ip_rput_dlpi when we see the DL_BIND_ACK. 11452 */ 11453 err = ipif_up(ipif, q, mp); 11454 } 11455 11456 if (need_dl_down) 11457 ill_dl_down(ill); 11458 11459 if (need_arp_down) 11460 ipif_arp_down(ipif); 11461 return (err); 11462 } 11463 11464 /* 11465 * Restart entry point to restart the dstaddress set operation after the 11466 * refcounts have dropped to zero. 11467 */ 11468 /* ARGSUSED */ 11469 int 11470 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11471 ip_ioctl_cmd_t *ipip, void *ifreq) 11472 { 11473 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11474 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11475 ipif_down_tail(ipif); 11476 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11477 } 11478 11479 /* ARGSUSED */ 11480 int 11481 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11482 ip_ioctl_cmd_t *ipip, void *if_req) 11483 { 11484 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11485 11486 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11487 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11488 /* 11489 * Get point to point destination address. The addresses can't 11490 * change since we hold a reference to the ipif. 11491 */ 11492 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11493 return (EADDRNOTAVAIL); 11494 11495 if (ipif->ipif_isv6) { 11496 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11497 *sin6 = sin6_null; 11498 sin6->sin6_family = AF_INET6; 11499 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11500 } else { 11501 *sin = sin_null; 11502 sin->sin_family = AF_INET; 11503 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11504 } 11505 return (0); 11506 } 11507 11508 /* 11509 * part of ipmp, make this func return the active/inactive state and 11510 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11511 */ 11512 /* 11513 * This function either sets or clears the IFF_INACTIVE flag. 11514 * 11515 * As long as there are some addresses or multicast memberships on the 11516 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11517 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11518 * will be used for outbound packets. 11519 * 11520 * Caller needs to verify the validity of setting IFF_INACTIVE. 11521 */ 11522 static void 11523 phyint_inactive(phyint_t *phyi) 11524 { 11525 ill_t *ill_v4; 11526 ill_t *ill_v6; 11527 ipif_t *ipif; 11528 ilm_t *ilm; 11529 11530 ill_v4 = phyi->phyint_illv4; 11531 ill_v6 = phyi->phyint_illv6; 11532 11533 /* 11534 * No need for a lock while traversing the list since iam 11535 * a writer 11536 */ 11537 if (ill_v4 != NULL) { 11538 ASSERT(IAM_WRITER_ILL(ill_v4)); 11539 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11540 ipif = ipif->ipif_next) { 11541 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11542 mutex_enter(&phyi->phyint_lock); 11543 phyi->phyint_flags &= ~PHYI_INACTIVE; 11544 mutex_exit(&phyi->phyint_lock); 11545 return; 11546 } 11547 } 11548 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11549 ilm = ilm->ilm_next) { 11550 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11551 mutex_enter(&phyi->phyint_lock); 11552 phyi->phyint_flags &= ~PHYI_INACTIVE; 11553 mutex_exit(&phyi->phyint_lock); 11554 return; 11555 } 11556 } 11557 } 11558 if (ill_v6 != NULL) { 11559 ill_v6 = phyi->phyint_illv6; 11560 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11561 ipif = ipif->ipif_next) { 11562 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11563 mutex_enter(&phyi->phyint_lock); 11564 phyi->phyint_flags &= ~PHYI_INACTIVE; 11565 mutex_exit(&phyi->phyint_lock); 11566 return; 11567 } 11568 } 11569 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11570 ilm = ilm->ilm_next) { 11571 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11572 mutex_enter(&phyi->phyint_lock); 11573 phyi->phyint_flags &= ~PHYI_INACTIVE; 11574 mutex_exit(&phyi->phyint_lock); 11575 return; 11576 } 11577 } 11578 } 11579 mutex_enter(&phyi->phyint_lock); 11580 phyi->phyint_flags |= PHYI_INACTIVE; 11581 mutex_exit(&phyi->phyint_lock); 11582 } 11583 11584 /* 11585 * This function is called only when the phyint flags change. Currently 11586 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11587 * that we can select a good ill. 11588 */ 11589 static void 11590 ip_redo_nomination(phyint_t *phyi) 11591 { 11592 ill_t *ill_v4; 11593 11594 ill_v4 = phyi->phyint_illv4; 11595 11596 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11597 ASSERT(IAM_WRITER_ILL(ill_v4)); 11598 if (ill_v4->ill_group->illgrp_ill_count > 1) 11599 ill_nominate_bcast_rcv(ill_v4->ill_group); 11600 } 11601 } 11602 11603 /* 11604 * Heuristic to check if ill is INACTIVE. 11605 * Checks if ill has an ipif with an usable ip address. 11606 * 11607 * Return values: 11608 * B_TRUE - ill is INACTIVE; has no usable ipif 11609 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11610 */ 11611 static boolean_t 11612 ill_is_inactive(ill_t *ill) 11613 { 11614 ipif_t *ipif; 11615 11616 /* Check whether it is in an IPMP group */ 11617 if (ill->ill_phyint->phyint_groupname == NULL) 11618 return (B_FALSE); 11619 11620 if (ill->ill_ipif_up_count == 0) 11621 return (B_TRUE); 11622 11623 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11624 uint64_t flags = ipif->ipif_flags; 11625 11626 /* 11627 * This ipif is usable if it is IPIF_UP and not a 11628 * dedicated test address. A dedicated test address 11629 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11630 * (note in particular that V6 test addresses are 11631 * link-local data addresses and thus are marked 11632 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11633 */ 11634 if ((flags & IPIF_UP) && 11635 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11636 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11637 return (B_FALSE); 11638 } 11639 return (B_TRUE); 11640 } 11641 11642 /* 11643 * Set interface flags. 11644 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11645 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11646 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11647 * 11648 * NOTE : We really don't enforce that ipif_id zero should be used 11649 * for setting any flags other than IFF_LOGINT_FLAGS. This 11650 * is because applications generally does SICGLIFFLAGS and 11651 * ORs in the new flags (that affects the logical) and does a 11652 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11653 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11654 * flags that will be turned on is correct with respect to 11655 * ipif_id 0. For backward compatibility reasons, it is not done. 11656 */ 11657 /* ARGSUSED */ 11658 int 11659 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11660 ip_ioctl_cmd_t *ipip, void *if_req) 11661 { 11662 uint64_t turn_on; 11663 uint64_t turn_off; 11664 int err; 11665 boolean_t need_up = B_FALSE; 11666 phyint_t *phyi; 11667 ill_t *ill; 11668 uint64_t intf_flags; 11669 boolean_t phyint_flags_modified = B_FALSE; 11670 uint64_t flags; 11671 struct ifreq *ifr; 11672 struct lifreq *lifr; 11673 boolean_t set_linklocal = B_FALSE; 11674 boolean_t zero_source = B_FALSE; 11675 ip_stack_t *ipst; 11676 11677 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11678 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11679 11680 ASSERT(IAM_WRITER_IPIF(ipif)); 11681 11682 ill = ipif->ipif_ill; 11683 phyi = ill->ill_phyint; 11684 ipst = ill->ill_ipst; 11685 11686 if (ipip->ipi_cmd_type == IF_CMD) { 11687 ifr = (struct ifreq *)if_req; 11688 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11689 } else { 11690 lifr = (struct lifreq *)if_req; 11691 flags = lifr->lifr_flags; 11692 } 11693 11694 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11695 11696 /* 11697 * Has the flags been set correctly till now ? 11698 */ 11699 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11700 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11701 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11702 /* 11703 * Compare the new flags to the old, and partition 11704 * into those coming on and those going off. 11705 * For the 16 bit command keep the bits above bit 16 unchanged. 11706 */ 11707 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11708 flags |= intf_flags & ~0xFFFF; 11709 11710 /* 11711 * First check which bits will change and then which will 11712 * go on and off 11713 */ 11714 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11715 if (!turn_on) 11716 return (0); /* No change */ 11717 11718 turn_off = intf_flags & turn_on; 11719 turn_on ^= turn_off; 11720 err = 0; 11721 11722 /* 11723 * Don't allow any bits belonging to the logical interface 11724 * to be set or cleared on the replacement ipif that was 11725 * created temporarily during a MOVE. 11726 */ 11727 if (ipif->ipif_replace_zero && 11728 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11729 return (EINVAL); 11730 } 11731 11732 /* 11733 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11734 * IPv6 interfaces. 11735 */ 11736 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11737 return (EINVAL); 11738 11739 /* 11740 * cannot turn off IFF_NOXMIT on VNI interfaces. 11741 */ 11742 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11743 return (EINVAL); 11744 11745 /* 11746 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11747 * interfaces. It makes no sense in that context. 11748 */ 11749 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11750 return (EINVAL); 11751 11752 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11753 zero_source = B_TRUE; 11754 11755 /* 11756 * For IPv6 ipif_id 0, don't allow the interface to be up without 11757 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11758 * If the link local address isn't set, and can be set, it will get 11759 * set later on in this function. 11760 */ 11761 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11762 (flags & IFF_UP) && !zero_source && 11763 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11764 if (ipif_cant_setlinklocal(ipif)) 11765 return (EINVAL); 11766 set_linklocal = B_TRUE; 11767 } 11768 11769 /* 11770 * ILL cannot be part of a usesrc group and and IPMP group at the 11771 * same time. No need to grab ill_g_usesrc_lock here, see 11772 * synchronization notes in ip.c 11773 */ 11774 if (turn_on & PHYI_STANDBY && 11775 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11776 return (EINVAL); 11777 } 11778 11779 /* 11780 * If we modify physical interface flags, we'll potentially need to 11781 * send up two routing socket messages for the changes (one for the 11782 * IPv4 ill, and another for the IPv6 ill). Note that here. 11783 */ 11784 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11785 phyint_flags_modified = B_TRUE; 11786 11787 /* 11788 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11789 * we need to flush the IRE_CACHES belonging to this ill. 11790 * We handle this case here without doing the DOWN/UP dance 11791 * like it is done for other flags. If some other flags are 11792 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11793 * below will handle it by bringing it down and then 11794 * bringing it UP. 11795 */ 11796 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11797 ill_t *ill_v4, *ill_v6; 11798 11799 ill_v4 = phyi->phyint_illv4; 11800 ill_v6 = phyi->phyint_illv6; 11801 11802 /* 11803 * First set the INACTIVE flag if needed. Then delete the ires. 11804 * ire_add will atomically prevent creating new IRE_CACHEs 11805 * unless hidden flag is set. 11806 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11807 */ 11808 if ((turn_on & PHYI_FAILED) && 11809 ((intf_flags & PHYI_STANDBY) || 11810 !ipst->ips_ipmp_enable_failback)) { 11811 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11812 phyi->phyint_flags &= ~PHYI_INACTIVE; 11813 } 11814 if ((turn_off & PHYI_FAILED) && 11815 ((intf_flags & PHYI_STANDBY) || 11816 (!ipst->ips_ipmp_enable_failback && 11817 ill_is_inactive(ill)))) { 11818 phyint_inactive(phyi); 11819 } 11820 11821 if (turn_on & PHYI_STANDBY) { 11822 /* 11823 * We implicitly set INACTIVE only when STANDBY is set. 11824 * INACTIVE is also set on non-STANDBY phyint when user 11825 * disables FAILBACK using configuration file. 11826 * Do not allow STANDBY to be set on such INACTIVE 11827 * phyint 11828 */ 11829 if (phyi->phyint_flags & PHYI_INACTIVE) 11830 return (EINVAL); 11831 if (!(phyi->phyint_flags & PHYI_FAILED)) 11832 phyint_inactive(phyi); 11833 } 11834 if (turn_off & PHYI_STANDBY) { 11835 if (ipst->ips_ipmp_enable_failback) { 11836 /* 11837 * Reset PHYI_INACTIVE. 11838 */ 11839 phyi->phyint_flags &= ~PHYI_INACTIVE; 11840 } else if (ill_is_inactive(ill) && 11841 !(phyi->phyint_flags & PHYI_FAILED)) { 11842 /* 11843 * Need to set INACTIVE, when user sets 11844 * STANDBY on a non-STANDBY phyint and 11845 * later resets STANDBY 11846 */ 11847 phyint_inactive(phyi); 11848 } 11849 } 11850 /* 11851 * We should always send up a message so that the 11852 * daemons come to know of it. Note that the zeroth 11853 * interface can be down and the check below for IPIF_UP 11854 * will not make sense as we are actually setting 11855 * a phyint flag here. We assume that the ipif used 11856 * is always the zeroth ipif. (ip_rts_ifmsg does not 11857 * send up any message for non-zero ipifs). 11858 */ 11859 phyint_flags_modified = B_TRUE; 11860 11861 if (ill_v4 != NULL) { 11862 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11863 IRE_CACHE, ill_stq_cache_delete, 11864 (char *)ill_v4, ill_v4); 11865 illgrp_reset_schednext(ill_v4); 11866 } 11867 if (ill_v6 != NULL) { 11868 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11869 IRE_CACHE, ill_stq_cache_delete, 11870 (char *)ill_v6, ill_v6); 11871 illgrp_reset_schednext(ill_v6); 11872 } 11873 } 11874 11875 /* 11876 * If ILLF_ROUTER changes, we need to change the ip forwarding 11877 * status of the interface and, if the interface is part of an IPMP 11878 * group, all other interfaces that are part of the same IPMP 11879 * group. 11880 */ 11881 if ((turn_on | turn_off) & ILLF_ROUTER) 11882 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11883 11884 /* 11885 * If the interface is not UP and we are not going to 11886 * bring it UP, record the flags and return. When the 11887 * interface comes UP later, the right actions will be 11888 * taken. 11889 */ 11890 if (!(ipif->ipif_flags & IPIF_UP) && 11891 !(turn_on & IPIF_UP)) { 11892 /* Record new flags in their respective places. */ 11893 mutex_enter(&ill->ill_lock); 11894 mutex_enter(&ill->ill_phyint->phyint_lock); 11895 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11896 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11897 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11898 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11899 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11900 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11901 mutex_exit(&ill->ill_lock); 11902 mutex_exit(&ill->ill_phyint->phyint_lock); 11903 11904 /* 11905 * We do the broadcast and nomination here rather 11906 * than waiting for a FAILOVER/FAILBACK to happen. In 11907 * the case of FAILBACK from INACTIVE standby to the 11908 * interface that has been repaired, PHYI_FAILED has not 11909 * been cleared yet. If there are only two interfaces in 11910 * that group, all we have is a FAILED and INACTIVE 11911 * interface. If we do the nomination soon after a failback, 11912 * the broadcast nomination code would select the 11913 * INACTIVE interface for receiving broadcasts as FAILED is 11914 * not yet cleared. As we don't want STANDBY/INACTIVE to 11915 * receive broadcast packets, we need to redo nomination 11916 * when the FAILED is cleared here. Thus, in general we 11917 * always do the nomination here for FAILED, STANDBY 11918 * and OFFLINE. 11919 */ 11920 if (((turn_on | turn_off) & 11921 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11922 ip_redo_nomination(phyi); 11923 } 11924 if (phyint_flags_modified) { 11925 if (phyi->phyint_illv4 != NULL) { 11926 ip_rts_ifmsg(phyi->phyint_illv4-> 11927 ill_ipif); 11928 } 11929 if (phyi->phyint_illv6 != NULL) { 11930 ip_rts_ifmsg(phyi->phyint_illv6-> 11931 ill_ipif); 11932 } 11933 } 11934 return (0); 11935 } else if (set_linklocal || zero_source) { 11936 mutex_enter(&ill->ill_lock); 11937 if (set_linklocal) 11938 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11939 if (zero_source) 11940 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11941 mutex_exit(&ill->ill_lock); 11942 } 11943 11944 /* 11945 * Disallow IPv6 interfaces coming up that have the unspecified address, 11946 * or point-to-point interfaces with an unspecified destination. We do 11947 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11948 * have a subnet assigned, which is how in.ndpd currently manages its 11949 * onlink prefix list when no addresses are configured with those 11950 * prefixes. 11951 */ 11952 if (ipif->ipif_isv6 && 11953 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11954 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11955 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11956 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11957 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11958 return (EINVAL); 11959 } 11960 11961 /* 11962 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11963 * from being brought up. 11964 */ 11965 if (!ipif->ipif_isv6 && 11966 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11967 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11968 return (EINVAL); 11969 } 11970 11971 /* 11972 * The only flag changes that we currently take specific action on 11973 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11974 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11975 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11976 * the flags and bringing it back up again. 11977 */ 11978 if ((turn_on|turn_off) & 11979 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11980 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11981 /* 11982 * Taking this ipif down, make sure we have 11983 * valid net and subnet bcast ire's for other 11984 * logical interfaces, if we need them. 11985 */ 11986 if (!ipif->ipif_isv6) 11987 ipif_check_bcast_ires(ipif); 11988 11989 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11990 !(turn_off & IPIF_UP)) { 11991 need_up = B_TRUE; 11992 if (ipif->ipif_flags & IPIF_UP) 11993 ill->ill_logical_down = 1; 11994 turn_on &= ~IPIF_UP; 11995 } 11996 err = ipif_down(ipif, q, mp); 11997 ip1dbg(("ipif_down returns %d err ", err)); 11998 if (err == EINPROGRESS) 11999 return (err); 12000 ipif_down_tail(ipif); 12001 } 12002 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12003 } 12004 12005 static int 12006 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12007 boolean_t need_up) 12008 { 12009 ill_t *ill; 12010 phyint_t *phyi; 12011 uint64_t turn_on; 12012 uint64_t turn_off; 12013 uint64_t intf_flags; 12014 boolean_t phyint_flags_modified = B_FALSE; 12015 int err = 0; 12016 boolean_t set_linklocal = B_FALSE; 12017 boolean_t zero_source = B_FALSE; 12018 12019 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12020 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12021 12022 ASSERT(IAM_WRITER_IPIF(ipif)); 12023 12024 ill = ipif->ipif_ill; 12025 phyi = ill->ill_phyint; 12026 12027 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12028 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12029 12030 turn_off = intf_flags & turn_on; 12031 turn_on ^= turn_off; 12032 12033 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12034 phyint_flags_modified = B_TRUE; 12035 12036 /* 12037 * Now we change the flags. Track current value of 12038 * other flags in their respective places. 12039 */ 12040 mutex_enter(&ill->ill_lock); 12041 mutex_enter(&phyi->phyint_lock); 12042 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12043 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12044 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12045 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12046 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12047 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12048 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12049 set_linklocal = B_TRUE; 12050 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12051 } 12052 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12053 zero_source = B_TRUE; 12054 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12055 } 12056 mutex_exit(&ill->ill_lock); 12057 mutex_exit(&phyi->phyint_lock); 12058 12059 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12060 ip_redo_nomination(phyi); 12061 12062 if (set_linklocal) 12063 (void) ipif_setlinklocal(ipif); 12064 12065 if (zero_source) 12066 ipif->ipif_v6src_addr = ipv6_all_zeros; 12067 else 12068 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12069 12070 if (need_up) { 12071 /* 12072 * XXX ipif_up really does not know whether a phyint flags 12073 * was modified or not. So, it sends up information on 12074 * only one routing sockets message. As we don't bring up 12075 * the interface and also set STANDBY/FAILED simultaneously 12076 * it should be okay. 12077 */ 12078 err = ipif_up(ipif, q, mp); 12079 } else { 12080 /* 12081 * Make sure routing socket sees all changes to the flags. 12082 * ipif_up_done* handles this when we use ipif_up. 12083 */ 12084 if (phyint_flags_modified) { 12085 if (phyi->phyint_illv4 != NULL) { 12086 ip_rts_ifmsg(phyi->phyint_illv4-> 12087 ill_ipif); 12088 } 12089 if (phyi->phyint_illv6 != NULL) { 12090 ip_rts_ifmsg(phyi->phyint_illv6-> 12091 ill_ipif); 12092 } 12093 } else { 12094 ip_rts_ifmsg(ipif); 12095 } 12096 /* 12097 * Update the flags in SCTP's IPIF list, ipif_up() will do 12098 * this in need_up case. 12099 */ 12100 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12101 } 12102 return (err); 12103 } 12104 12105 /* 12106 * Restart entry point to restart the flags restart operation after the 12107 * refcounts have dropped to zero. 12108 */ 12109 /* ARGSUSED */ 12110 int 12111 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12112 ip_ioctl_cmd_t *ipip, void *if_req) 12113 { 12114 int err; 12115 struct ifreq *ifr = (struct ifreq *)if_req; 12116 struct lifreq *lifr = (struct lifreq *)if_req; 12117 12118 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12119 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12120 12121 ipif_down_tail(ipif); 12122 if (ipip->ipi_cmd_type == IF_CMD) { 12123 /* 12124 * Since ip_sioctl_flags expects an int and ifr_flags 12125 * is a short we need to cast ifr_flags into an int 12126 * to avoid having sign extension cause bits to get 12127 * set that should not be. 12128 */ 12129 err = ip_sioctl_flags_tail(ipif, 12130 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12131 q, mp, B_TRUE); 12132 } else { 12133 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12134 q, mp, B_TRUE); 12135 } 12136 return (err); 12137 } 12138 12139 /* 12140 * Can operate on either a module or a driver queue. 12141 */ 12142 /* ARGSUSED */ 12143 int 12144 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12145 ip_ioctl_cmd_t *ipip, void *if_req) 12146 { 12147 /* 12148 * Has the flags been set correctly till now ? 12149 */ 12150 ill_t *ill = ipif->ipif_ill; 12151 phyint_t *phyi = ill->ill_phyint; 12152 12153 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12154 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12155 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12156 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12157 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12158 12159 /* 12160 * Need a lock since some flags can be set even when there are 12161 * references to the ipif. 12162 */ 12163 mutex_enter(&ill->ill_lock); 12164 if (ipip->ipi_cmd_type == IF_CMD) { 12165 struct ifreq *ifr = (struct ifreq *)if_req; 12166 12167 /* Get interface flags (low 16 only). */ 12168 ifr->ifr_flags = ((ipif->ipif_flags | 12169 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12170 } else { 12171 struct lifreq *lifr = (struct lifreq *)if_req; 12172 12173 /* Get interface flags. */ 12174 lifr->lifr_flags = ipif->ipif_flags | 12175 ill->ill_flags | phyi->phyint_flags; 12176 } 12177 mutex_exit(&ill->ill_lock); 12178 return (0); 12179 } 12180 12181 /* ARGSUSED */ 12182 int 12183 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12184 ip_ioctl_cmd_t *ipip, void *if_req) 12185 { 12186 int mtu; 12187 int ip_min_mtu; 12188 struct ifreq *ifr; 12189 struct lifreq *lifr; 12190 ire_t *ire; 12191 ip_stack_t *ipst; 12192 12193 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12194 ipif->ipif_id, (void *)ipif)); 12195 if (ipip->ipi_cmd_type == IF_CMD) { 12196 ifr = (struct ifreq *)if_req; 12197 mtu = ifr->ifr_metric; 12198 } else { 12199 lifr = (struct lifreq *)if_req; 12200 mtu = lifr->lifr_mtu; 12201 } 12202 12203 if (ipif->ipif_isv6) 12204 ip_min_mtu = IPV6_MIN_MTU; 12205 else 12206 ip_min_mtu = IP_MIN_MTU; 12207 12208 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12209 return (EINVAL); 12210 12211 /* 12212 * Change the MTU size in all relevant ire's. 12213 * Mtu change Vs. new ire creation - protocol below. 12214 * First change ipif_mtu and the ire_max_frag of the 12215 * interface ire. Then do an ire walk and change the 12216 * ire_max_frag of all affected ires. During ire_add 12217 * under the bucket lock, set the ire_max_frag of the 12218 * new ire being created from the ipif/ire from which 12219 * it is being derived. If an mtu change happens after 12220 * the ire is added, the new ire will be cleaned up. 12221 * Conversely if the mtu change happens before the ire 12222 * is added, ire_add will see the new value of the mtu. 12223 */ 12224 ipif->ipif_mtu = mtu; 12225 ipif->ipif_flags |= IPIF_FIXEDMTU; 12226 12227 if (ipif->ipif_isv6) 12228 ire = ipif_to_ire_v6(ipif); 12229 else 12230 ire = ipif_to_ire(ipif); 12231 if (ire != NULL) { 12232 ire->ire_max_frag = ipif->ipif_mtu; 12233 ire_refrele(ire); 12234 } 12235 ipst = ipif->ipif_ill->ill_ipst; 12236 if (ipif->ipif_flags & IPIF_UP) { 12237 if (ipif->ipif_isv6) 12238 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12239 ipst); 12240 else 12241 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12242 ipst); 12243 } 12244 /* Update the MTU in SCTP's list */ 12245 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12246 return (0); 12247 } 12248 12249 /* Get interface MTU. */ 12250 /* ARGSUSED */ 12251 int 12252 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12253 ip_ioctl_cmd_t *ipip, void *if_req) 12254 { 12255 struct ifreq *ifr; 12256 struct lifreq *lifr; 12257 12258 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12259 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12260 if (ipip->ipi_cmd_type == IF_CMD) { 12261 ifr = (struct ifreq *)if_req; 12262 ifr->ifr_metric = ipif->ipif_mtu; 12263 } else { 12264 lifr = (struct lifreq *)if_req; 12265 lifr->lifr_mtu = ipif->ipif_mtu; 12266 } 12267 return (0); 12268 } 12269 12270 /* Set interface broadcast address. */ 12271 /* ARGSUSED2 */ 12272 int 12273 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12274 ip_ioctl_cmd_t *ipip, void *if_req) 12275 { 12276 ipaddr_t addr; 12277 ire_t *ire; 12278 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12279 12280 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12281 ipif->ipif_id)); 12282 12283 ASSERT(IAM_WRITER_IPIF(ipif)); 12284 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12285 return (EADDRNOTAVAIL); 12286 12287 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12288 12289 if (sin->sin_family != AF_INET) 12290 return (EAFNOSUPPORT); 12291 12292 addr = sin->sin_addr.s_addr; 12293 if (ipif->ipif_flags & IPIF_UP) { 12294 /* 12295 * If we are already up, make sure the new 12296 * broadcast address makes sense. If it does, 12297 * there should be an IRE for it already. 12298 * Don't match on ipif, only on the ill 12299 * since we are sharing these now. Don't use 12300 * MATCH_IRE_ILL_GROUP as we are looking for 12301 * the broadcast ire on this ill and each ill 12302 * in the group has its own broadcast ire. 12303 */ 12304 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12305 ipif, ALL_ZONES, NULL, 12306 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12307 if (ire == NULL) { 12308 return (EINVAL); 12309 } else { 12310 ire_refrele(ire); 12311 } 12312 } 12313 /* 12314 * Changing the broadcast addr for this ipif. 12315 * Make sure we have valid net and subnet bcast 12316 * ire's for other logical interfaces, if needed. 12317 */ 12318 if (addr != ipif->ipif_brd_addr) 12319 ipif_check_bcast_ires(ipif); 12320 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12321 return (0); 12322 } 12323 12324 /* Get interface broadcast address. */ 12325 /* ARGSUSED */ 12326 int 12327 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12328 ip_ioctl_cmd_t *ipip, void *if_req) 12329 { 12330 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12331 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12332 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12333 return (EADDRNOTAVAIL); 12334 12335 /* IPIF_BROADCAST not possible with IPv6 */ 12336 ASSERT(!ipif->ipif_isv6); 12337 *sin = sin_null; 12338 sin->sin_family = AF_INET; 12339 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12340 return (0); 12341 } 12342 12343 /* 12344 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12345 */ 12346 /* ARGSUSED */ 12347 int 12348 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12349 ip_ioctl_cmd_t *ipip, void *if_req) 12350 { 12351 int err = 0; 12352 in6_addr_t v6mask; 12353 12354 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12355 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12356 12357 ASSERT(IAM_WRITER_IPIF(ipif)); 12358 12359 if (ipif->ipif_isv6) { 12360 sin6_t *sin6; 12361 12362 if (sin->sin_family != AF_INET6) 12363 return (EAFNOSUPPORT); 12364 12365 sin6 = (sin6_t *)sin; 12366 v6mask = sin6->sin6_addr; 12367 } else { 12368 ipaddr_t mask; 12369 12370 if (sin->sin_family != AF_INET) 12371 return (EAFNOSUPPORT); 12372 12373 mask = sin->sin_addr.s_addr; 12374 V4MASK_TO_V6(mask, v6mask); 12375 } 12376 12377 /* 12378 * No big deal if the interface isn't already up, or the mask 12379 * isn't really changing, or this is pt-pt. 12380 */ 12381 if (!(ipif->ipif_flags & IPIF_UP) || 12382 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12383 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12384 ipif->ipif_v6net_mask = v6mask; 12385 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12386 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12387 ipif->ipif_v6net_mask, 12388 ipif->ipif_v6subnet); 12389 } 12390 return (0); 12391 } 12392 /* 12393 * Make sure we have valid net and subnet broadcast ire's 12394 * for the old netmask, if needed by other logical interfaces. 12395 */ 12396 if (!ipif->ipif_isv6) 12397 ipif_check_bcast_ires(ipif); 12398 12399 err = ipif_logical_down(ipif, q, mp); 12400 if (err == EINPROGRESS) 12401 return (err); 12402 ipif_down_tail(ipif); 12403 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12404 return (err); 12405 } 12406 12407 static int 12408 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12409 { 12410 in6_addr_t v6mask; 12411 int err = 0; 12412 12413 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12414 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12415 12416 if (ipif->ipif_isv6) { 12417 sin6_t *sin6; 12418 12419 sin6 = (sin6_t *)sin; 12420 v6mask = sin6->sin6_addr; 12421 } else { 12422 ipaddr_t mask; 12423 12424 mask = sin->sin_addr.s_addr; 12425 V4MASK_TO_V6(mask, v6mask); 12426 } 12427 12428 ipif->ipif_v6net_mask = v6mask; 12429 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12430 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12431 ipif->ipif_v6subnet); 12432 } 12433 err = ipif_up(ipif, q, mp); 12434 12435 if (err == 0 || err == EINPROGRESS) { 12436 /* 12437 * The interface must be DL_BOUND if this packet has to 12438 * go out on the wire. Since we only go through a logical 12439 * down and are bound with the driver during an internal 12440 * down/up that is satisfied. 12441 */ 12442 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12443 /* Potentially broadcast an address mask reply. */ 12444 ipif_mask_reply(ipif); 12445 } 12446 } 12447 return (err); 12448 } 12449 12450 /* ARGSUSED */ 12451 int 12452 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12453 ip_ioctl_cmd_t *ipip, void *if_req) 12454 { 12455 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12456 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12457 ipif_down_tail(ipif); 12458 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12459 } 12460 12461 /* Get interface net mask. */ 12462 /* ARGSUSED */ 12463 int 12464 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12465 ip_ioctl_cmd_t *ipip, void *if_req) 12466 { 12467 struct lifreq *lifr = (struct lifreq *)if_req; 12468 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12469 12470 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12471 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12472 12473 /* 12474 * net mask can't change since we have a reference to the ipif. 12475 */ 12476 if (ipif->ipif_isv6) { 12477 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12478 *sin6 = sin6_null; 12479 sin6->sin6_family = AF_INET6; 12480 sin6->sin6_addr = ipif->ipif_v6net_mask; 12481 lifr->lifr_addrlen = 12482 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12483 } else { 12484 *sin = sin_null; 12485 sin->sin_family = AF_INET; 12486 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12487 if (ipip->ipi_cmd_type == LIF_CMD) { 12488 lifr->lifr_addrlen = 12489 ip_mask_to_plen(ipif->ipif_net_mask); 12490 } 12491 } 12492 return (0); 12493 } 12494 12495 /* ARGSUSED */ 12496 int 12497 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12498 ip_ioctl_cmd_t *ipip, void *if_req) 12499 { 12500 12501 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12502 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12503 /* 12504 * Set interface metric. We don't use this for 12505 * anything but we keep track of it in case it is 12506 * important to routing applications or such. 12507 */ 12508 if (ipip->ipi_cmd_type == IF_CMD) { 12509 struct ifreq *ifr; 12510 12511 ifr = (struct ifreq *)if_req; 12512 ipif->ipif_metric = ifr->ifr_metric; 12513 } else { 12514 struct lifreq *lifr; 12515 12516 lifr = (struct lifreq *)if_req; 12517 ipif->ipif_metric = lifr->lifr_metric; 12518 } 12519 return (0); 12520 } 12521 12522 12523 /* ARGSUSED */ 12524 int 12525 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12526 ip_ioctl_cmd_t *ipip, void *if_req) 12527 { 12528 12529 /* Get interface metric. */ 12530 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12531 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12532 if (ipip->ipi_cmd_type == IF_CMD) { 12533 struct ifreq *ifr; 12534 12535 ifr = (struct ifreq *)if_req; 12536 ifr->ifr_metric = ipif->ipif_metric; 12537 } else { 12538 struct lifreq *lifr; 12539 12540 lifr = (struct lifreq *)if_req; 12541 lifr->lifr_metric = ipif->ipif_metric; 12542 } 12543 12544 return (0); 12545 } 12546 12547 /* ARGSUSED */ 12548 int 12549 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12550 ip_ioctl_cmd_t *ipip, void *if_req) 12551 { 12552 12553 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12554 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12555 /* 12556 * Set the muxid returned from I_PLINK. 12557 */ 12558 if (ipip->ipi_cmd_type == IF_CMD) { 12559 struct ifreq *ifr = (struct ifreq *)if_req; 12560 12561 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12562 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12563 } else { 12564 struct lifreq *lifr = (struct lifreq *)if_req; 12565 12566 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12567 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12568 } 12569 return (0); 12570 } 12571 12572 /* ARGSUSED */ 12573 int 12574 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12575 ip_ioctl_cmd_t *ipip, void *if_req) 12576 { 12577 12578 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12579 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12580 /* 12581 * Get the muxid saved in ill for I_PUNLINK. 12582 */ 12583 if (ipip->ipi_cmd_type == IF_CMD) { 12584 struct ifreq *ifr = (struct ifreq *)if_req; 12585 12586 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12587 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12588 } else { 12589 struct lifreq *lifr = (struct lifreq *)if_req; 12590 12591 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12592 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12593 } 12594 return (0); 12595 } 12596 12597 /* 12598 * Set the subnet prefix. Does not modify the broadcast address. 12599 */ 12600 /* ARGSUSED */ 12601 int 12602 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12603 ip_ioctl_cmd_t *ipip, void *if_req) 12604 { 12605 int err = 0; 12606 in6_addr_t v6addr; 12607 in6_addr_t v6mask; 12608 boolean_t need_up = B_FALSE; 12609 int addrlen; 12610 12611 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12612 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12613 12614 ASSERT(IAM_WRITER_IPIF(ipif)); 12615 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12616 12617 if (ipif->ipif_isv6) { 12618 sin6_t *sin6; 12619 12620 if (sin->sin_family != AF_INET6) 12621 return (EAFNOSUPPORT); 12622 12623 sin6 = (sin6_t *)sin; 12624 v6addr = sin6->sin6_addr; 12625 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12626 return (EADDRNOTAVAIL); 12627 } else { 12628 ipaddr_t addr; 12629 12630 if (sin->sin_family != AF_INET) 12631 return (EAFNOSUPPORT); 12632 12633 addr = sin->sin_addr.s_addr; 12634 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12635 return (EADDRNOTAVAIL); 12636 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12637 /* Add 96 bits */ 12638 addrlen += IPV6_ABITS - IP_ABITS; 12639 } 12640 12641 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12642 return (EINVAL); 12643 12644 /* Check if bits in the address is set past the mask */ 12645 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12646 return (EINVAL); 12647 12648 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12649 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12650 return (0); /* No change */ 12651 12652 if (ipif->ipif_flags & IPIF_UP) { 12653 /* 12654 * If the interface is already marked up, 12655 * we call ipif_down which will take care 12656 * of ditching any IREs that have been set 12657 * up based on the old interface address. 12658 */ 12659 err = ipif_logical_down(ipif, q, mp); 12660 if (err == EINPROGRESS) 12661 return (err); 12662 ipif_down_tail(ipif); 12663 need_up = B_TRUE; 12664 } 12665 12666 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12667 return (err); 12668 } 12669 12670 static int 12671 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12672 queue_t *q, mblk_t *mp, boolean_t need_up) 12673 { 12674 ill_t *ill = ipif->ipif_ill; 12675 int err = 0; 12676 12677 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12678 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12679 12680 /* Set the new address. */ 12681 mutex_enter(&ill->ill_lock); 12682 ipif->ipif_v6net_mask = v6mask; 12683 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12684 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12685 ipif->ipif_v6subnet); 12686 } 12687 mutex_exit(&ill->ill_lock); 12688 12689 if (need_up) { 12690 /* 12691 * Now bring the interface back up. If this 12692 * is the only IPIF for the ILL, ipif_up 12693 * will have to re-bind to the device, so 12694 * we may get back EINPROGRESS, in which 12695 * case, this IOCTL will get completed in 12696 * ip_rput_dlpi when we see the DL_BIND_ACK. 12697 */ 12698 err = ipif_up(ipif, q, mp); 12699 if (err == EINPROGRESS) 12700 return (err); 12701 } 12702 return (err); 12703 } 12704 12705 /* ARGSUSED */ 12706 int 12707 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12708 ip_ioctl_cmd_t *ipip, void *if_req) 12709 { 12710 int addrlen; 12711 in6_addr_t v6addr; 12712 in6_addr_t v6mask; 12713 struct lifreq *lifr = (struct lifreq *)if_req; 12714 12715 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12716 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12717 ipif_down_tail(ipif); 12718 12719 addrlen = lifr->lifr_addrlen; 12720 if (ipif->ipif_isv6) { 12721 sin6_t *sin6; 12722 12723 sin6 = (sin6_t *)sin; 12724 v6addr = sin6->sin6_addr; 12725 } else { 12726 ipaddr_t addr; 12727 12728 addr = sin->sin_addr.s_addr; 12729 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12730 addrlen += IPV6_ABITS - IP_ABITS; 12731 } 12732 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12733 12734 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12735 } 12736 12737 /* ARGSUSED */ 12738 int 12739 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12740 ip_ioctl_cmd_t *ipip, void *if_req) 12741 { 12742 struct lifreq *lifr = (struct lifreq *)if_req; 12743 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12744 12745 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12746 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12747 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12748 12749 if (ipif->ipif_isv6) { 12750 *sin6 = sin6_null; 12751 sin6->sin6_family = AF_INET6; 12752 sin6->sin6_addr = ipif->ipif_v6subnet; 12753 lifr->lifr_addrlen = 12754 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12755 } else { 12756 *sin = sin_null; 12757 sin->sin_family = AF_INET; 12758 sin->sin_addr.s_addr = ipif->ipif_subnet; 12759 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12760 } 12761 return (0); 12762 } 12763 12764 /* 12765 * Set the IPv6 address token. 12766 */ 12767 /* ARGSUSED */ 12768 int 12769 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12770 ip_ioctl_cmd_t *ipi, void *if_req) 12771 { 12772 ill_t *ill = ipif->ipif_ill; 12773 int err; 12774 in6_addr_t v6addr; 12775 in6_addr_t v6mask; 12776 boolean_t need_up = B_FALSE; 12777 int i; 12778 sin6_t *sin6 = (sin6_t *)sin; 12779 struct lifreq *lifr = (struct lifreq *)if_req; 12780 int addrlen; 12781 12782 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12783 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12784 ASSERT(IAM_WRITER_IPIF(ipif)); 12785 12786 addrlen = lifr->lifr_addrlen; 12787 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12788 if (ipif->ipif_id != 0) 12789 return (EINVAL); 12790 12791 if (!ipif->ipif_isv6) 12792 return (EINVAL); 12793 12794 if (addrlen > IPV6_ABITS) 12795 return (EINVAL); 12796 12797 v6addr = sin6->sin6_addr; 12798 12799 /* 12800 * The length of the token is the length from the end. To get 12801 * the proper mask for this, compute the mask of the bits not 12802 * in the token; ie. the prefix, and then xor to get the mask. 12803 */ 12804 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12805 return (EINVAL); 12806 for (i = 0; i < 4; i++) { 12807 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12808 } 12809 12810 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12811 ill->ill_token_length == addrlen) 12812 return (0); /* No change */ 12813 12814 if (ipif->ipif_flags & IPIF_UP) { 12815 err = ipif_logical_down(ipif, q, mp); 12816 if (err == EINPROGRESS) 12817 return (err); 12818 ipif_down_tail(ipif); 12819 need_up = B_TRUE; 12820 } 12821 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12822 return (err); 12823 } 12824 12825 static int 12826 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12827 mblk_t *mp, boolean_t need_up) 12828 { 12829 in6_addr_t v6addr; 12830 in6_addr_t v6mask; 12831 ill_t *ill = ipif->ipif_ill; 12832 int i; 12833 int err = 0; 12834 12835 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12836 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12837 v6addr = sin6->sin6_addr; 12838 /* 12839 * The length of the token is the length from the end. To get 12840 * the proper mask for this, compute the mask of the bits not 12841 * in the token; ie. the prefix, and then xor to get the mask. 12842 */ 12843 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12844 for (i = 0; i < 4; i++) 12845 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12846 12847 mutex_enter(&ill->ill_lock); 12848 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12849 ill->ill_token_length = addrlen; 12850 mutex_exit(&ill->ill_lock); 12851 12852 if (need_up) { 12853 /* 12854 * Now bring the interface back up. If this 12855 * is the only IPIF for the ILL, ipif_up 12856 * will have to re-bind to the device, so 12857 * we may get back EINPROGRESS, in which 12858 * case, this IOCTL will get completed in 12859 * ip_rput_dlpi when we see the DL_BIND_ACK. 12860 */ 12861 err = ipif_up(ipif, q, mp); 12862 if (err == EINPROGRESS) 12863 return (err); 12864 } 12865 return (err); 12866 } 12867 12868 /* ARGSUSED */ 12869 int 12870 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12871 ip_ioctl_cmd_t *ipi, void *if_req) 12872 { 12873 ill_t *ill; 12874 sin6_t *sin6 = (sin6_t *)sin; 12875 struct lifreq *lifr = (struct lifreq *)if_req; 12876 12877 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12878 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12879 if (ipif->ipif_id != 0) 12880 return (EINVAL); 12881 12882 ill = ipif->ipif_ill; 12883 if (!ill->ill_isv6) 12884 return (ENXIO); 12885 12886 *sin6 = sin6_null; 12887 sin6->sin6_family = AF_INET6; 12888 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12889 sin6->sin6_addr = ill->ill_token; 12890 lifr->lifr_addrlen = ill->ill_token_length; 12891 return (0); 12892 } 12893 12894 /* 12895 * Set (hardware) link specific information that might override 12896 * what was acquired through the DL_INFO_ACK. 12897 * The logic is as follows. 12898 * 12899 * become exclusive 12900 * set CHANGING flag 12901 * change mtu on affected IREs 12902 * clear CHANGING flag 12903 * 12904 * An ire add that occurs before the CHANGING flag is set will have its mtu 12905 * changed by the ip_sioctl_lnkinfo. 12906 * 12907 * During the time the CHANGING flag is set, no new ires will be added to the 12908 * bucket, and ire add will fail (due the CHANGING flag). 12909 * 12910 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12911 * before it is added to the bucket. 12912 * 12913 * Obviously only 1 thread can set the CHANGING flag and we need to become 12914 * exclusive to set the flag. 12915 */ 12916 /* ARGSUSED */ 12917 int 12918 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12919 ip_ioctl_cmd_t *ipi, void *if_req) 12920 { 12921 ill_t *ill = ipif->ipif_ill; 12922 ipif_t *nipif; 12923 int ip_min_mtu; 12924 boolean_t mtu_walk = B_FALSE; 12925 struct lifreq *lifr = (struct lifreq *)if_req; 12926 lif_ifinfo_req_t *lir; 12927 ire_t *ire; 12928 12929 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12930 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12931 lir = &lifr->lifr_ifinfo; 12932 ASSERT(IAM_WRITER_IPIF(ipif)); 12933 12934 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12935 if (ipif->ipif_id != 0) 12936 return (EINVAL); 12937 12938 /* Set interface MTU. */ 12939 if (ipif->ipif_isv6) 12940 ip_min_mtu = IPV6_MIN_MTU; 12941 else 12942 ip_min_mtu = IP_MIN_MTU; 12943 12944 /* 12945 * Verify values before we set anything. Allow zero to 12946 * mean unspecified. 12947 */ 12948 if (lir->lir_maxmtu != 0 && 12949 (lir->lir_maxmtu > ill->ill_max_frag || 12950 lir->lir_maxmtu < ip_min_mtu)) 12951 return (EINVAL); 12952 if (lir->lir_reachtime != 0 && 12953 lir->lir_reachtime > ND_MAX_REACHTIME) 12954 return (EINVAL); 12955 if (lir->lir_reachretrans != 0 && 12956 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12957 return (EINVAL); 12958 12959 mutex_enter(&ill->ill_lock); 12960 ill->ill_state_flags |= ILL_CHANGING; 12961 for (nipif = ill->ill_ipif; nipif != NULL; 12962 nipif = nipif->ipif_next) { 12963 nipif->ipif_state_flags |= IPIF_CHANGING; 12964 } 12965 12966 mutex_exit(&ill->ill_lock); 12967 12968 if (lir->lir_maxmtu != 0) { 12969 ill->ill_max_mtu = lir->lir_maxmtu; 12970 ill->ill_mtu_userspecified = 1; 12971 mtu_walk = B_TRUE; 12972 } 12973 12974 if (lir->lir_reachtime != 0) 12975 ill->ill_reachable_time = lir->lir_reachtime; 12976 12977 if (lir->lir_reachretrans != 0) 12978 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12979 12980 ill->ill_max_hops = lir->lir_maxhops; 12981 12982 ill->ill_max_buf = ND_MAX_Q; 12983 12984 if (mtu_walk) { 12985 /* 12986 * Set the MTU on all ipifs associated with this ill except 12987 * for those whose MTU was fixed via SIOCSLIFMTU. 12988 */ 12989 for (nipif = ill->ill_ipif; nipif != NULL; 12990 nipif = nipif->ipif_next) { 12991 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12992 continue; 12993 12994 nipif->ipif_mtu = ill->ill_max_mtu; 12995 12996 if (!(nipif->ipif_flags & IPIF_UP)) 12997 continue; 12998 12999 if (nipif->ipif_isv6) 13000 ire = ipif_to_ire_v6(nipif); 13001 else 13002 ire = ipif_to_ire(nipif); 13003 if (ire != NULL) { 13004 ire->ire_max_frag = ipif->ipif_mtu; 13005 ire_refrele(ire); 13006 } 13007 if (ill->ill_isv6) { 13008 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13009 ipif_mtu_change, (char *)nipif, 13010 ill); 13011 } else { 13012 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13013 ipif_mtu_change, (char *)nipif, 13014 ill); 13015 } 13016 } 13017 } 13018 13019 mutex_enter(&ill->ill_lock); 13020 for (nipif = ill->ill_ipif; nipif != NULL; 13021 nipif = nipif->ipif_next) { 13022 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13023 } 13024 ILL_UNMARK_CHANGING(ill); 13025 mutex_exit(&ill->ill_lock); 13026 13027 return (0); 13028 } 13029 13030 /* ARGSUSED */ 13031 int 13032 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13033 ip_ioctl_cmd_t *ipi, void *if_req) 13034 { 13035 struct lif_ifinfo_req *lir; 13036 ill_t *ill = ipif->ipif_ill; 13037 13038 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13040 if (ipif->ipif_id != 0) 13041 return (EINVAL); 13042 13043 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13044 lir->lir_maxhops = ill->ill_max_hops; 13045 lir->lir_reachtime = ill->ill_reachable_time; 13046 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13047 lir->lir_maxmtu = ill->ill_max_mtu; 13048 13049 return (0); 13050 } 13051 13052 /* 13053 * Return best guess as to the subnet mask for the specified address. 13054 * Based on the subnet masks for all the configured interfaces. 13055 * 13056 * We end up returning a zero mask in the case of default, multicast or 13057 * experimental. 13058 */ 13059 static ipaddr_t 13060 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13061 { 13062 ipaddr_t net_mask; 13063 ill_t *ill; 13064 ipif_t *ipif; 13065 ill_walk_context_t ctx; 13066 ipif_t *fallback_ipif = NULL; 13067 13068 net_mask = ip_net_mask(addr); 13069 if (net_mask == 0) { 13070 *ipifp = NULL; 13071 return (0); 13072 } 13073 13074 /* Let's check to see if this is maybe a local subnet route. */ 13075 /* this function only applies to IPv4 interfaces */ 13076 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13077 ill = ILL_START_WALK_V4(&ctx, ipst); 13078 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13079 mutex_enter(&ill->ill_lock); 13080 for (ipif = ill->ill_ipif; ipif != NULL; 13081 ipif = ipif->ipif_next) { 13082 if (!IPIF_CAN_LOOKUP(ipif)) 13083 continue; 13084 if (!(ipif->ipif_flags & IPIF_UP)) 13085 continue; 13086 if ((ipif->ipif_subnet & net_mask) == 13087 (addr & net_mask)) { 13088 /* 13089 * Don't trust pt-pt interfaces if there are 13090 * other interfaces. 13091 */ 13092 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13093 if (fallback_ipif == NULL) { 13094 ipif_refhold_locked(ipif); 13095 fallback_ipif = ipif; 13096 } 13097 continue; 13098 } 13099 13100 /* 13101 * Fine. Just assume the same net mask as the 13102 * directly attached subnet interface is using. 13103 */ 13104 ipif_refhold_locked(ipif); 13105 mutex_exit(&ill->ill_lock); 13106 rw_exit(&ipst->ips_ill_g_lock); 13107 if (fallback_ipif != NULL) 13108 ipif_refrele(fallback_ipif); 13109 *ipifp = ipif; 13110 return (ipif->ipif_net_mask); 13111 } 13112 } 13113 mutex_exit(&ill->ill_lock); 13114 } 13115 rw_exit(&ipst->ips_ill_g_lock); 13116 13117 *ipifp = fallback_ipif; 13118 return ((fallback_ipif != NULL) ? 13119 fallback_ipif->ipif_net_mask : net_mask); 13120 } 13121 13122 /* 13123 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13124 */ 13125 static void 13126 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13127 { 13128 IOCP iocp; 13129 ipft_t *ipft; 13130 ipllc_t *ipllc; 13131 mblk_t *mp1; 13132 cred_t *cr; 13133 int error = 0; 13134 conn_t *connp; 13135 13136 ip1dbg(("ip_wput_ioctl")); 13137 iocp = (IOCP)mp->b_rptr; 13138 mp1 = mp->b_cont; 13139 if (mp1 == NULL) { 13140 iocp->ioc_error = EINVAL; 13141 mp->b_datap->db_type = M_IOCNAK; 13142 iocp->ioc_count = 0; 13143 qreply(q, mp); 13144 return; 13145 } 13146 13147 /* 13148 * These IOCTLs provide various control capabilities to 13149 * upstream agents such as ULPs and processes. There 13150 * are currently two such IOCTLs implemented. They 13151 * are used by TCP to provide update information for 13152 * existing IREs and to forcibly delete an IRE for a 13153 * host that is not responding, thereby forcing an 13154 * attempt at a new route. 13155 */ 13156 iocp->ioc_error = EINVAL; 13157 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13158 goto done; 13159 13160 ipllc = (ipllc_t *)mp1->b_rptr; 13161 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13162 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13163 break; 13164 } 13165 /* 13166 * prefer credential from mblk over ioctl; 13167 * see ip_sioctl_copyin_setup 13168 */ 13169 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13170 13171 /* 13172 * Refhold the conn in case the request gets queued up in some lookup 13173 */ 13174 ASSERT(CONN_Q(q)); 13175 connp = Q_TO_CONN(q); 13176 CONN_INC_REF(connp); 13177 if (ipft->ipft_pfi && 13178 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13179 pullupmsg(mp1, ipft->ipft_min_size))) { 13180 error = (*ipft->ipft_pfi)(q, 13181 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13182 } 13183 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13184 /* 13185 * CONN_OPER_PENDING_DONE happens in the function called 13186 * through ipft_pfi above. 13187 */ 13188 return; 13189 } 13190 13191 CONN_OPER_PENDING_DONE(connp); 13192 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13193 freemsg(mp); 13194 return; 13195 } 13196 iocp->ioc_error = error; 13197 13198 done: 13199 mp->b_datap->db_type = M_IOCACK; 13200 if (iocp->ioc_error) 13201 iocp->ioc_count = 0; 13202 qreply(q, mp); 13203 } 13204 13205 /* 13206 * Lookup an ipif using the sequence id (ipif_seqid) 13207 */ 13208 ipif_t * 13209 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13210 { 13211 ipif_t *ipif; 13212 13213 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13214 13215 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13216 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13217 return (ipif); 13218 } 13219 return (NULL); 13220 } 13221 13222 /* 13223 * Assign a unique id for the ipif. This is used later when we send 13224 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13225 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13226 * IRE is added, we verify that ipif has not disappeared. 13227 */ 13228 13229 static void 13230 ipif_assign_seqid(ipif_t *ipif) 13231 { 13232 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13233 13234 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13235 } 13236 13237 /* 13238 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13239 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13240 * be inserted into the first space available in the list. The value of 13241 * ipif_id will then be set to the appropriate value for its position. 13242 */ 13243 static int 13244 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13245 { 13246 ill_t *ill; 13247 ipif_t *tipif; 13248 ipif_t **tipifp; 13249 int id; 13250 ip_stack_t *ipst; 13251 13252 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13253 IAM_WRITER_IPIF(ipif)); 13254 13255 ill = ipif->ipif_ill; 13256 ASSERT(ill != NULL); 13257 ipst = ill->ill_ipst; 13258 13259 /* 13260 * In the case of lo0:0 we already hold the ill_g_lock. 13261 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13262 * ipif_insert. Another such caller is ipif_move. 13263 */ 13264 if (acquire_g_lock) 13265 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13266 if (acquire_ill_lock) 13267 mutex_enter(&ill->ill_lock); 13268 id = ipif->ipif_id; 13269 tipifp = &(ill->ill_ipif); 13270 if (id == -1) { /* need to find a real id */ 13271 id = 0; 13272 while ((tipif = *tipifp) != NULL) { 13273 ASSERT(tipif->ipif_id >= id); 13274 if (tipif->ipif_id != id) 13275 break; /* non-consecutive id */ 13276 id++; 13277 tipifp = &(tipif->ipif_next); 13278 } 13279 /* limit number of logical interfaces */ 13280 if (id >= ipst->ips_ip_addrs_per_if) { 13281 if (acquire_ill_lock) 13282 mutex_exit(&ill->ill_lock); 13283 if (acquire_g_lock) 13284 rw_exit(&ipst->ips_ill_g_lock); 13285 return (-1); 13286 } 13287 ipif->ipif_id = id; /* assign new id */ 13288 } else if (id < ipst->ips_ip_addrs_per_if) { 13289 /* we have a real id; insert ipif in the right place */ 13290 while ((tipif = *tipifp) != NULL) { 13291 ASSERT(tipif->ipif_id != id); 13292 if (tipif->ipif_id > id) 13293 break; /* found correct location */ 13294 tipifp = &(tipif->ipif_next); 13295 } 13296 } else { 13297 if (acquire_ill_lock) 13298 mutex_exit(&ill->ill_lock); 13299 if (acquire_g_lock) 13300 rw_exit(&ipst->ips_ill_g_lock); 13301 return (-1); 13302 } 13303 13304 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13305 13306 ipif->ipif_next = tipif; 13307 *tipifp = ipif; 13308 if (acquire_ill_lock) 13309 mutex_exit(&ill->ill_lock); 13310 if (acquire_g_lock) 13311 rw_exit(&ipst->ips_ill_g_lock); 13312 return (0); 13313 } 13314 13315 static void 13316 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13317 { 13318 ipif_t **ipifp; 13319 ill_t *ill = ipif->ipif_ill; 13320 13321 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13322 if (acquire_ill_lock) 13323 mutex_enter(&ill->ill_lock); 13324 else 13325 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13326 13327 ipifp = &ill->ill_ipif; 13328 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13329 if (*ipifp == ipif) { 13330 *ipifp = ipif->ipif_next; 13331 break; 13332 } 13333 } 13334 13335 if (acquire_ill_lock) 13336 mutex_exit(&ill->ill_lock); 13337 } 13338 13339 /* 13340 * Allocate and initialize a new interface control structure. (Always 13341 * called as writer.) 13342 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13343 * is not part of the global linked list of ills. ipif_seqid is unique 13344 * in the system and to preserve the uniqueness, it is assigned only 13345 * when ill becomes part of the global list. At that point ill will 13346 * have a name. If it doesn't get assigned here, it will get assigned 13347 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13348 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13349 * the interface flags or any other information from the DL_INFO_ACK for 13350 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13351 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13352 * second DL_INFO_ACK comes in from the driver. 13353 */ 13354 static ipif_t * 13355 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13356 { 13357 ipif_t *ipif; 13358 phyint_t *phyi; 13359 13360 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13361 ill->ill_name, id, (void *)ill)); 13362 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13363 13364 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13365 return (NULL); 13366 *ipif = ipif_zero; /* start clean */ 13367 13368 ipif->ipif_ill = ill; 13369 ipif->ipif_id = id; /* could be -1 */ 13370 /* 13371 * Inherit the zoneid from the ill; for the shared stack instance 13372 * this is always the global zone 13373 */ 13374 ipif->ipif_zoneid = ill->ill_zoneid; 13375 13376 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13377 13378 ipif->ipif_refcnt = 0; 13379 ipif->ipif_saved_ire_cnt = 0; 13380 13381 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13382 mi_free(ipif); 13383 return (NULL); 13384 } 13385 /* -1 id should have been replaced by real id */ 13386 id = ipif->ipif_id; 13387 ASSERT(id >= 0); 13388 13389 if (ill->ill_name[0] != '\0') 13390 ipif_assign_seqid(ipif); 13391 13392 /* 13393 * Keep a copy of original id in ipif_orig_ipifid. Failback 13394 * will attempt to restore the original id. The SIOCSLIFOINDEX 13395 * ioctl sets ipif_orig_ipifid to zero. 13396 */ 13397 ipif->ipif_orig_ipifid = id; 13398 13399 /* 13400 * We grab the ill_lock and phyint_lock to protect the flag changes. 13401 * The ipif is still not up and can't be looked up until the 13402 * ioctl completes and the IPIF_CHANGING flag is cleared. 13403 */ 13404 mutex_enter(&ill->ill_lock); 13405 mutex_enter(&ill->ill_phyint->phyint_lock); 13406 /* 13407 * Set the running flag when logical interface zero is created. 13408 * For subsequent logical interfaces, a DLPI link down 13409 * notification message may have cleared the running flag to 13410 * indicate the link is down, so we shouldn't just blindly set it. 13411 */ 13412 if (id == 0) 13413 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13414 ipif->ipif_ire_type = ire_type; 13415 phyi = ill->ill_phyint; 13416 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13417 13418 if (ipif->ipif_isv6) { 13419 ill->ill_flags |= ILLF_IPV6; 13420 } else { 13421 ipaddr_t inaddr_any = INADDR_ANY; 13422 13423 ill->ill_flags |= ILLF_IPV4; 13424 13425 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13426 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13427 &ipif->ipif_v6lcl_addr); 13428 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13429 &ipif->ipif_v6src_addr); 13430 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13431 &ipif->ipif_v6subnet); 13432 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13433 &ipif->ipif_v6net_mask); 13434 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13435 &ipif->ipif_v6brd_addr); 13436 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13437 &ipif->ipif_v6pp_dst_addr); 13438 } 13439 13440 /* 13441 * Don't set the interface flags etc. now, will do it in 13442 * ip_ll_subnet_defaults. 13443 */ 13444 if (!initialize) { 13445 mutex_exit(&ill->ill_lock); 13446 mutex_exit(&ill->ill_phyint->phyint_lock); 13447 return (ipif); 13448 } 13449 ipif->ipif_mtu = ill->ill_max_mtu; 13450 13451 if (ill->ill_bcast_addr_length != 0) { 13452 /* 13453 * Later detect lack of DLPI driver multicast 13454 * capability by catching DL_ENABMULTI errors in 13455 * ip_rput_dlpi. 13456 */ 13457 ill->ill_flags |= ILLF_MULTICAST; 13458 if (!ipif->ipif_isv6) 13459 ipif->ipif_flags |= IPIF_BROADCAST; 13460 } else { 13461 if (ill->ill_net_type != IRE_LOOPBACK) { 13462 if (ipif->ipif_isv6) 13463 /* 13464 * Note: xresolv interfaces will eventually need 13465 * NOARP set here as well, but that will require 13466 * those external resolvers to have some 13467 * knowledge of that flag and act appropriately. 13468 * Not to be changed at present. 13469 */ 13470 ill->ill_flags |= ILLF_NONUD; 13471 else 13472 ill->ill_flags |= ILLF_NOARP; 13473 } 13474 if (ill->ill_phys_addr_length == 0) { 13475 if (ill->ill_media && 13476 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13477 ipif->ipif_flags |= IPIF_NOXMIT; 13478 phyi->phyint_flags |= PHYI_VIRTUAL; 13479 } else { 13480 /* pt-pt supports multicast. */ 13481 ill->ill_flags |= ILLF_MULTICAST; 13482 if (ill->ill_net_type == IRE_LOOPBACK) { 13483 phyi->phyint_flags |= 13484 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13485 } else { 13486 ipif->ipif_flags |= IPIF_POINTOPOINT; 13487 } 13488 } 13489 } 13490 } 13491 mutex_exit(&ill->ill_lock); 13492 mutex_exit(&ill->ill_phyint->phyint_lock); 13493 return (ipif); 13494 } 13495 13496 /* 13497 * If appropriate, send a message up to the resolver delete the entry 13498 * for the address of this interface which is going out of business. 13499 * (Always called as writer). 13500 * 13501 * NOTE : We need to check for NULL mps as some of the fields are 13502 * initialized only for some interface types. See ipif_resolver_up() 13503 * for details. 13504 */ 13505 void 13506 ipif_arp_down(ipif_t *ipif) 13507 { 13508 mblk_t *mp; 13509 ill_t *ill = ipif->ipif_ill; 13510 13511 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13512 ASSERT(IAM_WRITER_IPIF(ipif)); 13513 13514 /* Delete the mapping for the local address */ 13515 mp = ipif->ipif_arp_del_mp; 13516 if (mp != NULL) { 13517 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13518 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13519 putnext(ill->ill_rq, mp); 13520 ipif->ipif_arp_del_mp = NULL; 13521 } 13522 13523 /* 13524 * If this is the last ipif that is going down and there are no 13525 * duplicate addresses we may yet attempt to re-probe, then we need to 13526 * clean up ARP completely. 13527 */ 13528 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13529 13530 /* Send up AR_INTERFACE_DOWN message */ 13531 mp = ill->ill_arp_down_mp; 13532 if (mp != NULL) { 13533 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13534 *(unsigned *)mp->b_rptr, ill->ill_name, 13535 ipif->ipif_id)); 13536 putnext(ill->ill_rq, mp); 13537 ill->ill_arp_down_mp = NULL; 13538 } 13539 13540 /* Tell ARP to delete the multicast mappings */ 13541 mp = ill->ill_arp_del_mapping_mp; 13542 if (mp != NULL) { 13543 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13544 *(unsigned *)mp->b_rptr, ill->ill_name, 13545 ipif->ipif_id)); 13546 putnext(ill->ill_rq, mp); 13547 ill->ill_arp_del_mapping_mp = NULL; 13548 } 13549 } 13550 } 13551 13552 /* 13553 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13554 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13555 * that it wants the add_mp allocated in this function to be returned 13556 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13557 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13558 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13559 * as it does a ipif_arp_down after calling this function - which will 13560 * remove what we add here. 13561 * 13562 * Returns -1 on failures and 0 on success. 13563 */ 13564 int 13565 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13566 { 13567 mblk_t *del_mp = NULL; 13568 mblk_t *add_mp = NULL; 13569 mblk_t *mp; 13570 ill_t *ill = ipif->ipif_ill; 13571 phyint_t *phyi = ill->ill_phyint; 13572 ipaddr_t addr, mask, extract_mask = 0; 13573 arma_t *arma; 13574 uint8_t *maddr, *bphys_addr; 13575 uint32_t hw_start; 13576 dl_unitdata_req_t *dlur; 13577 13578 ASSERT(IAM_WRITER_IPIF(ipif)); 13579 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13580 return (0); 13581 13582 /* 13583 * Delete the existing mapping from ARP. Normally ipif_down 13584 * -> ipif_arp_down should send this up to ARP. The only 13585 * reason we would find this when we are switching from 13586 * Multicast to Broadcast where we did not do a down. 13587 */ 13588 mp = ill->ill_arp_del_mapping_mp; 13589 if (mp != NULL) { 13590 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13591 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13592 putnext(ill->ill_rq, mp); 13593 ill->ill_arp_del_mapping_mp = NULL; 13594 } 13595 13596 if (arp_add_mapping_mp != NULL) 13597 *arp_add_mapping_mp = NULL; 13598 13599 /* 13600 * Check that the address is not to long for the constant 13601 * length reserved in the template arma_t. 13602 */ 13603 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13604 return (-1); 13605 13606 /* Add mapping mblk */ 13607 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13608 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13609 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13610 (caddr_t)&addr); 13611 if (add_mp == NULL) 13612 return (-1); 13613 arma = (arma_t *)add_mp->b_rptr; 13614 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13615 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13616 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13617 13618 /* 13619 * Determine the broadcast address. 13620 */ 13621 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13622 if (ill->ill_sap_length < 0) 13623 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13624 else 13625 bphys_addr = (uchar_t *)dlur + 13626 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13627 /* 13628 * Check PHYI_MULTI_BCAST and length of physical 13629 * address to determine if we use the mapping or the 13630 * broadcast address. 13631 */ 13632 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13633 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13634 bphys_addr, maddr, &hw_start, &extract_mask)) 13635 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13636 13637 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13638 (ill->ill_flags & ILLF_MULTICAST)) { 13639 /* Make sure this will not match the "exact" entry. */ 13640 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13641 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13642 (caddr_t)&addr); 13643 if (del_mp == NULL) { 13644 freemsg(add_mp); 13645 return (-1); 13646 } 13647 bcopy(&extract_mask, (char *)arma + 13648 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13649 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13650 /* Use link-layer broadcast address for MULTI_BCAST */ 13651 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13652 ip2dbg(("ipif_arp_setup_multicast: adding" 13653 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13654 } else { 13655 arma->arma_hw_mapping_start = hw_start; 13656 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13657 " ARP setup for %s\n", ill->ill_name)); 13658 } 13659 } else { 13660 freemsg(add_mp); 13661 ASSERT(del_mp == NULL); 13662 /* It is neither MULTICAST nor MULTI_BCAST */ 13663 return (0); 13664 } 13665 ASSERT(add_mp != NULL && del_mp != NULL); 13666 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13667 ill->ill_arp_del_mapping_mp = del_mp; 13668 if (arp_add_mapping_mp != NULL) { 13669 /* The caller just wants the mblks allocated */ 13670 *arp_add_mapping_mp = add_mp; 13671 } else { 13672 /* The caller wants us to send it to arp */ 13673 putnext(ill->ill_rq, add_mp); 13674 } 13675 return (0); 13676 } 13677 13678 /* 13679 * Get the resolver set up for a new interface address. 13680 * (Always called as writer.) 13681 * Called both for IPv4 and IPv6 interfaces, 13682 * though it only sets up the resolver for v6 13683 * if it's an xresolv interface (one using an external resolver). 13684 * Honors ILLF_NOARP. 13685 * The enumerated value res_act is used to tune the behavior. 13686 * If set to Res_act_initial, then we set up all the resolver 13687 * structures for a new interface. If set to Res_act_move, then 13688 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13689 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13690 * asynchronous hardware address change notification. If set to 13691 * Res_act_defend, then we tell ARP that it needs to send a single 13692 * gratuitous message in defense of the address. 13693 * Returns error on failure. 13694 */ 13695 int 13696 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13697 { 13698 caddr_t addr; 13699 mblk_t *arp_up_mp = NULL; 13700 mblk_t *arp_down_mp = NULL; 13701 mblk_t *arp_add_mp = NULL; 13702 mblk_t *arp_del_mp = NULL; 13703 mblk_t *arp_add_mapping_mp = NULL; 13704 mblk_t *arp_del_mapping_mp = NULL; 13705 ill_t *ill = ipif->ipif_ill; 13706 uchar_t *area_p = NULL; 13707 uchar_t *ared_p = NULL; 13708 int err = ENOMEM; 13709 boolean_t was_dup; 13710 13711 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13712 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13713 ASSERT(IAM_WRITER_IPIF(ipif)); 13714 13715 was_dup = B_FALSE; 13716 if (res_act == Res_act_initial) { 13717 ipif->ipif_addr_ready = 0; 13718 /* 13719 * We're bringing an interface up here. There's no way that we 13720 * should need to shut down ARP now. 13721 */ 13722 mutex_enter(&ill->ill_lock); 13723 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13724 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13725 ill->ill_ipif_dup_count--; 13726 was_dup = B_TRUE; 13727 } 13728 mutex_exit(&ill->ill_lock); 13729 } 13730 if (ipif->ipif_recovery_id != 0) 13731 (void) untimeout(ipif->ipif_recovery_id); 13732 ipif->ipif_recovery_id = 0; 13733 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13734 ipif->ipif_addr_ready = 1; 13735 return (0); 13736 } 13737 /* NDP will set the ipif_addr_ready flag when it's ready */ 13738 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13739 return (0); 13740 13741 if (ill->ill_isv6) { 13742 /* 13743 * External resolver for IPv6 13744 */ 13745 ASSERT(res_act == Res_act_initial); 13746 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13747 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13748 area_p = (uchar_t *)&ip6_area_template; 13749 ared_p = (uchar_t *)&ip6_ared_template; 13750 } 13751 } else { 13752 /* 13753 * IPv4 arp case. If the ARP stream has already started 13754 * closing, fail this request for ARP bringup. Else 13755 * record the fact that an ARP bringup is pending. 13756 */ 13757 mutex_enter(&ill->ill_lock); 13758 if (ill->ill_arp_closing) { 13759 mutex_exit(&ill->ill_lock); 13760 err = EINVAL; 13761 goto failed; 13762 } else { 13763 if (ill->ill_ipif_up_count == 0 && 13764 ill->ill_ipif_dup_count == 0 && !was_dup) 13765 ill->ill_arp_bringup_pending = 1; 13766 mutex_exit(&ill->ill_lock); 13767 } 13768 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13769 addr = (caddr_t)&ipif->ipif_lcl_addr; 13770 area_p = (uchar_t *)&ip_area_template; 13771 ared_p = (uchar_t *)&ip_ared_template; 13772 } 13773 } 13774 13775 /* 13776 * Add an entry for the local address in ARP only if it 13777 * is not UNNUMBERED and the address is not INADDR_ANY. 13778 */ 13779 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13780 area_t *area; 13781 13782 /* Now ask ARP to publish our address. */ 13783 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13784 if (arp_add_mp == NULL) 13785 goto failed; 13786 area = (area_t *)arp_add_mp->b_rptr; 13787 if (res_act != Res_act_initial) { 13788 /* 13789 * Copy the new hardware address and length into 13790 * arp_add_mp to be sent to ARP. 13791 */ 13792 area->area_hw_addr_length = ill->ill_phys_addr_length; 13793 bcopy(ill->ill_phys_addr, 13794 ((char *)area + area->area_hw_addr_offset), 13795 area->area_hw_addr_length); 13796 } 13797 13798 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13799 ACE_F_MYADDR; 13800 13801 if (res_act == Res_act_defend) { 13802 area->area_flags |= ACE_F_DEFEND; 13803 /* 13804 * If we're just defending our address now, then 13805 * there's no need to set up ARP multicast mappings. 13806 * The publish command is enough. 13807 */ 13808 goto done; 13809 } 13810 13811 if (res_act != Res_act_initial) 13812 goto arp_setup_multicast; 13813 13814 /* 13815 * Allocate an ARP deletion message so we know we can tell ARP 13816 * when the interface goes down. 13817 */ 13818 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13819 if (arp_del_mp == NULL) 13820 goto failed; 13821 13822 } else { 13823 if (res_act != Res_act_initial) 13824 goto done; 13825 } 13826 /* 13827 * Need to bring up ARP or setup multicast mapping only 13828 * when the first interface is coming UP. 13829 */ 13830 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13831 was_dup) { 13832 goto done; 13833 } 13834 13835 /* 13836 * Allocate an ARP down message (to be saved) and an ARP up 13837 * message. 13838 */ 13839 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13840 if (arp_down_mp == NULL) 13841 goto failed; 13842 13843 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13844 if (arp_up_mp == NULL) 13845 goto failed; 13846 13847 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13848 goto done; 13849 13850 arp_setup_multicast: 13851 /* 13852 * Setup the multicast mappings. This function initializes 13853 * ill_arp_del_mapping_mp also. This does not need to be done for 13854 * IPv6. 13855 */ 13856 if (!ill->ill_isv6) { 13857 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13858 if (err != 0) 13859 goto failed; 13860 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13861 ASSERT(arp_add_mapping_mp != NULL); 13862 } 13863 13864 done: 13865 if (arp_del_mp != NULL) { 13866 ASSERT(ipif->ipif_arp_del_mp == NULL); 13867 ipif->ipif_arp_del_mp = arp_del_mp; 13868 } 13869 if (arp_down_mp != NULL) { 13870 ASSERT(ill->ill_arp_down_mp == NULL); 13871 ill->ill_arp_down_mp = arp_down_mp; 13872 } 13873 if (arp_del_mapping_mp != NULL) { 13874 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13875 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13876 } 13877 if (arp_up_mp != NULL) { 13878 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13879 ill->ill_name, ipif->ipif_id)); 13880 putnext(ill->ill_rq, arp_up_mp); 13881 } 13882 if (arp_add_mp != NULL) { 13883 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13884 ill->ill_name, ipif->ipif_id)); 13885 /* 13886 * If it's an extended ARP implementation, then we'll wait to 13887 * hear that DAD has finished before using the interface. 13888 */ 13889 if (!ill->ill_arp_extend) 13890 ipif->ipif_addr_ready = 1; 13891 putnext(ill->ill_rq, arp_add_mp); 13892 } else { 13893 ipif->ipif_addr_ready = 1; 13894 } 13895 if (arp_add_mapping_mp != NULL) { 13896 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13897 ill->ill_name, ipif->ipif_id)); 13898 putnext(ill->ill_rq, arp_add_mapping_mp); 13899 } 13900 if (res_act != Res_act_initial) 13901 return (0); 13902 13903 if (ill->ill_flags & ILLF_NOARP) 13904 err = ill_arp_off(ill); 13905 else 13906 err = ill_arp_on(ill); 13907 if (err != 0) { 13908 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13909 freemsg(ipif->ipif_arp_del_mp); 13910 freemsg(ill->ill_arp_down_mp); 13911 freemsg(ill->ill_arp_del_mapping_mp); 13912 ipif->ipif_arp_del_mp = NULL; 13913 ill->ill_arp_down_mp = NULL; 13914 ill->ill_arp_del_mapping_mp = NULL; 13915 return (err); 13916 } 13917 return ((ill->ill_ipif_up_count != 0 || was_dup || 13918 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13919 13920 failed: 13921 ip1dbg(("ipif_resolver_up: FAILED\n")); 13922 freemsg(arp_add_mp); 13923 freemsg(arp_del_mp); 13924 freemsg(arp_add_mapping_mp); 13925 freemsg(arp_up_mp); 13926 freemsg(arp_down_mp); 13927 ill->ill_arp_bringup_pending = 0; 13928 return (err); 13929 } 13930 13931 /* 13932 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13933 * just gone back up. 13934 */ 13935 static void 13936 ipif_arp_start_dad(ipif_t *ipif) 13937 { 13938 ill_t *ill = ipif->ipif_ill; 13939 mblk_t *arp_add_mp; 13940 area_t *area; 13941 13942 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13943 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13944 ipif->ipif_lcl_addr == INADDR_ANY || 13945 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13946 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13947 /* 13948 * If we can't contact ARP for some reason, that's not really a 13949 * problem. Just send out the routing socket notification that 13950 * DAD completion would have done, and continue. 13951 */ 13952 ipif_mask_reply(ipif); 13953 ip_rts_ifmsg(ipif); 13954 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13955 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13956 ipif->ipif_addr_ready = 1; 13957 return; 13958 } 13959 13960 /* Setting the 'unverified' flag restarts DAD */ 13961 area = (area_t *)arp_add_mp->b_rptr; 13962 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13963 ACE_F_UNVERIFIED; 13964 putnext(ill->ill_rq, arp_add_mp); 13965 } 13966 13967 static void 13968 ipif_ndp_start_dad(ipif_t *ipif) 13969 { 13970 nce_t *nce; 13971 13972 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13973 if (nce == NULL) 13974 return; 13975 13976 if (!ndp_restart_dad(nce)) { 13977 /* 13978 * If we can't restart DAD for some reason, that's not really a 13979 * problem. Just send out the routing socket notification that 13980 * DAD completion would have done, and continue. 13981 */ 13982 ip_rts_ifmsg(ipif); 13983 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13984 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13985 ipif->ipif_addr_ready = 1; 13986 } 13987 NCE_REFRELE(nce); 13988 } 13989 13990 /* 13991 * Restart duplicate address detection on all interfaces on the given ill. 13992 * 13993 * This is called when an interface transitions from down to up 13994 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13995 * 13996 * Note that since the underlying physical link has transitioned, we must cause 13997 * at least one routing socket message to be sent here, either via DAD 13998 * completion or just by default on the first ipif. (If we don't do this, then 13999 * in.mpathd will see long delays when doing link-based failure recovery.) 14000 */ 14001 void 14002 ill_restart_dad(ill_t *ill, boolean_t went_up) 14003 { 14004 ipif_t *ipif; 14005 14006 if (ill == NULL) 14007 return; 14008 14009 /* 14010 * If layer two doesn't support duplicate address detection, then just 14011 * send the routing socket message now and be done with it. 14012 */ 14013 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14014 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14015 ip_rts_ifmsg(ill->ill_ipif); 14016 return; 14017 } 14018 14019 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14020 if (went_up) { 14021 if (ipif->ipif_flags & IPIF_UP) { 14022 if (ill->ill_isv6) 14023 ipif_ndp_start_dad(ipif); 14024 else 14025 ipif_arp_start_dad(ipif); 14026 } else if (ill->ill_isv6 && 14027 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14028 /* 14029 * For IPv4, the ARP module itself will 14030 * automatically start the DAD process when it 14031 * sees DL_NOTE_LINK_UP. We respond to the 14032 * AR_CN_READY at the completion of that task. 14033 * For IPv6, we must kick off the bring-up 14034 * process now. 14035 */ 14036 ndp_do_recovery(ipif); 14037 } else { 14038 /* 14039 * Unfortunately, the first ipif is "special" 14040 * and represents the underlying ill in the 14041 * routing socket messages. Thus, when this 14042 * one ipif is down, we must still notify so 14043 * that the user knows the IFF_RUNNING status 14044 * change. (If the first ipif is up, then 14045 * we'll handle eventual routing socket 14046 * notification via DAD completion.) 14047 */ 14048 if (ipif == ill->ill_ipif) 14049 ip_rts_ifmsg(ill->ill_ipif); 14050 } 14051 } else { 14052 /* 14053 * After link down, we'll need to send a new routing 14054 * message when the link comes back, so clear 14055 * ipif_addr_ready. 14056 */ 14057 ipif->ipif_addr_ready = 0; 14058 } 14059 } 14060 14061 /* 14062 * If we've torn down links, then notify the user right away. 14063 */ 14064 if (!went_up) 14065 ip_rts_ifmsg(ill->ill_ipif); 14066 } 14067 14068 /* 14069 * Wakeup all threads waiting to enter the ipsq, and sleeping 14070 * on any of the ills in this ipsq. The ill_lock of the ill 14071 * must be held so that waiters don't miss wakeups 14072 */ 14073 static void 14074 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14075 { 14076 phyint_t *phyint; 14077 14078 phyint = ipsq->ipsq_phyint_list; 14079 while (phyint != NULL) { 14080 if (phyint->phyint_illv4) { 14081 if (!caller_holds_lock) 14082 mutex_enter(&phyint->phyint_illv4->ill_lock); 14083 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14084 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14085 if (!caller_holds_lock) 14086 mutex_exit(&phyint->phyint_illv4->ill_lock); 14087 } 14088 if (phyint->phyint_illv6) { 14089 if (!caller_holds_lock) 14090 mutex_enter(&phyint->phyint_illv6->ill_lock); 14091 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14092 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14093 if (!caller_holds_lock) 14094 mutex_exit(&phyint->phyint_illv6->ill_lock); 14095 } 14096 phyint = phyint->phyint_ipsq_next; 14097 } 14098 } 14099 14100 static ipsq_t * 14101 ipsq_create(char *groupname, ip_stack_t *ipst) 14102 { 14103 ipsq_t *ipsq; 14104 14105 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14106 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14107 if (ipsq == NULL) { 14108 return (NULL); 14109 } 14110 14111 if (groupname != NULL) 14112 (void) strcpy(ipsq->ipsq_name, groupname); 14113 else 14114 ipsq->ipsq_name[0] = '\0'; 14115 14116 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14117 ipsq->ipsq_flags |= IPSQ_GROUP; 14118 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14119 ipst->ips_ipsq_g_head = ipsq; 14120 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14121 return (ipsq); 14122 } 14123 14124 /* 14125 * Return an ipsq correspoding to the groupname. If 'create' is true 14126 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14127 * uniquely with an IPMP group. However during IPMP groupname operations, 14128 * multiple IPMP groups may be associated with a single ipsq. But no 14129 * IPMP group can be associated with more than 1 ipsq at any time. 14130 * For example 14131 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14132 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14133 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14134 * 14135 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14136 * status shown below during the execution of the above command. 14137 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14138 * 14139 * After the completion of the above groupname command we return to the stable 14140 * state shown below. 14141 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14142 * hme4 mpk17-85 ipsq2 mpk17-85 1 14143 * 14144 * Because of the above, we don't search based on the ipsq_name since that 14145 * would miss the correct ipsq during certain windows as shown above. 14146 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14147 * natural state. 14148 */ 14149 static ipsq_t * 14150 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14151 ip_stack_t *ipst) 14152 { 14153 ipsq_t *ipsq; 14154 int group_len; 14155 phyint_t *phyint; 14156 14157 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14158 14159 group_len = strlen(groupname); 14160 ASSERT(group_len != 0); 14161 group_len++; 14162 14163 for (ipsq = ipst->ips_ipsq_g_head; 14164 ipsq != NULL; 14165 ipsq = ipsq->ipsq_next) { 14166 /* 14167 * When an ipsq is being split, and ill_split_ipsq 14168 * calls this function, we exclude it from being considered. 14169 */ 14170 if (ipsq == exclude_ipsq) 14171 continue; 14172 14173 /* 14174 * Compare against the ipsq_name. The groupname change happens 14175 * in 2 phases. The 1st phase merges the from group into 14176 * the to group's ipsq, by calling ill_merge_groups and restarts 14177 * the ioctl. The 2nd phase then locates the ipsq again thru 14178 * ipsq_name. At this point the phyint_groupname has not been 14179 * updated. 14180 */ 14181 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14182 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14183 /* 14184 * Verify that an ipmp groupname is exactly 14185 * part of 1 ipsq and is not found in any other 14186 * ipsq. 14187 */ 14188 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14189 NULL); 14190 return (ipsq); 14191 } 14192 14193 /* 14194 * Comparison against ipsq_name alone is not sufficient. 14195 * In the case when groups are currently being 14196 * merged, the ipsq could hold other IPMP groups temporarily. 14197 * so we walk the phyint list and compare against the 14198 * phyint_groupname as well. 14199 */ 14200 phyint = ipsq->ipsq_phyint_list; 14201 while (phyint != NULL) { 14202 if ((group_len == phyint->phyint_groupname_len) && 14203 (bcmp(phyint->phyint_groupname, groupname, 14204 group_len) == 0)) { 14205 /* 14206 * Verify that an ipmp groupname is exactly 14207 * part of 1 ipsq and is not found in any other 14208 * ipsq. 14209 */ 14210 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14211 ipst) == NULL); 14212 return (ipsq); 14213 } 14214 phyint = phyint->phyint_ipsq_next; 14215 } 14216 } 14217 if (create) 14218 ipsq = ipsq_create(groupname, ipst); 14219 return (ipsq); 14220 } 14221 14222 static void 14223 ipsq_delete(ipsq_t *ipsq) 14224 { 14225 ipsq_t *nipsq; 14226 ipsq_t *pipsq = NULL; 14227 ip_stack_t *ipst = ipsq->ipsq_ipst; 14228 14229 /* 14230 * We don't hold the ipsq lock, but we are sure no new 14231 * messages can land up, since the ipsq_refs is zero. 14232 * i.e. this ipsq is unnamed and no phyint or phyint group 14233 * is associated with this ipsq. (Lookups are based on ill_name 14234 * or phyint_groupname) 14235 */ 14236 ASSERT(ipsq->ipsq_refs == 0); 14237 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14238 ASSERT(ipsq->ipsq_pending_mp == NULL); 14239 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14240 /* 14241 * This is not the ipsq of an IPMP group. 14242 */ 14243 ipsq->ipsq_ipst = NULL; 14244 kmem_free(ipsq, sizeof (ipsq_t)); 14245 return; 14246 } 14247 14248 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14249 14250 /* 14251 * Locate the ipsq before we can remove it from 14252 * the singly linked list of ipsq's. 14253 */ 14254 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14255 nipsq = nipsq->ipsq_next) { 14256 if (nipsq == ipsq) { 14257 break; 14258 } 14259 pipsq = nipsq; 14260 } 14261 14262 ASSERT(nipsq == ipsq); 14263 14264 /* unlink ipsq from the list */ 14265 if (pipsq != NULL) 14266 pipsq->ipsq_next = ipsq->ipsq_next; 14267 else 14268 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14269 ipsq->ipsq_ipst = NULL; 14270 kmem_free(ipsq, sizeof (ipsq_t)); 14271 rw_exit(&ipst->ips_ill_g_lock); 14272 } 14273 14274 static void 14275 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14276 queue_t *q) 14277 { 14278 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14279 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14280 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14281 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14282 ASSERT(current_mp != NULL); 14283 14284 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14285 NEW_OP, NULL); 14286 14287 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14288 new_ipsq->ipsq_xopq_mphead != NULL); 14289 14290 /* 14291 * move from old ipsq to the new ipsq. 14292 */ 14293 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14294 if (old_ipsq->ipsq_xopq_mphead != NULL) 14295 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14296 14297 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14298 } 14299 14300 void 14301 ill_group_cleanup(ill_t *ill) 14302 { 14303 ill_t *ill_v4; 14304 ill_t *ill_v6; 14305 ipif_t *ipif; 14306 14307 ill_v4 = ill->ill_phyint->phyint_illv4; 14308 ill_v6 = ill->ill_phyint->phyint_illv6; 14309 14310 if (ill_v4 != NULL) { 14311 mutex_enter(&ill_v4->ill_lock); 14312 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14313 ipif = ipif->ipif_next) { 14314 IPIF_UNMARK_MOVING(ipif); 14315 } 14316 ill_v4->ill_up_ipifs = B_FALSE; 14317 mutex_exit(&ill_v4->ill_lock); 14318 } 14319 14320 if (ill_v6 != NULL) { 14321 mutex_enter(&ill_v6->ill_lock); 14322 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14323 ipif = ipif->ipif_next) { 14324 IPIF_UNMARK_MOVING(ipif); 14325 } 14326 ill_v6->ill_up_ipifs = B_FALSE; 14327 mutex_exit(&ill_v6->ill_lock); 14328 } 14329 } 14330 /* 14331 * This function is called when an ill has had a change in its group status 14332 * to bring up all the ipifs that were up before the change. 14333 */ 14334 int 14335 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14336 { 14337 ipif_t *ipif; 14338 ill_t *ill_v4; 14339 ill_t *ill_v6; 14340 ill_t *from_ill; 14341 int err = 0; 14342 14343 14344 ASSERT(IAM_WRITER_ILL(ill)); 14345 14346 /* 14347 * Except for ipif_state_flags and ill_state_flags the other 14348 * fields of the ipif/ill that are modified below are protected 14349 * implicitly since we are a writer. We would have tried to down 14350 * even an ipif that was already down, in ill_down_ipifs. So we 14351 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14352 */ 14353 ill_v4 = ill->ill_phyint->phyint_illv4; 14354 ill_v6 = ill->ill_phyint->phyint_illv6; 14355 if (ill_v4 != NULL) { 14356 ill_v4->ill_up_ipifs = B_TRUE; 14357 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14358 ipif = ipif->ipif_next) { 14359 mutex_enter(&ill_v4->ill_lock); 14360 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14361 IPIF_UNMARK_MOVING(ipif); 14362 mutex_exit(&ill_v4->ill_lock); 14363 if (ipif->ipif_was_up) { 14364 if (!(ipif->ipif_flags & IPIF_UP)) 14365 err = ipif_up(ipif, q, mp); 14366 ipif->ipif_was_up = B_FALSE; 14367 if (err != 0) { 14368 /* 14369 * Can there be any other error ? 14370 */ 14371 ASSERT(err == EINPROGRESS); 14372 return (err); 14373 } 14374 } 14375 } 14376 mutex_enter(&ill_v4->ill_lock); 14377 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14378 mutex_exit(&ill_v4->ill_lock); 14379 ill_v4->ill_up_ipifs = B_FALSE; 14380 if (ill_v4->ill_move_in_progress) { 14381 ASSERT(ill_v4->ill_move_peer != NULL); 14382 ill_v4->ill_move_in_progress = B_FALSE; 14383 from_ill = ill_v4->ill_move_peer; 14384 from_ill->ill_move_in_progress = B_FALSE; 14385 from_ill->ill_move_peer = NULL; 14386 mutex_enter(&from_ill->ill_lock); 14387 from_ill->ill_state_flags &= ~ILL_CHANGING; 14388 mutex_exit(&from_ill->ill_lock); 14389 if (ill_v6 == NULL) { 14390 if (from_ill->ill_phyint->phyint_flags & 14391 PHYI_STANDBY) { 14392 phyint_inactive(from_ill->ill_phyint); 14393 } 14394 if (ill_v4->ill_phyint->phyint_flags & 14395 PHYI_STANDBY) { 14396 phyint_inactive(ill_v4->ill_phyint); 14397 } 14398 } 14399 ill_v4->ill_move_peer = NULL; 14400 } 14401 } 14402 14403 if (ill_v6 != NULL) { 14404 ill_v6->ill_up_ipifs = B_TRUE; 14405 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14406 ipif = ipif->ipif_next) { 14407 mutex_enter(&ill_v6->ill_lock); 14408 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14409 IPIF_UNMARK_MOVING(ipif); 14410 mutex_exit(&ill_v6->ill_lock); 14411 if (ipif->ipif_was_up) { 14412 if (!(ipif->ipif_flags & IPIF_UP)) 14413 err = ipif_up(ipif, q, mp); 14414 ipif->ipif_was_up = B_FALSE; 14415 if (err != 0) { 14416 /* 14417 * Can there be any other error ? 14418 */ 14419 ASSERT(err == EINPROGRESS); 14420 return (err); 14421 } 14422 } 14423 } 14424 mutex_enter(&ill_v6->ill_lock); 14425 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14426 mutex_exit(&ill_v6->ill_lock); 14427 ill_v6->ill_up_ipifs = B_FALSE; 14428 if (ill_v6->ill_move_in_progress) { 14429 ASSERT(ill_v6->ill_move_peer != NULL); 14430 ill_v6->ill_move_in_progress = B_FALSE; 14431 from_ill = ill_v6->ill_move_peer; 14432 from_ill->ill_move_in_progress = B_FALSE; 14433 from_ill->ill_move_peer = NULL; 14434 mutex_enter(&from_ill->ill_lock); 14435 from_ill->ill_state_flags &= ~ILL_CHANGING; 14436 mutex_exit(&from_ill->ill_lock); 14437 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14438 phyint_inactive(from_ill->ill_phyint); 14439 } 14440 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14441 phyint_inactive(ill_v6->ill_phyint); 14442 } 14443 ill_v6->ill_move_peer = NULL; 14444 } 14445 } 14446 return (0); 14447 } 14448 14449 /* 14450 * bring down all the approriate ipifs. 14451 */ 14452 /* ARGSUSED */ 14453 static void 14454 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14455 { 14456 ipif_t *ipif; 14457 14458 ASSERT(IAM_WRITER_ILL(ill)); 14459 14460 /* 14461 * Except for ipif_state_flags the other fields of the ipif/ill that 14462 * are modified below are protected implicitly since we are a writer 14463 */ 14464 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14465 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14466 continue; 14467 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14468 /* 14469 * We go through the ipif_down logic even if the ipif 14470 * is already down, since routes can be added based 14471 * on down ipifs. Going through ipif_down once again 14472 * will delete any IREs created based on these routes. 14473 */ 14474 if (ipif->ipif_flags & IPIF_UP) 14475 ipif->ipif_was_up = B_TRUE; 14476 /* 14477 * If called with chk_nofailover true ipif is moving. 14478 */ 14479 mutex_enter(&ill->ill_lock); 14480 if (chk_nofailover) { 14481 ipif->ipif_state_flags |= 14482 IPIF_MOVING | IPIF_CHANGING; 14483 } else { 14484 ipif->ipif_state_flags |= IPIF_CHANGING; 14485 } 14486 mutex_exit(&ill->ill_lock); 14487 /* 14488 * Need to re-create net/subnet bcast ires if 14489 * they are dependent on ipif. 14490 */ 14491 if (!ipif->ipif_isv6) 14492 ipif_check_bcast_ires(ipif); 14493 (void) ipif_logical_down(ipif, NULL, NULL); 14494 ipif_non_duplicate(ipif); 14495 ipif_down_tail(ipif); 14496 } 14497 } 14498 } 14499 14500 #define IPSQ_INC_REF(ipsq, ipst) { \ 14501 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14502 (ipsq)->ipsq_refs++; \ 14503 } 14504 14505 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14506 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14507 (ipsq)->ipsq_refs--; \ 14508 if ((ipsq)->ipsq_refs == 0) \ 14509 (ipsq)->ipsq_name[0] = '\0'; \ 14510 } 14511 14512 /* 14513 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14514 * new_ipsq. 14515 */ 14516 static void 14517 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14518 { 14519 phyint_t *phyint; 14520 phyint_t *next_phyint; 14521 14522 /* 14523 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14524 * writer and the ill_lock of the ill in question. Also the dest 14525 * ipsq can't vanish while we hold the ill_g_lock as writer. 14526 */ 14527 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14528 14529 phyint = cur_ipsq->ipsq_phyint_list; 14530 cur_ipsq->ipsq_phyint_list = NULL; 14531 while (phyint != NULL) { 14532 next_phyint = phyint->phyint_ipsq_next; 14533 IPSQ_DEC_REF(cur_ipsq, ipst); 14534 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14535 new_ipsq->ipsq_phyint_list = phyint; 14536 IPSQ_INC_REF(new_ipsq, ipst); 14537 phyint->phyint_ipsq = new_ipsq; 14538 phyint = next_phyint; 14539 } 14540 } 14541 14542 #define SPLIT_SUCCESS 0 14543 #define SPLIT_NOT_NEEDED 1 14544 #define SPLIT_FAILED 2 14545 14546 int 14547 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14548 ip_stack_t *ipst) 14549 { 14550 ipsq_t *newipsq = NULL; 14551 14552 /* 14553 * Assertions denote pre-requisites for changing the ipsq of 14554 * a phyint 14555 */ 14556 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14557 /* 14558 * <ill-phyint> assocs can't change while ill_g_lock 14559 * is held as writer. See ill_phyint_reinit() 14560 */ 14561 ASSERT(phyint->phyint_illv4 == NULL || 14562 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14563 ASSERT(phyint->phyint_illv6 == NULL || 14564 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14565 14566 if ((phyint->phyint_groupname_len != 14567 (strlen(cur_ipsq->ipsq_name) + 1) || 14568 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14569 phyint->phyint_groupname_len) != 0)) { 14570 /* 14571 * Once we fail in creating a new ipsq due to memory shortage, 14572 * don't attempt to create new ipsq again, based on another 14573 * phyint, since we want all phyints belonging to an IPMP group 14574 * to be in the same ipsq even in the event of mem alloc fails. 14575 */ 14576 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14577 cur_ipsq, ipst); 14578 if (newipsq == NULL) { 14579 /* Memory allocation failure */ 14580 return (SPLIT_FAILED); 14581 } else { 14582 /* ipsq_refs protected by ill_g_lock (writer) */ 14583 IPSQ_DEC_REF(cur_ipsq, ipst); 14584 phyint->phyint_ipsq = newipsq; 14585 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14586 newipsq->ipsq_phyint_list = phyint; 14587 IPSQ_INC_REF(newipsq, ipst); 14588 return (SPLIT_SUCCESS); 14589 } 14590 } 14591 return (SPLIT_NOT_NEEDED); 14592 } 14593 14594 /* 14595 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14596 * to do this split 14597 */ 14598 static int 14599 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14600 { 14601 ipsq_t *newipsq; 14602 14603 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14604 /* 14605 * <ill-phyint> assocs can't change while ill_g_lock 14606 * is held as writer. See ill_phyint_reinit() 14607 */ 14608 14609 ASSERT(phyint->phyint_illv4 == NULL || 14610 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14611 ASSERT(phyint->phyint_illv6 == NULL || 14612 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14613 14614 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14615 phyint->phyint_illv4: phyint->phyint_illv6)) { 14616 /* 14617 * ipsq_init failed due to no memory 14618 * caller will use the same ipsq 14619 */ 14620 return (SPLIT_FAILED); 14621 } 14622 14623 /* ipsq_ref is protected by ill_g_lock (writer) */ 14624 IPSQ_DEC_REF(cur_ipsq, ipst); 14625 14626 /* 14627 * This is a new ipsq that is unknown to the world. 14628 * So we don't need to hold ipsq_lock, 14629 */ 14630 newipsq = phyint->phyint_ipsq; 14631 newipsq->ipsq_writer = NULL; 14632 newipsq->ipsq_reentry_cnt--; 14633 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14634 #ifdef DEBUG 14635 newipsq->ipsq_depth = 0; 14636 #endif 14637 14638 return (SPLIT_SUCCESS); 14639 } 14640 14641 /* 14642 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14643 * ipsq's representing their individual groups or themselves. Return 14644 * whether split needs to be retried again later. 14645 */ 14646 static boolean_t 14647 ill_split_ipsq(ipsq_t *cur_ipsq) 14648 { 14649 phyint_t *phyint; 14650 phyint_t *next_phyint; 14651 int error; 14652 boolean_t need_retry = B_FALSE; 14653 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14654 14655 phyint = cur_ipsq->ipsq_phyint_list; 14656 cur_ipsq->ipsq_phyint_list = NULL; 14657 while (phyint != NULL) { 14658 next_phyint = phyint->phyint_ipsq_next; 14659 /* 14660 * 'created' will tell us whether the callee actually 14661 * created an ipsq. Lack of memory may force the callee 14662 * to return without creating an ipsq. 14663 */ 14664 if (phyint->phyint_groupname == NULL) { 14665 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14666 } else { 14667 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14668 need_retry, ipst); 14669 } 14670 14671 switch (error) { 14672 case SPLIT_FAILED: 14673 need_retry = B_TRUE; 14674 /* FALLTHRU */ 14675 case SPLIT_NOT_NEEDED: 14676 /* 14677 * Keep it on the list. 14678 */ 14679 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14680 cur_ipsq->ipsq_phyint_list = phyint; 14681 break; 14682 case SPLIT_SUCCESS: 14683 break; 14684 default: 14685 ASSERT(0); 14686 } 14687 14688 phyint = next_phyint; 14689 } 14690 return (need_retry); 14691 } 14692 14693 /* 14694 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14695 * and return the ills in the list. This list will be 14696 * needed to unlock all the ills later on by the caller. 14697 * The <ill-ipsq> associations could change between the 14698 * lock and unlock. Hence the unlock can't traverse the 14699 * ipsq to get the list of ills. 14700 */ 14701 static int 14702 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14703 { 14704 int cnt = 0; 14705 phyint_t *phyint; 14706 ip_stack_t *ipst = ipsq->ipsq_ipst; 14707 14708 /* 14709 * The caller holds ill_g_lock to ensure that the ill memberships 14710 * of the ipsq don't change 14711 */ 14712 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14713 14714 phyint = ipsq->ipsq_phyint_list; 14715 while (phyint != NULL) { 14716 if (phyint->phyint_illv4 != NULL) { 14717 ASSERT(cnt < list_max); 14718 list[cnt++] = phyint->phyint_illv4; 14719 } 14720 if (phyint->phyint_illv6 != NULL) { 14721 ASSERT(cnt < list_max); 14722 list[cnt++] = phyint->phyint_illv6; 14723 } 14724 phyint = phyint->phyint_ipsq_next; 14725 } 14726 ill_lock_ills(list, cnt); 14727 return (cnt); 14728 } 14729 14730 void 14731 ill_lock_ills(ill_t **list, int cnt) 14732 { 14733 int i; 14734 14735 if (cnt > 1) { 14736 boolean_t try_again; 14737 do { 14738 try_again = B_FALSE; 14739 for (i = 0; i < cnt - 1; i++) { 14740 if (list[i] < list[i + 1]) { 14741 ill_t *tmp; 14742 14743 /* swap the elements */ 14744 tmp = list[i]; 14745 list[i] = list[i + 1]; 14746 list[i + 1] = tmp; 14747 try_again = B_TRUE; 14748 } 14749 } 14750 } while (try_again); 14751 } 14752 14753 for (i = 0; i < cnt; i++) { 14754 if (i == 0) { 14755 if (list[i] != NULL) 14756 mutex_enter(&list[i]->ill_lock); 14757 else 14758 return; 14759 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14760 mutex_enter(&list[i]->ill_lock); 14761 } 14762 } 14763 } 14764 14765 void 14766 ill_unlock_ills(ill_t **list, int cnt) 14767 { 14768 int i; 14769 14770 for (i = 0; i < cnt; i++) { 14771 if ((i == 0) && (list[i] != NULL)) { 14772 mutex_exit(&list[i]->ill_lock); 14773 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14774 mutex_exit(&list[i]->ill_lock); 14775 } 14776 } 14777 } 14778 14779 /* 14780 * Merge all the ills from 1 ipsq group into another ipsq group. 14781 * The source ipsq group is specified by the ipsq associated with 14782 * 'from_ill'. The destination ipsq group is specified by the ipsq 14783 * associated with 'to_ill' or 'groupname' respectively. 14784 * Note that ipsq itself does not have a reference count mechanism 14785 * and functions don't look up an ipsq and pass it around. Instead 14786 * functions pass around an ill or groupname, and the ipsq is looked 14787 * up from the ill or groupname and the required operation performed 14788 * atomically with the lookup on the ipsq. 14789 */ 14790 static int 14791 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14792 queue_t *q) 14793 { 14794 ipsq_t *old_ipsq; 14795 ipsq_t *new_ipsq; 14796 ill_t **ill_list; 14797 int cnt; 14798 size_t ill_list_size; 14799 boolean_t became_writer_on_new_sq = B_FALSE; 14800 ip_stack_t *ipst = from_ill->ill_ipst; 14801 14802 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14803 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14804 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14805 14806 /* 14807 * Need to hold ill_g_lock as writer and also the ill_lock to 14808 * change the <ill-ipsq> assoc of an ill. Need to hold the 14809 * ipsq_lock to prevent new messages from landing on an ipsq. 14810 */ 14811 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14812 14813 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14814 if (groupname != NULL) 14815 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14816 else { 14817 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14818 } 14819 14820 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14821 14822 /* 14823 * both groups are on the same ipsq. 14824 */ 14825 if (old_ipsq == new_ipsq) { 14826 rw_exit(&ipst->ips_ill_g_lock); 14827 return (0); 14828 } 14829 14830 cnt = old_ipsq->ipsq_refs << 1; 14831 ill_list_size = cnt * sizeof (ill_t *); 14832 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14833 if (ill_list == NULL) { 14834 rw_exit(&ipst->ips_ill_g_lock); 14835 return (ENOMEM); 14836 } 14837 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14838 14839 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14840 mutex_enter(&new_ipsq->ipsq_lock); 14841 if ((new_ipsq->ipsq_writer == NULL && 14842 new_ipsq->ipsq_current_ipif == NULL) || 14843 (new_ipsq->ipsq_writer == curthread)) { 14844 new_ipsq->ipsq_writer = curthread; 14845 new_ipsq->ipsq_reentry_cnt++; 14846 became_writer_on_new_sq = B_TRUE; 14847 } 14848 14849 /* 14850 * We are holding ill_g_lock as writer and all the ill locks of 14851 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14852 * message can land up on the old ipsq even though we don't hold the 14853 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14854 */ 14855 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14856 14857 /* 14858 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14859 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14860 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14861 */ 14862 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14863 14864 /* 14865 * Mark the new ipsq as needing a split since it is currently 14866 * being shared by more than 1 IPMP group. The split will 14867 * occur at the end of ipsq_exit 14868 */ 14869 new_ipsq->ipsq_split = B_TRUE; 14870 14871 /* Now release all the locks */ 14872 mutex_exit(&new_ipsq->ipsq_lock); 14873 ill_unlock_ills(ill_list, cnt); 14874 rw_exit(&ipst->ips_ill_g_lock); 14875 14876 kmem_free(ill_list, ill_list_size); 14877 14878 /* 14879 * If we succeeded in becoming writer on the new ipsq, then 14880 * drain the new ipsq and start processing all enqueued messages 14881 * including the current ioctl we are processing which is either 14882 * a set groupname or failover/failback. 14883 */ 14884 if (became_writer_on_new_sq) 14885 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14886 14887 /* 14888 * syncq has been changed and all the messages have been moved. 14889 */ 14890 mutex_enter(&old_ipsq->ipsq_lock); 14891 old_ipsq->ipsq_current_ipif = NULL; 14892 old_ipsq->ipsq_current_ioctl = 0; 14893 mutex_exit(&old_ipsq->ipsq_lock); 14894 return (EINPROGRESS); 14895 } 14896 14897 /* 14898 * Delete and add the loopback copy and non-loopback copy of 14899 * the BROADCAST ire corresponding to ill and addr. Used to 14900 * group broadcast ires together when ill becomes part of 14901 * a group. 14902 * 14903 * This function is also called when ill is leaving the group 14904 * so that the ires belonging to the group gets re-grouped. 14905 */ 14906 static void 14907 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14908 { 14909 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14910 ire_t **ire_ptpn = &ire_head; 14911 ip_stack_t *ipst = ill->ill_ipst; 14912 14913 /* 14914 * The loopback and non-loopback IREs are inserted in the order in which 14915 * they're found, on the basis that they are correctly ordered (loopback 14916 * first). 14917 */ 14918 for (;;) { 14919 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14920 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14921 if (ire == NULL) 14922 break; 14923 14924 /* 14925 * we are passing in KM_SLEEP because it is not easy to 14926 * go back to a sane state in case of memory failure. 14927 */ 14928 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14929 ASSERT(nire != NULL); 14930 bzero(nire, sizeof (ire_t)); 14931 /* 14932 * Don't use ire_max_frag directly since we don't 14933 * hold on to 'ire' until we add the new ire 'nire' and 14934 * we don't want the new ire to have a dangling reference 14935 * to 'ire'. The ire_max_frag of a broadcast ire must 14936 * be in sync with the ipif_mtu of the associate ipif. 14937 * For eg. this happens as a result of SIOCSLIFNAME, 14938 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14939 * the driver. A change in ire_max_frag triggered as 14940 * as a result of path mtu discovery, or due to an 14941 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14942 * route change -mtu command does not apply to broadcast ires. 14943 * 14944 * XXX We need a recovery strategy here if ire_init fails 14945 */ 14946 if (ire_init(nire, 14947 (uchar_t *)&ire->ire_addr, 14948 (uchar_t *)&ire->ire_mask, 14949 (uchar_t *)&ire->ire_src_addr, 14950 (uchar_t *)&ire->ire_gateway_addr, 14951 ire->ire_stq == NULL ? &ip_loopback_mtu : 14952 &ire->ire_ipif->ipif_mtu, 14953 ire->ire_nce, 14954 ire->ire_rfq, 14955 ire->ire_stq, 14956 ire->ire_type, 14957 ire->ire_ipif, 14958 ire->ire_cmask, 14959 ire->ire_phandle, 14960 ire->ire_ihandle, 14961 ire->ire_flags, 14962 &ire->ire_uinfo, 14963 NULL, 14964 NULL, 14965 ipst) == NULL) { 14966 cmn_err(CE_PANIC, "ire_init() failed"); 14967 } 14968 ire_delete(ire); 14969 ire_refrele(ire); 14970 14971 /* 14972 * The newly created IREs are inserted at the tail of the list 14973 * starting with ire_head. As we've just allocated them no one 14974 * knows about them so it's safe. 14975 */ 14976 *ire_ptpn = nire; 14977 ire_ptpn = &nire->ire_next; 14978 } 14979 14980 for (nire = ire_head; nire != NULL; nire = nire_next) { 14981 int error; 14982 ire_t *oire; 14983 /* unlink the IRE from our list before calling ire_add() */ 14984 nire_next = nire->ire_next; 14985 nire->ire_next = NULL; 14986 14987 /* ire_add adds the ire at the right place in the list */ 14988 oire = nire; 14989 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14990 ASSERT(error == 0); 14991 ASSERT(oire == nire); 14992 ire_refrele(nire); /* Held in ire_add */ 14993 } 14994 } 14995 14996 /* 14997 * This function is usually called when an ill is inserted in 14998 * a group and all the ipifs are already UP. As all the ipifs 14999 * are already UP, the broadcast ires have already been created 15000 * and been inserted. But, ire_add_v4 would not have grouped properly. 15001 * We need to re-group for the benefit of ip_wput_ire which 15002 * expects BROADCAST ires to be grouped properly to avoid sending 15003 * more than one copy of the broadcast packet per group. 15004 * 15005 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15006 * because when ipif_up_done ends up calling this, ires have 15007 * already been added before illgrp_insert i.e before ill_group 15008 * has been initialized. 15009 */ 15010 static void 15011 ill_group_bcast_for_xmit(ill_t *ill) 15012 { 15013 ill_group_t *illgrp; 15014 ipif_t *ipif; 15015 ipaddr_t addr; 15016 ipaddr_t net_mask; 15017 ipaddr_t subnet_netmask; 15018 15019 illgrp = ill->ill_group; 15020 15021 /* 15022 * This function is called even when an ill is deleted from 15023 * the group. Hence, illgrp could be null. 15024 */ 15025 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15026 return; 15027 15028 /* 15029 * Delete all the BROADCAST ires matching this ill and add 15030 * them back. This time, ire_add_v4 should take care of 15031 * grouping them with others because ill is part of the 15032 * group. 15033 */ 15034 ill_bcast_delete_and_add(ill, 0); 15035 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15036 15037 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15038 15039 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15040 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15041 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15042 } else { 15043 net_mask = htonl(IN_CLASSA_NET); 15044 } 15045 addr = net_mask & ipif->ipif_subnet; 15046 ill_bcast_delete_and_add(ill, addr); 15047 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15048 15049 subnet_netmask = ipif->ipif_net_mask; 15050 addr = ipif->ipif_subnet; 15051 ill_bcast_delete_and_add(ill, addr); 15052 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15053 } 15054 } 15055 15056 /* 15057 * This function is called from illgrp_delete when ill is being deleted 15058 * from the group. 15059 * 15060 * As ill is not there in the group anymore, any address belonging 15061 * to this ill should be cleared of IRE_MARK_NORECV. 15062 */ 15063 static void 15064 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15065 { 15066 ire_t *ire; 15067 irb_t *irb; 15068 ip_stack_t *ipst = ill->ill_ipst; 15069 15070 ASSERT(ill->ill_group == NULL); 15071 15072 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15073 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15074 15075 if (ire != NULL) { 15076 /* 15077 * IPMP and plumbing operations are serialized on the ipsq, so 15078 * no one will insert or delete a broadcast ire under our feet. 15079 */ 15080 irb = ire->ire_bucket; 15081 rw_enter(&irb->irb_lock, RW_READER); 15082 ire_refrele(ire); 15083 15084 for (; ire != NULL; ire = ire->ire_next) { 15085 if (ire->ire_addr != addr) 15086 break; 15087 if (ire_to_ill(ire) != ill) 15088 continue; 15089 15090 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15091 ire->ire_marks &= ~IRE_MARK_NORECV; 15092 } 15093 rw_exit(&irb->irb_lock); 15094 } 15095 } 15096 15097 /* 15098 * This function must be called only after the broadcast ires 15099 * have been grouped together. For a given address addr, nominate 15100 * only one of the ires whose interface is not FAILED or OFFLINE. 15101 * 15102 * This is also called when an ipif goes down, so that we can nominate 15103 * a different ire with the same address for receiving. 15104 */ 15105 static void 15106 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15107 { 15108 irb_t *irb; 15109 ire_t *ire; 15110 ire_t *ire1; 15111 ire_t *save_ire; 15112 ire_t **irep = NULL; 15113 boolean_t first = B_TRUE; 15114 ire_t *clear_ire = NULL; 15115 ire_t *start_ire = NULL; 15116 ire_t *new_lb_ire; 15117 ire_t *new_nlb_ire; 15118 boolean_t new_lb_ire_used = B_FALSE; 15119 boolean_t new_nlb_ire_used = B_FALSE; 15120 uint64_t match_flags; 15121 uint64_t phyi_flags; 15122 boolean_t fallback = B_FALSE; 15123 uint_t max_frag; 15124 15125 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15126 NULL, MATCH_IRE_TYPE, ipst); 15127 /* 15128 * We may not be able to find some ires if a previous 15129 * ire_create failed. This happens when an ipif goes 15130 * down and we are unable to create BROADCAST ires due 15131 * to memory failure. Thus, we have to check for NULL 15132 * below. This should handle the case for LOOPBACK, 15133 * POINTOPOINT and interfaces with some POINTOPOINT 15134 * logicals for which there are no BROADCAST ires. 15135 */ 15136 if (ire == NULL) 15137 return; 15138 /* 15139 * Currently IRE_BROADCASTS are deleted when an ipif 15140 * goes down which runs exclusively. Thus, setting 15141 * IRE_MARK_RCVD should not race with ire_delete marking 15142 * IRE_MARK_CONDEMNED. We grab the lock below just to 15143 * be consistent with other parts of the code that walks 15144 * a given bucket. 15145 */ 15146 save_ire = ire; 15147 irb = ire->ire_bucket; 15148 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15149 if (new_lb_ire == NULL) { 15150 ire_refrele(ire); 15151 return; 15152 } 15153 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15154 if (new_nlb_ire == NULL) { 15155 ire_refrele(ire); 15156 kmem_cache_free(ire_cache, new_lb_ire); 15157 return; 15158 } 15159 IRB_REFHOLD(irb); 15160 rw_enter(&irb->irb_lock, RW_WRITER); 15161 /* 15162 * Get to the first ire matching the address and the 15163 * group. If the address does not match we are done 15164 * as we could not find the IRE. If the address matches 15165 * we should get to the first one matching the group. 15166 */ 15167 while (ire != NULL) { 15168 if (ire->ire_addr != addr || 15169 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15170 break; 15171 } 15172 ire = ire->ire_next; 15173 } 15174 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15175 start_ire = ire; 15176 redo: 15177 while (ire != NULL && ire->ire_addr == addr && 15178 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15179 /* 15180 * The first ire for any address within a group 15181 * should always be the one with IRE_MARK_NORECV cleared 15182 * so that ip_wput_ire can avoid searching for one. 15183 * Note down the insertion point which will be used 15184 * later. 15185 */ 15186 if (first && (irep == NULL)) 15187 irep = ire->ire_ptpn; 15188 /* 15189 * PHYI_FAILED is set when the interface fails. 15190 * This interface might have become good, but the 15191 * daemon has not yet detected. We should still 15192 * not receive on this. PHYI_OFFLINE should never 15193 * be picked as this has been offlined and soon 15194 * be removed. 15195 */ 15196 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15197 if (phyi_flags & PHYI_OFFLINE) { 15198 ire->ire_marks |= IRE_MARK_NORECV; 15199 ire = ire->ire_next; 15200 continue; 15201 } 15202 if (phyi_flags & match_flags) { 15203 ire->ire_marks |= IRE_MARK_NORECV; 15204 ire = ire->ire_next; 15205 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15206 PHYI_INACTIVE) { 15207 fallback = B_TRUE; 15208 } 15209 continue; 15210 } 15211 if (first) { 15212 /* 15213 * We will move this to the front of the list later 15214 * on. 15215 */ 15216 clear_ire = ire; 15217 ire->ire_marks &= ~IRE_MARK_NORECV; 15218 } else { 15219 ire->ire_marks |= IRE_MARK_NORECV; 15220 } 15221 first = B_FALSE; 15222 ire = ire->ire_next; 15223 } 15224 /* 15225 * If we never nominated anybody, try nominating at least 15226 * an INACTIVE, if we found one. Do it only once though. 15227 */ 15228 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15229 fallback) { 15230 match_flags = PHYI_FAILED; 15231 ire = start_ire; 15232 irep = NULL; 15233 goto redo; 15234 } 15235 ire_refrele(save_ire); 15236 15237 /* 15238 * irep non-NULL indicates that we entered the while loop 15239 * above. If clear_ire is at the insertion point, we don't 15240 * have to do anything. clear_ire will be NULL if all the 15241 * interfaces are failed. 15242 * 15243 * We cannot unlink and reinsert the ire at the right place 15244 * in the list since there can be other walkers of this bucket. 15245 * Instead we delete and recreate the ire 15246 */ 15247 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15248 ire_t *clear_ire_stq = NULL; 15249 15250 bzero(new_lb_ire, sizeof (ire_t)); 15251 /* XXX We need a recovery strategy here. */ 15252 if (ire_init(new_lb_ire, 15253 (uchar_t *)&clear_ire->ire_addr, 15254 (uchar_t *)&clear_ire->ire_mask, 15255 (uchar_t *)&clear_ire->ire_src_addr, 15256 (uchar_t *)&clear_ire->ire_gateway_addr, 15257 &clear_ire->ire_max_frag, 15258 NULL, /* let ire_nce_init derive the resolver info */ 15259 clear_ire->ire_rfq, 15260 clear_ire->ire_stq, 15261 clear_ire->ire_type, 15262 clear_ire->ire_ipif, 15263 clear_ire->ire_cmask, 15264 clear_ire->ire_phandle, 15265 clear_ire->ire_ihandle, 15266 clear_ire->ire_flags, 15267 &clear_ire->ire_uinfo, 15268 NULL, 15269 NULL, 15270 ipst) == NULL) 15271 cmn_err(CE_PANIC, "ire_init() failed"); 15272 if (clear_ire->ire_stq == NULL) { 15273 ire_t *ire_next = clear_ire->ire_next; 15274 if (ire_next != NULL && 15275 ire_next->ire_stq != NULL && 15276 ire_next->ire_addr == clear_ire->ire_addr && 15277 ire_next->ire_ipif->ipif_ill == 15278 clear_ire->ire_ipif->ipif_ill) { 15279 clear_ire_stq = ire_next; 15280 15281 bzero(new_nlb_ire, sizeof (ire_t)); 15282 /* XXX We need a recovery strategy here. */ 15283 if (ire_init(new_nlb_ire, 15284 (uchar_t *)&clear_ire_stq->ire_addr, 15285 (uchar_t *)&clear_ire_stq->ire_mask, 15286 (uchar_t *)&clear_ire_stq->ire_src_addr, 15287 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15288 &clear_ire_stq->ire_max_frag, 15289 NULL, 15290 clear_ire_stq->ire_rfq, 15291 clear_ire_stq->ire_stq, 15292 clear_ire_stq->ire_type, 15293 clear_ire_stq->ire_ipif, 15294 clear_ire_stq->ire_cmask, 15295 clear_ire_stq->ire_phandle, 15296 clear_ire_stq->ire_ihandle, 15297 clear_ire_stq->ire_flags, 15298 &clear_ire_stq->ire_uinfo, 15299 NULL, 15300 NULL, 15301 ipst) == NULL) 15302 cmn_err(CE_PANIC, "ire_init() failed"); 15303 } 15304 } 15305 15306 /* 15307 * Delete the ire. We can't call ire_delete() since 15308 * we are holding the bucket lock. We can't release the 15309 * bucket lock since we can't allow irep to change. So just 15310 * mark it CONDEMNED. The IRB_REFRELE will delete the 15311 * ire from the list and do the refrele. 15312 */ 15313 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15314 irb->irb_marks |= IRB_MARK_CONDEMNED; 15315 15316 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15317 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15318 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15319 } 15320 15321 /* 15322 * Also take care of otherfields like ib/ob pkt count 15323 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15324 */ 15325 15326 /* Set the max_frag before adding the ire */ 15327 max_frag = *new_lb_ire->ire_max_fragp; 15328 new_lb_ire->ire_max_fragp = NULL; 15329 new_lb_ire->ire_max_frag = max_frag; 15330 15331 /* Add the new ire's. Insert at *irep */ 15332 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15333 ire1 = *irep; 15334 if (ire1 != NULL) 15335 ire1->ire_ptpn = &new_lb_ire->ire_next; 15336 new_lb_ire->ire_next = ire1; 15337 /* Link the new one in. */ 15338 new_lb_ire->ire_ptpn = irep; 15339 membar_producer(); 15340 *irep = new_lb_ire; 15341 new_lb_ire_used = B_TRUE; 15342 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15343 new_lb_ire->ire_bucket->irb_ire_cnt++; 15344 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15345 (char *), "ire", (void *), new_lb_ire); 15346 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15347 15348 if (clear_ire_stq != NULL) { 15349 /* Set the max_frag before adding the ire */ 15350 max_frag = *new_nlb_ire->ire_max_fragp; 15351 new_nlb_ire->ire_max_fragp = NULL; 15352 new_nlb_ire->ire_max_frag = max_frag; 15353 15354 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15355 irep = &new_lb_ire->ire_next; 15356 /* Add the new ire. Insert at *irep */ 15357 ire1 = *irep; 15358 if (ire1 != NULL) 15359 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15360 new_nlb_ire->ire_next = ire1; 15361 /* Link the new one in. */ 15362 new_nlb_ire->ire_ptpn = irep; 15363 membar_producer(); 15364 *irep = new_nlb_ire; 15365 new_nlb_ire_used = B_TRUE; 15366 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15367 ire_stats_inserted); 15368 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15369 DTRACE_PROBE3(ipif__incr__cnt, 15370 (ipif_t *), new_nlb_ire->ire_ipif, 15371 (char *), "ire", (void *), new_nlb_ire); 15372 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15373 DTRACE_PROBE3(ill__incr__cnt, 15374 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15375 (char *), "ire", (void *), new_nlb_ire); 15376 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15377 } 15378 } 15379 rw_exit(&irb->irb_lock); 15380 if (!new_lb_ire_used) 15381 kmem_cache_free(ire_cache, new_lb_ire); 15382 if (!new_nlb_ire_used) 15383 kmem_cache_free(ire_cache, new_nlb_ire); 15384 IRB_REFRELE(irb); 15385 } 15386 15387 /* 15388 * Whenever an ipif goes down we have to renominate a different 15389 * broadcast ire to receive. Whenever an ipif comes up, we need 15390 * to make sure that we have only one nominated to receive. 15391 */ 15392 static void 15393 ipif_renominate_bcast(ipif_t *ipif) 15394 { 15395 ill_t *ill = ipif->ipif_ill; 15396 ipaddr_t subnet_addr; 15397 ipaddr_t net_addr; 15398 ipaddr_t net_mask = 0; 15399 ipaddr_t subnet_netmask; 15400 ipaddr_t addr; 15401 ill_group_t *illgrp; 15402 ip_stack_t *ipst = ill->ill_ipst; 15403 15404 illgrp = ill->ill_group; 15405 /* 15406 * If this is the last ipif going down, it might take 15407 * the ill out of the group. In that case ipif_down -> 15408 * illgrp_delete takes care of doing the nomination. 15409 * ipif_down does not call for this case. 15410 */ 15411 ASSERT(illgrp != NULL); 15412 15413 /* There could not have been any ires associated with this */ 15414 if (ipif->ipif_subnet == 0) 15415 return; 15416 15417 ill_mark_bcast(illgrp, 0, ipst); 15418 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15419 15420 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15421 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15422 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15423 } else { 15424 net_mask = htonl(IN_CLASSA_NET); 15425 } 15426 addr = net_mask & ipif->ipif_subnet; 15427 ill_mark_bcast(illgrp, addr, ipst); 15428 15429 net_addr = ~net_mask | addr; 15430 ill_mark_bcast(illgrp, net_addr, ipst); 15431 15432 subnet_netmask = ipif->ipif_net_mask; 15433 addr = ipif->ipif_subnet; 15434 ill_mark_bcast(illgrp, addr, ipst); 15435 15436 subnet_addr = ~subnet_netmask | addr; 15437 ill_mark_bcast(illgrp, subnet_addr, ipst); 15438 } 15439 15440 /* 15441 * Whenever we form or delete ill groups, we need to nominate one set of 15442 * BROADCAST ires for receiving in the group. 15443 * 15444 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15445 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15446 * for ill_ipif_up_count to be non-zero. This is the only case where 15447 * ill_ipif_up_count is zero and we would still find the ires. 15448 * 15449 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15450 * ipif is UP and we just have to do the nomination. 15451 * 15452 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15453 * from the group. So, we have to do the nomination. 15454 * 15455 * Because of (3), there could be just one ill in the group. But we have 15456 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15457 * Thus, this function does not optimize when there is only one ill as 15458 * it is not correct for (3). 15459 */ 15460 static void 15461 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15462 { 15463 ill_t *ill; 15464 ipif_t *ipif; 15465 ipaddr_t subnet_addr; 15466 ipaddr_t prev_subnet_addr = 0; 15467 ipaddr_t net_addr; 15468 ipaddr_t prev_net_addr = 0; 15469 ipaddr_t net_mask = 0; 15470 ipaddr_t subnet_netmask; 15471 ipaddr_t addr; 15472 ip_stack_t *ipst; 15473 15474 /* 15475 * When the last memeber is leaving, there is nothing to 15476 * nominate. 15477 */ 15478 if (illgrp->illgrp_ill_count == 0) { 15479 ASSERT(illgrp->illgrp_ill == NULL); 15480 return; 15481 } 15482 15483 ill = illgrp->illgrp_ill; 15484 ASSERT(!ill->ill_isv6); 15485 ipst = ill->ill_ipst; 15486 /* 15487 * We assume that ires with same address and belonging to the 15488 * same group, has been grouped together. Nominating a *single* 15489 * ill in the group for sending and receiving broadcast is done 15490 * by making sure that the first BROADCAST ire (which will be 15491 * the one returned by ire_ctable_lookup for ip_rput and the 15492 * one that will be used in ip_wput_ire) will be the one that 15493 * will not have IRE_MARK_NORECV set. 15494 * 15495 * 1) ip_rput checks and discards packets received on ires marked 15496 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15497 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15498 * first ire in the group for every broadcast address in the group. 15499 * ip_rput will accept packets only on the first ire i.e only 15500 * one copy of the ill. 15501 * 15502 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15503 * packet for the whole group. It needs to send out on the ill 15504 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15505 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15506 * the copy echoed back on other port where the ire is not marked 15507 * with IRE_MARK_NORECV. 15508 * 15509 * Note that we just need to have the first IRE either loopback or 15510 * non-loopback (either of them may not exist if ire_create failed 15511 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15512 * always hit the first one and hence will always accept one copy. 15513 * 15514 * We have a broadcast ire per ill for all the unique prefixes 15515 * hosted on that ill. As we don't have a way of knowing the 15516 * unique prefixes on a given ill and hence in the whole group, 15517 * we just call ill_mark_bcast on all the prefixes that exist 15518 * in the group. For the common case of one prefix, the code 15519 * below optimizes by remebering the last address used for 15520 * markng. In the case of multiple prefixes, this will still 15521 * optimize depending the order of prefixes. 15522 * 15523 * The only unique address across the whole group is 0.0.0.0 and 15524 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15525 * the first ire in the bucket for receiving and disables the 15526 * others. 15527 */ 15528 ill_mark_bcast(illgrp, 0, ipst); 15529 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15530 for (; ill != NULL; ill = ill->ill_group_next) { 15531 15532 for (ipif = ill->ill_ipif; ipif != NULL; 15533 ipif = ipif->ipif_next) { 15534 15535 if (!(ipif->ipif_flags & IPIF_UP) || 15536 ipif->ipif_subnet == 0) { 15537 continue; 15538 } 15539 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15540 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15541 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15542 } else { 15543 net_mask = htonl(IN_CLASSA_NET); 15544 } 15545 addr = net_mask & ipif->ipif_subnet; 15546 if (prev_net_addr == 0 || prev_net_addr != addr) { 15547 ill_mark_bcast(illgrp, addr, ipst); 15548 net_addr = ~net_mask | addr; 15549 ill_mark_bcast(illgrp, net_addr, ipst); 15550 } 15551 prev_net_addr = addr; 15552 15553 subnet_netmask = ipif->ipif_net_mask; 15554 addr = ipif->ipif_subnet; 15555 if (prev_subnet_addr == 0 || 15556 prev_subnet_addr != addr) { 15557 ill_mark_bcast(illgrp, addr, ipst); 15558 subnet_addr = ~subnet_netmask | addr; 15559 ill_mark_bcast(illgrp, subnet_addr, ipst); 15560 } 15561 prev_subnet_addr = addr; 15562 } 15563 } 15564 } 15565 15566 /* 15567 * This function is called while forming ill groups. 15568 * 15569 * Currently, we handle only allmulti groups. We want to join 15570 * allmulti on only one of the ills in the groups. In future, 15571 * when we have link aggregation, we may have to join normal 15572 * multicast groups on multiple ills as switch does inbound load 15573 * balancing. Following are the functions that calls this 15574 * function : 15575 * 15576 * 1) ill_recover_multicast : Interface is coming back UP. 15577 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15578 * will call ill_recover_multicast to recover all the multicast 15579 * groups. We need to make sure that only one member is joined 15580 * in the ill group. 15581 * 15582 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15583 * Somebody is joining allmulti. We need to make sure that only one 15584 * member is joined in the group. 15585 * 15586 * 3) illgrp_insert : If allmulti has already joined, we need to make 15587 * sure that only one member is joined in the group. 15588 * 15589 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15590 * allmulti who we have nominated. We need to pick someother ill. 15591 * 15592 * 5) illgrp_delete : The ill we nominated is leaving the group, 15593 * we need to pick a new ill to join the group. 15594 * 15595 * For (1), (2), (5) - we just have to check whether there is 15596 * a good ill joined in the group. If we could not find any ills 15597 * joined the group, we should join. 15598 * 15599 * For (4), the one that was nominated to receive, left the group. 15600 * There could be nobody joined in the group when this function is 15601 * called. 15602 * 15603 * For (3) - we need to explicitly check whether there are multiple 15604 * ills joined in the group. 15605 * 15606 * For simplicity, we don't differentiate any of the above cases. We 15607 * just leave the group if it is joined on any of them and join on 15608 * the first good ill. 15609 */ 15610 int 15611 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15612 { 15613 ilm_t *ilm; 15614 ill_t *ill; 15615 ill_t *fallback_inactive_ill = NULL; 15616 ill_t *fallback_failed_ill = NULL; 15617 int ret = 0; 15618 15619 /* 15620 * Leave the allmulti on all the ills and start fresh. 15621 */ 15622 for (ill = illgrp->illgrp_ill; ill != NULL; 15623 ill = ill->ill_group_next) { 15624 if (ill->ill_join_allmulti) 15625 (void) ip_leave_allmulti(ill->ill_ipif); 15626 } 15627 15628 /* 15629 * Choose a good ill. Fallback to inactive or failed if 15630 * none available. We need to fallback to FAILED in the 15631 * case where we have 2 interfaces in a group - where 15632 * one of them is failed and another is a good one and 15633 * the good one (not marked inactive) is leaving the group. 15634 */ 15635 ret = 0; 15636 for (ill = illgrp->illgrp_ill; ill != NULL; 15637 ill = ill->ill_group_next) { 15638 /* Never pick an offline interface */ 15639 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15640 continue; 15641 15642 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15643 fallback_failed_ill = ill; 15644 continue; 15645 } 15646 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15647 fallback_inactive_ill = ill; 15648 continue; 15649 } 15650 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15652 ret = ip_join_allmulti(ill->ill_ipif); 15653 /* 15654 * ip_join_allmulti can fail because of memory 15655 * failures. So, make sure we join at least 15656 * on one ill. 15657 */ 15658 if (ill->ill_join_allmulti) 15659 return (0); 15660 } 15661 } 15662 } 15663 if (ret != 0) { 15664 /* 15665 * If we tried nominating above and failed to do so, 15666 * return error. We might have tried multiple times. 15667 * But, return the latest error. 15668 */ 15669 return (ret); 15670 } 15671 if ((ill = fallback_inactive_ill) != NULL) { 15672 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15673 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15674 ret = ip_join_allmulti(ill->ill_ipif); 15675 return (ret); 15676 } 15677 } 15678 } else if ((ill = fallback_failed_ill) != NULL) { 15679 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15680 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15681 ret = ip_join_allmulti(ill->ill_ipif); 15682 return (ret); 15683 } 15684 } 15685 } 15686 return (0); 15687 } 15688 15689 /* 15690 * This function is called from illgrp_delete after it is 15691 * deleted from the group to reschedule responsibilities 15692 * to a different ill. 15693 */ 15694 static void 15695 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15696 { 15697 ilm_t *ilm; 15698 ipif_t *ipif; 15699 ipaddr_t subnet_addr; 15700 ipaddr_t net_addr; 15701 ipaddr_t net_mask = 0; 15702 ipaddr_t subnet_netmask; 15703 ipaddr_t addr; 15704 ip_stack_t *ipst = ill->ill_ipst; 15705 15706 ASSERT(ill->ill_group == NULL); 15707 /* 15708 * Broadcast Responsibility: 15709 * 15710 * 1. If this ill has been nominated for receiving broadcast 15711 * packets, we need to find a new one. Before we find a new 15712 * one, we need to re-group the ires that are part of this new 15713 * group (assumed by ill_nominate_bcast_rcv). We do this by 15714 * calling ill_group_bcast_for_xmit(ill) which will do the right 15715 * thing for us. 15716 * 15717 * 2. If this ill was not nominated for receiving broadcast 15718 * packets, we need to clear the IRE_MARK_NORECV flag 15719 * so that we continue to send up broadcast packets. 15720 */ 15721 if (!ill->ill_isv6) { 15722 /* 15723 * Case 1 above : No optimization here. Just redo the 15724 * nomination. 15725 */ 15726 ill_group_bcast_for_xmit(ill); 15727 ill_nominate_bcast_rcv(illgrp); 15728 15729 /* 15730 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15731 */ 15732 ill_clear_bcast_mark(ill, 0); 15733 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15734 15735 for (ipif = ill->ill_ipif; ipif != NULL; 15736 ipif = ipif->ipif_next) { 15737 15738 if (!(ipif->ipif_flags & IPIF_UP) || 15739 ipif->ipif_subnet == 0) { 15740 continue; 15741 } 15742 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15743 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15744 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15745 } else { 15746 net_mask = htonl(IN_CLASSA_NET); 15747 } 15748 addr = net_mask & ipif->ipif_subnet; 15749 ill_clear_bcast_mark(ill, addr); 15750 15751 net_addr = ~net_mask | addr; 15752 ill_clear_bcast_mark(ill, net_addr); 15753 15754 subnet_netmask = ipif->ipif_net_mask; 15755 addr = ipif->ipif_subnet; 15756 ill_clear_bcast_mark(ill, addr); 15757 15758 subnet_addr = ~subnet_netmask | addr; 15759 ill_clear_bcast_mark(ill, subnet_addr); 15760 } 15761 } 15762 15763 /* 15764 * Multicast Responsibility. 15765 * 15766 * If we have joined allmulti on this one, find a new member 15767 * in the group to join allmulti. As this ill is already part 15768 * of allmulti, we don't have to join on this one. 15769 * 15770 * If we have not joined allmulti on this one, there is no 15771 * responsibility to handoff. But we need to take new 15772 * responsibility i.e, join allmulti on this one if we need 15773 * to. 15774 */ 15775 if (ill->ill_join_allmulti) { 15776 (void) ill_nominate_mcast_rcv(illgrp); 15777 } else { 15778 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15779 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15780 (void) ip_join_allmulti(ill->ill_ipif); 15781 break; 15782 } 15783 } 15784 } 15785 15786 /* 15787 * We intentionally do the flushing of IRE_CACHES only matching 15788 * on the ill and not on groups. Note that we are already deleted 15789 * from the group. 15790 * 15791 * This will make sure that all IRE_CACHES whose stq is pointing 15792 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15793 * deleted and IRE_CACHES that are not pointing at this ill will 15794 * be left alone. 15795 */ 15796 if (ill->ill_isv6) { 15797 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15798 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15799 } else { 15800 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15801 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15802 } 15803 15804 /* 15805 * Some conn may have cached one of the IREs deleted above. By removing 15806 * the ire reference, we clean up the extra reference to the ill held in 15807 * ire->ire_stq. 15808 */ 15809 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15810 15811 /* 15812 * Re-do source address selection for all the members in the 15813 * group, if they borrowed source address from one of the ipifs 15814 * in this ill. 15815 */ 15816 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15817 if (ill->ill_isv6) { 15818 ipif_update_other_ipifs_v6(ipif, illgrp); 15819 } else { 15820 ipif_update_other_ipifs(ipif, illgrp); 15821 } 15822 } 15823 } 15824 15825 /* 15826 * Delete the ill from the group. The caller makes sure that it is 15827 * in a group and it okay to delete from the group. So, we always 15828 * delete here. 15829 */ 15830 static void 15831 illgrp_delete(ill_t *ill) 15832 { 15833 ill_group_t *illgrp; 15834 ill_group_t *tmpg; 15835 ill_t *tmp_ill; 15836 ip_stack_t *ipst = ill->ill_ipst; 15837 15838 /* 15839 * Reset illgrp_ill_schednext if it was pointing at us. 15840 * We need to do this before we set ill_group to NULL. 15841 */ 15842 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15843 mutex_enter(&ill->ill_lock); 15844 15845 illgrp_reset_schednext(ill); 15846 15847 illgrp = ill->ill_group; 15848 15849 /* Delete the ill from illgrp. */ 15850 if (illgrp->illgrp_ill == ill) { 15851 illgrp->illgrp_ill = ill->ill_group_next; 15852 } else { 15853 tmp_ill = illgrp->illgrp_ill; 15854 while (tmp_ill->ill_group_next != ill) { 15855 tmp_ill = tmp_ill->ill_group_next; 15856 ASSERT(tmp_ill != NULL); 15857 } 15858 tmp_ill->ill_group_next = ill->ill_group_next; 15859 } 15860 ill->ill_group = NULL; 15861 ill->ill_group_next = NULL; 15862 15863 illgrp->illgrp_ill_count--; 15864 mutex_exit(&ill->ill_lock); 15865 rw_exit(&ipst->ips_ill_g_lock); 15866 15867 /* 15868 * As this ill is leaving the group, we need to hand off 15869 * the responsibilities to the other ills in the group, if 15870 * this ill had some responsibilities. 15871 */ 15872 15873 ill_handoff_responsibility(ill, illgrp); 15874 15875 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15876 15877 if (illgrp->illgrp_ill_count == 0) { 15878 15879 ASSERT(illgrp->illgrp_ill == NULL); 15880 if (ill->ill_isv6) { 15881 if (illgrp == ipst->ips_illgrp_head_v6) { 15882 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15883 } else { 15884 tmpg = ipst->ips_illgrp_head_v6; 15885 while (tmpg->illgrp_next != illgrp) { 15886 tmpg = tmpg->illgrp_next; 15887 ASSERT(tmpg != NULL); 15888 } 15889 tmpg->illgrp_next = illgrp->illgrp_next; 15890 } 15891 } else { 15892 if (illgrp == ipst->ips_illgrp_head_v4) { 15893 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15894 } else { 15895 tmpg = ipst->ips_illgrp_head_v4; 15896 while (tmpg->illgrp_next != illgrp) { 15897 tmpg = tmpg->illgrp_next; 15898 ASSERT(tmpg != NULL); 15899 } 15900 tmpg->illgrp_next = illgrp->illgrp_next; 15901 } 15902 } 15903 mutex_destroy(&illgrp->illgrp_lock); 15904 mi_free(illgrp); 15905 } 15906 rw_exit(&ipst->ips_ill_g_lock); 15907 15908 /* 15909 * Even though the ill is out of the group its not necessary 15910 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15911 * We will split the ipsq when phyint_groupname is set to NULL. 15912 */ 15913 15914 /* 15915 * Send a routing sockets message if we are deleting from 15916 * groups with names. 15917 */ 15918 if (ill->ill_phyint->phyint_groupname_len != 0) 15919 ip_rts_ifmsg(ill->ill_ipif); 15920 } 15921 15922 /* 15923 * Re-do source address selection. This is normally called when 15924 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15925 * ipif comes up. 15926 */ 15927 void 15928 ill_update_source_selection(ill_t *ill) 15929 { 15930 ipif_t *ipif; 15931 15932 ASSERT(IAM_WRITER_ILL(ill)); 15933 15934 if (ill->ill_group != NULL) 15935 ill = ill->ill_group->illgrp_ill; 15936 15937 for (; ill != NULL; ill = ill->ill_group_next) { 15938 for (ipif = ill->ill_ipif; ipif != NULL; 15939 ipif = ipif->ipif_next) { 15940 if (ill->ill_isv6) 15941 ipif_recreate_interface_routes_v6(NULL, ipif); 15942 else 15943 ipif_recreate_interface_routes(NULL, ipif); 15944 } 15945 } 15946 } 15947 15948 /* 15949 * Insert ill in a group headed by illgrp_head. The caller can either 15950 * pass a groupname in which case we search for a group with the 15951 * same name to insert in or pass a group to insert in. This function 15952 * would only search groups with names. 15953 * 15954 * NOTE : The caller should make sure that there is at least one ipif 15955 * UP on this ill so that illgrp_scheduler can pick this ill 15956 * for outbound packets. If ill_ipif_up_count is zero, we have 15957 * already sent a DL_UNBIND to the driver and we don't want to 15958 * send anymore packets. We don't assert for ipif_up_count 15959 * to be greater than zero, because ipif_up_done wants to call 15960 * this function before bumping up the ipif_up_count. See 15961 * ipif_up_done() for details. 15962 */ 15963 int 15964 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15965 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15966 { 15967 ill_group_t *illgrp; 15968 ill_t *prev_ill; 15969 phyint_t *phyi; 15970 ip_stack_t *ipst = ill->ill_ipst; 15971 15972 ASSERT(ill->ill_group == NULL); 15973 15974 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15975 mutex_enter(&ill->ill_lock); 15976 15977 if (groupname != NULL) { 15978 /* 15979 * Look for a group with a matching groupname to insert. 15980 */ 15981 for (illgrp = *illgrp_head; illgrp != NULL; 15982 illgrp = illgrp->illgrp_next) { 15983 15984 ill_t *tmp_ill; 15985 15986 /* 15987 * If we have an ill_group_t in the list which has 15988 * no ill_t assigned then we must be in the process of 15989 * removing this group. We skip this as illgrp_delete() 15990 * will remove it from the list. 15991 */ 15992 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15993 ASSERT(illgrp->illgrp_ill_count == 0); 15994 continue; 15995 } 15996 15997 ASSERT(tmp_ill->ill_phyint != NULL); 15998 phyi = tmp_ill->ill_phyint; 15999 /* 16000 * Look at groups which has names only. 16001 */ 16002 if (phyi->phyint_groupname_len == 0) 16003 continue; 16004 /* 16005 * Names are stored in the phyint common to both 16006 * IPv4 and IPv6. 16007 */ 16008 if (mi_strcmp(phyi->phyint_groupname, 16009 groupname) == 0) { 16010 break; 16011 } 16012 } 16013 } else { 16014 /* 16015 * If the caller passes in a NULL "grp_to_insert", we 16016 * allocate one below and insert this singleton. 16017 */ 16018 illgrp = grp_to_insert; 16019 } 16020 16021 ill->ill_group_next = NULL; 16022 16023 if (illgrp == NULL) { 16024 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16025 if (illgrp == NULL) { 16026 return (ENOMEM); 16027 } 16028 illgrp->illgrp_next = *illgrp_head; 16029 *illgrp_head = illgrp; 16030 illgrp->illgrp_ill = ill; 16031 illgrp->illgrp_ill_count = 1; 16032 ill->ill_group = illgrp; 16033 /* 16034 * Used in illgrp_scheduler to protect multiple threads 16035 * from traversing the list. 16036 */ 16037 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16038 } else { 16039 ASSERT(ill->ill_net_type == 16040 illgrp->illgrp_ill->ill_net_type); 16041 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16042 16043 /* Insert ill at tail of this group */ 16044 prev_ill = illgrp->illgrp_ill; 16045 while (prev_ill->ill_group_next != NULL) 16046 prev_ill = prev_ill->ill_group_next; 16047 prev_ill->ill_group_next = ill; 16048 ill->ill_group = illgrp; 16049 illgrp->illgrp_ill_count++; 16050 /* 16051 * Inherit group properties. Currently only forwarding 16052 * is the property we try to keep the same with all the 16053 * ills. When there are more, we will abstract this into 16054 * a function. 16055 */ 16056 ill->ill_flags &= ~ILLF_ROUTER; 16057 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16058 } 16059 mutex_exit(&ill->ill_lock); 16060 rw_exit(&ipst->ips_ill_g_lock); 16061 16062 /* 16063 * 1) When ipif_up_done() calls this function, ipif_up_count 16064 * may be zero as it has not yet been bumped. But the ires 16065 * have already been added. So, we do the nomination here 16066 * itself. But, when ip_sioctl_groupname calls this, it checks 16067 * for ill_ipif_up_count != 0. Thus we don't check for 16068 * ill_ipif_up_count here while nominating broadcast ires for 16069 * receive. 16070 * 16071 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16072 * to group them properly as ire_add() has already happened 16073 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16074 * case, we need to do it here anyway. 16075 */ 16076 if (!ill->ill_isv6) { 16077 ill_group_bcast_for_xmit(ill); 16078 ill_nominate_bcast_rcv(illgrp); 16079 } 16080 16081 if (!ipif_is_coming_up) { 16082 /* 16083 * When ipif_up_done() calls this function, the multicast 16084 * groups have not been joined yet. So, there is no point in 16085 * nomination. ip_join_allmulti will handle groups when 16086 * ill_recover_multicast is called from ipif_up_done() later. 16087 */ 16088 (void) ill_nominate_mcast_rcv(illgrp); 16089 /* 16090 * ipif_up_done calls ill_update_source_selection 16091 * anyway. Moreover, we don't want to re-create 16092 * interface routes while ipif_up_done() still has reference 16093 * to them. Refer to ipif_up_done() for more details. 16094 */ 16095 ill_update_source_selection(ill); 16096 } 16097 16098 /* 16099 * Send a routing sockets message if we are inserting into 16100 * groups with names. 16101 */ 16102 if (groupname != NULL) 16103 ip_rts_ifmsg(ill->ill_ipif); 16104 return (0); 16105 } 16106 16107 /* 16108 * Return the first phyint matching the groupname. There could 16109 * be more than one when there are ill groups. 16110 * 16111 * If 'usable' is set, then we exclude ones that are marked with any of 16112 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16113 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16114 * emulation of ipmp. 16115 */ 16116 phyint_t * 16117 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16118 { 16119 phyint_t *phyi; 16120 16121 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16122 /* 16123 * Group names are stored in the phyint - a common structure 16124 * to both IPv4 and IPv6. 16125 */ 16126 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16127 for (; phyi != NULL; 16128 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16129 phyi, AVL_AFTER)) { 16130 if (phyi->phyint_groupname_len == 0) 16131 continue; 16132 /* 16133 * Skip the ones that should not be used since the callers 16134 * sometime use this for sending packets. 16135 */ 16136 if (usable && (phyi->phyint_flags & 16137 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16138 continue; 16139 16140 ASSERT(phyi->phyint_groupname != NULL); 16141 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16142 return (phyi); 16143 } 16144 return (NULL); 16145 } 16146 16147 16148 /* 16149 * Return the first usable phyint matching the group index. By 'usable' 16150 * we exclude ones that are marked ununsable with any of 16151 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16152 * 16153 * Used only for the ipmp/netinfo emulation of ipmp. 16154 */ 16155 phyint_t * 16156 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16157 { 16158 phyint_t *phyi; 16159 16160 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16161 16162 if (!ipst->ips_ipmp_hook_emulation) 16163 return (NULL); 16164 16165 /* 16166 * Group indicies are stored in the phyint - a common structure 16167 * to both IPv4 and IPv6. 16168 */ 16169 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16170 for (; phyi != NULL; 16171 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16172 phyi, AVL_AFTER)) { 16173 /* Ignore the ones that do not have a group */ 16174 if (phyi->phyint_groupname_len == 0) 16175 continue; 16176 16177 ASSERT(phyi->phyint_group_ifindex != 0); 16178 /* 16179 * Skip the ones that should not be used since the callers 16180 * sometime use this for sending packets. 16181 */ 16182 if (phyi->phyint_flags & 16183 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16184 continue; 16185 if (phyi->phyint_group_ifindex == group_ifindex) 16186 return (phyi); 16187 } 16188 return (NULL); 16189 } 16190 16191 16192 /* 16193 * MT notes on creation and deletion of IPMP groups 16194 * 16195 * Creation and deletion of IPMP groups introduce the need to merge or 16196 * split the associated serialization objects i.e the ipsq's. Normally all 16197 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16198 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16199 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16200 * is a need to change the <ill-ipsq> association and we have to operate on both 16201 * the source and destination IPMP groups. For eg. attempting to set the 16202 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16203 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16204 * source or destination IPMP group are mapped to a single ipsq for executing 16205 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16206 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16207 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16208 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16209 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16210 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16211 * 16212 * In the above example the ioctl handling code locates the current ipsq of hme0 16213 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16214 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16215 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16216 * the destination ipsq. If the destination ipsq is not busy, it also enters 16217 * the destination ipsq exclusively. Now the actual groupname setting operation 16218 * can proceed. If the destination ipsq is busy, the operation is enqueued 16219 * on the destination (merged) ipsq and will be handled in the unwind from 16220 * ipsq_exit. 16221 * 16222 * To prevent other threads accessing the ill while the group name change is 16223 * in progres, we bring down the ipifs which also removes the ill from the 16224 * group. The group is changed in phyint and when the first ipif on the ill 16225 * is brought up, the ill is inserted into the right IPMP group by 16226 * illgrp_insert. 16227 */ 16228 /* ARGSUSED */ 16229 int 16230 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16231 ip_ioctl_cmd_t *ipip, void *ifreq) 16232 { 16233 int i; 16234 char *tmp; 16235 int namelen; 16236 ill_t *ill = ipif->ipif_ill; 16237 ill_t *ill_v4, *ill_v6; 16238 int err = 0; 16239 phyint_t *phyi; 16240 phyint_t *phyi_tmp; 16241 struct lifreq *lifr; 16242 mblk_t *mp1; 16243 char *groupname; 16244 ipsq_t *ipsq; 16245 ip_stack_t *ipst = ill->ill_ipst; 16246 16247 ASSERT(IAM_WRITER_IPIF(ipif)); 16248 16249 /* Existance verified in ip_wput_nondata */ 16250 mp1 = mp->b_cont->b_cont; 16251 lifr = (struct lifreq *)mp1->b_rptr; 16252 groupname = lifr->lifr_groupname; 16253 16254 if (ipif->ipif_id != 0) 16255 return (EINVAL); 16256 16257 phyi = ill->ill_phyint; 16258 ASSERT(phyi != NULL); 16259 16260 if (phyi->phyint_flags & PHYI_VIRTUAL) 16261 return (EINVAL); 16262 16263 tmp = groupname; 16264 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16265 ; 16266 16267 if (i == LIFNAMSIZ) { 16268 /* no null termination */ 16269 return (EINVAL); 16270 } 16271 16272 /* 16273 * Calculate the namelen exclusive of the null 16274 * termination character. 16275 */ 16276 namelen = tmp - groupname; 16277 16278 ill_v4 = phyi->phyint_illv4; 16279 ill_v6 = phyi->phyint_illv6; 16280 16281 /* 16282 * ILL cannot be part of a usesrc group and and IPMP group at the 16283 * same time. No need to grab the ill_g_usesrc_lock here, see 16284 * synchronization notes in ip.c 16285 */ 16286 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16287 return (EINVAL); 16288 } 16289 16290 /* 16291 * mark the ill as changing. 16292 * this should queue all new requests on the syncq. 16293 */ 16294 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16295 16296 if (ill_v4 != NULL) 16297 ill_v4->ill_state_flags |= ILL_CHANGING; 16298 if (ill_v6 != NULL) 16299 ill_v6->ill_state_flags |= ILL_CHANGING; 16300 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16301 16302 if (namelen == 0) { 16303 /* 16304 * Null string means remove this interface from the 16305 * existing group. 16306 */ 16307 if (phyi->phyint_groupname_len == 0) { 16308 /* 16309 * Never was in a group. 16310 */ 16311 err = 0; 16312 goto done; 16313 } 16314 16315 /* 16316 * IPv4 or IPv6 may be temporarily out of the group when all 16317 * the ipifs are down. Thus, we need to check for ill_group to 16318 * be non-NULL. 16319 */ 16320 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16321 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16322 mutex_enter(&ill_v4->ill_lock); 16323 if (!ill_is_quiescent(ill_v4)) { 16324 /* 16325 * ipsq_pending_mp_add will not fail since 16326 * connp is NULL 16327 */ 16328 (void) ipsq_pending_mp_add(NULL, 16329 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16330 mutex_exit(&ill_v4->ill_lock); 16331 err = EINPROGRESS; 16332 goto done; 16333 } 16334 mutex_exit(&ill_v4->ill_lock); 16335 } 16336 16337 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16338 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16339 mutex_enter(&ill_v6->ill_lock); 16340 if (!ill_is_quiescent(ill_v6)) { 16341 (void) ipsq_pending_mp_add(NULL, 16342 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16343 mutex_exit(&ill_v6->ill_lock); 16344 err = EINPROGRESS; 16345 goto done; 16346 } 16347 mutex_exit(&ill_v6->ill_lock); 16348 } 16349 16350 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16351 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16352 mutex_enter(&phyi->phyint_lock); 16353 ASSERT(phyi->phyint_groupname != NULL); 16354 mi_free(phyi->phyint_groupname); 16355 phyi->phyint_groupname = NULL; 16356 phyi->phyint_groupname_len = 0; 16357 16358 /* Restore the ifindex used to be the per interface one */ 16359 phyi->phyint_group_ifindex = 0; 16360 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16361 mutex_exit(&phyi->phyint_lock); 16362 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16363 rw_exit(&ipst->ips_ill_g_lock); 16364 err = ill_up_ipifs(ill, q, mp); 16365 16366 /* 16367 * set the split flag so that the ipsq can be split 16368 */ 16369 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16370 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16371 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16372 16373 } else { 16374 if (phyi->phyint_groupname_len != 0) { 16375 ASSERT(phyi->phyint_groupname != NULL); 16376 /* Are we inserting in the same group ? */ 16377 if (mi_strcmp(groupname, 16378 phyi->phyint_groupname) == 0) { 16379 err = 0; 16380 goto done; 16381 } 16382 } 16383 16384 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16385 /* 16386 * Merge ipsq for the group's. 16387 * This check is here as multiple groups/ills might be 16388 * sharing the same ipsq. 16389 * If we have to merege than the operation is restarted 16390 * on the new ipsq. 16391 */ 16392 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16393 if (phyi->phyint_ipsq != ipsq) { 16394 rw_exit(&ipst->ips_ill_g_lock); 16395 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16396 goto done; 16397 } 16398 /* 16399 * Running exclusive on new ipsq. 16400 */ 16401 16402 ASSERT(ipsq != NULL); 16403 ASSERT(ipsq->ipsq_writer == curthread); 16404 16405 /* 16406 * Check whether the ill_type and ill_net_type matches before 16407 * we allocate any memory so that the cleanup is easier. 16408 * 16409 * We can't group dissimilar ones as we can't load spread 16410 * packets across the group because of potential link-level 16411 * header differences. 16412 */ 16413 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16414 if (phyi_tmp != NULL) { 16415 if ((ill_v4 != NULL && 16416 phyi_tmp->phyint_illv4 != NULL) && 16417 ((ill_v4->ill_net_type != 16418 phyi_tmp->phyint_illv4->ill_net_type) || 16419 (ill_v4->ill_type != 16420 phyi_tmp->phyint_illv4->ill_type))) { 16421 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16422 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16423 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16424 rw_exit(&ipst->ips_ill_g_lock); 16425 return (EINVAL); 16426 } 16427 if ((ill_v6 != NULL && 16428 phyi_tmp->phyint_illv6 != NULL) && 16429 ((ill_v6->ill_net_type != 16430 phyi_tmp->phyint_illv6->ill_net_type) || 16431 (ill_v6->ill_type != 16432 phyi_tmp->phyint_illv6->ill_type))) { 16433 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16434 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16435 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16436 rw_exit(&ipst->ips_ill_g_lock); 16437 return (EINVAL); 16438 } 16439 } 16440 16441 rw_exit(&ipst->ips_ill_g_lock); 16442 16443 /* 16444 * bring down all v4 ipifs. 16445 */ 16446 if (ill_v4 != NULL) { 16447 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16448 } 16449 16450 /* 16451 * bring down all v6 ipifs. 16452 */ 16453 if (ill_v6 != NULL) { 16454 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16455 } 16456 16457 /* 16458 * make sure all ipifs are down and there are no active 16459 * references. Call to ipsq_pending_mp_add will not fail 16460 * since connp is NULL. 16461 */ 16462 if (ill_v4 != NULL) { 16463 mutex_enter(&ill_v4->ill_lock); 16464 if (!ill_is_quiescent(ill_v4)) { 16465 (void) ipsq_pending_mp_add(NULL, 16466 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16467 mutex_exit(&ill_v4->ill_lock); 16468 err = EINPROGRESS; 16469 goto done; 16470 } 16471 mutex_exit(&ill_v4->ill_lock); 16472 } 16473 16474 if (ill_v6 != NULL) { 16475 mutex_enter(&ill_v6->ill_lock); 16476 if (!ill_is_quiescent(ill_v6)) { 16477 (void) ipsq_pending_mp_add(NULL, 16478 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16479 mutex_exit(&ill_v6->ill_lock); 16480 err = EINPROGRESS; 16481 goto done; 16482 } 16483 mutex_exit(&ill_v6->ill_lock); 16484 } 16485 16486 /* 16487 * allocate including space for null terminator 16488 * before we insert. 16489 */ 16490 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16491 if (tmp == NULL) 16492 return (ENOMEM); 16493 16494 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16495 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16496 mutex_enter(&phyi->phyint_lock); 16497 if (phyi->phyint_groupname_len != 0) { 16498 ASSERT(phyi->phyint_groupname != NULL); 16499 mi_free(phyi->phyint_groupname); 16500 } 16501 16502 /* 16503 * setup the new group name. 16504 */ 16505 phyi->phyint_groupname = tmp; 16506 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16507 phyi->phyint_groupname_len = namelen + 1; 16508 16509 if (ipst->ips_ipmp_hook_emulation) { 16510 /* 16511 * If the group already exists we use the existing 16512 * group_ifindex, otherwise we pick a new index here. 16513 */ 16514 if (phyi_tmp != NULL) { 16515 phyi->phyint_group_ifindex = 16516 phyi_tmp->phyint_group_ifindex; 16517 } else { 16518 /* XXX We need a recovery strategy here. */ 16519 if (!ip_assign_ifindex( 16520 &phyi->phyint_group_ifindex, ipst)) 16521 cmn_err(CE_PANIC, 16522 "ip_assign_ifindex() failed"); 16523 } 16524 } 16525 /* 16526 * Select whether the netinfo and hook use the per-interface 16527 * or per-group ifindex. 16528 */ 16529 if (ipst->ips_ipmp_hook_emulation) 16530 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16531 else 16532 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16533 16534 if (ipst->ips_ipmp_hook_emulation && 16535 phyi_tmp != NULL) { 16536 /* First phyint in group - group PLUMB event */ 16537 ill_nic_info_plumb(ill, B_TRUE); 16538 } 16539 mutex_exit(&phyi->phyint_lock); 16540 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16541 rw_exit(&ipst->ips_ill_g_lock); 16542 16543 err = ill_up_ipifs(ill, q, mp); 16544 } 16545 16546 done: 16547 /* 16548 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16549 */ 16550 if (err != EINPROGRESS) { 16551 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16552 if (ill_v4 != NULL) 16553 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16554 if (ill_v6 != NULL) 16555 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16556 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16557 } 16558 return (err); 16559 } 16560 16561 /* ARGSUSED */ 16562 int 16563 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16564 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16565 { 16566 ill_t *ill; 16567 phyint_t *phyi; 16568 struct lifreq *lifr; 16569 mblk_t *mp1; 16570 16571 /* Existence verified in ip_wput_nondata */ 16572 mp1 = mp->b_cont->b_cont; 16573 lifr = (struct lifreq *)mp1->b_rptr; 16574 ill = ipif->ipif_ill; 16575 phyi = ill->ill_phyint; 16576 16577 lifr->lifr_groupname[0] = '\0'; 16578 /* 16579 * ill_group may be null if all the interfaces 16580 * are down. But still, the phyint should always 16581 * hold the name. 16582 */ 16583 if (phyi->phyint_groupname_len != 0) { 16584 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16585 phyi->phyint_groupname_len); 16586 } 16587 16588 return (0); 16589 } 16590 16591 16592 typedef struct conn_move_s { 16593 ill_t *cm_from_ill; 16594 ill_t *cm_to_ill; 16595 int cm_ifindex; 16596 } conn_move_t; 16597 16598 /* 16599 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16600 */ 16601 static void 16602 conn_move(conn_t *connp, caddr_t arg) 16603 { 16604 conn_move_t *connm; 16605 int ifindex; 16606 int i; 16607 ill_t *from_ill; 16608 ill_t *to_ill; 16609 ilg_t *ilg; 16610 ilm_t *ret_ilm; 16611 16612 connm = (conn_move_t *)arg; 16613 ifindex = connm->cm_ifindex; 16614 from_ill = connm->cm_from_ill; 16615 to_ill = connm->cm_to_ill; 16616 16617 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16618 16619 /* All multicast fields protected by conn_lock */ 16620 mutex_enter(&connp->conn_lock); 16621 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16622 if ((connp->conn_outgoing_ill == from_ill) && 16623 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16624 connp->conn_outgoing_ill = to_ill; 16625 connp->conn_incoming_ill = to_ill; 16626 } 16627 16628 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16629 16630 if ((connp->conn_multicast_ill == from_ill) && 16631 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16632 connp->conn_multicast_ill = connm->cm_to_ill; 16633 } 16634 16635 /* 16636 * Change the ilg_ill to point to the new one. This assumes 16637 * ilm_move_v6 has moved the ilms to new_ill and the driver 16638 * has been told to receive packets on this interface. 16639 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16640 * But when doing a FAILOVER, it might fail with ENOMEM and so 16641 * some ilms may not have moved. We check to see whether 16642 * the ilms have moved to to_ill. We can't check on from_ill 16643 * as in the process of moving, we could have split an ilm 16644 * in to two - which has the same orig_ifindex and v6group. 16645 * 16646 * For IPv4, ilg_ipif moves implicitly. The code below really 16647 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16648 */ 16649 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16650 ilg = &connp->conn_ilg[i]; 16651 if ((ilg->ilg_ill == from_ill) && 16652 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16653 /* ifindex != 0 indicates failback */ 16654 if (ifindex != 0) { 16655 connp->conn_ilg[i].ilg_ill = to_ill; 16656 continue; 16657 } 16658 16659 mutex_enter(&to_ill->ill_lock); 16660 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16661 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16662 connp->conn_zoneid); 16663 mutex_exit(&to_ill->ill_lock); 16664 16665 if (ret_ilm != NULL) 16666 connp->conn_ilg[i].ilg_ill = to_ill; 16667 } 16668 } 16669 mutex_exit(&connp->conn_lock); 16670 } 16671 16672 static void 16673 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16674 { 16675 conn_move_t connm; 16676 ip_stack_t *ipst = from_ill->ill_ipst; 16677 16678 connm.cm_from_ill = from_ill; 16679 connm.cm_to_ill = to_ill; 16680 connm.cm_ifindex = ifindex; 16681 16682 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16683 } 16684 16685 /* 16686 * ilm has been moved from from_ill to to_ill. 16687 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16688 * appropriately. 16689 * 16690 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16691 * the code there de-references ipif_ill to get the ill to 16692 * send multicast requests. It does not work as ipif is on its 16693 * move and already moved when this function is called. 16694 * Thus, we need to use from_ill and to_ill send down multicast 16695 * requests. 16696 */ 16697 static void 16698 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16699 { 16700 ipif_t *ipif; 16701 ilm_t *ilm; 16702 16703 /* 16704 * See whether we need to send down DL_ENABMULTI_REQ on 16705 * to_ill as ilm has just been added. 16706 */ 16707 ASSERT(IAM_WRITER_ILL(to_ill)); 16708 ASSERT(IAM_WRITER_ILL(from_ill)); 16709 16710 ILM_WALKER_HOLD(to_ill); 16711 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16712 16713 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16714 continue; 16715 /* 16716 * no locks held, ill/ipif cannot dissappear as long 16717 * as we are writer. 16718 */ 16719 ipif = to_ill->ill_ipif; 16720 /* 16721 * No need to hold any lock as we are the writer and this 16722 * can only be changed by a writer. 16723 */ 16724 ilm->ilm_is_new = B_FALSE; 16725 16726 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16727 ipif->ipif_flags & IPIF_POINTOPOINT) { 16728 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16729 "resolver\n")); 16730 continue; /* Must be IRE_IF_NORESOLVER */ 16731 } 16732 16733 16734 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16735 ip1dbg(("ilm_send_multicast_reqs: " 16736 "to_ill MULTI_BCAST\n")); 16737 goto from; 16738 } 16739 16740 if (to_ill->ill_isv6) 16741 mld_joingroup(ilm); 16742 else 16743 igmp_joingroup(ilm); 16744 16745 if (to_ill->ill_ipif_up_count == 0) { 16746 /* 16747 * Nobody there. All multicast addresses will be 16748 * re-joined when we get the DL_BIND_ACK bringing the 16749 * interface up. 16750 */ 16751 ilm->ilm_notify_driver = B_FALSE; 16752 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16753 goto from; 16754 } 16755 16756 /* 16757 * For allmulti address, we want to join on only one interface. 16758 * Checking for ilm_numentries_v6 is not correct as you may 16759 * find an ilm with zero address on to_ill, but we may not 16760 * have nominated to_ill for receiving. Thus, if we have 16761 * nominated from_ill (ill_join_allmulti is set), nominate 16762 * only if to_ill is not already nominated (to_ill normally 16763 * should not have been nominated if "from_ill" has already 16764 * been nominated. As we don't prevent failovers from happening 16765 * across groups, we don't assert). 16766 */ 16767 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16768 /* 16769 * There is no need to hold ill locks as we are 16770 * writer on both ills and when ill_join_allmulti 16771 * is changed the thread is always a writer. 16772 */ 16773 if (from_ill->ill_join_allmulti && 16774 !to_ill->ill_join_allmulti) { 16775 (void) ip_join_allmulti(to_ill->ill_ipif); 16776 } 16777 } else if (ilm->ilm_notify_driver) { 16778 16779 /* 16780 * This is a newly moved ilm so we need to tell the 16781 * driver about the new group. There can be more than 16782 * one ilm's for the same group in the list each with a 16783 * different orig_ifindex. We have to inform the driver 16784 * once. In ilm_move_v[4,6] we only set the flag 16785 * ilm_notify_driver for the first ilm. 16786 */ 16787 16788 (void) ip_ll_send_enabmulti_req(to_ill, 16789 &ilm->ilm_v6addr); 16790 } 16791 16792 ilm->ilm_notify_driver = B_FALSE; 16793 16794 /* 16795 * See whether we need to send down DL_DISABMULTI_REQ on 16796 * from_ill as ilm has just been removed. 16797 */ 16798 from: 16799 ipif = from_ill->ill_ipif; 16800 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16801 ipif->ipif_flags & IPIF_POINTOPOINT) { 16802 ip1dbg(("ilm_send_multicast_reqs: " 16803 "from_ill not resolver\n")); 16804 continue; /* Must be IRE_IF_NORESOLVER */ 16805 } 16806 16807 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16808 ip1dbg(("ilm_send_multicast_reqs: " 16809 "from_ill MULTI_BCAST\n")); 16810 continue; 16811 } 16812 16813 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16814 if (from_ill->ill_join_allmulti) 16815 (void) ip_leave_allmulti(from_ill->ill_ipif); 16816 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16817 (void) ip_ll_send_disabmulti_req(from_ill, 16818 &ilm->ilm_v6addr); 16819 } 16820 } 16821 ILM_WALKER_RELE(to_ill); 16822 } 16823 16824 /* 16825 * This function is called when all multicast memberships needs 16826 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16827 * called only once unlike the IPv4 counterpart where it is called after 16828 * every logical interface is moved. The reason is due to multicast 16829 * memberships are joined using an interface address in IPv4 while in 16830 * IPv6, interface index is used. 16831 */ 16832 static void 16833 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16834 { 16835 ilm_t *ilm; 16836 ilm_t *ilm_next; 16837 ilm_t *new_ilm; 16838 ilm_t **ilmp; 16839 int count; 16840 char buf[INET6_ADDRSTRLEN]; 16841 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16842 ip_stack_t *ipst = from_ill->ill_ipst; 16843 16844 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16845 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16846 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16847 16848 if (ifindex == 0) { 16849 /* 16850 * Form the solicited node mcast address which is used later. 16851 */ 16852 ipif_t *ipif; 16853 16854 ipif = from_ill->ill_ipif; 16855 ASSERT(ipif->ipif_id == 0); 16856 16857 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16858 } 16859 16860 ilmp = &from_ill->ill_ilm; 16861 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16862 ilm_next = ilm->ilm_next; 16863 16864 if (ilm->ilm_flags & ILM_DELETED) { 16865 ilmp = &ilm->ilm_next; 16866 continue; 16867 } 16868 16869 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16870 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16871 ASSERT(ilm->ilm_orig_ifindex != 0); 16872 if (ilm->ilm_orig_ifindex == ifindex) { 16873 /* 16874 * We are failing back multicast memberships. 16875 * If the same ilm exists in to_ill, it means somebody 16876 * has joined the same group there e.g. ff02::1 16877 * is joined within the kernel when the interfaces 16878 * came UP. 16879 */ 16880 ASSERT(ilm->ilm_ipif == NULL); 16881 if (new_ilm != NULL) { 16882 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16883 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16884 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16885 new_ilm->ilm_is_new = B_TRUE; 16886 } 16887 } else { 16888 /* 16889 * check if we can just move the ilm 16890 */ 16891 if (from_ill->ill_ilm_walker_cnt != 0) { 16892 /* 16893 * We have walkers we cannot move 16894 * the ilm, so allocate a new ilm, 16895 * this (old) ilm will be marked 16896 * ILM_DELETED at the end of the loop 16897 * and will be freed when the 16898 * last walker exits. 16899 */ 16900 new_ilm = (ilm_t *)mi_zalloc 16901 (sizeof (ilm_t)); 16902 if (new_ilm == NULL) { 16903 ip0dbg(("ilm_move_v6: " 16904 "FAILBACK of IPv6" 16905 " multicast address %s : " 16906 "from %s to" 16907 " %s failed : ENOMEM \n", 16908 inet_ntop(AF_INET6, 16909 &ilm->ilm_v6addr, buf, 16910 sizeof (buf)), 16911 from_ill->ill_name, 16912 to_ill->ill_name)); 16913 16914 ilmp = &ilm->ilm_next; 16915 continue; 16916 } 16917 *new_ilm = *ilm; 16918 /* 16919 * we don't want new_ilm linked to 16920 * ilm's filter list. 16921 */ 16922 new_ilm->ilm_filter = NULL; 16923 } else { 16924 /* 16925 * No walkers we can move the ilm. 16926 * lets take it out of the list. 16927 */ 16928 *ilmp = ilm->ilm_next; 16929 ilm->ilm_next = NULL; 16930 new_ilm = ilm; 16931 } 16932 16933 /* 16934 * if this is the first ilm for the group 16935 * set ilm_notify_driver so that we notify the 16936 * driver in ilm_send_multicast_reqs. 16937 */ 16938 if (ilm_lookup_ill_v6(to_ill, 16939 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16940 new_ilm->ilm_notify_driver = B_TRUE; 16941 16942 new_ilm->ilm_ill = to_ill; 16943 /* Add to the to_ill's list */ 16944 new_ilm->ilm_next = to_ill->ill_ilm; 16945 to_ill->ill_ilm = new_ilm; 16946 /* 16947 * set the flag so that mld_joingroup is 16948 * called in ilm_send_multicast_reqs(). 16949 */ 16950 new_ilm->ilm_is_new = B_TRUE; 16951 } 16952 goto bottom; 16953 } else if (ifindex != 0) { 16954 /* 16955 * If this is FAILBACK (ifindex != 0) and the ifindex 16956 * has not matched above, look at the next ilm. 16957 */ 16958 ilmp = &ilm->ilm_next; 16959 continue; 16960 } 16961 /* 16962 * If we are here, it means ifindex is 0. Failover 16963 * everything. 16964 * 16965 * We need to handle solicited node mcast address 16966 * and all_nodes mcast address differently as they 16967 * are joined witin the kenrel (ipif_multicast_up) 16968 * and potentially from the userland. We are called 16969 * after the ipifs of from_ill has been moved. 16970 * If we still find ilms on ill with solicited node 16971 * mcast address or all_nodes mcast address, it must 16972 * belong to the UP interface that has not moved e.g. 16973 * ipif_id 0 with the link local prefix does not move. 16974 * We join this on the new ill accounting for all the 16975 * userland memberships so that applications don't 16976 * see any failure. 16977 * 16978 * We need to make sure that we account only for the 16979 * solicited node and all node multicast addresses 16980 * that was brought UP on these. In the case of 16981 * a failover from A to B, we might have ilms belonging 16982 * to A (ilm_orig_ifindex pointing at A) on B accounting 16983 * for the membership from the userland. If we are failing 16984 * over from B to C now, we will find the ones belonging 16985 * to A on B. These don't account for the ill_ipif_up_count. 16986 * They just move from B to C. The check below on 16987 * ilm_orig_ifindex ensures that. 16988 */ 16989 if ((ilm->ilm_orig_ifindex == 16990 from_ill->ill_phyint->phyint_ifindex) && 16991 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16992 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16993 &ilm->ilm_v6addr))) { 16994 ASSERT(ilm->ilm_refcnt > 0); 16995 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16996 /* 16997 * For indentation reasons, we are not using a 16998 * "else" here. 16999 */ 17000 if (count == 0) { 17001 ilmp = &ilm->ilm_next; 17002 continue; 17003 } 17004 ilm->ilm_refcnt -= count; 17005 if (new_ilm != NULL) { 17006 /* 17007 * Can find one with the same 17008 * ilm_orig_ifindex, if we are failing 17009 * over to a STANDBY. This happens 17010 * when somebody wants to join a group 17011 * on a STANDBY interface and we 17012 * internally join on a different one. 17013 * If we had joined on from_ill then, a 17014 * failover now will find a new ilm 17015 * with this index. 17016 */ 17017 ip1dbg(("ilm_move_v6: FAILOVER, found" 17018 " new ilm on %s, group address %s\n", 17019 to_ill->ill_name, 17020 inet_ntop(AF_INET6, 17021 &ilm->ilm_v6addr, buf, 17022 sizeof (buf)))); 17023 new_ilm->ilm_refcnt += count; 17024 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17025 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17026 new_ilm->ilm_is_new = B_TRUE; 17027 } 17028 } else { 17029 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17030 if (new_ilm == NULL) { 17031 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17032 " multicast address %s : from %s to" 17033 " %s failed : ENOMEM \n", 17034 inet_ntop(AF_INET6, 17035 &ilm->ilm_v6addr, buf, 17036 sizeof (buf)), from_ill->ill_name, 17037 to_ill->ill_name)); 17038 ilmp = &ilm->ilm_next; 17039 continue; 17040 } 17041 *new_ilm = *ilm; 17042 new_ilm->ilm_filter = NULL; 17043 new_ilm->ilm_refcnt = count; 17044 new_ilm->ilm_timer = INFINITY; 17045 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17046 new_ilm->ilm_is_new = B_TRUE; 17047 /* 17048 * If the to_ill has not joined this 17049 * group we need to tell the driver in 17050 * ill_send_multicast_reqs. 17051 */ 17052 if (ilm_lookup_ill_v6(to_ill, 17053 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17054 new_ilm->ilm_notify_driver = B_TRUE; 17055 17056 new_ilm->ilm_ill = to_ill; 17057 /* Add to the to_ill's list */ 17058 new_ilm->ilm_next = to_ill->ill_ilm; 17059 to_ill->ill_ilm = new_ilm; 17060 ASSERT(new_ilm->ilm_ipif == NULL); 17061 } 17062 if (ilm->ilm_refcnt == 0) { 17063 goto bottom; 17064 } else { 17065 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17066 CLEAR_SLIST(new_ilm->ilm_filter); 17067 ilmp = &ilm->ilm_next; 17068 } 17069 continue; 17070 } else { 17071 /* 17072 * ifindex = 0 means, move everything pointing at 17073 * from_ill. We are doing this becuase ill has 17074 * either FAILED or became INACTIVE. 17075 * 17076 * As we would like to move things later back to 17077 * from_ill, we want to retain the identity of this 17078 * ilm. Thus, we don't blindly increment the reference 17079 * count on the ilms matching the address alone. We 17080 * need to match on the ilm_orig_index also. new_ilm 17081 * was obtained by matching ilm_orig_index also. 17082 */ 17083 if (new_ilm != NULL) { 17084 /* 17085 * This is possible only if a previous restore 17086 * was incomplete i.e restore to 17087 * ilm_orig_ifindex left some ilms because 17088 * of some failures. Thus when we are failing 17089 * again, we might find our old friends there. 17090 */ 17091 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17092 " on %s, group address %s\n", 17093 to_ill->ill_name, 17094 inet_ntop(AF_INET6, 17095 &ilm->ilm_v6addr, buf, 17096 sizeof (buf)))); 17097 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17098 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17099 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17100 new_ilm->ilm_is_new = B_TRUE; 17101 } 17102 } else { 17103 if (from_ill->ill_ilm_walker_cnt != 0) { 17104 new_ilm = (ilm_t *) 17105 mi_zalloc(sizeof (ilm_t)); 17106 if (new_ilm == NULL) { 17107 ip0dbg(("ilm_move_v6: " 17108 "FAILOVER of IPv6" 17109 " multicast address %s : " 17110 "from %s to" 17111 " %s failed : ENOMEM \n", 17112 inet_ntop(AF_INET6, 17113 &ilm->ilm_v6addr, buf, 17114 sizeof (buf)), 17115 from_ill->ill_name, 17116 to_ill->ill_name)); 17117 17118 ilmp = &ilm->ilm_next; 17119 continue; 17120 } 17121 *new_ilm = *ilm; 17122 new_ilm->ilm_filter = NULL; 17123 } else { 17124 *ilmp = ilm->ilm_next; 17125 new_ilm = ilm; 17126 } 17127 /* 17128 * If the to_ill has not joined this 17129 * group we need to tell the driver in 17130 * ill_send_multicast_reqs. 17131 */ 17132 if (ilm_lookup_ill_v6(to_ill, 17133 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17134 new_ilm->ilm_notify_driver = B_TRUE; 17135 17136 /* Add to the to_ill's list */ 17137 new_ilm->ilm_next = to_ill->ill_ilm; 17138 to_ill->ill_ilm = new_ilm; 17139 ASSERT(ilm->ilm_ipif == NULL); 17140 new_ilm->ilm_ill = to_ill; 17141 new_ilm->ilm_is_new = B_TRUE; 17142 } 17143 17144 } 17145 17146 bottom: 17147 /* 17148 * Revert multicast filter state to (EXCLUDE, NULL). 17149 * new_ilm->ilm_is_new should already be set if needed. 17150 */ 17151 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17152 CLEAR_SLIST(new_ilm->ilm_filter); 17153 /* 17154 * We allocated/got a new ilm, free the old one. 17155 */ 17156 if (new_ilm != ilm) { 17157 if (from_ill->ill_ilm_walker_cnt == 0) { 17158 *ilmp = ilm->ilm_next; 17159 ilm->ilm_next = NULL; 17160 FREE_SLIST(ilm->ilm_filter); 17161 FREE_SLIST(ilm->ilm_pendsrcs); 17162 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17163 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17164 mi_free((char *)ilm); 17165 } else { 17166 ilm->ilm_flags |= ILM_DELETED; 17167 from_ill->ill_ilm_cleanup_reqd = 1; 17168 ilmp = &ilm->ilm_next; 17169 } 17170 } 17171 } 17172 } 17173 17174 /* 17175 * Move all the multicast memberships to to_ill. Called when 17176 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17177 * different from IPv6 counterpart as multicast memberships are associated 17178 * with ills in IPv6. This function is called after every ipif is moved 17179 * unlike IPv6, where it is moved only once. 17180 */ 17181 static void 17182 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17183 { 17184 ilm_t *ilm; 17185 ilm_t *ilm_next; 17186 ilm_t *new_ilm; 17187 ilm_t **ilmp; 17188 ip_stack_t *ipst = from_ill->ill_ipst; 17189 17190 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17191 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17192 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17193 17194 ilmp = &from_ill->ill_ilm; 17195 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17196 ilm_next = ilm->ilm_next; 17197 17198 if (ilm->ilm_flags & ILM_DELETED) { 17199 ilmp = &ilm->ilm_next; 17200 continue; 17201 } 17202 17203 ASSERT(ilm->ilm_ipif != NULL); 17204 17205 if (ilm->ilm_ipif != ipif) { 17206 ilmp = &ilm->ilm_next; 17207 continue; 17208 } 17209 17210 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17211 htonl(INADDR_ALLHOSTS_GROUP)) { 17212 new_ilm = ilm_lookup_ipif(ipif, 17213 V4_PART_OF_V6(ilm->ilm_v6addr)); 17214 if (new_ilm != NULL) { 17215 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17216 /* 17217 * We still need to deal with the from_ill. 17218 */ 17219 new_ilm->ilm_is_new = B_TRUE; 17220 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17221 CLEAR_SLIST(new_ilm->ilm_filter); 17222 goto delete_ilm; 17223 } 17224 /* 17225 * If we could not find one e.g. ipif is 17226 * still down on to_ill, we add this ilm 17227 * on ill_new to preserve the reference 17228 * count. 17229 */ 17230 } 17231 /* 17232 * When ipifs move, ilms always move with it 17233 * to the NEW ill. Thus we should never be 17234 * able to find ilm till we really move it here. 17235 */ 17236 ASSERT(ilm_lookup_ipif(ipif, 17237 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17238 17239 if (from_ill->ill_ilm_walker_cnt != 0) { 17240 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17241 if (new_ilm == NULL) { 17242 char buf[INET6_ADDRSTRLEN]; 17243 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17244 " multicast address %s : " 17245 "from %s to" 17246 " %s failed : ENOMEM \n", 17247 inet_ntop(AF_INET, 17248 &ilm->ilm_v6addr, buf, 17249 sizeof (buf)), 17250 from_ill->ill_name, 17251 to_ill->ill_name)); 17252 17253 ilmp = &ilm->ilm_next; 17254 continue; 17255 } 17256 *new_ilm = *ilm; 17257 /* We don't want new_ilm linked to ilm's filter list */ 17258 new_ilm->ilm_filter = NULL; 17259 } else { 17260 /* Remove from the list */ 17261 *ilmp = ilm->ilm_next; 17262 new_ilm = ilm; 17263 } 17264 17265 /* 17266 * If we have never joined this group on the to_ill 17267 * make sure we tell the driver. 17268 */ 17269 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17270 ALL_ZONES) == NULL) 17271 new_ilm->ilm_notify_driver = B_TRUE; 17272 17273 /* Add to the to_ill's list */ 17274 new_ilm->ilm_next = to_ill->ill_ilm; 17275 to_ill->ill_ilm = new_ilm; 17276 new_ilm->ilm_is_new = B_TRUE; 17277 17278 /* 17279 * Revert multicast filter state to (EXCLUDE, NULL) 17280 */ 17281 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17282 CLEAR_SLIST(new_ilm->ilm_filter); 17283 17284 /* 17285 * Delete only if we have allocated a new ilm. 17286 */ 17287 if (new_ilm != ilm) { 17288 delete_ilm: 17289 if (from_ill->ill_ilm_walker_cnt == 0) { 17290 /* Remove from the list */ 17291 *ilmp = ilm->ilm_next; 17292 ilm->ilm_next = NULL; 17293 FREE_SLIST(ilm->ilm_filter); 17294 FREE_SLIST(ilm->ilm_pendsrcs); 17295 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17296 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17297 mi_free((char *)ilm); 17298 } else { 17299 ilm->ilm_flags |= ILM_DELETED; 17300 from_ill->ill_ilm_cleanup_reqd = 1; 17301 ilmp = &ilm->ilm_next; 17302 } 17303 } 17304 } 17305 } 17306 17307 static uint_t 17308 ipif_get_id(ill_t *ill, uint_t id) 17309 { 17310 uint_t unit; 17311 ipif_t *tipif; 17312 boolean_t found = B_FALSE; 17313 ip_stack_t *ipst = ill->ill_ipst; 17314 17315 /* 17316 * During failback, we want to go back to the same id 17317 * instead of the smallest id so that the original 17318 * configuration is maintained. id is non-zero in that 17319 * case. 17320 */ 17321 if (id != 0) { 17322 /* 17323 * While failing back, if we still have an ipif with 17324 * MAX_ADDRS_PER_IF, it means this will be replaced 17325 * as soon as we return from this function. It was 17326 * to set to MAX_ADDRS_PER_IF by the caller so that 17327 * we can choose the smallest id. Thus we return zero 17328 * in that case ignoring the hint. 17329 */ 17330 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17331 return (0); 17332 for (tipif = ill->ill_ipif; tipif != NULL; 17333 tipif = tipif->ipif_next) { 17334 if (tipif->ipif_id == id) { 17335 found = B_TRUE; 17336 break; 17337 } 17338 } 17339 /* 17340 * If somebody already plumbed another logical 17341 * with the same id, we won't be able to find it. 17342 */ 17343 if (!found) 17344 return (id); 17345 } 17346 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17347 found = B_FALSE; 17348 for (tipif = ill->ill_ipif; tipif != NULL; 17349 tipif = tipif->ipif_next) { 17350 if (tipif->ipif_id == unit) { 17351 found = B_TRUE; 17352 break; 17353 } 17354 } 17355 if (!found) 17356 break; 17357 } 17358 return (unit); 17359 } 17360 17361 /* ARGSUSED */ 17362 static int 17363 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17364 ipif_t **rep_ipif_ptr) 17365 { 17366 ill_t *from_ill; 17367 ipif_t *rep_ipif; 17368 uint_t unit; 17369 int err = 0; 17370 ipif_t *to_ipif; 17371 struct iocblk *iocp; 17372 boolean_t failback_cmd; 17373 boolean_t remove_ipif; 17374 int rc; 17375 ip_stack_t *ipst; 17376 17377 ASSERT(IAM_WRITER_ILL(to_ill)); 17378 ASSERT(IAM_WRITER_IPIF(ipif)); 17379 17380 iocp = (struct iocblk *)mp->b_rptr; 17381 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17382 remove_ipif = B_FALSE; 17383 17384 from_ill = ipif->ipif_ill; 17385 ipst = from_ill->ill_ipst; 17386 17387 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17388 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17389 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17390 17391 /* 17392 * Don't move LINK LOCAL addresses as they are tied to 17393 * physical interface. 17394 */ 17395 if (from_ill->ill_isv6 && 17396 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17397 ipif->ipif_was_up = B_FALSE; 17398 IPIF_UNMARK_MOVING(ipif); 17399 return (0); 17400 } 17401 17402 /* 17403 * We set the ipif_id to maximum so that the search for 17404 * ipif_id will pick the lowest number i.e 0 in the 17405 * following 2 cases : 17406 * 17407 * 1) We have a replacement ipif at the head of to_ill. 17408 * We can't remove it yet as we can exceed ip_addrs_per_if 17409 * on to_ill and hence the MOVE might fail. We want to 17410 * remove it only if we could move the ipif. Thus, by 17411 * setting it to the MAX value, we make the search in 17412 * ipif_get_id return the zeroth id. 17413 * 17414 * 2) When DR pulls out the NIC and re-plumbs the interface, 17415 * we might just have a zero address plumbed on the ipif 17416 * with zero id in the case of IPv4. We remove that while 17417 * doing the failback. We want to remove it only if we 17418 * could move the ipif. Thus, by setting it to the MAX 17419 * value, we make the search in ipif_get_id return the 17420 * zeroth id. 17421 * 17422 * Both (1) and (2) are done only when when we are moving 17423 * an ipif (either due to failover/failback) which originally 17424 * belonged to this interface i.e the ipif_orig_ifindex is 17425 * the same as to_ill's ifindex. This is needed so that 17426 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17427 * from B -> A (B is being removed from the group) and 17428 * FAILBACK from A -> B restores the original configuration. 17429 * Without the check for orig_ifindex, the second FAILOVER 17430 * could make the ipif belonging to B replace the A's zeroth 17431 * ipif and the subsequent failback re-creating the replacement 17432 * ipif again. 17433 * 17434 * NOTE : We created the replacement ipif when we did a 17435 * FAILOVER (See below). We could check for FAILBACK and 17436 * then look for replacement ipif to be removed. But we don't 17437 * want to do that because we wan't to allow the possibility 17438 * of a FAILOVER from A -> B (which creates the replacement ipif), 17439 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17440 * from B -> A. 17441 */ 17442 to_ipif = to_ill->ill_ipif; 17443 if ((to_ill->ill_phyint->phyint_ifindex == 17444 ipif->ipif_orig_ifindex) && 17445 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17446 ASSERT(to_ipif->ipif_id == 0); 17447 remove_ipif = B_TRUE; 17448 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17449 } 17450 /* 17451 * Find the lowest logical unit number on the to_ill. 17452 * If we are failing back, try to get the original id 17453 * rather than the lowest one so that the original 17454 * configuration is maintained. 17455 * 17456 * XXX need a better scheme for this. 17457 */ 17458 if (failback_cmd) { 17459 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17460 } else { 17461 unit = ipif_get_id(to_ill, 0); 17462 } 17463 17464 /* Reset back to zero in case we fail below */ 17465 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17466 to_ipif->ipif_id = 0; 17467 17468 if (unit == ipst->ips_ip_addrs_per_if) { 17469 ipif->ipif_was_up = B_FALSE; 17470 IPIF_UNMARK_MOVING(ipif); 17471 return (EINVAL); 17472 } 17473 17474 /* 17475 * ipif is ready to move from "from_ill" to "to_ill". 17476 * 17477 * 1) If we are moving ipif with id zero, create a 17478 * replacement ipif for this ipif on from_ill. If this fails 17479 * fail the MOVE operation. 17480 * 17481 * 2) Remove the replacement ipif on to_ill if any. 17482 * We could remove the replacement ipif when we are moving 17483 * the ipif with id zero. But what if somebody already 17484 * unplumbed it ? Thus we always remove it if it is present. 17485 * We want to do it only if we are sure we are going to 17486 * move the ipif to to_ill which is why there are no 17487 * returns due to error till ipif is linked to to_ill. 17488 * Note that the first ipif that we failback will always 17489 * be zero if it is present. 17490 */ 17491 if (ipif->ipif_id == 0) { 17492 ipaddr_t inaddr_any = INADDR_ANY; 17493 17494 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17495 if (rep_ipif == NULL) { 17496 ipif->ipif_was_up = B_FALSE; 17497 IPIF_UNMARK_MOVING(ipif); 17498 return (ENOMEM); 17499 } 17500 *rep_ipif = ipif_zero; 17501 /* 17502 * Before we put the ipif on the list, store the addresses 17503 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17504 * assumes so. This logic is not any different from what 17505 * ipif_allocate does. 17506 */ 17507 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17508 &rep_ipif->ipif_v6lcl_addr); 17509 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17510 &rep_ipif->ipif_v6src_addr); 17511 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17512 &rep_ipif->ipif_v6subnet); 17513 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17514 &rep_ipif->ipif_v6net_mask); 17515 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17516 &rep_ipif->ipif_v6brd_addr); 17517 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17518 &rep_ipif->ipif_v6pp_dst_addr); 17519 /* 17520 * We mark IPIF_NOFAILOVER so that this can never 17521 * move. 17522 */ 17523 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17524 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17525 rep_ipif->ipif_replace_zero = B_TRUE; 17526 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17527 MUTEX_DEFAULT, NULL); 17528 rep_ipif->ipif_id = 0; 17529 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17530 rep_ipif->ipif_ill = from_ill; 17531 rep_ipif->ipif_orig_ifindex = 17532 from_ill->ill_phyint->phyint_ifindex; 17533 /* Insert at head */ 17534 rep_ipif->ipif_next = from_ill->ill_ipif; 17535 from_ill->ill_ipif = rep_ipif; 17536 /* 17537 * We don't really care to let apps know about 17538 * this interface. 17539 */ 17540 } 17541 17542 if (remove_ipif) { 17543 /* 17544 * We set to a max value above for this case to get 17545 * id zero. ASSERT that we did get one. 17546 */ 17547 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17548 rep_ipif = to_ipif; 17549 to_ill->ill_ipif = rep_ipif->ipif_next; 17550 rep_ipif->ipif_next = NULL; 17551 /* 17552 * If some apps scanned and find this interface, 17553 * it is time to let them know, so that they can 17554 * delete it. 17555 */ 17556 17557 *rep_ipif_ptr = rep_ipif; 17558 } 17559 17560 /* Get it out of the ILL interface list. */ 17561 ipif_remove(ipif, B_FALSE); 17562 17563 /* Assign the new ill */ 17564 ipif->ipif_ill = to_ill; 17565 ipif->ipif_id = unit; 17566 /* id has already been checked */ 17567 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17568 ASSERT(rc == 0); 17569 /* Let SCTP update its list */ 17570 sctp_move_ipif(ipif, from_ill, to_ill); 17571 /* 17572 * Handle the failover and failback of ipif_t between 17573 * ill_t that have differing maximum mtu values. 17574 */ 17575 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17576 if (ipif->ipif_saved_mtu == 0) { 17577 /* 17578 * As this ipif_t is moving to an ill_t 17579 * that has a lower ill_max_mtu, its 17580 * ipif_mtu needs to be saved so it can 17581 * be restored during failback or during 17582 * failover to an ill_t which has a 17583 * higher ill_max_mtu. 17584 */ 17585 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17586 ipif->ipif_mtu = to_ill->ill_max_mtu; 17587 } else { 17588 /* 17589 * The ipif_t is, once again, moving to 17590 * an ill_t that has a lower maximum mtu 17591 * value. 17592 */ 17593 ipif->ipif_mtu = to_ill->ill_max_mtu; 17594 } 17595 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17596 ipif->ipif_saved_mtu != 0) { 17597 /* 17598 * The mtu of this ipif_t had to be reduced 17599 * during an earlier failover; this is an 17600 * opportunity for it to be increased (either as 17601 * part of another failover or a failback). 17602 */ 17603 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17604 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17605 ipif->ipif_saved_mtu = 0; 17606 } else { 17607 ipif->ipif_mtu = to_ill->ill_max_mtu; 17608 } 17609 } 17610 17611 /* 17612 * We preserve all the other fields of the ipif including 17613 * ipif_saved_ire_mp. The routes that are saved here will 17614 * be recreated on the new interface and back on the old 17615 * interface when we move back. 17616 */ 17617 ASSERT(ipif->ipif_arp_del_mp == NULL); 17618 17619 return (err); 17620 } 17621 17622 static int 17623 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17624 int ifindex, ipif_t **rep_ipif_ptr) 17625 { 17626 ipif_t *mipif; 17627 ipif_t *ipif_next; 17628 int err; 17629 17630 /* 17631 * We don't really try to MOVE back things if some of the 17632 * operations fail. The daemon will take care of moving again 17633 * later on. 17634 */ 17635 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17636 ipif_next = mipif->ipif_next; 17637 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17638 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17639 17640 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17641 17642 /* 17643 * When the MOVE fails, it is the job of the 17644 * application to take care of this properly 17645 * i.e try again if it is ENOMEM. 17646 */ 17647 if (mipif->ipif_ill != from_ill) { 17648 /* 17649 * ipif has moved. 17650 * 17651 * Move the multicast memberships associated 17652 * with this ipif to the new ill. For IPv6, we 17653 * do it once after all the ipifs are moved 17654 * (in ill_move) as they are not associated 17655 * with ipifs. 17656 * 17657 * We need to move the ilms as the ipif has 17658 * already been moved to a new ill even 17659 * in the case of errors. Neither 17660 * ilm_free(ipif) will find the ilm 17661 * when somebody unplumbs this ipif nor 17662 * ilm_delete(ilm) will be able to find the 17663 * ilm, if we don't move now. 17664 */ 17665 if (!from_ill->ill_isv6) 17666 ilm_move_v4(from_ill, to_ill, mipif); 17667 } 17668 17669 if (err != 0) 17670 return (err); 17671 } 17672 } 17673 return (0); 17674 } 17675 17676 static int 17677 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17678 { 17679 int ifindex; 17680 int err; 17681 struct iocblk *iocp; 17682 ipif_t *ipif; 17683 ipif_t *rep_ipif_ptr = NULL; 17684 ipif_t *from_ipif = NULL; 17685 boolean_t check_rep_if = B_FALSE; 17686 ip_stack_t *ipst = from_ill->ill_ipst; 17687 17688 iocp = (struct iocblk *)mp->b_rptr; 17689 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17690 /* 17691 * Move everything pointing at from_ill to to_ill. 17692 * We acheive this by passing in 0 as ifindex. 17693 */ 17694 ifindex = 0; 17695 } else { 17696 /* 17697 * Move everything pointing at from_ill whose original 17698 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17699 * We acheive this by passing in ifindex rather than 0. 17700 * Multicast vifs, ilgs move implicitly because ipifs move. 17701 */ 17702 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17703 ifindex = to_ill->ill_phyint->phyint_ifindex; 17704 } 17705 17706 /* 17707 * Determine if there is at least one ipif that would move from 17708 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17709 * ipif (if it exists) on the to_ill would be consumed as a result of 17710 * the move, in which case we need to quiesce the replacement ipif also. 17711 */ 17712 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17713 from_ipif = from_ipif->ipif_next) { 17714 if (((ifindex == 0) || 17715 (ifindex == from_ipif->ipif_orig_ifindex)) && 17716 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17717 check_rep_if = B_TRUE; 17718 break; 17719 } 17720 } 17721 17722 17723 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17724 17725 GRAB_ILL_LOCKS(from_ill, to_ill); 17726 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17727 (void) ipsq_pending_mp_add(NULL, ipif, q, 17728 mp, ILL_MOVE_OK); 17729 RELEASE_ILL_LOCKS(from_ill, to_ill); 17730 return (EINPROGRESS); 17731 } 17732 17733 /* Check if the replacement ipif is quiescent to delete */ 17734 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17735 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17736 to_ill->ill_ipif->ipif_state_flags |= 17737 IPIF_MOVING | IPIF_CHANGING; 17738 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17739 (void) ipsq_pending_mp_add(NULL, ipif, q, 17740 mp, ILL_MOVE_OK); 17741 RELEASE_ILL_LOCKS(from_ill, to_ill); 17742 return (EINPROGRESS); 17743 } 17744 } 17745 RELEASE_ILL_LOCKS(from_ill, to_ill); 17746 17747 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17748 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17749 GRAB_ILL_LOCKS(from_ill, to_ill); 17750 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17751 17752 /* ilm_move is done inside ipif_move for IPv4 */ 17753 if (err == 0 && from_ill->ill_isv6) 17754 ilm_move_v6(from_ill, to_ill, ifindex); 17755 17756 RELEASE_ILL_LOCKS(from_ill, to_ill); 17757 rw_exit(&ipst->ips_ill_g_lock); 17758 17759 /* 17760 * send rts messages and multicast messages. 17761 */ 17762 if (rep_ipif_ptr != NULL) { 17763 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17764 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17765 rep_ipif_ptr->ipif_recovery_id = 0; 17766 } 17767 ip_rts_ifmsg(rep_ipif_ptr); 17768 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17769 #ifdef DEBUG 17770 ipif_trace_cleanup(rep_ipif_ptr); 17771 #endif 17772 mi_free(rep_ipif_ptr); 17773 } 17774 17775 conn_move_ill(from_ill, to_ill, ifindex); 17776 17777 return (err); 17778 } 17779 17780 /* 17781 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17782 * Also checks for the validity of the arguments. 17783 * Note: We are already exclusive inside the from group. 17784 * It is upto the caller to release refcnt on the to_ill's. 17785 */ 17786 static int 17787 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17788 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17789 { 17790 int dst_index; 17791 ipif_t *ipif_v4, *ipif_v6; 17792 struct lifreq *lifr; 17793 mblk_t *mp1; 17794 boolean_t exists; 17795 sin_t *sin; 17796 int err = 0; 17797 ip_stack_t *ipst; 17798 17799 if (CONN_Q(q)) 17800 ipst = CONNQ_TO_IPST(q); 17801 else 17802 ipst = ILLQ_TO_IPST(q); 17803 17804 17805 if ((mp1 = mp->b_cont) == NULL) 17806 return (EPROTO); 17807 17808 if ((mp1 = mp1->b_cont) == NULL) 17809 return (EPROTO); 17810 17811 lifr = (struct lifreq *)mp1->b_rptr; 17812 sin = (sin_t *)&lifr->lifr_addr; 17813 17814 /* 17815 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17816 * specific operations. 17817 */ 17818 if (sin->sin_family != AF_UNSPEC) 17819 return (EINVAL); 17820 17821 /* 17822 * Get ipif with id 0. We are writer on the from ill. So we can pass 17823 * NULLs for the last 4 args and we know the lookup won't fail 17824 * with EINPROGRESS. 17825 */ 17826 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17827 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17828 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17829 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17830 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17831 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17832 17833 if (ipif_v4 == NULL && ipif_v6 == NULL) 17834 return (ENXIO); 17835 17836 if (ipif_v4 != NULL) { 17837 ASSERT(ipif_v4->ipif_refcnt != 0); 17838 if (ipif_v4->ipif_id != 0) { 17839 err = EINVAL; 17840 goto done; 17841 } 17842 17843 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17844 *ill_from_v4 = ipif_v4->ipif_ill; 17845 } 17846 17847 if (ipif_v6 != NULL) { 17848 ASSERT(ipif_v6->ipif_refcnt != 0); 17849 if (ipif_v6->ipif_id != 0) { 17850 err = EINVAL; 17851 goto done; 17852 } 17853 17854 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17855 *ill_from_v6 = ipif_v6->ipif_ill; 17856 } 17857 17858 err = 0; 17859 dst_index = lifr->lifr_movetoindex; 17860 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17861 q, mp, ip_process_ioctl, &err, ipst); 17862 if (err != 0) { 17863 /* 17864 * There could be only v6. 17865 */ 17866 if (err != ENXIO) 17867 goto done; 17868 err = 0; 17869 } 17870 17871 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17872 q, mp, ip_process_ioctl, &err, ipst); 17873 if (err != 0) { 17874 if (err != ENXIO) 17875 goto done; 17876 if (*ill_to_v4 == NULL) { 17877 err = ENXIO; 17878 goto done; 17879 } 17880 err = 0; 17881 } 17882 17883 /* 17884 * If we have something to MOVE i.e "from" not NULL, 17885 * "to" should be non-NULL. 17886 */ 17887 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17888 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17889 err = EINVAL; 17890 } 17891 17892 done: 17893 if (ipif_v4 != NULL) 17894 ipif_refrele(ipif_v4); 17895 if (ipif_v6 != NULL) 17896 ipif_refrele(ipif_v6); 17897 return (err); 17898 } 17899 17900 /* 17901 * FAILOVER and FAILBACK are modelled as MOVE operations. 17902 * 17903 * We don't check whether the MOVE is within the same group or 17904 * not, because this ioctl can be used as a generic mechanism 17905 * to failover from interface A to B, though things will function 17906 * only if they are really part of the same group. Moreover, 17907 * all ipifs may be down and hence temporarily out of the group. 17908 * 17909 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17910 * down first and then V6. For each we wait for the ipif's to become quiescent. 17911 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17912 * have been deleted and there are no active references. Once quiescent the 17913 * ipif's are moved and brought up on the new ill. 17914 * 17915 * Normally the source ill and destination ill belong to the same IPMP group 17916 * and hence the same ipsq_t. In the event they don't belong to the same 17917 * same group the two ipsq's are first merged into one ipsq - that of the 17918 * to_ill. The multicast memberships on the source and destination ill cannot 17919 * change during the move operation since multicast joins/leaves also have to 17920 * execute on the same ipsq and are hence serialized. 17921 */ 17922 /* ARGSUSED */ 17923 int 17924 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17925 ip_ioctl_cmd_t *ipip, void *ifreq) 17926 { 17927 ill_t *ill_to_v4 = NULL; 17928 ill_t *ill_to_v6 = NULL; 17929 ill_t *ill_from_v4 = NULL; 17930 ill_t *ill_from_v6 = NULL; 17931 int err = 0; 17932 17933 /* 17934 * setup from and to ill's, we can get EINPROGRESS only for 17935 * to_ill's. 17936 */ 17937 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17938 &ill_to_v4, &ill_to_v6); 17939 17940 if (err != 0) { 17941 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17942 goto done; 17943 } 17944 17945 /* 17946 * nothing to do. 17947 */ 17948 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17949 goto done; 17950 } 17951 17952 /* 17953 * nothing to do. 17954 */ 17955 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17956 goto done; 17957 } 17958 17959 /* 17960 * Mark the ill as changing. 17961 * ILL_CHANGING flag is cleared when the ipif's are brought up 17962 * in ill_up_ipifs in case of error they are cleared below. 17963 */ 17964 17965 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17966 if (ill_from_v4 != NULL) 17967 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17968 if (ill_from_v6 != NULL) 17969 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17970 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17971 17972 /* 17973 * Make sure that both src and dst are 17974 * in the same syncq group. If not make it happen. 17975 * We are not holding any locks because we are the writer 17976 * on the from_ipsq and we will hold locks in ill_merge_groups 17977 * to protect to_ipsq against changing. 17978 */ 17979 if (ill_from_v4 != NULL) { 17980 if (ill_from_v4->ill_phyint->phyint_ipsq != 17981 ill_to_v4->ill_phyint->phyint_ipsq) { 17982 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17983 NULL, mp, q); 17984 goto err_ret; 17985 17986 } 17987 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17988 } else { 17989 17990 if (ill_from_v6->ill_phyint->phyint_ipsq != 17991 ill_to_v6->ill_phyint->phyint_ipsq) { 17992 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17993 NULL, mp, q); 17994 goto err_ret; 17995 17996 } 17997 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17998 } 17999 18000 /* 18001 * Now that the ipsq's have been merged and we are the writer 18002 * lets mark to_ill as changing as well. 18003 */ 18004 18005 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18006 if (ill_to_v4 != NULL) 18007 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18008 if (ill_to_v6 != NULL) 18009 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18010 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18011 18012 /* 18013 * Its ok for us to proceed with the move even if 18014 * ill_pending_mp is non null on one of the from ill's as the reply 18015 * should not be looking at the ipif, it should only care about the 18016 * ill itself. 18017 */ 18018 18019 /* 18020 * lets move ipv4 first. 18021 */ 18022 if (ill_from_v4 != NULL) { 18023 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18024 ill_from_v4->ill_move_in_progress = B_TRUE; 18025 ill_to_v4->ill_move_in_progress = B_TRUE; 18026 ill_to_v4->ill_move_peer = ill_from_v4; 18027 ill_from_v4->ill_move_peer = ill_to_v4; 18028 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18029 } 18030 18031 /* 18032 * Now lets move ipv6. 18033 */ 18034 if (err == 0 && ill_from_v6 != NULL) { 18035 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18036 ill_from_v6->ill_move_in_progress = B_TRUE; 18037 ill_to_v6->ill_move_in_progress = B_TRUE; 18038 ill_to_v6->ill_move_peer = ill_from_v6; 18039 ill_from_v6->ill_move_peer = ill_to_v6; 18040 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18041 } 18042 18043 err_ret: 18044 /* 18045 * EINPROGRESS means we are waiting for the ipif's that need to be 18046 * moved to become quiescent. 18047 */ 18048 if (err == EINPROGRESS) { 18049 goto done; 18050 } 18051 18052 /* 18053 * if err is set ill_up_ipifs will not be called 18054 * lets clear the flags. 18055 */ 18056 18057 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18058 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18059 /* 18060 * Some of the clearing may be redundant. But it is simple 18061 * not making any extra checks. 18062 */ 18063 if (ill_from_v6 != NULL) { 18064 ill_from_v6->ill_move_in_progress = B_FALSE; 18065 ill_from_v6->ill_move_peer = NULL; 18066 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18067 } 18068 if (ill_from_v4 != NULL) { 18069 ill_from_v4->ill_move_in_progress = B_FALSE; 18070 ill_from_v4->ill_move_peer = NULL; 18071 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18072 } 18073 if (ill_to_v6 != NULL) { 18074 ill_to_v6->ill_move_in_progress = B_FALSE; 18075 ill_to_v6->ill_move_peer = NULL; 18076 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18077 } 18078 if (ill_to_v4 != NULL) { 18079 ill_to_v4->ill_move_in_progress = B_FALSE; 18080 ill_to_v4->ill_move_peer = NULL; 18081 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18082 } 18083 18084 /* 18085 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18086 * Do this always to maintain proper state i.e even in case of errors. 18087 * As phyint_inactive looks at both v4 and v6 interfaces, 18088 * we need not call on both v4 and v6 interfaces. 18089 */ 18090 if (ill_from_v4 != NULL) { 18091 if ((ill_from_v4->ill_phyint->phyint_flags & 18092 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18093 phyint_inactive(ill_from_v4->ill_phyint); 18094 } 18095 } else if (ill_from_v6 != NULL) { 18096 if ((ill_from_v6->ill_phyint->phyint_flags & 18097 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18098 phyint_inactive(ill_from_v6->ill_phyint); 18099 } 18100 } 18101 18102 if (ill_to_v4 != NULL) { 18103 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18104 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18105 } 18106 } else if (ill_to_v6 != NULL) { 18107 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18108 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18109 } 18110 } 18111 18112 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18113 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18114 18115 no_err: 18116 /* 18117 * lets bring the interfaces up on the to_ill. 18118 */ 18119 if (err == 0) { 18120 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18121 q, mp); 18122 } 18123 18124 if (err == 0) { 18125 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18126 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18127 18128 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18129 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18130 } 18131 done: 18132 18133 if (ill_to_v4 != NULL) { 18134 ill_refrele(ill_to_v4); 18135 } 18136 if (ill_to_v6 != NULL) { 18137 ill_refrele(ill_to_v6); 18138 } 18139 18140 return (err); 18141 } 18142 18143 static void 18144 ill_dl_down(ill_t *ill) 18145 { 18146 /* 18147 * The ill is down; unbind but stay attached since we're still 18148 * associated with a PPA. If we have negotiated DLPI capabilites 18149 * with the data link service provider (IDS_OK) then reset them. 18150 * The interval between unbinding and rebinding is potentially 18151 * unbounded hence we cannot assume things will be the same. 18152 * The DLPI capabilities will be probed again when the data link 18153 * is brought up. 18154 */ 18155 mblk_t *mp = ill->ill_unbind_mp; 18156 18157 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18158 18159 ill->ill_unbind_mp = NULL; 18160 if (mp != NULL) { 18161 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18162 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18163 ill->ill_name)); 18164 mutex_enter(&ill->ill_lock); 18165 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18166 mutex_exit(&ill->ill_lock); 18167 /* 18168 * Reset the capabilities if the negotiation is done or is 18169 * still in progress. Note that ill_capability_reset() will 18170 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18171 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18172 * 18173 * Further, reset ill_capab_reneg to be B_FALSE so that the 18174 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18175 * the capabilities renegotiation from happening. 18176 */ 18177 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18178 ill_capability_reset(ill); 18179 ill->ill_capab_reneg = B_FALSE; 18180 18181 ill_dlpi_send(ill, mp); 18182 } 18183 18184 /* 18185 * Toss all of our multicast memberships. We could keep them, but 18186 * then we'd have to do bookkeeping of any joins and leaves performed 18187 * by the application while the the interface is down (we can't just 18188 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18189 * on a downed interface). 18190 */ 18191 ill_leave_multicast(ill); 18192 18193 mutex_enter(&ill->ill_lock); 18194 ill->ill_dl_up = 0; 18195 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18196 mutex_exit(&ill->ill_lock); 18197 } 18198 18199 static void 18200 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18201 { 18202 union DL_primitives *dlp; 18203 t_uscalar_t prim; 18204 18205 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18206 18207 dlp = (union DL_primitives *)mp->b_rptr; 18208 prim = dlp->dl_primitive; 18209 18210 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18211 dl_primstr(prim), prim, ill->ill_name)); 18212 18213 switch (prim) { 18214 case DL_PHYS_ADDR_REQ: 18215 { 18216 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18217 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18218 break; 18219 } 18220 case DL_BIND_REQ: 18221 mutex_enter(&ill->ill_lock); 18222 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18223 mutex_exit(&ill->ill_lock); 18224 break; 18225 } 18226 18227 /* 18228 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18229 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18230 * we only wait for the ACK of the DL_UNBIND_REQ. 18231 */ 18232 mutex_enter(&ill->ill_lock); 18233 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18234 (prim == DL_UNBIND_REQ)) { 18235 ill->ill_dlpi_pending = prim; 18236 } 18237 mutex_exit(&ill->ill_lock); 18238 18239 putnext(ill->ill_wq, mp); 18240 } 18241 18242 /* 18243 * Helper function for ill_dlpi_send(). 18244 */ 18245 /* ARGSUSED */ 18246 static void 18247 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18248 { 18249 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18250 } 18251 18252 /* 18253 * Send a DLPI control message to the driver but make sure there 18254 * is only one outstanding message. Uses ill_dlpi_pending to tell 18255 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18256 * when an ACK or a NAK is received to process the next queued message. 18257 */ 18258 void 18259 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18260 { 18261 mblk_t **mpp; 18262 18263 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18264 18265 /* 18266 * To ensure that any DLPI requests for current exclusive operation 18267 * are always completely sent before any DLPI messages for other 18268 * operations, require writer access before enqueuing. 18269 */ 18270 if (!IAM_WRITER_ILL(ill)) { 18271 ill_refhold(ill); 18272 /* qwriter_ip() does the ill_refrele() */ 18273 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18274 NEW_OP, B_TRUE); 18275 return; 18276 } 18277 18278 mutex_enter(&ill->ill_lock); 18279 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18280 /* Must queue message. Tail insertion */ 18281 mpp = &ill->ill_dlpi_deferred; 18282 while (*mpp != NULL) 18283 mpp = &((*mpp)->b_next); 18284 18285 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18286 ill->ill_name)); 18287 18288 *mpp = mp; 18289 mutex_exit(&ill->ill_lock); 18290 return; 18291 } 18292 mutex_exit(&ill->ill_lock); 18293 ill_dlpi_dispatch(ill, mp); 18294 } 18295 18296 /* 18297 * Send all deferred DLPI messages without waiting for their ACKs. 18298 */ 18299 void 18300 ill_dlpi_send_deferred(ill_t *ill) 18301 { 18302 mblk_t *mp, *nextmp; 18303 18304 /* 18305 * Clear ill_dlpi_pending so that the message is not queued in 18306 * ill_dlpi_send(). 18307 */ 18308 mutex_enter(&ill->ill_lock); 18309 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18310 mp = ill->ill_dlpi_deferred; 18311 ill->ill_dlpi_deferred = NULL; 18312 mutex_exit(&ill->ill_lock); 18313 18314 for (; mp != NULL; mp = nextmp) { 18315 nextmp = mp->b_next; 18316 mp->b_next = NULL; 18317 ill_dlpi_send(ill, mp); 18318 } 18319 } 18320 18321 /* 18322 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18323 */ 18324 boolean_t 18325 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18326 { 18327 t_uscalar_t pending; 18328 18329 mutex_enter(&ill->ill_lock); 18330 if (ill->ill_dlpi_pending == prim) { 18331 mutex_exit(&ill->ill_lock); 18332 return (B_TRUE); 18333 } 18334 18335 /* 18336 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18337 * without waiting, so don't print any warnings in that case. 18338 */ 18339 if (ill->ill_state_flags & ILL_CONDEMNED) { 18340 mutex_exit(&ill->ill_lock); 18341 return (B_FALSE); 18342 } 18343 pending = ill->ill_dlpi_pending; 18344 mutex_exit(&ill->ill_lock); 18345 18346 if (pending == DL_PRIM_INVAL) { 18347 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18348 "received unsolicited ack for %s on %s\n", 18349 dl_primstr(prim), ill->ill_name); 18350 } else { 18351 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18352 "received unexpected ack for %s on %s (expecting %s)\n", 18353 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18354 } 18355 return (B_FALSE); 18356 } 18357 18358 /* 18359 * Called when an DLPI control message has been acked or nacked to 18360 * send down the next queued message (if any). 18361 */ 18362 void 18363 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18364 { 18365 mblk_t *mp; 18366 18367 ASSERT(IAM_WRITER_ILL(ill)); 18368 mutex_enter(&ill->ill_lock); 18369 18370 ASSERT(prim != DL_PRIM_INVAL); 18371 ASSERT(ill->ill_dlpi_pending == prim); 18372 18373 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18374 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18375 18376 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18377 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18378 cv_signal(&ill->ill_cv); 18379 mutex_exit(&ill->ill_lock); 18380 return; 18381 } 18382 18383 ill->ill_dlpi_deferred = mp->b_next; 18384 mp->b_next = NULL; 18385 mutex_exit(&ill->ill_lock); 18386 18387 ill_dlpi_dispatch(ill, mp); 18388 } 18389 18390 void 18391 conn_delete_ire(conn_t *connp, caddr_t arg) 18392 { 18393 ipif_t *ipif = (ipif_t *)arg; 18394 ire_t *ire; 18395 18396 /* 18397 * Look at the cached ires on conns which has pointers to ipifs. 18398 * We just call ire_refrele which clears up the reference 18399 * to ire. Called when a conn closes. Also called from ipif_free 18400 * to cleanup indirect references to the stale ipif via the cached ire. 18401 */ 18402 mutex_enter(&connp->conn_lock); 18403 ire = connp->conn_ire_cache; 18404 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18405 connp->conn_ire_cache = NULL; 18406 mutex_exit(&connp->conn_lock); 18407 IRE_REFRELE_NOTR(ire); 18408 return; 18409 } 18410 mutex_exit(&connp->conn_lock); 18411 18412 } 18413 18414 /* 18415 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18416 * of IREs. Those IREs may have been previously cached in the conn structure. 18417 * This ipcl_walk() walker function releases all references to such IREs based 18418 * on the condemned flag. 18419 */ 18420 /* ARGSUSED */ 18421 void 18422 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18423 { 18424 ire_t *ire; 18425 18426 mutex_enter(&connp->conn_lock); 18427 ire = connp->conn_ire_cache; 18428 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18429 connp->conn_ire_cache = NULL; 18430 mutex_exit(&connp->conn_lock); 18431 IRE_REFRELE_NOTR(ire); 18432 return; 18433 } 18434 mutex_exit(&connp->conn_lock); 18435 } 18436 18437 /* 18438 * Take down a specific interface, but don't lose any information about it. 18439 * Also delete interface from its interface group (ifgrp). 18440 * (Always called as writer.) 18441 * This function goes through the down sequence even if the interface is 18442 * already down. There are 2 reasons. 18443 * a. Currently we permit interface routes that depend on down interfaces 18444 * to be added. This behaviour itself is questionable. However it appears 18445 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18446 * time. We go thru the cleanup in order to remove these routes. 18447 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18448 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18449 * down, but we need to cleanup i.e. do ill_dl_down and 18450 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18451 * 18452 * IP-MT notes: 18453 * 18454 * Model of reference to interfaces. 18455 * 18456 * The following members in ipif_t track references to the ipif. 18457 * int ipif_refcnt; Active reference count 18458 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18459 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18460 * 18461 * The following members in ill_t track references to the ill. 18462 * int ill_refcnt; active refcnt 18463 * uint_t ill_ire_cnt; Number of ires referencing ill 18464 * uint_t ill_nce_cnt; Number of nces referencing ill 18465 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18466 * 18467 * Reference to an ipif or ill can be obtained in any of the following ways. 18468 * 18469 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18470 * Pointers to ipif / ill from other data structures viz ire and conn. 18471 * Implicit reference to the ipif / ill by holding a reference to the ire. 18472 * 18473 * The ipif/ill lookup functions return a reference held ipif / ill. 18474 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18475 * This is a purely dynamic reference count associated with threads holding 18476 * references to the ipif / ill. Pointers from other structures do not 18477 * count towards this reference count. 18478 * 18479 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18480 * associated with the ipif/ill. This is incremented whenever a new 18481 * ire is created referencing the ipif/ill. This is done atomically inside 18482 * ire_add_v[46] where the ire is actually added to the ire hash table. 18483 * The count is decremented in ire_inactive where the ire is destroyed. 18484 * 18485 * nce's reference ill's thru nce_ill and the count of nce's associated with 18486 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18487 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18488 * table. Similarly it is decremented in ndp_inactive() where the nce 18489 * is destroyed. 18490 * 18491 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18492 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18493 * in ilm_walker_cleanup() or ilm_delete(). 18494 * 18495 * Flow of ioctls involving interface down/up 18496 * 18497 * The following is the sequence of an attempt to set some critical flags on an 18498 * up interface. 18499 * ip_sioctl_flags 18500 * ipif_down 18501 * wait for ipif to be quiescent 18502 * ipif_down_tail 18503 * ip_sioctl_flags_tail 18504 * 18505 * All set ioctls that involve down/up sequence would have a skeleton similar 18506 * to the above. All the *tail functions are called after the refcounts have 18507 * dropped to the appropriate values. 18508 * 18509 * The mechanism to quiesce an ipif is as follows. 18510 * 18511 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18512 * on the ipif. Callers either pass a flag requesting wait or the lookup 18513 * functions will return NULL. 18514 * 18515 * Delete all ires referencing this ipif 18516 * 18517 * Any thread attempting to do an ipif_refhold on an ipif that has been 18518 * obtained thru a cached pointer will first make sure that 18519 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18520 * increment the refcount. 18521 * 18522 * The above guarantees that the ipif refcount will eventually come down to 18523 * zero and the ipif will quiesce, once all threads that currently hold a 18524 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18525 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18526 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18527 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18528 * in ip.h 18529 * 18530 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18531 * 18532 * Threads trying to lookup an ipif or ill can pass a flag requesting 18533 * wait and restart if the ipif / ill cannot be looked up currently. 18534 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18535 * failure if the ipif is currently undergoing an exclusive operation, and 18536 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18537 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18538 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18539 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18540 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18541 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18542 * until we release the ipsq_lock, even though the the ill/ipif state flags 18543 * can change after we drop the ill_lock. 18544 * 18545 * An attempt to send out a packet using an ipif that is currently 18546 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18547 * operation and restart it later when the exclusive condition on the ipif ends. 18548 * This is an example of not passing the wait flag to the lookup functions. For 18549 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18550 * out a multicast packet on that ipif will fail while the ipif is 18551 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18552 * currently IPIF_CHANGING will also fail. 18553 */ 18554 int 18555 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18556 { 18557 ill_t *ill = ipif->ipif_ill; 18558 phyint_t *phyi; 18559 conn_t *connp; 18560 boolean_t success; 18561 boolean_t ipif_was_up = B_FALSE; 18562 ip_stack_t *ipst = ill->ill_ipst; 18563 18564 ASSERT(IAM_WRITER_IPIF(ipif)); 18565 18566 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18567 18568 if (ipif->ipif_flags & IPIF_UP) { 18569 mutex_enter(&ill->ill_lock); 18570 ipif->ipif_flags &= ~IPIF_UP; 18571 ASSERT(ill->ill_ipif_up_count > 0); 18572 --ill->ill_ipif_up_count; 18573 mutex_exit(&ill->ill_lock); 18574 ipif_was_up = B_TRUE; 18575 /* Update status in SCTP's list */ 18576 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18577 } 18578 18579 /* 18580 * Blow away memberships we established in ipif_multicast_up(). 18581 */ 18582 ipif_multicast_down(ipif); 18583 18584 /* 18585 * Remove from the mapping for __sin6_src_id. We insert only 18586 * when the address is not INADDR_ANY. As IPv4 addresses are 18587 * stored as mapped addresses, we need to check for mapped 18588 * INADDR_ANY also. 18589 */ 18590 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18591 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18592 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18593 int err; 18594 18595 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18596 ipif->ipif_zoneid, ipst); 18597 if (err != 0) { 18598 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18599 } 18600 } 18601 18602 /* 18603 * Before we delete the ill from the group (if any), we need 18604 * to make sure that we delete all the routes dependent on 18605 * this and also any ipifs dependent on this ipif for 18606 * source address. We need to do before we delete from 18607 * the group because 18608 * 18609 * 1) ipif_down_delete_ire de-references ill->ill_group. 18610 * 18611 * 2) ipif_update_other_ipifs needs to walk the whole group 18612 * for re-doing source address selection. Note that 18613 * ipif_select_source[_v6] called from 18614 * ipif_update_other_ipifs[_v6] will not pick this ipif 18615 * because we have already marked down here i.e cleared 18616 * IPIF_UP. 18617 */ 18618 if (ipif->ipif_isv6) { 18619 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18620 ipst); 18621 } else { 18622 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18623 ipst); 18624 } 18625 18626 /* 18627 * Cleaning up the conn_ire_cache or conns must be done only after the 18628 * ires have been deleted above. Otherwise a thread could end up 18629 * caching an ire in a conn after we have finished the cleanup of the 18630 * conn. The caching is done after making sure that the ire is not yet 18631 * condemned. Also documented in the block comment above ip_output 18632 */ 18633 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18634 /* Also, delete the ires cached in SCTP */ 18635 sctp_ire_cache_flush(ipif); 18636 18637 /* 18638 * Update any other ipifs which have used "our" local address as 18639 * a source address. This entails removing and recreating IRE_INTERFACE 18640 * entries for such ipifs. 18641 */ 18642 if (ipif->ipif_isv6) 18643 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18644 else 18645 ipif_update_other_ipifs(ipif, ill->ill_group); 18646 18647 if (ipif_was_up) { 18648 /* 18649 * Check whether it is last ipif to leave this group. 18650 * If this is the last ipif to leave, we should remove 18651 * this ill from the group as ipif_select_source will not 18652 * be able to find any useful ipifs if this ill is selected 18653 * for load balancing. 18654 * 18655 * For nameless groups, we should call ifgrp_delete if this 18656 * belongs to some group. As this ipif is going down, we may 18657 * need to reconstruct groups. 18658 */ 18659 phyi = ill->ill_phyint; 18660 /* 18661 * If the phyint_groupname_len is 0, it may or may not 18662 * be in the nameless group. If the phyint_groupname_len is 18663 * not 0, then this ill should be part of some group. 18664 * As we always insert this ill in the group if 18665 * phyint_groupname_len is not zero when the first ipif 18666 * comes up (in ipif_up_done), it should be in a group 18667 * when the namelen is not 0. 18668 * 18669 * NOTE : When we delete the ill from the group,it will 18670 * blow away all the IRE_CACHES pointing either at this ipif or 18671 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18672 * should be pointing at this ill. 18673 */ 18674 ASSERT(phyi->phyint_groupname_len == 0 || 18675 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18676 18677 if (phyi->phyint_groupname_len != 0) { 18678 if (ill->ill_ipif_up_count == 0) 18679 illgrp_delete(ill); 18680 } 18681 18682 /* 18683 * If we have deleted some of the broadcast ires associated 18684 * with this ipif, we need to re-nominate somebody else if 18685 * the ires that we deleted were the nominated ones. 18686 */ 18687 if (ill->ill_group != NULL && !ill->ill_isv6) 18688 ipif_renominate_bcast(ipif); 18689 } 18690 18691 /* 18692 * neighbor-discovery or arp entries for this interface. 18693 */ 18694 ipif_ndp_down(ipif); 18695 18696 /* 18697 * If mp is NULL the caller will wait for the appropriate refcnt. 18698 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18699 * and ill_delete -> ipif_free -> ipif_down 18700 */ 18701 if (mp == NULL) { 18702 ASSERT(q == NULL); 18703 return (0); 18704 } 18705 18706 if (CONN_Q(q)) { 18707 connp = Q_TO_CONN(q); 18708 mutex_enter(&connp->conn_lock); 18709 } else { 18710 connp = NULL; 18711 } 18712 mutex_enter(&ill->ill_lock); 18713 /* 18714 * Are there any ire's pointing to this ipif that are still active ? 18715 * If this is the last ipif going down, are there any ire's pointing 18716 * to this ill that are still active ? 18717 */ 18718 if (ipif_is_quiescent(ipif)) { 18719 mutex_exit(&ill->ill_lock); 18720 if (connp != NULL) 18721 mutex_exit(&connp->conn_lock); 18722 return (0); 18723 } 18724 18725 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18726 ill->ill_name, (void *)ill)); 18727 /* 18728 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18729 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18730 * which in turn is called by the last refrele on the ipif/ill/ire. 18731 */ 18732 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18733 if (!success) { 18734 /* The conn is closing. So just return */ 18735 ASSERT(connp != NULL); 18736 mutex_exit(&ill->ill_lock); 18737 mutex_exit(&connp->conn_lock); 18738 return (EINTR); 18739 } 18740 18741 mutex_exit(&ill->ill_lock); 18742 if (connp != NULL) 18743 mutex_exit(&connp->conn_lock); 18744 return (EINPROGRESS); 18745 } 18746 18747 void 18748 ipif_down_tail(ipif_t *ipif) 18749 { 18750 ill_t *ill = ipif->ipif_ill; 18751 18752 /* 18753 * Skip any loopback interface (null wq). 18754 * If this is the last logical interface on the ill 18755 * have ill_dl_down tell the driver we are gone (unbind) 18756 * Note that lun 0 can ipif_down even though 18757 * there are other logical units that are up. 18758 * This occurs e.g. when we change a "significant" IFF_ flag. 18759 */ 18760 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18761 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18762 ill->ill_dl_up) { 18763 ill_dl_down(ill); 18764 } 18765 ill->ill_logical_down = 0; 18766 18767 /* 18768 * Have to be after removing the routes in ipif_down_delete_ire. 18769 */ 18770 if (ipif->ipif_isv6) { 18771 if (ill->ill_flags & ILLF_XRESOLV) 18772 ipif_arp_down(ipif); 18773 } else { 18774 ipif_arp_down(ipif); 18775 } 18776 18777 ip_rts_ifmsg(ipif); 18778 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18779 } 18780 18781 /* 18782 * Bring interface logically down without bringing the physical interface 18783 * down e.g. when the netmask is changed. This avoids long lasting link 18784 * negotiations between an ethernet interface and a certain switches. 18785 */ 18786 static int 18787 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18788 { 18789 /* 18790 * The ill_logical_down flag is a transient flag. It is set here 18791 * and is cleared once the down has completed in ipif_down_tail. 18792 * This flag does not indicate whether the ill stream is in the 18793 * DL_BOUND state with the driver. Instead this flag is used by 18794 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18795 * the driver. The state of the ill stream i.e. whether it is 18796 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18797 */ 18798 ipif->ipif_ill->ill_logical_down = 1; 18799 return (ipif_down(ipif, q, mp)); 18800 } 18801 18802 /* 18803 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18804 * If the usesrc client ILL is already part of a usesrc group or not, 18805 * in either case a ire_stq with the matching usesrc client ILL will 18806 * locate the IRE's that need to be deleted. We want IREs to be created 18807 * with the new source address. 18808 */ 18809 static void 18810 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18811 { 18812 ill_t *ucill = (ill_t *)ill_arg; 18813 18814 ASSERT(IAM_WRITER_ILL(ucill)); 18815 18816 if (ire->ire_stq == NULL) 18817 return; 18818 18819 if ((ire->ire_type == IRE_CACHE) && 18820 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18821 ire_delete(ire); 18822 } 18823 18824 /* 18825 * ire_walk routine to delete every IRE dependent on the interface 18826 * address that is going down. (Always called as writer.) 18827 * Works for both v4 and v6. 18828 * In addition for checking for ire_ipif matches it also checks for 18829 * IRE_CACHE entries which have the same source address as the 18830 * disappearing ipif since ipif_select_source might have picked 18831 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18832 * care of any IRE_INTERFACE with the disappearing source address. 18833 */ 18834 static void 18835 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18836 { 18837 ipif_t *ipif = (ipif_t *)ipif_arg; 18838 ill_t *ire_ill; 18839 ill_t *ipif_ill; 18840 18841 ASSERT(IAM_WRITER_IPIF(ipif)); 18842 if (ire->ire_ipif == NULL) 18843 return; 18844 18845 /* 18846 * For IPv4, we derive source addresses for an IRE from ipif's 18847 * belonging to the same IPMP group as the IRE's outgoing 18848 * interface. If an IRE's outgoing interface isn't in the 18849 * same IPMP group as a particular ipif, then that ipif 18850 * couldn't have been used as a source address for this IRE. 18851 * 18852 * For IPv6, source addresses are only restricted to the IPMP group 18853 * if the IRE is for a link-local address or a multicast address. 18854 * Otherwise, source addresses for an IRE can be chosen from 18855 * interfaces other than the the outgoing interface for that IRE. 18856 * 18857 * For source address selection details, see ipif_select_source() 18858 * and ipif_select_source_v6(). 18859 */ 18860 if (ire->ire_ipversion == IPV4_VERSION || 18861 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18862 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18863 ire_ill = ire->ire_ipif->ipif_ill; 18864 ipif_ill = ipif->ipif_ill; 18865 18866 if (ire_ill->ill_group != ipif_ill->ill_group) { 18867 return; 18868 } 18869 } 18870 18871 18872 if (ire->ire_ipif != ipif) { 18873 /* 18874 * Look for a matching source address. 18875 */ 18876 if (ire->ire_type != IRE_CACHE) 18877 return; 18878 if (ipif->ipif_flags & IPIF_NOLOCAL) 18879 return; 18880 18881 if (ire->ire_ipversion == IPV4_VERSION) { 18882 if (ire->ire_src_addr != ipif->ipif_src_addr) 18883 return; 18884 } else { 18885 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18886 &ipif->ipif_v6lcl_addr)) 18887 return; 18888 } 18889 ire_delete(ire); 18890 return; 18891 } 18892 /* 18893 * ire_delete() will do an ire_flush_cache which will delete 18894 * all ire_ipif matches 18895 */ 18896 ire_delete(ire); 18897 } 18898 18899 /* 18900 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18901 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18902 * 2) when an interface is brought up or down (on that ill). 18903 * This ensures that the IRE_CACHE entries don't retain stale source 18904 * address selection results. 18905 */ 18906 void 18907 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18908 { 18909 ill_t *ill = (ill_t *)ill_arg; 18910 ill_t *ipif_ill; 18911 18912 ASSERT(IAM_WRITER_ILL(ill)); 18913 /* 18914 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18915 * Hence this should be IRE_CACHE. 18916 */ 18917 ASSERT(ire->ire_type == IRE_CACHE); 18918 18919 /* 18920 * We are called for IRE_CACHES whose ire_ipif matches ill. 18921 * We are only interested in IRE_CACHES that has borrowed 18922 * the source address from ill_arg e.g. ipif_up_done[_v6] 18923 * for which we need to look at ire_ipif->ipif_ill match 18924 * with ill. 18925 */ 18926 ASSERT(ire->ire_ipif != NULL); 18927 ipif_ill = ire->ire_ipif->ipif_ill; 18928 if (ipif_ill == ill || (ill->ill_group != NULL && 18929 ipif_ill->ill_group == ill->ill_group)) { 18930 ire_delete(ire); 18931 } 18932 } 18933 18934 /* 18935 * Delete all the ire whose stq references ill_arg. 18936 */ 18937 static void 18938 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18939 { 18940 ill_t *ill = (ill_t *)ill_arg; 18941 ill_t *ire_ill; 18942 18943 ASSERT(IAM_WRITER_ILL(ill)); 18944 /* 18945 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18946 * Hence this should be IRE_CACHE. 18947 */ 18948 ASSERT(ire->ire_type == IRE_CACHE); 18949 18950 /* 18951 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18952 * matches ill. We are only interested in IRE_CACHES that 18953 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18954 * filtering here. 18955 */ 18956 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18957 18958 if (ire_ill == ill) 18959 ire_delete(ire); 18960 } 18961 18962 /* 18963 * This is called when an ill leaves the group. We want to delete 18964 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18965 * pointing at ill. 18966 */ 18967 static void 18968 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18969 { 18970 ill_t *ill = (ill_t *)ill_arg; 18971 18972 ASSERT(IAM_WRITER_ILL(ill)); 18973 ASSERT(ill->ill_group == NULL); 18974 /* 18975 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18976 * Hence this should be IRE_CACHE. 18977 */ 18978 ASSERT(ire->ire_type == IRE_CACHE); 18979 /* 18980 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18981 * matches ill. We are interested in both. 18982 */ 18983 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18984 (ire->ire_ipif->ipif_ill == ill)); 18985 18986 ire_delete(ire); 18987 } 18988 18989 /* 18990 * Initiate deallocate of an IPIF. Always called as writer. Called by 18991 * ill_delete or ip_sioctl_removeif. 18992 */ 18993 static void 18994 ipif_free(ipif_t *ipif) 18995 { 18996 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18997 18998 ASSERT(IAM_WRITER_IPIF(ipif)); 18999 19000 if (ipif->ipif_recovery_id != 0) 19001 (void) untimeout(ipif->ipif_recovery_id); 19002 ipif->ipif_recovery_id = 0; 19003 19004 /* Remove conn references */ 19005 reset_conn_ipif(ipif); 19006 19007 /* 19008 * Make sure we have valid net and subnet broadcast ire's for the 19009 * other ipif's which share them with this ipif. 19010 */ 19011 if (!ipif->ipif_isv6) 19012 ipif_check_bcast_ires(ipif); 19013 19014 /* 19015 * Take down the interface. We can be called either from ill_delete 19016 * or from ip_sioctl_removeif. 19017 */ 19018 (void) ipif_down(ipif, NULL, NULL); 19019 19020 /* 19021 * Now that the interface is down, there's no chance it can still 19022 * become a duplicate. Cancel any timer that may have been set while 19023 * tearing down. 19024 */ 19025 if (ipif->ipif_recovery_id != 0) 19026 (void) untimeout(ipif->ipif_recovery_id); 19027 ipif->ipif_recovery_id = 0; 19028 19029 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19030 /* Remove pointers to this ill in the multicast routing tables */ 19031 reset_mrt_vif_ipif(ipif); 19032 rw_exit(&ipst->ips_ill_g_lock); 19033 } 19034 19035 /* 19036 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19037 * also ill_move(). 19038 */ 19039 static void 19040 ipif_free_tail(ipif_t *ipif) 19041 { 19042 mblk_t *mp; 19043 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19044 19045 /* 19046 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19047 */ 19048 mutex_enter(&ipif->ipif_saved_ire_lock); 19049 mp = ipif->ipif_saved_ire_mp; 19050 ipif->ipif_saved_ire_mp = NULL; 19051 mutex_exit(&ipif->ipif_saved_ire_lock); 19052 freemsg(mp); 19053 19054 /* 19055 * Need to hold both ill_g_lock and ill_lock while 19056 * inserting or removing an ipif from the linked list 19057 * of ipifs hanging off the ill. 19058 */ 19059 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19060 19061 ASSERT(ilm_walk_ipif(ipif) == 0); 19062 19063 #ifdef DEBUG 19064 ipif_trace_cleanup(ipif); 19065 #endif 19066 19067 /* Ask SCTP to take it out of it list */ 19068 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19069 19070 /* Get it out of the ILL interface list. */ 19071 ipif_remove(ipif, B_TRUE); 19072 rw_exit(&ipst->ips_ill_g_lock); 19073 19074 mutex_destroy(&ipif->ipif_saved_ire_lock); 19075 19076 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19077 ASSERT(ipif->ipif_recovery_id == 0); 19078 19079 /* Free the memory. */ 19080 mi_free(ipif); 19081 } 19082 19083 /* 19084 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19085 * is zero. 19086 */ 19087 void 19088 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19089 { 19090 char lbuf[LIFNAMSIZ]; 19091 char *name; 19092 size_t name_len; 19093 19094 buf[0] = '\0'; 19095 name = ipif->ipif_ill->ill_name; 19096 name_len = ipif->ipif_ill->ill_name_length; 19097 if (ipif->ipif_id != 0) { 19098 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19099 ipif->ipif_id); 19100 name = lbuf; 19101 name_len = mi_strlen(name) + 1; 19102 } 19103 len -= 1; 19104 buf[len] = '\0'; 19105 len = MIN(len, name_len); 19106 bcopy(name, buf, len); 19107 } 19108 19109 /* 19110 * Find an IPIF based on the name passed in. Names can be of the 19111 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19112 * The <phys> string can have forms like <dev><#> (e.g., le0), 19113 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19114 * When there is no colon, the implied unit id is zero. <phys> must 19115 * correspond to the name of an ILL. (May be called as writer.) 19116 */ 19117 static ipif_t * 19118 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19119 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19120 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19121 { 19122 char *cp; 19123 char *endp; 19124 long id; 19125 ill_t *ill; 19126 ipif_t *ipif; 19127 uint_t ire_type; 19128 boolean_t did_alloc = B_FALSE; 19129 ipsq_t *ipsq; 19130 19131 if (error != NULL) 19132 *error = 0; 19133 19134 /* 19135 * If the caller wants to us to create the ipif, make sure we have a 19136 * valid zoneid 19137 */ 19138 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19139 19140 if (namelen == 0) { 19141 if (error != NULL) 19142 *error = ENXIO; 19143 return (NULL); 19144 } 19145 19146 *exists = B_FALSE; 19147 /* Look for a colon in the name. */ 19148 endp = &name[namelen]; 19149 for (cp = endp; --cp > name; ) { 19150 if (*cp == IPIF_SEPARATOR_CHAR) 19151 break; 19152 } 19153 19154 if (*cp == IPIF_SEPARATOR_CHAR) { 19155 /* 19156 * Reject any non-decimal aliases for logical 19157 * interfaces. Aliases with leading zeroes 19158 * are also rejected as they introduce ambiguity 19159 * in the naming of the interfaces. 19160 * In order to confirm with existing semantics, 19161 * and to not break any programs/script relying 19162 * on that behaviour, if<0>:0 is considered to be 19163 * a valid interface. 19164 * 19165 * If alias has two or more digits and the first 19166 * is zero, fail. 19167 */ 19168 if (&cp[2] < endp && cp[1] == '0') { 19169 if (error != NULL) 19170 *error = EINVAL; 19171 return (NULL); 19172 } 19173 } 19174 19175 if (cp <= name) { 19176 cp = endp; 19177 } else { 19178 *cp = '\0'; 19179 } 19180 19181 /* 19182 * Look up the ILL, based on the portion of the name 19183 * before the slash. ill_lookup_on_name returns a held ill. 19184 * Temporary to check whether ill exists already. If so 19185 * ill_lookup_on_name will clear it. 19186 */ 19187 ill = ill_lookup_on_name(name, do_alloc, isv6, 19188 q, mp, func, error, &did_alloc, ipst); 19189 if (cp != endp) 19190 *cp = IPIF_SEPARATOR_CHAR; 19191 if (ill == NULL) 19192 return (NULL); 19193 19194 /* Establish the unit number in the name. */ 19195 id = 0; 19196 if (cp < endp && *endp == '\0') { 19197 /* If there was a colon, the unit number follows. */ 19198 cp++; 19199 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19200 ill_refrele(ill); 19201 if (error != NULL) 19202 *error = ENXIO; 19203 return (NULL); 19204 } 19205 } 19206 19207 GRAB_CONN_LOCK(q); 19208 mutex_enter(&ill->ill_lock); 19209 /* Now see if there is an IPIF with this unit number. */ 19210 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19211 if (ipif->ipif_id == id) { 19212 if (zoneid != ALL_ZONES && 19213 zoneid != ipif->ipif_zoneid && 19214 ipif->ipif_zoneid != ALL_ZONES) { 19215 mutex_exit(&ill->ill_lock); 19216 RELEASE_CONN_LOCK(q); 19217 ill_refrele(ill); 19218 if (error != NULL) 19219 *error = ENXIO; 19220 return (NULL); 19221 } 19222 /* 19223 * The block comment at the start of ipif_down 19224 * explains the use of the macros used below 19225 */ 19226 if (IPIF_CAN_LOOKUP(ipif)) { 19227 ipif_refhold_locked(ipif); 19228 mutex_exit(&ill->ill_lock); 19229 if (!did_alloc) 19230 *exists = B_TRUE; 19231 /* 19232 * Drop locks before calling ill_refrele 19233 * since it can potentially call into 19234 * ipif_ill_refrele_tail which can end up 19235 * in trying to acquire any lock. 19236 */ 19237 RELEASE_CONN_LOCK(q); 19238 ill_refrele(ill); 19239 return (ipif); 19240 } else if (IPIF_CAN_WAIT(ipif, q)) { 19241 ipsq = ill->ill_phyint->phyint_ipsq; 19242 mutex_enter(&ipsq->ipsq_lock); 19243 mutex_exit(&ill->ill_lock); 19244 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19245 mutex_exit(&ipsq->ipsq_lock); 19246 RELEASE_CONN_LOCK(q); 19247 ill_refrele(ill); 19248 if (error != NULL) 19249 *error = EINPROGRESS; 19250 return (NULL); 19251 } 19252 } 19253 } 19254 RELEASE_CONN_LOCK(q); 19255 19256 if (!do_alloc) { 19257 mutex_exit(&ill->ill_lock); 19258 ill_refrele(ill); 19259 if (error != NULL) 19260 *error = ENXIO; 19261 return (NULL); 19262 } 19263 19264 /* 19265 * If none found, atomically allocate and return a new one. 19266 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19267 * to support "receive only" use of lo0:1 etc. as is still done 19268 * below as an initial guess. 19269 * However, this is now likely to be overriden later in ipif_up_done() 19270 * when we know for sure what address has been configured on the 19271 * interface, since we might have more than one loopback interface 19272 * with a loopback address, e.g. in the case of zones, and all the 19273 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19274 */ 19275 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19276 ire_type = IRE_LOOPBACK; 19277 else 19278 ire_type = IRE_LOCAL; 19279 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19280 if (ipif != NULL) 19281 ipif_refhold_locked(ipif); 19282 else if (error != NULL) 19283 *error = ENOMEM; 19284 mutex_exit(&ill->ill_lock); 19285 ill_refrele(ill); 19286 return (ipif); 19287 } 19288 19289 /* 19290 * This routine is called whenever a new address comes up on an ipif. If 19291 * we are configured to respond to address mask requests, then we are supposed 19292 * to broadcast an address mask reply at this time. This routine is also 19293 * called if we are already up, but a netmask change is made. This is legal 19294 * but might not make the system manager very popular. (May be called 19295 * as writer.) 19296 */ 19297 void 19298 ipif_mask_reply(ipif_t *ipif) 19299 { 19300 icmph_t *icmph; 19301 ipha_t *ipha; 19302 mblk_t *mp; 19303 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19304 19305 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19306 19307 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19308 return; 19309 19310 /* ICMP mask reply is IPv4 only */ 19311 ASSERT(!ipif->ipif_isv6); 19312 /* ICMP mask reply is not for a loopback interface */ 19313 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19314 19315 mp = allocb(REPLY_LEN, BPRI_HI); 19316 if (mp == NULL) 19317 return; 19318 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19319 19320 ipha = (ipha_t *)mp->b_rptr; 19321 bzero(ipha, REPLY_LEN); 19322 *ipha = icmp_ipha; 19323 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19324 ipha->ipha_src = ipif->ipif_src_addr; 19325 ipha->ipha_dst = ipif->ipif_brd_addr; 19326 ipha->ipha_length = htons(REPLY_LEN); 19327 ipha->ipha_ident = 0; 19328 19329 icmph = (icmph_t *)&ipha[1]; 19330 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19331 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19332 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19333 19334 put(ipif->ipif_wq, mp); 19335 19336 #undef REPLY_LEN 19337 } 19338 19339 /* 19340 * When the mtu in the ipif changes, we call this routine through ire_walk 19341 * to update all the relevant IREs. 19342 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19343 */ 19344 static void 19345 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19346 { 19347 ipif_t *ipif = (ipif_t *)ipif_arg; 19348 19349 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19350 return; 19351 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19352 } 19353 19354 /* 19355 * When the mtu in the ill changes, we call this routine through ire_walk 19356 * to update all the relevant IREs. 19357 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19358 */ 19359 void 19360 ill_mtu_change(ire_t *ire, char *ill_arg) 19361 { 19362 ill_t *ill = (ill_t *)ill_arg; 19363 19364 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19365 return; 19366 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19367 } 19368 19369 /* 19370 * Join the ipif specific multicast groups. 19371 * Must be called after a mapping has been set up in the resolver. (Always 19372 * called as writer.) 19373 */ 19374 void 19375 ipif_multicast_up(ipif_t *ipif) 19376 { 19377 int err, index; 19378 ill_t *ill; 19379 19380 ASSERT(IAM_WRITER_IPIF(ipif)); 19381 19382 ill = ipif->ipif_ill; 19383 index = ill->ill_phyint->phyint_ifindex; 19384 19385 ip1dbg(("ipif_multicast_up\n")); 19386 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19387 return; 19388 19389 if (ipif->ipif_isv6) { 19390 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19391 return; 19392 19393 /* Join the all hosts multicast address */ 19394 ip1dbg(("ipif_multicast_up - addmulti\n")); 19395 /* 19396 * Passing B_TRUE means we have to join the multicast 19397 * membership on this interface even though this is 19398 * FAILED. If we join on a different one in the group, 19399 * we will not be able to delete the membership later 19400 * as we currently don't track where we join when we 19401 * join within the kernel unlike applications where 19402 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19403 * for more on this. 19404 */ 19405 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19406 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19407 if (err != 0) { 19408 ip0dbg(("ipif_multicast_up: " 19409 "all_hosts_mcast failed %d\n", 19410 err)); 19411 return; 19412 } 19413 /* 19414 * Enable multicast for the solicited node multicast address 19415 */ 19416 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19417 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19418 19419 ipv6_multi.s6_addr32[3] |= 19420 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19421 19422 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19423 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19424 NULL); 19425 if (err != 0) { 19426 ip0dbg(("ipif_multicast_up: solicited MC" 19427 " failed %d\n", err)); 19428 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19429 ill, ill->ill_phyint->phyint_ifindex, 19430 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19431 return; 19432 } 19433 } 19434 } else { 19435 if (ipif->ipif_lcl_addr == INADDR_ANY) 19436 return; 19437 19438 /* Join the all hosts multicast address */ 19439 ip1dbg(("ipif_multicast_up - addmulti\n")); 19440 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19441 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19442 if (err) { 19443 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19444 return; 19445 } 19446 } 19447 ipif->ipif_multicast_up = 1; 19448 } 19449 19450 /* 19451 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19452 * (Explicit memberships are blown away in ill_leave_multicast() when the 19453 * ill is brought down.) 19454 */ 19455 static void 19456 ipif_multicast_down(ipif_t *ipif) 19457 { 19458 int err; 19459 19460 ASSERT(IAM_WRITER_IPIF(ipif)); 19461 19462 ip1dbg(("ipif_multicast_down\n")); 19463 if (!ipif->ipif_multicast_up) 19464 return; 19465 19466 ip1dbg(("ipif_multicast_down - delmulti\n")); 19467 19468 if (!ipif->ipif_isv6) { 19469 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19470 B_TRUE); 19471 if (err != 0) 19472 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19473 19474 ipif->ipif_multicast_up = 0; 19475 return; 19476 } 19477 19478 /* 19479 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19480 * we should look for ilms on this ill rather than the ones that have 19481 * been failed over here. They are here temporarily. As 19482 * ipif_multicast_up has joined on this ill, we should delete only 19483 * from this ill. 19484 */ 19485 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19486 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19487 B_TRUE, B_TRUE); 19488 if (err != 0) { 19489 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19490 err)); 19491 } 19492 /* 19493 * Disable multicast for the solicited node multicast address 19494 */ 19495 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19496 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19497 19498 ipv6_multi.s6_addr32[3] |= 19499 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19500 19501 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19502 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19503 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19504 19505 if (err != 0) { 19506 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19507 err)); 19508 } 19509 } 19510 19511 ipif->ipif_multicast_up = 0; 19512 } 19513 19514 /* 19515 * Used when an interface comes up to recreate any extra routes on this 19516 * interface. 19517 */ 19518 static ire_t ** 19519 ipif_recover_ire(ipif_t *ipif) 19520 { 19521 mblk_t *mp; 19522 ire_t **ipif_saved_irep; 19523 ire_t **irep; 19524 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19525 19526 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19527 ipif->ipif_id)); 19528 19529 mutex_enter(&ipif->ipif_saved_ire_lock); 19530 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19531 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19532 if (ipif_saved_irep == NULL) { 19533 mutex_exit(&ipif->ipif_saved_ire_lock); 19534 return (NULL); 19535 } 19536 19537 irep = ipif_saved_irep; 19538 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19539 ire_t *ire; 19540 queue_t *rfq; 19541 queue_t *stq; 19542 ifrt_t *ifrt; 19543 uchar_t *src_addr; 19544 uchar_t *gateway_addr; 19545 ushort_t type; 19546 19547 /* 19548 * When the ire was initially created and then added in 19549 * ip_rt_add(), it was created either using ipif->ipif_net_type 19550 * in the case of a traditional interface route, or as one of 19551 * the IRE_OFFSUBNET types (with the exception of 19552 * IRE_HOST types ire which is created by icmp_redirect() and 19553 * which we don't need to save or recover). In the case where 19554 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19555 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19556 * to satisfy software like GateD and Sun Cluster which creates 19557 * routes using the the loopback interface's address as a 19558 * gateway. 19559 * 19560 * As ifrt->ifrt_type reflects the already updated ire_type, 19561 * ire_create() will be called in the same way here as 19562 * in ip_rt_add(), namely using ipif->ipif_net_type when 19563 * the route looks like a traditional interface route (where 19564 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19565 * the saved ifrt->ifrt_type. This means that in the case where 19566 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19567 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19568 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19569 */ 19570 ifrt = (ifrt_t *)mp->b_rptr; 19571 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19572 if (ifrt->ifrt_type & IRE_INTERFACE) { 19573 rfq = NULL; 19574 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19575 ? ipif->ipif_rq : ipif->ipif_wq; 19576 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19577 ? (uint8_t *)&ifrt->ifrt_src_addr 19578 : (uint8_t *)&ipif->ipif_src_addr; 19579 gateway_addr = NULL; 19580 type = ipif->ipif_net_type; 19581 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19582 /* Recover multiroute broadcast IRE. */ 19583 rfq = ipif->ipif_rq; 19584 stq = ipif->ipif_wq; 19585 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19586 ? (uint8_t *)&ifrt->ifrt_src_addr 19587 : (uint8_t *)&ipif->ipif_src_addr; 19588 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19589 type = ifrt->ifrt_type; 19590 } else { 19591 rfq = NULL; 19592 stq = NULL; 19593 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19594 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19595 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19596 type = ifrt->ifrt_type; 19597 } 19598 19599 /* 19600 * Create a copy of the IRE with the saved address and netmask. 19601 */ 19602 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19603 "0x%x/0x%x\n", 19604 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19605 ntohl(ifrt->ifrt_addr), 19606 ntohl(ifrt->ifrt_mask))); 19607 ire = ire_create( 19608 (uint8_t *)&ifrt->ifrt_addr, 19609 (uint8_t *)&ifrt->ifrt_mask, 19610 src_addr, 19611 gateway_addr, 19612 &ifrt->ifrt_max_frag, 19613 NULL, 19614 rfq, 19615 stq, 19616 type, 19617 ipif, 19618 0, 19619 0, 19620 0, 19621 ifrt->ifrt_flags, 19622 &ifrt->ifrt_iulp_info, 19623 NULL, 19624 NULL, 19625 ipst); 19626 19627 if (ire == NULL) { 19628 mutex_exit(&ipif->ipif_saved_ire_lock); 19629 kmem_free(ipif_saved_irep, 19630 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19631 return (NULL); 19632 } 19633 19634 /* 19635 * Some software (for example, GateD and Sun Cluster) attempts 19636 * to create (what amount to) IRE_PREFIX routes with the 19637 * loopback address as the gateway. This is primarily done to 19638 * set up prefixes with the RTF_REJECT flag set (for example, 19639 * when generating aggregate routes.) 19640 * 19641 * If the IRE type (as defined by ipif->ipif_net_type) is 19642 * IRE_LOOPBACK, then we map the request into a 19643 * IRE_IF_NORESOLVER. 19644 */ 19645 if (ipif->ipif_net_type == IRE_LOOPBACK) 19646 ire->ire_type = IRE_IF_NORESOLVER; 19647 /* 19648 * ire held by ire_add, will be refreled' towards the 19649 * the end of ipif_up_done 19650 */ 19651 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19652 *irep = ire; 19653 irep++; 19654 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19655 } 19656 mutex_exit(&ipif->ipif_saved_ire_lock); 19657 return (ipif_saved_irep); 19658 } 19659 19660 /* 19661 * Used to set the netmask and broadcast address to default values when the 19662 * interface is brought up. (Always called as writer.) 19663 */ 19664 static void 19665 ipif_set_default(ipif_t *ipif) 19666 { 19667 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19668 19669 if (!ipif->ipif_isv6) { 19670 /* 19671 * Interface holds an IPv4 address. Default 19672 * mask is the natural netmask. 19673 */ 19674 if (!ipif->ipif_net_mask) { 19675 ipaddr_t v4mask; 19676 19677 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19678 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19679 } 19680 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19681 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19682 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19683 } else { 19684 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19685 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19686 } 19687 /* 19688 * NOTE: SunOS 4.X does this even if the broadcast address 19689 * has been already set thus we do the same here. 19690 */ 19691 if (ipif->ipif_flags & IPIF_BROADCAST) { 19692 ipaddr_t v4addr; 19693 19694 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19695 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19696 } 19697 } else { 19698 /* 19699 * Interface holds an IPv6-only address. Default 19700 * mask is all-ones. 19701 */ 19702 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19703 ipif->ipif_v6net_mask = ipv6_all_ones; 19704 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19705 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19706 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19707 } else { 19708 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19709 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19710 } 19711 } 19712 } 19713 19714 /* 19715 * Return 0 if this address can be used as local address without causing 19716 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19717 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19718 * Special checks are needed to allow the same IPv6 link-local address 19719 * on different ills. 19720 * TODO: allowing the same site-local address on different ill's. 19721 */ 19722 int 19723 ip_addr_availability_check(ipif_t *new_ipif) 19724 { 19725 in6_addr_t our_v6addr; 19726 ill_t *ill; 19727 ipif_t *ipif; 19728 ill_walk_context_t ctx; 19729 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19730 19731 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19732 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19733 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19734 19735 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19736 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19737 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19738 return (0); 19739 19740 our_v6addr = new_ipif->ipif_v6lcl_addr; 19741 19742 if (new_ipif->ipif_isv6) 19743 ill = ILL_START_WALK_V6(&ctx, ipst); 19744 else 19745 ill = ILL_START_WALK_V4(&ctx, ipst); 19746 19747 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19748 for (ipif = ill->ill_ipif; ipif != NULL; 19749 ipif = ipif->ipif_next) { 19750 if ((ipif == new_ipif) || 19751 !(ipif->ipif_flags & IPIF_UP) || 19752 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19753 continue; 19754 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19755 &our_v6addr)) { 19756 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19757 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19758 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19759 ipif->ipif_flags |= IPIF_UNNUMBERED; 19760 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19761 new_ipif->ipif_ill != ill) 19762 continue; 19763 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19764 new_ipif->ipif_ill != ill) 19765 continue; 19766 else if (new_ipif->ipif_zoneid != 19767 ipif->ipif_zoneid && 19768 ipif->ipif_zoneid != ALL_ZONES && 19769 IS_LOOPBACK(ill)) 19770 continue; 19771 else if (new_ipif->ipif_ill == ill) 19772 return (EADDRINUSE); 19773 else 19774 return (EADDRNOTAVAIL); 19775 } 19776 } 19777 } 19778 19779 return (0); 19780 } 19781 19782 /* 19783 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19784 * IREs for the ipif. 19785 * When the routine returns EINPROGRESS then mp has been consumed and 19786 * the ioctl will be acked from ip_rput_dlpi. 19787 */ 19788 static int 19789 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19790 { 19791 ill_t *ill = ipif->ipif_ill; 19792 boolean_t isv6 = ipif->ipif_isv6; 19793 int err = 0; 19794 boolean_t success; 19795 19796 ASSERT(IAM_WRITER_IPIF(ipif)); 19797 19798 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19799 19800 /* Shouldn't get here if it is already up. */ 19801 if (ipif->ipif_flags & IPIF_UP) 19802 return (EALREADY); 19803 19804 /* Skip arp/ndp for any loopback interface. */ 19805 if (ill->ill_wq != NULL) { 19806 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19807 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19808 19809 if (!ill->ill_dl_up) { 19810 /* 19811 * ill_dl_up is not yet set. i.e. we are yet to 19812 * DL_BIND with the driver and this is the first 19813 * logical interface on the ill to become "up". 19814 * Tell the driver to get going (via DL_BIND_REQ). 19815 * Note that changing "significant" IFF_ flags 19816 * address/netmask etc cause a down/up dance, but 19817 * does not cause an unbind (DL_UNBIND) with the driver 19818 */ 19819 return (ill_dl_up(ill, ipif, mp, q)); 19820 } 19821 19822 /* 19823 * ipif_resolver_up may end up sending an 19824 * AR_INTERFACE_UP message to ARP, which would, in 19825 * turn send a DLPI message to the driver. ioctls are 19826 * serialized and so we cannot send more than one 19827 * interface up message at a time. If ipif_resolver_up 19828 * does send an interface up message to ARP, we get 19829 * EINPROGRESS and we will complete in ip_arp_done. 19830 */ 19831 19832 ASSERT(connp != NULL || !CONN_Q(q)); 19833 ASSERT(ipsq->ipsq_pending_mp == NULL); 19834 if (connp != NULL) 19835 mutex_enter(&connp->conn_lock); 19836 mutex_enter(&ill->ill_lock); 19837 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19838 mutex_exit(&ill->ill_lock); 19839 if (connp != NULL) 19840 mutex_exit(&connp->conn_lock); 19841 if (!success) 19842 return (EINTR); 19843 19844 /* 19845 * Crank up IPv6 neighbor discovery 19846 * Unlike ARP, this should complete when 19847 * ipif_ndp_up returns. However, for 19848 * ILLF_XRESOLV interfaces we also send a 19849 * AR_INTERFACE_UP to the external resolver. 19850 * That ioctl will complete in ip_rput. 19851 */ 19852 if (isv6) { 19853 err = ipif_ndp_up(ipif); 19854 if (err != 0) { 19855 if (err != EINPROGRESS) 19856 mp = ipsq_pending_mp_get(ipsq, &connp); 19857 return (err); 19858 } 19859 } 19860 /* Now, ARP */ 19861 err = ipif_resolver_up(ipif, Res_act_initial); 19862 if (err == EINPROGRESS) { 19863 /* We will complete it in ip_arp_done */ 19864 return (err); 19865 } 19866 mp = ipsq_pending_mp_get(ipsq, &connp); 19867 ASSERT(mp != NULL); 19868 if (err != 0) 19869 return (err); 19870 } else { 19871 /* 19872 * Interfaces without underlying hardware don't do duplicate 19873 * address detection. 19874 */ 19875 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19876 ipif->ipif_addr_ready = 1; 19877 } 19878 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19879 } 19880 19881 /* 19882 * Perform a bind for the physical device. 19883 * When the routine returns EINPROGRESS then mp has been consumed and 19884 * the ioctl will be acked from ip_rput_dlpi. 19885 * Allocate an unbind message and save it until ipif_down. 19886 */ 19887 static int 19888 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19889 { 19890 areq_t *areq; 19891 mblk_t *areq_mp = NULL; 19892 mblk_t *bind_mp = NULL; 19893 mblk_t *unbind_mp = NULL; 19894 conn_t *connp; 19895 boolean_t success; 19896 uint16_t sap_addr; 19897 19898 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19899 ASSERT(IAM_WRITER_ILL(ill)); 19900 ASSERT(mp != NULL); 19901 19902 /* Create a resolver cookie for ARP */ 19903 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19904 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19905 if (areq_mp == NULL) 19906 return (ENOMEM); 19907 19908 freemsg(ill->ill_resolver_mp); 19909 ill->ill_resolver_mp = areq_mp; 19910 areq = (areq_t *)areq_mp->b_rptr; 19911 sap_addr = ill->ill_sap; 19912 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19913 } 19914 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19915 DL_BIND_REQ); 19916 if (bind_mp == NULL) 19917 goto bad; 19918 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19919 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19920 19921 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19922 if (unbind_mp == NULL) 19923 goto bad; 19924 19925 /* 19926 * Record state needed to complete this operation when the 19927 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19928 */ 19929 ASSERT(WR(q)->q_next == NULL); 19930 connp = Q_TO_CONN(q); 19931 19932 mutex_enter(&connp->conn_lock); 19933 mutex_enter(&ipif->ipif_ill->ill_lock); 19934 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19935 mutex_exit(&ipif->ipif_ill->ill_lock); 19936 mutex_exit(&connp->conn_lock); 19937 if (!success) 19938 goto bad; 19939 19940 /* 19941 * Save the unbind message for ill_dl_down(); it will be consumed when 19942 * the interface goes down. 19943 */ 19944 ASSERT(ill->ill_unbind_mp == NULL); 19945 ill->ill_unbind_mp = unbind_mp; 19946 19947 ill_dlpi_send(ill, bind_mp); 19948 /* Send down link-layer capabilities probe if not already done. */ 19949 ill_capability_probe(ill); 19950 19951 /* 19952 * Sysid used to rely on the fact that netboots set domainname 19953 * and the like. Now that miniroot boots aren't strictly netboots 19954 * and miniroot network configuration is driven from userland 19955 * these things still need to be set. This situation can be detected 19956 * by comparing the interface being configured here to the one 19957 * dhcifname was set to reference by the boot loader. Once sysid is 19958 * converted to use dhcp_ipc_getinfo() this call can go away. 19959 */ 19960 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19961 (strcmp(ill->ill_name, dhcifname) == 0) && 19962 (strlen(srpc_domain) == 0)) { 19963 if (dhcpinit() != 0) 19964 cmn_err(CE_WARN, "no cached dhcp response"); 19965 } 19966 19967 /* 19968 * This operation will complete in ip_rput_dlpi with either 19969 * a DL_BIND_ACK or DL_ERROR_ACK. 19970 */ 19971 return (EINPROGRESS); 19972 bad: 19973 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19974 /* 19975 * We don't have to check for possible removal from illgrp 19976 * as we have not yet inserted in illgrp. For groups 19977 * without names, this ipif is still not UP and hence 19978 * this could not have possibly had any influence in forming 19979 * groups. 19980 */ 19981 19982 freemsg(bind_mp); 19983 freemsg(unbind_mp); 19984 return (ENOMEM); 19985 } 19986 19987 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19988 19989 /* 19990 * DLPI and ARP is up. 19991 * Create all the IREs associated with an interface bring up multicast. 19992 * Set the interface flag and finish other initialization 19993 * that potentially had to be differed to after DL_BIND_ACK. 19994 */ 19995 int 19996 ipif_up_done(ipif_t *ipif) 19997 { 19998 ire_t *ire_array[20]; 19999 ire_t **irep = ire_array; 20000 ire_t **irep1; 20001 ipaddr_t net_mask = 0; 20002 ipaddr_t subnet_mask, route_mask; 20003 ill_t *ill = ipif->ipif_ill; 20004 queue_t *stq; 20005 ipif_t *src_ipif; 20006 ipif_t *tmp_ipif; 20007 boolean_t flush_ire_cache = B_TRUE; 20008 int err = 0; 20009 phyint_t *phyi; 20010 ire_t **ipif_saved_irep = NULL; 20011 int ipif_saved_ire_cnt; 20012 int cnt; 20013 boolean_t src_ipif_held = B_FALSE; 20014 boolean_t ire_added = B_FALSE; 20015 boolean_t loopback = B_FALSE; 20016 ip_stack_t *ipst = ill->ill_ipst; 20017 20018 ip1dbg(("ipif_up_done(%s:%u)\n", 20019 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20020 /* Check if this is a loopback interface */ 20021 if (ipif->ipif_ill->ill_wq == NULL) 20022 loopback = B_TRUE; 20023 20024 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20025 /* 20026 * If all other interfaces for this ill are down or DEPRECATED, 20027 * or otherwise unsuitable for source address selection, remove 20028 * any IRE_CACHE entries for this ill to make sure source 20029 * address selection gets to take this new ipif into account. 20030 * No need to hold ill_lock while traversing the ipif list since 20031 * we are writer 20032 */ 20033 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20034 tmp_ipif = tmp_ipif->ipif_next) { 20035 if (((tmp_ipif->ipif_flags & 20036 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20037 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20038 (tmp_ipif == ipif)) 20039 continue; 20040 /* first useable pre-existing interface */ 20041 flush_ire_cache = B_FALSE; 20042 break; 20043 } 20044 if (flush_ire_cache) 20045 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20046 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20047 20048 /* 20049 * Figure out which way the send-to queue should go. Only 20050 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20051 * should show up here. 20052 */ 20053 switch (ill->ill_net_type) { 20054 case IRE_IF_RESOLVER: 20055 stq = ill->ill_rq; 20056 break; 20057 case IRE_IF_NORESOLVER: 20058 case IRE_LOOPBACK: 20059 stq = ill->ill_wq; 20060 break; 20061 default: 20062 return (EINVAL); 20063 } 20064 20065 if (IS_LOOPBACK(ill)) { 20066 /* 20067 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20068 * ipif_lookup_on_name(), but in the case of zones we can have 20069 * several loopback addresses on lo0. So all the interfaces with 20070 * loopback addresses need to be marked IRE_LOOPBACK. 20071 */ 20072 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20073 htonl(INADDR_LOOPBACK)) 20074 ipif->ipif_ire_type = IRE_LOOPBACK; 20075 else 20076 ipif->ipif_ire_type = IRE_LOCAL; 20077 } 20078 20079 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20080 /* 20081 * Can't use our source address. Select a different 20082 * source address for the IRE_INTERFACE and IRE_LOCAL 20083 */ 20084 src_ipif = ipif_select_source(ipif->ipif_ill, 20085 ipif->ipif_subnet, ipif->ipif_zoneid); 20086 if (src_ipif == NULL) 20087 src_ipif = ipif; /* Last resort */ 20088 else 20089 src_ipif_held = B_TRUE; 20090 } else { 20091 src_ipif = ipif; 20092 } 20093 20094 /* Create all the IREs associated with this interface */ 20095 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20096 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20097 20098 /* 20099 * If we're on a labeled system then make sure that zone- 20100 * private addresses have proper remote host database entries. 20101 */ 20102 if (is_system_labeled() && 20103 ipif->ipif_ire_type != IRE_LOOPBACK && 20104 !tsol_check_interface_address(ipif)) 20105 return (EINVAL); 20106 20107 /* Register the source address for __sin6_src_id */ 20108 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20109 ipif->ipif_zoneid, ipst); 20110 if (err != 0) { 20111 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20112 return (err); 20113 } 20114 20115 /* If the interface address is set, create the local IRE. */ 20116 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20117 (void *)ipif, 20118 ipif->ipif_ire_type, 20119 ntohl(ipif->ipif_lcl_addr))); 20120 *irep++ = ire_create( 20121 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20122 (uchar_t *)&ip_g_all_ones, /* mask */ 20123 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20124 NULL, /* no gateway */ 20125 &ip_loopback_mtuplus, /* max frag size */ 20126 NULL, 20127 ipif->ipif_rq, /* recv-from queue */ 20128 NULL, /* no send-to queue */ 20129 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20130 ipif, 20131 0, 20132 0, 20133 0, 20134 (ipif->ipif_flags & IPIF_PRIVATE) ? 20135 RTF_PRIVATE : 0, 20136 &ire_uinfo_null, 20137 NULL, 20138 NULL, 20139 ipst); 20140 } else { 20141 ip1dbg(( 20142 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20143 ipif->ipif_ire_type, 20144 ntohl(ipif->ipif_lcl_addr), 20145 (uint_t)ipif->ipif_flags)); 20146 } 20147 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20148 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20149 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20150 } else { 20151 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20152 } 20153 20154 subnet_mask = ipif->ipif_net_mask; 20155 20156 /* 20157 * If mask was not specified, use natural netmask of 20158 * interface address. Also, store this mask back into the 20159 * ipif struct. 20160 */ 20161 if (subnet_mask == 0) { 20162 subnet_mask = net_mask; 20163 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20164 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20165 ipif->ipif_v6subnet); 20166 } 20167 20168 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20169 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20170 ipif->ipif_subnet != INADDR_ANY) { 20171 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20172 20173 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20174 route_mask = IP_HOST_MASK; 20175 } else { 20176 route_mask = subnet_mask; 20177 } 20178 20179 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20180 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20181 (void *)ipif, (void *)ill, 20182 ill->ill_net_type, 20183 ntohl(ipif->ipif_subnet))); 20184 *irep++ = ire_create( 20185 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20186 (uchar_t *)&route_mask, /* mask */ 20187 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20188 NULL, /* no gateway */ 20189 &ipif->ipif_mtu, /* max frag */ 20190 NULL, 20191 NULL, /* no recv queue */ 20192 stq, /* send-to queue */ 20193 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20194 ipif, 20195 0, 20196 0, 20197 0, 20198 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20199 &ire_uinfo_null, 20200 NULL, 20201 NULL, 20202 ipst); 20203 } 20204 20205 /* 20206 * Create any necessary broadcast IREs. 20207 */ 20208 if (ipif->ipif_flags & IPIF_BROADCAST) 20209 irep = ipif_create_bcast_ires(ipif, irep); 20210 20211 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20212 20213 /* If an earlier ire_create failed, get out now */ 20214 for (irep1 = irep; irep1 > ire_array; ) { 20215 irep1--; 20216 if (*irep1 == NULL) { 20217 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20218 err = ENOMEM; 20219 goto bad; 20220 } 20221 } 20222 20223 /* 20224 * Need to atomically check for ip_addr_availablity_check 20225 * under ip_addr_avail_lock, and if it fails got bad, and remove 20226 * from group also.The ill_g_lock is grabbed as reader 20227 * just to make sure no new ills or new ipifs are being added 20228 * to the system while we are checking the uniqueness of addresses. 20229 */ 20230 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20231 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20232 /* Mark it up, and increment counters. */ 20233 ipif->ipif_flags |= IPIF_UP; 20234 ill->ill_ipif_up_count++; 20235 err = ip_addr_availability_check(ipif); 20236 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20237 rw_exit(&ipst->ips_ill_g_lock); 20238 20239 if (err != 0) { 20240 /* 20241 * Our address may already be up on the same ill. In this case, 20242 * the ARP entry for our ipif replaced the one for the other 20243 * ipif. So we don't want to delete it (otherwise the other ipif 20244 * would be unable to send packets). 20245 * ip_addr_availability_check() identifies this case for us and 20246 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20247 * which is the expected error code. 20248 */ 20249 if (err == EADDRINUSE) { 20250 freemsg(ipif->ipif_arp_del_mp); 20251 ipif->ipif_arp_del_mp = NULL; 20252 err = EADDRNOTAVAIL; 20253 } 20254 ill->ill_ipif_up_count--; 20255 ipif->ipif_flags &= ~IPIF_UP; 20256 goto bad; 20257 } 20258 20259 /* 20260 * Add in all newly created IREs. ire_create_bcast() has 20261 * already checked for duplicates of the IRE_BROADCAST type. 20262 * We want to add before we call ifgrp_insert which wants 20263 * to know whether IRE_IF_RESOLVER exists or not. 20264 * 20265 * NOTE : We refrele the ire though we may branch to "bad" 20266 * later on where we do ire_delete. This is okay 20267 * because nobody can delete it as we are running 20268 * exclusively. 20269 */ 20270 for (irep1 = irep; irep1 > ire_array; ) { 20271 irep1--; 20272 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20273 /* 20274 * refheld by ire_add. refele towards the end of the func 20275 */ 20276 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20277 } 20278 ire_added = B_TRUE; 20279 /* 20280 * Form groups if possible. 20281 * 20282 * If we are supposed to be in a ill_group with a name, insert it 20283 * now as we know that at least one ipif is UP. Otherwise form 20284 * nameless groups. 20285 * 20286 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20287 * this ipif into the appropriate interface group, or create a 20288 * new one. If this is already in a nameless group, we try to form 20289 * a bigger group looking at other ills potentially sharing this 20290 * ipif's prefix. 20291 */ 20292 phyi = ill->ill_phyint; 20293 if (phyi->phyint_groupname_len != 0) { 20294 ASSERT(phyi->phyint_groupname != NULL); 20295 if (ill->ill_ipif_up_count == 1) { 20296 ASSERT(ill->ill_group == NULL); 20297 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20298 phyi->phyint_groupname, NULL, B_TRUE); 20299 if (err != 0) { 20300 ip1dbg(("ipif_up_done: illgrp allocation " 20301 "failed, error %d\n", err)); 20302 goto bad; 20303 } 20304 } 20305 ASSERT(ill->ill_group != NULL); 20306 } 20307 20308 /* 20309 * When this is part of group, we need to make sure that 20310 * any broadcast ires created because of this ipif coming 20311 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20312 * so that we don't receive duplicate broadcast packets. 20313 */ 20314 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20315 ipif_renominate_bcast(ipif); 20316 20317 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20318 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20319 ipif_saved_irep = ipif_recover_ire(ipif); 20320 20321 if (!loopback) { 20322 /* 20323 * If the broadcast address has been set, make sure it makes 20324 * sense based on the interface address. 20325 * Only match on ill since we are sharing broadcast addresses. 20326 */ 20327 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20328 (ipif->ipif_flags & IPIF_BROADCAST)) { 20329 ire_t *ire; 20330 20331 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20332 IRE_BROADCAST, ipif, ALL_ZONES, 20333 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20334 20335 if (ire == NULL) { 20336 /* 20337 * If there isn't a matching broadcast IRE, 20338 * revert to the default for this netmask. 20339 */ 20340 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20341 mutex_enter(&ipif->ipif_ill->ill_lock); 20342 ipif_set_default(ipif); 20343 mutex_exit(&ipif->ipif_ill->ill_lock); 20344 } else { 20345 ire_refrele(ire); 20346 } 20347 } 20348 20349 } 20350 20351 /* This is the first interface on this ill */ 20352 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20353 /* 20354 * Need to recover all multicast memberships in the driver. 20355 * This had to be deferred until we had attached. 20356 */ 20357 ill_recover_multicast(ill); 20358 } 20359 /* Join the allhosts multicast address */ 20360 ipif_multicast_up(ipif); 20361 20362 if (!loopback) { 20363 /* 20364 * See whether anybody else would benefit from the 20365 * new ipif that we added. We call this always rather 20366 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20367 * ipif is for the benefit of illgrp_insert (done above) 20368 * which does not do source address selection as it does 20369 * not want to re-create interface routes that we are 20370 * having reference to it here. 20371 */ 20372 ill_update_source_selection(ill); 20373 } 20374 20375 for (irep1 = irep; irep1 > ire_array; ) { 20376 irep1--; 20377 if (*irep1 != NULL) { 20378 /* was held in ire_add */ 20379 ire_refrele(*irep1); 20380 } 20381 } 20382 20383 cnt = ipif_saved_ire_cnt; 20384 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20385 if (*irep1 != NULL) { 20386 /* was held in ire_add */ 20387 ire_refrele(*irep1); 20388 } 20389 } 20390 20391 if (!loopback && ipif->ipif_addr_ready) { 20392 /* Broadcast an address mask reply. */ 20393 ipif_mask_reply(ipif); 20394 } 20395 if (ipif_saved_irep != NULL) { 20396 kmem_free(ipif_saved_irep, 20397 ipif_saved_ire_cnt * sizeof (ire_t *)); 20398 } 20399 if (src_ipif_held) 20400 ipif_refrele(src_ipif); 20401 20402 /* 20403 * This had to be deferred until we had bound. Tell routing sockets and 20404 * others that this interface is up if it looks like the address has 20405 * been validated. Otherwise, if it isn't ready yet, wait for 20406 * duplicate address detection to do its thing. 20407 */ 20408 if (ipif->ipif_addr_ready) { 20409 ip_rts_ifmsg(ipif); 20410 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20411 /* Let SCTP update the status for this ipif */ 20412 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20413 } 20414 return (0); 20415 20416 bad: 20417 ip1dbg(("ipif_up_done: FAILED \n")); 20418 /* 20419 * We don't have to bother removing from ill groups because 20420 * 20421 * 1) For groups with names, we insert only when the first ipif 20422 * comes up. In that case if it fails, it will not be in any 20423 * group. So, we need not try to remove for that case. 20424 * 20425 * 2) For groups without names, either we tried to insert ipif_ill 20426 * in a group as singleton or found some other group to become 20427 * a bigger group. For the former, if it fails we don't have 20428 * anything to do as ipif_ill is not in the group and for the 20429 * latter, there are no failures in illgrp_insert/illgrp_delete 20430 * (ENOMEM can't occur for this. Check ifgrp_insert). 20431 */ 20432 while (irep > ire_array) { 20433 irep--; 20434 if (*irep != NULL) { 20435 ire_delete(*irep); 20436 if (ire_added) 20437 ire_refrele(*irep); 20438 } 20439 } 20440 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20441 20442 if (ipif_saved_irep != NULL) { 20443 kmem_free(ipif_saved_irep, 20444 ipif_saved_ire_cnt * sizeof (ire_t *)); 20445 } 20446 if (src_ipif_held) 20447 ipif_refrele(src_ipif); 20448 20449 ipif_arp_down(ipif); 20450 return (err); 20451 } 20452 20453 /* 20454 * Turn off the ARP with the ILLF_NOARP flag. 20455 */ 20456 static int 20457 ill_arp_off(ill_t *ill) 20458 { 20459 mblk_t *arp_off_mp = NULL; 20460 mblk_t *arp_on_mp = NULL; 20461 20462 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20463 20464 ASSERT(IAM_WRITER_ILL(ill)); 20465 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20466 20467 /* 20468 * If the on message is still around we've already done 20469 * an arp_off without doing an arp_on thus there is no 20470 * work needed. 20471 */ 20472 if (ill->ill_arp_on_mp != NULL) 20473 return (0); 20474 20475 /* 20476 * Allocate an ARP on message (to be saved) and an ARP off message 20477 */ 20478 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20479 if (!arp_off_mp) 20480 return (ENOMEM); 20481 20482 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20483 if (!arp_on_mp) 20484 goto failed; 20485 20486 ASSERT(ill->ill_arp_on_mp == NULL); 20487 ill->ill_arp_on_mp = arp_on_mp; 20488 20489 /* Send an AR_INTERFACE_OFF request */ 20490 putnext(ill->ill_rq, arp_off_mp); 20491 return (0); 20492 failed: 20493 20494 if (arp_off_mp) 20495 freemsg(arp_off_mp); 20496 return (ENOMEM); 20497 } 20498 20499 /* 20500 * Turn on ARP by turning off the ILLF_NOARP flag. 20501 */ 20502 static int 20503 ill_arp_on(ill_t *ill) 20504 { 20505 mblk_t *mp; 20506 20507 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20508 20509 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20510 20511 ASSERT(IAM_WRITER_ILL(ill)); 20512 /* 20513 * Send an AR_INTERFACE_ON request if we have already done 20514 * an arp_off (which allocated the message). 20515 */ 20516 if (ill->ill_arp_on_mp != NULL) { 20517 mp = ill->ill_arp_on_mp; 20518 ill->ill_arp_on_mp = NULL; 20519 putnext(ill->ill_rq, mp); 20520 } 20521 return (0); 20522 } 20523 20524 /* 20525 * Called after either deleting ill from the group or when setting 20526 * FAILED or STANDBY on the interface. 20527 */ 20528 static void 20529 illgrp_reset_schednext(ill_t *ill) 20530 { 20531 ill_group_t *illgrp; 20532 ill_t *save_ill; 20533 20534 ASSERT(IAM_WRITER_ILL(ill)); 20535 /* 20536 * When called from illgrp_delete, ill_group will be non-NULL. 20537 * But when called from ip_sioctl_flags, it could be NULL if 20538 * somebody is setting FAILED/INACTIVE on some interface which 20539 * is not part of a group. 20540 */ 20541 illgrp = ill->ill_group; 20542 if (illgrp == NULL) 20543 return; 20544 if (illgrp->illgrp_ill_schednext != ill) 20545 return; 20546 20547 illgrp->illgrp_ill_schednext = NULL; 20548 save_ill = ill; 20549 /* 20550 * Choose a good ill to be the next one for 20551 * outbound traffic. As the flags FAILED/STANDBY is 20552 * not yet marked when called from ip_sioctl_flags, 20553 * we check for ill separately. 20554 */ 20555 for (ill = illgrp->illgrp_ill; ill != NULL; 20556 ill = ill->ill_group_next) { 20557 if ((ill != save_ill) && 20558 !(ill->ill_phyint->phyint_flags & 20559 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20560 illgrp->illgrp_ill_schednext = ill; 20561 return; 20562 } 20563 } 20564 } 20565 20566 /* 20567 * Given an ill, find the next ill in the group to be scheduled. 20568 * (This should be called by ip_newroute() before ire_create().) 20569 * The passed in ill may be pulled out of the group, after we have picked 20570 * up a different outgoing ill from the same group. However ire add will 20571 * atomically check this. 20572 */ 20573 ill_t * 20574 illgrp_scheduler(ill_t *ill) 20575 { 20576 ill_t *retill; 20577 ill_group_t *illgrp; 20578 int illcnt; 20579 int i; 20580 uint64_t flags; 20581 ip_stack_t *ipst = ill->ill_ipst; 20582 20583 /* 20584 * We don't use a lock to check for the ill_group. If this ill 20585 * is currently being inserted we may end up just returning this 20586 * ill itself. That is ok. 20587 */ 20588 if (ill->ill_group == NULL) { 20589 ill_refhold(ill); 20590 return (ill); 20591 } 20592 20593 /* 20594 * Grab the ill_g_lock as reader to make sure we are dealing with 20595 * a set of stable ills. No ill can be added or deleted or change 20596 * group while we hold the reader lock. 20597 */ 20598 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20599 if ((illgrp = ill->ill_group) == NULL) { 20600 rw_exit(&ipst->ips_ill_g_lock); 20601 ill_refhold(ill); 20602 return (ill); 20603 } 20604 20605 illcnt = illgrp->illgrp_ill_count; 20606 mutex_enter(&illgrp->illgrp_lock); 20607 retill = illgrp->illgrp_ill_schednext; 20608 20609 if (retill == NULL) 20610 retill = illgrp->illgrp_ill; 20611 20612 /* 20613 * We do a circular search beginning at illgrp_ill_schednext 20614 * or illgrp_ill. We don't check the flags against the ill lock 20615 * since it can change anytime. The ire creation will be atomic 20616 * and will fail if the ill is FAILED or OFFLINE. 20617 */ 20618 for (i = 0; i < illcnt; i++) { 20619 flags = retill->ill_phyint->phyint_flags; 20620 20621 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20622 ILL_CAN_LOOKUP(retill)) { 20623 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20624 ill_refhold(retill); 20625 break; 20626 } 20627 retill = retill->ill_group_next; 20628 if (retill == NULL) 20629 retill = illgrp->illgrp_ill; 20630 } 20631 mutex_exit(&illgrp->illgrp_lock); 20632 rw_exit(&ipst->ips_ill_g_lock); 20633 20634 return (i == illcnt ? NULL : retill); 20635 } 20636 20637 /* 20638 * Checks for availbility of a usable source address (if there is one) when the 20639 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20640 * this selection is done regardless of the destination. 20641 */ 20642 boolean_t 20643 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20644 { 20645 uint_t ifindex; 20646 ipif_t *ipif = NULL; 20647 ill_t *uill; 20648 boolean_t isv6; 20649 ip_stack_t *ipst = ill->ill_ipst; 20650 20651 ASSERT(ill != NULL); 20652 20653 isv6 = ill->ill_isv6; 20654 ifindex = ill->ill_usesrc_ifindex; 20655 if (ifindex != 0) { 20656 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20657 NULL, ipst); 20658 if (uill == NULL) 20659 return (NULL); 20660 mutex_enter(&uill->ill_lock); 20661 for (ipif = uill->ill_ipif; ipif != NULL; 20662 ipif = ipif->ipif_next) { 20663 if (!IPIF_CAN_LOOKUP(ipif)) 20664 continue; 20665 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20666 continue; 20667 if (!(ipif->ipif_flags & IPIF_UP)) 20668 continue; 20669 if (ipif->ipif_zoneid != zoneid) 20670 continue; 20671 if ((isv6 && 20672 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20673 (ipif->ipif_lcl_addr == INADDR_ANY)) 20674 continue; 20675 mutex_exit(&uill->ill_lock); 20676 ill_refrele(uill); 20677 return (B_TRUE); 20678 } 20679 mutex_exit(&uill->ill_lock); 20680 ill_refrele(uill); 20681 } 20682 return (B_FALSE); 20683 } 20684 20685 /* 20686 * Determine the best source address given a destination address and an ill. 20687 * Prefers non-deprecated over deprecated but will return a deprecated 20688 * address if there is no other choice. If there is a usable source address 20689 * on the interface pointed to by ill_usesrc_ifindex then that is given 20690 * first preference. 20691 * 20692 * Returns NULL if there is no suitable source address for the ill. 20693 * This only occurs when there is no valid source address for the ill. 20694 */ 20695 ipif_t * 20696 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20697 { 20698 ipif_t *ipif; 20699 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20700 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20701 int index = 0; 20702 boolean_t wrapped = B_FALSE; 20703 boolean_t same_subnet_only = B_FALSE; 20704 boolean_t ipif_same_found, ipif_other_found; 20705 boolean_t specific_found; 20706 ill_t *till, *usill = NULL; 20707 tsol_tpc_t *src_rhtp, *dst_rhtp; 20708 ip_stack_t *ipst = ill->ill_ipst; 20709 20710 if (ill->ill_usesrc_ifindex != 0) { 20711 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20712 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20713 if (usill != NULL) 20714 ill = usill; /* Select source from usesrc ILL */ 20715 else 20716 return (NULL); 20717 } 20718 20719 /* 20720 * If we're dealing with an unlabeled destination on a labeled system, 20721 * make sure that we ignore source addresses that are incompatible with 20722 * the destination's default label. That destination's default label 20723 * must dominate the minimum label on the source address. 20724 */ 20725 dst_rhtp = NULL; 20726 if (is_system_labeled()) { 20727 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20728 if (dst_rhtp == NULL) 20729 return (NULL); 20730 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20731 TPC_RELE(dst_rhtp); 20732 dst_rhtp = NULL; 20733 } 20734 } 20735 20736 /* 20737 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20738 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20739 * After selecting the right ipif, under ill_lock make sure ipif is 20740 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20741 * we retry. Inside the loop we still need to check for CONDEMNED, 20742 * but not under a lock. 20743 */ 20744 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20745 20746 retry: 20747 till = ill; 20748 ipif_arr[0] = NULL; 20749 20750 if (till->ill_group != NULL) 20751 till = till->ill_group->illgrp_ill; 20752 20753 /* 20754 * Choose one good source address from each ill across the group. 20755 * If possible choose a source address in the same subnet as 20756 * the destination address. 20757 * 20758 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20759 * This is okay because of the following. 20760 * 20761 * If PHYI_FAILED is set and we still have non-deprecated 20762 * addresses, it means the addresses have not yet been 20763 * failed over to a different interface. We potentially 20764 * select them to create IRE_CACHES, which will be later 20765 * flushed when the addresses move over. 20766 * 20767 * If PHYI_INACTIVE is set and we still have non-deprecated 20768 * addresses, it means either the user has configured them 20769 * or PHYI_INACTIVE has not been cleared after the addresses 20770 * been moved over. For the former, in.mpathd does a failover 20771 * when the interface becomes INACTIVE and hence we should 20772 * not find them. Once INACTIVE is set, we don't allow them 20773 * to create logical interfaces anymore. For the latter, a 20774 * flush will happen when INACTIVE is cleared which will 20775 * flush the IRE_CACHES. 20776 * 20777 * If PHYI_OFFLINE is set, all the addresses will be failed 20778 * over soon. We potentially select them to create IRE_CACHEs, 20779 * which will be later flushed when the addresses move over. 20780 * 20781 * NOTE : As ipif_select_source is called to borrow source address 20782 * for an ipif that is part of a group, source address selection 20783 * will be re-done whenever the group changes i.e either an 20784 * insertion/deletion in the group. 20785 * 20786 * Fill ipif_arr[] with source addresses, using these rules: 20787 * 20788 * 1. At most one source address from a given ill ends up 20789 * in ipif_arr[] -- that is, at most one of the ipif's 20790 * associated with a given ill ends up in ipif_arr[]. 20791 * 20792 * 2. If there is at least one non-deprecated ipif in the 20793 * IPMP group with a source address on the same subnet as 20794 * our destination, then fill ipif_arr[] only with 20795 * source addresses on the same subnet as our destination. 20796 * Note that because of (1), only the first 20797 * non-deprecated ipif found with a source address 20798 * matching the destination ends up in ipif_arr[]. 20799 * 20800 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20801 * addresses not in the same subnet as our destination. 20802 * Again, because of (1), only the first off-subnet source 20803 * address will be chosen. 20804 * 20805 * 4. If there are no non-deprecated ipifs, then just use 20806 * the source address associated with the last deprecated 20807 * one we find that happens to be on the same subnet, 20808 * otherwise the first one not in the same subnet. 20809 */ 20810 specific_found = B_FALSE; 20811 for (; till != NULL; till = till->ill_group_next) { 20812 ipif_same_found = B_FALSE; 20813 ipif_other_found = B_FALSE; 20814 for (ipif = till->ill_ipif; ipif != NULL; 20815 ipif = ipif->ipif_next) { 20816 if (!IPIF_CAN_LOOKUP(ipif)) 20817 continue; 20818 /* Always skip NOLOCAL and ANYCAST interfaces */ 20819 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20820 continue; 20821 if (!(ipif->ipif_flags & IPIF_UP) || 20822 !ipif->ipif_addr_ready) 20823 continue; 20824 if (ipif->ipif_zoneid != zoneid && 20825 ipif->ipif_zoneid != ALL_ZONES) 20826 continue; 20827 /* 20828 * Interfaces with 0.0.0.0 address are allowed to be UP, 20829 * but are not valid as source addresses. 20830 */ 20831 if (ipif->ipif_lcl_addr == INADDR_ANY) 20832 continue; 20833 20834 /* 20835 * Check compatibility of local address for 20836 * destination's default label if we're on a labeled 20837 * system. Incompatible addresses can't be used at 20838 * all. 20839 */ 20840 if (dst_rhtp != NULL) { 20841 boolean_t incompat; 20842 20843 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20844 IPV4_VERSION, B_FALSE); 20845 if (src_rhtp == NULL) 20846 continue; 20847 incompat = 20848 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20849 src_rhtp->tpc_tp.tp_doi != 20850 dst_rhtp->tpc_tp.tp_doi || 20851 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20852 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20853 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20854 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20855 TPC_RELE(src_rhtp); 20856 if (incompat) 20857 continue; 20858 } 20859 20860 /* 20861 * We prefer not to use all all-zones addresses, if we 20862 * can avoid it, as they pose problems with unlabeled 20863 * destinations. 20864 */ 20865 if (ipif->ipif_zoneid != ALL_ZONES) { 20866 if (!specific_found && 20867 (!same_subnet_only || 20868 (ipif->ipif_net_mask & dst) == 20869 ipif->ipif_subnet)) { 20870 index = 0; 20871 specific_found = B_TRUE; 20872 ipif_other_found = B_FALSE; 20873 } 20874 } else { 20875 if (specific_found) 20876 continue; 20877 } 20878 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20879 if (ipif_dep == NULL || 20880 (ipif->ipif_net_mask & dst) == 20881 ipif->ipif_subnet) 20882 ipif_dep = ipif; 20883 continue; 20884 } 20885 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20886 /* found a source address in the same subnet */ 20887 if (!same_subnet_only) { 20888 same_subnet_only = B_TRUE; 20889 index = 0; 20890 } 20891 ipif_same_found = B_TRUE; 20892 } else { 20893 if (same_subnet_only || ipif_other_found) 20894 continue; 20895 ipif_other_found = B_TRUE; 20896 } 20897 ipif_arr[index++] = ipif; 20898 if (index == MAX_IPIF_SELECT_SOURCE) { 20899 wrapped = B_TRUE; 20900 index = 0; 20901 } 20902 if (ipif_same_found) 20903 break; 20904 } 20905 } 20906 20907 if (ipif_arr[0] == NULL) { 20908 ipif = ipif_dep; 20909 } else { 20910 if (wrapped) 20911 index = MAX_IPIF_SELECT_SOURCE; 20912 ipif = ipif_arr[ipif_rand(ipst) % index]; 20913 ASSERT(ipif != NULL); 20914 } 20915 20916 if (ipif != NULL) { 20917 mutex_enter(&ipif->ipif_ill->ill_lock); 20918 if (!IPIF_CAN_LOOKUP(ipif)) { 20919 mutex_exit(&ipif->ipif_ill->ill_lock); 20920 goto retry; 20921 } 20922 ipif_refhold_locked(ipif); 20923 mutex_exit(&ipif->ipif_ill->ill_lock); 20924 } 20925 20926 rw_exit(&ipst->ips_ill_g_lock); 20927 if (usill != NULL) 20928 ill_refrele(usill); 20929 if (dst_rhtp != NULL) 20930 TPC_RELE(dst_rhtp); 20931 20932 #ifdef DEBUG 20933 if (ipif == NULL) { 20934 char buf1[INET6_ADDRSTRLEN]; 20935 20936 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20937 ill->ill_name, 20938 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20939 } else { 20940 char buf1[INET6_ADDRSTRLEN]; 20941 char buf2[INET6_ADDRSTRLEN]; 20942 20943 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20944 ipif->ipif_ill->ill_name, 20945 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20946 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20947 buf2, sizeof (buf2)))); 20948 } 20949 #endif /* DEBUG */ 20950 return (ipif); 20951 } 20952 20953 20954 /* 20955 * If old_ipif is not NULL, see if ipif was derived from old 20956 * ipif and if so, recreate the interface route by re-doing 20957 * source address selection. This happens when ipif_down -> 20958 * ipif_update_other_ipifs calls us. 20959 * 20960 * If old_ipif is NULL, just redo the source address selection 20961 * if needed. This happens when illgrp_insert or ipif_up_done 20962 * calls us. 20963 */ 20964 static void 20965 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20966 { 20967 ire_t *ire; 20968 ire_t *ipif_ire; 20969 queue_t *stq; 20970 ipif_t *nipif; 20971 ill_t *ill; 20972 boolean_t need_rele = B_FALSE; 20973 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20974 20975 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20976 ASSERT(IAM_WRITER_IPIF(ipif)); 20977 20978 ill = ipif->ipif_ill; 20979 if (!(ipif->ipif_flags & 20980 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20981 /* 20982 * Can't possibly have borrowed the source 20983 * from old_ipif. 20984 */ 20985 return; 20986 } 20987 20988 /* 20989 * Is there any work to be done? No work if the address 20990 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20991 * ipif_select_source() does not borrow addresses from 20992 * NOLOCAL and ANYCAST interfaces). 20993 */ 20994 if ((old_ipif != NULL) && 20995 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20996 (old_ipif->ipif_ill->ill_wq == NULL) || 20997 (old_ipif->ipif_flags & 20998 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20999 return; 21000 } 21001 21002 /* 21003 * Perform the same checks as when creating the 21004 * IRE_INTERFACE in ipif_up_done. 21005 */ 21006 if (!(ipif->ipif_flags & IPIF_UP)) 21007 return; 21008 21009 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21010 (ipif->ipif_subnet == INADDR_ANY)) 21011 return; 21012 21013 ipif_ire = ipif_to_ire(ipif); 21014 if (ipif_ire == NULL) 21015 return; 21016 21017 /* 21018 * We know that ipif uses some other source for its 21019 * IRE_INTERFACE. Is it using the source of this 21020 * old_ipif? 21021 */ 21022 if (old_ipif != NULL && 21023 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21024 ire_refrele(ipif_ire); 21025 return; 21026 } 21027 if (ip_debug > 2) { 21028 /* ip1dbg */ 21029 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21030 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21031 } 21032 21033 stq = ipif_ire->ire_stq; 21034 21035 /* 21036 * Can't use our source address. Select a different 21037 * source address for the IRE_INTERFACE. 21038 */ 21039 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21040 if (nipif == NULL) { 21041 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21042 nipif = ipif; 21043 } else { 21044 need_rele = B_TRUE; 21045 } 21046 21047 ire = ire_create( 21048 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21049 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21050 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21051 NULL, /* no gateway */ 21052 &ipif->ipif_mtu, /* max frag */ 21053 NULL, /* no src nce */ 21054 NULL, /* no recv from queue */ 21055 stq, /* send-to queue */ 21056 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21057 ipif, 21058 0, 21059 0, 21060 0, 21061 0, 21062 &ire_uinfo_null, 21063 NULL, 21064 NULL, 21065 ipst); 21066 21067 if (ire != NULL) { 21068 ire_t *ret_ire; 21069 int error; 21070 21071 /* 21072 * We don't need ipif_ire anymore. We need to delete 21073 * before we add so that ire_add does not detect 21074 * duplicates. 21075 */ 21076 ire_delete(ipif_ire); 21077 ret_ire = ire; 21078 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21079 ASSERT(error == 0); 21080 ASSERT(ire == ret_ire); 21081 /* Held in ire_add */ 21082 ire_refrele(ret_ire); 21083 } 21084 /* 21085 * Either we are falling through from above or could not 21086 * allocate a replacement. 21087 */ 21088 ire_refrele(ipif_ire); 21089 if (need_rele) 21090 ipif_refrele(nipif); 21091 } 21092 21093 /* 21094 * This old_ipif is going away. 21095 * 21096 * Determine if any other ipif's is using our address as 21097 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21098 * IPIF_DEPRECATED). 21099 * Find the IRE_INTERFACE for such ipifs and recreate them 21100 * to use an different source address following the rules in 21101 * ipif_up_done. 21102 * 21103 * This function takes an illgrp as an argument so that illgrp_delete 21104 * can call this to update source address even after deleting the 21105 * old_ipif->ipif_ill from the ill group. 21106 */ 21107 static void 21108 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21109 { 21110 ipif_t *ipif; 21111 ill_t *ill; 21112 char buf[INET6_ADDRSTRLEN]; 21113 21114 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21115 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21116 21117 ill = old_ipif->ipif_ill; 21118 21119 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21120 ill->ill_name, 21121 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21122 buf, sizeof (buf)))); 21123 /* 21124 * If this part of a group, look at all ills as ipif_select_source 21125 * borrows source address across all the ills in the group. 21126 */ 21127 if (illgrp != NULL) 21128 ill = illgrp->illgrp_ill; 21129 21130 for (; ill != NULL; ill = ill->ill_group_next) { 21131 for (ipif = ill->ill_ipif; ipif != NULL; 21132 ipif = ipif->ipif_next) { 21133 21134 if (ipif == old_ipif) 21135 continue; 21136 21137 ipif_recreate_interface_routes(old_ipif, ipif); 21138 } 21139 } 21140 } 21141 21142 /* ARGSUSED */ 21143 int 21144 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21145 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21146 { 21147 /* 21148 * ill_phyint_reinit merged the v4 and v6 into a single 21149 * ipsq. Could also have become part of a ipmp group in the 21150 * process, and we might not have been able to complete the 21151 * operation in ipif_set_values, if we could not become 21152 * exclusive. If so restart it here. 21153 */ 21154 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21155 } 21156 21157 21158 /* 21159 * Can operate on either a module or a driver queue. 21160 * Returns an error if not a module queue. 21161 */ 21162 /* ARGSUSED */ 21163 int 21164 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21165 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21166 { 21167 queue_t *q1 = q; 21168 char *cp; 21169 char interf_name[LIFNAMSIZ]; 21170 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21171 21172 if (q->q_next == NULL) { 21173 ip1dbg(( 21174 "if_unitsel: IF_UNITSEL: no q_next\n")); 21175 return (EINVAL); 21176 } 21177 21178 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21179 return (EALREADY); 21180 21181 do { 21182 q1 = q1->q_next; 21183 } while (q1->q_next); 21184 cp = q1->q_qinfo->qi_minfo->mi_idname; 21185 (void) sprintf(interf_name, "%s%d", cp, ppa); 21186 21187 /* 21188 * Here we are not going to delay the ioack until after 21189 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21190 * original ioctl message before sending the requests. 21191 */ 21192 return (ipif_set_values(q, mp, interf_name, &ppa)); 21193 } 21194 21195 /* ARGSUSED */ 21196 int 21197 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21198 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21199 { 21200 return (ENXIO); 21201 } 21202 21203 /* 21204 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21205 * `irep'. Returns a pointer to the next free `irep' entry (just like 21206 * ire_check_and_create_bcast()). 21207 */ 21208 static ire_t ** 21209 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21210 { 21211 ipaddr_t addr; 21212 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21213 ipaddr_t subnetmask = ipif->ipif_net_mask; 21214 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21215 21216 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21217 21218 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21219 21220 if (ipif->ipif_lcl_addr == INADDR_ANY || 21221 (ipif->ipif_flags & IPIF_NOLOCAL)) 21222 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21223 21224 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21225 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21226 21227 /* 21228 * For backward compatibility, we create net broadcast IREs based on 21229 * the old "IP address class system", since some old machines only 21230 * respond to these class derived net broadcast. However, we must not 21231 * create these net broadcast IREs if the subnetmask is shorter than 21232 * the IP address class based derived netmask. Otherwise, we may 21233 * create a net broadcast address which is the same as an IP address 21234 * on the subnet -- and then TCP will refuse to talk to that address. 21235 */ 21236 if (netmask < subnetmask) { 21237 addr = netmask & ipif->ipif_subnet; 21238 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21239 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21240 flags); 21241 } 21242 21243 /* 21244 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21245 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21246 * created. Creating these broadcast IREs will only create confusion 21247 * as `addr' will be the same as the IP address. 21248 */ 21249 if (subnetmask != 0xFFFFFFFF) { 21250 addr = ipif->ipif_subnet; 21251 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21252 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21253 irep, flags); 21254 } 21255 21256 return (irep); 21257 } 21258 21259 /* 21260 * Broadcast IRE info structure used in the functions below. Since we 21261 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21262 */ 21263 typedef struct bcast_ireinfo { 21264 uchar_t bi_type; /* BCAST_* value from below */ 21265 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21266 bi_needrep:1, /* do we need to replace it? */ 21267 bi_haverep:1, /* have we replaced it? */ 21268 bi_pad:5; 21269 ipaddr_t bi_addr; /* IRE address */ 21270 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21271 } bcast_ireinfo_t; 21272 21273 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21274 21275 /* 21276 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21277 * return B_TRUE if it should immediately be used to recreate the IRE. 21278 */ 21279 static boolean_t 21280 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21281 { 21282 ipaddr_t addr; 21283 21284 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21285 21286 switch (bireinfop->bi_type) { 21287 case BCAST_NET: 21288 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21289 if (addr != bireinfop->bi_addr) 21290 return (B_FALSE); 21291 break; 21292 case BCAST_SUBNET: 21293 if (ipif->ipif_subnet != bireinfop->bi_addr) 21294 return (B_FALSE); 21295 break; 21296 } 21297 21298 bireinfop->bi_needrep = 1; 21299 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21300 if (bireinfop->bi_backup == NULL) 21301 bireinfop->bi_backup = ipif; 21302 return (B_FALSE); 21303 } 21304 return (B_TRUE); 21305 } 21306 21307 /* 21308 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21309 * them ala ire_check_and_create_bcast(). 21310 */ 21311 static ire_t ** 21312 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21313 { 21314 ipaddr_t mask, addr; 21315 21316 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21317 21318 addr = bireinfop->bi_addr; 21319 irep = ire_create_bcast(ipif, addr, irep); 21320 21321 switch (bireinfop->bi_type) { 21322 case BCAST_NET: 21323 mask = ip_net_mask(ipif->ipif_subnet); 21324 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21325 break; 21326 case BCAST_SUBNET: 21327 mask = ipif->ipif_net_mask; 21328 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21329 break; 21330 } 21331 21332 bireinfop->bi_haverep = 1; 21333 return (irep); 21334 } 21335 21336 /* 21337 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21338 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21339 * that are going away are still needed. If so, have ipif_create_bcast() 21340 * recreate them (except for the deprecated case, as explained below). 21341 */ 21342 static ire_t ** 21343 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21344 ire_t **irep) 21345 { 21346 int i; 21347 ipif_t *ipif; 21348 21349 ASSERT(!ill->ill_isv6); 21350 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21351 /* 21352 * Skip this ipif if it's (a) the one being taken down, (b) 21353 * not in the same zone, or (c) has no valid local address. 21354 */ 21355 if (ipif == test_ipif || 21356 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21357 ipif->ipif_subnet == 0 || 21358 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21359 (IPIF_UP|IPIF_BROADCAST)) 21360 continue; 21361 21362 /* 21363 * For each dying IRE that hasn't yet been replaced, see if 21364 * `ipif' needs it and whether the IRE should be recreated on 21365 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21366 * will return B_FALSE even if `ipif' needs the IRE on the 21367 * hopes that we'll later find a needy non-deprecated ipif. 21368 * However, the ipif is recorded in bi_backup for possible 21369 * subsequent use by ipif_check_bcast_ires(). 21370 */ 21371 for (i = 0; i < BCAST_COUNT; i++) { 21372 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21373 continue; 21374 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21375 continue; 21376 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21377 } 21378 21379 /* 21380 * If we've replaced all of the broadcast IREs that are going 21381 * to be taken down, we know we're done. 21382 */ 21383 for (i = 0; i < BCAST_COUNT; i++) { 21384 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21385 break; 21386 } 21387 if (i == BCAST_COUNT) 21388 break; 21389 } 21390 return (irep); 21391 } 21392 21393 /* 21394 * Check if `test_ipif' (which is going away) is associated with any existing 21395 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21396 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21397 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21398 * 21399 * This is necessary because broadcast IREs are shared. In particular, a 21400 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21401 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21402 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21403 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21404 * same zone, they will share the same set of broadcast IREs. 21405 * 21406 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21407 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21408 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21409 */ 21410 static void 21411 ipif_check_bcast_ires(ipif_t *test_ipif) 21412 { 21413 ill_t *ill = test_ipif->ipif_ill; 21414 ire_t *ire, *ire_array[12]; /* see note above */ 21415 ire_t **irep1, **irep = &ire_array[0]; 21416 uint_t i, willdie; 21417 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21418 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21419 21420 ASSERT(!test_ipif->ipif_isv6); 21421 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21422 21423 /* 21424 * No broadcast IREs for the LOOPBACK interface 21425 * or others such as point to point and IPIF_NOXMIT. 21426 */ 21427 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21428 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21429 return; 21430 21431 bzero(bireinfo, sizeof (bireinfo)); 21432 bireinfo[0].bi_type = BCAST_ALLZEROES; 21433 bireinfo[0].bi_addr = 0; 21434 21435 bireinfo[1].bi_type = BCAST_ALLONES; 21436 bireinfo[1].bi_addr = INADDR_BROADCAST; 21437 21438 bireinfo[2].bi_type = BCAST_NET; 21439 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21440 21441 if (test_ipif->ipif_net_mask != 0) 21442 mask = test_ipif->ipif_net_mask; 21443 bireinfo[3].bi_type = BCAST_SUBNET; 21444 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21445 21446 /* 21447 * Figure out what (if any) broadcast IREs will die as a result of 21448 * `test_ipif' going away. If none will die, we're done. 21449 */ 21450 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21451 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21452 test_ipif, ALL_ZONES, NULL, 21453 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21454 if (ire != NULL) { 21455 willdie++; 21456 bireinfo[i].bi_willdie = 1; 21457 ire_refrele(ire); 21458 } 21459 } 21460 21461 if (willdie == 0) 21462 return; 21463 21464 /* 21465 * Walk through all the ipifs that will be affected by the dying IREs, 21466 * and recreate the IREs as necessary. 21467 */ 21468 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21469 21470 /* 21471 * Scan through the set of broadcast IREs and see if there are any 21472 * that we need to replace that have not yet been replaced. If so, 21473 * replace them using the appropriate backup ipif. 21474 */ 21475 for (i = 0; i < BCAST_COUNT; i++) { 21476 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21477 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21478 &bireinfo[i], irep); 21479 } 21480 21481 /* 21482 * If we can't create all of them, don't add any of them. (Code in 21483 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21484 * non-loopback copy and loopback copy for a given address.) 21485 */ 21486 for (irep1 = irep; irep1 > ire_array; ) { 21487 irep1--; 21488 if (*irep1 == NULL) { 21489 ip0dbg(("ipif_check_bcast_ires: can't create " 21490 "IRE_BROADCAST, memory allocation failure\n")); 21491 while (irep > ire_array) { 21492 irep--; 21493 if (*irep != NULL) 21494 ire_delete(*irep); 21495 } 21496 return; 21497 } 21498 } 21499 21500 for (irep1 = irep; irep1 > ire_array; ) { 21501 irep1--; 21502 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21503 ire_refrele(*irep1); /* Held in ire_add */ 21504 } 21505 } 21506 21507 /* 21508 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21509 * from lifr_flags and the name from lifr_name. 21510 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21511 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21512 * Returns EINPROGRESS when mp has been consumed by queueing it on 21513 * ill_pending_mp and the ioctl will complete in ip_rput. 21514 * 21515 * Can operate on either a module or a driver queue. 21516 * Returns an error if not a module queue. 21517 */ 21518 /* ARGSUSED */ 21519 int 21520 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21521 ip_ioctl_cmd_t *ipip, void *if_req) 21522 { 21523 ill_t *ill = q->q_ptr; 21524 phyint_t *phyi; 21525 ip_stack_t *ipst; 21526 struct lifreq *lifr = if_req; 21527 21528 ASSERT(ipif != NULL); 21529 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21530 21531 if (q->q_next == NULL) { 21532 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21533 return (EINVAL); 21534 } 21535 21536 /* 21537 * If we are not writer on 'q' then this interface exists already 21538 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21539 * so return EALREADY. 21540 */ 21541 if (ill != ipif->ipif_ill) 21542 return (EALREADY); 21543 21544 if (ill->ill_name[0] != '\0') 21545 return (EALREADY); 21546 21547 /* 21548 * Set all the flags. Allows all kinds of override. Provide some 21549 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21550 * unless there is either multicast/broadcast support in the driver 21551 * or it is a pt-pt link. 21552 */ 21553 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21554 /* Meaningless to IP thus don't allow them to be set. */ 21555 ip1dbg(("ip_setname: EINVAL 1\n")); 21556 return (EINVAL); 21557 } 21558 21559 /* 21560 * If there's another ill already with the requested name, ensure 21561 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21562 * fuse together two unrelated ills, which will cause chaos. 21563 */ 21564 ipst = ill->ill_ipst; 21565 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21566 lifr->lifr_name, NULL); 21567 if (phyi != NULL) { 21568 ill_t *ill_mate = phyi->phyint_illv4; 21569 21570 if (ill_mate == NULL) 21571 ill_mate = phyi->phyint_illv6; 21572 ASSERT(ill_mate != NULL); 21573 21574 if (ill_mate->ill_media->ip_m_mac_type != 21575 ill->ill_media->ip_m_mac_type) { 21576 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21577 "use the same ill name on differing media\n")); 21578 return (EINVAL); 21579 } 21580 } 21581 21582 /* 21583 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21584 * ill_bcast_addr_length info. 21585 */ 21586 if (!ill->ill_needs_attach && 21587 ((lifr->lifr_flags & IFF_MULTICAST) && 21588 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21589 ill->ill_bcast_addr_length == 0)) { 21590 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21591 ip1dbg(("ip_setname: EINVAL 2\n")); 21592 return (EINVAL); 21593 } 21594 if ((lifr->lifr_flags & IFF_BROADCAST) && 21595 ((lifr->lifr_flags & IFF_IPV6) || 21596 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21597 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21598 ip1dbg(("ip_setname: EINVAL 3\n")); 21599 return (EINVAL); 21600 } 21601 if (lifr->lifr_flags & IFF_UP) { 21602 /* Can only be set with SIOCSLIFFLAGS */ 21603 ip1dbg(("ip_setname: EINVAL 4\n")); 21604 return (EINVAL); 21605 } 21606 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21607 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21608 ip1dbg(("ip_setname: EINVAL 5\n")); 21609 return (EINVAL); 21610 } 21611 /* 21612 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21613 */ 21614 if ((lifr->lifr_flags & IFF_XRESOLV) && 21615 !(lifr->lifr_flags & IFF_IPV6) && 21616 !(ipif->ipif_isv6)) { 21617 ip1dbg(("ip_setname: EINVAL 6\n")); 21618 return (EINVAL); 21619 } 21620 21621 /* 21622 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21623 * we have all the flags here. So, we assign rather than we OR. 21624 * We can't OR the flags here because we don't want to set 21625 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21626 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21627 * on lifr_flags value here. 21628 */ 21629 /* 21630 * This ill has not been inserted into the global list. 21631 * So we are still single threaded and don't need any lock 21632 */ 21633 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21634 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21635 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21636 21637 /* We started off as V4. */ 21638 if (ill->ill_flags & ILLF_IPV6) { 21639 ill->ill_phyint->phyint_illv6 = ill; 21640 ill->ill_phyint->phyint_illv4 = NULL; 21641 } 21642 21643 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21644 } 21645 21646 /* ARGSUSED */ 21647 int 21648 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21649 ip_ioctl_cmd_t *ipip, void *if_req) 21650 { 21651 /* 21652 * ill_phyint_reinit merged the v4 and v6 into a single 21653 * ipsq. Could also have become part of a ipmp group in the 21654 * process, and we might not have been able to complete the 21655 * slifname in ipif_set_values, if we could not become 21656 * exclusive. If so restart it here 21657 */ 21658 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21659 } 21660 21661 /* 21662 * Return a pointer to the ipif which matches the index, IP version type and 21663 * zoneid. 21664 */ 21665 ipif_t * 21666 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21667 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21668 { 21669 ill_t *ill; 21670 ipif_t *ipif = NULL; 21671 21672 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21673 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21674 21675 if (err != NULL) 21676 *err = 0; 21677 21678 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21679 if (ill != NULL) { 21680 mutex_enter(&ill->ill_lock); 21681 for (ipif = ill->ill_ipif; ipif != NULL; 21682 ipif = ipif->ipif_next) { 21683 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21684 zoneid == ipif->ipif_zoneid || 21685 ipif->ipif_zoneid == ALL_ZONES)) { 21686 ipif_refhold_locked(ipif); 21687 break; 21688 } 21689 } 21690 mutex_exit(&ill->ill_lock); 21691 ill_refrele(ill); 21692 if (ipif == NULL && err != NULL) 21693 *err = ENXIO; 21694 } 21695 return (ipif); 21696 } 21697 21698 typedef struct conn_change_s { 21699 uint_t cc_old_ifindex; 21700 uint_t cc_new_ifindex; 21701 } conn_change_t; 21702 21703 /* 21704 * ipcl_walk function for changing interface index. 21705 */ 21706 static void 21707 conn_change_ifindex(conn_t *connp, caddr_t arg) 21708 { 21709 conn_change_t *connc; 21710 uint_t old_ifindex; 21711 uint_t new_ifindex; 21712 int i; 21713 ilg_t *ilg; 21714 21715 connc = (conn_change_t *)arg; 21716 old_ifindex = connc->cc_old_ifindex; 21717 new_ifindex = connc->cc_new_ifindex; 21718 21719 if (connp->conn_orig_bound_ifindex == old_ifindex) 21720 connp->conn_orig_bound_ifindex = new_ifindex; 21721 21722 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21723 connp->conn_orig_multicast_ifindex = new_ifindex; 21724 21725 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21726 ilg = &connp->conn_ilg[i]; 21727 if (ilg->ilg_orig_ifindex == old_ifindex) 21728 ilg->ilg_orig_ifindex = new_ifindex; 21729 } 21730 } 21731 21732 /* 21733 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21734 * to new_index if it matches the old_index. 21735 * 21736 * Failovers typically happen within a group of ills. But somebody 21737 * can remove an ill from the group after a failover happened. If 21738 * we are setting the ifindex after this, we potentially need to 21739 * look at all the ills rather than just the ones in the group. 21740 * We cut down the work by looking at matching ill_net_types 21741 * and ill_types as we could not possibly grouped them together. 21742 */ 21743 static void 21744 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21745 { 21746 ill_t *ill; 21747 ipif_t *ipif; 21748 uint_t old_ifindex; 21749 uint_t new_ifindex; 21750 ilm_t *ilm; 21751 ill_walk_context_t ctx; 21752 ip_stack_t *ipst = ill_orig->ill_ipst; 21753 21754 old_ifindex = connc->cc_old_ifindex; 21755 new_ifindex = connc->cc_new_ifindex; 21756 21757 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21758 ill = ILL_START_WALK_ALL(&ctx, ipst); 21759 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21760 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21761 (ill_orig->ill_type != ill->ill_type)) { 21762 continue; 21763 } 21764 for (ipif = ill->ill_ipif; ipif != NULL; 21765 ipif = ipif->ipif_next) { 21766 if (ipif->ipif_orig_ifindex == old_ifindex) 21767 ipif->ipif_orig_ifindex = new_ifindex; 21768 } 21769 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21770 if (ilm->ilm_orig_ifindex == old_ifindex) 21771 ilm->ilm_orig_ifindex = new_ifindex; 21772 } 21773 } 21774 rw_exit(&ipst->ips_ill_g_lock); 21775 } 21776 21777 /* 21778 * We first need to ensure that the new index is unique, and 21779 * then carry the change across both v4 and v6 ill representation 21780 * of the physical interface. 21781 */ 21782 /* ARGSUSED */ 21783 int 21784 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21785 ip_ioctl_cmd_t *ipip, void *ifreq) 21786 { 21787 ill_t *ill; 21788 ill_t *ill_other; 21789 phyint_t *phyi; 21790 int old_index; 21791 conn_change_t connc; 21792 struct ifreq *ifr = (struct ifreq *)ifreq; 21793 struct lifreq *lifr = (struct lifreq *)ifreq; 21794 uint_t index; 21795 ill_t *ill_v4; 21796 ill_t *ill_v6; 21797 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21798 21799 if (ipip->ipi_cmd_type == IF_CMD) 21800 index = ifr->ifr_index; 21801 else 21802 index = lifr->lifr_index; 21803 21804 /* 21805 * Only allow on physical interface. Also, index zero is illegal. 21806 * 21807 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21808 * 21809 * 1) If PHYI_FAILED is set, a failover could have happened which 21810 * implies a possible failback might have to happen. As failback 21811 * depends on the old index, we should fail setting the index. 21812 * 21813 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21814 * any addresses or multicast memberships are failed over to 21815 * a non-STANDBY interface. As failback depends on the old 21816 * index, we should fail setting the index for this case also. 21817 * 21818 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21819 * Be consistent with PHYI_FAILED and fail the ioctl. 21820 */ 21821 ill = ipif->ipif_ill; 21822 phyi = ill->ill_phyint; 21823 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21824 ipif->ipif_id != 0 || index == 0) { 21825 return (EINVAL); 21826 } 21827 old_index = phyi->phyint_ifindex; 21828 21829 /* If the index is not changing, no work to do */ 21830 if (old_index == index) 21831 return (0); 21832 21833 /* 21834 * Use ill_lookup_on_ifindex to determine if the 21835 * new index is unused and if so allow the change. 21836 */ 21837 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21838 ipst); 21839 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21840 ipst); 21841 if (ill_v6 != NULL || ill_v4 != NULL) { 21842 if (ill_v4 != NULL) 21843 ill_refrele(ill_v4); 21844 if (ill_v6 != NULL) 21845 ill_refrele(ill_v6); 21846 return (EBUSY); 21847 } 21848 21849 /* 21850 * The new index is unused. Set it in the phyint. 21851 * Locate the other ill so that we can send a routing 21852 * sockets message. 21853 */ 21854 if (ill->ill_isv6) { 21855 ill_other = phyi->phyint_illv4; 21856 } else { 21857 ill_other = phyi->phyint_illv6; 21858 } 21859 21860 phyi->phyint_ifindex = index; 21861 21862 /* Update SCTP's ILL list */ 21863 sctp_ill_reindex(ill, old_index); 21864 21865 connc.cc_old_ifindex = old_index; 21866 connc.cc_new_ifindex = index; 21867 ip_change_ifindex(ill, &connc); 21868 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21869 21870 /* Send the routing sockets message */ 21871 ip_rts_ifmsg(ipif); 21872 if (ill_other != NULL) 21873 ip_rts_ifmsg(ill_other->ill_ipif); 21874 21875 return (0); 21876 } 21877 21878 /* ARGSUSED */ 21879 int 21880 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21881 ip_ioctl_cmd_t *ipip, void *ifreq) 21882 { 21883 struct ifreq *ifr = (struct ifreq *)ifreq; 21884 struct lifreq *lifr = (struct lifreq *)ifreq; 21885 21886 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21887 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21888 /* Get the interface index */ 21889 if (ipip->ipi_cmd_type == IF_CMD) { 21890 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21891 } else { 21892 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21893 } 21894 return (0); 21895 } 21896 21897 /* ARGSUSED */ 21898 int 21899 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21900 ip_ioctl_cmd_t *ipip, void *ifreq) 21901 { 21902 struct lifreq *lifr = (struct lifreq *)ifreq; 21903 21904 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21905 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21906 /* Get the interface zone */ 21907 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21908 lifr->lifr_zoneid = ipif->ipif_zoneid; 21909 return (0); 21910 } 21911 21912 /* 21913 * Set the zoneid of an interface. 21914 */ 21915 /* ARGSUSED */ 21916 int 21917 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21918 ip_ioctl_cmd_t *ipip, void *ifreq) 21919 { 21920 struct lifreq *lifr = (struct lifreq *)ifreq; 21921 int err = 0; 21922 boolean_t need_up = B_FALSE; 21923 zone_t *zptr; 21924 zone_status_t status; 21925 zoneid_t zoneid; 21926 21927 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21928 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21929 if (!is_system_labeled()) 21930 return (ENOTSUP); 21931 zoneid = GLOBAL_ZONEID; 21932 } 21933 21934 /* cannot assign instance zero to a non-global zone */ 21935 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21936 return (ENOTSUP); 21937 21938 /* 21939 * Cannot assign to a zone that doesn't exist or is shutting down. In 21940 * the event of a race with the zone shutdown processing, since IP 21941 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21942 * interface will be cleaned up even if the zone is shut down 21943 * immediately after the status check. If the interface can't be brought 21944 * down right away, and the zone is shut down before the restart 21945 * function is called, we resolve the possible races by rechecking the 21946 * zone status in the restart function. 21947 */ 21948 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21949 return (EINVAL); 21950 status = zone_status_get(zptr); 21951 zone_rele(zptr); 21952 21953 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21954 return (EINVAL); 21955 21956 if (ipif->ipif_flags & IPIF_UP) { 21957 /* 21958 * If the interface is already marked up, 21959 * we call ipif_down which will take care 21960 * of ditching any IREs that have been set 21961 * up based on the old interface address. 21962 */ 21963 err = ipif_logical_down(ipif, q, mp); 21964 if (err == EINPROGRESS) 21965 return (err); 21966 ipif_down_tail(ipif); 21967 need_up = B_TRUE; 21968 } 21969 21970 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21971 return (err); 21972 } 21973 21974 static int 21975 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21976 queue_t *q, mblk_t *mp, boolean_t need_up) 21977 { 21978 int err = 0; 21979 ip_stack_t *ipst; 21980 21981 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21982 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21983 21984 if (CONN_Q(q)) 21985 ipst = CONNQ_TO_IPST(q); 21986 else 21987 ipst = ILLQ_TO_IPST(q); 21988 21989 /* 21990 * For exclusive stacks we don't allow a different zoneid than 21991 * global. 21992 */ 21993 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21994 zoneid != GLOBAL_ZONEID) 21995 return (EINVAL); 21996 21997 /* Set the new zone id. */ 21998 ipif->ipif_zoneid = zoneid; 21999 22000 /* Update sctp list */ 22001 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22002 22003 if (need_up) { 22004 /* 22005 * Now bring the interface back up. If this 22006 * is the only IPIF for the ILL, ipif_up 22007 * will have to re-bind to the device, so 22008 * we may get back EINPROGRESS, in which 22009 * case, this IOCTL will get completed in 22010 * ip_rput_dlpi when we see the DL_BIND_ACK. 22011 */ 22012 err = ipif_up(ipif, q, mp); 22013 } 22014 return (err); 22015 } 22016 22017 /* ARGSUSED */ 22018 int 22019 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22020 ip_ioctl_cmd_t *ipip, void *if_req) 22021 { 22022 struct lifreq *lifr = (struct lifreq *)if_req; 22023 zoneid_t zoneid; 22024 zone_t *zptr; 22025 zone_status_t status; 22026 22027 ASSERT(ipif->ipif_id != 0); 22028 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22029 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22030 zoneid = GLOBAL_ZONEID; 22031 22032 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22033 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22034 22035 /* 22036 * We recheck the zone status to resolve the following race condition: 22037 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22038 * 2) hme0:1 is up and can't be brought down right away; 22039 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22040 * 3) zone "myzone" is halted; the zone status switches to 22041 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22042 * the interfaces to remove - hme0:1 is not returned because it's not 22043 * yet in "myzone", so it won't be removed; 22044 * 4) the restart function for SIOCSLIFZONE is called; without the 22045 * status check here, we would have hme0:1 in "myzone" after it's been 22046 * destroyed. 22047 * Note that if the status check fails, we need to bring the interface 22048 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22049 * ipif_up_done[_v6](). 22050 */ 22051 status = ZONE_IS_UNINITIALIZED; 22052 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22053 status = zone_status_get(zptr); 22054 zone_rele(zptr); 22055 } 22056 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22057 if (ipif->ipif_isv6) { 22058 (void) ipif_up_done_v6(ipif); 22059 } else { 22060 (void) ipif_up_done(ipif); 22061 } 22062 return (EINVAL); 22063 } 22064 22065 ipif_down_tail(ipif); 22066 22067 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22068 B_TRUE)); 22069 } 22070 22071 /* ARGSUSED */ 22072 int 22073 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22074 ip_ioctl_cmd_t *ipip, void *ifreq) 22075 { 22076 struct lifreq *lifr = ifreq; 22077 22078 ASSERT(q->q_next == NULL); 22079 ASSERT(CONN_Q(q)); 22080 22081 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22083 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22084 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22085 22086 return (0); 22087 } 22088 22089 22090 /* Find the previous ILL in this usesrc group */ 22091 static ill_t * 22092 ill_prev_usesrc(ill_t *uill) 22093 { 22094 ill_t *ill; 22095 22096 for (ill = uill->ill_usesrc_grp_next; 22097 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22098 ill = ill->ill_usesrc_grp_next) 22099 /* do nothing */; 22100 return (ill); 22101 } 22102 22103 /* 22104 * Release all members of the usesrc group. This routine is called 22105 * from ill_delete when the interface being unplumbed is the 22106 * group head. 22107 */ 22108 static void 22109 ill_disband_usesrc_group(ill_t *uill) 22110 { 22111 ill_t *next_ill, *tmp_ill; 22112 ip_stack_t *ipst = uill->ill_ipst; 22113 22114 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22115 next_ill = uill->ill_usesrc_grp_next; 22116 22117 do { 22118 ASSERT(next_ill != NULL); 22119 tmp_ill = next_ill->ill_usesrc_grp_next; 22120 ASSERT(tmp_ill != NULL); 22121 next_ill->ill_usesrc_grp_next = NULL; 22122 next_ill->ill_usesrc_ifindex = 0; 22123 next_ill = tmp_ill; 22124 } while (next_ill->ill_usesrc_ifindex != 0); 22125 uill->ill_usesrc_grp_next = NULL; 22126 } 22127 22128 /* 22129 * Remove the client usesrc ILL from the list and relink to a new list 22130 */ 22131 int 22132 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22133 { 22134 ill_t *ill, *tmp_ill; 22135 ip_stack_t *ipst = ucill->ill_ipst; 22136 22137 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22138 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22139 22140 /* 22141 * Check if the usesrc client ILL passed in is not already 22142 * in use as a usesrc ILL i.e one whose source address is 22143 * in use OR a usesrc ILL is not already in use as a usesrc 22144 * client ILL 22145 */ 22146 if ((ucill->ill_usesrc_ifindex == 0) || 22147 (uill->ill_usesrc_ifindex != 0)) { 22148 return (-1); 22149 } 22150 22151 ill = ill_prev_usesrc(ucill); 22152 ASSERT(ill->ill_usesrc_grp_next != NULL); 22153 22154 /* Remove from the current list */ 22155 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22156 /* Only two elements in the list */ 22157 ASSERT(ill->ill_usesrc_ifindex == 0); 22158 ill->ill_usesrc_grp_next = NULL; 22159 } else { 22160 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22161 } 22162 22163 if (ifindex == 0) { 22164 ucill->ill_usesrc_ifindex = 0; 22165 ucill->ill_usesrc_grp_next = NULL; 22166 return (0); 22167 } 22168 22169 ucill->ill_usesrc_ifindex = ifindex; 22170 tmp_ill = uill->ill_usesrc_grp_next; 22171 uill->ill_usesrc_grp_next = ucill; 22172 ucill->ill_usesrc_grp_next = 22173 (tmp_ill != NULL) ? tmp_ill : uill; 22174 return (0); 22175 } 22176 22177 /* 22178 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22179 * ip.c for locking details. 22180 */ 22181 /* ARGSUSED */ 22182 int 22183 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22184 ip_ioctl_cmd_t *ipip, void *ifreq) 22185 { 22186 struct lifreq *lifr = (struct lifreq *)ifreq; 22187 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22188 ill_flag_changed = B_FALSE; 22189 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22190 int err = 0, ret; 22191 uint_t ifindex; 22192 phyint_t *us_phyint, *us_cli_phyint; 22193 ipsq_t *ipsq = NULL; 22194 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22195 22196 ASSERT(IAM_WRITER_IPIF(ipif)); 22197 ASSERT(q->q_next == NULL); 22198 ASSERT(CONN_Q(q)); 22199 22200 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22201 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22202 22203 ASSERT(us_cli_phyint != NULL); 22204 22205 /* 22206 * If the client ILL is being used for IPMP, abort. 22207 * Note, this can be done before ipsq_try_enter since we are already 22208 * exclusive on this ILL 22209 */ 22210 if ((us_cli_phyint->phyint_groupname != NULL) || 22211 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22212 return (EINVAL); 22213 } 22214 22215 ifindex = lifr->lifr_index; 22216 if (ifindex == 0) { 22217 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22218 /* non usesrc group interface, nothing to reset */ 22219 return (0); 22220 } 22221 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22222 /* valid reset request */ 22223 reset_flg = B_TRUE; 22224 } 22225 22226 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22227 ip_process_ioctl, &err, ipst); 22228 22229 if (usesrc_ill == NULL) { 22230 return (err); 22231 } 22232 22233 /* 22234 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22235 * group nor can either of the interfaces be used for standy. So 22236 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22237 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22238 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22239 * We are already exlusive on this ipsq i.e ipsq corresponding to 22240 * the usesrc_cli_ill 22241 */ 22242 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22243 NEW_OP, B_TRUE); 22244 if (ipsq == NULL) { 22245 err = EINPROGRESS; 22246 /* Operation enqueued on the ipsq of the usesrc ILL */ 22247 goto done; 22248 } 22249 22250 /* Check if the usesrc_ill is used for IPMP */ 22251 us_phyint = usesrc_ill->ill_phyint; 22252 if ((us_phyint->phyint_groupname != NULL) || 22253 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22254 err = EINVAL; 22255 goto done; 22256 } 22257 22258 /* 22259 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22260 * already a client then return EINVAL 22261 */ 22262 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22263 err = EINVAL; 22264 goto done; 22265 } 22266 22267 /* 22268 * If the ill_usesrc_ifindex field is already set to what it needs to 22269 * be then this is a duplicate operation. 22270 */ 22271 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22272 err = 0; 22273 goto done; 22274 } 22275 22276 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22277 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22278 usesrc_ill->ill_isv6)); 22279 22280 /* 22281 * The next step ensures that no new ires will be created referencing 22282 * the client ill, until the ILL_CHANGING flag is cleared. Then 22283 * we go through an ire walk deleting all ire caches that reference 22284 * the client ill. New ires referencing the client ill that are added 22285 * to the ire table before the ILL_CHANGING flag is set, will be 22286 * cleaned up by the ire walk below. Attempt to add new ires referencing 22287 * the client ill while the ILL_CHANGING flag is set will be failed 22288 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22289 * checks (under the ill_g_usesrc_lock) that the ire being added 22290 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22291 * belong to the same usesrc group. 22292 */ 22293 mutex_enter(&usesrc_cli_ill->ill_lock); 22294 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22295 mutex_exit(&usesrc_cli_ill->ill_lock); 22296 ill_flag_changed = B_TRUE; 22297 22298 if (ipif->ipif_isv6) 22299 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22300 ALL_ZONES, ipst); 22301 else 22302 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22303 ALL_ZONES, ipst); 22304 22305 /* 22306 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22307 * and the ill_usesrc_ifindex fields 22308 */ 22309 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22310 22311 if (reset_flg) { 22312 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22313 if (ret != 0) { 22314 err = EINVAL; 22315 } 22316 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22317 goto done; 22318 } 22319 22320 /* 22321 * Four possibilities to consider: 22322 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22323 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22324 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22325 * 4. Both are part of their respective usesrc groups 22326 */ 22327 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22328 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22329 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22330 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22331 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22332 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22333 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22334 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22335 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22336 /* Insert at head of list */ 22337 usesrc_cli_ill->ill_usesrc_grp_next = 22338 usesrc_ill->ill_usesrc_grp_next; 22339 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22340 } else { 22341 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22342 ifindex); 22343 if (ret != 0) 22344 err = EINVAL; 22345 } 22346 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22347 22348 done: 22349 if (ill_flag_changed) { 22350 mutex_enter(&usesrc_cli_ill->ill_lock); 22351 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22352 mutex_exit(&usesrc_cli_ill->ill_lock); 22353 } 22354 if (ipsq != NULL) 22355 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22356 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22357 ill_refrele(usesrc_ill); 22358 return (err); 22359 } 22360 22361 /* 22362 * comparison function used by avl. 22363 */ 22364 static int 22365 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22366 { 22367 22368 uint_t index; 22369 22370 ASSERT(phyip != NULL && index_ptr != NULL); 22371 22372 index = *((uint_t *)index_ptr); 22373 /* 22374 * let the phyint with the lowest index be on top. 22375 */ 22376 if (((phyint_t *)phyip)->phyint_ifindex < index) 22377 return (1); 22378 if (((phyint_t *)phyip)->phyint_ifindex > index) 22379 return (-1); 22380 return (0); 22381 } 22382 22383 /* 22384 * comparison function used by avl. 22385 */ 22386 static int 22387 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22388 { 22389 ill_t *ill; 22390 int res = 0; 22391 22392 ASSERT(phyip != NULL && name_ptr != NULL); 22393 22394 if (((phyint_t *)phyip)->phyint_illv4) 22395 ill = ((phyint_t *)phyip)->phyint_illv4; 22396 else 22397 ill = ((phyint_t *)phyip)->phyint_illv6; 22398 ASSERT(ill != NULL); 22399 22400 res = strcmp(ill->ill_name, (char *)name_ptr); 22401 if (res > 0) 22402 return (1); 22403 else if (res < 0) 22404 return (-1); 22405 return (0); 22406 } 22407 /* 22408 * This function is called from ill_delete when the ill is being 22409 * unplumbed. We remove the reference from the phyint and we also 22410 * free the phyint when there are no more references to it. 22411 */ 22412 static void 22413 ill_phyint_free(ill_t *ill) 22414 { 22415 phyint_t *phyi; 22416 phyint_t *next_phyint; 22417 ipsq_t *cur_ipsq; 22418 ip_stack_t *ipst = ill->ill_ipst; 22419 22420 ASSERT(ill->ill_phyint != NULL); 22421 22422 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22423 phyi = ill->ill_phyint; 22424 ill->ill_phyint = NULL; 22425 /* 22426 * ill_init allocates a phyint always to store the copy 22427 * of flags relevant to phyint. At that point in time, we could 22428 * not assign the name and hence phyint_illv4/v6 could not be 22429 * initialized. Later in ipif_set_values, we assign the name to 22430 * the ill, at which point in time we assign phyint_illv4/v6. 22431 * Thus we don't rely on phyint_illv6 to be initialized always. 22432 */ 22433 if (ill->ill_flags & ILLF_IPV6) { 22434 phyi->phyint_illv6 = NULL; 22435 } else { 22436 phyi->phyint_illv4 = NULL; 22437 } 22438 /* 22439 * ipif_down removes it from the group when the last ipif goes 22440 * down. 22441 */ 22442 ASSERT(ill->ill_group == NULL); 22443 22444 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22445 return; 22446 22447 /* 22448 * Make sure this phyint was put in the list. 22449 */ 22450 if (phyi->phyint_ifindex > 0) { 22451 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22452 phyi); 22453 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22454 phyi); 22455 } 22456 /* 22457 * remove phyint from the ipsq list. 22458 */ 22459 cur_ipsq = phyi->phyint_ipsq; 22460 if (phyi == cur_ipsq->ipsq_phyint_list) { 22461 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22462 } else { 22463 next_phyint = cur_ipsq->ipsq_phyint_list; 22464 while (next_phyint != NULL) { 22465 if (next_phyint->phyint_ipsq_next == phyi) { 22466 next_phyint->phyint_ipsq_next = 22467 phyi->phyint_ipsq_next; 22468 break; 22469 } 22470 next_phyint = next_phyint->phyint_ipsq_next; 22471 } 22472 ASSERT(next_phyint != NULL); 22473 } 22474 IPSQ_DEC_REF(cur_ipsq, ipst); 22475 22476 if (phyi->phyint_groupname_len != 0) { 22477 ASSERT(phyi->phyint_groupname != NULL); 22478 mi_free(phyi->phyint_groupname); 22479 } 22480 mi_free(phyi); 22481 } 22482 22483 /* 22484 * Attach the ill to the phyint structure which can be shared by both 22485 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22486 * function is called from ipif_set_values and ill_lookup_on_name (for 22487 * loopback) where we know the name of the ill. We lookup the ill and if 22488 * there is one present already with the name use that phyint. Otherwise 22489 * reuse the one allocated by ill_init. 22490 */ 22491 static void 22492 ill_phyint_reinit(ill_t *ill) 22493 { 22494 boolean_t isv6 = ill->ill_isv6; 22495 phyint_t *phyi_old; 22496 phyint_t *phyi; 22497 avl_index_t where = 0; 22498 ill_t *ill_other = NULL; 22499 ipsq_t *ipsq; 22500 ip_stack_t *ipst = ill->ill_ipst; 22501 22502 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22503 22504 phyi_old = ill->ill_phyint; 22505 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22506 phyi_old->phyint_illv6 == NULL)); 22507 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22508 phyi_old->phyint_illv4 == NULL)); 22509 ASSERT(phyi_old->phyint_ifindex == 0); 22510 22511 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22512 ill->ill_name, &where); 22513 22514 /* 22515 * 1. We grabbed the ill_g_lock before inserting this ill into 22516 * the global list of ills. So no other thread could have located 22517 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22518 * 2. Now locate the other protocol instance of this ill. 22519 * 3. Now grab both ill locks in the right order, and the phyint lock of 22520 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22521 * of neither ill can change. 22522 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22523 * other ill. 22524 * 5. Release all locks. 22525 */ 22526 22527 /* 22528 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22529 * we are initializing IPv4. 22530 */ 22531 if (phyi != NULL) { 22532 ill_other = (isv6) ? phyi->phyint_illv4 : 22533 phyi->phyint_illv6; 22534 ASSERT(ill_other->ill_phyint != NULL); 22535 ASSERT((isv6 && !ill_other->ill_isv6) || 22536 (!isv6 && ill_other->ill_isv6)); 22537 GRAB_ILL_LOCKS(ill, ill_other); 22538 /* 22539 * We are potentially throwing away phyint_flags which 22540 * could be different from the one that we obtain from 22541 * ill_other->ill_phyint. But it is okay as we are assuming 22542 * that the state maintained within IP is correct. 22543 */ 22544 mutex_enter(&phyi->phyint_lock); 22545 if (isv6) { 22546 ASSERT(phyi->phyint_illv6 == NULL); 22547 phyi->phyint_illv6 = ill; 22548 } else { 22549 ASSERT(phyi->phyint_illv4 == NULL); 22550 phyi->phyint_illv4 = ill; 22551 } 22552 /* 22553 * This is a new ill, currently undergoing SLIFNAME 22554 * So we could not have joined an IPMP group until now. 22555 */ 22556 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22557 phyi_old->phyint_groupname == NULL); 22558 22559 /* 22560 * This phyi_old is going away. Decref ipsq_refs and 22561 * assert it is zero. The ipsq itself will be freed in 22562 * ipsq_exit 22563 */ 22564 ipsq = phyi_old->phyint_ipsq; 22565 IPSQ_DEC_REF(ipsq, ipst); 22566 ASSERT(ipsq->ipsq_refs == 0); 22567 /* Get the singleton phyint out of the ipsq list */ 22568 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22569 ipsq->ipsq_phyint_list = NULL; 22570 phyi_old->phyint_illv4 = NULL; 22571 phyi_old->phyint_illv6 = NULL; 22572 mi_free(phyi_old); 22573 } else { 22574 mutex_enter(&ill->ill_lock); 22575 /* 22576 * We don't need to acquire any lock, since 22577 * the ill is not yet visible globally and we 22578 * have not yet released the ill_g_lock. 22579 */ 22580 phyi = phyi_old; 22581 mutex_enter(&phyi->phyint_lock); 22582 /* XXX We need a recovery strategy here. */ 22583 if (!phyint_assign_ifindex(phyi, ipst)) 22584 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22585 22586 /* No IPMP group yet, thus the hook uses the ifindex */ 22587 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22588 22589 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22590 (void *)phyi, where); 22591 22592 (void) avl_find(&ipst->ips_phyint_g_list-> 22593 phyint_list_avl_by_index, 22594 &phyi->phyint_ifindex, &where); 22595 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22596 (void *)phyi, where); 22597 } 22598 22599 /* 22600 * Reassigning ill_phyint automatically reassigns the ipsq also. 22601 * pending mp is not affected because that is per ill basis. 22602 */ 22603 ill->ill_phyint = phyi; 22604 22605 /* 22606 * Keep the index on ipif_orig_index to be used by FAILOVER. 22607 * We do this here as when the first ipif was allocated, 22608 * ipif_allocate does not know the right interface index. 22609 */ 22610 22611 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22612 /* 22613 * Now that the phyint's ifindex has been assigned, complete the 22614 * remaining 22615 */ 22616 22617 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22618 if (ill->ill_isv6) { 22619 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22620 ill->ill_phyint->phyint_ifindex; 22621 ill->ill_mcast_type = ipst->ips_mld_max_version; 22622 } else { 22623 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22624 } 22625 22626 /* 22627 * Generate an event within the hooks framework to indicate that 22628 * a new interface has just been added to IP. For this event to 22629 * be generated, the network interface must, at least, have an 22630 * ifindex assigned to it. 22631 * 22632 * This needs to be run inside the ill_g_lock perimeter to ensure 22633 * that the ordering of delivered events to listeners matches the 22634 * order of them in the kernel. 22635 * 22636 * This function could be called from ill_lookup_on_name. In that case 22637 * the interface is loopback "lo", which will not generate a NIC event. 22638 */ 22639 if (ill->ill_name_length <= 2 || 22640 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22641 /* 22642 * Generate nic plumb event for ill_name even if 22643 * ipmp_hook_emulation is set. That avoids generating events 22644 * for the ill_names should ipmp_hook_emulation be turned on 22645 * later. 22646 */ 22647 ill_nic_info_plumb(ill, B_FALSE); 22648 } 22649 RELEASE_ILL_LOCKS(ill, ill_other); 22650 mutex_exit(&phyi->phyint_lock); 22651 } 22652 22653 /* 22654 * Allocate a NE_PLUMB nic info event and store in the ill. 22655 * If 'group' is set we do it for the group name, otherwise the ill name. 22656 * It will be sent when we leave the ipsq. 22657 */ 22658 void 22659 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22660 { 22661 phyint_t *phyi = ill->ill_phyint; 22662 char *name; 22663 int namelen; 22664 22665 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22666 22667 if (group) { 22668 ASSERT(phyi->phyint_groupname_len != 0); 22669 namelen = phyi->phyint_groupname_len; 22670 name = phyi->phyint_groupname; 22671 } else { 22672 namelen = ill->ill_name_length; 22673 name = ill->ill_name; 22674 } 22675 22676 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22677 } 22678 22679 /* 22680 * Unhook the nic event message from the ill and enqueue it 22681 * into the nic event taskq. 22682 */ 22683 void 22684 ill_nic_info_dispatch(ill_t *ill) 22685 { 22686 hook_nic_event_t *info; 22687 22688 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22689 22690 if ((info = ill->ill_nic_event_info) != NULL) { 22691 if (ddi_taskq_dispatch(eventq_queue_nic, 22692 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22693 ip2dbg(("ill_nic_info_dispatch: " 22694 "ddi_taskq_dispatch failed\n")); 22695 if (info->hne_data != NULL) 22696 kmem_free(info->hne_data, info->hne_datalen); 22697 kmem_free(info, sizeof (hook_nic_event_t)); 22698 } 22699 ill->ill_nic_event_info = NULL; 22700 } 22701 } 22702 22703 /* 22704 * Notify any downstream modules of the name of this interface. 22705 * An M_IOCTL is used even though we don't expect a successful reply. 22706 * Any reply message from the driver (presumably an M_IOCNAK) will 22707 * eventually get discarded somewhere upstream. The message format is 22708 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22709 * to IP. 22710 */ 22711 static void 22712 ip_ifname_notify(ill_t *ill, queue_t *q) 22713 { 22714 mblk_t *mp1, *mp2; 22715 struct iocblk *iocp; 22716 struct lifreq *lifr; 22717 22718 mp1 = mkiocb(SIOCSLIFNAME); 22719 if (mp1 == NULL) 22720 return; 22721 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22722 if (mp2 == NULL) { 22723 freeb(mp1); 22724 return; 22725 } 22726 22727 mp1->b_cont = mp2; 22728 iocp = (struct iocblk *)mp1->b_rptr; 22729 iocp->ioc_count = sizeof (struct lifreq); 22730 22731 lifr = (struct lifreq *)mp2->b_rptr; 22732 mp2->b_wptr += sizeof (struct lifreq); 22733 bzero(lifr, sizeof (struct lifreq)); 22734 22735 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22736 lifr->lifr_ppa = ill->ill_ppa; 22737 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22738 22739 putnext(q, mp1); 22740 } 22741 22742 static int 22743 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22744 { 22745 int err; 22746 ip_stack_t *ipst = ill->ill_ipst; 22747 22748 /* Set the obsolete NDD per-interface forwarding name. */ 22749 err = ill_set_ndd_name(ill); 22750 if (err != 0) { 22751 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22752 err); 22753 } 22754 22755 /* Tell downstream modules where they are. */ 22756 ip_ifname_notify(ill, q); 22757 22758 /* 22759 * ill_dl_phys returns EINPROGRESS in the usual case. 22760 * Error cases are ENOMEM ... 22761 */ 22762 err = ill_dl_phys(ill, ipif, mp, q); 22763 22764 /* 22765 * If there is no IRE expiration timer running, get one started. 22766 * igmp and mld timers will be triggered by the first multicast 22767 */ 22768 if (ipst->ips_ip_ire_expire_id == 0) { 22769 /* 22770 * acquire the lock and check again. 22771 */ 22772 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22773 if (ipst->ips_ip_ire_expire_id == 0) { 22774 ipst->ips_ip_ire_expire_id = timeout( 22775 ip_trash_timer_expire, ipst, 22776 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22777 } 22778 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22779 } 22780 22781 if (ill->ill_isv6) { 22782 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22783 if (ipst->ips_mld_slowtimeout_id == 0) { 22784 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22785 (void *)ipst, 22786 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22787 } 22788 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22789 } else { 22790 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22791 if (ipst->ips_igmp_slowtimeout_id == 0) { 22792 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22793 (void *)ipst, 22794 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22795 } 22796 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22797 } 22798 22799 return (err); 22800 } 22801 22802 /* 22803 * Common routine for ppa and ifname setting. Should be called exclusive. 22804 * 22805 * Returns EINPROGRESS when mp has been consumed by queueing it on 22806 * ill_pending_mp and the ioctl will complete in ip_rput. 22807 * 22808 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22809 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22810 * For SLIFNAME, we pass these values back to the userland. 22811 */ 22812 static int 22813 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22814 { 22815 ill_t *ill; 22816 ipif_t *ipif; 22817 ipsq_t *ipsq; 22818 char *ppa_ptr; 22819 char *old_ptr; 22820 char old_char; 22821 int error; 22822 ip_stack_t *ipst; 22823 22824 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22825 ASSERT(q->q_next != NULL); 22826 ASSERT(interf_name != NULL); 22827 22828 ill = (ill_t *)q->q_ptr; 22829 ipst = ill->ill_ipst; 22830 22831 ASSERT(ill->ill_ipst != NULL); 22832 ASSERT(ill->ill_name[0] == '\0'); 22833 ASSERT(IAM_WRITER_ILL(ill)); 22834 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22835 ASSERT(ill->ill_ppa == UINT_MAX); 22836 22837 /* The ppa is sent down by ifconfig or is chosen */ 22838 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22839 return (EINVAL); 22840 } 22841 22842 /* 22843 * make sure ppa passed in is same as ppa in the name. 22844 * This check is not made when ppa == UINT_MAX in that case ppa 22845 * in the name could be anything. System will choose a ppa and 22846 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22847 */ 22848 if (*new_ppa_ptr != UINT_MAX) { 22849 /* stoi changes the pointer */ 22850 old_ptr = ppa_ptr; 22851 /* 22852 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22853 * (they don't have an externally visible ppa). We assign one 22854 * here so that we can manage the interface. Note that in 22855 * the past this value was always 0 for DLPI 1 drivers. 22856 */ 22857 if (*new_ppa_ptr == 0) 22858 *new_ppa_ptr = stoi(&old_ptr); 22859 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22860 return (EINVAL); 22861 } 22862 /* 22863 * terminate string before ppa 22864 * save char at that location. 22865 */ 22866 old_char = ppa_ptr[0]; 22867 ppa_ptr[0] = '\0'; 22868 22869 ill->ill_ppa = *new_ppa_ptr; 22870 /* 22871 * Finish as much work now as possible before calling ill_glist_insert 22872 * which makes the ill globally visible and also merges it with the 22873 * other protocol instance of this phyint. The remaining work is 22874 * done after entering the ipsq which may happen sometime later. 22875 * ill_set_ndd_name occurs after the ill has been made globally visible. 22876 */ 22877 ipif = ill->ill_ipif; 22878 22879 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22880 ipif_assign_seqid(ipif); 22881 22882 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22883 ill->ill_flags |= ILLF_IPV4; 22884 22885 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22886 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22887 22888 if (ill->ill_flags & ILLF_IPV6) { 22889 22890 ill->ill_isv6 = B_TRUE; 22891 if (ill->ill_rq != NULL) { 22892 ill->ill_rq->q_qinfo = &iprinitv6; 22893 ill->ill_wq->q_qinfo = &ipwinitv6; 22894 } 22895 22896 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22897 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22898 ipif->ipif_v6src_addr = ipv6_all_zeros; 22899 ipif->ipif_v6subnet = ipv6_all_zeros; 22900 ipif->ipif_v6net_mask = ipv6_all_zeros; 22901 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22902 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22903 /* 22904 * point-to-point or Non-mulicast capable 22905 * interfaces won't do NUD unless explicitly 22906 * configured to do so. 22907 */ 22908 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22909 !(ill->ill_flags & ILLF_MULTICAST)) { 22910 ill->ill_flags |= ILLF_NONUD; 22911 } 22912 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22913 if (ill->ill_flags & ILLF_NOARP) { 22914 /* 22915 * Note: xresolv interfaces will eventually need 22916 * NOARP set here as well, but that will require 22917 * those external resolvers to have some 22918 * knowledge of that flag and act appropriately. 22919 * Not to be changed at present. 22920 */ 22921 ill->ill_flags &= ~ILLF_NOARP; 22922 } 22923 /* 22924 * Set the ILLF_ROUTER flag according to the global 22925 * IPv6 forwarding policy. 22926 */ 22927 if (ipst->ips_ipv6_forward != 0) 22928 ill->ill_flags |= ILLF_ROUTER; 22929 } else if (ill->ill_flags & ILLF_IPV4) { 22930 ill->ill_isv6 = B_FALSE; 22931 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22932 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22933 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22934 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22935 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22936 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22937 /* 22938 * Set the ILLF_ROUTER flag according to the global 22939 * IPv4 forwarding policy. 22940 */ 22941 if (ipst->ips_ip_g_forward != 0) 22942 ill->ill_flags |= ILLF_ROUTER; 22943 } 22944 22945 ASSERT(ill->ill_phyint != NULL); 22946 22947 /* 22948 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22949 * be completed in ill_glist_insert -> ill_phyint_reinit 22950 */ 22951 if (!ill_allocate_mibs(ill)) 22952 return (ENOMEM); 22953 22954 /* 22955 * Pick a default sap until we get the DL_INFO_ACK back from 22956 * the driver. 22957 */ 22958 if (ill->ill_sap == 0) { 22959 if (ill->ill_isv6) 22960 ill->ill_sap = IP6_DL_SAP; 22961 else 22962 ill->ill_sap = IP_DL_SAP; 22963 } 22964 22965 ill->ill_ifname_pending = 1; 22966 ill->ill_ifname_pending_err = 0; 22967 22968 ill_refhold(ill); 22969 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22970 if ((error = ill_glist_insert(ill, interf_name, 22971 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22972 ill->ill_ppa = UINT_MAX; 22973 ill->ill_name[0] = '\0'; 22974 /* 22975 * undo null termination done above. 22976 */ 22977 ppa_ptr[0] = old_char; 22978 rw_exit(&ipst->ips_ill_g_lock); 22979 ill_refrele(ill); 22980 return (error); 22981 } 22982 22983 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22984 22985 /* 22986 * When we return the buffer pointed to by interf_name should contain 22987 * the same name as in ill_name. 22988 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22989 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22990 * so copy full name and update the ppa ptr. 22991 * When ppa passed in != UINT_MAX all values are correct just undo 22992 * null termination, this saves a bcopy. 22993 */ 22994 if (*new_ppa_ptr == UINT_MAX) { 22995 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22996 *new_ppa_ptr = ill->ill_ppa; 22997 } else { 22998 /* 22999 * undo null termination done above. 23000 */ 23001 ppa_ptr[0] = old_char; 23002 } 23003 23004 /* Let SCTP know about this ILL */ 23005 sctp_update_ill(ill, SCTP_ILL_INSERT); 23006 23007 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23008 B_TRUE); 23009 23010 rw_exit(&ipst->ips_ill_g_lock); 23011 ill_refrele(ill); 23012 if (ipsq == NULL) 23013 return (EINPROGRESS); 23014 23015 /* 23016 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23017 */ 23018 if (ipsq->ipsq_current_ipif == NULL) 23019 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23020 else 23021 ASSERT(ipsq->ipsq_current_ipif == ipif); 23022 23023 error = ipif_set_values_tail(ill, ipif, mp, q); 23024 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23025 if (error != 0 && error != EINPROGRESS) { 23026 /* 23027 * restore previous values 23028 */ 23029 ill->ill_isv6 = B_FALSE; 23030 } 23031 return (error); 23032 } 23033 23034 23035 void 23036 ipif_init(ip_stack_t *ipst) 23037 { 23038 hrtime_t hrt; 23039 int i; 23040 23041 /* 23042 * Can't call drv_getparm here as it is too early in the boot. 23043 * As we use ipif_src_random just for picking a different 23044 * source address everytime, this need not be really random. 23045 */ 23046 hrt = gethrtime(); 23047 ipst->ips_ipif_src_random = 23048 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23049 23050 for (i = 0; i < MAX_G_HEADS; i++) { 23051 ipst->ips_ill_g_heads[i].ill_g_list_head = 23052 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23053 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23054 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23055 } 23056 23057 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23058 ill_phyint_compare_index, 23059 sizeof (phyint_t), 23060 offsetof(struct phyint, phyint_avl_by_index)); 23061 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23062 ill_phyint_compare_name, 23063 sizeof (phyint_t), 23064 offsetof(struct phyint, phyint_avl_by_name)); 23065 } 23066 23067 /* 23068 * Lookup the ipif corresponding to the onlink destination address. For 23069 * point-to-point interfaces, it matches with remote endpoint destination 23070 * address. For point-to-multipoint interfaces it only tries to match the 23071 * destination with the interface's subnet address. The longest, most specific 23072 * match is found to take care of such rare network configurations like - 23073 * le0: 129.146.1.1/16 23074 * le1: 129.146.2.2/24 23075 * It is used only by SO_DONTROUTE at the moment. 23076 */ 23077 ipif_t * 23078 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23079 { 23080 ipif_t *ipif, *best_ipif; 23081 ill_t *ill; 23082 ill_walk_context_t ctx; 23083 23084 ASSERT(zoneid != ALL_ZONES); 23085 best_ipif = NULL; 23086 23087 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23088 ill = ILL_START_WALK_V4(&ctx, ipst); 23089 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23090 mutex_enter(&ill->ill_lock); 23091 for (ipif = ill->ill_ipif; ipif != NULL; 23092 ipif = ipif->ipif_next) { 23093 if (!IPIF_CAN_LOOKUP(ipif)) 23094 continue; 23095 if (ipif->ipif_zoneid != zoneid && 23096 ipif->ipif_zoneid != ALL_ZONES) 23097 continue; 23098 /* 23099 * Point-to-point case. Look for exact match with 23100 * destination address. 23101 */ 23102 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23103 if (ipif->ipif_pp_dst_addr == addr) { 23104 ipif_refhold_locked(ipif); 23105 mutex_exit(&ill->ill_lock); 23106 rw_exit(&ipst->ips_ill_g_lock); 23107 if (best_ipif != NULL) 23108 ipif_refrele(best_ipif); 23109 return (ipif); 23110 } 23111 } else if (ipif->ipif_subnet == (addr & 23112 ipif->ipif_net_mask)) { 23113 /* 23114 * Point-to-multipoint case. Looping through to 23115 * find the most specific match. If there are 23116 * multiple best match ipif's then prefer ipif's 23117 * that are UP. If there is only one best match 23118 * ipif and it is DOWN we must still return it. 23119 */ 23120 if ((best_ipif == NULL) || 23121 (ipif->ipif_net_mask > 23122 best_ipif->ipif_net_mask) || 23123 ((ipif->ipif_net_mask == 23124 best_ipif->ipif_net_mask) && 23125 ((ipif->ipif_flags & IPIF_UP) && 23126 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23127 ipif_refhold_locked(ipif); 23128 mutex_exit(&ill->ill_lock); 23129 rw_exit(&ipst->ips_ill_g_lock); 23130 if (best_ipif != NULL) 23131 ipif_refrele(best_ipif); 23132 best_ipif = ipif; 23133 rw_enter(&ipst->ips_ill_g_lock, 23134 RW_READER); 23135 mutex_enter(&ill->ill_lock); 23136 } 23137 } 23138 } 23139 mutex_exit(&ill->ill_lock); 23140 } 23141 rw_exit(&ipst->ips_ill_g_lock); 23142 return (best_ipif); 23143 } 23144 23145 23146 /* 23147 * Save enough information so that we can recreate the IRE if 23148 * the interface goes down and then up. 23149 */ 23150 static void 23151 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23152 { 23153 mblk_t *save_mp; 23154 23155 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23156 if (save_mp != NULL) { 23157 ifrt_t *ifrt; 23158 23159 save_mp->b_wptr += sizeof (ifrt_t); 23160 ifrt = (ifrt_t *)save_mp->b_rptr; 23161 bzero(ifrt, sizeof (ifrt_t)); 23162 ifrt->ifrt_type = ire->ire_type; 23163 ifrt->ifrt_addr = ire->ire_addr; 23164 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23165 ifrt->ifrt_src_addr = ire->ire_src_addr; 23166 ifrt->ifrt_mask = ire->ire_mask; 23167 ifrt->ifrt_flags = ire->ire_flags; 23168 ifrt->ifrt_max_frag = ire->ire_max_frag; 23169 mutex_enter(&ipif->ipif_saved_ire_lock); 23170 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23171 ipif->ipif_saved_ire_mp = save_mp; 23172 ipif->ipif_saved_ire_cnt++; 23173 mutex_exit(&ipif->ipif_saved_ire_lock); 23174 } 23175 } 23176 23177 23178 static void 23179 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23180 { 23181 mblk_t **mpp; 23182 mblk_t *mp; 23183 ifrt_t *ifrt; 23184 23185 /* Remove from ipif_saved_ire_mp list if it is there */ 23186 mutex_enter(&ipif->ipif_saved_ire_lock); 23187 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23188 mpp = &(*mpp)->b_cont) { 23189 /* 23190 * On a given ipif, the triple of address, gateway and 23191 * mask is unique for each saved IRE (in the case of 23192 * ordinary interface routes, the gateway address is 23193 * all-zeroes). 23194 */ 23195 mp = *mpp; 23196 ifrt = (ifrt_t *)mp->b_rptr; 23197 if (ifrt->ifrt_addr == ire->ire_addr && 23198 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23199 ifrt->ifrt_mask == ire->ire_mask) { 23200 *mpp = mp->b_cont; 23201 ipif->ipif_saved_ire_cnt--; 23202 freeb(mp); 23203 break; 23204 } 23205 } 23206 mutex_exit(&ipif->ipif_saved_ire_lock); 23207 } 23208 23209 23210 /* 23211 * IP multirouting broadcast routes handling 23212 * Append CGTP broadcast IREs to regular ones created 23213 * at ifconfig time. 23214 */ 23215 static void 23216 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23217 { 23218 ire_t *ire_prim; 23219 23220 ASSERT(ire != NULL); 23221 ASSERT(ire_dst != NULL); 23222 23223 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23224 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23225 if (ire_prim != NULL) { 23226 /* 23227 * We are in the special case of broadcasts for 23228 * CGTP. We add an IRE_BROADCAST that holds 23229 * the RTF_MULTIRT flag, the destination 23230 * address of ire_dst and the low level 23231 * info of ire_prim. In other words, CGTP 23232 * broadcast is added to the redundant ipif. 23233 */ 23234 ipif_t *ipif_prim; 23235 ire_t *bcast_ire; 23236 23237 ipif_prim = ire_prim->ire_ipif; 23238 23239 ip2dbg(("ip_cgtp_filter_bcast_add: " 23240 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23241 (void *)ire_dst, (void *)ire_prim, 23242 (void *)ipif_prim)); 23243 23244 bcast_ire = ire_create( 23245 (uchar_t *)&ire->ire_addr, 23246 (uchar_t *)&ip_g_all_ones, 23247 (uchar_t *)&ire_dst->ire_src_addr, 23248 (uchar_t *)&ire->ire_gateway_addr, 23249 &ipif_prim->ipif_mtu, 23250 NULL, 23251 ipif_prim->ipif_rq, 23252 ipif_prim->ipif_wq, 23253 IRE_BROADCAST, 23254 ipif_prim, 23255 0, 23256 0, 23257 0, 23258 ire->ire_flags, 23259 &ire_uinfo_null, 23260 NULL, 23261 NULL, 23262 ipst); 23263 23264 if (bcast_ire != NULL) { 23265 23266 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23267 B_FALSE) == 0) { 23268 ip2dbg(("ip_cgtp_filter_bcast_add: " 23269 "added bcast_ire %p\n", 23270 (void *)bcast_ire)); 23271 23272 ipif_save_ire(bcast_ire->ire_ipif, 23273 bcast_ire); 23274 ire_refrele(bcast_ire); 23275 } 23276 } 23277 ire_refrele(ire_prim); 23278 } 23279 } 23280 23281 23282 /* 23283 * IP multirouting broadcast routes handling 23284 * Remove the broadcast ire 23285 */ 23286 static void 23287 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23288 { 23289 ire_t *ire_dst; 23290 23291 ASSERT(ire != NULL); 23292 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23293 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23294 if (ire_dst != NULL) { 23295 ire_t *ire_prim; 23296 23297 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23298 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23299 if (ire_prim != NULL) { 23300 ipif_t *ipif_prim; 23301 ire_t *bcast_ire; 23302 23303 ipif_prim = ire_prim->ire_ipif; 23304 23305 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23306 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23307 (void *)ire_dst, (void *)ire_prim, 23308 (void *)ipif_prim)); 23309 23310 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23311 ire->ire_gateway_addr, 23312 IRE_BROADCAST, 23313 ipif_prim, ALL_ZONES, 23314 NULL, 23315 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23316 MATCH_IRE_MASK, ipst); 23317 23318 if (bcast_ire != NULL) { 23319 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23320 "looked up bcast_ire %p\n", 23321 (void *)bcast_ire)); 23322 ipif_remove_ire(bcast_ire->ire_ipif, 23323 bcast_ire); 23324 ire_delete(bcast_ire); 23325 ire_refrele(bcast_ire); 23326 } 23327 ire_refrele(ire_prim); 23328 } 23329 ire_refrele(ire_dst); 23330 } 23331 } 23332 23333 /* 23334 * IPsec hardware acceleration capabilities related functions. 23335 */ 23336 23337 /* 23338 * Free a per-ill IPsec capabilities structure. 23339 */ 23340 static void 23341 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23342 { 23343 if (capab->auth_hw_algs != NULL) 23344 kmem_free(capab->auth_hw_algs, capab->algs_size); 23345 if (capab->encr_hw_algs != NULL) 23346 kmem_free(capab->encr_hw_algs, capab->algs_size); 23347 if (capab->encr_algparm != NULL) 23348 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23349 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23350 } 23351 23352 /* 23353 * Allocate a new per-ill IPsec capabilities structure. This structure 23354 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23355 * an array which specifies, for each algorithm, whether this algorithm 23356 * is supported by the ill or not. 23357 */ 23358 static ill_ipsec_capab_t * 23359 ill_ipsec_capab_alloc(void) 23360 { 23361 ill_ipsec_capab_t *capab; 23362 uint_t nelems; 23363 23364 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23365 if (capab == NULL) 23366 return (NULL); 23367 23368 /* we need one bit per algorithm */ 23369 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23370 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23371 23372 /* allocate memory to store algorithm flags */ 23373 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23374 if (capab->encr_hw_algs == NULL) 23375 goto nomem; 23376 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23377 if (capab->auth_hw_algs == NULL) 23378 goto nomem; 23379 /* 23380 * Leave encr_algparm NULL for now since we won't need it half 23381 * the time 23382 */ 23383 return (capab); 23384 23385 nomem: 23386 ill_ipsec_capab_free(capab); 23387 return (NULL); 23388 } 23389 23390 /* 23391 * Resize capability array. Since we're exclusive, this is OK. 23392 */ 23393 static boolean_t 23394 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23395 { 23396 ipsec_capab_algparm_t *nalp, *oalp; 23397 uint32_t olen, nlen; 23398 23399 oalp = capab->encr_algparm; 23400 olen = capab->encr_algparm_size; 23401 23402 if (oalp != NULL) { 23403 if (algid < capab->encr_algparm_end) 23404 return (B_TRUE); 23405 } 23406 23407 nlen = (algid + 1) * sizeof (*nalp); 23408 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23409 if (nalp == NULL) 23410 return (B_FALSE); 23411 23412 if (oalp != NULL) { 23413 bcopy(oalp, nalp, olen); 23414 kmem_free(oalp, olen); 23415 } 23416 capab->encr_algparm = nalp; 23417 capab->encr_algparm_size = nlen; 23418 capab->encr_algparm_end = algid + 1; 23419 23420 return (B_TRUE); 23421 } 23422 23423 /* 23424 * Compare the capabilities of the specified ill with the protocol 23425 * and algorithms specified by the SA passed as argument. 23426 * If they match, returns B_TRUE, B_FALSE if they do not match. 23427 * 23428 * The ill can be passed as a pointer to it, or by specifying its index 23429 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23430 * 23431 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23432 * packet is eligible for hardware acceleration, and by 23433 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23434 * to a particular ill. 23435 */ 23436 boolean_t 23437 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23438 ipsa_t *sa, netstack_t *ns) 23439 { 23440 boolean_t sa_isv6; 23441 uint_t algid; 23442 struct ill_ipsec_capab_s *cpp; 23443 boolean_t need_refrele = B_FALSE; 23444 ip_stack_t *ipst = ns->netstack_ip; 23445 23446 if (ill == NULL) { 23447 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23448 NULL, NULL, NULL, ipst); 23449 if (ill == NULL) { 23450 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23451 return (B_FALSE); 23452 } 23453 need_refrele = B_TRUE; 23454 } 23455 23456 /* 23457 * Use the address length specified by the SA to determine 23458 * if it corresponds to a IPv6 address, and fail the matching 23459 * if the isv6 flag passed as argument does not match. 23460 * Note: this check is used for SADB capability checking before 23461 * sending SA information to an ill. 23462 */ 23463 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23464 if (sa_isv6 != ill_isv6) 23465 /* protocol mismatch */ 23466 goto done; 23467 23468 /* 23469 * Check if the ill supports the protocol, algorithm(s) and 23470 * key size(s) specified by the SA, and get the pointers to 23471 * the algorithms supported by the ill. 23472 */ 23473 switch (sa->ipsa_type) { 23474 23475 case SADB_SATYPE_ESP: 23476 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23477 /* ill does not support ESP acceleration */ 23478 goto done; 23479 cpp = ill->ill_ipsec_capab_esp; 23480 algid = sa->ipsa_auth_alg; 23481 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23482 goto done; 23483 algid = sa->ipsa_encr_alg; 23484 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23485 goto done; 23486 if (algid < cpp->encr_algparm_end) { 23487 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23488 if (sa->ipsa_encrkeybits < alp->minkeylen) 23489 goto done; 23490 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23491 goto done; 23492 } 23493 break; 23494 23495 case SADB_SATYPE_AH: 23496 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23497 /* ill does not support AH acceleration */ 23498 goto done; 23499 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23500 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23501 goto done; 23502 break; 23503 } 23504 23505 if (need_refrele) 23506 ill_refrele(ill); 23507 return (B_TRUE); 23508 done: 23509 if (need_refrele) 23510 ill_refrele(ill); 23511 return (B_FALSE); 23512 } 23513 23514 23515 /* 23516 * Add a new ill to the list of IPsec capable ills. 23517 * Called from ill_capability_ipsec_ack() when an ACK was received 23518 * indicating that IPsec hardware processing was enabled for an ill. 23519 * 23520 * ill must point to the ill for which acceleration was enabled. 23521 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23522 */ 23523 static void 23524 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23525 { 23526 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23527 uint_t sa_type; 23528 uint_t ipproto; 23529 ip_stack_t *ipst = ill->ill_ipst; 23530 23531 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23532 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23533 23534 switch (dl_cap) { 23535 case DL_CAPAB_IPSEC_AH: 23536 sa_type = SADB_SATYPE_AH; 23537 ills = &ipst->ips_ipsec_capab_ills_ah; 23538 ipproto = IPPROTO_AH; 23539 break; 23540 case DL_CAPAB_IPSEC_ESP: 23541 sa_type = SADB_SATYPE_ESP; 23542 ills = &ipst->ips_ipsec_capab_ills_esp; 23543 ipproto = IPPROTO_ESP; 23544 break; 23545 } 23546 23547 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23548 23549 /* 23550 * Add ill index to list of hardware accelerators. If 23551 * already in list, do nothing. 23552 */ 23553 for (cur_ill = *ills; cur_ill != NULL && 23554 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23555 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23556 ; 23557 23558 if (cur_ill == NULL) { 23559 /* if this is a new entry for this ill */ 23560 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23561 if (new_ill == NULL) { 23562 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23563 return; 23564 } 23565 23566 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23567 new_ill->ill_isv6 = ill->ill_isv6; 23568 new_ill->next = *ills; 23569 *ills = new_ill; 23570 } else if (!sadb_resync) { 23571 /* not resync'ing SADB and an entry exists for this ill */ 23572 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23573 return; 23574 } 23575 23576 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23577 23578 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23579 /* 23580 * IPsec module for protocol loaded, initiate dump 23581 * of the SADB to this ill. 23582 */ 23583 sadb_ill_download(ill, sa_type); 23584 } 23585 23586 /* 23587 * Remove an ill from the list of IPsec capable ills. 23588 */ 23589 static void 23590 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23591 { 23592 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23593 ip_stack_t *ipst = ill->ill_ipst; 23594 23595 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23596 dl_cap == DL_CAPAB_IPSEC_ESP); 23597 23598 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23599 &ipst->ips_ipsec_capab_ills_esp; 23600 23601 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23602 23603 prev_ill = NULL; 23604 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23605 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23606 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23607 ; 23608 if (cur_ill == NULL) { 23609 /* entry not found */ 23610 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23611 return; 23612 } 23613 if (prev_ill == NULL) { 23614 /* entry at front of list */ 23615 *ills = NULL; 23616 } else { 23617 prev_ill->next = cur_ill->next; 23618 } 23619 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23620 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23621 } 23622 23623 /* 23624 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23625 * supporting the specified IPsec protocol acceleration. 23626 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23627 * We free the mblk and, if sa is non-null, release the held referece. 23628 */ 23629 void 23630 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23631 netstack_t *ns) 23632 { 23633 ipsec_capab_ill_t *ici, *cur_ici; 23634 ill_t *ill; 23635 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23636 ip_stack_t *ipst = ns->netstack_ip; 23637 23638 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23639 ipst->ips_ipsec_capab_ills_esp; 23640 23641 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23642 23643 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23644 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23645 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23646 23647 /* 23648 * Handle the case where the ill goes away while the SADB is 23649 * attempting to send messages. If it's going away, it's 23650 * nuking its shadow SADB, so we don't care.. 23651 */ 23652 23653 if (ill == NULL) 23654 continue; 23655 23656 if (sa != NULL) { 23657 /* 23658 * Make sure capabilities match before 23659 * sending SA to ill. 23660 */ 23661 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23662 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23663 ill_refrele(ill); 23664 continue; 23665 } 23666 23667 mutex_enter(&sa->ipsa_lock); 23668 sa->ipsa_flags |= IPSA_F_HW; 23669 mutex_exit(&sa->ipsa_lock); 23670 } 23671 23672 /* 23673 * Copy template message, and add it to the front 23674 * of the mblk ship list. We want to avoid holding 23675 * the ipsec_capab_ills_lock while sending the 23676 * message to the ills. 23677 * 23678 * The b_next and b_prev are temporarily used 23679 * to build a list of mblks to be sent down, and to 23680 * save the ill to which they must be sent. 23681 */ 23682 nmp = copymsg(mp); 23683 if (nmp == NULL) { 23684 ill_refrele(ill); 23685 continue; 23686 } 23687 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23688 nmp->b_next = mp_ship_list; 23689 mp_ship_list = nmp; 23690 nmp->b_prev = (mblk_t *)ill; 23691 } 23692 23693 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23694 23695 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23696 /* restore the mblk to a sane state */ 23697 next_mp = nmp->b_next; 23698 nmp->b_next = NULL; 23699 ill = (ill_t *)nmp->b_prev; 23700 nmp->b_prev = NULL; 23701 23702 ill_dlpi_send(ill, nmp); 23703 ill_refrele(ill); 23704 } 23705 23706 if (sa != NULL) 23707 IPSA_REFRELE(sa); 23708 freemsg(mp); 23709 } 23710 23711 /* 23712 * Derive an interface id from the link layer address. 23713 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23714 */ 23715 static boolean_t 23716 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23717 { 23718 char *addr; 23719 23720 if (phys_length != ETHERADDRL) 23721 return (B_FALSE); 23722 23723 /* Form EUI-64 like address */ 23724 addr = (char *)&v6addr->s6_addr32[2]; 23725 bcopy((char *)phys_addr, addr, 3); 23726 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23727 addr[3] = (char)0xff; 23728 addr[4] = (char)0xfe; 23729 bcopy((char *)phys_addr + 3, addr + 5, 3); 23730 return (B_TRUE); 23731 } 23732 23733 /* ARGSUSED */ 23734 static boolean_t 23735 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23736 { 23737 return (B_FALSE); 23738 } 23739 23740 /* ARGSUSED */ 23741 static boolean_t 23742 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23743 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23744 { 23745 /* 23746 * Multicast address mappings used over Ethernet/802.X. 23747 * This address is used as a base for mappings. 23748 */ 23749 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23750 0x00, 0x00, 0x00}; 23751 23752 /* 23753 * Extract low order 32 bits from IPv6 multicast address. 23754 * Or that into the link layer address, starting from the 23755 * second byte. 23756 */ 23757 *hw_start = 2; 23758 v6_extract_mask->s6_addr32[0] = 0; 23759 v6_extract_mask->s6_addr32[1] = 0; 23760 v6_extract_mask->s6_addr32[2] = 0; 23761 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23762 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23763 return (B_TRUE); 23764 } 23765 23766 /* 23767 * Indicate by return value whether multicast is supported. If not, 23768 * this code should not touch/change any parameters. 23769 */ 23770 /* ARGSUSED */ 23771 static boolean_t 23772 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23773 uint32_t *hw_start, ipaddr_t *extract_mask) 23774 { 23775 /* 23776 * Multicast address mappings used over Ethernet/802.X. 23777 * This address is used as a base for mappings. 23778 */ 23779 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23780 0x00, 0x00, 0x00 }; 23781 23782 if (phys_length != ETHERADDRL) 23783 return (B_FALSE); 23784 23785 *extract_mask = htonl(0x007fffff); 23786 *hw_start = 2; 23787 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23788 return (B_TRUE); 23789 } 23790 23791 /* 23792 * Derive IPoIB interface id from the link layer address. 23793 */ 23794 static boolean_t 23795 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23796 { 23797 char *addr; 23798 23799 if (phys_length != 20) 23800 return (B_FALSE); 23801 addr = (char *)&v6addr->s6_addr32[2]; 23802 bcopy(phys_addr + 12, addr, 8); 23803 /* 23804 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23805 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23806 * rules. In these cases, the IBA considers these GUIDs to be in 23807 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23808 * required; vendors are required not to assign global EUI-64's 23809 * that differ only in u/l bit values, thus guaranteeing uniqueness 23810 * of the interface identifier. Whether the GUID is in modified 23811 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23812 * bit set to 1. 23813 */ 23814 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23815 return (B_TRUE); 23816 } 23817 23818 /* 23819 * Note on mapping from multicast IP addresses to IPoIB multicast link 23820 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23821 * The format of an IPoIB multicast address is: 23822 * 23823 * 4 byte QPN Scope Sign. Pkey 23824 * +--------------------------------------------+ 23825 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23826 * +--------------------------------------------+ 23827 * 23828 * The Scope and Pkey components are properties of the IBA port and 23829 * network interface. They can be ascertained from the broadcast address. 23830 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23831 */ 23832 23833 static boolean_t 23834 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23835 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23836 { 23837 /* 23838 * Base IPoIB IPv6 multicast address used for mappings. 23839 * Does not contain the IBA scope/Pkey values. 23840 */ 23841 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23842 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23843 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23844 23845 /* 23846 * Extract low order 80 bits from IPv6 multicast address. 23847 * Or that into the link layer address, starting from the 23848 * sixth byte. 23849 */ 23850 *hw_start = 6; 23851 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23852 23853 /* 23854 * Now fill in the IBA scope/Pkey values from the broadcast address. 23855 */ 23856 *(maddr + 5) = *(bphys_addr + 5); 23857 *(maddr + 8) = *(bphys_addr + 8); 23858 *(maddr + 9) = *(bphys_addr + 9); 23859 23860 v6_extract_mask->s6_addr32[0] = 0; 23861 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23862 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23863 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23864 return (B_TRUE); 23865 } 23866 23867 static boolean_t 23868 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23869 uint32_t *hw_start, ipaddr_t *extract_mask) 23870 { 23871 /* 23872 * Base IPoIB IPv4 multicast address used for mappings. 23873 * Does not contain the IBA scope/Pkey values. 23874 */ 23875 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23876 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23877 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23878 23879 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23880 return (B_FALSE); 23881 23882 /* 23883 * Extract low order 28 bits from IPv4 multicast address. 23884 * Or that into the link layer address, starting from the 23885 * sixteenth byte. 23886 */ 23887 *extract_mask = htonl(0x0fffffff); 23888 *hw_start = 16; 23889 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23890 23891 /* 23892 * Now fill in the IBA scope/Pkey values from the broadcast address. 23893 */ 23894 *(maddr + 5) = *(bphys_addr + 5); 23895 *(maddr + 8) = *(bphys_addr + 8); 23896 *(maddr + 9) = *(bphys_addr + 9); 23897 return (B_TRUE); 23898 } 23899 23900 /* 23901 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23902 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23903 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23904 * the link-local address is preferred. 23905 */ 23906 boolean_t 23907 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23908 { 23909 ipif_t *ipif; 23910 ipif_t *maybe_ipif = NULL; 23911 23912 mutex_enter(&ill->ill_lock); 23913 if (ill->ill_state_flags & ILL_CONDEMNED) { 23914 mutex_exit(&ill->ill_lock); 23915 if (ipifp != NULL) 23916 *ipifp = NULL; 23917 return (B_FALSE); 23918 } 23919 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23920 if (!IPIF_CAN_LOOKUP(ipif)) 23921 continue; 23922 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23923 ipif->ipif_zoneid != ALL_ZONES) 23924 continue; 23925 if ((ipif->ipif_flags & flags) != flags) 23926 continue; 23927 23928 if (ipifp == NULL) { 23929 mutex_exit(&ill->ill_lock); 23930 ASSERT(maybe_ipif == NULL); 23931 return (B_TRUE); 23932 } 23933 if (!ill->ill_isv6 || 23934 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23935 ipif_refhold_locked(ipif); 23936 mutex_exit(&ill->ill_lock); 23937 *ipifp = ipif; 23938 return (B_TRUE); 23939 } 23940 if (maybe_ipif == NULL) 23941 maybe_ipif = ipif; 23942 } 23943 if (ipifp != NULL) { 23944 if (maybe_ipif != NULL) 23945 ipif_refhold_locked(maybe_ipif); 23946 *ipifp = maybe_ipif; 23947 } 23948 mutex_exit(&ill->ill_lock); 23949 return (maybe_ipif != NULL); 23950 } 23951 23952 /* 23953 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23954 */ 23955 boolean_t 23956 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23957 { 23958 ill_t *illg; 23959 ip_stack_t *ipst = ill->ill_ipst; 23960 23961 /* 23962 * We look at the passed-in ill first without grabbing ill_g_lock. 23963 */ 23964 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23965 return (B_TRUE); 23966 } 23967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23968 if (ill->ill_group == NULL) { 23969 /* ill not in a group */ 23970 rw_exit(&ipst->ips_ill_g_lock); 23971 return (B_FALSE); 23972 } 23973 23974 /* 23975 * There's no ipif in the zone on ill, however ill is part of an IPMP 23976 * group. We need to look for an ipif in the zone on all the ills in the 23977 * group. 23978 */ 23979 illg = ill->ill_group->illgrp_ill; 23980 do { 23981 /* 23982 * We don't call ipif_lookup_zoneid() on ill as we already know 23983 * that it's not there. 23984 */ 23985 if (illg != ill && 23986 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23987 break; 23988 } 23989 } while ((illg = illg->ill_group_next) != NULL); 23990 rw_exit(&ipst->ips_ill_g_lock); 23991 return (illg != NULL); 23992 } 23993 23994 /* 23995 * Check if this ill is only being used to send ICMP probes for IPMP 23996 */ 23997 boolean_t 23998 ill_is_probeonly(ill_t *ill) 23999 { 24000 /* 24001 * Check if the interface is FAILED, or INACTIVE 24002 */ 24003 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24004 return (B_TRUE); 24005 24006 return (B_FALSE); 24007 } 24008 24009 /* 24010 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24011 * If a pointer to an ipif_t is returned then the caller will need to do 24012 * an ill_refrele(). 24013 * 24014 * If there is no real interface which matches the ifindex, then it looks 24015 * for a group that has a matching index. In the case of a group match the 24016 * lifidx must be zero. We don't need emulate the logical interfaces 24017 * since IP Filter's use of netinfo doesn't use that. 24018 */ 24019 ipif_t * 24020 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24021 ip_stack_t *ipst) 24022 { 24023 ipif_t *ipif; 24024 ill_t *ill; 24025 24026 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24027 ipst); 24028 24029 if (ill == NULL) { 24030 /* Fallback to group names only if hook_emulation set */ 24031 if (!ipst->ips_ipmp_hook_emulation) 24032 return (NULL); 24033 24034 if (lifidx != 0) 24035 return (NULL); 24036 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24037 if (ill == NULL) 24038 return (NULL); 24039 } 24040 24041 mutex_enter(&ill->ill_lock); 24042 if (ill->ill_state_flags & ILL_CONDEMNED) { 24043 mutex_exit(&ill->ill_lock); 24044 ill_refrele(ill); 24045 return (NULL); 24046 } 24047 24048 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24049 if (!IPIF_CAN_LOOKUP(ipif)) 24050 continue; 24051 if (lifidx == ipif->ipif_id) { 24052 ipif_refhold_locked(ipif); 24053 break; 24054 } 24055 } 24056 24057 mutex_exit(&ill->ill_lock); 24058 ill_refrele(ill); 24059 return (ipif); 24060 } 24061 24062 /* 24063 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24064 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24065 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24066 * for details. 24067 */ 24068 void 24069 ill_fastpath_flush(ill_t *ill) 24070 { 24071 ip_stack_t *ipst = ill->ill_ipst; 24072 24073 nce_fastpath_list_dispatch(ill, NULL, NULL); 24074 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24075 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24076 } 24077 24078 /* 24079 * Set the physical address information for `ill' to the contents of the 24080 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24081 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24082 * EINPROGRESS will be returned. 24083 */ 24084 int 24085 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24086 { 24087 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24088 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24089 24090 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24091 24092 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24093 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24094 /* Changing DL_IPV6_TOKEN is not yet supported */ 24095 return (0); 24096 } 24097 24098 /* 24099 * We need to store up to two copies of `mp' in `ill'. Due to the 24100 * design of ipsq_pending_mp_add(), we can't pass them as separate 24101 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24102 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24103 */ 24104 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24105 freemsg(mp); 24106 return (ENOMEM); 24107 } 24108 24109 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24110 24111 /* 24112 * If we can quiesce the ill, then set the address. If not, then 24113 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24114 */ 24115 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24116 mutex_enter(&ill->ill_lock); 24117 if (!ill_is_quiescent(ill)) { 24118 /* call cannot fail since `conn_t *' argument is NULL */ 24119 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24120 mp, ILL_DOWN); 24121 mutex_exit(&ill->ill_lock); 24122 return (EINPROGRESS); 24123 } 24124 mutex_exit(&ill->ill_lock); 24125 24126 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24127 return (0); 24128 } 24129 24130 /* 24131 * Once the ill associated with `q' has quiesced, set its physical address 24132 * information to the values in `addrmp'. Note that two copies of `addrmp' 24133 * are passed (linked by b_cont), since we sometimes need to save two distinct 24134 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24135 * failure (we'll free the other copy if it's not needed). Since the ill_t 24136 * is quiesced, we know any stale IREs with the old address information have 24137 * already been removed, so we don't need to call ill_fastpath_flush(). 24138 */ 24139 /* ARGSUSED */ 24140 static void 24141 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24142 { 24143 ill_t *ill = q->q_ptr; 24144 mblk_t *addrmp2 = unlinkb(addrmp); 24145 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24146 uint_t addrlen, addroff; 24147 24148 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24149 24150 addroff = dlindp->dl_addr_offset; 24151 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24152 24153 switch (dlindp->dl_data) { 24154 case DL_IPV6_LINK_LAYER_ADDR: 24155 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24156 freemsg(addrmp2); 24157 break; 24158 24159 case DL_CURR_PHYS_ADDR: 24160 freemsg(ill->ill_phys_addr_mp); 24161 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24162 ill->ill_phys_addr_mp = addrmp; 24163 ill->ill_phys_addr_length = addrlen; 24164 24165 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24166 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24167 else 24168 freemsg(addrmp2); 24169 break; 24170 default: 24171 ASSERT(0); 24172 } 24173 24174 /* 24175 * If there are ipifs to bring up, ill_up_ipifs() will return 24176 * EINPROGRESS, and ipsq_current_finish() will be called by 24177 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24178 * brought up. 24179 */ 24180 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24181 ipsq_current_finish(ipsq); 24182 } 24183 24184 /* 24185 * Helper routine for setting the ill_nd_lla fields. 24186 */ 24187 void 24188 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24189 { 24190 freemsg(ill->ill_nd_lla_mp); 24191 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24192 ill->ill_nd_lla_mp = ndmp; 24193 ill->ill_nd_lla_len = addrlen; 24194 } 24195 24196 major_t IP_MAJ; 24197 #define IP "ip" 24198 24199 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24200 #define UDPDEV "/devices/pseudo/udp@0:udp" 24201 24202 /* 24203 * Issue REMOVEIF ioctls to have the loopback interfaces 24204 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24205 * the former going away when the user-level processes in the zone 24206 * are killed * and the latter are cleaned up by the stream head 24207 * str_stack_shutdown callback that undoes all I_PLINKs. 24208 */ 24209 void 24210 ip_loopback_cleanup(ip_stack_t *ipst) 24211 { 24212 int error; 24213 ldi_handle_t lh = NULL; 24214 ldi_ident_t li = NULL; 24215 int rval; 24216 cred_t *cr; 24217 struct strioctl iocb; 24218 struct lifreq lifreq; 24219 24220 IP_MAJ = ddi_name_to_major(IP); 24221 24222 #ifdef NS_DEBUG 24223 (void) printf("ip_loopback_cleanup() stackid %d\n", 24224 ipst->ips_netstack->netstack_stackid); 24225 #endif 24226 24227 bzero(&lifreq, sizeof (lifreq)); 24228 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24229 24230 error = ldi_ident_from_major(IP_MAJ, &li); 24231 if (error) { 24232 #ifdef DEBUG 24233 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24234 error); 24235 #endif 24236 return; 24237 } 24238 24239 cr = zone_get_kcred(netstackid_to_zoneid( 24240 ipst->ips_netstack->netstack_stackid)); 24241 ASSERT(cr != NULL); 24242 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24243 if (error) { 24244 #ifdef DEBUG 24245 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24246 error); 24247 #endif 24248 goto out; 24249 } 24250 iocb.ic_cmd = SIOCLIFREMOVEIF; 24251 iocb.ic_timout = 15; 24252 iocb.ic_len = sizeof (lifreq); 24253 iocb.ic_dp = (char *)&lifreq; 24254 24255 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24256 /* LINTED - statement has no consequent */ 24257 if (error) { 24258 #ifdef NS_DEBUG 24259 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24260 "UDP6 error %d\n", error); 24261 #endif 24262 } 24263 (void) ldi_close(lh, FREAD|FWRITE, cr); 24264 lh = NULL; 24265 24266 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24267 if (error) { 24268 #ifdef NS_DEBUG 24269 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24270 error); 24271 #endif 24272 goto out; 24273 } 24274 24275 iocb.ic_cmd = SIOCLIFREMOVEIF; 24276 iocb.ic_timout = 15; 24277 iocb.ic_len = sizeof (lifreq); 24278 iocb.ic_dp = (char *)&lifreq; 24279 24280 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24281 /* LINTED - statement has no consequent */ 24282 if (error) { 24283 #ifdef NS_DEBUG 24284 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24285 "UDP error %d\n", error); 24286 #endif 24287 } 24288 (void) ldi_close(lh, FREAD|FWRITE, cr); 24289 lh = NULL; 24290 24291 out: 24292 /* Close layered handles */ 24293 if (lh) 24294 (void) ldi_close(lh, FREAD|FWRITE, cr); 24295 if (li) 24296 ldi_ident_release(li); 24297 24298 crfree(cr); 24299 } 24300 24301 /* 24302 * This needs to be in-sync with nic_event_t definition 24303 */ 24304 static const char * 24305 ill_hook_event2str(nic_event_t event) 24306 { 24307 switch (event) { 24308 case NE_PLUMB: 24309 return ("PLUMB"); 24310 case NE_UNPLUMB: 24311 return ("UNPLUMB"); 24312 case NE_UP: 24313 return ("UP"); 24314 case NE_DOWN: 24315 return ("DOWN"); 24316 case NE_ADDRESS_CHANGE: 24317 return ("ADDRESS_CHANGE"); 24318 default: 24319 return ("UNKNOWN"); 24320 } 24321 } 24322 24323 static void 24324 ill_hook_event_destroy(ill_t *ill) 24325 { 24326 hook_nic_event_t *info; 24327 24328 if ((info = ill->ill_nic_event_info) != NULL) { 24329 if (info->hne_data != NULL) 24330 kmem_free(info->hne_data, info->hne_datalen); 24331 kmem_free(info, sizeof (hook_nic_event_t)); 24332 24333 ill->ill_nic_event_info = NULL; 24334 } 24335 24336 } 24337 24338 boolean_t 24339 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24340 nic_event_data_t data, size_t datalen) 24341 { 24342 ip_stack_t *ipst = ill->ill_ipst; 24343 hook_nic_event_t *info; 24344 const char *str = NULL; 24345 24346 /* destroy nic event info if it exists */ 24347 if ((info = ill->ill_nic_event_info) != NULL) { 24348 str = ill_hook_event2str(info->hne_event); 24349 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24350 "attached for %s\n", str, ill->ill_name)); 24351 ill_hook_event_destroy(ill); 24352 } 24353 24354 /* create a new nic event info */ 24355 if ((info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP)) == NULL) 24356 goto fail; 24357 24358 ill->ill_nic_event_info = info; 24359 24360 if (event == NE_UNPLUMB) 24361 info->hne_nic = ill->ill_phyint->phyint_ifindex; 24362 else 24363 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24364 info->hne_lif = lif; 24365 info->hne_event = event; 24366 info->hne_family = ill->ill_isv6 ? 24367 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24368 info->hne_data = NULL; 24369 info->hne_datalen = 0; 24370 24371 if (data != NULL && datalen != 0) { 24372 info->hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24373 if (info->hne_data != NULL) { 24374 bcopy(data, info->hne_data, datalen); 24375 info->hne_datalen = datalen; 24376 } else { 24377 ill_hook_event_destroy(ill); 24378 goto fail; 24379 } 24380 } 24381 24382 return (B_TRUE); 24383 fail: 24384 str = ill_hook_event2str(event); 24385 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24386 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24387 return (B_FALSE); 24388 } 24389