xref: /titanic_41/usr/src/uts/common/inet/ip/ip_if.c (revision 22a914219d15da040a4bf15ae1df9941858a46aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the interface control functions for IP.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/stream.h>
35 #include <sys/dlpi.h>
36 #include <sys/stropts.h>
37 #include <sys/strsun.h>
38 #include <sys/sysmacros.h>
39 #include <sys/strlog.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/cmn_err.h>
43 #include <sys/kstat.h>
44 #include <sys/debug.h>
45 #include <sys/zone.h>
46 #include <sys/sunldi.h>
47 #include <sys/file.h>
48 
49 #include <sys/kmem.h>
50 #include <sys/systm.h>
51 #include <sys/param.h>
52 #include <sys/socket.h>
53 #include <sys/isa_defs.h>
54 #include <net/if.h>
55 #include <net/if_arp.h>
56 #include <net/if_types.h>
57 #include <net/if_dl.h>
58 #include <net/route.h>
59 #include <sys/sockio.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/igmp_var.h>
64 #include <sys/strsun.h>
65 #include <sys/policy.h>
66 #include <sys/ethernet.h>
67 
68 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
69 #include <inet/mi.h>
70 #include <inet/nd.h>
71 #include <inet/arp.h>
72 #include <inet/mib2.h>
73 #include <inet/ip.h>
74 #include <inet/ip6.h>
75 #include <inet/ip6_asp.h>
76 #include <inet/tcp.h>
77 #include <inet/ip_multi.h>
78 #include <inet/ip_ire.h>
79 #include <inet/ip_ftable.h>
80 #include <inet/ip_rts.h>
81 #include <inet/ip_ndp.h>
82 #include <inet/ip_if.h>
83 #include <inet/ip_impl.h>
84 #include <inet/tun.h>
85 #include <inet/sctp_ip.h>
86 #include <inet/ip_netinfo.h>
87 #include <inet/mib2.h>
88 
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/sadb.h>
92 #include <inet/ipsec_impl.h>
93 #include <sys/iphada.h>
94 
95 
96 #include <netinet/igmp.h>
97 #include <inet/ip_listutils.h>
98 #include <inet/ipclassifier.h>
99 #include <sys/mac.h>
100 
101 #include <sys/systeminfo.h>
102 #include <sys/bootconf.h>
103 
104 #include <sys/tsol/tndb.h>
105 #include <sys/tsol/tnet.h>
106 
107 /* The character which tells where the ill_name ends */
108 #define	IPIF_SEPARATOR_CHAR	':'
109 
110 /* IP ioctl function table entry */
111 typedef struct ipft_s {
112 	int	ipft_cmd;
113 	pfi_t	ipft_pfi;
114 	int	ipft_min_size;
115 	int	ipft_flags;
116 } ipft_t;
117 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
118 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
119 
120 typedef struct ip_sock_ar_s {
121 	union {
122 		area_t	ip_sock_area;
123 		ared_t	ip_sock_ared;
124 		areq_t	ip_sock_areq;
125 	} ip_sock_ar_u;
126 	queue_t	*ip_sock_ar_q;
127 } ip_sock_ar_t;
128 
129 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
130 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
131 		    char *value, caddr_t cp, cred_t *ioc_cr);
132 
133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
134 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
135 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
136     mblk_t *mp, boolean_t need_up);
137 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
138     mblk_t *mp, boolean_t need_up);
139 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
140     queue_t *q, mblk_t *mp, boolean_t need_up);
141 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
142     mblk_t *mp, boolean_t need_up);
143 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
144     mblk_t *mp);
145 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
146     queue_t *q, mblk_t *mp, boolean_t need_up);
147 static int	ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp,
148     sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl);
149 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
150 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
151 static void	ipsq_flush(ill_t *ill);
152 static void	ipsq_clean_all(ill_t *ill);
153 static void	ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring);
154 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
155     queue_t *q, mblk_t *mp, boolean_t need_up);
156 static void	ipsq_delete(ipsq_t *);
157 
158 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
159 		    boolean_t initialize);
160 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
161 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
162 static void	ipif_delete_cache_ire(ire_t *, char *);
163 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
164 static void	ipif_free(ipif_t *ipif);
165 static void	ipif_free_tail(ipif_t *ipif);
166 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
167 static void	ipif_multicast_down(ipif_t *ipif);
168 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
169 static void	ipif_set_default(ipif_t *ipif);
170 static int	ipif_set_values(queue_t *q, mblk_t *mp,
171     char *interf_name, uint_t *ppa);
172 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
173     queue_t *q);
174 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
175     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
176     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
177 static int	ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp);
178 static void	ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp);
179 
180 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
181 static int	ill_arp_off(ill_t *ill);
182 static int	ill_arp_on(ill_t *ill);
183 static void	ill_delete_interface_type(ill_if_t *);
184 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
185 static void	ill_dl_down(ill_t *ill);
186 static void	ill_down(ill_t *ill);
187 static void	ill_downi(ire_t *ire, char *ill_arg);
188 static void	ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg);
189 static void	ill_down_tail(ill_t *ill);
190 static void	ill_free_mib(ill_t *ill);
191 static void	ill_glist_delete(ill_t *);
192 static boolean_t ill_has_usable_ipif(ill_t *);
193 static int	ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int);
194 static void	ill_nominate_bcast_rcv(ill_group_t *illgrp);
195 static void	ill_phyint_free(ill_t *ill);
196 static void	ill_phyint_reinit(ill_t *ill);
197 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
198 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
199 static void	ill_signal_ipsq_ills(ipsq_t *, boolean_t);
200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq);
201 static void	ill_stq_cache_delete(ire_t *, char *);
202 
203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *);
204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *);
205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
206     in6_addr_t *);
207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
208     ipaddr_t *);
209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *);
210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
211     in6_addr_t *);
212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *,
213     ipaddr_t *);
214 
215 static void	ipif_save_ire(ipif_t *, ire_t *);
216 static void	ipif_remove_ire(ipif_t *, ire_t *);
217 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
218 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
219 
220 /*
221  * Per-ill IPsec capabilities management.
222  */
223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
224 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
225 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
226 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
228 static void ill_capability_proto(ill_t *, int, mblk_t *);
229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
230     boolean_t);
231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
233 static void ill_capability_mdt_reset(ill_t *, mblk_t **);
234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **);
236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **);
238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
239     dl_capability_sub_t *);
240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **);
241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
242 static void ill_capability_lso_reset(ill_t *, mblk_t **);
243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *);
245 static void	ill_capability_dls_reset(ill_t *, mblk_t **);
246 static void	ill_capability_dls_disable(ill_t *);
247 
248 static void	illgrp_cache_delete(ire_t *, char *);
249 static void	illgrp_delete(ill_t *ill);
250 static void	illgrp_reset_schednext(ill_t *ill);
251 
252 static ill_t	*ill_prev_usesrc(ill_t *);
253 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
254 static void	ill_disband_usesrc_group(ill_t *);
255 
256 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
257 
258 /*
259  * if we go over the memory footprint limit more than once in this msec
260  * interval, we'll start pruning aggressively.
261  */
262 int ip_min_frag_prune_time = 0;
263 
264 /*
265  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
266  * and the IPsec DOI
267  */
268 #define	MAX_IPSEC_ALGS	256
269 
270 #define	BITSPERBYTE	8
271 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
272 
273 #define	IPSEC_ALG_ENABLE(algs, algid) \
274 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
275 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
276 
277 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
278 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
279 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
280 
281 typedef uint8_t ipsec_capab_elem_t;
282 
283 /*
284  * Per-algorithm parameters.  Note that at present, only encryption
285  * algorithms have variable keysize (IKE does not provide a way to negotiate
286  * auth algorithm keysize).
287  *
288  * All sizes here are in bits.
289  */
290 typedef struct
291 {
292 	uint16_t	minkeylen;
293 	uint16_t	maxkeylen;
294 } ipsec_capab_algparm_t;
295 
296 /*
297  * Per-ill capabilities.
298  */
299 struct ill_ipsec_capab_s {
300 	ipsec_capab_elem_t *encr_hw_algs;
301 	ipsec_capab_elem_t *auth_hw_algs;
302 	uint32_t algs_size;	/* size of _hw_algs in bytes */
303 	/* algorithm key lengths */
304 	ipsec_capab_algparm_t *encr_algparm;
305 	uint32_t encr_algparm_size;
306 	uint32_t encr_algparm_end;
307 };
308 
309 /*
310  * The field values are larger than strictly necessary for simple
311  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
312  */
313 static area_t	ip_area_template = {
314 	AR_ENTRY_ADD,			/* area_cmd */
315 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
316 					/* area_name_offset */
317 	/* area_name_length temporarily holds this structure length */
318 	sizeof (area_t),			/* area_name_length */
319 	IP_ARP_PROTO_TYPE,		/* area_proto */
320 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
321 	IP_ADDR_LEN,			/* area_proto_addr_length */
322 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
323 					/* area_proto_mask_offset */
324 	0,				/* area_flags */
325 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
326 					/* area_hw_addr_offset */
327 	/* Zero length hw_addr_length means 'use your idea of the address' */
328 	0				/* area_hw_addr_length */
329 };
330 
331 /*
332  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
333  * support
334  */
335 static area_t	ip6_area_template = {
336 	AR_ENTRY_ADD,			/* area_cmd */
337 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
338 					/* area_name_offset */
339 	/* area_name_length temporarily holds this structure length */
340 	sizeof (area_t),			/* area_name_length */
341 	IP_ARP_PROTO_TYPE,		/* area_proto */
342 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
343 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
344 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
345 					/* area_proto_mask_offset */
346 	0,				/* area_flags */
347 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
348 					/* area_hw_addr_offset */
349 	/* Zero length hw_addr_length means 'use your idea of the address' */
350 	0				/* area_hw_addr_length */
351 };
352 
353 static ared_t	ip_ared_template = {
354 	AR_ENTRY_DELETE,
355 	sizeof (ared_t) + IP_ADDR_LEN,
356 	sizeof (ared_t),
357 	IP_ARP_PROTO_TYPE,
358 	sizeof (ared_t),
359 	IP_ADDR_LEN
360 };
361 
362 static ared_t	ip6_ared_template = {
363 	AR_ENTRY_DELETE,
364 	sizeof (ared_t) + IPV6_ADDR_LEN,
365 	sizeof (ared_t),
366 	IP_ARP_PROTO_TYPE,
367 	sizeof (ared_t),
368 	IPV6_ADDR_LEN
369 };
370 
371 /*
372  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
373  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
374  * areq is used).
375  */
376 static areq_t	ip_areq_template = {
377 	AR_ENTRY_QUERY,			/* cmd */
378 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
379 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
380 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
381 	sizeof (areq_t),			/* target addr offset */
382 	IP_ADDR_LEN,			/* target addr_length */
383 	0,				/* flags */
384 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
385 	IP_ADDR_LEN,			/* sender addr length */
386 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
387 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
388 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
389 	/* anything else filled in by the code */
390 };
391 
392 static arc_t	ip_aru_template = {
393 	AR_INTERFACE_UP,
394 	sizeof (arc_t),		/* Name offset */
395 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
396 };
397 
398 static arc_t	ip_ard_template = {
399 	AR_INTERFACE_DOWN,
400 	sizeof (arc_t),		/* Name offset */
401 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
402 };
403 
404 static arc_t	ip_aron_template = {
405 	AR_INTERFACE_ON,
406 	sizeof (arc_t),		/* Name offset */
407 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
408 };
409 
410 static arc_t	ip_aroff_template = {
411 	AR_INTERFACE_OFF,
412 	sizeof (arc_t),		/* Name offset */
413 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
414 };
415 
416 
417 static arma_t	ip_arma_multi_template = {
418 	AR_MAPPING_ADD,
419 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
420 				/* Name offset */
421 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
422 	IP_ARP_PROTO_TYPE,
423 	sizeof (arma_t),			/* proto_addr_offset */
424 	IP_ADDR_LEN,				/* proto_addr_length */
425 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
426 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
427 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
428 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
429 	IP_MAX_HW_LEN,				/* hw_addr_length */
430 	0,					/* hw_mapping_start */
431 };
432 
433 static ipft_t	ip_ioctl_ftbl[] = {
434 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
435 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
436 		IPFT_F_NO_REPLY },
437 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
438 		IPFT_F_NO_REPLY },
439 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
440 	{ 0 }
441 };
442 
443 /* Simple ICMP IP Header Template */
444 static ipha_t icmp_ipha = {
445 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
446 };
447 
448 /* Flag descriptors for ip_ipif_report */
449 static nv_t	ipif_nv_tbl[] = {
450 	{ IPIF_UP,		"UP" },
451 	{ IPIF_BROADCAST,	"BROADCAST" },
452 	{ ILLF_DEBUG,		"DEBUG" },
453 	{ PHYI_LOOPBACK,	"LOOPBACK" },
454 	{ IPIF_POINTOPOINT,	"POINTOPOINT" },
455 	{ ILLF_NOTRAILERS,	"NOTRAILERS" },
456 	{ PHYI_RUNNING,		"RUNNING" },
457 	{ ILLF_NOARP,		"NOARP" },
458 	{ PHYI_PROMISC,		"PROMISC" },
459 	{ PHYI_ALLMULTI,	"ALLMULTI" },
460 	{ PHYI_INTELLIGENT,	"INTELLIGENT" },
461 	{ ILLF_MULTICAST,	"MULTICAST" },
462 	{ PHYI_MULTI_BCAST,	"MULTI_BCAST" },
463 	{ IPIF_UNNUMBERED,	"UNNUMBERED" },
464 	{ IPIF_DHCPRUNNING,	"DHCP" },
465 	{ IPIF_PRIVATE,		"PRIVATE" },
466 	{ IPIF_NOXMIT,		"NOXMIT" },
467 	{ IPIF_NOLOCAL,		"NOLOCAL" },
468 	{ IPIF_DEPRECATED,	"DEPRECATED" },
469 	{ IPIF_PREFERRED,	"PREFERRED" },
470 	{ IPIF_TEMPORARY,	"TEMPORARY" },
471 	{ IPIF_ADDRCONF,	"ADDRCONF" },
472 	{ PHYI_VIRTUAL,		"VIRTUAL" },
473 	{ ILLF_ROUTER,		"ROUTER" },
474 	{ ILLF_NONUD,		"NONUD" },
475 	{ IPIF_ANYCAST,		"ANYCAST" },
476 	{ ILLF_NORTEXCH,	"NORTEXCH" },
477 	{ ILLF_IPV4,		"IPV4" },
478 	{ ILLF_IPV6,		"IPV6" },
479 	{ IPIF_MIPRUNNING,	"MIP" },
480 	{ IPIF_NOFAILOVER,	"NOFAILOVER" },
481 	{ PHYI_FAILED,		"FAILED" },
482 	{ PHYI_STANDBY,		"STANDBY" },
483 	{ PHYI_INACTIVE,	"INACTIVE" },
484 	{ PHYI_OFFLINE,		"OFFLINE" },
485 };
486 
487 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
488 
489 static ip_m_t	ip_m_tbl[] = {
490 	{ DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
491 	    ip_ether_v6intfid },
492 	{ DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
493 	    ip_nodef_v6intfid },
494 	{ DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
495 	    ip_nodef_v6intfid },
496 	{ DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
497 	    ip_nodef_v6intfid },
498 	{ DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
499 	    ip_ether_v6intfid },
500 	{ DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo,
501 	    ip_ib_v6intfid },
502 	{ SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL},
503 	{ DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo,
504 	    ip_nodef_v6intfid }
505 };
506 
507 static ill_t	ill_null;		/* Empty ILL for init. */
508 char	ipif_loopback_name[] = "lo0";
509 static char *ipv4_forward_suffix = ":ip_forwarding";
510 static char *ipv6_forward_suffix = ":ip6_forwarding";
511 static	sin6_t	sin6_null;	/* Zero address for quick clears */
512 static	sin_t	sin_null;	/* Zero address for quick clears */
513 
514 /* When set search for unused ipif_seqid */
515 static ipif_t	ipif_zero;
516 
517 /*
518  * ppa arena is created after these many
519  * interfaces have been plumbed.
520  */
521 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
522 
523 /*
524  * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout
525  * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is
526  * set through platform specific code (Niagara/Ontario).
527  */
528 #define	SOFT_RINGS_ENABLED()	(ip_soft_rings_cnt ? \
529 		(ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE)
530 
531 #define	ILL_CAPAB_DLS	(ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL)
532 
533 static uint_t
534 ipif_rand(ip_stack_t *ipst)
535 {
536 	ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 +
537 	    12345;
538 	return ((ipst->ips_ipif_src_random >> 16) & 0x7fff);
539 }
540 
541 /*
542  * Allocate per-interface mibs.
543  * Returns true if ok. False otherwise.
544  *  ipsq  may not yet be allocated (loopback case ).
545  */
546 static boolean_t
547 ill_allocate_mibs(ill_t *ill)
548 {
549 	/* Already allocated? */
550 	if (ill->ill_ip_mib != NULL) {
551 		if (ill->ill_isv6)
552 			ASSERT(ill->ill_icmp6_mib != NULL);
553 		return (B_TRUE);
554 	}
555 
556 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
557 	    KM_NOSLEEP);
558 	if (ill->ill_ip_mib == NULL) {
559 		return (B_FALSE);
560 	}
561 
562 	/* Setup static information */
563 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
564 	    sizeof (mib2_ipIfStatsEntry_t));
565 	if (ill->ill_isv6) {
566 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
567 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
568 		    sizeof (mib2_ipv6AddrEntry_t));
569 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
570 		    sizeof (mib2_ipv6RouteEntry_t));
571 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
572 		    sizeof (mib2_ipv6NetToMediaEntry_t));
573 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
574 		    sizeof (ipv6_member_t));
575 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
576 		    sizeof (ipv6_grpsrc_t));
577 	} else {
578 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
579 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
580 		    sizeof (mib2_ipAddrEntry_t));
581 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
582 		    sizeof (mib2_ipRouteEntry_t));
583 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
584 		    sizeof (mib2_ipNetToMediaEntry_t));
585 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
586 		    sizeof (ip_member_t));
587 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
588 		    sizeof (ip_grpsrc_t));
589 
590 		/*
591 		 * For a v4 ill, we are done at this point, because per ill
592 		 * icmp mibs are only used for v6.
593 		 */
594 		return (B_TRUE);
595 	}
596 
597 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
598 	    KM_NOSLEEP);
599 	if (ill->ill_icmp6_mib == NULL) {
600 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
601 		ill->ill_ip_mib = NULL;
602 		return (B_FALSE);
603 	}
604 	/* static icmp info */
605 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
606 	    sizeof (mib2_ipv6IfIcmpEntry_t);
607 	/*
608 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
609 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
610 	 * -> ill_phyint_reinit
611 	 */
612 	return (B_TRUE);
613 }
614 
615 /*
616  * Common code for preparation of ARP commands.  Two points to remember:
617  * 	1) The ill_name is tacked on at the end of the allocated space so
618  *	   the templates name_offset field must contain the total space
619  *	   to allocate less the name length.
620  *
621  *	2) The templates name_length field should contain the *template*
622  *	   length.  We use it as a parameter to bcopy() and then write
623  *	   the real ill_name_length into the name_length field of the copy.
624  * (Always called as writer.)
625  */
626 mblk_t *
627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr)
628 {
629 	arc_t	*arc = (arc_t *)template;
630 	char	*cp;
631 	int	len;
632 	mblk_t	*mp;
633 	uint_t	name_length = ill->ill_name_length;
634 	uint_t	template_len = arc->arc_name_length;
635 
636 	len = arc->arc_name_offset + name_length;
637 	mp = allocb(len, BPRI_HI);
638 	if (mp == NULL)
639 		return (NULL);
640 	cp = (char *)mp->b_rptr;
641 	mp->b_wptr = (uchar_t *)&cp[len];
642 	if (template_len)
643 		bcopy(template, cp, template_len);
644 	if (len > template_len)
645 		bzero(&cp[template_len], len - template_len);
646 	mp->b_datap->db_type = M_PROTO;
647 
648 	arc = (arc_t *)cp;
649 	arc->arc_name_length = name_length;
650 	cp = (char *)arc + arc->arc_name_offset;
651 	bcopy(ill->ill_name, cp, name_length);
652 
653 	if (addr) {
654 		area_t	*area = (area_t *)mp->b_rptr;
655 
656 		cp = (char *)area + area->area_proto_addr_offset;
657 		bcopy(addr, cp, area->area_proto_addr_length);
658 		if (area->area_cmd == AR_ENTRY_ADD) {
659 			cp = (char *)area;
660 			len = area->area_proto_addr_length;
661 			if (area->area_proto_mask_offset)
662 				cp += area->area_proto_mask_offset;
663 			else
664 				cp += area->area_proto_addr_offset + len;
665 			while (len-- > 0)
666 				*cp++ = (char)~0;
667 		}
668 	}
669 	return (mp);
670 }
671 
672 mblk_t *
673 ipif_area_alloc(ipif_t *ipif)
674 {
675 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template,
676 	    (char *)&ipif->ipif_lcl_addr));
677 }
678 
679 mblk_t *
680 ipif_ared_alloc(ipif_t *ipif)
681 {
682 	return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template,
683 	    (char *)&ipif->ipif_lcl_addr));
684 }
685 
686 mblk_t *
687 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
688 {
689 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
690 	    (char *)&addr));
691 }
692 
693 /*
694  * Completely vaporize a lower level tap and all associated interfaces.
695  * ill_delete is called only out of ip_close when the device control
696  * stream is being closed.
697  */
698 void
699 ill_delete(ill_t *ill)
700 {
701 	ipif_t	*ipif;
702 	ill_t	*prev_ill;
703 	ip_stack_t	*ipst = ill->ill_ipst;
704 
705 	/*
706 	 * ill_delete may be forcibly entering the ipsq. The previous
707 	 * ioctl may not have completed and may need to be aborted.
708 	 * ipsq_flush takes care of it. If we don't need to enter the
709 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
710 	 * ill_delete_tail is sufficient.
711 	 */
712 	ipsq_flush(ill);
713 
714 	/*
715 	 * Nuke all interfaces.  ipif_free will take down the interface,
716 	 * remove it from the list, and free the data structure.
717 	 * Walk down the ipif list and remove the logical interfaces
718 	 * first before removing the main ipif. We can't unplumb
719 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
720 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
721 	 * POINTOPOINT.
722 	 *
723 	 * If ill_ipif was not properly initialized (i.e low on memory),
724 	 * then no interfaces to clean up. In this case just clean up the
725 	 * ill.
726 	 */
727 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
728 		ipif_free(ipif);
729 
730 	/*
731 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
732 	 * So nobody can be using this mp now. Free the mp allocated for
733 	 * honoring ILLF_NOARP
734 	 */
735 	freemsg(ill->ill_arp_on_mp);
736 	ill->ill_arp_on_mp = NULL;
737 
738 	/* Clean up msgs on pending upcalls for mrouted */
739 	reset_mrt_ill(ill);
740 
741 	/*
742 	 * ipif_free -> reset_conn_ipif will remove all multicast
743 	 * references for IPv4. For IPv6, we need to do it here as
744 	 * it points only at ills.
745 	 */
746 	reset_conn_ill(ill);
747 
748 	/*
749 	 * ill_down will arrange to blow off any IRE's dependent on this
750 	 * ILL, and shut down fragmentation reassembly.
751 	 */
752 	ill_down(ill);
753 
754 	/* Let SCTP know, so that it can remove this from its list. */
755 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
756 
757 	/*
758 	 * If an address on this ILL is being used as a source address then
759 	 * clear out the pointers in other ILLs that point to this ILL.
760 	 */
761 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
762 	if (ill->ill_usesrc_grp_next != NULL) {
763 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
764 			ill_disband_usesrc_group(ill);
765 		} else {	/* consumer of the usesrc ILL */
766 			prev_ill = ill_prev_usesrc(ill);
767 			prev_ill->ill_usesrc_grp_next =
768 			    ill->ill_usesrc_grp_next;
769 		}
770 	}
771 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
772 }
773 
774 static void
775 ipif_non_duplicate(ipif_t *ipif)
776 {
777 	ill_t *ill = ipif->ipif_ill;
778 	mutex_enter(&ill->ill_lock);
779 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
780 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
781 		ASSERT(ill->ill_ipif_dup_count > 0);
782 		ill->ill_ipif_dup_count--;
783 	}
784 	mutex_exit(&ill->ill_lock);
785 }
786 
787 /*
788  * Send all deferred messages without waiting for their ACKs.
789  */
790 void
791 ill_send_all_deferred_mp(ill_t *ill)
792 {
793 	mblk_t *mp, *next;
794 
795 	/*
796 	 * Clear ill_dlpi_pending so that the message is not queued in
797 	 * ill_dlpi_send().
798 	 */
799 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
800 
801 	for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) {
802 		next = mp->b_next;
803 		mp->b_next = NULL;
804 		ill_dlpi_send(ill, mp);
805 	}
806 	ill->ill_dlpi_deferred = NULL;
807 }
808 
809 /*
810  * ill_delete_tail is called from ip_modclose after all references
811  * to the closing ill are gone. The wait is done in ip_modclose
812  */
813 void
814 ill_delete_tail(ill_t *ill)
815 {
816 	mblk_t	**mpp;
817 	ipif_t	*ipif;
818 	ip_stack_t	*ipst = ill->ill_ipst;
819 
820 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
821 		ipif_non_duplicate(ipif);
822 		ipif_down_tail(ipif);
823 	}
824 
825 	ASSERT(ill->ill_ipif_dup_count == 0 &&
826 	    ill->ill_arp_down_mp == NULL &&
827 	    ill->ill_arp_del_mapping_mp == NULL);
828 
829 	/*
830 	 * If polling capability is enabled (which signifies direct
831 	 * upcall into IP and driver has ill saved as a handle),
832 	 * we need to make sure that unbind has completed before we
833 	 * let the ill disappear and driver no longer has any reference
834 	 * to this ill.
835 	 */
836 	mutex_enter(&ill->ill_lock);
837 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
838 		cv_wait(&ill->ill_cv, &ill->ill_lock);
839 	mutex_exit(&ill->ill_lock);
840 
841 	/*
842 	 * Clean up polling and soft ring capabilities
843 	 */
844 	if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))
845 		ill_capability_dls_disable(ill);
846 
847 	/*
848 	 * Send the detach if there's one to send (i.e., if we're above a
849 	 * style 2 DLPI driver).
850 	 */
851 	if (ill->ill_detach_mp != NULL) {
852 		ill_dlpi_send(ill, ill->ill_detach_mp);
853 		ill->ill_detach_mp = NULL;
854 	}
855 
856 	if (ill->ill_net_type != IRE_LOOPBACK)
857 		qprocsoff(ill->ill_rq);
858 
859 	/*
860 	 * We do an ipsq_flush once again now. New messages could have
861 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
862 	 * could also have landed up if an ioctl thread had looked up
863 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
864 	 * enqueued the ioctl when we did the ipsq_flush last time.
865 	 */
866 	ipsq_flush(ill);
867 
868 	/*
869 	 * Free capabilities.
870 	 */
871 	if (ill->ill_ipsec_capab_ah != NULL) {
872 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
873 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
874 		ill->ill_ipsec_capab_ah = NULL;
875 	}
876 
877 	if (ill->ill_ipsec_capab_esp != NULL) {
878 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
879 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
880 		ill->ill_ipsec_capab_esp = NULL;
881 	}
882 
883 	if (ill->ill_mdt_capab != NULL) {
884 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
885 		ill->ill_mdt_capab = NULL;
886 	}
887 
888 	if (ill->ill_hcksum_capab != NULL) {
889 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
890 		ill->ill_hcksum_capab = NULL;
891 	}
892 
893 	if (ill->ill_zerocopy_capab != NULL) {
894 		kmem_free(ill->ill_zerocopy_capab,
895 		    sizeof (ill_zerocopy_capab_t));
896 		ill->ill_zerocopy_capab = NULL;
897 	}
898 
899 	if (ill->ill_lso_capab != NULL) {
900 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
901 		ill->ill_lso_capab = NULL;
902 	}
903 
904 	if (ill->ill_dls_capab != NULL) {
905 		CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn);
906 		ill->ill_dls_capab->ill_unbind_conn = NULL;
907 		kmem_free(ill->ill_dls_capab,
908 		    sizeof (ill_dls_capab_t) +
909 		    (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS));
910 		ill->ill_dls_capab = NULL;
911 	}
912 
913 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL));
914 
915 	while (ill->ill_ipif != NULL)
916 		ipif_free_tail(ill->ill_ipif);
917 
918 	ill_down_tail(ill);
919 
920 	/*
921 	 * We have removed all references to ilm from conn and the ones joined
922 	 * within the kernel.
923 	 *
924 	 * We don't walk conns, mrts and ires because
925 	 *
926 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
927 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
928 	 *    ill references.
929 	 */
930 	ASSERT(ilm_walk_ill(ill) == 0);
931 	/*
932 	 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free
933 	 * could free the phyint. No more reference to the phyint after this
934 	 * point.
935 	 */
936 	(void) ill_glist_delete(ill);
937 
938 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
939 	if (ill->ill_ndd_name != NULL)
940 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
941 	rw_exit(&ipst->ips_ip_g_nd_lock);
942 
943 
944 	if (ill->ill_frag_ptr != NULL) {
945 		uint_t count;
946 
947 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
948 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
949 		}
950 		mi_free(ill->ill_frag_ptr);
951 		ill->ill_frag_ptr = NULL;
952 		ill->ill_frag_hash_tbl = NULL;
953 	}
954 
955 	freemsg(ill->ill_nd_lla_mp);
956 	/* Free all retained control messages. */
957 	mpp = &ill->ill_first_mp_to_free;
958 	do {
959 		while (mpp[0]) {
960 			mblk_t  *mp;
961 			mblk_t  *mp1;
962 
963 			mp = mpp[0];
964 			mpp[0] = mp->b_next;
965 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
966 				mp1->b_next = NULL;
967 				mp1->b_prev = NULL;
968 			}
969 			freemsg(mp);
970 		}
971 	} while (mpp++ != &ill->ill_last_mp_to_free);
972 
973 	ill_free_mib(ill);
974 	/* Drop refcnt here */
975 	netstack_rele(ill->ill_ipst->ips_netstack);
976 	ill->ill_ipst = NULL;
977 
978 	ILL_TRACE_CLEANUP(ill);
979 }
980 
981 static void
982 ill_free_mib(ill_t *ill)
983 {
984 	ip_stack_t *ipst = ill->ill_ipst;
985 
986 	/*
987 	 * MIB statistics must not be lost, so when an interface
988 	 * goes away the counter values will be added to the global
989 	 * MIBs.
990 	 */
991 	if (ill->ill_ip_mib != NULL) {
992 		if (ill->ill_isv6) {
993 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
994 			    ill->ill_ip_mib);
995 		} else {
996 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
997 			    ill->ill_ip_mib);
998 		}
999 
1000 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
1001 		ill->ill_ip_mib = NULL;
1002 	}
1003 	if (ill->ill_icmp6_mib != NULL) {
1004 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
1005 		    ill->ill_icmp6_mib);
1006 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
1007 		ill->ill_icmp6_mib = NULL;
1008 	}
1009 }
1010 
1011 /*
1012  * Concatenate together a physical address and a sap.
1013  *
1014  * Sap_lengths are interpreted as follows:
1015  *   sap_length == 0	==>	no sap
1016  *   sap_length > 0	==>	sap is at the head of the dlpi address
1017  *   sap_length < 0	==>	sap is at the tail of the dlpi address
1018  */
1019 static void
1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
1021     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
1022 {
1023 	uint16_t sap_addr = (uint16_t)sap_src;
1024 
1025 	if (sap_length == 0) {
1026 		if (phys_src == NULL)
1027 			bzero(dst, phys_length);
1028 		else
1029 			bcopy(phys_src, dst, phys_length);
1030 	} else if (sap_length < 0) {
1031 		if (phys_src == NULL)
1032 			bzero(dst, phys_length);
1033 		else
1034 			bcopy(phys_src, dst, phys_length);
1035 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1036 	} else {
1037 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1038 		if (phys_src == NULL)
1039 			bzero((char *)dst + sap_length, phys_length);
1040 		else
1041 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1042 	}
1043 }
1044 
1045 /*
1046  * Generate a dl_unitdata_req mblk for the device and address given.
1047  * addr_length is the length of the physical portion of the address.
1048  * If addr is NULL include an all zero address of the specified length.
1049  * TRUE? In any case, addr_length is taken to be the entire length of the
1050  * dlpi address, including the absolute value of sap_length.
1051  */
1052 mblk_t *
1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1054 		t_scalar_t sap_length)
1055 {
1056 	dl_unitdata_req_t *dlur;
1057 	mblk_t	*mp;
1058 	t_scalar_t	abs_sap_length;		/* absolute value */
1059 
1060 	abs_sap_length = ABS(sap_length);
1061 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1062 		DL_UNITDATA_REQ);
1063 	if (mp == NULL)
1064 		return (NULL);
1065 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1066 	/* HACK: accomodate incompatible DLPI drivers */
1067 	if (addr_length == 8)
1068 		addr_length = 6;
1069 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1070 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1071 	dlur->dl_priority.dl_min = 0;
1072 	dlur->dl_priority.dl_max = 0;
1073 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1074 	    (uchar_t *)&dlur[1]);
1075 	return (mp);
1076 }
1077 
1078 /*
1079  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp
1080  * Return an error if we already have 1 or more ioctls in progress.
1081  * This is used only for non-exclusive ioctls. Currently this is used
1082  * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive
1083  * and thus need to use ipsq_pending_mp_add.
1084  */
1085 boolean_t
1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1087 {
1088 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1089 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1090 	/*
1091 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls.
1092 	 */
1093 	ASSERT((add_mp->b_datap->db_type == M_IOCDATA) ||
1094 	    (add_mp->b_datap->db_type == M_IOCTL));
1095 
1096 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1097 	/*
1098 	 * Return error if the conn has started closing. The conn
1099 	 * could have finished cleaning up the pending mp list,
1100 	 * If so we should not add another mp to the list negating
1101 	 * the cleanup.
1102 	 */
1103 	if (connp->conn_state_flags & CONN_CLOSING)
1104 		return (B_FALSE);
1105 	/*
1106 	 * Add the pending mp to the head of the list, chained by b_next.
1107 	 * Note down the conn on which the ioctl request came, in b_prev.
1108 	 * This will be used to later get the conn, when we get a response
1109 	 * on the ill queue, from some other module (typically arp)
1110 	 */
1111 	add_mp->b_next = (void *)ill->ill_pending_mp;
1112 	add_mp->b_queue = CONNP_TO_WQ(connp);
1113 	ill->ill_pending_mp = add_mp;
1114 	if (connp != NULL)
1115 		connp->conn_oper_pending_ill = ill;
1116 	return (B_TRUE);
1117 }
1118 
1119 /*
1120  * Retrieve the ill_pending_mp and return it. We have to walk the list
1121  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1122  */
1123 mblk_t *
1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1125 {
1126 	mblk_t	*prev = NULL;
1127 	mblk_t	*curr = NULL;
1128 	uint_t	id;
1129 	conn_t	*connp;
1130 
1131 	/*
1132 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1133 	 * up the pending mp, but it does not know the ioc_id and
1134 	 * passes in a zero for it.
1135 	 */
1136 	mutex_enter(&ill->ill_lock);
1137 	if (ioc_id != 0)
1138 		*connpp = NULL;
1139 
1140 	/* Search the list for the appropriate ioctl based on ioc_id */
1141 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1142 	    prev = curr, curr = curr->b_next) {
1143 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1144 		connp = Q_TO_CONN(curr->b_queue);
1145 		/* Match based on the ioc_id or based on the conn */
1146 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1147 			break;
1148 	}
1149 
1150 	if (curr != NULL) {
1151 		/* Unlink the mblk from the pending mp list */
1152 		if (prev != NULL) {
1153 			prev->b_next = curr->b_next;
1154 		} else {
1155 			ASSERT(ill->ill_pending_mp == curr);
1156 			ill->ill_pending_mp = curr->b_next;
1157 		}
1158 
1159 		/*
1160 		 * conn refcnt must have been bumped up at the start of
1161 		 * the ioctl. So we can safely access the conn.
1162 		 */
1163 		ASSERT(CONN_Q(curr->b_queue));
1164 		*connpp = Q_TO_CONN(curr->b_queue);
1165 		curr->b_next = NULL;
1166 		curr->b_queue = NULL;
1167 	}
1168 
1169 	mutex_exit(&ill->ill_lock);
1170 
1171 	return (curr);
1172 }
1173 
1174 /*
1175  * Add the pending mp to the list. There can be only 1 pending mp
1176  * in the list. Any exclusive ioctl that needs to wait for a response
1177  * from another module or driver needs to use this function to set
1178  * the ipsq_pending_mp to the ioctl mblk and wait for the response from
1179  * the other module/driver. This is also used while waiting for the
1180  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1181  */
1182 boolean_t
1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1184     int waitfor)
1185 {
1186 	ipsq_t	*ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
1187 
1188 	ASSERT(IAM_WRITER_IPIF(ipif));
1189 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1190 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1191 	ASSERT(ipsq->ipsq_pending_mp == NULL);
1192 	/*
1193 	 * The caller may be using a different ipif than the one passed into
1194 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1195 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1196 	 * that `ipsq_current_ipif == ipif'.
1197 	 */
1198 	ASSERT(ipsq->ipsq_current_ipif != NULL);
1199 
1200 	/*
1201 	 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls,
1202 	 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver.
1203 	 */
1204 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) ||
1205 	    (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) ||
1206 	    (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO));
1207 
1208 	if (connp != NULL) {
1209 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1210 		/*
1211 		 * Return error if the conn has started closing. The conn
1212 		 * could have finished cleaning up the pending mp list,
1213 		 * If so we should not add another mp to the list negating
1214 		 * the cleanup.
1215 		 */
1216 		if (connp->conn_state_flags & CONN_CLOSING)
1217 			return (B_FALSE);
1218 	}
1219 	mutex_enter(&ipsq->ipsq_lock);
1220 	ipsq->ipsq_pending_ipif = ipif;
1221 	/*
1222 	 * Note down the queue in b_queue. This will be returned by
1223 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1224 	 * the processing
1225 	 */
1226 	add_mp->b_next = NULL;
1227 	add_mp->b_queue = q;
1228 	ipsq->ipsq_pending_mp = add_mp;
1229 	ipsq->ipsq_waitfor = waitfor;
1230 
1231 	if (connp != NULL)
1232 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1233 	mutex_exit(&ipsq->ipsq_lock);
1234 	return (B_TRUE);
1235 }
1236 
1237 /*
1238  * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp
1239  * queued in the list.
1240  */
1241 mblk_t *
1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1243 {
1244 	mblk_t	*curr = NULL;
1245 
1246 	mutex_enter(&ipsq->ipsq_lock);
1247 	*connpp = NULL;
1248 	if (ipsq->ipsq_pending_mp == NULL) {
1249 		mutex_exit(&ipsq->ipsq_lock);
1250 		return (NULL);
1251 	}
1252 
1253 	/* There can be only 1 such excl message */
1254 	curr = ipsq->ipsq_pending_mp;
1255 	ASSERT(curr != NULL && curr->b_next == NULL);
1256 	ipsq->ipsq_pending_ipif = NULL;
1257 	ipsq->ipsq_pending_mp = NULL;
1258 	ipsq->ipsq_waitfor = 0;
1259 	mutex_exit(&ipsq->ipsq_lock);
1260 
1261 	if (CONN_Q(curr->b_queue)) {
1262 		/*
1263 		 * This mp did a refhold on the conn, at the start of the ioctl.
1264 		 * So we can safely return a pointer to the conn to the caller.
1265 		 */
1266 		*connpp = Q_TO_CONN(curr->b_queue);
1267 	} else {
1268 		*connpp = NULL;
1269 	}
1270 	curr->b_next = NULL;
1271 	curr->b_prev = NULL;
1272 	return (curr);
1273 }
1274 
1275 /*
1276  * Cleanup the ioctl mp queued in ipsq_pending_mp
1277  * - Called in the ill_delete path
1278  * - Called in the M_ERROR or M_HANGUP path on the ill.
1279  * - Called in the conn close path.
1280  */
1281 boolean_t
1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1283 {
1284 	mblk_t	*mp;
1285 	ipsq_t	*ipsq;
1286 	queue_t	*q;
1287 	ipif_t	*ipif;
1288 
1289 	ASSERT(IAM_WRITER_ILL(ill));
1290 	ipsq = ill->ill_phyint->phyint_ipsq;
1291 	mutex_enter(&ipsq->ipsq_lock);
1292 	/*
1293 	 * If connp is null, unconditionally clean up the ipsq_pending_mp.
1294 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1295 	 * even if it is meant for another ill, since we have to enqueue
1296 	 * a new mp now in ipsq_pending_mp to complete the ipif_down.
1297 	 * If connp is non-null we are called from the conn close path.
1298 	 */
1299 	mp = ipsq->ipsq_pending_mp;
1300 	if (mp == NULL || (connp != NULL &&
1301 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1302 		mutex_exit(&ipsq->ipsq_lock);
1303 		return (B_FALSE);
1304 	}
1305 	/* Now remove from the ipsq_pending_mp */
1306 	ipsq->ipsq_pending_mp = NULL;
1307 	q = mp->b_queue;
1308 	mp->b_next = NULL;
1309 	mp->b_prev = NULL;
1310 	mp->b_queue = NULL;
1311 
1312 	/* If MOVE was in progress, clear the move_in_progress fields also. */
1313 	ill = ipsq->ipsq_pending_ipif->ipif_ill;
1314 	if (ill->ill_move_in_progress) {
1315 		ILL_CLEAR_MOVE(ill);
1316 	} else if (ill->ill_up_ipifs) {
1317 		ill_group_cleanup(ill);
1318 	}
1319 
1320 	ipif = ipsq->ipsq_pending_ipif;
1321 	ipsq->ipsq_pending_ipif = NULL;
1322 	ipsq->ipsq_waitfor = 0;
1323 	ipsq->ipsq_current_ipif = NULL;
1324 	ipsq->ipsq_current_ioctl = 0;
1325 	mutex_exit(&ipsq->ipsq_lock);
1326 
1327 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1328 		if (connp == NULL) {
1329 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1330 		} else {
1331 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1332 			mutex_enter(&ipif->ipif_ill->ill_lock);
1333 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1334 			mutex_exit(&ipif->ipif_ill->ill_lock);
1335 		}
1336 	} else {
1337 		/*
1338 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1339 		 * be just inet_freemsg. we have to restart it
1340 		 * otherwise the thread will be stuck.
1341 		 */
1342 		inet_freemsg(mp);
1343 	}
1344 	return (B_TRUE);
1345 }
1346 
1347 /*
1348  * The ill is closing. Cleanup all the pending mps. Called exclusively
1349  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1350  * knows this ill, and hence nobody can add an mp to this list
1351  */
1352 static void
1353 ill_pending_mp_cleanup(ill_t *ill)
1354 {
1355 	mblk_t	*mp;
1356 	queue_t	*q;
1357 
1358 	ASSERT(IAM_WRITER_ILL(ill));
1359 
1360 	mutex_enter(&ill->ill_lock);
1361 	/*
1362 	 * Every mp on the pending mp list originating from an ioctl
1363 	 * added 1 to the conn refcnt, at the start of the ioctl.
1364 	 * So bump it down now.  See comments in ip_wput_nondata()
1365 	 */
1366 	while (ill->ill_pending_mp != NULL) {
1367 		mp = ill->ill_pending_mp;
1368 		ill->ill_pending_mp = mp->b_next;
1369 		mutex_exit(&ill->ill_lock);
1370 
1371 		q = mp->b_queue;
1372 		ASSERT(CONN_Q(q));
1373 		mp->b_next = NULL;
1374 		mp->b_prev = NULL;
1375 		mp->b_queue = NULL;
1376 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1377 		mutex_enter(&ill->ill_lock);
1378 	}
1379 	ill->ill_pending_ipif = NULL;
1380 
1381 	mutex_exit(&ill->ill_lock);
1382 }
1383 
1384 /*
1385  * Called in the conn close path and ill delete path
1386  */
1387 static void
1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1389 {
1390 	ipsq_t	*ipsq;
1391 	mblk_t	*prev;
1392 	mblk_t	*curr;
1393 	mblk_t	*next;
1394 	queue_t	*q;
1395 	mblk_t	*tmp_list = NULL;
1396 
1397 	ASSERT(IAM_WRITER_ILL(ill));
1398 	if (connp != NULL)
1399 		q = CONNP_TO_WQ(connp);
1400 	else
1401 		q = ill->ill_wq;
1402 
1403 	ipsq = ill->ill_phyint->phyint_ipsq;
1404 	/*
1405 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1406 	 * In the case of ioctl from a conn, there can be only 1 mp
1407 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1408 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1409 	 * ioctls meant for this ill form conn's are not flushed. They will
1410 	 * be processed during ipsq_exit and will not find the ill and will
1411 	 * return error.
1412 	 */
1413 	mutex_enter(&ipsq->ipsq_lock);
1414 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1415 	    curr = next) {
1416 		next = curr->b_next;
1417 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1418 			/* Unlink the mblk from the pending mp list */
1419 			if (prev != NULL) {
1420 				prev->b_next = curr->b_next;
1421 			} else {
1422 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1423 				ipsq->ipsq_xopq_mphead = curr->b_next;
1424 			}
1425 			if (ipsq->ipsq_xopq_mptail == curr)
1426 				ipsq->ipsq_xopq_mptail = prev;
1427 			/*
1428 			 * Create a temporary list and release the ipsq lock
1429 			 * New elements are added to the head of the tmp_list
1430 			 */
1431 			curr->b_next = tmp_list;
1432 			tmp_list = curr;
1433 		} else {
1434 			prev = curr;
1435 		}
1436 	}
1437 	mutex_exit(&ipsq->ipsq_lock);
1438 
1439 	while (tmp_list != NULL) {
1440 		curr = tmp_list;
1441 		tmp_list = curr->b_next;
1442 		curr->b_next = NULL;
1443 		curr->b_prev = NULL;
1444 		curr->b_queue = NULL;
1445 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1446 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1447 			    CONN_CLOSE : NO_COPYOUT, NULL);
1448 		} else {
1449 			/*
1450 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1451 			 * this can't be just inet_freemsg. we have to
1452 			 * restart it otherwise the thread will be stuck.
1453 			 */
1454 			inet_freemsg(curr);
1455 		}
1456 	}
1457 }
1458 
1459 /*
1460  * This conn has started closing. Cleanup any pending ioctl from this conn.
1461  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1462  */
1463 void
1464 conn_ioctl_cleanup(conn_t *connp)
1465 {
1466 	mblk_t *curr;
1467 	ipsq_t	*ipsq;
1468 	ill_t	*ill;
1469 	boolean_t refheld;
1470 
1471 	/*
1472 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1473 	 * ioctl has not yet started, the mp is pending in the list headed by
1474 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1475 	 * ipsq_pending_mp. If the ioctl timed out in the streamhead but
1476 	 * is currently executing now the mp is not queued anywhere but
1477 	 * conn_oper_pending_ill is null. The conn close will wait
1478 	 * till the conn_ref drops to zero.
1479 	 */
1480 	mutex_enter(&connp->conn_lock);
1481 	ill = connp->conn_oper_pending_ill;
1482 	if (ill == NULL) {
1483 		mutex_exit(&connp->conn_lock);
1484 		return;
1485 	}
1486 
1487 	curr = ill_pending_mp_get(ill, &connp, 0);
1488 	if (curr != NULL) {
1489 		mutex_exit(&connp->conn_lock);
1490 		CONN_DEC_REF(connp);
1491 		inet_freemsg(curr);
1492 		return;
1493 	}
1494 	/*
1495 	 * We may not be able to refhold the ill if the ill/ipif
1496 	 * is changing. But we need to make sure that the ill will
1497 	 * not vanish. So we just bump up the ill_waiter count.
1498 	 */
1499 	refheld = ill_waiter_inc(ill);
1500 	mutex_exit(&connp->conn_lock);
1501 	if (refheld) {
1502 		if (ipsq_enter(ill, B_TRUE)) {
1503 			ill_waiter_dcr(ill);
1504 			/*
1505 			 * Check whether this ioctl has started and is
1506 			 * pending now in ipsq_pending_mp. If it is not
1507 			 * found there then check whether this ioctl has
1508 			 * not even started and is in the ipsq_xopq list.
1509 			 */
1510 			if (!ipsq_pending_mp_cleanup(ill, connp))
1511 				ipsq_xopq_mp_cleanup(ill, connp);
1512 			ipsq = ill->ill_phyint->phyint_ipsq;
1513 			ipsq_exit(ipsq, B_TRUE, B_TRUE);
1514 			return;
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * The ill is also closing and we could not bump up the
1520 	 * ill_waiter_count or we could not enter the ipsq. Leave
1521 	 * the cleanup to ill_delete
1522 	 */
1523 	mutex_enter(&connp->conn_lock);
1524 	while (connp->conn_oper_pending_ill != NULL)
1525 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1526 	mutex_exit(&connp->conn_lock);
1527 	if (refheld)
1528 		ill_waiter_dcr(ill);
1529 }
1530 
1531 /*
1532  * ipcl_walk function for cleaning up conn_*_ill fields.
1533  */
1534 static void
1535 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1536 {
1537 	ill_t	*ill = (ill_t *)arg;
1538 	ire_t	*ire;
1539 
1540 	mutex_enter(&connp->conn_lock);
1541 	if (connp->conn_multicast_ill == ill) {
1542 		/* Revert to late binding */
1543 		connp->conn_multicast_ill = NULL;
1544 		connp->conn_orig_multicast_ifindex = 0;
1545 	}
1546 	if (connp->conn_incoming_ill == ill)
1547 		connp->conn_incoming_ill = NULL;
1548 	if (connp->conn_outgoing_ill == ill)
1549 		connp->conn_outgoing_ill = NULL;
1550 	if (connp->conn_outgoing_pill == ill)
1551 		connp->conn_outgoing_pill = NULL;
1552 	if (connp->conn_nofailover_ill == ill)
1553 		connp->conn_nofailover_ill = NULL;
1554 	if (connp->conn_xmit_if_ill == ill)
1555 		connp->conn_xmit_if_ill = NULL;
1556 	if (connp->conn_ire_cache != NULL) {
1557 		ire = connp->conn_ire_cache;
1558 		/*
1559 		 * ip_newroute creates IRE_CACHE with ire_stq coming from
1560 		 * interface X and ipif coming from interface Y, if interface
1561 		 * X and Y are part of the same IPMPgroup. Thus whenever
1562 		 * interface X goes down, remove all references to it by
1563 		 * checking both on ire_ipif and ire_stq.
1564 		 */
1565 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1566 		    (ire->ire_type == IRE_CACHE &&
1567 		    ire->ire_stq == ill->ill_wq)) {
1568 			connp->conn_ire_cache = NULL;
1569 			mutex_exit(&connp->conn_lock);
1570 			ire_refrele_notr(ire);
1571 			return;
1572 		}
1573 	}
1574 	mutex_exit(&connp->conn_lock);
1575 
1576 }
1577 
1578 /* ARGSUSED */
1579 void
1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1581 {
1582 	ill_t	*ill = q->q_ptr;
1583 	ipif_t	*ipif;
1584 
1585 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1586 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1587 		ipif_non_duplicate(ipif);
1588 		ipif_down_tail(ipif);
1589 	}
1590 	ill_down_tail(ill);
1591 	freemsg(mp);
1592 	ipsq_current_finish(ipsq);
1593 }
1594 
1595 /*
1596  * ill_down_start is called when we want to down this ill and bring it up again
1597  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1598  * all interfaces, but don't tear down any plumbing.
1599  */
1600 boolean_t
1601 ill_down_start(queue_t *q, mblk_t *mp)
1602 {
1603 	ill_t	*ill = q->q_ptr;
1604 	ipif_t	*ipif;
1605 
1606 	ASSERT(IAM_WRITER_ILL(ill));
1607 
1608 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1609 		(void) ipif_down(ipif, NULL, NULL);
1610 
1611 	ill_down(ill);
1612 
1613 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1614 
1615 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1616 
1617 	/*
1618 	 * Atomically test and add the pending mp if references are active.
1619 	 */
1620 	mutex_enter(&ill->ill_lock);
1621 	if (!ill_is_quiescent(ill)) {
1622 		/* call cannot fail since `conn_t *' argument is NULL */
1623 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1624 		    mp, ILL_DOWN);
1625 		mutex_exit(&ill->ill_lock);
1626 		return (B_FALSE);
1627 	}
1628 	mutex_exit(&ill->ill_lock);
1629 	return (B_TRUE);
1630 }
1631 
1632 static void
1633 ill_down(ill_t *ill)
1634 {
1635 	ip_stack_t	*ipst = ill->ill_ipst;
1636 
1637 	/* Blow off any IREs dependent on this ILL. */
1638 	ire_walk(ill_downi, (char *)ill, ipst);
1639 
1640 	mutex_enter(&ipst->ips_ire_mrtun_lock);
1641 	if (ipst->ips_ire_mrtun_count != 0) {
1642 		mutex_exit(&ipst->ips_ire_mrtun_lock);
1643 		ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif,
1644 		    (char *)ill, NULL, ipst);
1645 	} else {
1646 		mutex_exit(&ipst->ips_ire_mrtun_lock);
1647 	}
1648 
1649 	/*
1650 	 * If any interface based forwarding table exists
1651 	 * Blow off the ires there dependent on this ill
1652 	 */
1653 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
1654 	if (ipst->ips_ire_srcif_table_count > 0) {
1655 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
1656 		ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill,
1657 		    ipst);
1658 	} else {
1659 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
1660 	}
1661 
1662 	/* Remove any conn_*_ill depending on this ill */
1663 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1664 
1665 	if (ill->ill_group != NULL) {
1666 		illgrp_delete(ill);
1667 	}
1668 }
1669 
1670 static void
1671 ill_down_tail(ill_t *ill)
1672 {
1673 	int	i;
1674 
1675 	/* Destroy ill_srcif_table if it exists */
1676 	/* Lock not reqd really because nobody should be able to access */
1677 	mutex_enter(&ill->ill_lock);
1678 	if (ill->ill_srcif_table != NULL) {
1679 		ill->ill_srcif_refcnt = 0;
1680 		for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) {
1681 			rw_destroy(&ill->ill_srcif_table[i].irb_lock);
1682 		}
1683 		kmem_free(ill->ill_srcif_table,
1684 		    IP_SRCIF_TABLE_SIZE * sizeof (irb_t));
1685 		ill->ill_srcif_table = NULL;
1686 		ill->ill_srcif_refcnt = 0;
1687 		ill->ill_mrtun_refcnt = 0;
1688 	}
1689 	mutex_exit(&ill->ill_lock);
1690 }
1691 
1692 /*
1693  * ire_walk routine used to delete every IRE that depends on queues
1694  * associated with 'ill'.  (Always called as writer.)
1695  */
1696 static void
1697 ill_downi(ire_t *ire, char *ill_arg)
1698 {
1699 	ill_t	*ill = (ill_t *)ill_arg;
1700 
1701 	/*
1702 	 * ip_newroute creates IRE_CACHE with ire_stq coming from
1703 	 * interface X and ipif coming from interface Y, if interface
1704 	 * X and Y are part of the same IPMP group. Thus whenever interface
1705 	 * X goes down, remove all references to it by checking both
1706 	 * on ire_ipif and ire_stq.
1707 	 */
1708 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1709 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1710 		ire_delete(ire);
1711 	}
1712 }
1713 
1714 /*
1715  * A seperate routine for deleting revtun and srcif based routes
1716  * are needed because the ires only deleted when the interface
1717  * is unplumbed. Also these ires have ire_in_ill non-null as well.
1718  * we want to keep mobile IP specific code separate.
1719  */
1720 static void
1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg)
1722 {
1723 	ill_t   *ill = (ill_t *)ill_arg;
1724 
1725 	ASSERT(ire->ire_in_ill != NULL);
1726 
1727 	if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) ||
1728 	    (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) {
1729 		ire_delete(ire);
1730 	}
1731 }
1732 
1733 /*
1734  * Remove ire/nce from the fastpath list.
1735  */
1736 void
1737 ill_fastpath_nack(ill_t *ill)
1738 {
1739 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1740 }
1741 
1742 /* Consume an M_IOCACK of the fastpath probe. */
1743 void
1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1745 {
1746 	mblk_t	*mp1 = mp;
1747 
1748 	/*
1749 	 * If this was the first attempt turn on the fastpath probing.
1750 	 */
1751 	mutex_enter(&ill->ill_lock);
1752 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1753 		ill->ill_dlpi_fastpath_state = IDS_OK;
1754 	mutex_exit(&ill->ill_lock);
1755 
1756 	/* Free the M_IOCACK mblk, hold on to the data */
1757 	mp = mp->b_cont;
1758 	freeb(mp1);
1759 	if (mp == NULL)
1760 		return;
1761 	if (mp->b_cont != NULL) {
1762 		/*
1763 		 * Update all IRE's or NCE's that are waiting for
1764 		 * fastpath update.
1765 		 */
1766 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1767 		mp1 = mp->b_cont;
1768 		freeb(mp);
1769 		mp = mp1;
1770 	} else {
1771 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1772 	}
1773 
1774 	freeb(mp);
1775 }
1776 
1777 /*
1778  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1779  * The data portion of the request is a dl_unitdata_req_t template for
1780  * what we would send downstream in the absence of a fastpath confirmation.
1781  */
1782 int
1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1784 {
1785 	struct iocblk	*ioc;
1786 	mblk_t	*mp;
1787 
1788 	if (dlur_mp == NULL)
1789 		return (EINVAL);
1790 
1791 	mutex_enter(&ill->ill_lock);
1792 	switch (ill->ill_dlpi_fastpath_state) {
1793 	case IDS_FAILED:
1794 		/*
1795 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1796 		 * support it.
1797 		 */
1798 		mutex_exit(&ill->ill_lock);
1799 		return (ENOTSUP);
1800 	case IDS_UNKNOWN:
1801 		/* This is the first probe */
1802 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1803 		break;
1804 	default:
1805 		break;
1806 	}
1807 	mutex_exit(&ill->ill_lock);
1808 
1809 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1810 		return (EAGAIN);
1811 
1812 	mp->b_cont = copyb(dlur_mp);
1813 	if (mp->b_cont == NULL) {
1814 		freeb(mp);
1815 		return (EAGAIN);
1816 	}
1817 
1818 	ioc = (struct iocblk *)mp->b_rptr;
1819 	ioc->ioc_count = msgdsize(mp->b_cont);
1820 
1821 	putnext(ill->ill_wq, mp);
1822 	return (0);
1823 }
1824 
1825 void
1826 ill_capability_probe(ill_t *ill)
1827 {
1828 	/*
1829 	 * Do so only if negotiation is enabled, capabilities are unknown,
1830 	 * and a capability negotiation is not already in progress.
1831 	 */
1832 	if (ill->ill_dlpi_capab_state != IDS_UNKNOWN &&
1833 	    ill->ill_dlpi_capab_state != IDS_RENEG)
1834 		return;
1835 
1836 	ill->ill_dlpi_capab_state = IDS_INPROGRESS;
1837 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1838 	ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL);
1839 }
1840 
1841 void
1842 ill_capability_reset(ill_t *ill)
1843 {
1844 	mblk_t *sc_mp = NULL;
1845 	mblk_t *tmp;
1846 
1847 	/*
1848 	 * Note here that we reset the state to UNKNOWN, and later send
1849 	 * down the DL_CAPABILITY_REQ without first setting the state to
1850 	 * INPROGRESS.  We do this in order to distinguish the
1851 	 * DL_CAPABILITY_ACK response which may come back in response to
1852 	 * a "reset" apart from the "probe" DL_CAPABILITY_REQ.  This would
1853 	 * also handle the case where the driver doesn't send us back
1854 	 * a DL_CAPABILITY_ACK in response, since the "probe" routine
1855 	 * requires the state to be in UNKNOWN anyway.  In any case, all
1856 	 * features are turned off until the state reaches IDS_OK.
1857 	 */
1858 	ill->ill_dlpi_capab_state = IDS_UNKNOWN;
1859 
1860 	/*
1861 	 * Disable sub-capabilities and request a list of sub-capability
1862 	 * messages which will be sent down to the driver.  Each handler
1863 	 * allocates the corresponding dl_capability_sub_t inside an
1864 	 * mblk, and links it to the existing sc_mp mblk, or return it
1865 	 * as sc_mp if it's the first sub-capability (the passed in
1866 	 * sc_mp is NULL).  Upon returning from all capability handlers,
1867 	 * sc_mp will be pulled-up, before passing it downstream.
1868 	 */
1869 	ill_capability_mdt_reset(ill, &sc_mp);
1870 	ill_capability_hcksum_reset(ill, &sc_mp);
1871 	ill_capability_zerocopy_reset(ill, &sc_mp);
1872 	ill_capability_ipsec_reset(ill, &sc_mp);
1873 	ill_capability_dls_reset(ill, &sc_mp);
1874 	ill_capability_lso_reset(ill, &sc_mp);
1875 
1876 	/* Nothing to send down in order to disable the capabilities? */
1877 	if (sc_mp == NULL)
1878 		return;
1879 
1880 	tmp = msgpullup(sc_mp, -1);
1881 	freemsg(sc_mp);
1882 	if ((sc_mp = tmp) == NULL) {
1883 		cmn_err(CE_WARN, "ill_capability_reset: unable to send down "
1884 		    "DL_CAPABILITY_REQ (ENOMEM)\n");
1885 		return;
1886 	}
1887 
1888 	ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n"));
1889 	ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp);
1890 }
1891 
1892 /*
1893  * Request or set new-style hardware capabilities supported by DLS provider.
1894  */
1895 static void
1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp)
1897 {
1898 	mblk_t *mp;
1899 	dl_capability_req_t *capb;
1900 	size_t size = 0;
1901 	uint8_t *ptr;
1902 
1903 	if (reqp != NULL)
1904 		size = MBLKL(reqp);
1905 
1906 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type);
1907 	if (mp == NULL) {
1908 		freemsg(reqp);
1909 		return;
1910 	}
1911 	ptr = mp->b_rptr;
1912 
1913 	capb = (dl_capability_req_t *)ptr;
1914 	ptr += sizeof (dl_capability_req_t);
1915 
1916 	if (reqp != NULL) {
1917 		capb->dl_sub_offset = sizeof (dl_capability_req_t);
1918 		capb->dl_sub_length = size;
1919 		bcopy(reqp->b_rptr, ptr, size);
1920 		ptr += size;
1921 		mp->b_cont = reqp->b_cont;
1922 		freeb(reqp);
1923 	}
1924 	ASSERT(ptr == mp->b_wptr);
1925 
1926 	ill_dlpi_send(ill, mp);
1927 }
1928 
1929 static void
1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1931 {
1932 	dl_capab_id_t *id_ic;
1933 	uint_t sub_dl_cap = outers->dl_cap;
1934 	dl_capability_sub_t *inners;
1935 	uint8_t *capend;
1936 
1937 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1938 
1939 	/*
1940 	 * Note: range checks here are not absolutely sufficient to
1941 	 * make us robust against malformed messages sent by drivers;
1942 	 * this is in keeping with the rest of IP's dlpi handling.
1943 	 * (Remember, it's coming from something else in the kernel
1944 	 * address space)
1945 	 */
1946 
1947 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1948 	if (capend > mp->b_wptr) {
1949 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1950 		    "malformed sub-capability too long for mblk");
1951 		return;
1952 	}
1953 
1954 	id_ic = (dl_capab_id_t *)(outers + 1);
1955 
1956 	if (outers->dl_length < sizeof (*id_ic) ||
1957 	    (inners = &id_ic->id_subcap,
1958 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1959 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1960 		    "encapsulated capab type %d too long for mblk",
1961 		    inners->dl_cap);
1962 		return;
1963 	}
1964 
1965 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1966 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1967 		    "isn't as expected; pass-thru module(s) detected, "
1968 		    "discarding capability\n", inners->dl_cap));
1969 		return;
1970 	}
1971 
1972 	/* Process the encapsulated sub-capability */
1973 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1974 }
1975 
1976 /*
1977  * Process Multidata Transmit capability negotiation ack received from a
1978  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1979  * DL_CAPABILITY_ACK message.
1980  */
1981 static void
1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1983 {
1984 	mblk_t *nmp = NULL;
1985 	dl_capability_req_t *oc;
1986 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1987 	ill_mdt_capab_t **ill_mdt_capab;
1988 	uint_t sub_dl_cap = isub->dl_cap;
1989 	uint8_t *capend;
1990 
1991 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1992 
1993 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1994 
1995 	/*
1996 	 * Note: range checks here are not absolutely sufficient to
1997 	 * make us robust against malformed messages sent by drivers;
1998 	 * this is in keeping with the rest of IP's dlpi handling.
1999 	 * (Remember, it's coming from something else in the kernel
2000 	 * address space)
2001 	 */
2002 
2003 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2004 	if (capend > mp->b_wptr) {
2005 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2006 		    "malformed sub-capability too long for mblk");
2007 		return;
2008 	}
2009 
2010 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
2011 
2012 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
2013 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
2014 		    "unsupported MDT sub-capability (version %d, expected %d)",
2015 		    mdt_ic->mdt_version, MDT_VERSION_2);
2016 		return;
2017 	}
2018 
2019 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
2020 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
2021 		    "capability isn't as expected; pass-thru module(s) "
2022 		    "detected, discarding capability\n"));
2023 		return;
2024 	}
2025 
2026 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
2027 
2028 		if (*ill_mdt_capab == NULL) {
2029 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
2030 			    KM_NOSLEEP);
2031 
2032 			if (*ill_mdt_capab == NULL) {
2033 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2034 				    "could not enable MDT version %d "
2035 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
2036 				    ill->ill_name);
2037 				return;
2038 			}
2039 		}
2040 
2041 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
2042 		    "MDT version %d (%d bytes leading, %d bytes trailing "
2043 		    "header spaces, %d max pld bufs, %d span limit)\n",
2044 		    ill->ill_name, MDT_VERSION_2,
2045 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
2046 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
2047 
2048 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
2049 		(*ill_mdt_capab)->ill_mdt_on = 1;
2050 		/*
2051 		 * Round the following values to the nearest 32-bit; ULP
2052 		 * may further adjust them to accomodate for additional
2053 		 * protocol headers.  We pass these values to ULP during
2054 		 * bind time.
2055 		 */
2056 		(*ill_mdt_capab)->ill_mdt_hdr_head =
2057 		    roundup(mdt_ic->mdt_hdr_head, 4);
2058 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
2059 		    roundup(mdt_ic->mdt_hdr_tail, 4);
2060 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
2061 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
2062 
2063 		ill->ill_capabilities |= ILL_CAPAB_MDT;
2064 	} else {
2065 		uint_t size;
2066 		uchar_t *rptr;
2067 
2068 		size = sizeof (dl_capability_req_t) +
2069 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2070 
2071 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2072 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2073 			    "could not enable MDT for %s (ENOMEM)\n",
2074 			    ill->ill_name);
2075 			return;
2076 		}
2077 
2078 		rptr = nmp->b_rptr;
2079 		/* initialize dl_capability_req_t */
2080 		oc = (dl_capability_req_t *)nmp->b_rptr;
2081 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2082 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2083 		    sizeof (dl_capab_mdt_t);
2084 		nmp->b_rptr += sizeof (dl_capability_req_t);
2085 
2086 		/* initialize dl_capability_sub_t */
2087 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2088 		nmp->b_rptr += sizeof (*isub);
2089 
2090 		/* initialize dl_capab_mdt_t */
2091 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2092 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2093 
2094 		nmp->b_rptr = rptr;
2095 
2096 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2097 		    "to enable MDT version %d\n", ill->ill_name,
2098 		    MDT_VERSION_2));
2099 
2100 		/* set ENABLE flag */
2101 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2102 
2103 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2104 		ill_dlpi_send(ill, nmp);
2105 	}
2106 }
2107 
2108 static void
2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp)
2110 {
2111 	mblk_t *mp;
2112 	dl_capab_mdt_t *mdt_subcap;
2113 	dl_capability_sub_t *dl_subcap;
2114 	int size;
2115 
2116 	if (!ILL_MDT_CAPABLE(ill))
2117 		return;
2118 
2119 	ASSERT(ill->ill_mdt_capab != NULL);
2120 	/*
2121 	 * Clear the capability flag for MDT but retain the ill_mdt_capab
2122 	 * structure since it's possible that another thread is still
2123 	 * referring to it.  The structure only gets deallocated when
2124 	 * we destroy the ill.
2125 	 */
2126 	ill->ill_capabilities &= ~ILL_CAPAB_MDT;
2127 
2128 	size = sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2129 
2130 	mp = allocb(size, BPRI_HI);
2131 	if (mp == NULL) {
2132 		ip1dbg(("ill_capability_mdt_reset: unable to allocate "
2133 		    "request to disable MDT\n"));
2134 		return;
2135 	}
2136 
2137 	mp->b_wptr = mp->b_rptr + size;
2138 
2139 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
2140 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2141 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2142 
2143 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2144 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2145 	mdt_subcap->mdt_flags = 0;
2146 	mdt_subcap->mdt_hdr_head = 0;
2147 	mdt_subcap->mdt_hdr_tail = 0;
2148 
2149 	if (*sc_mp != NULL)
2150 		linkb(*sc_mp, mp);
2151 	else
2152 		*sc_mp = mp;
2153 }
2154 
2155 /*
2156  * Send a DL_NOTIFY_REQ to the specified ill to enable
2157  * DL_NOTE_PROMISC_ON/OFF_PHYS notifications.
2158  * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware
2159  * acceleration.
2160  * Returns B_TRUE on success, B_FALSE if the message could not be sent.
2161  */
2162 static boolean_t
2163 ill_enable_promisc_notify(ill_t *ill)
2164 {
2165 	mblk_t *mp;
2166 	dl_notify_req_t *req;
2167 
2168 	IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n"));
2169 
2170 	mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ);
2171 	if (mp == NULL)
2172 		return (B_FALSE);
2173 
2174 	req = (dl_notify_req_t *)mp->b_rptr;
2175 	req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS |
2176 	    DL_NOTE_PROMISC_OFF_PHYS;
2177 
2178 	ill_dlpi_send(ill, mp);
2179 
2180 	return (B_TRUE);
2181 }
2182 
2183 
2184 /*
2185  * Allocate an IPsec capability request which will be filled by our
2186  * caller to turn on support for one or more algorithms.
2187  */
2188 static mblk_t *
2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2190 {
2191 	mblk_t *nmp;
2192 	dl_capability_req_t	*ocap;
2193 	dl_capab_ipsec_t	*ocip;
2194 	dl_capab_ipsec_t	*icip;
2195 	uint8_t			*ptr;
2196 	icip = (dl_capab_ipsec_t *)(isub + 1);
2197 
2198 	/*
2199 	 * The first time around, we send a DL_NOTIFY_REQ to enable
2200 	 * PROMISC_ON/OFF notification from the provider. We need to
2201 	 * do this before enabling the algorithms to avoid leakage of
2202 	 * cleartext packets.
2203 	 */
2204 
2205 	if (!ill_enable_promisc_notify(ill))
2206 		return (NULL);
2207 
2208 	/*
2209 	 * Allocate new mblk which will contain a new capability
2210 	 * request to enable the capabilities.
2211 	 */
2212 
2213 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2214 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2215 	if (nmp == NULL)
2216 		return (NULL);
2217 
2218 	ptr = nmp->b_rptr;
2219 
2220 	/* initialize dl_capability_req_t */
2221 	ocap = (dl_capability_req_t *)ptr;
2222 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2223 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2224 	ptr += sizeof (dl_capability_req_t);
2225 
2226 	/* initialize dl_capability_sub_t */
2227 	bcopy(isub, ptr, sizeof (*isub));
2228 	ptr += sizeof (*isub);
2229 
2230 	/* initialize dl_capab_ipsec_t */
2231 	ocip = (dl_capab_ipsec_t *)ptr;
2232 	bcopy(icip, ocip, sizeof (*icip));
2233 
2234 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2235 	return (nmp);
2236 }
2237 
2238 /*
2239  * Process an IPsec capability negotiation ack received from a DLS Provider.
2240  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2241  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2242  */
2243 static void
2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2245 {
2246 	dl_capab_ipsec_t	*icip;
2247 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2248 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2249 	uint_t cipher, nciphers;
2250 	mblk_t *nmp;
2251 	uint_t alg_len;
2252 	boolean_t need_sadb_dump;
2253 	uint_t sub_dl_cap = isub->dl_cap;
2254 	ill_ipsec_capab_t **ill_capab;
2255 	uint64_t ill_capab_flag;
2256 	uint8_t *capend, *ciphend;
2257 	boolean_t sadb_resync;
2258 
2259 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2260 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2261 
2262 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2263 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2264 		ill_capab_flag = ILL_CAPAB_AH;
2265 	} else {
2266 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2267 		ill_capab_flag = ILL_CAPAB_ESP;
2268 	}
2269 
2270 	/*
2271 	 * If the ill capability structure exists, then this incoming
2272 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2273 	 * If this is so, then we'd need to resynchronize the SADB
2274 	 * after re-enabling the offloaded ciphers.
2275 	 */
2276 	sadb_resync = (*ill_capab != NULL);
2277 
2278 	/*
2279 	 * Note: range checks here are not absolutely sufficient to
2280 	 * make us robust against malformed messages sent by drivers;
2281 	 * this is in keeping with the rest of IP's dlpi handling.
2282 	 * (Remember, it's coming from something else in the kernel
2283 	 * address space)
2284 	 */
2285 
2286 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2287 	if (capend > mp->b_wptr) {
2288 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2289 		    "malformed sub-capability too long for mblk");
2290 		return;
2291 	}
2292 
2293 	/*
2294 	 * There are two types of acks we process here:
2295 	 * 1. acks in reply to a (first form) generic capability req
2296 	 *    (no ENABLE flag set)
2297 	 * 2. acks in reply to a ENABLE capability req.
2298 	 *    (ENABLE flag set)
2299 	 *
2300 	 * We process the subcapability passed as argument as follows:
2301 	 * 1 do initializations
2302 	 *   1.1 initialize nmp = NULL
2303 	 *   1.2 set need_sadb_dump to B_FALSE
2304 	 * 2 for each cipher in subcapability:
2305 	 *   2.1 if ENABLE flag is set:
2306 	 *	2.1.1 update per-ill ipsec capabilities info
2307 	 *	2.1.2 set need_sadb_dump to B_TRUE
2308 	 *   2.2 if ENABLE flag is not set:
2309 	 *	2.2.1 if nmp is NULL:
2310 	 *		2.2.1.1 allocate and initialize nmp
2311 	 *		2.2.1.2 init current pos in nmp
2312 	 *	2.2.2 copy current cipher to current pos in nmp
2313 	 *	2.2.3 set ENABLE flag in nmp
2314 	 *	2.2.4 update current pos
2315 	 * 3 if nmp is not equal to NULL, send enable request
2316 	 *   3.1 send capability request
2317 	 * 4 if need_sadb_dump is B_TRUE
2318 	 *   4.1 enable promiscuous on/off notifications
2319 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2320 	 *	AH or ESP SA's to interface.
2321 	 */
2322 
2323 	nmp = NULL;
2324 	oalg = NULL;
2325 	need_sadb_dump = B_FALSE;
2326 	icip = (dl_capab_ipsec_t *)(isub + 1);
2327 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2328 
2329 	nciphers = icip->cip_nciphers;
2330 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2331 
2332 	if (ciphend > capend) {
2333 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2334 		    "too many ciphers for sub-capability len");
2335 		return;
2336 	}
2337 
2338 	for (cipher = 0; cipher < nciphers; cipher++) {
2339 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2340 
2341 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2342 			/*
2343 			 * TBD: when we provide a way to disable capabilities
2344 			 * from above, need to manage the request-pending state
2345 			 * and fail if we were not expecting this ACK.
2346 			 */
2347 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2348 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2349 
2350 			/*
2351 			 * Update IPsec capabilities for this ill
2352 			 */
2353 
2354 			if (*ill_capab == NULL) {
2355 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2356 				    ("ill_capability_ipsec_ack: "
2357 					"allocating ipsec_capab for ill\n"));
2358 				*ill_capab = ill_ipsec_capab_alloc();
2359 
2360 				if (*ill_capab == NULL) {
2361 					cmn_err(CE_WARN,
2362 					    "ill_capability_ipsec_ack: "
2363 					    "could not enable IPsec Hardware "
2364 					    "acceleration for %s (ENOMEM)\n",
2365 					    ill->ill_name);
2366 					return;
2367 				}
2368 			}
2369 
2370 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2371 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2372 
2373 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2374 				cmn_err(CE_WARN,
2375 				    "ill_capability_ipsec_ack: "
2376 				    "malformed IPsec algorithm id %d",
2377 				    ialg->alg_prim);
2378 				continue;
2379 			}
2380 
2381 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2382 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2383 				    ialg->alg_prim);
2384 			} else {
2385 				ipsec_capab_algparm_t *alp;
2386 
2387 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2388 				    ialg->alg_prim);
2389 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2390 				    ialg->alg_prim)) {
2391 					cmn_err(CE_WARN,
2392 					    "ill_capability_ipsec_ack: "
2393 					    "no space for IPsec alg id %d",
2394 					    ialg->alg_prim);
2395 					continue;
2396 				}
2397 				alp = &((*ill_capab)->encr_algparm[
2398 						ialg->alg_prim]);
2399 				alp->minkeylen = ialg->alg_minbits;
2400 				alp->maxkeylen = ialg->alg_maxbits;
2401 			}
2402 			ill->ill_capabilities |= ill_capab_flag;
2403 			/*
2404 			 * indicate that a capability was enabled, which
2405 			 * will be used below to kick off a SADB dump
2406 			 * to the ill.
2407 			 */
2408 			need_sadb_dump = B_TRUE;
2409 		} else {
2410 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2411 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2412 				ialg->alg_prim));
2413 
2414 			if (nmp == NULL) {
2415 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2416 				if (nmp == NULL) {
2417 					/*
2418 					 * Sending the PROMISC_ON/OFF
2419 					 * notification request failed.
2420 					 * We cannot enable the algorithms
2421 					 * since the Provider will not
2422 					 * notify IP of promiscous mode
2423 					 * changes, which could lead
2424 					 * to leakage of packets.
2425 					 */
2426 					cmn_err(CE_WARN,
2427 					    "ill_capability_ipsec_ack: "
2428 					    "could not enable IPsec Hardware "
2429 					    "acceleration for %s (ENOMEM)\n",
2430 					    ill->ill_name);
2431 					return;
2432 				}
2433 				/* ptr to current output alg specifier */
2434 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2435 			}
2436 
2437 			/*
2438 			 * Copy current alg specifier, set ENABLE
2439 			 * flag, and advance to next output alg.
2440 			 * For now we enable all IPsec capabilities.
2441 			 */
2442 			ASSERT(oalg != NULL);
2443 			bcopy(ialg, oalg, alg_len);
2444 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2445 			nmp->b_wptr += alg_len;
2446 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2447 		}
2448 
2449 		/* move to next input algorithm specifier */
2450 		ialg = (dl_capab_ipsec_alg_t *)
2451 		    ((char *)ialg + alg_len);
2452 	}
2453 
2454 	if (nmp != NULL)
2455 		/*
2456 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2457 		 * IPsec hardware acceleration.
2458 		 */
2459 		ill_dlpi_send(ill, nmp);
2460 
2461 	if (need_sadb_dump)
2462 		/*
2463 		 * An acknowledgement corresponding to a request to
2464 		 * enable acceleration was received, notify SADB.
2465 		 */
2466 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2467 }
2468 
2469 /*
2470  * Given an mblk with enough space in it, create sub-capability entries for
2471  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2472  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2473  * in preparation for the reset the DL_CAPABILITY_REQ message.
2474  */
2475 static void
2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2477     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2478 {
2479 	dl_capab_ipsec_t *oipsec;
2480 	dl_capab_ipsec_alg_t *oalg;
2481 	dl_capability_sub_t *dl_subcap;
2482 	int i, k;
2483 
2484 	ASSERT(nciphers > 0);
2485 	ASSERT(ill_cap != NULL);
2486 	ASSERT(mp != NULL);
2487 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2488 
2489 	/* dl_capability_sub_t for "stype" */
2490 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2491 	dl_subcap->dl_cap = stype;
2492 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2493 	mp->b_wptr += sizeof (dl_capability_sub_t);
2494 
2495 	/* dl_capab_ipsec_t for "stype" */
2496 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2497 	oipsec->cip_version = 1;
2498 	oipsec->cip_nciphers = nciphers;
2499 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2500 
2501 	/* create entries for "stype" AUTH ciphers */
2502 	for (i = 0; i < ill_cap->algs_size; i++) {
2503 		for (k = 0; k < BITSPERBYTE; k++) {
2504 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2505 				continue;
2506 
2507 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2508 			bzero((void *)oalg, sizeof (*oalg));
2509 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2510 			oalg->alg_prim = k + (BITSPERBYTE * i);
2511 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2512 		}
2513 	}
2514 	/* create entries for "stype" ENCR ciphers */
2515 	for (i = 0; i < ill_cap->algs_size; i++) {
2516 		for (k = 0; k < BITSPERBYTE; k++) {
2517 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2518 				continue;
2519 
2520 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2521 			bzero((void *)oalg, sizeof (*oalg));
2522 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2523 			oalg->alg_prim = k + (BITSPERBYTE * i);
2524 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2525 		}
2526 	}
2527 }
2528 
2529 /*
2530  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2531  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2532  * POPC instruction, but our macro is more flexible for an arbitrary length
2533  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2534  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2535  * stays that way, we can reduce the number of iterations required.
2536  */
2537 #define	COUNT_1S(val, sum) {					\
2538 	uint8_t x = val & 0xff;					\
2539 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2540 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2541 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2542 }
2543 
2544 /* ARGSUSED */
2545 static void
2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp)
2547 {
2548 	mblk_t *mp;
2549 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2550 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2551 	uint64_t ill_capabilities = ill->ill_capabilities;
2552 	int ah_cnt = 0, esp_cnt = 0;
2553 	int ah_len = 0, esp_len = 0;
2554 	int i, size = 0;
2555 
2556 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2557 		return;
2558 
2559 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2560 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2561 
2562 	/* Find out the number of ciphers for AH */
2563 	if (cap_ah != NULL) {
2564 		for (i = 0; i < cap_ah->algs_size; i++) {
2565 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2566 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2567 		}
2568 		if (ah_cnt > 0) {
2569 			size += sizeof (dl_capability_sub_t) +
2570 			    sizeof (dl_capab_ipsec_t);
2571 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2572 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2573 			size += ah_len;
2574 		}
2575 	}
2576 
2577 	/* Find out the number of ciphers for ESP */
2578 	if (cap_esp != NULL) {
2579 		for (i = 0; i < cap_esp->algs_size; i++) {
2580 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2581 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2582 		}
2583 		if (esp_cnt > 0) {
2584 			size += sizeof (dl_capability_sub_t) +
2585 			    sizeof (dl_capab_ipsec_t);
2586 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2587 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2588 			size += esp_len;
2589 		}
2590 	}
2591 
2592 	if (size == 0) {
2593 		ip1dbg(("ill_capability_ipsec_reset: capabilities exist but "
2594 		    "there's nothing to reset\n"));
2595 		return;
2596 	}
2597 
2598 	mp = allocb(size, BPRI_HI);
2599 	if (mp == NULL) {
2600 		ip1dbg(("ill_capability_ipsec_reset: unable to allocate "
2601 		    "request to disable IPSEC Hardware Acceleration\n"));
2602 		return;
2603 	}
2604 
2605 	/*
2606 	 * Clear the capability flags for IPSec HA but retain the ill
2607 	 * capability structures since it's possible that another thread
2608 	 * is still referring to them.  The structures only get deallocated
2609 	 * when we destroy the ill.
2610 	 *
2611 	 * Various places check the flags to see if the ill is capable of
2612 	 * hardware acceleration, and by clearing them we ensure that new
2613 	 * outbound IPSec packets are sent down encrypted.
2614 	 */
2615 	ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP);
2616 
2617 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2618 	if (ah_cnt > 0) {
2619 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2620 		    cap_ah, mp);
2621 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2622 	}
2623 
2624 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2625 	if (esp_cnt > 0) {
2626 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2627 		    cap_esp, mp);
2628 		ASSERT(mp->b_rptr + size >= mp->b_wptr);
2629 	}
2630 
2631 	/*
2632 	 * At this point we've composed a bunch of sub-capabilities to be
2633 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2634 	 * by the caller.  Upon receiving this reset message, the driver
2635 	 * must stop inbound decryption (by destroying all inbound SAs)
2636 	 * and let the corresponding packets come in encrypted.
2637 	 */
2638 
2639 	if (*sc_mp != NULL)
2640 		linkb(*sc_mp, mp);
2641 	else
2642 		*sc_mp = mp;
2643 }
2644 
2645 static void
2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2647     boolean_t encapsulated)
2648 {
2649 	boolean_t legacy = B_FALSE;
2650 
2651 	/*
2652 	 * If this DL_CAPABILITY_ACK came in as a response to our "reset"
2653 	 * DL_CAPABILITY_REQ, ignore it during this cycle.  We've just
2654 	 * instructed the driver to disable its advertised capabilities,
2655 	 * so there's no point in accepting any response at this moment.
2656 	 */
2657 	if (ill->ill_dlpi_capab_state == IDS_UNKNOWN)
2658 		return;
2659 
2660 	/*
2661 	 * Note that only the following two sub-capabilities may be
2662 	 * considered as "legacy", since their original definitions
2663 	 * do not incorporate the dl_mid_t module ID token, and hence
2664 	 * may require the use of the wrapper sub-capability.
2665 	 */
2666 	switch (subp->dl_cap) {
2667 	case DL_CAPAB_IPSEC_AH:
2668 	case DL_CAPAB_IPSEC_ESP:
2669 		legacy = B_TRUE;
2670 		break;
2671 	}
2672 
2673 	/*
2674 	 * For legacy sub-capabilities which don't incorporate a queue_t
2675 	 * pointer in their structures, discard them if we detect that
2676 	 * there are intermediate modules in between IP and the driver.
2677 	 */
2678 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2679 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2680 		    "%d discarded; %d module(s) present below IP\n",
2681 		    subp->dl_cap, ill->ill_lmod_cnt));
2682 		return;
2683 	}
2684 
2685 	switch (subp->dl_cap) {
2686 	case DL_CAPAB_IPSEC_AH:
2687 	case DL_CAPAB_IPSEC_ESP:
2688 		ill_capability_ipsec_ack(ill, mp, subp);
2689 		break;
2690 	case DL_CAPAB_MDT:
2691 		ill_capability_mdt_ack(ill, mp, subp);
2692 		break;
2693 	case DL_CAPAB_HCKSUM:
2694 		ill_capability_hcksum_ack(ill, mp, subp);
2695 		break;
2696 	case DL_CAPAB_ZEROCOPY:
2697 		ill_capability_zerocopy_ack(ill, mp, subp);
2698 		break;
2699 	case DL_CAPAB_POLL:
2700 		if (!SOFT_RINGS_ENABLED())
2701 			ill_capability_dls_ack(ill, mp, subp);
2702 		break;
2703 	case DL_CAPAB_SOFT_RING:
2704 		if (SOFT_RINGS_ENABLED())
2705 			ill_capability_dls_ack(ill, mp, subp);
2706 		break;
2707 	case DL_CAPAB_LSO:
2708 		ill_capability_lso_ack(ill, mp, subp);
2709 		break;
2710 	default:
2711 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2712 		    subp->dl_cap));
2713 	}
2714 }
2715 
2716 /*
2717  * As part of negotiating polling capability, the driver tells us
2718  * the default (or normal) blanking interval and packet threshold
2719  * (the receive timer fires if blanking interval is reached or
2720  * the packet threshold is reached).
2721  *
2722  * As part of manipulating the polling interval, we always use our
2723  * estimated interval (avg service time * number of packets queued
2724  * on the squeue) but we try to blank for a minimum of
2725  * rr_normal_blank_time * rr_max_blank_ratio. We disable the
2726  * packet threshold during this time. When we are not in polling mode
2727  * we set the blank interval typically lower, rr_normal_pkt_cnt *
2728  * rr_min_blank_ratio but up the packet cnt by a ratio of
2729  * rr_min_pkt_cnt_ratio so that we are still getting chains if
2730  * possible although for a shorter interval.
2731  */
2732 #define	RR_MAX_BLANK_RATIO	20
2733 #define	RR_MIN_BLANK_RATIO	10
2734 #define	RR_MAX_PKT_CNT_RATIO	3
2735 #define	RR_MIN_PKT_CNT_RATIO	3
2736 
2737 /*
2738  * These can be tuned via /etc/system.
2739  */
2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO;
2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO;
2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO;
2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO;
2744 
2745 static mac_resource_handle_t
2746 ill_ring_add(void *arg, mac_resource_t *mrp)
2747 {
2748 	ill_t			*ill = (ill_t *)arg;
2749 	mac_rx_fifo_t		*mrfp = (mac_rx_fifo_t *)mrp;
2750 	ill_rx_ring_t		*rx_ring;
2751 	int			ip_rx_index;
2752 
2753 	ASSERT(mrp != NULL);
2754 	if (mrp->mr_type != MAC_RX_FIFO) {
2755 		return (NULL);
2756 	}
2757 	ASSERT(ill != NULL);
2758 	ASSERT(ill->ill_dls_capab != NULL);
2759 
2760 	mutex_enter(&ill->ill_lock);
2761 	for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) {
2762 		rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index];
2763 		ASSERT(rx_ring != NULL);
2764 
2765 		if (rx_ring->rr_ring_state == ILL_RING_FREE) {
2766 			time_t normal_blank_time =
2767 			    mrfp->mrf_normal_blank_time;
2768 			uint_t normal_pkt_cnt =
2769 			    mrfp->mrf_normal_pkt_count;
2770 
2771 	bzero(rx_ring, sizeof (ill_rx_ring_t));
2772 
2773 	rx_ring->rr_blank = mrfp->mrf_blank;
2774 	rx_ring->rr_handle = mrfp->mrf_arg;
2775 	rx_ring->rr_ill = ill;
2776 	rx_ring->rr_normal_blank_time = normal_blank_time;
2777 	rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt;
2778 
2779 			rx_ring->rr_max_blank_time =
2780 			    normal_blank_time * rr_max_blank_ratio;
2781 			rx_ring->rr_min_blank_time =
2782 			    normal_blank_time * rr_min_blank_ratio;
2783 			rx_ring->rr_max_pkt_cnt =
2784 			    normal_pkt_cnt * rr_max_pkt_cnt_ratio;
2785 			rx_ring->rr_min_pkt_cnt =
2786 			    normal_pkt_cnt * rr_min_pkt_cnt_ratio;
2787 
2788 			rx_ring->rr_ring_state = ILL_RING_INUSE;
2789 			mutex_exit(&ill->ill_lock);
2790 
2791 			DTRACE_PROBE2(ill__ring__add, (void *), ill,
2792 			    (int), ip_rx_index);
2793 			return ((mac_resource_handle_t)rx_ring);
2794 		}
2795 	}
2796 
2797 	/*
2798 	 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If
2799 	 * we have devices which can overwhelm this limit, ILL_MAX_RING
2800 	 * should be made configurable. Meanwhile it cause no panic because
2801 	 * driver will pass ip_input a NULL handle which will make
2802 	 * IP allocate the default squeue and Polling mode will not
2803 	 * be used for this ring.
2804 	 */
2805 	cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) "
2806 	    "for %s\n", ILL_MAX_RINGS, ill->ill_name);
2807 
2808 	mutex_exit(&ill->ill_lock);
2809 	return (NULL);
2810 }
2811 
2812 static boolean_t
2813 ill_capability_dls_init(ill_t *ill)
2814 {
2815 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2816 	conn_t 			*connp;
2817 	size_t			sz;
2818 	ip_stack_t *ipst = ill->ill_ipst;
2819 
2820 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) {
2821 		if (ill_dls == NULL) {
2822 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2823 			    "soft_ring enabled for ill=%s (%p) but data "
2824 			    "structs uninitialized\n", ill->ill_name,
2825 			    (void *)ill);
2826 		}
2827 		return (B_TRUE);
2828 	} else if (ill->ill_capabilities & ILL_CAPAB_POLL) {
2829 		if (ill_dls == NULL) {
2830 			cmn_err(CE_PANIC, "ill_capability_dls_init: "
2831 			    "polling enabled for ill=%s (%p) but data "
2832 			    "structs uninitialized\n", ill->ill_name,
2833 			(void *)ill);
2834 		}
2835 		return (B_TRUE);
2836 	}
2837 
2838 	if (ill_dls != NULL) {
2839 		ill_rx_ring_t 	*rx_ring = ill_dls->ill_ring_tbl;
2840 		/* Soft_Ring or polling is being re-enabled */
2841 
2842 		connp = ill_dls->ill_unbind_conn;
2843 		ASSERT(rx_ring != NULL);
2844 		bzero((void *)ill_dls, sizeof (ill_dls_capab_t));
2845 		bzero((void *)rx_ring,
2846 		    sizeof (ill_rx_ring_t) * ILL_MAX_RINGS);
2847 		ill_dls->ill_ring_tbl = rx_ring;
2848 		ill_dls->ill_unbind_conn = connp;
2849 		return (B_TRUE);
2850 	}
2851 
2852 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
2853 	    ipst->ips_netstack)) == NULL)
2854 		return (B_FALSE);
2855 
2856 	sz = sizeof (ill_dls_capab_t);
2857 	sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS;
2858 
2859 	ill_dls = kmem_zalloc(sz, KM_NOSLEEP);
2860 	if (ill_dls == NULL) {
2861 		cmn_err(CE_WARN, "ill_capability_dls_init: could not "
2862 		    "allocate dls_capab for %s (%p)\n", ill->ill_name,
2863 		    (void *)ill);
2864 		CONN_DEC_REF(connp);
2865 		return (B_FALSE);
2866 	}
2867 
2868 	/* Allocate space to hold ring table */
2869 	ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1];
2870 	ill->ill_dls_capab = ill_dls;
2871 	ill_dls->ill_unbind_conn = connp;
2872 	return (B_TRUE);
2873 }
2874 
2875 /*
2876  * ill_capability_dls_disable: disable soft_ring and/or polling
2877  * capability. Since any of the rings might already be in use, need
2878  * to call ipsq_clean_all() which gets behind the squeue to disable
2879  * direct calls if necessary.
2880  */
2881 static void
2882 ill_capability_dls_disable(ill_t *ill)
2883 {
2884 	ill_dls_capab_t	*ill_dls = ill->ill_dls_capab;
2885 
2886 	if (ill->ill_capabilities & ILL_CAPAB_DLS) {
2887 		ipsq_clean_all(ill);
2888 		ill_dls->ill_tx = NULL;
2889 		ill_dls->ill_tx_handle = NULL;
2890 		ill_dls->ill_dls_change_status = NULL;
2891 		ill_dls->ill_dls_bind = NULL;
2892 		ill_dls->ill_dls_unbind = NULL;
2893 	}
2894 
2895 	ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS));
2896 }
2897 
2898 static void
2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls,
2900     dl_capability_sub_t *isub)
2901 {
2902 	uint_t			size;
2903 	uchar_t			*rptr;
2904 	dl_capab_dls_t	dls, *odls;
2905 	ill_dls_capab_t	*ill_dls;
2906 	mblk_t			*nmp = NULL;
2907 	dl_capability_req_t	*ocap;
2908 	uint_t			sub_dl_cap = isub->dl_cap;
2909 
2910 	if (!ill_capability_dls_init(ill))
2911 		return;
2912 	ill_dls = ill->ill_dls_capab;
2913 
2914 	/* Copy locally to get the members aligned */
2915 	bcopy((void *)idls, (void *)&dls,
2916 	    sizeof (dl_capab_dls_t));
2917 
2918 	/* Get the tx function and handle from dld */
2919 	ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx;
2920 	ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle;
2921 
2922 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2923 		ill_dls->ill_dls_change_status =
2924 		    (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status;
2925 		ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind;
2926 		ill_dls->ill_dls_unbind =
2927 		    (ip_dls_unbind_t)dls.dls_ring_unbind;
2928 		ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt;
2929 	}
2930 
2931 	size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) +
2932 	    isub->dl_length;
2933 
2934 	if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2935 		cmn_err(CE_WARN, "ill_capability_dls_capable: could "
2936 		    "not allocate memory for CAPAB_REQ for %s (%p)\n",
2937 		    ill->ill_name, (void *)ill);
2938 		return;
2939 	}
2940 
2941 	/* initialize dl_capability_req_t */
2942 	rptr = nmp->b_rptr;
2943 	ocap = (dl_capability_req_t *)rptr;
2944 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2945 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2946 	rptr += sizeof (dl_capability_req_t);
2947 
2948 	/* initialize dl_capability_sub_t */
2949 	bcopy(isub, rptr, sizeof (*isub));
2950 	rptr += sizeof (*isub);
2951 
2952 	odls = (dl_capab_dls_t *)rptr;
2953 	rptr += sizeof (dl_capab_dls_t);
2954 
2955 	/* initialize dl_capab_dls_t to be sent down */
2956 	dls.dls_rx_handle = (uintptr_t)ill;
2957 	dls.dls_rx = (uintptr_t)ip_input;
2958 	dls.dls_ring_add = (uintptr_t)ill_ring_add;
2959 
2960 	if (sub_dl_cap == DL_CAPAB_SOFT_RING) {
2961 		dls.dls_ring_cnt = ip_soft_rings_cnt;
2962 		dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment;
2963 		dls.dls_flags = SOFT_RING_ENABLE;
2964 	} else {
2965 		dls.dls_flags = POLL_ENABLE;
2966 		ip1dbg(("ill_capability_dls_capable: asking interface %s "
2967 		    "to enable polling\n", ill->ill_name));
2968 	}
2969 	bcopy((void *)&dls, (void *)odls,
2970 	    sizeof (dl_capab_dls_t));
2971 	ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2972 	/*
2973 	 * nmp points to a DL_CAPABILITY_REQ message to
2974 	 * enable either soft_ring or polling
2975 	 */
2976 	ill_dlpi_send(ill, nmp);
2977 }
2978 
2979 static void
2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp)
2981 {
2982 	mblk_t *mp;
2983 	dl_capab_dls_t *idls;
2984 	dl_capability_sub_t *dl_subcap;
2985 	int size;
2986 
2987 	if (!(ill->ill_capabilities & ILL_CAPAB_DLS))
2988 		return;
2989 
2990 	ASSERT(ill->ill_dls_capab != NULL);
2991 
2992 	size = sizeof (*dl_subcap) + sizeof (*idls);
2993 
2994 	mp = allocb(size, BPRI_HI);
2995 	if (mp == NULL) {
2996 		ip1dbg(("ill_capability_dls_reset: unable to allocate "
2997 		    "request to disable soft_ring\n"));
2998 		return;
2999 	}
3000 
3001 	mp->b_wptr = mp->b_rptr + size;
3002 
3003 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3004 	dl_subcap->dl_length = sizeof (*idls);
3005 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
3006 		dl_subcap->dl_cap = DL_CAPAB_SOFT_RING;
3007 	else
3008 		dl_subcap->dl_cap = DL_CAPAB_POLL;
3009 
3010 	idls = (dl_capab_dls_t *)(dl_subcap + 1);
3011 	if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING)
3012 		idls->dls_flags = SOFT_RING_DISABLE;
3013 	else
3014 		idls->dls_flags = POLL_DISABLE;
3015 
3016 	if (*sc_mp != NULL)
3017 		linkb(*sc_mp, mp);
3018 	else
3019 		*sc_mp = mp;
3020 }
3021 
3022 /*
3023  * Process a soft_ring/poll capability negotiation ack received
3024  * from a DLS Provider.isub must point to the sub-capability
3025  * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message.
3026  */
3027 static void
3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3029 {
3030 	dl_capab_dls_t		*idls;
3031 	uint_t			sub_dl_cap = isub->dl_cap;
3032 	uint8_t			*capend;
3033 
3034 	ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING ||
3035 	    sub_dl_cap == DL_CAPAB_POLL);
3036 
3037 	if (ill->ill_isv6)
3038 		return;
3039 
3040 	/*
3041 	 * Note: range checks here are not absolutely sufficient to
3042 	 * make us robust against malformed messages sent by drivers;
3043 	 * this is in keeping with the rest of IP's dlpi handling.
3044 	 * (Remember, it's coming from something else in the kernel
3045 	 * address space)
3046 	 */
3047 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3048 	if (capend > mp->b_wptr) {
3049 		cmn_err(CE_WARN, "ill_capability_dls_ack: "
3050 		    "malformed sub-capability too long for mblk");
3051 		return;
3052 	}
3053 
3054 	/*
3055 	 * There are two types of acks we process here:
3056 	 * 1. acks in reply to a (first form) generic capability req
3057 	 *    (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE)
3058 	 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE
3059 	 *    capability req.
3060 	 */
3061 	idls = (dl_capab_dls_t *)(isub + 1);
3062 
3063 	if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) {
3064 		ip1dbg(("ill_capability_dls_ack: mid token for dls "
3065 		    "capability isn't as expected; pass-thru "
3066 		    "module(s) detected, discarding capability\n"));
3067 		if (ill->ill_capabilities & ILL_CAPAB_DLS) {
3068 			/*
3069 			 * This is a capability renegotitation case.
3070 			 * The interface better be unusable at this
3071 			 * point other wise bad things will happen
3072 			 * if we disable direct calls on a running
3073 			 * and up interface.
3074 			 */
3075 			ill_capability_dls_disable(ill);
3076 		}
3077 		return;
3078 	}
3079 
3080 	switch (idls->dls_flags) {
3081 	default:
3082 		/* Disable if unknown flag */
3083 	case SOFT_RING_DISABLE:
3084 	case POLL_DISABLE:
3085 		ill_capability_dls_disable(ill);
3086 		break;
3087 	case SOFT_RING_CAPABLE:
3088 	case POLL_CAPABLE:
3089 		/*
3090 		 * If the capability was already enabled, its safe
3091 		 * to disable it first to get rid of stale information
3092 		 * and then start enabling it again.
3093 		 */
3094 		ill_capability_dls_disable(ill);
3095 		ill_capability_dls_capable(ill, idls, isub);
3096 		break;
3097 	case SOFT_RING_ENABLE:
3098 	case POLL_ENABLE:
3099 		mutex_enter(&ill->ill_lock);
3100 		if (sub_dl_cap == DL_CAPAB_SOFT_RING &&
3101 		    !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) {
3102 			ASSERT(ill->ill_dls_capab != NULL);
3103 			ill->ill_capabilities |= ILL_CAPAB_SOFT_RING;
3104 		}
3105 		if (sub_dl_cap == DL_CAPAB_POLL &&
3106 		    !(ill->ill_capabilities & ILL_CAPAB_POLL)) {
3107 			ASSERT(ill->ill_dls_capab != NULL);
3108 			ill->ill_capabilities |= ILL_CAPAB_POLL;
3109 			ip1dbg(("ill_capability_dls_ack: interface %s "
3110 			    "has enabled polling\n", ill->ill_name));
3111 		}
3112 		mutex_exit(&ill->ill_lock);
3113 		break;
3114 	}
3115 }
3116 
3117 /*
3118  * Process a hardware checksum offload capability negotiation ack received
3119  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
3120  * of a DL_CAPABILITY_ACK message.
3121  */
3122 static void
3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3124 {
3125 	dl_capability_req_t	*ocap;
3126 	dl_capab_hcksum_t	*ihck, *ohck;
3127 	ill_hcksum_capab_t	**ill_hcksum;
3128 	mblk_t			*nmp = NULL;
3129 	uint_t			sub_dl_cap = isub->dl_cap;
3130 	uint8_t			*capend;
3131 
3132 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
3133 
3134 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
3135 
3136 	/*
3137 	 * Note: range checks here are not absolutely sufficient to
3138 	 * make us robust against malformed messages sent by drivers;
3139 	 * this is in keeping with the rest of IP's dlpi handling.
3140 	 * (Remember, it's coming from something else in the kernel
3141 	 * address space)
3142 	 */
3143 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3144 	if (capend > mp->b_wptr) {
3145 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3146 		    "malformed sub-capability too long for mblk");
3147 		return;
3148 	}
3149 
3150 	/*
3151 	 * There are two types of acks we process here:
3152 	 * 1. acks in reply to a (first form) generic capability req
3153 	 *    (no ENABLE flag set)
3154 	 * 2. acks in reply to a ENABLE capability req.
3155 	 *    (ENABLE flag set)
3156 	 */
3157 	ihck = (dl_capab_hcksum_t *)(isub + 1);
3158 
3159 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
3160 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
3161 		    "unsupported hardware checksum "
3162 		    "sub-capability (version %d, expected %d)",
3163 		    ihck->hcksum_version, HCKSUM_VERSION_1);
3164 		return;
3165 	}
3166 
3167 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
3168 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
3169 		    "checksum capability isn't as expected; pass-thru "
3170 		    "module(s) detected, discarding capability\n"));
3171 		return;
3172 	}
3173 
3174 #define	CURR_HCKSUM_CAPAB				\
3175 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
3176 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
3177 
3178 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
3179 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
3180 		/* do ENABLE processing */
3181 		if (*ill_hcksum == NULL) {
3182 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
3183 			    KM_NOSLEEP);
3184 
3185 			if (*ill_hcksum == NULL) {
3186 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3187 				    "could not enable hcksum version %d "
3188 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
3189 				    ill->ill_name);
3190 				return;
3191 			}
3192 		}
3193 
3194 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
3195 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
3196 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
3197 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
3198 		    "has enabled hardware checksumming\n ",
3199 		    ill->ill_name));
3200 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
3201 		/*
3202 		 * Enabling hardware checksum offload
3203 		 * Currently IP supports {TCP,UDP}/IPv4
3204 		 * partial and full cksum offload and
3205 		 * IPv4 header checksum offload.
3206 		 * Allocate new mblk which will
3207 		 * contain a new capability request
3208 		 * to enable hardware checksum offload.
3209 		 */
3210 		uint_t	size;
3211 		uchar_t	*rptr;
3212 
3213 		size = sizeof (dl_capability_req_t) +
3214 		    sizeof (dl_capability_sub_t) + isub->dl_length;
3215 
3216 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3217 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
3218 			    "could not enable hardware cksum for %s (ENOMEM)\n",
3219 			    ill->ill_name);
3220 			return;
3221 		}
3222 
3223 		rptr = nmp->b_rptr;
3224 		/* initialize dl_capability_req_t */
3225 		ocap = (dl_capability_req_t *)nmp->b_rptr;
3226 		ocap->dl_sub_offset =
3227 		    sizeof (dl_capability_req_t);
3228 		ocap->dl_sub_length =
3229 		    sizeof (dl_capability_sub_t) +
3230 		    isub->dl_length;
3231 		nmp->b_rptr += sizeof (dl_capability_req_t);
3232 
3233 		/* initialize dl_capability_sub_t */
3234 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3235 		nmp->b_rptr += sizeof (*isub);
3236 
3237 		/* initialize dl_capab_hcksum_t */
3238 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
3239 		bcopy(ihck, ohck, sizeof (*ihck));
3240 
3241 		nmp->b_rptr = rptr;
3242 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3243 
3244 		/* Set ENABLE flag */
3245 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
3246 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
3247 
3248 		/*
3249 		 * nmp points to a DL_CAPABILITY_REQ message to enable
3250 		 * hardware checksum acceleration.
3251 		 */
3252 		ill_dlpi_send(ill, nmp);
3253 	} else {
3254 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
3255 		    "advertised %x hardware checksum capability flags\n",
3256 		    ill->ill_name, ihck->hcksum_txflags));
3257 	}
3258 }
3259 
3260 static void
3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp)
3262 {
3263 	mblk_t *mp;
3264 	dl_capab_hcksum_t *hck_subcap;
3265 	dl_capability_sub_t *dl_subcap;
3266 	int size;
3267 
3268 	if (!ILL_HCKSUM_CAPABLE(ill))
3269 		return;
3270 
3271 	ASSERT(ill->ill_hcksum_capab != NULL);
3272 	/*
3273 	 * Clear the capability flag for hardware checksum offload but
3274 	 * retain the ill_hcksum_capab structure since it's possible that
3275 	 * another thread is still referring to it.  The structure only
3276 	 * gets deallocated when we destroy the ill.
3277 	 */
3278 	ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM;
3279 
3280 	size = sizeof (*dl_subcap) + sizeof (*hck_subcap);
3281 
3282 	mp = allocb(size, BPRI_HI);
3283 	if (mp == NULL) {
3284 		ip1dbg(("ill_capability_hcksum_reset: unable to allocate "
3285 		    "request to disable hardware checksum offload\n"));
3286 		return;
3287 	}
3288 
3289 	mp->b_wptr = mp->b_rptr + size;
3290 
3291 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3292 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
3293 	dl_subcap->dl_length = sizeof (*hck_subcap);
3294 
3295 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
3296 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
3297 	hck_subcap->hcksum_txflags = 0;
3298 
3299 	if (*sc_mp != NULL)
3300 		linkb(*sc_mp, mp);
3301 	else
3302 		*sc_mp = mp;
3303 }
3304 
3305 static void
3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3307 {
3308 	mblk_t *nmp = NULL;
3309 	dl_capability_req_t *oc;
3310 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
3311 	ill_zerocopy_capab_t **ill_zerocopy_capab;
3312 	uint_t sub_dl_cap = isub->dl_cap;
3313 	uint8_t *capend;
3314 
3315 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
3316 
3317 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
3318 
3319 	/*
3320 	 * Note: range checks here are not absolutely sufficient to
3321 	 * make us robust against malformed messages sent by drivers;
3322 	 * this is in keeping with the rest of IP's dlpi handling.
3323 	 * (Remember, it's coming from something else in the kernel
3324 	 * address space)
3325 	 */
3326 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3327 	if (capend > mp->b_wptr) {
3328 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3329 		    "malformed sub-capability too long for mblk");
3330 		return;
3331 	}
3332 
3333 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
3334 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
3335 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
3336 		    "unsupported ZEROCOPY sub-capability (version %d, "
3337 		    "expected %d)", zc_ic->zerocopy_version,
3338 		    ZEROCOPY_VERSION_1);
3339 		return;
3340 	}
3341 
3342 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
3343 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
3344 		    "capability isn't as expected; pass-thru module(s) "
3345 		    "detected, discarding capability\n"));
3346 		return;
3347 	}
3348 
3349 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
3350 		if (*ill_zerocopy_capab == NULL) {
3351 			*ill_zerocopy_capab =
3352 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
3353 			    KM_NOSLEEP);
3354 
3355 			if (*ill_zerocopy_capab == NULL) {
3356 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3357 				    "could not enable Zero-copy version %d "
3358 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
3359 				    ill->ill_name);
3360 				return;
3361 			}
3362 		}
3363 
3364 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
3365 		    "supports Zero-copy version %d\n", ill->ill_name,
3366 		    ZEROCOPY_VERSION_1));
3367 
3368 		(*ill_zerocopy_capab)->ill_zerocopy_version =
3369 		    zc_ic->zerocopy_version;
3370 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
3371 		    zc_ic->zerocopy_flags;
3372 
3373 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
3374 	} else {
3375 		uint_t size;
3376 		uchar_t *rptr;
3377 
3378 		size = sizeof (dl_capability_req_t) +
3379 		    sizeof (dl_capability_sub_t) +
3380 		    sizeof (dl_capab_zerocopy_t);
3381 
3382 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3383 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
3384 			    "could not enable zerocopy for %s (ENOMEM)\n",
3385 			    ill->ill_name);
3386 			return;
3387 		}
3388 
3389 		rptr = nmp->b_rptr;
3390 		/* initialize dl_capability_req_t */
3391 		oc = (dl_capability_req_t *)rptr;
3392 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3393 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3394 		    sizeof (dl_capab_zerocopy_t);
3395 		rptr += sizeof (dl_capability_req_t);
3396 
3397 		/* initialize dl_capability_sub_t */
3398 		bcopy(isub, rptr, sizeof (*isub));
3399 		rptr += sizeof (*isub);
3400 
3401 		/* initialize dl_capab_zerocopy_t */
3402 		zc_oc = (dl_capab_zerocopy_t *)rptr;
3403 		*zc_oc = *zc_ic;
3404 
3405 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
3406 		    "to enable zero-copy version %d\n", ill->ill_name,
3407 		    ZEROCOPY_VERSION_1));
3408 
3409 		/* set VMSAFE_MEM flag */
3410 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
3411 
3412 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
3413 		ill_dlpi_send(ill, nmp);
3414 	}
3415 }
3416 
3417 static void
3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp)
3419 {
3420 	mblk_t *mp;
3421 	dl_capab_zerocopy_t *zerocopy_subcap;
3422 	dl_capability_sub_t *dl_subcap;
3423 	int size;
3424 
3425 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
3426 		return;
3427 
3428 	ASSERT(ill->ill_zerocopy_capab != NULL);
3429 	/*
3430 	 * Clear the capability flag for Zero-copy but retain the
3431 	 * ill_zerocopy_capab structure since it's possible that another
3432 	 * thread is still referring to it.  The structure only gets
3433 	 * deallocated when we destroy the ill.
3434 	 */
3435 	ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY;
3436 
3437 	size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
3438 
3439 	mp = allocb(size, BPRI_HI);
3440 	if (mp == NULL) {
3441 		ip1dbg(("ill_capability_zerocopy_reset: unable to allocate "
3442 		    "request to disable Zero-copy\n"));
3443 		return;
3444 	}
3445 
3446 	mp->b_wptr = mp->b_rptr + size;
3447 
3448 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3449 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
3450 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
3451 
3452 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
3453 	zerocopy_subcap->zerocopy_version =
3454 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
3455 	zerocopy_subcap->zerocopy_flags = 0;
3456 
3457 	if (*sc_mp != NULL)
3458 		linkb(*sc_mp, mp);
3459 	else
3460 		*sc_mp = mp;
3461 }
3462 
3463 /*
3464  * Process Large Segment Offload capability negotiation ack received from a
3465  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_LSO) of a
3466  * DL_CAPABILITY_ACK message.
3467  */
3468 static void
3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
3470 {
3471 	mblk_t *nmp = NULL;
3472 	dl_capability_req_t *oc;
3473 	dl_capab_lso_t *lso_ic, *lso_oc;
3474 	ill_lso_capab_t **ill_lso_capab;
3475 	uint_t sub_dl_cap = isub->dl_cap;
3476 	uint8_t *capend;
3477 
3478 	ASSERT(sub_dl_cap == DL_CAPAB_LSO);
3479 
3480 	ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab;
3481 
3482 	/*
3483 	 * Note: range checks here are not absolutely sufficient to
3484 	 * make us robust against malformed messages sent by drivers;
3485 	 * this is in keeping with the rest of IP's dlpi handling.
3486 	 * (Remember, it's coming from something else in the kernel
3487 	 * address space)
3488 	 */
3489 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
3490 	if (capend > mp->b_wptr) {
3491 		cmn_err(CE_WARN, "ill_capability_lso_ack: "
3492 		    "malformed sub-capability too long for mblk");
3493 		return;
3494 	}
3495 
3496 	lso_ic = (dl_capab_lso_t *)(isub + 1);
3497 
3498 	if (lso_ic->lso_version != LSO_VERSION_1) {
3499 		cmn_err(CE_CONT, "ill_capability_lso_ack: "
3500 		    "unsupported LSO sub-capability (version %d, expected %d)",
3501 		    lso_ic->lso_version, LSO_VERSION_1);
3502 		return;
3503 	}
3504 
3505 	if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) {
3506 		ip1dbg(("ill_capability_lso_ack: mid token for LSO "
3507 		    "capability isn't as expected; pass-thru module(s) "
3508 		    "detected, discarding capability\n"));
3509 		return;
3510 	}
3511 
3512 	if ((lso_ic->lso_flags & LSO_TX_ENABLE) &&
3513 	    (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) {
3514 		if (*ill_lso_capab == NULL) {
3515 			*ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3516 			    KM_NOSLEEP);
3517 
3518 			if (*ill_lso_capab == NULL) {
3519 				cmn_err(CE_WARN, "ill_capability_lso_ack: "
3520 				    "could not enable LSO version %d "
3521 				    "for %s (ENOMEM)\n", LSO_VERSION_1,
3522 				    ill->ill_name);
3523 				return;
3524 			}
3525 		}
3526 
3527 		(*ill_lso_capab)->ill_lso_version = lso_ic->lso_version;
3528 		(*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags;
3529 		(*ill_lso_capab)->ill_lso_max = lso_ic->lso_max;
3530 		ill->ill_capabilities |= ILL_CAPAB_LSO;
3531 
3532 		ip1dbg(("ill_capability_lso_ack: interface %s "
3533 		    "has enabled LSO\n ", ill->ill_name));
3534 	} else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) {
3535 		uint_t size;
3536 		uchar_t *rptr;
3537 
3538 		size = sizeof (dl_capability_req_t) +
3539 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t);
3540 
3541 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
3542 			cmn_err(CE_WARN, "ill_capability_lso_ack: "
3543 			    "could not enable LSO for %s (ENOMEM)\n",
3544 			    ill->ill_name);
3545 			return;
3546 		}
3547 
3548 		rptr = nmp->b_rptr;
3549 		/* initialize dl_capability_req_t */
3550 		oc = (dl_capability_req_t *)nmp->b_rptr;
3551 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
3552 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
3553 		    sizeof (dl_capab_lso_t);
3554 		nmp->b_rptr += sizeof (dl_capability_req_t);
3555 
3556 		/* initialize dl_capability_sub_t */
3557 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
3558 		nmp->b_rptr += sizeof (*isub);
3559 
3560 		/* initialize dl_capab_lso_t */
3561 		lso_oc = (dl_capab_lso_t *)nmp->b_rptr;
3562 		bcopy(lso_ic, lso_oc, sizeof (*lso_ic));
3563 
3564 		nmp->b_rptr = rptr;
3565 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
3566 
3567 		/* set ENABLE flag */
3568 		lso_oc->lso_flags |= LSO_TX_ENABLE;
3569 
3570 		/* nmp points to a DL_CAPABILITY_REQ message to enable LSO */
3571 		ill_dlpi_send(ill, nmp);
3572 	} else {
3573 		ip1dbg(("ill_capability_lso_ack: interface %s has "
3574 		    "advertised %x LSO capability flags\n",
3575 		    ill->ill_name, lso_ic->lso_flags));
3576 	}
3577 }
3578 
3579 
3580 static void
3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp)
3582 {
3583 	mblk_t *mp;
3584 	dl_capab_lso_t *lso_subcap;
3585 	dl_capability_sub_t *dl_subcap;
3586 	int size;
3587 
3588 	if (!(ill->ill_capabilities & ILL_CAPAB_LSO))
3589 		return;
3590 
3591 	ASSERT(ill->ill_lso_capab != NULL);
3592 	/*
3593 	 * Clear the capability flag for LSO but retain the
3594 	 * ill_lso_capab structure since it's possible that another
3595 	 * thread is still referring to it.  The structure only gets
3596 	 * deallocated when we destroy the ill.
3597 	 */
3598 	ill->ill_capabilities &= ~ILL_CAPAB_LSO;
3599 
3600 	size = sizeof (*dl_subcap) + sizeof (*lso_subcap);
3601 
3602 	mp = allocb(size, BPRI_HI);
3603 	if (mp == NULL) {
3604 		ip1dbg(("ill_capability_lso_reset: unable to allocate "
3605 		    "request to disable LSO\n"));
3606 		return;
3607 	}
3608 
3609 	mp->b_wptr = mp->b_rptr + size;
3610 
3611 	dl_subcap = (dl_capability_sub_t *)mp->b_rptr;
3612 	dl_subcap->dl_cap = DL_CAPAB_LSO;
3613 	dl_subcap->dl_length = sizeof (*lso_subcap);
3614 
3615 	lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1);
3616 	lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version;
3617 	lso_subcap->lso_flags = 0;
3618 
3619 	if (*sc_mp != NULL)
3620 		linkb(*sc_mp, mp);
3621 	else
3622 		*sc_mp = mp;
3623 }
3624 
3625 /*
3626  * Consume a new-style hardware capabilities negotiation ack.
3627  * Called from ip_rput_dlpi_writer().
3628  */
3629 void
3630 ill_capability_ack(ill_t *ill, mblk_t *mp)
3631 {
3632 	dl_capability_ack_t *capp;
3633 	dl_capability_sub_t *subp, *endp;
3634 
3635 	if (ill->ill_dlpi_capab_state == IDS_INPROGRESS)
3636 		ill->ill_dlpi_capab_state = IDS_OK;
3637 
3638 	capp = (dl_capability_ack_t *)mp->b_rptr;
3639 
3640 	if (capp->dl_sub_length == 0)
3641 		/* no new-style capabilities */
3642 		return;
3643 
3644 	/* make sure the driver supplied correct dl_sub_length */
3645 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3646 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3647 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3648 		return;
3649 	}
3650 
3651 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3652 	/*
3653 	 * There are sub-capabilities. Process the ones we know about.
3654 	 * Loop until we don't have room for another sub-cap header..
3655 	 */
3656 	for (subp = SC(capp, capp->dl_sub_offset),
3657 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3658 	    subp <= endp;
3659 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3660 
3661 		switch (subp->dl_cap) {
3662 		case DL_CAPAB_ID_WRAPPER:
3663 			ill_capability_id_ack(ill, mp, subp);
3664 			break;
3665 		default:
3666 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3667 			break;
3668 		}
3669 	}
3670 #undef SC
3671 }
3672 
3673 /*
3674  * This routine is called to scan the fragmentation reassembly table for
3675  * the specified ILL for any packets that are starting to smell.
3676  * dead_interval is the maximum time in seconds that will be tolerated.  It
3677  * will either be the value specified in ip_g_frag_timeout, or zero if the
3678  * ILL is shutting down and it is time to blow everything off.
3679  *
3680  * It returns the number of seconds (as a time_t) that the next frag timer
3681  * should be scheduled for, 0 meaning that the timer doesn't need to be
3682  * re-started.  Note that the method of calculating next_timeout isn't
3683  * entirely accurate since time will flow between the time we grab
3684  * current_time and the time we schedule the next timeout.  This isn't a
3685  * big problem since this is the timer for sending an ICMP reassembly time
3686  * exceeded messages, and it doesn't have to be exactly accurate.
3687  *
3688  * This function is
3689  * sometimes called as writer, although this is not required.
3690  */
3691 time_t
3692 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3693 {
3694 	ipfb_t	*ipfb;
3695 	ipfb_t	*endp;
3696 	ipf_t	*ipf;
3697 	ipf_t	*ipfnext;
3698 	mblk_t	*mp;
3699 	time_t	current_time = gethrestime_sec();
3700 	time_t	next_timeout = 0;
3701 	uint32_t	hdr_length;
3702 	mblk_t	*send_icmp_head;
3703 	mblk_t	*send_icmp_head_v6;
3704 	zoneid_t zoneid;
3705 	ip_stack_t *ipst = ill->ill_ipst;
3706 
3707 	ipfb = ill->ill_frag_hash_tbl;
3708 	if (ipfb == NULL)
3709 		return (B_FALSE);
3710 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3711 	/* Walk the frag hash table. */
3712 	for (; ipfb < endp; ipfb++) {
3713 		send_icmp_head = NULL;
3714 		send_icmp_head_v6 = NULL;
3715 		mutex_enter(&ipfb->ipfb_lock);
3716 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3717 			time_t frag_time = current_time - ipf->ipf_timestamp;
3718 			time_t frag_timeout;
3719 
3720 			if (frag_time < dead_interval) {
3721 				/*
3722 				 * There are some outstanding fragments
3723 				 * that will timeout later.  Make note of
3724 				 * the time so that we can reschedule the
3725 				 * next timeout appropriately.
3726 				 */
3727 				frag_timeout = dead_interval - frag_time;
3728 				if (next_timeout == 0 ||
3729 				    frag_timeout < next_timeout) {
3730 					next_timeout = frag_timeout;
3731 				}
3732 				break;
3733 			}
3734 			/* Time's up.  Get it out of here. */
3735 			hdr_length = ipf->ipf_nf_hdr_len;
3736 			ipfnext = ipf->ipf_hash_next;
3737 			if (ipfnext)
3738 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3739 			*ipf->ipf_ptphn = ipfnext;
3740 			mp = ipf->ipf_mp->b_cont;
3741 			for (; mp; mp = mp->b_cont) {
3742 				/* Extra points for neatness. */
3743 				IP_REASS_SET_START(mp, 0);
3744 				IP_REASS_SET_END(mp, 0);
3745 			}
3746 			mp = ipf->ipf_mp->b_cont;
3747 			ill->ill_frag_count -= ipf->ipf_count;
3748 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3749 			ipfb->ipfb_count -= ipf->ipf_count;
3750 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3751 			ipfb->ipfb_frag_pkts--;
3752 			/*
3753 			 * We do not send any icmp message from here because
3754 			 * we currently are holding the ipfb_lock for this
3755 			 * hash chain. If we try and send any icmp messages
3756 			 * from here we may end up via a put back into ip
3757 			 * trying to get the same lock, causing a recursive
3758 			 * mutex panic. Instead we build a list and send all
3759 			 * the icmp messages after we have dropped the lock.
3760 			 */
3761 			if (ill->ill_isv6) {
3762 				if (hdr_length != 0) {
3763 					mp->b_next = send_icmp_head_v6;
3764 					send_icmp_head_v6 = mp;
3765 				} else {
3766 					freemsg(mp);
3767 				}
3768 			} else {
3769 				if (hdr_length != 0) {
3770 					mp->b_next = send_icmp_head;
3771 					send_icmp_head = mp;
3772 				} else {
3773 					freemsg(mp);
3774 				}
3775 			}
3776 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3777 			freeb(ipf->ipf_mp);
3778 		}
3779 		mutex_exit(&ipfb->ipfb_lock);
3780 		/*
3781 		 * Now need to send any icmp messages that we delayed from
3782 		 * above.
3783 		 */
3784 		while (send_icmp_head_v6 != NULL) {
3785 			ip6_t *ip6h;
3786 
3787 			mp = send_icmp_head_v6;
3788 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3789 			mp->b_next = NULL;
3790 			if (mp->b_datap->db_type == M_CTL)
3791 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3792 			else
3793 				ip6h = (ip6_t *)mp->b_rptr;
3794 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3795 			    ill, ipst);
3796 			if (zoneid == ALL_ZONES) {
3797 				freemsg(mp);
3798 			} else {
3799 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3800 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3801 				    B_FALSE, zoneid, ipst);
3802 			}
3803 		}
3804 		while (send_icmp_head != NULL) {
3805 			ipaddr_t dst;
3806 
3807 			mp = send_icmp_head;
3808 			send_icmp_head = send_icmp_head->b_next;
3809 			mp->b_next = NULL;
3810 
3811 			if (mp->b_datap->db_type == M_CTL)
3812 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3813 			else
3814 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3815 
3816 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3817 			if (zoneid == ALL_ZONES) {
3818 				freemsg(mp);
3819 			} else {
3820 				icmp_time_exceeded(ill->ill_wq, mp,
3821 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3822 				    ipst);
3823 			}
3824 		}
3825 	}
3826 	/*
3827 	 * A non-dying ILL will use the return value to decide whether to
3828 	 * restart the frag timer, and for how long.
3829 	 */
3830 	return (next_timeout);
3831 }
3832 
3833 /*
3834  * This routine is called when the approximate count of mblk memory used
3835  * for the specified ILL has exceeded max_count.
3836  */
3837 void
3838 ill_frag_prune(ill_t *ill, uint_t max_count)
3839 {
3840 	ipfb_t	*ipfb;
3841 	ipf_t	*ipf;
3842 	size_t	count;
3843 
3844 	/*
3845 	 * If we are here within ip_min_frag_prune_time msecs remove
3846 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3847 	 * ill_frag_free_num_pkts.
3848 	 */
3849 	mutex_enter(&ill->ill_lock);
3850 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3851 	    (ip_min_frag_prune_time != 0 ?
3852 	    ip_min_frag_prune_time : msec_per_tick)) {
3853 
3854 		ill->ill_frag_free_num_pkts++;
3855 
3856 	} else {
3857 		ill->ill_frag_free_num_pkts = 0;
3858 	}
3859 	ill->ill_last_frag_clean_time = lbolt;
3860 	mutex_exit(&ill->ill_lock);
3861 
3862 	/*
3863 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3864 	 */
3865 	if (ill->ill_frag_free_num_pkts != 0) {
3866 		int ix;
3867 
3868 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3869 			ipfb = &ill->ill_frag_hash_tbl[ix];
3870 			mutex_enter(&ipfb->ipfb_lock);
3871 			if (ipfb->ipfb_ipf != NULL) {
3872 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3873 				    ill->ill_frag_free_num_pkts);
3874 			}
3875 			mutex_exit(&ipfb->ipfb_lock);
3876 		}
3877 	}
3878 	/*
3879 	 * While the reassembly list for this ILL is too big, prune a fragment
3880 	 * queue by age, oldest first.  Note that the per ILL count is
3881 	 * approximate, while the per frag hash bucket counts are accurate.
3882 	 */
3883 	while (ill->ill_frag_count > max_count) {
3884 		int	ix;
3885 		ipfb_t	*oipfb = NULL;
3886 		uint_t	oldest = UINT_MAX;
3887 
3888 		count = 0;
3889 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3890 			ipfb = &ill->ill_frag_hash_tbl[ix];
3891 			mutex_enter(&ipfb->ipfb_lock);
3892 			ipf = ipfb->ipfb_ipf;
3893 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3894 				oldest = ipf->ipf_gen;
3895 				oipfb = ipfb;
3896 			}
3897 			count += ipfb->ipfb_count;
3898 			mutex_exit(&ipfb->ipfb_lock);
3899 		}
3900 		/* Refresh the per ILL count */
3901 		ill->ill_frag_count = count;
3902 		if (oipfb == NULL) {
3903 			ill->ill_frag_count = 0;
3904 			break;
3905 		}
3906 		if (count <= max_count)
3907 			return;	/* Somebody beat us to it, nothing to do */
3908 		mutex_enter(&oipfb->ipfb_lock);
3909 		ipf = oipfb->ipfb_ipf;
3910 		if (ipf != NULL) {
3911 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3912 		}
3913 		mutex_exit(&oipfb->ipfb_lock);
3914 	}
3915 }
3916 
3917 /*
3918  * free 'free_cnt' fragmented packets starting at ipf.
3919  */
3920 void
3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3922 {
3923 	size_t	count;
3924 	mblk_t	*mp;
3925 	mblk_t	*tmp;
3926 	ipf_t **ipfp = ipf->ipf_ptphn;
3927 
3928 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3929 	ASSERT(ipfp != NULL);
3930 	ASSERT(ipf != NULL);
3931 
3932 	while (ipf != NULL && free_cnt-- > 0) {
3933 		count = ipf->ipf_count;
3934 		mp = ipf->ipf_mp;
3935 		ipf = ipf->ipf_hash_next;
3936 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3937 			IP_REASS_SET_START(tmp, 0);
3938 			IP_REASS_SET_END(tmp, 0);
3939 		}
3940 		ill->ill_frag_count -= count;
3941 		ASSERT(ipfb->ipfb_count >= count);
3942 		ipfb->ipfb_count -= count;
3943 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3944 		ipfb->ipfb_frag_pkts--;
3945 		freemsg(mp);
3946 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3947 	}
3948 
3949 	if (ipf)
3950 		ipf->ipf_ptphn = ipfp;
3951 	ipfp[0] = ipf;
3952 }
3953 
3954 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3955 	"obsolete and may be removed in a future release of Solaris.  Use " \
3956 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3957 
3958 /*
3959  * For obsolete per-interface forwarding configuration;
3960  * called in response to ND_GET.
3961  */
3962 /* ARGSUSED */
3963 static int
3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3965 {
3966 	ill_t *ill = (ill_t *)cp;
3967 
3968 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3969 
3970 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3971 	return (0);
3972 }
3973 
3974 /*
3975  * For obsolete per-interface forwarding configuration;
3976  * called in response to ND_SET.
3977  */
3978 /* ARGSUSED */
3979 static int
3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3981     cred_t *ioc_cr)
3982 {
3983 	long value;
3984 	int retval;
3985 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3986 
3987 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3988 
3989 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3990 	    value < 0 || value > 1) {
3991 		return (EINVAL);
3992 	}
3993 
3994 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3995 	retval = ill_forward_set(q, mp, (value != 0), cp);
3996 	rw_exit(&ipst->ips_ill_g_lock);
3997 	return (retval);
3998 }
3999 
4000 /*
4001  * Set an ill's ILLF_ROUTER flag appropriately.  If the ill is part of an
4002  * IPMP group, make sure all ill's in the group adopt the new policy.  Send
4003  * up RTS_IFINFO routing socket messages for each interface whose flags we
4004  * change.
4005  */
4006 /* ARGSUSED */
4007 int
4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp)
4009 {
4010 	ill_t *ill = (ill_t *)cp;
4011 	ill_group_t *illgrp;
4012 	ip_stack_t	*ipst = ill->ill_ipst;
4013 
4014 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
4015 
4016 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
4017 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)) ||
4018 	    (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK))
4019 		return (EINVAL);
4020 
4021 	/*
4022 	 * If the ill is in an IPMP group, set the forwarding policy on all
4023 	 * members of the group to the same value.
4024 	 */
4025 	illgrp = ill->ill_group;
4026 	if (illgrp != NULL) {
4027 		ill_t *tmp_ill;
4028 
4029 		for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL;
4030 		    tmp_ill = tmp_ill->ill_group_next) {
4031 			ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4032 			    (enable ? "Enabling" : "Disabling"),
4033 			    (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"),
4034 			    tmp_ill->ill_name));
4035 			mutex_enter(&tmp_ill->ill_lock);
4036 			if (enable)
4037 				tmp_ill->ill_flags |= ILLF_ROUTER;
4038 			else
4039 				tmp_ill->ill_flags &= ~ILLF_ROUTER;
4040 			mutex_exit(&tmp_ill->ill_lock);
4041 			if (tmp_ill->ill_isv6)
4042 				ill_set_nce_router_flags(tmp_ill, enable);
4043 			/* Notify routing socket listeners of this change. */
4044 			ip_rts_ifmsg(tmp_ill->ill_ipif);
4045 		}
4046 	} else {
4047 		ip1dbg(("ill_forward_set: %s %s forwarding on %s",
4048 		    (enable ? "Enabling" : "Disabling"),
4049 		    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
4050 		mutex_enter(&ill->ill_lock);
4051 		if (enable)
4052 			ill->ill_flags |= ILLF_ROUTER;
4053 		else
4054 			ill->ill_flags &= ~ILLF_ROUTER;
4055 		mutex_exit(&ill->ill_lock);
4056 		if (ill->ill_isv6)
4057 			ill_set_nce_router_flags(ill, enable);
4058 		/* Notify routing socket listeners of this change. */
4059 		ip_rts_ifmsg(ill->ill_ipif);
4060 	}
4061 
4062 	return (0);
4063 }
4064 
4065 /*
4066  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
4067  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
4068  * set or clear.
4069  */
4070 static void
4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
4072 {
4073 	ipif_t *ipif;
4074 	nce_t *nce;
4075 
4076 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
4077 		nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE);
4078 		if (nce != NULL) {
4079 			mutex_enter(&nce->nce_lock);
4080 			if (enable)
4081 				nce->nce_flags |= NCE_F_ISROUTER;
4082 			else
4083 				nce->nce_flags &= ~NCE_F_ISROUTER;
4084 			mutex_exit(&nce->nce_lock);
4085 			NCE_REFRELE(nce);
4086 		}
4087 	}
4088 }
4089 
4090 /*
4091  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
4092  * for this ill.  Make sure the v6/v4 question has been answered about this
4093  * ill.  The creation of this ndd variable is only for backwards compatibility.
4094  * The preferred way to control per-interface IP forwarding is through the
4095  * ILLF_ROUTER interface flag.
4096  */
4097 static int
4098 ill_set_ndd_name(ill_t *ill)
4099 {
4100 	char *suffix;
4101 	ip_stack_t	*ipst = ill->ill_ipst;
4102 
4103 	ASSERT(IAM_WRITER_ILL(ill));
4104 
4105 	if (ill->ill_isv6)
4106 		suffix = ipv6_forward_suffix;
4107 	else
4108 		suffix = ipv4_forward_suffix;
4109 
4110 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
4111 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
4112 	/*
4113 	 * Copies over the '\0'.
4114 	 * Note that strlen(suffix) is always bounded.
4115 	 */
4116 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
4117 	    strlen(suffix) + 1);
4118 
4119 	/*
4120 	 * Use of the nd table requires holding the reader lock.
4121 	 * Modifying the nd table thru nd_load/nd_unload requires
4122 	 * the writer lock.
4123 	 */
4124 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
4125 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
4126 	    nd_ill_forward_set, (caddr_t)ill)) {
4127 		/*
4128 		 * If the nd_load failed, it only meant that it could not
4129 		 * allocate a new bunch of room for further NDD expansion.
4130 		 * Because of that, the ill_ndd_name will be set to 0, and
4131 		 * this interface is at the mercy of the global ip_forwarding
4132 		 * variable.
4133 		 */
4134 		rw_exit(&ipst->ips_ip_g_nd_lock);
4135 		ill->ill_ndd_name = NULL;
4136 		return (ENOMEM);
4137 	}
4138 	rw_exit(&ipst->ips_ip_g_nd_lock);
4139 	return (0);
4140 }
4141 
4142 /*
4143  * Intializes the context structure and returns the first ill in the list
4144  * cuurently start_list and end_list can have values:
4145  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
4146  * IP_V4_G_HEAD		Traverse IPV4 list only.
4147  * IP_V6_G_HEAD		Traverse IPV6 list only.
4148  */
4149 
4150 /*
4151  * We don't check for CONDEMNED ills here. Caller must do that if
4152  * necessary under the ill lock.
4153  */
4154 ill_t *
4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
4156     ip_stack_t *ipst)
4157 {
4158 	ill_if_t *ifp;
4159 	ill_t *ill;
4160 	avl_tree_t *avl_tree;
4161 
4162 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4163 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
4164 
4165 	/*
4166 	 * setup the lists to search
4167 	 */
4168 	if (end_list != MAX_G_HEADS) {
4169 		ctx->ctx_current_list = start_list;
4170 		ctx->ctx_last_list = end_list;
4171 	} else {
4172 		ctx->ctx_last_list = MAX_G_HEADS - 1;
4173 		ctx->ctx_current_list = 0;
4174 	}
4175 
4176 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
4177 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4178 		if (ifp != (ill_if_t *)
4179 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4180 			avl_tree = &ifp->illif_avl_by_ppa;
4181 			ill = avl_first(avl_tree);
4182 			/*
4183 			 * ill is guaranteed to be non NULL or ifp should have
4184 			 * not existed.
4185 			 */
4186 			ASSERT(ill != NULL);
4187 			return (ill);
4188 		}
4189 		ctx->ctx_current_list++;
4190 	}
4191 
4192 	return (NULL);
4193 }
4194 
4195 /*
4196  * returns the next ill in the list. ill_first() must have been called
4197  * before calling ill_next() or bad things will happen.
4198  */
4199 
4200 /*
4201  * We don't check for CONDEMNED ills here. Caller must do that if
4202  * necessary under the ill lock.
4203  */
4204 ill_t *
4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
4206 {
4207 	ill_if_t *ifp;
4208 	ill_t *ill;
4209 	ip_stack_t	*ipst = lastill->ill_ipst;
4210 
4211 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
4212 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
4213 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
4214 	    AVL_AFTER)) != NULL) {
4215 		return (ill);
4216 	}
4217 
4218 	/* goto next ill_ifp in the list. */
4219 	ifp = lastill->ill_ifptr->illif_next;
4220 
4221 	/* make sure not at end of circular list */
4222 	while (ifp ==
4223 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
4224 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
4225 			return (NULL);
4226 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
4227 	}
4228 
4229 	return (avl_first(&ifp->illif_avl_by_ppa));
4230 }
4231 
4232 /*
4233  * Check interface name for correct format which is name+ppa.
4234  * name can contain characters and digits, the right most digits
4235  * make up the ppa number. use of octal is not allowed, name must contain
4236  * a ppa, return pointer to the start of ppa.
4237  * In case of error return NULL.
4238  */
4239 static char *
4240 ill_get_ppa_ptr(char *name)
4241 {
4242 	int namelen = mi_strlen(name);
4243 
4244 	int len = namelen;
4245 
4246 	name += len;
4247 	while (len > 0) {
4248 		name--;
4249 		if (*name < '0' || *name > '9')
4250 			break;
4251 		len--;
4252 	}
4253 
4254 	/* empty string, all digits, or no trailing digits */
4255 	if (len == 0 || len == (int)namelen)
4256 		return (NULL);
4257 
4258 	name++;
4259 	/* check for attempted use of octal */
4260 	if (*name == '0' && len != (int)namelen - 1)
4261 		return (NULL);
4262 	return (name);
4263 }
4264 
4265 /*
4266  * use avl tree to locate the ill.
4267  */
4268 static ill_t *
4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
4270     ipsq_func_t func, int *error, ip_stack_t *ipst)
4271 {
4272 	char *ppa_ptr = NULL;
4273 	int len;
4274 	uint_t ppa;
4275 	ill_t *ill = NULL;
4276 	ill_if_t *ifp;
4277 	int list;
4278 	ipsq_t *ipsq;
4279 
4280 	if (error != NULL)
4281 		*error = 0;
4282 
4283 	/*
4284 	 * get ppa ptr
4285 	 */
4286 	if (isv6)
4287 		list = IP_V6_G_HEAD;
4288 	else
4289 		list = IP_V4_G_HEAD;
4290 
4291 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4292 		if (error != NULL)
4293 			*error = ENXIO;
4294 		return (NULL);
4295 	}
4296 
4297 	len = ppa_ptr - name + 1;
4298 
4299 	ppa = stoi(&ppa_ptr);
4300 
4301 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4302 
4303 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4304 		/*
4305 		 * match is done on len - 1 as the name is not null
4306 		 * terminated it contains ppa in addition to the interface
4307 		 * name.
4308 		 */
4309 		if ((ifp->illif_name_len == len) &&
4310 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4311 			break;
4312 		} else {
4313 			ifp = ifp->illif_next;
4314 		}
4315 	}
4316 
4317 
4318 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4319 		/*
4320 		 * Even the interface type does not exist.
4321 		 */
4322 		if (error != NULL)
4323 			*error = ENXIO;
4324 		return (NULL);
4325 	}
4326 
4327 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4328 	if (ill != NULL) {
4329 		/*
4330 		 * The block comment at the start of ipif_down
4331 		 * explains the use of the macros used below
4332 		 */
4333 		GRAB_CONN_LOCK(q);
4334 		mutex_enter(&ill->ill_lock);
4335 		if (ILL_CAN_LOOKUP(ill)) {
4336 			ill_refhold_locked(ill);
4337 			mutex_exit(&ill->ill_lock);
4338 			RELEASE_CONN_LOCK(q);
4339 			return (ill);
4340 		} else if (ILL_CAN_WAIT(ill, q)) {
4341 			ipsq = ill->ill_phyint->phyint_ipsq;
4342 			mutex_enter(&ipsq->ipsq_lock);
4343 			mutex_exit(&ill->ill_lock);
4344 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4345 			mutex_exit(&ipsq->ipsq_lock);
4346 			RELEASE_CONN_LOCK(q);
4347 			*error = EINPROGRESS;
4348 			return (NULL);
4349 		}
4350 		mutex_exit(&ill->ill_lock);
4351 		RELEASE_CONN_LOCK(q);
4352 	}
4353 	if (error != NULL)
4354 		*error = ENXIO;
4355 	return (NULL);
4356 }
4357 
4358 /*
4359  * comparison function for use with avl.
4360  */
4361 static int
4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4363 {
4364 	uint_t ppa;
4365 	uint_t ill_ppa;
4366 
4367 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4368 
4369 	ppa = *((uint_t *)ppa_ptr);
4370 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4371 	/*
4372 	 * We want the ill with the lowest ppa to be on the
4373 	 * top.
4374 	 */
4375 	if (ill_ppa < ppa)
4376 		return (1);
4377 	if (ill_ppa > ppa)
4378 		return (-1);
4379 	return (0);
4380 }
4381 
4382 /*
4383  * remove an interface type from the global list.
4384  */
4385 static void
4386 ill_delete_interface_type(ill_if_t *interface)
4387 {
4388 	ASSERT(interface != NULL);
4389 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4390 
4391 	avl_destroy(&interface->illif_avl_by_ppa);
4392 	if (interface->illif_ppa_arena != NULL)
4393 		vmem_destroy(interface->illif_ppa_arena);
4394 
4395 	remque(interface);
4396 
4397 	mi_free(interface);
4398 }
4399 
4400 /* Defined in ip_netinfo.c */
4401 extern ddi_taskq_t	*eventq_queue_nic;
4402 
4403 /*
4404  * remove ill from the global list.
4405  */
4406 static void
4407 ill_glist_delete(ill_t *ill)
4408 {
4409 	char *nicname;
4410 	size_t nicnamelen;
4411 	hook_nic_event_t *info;
4412 	ip_stack_t	*ipst;
4413 
4414 	if (ill == NULL)
4415 		return;
4416 	ipst = ill->ill_ipst;
4417 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4418 
4419 	if (ill->ill_name != NULL) {
4420 		nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP);
4421 		if (nicname != NULL) {
4422 			bcopy(ill->ill_name, nicname, ill->ill_name_length);
4423 			nicnamelen = ill->ill_name_length;
4424 		}
4425 	} else {
4426 		nicname = NULL;
4427 		nicnamelen = 0;
4428 	}
4429 
4430 	/*
4431 	 * If the ill was never inserted into the AVL tree
4432 	 * we skip the if branch.
4433 	 */
4434 	if (ill->ill_ifptr != NULL) {
4435 		/*
4436 		 * remove from AVL tree and free ppa number
4437 		 */
4438 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4439 
4440 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4441 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4442 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4443 		}
4444 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4445 			ill_delete_interface_type(ill->ill_ifptr);
4446 		}
4447 
4448 		/*
4449 		 * Indicate ill is no longer in the list.
4450 		 */
4451 		ill->ill_ifptr = NULL;
4452 		ill->ill_name_length = 0;
4453 		ill->ill_name[0] = '\0';
4454 		ill->ill_ppa = UINT_MAX;
4455 	}
4456 
4457 	/*
4458 	 * Run the unplumb hook after the NIC has disappeared from being
4459 	 * visible so that attempts to revalidate its existance will fail.
4460 	 *
4461 	 * This needs to be run inside the ill_g_lock perimeter to ensure
4462 	 * that the ordering of delivered events to listeners matches the
4463 	 * order of them in the kernel.
4464 	 */
4465 	if ((info = ill->ill_nic_event_info) != NULL) {
4466 		if (info->hne_event != NE_DOWN) {
4467 			ip2dbg(("ill_glist_delete: unexpected nic event %d "
4468 			    "attached for %s\n", info->hne_event,
4469 			    ill->ill_name));
4470 			if (info->hne_data != NULL)
4471 				kmem_free(info->hne_data, info->hne_datalen);
4472 			kmem_free(info, sizeof (hook_nic_event_t));
4473 		} else {
4474 			if (ddi_taskq_dispatch(eventq_queue_nic,
4475 			    ip_ne_queue_func, (void *)info, DDI_SLEEP)
4476 			    == DDI_FAILURE) {
4477 				ip2dbg(("ill_glist_delete: ddi_taskq_dispatch "
4478 				    "failed\n"));
4479 				if (info->hne_data != NULL)
4480 					kmem_free(info->hne_data,
4481 					    info->hne_datalen);
4482 				kmem_free(info, sizeof (hook_nic_event_t));
4483 			}
4484 		}
4485 	}
4486 
4487 	/* Generate NE_UNPLUMB event for ill_name. */
4488 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
4489 	if (info != NULL) {
4490 		info->hne_nic = ill->ill_phyint->phyint_ifindex;
4491 		info->hne_lif = 0;
4492 		info->hne_event = NE_UNPLUMB;
4493 		info->hne_data = nicname;
4494 		info->hne_datalen = nicnamelen;
4495 		info->hne_family = ill->ill_isv6 ?
4496 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
4497 	} else {
4498 		ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event "
4499 		    "information for %s (ENOMEM)\n", ill->ill_name));
4500 		if (nicname != NULL)
4501 			kmem_free(nicname, nicnamelen);
4502 	}
4503 
4504 	ill->ill_nic_event_info = info;
4505 
4506 	ill_phyint_free(ill);
4507 	rw_exit(&ipst->ips_ill_g_lock);
4508 }
4509 
4510 /*
4511  * allocate a ppa, if the number of plumbed interfaces of this type are
4512  * less than ill_no_arena do a linear search to find a unused ppa.
4513  * When the number goes beyond ill_no_arena switch to using an arena.
4514  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4515  * is the return value for an error condition, so allocation starts at one
4516  * and is decremented by one.
4517  */
4518 static int
4519 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4520 {
4521 	ill_t *tmp_ill;
4522 	uint_t start, end;
4523 	int ppa;
4524 
4525 	if (ifp->illif_ppa_arena == NULL &&
4526 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4527 		/*
4528 		 * Create an arena.
4529 		 */
4530 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4531 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4532 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4533 			/* allocate what has already been assigned */
4534 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4535 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4536 		    tmp_ill, AVL_AFTER)) {
4537 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4538 			    1,		/* size */
4539 			    1,		/* align/quantum */
4540 			    0,		/* phase */
4541 			    0,		/* nocross */
4542 		(void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */
4543 		(void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */
4544 			    VM_NOSLEEP|VM_FIRSTFIT);
4545 			if (ppa == 0) {
4546 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4547 				    " failed while switching"));
4548 				vmem_destroy(ifp->illif_ppa_arena);
4549 				ifp->illif_ppa_arena = NULL;
4550 				break;
4551 			}
4552 		}
4553 	}
4554 
4555 	if (ifp->illif_ppa_arena != NULL) {
4556 		if (ill->ill_ppa == UINT_MAX) {
4557 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4558 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4559 			if (ppa == 0)
4560 				return (EAGAIN);
4561 			ill->ill_ppa = --ppa;
4562 		} else {
4563 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4564 			    1, 		/* size */
4565 			    1, 		/* align/quantum */
4566 			    0, 		/* phase */
4567 			    0, 		/* nocross */
4568 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4569 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4570 			    VM_NOSLEEP|VM_FIRSTFIT);
4571 			/*
4572 			 * Most likely the allocation failed because
4573 			 * the requested ppa was in use.
4574 			 */
4575 			if (ppa == 0)
4576 				return (EEXIST);
4577 		}
4578 		return (0);
4579 	}
4580 
4581 	/*
4582 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4583 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4584 	 */
4585 	if (ill->ill_ppa == UINT_MAX) {
4586 		end = UINT_MAX - 1;
4587 		start = 0;
4588 	} else {
4589 		end = start = ill->ill_ppa;
4590 	}
4591 
4592 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4593 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4594 		if (start++ >= end) {
4595 			if (ill->ill_ppa == UINT_MAX)
4596 				return (EAGAIN);
4597 			else
4598 				return (EEXIST);
4599 		}
4600 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4601 	}
4602 	ill->ill_ppa = start;
4603 	return (0);
4604 }
4605 
4606 /*
4607  * Insert ill into the list of configured ill's. Once this function completes,
4608  * the ill is globally visible and is available through lookups. More precisely
4609  * this happens after the caller drops the ill_g_lock.
4610  */
4611 static int
4612 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4613 {
4614 	ill_if_t *ill_interface;
4615 	avl_index_t where = 0;
4616 	int error;
4617 	int name_length;
4618 	int index;
4619 	boolean_t check_length = B_FALSE;
4620 	ip_stack_t	*ipst = ill->ill_ipst;
4621 
4622 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4623 
4624 	name_length = mi_strlen(name) + 1;
4625 
4626 	if (isv6)
4627 		index = IP_V6_G_HEAD;
4628 	else
4629 		index = IP_V4_G_HEAD;
4630 
4631 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4632 	/*
4633 	 * Search for interface type based on name
4634 	 */
4635 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4636 		if ((ill_interface->illif_name_len == name_length) &&
4637 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4638 			break;
4639 		}
4640 		ill_interface = ill_interface->illif_next;
4641 	}
4642 
4643 	/*
4644 	 * Interface type not found, create one.
4645 	 */
4646 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4647 
4648 		ill_g_head_t ghead;
4649 
4650 		/*
4651 		 * allocate ill_if_t structure
4652 		 */
4653 
4654 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4655 		if (ill_interface == NULL) {
4656 			return (ENOMEM);
4657 		}
4658 
4659 
4660 
4661 		(void) strcpy(ill_interface->illif_name, name);
4662 		ill_interface->illif_name_len = name_length;
4663 
4664 		avl_create(&ill_interface->illif_avl_by_ppa,
4665 		    ill_compare_ppa, sizeof (ill_t),
4666 		    offsetof(struct ill_s, ill_avl_byppa));
4667 
4668 		/*
4669 		 * link the structure in the back to maintain order
4670 		 * of configuration for ifconfig output.
4671 		 */
4672 		ghead = ipst->ips_ill_g_heads[index];
4673 		insque(ill_interface, ghead.ill_g_list_tail);
4674 
4675 	}
4676 
4677 	if (ill->ill_ppa == UINT_MAX)
4678 		check_length = B_TRUE;
4679 
4680 	error = ill_alloc_ppa(ill_interface, ill);
4681 	if (error != 0) {
4682 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4683 			ill_delete_interface_type(ill->ill_ifptr);
4684 		return (error);
4685 	}
4686 
4687 	/*
4688 	 * When the ppa is choosen by the system, check that there is
4689 	 * enough space to insert ppa. if a specific ppa was passed in this
4690 	 * check is not required as the interface name passed in will have
4691 	 * the right ppa in it.
4692 	 */
4693 	if (check_length) {
4694 		/*
4695 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4696 		 */
4697 		char buf[sizeof (uint_t) * 3];
4698 
4699 		/*
4700 		 * convert ppa to string to calculate the amount of space
4701 		 * required for it in the name.
4702 		 */
4703 		numtos(ill->ill_ppa, buf);
4704 
4705 		/* Do we have enough space to insert ppa ? */
4706 
4707 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4708 			/* Free ppa and interface type struct */
4709 			if (ill_interface->illif_ppa_arena != NULL) {
4710 				vmem_free(ill_interface->illif_ppa_arena,
4711 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4712 			}
4713 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) ==
4714 			    0) {
4715 				ill_delete_interface_type(ill->ill_ifptr);
4716 			}
4717 
4718 			return (EINVAL);
4719 		}
4720 	}
4721 
4722 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4723 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4724 
4725 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4726 	    &where);
4727 	ill->ill_ifptr = ill_interface;
4728 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4729 
4730 	ill_phyint_reinit(ill);
4731 	return (0);
4732 }
4733 
4734 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */
4735 static boolean_t
4736 ipsq_init(ill_t *ill)
4737 {
4738 	ipsq_t  *ipsq;
4739 
4740 	/* Init the ipsq and impicitly enter as writer */
4741 	ill->ill_phyint->phyint_ipsq =
4742 	    kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
4743 	if (ill->ill_phyint->phyint_ipsq == NULL)
4744 		return (B_FALSE);
4745 	ipsq = ill->ill_phyint->phyint_ipsq;
4746 	ipsq->ipsq_phyint_list = ill->ill_phyint;
4747 	ill->ill_phyint->phyint_ipsq_next = NULL;
4748 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4749 	ipsq->ipsq_refs = 1;
4750 	ipsq->ipsq_writer = curthread;
4751 	ipsq->ipsq_reentry_cnt = 1;
4752 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4753 #ifdef ILL_DEBUG
4754 	ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH);
4755 #endif
4756 	(void) strcpy(ipsq->ipsq_name, ill->ill_name);
4757 	return (B_TRUE);
4758 }
4759 
4760 /*
4761  * ill_init is called by ip_open when a device control stream is opened.
4762  * It does a few initializations, and shoots a DL_INFO_REQ message down
4763  * to the driver.  The response is later picked up in ip_rput_dlpi and
4764  * used to set up default mechanisms for talking to the driver.  (Always
4765  * called as writer.)
4766  *
4767  * If this function returns error, ip_open will call ip_close which in
4768  * turn will call ill_delete to clean up any memory allocated here that
4769  * is not yet freed.
4770  */
4771 int
4772 ill_init(queue_t *q, ill_t *ill)
4773 {
4774 	int	count;
4775 	dl_info_req_t	*dlir;
4776 	mblk_t	*info_mp;
4777 	uchar_t *frag_ptr;
4778 
4779 	/*
4780 	 * The ill is initialized to zero by mi_alloc*(). In addition
4781 	 * some fields already contain valid values, initialized in
4782 	 * ip_open(), before we reach here.
4783 	 */
4784 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4785 
4786 	ill->ill_rq = q;
4787 	ill->ill_wq = WR(q);
4788 
4789 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4790 	    BPRI_HI);
4791 	if (info_mp == NULL)
4792 		return (ENOMEM);
4793 
4794 	/*
4795 	 * Allocate sufficient space to contain our fragment hash table and
4796 	 * the device name.
4797 	 */
4798 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4799 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4800 	if (frag_ptr == NULL) {
4801 		freemsg(info_mp);
4802 		return (ENOMEM);
4803 	}
4804 	ill->ill_frag_ptr = frag_ptr;
4805 	ill->ill_frag_free_num_pkts = 0;
4806 	ill->ill_last_frag_clean_time = 0;
4807 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4808 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4809 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4810 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4811 		    NULL, MUTEX_DEFAULT, NULL);
4812 	}
4813 
4814 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4815 	if (ill->ill_phyint == NULL) {
4816 		freemsg(info_mp);
4817 		mi_free(frag_ptr);
4818 		return (ENOMEM);
4819 	}
4820 
4821 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4822 	/*
4823 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4824 	 * at this point because of the following reason. If we can't
4825 	 * enter the ipsq at some point and cv_wait, the writer that
4826 	 * wakes us up tries to locate us using the list of all phyints
4827 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4828 	 * If we don't set it now, we risk a missed wakeup.
4829 	 */
4830 	ill->ill_phyint->phyint_illv4 = ill;
4831 	ill->ill_ppa = UINT_MAX;
4832 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4833 
4834 	if (!ipsq_init(ill)) {
4835 		freemsg(info_mp);
4836 		mi_free(frag_ptr);
4837 		mi_free(ill->ill_phyint);
4838 		return (ENOMEM);
4839 	}
4840 
4841 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4842 
4843 
4844 	/* Frag queue limit stuff */
4845 	ill->ill_frag_count = 0;
4846 	ill->ill_ipf_gen = 0;
4847 
4848 	ill->ill_global_timer = INFINITY;
4849 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
4850 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4851 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4852 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4853 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4854 
4855 	/*
4856 	 * Initialize IPv6 configuration variables.  The IP module is always
4857 	 * opened as an IPv4 module.  Instead tracking down the cases where
4858 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4859 	 * here for convenience, this has no effect until the ill is set to do
4860 	 * IPv6.
4861 	 */
4862 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4863 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4864 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4865 	ill->ill_max_buf = ND_MAX_Q;
4866 	ill->ill_refcnt = 0;
4867 
4868 	/* Send down the Info Request to the driver. */
4869 	info_mp->b_datap->db_type = M_PCPROTO;
4870 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4871 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4872 	dlir->dl_primitive = DL_INFO_REQ;
4873 
4874 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4875 
4876 	qprocson(q);
4877 	ill_dlpi_send(ill, info_mp);
4878 
4879 	return (0);
4880 }
4881 
4882 /*
4883  * ill_dls_info
4884  * creates datalink socket info from the device.
4885  */
4886 int
4887 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4888 {
4889 	size_t	len;
4890 	ill_t	*ill = ipif->ipif_ill;
4891 
4892 	sdl->sdl_family = AF_LINK;
4893 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4894 	sdl->sdl_type = ill->ill_type;
4895 	(void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4896 	len = strlen(sdl->sdl_data);
4897 	ASSERT(len < 256);
4898 	sdl->sdl_nlen = (uchar_t)len;
4899 	sdl->sdl_alen = ill->ill_phys_addr_length;
4900 	sdl->sdl_slen = 0;
4901 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4902 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4903 
4904 	return (sizeof (struct sockaddr_dl));
4905 }
4906 
4907 /*
4908  * ill_xarp_info
4909  * creates xarp info from the device.
4910  */
4911 static int
4912 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4913 {
4914 	sdl->sdl_family = AF_LINK;
4915 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4916 	sdl->sdl_type = ill->ill_type;
4917 	(void) ipif_get_name(ill->ill_ipif, sdl->sdl_data,
4918 	    sizeof (sdl->sdl_data));
4919 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4920 	sdl->sdl_alen = ill->ill_phys_addr_length;
4921 	sdl->sdl_slen = 0;
4922 	return (sdl->sdl_nlen);
4923 }
4924 
4925 static int
4926 loopback_kstat_update(kstat_t *ksp, int rw)
4927 {
4928 	kstat_named_t *kn;
4929 	netstackid_t	stackid;
4930 	netstack_t	*ns;
4931 	ip_stack_t	*ipst;
4932 
4933 	if (ksp == NULL || ksp->ks_data == NULL)
4934 		return (EIO);
4935 
4936 	if (rw == KSTAT_WRITE)
4937 		return (EACCES);
4938 
4939 	kn = KSTAT_NAMED_PTR(ksp);
4940 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4941 
4942 	ns = netstack_find_by_stackid(stackid);
4943 	if (ns == NULL)
4944 		return (-1);
4945 
4946 	ipst = ns->netstack_ip;
4947 	if (ipst == NULL) {
4948 		netstack_rele(ns);
4949 		return (-1);
4950 	}
4951 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4952 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4953 	netstack_rele(ns);
4954 	return (0);
4955 }
4956 
4957 
4958 /*
4959  * Has ifindex been plumbed already.
4960  * Compares both phyint_ifindex and phyint_group_ifindex.
4961  */
4962 static boolean_t
4963 phyint_exists(uint_t index, ip_stack_t *ipst)
4964 {
4965 	phyint_t *phyi;
4966 
4967 	ASSERT(index != 0);
4968 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4969 	/*
4970 	 * Indexes are stored in the phyint - a common structure
4971 	 * to both IPv4 and IPv6.
4972 	 */
4973 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
4974 	for (; phyi != NULL;
4975 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4976 	    phyi, AVL_AFTER)) {
4977 		if (phyi->phyint_ifindex == index ||
4978 		    phyi->phyint_group_ifindex == index)
4979 			return (B_TRUE);
4980 	}
4981 	return (B_FALSE);
4982 }
4983 
4984 /* Pick a unique ifindex */
4985 boolean_t
4986 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4987 {
4988 	uint_t starting_index;
4989 
4990 	if (!ipst->ips_ill_index_wrap) {
4991 		*indexp = ipst->ips_ill_index++;
4992 		if (ipst->ips_ill_index == 0) {
4993 			/* Reached the uint_t limit Next time wrap  */
4994 			ipst->ips_ill_index_wrap = B_TRUE;
4995 		}
4996 		return (B_TRUE);
4997 	}
4998 
4999 	/*
5000 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
5001 	 * at this point and don't want to call any function that attempts
5002 	 * to get the lock again.
5003 	 */
5004 	starting_index = ipst->ips_ill_index++;
5005 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
5006 		if (ipst->ips_ill_index != 0 &&
5007 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
5008 			/* found unused index - use it */
5009 			*indexp = ipst->ips_ill_index;
5010 			return (B_TRUE);
5011 		}
5012 	}
5013 
5014 	/*
5015 	 * all interface indicies are inuse.
5016 	 */
5017 	return (B_FALSE);
5018 }
5019 
5020 /*
5021  * Assign a unique interface index for the phyint.
5022  */
5023 static boolean_t
5024 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
5025 {
5026 	ASSERT(phyi->phyint_ifindex == 0);
5027 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
5028 }
5029 
5030 /*
5031  * Return a pointer to the ill which matches the supplied name.  Note that
5032  * the ill name length includes the null termination character.  (May be
5033  * called as writer.)
5034  * If do_alloc and the interface is "lo0" it will be automatically created.
5035  * Cannot bump up reference on condemned ills. So dup detect can't be done
5036  * using this func.
5037  */
5038 ill_t *
5039 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
5040     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
5041     ip_stack_t *ipst)
5042 {
5043 	ill_t	*ill;
5044 	ipif_t	*ipif;
5045 	kstat_named_t	*kn;
5046 	boolean_t isloopback;
5047 	ipsq_t *old_ipsq;
5048 	in6_addr_t ov6addr;
5049 
5050 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
5051 
5052 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5053 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
5054 	rw_exit(&ipst->ips_ill_g_lock);
5055 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
5056 		return (ill);
5057 
5058 	/*
5059 	 * Couldn't find it.  Does this happen to be a lookup for the
5060 	 * loopback device and are we allowed to allocate it?
5061 	 */
5062 	if (!isloopback || !do_alloc)
5063 		return (NULL);
5064 
5065 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
5066 
5067 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
5068 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
5069 		rw_exit(&ipst->ips_ill_g_lock);
5070 		return (ill);
5071 	}
5072 
5073 	/* Create the loopback device on demand */
5074 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
5075 	    sizeof (ipif_loopback_name), BPRI_MED));
5076 	if (ill == NULL)
5077 		goto done;
5078 
5079 	*ill = ill_null;
5080 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
5081 	ill->ill_ipst = ipst;
5082 	netstack_hold(ipst->ips_netstack);
5083 	/*
5084 	 * For exclusive stacks we set the zoneid to zero
5085 	 * to make IP operate as if in the global zone.
5086 	 */
5087 	ill->ill_zoneid = GLOBAL_ZONEID;
5088 
5089 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
5090 	if (ill->ill_phyint == NULL)
5091 		goto done;
5092 
5093 	if (isv6)
5094 		ill->ill_phyint->phyint_illv6 = ill;
5095 	else
5096 		ill->ill_phyint->phyint_illv4 = ill;
5097 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
5098 	ill->ill_max_frag = IP_LOOPBACK_MTU;
5099 	/* Add room for tcp+ip headers */
5100 	if (isv6) {
5101 		ill->ill_isv6 = B_TRUE;
5102 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
5103 	} else {
5104 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
5105 	}
5106 	if (!ill_allocate_mibs(ill))
5107 		goto done;
5108 	ill->ill_max_mtu = ill->ill_max_frag;
5109 	/*
5110 	 * ipif_loopback_name can't be pointed at directly because its used
5111 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
5112 	 * from the glist, ill_glist_delete() sets the first character of
5113 	 * ill_name to '\0'.
5114 	 */
5115 	ill->ill_name = (char *)ill + sizeof (*ill);
5116 	(void) strcpy(ill->ill_name, ipif_loopback_name);
5117 	ill->ill_name_length = sizeof (ipif_loopback_name);
5118 	/* Set ill_name_set for ill_phyint_reinit to work properly */
5119 
5120 	ill->ill_global_timer = INFINITY;
5121 	ill->ill_mcast_type = IGMP_V3_ROUTER;	/* == MLD_V2_ROUTER */
5122 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
5123 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
5124 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
5125 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
5126 
5127 	/* No resolver here. */
5128 	ill->ill_net_type = IRE_LOOPBACK;
5129 
5130 	/* Initialize the ipsq */
5131 	if (!ipsq_init(ill))
5132 		goto done;
5133 
5134 	ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL;
5135 	ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--;
5136 	ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0);
5137 #ifdef ILL_DEBUG
5138 	ill->ill_phyint->phyint_ipsq->ipsq_depth = 0;
5139 #endif
5140 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE);
5141 	if (ipif == NULL)
5142 		goto done;
5143 
5144 	ill->ill_flags = ILLF_MULTICAST;
5145 
5146 	ov6addr = ipif->ipif_v6lcl_addr;
5147 	/* Set up default loopback address and mask. */
5148 	if (!isv6) {
5149 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
5150 
5151 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
5152 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5153 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
5154 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5155 		    ipif->ipif_v6subnet);
5156 		ill->ill_flags |= ILLF_IPV4;
5157 	} else {
5158 		ipif->ipif_v6lcl_addr = ipv6_loopback;
5159 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
5160 		ipif->ipif_v6net_mask = ipv6_all_ones;
5161 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
5162 		    ipif->ipif_v6subnet);
5163 		ill->ill_flags |= ILLF_IPV6;
5164 	}
5165 
5166 	/*
5167 	 * Chain us in at the end of the ill list. hold the ill
5168 	 * before we make it globally visible. 1 for the lookup.
5169 	 */
5170 	ill->ill_refcnt = 0;
5171 	ill_refhold(ill);
5172 
5173 	ill->ill_frag_count = 0;
5174 	ill->ill_frag_free_num_pkts = 0;
5175 	ill->ill_last_frag_clean_time = 0;
5176 
5177 	old_ipsq = ill->ill_phyint->phyint_ipsq;
5178 
5179 	if (ill_glist_insert(ill, "lo", isv6) != 0)
5180 		cmn_err(CE_PANIC, "cannot insert loopback interface");
5181 
5182 	/* Let SCTP know so that it can add this to its list */
5183 	sctp_update_ill(ill, SCTP_ILL_INSERT);
5184 
5185 	/*
5186 	 * We have already assigned ipif_v6lcl_addr above, but we need to
5187 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
5188 	 * requires to be after ill_glist_insert() since we need the
5189 	 * ill_index set. Pass on ipv6_loopback as the old address.
5190 	 */
5191 	sctp_update_ipif_addr(ipif, ov6addr);
5192 
5193 	/*
5194 	 * If the ipsq was changed in ill_phyint_reinit free the old ipsq.
5195 	 */
5196 	if (old_ipsq != ill->ill_phyint->phyint_ipsq) {
5197 		/* Loopback ills aren't in any IPMP group */
5198 		ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP));
5199 		ipsq_delete(old_ipsq);
5200 	}
5201 
5202 	/*
5203 	 * Delay this till the ipif is allocated as ipif_allocate
5204 	 * de-references ill_phyint for getting the ifindex. We
5205 	 * can't do this before ipif_allocate because ill_phyint_reinit
5206 	 * -> phyint_assign_ifindex expects ipif to be present.
5207 	 */
5208 	mutex_enter(&ill->ill_phyint->phyint_lock);
5209 	ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL;
5210 	mutex_exit(&ill->ill_phyint->phyint_lock);
5211 
5212 	if (ipst->ips_loopback_ksp == NULL) {
5213 		/* Export loopback interface statistics */
5214 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
5215 		    ipif_loopback_name, "net",
5216 		    KSTAT_TYPE_NAMED, 2, 0,
5217 		    ipst->ips_netstack->netstack_stackid);
5218 		if (ipst->ips_loopback_ksp != NULL) {
5219 			ipst->ips_loopback_ksp->ks_update =
5220 			    loopback_kstat_update;
5221 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
5222 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
5223 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
5224 			ipst->ips_loopback_ksp->ks_private =
5225 			    (void *)(uintptr_t)ipst->ips_netstack->
5226 			    netstack_stackid;
5227 			kstat_install(ipst->ips_loopback_ksp);
5228 		}
5229 	}
5230 
5231 	if (error != NULL)
5232 		*error = 0;
5233 	*did_alloc = B_TRUE;
5234 	rw_exit(&ipst->ips_ill_g_lock);
5235 	return (ill);
5236 done:
5237 	if (ill != NULL) {
5238 		if (ill->ill_phyint != NULL) {
5239 			ipsq_t	*ipsq;
5240 
5241 			ipsq = ill->ill_phyint->phyint_ipsq;
5242 			if (ipsq != NULL) {
5243 				ipsq->ipsq_ipst = NULL;
5244 				kmem_free(ipsq, sizeof (ipsq_t));
5245 			}
5246 			mi_free(ill->ill_phyint);
5247 		}
5248 		ill_free_mib(ill);
5249 		if (ill->ill_ipst != NULL)
5250 			netstack_rele(ill->ill_ipst->ips_netstack);
5251 		mi_free(ill);
5252 	}
5253 	rw_exit(&ipst->ips_ill_g_lock);
5254 	if (error != NULL)
5255 		*error = ENOMEM;
5256 	return (NULL);
5257 }
5258 
5259 /*
5260  * For IPP calls - use the ip_stack_t for global stack.
5261  */
5262 ill_t *
5263 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
5264     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
5265 {
5266 	ip_stack_t	*ipst;
5267 	ill_t		*ill;
5268 
5269 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
5270 	if (ipst == NULL) {
5271 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
5272 		return (NULL);
5273 	}
5274 
5275 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
5276 	netstack_rele(ipst->ips_netstack);
5277 	return (ill);
5278 }
5279 
5280 /*
5281  * Return a pointer to the ill which matches the index and IP version type.
5282  */
5283 ill_t *
5284 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
5285     ipsq_func_t func, int *err, ip_stack_t *ipst)
5286 {
5287 	ill_t	*ill;
5288 	ipsq_t  *ipsq;
5289 	phyint_t *phyi;
5290 
5291 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
5292 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
5293 
5294 	if (err != NULL)
5295 		*err = 0;
5296 
5297 	/*
5298 	 * Indexes are stored in the phyint - a common structure
5299 	 * to both IPv4 and IPv6.
5300 	 */
5301 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5302 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5303 	    (void *) &index, NULL);
5304 	if (phyi != NULL) {
5305 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5306 		if (ill != NULL) {
5307 			/*
5308 			 * The block comment at the start of ipif_down
5309 			 * explains the use of the macros used below
5310 			 */
5311 			GRAB_CONN_LOCK(q);
5312 			mutex_enter(&ill->ill_lock);
5313 			if (ILL_CAN_LOOKUP(ill)) {
5314 				ill_refhold_locked(ill);
5315 				mutex_exit(&ill->ill_lock);
5316 				RELEASE_CONN_LOCK(q);
5317 				rw_exit(&ipst->ips_ill_g_lock);
5318 				return (ill);
5319 			} else if (ILL_CAN_WAIT(ill, q)) {
5320 				ipsq = ill->ill_phyint->phyint_ipsq;
5321 				mutex_enter(&ipsq->ipsq_lock);
5322 				rw_exit(&ipst->ips_ill_g_lock);
5323 				mutex_exit(&ill->ill_lock);
5324 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5325 				mutex_exit(&ipsq->ipsq_lock);
5326 				RELEASE_CONN_LOCK(q);
5327 				*err = EINPROGRESS;
5328 				return (NULL);
5329 			}
5330 			RELEASE_CONN_LOCK(q);
5331 			mutex_exit(&ill->ill_lock);
5332 		}
5333 	}
5334 	rw_exit(&ipst->ips_ill_g_lock);
5335 	if (err != NULL)
5336 		*err = ENXIO;
5337 	return (NULL);
5338 }
5339 
5340 /*
5341  * Return the ifindex next in sequence after the passed in ifindex.
5342  * If there is no next ifindex for the given protocol, return 0.
5343  */
5344 uint_t
5345 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5346 {
5347 	phyint_t *phyi;
5348 	phyint_t *phyi_initial;
5349 	uint_t   ifindex;
5350 
5351 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5352 
5353 	if (index == 0) {
5354 		phyi = avl_first(
5355 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5356 	} else {
5357 		phyi = phyi_initial = avl_find(
5358 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5359 		    (void *) &index, NULL);
5360 	}
5361 
5362 	for (; phyi != NULL;
5363 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5364 	    phyi, AVL_AFTER)) {
5365 		/*
5366 		 * If we're not returning the first interface in the tree
5367 		 * and we still haven't moved past the phyint_t that
5368 		 * corresponds to index, avl_walk needs to be called again
5369 		 */
5370 		if (!((index != 0) && (phyi == phyi_initial))) {
5371 			if (isv6) {
5372 				if ((phyi->phyint_illv6) &&
5373 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5374 				    (phyi->phyint_illv6->ill_isv6 == 1))
5375 					break;
5376 			} else {
5377 				if ((phyi->phyint_illv4) &&
5378 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5379 				    (phyi->phyint_illv4->ill_isv6 == 0))
5380 					break;
5381 			}
5382 		}
5383 	}
5384 
5385 	rw_exit(&ipst->ips_ill_g_lock);
5386 
5387 	if (phyi != NULL)
5388 		ifindex = phyi->phyint_ifindex;
5389 	else
5390 		ifindex = 0;
5391 
5392 	return (ifindex);
5393 }
5394 
5395 
5396 /*
5397  * Return the ifindex for the named interface.
5398  * If there is no next ifindex for the interface, return 0.
5399  */
5400 uint_t
5401 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5402 {
5403 	phyint_t	*phyi;
5404 	avl_index_t	where = 0;
5405 	uint_t		ifindex;
5406 
5407 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5408 
5409 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5410 	    name, &where)) == NULL) {
5411 		rw_exit(&ipst->ips_ill_g_lock);
5412 		return (0);
5413 	}
5414 
5415 	ifindex = phyi->phyint_ifindex;
5416 
5417 	rw_exit(&ipst->ips_ill_g_lock);
5418 
5419 	return (ifindex);
5420 }
5421 
5422 
5423 /*
5424  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5425  * that gives a running thread a reference to the ill. This reference must be
5426  * released by the thread when it is done accessing the ill and related
5427  * objects. ill_refcnt can not be used to account for static references
5428  * such as other structures pointing to an ill. Callers must generally
5429  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5430  * or be sure that the ill is not being deleted or changing state before
5431  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5432  * ill won't change any of its critical state such as address, netmask etc.
5433  */
5434 void
5435 ill_refhold(ill_t *ill)
5436 {
5437 	mutex_enter(&ill->ill_lock);
5438 	ill->ill_refcnt++;
5439 	ILL_TRACE_REF(ill);
5440 	mutex_exit(&ill->ill_lock);
5441 }
5442 
5443 void
5444 ill_refhold_locked(ill_t *ill)
5445 {
5446 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5447 	ill->ill_refcnt++;
5448 	ILL_TRACE_REF(ill);
5449 }
5450 
5451 int
5452 ill_check_and_refhold(ill_t *ill)
5453 {
5454 	mutex_enter(&ill->ill_lock);
5455 	if (ILL_CAN_LOOKUP(ill)) {
5456 		ill_refhold_locked(ill);
5457 		mutex_exit(&ill->ill_lock);
5458 		return (0);
5459 	}
5460 	mutex_exit(&ill->ill_lock);
5461 	return (ILL_LOOKUP_FAILED);
5462 }
5463 
5464 /*
5465  * Must not be called while holding any locks. Otherwise if this is
5466  * the last reference to be released, there is a chance of recursive mutex
5467  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5468  * to restart an ioctl.
5469  */
5470 void
5471 ill_refrele(ill_t *ill)
5472 {
5473 	mutex_enter(&ill->ill_lock);
5474 	ASSERT(ill->ill_refcnt != 0);
5475 	ill->ill_refcnt--;
5476 	ILL_UNTRACE_REF(ill);
5477 	if (ill->ill_refcnt != 0) {
5478 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5479 		mutex_exit(&ill->ill_lock);
5480 		return;
5481 	}
5482 
5483 	/* Drops the ill_lock */
5484 	ipif_ill_refrele_tail(ill);
5485 }
5486 
5487 /*
5488  * Obtain a weak reference count on the ill. This reference ensures the
5489  * ill won't be freed, but the ill may change any of its critical state
5490  * such as netmask, address etc. Returns an error if the ill has started
5491  * closing.
5492  */
5493 boolean_t
5494 ill_waiter_inc(ill_t *ill)
5495 {
5496 	mutex_enter(&ill->ill_lock);
5497 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5498 		mutex_exit(&ill->ill_lock);
5499 		return (B_FALSE);
5500 	}
5501 	ill->ill_waiters++;
5502 	mutex_exit(&ill->ill_lock);
5503 	return (B_TRUE);
5504 }
5505 
5506 void
5507 ill_waiter_dcr(ill_t *ill)
5508 {
5509 	mutex_enter(&ill->ill_lock);
5510 	ill->ill_waiters--;
5511 	if (ill->ill_waiters == 0)
5512 		cv_broadcast(&ill->ill_cv);
5513 	mutex_exit(&ill->ill_lock);
5514 }
5515 
5516 /*
5517  * Named Dispatch routine to produce a formatted report on all ILLs.
5518  * This report is accessed by using the ndd utility to "get" ND variable
5519  * "ip_ill_status".
5520  */
5521 /* ARGSUSED */
5522 int
5523 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5524 {
5525 	ill_t		*ill;
5526 	ill_walk_context_t ctx;
5527 	ip_stack_t	*ipst;
5528 
5529 	ipst = CONNQ_TO_IPST(q);
5530 
5531 	(void) mi_mpprintf(mp,
5532 	    "ILL      " MI_COL_HDRPAD_STR
5533 	/*   01234567[89ABCDEF] */
5534 	    "rq       " MI_COL_HDRPAD_STR
5535 	/*   01234567[89ABCDEF] */
5536 	    "wq       " MI_COL_HDRPAD_STR
5537 	/*   01234567[89ABCDEF] */
5538 	    "upcnt mxfrg err name");
5539 	/*   12345 12345 123 xxxxxxxx  */
5540 
5541 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5542 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5543 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5544 		(void) mi_mpprintf(mp,
5545 		    MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR
5546 		    "%05u %05u %03d %s",
5547 		    (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq,
5548 		    ill->ill_ipif_up_count,
5549 		    ill->ill_max_frag, ill->ill_error, ill->ill_name);
5550 	}
5551 	rw_exit(&ipst->ips_ill_g_lock);
5552 
5553 	return (0);
5554 }
5555 
5556 /*
5557  * Named Dispatch routine to produce a formatted report on all IPIFs.
5558  * This report is accessed by using the ndd utility to "get" ND variable
5559  * "ip_ipif_status".
5560  */
5561 /* ARGSUSED */
5562 int
5563 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr)
5564 {
5565 	char	buf1[INET6_ADDRSTRLEN];
5566 	char	buf2[INET6_ADDRSTRLEN];
5567 	char	buf3[INET6_ADDRSTRLEN];
5568 	char	buf4[INET6_ADDRSTRLEN];
5569 	char	buf5[INET6_ADDRSTRLEN];
5570 	char	buf6[INET6_ADDRSTRLEN];
5571 	char	buf[LIFNAMSIZ];
5572 	ill_t	*ill;
5573 	ipif_t	*ipif;
5574 	nv_t	*nvp;
5575 	uint64_t flags;
5576 	zoneid_t zoneid;
5577 	ill_walk_context_t ctx;
5578 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
5579 
5580 	(void) mi_mpprintf(mp,
5581 	    "IPIF metric mtu in/out/forward name zone flags...\n"
5582 	    "\tlocal address\n"
5583 	    "\tsrc address\n"
5584 	    "\tsubnet\n"
5585 	    "\tmask\n"
5586 	    "\tbroadcast\n"
5587 	    "\tp-p-dst");
5588 
5589 	ASSERT(q->q_next == NULL);
5590 	zoneid = Q_TO_CONN(q)->conn_zoneid;	/* IP is a driver */
5591 
5592 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5593 	ill = ILL_START_WALK_ALL(&ctx, ipst);
5594 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5595 		for (ipif = ill->ill_ipif; ipif != NULL;
5596 		    ipif = ipif->ipif_next) {
5597 			if (zoneid != GLOBAL_ZONEID &&
5598 			    zoneid != ipif->ipif_zoneid &&
5599 			    ipif->ipif_zoneid != ALL_ZONES)
5600 				continue;
5601 			(void) mi_mpprintf(mp,
5602 			    MI_COL_PTRFMT_STR
5603 			    "%04u %05u %u/%u/%u %s %d",
5604 			    (void *)ipif,
5605 			    ipif->ipif_metric, ipif->ipif_mtu,
5606 			    ipif->ipif_ib_pkt_count,
5607 			    ipif->ipif_ob_pkt_count,
5608 			    ipif->ipif_fo_pkt_count,
5609 			    ipif_get_name(ipif, buf, sizeof (buf)),
5610 			    ipif->ipif_zoneid);
5611 
5612 		flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags |
5613 		    ipif->ipif_ill->ill_phyint->phyint_flags;
5614 
5615 		/* Tack on text strings for any flags. */
5616 		nvp = ipif_nv_tbl;
5617 		for (; nvp < A_END(ipif_nv_tbl); nvp++) {
5618 			if (nvp->nv_value & flags)
5619 				(void) mi_mpprintf_nr(mp, " %s",
5620 				    nvp->nv_name);
5621 		}
5622 		(void) mi_mpprintf(mp,
5623 		    "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s",
5624 		    inet_ntop(AF_INET6,
5625 			&ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)),
5626 		    inet_ntop(AF_INET6,
5627 			&ipif->ipif_v6src_addr, buf2, sizeof (buf2)),
5628 		    inet_ntop(AF_INET6,
5629 			&ipif->ipif_v6subnet, buf3, sizeof (buf3)),
5630 		    inet_ntop(AF_INET6,
5631 			&ipif->ipif_v6net_mask, buf4, sizeof (buf4)),
5632 		    inet_ntop(AF_INET6,
5633 			&ipif->ipif_v6brd_addr, buf5, sizeof (buf5)),
5634 		    inet_ntop(AF_INET6,
5635 			&ipif->ipif_v6pp_dst_addr,
5636 			buf6, sizeof (buf6)));
5637 		}
5638 	}
5639 	rw_exit(&ipst->ips_ill_g_lock);
5640 	return (0);
5641 }
5642 
5643 /*
5644  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5645  * driver.  We construct best guess defaults for lower level information that
5646  * we need.  If an interface is brought up without injection of any overriding
5647  * information from outside, we have to be ready to go with these defaults.
5648  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5649  * we primarely want the dl_provider_style.
5650  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5651  * at which point we assume the other part of the information is valid.
5652  */
5653 void
5654 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5655 {
5656 	uchar_t		*brdcst_addr;
5657 	uint_t		brdcst_addr_length, phys_addr_length;
5658 	t_scalar_t	sap_length;
5659 	dl_info_ack_t	*dlia;
5660 	ip_m_t		*ipm;
5661 	dl_qos_cl_sel1_t *sel1;
5662 
5663 	ASSERT(IAM_WRITER_ILL(ill));
5664 
5665 	/*
5666 	 * Till the ill is fully up ILL_CHANGING will be set and
5667 	 * the ill is not globally visible. So no need for a lock.
5668 	 */
5669 	dlia = (dl_info_ack_t *)mp->b_rptr;
5670 	ill->ill_mactype = dlia->dl_mac_type;
5671 
5672 	ipm = ip_m_lookup(dlia->dl_mac_type);
5673 	if (ipm == NULL) {
5674 		ipm = ip_m_lookup(DL_OTHER);
5675 		ASSERT(ipm != NULL);
5676 	}
5677 	ill->ill_media = ipm;
5678 
5679 	/*
5680 	 * When the new DLPI stuff is ready we'll pull lengths
5681 	 * from dlia.
5682 	 */
5683 	if (dlia->dl_version == DL_VERSION_2) {
5684 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5685 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5686 		    brdcst_addr_length);
5687 		if (brdcst_addr == NULL) {
5688 			brdcst_addr_length = 0;
5689 		}
5690 		sap_length = dlia->dl_sap_length;
5691 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5692 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5693 		    brdcst_addr_length, sap_length, phys_addr_length));
5694 	} else {
5695 		brdcst_addr_length = 6;
5696 		brdcst_addr = ip_six_byte_all_ones;
5697 		sap_length = -2;
5698 		phys_addr_length = brdcst_addr_length;
5699 	}
5700 
5701 	ill->ill_bcast_addr_length = brdcst_addr_length;
5702 	ill->ill_phys_addr_length = phys_addr_length;
5703 	ill->ill_sap_length = sap_length;
5704 	ill->ill_max_frag = dlia->dl_max_sdu;
5705 	ill->ill_max_mtu = ill->ill_max_frag;
5706 
5707 	ill->ill_type = ipm->ip_m_type;
5708 
5709 	if (!ill->ill_dlpi_style_set) {
5710 		if (dlia->dl_provider_style == DL_STYLE2)
5711 			ill->ill_needs_attach = 1;
5712 
5713 		/*
5714 		 * Allocate the first ipif on this ill. We don't delay it
5715 		 * further as ioctl handling assumes atleast one ipif to
5716 		 * be present.
5717 		 *
5718 		 * At this point we don't know whether the ill is v4 or v6.
5719 		 * We will know this whan the SIOCSLIFNAME happens and
5720 		 * the correct value for ill_isv6 will be assigned in
5721 		 * ipif_set_values(). We need to hold the ill lock and
5722 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5723 		 * the wakeup.
5724 		 */
5725 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5726 		    dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE);
5727 		mutex_enter(&ill->ill_lock);
5728 		ASSERT(ill->ill_dlpi_style_set == 0);
5729 		ill->ill_dlpi_style_set = 1;
5730 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5731 		cv_broadcast(&ill->ill_cv);
5732 		mutex_exit(&ill->ill_lock);
5733 		freemsg(mp);
5734 		return;
5735 	}
5736 	ASSERT(ill->ill_ipif != NULL);
5737 	/*
5738 	 * We know whether it is IPv4 or IPv6 now, as this is the
5739 	 * second DL_INFO_ACK we are recieving in response to the
5740 	 * DL_INFO_REQ sent in ipif_set_values.
5741 	 */
5742 	if (ill->ill_isv6)
5743 		ill->ill_sap = IP6_DL_SAP;
5744 	else
5745 		ill->ill_sap = IP_DL_SAP;
5746 	/*
5747 	 * Set ipif_mtu which is used to set the IRE's
5748 	 * ire_max_frag value. The driver could have sent
5749 	 * a different mtu from what it sent last time. No
5750 	 * need to call ipif_mtu_change because IREs have
5751 	 * not yet been created.
5752 	 */
5753 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5754 	/*
5755 	 * Clear all the flags that were set based on ill_bcast_addr_length
5756 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5757 	 * changed now and we need to re-evaluate.
5758 	 */
5759 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5760 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5761 
5762 	/*
5763 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5764 	 * changed now.
5765 	 */
5766 	if (ill->ill_bcast_addr_length == 0) {
5767 		if (ill->ill_resolver_mp != NULL)
5768 			freemsg(ill->ill_resolver_mp);
5769 		if (ill->ill_bcast_mp != NULL)
5770 			freemsg(ill->ill_bcast_mp);
5771 		if (ill->ill_flags & ILLF_XRESOLV)
5772 			ill->ill_net_type = IRE_IF_RESOLVER;
5773 		else
5774 			ill->ill_net_type = IRE_IF_NORESOLVER;
5775 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5776 		    ill->ill_phys_addr_length,
5777 		    ill->ill_sap,
5778 		    ill->ill_sap_length);
5779 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5780 
5781 		if (ill->ill_isv6)
5782 			/*
5783 			 * Note: xresolv interfaces will eventually need NOARP
5784 			 * set here as well, but that will require those
5785 			 * external resolvers to have some knowledge of
5786 			 * that flag and act appropriately. Not to be changed
5787 			 * at present.
5788 			 */
5789 			ill->ill_flags |= ILLF_NONUD;
5790 		else
5791 			ill->ill_flags |= ILLF_NOARP;
5792 
5793 		if (ill->ill_phys_addr_length == 0) {
5794 			if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
5795 				ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5796 				ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL;
5797 			} else {
5798 				/* pt-pt supports multicast. */
5799 				ill->ill_flags |= ILLF_MULTICAST;
5800 				ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5801 			}
5802 		}
5803 	} else {
5804 		ill->ill_net_type = IRE_IF_RESOLVER;
5805 		if (ill->ill_bcast_mp != NULL)
5806 			freemsg(ill->ill_bcast_mp);
5807 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5808 		    ill->ill_bcast_addr_length, ill->ill_sap,
5809 		    ill->ill_sap_length);
5810 		/*
5811 		 * Later detect lack of DLPI driver multicast
5812 		 * capability by catching DL_ENABMULTI errors in
5813 		 * ip_rput_dlpi.
5814 		 */
5815 		ill->ill_flags |= ILLF_MULTICAST;
5816 		if (!ill->ill_isv6)
5817 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5818 	}
5819 	/* By default an interface does not support any CoS marking */
5820 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5821 
5822 	/*
5823 	 * If we get QoS information in DL_INFO_ACK, the device supports
5824 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5825 	 */
5826 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5827 	    dlia->dl_qos_length);
5828 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5829 		ill->ill_flags |= ILLF_COS_ENABLED;
5830 	}
5831 
5832 	/* Clear any previous error indication. */
5833 	ill->ill_error = 0;
5834 	freemsg(mp);
5835 }
5836 
5837 /*
5838  * Perform various checks to verify that an address would make sense as a
5839  * local, remote, or subnet interface address.
5840  */
5841 static boolean_t
5842 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5843 {
5844 	ipaddr_t	net_mask;
5845 
5846 	/*
5847 	 * Don't allow all zeroes, all ones or experimental address, but allow
5848 	 * all ones netmask.
5849 	 */
5850 	if ((net_mask = ip_net_mask(addr)) == 0)
5851 		return (B_FALSE);
5852 	/* A given netmask overrides the "guess" netmask */
5853 	if (subnet_mask != 0)
5854 		net_mask = subnet_mask;
5855 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5856 	    (addr == (addr | ~net_mask)))) {
5857 		return (B_FALSE);
5858 	}
5859 	if (CLASSD(addr))
5860 		return (B_FALSE);
5861 
5862 	return (B_TRUE);
5863 }
5864 
5865 /*
5866  * ipif_lookup_group
5867  * Returns held ipif
5868  */
5869 ipif_t *
5870 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5871 {
5872 	ire_t	*ire;
5873 	ipif_t	*ipif;
5874 
5875 	ire = ire_lookup_multi(group, zoneid, ipst);
5876 	if (ire == NULL)
5877 		return (NULL);
5878 	ipif = ire->ire_ipif;
5879 	ipif_refhold(ipif);
5880 	ire_refrele(ire);
5881 	return (ipif);
5882 }
5883 
5884 /*
5885  * Look for an ipif with the specified interface address and destination.
5886  * The destination address is used only for matching point-to-point interfaces.
5887  */
5888 ipif_t *
5889 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5890     ipsq_func_t func, int *error, ip_stack_t *ipst)
5891 {
5892 	ipif_t	*ipif;
5893 	ill_t	*ill;
5894 	ill_walk_context_t ctx;
5895 	ipsq_t	*ipsq;
5896 
5897 	if (error != NULL)
5898 		*error = 0;
5899 
5900 	/*
5901 	 * First match all the point-to-point interfaces
5902 	 * before looking at non-point-to-point interfaces.
5903 	 * This is done to avoid returning non-point-to-point
5904 	 * ipif instead of unnumbered point-to-point ipif.
5905 	 */
5906 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5907 	ill = ILL_START_WALK_V4(&ctx, ipst);
5908 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5909 		GRAB_CONN_LOCK(q);
5910 		mutex_enter(&ill->ill_lock);
5911 		for (ipif = ill->ill_ipif; ipif != NULL;
5912 		    ipif = ipif->ipif_next) {
5913 			/* Allow the ipif to be down */
5914 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5915 			    (ipif->ipif_lcl_addr == if_addr) &&
5916 			    (ipif->ipif_pp_dst_addr == dst)) {
5917 				/*
5918 				 * The block comment at the start of ipif_down
5919 				 * explains the use of the macros used below
5920 				 */
5921 				if (IPIF_CAN_LOOKUP(ipif)) {
5922 					ipif_refhold_locked(ipif);
5923 					mutex_exit(&ill->ill_lock);
5924 					RELEASE_CONN_LOCK(q);
5925 					rw_exit(&ipst->ips_ill_g_lock);
5926 					return (ipif);
5927 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5928 					ipsq = ill->ill_phyint->phyint_ipsq;
5929 					mutex_enter(&ipsq->ipsq_lock);
5930 					mutex_exit(&ill->ill_lock);
5931 					rw_exit(&ipst->ips_ill_g_lock);
5932 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5933 						ill);
5934 					mutex_exit(&ipsq->ipsq_lock);
5935 					RELEASE_CONN_LOCK(q);
5936 					*error = EINPROGRESS;
5937 					return (NULL);
5938 				}
5939 			}
5940 		}
5941 		mutex_exit(&ill->ill_lock);
5942 		RELEASE_CONN_LOCK(q);
5943 	}
5944 	rw_exit(&ipst->ips_ill_g_lock);
5945 
5946 	/* lookup the ipif based on interface address */
5947 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
5948 	    ipst);
5949 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5950 	return (ipif);
5951 }
5952 
5953 /*
5954  * Look for an ipif with the specified address. For point-point links
5955  * we look for matches on either the destination address and the local
5956  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5957  * is set.
5958  * Matches on a specific ill if match_ill is set.
5959  */
5960 ipif_t *
5961 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5962     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
5963 {
5964 	ipif_t  *ipif;
5965 	ill_t   *ill;
5966 	boolean_t ptp = B_FALSE;
5967 	ipsq_t	*ipsq;
5968 	ill_walk_context_t	ctx;
5969 
5970 	if (error != NULL)
5971 		*error = 0;
5972 
5973 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5974 	/*
5975 	 * Repeat twice, first based on local addresses and
5976 	 * next time for pointopoint.
5977 	 */
5978 repeat:
5979 	ill = ILL_START_WALK_V4(&ctx, ipst);
5980 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5981 		if (match_ill != NULL && ill != match_ill) {
5982 			continue;
5983 		}
5984 		GRAB_CONN_LOCK(q);
5985 		mutex_enter(&ill->ill_lock);
5986 		for (ipif = ill->ill_ipif; ipif != NULL;
5987 		    ipif = ipif->ipif_next) {
5988 			if (zoneid != ALL_ZONES &&
5989 			    zoneid != ipif->ipif_zoneid &&
5990 			    ipif->ipif_zoneid != ALL_ZONES)
5991 				continue;
5992 			/* Allow the ipif to be down */
5993 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5994 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5995 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5996 			    (ipif->ipif_pp_dst_addr == addr))) {
5997 				/*
5998 				 * The block comment at the start of ipif_down
5999 				 * explains the use of the macros used below
6000 				 */
6001 				if (IPIF_CAN_LOOKUP(ipif)) {
6002 					ipif_refhold_locked(ipif);
6003 					mutex_exit(&ill->ill_lock);
6004 					RELEASE_CONN_LOCK(q);
6005 					rw_exit(&ipst->ips_ill_g_lock);
6006 					return (ipif);
6007 				} else if (IPIF_CAN_WAIT(ipif, q)) {
6008 					ipsq = ill->ill_phyint->phyint_ipsq;
6009 					mutex_enter(&ipsq->ipsq_lock);
6010 					mutex_exit(&ill->ill_lock);
6011 					rw_exit(&ipst->ips_ill_g_lock);
6012 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
6013 						ill);
6014 					mutex_exit(&ipsq->ipsq_lock);
6015 					RELEASE_CONN_LOCK(q);
6016 					*error = EINPROGRESS;
6017 					return (NULL);
6018 				}
6019 			}
6020 		}
6021 		mutex_exit(&ill->ill_lock);
6022 		RELEASE_CONN_LOCK(q);
6023 	}
6024 
6025 	/* If we already did the ptp case, then we are done */
6026 	if (ptp) {
6027 		rw_exit(&ipst->ips_ill_g_lock);
6028 		if (error != NULL)
6029 			*error = ENXIO;
6030 		return (NULL);
6031 	}
6032 	ptp = B_TRUE;
6033 	goto repeat;
6034 }
6035 
6036 /*
6037  * Look for an ipif with the specified address. For point-point links
6038  * we look for matches on either the destination address and the local
6039  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
6040  * is set.
6041  * Matches on a specific ill if match_ill is set.
6042  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
6043  */
6044 zoneid_t
6045 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
6046 {
6047 	zoneid_t zoneid;
6048 	ipif_t  *ipif;
6049 	ill_t   *ill;
6050 	boolean_t ptp = B_FALSE;
6051 	ill_walk_context_t	ctx;
6052 
6053 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6054 	/*
6055 	 * Repeat twice, first based on local addresses and
6056 	 * next time for pointopoint.
6057 	 */
6058 repeat:
6059 	ill = ILL_START_WALK_V4(&ctx, ipst);
6060 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6061 		if (match_ill != NULL && ill != match_ill) {
6062 			continue;
6063 		}
6064 		mutex_enter(&ill->ill_lock);
6065 		for (ipif = ill->ill_ipif; ipif != NULL;
6066 		    ipif = ipif->ipif_next) {
6067 			/* Allow the ipif to be down */
6068 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
6069 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
6070 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
6071 			    (ipif->ipif_pp_dst_addr == addr)) &&
6072 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
6073 				zoneid = ipif->ipif_zoneid;
6074 				mutex_exit(&ill->ill_lock);
6075 				rw_exit(&ipst->ips_ill_g_lock);
6076 				/*
6077 				 * If ipif_zoneid was ALL_ZONES then we have
6078 				 * a trusted extensions shared IP address.
6079 				 * In that case GLOBAL_ZONEID works to send.
6080 				 */
6081 				if (zoneid == ALL_ZONES)
6082 					zoneid = GLOBAL_ZONEID;
6083 				return (zoneid);
6084 			}
6085 		}
6086 		mutex_exit(&ill->ill_lock);
6087 	}
6088 
6089 	/* If we already did the ptp case, then we are done */
6090 	if (ptp) {
6091 		rw_exit(&ipst->ips_ill_g_lock);
6092 		return (ALL_ZONES);
6093 	}
6094 	ptp = B_TRUE;
6095 	goto repeat;
6096 }
6097 
6098 /*
6099  * Look for an ipif that matches the specified remote address i.e. the
6100  * ipif that would receive the specified packet.
6101  * First look for directly connected interfaces and then do a recursive
6102  * IRE lookup and pick the first ipif corresponding to the source address in the
6103  * ire.
6104  * Returns: held ipif
6105  */
6106 ipif_t *
6107 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
6108 {
6109 	ipif_t	*ipif;
6110 	ire_t	*ire;
6111 	ip_stack_t	*ipst = ill->ill_ipst;
6112 
6113 	ASSERT(!ill->ill_isv6);
6114 
6115 	/*
6116 	 * Someone could be changing this ipif currently or change it
6117 	 * after we return this. Thus  a few packets could use the old
6118 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
6119 	 * will atomically be updated or cleaned up with the new value
6120 	 * Thus we don't need a lock to check the flags or other attrs below.
6121 	 */
6122 	mutex_enter(&ill->ill_lock);
6123 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6124 		if (!IPIF_CAN_LOOKUP(ipif))
6125 			continue;
6126 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
6127 		    ipif->ipif_zoneid != ALL_ZONES)
6128 			continue;
6129 		/* Allow the ipif to be down */
6130 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
6131 			if ((ipif->ipif_pp_dst_addr == addr) ||
6132 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
6133 			    ipif->ipif_lcl_addr == addr)) {
6134 				ipif_refhold_locked(ipif);
6135 				mutex_exit(&ill->ill_lock);
6136 				return (ipif);
6137 			}
6138 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
6139 			ipif_refhold_locked(ipif);
6140 			mutex_exit(&ill->ill_lock);
6141 			return (ipif);
6142 		}
6143 	}
6144 	mutex_exit(&ill->ill_lock);
6145 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
6146 	    NULL, MATCH_IRE_RECURSIVE, ipst);
6147 	if (ire != NULL) {
6148 		/*
6149 		 * The callers of this function wants to know the
6150 		 * interface on which they have to send the replies
6151 		 * back. For IRE_CACHES that have ire_stq and ire_ipif
6152 		 * derived from different ills, we really don't care
6153 		 * what we return here.
6154 		 */
6155 		ipif = ire->ire_ipif;
6156 		if (ipif != NULL) {
6157 			ipif_refhold(ipif);
6158 			ire_refrele(ire);
6159 			return (ipif);
6160 		}
6161 		ire_refrele(ire);
6162 	}
6163 	/* Pick the first interface */
6164 	ipif = ipif_get_next_ipif(NULL, ill);
6165 	return (ipif);
6166 }
6167 
6168 /*
6169  * This func does not prevent refcnt from increasing. But if
6170  * the caller has taken steps to that effect, then this func
6171  * can be used to determine whether the ill has become quiescent
6172  */
6173 boolean_t
6174 ill_is_quiescent(ill_t *ill)
6175 {
6176 	ipif_t	*ipif;
6177 
6178 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6179 
6180 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6181 		if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6182 			return (B_FALSE);
6183 		}
6184 	}
6185 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 ||
6186 	    ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 ||
6187 	    ill->ill_mrtun_refcnt != 0) {
6188 		return (B_FALSE);
6189 	}
6190 	return (B_TRUE);
6191 }
6192 
6193 /*
6194  * This func does not prevent refcnt from increasing. But if
6195  * the caller has taken steps to that effect, then this func
6196  * can be used to determine whether the ipif has become quiescent
6197  */
6198 static boolean_t
6199 ipif_is_quiescent(ipif_t *ipif)
6200 {
6201 	ill_t *ill;
6202 
6203 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6204 
6205 	if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6206 		return (B_FALSE);
6207 	}
6208 
6209 	ill = ipif->ipif_ill;
6210 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6211 	    ill->ill_logical_down) {
6212 		return (B_TRUE);
6213 	}
6214 
6215 	/* This is the last ipif going down or being deleted on this ill */
6216 	if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) {
6217 		return (B_FALSE);
6218 	}
6219 
6220 	return (B_TRUE);
6221 }
6222 
6223 /*
6224  * This func does not prevent refcnt from increasing. But if
6225  * the caller has taken steps to that effect, then this func
6226  * can be used to determine whether the ipifs marked with IPIF_MOVING
6227  * have become quiescent and can be moved in a failover/failback.
6228  */
6229 static ipif_t *
6230 ill_quiescent_to_move(ill_t *ill)
6231 {
6232 	ipif_t  *ipif;
6233 
6234 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6235 
6236 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6237 		if (ipif->ipif_state_flags & IPIF_MOVING) {
6238 			if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) {
6239 				return (ipif);
6240 			}
6241 		}
6242 	}
6243 	return (NULL);
6244 }
6245 
6246 /*
6247  * The ipif/ill/ire has been refreled. Do the tail processing.
6248  * Determine if the ipif or ill in question has become quiescent and if so
6249  * wakeup close and/or restart any queued pending ioctl that is waiting
6250  * for the ipif_down (or ill_down)
6251  */
6252 void
6253 ipif_ill_refrele_tail(ill_t *ill)
6254 {
6255 	mblk_t	*mp;
6256 	conn_t	*connp;
6257 	ipsq_t	*ipsq;
6258 	ipif_t	*ipif;
6259 	dl_notify_ind_t *dlindp;
6260 
6261 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6262 
6263 	if ((ill->ill_state_flags & ILL_CONDEMNED) &&
6264 	    ill_is_quiescent(ill)) {
6265 		/* ill_close may be waiting */
6266 		cv_broadcast(&ill->ill_cv);
6267 	}
6268 
6269 	/* ipsq can't change because ill_lock  is held */
6270 	ipsq = ill->ill_phyint->phyint_ipsq;
6271 	if (ipsq->ipsq_waitfor == 0) {
6272 		/* Not waiting for anything, just return. */
6273 		mutex_exit(&ill->ill_lock);
6274 		return;
6275 	}
6276 	ASSERT(ipsq->ipsq_pending_mp != NULL &&
6277 		ipsq->ipsq_pending_ipif != NULL);
6278 	/*
6279 	 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF.
6280 	 * Last ipif going down needs to down the ill, so ill_ire_cnt must
6281 	 * be zero for restarting an ioctl that ends up downing the ill.
6282 	 */
6283 	ipif = ipsq->ipsq_pending_ipif;
6284 	if (ipif->ipif_ill != ill) {
6285 		/* The ioctl is pending on some other ill. */
6286 		mutex_exit(&ill->ill_lock);
6287 		return;
6288 	}
6289 
6290 	switch (ipsq->ipsq_waitfor) {
6291 	case IPIF_DOWN:
6292 	case IPIF_FREE:
6293 		if (!ipif_is_quiescent(ipif)) {
6294 			mutex_exit(&ill->ill_lock);
6295 			return;
6296 		}
6297 		break;
6298 
6299 	case ILL_DOWN:
6300 	case ILL_FREE:
6301 		/*
6302 		 * case ILL_FREE arises only for loopback. otherwise ill_delete
6303 		 * waits synchronously in ip_close, and no message is queued in
6304 		 * ipsq_pending_mp at all in this case
6305 		 */
6306 		if (!ill_is_quiescent(ill)) {
6307 			mutex_exit(&ill->ill_lock);
6308 			return;
6309 		}
6310 
6311 		break;
6312 
6313 	case ILL_MOVE_OK:
6314 		if (ill_quiescent_to_move(ill) != NULL) {
6315 			mutex_exit(&ill->ill_lock);
6316 			return;
6317 		}
6318 
6319 		break;
6320 	default:
6321 		cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n",
6322 		    (void *)ipsq, ipsq->ipsq_waitfor);
6323 	}
6324 
6325 	/*
6326 	 * Incr refcnt for the qwriter_ip call below which
6327 	 * does a refrele
6328 	 */
6329 	ill_refhold_locked(ill);
6330 	mutex_exit(&ill->ill_lock);
6331 
6332 	mp = ipsq_pending_mp_get(ipsq, &connp);
6333 	ASSERT(mp != NULL);
6334 
6335 	switch (mp->b_datap->db_type) {
6336 	case M_PCPROTO:
6337 	case M_PROTO:
6338 		/*
6339 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6340 		 */
6341 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6342 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6343 
6344 		switch (dlindp->dl_notification) {
6345 		case DL_NOTE_PHYS_ADDR:
6346 			qwriter_ip(NULL, ill, ill->ill_rq, mp,
6347 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6348 			return;
6349 		default:
6350 			ASSERT(0);
6351 		}
6352 		break;
6353 
6354 	case M_ERROR:
6355 	case M_HANGUP:
6356 		qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail,
6357 		    CUR_OP, B_TRUE);
6358 		return;
6359 
6360 	case M_IOCTL:
6361 	case M_IOCDATA:
6362 		qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6363 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6364 		return;
6365 
6366 	default:
6367 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6368 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6369 	}
6370 }
6371 
6372 #ifdef ILL_DEBUG
6373 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6374 void
6375 th_trace_rrecord(th_trace_t *th_trace)
6376 {
6377 	tr_buf_t *tr_buf;
6378 	uint_t lastref;
6379 
6380 	lastref = th_trace->th_trace_lastref;
6381 	lastref++;
6382 	if (lastref == TR_BUF_MAX)
6383 		lastref = 0;
6384 	th_trace->th_trace_lastref = lastref;
6385 	tr_buf = &th_trace->th_trbuf[lastref];
6386 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH);
6387 }
6388 
6389 th_trace_t *
6390 th_trace_ipif_lookup(ipif_t *ipif)
6391 {
6392 	int bucket_id;
6393 	th_trace_t *th_trace;
6394 
6395 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6396 
6397 	bucket_id = IP_TR_HASH(curthread);
6398 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6399 
6400 	for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL;
6401 	    th_trace = th_trace->th_next) {
6402 		if (th_trace->th_id == curthread)
6403 			return (th_trace);
6404 	}
6405 	return (NULL);
6406 }
6407 
6408 void
6409 ipif_trace_ref(ipif_t *ipif)
6410 {
6411 	int bucket_id;
6412 	th_trace_t *th_trace;
6413 
6414 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6415 
6416 	if (ipif->ipif_trace_disable)
6417 		return;
6418 
6419 	/*
6420 	 * Attempt to locate the trace buffer for the curthread.
6421 	 * If it does not exist, then allocate a new trace buffer
6422 	 * and link it in list of trace bufs for this ipif, at the head
6423 	 */
6424 	th_trace = th_trace_ipif_lookup(ipif);
6425 	if (th_trace == NULL) {
6426 		bucket_id = IP_TR_HASH(curthread);
6427 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6428 		    KM_NOSLEEP);
6429 		if (th_trace == NULL) {
6430 			ipif->ipif_trace_disable = B_TRUE;
6431 			ipif_trace_cleanup(ipif);
6432 			return;
6433 		}
6434 		th_trace->th_id = curthread;
6435 		th_trace->th_next = ipif->ipif_trace[bucket_id];
6436 		th_trace->th_prev = &ipif->ipif_trace[bucket_id];
6437 		if (th_trace->th_next != NULL)
6438 			th_trace->th_next->th_prev = &th_trace->th_next;
6439 		ipif->ipif_trace[bucket_id] = th_trace;
6440 	}
6441 	ASSERT(th_trace->th_refcnt >= 0 &&
6442 		th_trace->th_refcnt < TR_BUF_MAX -1);
6443 	th_trace->th_refcnt++;
6444 	th_trace_rrecord(th_trace);
6445 }
6446 
6447 void
6448 ipif_untrace_ref(ipif_t *ipif)
6449 {
6450 	th_trace_t *th_trace;
6451 
6452 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6453 
6454 	if (ipif->ipif_trace_disable)
6455 		return;
6456 	th_trace = th_trace_ipif_lookup(ipif);
6457 	ASSERT(th_trace != NULL);
6458 	ASSERT(th_trace->th_refcnt > 0);
6459 
6460 	th_trace->th_refcnt--;
6461 	th_trace_rrecord(th_trace);
6462 }
6463 
6464 th_trace_t *
6465 th_trace_ill_lookup(ill_t *ill)
6466 {
6467 	th_trace_t *th_trace;
6468 	int bucket_id;
6469 
6470 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6471 
6472 	bucket_id = IP_TR_HASH(curthread);
6473 	ASSERT(bucket_id < IP_TR_HASH_MAX);
6474 
6475 	for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL;
6476 	    th_trace = th_trace->th_next) {
6477 		if (th_trace->th_id == curthread)
6478 			return (th_trace);
6479 	}
6480 	return (NULL);
6481 }
6482 
6483 void
6484 ill_trace_ref(ill_t *ill)
6485 {
6486 	int bucket_id;
6487 	th_trace_t *th_trace;
6488 
6489 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6490 	if (ill->ill_trace_disable)
6491 		return;
6492 	/*
6493 	 * Attempt to locate the trace buffer for the curthread.
6494 	 * If it does not exist, then allocate a new trace buffer
6495 	 * and link it in list of trace bufs for this ill, at the head
6496 	 */
6497 	th_trace = th_trace_ill_lookup(ill);
6498 	if (th_trace == NULL) {
6499 		bucket_id = IP_TR_HASH(curthread);
6500 		th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t),
6501 		    KM_NOSLEEP);
6502 		if (th_trace == NULL) {
6503 			ill->ill_trace_disable = B_TRUE;
6504 			ill_trace_cleanup(ill);
6505 			return;
6506 		}
6507 		th_trace->th_id = curthread;
6508 		th_trace->th_next = ill->ill_trace[bucket_id];
6509 		th_trace->th_prev = &ill->ill_trace[bucket_id];
6510 		if (th_trace->th_next != NULL)
6511 			th_trace->th_next->th_prev = &th_trace->th_next;
6512 		ill->ill_trace[bucket_id] = th_trace;
6513 	}
6514 	ASSERT(th_trace->th_refcnt >= 0 &&
6515 		th_trace->th_refcnt < TR_BUF_MAX - 1);
6516 
6517 	th_trace->th_refcnt++;
6518 	th_trace_rrecord(th_trace);
6519 }
6520 
6521 void
6522 ill_untrace_ref(ill_t *ill)
6523 {
6524 	th_trace_t *th_trace;
6525 
6526 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6527 
6528 	if (ill->ill_trace_disable)
6529 		return;
6530 	th_trace = th_trace_ill_lookup(ill);
6531 	ASSERT(th_trace != NULL);
6532 	ASSERT(th_trace->th_refcnt > 0);
6533 
6534 	th_trace->th_refcnt--;
6535 	th_trace_rrecord(th_trace);
6536 }
6537 
6538 /*
6539  * Verify that this thread has no refs to the ipif and free
6540  * the trace buffers
6541  */
6542 /* ARGSUSED */
6543 void
6544 ipif_thread_exit(ipif_t *ipif, void *dummy)
6545 {
6546 	th_trace_t *th_trace;
6547 
6548 	mutex_enter(&ipif->ipif_ill->ill_lock);
6549 
6550 	th_trace = th_trace_ipif_lookup(ipif);
6551 	if (th_trace == NULL) {
6552 		mutex_exit(&ipif->ipif_ill->ill_lock);
6553 		return;
6554 	}
6555 	ASSERT(th_trace->th_refcnt == 0);
6556 	/* unlink th_trace and free it */
6557 	*th_trace->th_prev = th_trace->th_next;
6558 	if (th_trace->th_next != NULL)
6559 		th_trace->th_next->th_prev = th_trace->th_prev;
6560 	th_trace->th_next = NULL;
6561 	th_trace->th_prev = NULL;
6562 	kmem_free(th_trace, sizeof (th_trace_t));
6563 
6564 	mutex_exit(&ipif->ipif_ill->ill_lock);
6565 }
6566 
6567 /*
6568  * Verify that this thread has no refs to the ill and free
6569  * the trace buffers
6570  */
6571 /* ARGSUSED */
6572 void
6573 ill_thread_exit(ill_t *ill, void *dummy)
6574 {
6575 	th_trace_t *th_trace;
6576 
6577 	mutex_enter(&ill->ill_lock);
6578 
6579 	th_trace = th_trace_ill_lookup(ill);
6580 	if (th_trace == NULL) {
6581 		mutex_exit(&ill->ill_lock);
6582 		return;
6583 	}
6584 	ASSERT(th_trace->th_refcnt == 0);
6585 	/* unlink th_trace and free it */
6586 	*th_trace->th_prev = th_trace->th_next;
6587 	if (th_trace->th_next != NULL)
6588 		th_trace->th_next->th_prev = th_trace->th_prev;
6589 	th_trace->th_next = NULL;
6590 	th_trace->th_prev = NULL;
6591 	kmem_free(th_trace, sizeof (th_trace_t));
6592 
6593 	mutex_exit(&ill->ill_lock);
6594 }
6595 #endif
6596 
6597 #ifdef ILL_DEBUG
6598 void
6599 ip_thread_exit(ip_stack_t *ipst)
6600 {
6601 	ill_t	*ill;
6602 	ipif_t	*ipif;
6603 	ill_walk_context_t	ctx;
6604 
6605 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
6606 	ill = ILL_START_WALK_ALL(&ctx, ipst);
6607 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
6608 		for (ipif = ill->ill_ipif; ipif != NULL;
6609 		    ipif = ipif->ipif_next) {
6610 			ipif_thread_exit(ipif, NULL);
6611 		}
6612 		ill_thread_exit(ill, NULL);
6613 	}
6614 	rw_exit(&ipst->ips_ill_g_lock);
6615 
6616 	ire_walk(ire_thread_exit, NULL, ipst);
6617 	ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE);
6618 	ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE);
6619 }
6620 
6621 /*
6622  * Called when ipif is unplumbed or when memory alloc fails
6623  */
6624 void
6625 ipif_trace_cleanup(ipif_t *ipif)
6626 {
6627 	int	i;
6628 	th_trace_t	*th_trace;
6629 	th_trace_t	*th_trace_next;
6630 
6631 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6632 		for (th_trace = ipif->ipif_trace[i]; th_trace != NULL;
6633 		    th_trace = th_trace_next) {
6634 			th_trace_next = th_trace->th_next;
6635 			kmem_free(th_trace, sizeof (th_trace_t));
6636 		}
6637 		ipif->ipif_trace[i] = NULL;
6638 	}
6639 }
6640 
6641 /*
6642  * Called when ill is unplumbed or when memory alloc fails
6643  */
6644 void
6645 ill_trace_cleanup(ill_t *ill)
6646 {
6647 	int	i;
6648 	th_trace_t	*th_trace;
6649 	th_trace_t	*th_trace_next;
6650 
6651 	for (i = 0; i < IP_TR_HASH_MAX; i++) {
6652 		for (th_trace = ill->ill_trace[i]; th_trace != NULL;
6653 		    th_trace = th_trace_next) {
6654 			th_trace_next = th_trace->th_next;
6655 			kmem_free(th_trace, sizeof (th_trace_t));
6656 		}
6657 		ill->ill_trace[i] = NULL;
6658 	}
6659 }
6660 
6661 #else
6662 void ip_thread_exit(void) {}
6663 #endif
6664 
6665 void
6666 ipif_refhold_locked(ipif_t *ipif)
6667 {
6668 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6669 	ipif->ipif_refcnt++;
6670 	IPIF_TRACE_REF(ipif);
6671 }
6672 
6673 void
6674 ipif_refhold(ipif_t *ipif)
6675 {
6676 	ill_t	*ill;
6677 
6678 	ill = ipif->ipif_ill;
6679 	mutex_enter(&ill->ill_lock);
6680 	ipif->ipif_refcnt++;
6681 	IPIF_TRACE_REF(ipif);
6682 	mutex_exit(&ill->ill_lock);
6683 }
6684 
6685 /*
6686  * Must not be called while holding any locks. Otherwise if this is
6687  * the last reference to be released there is a chance of recursive mutex
6688  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6689  * to restart an ioctl.
6690  */
6691 void
6692 ipif_refrele(ipif_t *ipif)
6693 {
6694 	ill_t	*ill;
6695 
6696 	ill = ipif->ipif_ill;
6697 
6698 	mutex_enter(&ill->ill_lock);
6699 	ASSERT(ipif->ipif_refcnt != 0);
6700 	ipif->ipif_refcnt--;
6701 	IPIF_UNTRACE_REF(ipif);
6702 	if (ipif->ipif_refcnt != 0) {
6703 		mutex_exit(&ill->ill_lock);
6704 		return;
6705 	}
6706 
6707 	/* Drops the ill_lock */
6708 	ipif_ill_refrele_tail(ill);
6709 }
6710 
6711 ipif_t *
6712 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6713 {
6714 	ipif_t	*ipif;
6715 
6716 	mutex_enter(&ill->ill_lock);
6717 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6718 	    ipif != NULL; ipif = ipif->ipif_next) {
6719 		if (!IPIF_CAN_LOOKUP(ipif))
6720 			continue;
6721 		ipif_refhold_locked(ipif);
6722 		mutex_exit(&ill->ill_lock);
6723 		return (ipif);
6724 	}
6725 	mutex_exit(&ill->ill_lock);
6726 	return (NULL);
6727 }
6728 
6729 /*
6730  * TODO: make this table extendible at run time
6731  * Return a pointer to the mac type info for 'mac_type'
6732  */
6733 static ip_m_t *
6734 ip_m_lookup(t_uscalar_t mac_type)
6735 {
6736 	ip_m_t	*ipm;
6737 
6738 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6739 		if (ipm->ip_m_mac_type == mac_type)
6740 			return (ipm);
6741 	return (NULL);
6742 }
6743 
6744 /*
6745  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6746  * ipif_arg is passed in to associate it with the correct interface.
6747  * We may need to restart this operation if the ipif cannot be looked up
6748  * due to an exclusive operation that is currently in progress. The restart
6749  * entry point is specified by 'func'
6750  */
6751 int
6752 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6753     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
6754     ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp,
6755     ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst)
6756 {
6757 	ire_t	*ire;
6758 	ire_t	*gw_ire = NULL;
6759 	ipif_t	*ipif = NULL;
6760 	boolean_t ipif_refheld = B_FALSE;
6761 	uint_t	type;
6762 	int	match_flags = MATCH_IRE_TYPE;
6763 	int	error;
6764 	tsol_gc_t *gc = NULL;
6765 	tsol_gcgrp_t *gcgrp = NULL;
6766 	boolean_t gcgrp_xtraref = B_FALSE;
6767 
6768 	ip1dbg(("ip_rt_add:"));
6769 
6770 	if (ire_arg != NULL)
6771 		*ire_arg = NULL;
6772 
6773 	/*
6774 	 * If this is the case of RTF_HOST being set, then we set the netmask
6775 	 * to all ones (regardless if one was supplied).
6776 	 */
6777 	if (flags & RTF_HOST)
6778 		mask = IP_HOST_MASK;
6779 
6780 	/*
6781 	 * Prevent routes with a zero gateway from being created (since
6782 	 * interfaces can currently be plumbed and brought up no assigned
6783 	 * address).
6784 	 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0.
6785 	 */
6786 	if (gw_addr == 0 && src_ipif == NULL)
6787 		return (ENETUNREACH);
6788 	/*
6789 	 * Get the ipif, if any, corresponding to the gw_addr
6790 	 */
6791 	if (gw_addr != 0) {
6792 		ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func,
6793 		    &error, ipst);
6794 		if (ipif != NULL) {
6795 			if (IS_VNI(ipif->ipif_ill)) {
6796 				ipif_refrele(ipif);
6797 				return (EINVAL);
6798 			}
6799 			ipif_refheld = B_TRUE;
6800 		} else if (error == EINPROGRESS) {
6801 			ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6802 			return (EINPROGRESS);
6803 		} else {
6804 			error = 0;
6805 		}
6806 	}
6807 
6808 	if (ipif != NULL) {
6809 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6810 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6811 	} else {
6812 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6813 	}
6814 
6815 	/*
6816 	 * GateD will attempt to create routes with a loopback interface
6817 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6818 	 * these routes to be added, but create them as interface routes
6819 	 * since the gateway is an interface address.
6820 	 */
6821 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6822 		flags &= ~RTF_GATEWAY;
6823 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6824 		    mask == IP_HOST_MASK) {
6825 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6826 			    ALL_ZONES, NULL, match_flags, ipst);
6827 			if (ire != NULL) {
6828 				ire_refrele(ire);
6829 				if (ipif_refheld)
6830 					ipif_refrele(ipif);
6831 				return (EEXIST);
6832 			}
6833 			ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x"
6834 			    "for 0x%x\n", (void *)ipif,
6835 			    ipif->ipif_ire_type,
6836 			    ntohl(ipif->ipif_lcl_addr)));
6837 			ire = ire_create(
6838 			    (uchar_t *)&dst_addr,	/* dest address */
6839 			    (uchar_t *)&mask,		/* mask */
6840 			    (uchar_t *)&ipif->ipif_src_addr,
6841 			    NULL,			/* no gateway */
6842 			    NULL,
6843 			    &ipif->ipif_mtu,
6844 			    NULL,
6845 			    ipif->ipif_rq,		/* recv-from queue */
6846 			    NULL,			/* no send-to queue */
6847 			    ipif->ipif_ire_type,	/* LOOPBACK */
6848 			    NULL,
6849 			    ipif,
6850 			    NULL,
6851 			    0,
6852 			    0,
6853 			    0,
6854 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6855 			    RTF_PRIVATE : 0,
6856 			    &ire_uinfo_null,
6857 			    NULL,
6858 			    NULL,
6859 			    ipst);
6860 
6861 			if (ire == NULL) {
6862 				if (ipif_refheld)
6863 					ipif_refrele(ipif);
6864 				return (ENOMEM);
6865 			}
6866 			error = ire_add(&ire, q, mp, func, B_FALSE);
6867 			if (error == 0)
6868 				goto save_ire;
6869 			if (ipif_refheld)
6870 				ipif_refrele(ipif);
6871 			return (error);
6872 
6873 		}
6874 	}
6875 
6876 	/*
6877 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6878 	 * and the gateway address provided is one of the system's interface
6879 	 * addresses.  By using the routing socket interface and supplying an
6880 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6881 	 * specifying an interface route to be created is available which uses
6882 	 * the interface index that specifies the outgoing interface rather than
6883 	 * the address of an outgoing interface (which may not be able to
6884 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6885 	 * flag, routes can be specified which not only specify the next-hop to
6886 	 * be used when routing to a certain prefix, but also which outgoing
6887 	 * interface should be used.
6888 	 *
6889 	 * Previously, interfaces would have unique addresses assigned to them
6890 	 * and so the address assigned to a particular interface could be used
6891 	 * to identify a particular interface.  One exception to this was the
6892 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6893 	 *
6894 	 * With the advent of IPv6 and its link-local addresses, this
6895 	 * restriction was relaxed and interfaces could share addresses between
6896 	 * themselves.  In fact, typically all of the link-local interfaces on
6897 	 * an IPv6 node or router will have the same link-local address.  In
6898 	 * order to differentiate between these interfaces, the use of an
6899 	 * interface index is necessary and this index can be carried inside a
6900 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6901 	 * of using the interface index, however, is that all of the ipif's that
6902 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6903 	 * cannot be used to differentiate between ipif's (or logical
6904 	 * interfaces) that belong to the same ill (physical interface).
6905 	 *
6906 	 * For example, in the following case involving IPv4 interfaces and
6907 	 * logical interfaces
6908 	 *
6909 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6910 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6911 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6912 	 *
6913 	 * the ipif's corresponding to each of these interface routes can be
6914 	 * uniquely identified by the "gateway" (actually interface address).
6915 	 *
6916 	 * In this case involving multiple IPv6 default routes to a particular
6917 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6918 	 * default route is of interest:
6919 	 *
6920 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6921 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6922 	 */
6923 
6924 	/* RTF_GATEWAY not set */
6925 	if (!(flags & RTF_GATEWAY)) {
6926 		queue_t	*stq;
6927 		queue_t	*rfq = NULL;
6928 		ill_t	*in_ill = NULL;
6929 
6930 		if (sp != NULL) {
6931 			ip2dbg(("ip_rt_add: gateway security attributes "
6932 			    "cannot be set with interface route\n"));
6933 			if (ipif_refheld)
6934 				ipif_refrele(ipif);
6935 			return (EINVAL);
6936 		}
6937 
6938 		/*
6939 		 * As the interface index specified with the RTA_IFP sockaddr is
6940 		 * the same for all ipif's off of an ill, the matching logic
6941 		 * below uses MATCH_IRE_ILL if such an index was specified.
6942 		 * This means that routes sharing the same prefix when added
6943 		 * using a RTA_IFP sockaddr must have distinct interface
6944 		 * indices (namely, they must be on distinct ill's).
6945 		 *
6946 		 * On the other hand, since the gateway address will usually be
6947 		 * different for each ipif on the system, the matching logic
6948 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6949 		 * route.  This means that interface routes for the same prefix
6950 		 * can be created if they belong to distinct ipif's and if a
6951 		 * RTA_IFP sockaddr is not present.
6952 		 */
6953 		if (ipif_arg != NULL) {
6954 			if (ipif_refheld)  {
6955 				ipif_refrele(ipif);
6956 				ipif_refheld = B_FALSE;
6957 			}
6958 			ipif = ipif_arg;
6959 			match_flags |= MATCH_IRE_ILL;
6960 		} else {
6961 			/*
6962 			 * Check the ipif corresponding to the gw_addr
6963 			 */
6964 			if (ipif == NULL)
6965 				return (ENETUNREACH);
6966 			match_flags |= MATCH_IRE_IPIF;
6967 		}
6968 		ASSERT(ipif != NULL);
6969 		/*
6970 		 * If src_ipif is not NULL, we have to create
6971 		 * an ire with non-null ire_in_ill value
6972 		 */
6973 		if (src_ipif != NULL) {
6974 			in_ill = src_ipif->ipif_ill;
6975 		}
6976 
6977 		/*
6978 		 * We check for an existing entry at this point.
6979 		 *
6980 		 * Since a netmask isn't passed in via the ioctl interface
6981 		 * (SIOCADDRT), we don't check for a matching netmask in that
6982 		 * case.
6983 		 */
6984 		if (!ioctl_msg)
6985 			match_flags |= MATCH_IRE_MASK;
6986 		if (src_ipif != NULL) {
6987 			/* Look up in the special table */
6988 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
6989 			    ipif, src_ipif->ipif_ill, match_flags);
6990 		} else {
6991 			ire = ire_ftable_lookup(dst_addr, mask, 0,
6992 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
6993 			    NULL, match_flags, ipst);
6994 		}
6995 		if (ire != NULL) {
6996 			ire_refrele(ire);
6997 			if (ipif_refheld)
6998 				ipif_refrele(ipif);
6999 			return (EEXIST);
7000 		}
7001 
7002 		if (src_ipif != NULL) {
7003 			/*
7004 			 * Create the special ire for the IRE table
7005 			 * which hangs out of ire_in_ill. This ire
7006 			 * is in-between IRE_CACHE and IRE_INTERFACE.
7007 			 * Thus rfq is non-NULL.
7008 			 */
7009 			rfq = ipif->ipif_rq;
7010 		}
7011 		/* Create the usual interface ires */
7012 
7013 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
7014 		    ? ipif->ipif_rq : ipif->ipif_wq;
7015 
7016 		/*
7017 		 * Create a copy of the IRE_LOOPBACK,
7018 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
7019 		 * the modified address and netmask.
7020 		 */
7021 		ire = ire_create(
7022 		    (uchar_t *)&dst_addr,
7023 		    (uint8_t *)&mask,
7024 		    (uint8_t *)&ipif->ipif_src_addr,
7025 		    NULL,
7026 		    NULL,
7027 		    &ipif->ipif_mtu,
7028 		    NULL,
7029 		    rfq,
7030 		    stq,
7031 		    ipif->ipif_net_type,
7032 		    ipif->ipif_resolver_mp,
7033 		    ipif,
7034 		    in_ill,
7035 		    0,
7036 		    0,
7037 		    0,
7038 		    flags,
7039 		    &ire_uinfo_null,
7040 		    NULL,
7041 		    NULL,
7042 		    ipst);
7043 		if (ire == NULL) {
7044 			if (ipif_refheld)
7045 				ipif_refrele(ipif);
7046 			return (ENOMEM);
7047 		}
7048 
7049 		/*
7050 		 * Some software (for example, GateD and Sun Cluster) attempts
7051 		 * to create (what amount to) IRE_PREFIX routes with the
7052 		 * loopback address as the gateway.  This is primarily done to
7053 		 * set up prefixes with the RTF_REJECT flag set (for example,
7054 		 * when generating aggregate routes.)
7055 		 *
7056 		 * If the IRE type (as defined by ipif->ipif_net_type) is
7057 		 * IRE_LOOPBACK, then we map the request into a
7058 		 * IRE_IF_NORESOLVER.
7059 		 *
7060 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
7061 		 * routine, but rather using ire_create() directly.
7062 		 *
7063 		 */
7064 		if (ipif->ipif_net_type == IRE_LOOPBACK)
7065 			ire->ire_type = IRE_IF_NORESOLVER;
7066 
7067 		error = ire_add(&ire, q, mp, func, B_FALSE);
7068 		if (error == 0)
7069 			goto save_ire;
7070 
7071 		/*
7072 		 * In the result of failure, ire_add() will have already
7073 		 * deleted the ire in question, so there is no need to
7074 		 * do that here.
7075 		 */
7076 		if (ipif_refheld)
7077 			ipif_refrele(ipif);
7078 		return (error);
7079 	}
7080 	if (ipif_refheld) {
7081 		ipif_refrele(ipif);
7082 		ipif_refheld = B_FALSE;
7083 	}
7084 
7085 	if (src_ipif != NULL) {
7086 		/* RTA_SRCIFP is not supported on RTF_GATEWAY */
7087 		ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n"));
7088 		return (EINVAL);
7089 	}
7090 	/*
7091 	 * Get an interface IRE for the specified gateway.
7092 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
7093 	 * gateway, it is currently unreachable and we fail the request
7094 	 * accordingly.
7095 	 */
7096 	ipif = ipif_arg;
7097 	if (ipif_arg != NULL)
7098 		match_flags |= MATCH_IRE_ILL;
7099 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
7100 	    ALL_ZONES, 0, NULL, match_flags, ipst);
7101 	if (gw_ire == NULL)
7102 		return (ENETUNREACH);
7103 
7104 	/*
7105 	 * We create one of three types of IREs as a result of this request
7106 	 * based on the netmask.  A netmask of all ones (which is automatically
7107 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
7108 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
7109 	 * created.  Otherwise, an IRE_PREFIX route is created for the
7110 	 * destination prefix.
7111 	 */
7112 	if (mask == IP_HOST_MASK)
7113 		type = IRE_HOST;
7114 	else if (mask == 0)
7115 		type = IRE_DEFAULT;
7116 	else
7117 		type = IRE_PREFIX;
7118 
7119 	/* check for a duplicate entry */
7120 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7121 	    NULL, ALL_ZONES, 0, NULL,
7122 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
7123 	if (ire != NULL) {
7124 		ire_refrele(gw_ire);
7125 		ire_refrele(ire);
7126 		return (EEXIST);
7127 	}
7128 
7129 	/* Security attribute exists */
7130 	if (sp != NULL) {
7131 		tsol_gcgrp_addr_t ga;
7132 
7133 		/* find or create the gateway credentials group */
7134 		ga.ga_af = AF_INET;
7135 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
7136 
7137 		/* we hold reference to it upon success */
7138 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
7139 		if (gcgrp == NULL) {
7140 			ire_refrele(gw_ire);
7141 			return (ENOMEM);
7142 		}
7143 
7144 		/*
7145 		 * Create and add the security attribute to the group; a
7146 		 * reference to the group is made upon allocating a new
7147 		 * entry successfully.  If it finds an already-existing
7148 		 * entry for the security attribute in the group, it simply
7149 		 * returns it and no new reference is made to the group.
7150 		 */
7151 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
7152 		if (gc == NULL) {
7153 			/* release reference held by gcgrp_lookup */
7154 			GCGRP_REFRELE(gcgrp);
7155 			ire_refrele(gw_ire);
7156 			return (ENOMEM);
7157 		}
7158 	}
7159 
7160 	/* Create the IRE. */
7161 	ire = ire_create(
7162 	    (uchar_t *)&dst_addr,		/* dest address */
7163 	    (uchar_t *)&mask,			/* mask */
7164 	    /* src address assigned by the caller? */
7165 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
7166 		(flags & RTF_SETSRC)) ?  &src_addr : NULL),
7167 	    (uchar_t *)&gw_addr,		/* gateway address */
7168 	    NULL,				/* no in-srcaddress */
7169 	    &gw_ire->ire_max_frag,
7170 	    NULL,				/* no Fast Path header */
7171 	    NULL,				/* no recv-from queue */
7172 	    NULL,				/* no send-to queue */
7173 	    (ushort_t)type,			/* IRE type */
7174 	    NULL,
7175 	    ipif_arg,
7176 	    NULL,
7177 	    0,
7178 	    0,
7179 	    0,
7180 	    flags,
7181 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
7182 	    gc,					/* security attribute */
7183 	    NULL,
7184 	    ipst);
7185 
7186 	/*
7187 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
7188 	 * reference to the 'gcgrp'. We can now release the extra reference
7189 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
7190 	 */
7191 	if (gcgrp_xtraref)
7192 		GCGRP_REFRELE(gcgrp);
7193 	if (ire == NULL) {
7194 		if (gc != NULL)
7195 			GC_REFRELE(gc);
7196 		ire_refrele(gw_ire);
7197 		return (ENOMEM);
7198 	}
7199 
7200 	/*
7201 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
7202 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
7203 	 */
7204 
7205 	/* Add the new IRE. */
7206 	error = ire_add(&ire, q, mp, func, B_FALSE);
7207 	if (error != 0) {
7208 		/*
7209 		 * In the result of failure, ire_add() will have already
7210 		 * deleted the ire in question, so there is no need to
7211 		 * do that here.
7212 		 */
7213 		ire_refrele(gw_ire);
7214 		return (error);
7215 	}
7216 
7217 	if (flags & RTF_MULTIRT) {
7218 		/*
7219 		 * Invoke the CGTP (multirouting) filtering module
7220 		 * to add the dst address in the filtering database.
7221 		 * Replicated inbound packets coming from that address
7222 		 * will be filtered to discard the duplicates.
7223 		 * It is not necessary to call the CGTP filter hook
7224 		 * when the dst address is a broadcast or multicast,
7225 		 * because an IP source address cannot be a broadcast
7226 		 * or a multicast.
7227 		 */
7228 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
7229 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
7230 		if (ire_dst != NULL) {
7231 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
7232 			ire_refrele(ire_dst);
7233 			goto save_ire;
7234 		}
7235 		if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) &&
7236 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
7237 			int res = ip_cgtp_filter_ops->cfo_add_dest_v4(
7238 			    ire->ire_addr,
7239 			    ire->ire_gateway_addr,
7240 			    ire->ire_src_addr,
7241 			    gw_ire->ire_src_addr);
7242 			if (res != 0) {
7243 				ire_refrele(gw_ire);
7244 				ire_delete(ire);
7245 				return (res);
7246 			}
7247 		}
7248 	}
7249 
7250 	/*
7251 	 * Now that the prefix IRE entry has been created, delete any
7252 	 * existing gateway IRE cache entries as well as any IRE caches
7253 	 * using the gateway, and force them to be created through
7254 	 * ip_newroute.
7255 	 */
7256 	if (gc != NULL) {
7257 		ASSERT(gcgrp != NULL);
7258 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7259 	}
7260 
7261 save_ire:
7262 	if (gw_ire != NULL) {
7263 		ire_refrele(gw_ire);
7264 	}
7265 	/*
7266 	 * We do not do save_ire for the routes added with RTA_SRCIFP
7267 	 * flag. This route is only added and deleted by mipagent.
7268 	 * So, for simplicity of design, we refrain from saving
7269 	 * ires that are created with srcif value. This may change
7270 	 * in future if we find more usage of srcifp feature.
7271 	 */
7272 	if (ipif != NULL && src_ipif == NULL) {
7273 		/*
7274 		 * Save enough information so that we can recreate the IRE if
7275 		 * the interface goes down and then up.  The metrics associated
7276 		 * with the route will be saved as well when rts_setmetrics() is
7277 		 * called after the IRE has been created.  In the case where
7278 		 * memory cannot be allocated, none of this information will be
7279 		 * saved.
7280 		 */
7281 		ipif_save_ire(ipif, ire);
7282 	}
7283 	if (ioctl_msg)
7284 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7285 	if (ire_arg != NULL) {
7286 		/*
7287 		 * Store the ire that was successfully added into where ire_arg
7288 		 * points to so that callers don't have to look it up
7289 		 * themselves (but they are responsible for ire_refrele()ing
7290 		 * the ire when they are finished with it).
7291 		 */
7292 		*ire_arg = ire;
7293 	} else {
7294 		ire_refrele(ire);		/* Held in ire_add */
7295 	}
7296 	if (ipif_refheld)
7297 		ipif_refrele(ipif);
7298 	return (0);
7299 }
7300 
7301 /*
7302  * ip_rt_delete is called to delete an IPv4 route.
7303  * ipif_arg is passed in to associate it with the correct interface.
7304  * src_ipif is passed to associate the incoming interface of the packet.
7305  * We may need to restart this operation if the ipif cannot be looked up
7306  * due to an exclusive operation that is currently in progress. The restart
7307  * entry point is specified by 'func'
7308  */
7309 /* ARGSUSED4 */
7310 int
7311 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7312     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif,
7313     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
7314     ip_stack_t *ipst)
7315 {
7316 	ire_t	*ire = NULL;
7317 	ipif_t	*ipif;
7318 	boolean_t ipif_refheld = B_FALSE;
7319 	uint_t	type;
7320 	uint_t	match_flags = MATCH_IRE_TYPE;
7321 	int	err = 0;
7322 
7323 	ip1dbg(("ip_rt_delete:"));
7324 	/*
7325 	 * If this is the case of RTF_HOST being set, then we set the netmask
7326 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7327 	 */
7328 	if (flags & RTF_HOST) {
7329 		mask = IP_HOST_MASK;
7330 		match_flags |= MATCH_IRE_MASK;
7331 	} else if (rtm_addrs & RTA_NETMASK) {
7332 		match_flags |= MATCH_IRE_MASK;
7333 	}
7334 
7335 	/*
7336 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7337 	 * we check if the gateway address is one of our interfaces first,
7338 	 * and fall back on RTF_GATEWAY routes.
7339 	 *
7340 	 * This makes it possible to delete an original
7341 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7342 	 *
7343 	 * As the interface index specified with the RTA_IFP sockaddr is the
7344 	 * same for all ipif's off of an ill, the matching logic below uses
7345 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7346 	 * sharing the same prefix and interface index as the the route
7347 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7348 	 * is specified in the request.
7349 	 *
7350 	 * On the other hand, since the gateway address will usually be
7351 	 * different for each ipif on the system, the matching logic
7352 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7353 	 * route.  This means that interface routes for the same prefix can be
7354 	 * uniquely identified if they belong to distinct ipif's and if a
7355 	 * RTA_IFP sockaddr is not present.
7356 	 *
7357 	 * For more detail on specifying routes by gateway address and by
7358 	 * interface index, see the comments in ip_rt_add().
7359 	 * gw_addr could be zero in some cases when both RTA_SRCIFP and
7360 	 * RTA_IFP are specified. If RTA_SRCIFP is specified and  both
7361 	 * RTA_IFP and gateway_addr are NULL/zero, then delete will not
7362 	 * succeed.
7363 	 */
7364 	if (src_ipif != NULL) {
7365 		if (ipif_arg == NULL && gw_addr != 0) {
7366 			ipif_arg = ipif_lookup_interface(gw_addr, dst_addr,
7367 			    q, mp, func, &err, ipst);
7368 			if (ipif_arg != NULL)
7369 				ipif_refheld = B_TRUE;
7370 		}
7371 		if (ipif_arg == NULL) {
7372 			err = (err == EINPROGRESS) ? err : ESRCH;
7373 			return (err);
7374 		}
7375 		ipif = ipif_arg;
7376 	} else {
7377 		ipif = ipif_lookup_interface(gw_addr, dst_addr,
7378 			    q, mp, func, &err, ipst);
7379 		if (ipif != NULL)
7380 			ipif_refheld = B_TRUE;
7381 		else if (err == EINPROGRESS)
7382 			return (err);
7383 		else
7384 			err = 0;
7385 	}
7386 	if (ipif != NULL) {
7387 		if (ipif_arg != NULL) {
7388 			if (ipif_refheld) {
7389 				ipif_refrele(ipif);
7390 				ipif_refheld = B_FALSE;
7391 			}
7392 			ipif = ipif_arg;
7393 			match_flags |= MATCH_IRE_ILL;
7394 		} else {
7395 			match_flags |= MATCH_IRE_IPIF;
7396 		}
7397 		if (src_ipif != NULL) {
7398 			ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE,
7399 			    ipif, src_ipif->ipif_ill, match_flags);
7400 		} else {
7401 			if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7402 				ire = ire_ctable_lookup(dst_addr, 0,
7403 				    IRE_LOOPBACK, ipif, ALL_ZONES, NULL,
7404 				    match_flags, ipst);
7405 			}
7406 			if (ire == NULL) {
7407 				ire = ire_ftable_lookup(dst_addr, mask, 0,
7408 				    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0,
7409 				    NULL, match_flags, ipst);
7410 			}
7411 		}
7412 	}
7413 
7414 	if (ire == NULL) {
7415 		/*
7416 		 * At this point, the gateway address is not one of our own
7417 		 * addresses or a matching interface route was not found.  We
7418 		 * set the IRE type to lookup based on whether
7419 		 * this is a host route, a default route or just a prefix.
7420 		 *
7421 		 * If an ipif_arg was passed in, then the lookup is based on an
7422 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7423 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7424 		 * set as the route being looked up is not a traditional
7425 		 * interface route.
7426 		 * Since we do not add gateway route with srcipif, we don't
7427 		 * expect to find it either.
7428 		 */
7429 		if (src_ipif != NULL) {
7430 			if (ipif_refheld)
7431 				ipif_refrele(ipif);
7432 			return (ESRCH);
7433 		} else {
7434 			match_flags &= ~MATCH_IRE_IPIF;
7435 			match_flags |= MATCH_IRE_GW;
7436 			if (ipif_arg != NULL)
7437 				match_flags |= MATCH_IRE_ILL;
7438 			if (mask == IP_HOST_MASK)
7439 				type = IRE_HOST;
7440 			else if (mask == 0)
7441 				type = IRE_DEFAULT;
7442 			else
7443 				type = IRE_PREFIX;
7444 			ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type,
7445 			    ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags,
7446 			    ipst);
7447 		}
7448 	}
7449 
7450 	if (ipif_refheld)
7451 		ipif_refrele(ipif);
7452 
7453 	/* ipif is not refheld anymore */
7454 	if (ire == NULL)
7455 		return (ESRCH);
7456 
7457 	if (ire->ire_flags & RTF_MULTIRT) {
7458 		/*
7459 		 * Invoke the CGTP (multirouting) filtering module
7460 		 * to remove the dst address from the filtering database.
7461 		 * Packets coming from that address will no longer be
7462 		 * filtered to remove duplicates.
7463 		 */
7464 		if (ip_cgtp_filter_ops != NULL &&
7465 		    ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) {
7466 			err = ip_cgtp_filter_ops->cfo_del_dest_v4(
7467 			    ire->ire_addr, ire->ire_gateway_addr);
7468 		}
7469 		ip_cgtp_bcast_delete(ire, ipst);
7470 	}
7471 
7472 	ipif = ire->ire_ipif;
7473 	/*
7474 	 * Removing from ipif_saved_ire_mp is not necessary
7475 	 * when src_ipif being non-NULL. ip_rt_add does not
7476 	 * save the ires which src_ipif being non-NULL.
7477 	 */
7478 	if (ipif != NULL && src_ipif == NULL) {
7479 		ipif_remove_ire(ipif, ire);
7480 	}
7481 	if (ioctl_msg)
7482 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7483 	ire_delete(ire);
7484 	ire_refrele(ire);
7485 	return (err);
7486 }
7487 
7488 /*
7489  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7490  */
7491 /* ARGSUSED */
7492 int
7493 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7494     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7495 {
7496 	ipaddr_t dst_addr;
7497 	ipaddr_t gw_addr;
7498 	ipaddr_t mask;
7499 	int error = 0;
7500 	mblk_t *mp1;
7501 	struct rtentry *rt;
7502 	ipif_t *ipif = NULL;
7503 	ip_stack_t	*ipst;
7504 
7505 	ASSERT(q->q_next == NULL);
7506 	ipst = CONNQ_TO_IPST(q);
7507 
7508 	ip1dbg(("ip_siocaddrt:"));
7509 	/* Existence of mp1 verified in ip_wput_nondata */
7510 	mp1 = mp->b_cont->b_cont;
7511 	rt = (struct rtentry *)mp1->b_rptr;
7512 
7513 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7514 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7515 
7516 	/*
7517 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7518 	 * to a particular host address.  In this case, we set the netmask to
7519 	 * all ones for the particular destination address.  Otherwise,
7520 	 * determine the netmask to be used based on dst_addr and the interfaces
7521 	 * in use.
7522 	 */
7523 	if (rt->rt_flags & RTF_HOST) {
7524 		mask = IP_HOST_MASK;
7525 	} else {
7526 		/*
7527 		 * Note that ip_subnet_mask returns a zero mask in the case of
7528 		 * default (an all-zeroes address).
7529 		 */
7530 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7531 	}
7532 
7533 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7534 	    NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7535 	if (ipif != NULL)
7536 		ipif_refrele(ipif);
7537 	return (error);
7538 }
7539 
7540 /*
7541  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7542  */
7543 /* ARGSUSED */
7544 int
7545 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7546     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7547 {
7548 	ipaddr_t dst_addr;
7549 	ipaddr_t gw_addr;
7550 	ipaddr_t mask;
7551 	int error;
7552 	mblk_t *mp1;
7553 	struct rtentry *rt;
7554 	ipif_t *ipif = NULL;
7555 	ip_stack_t	*ipst;
7556 
7557 	ASSERT(q->q_next == NULL);
7558 	ipst = CONNQ_TO_IPST(q);
7559 
7560 	ip1dbg(("ip_siocdelrt:"));
7561 	/* Existence of mp1 verified in ip_wput_nondata */
7562 	mp1 = mp->b_cont->b_cont;
7563 	rt = (struct rtentry *)mp1->b_rptr;
7564 
7565 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7566 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7567 
7568 	/*
7569 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7570 	 * to a particular host address.  In this case, we set the netmask to
7571 	 * all ones for the particular destination address.  Otherwise,
7572 	 * determine the netmask to be used based on dst_addr and the interfaces
7573 	 * in use.
7574 	 */
7575 	if (rt->rt_flags & RTF_HOST) {
7576 		mask = IP_HOST_MASK;
7577 	} else {
7578 		/*
7579 		 * Note that ip_subnet_mask returns a zero mask in the case of
7580 		 * default (an all-zeroes address).
7581 		 */
7582 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7583 	}
7584 
7585 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7586 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL,
7587 	    B_TRUE, q, mp, ip_process_ioctl, ipst);
7588 	if (ipif != NULL)
7589 		ipif_refrele(ipif);
7590 	return (error);
7591 }
7592 
7593 /*
7594  * Enqueue the mp onto the ipsq, chained by b_next.
7595  * b_prev stores the function to be executed later, and b_queue the queue
7596  * where this mp originated.
7597  */
7598 void
7599 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7600     ill_t *pending_ill)
7601 {
7602 	conn_t	*connp = NULL;
7603 
7604 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7605 	ASSERT(func != NULL);
7606 
7607 	mp->b_queue = q;
7608 	mp->b_prev = (void *)func;
7609 	mp->b_next = NULL;
7610 
7611 	switch (type) {
7612 	case CUR_OP:
7613 		if (ipsq->ipsq_mptail != NULL) {
7614 			ASSERT(ipsq->ipsq_mphead != NULL);
7615 			ipsq->ipsq_mptail->b_next = mp;
7616 		} else {
7617 			ASSERT(ipsq->ipsq_mphead == NULL);
7618 			ipsq->ipsq_mphead = mp;
7619 		}
7620 		ipsq->ipsq_mptail = mp;
7621 		break;
7622 
7623 	case NEW_OP:
7624 		if (ipsq->ipsq_xopq_mptail != NULL) {
7625 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7626 			ipsq->ipsq_xopq_mptail->b_next = mp;
7627 		} else {
7628 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7629 			ipsq->ipsq_xopq_mphead = mp;
7630 		}
7631 		ipsq->ipsq_xopq_mptail = mp;
7632 		break;
7633 	default:
7634 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7635 	}
7636 
7637 	if (CONN_Q(q) && pending_ill != NULL) {
7638 		connp = Q_TO_CONN(q);
7639 
7640 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7641 		connp->conn_oper_pending_ill = pending_ill;
7642 	}
7643 }
7644 
7645 /*
7646  * Return the mp at the head of the ipsq. After emptying the ipsq
7647  * look at the next ioctl, if this ioctl is complete. Otherwise
7648  * return, we will resume when we complete the current ioctl.
7649  * The current ioctl will wait till it gets a response from the
7650  * driver below.
7651  */
7652 static mblk_t *
7653 ipsq_dq(ipsq_t *ipsq)
7654 {
7655 	mblk_t	*mp;
7656 
7657 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7658 
7659 	mp = ipsq->ipsq_mphead;
7660 	if (mp != NULL) {
7661 		ipsq->ipsq_mphead = mp->b_next;
7662 		if (ipsq->ipsq_mphead == NULL)
7663 			ipsq->ipsq_mptail = NULL;
7664 		mp->b_next = NULL;
7665 		return (mp);
7666 	}
7667 	if (ipsq->ipsq_current_ipif != NULL)
7668 		return (NULL);
7669 	mp = ipsq->ipsq_xopq_mphead;
7670 	if (mp != NULL) {
7671 		ipsq->ipsq_xopq_mphead = mp->b_next;
7672 		if (ipsq->ipsq_xopq_mphead == NULL)
7673 			ipsq->ipsq_xopq_mptail = NULL;
7674 		mp->b_next = NULL;
7675 		return (mp);
7676 	}
7677 	return (NULL);
7678 }
7679 
7680 /*
7681  * Enter the ipsq corresponding to ill, by waiting synchronously till
7682  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7683  * will have to drain completely before ipsq_enter returns success.
7684  * ipsq_current_ipif will be set if some exclusive ioctl is in progress,
7685  * and the ipsq_exit logic will start the next enqueued ioctl after
7686  * completion of the current ioctl. If 'force' is used, we don't wait
7687  * for the enqueued ioctls. This is needed when a conn_close wants to
7688  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7689  * of an ill can also use this option. But we dont' use it currently.
7690  */
7691 #define	ENTER_SQ_WAIT_TICKS 100
7692 boolean_t
7693 ipsq_enter(ill_t *ill, boolean_t force)
7694 {
7695 	ipsq_t	*ipsq;
7696 	boolean_t waited_enough = B_FALSE;
7697 
7698 	/*
7699 	 * Holding the ill_lock prevents <ill-ipsq> assocs from changing.
7700 	 * Since the <ill-ipsq> assocs could change while we wait for the
7701 	 * writer, it is easier to wait on a fixed global rather than try to
7702 	 * cv_wait on a changing ipsq.
7703 	 */
7704 	mutex_enter(&ill->ill_lock);
7705 	for (;;) {
7706 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7707 			mutex_exit(&ill->ill_lock);
7708 			return (B_FALSE);
7709 		}
7710 
7711 		ipsq = ill->ill_phyint->phyint_ipsq;
7712 		mutex_enter(&ipsq->ipsq_lock);
7713 		if (ipsq->ipsq_writer == NULL &&
7714 		    (ipsq->ipsq_current_ipif == NULL || waited_enough)) {
7715 			break;
7716 		} else if (ipsq->ipsq_writer != NULL) {
7717 			mutex_exit(&ipsq->ipsq_lock);
7718 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7719 		} else {
7720 			mutex_exit(&ipsq->ipsq_lock);
7721 			if (force) {
7722 				(void) cv_timedwait(&ill->ill_cv,
7723 				    &ill->ill_lock,
7724 				    lbolt + ENTER_SQ_WAIT_TICKS);
7725 				waited_enough = B_TRUE;
7726 				continue;
7727 			} else {
7728 				cv_wait(&ill->ill_cv, &ill->ill_lock);
7729 			}
7730 		}
7731 	}
7732 
7733 	ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL);
7734 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7735 	ipsq->ipsq_writer = curthread;
7736 	ipsq->ipsq_reentry_cnt++;
7737 #ifdef ILL_DEBUG
7738 	ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7739 #endif
7740 	mutex_exit(&ipsq->ipsq_lock);
7741 	mutex_exit(&ill->ill_lock);
7742 	return (B_TRUE);
7743 }
7744 
7745 /*
7746  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7747  * certain critical operations like plumbing (i.e. most set ioctls),
7748  * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP
7749  * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per
7750  * IPMP group. The ipsq serializes exclusive ioctls issued by applications
7751  * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple
7752  * threads executing in the ipsq. Responses from the driver pertain to the
7753  * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated
7754  * as part of bringing up the interface) and are enqueued in ipsq_mphead.
7755  *
7756  * If a thread does not want to reenter the ipsq when it is already writer,
7757  * it must make sure that the specified reentry point to be called later
7758  * when the ipsq is empty, nor any code path starting from the specified reentry
7759  * point must never ever try to enter the ipsq again. Otherwise it can lead
7760  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7761  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7762  * dequeues the requests waiting to become exclusive in ipsq_mphead and calls
7763  * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit
7764  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7765  * ioctl if the current ioctl has completed. If the current ioctl is still
7766  * in progress it simply returns. The current ioctl could be waiting for
7767  * a response from another module (arp_ or the driver or could be waiting for
7768  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp
7769  * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the
7770  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7771  * ipsq_current_ipif is clear which happens only on ioctl completion.
7772  */
7773 
7774 /*
7775  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7776  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7777  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7778  * completion.
7779  */
7780 ipsq_t *
7781 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7782     ipsq_func_t func, int type, boolean_t reentry_ok)
7783 {
7784 	ipsq_t	*ipsq;
7785 
7786 	/* Only 1 of ipif or ill can be specified */
7787 	ASSERT((ipif != NULL) ^ (ill != NULL));
7788 	if (ipif != NULL)
7789 		ill = ipif->ipif_ill;
7790 
7791 	/*
7792 	 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock
7793 	 * ipsq of an ill can't change when ill_lock is held.
7794 	 */
7795 	GRAB_CONN_LOCK(q);
7796 	mutex_enter(&ill->ill_lock);
7797 	ipsq = ill->ill_phyint->phyint_ipsq;
7798 	mutex_enter(&ipsq->ipsq_lock);
7799 
7800 	/*
7801 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7802 	 *    (Note: If the caller does not specify reentry_ok then neither
7803 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7804 	 *    again. Otherwise it can lead to an infinite loop
7805 	 * 2. Enter the ipsq if there is no current writer and this attempted
7806 	 *    entry is part of the current ioctl or operation
7807 	 * 3. Enter the ipsq if there is no current writer and this is a new
7808 	 *    ioctl (or operation) and the ioctl (or operation) queue is
7809 	 *    empty and there is no ioctl (or operation) currently in progress
7810 	 */
7811 	if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) ||
7812 	    (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL &&
7813 	    ipsq->ipsq_current_ipif == NULL))) ||
7814 	    (ipsq->ipsq_writer == curthread && reentry_ok)) {
7815 		/* Success. */
7816 		ipsq->ipsq_reentry_cnt++;
7817 		ipsq->ipsq_writer = curthread;
7818 		mutex_exit(&ipsq->ipsq_lock);
7819 		mutex_exit(&ill->ill_lock);
7820 		RELEASE_CONN_LOCK(q);
7821 #ifdef ILL_DEBUG
7822 		ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH);
7823 #endif
7824 		return (ipsq);
7825 	}
7826 
7827 	ipsq_enq(ipsq, q, mp, func, type, ill);
7828 
7829 	mutex_exit(&ipsq->ipsq_lock);
7830 	mutex_exit(&ill->ill_lock);
7831 	RELEASE_CONN_LOCK(q);
7832 	return (NULL);
7833 }
7834 
7835 /*
7836  * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of
7837  * ipif or ill can be specified). The caller ensures ipif or ill is valid by
7838  * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued
7839  * completion.
7840  *
7841  * This function does a refrele on the ipif/ill.
7842  */
7843 void
7844 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7845     ipsq_func_t func, int type, boolean_t reentry_ok)
7846 {
7847 	ipsq_t	*ipsq;
7848 
7849 	ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok);
7850 	/*
7851 	 * Caller must have done a refhold on the ipif. ipif_refrele
7852 	 * happens on the passed ipif. We can do this since we are
7853 	 * already exclusive, or we won't access ipif henceforth, Both
7854 	 * this func and caller will just return if we ipsq_try_enter
7855 	 * fails above. This is needed because func needs to
7856 	 * see the correct refcount. Eg. removeif can work only then.
7857 	 */
7858 	if (ipif != NULL)
7859 		ipif_refrele(ipif);
7860 	else
7861 		ill_refrele(ill);
7862 	if (ipsq != NULL) {
7863 		(*func)(ipsq, q, mp, NULL);
7864 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
7865 	}
7866 }
7867 
7868 /*
7869  * If there are more than ILL_GRP_CNT ills in a group,
7870  * we use kmem alloc'd buffers, else use the stack
7871  */
7872 #define	ILL_GRP_CNT	14
7873 /*
7874  * Drain the ipsq, if there are messages on it, and then leave the ipsq.
7875  * Called by a thread that is currently exclusive on this ipsq.
7876  */
7877 void
7878 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer)
7879 {
7880 	queue_t	*q;
7881 	mblk_t	*mp;
7882 	ipsq_func_t	func;
7883 	int	next;
7884 	ill_t	**ill_list = NULL;
7885 	size_t	ill_list_size = 0;
7886 	int	cnt = 0;
7887 	boolean_t need_ipsq_free = B_FALSE;
7888 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
7889 
7890 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7891 	mutex_enter(&ipsq->ipsq_lock);
7892 	ASSERT(ipsq->ipsq_reentry_cnt >= 1);
7893 	if (ipsq->ipsq_reentry_cnt != 1) {
7894 		ipsq->ipsq_reentry_cnt--;
7895 		mutex_exit(&ipsq->ipsq_lock);
7896 		return;
7897 	}
7898 
7899 	mp = ipsq_dq(ipsq);
7900 	while (mp != NULL) {
7901 again:
7902 		mutex_exit(&ipsq->ipsq_lock);
7903 		func = (ipsq_func_t)mp->b_prev;
7904 		q = (queue_t *)mp->b_queue;
7905 		mp->b_prev = NULL;
7906 		mp->b_queue = NULL;
7907 
7908 		/*
7909 		 * If 'q' is an conn queue, it is valid, since we did a
7910 		 * a refhold on the connp, at the start of the ioctl.
7911 		 * If 'q' is an ill queue, it is valid, since close of an
7912 		 * ill will clean up the 'ipsq'.
7913 		 */
7914 		(*func)(ipsq, q, mp, NULL);
7915 
7916 		mutex_enter(&ipsq->ipsq_lock);
7917 		mp = ipsq_dq(ipsq);
7918 	}
7919 
7920 	mutex_exit(&ipsq->ipsq_lock);
7921 
7922 	/*
7923 	 * Need to grab the locks in the right order. Need to
7924 	 * atomically check (under ipsq_lock) that there are no
7925 	 * messages before relinquishing the ipsq. Also need to
7926 	 * atomically wakeup waiters on ill_cv while holding ill_lock.
7927 	 * Holding ill_g_lock ensures that ipsq list of ills is stable.
7928 	 * If we need to call ill_split_ipsq and change <ill-ipsq> we need
7929 	 * to grab ill_g_lock as writer.
7930 	 */
7931 	rw_enter(&ipst->ips_ill_g_lock,
7932 	    ipsq->ipsq_split ? RW_WRITER : RW_READER);
7933 
7934 	/* ipsq_refs can't change while ill_g_lock is held as reader */
7935 	if (ipsq->ipsq_refs != 0) {
7936 		/* At most 2 ills v4/v6 per phyint */
7937 		cnt = ipsq->ipsq_refs << 1;
7938 		ill_list_size = cnt * sizeof (ill_t *);
7939 		/*
7940 		 * If memory allocation fails, we will do the split
7941 		 * the next time ipsq_exit is called for whatever reason.
7942 		 * As long as the ipsq_split flag is set the need to
7943 		 * split is remembered.
7944 		 */
7945 		ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
7946 		if (ill_list != NULL)
7947 			cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt);
7948 	}
7949 	mutex_enter(&ipsq->ipsq_lock);
7950 	mp = ipsq_dq(ipsq);
7951 	if (mp != NULL) {
7952 		/* oops, some message has landed up, we can't get out */
7953 		if (ill_list != NULL)
7954 			ill_unlock_ills(ill_list, cnt);
7955 		rw_exit(&ipst->ips_ill_g_lock);
7956 		if (ill_list != NULL)
7957 			kmem_free(ill_list, ill_list_size);
7958 		ill_list = NULL;
7959 		ill_list_size = 0;
7960 		cnt = 0;
7961 		goto again;
7962 	}
7963 
7964 	/*
7965 	 * Split only if no ioctl is pending and if memory alloc succeeded
7966 	 * above.
7967 	 */
7968 	if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL &&
7969 		ill_list != NULL) {
7970 		/*
7971 		 * No new ill can join this ipsq since we are holding the
7972 		 * ill_g_lock. Hence ill_split_ipsq can safely traverse the
7973 		 * ipsq. ill_split_ipsq may fail due to memory shortage.
7974 		 * If so we will retry on the next ipsq_exit.
7975 		 */
7976 		ipsq->ipsq_split = ill_split_ipsq(ipsq);
7977 	}
7978 
7979 	/*
7980 	 * We are holding the ipsq lock, hence no new messages can
7981 	 * land up on the ipsq, and there are no messages currently.
7982 	 * Now safe to get out. Wake up waiters and relinquish ipsq
7983 	 * atomically while holding ill locks.
7984 	 */
7985 	ipsq->ipsq_writer = NULL;
7986 	ipsq->ipsq_reentry_cnt--;
7987 	ASSERT(ipsq->ipsq_reentry_cnt == 0);
7988 #ifdef ILL_DEBUG
7989 	ipsq->ipsq_depth = 0;
7990 #endif
7991 	mutex_exit(&ipsq->ipsq_lock);
7992 	/*
7993 	 * For IPMP this should wake up all ills in this ipsq.
7994 	 * We need to hold the ill_lock while waking up waiters to
7995 	 * avoid missed wakeups. But there is no need to acquire all
7996 	 * the ill locks and then wakeup. If we have not acquired all
7997 	 * the locks (due to memory failure above) ill_signal_ipsq_ills
7998 	 * wakes up ills one at a time after getting the right ill_lock
7999 	 */
8000 	ill_signal_ipsq_ills(ipsq, ill_list != NULL);
8001 	if (ill_list != NULL)
8002 		ill_unlock_ills(ill_list, cnt);
8003 	if (ipsq->ipsq_refs == 0)
8004 		need_ipsq_free = B_TRUE;
8005 	rw_exit(&ipst->ips_ill_g_lock);
8006 	if (ill_list != 0)
8007 		kmem_free(ill_list, ill_list_size);
8008 
8009 	if (need_ipsq_free) {
8010 		/*
8011 		 * Free the ipsq. ipsq_refs can't increase because ipsq can't be
8012 		 * looked up. ipsq can be looked up only thru ill or phyint
8013 		 * and there are no ills/phyint on this ipsq.
8014 		 */
8015 		ipsq_delete(ipsq);
8016 	}
8017 	/*
8018 	 * Now start any igmp or mld timers that could not be started
8019 	 * while inside the ipsq. The timers can't be started while inside
8020 	 * the ipsq, since igmp_start_timers may need to call untimeout()
8021 	 * which can't be done while holding a lock i.e. the ipsq. Otherwise
8022 	 * there could be a deadlock since the timeout handlers
8023 	 * mld_timeout_handler / igmp_timeout_handler also synchronously
8024 	 * wait in ipsq_enter() trying to get the ipsq.
8025 	 *
8026 	 * However there is one exception to the above. If this thread is
8027 	 * itself the igmp/mld timeout handler thread, then we don't want
8028 	 * to start any new timer until the current handler is done. The
8029 	 * handler thread passes in B_FALSE for start_igmp/mld_timers, while
8030 	 * all others pass B_TRUE.
8031 	 */
8032 	if (start_igmp_timer) {
8033 		mutex_enter(&ipst->ips_igmp_timer_lock);
8034 		next = ipst->ips_igmp_deferred_next;
8035 		ipst->ips_igmp_deferred_next = INFINITY;
8036 		mutex_exit(&ipst->ips_igmp_timer_lock);
8037 
8038 		if (next != INFINITY)
8039 			igmp_start_timers(next, ipst);
8040 	}
8041 
8042 	if (start_mld_timer) {
8043 		mutex_enter(&ipst->ips_mld_timer_lock);
8044 		next = ipst->ips_mld_deferred_next;
8045 		ipst->ips_mld_deferred_next = INFINITY;
8046 		mutex_exit(&ipst->ips_mld_timer_lock);
8047 
8048 		if (next != INFINITY)
8049 			mld_start_timers(next, ipst);
8050 	}
8051 }
8052 
8053 /*
8054  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
8055  * and `ioccmd'.
8056  */
8057 void
8058 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
8059 {
8060 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8061 
8062 	mutex_enter(&ipsq->ipsq_lock);
8063 	ASSERT(ipsq->ipsq_current_ipif == NULL);
8064 	ASSERT(ipsq->ipsq_current_ioctl == 0);
8065 	ipsq->ipsq_current_ipif = ipif;
8066 	ipsq->ipsq_current_ioctl = ioccmd;
8067 	mutex_exit(&ipsq->ipsq_lock);
8068 }
8069 
8070 /*
8071  * Finish the current exclusive operation on `ipsq'.  Note that other
8072  * operations will not be able to proceed until an ipsq_exit() is done.
8073  */
8074 void
8075 ipsq_current_finish(ipsq_t *ipsq)
8076 {
8077 	ipif_t *ipif = ipsq->ipsq_current_ipif;
8078 
8079 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8080 
8081 	/*
8082 	 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away
8083 	 * (but we're careful to never set IPIF_CHANGING in that case).
8084 	 */
8085 	if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) {
8086 		mutex_enter(&ipif->ipif_ill->ill_lock);
8087 		ipif->ipif_state_flags &= ~IPIF_CHANGING;
8088 
8089 		/* Send any queued event */
8090 		ill_nic_info_dispatch(ipif->ipif_ill);
8091 		mutex_exit(&ipif->ipif_ill->ill_lock);
8092 	}
8093 
8094 	mutex_enter(&ipsq->ipsq_lock);
8095 	ASSERT(ipsq->ipsq_current_ipif != NULL);
8096 	ipsq->ipsq_current_ipif = NULL;
8097 	ipsq->ipsq_current_ioctl = 0;
8098 	mutex_exit(&ipsq->ipsq_lock);
8099 }
8100 
8101 /*
8102  * The ill is closing. Flush all messages on the ipsq that originated
8103  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8104  * for this ill since ipsq_enter could not have entered until then.
8105  * New messages can't be queued since the CONDEMNED flag is set.
8106  */
8107 static void
8108 ipsq_flush(ill_t *ill)
8109 {
8110 	queue_t	*q;
8111 	mblk_t	*prev;
8112 	mblk_t	*mp;
8113 	mblk_t	*mp_next;
8114 	ipsq_t	*ipsq;
8115 
8116 	ASSERT(IAM_WRITER_ILL(ill));
8117 	ipsq = ill->ill_phyint->phyint_ipsq;
8118 	/*
8119 	 * Flush any messages sent up by the driver.
8120 	 */
8121 	mutex_enter(&ipsq->ipsq_lock);
8122 	for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) {
8123 		mp_next = mp->b_next;
8124 		q = mp->b_queue;
8125 		if (q == ill->ill_rq || q == ill->ill_wq) {
8126 			/* Remove the mp from the ipsq */
8127 			if (prev == NULL)
8128 				ipsq->ipsq_mphead = mp->b_next;
8129 			else
8130 				prev->b_next = mp->b_next;
8131 			if (ipsq->ipsq_mptail == mp) {
8132 				ASSERT(mp_next == NULL);
8133 				ipsq->ipsq_mptail = prev;
8134 			}
8135 			inet_freemsg(mp);
8136 		} else {
8137 			prev = mp;
8138 		}
8139 	}
8140 	mutex_exit(&ipsq->ipsq_lock);
8141 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8142 	ipsq_xopq_mp_cleanup(ill, NULL);
8143 	ill_pending_mp_cleanup(ill);
8144 }
8145 
8146 /*
8147  * Clean up one squeue element. ill_inuse_ref is protected by ill_lock.
8148  * The real cleanup happens behind the squeue via ip_squeue_clean function but
8149  * we need to protect ourselfs from 2 threads trying to cleanup at the same
8150  * time (possible with one port going down for aggr and someone tearing down the
8151  * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock
8152  * to indicate when the cleanup has started (1 ref) and when the cleanup
8153  * is done (0 ref). When a new ring gets assigned to squeue, we start by
8154  * putting 2 ref on ill_inuse_ref.
8155  */
8156 static void
8157 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring)
8158 {
8159 	conn_t *connp;
8160 	squeue_t *sqp;
8161 	mblk_t *mp;
8162 
8163 	ASSERT(rx_ring != NULL);
8164 
8165 	/* Just clean one squeue */
8166 	mutex_enter(&ill->ill_lock);
8167 	/*
8168 	 * Reset the ILL_SOFT_RING_ASSIGN bit so that
8169 	 * ip_squeue_soft_ring_affinty() will not go
8170 	 * ahead with assigning rings.
8171 	 */
8172 	ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN;
8173 	while (rx_ring->rr_ring_state == ILL_RING_INPROC)
8174 		/* Some operations pending on the ring. Wait */
8175 		cv_wait(&ill->ill_cv, &ill->ill_lock);
8176 
8177 	if (rx_ring->rr_ring_state != ILL_RING_INUSE) {
8178 		/*
8179 		 * Someone already trying to clean
8180 		 * this squeue or its already been cleaned.
8181 		 */
8182 		mutex_exit(&ill->ill_lock);
8183 		return;
8184 	}
8185 	sqp = rx_ring->rr_sqp;
8186 
8187 	if (sqp == NULL) {
8188 		/*
8189 		 * The rx_ring never had a squeue assigned to it.
8190 		 * We are under ill_lock so we can clean it up
8191 		 * here itself since no one can get to it.
8192 		 */
8193 		rx_ring->rr_blank = NULL;
8194 		rx_ring->rr_handle = NULL;
8195 		rx_ring->rr_sqp = NULL;
8196 		rx_ring->rr_ring_state = ILL_RING_FREE;
8197 		mutex_exit(&ill->ill_lock);
8198 		return;
8199 	}
8200 
8201 	/* Set the state that its being cleaned */
8202 	rx_ring->rr_ring_state = ILL_RING_BEING_FREED;
8203 	ASSERT(sqp != NULL);
8204 	mutex_exit(&ill->ill_lock);
8205 
8206 	/*
8207 	 * Use the preallocated ill_unbind_conn for this purpose
8208 	 */
8209 	connp = ill->ill_dls_capab->ill_unbind_conn;
8210 
8211 	ASSERT(!connp->conn_tcp->tcp_closemp.b_prev);
8212 	TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15);
8213 	if (connp->conn_tcp->tcp_closemp.b_prev == NULL)
8214 		connp->conn_tcp->tcp_closemp_used = 1;
8215 	else
8216 		connp->conn_tcp->tcp_closemp_used++;
8217 	mp = &connp->conn_tcp->tcp_closemp;
8218 	CONN_INC_REF(connp);
8219 	squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL);
8220 
8221 	mutex_enter(&ill->ill_lock);
8222 	while (rx_ring->rr_ring_state != ILL_RING_FREE)
8223 		cv_wait(&ill->ill_cv, &ill->ill_lock);
8224 
8225 	mutex_exit(&ill->ill_lock);
8226 }
8227 
8228 static void
8229 ipsq_clean_all(ill_t *ill)
8230 {
8231 	int idx;
8232 
8233 	/*
8234 	 * No need to clean if poll_capab isn't set for this ill
8235 	 */
8236 	if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)))
8237 		return;
8238 
8239 	for (idx = 0; idx < ILL_MAX_RINGS; idx++) {
8240 		ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx];
8241 		ipsq_clean_ring(ill, ipr);
8242 	}
8243 
8244 	ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING);
8245 }
8246 
8247 /* ARGSUSED */
8248 int
8249 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8250     ip_ioctl_cmd_t *ipip, void *ifreq)
8251 {
8252 	ill_t	*ill;
8253 	struct lifreq	*lifr = (struct lifreq *)ifreq;
8254 	boolean_t isv6;
8255 	conn_t	*connp;
8256 	ip_stack_t	*ipst;
8257 
8258 	connp = Q_TO_CONN(q);
8259 	ipst = connp->conn_netstack->netstack_ip;
8260 	isv6 = connp->conn_af_isv6;
8261 	/*
8262 	 * Set original index.
8263 	 * Failover and failback move logical interfaces
8264 	 * from one physical interface to another.  The
8265 	 * original index indicates the parent of a logical
8266 	 * interface, in other words, the physical interface
8267 	 * the logical interface will be moved back to on
8268 	 * failback.
8269 	 */
8270 
8271 	/*
8272 	 * Don't allow the original index to be changed
8273 	 * for non-failover addresses, autoconfigured
8274 	 * addresses, or IPv6 link local addresses.
8275 	 */
8276 	if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) ||
8277 	    (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) {
8278 		return (EINVAL);
8279 	}
8280 	/*
8281 	 * The new original index must be in use by some
8282 	 * physical interface.
8283 	 */
8284 	ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL,
8285 	    NULL, NULL, ipst);
8286 	if (ill == NULL)
8287 		return (ENXIO);
8288 	ill_refrele(ill);
8289 
8290 	ipif->ipif_orig_ifindex = lifr->lifr_index;
8291 	/*
8292 	 * When this ipif gets failed back, don't
8293 	 * preserve the original id, as it is no
8294 	 * longer applicable.
8295 	 */
8296 	ipif->ipif_orig_ipifid = 0;
8297 	/*
8298 	 * For IPv4, change the original index of any
8299 	 * multicast addresses associated with the
8300 	 * ipif to the new value.
8301 	 */
8302 	if (!isv6) {
8303 		ilm_t *ilm;
8304 
8305 		mutex_enter(&ipif->ipif_ill->ill_lock);
8306 		for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL;
8307 		    ilm = ilm->ilm_next) {
8308 			if (ilm->ilm_ipif == ipif) {
8309 				ilm->ilm_orig_ifindex = lifr->lifr_index;
8310 			}
8311 		}
8312 		mutex_exit(&ipif->ipif_ill->ill_lock);
8313 	}
8314 	return (0);
8315 }
8316 
8317 /* ARGSUSED */
8318 int
8319 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
8320     ip_ioctl_cmd_t *ipip, void *ifreq)
8321 {
8322 	struct lifreq *lifr = (struct lifreq *)ifreq;
8323 
8324 	/*
8325 	 * Get the original interface index i.e the one
8326 	 * before FAILOVER if it ever happened.
8327 	 */
8328 	lifr->lifr_index = ipif->ipif_orig_ifindex;
8329 	return (0);
8330 }
8331 
8332 /*
8333  * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls,
8334  * refhold and return the associated ipif
8335  */
8336 int
8337 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func)
8338 {
8339 	boolean_t exists;
8340 	struct iftun_req *ta;
8341 	ipif_t	*ipif;
8342 	ill_t	*ill;
8343 	boolean_t isv6;
8344 	mblk_t	*mp1;
8345 	int	error;
8346 	conn_t	*connp;
8347 	ip_stack_t	*ipst;
8348 
8349 	/* Existence verified in ip_wput_nondata */
8350 	mp1 = mp->b_cont->b_cont;
8351 	ta = (struct iftun_req *)mp1->b_rptr;
8352 	/*
8353 	 * Null terminate the string to protect against buffer
8354 	 * overrun. String was generated by user code and may not
8355 	 * be trusted.
8356 	 */
8357 	ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0';
8358 
8359 	connp = Q_TO_CONN(q);
8360 	isv6 = connp->conn_af_isv6;
8361 	ipst = connp->conn_netstack->netstack_ip;
8362 
8363 	/* Disallows implicit create */
8364 	ipif = ipif_lookup_on_name(ta->ifta_lifr_name,
8365 	    mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6,
8366 	    connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst);
8367 	if (ipif == NULL)
8368 		return (error);
8369 
8370 	if (ipif->ipif_id != 0) {
8371 		/*
8372 		 * We really don't want to set/get tunnel parameters
8373 		 * on virtual tunnel interfaces.  Only allow the
8374 		 * base tunnel to do these.
8375 		 */
8376 		ipif_refrele(ipif);
8377 		return (EINVAL);
8378 	}
8379 
8380 	/*
8381 	 * Send down to tunnel mod for ioctl processing.
8382 	 * Will finish ioctl in ip_rput_other().
8383 	 */
8384 	ill = ipif->ipif_ill;
8385 	if (ill->ill_net_type == IRE_LOOPBACK) {
8386 		ipif_refrele(ipif);
8387 		return (EOPNOTSUPP);
8388 	}
8389 
8390 	if (ill->ill_wq == NULL) {
8391 		ipif_refrele(ipif);
8392 		return (ENXIO);
8393 	}
8394 	/*
8395 	 * Mark the ioctl as coming from an IPv6 interface for
8396 	 * tun's convenience.
8397 	 */
8398 	if (ill->ill_isv6)
8399 		ta->ifta_flags |= 0x80000000;
8400 	*ipifp = ipif;
8401 	return (0);
8402 }
8403 
8404 /*
8405  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8406  * and return the associated ipif.
8407  * Return value:
8408  *	Non zero: An error has occurred. ci may not be filled out.
8409  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8410  *	a held ipif in ci.ci_ipif.
8411  */
8412 int
8413 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags,
8414     cmd_info_t *ci, ipsq_func_t func)
8415 {
8416 	sin_t		*sin;
8417 	sin6_t		*sin6;
8418 	char		*name;
8419 	struct ifreq    *ifr;
8420 	struct lifreq    *lifr;
8421 	ipif_t		*ipif = NULL;
8422 	ill_t		*ill;
8423 	conn_t		*connp;
8424 	boolean_t	isv6;
8425 	struct iocblk   *iocp = (struct iocblk *)mp->b_rptr;
8426 	boolean_t	exists;
8427 	int		err;
8428 	mblk_t		*mp1;
8429 	zoneid_t	zoneid;
8430 	ip_stack_t	*ipst;
8431 
8432 	if (q->q_next != NULL) {
8433 		ill = (ill_t *)q->q_ptr;
8434 		isv6 = ill->ill_isv6;
8435 		connp = NULL;
8436 		zoneid = ALL_ZONES;
8437 		ipst = ill->ill_ipst;
8438 	} else {
8439 		ill = NULL;
8440 		connp = Q_TO_CONN(q);
8441 		isv6 = connp->conn_af_isv6;
8442 		zoneid = connp->conn_zoneid;
8443 		if (zoneid == GLOBAL_ZONEID) {
8444 			/* global zone can access ipifs in all zones */
8445 			zoneid = ALL_ZONES;
8446 		}
8447 		ipst = connp->conn_netstack->netstack_ip;
8448 	}
8449 
8450 	/* Has been checked in ip_wput_nondata */
8451 	mp1 = mp->b_cont->b_cont;
8452 
8453 
8454 	if (cmd_type == IF_CMD) {
8455 		/* This a old style SIOC[GS]IF* command */
8456 		ifr = (struct ifreq *)mp1->b_rptr;
8457 		/*
8458 		 * Null terminate the string to protect against buffer
8459 		 * overrun. String was generated by user code and may not
8460 		 * be trusted.
8461 		 */
8462 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8463 		sin = (sin_t *)&ifr->ifr_addr;
8464 		name = ifr->ifr_name;
8465 		ci->ci_sin = sin;
8466 		ci->ci_sin6 = NULL;
8467 		ci->ci_lifr = (struct lifreq *)ifr;
8468 	} else {
8469 		/* This a new style SIOC[GS]LIF* command */
8470 		ASSERT(cmd_type == LIF_CMD);
8471 		lifr = (struct lifreq *)mp1->b_rptr;
8472 		/*
8473 		 * Null terminate the string to protect against buffer
8474 		 * overrun. String was generated by user code and may not
8475 		 * be trusted.
8476 		 */
8477 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8478 		name = lifr->lifr_name;
8479 		sin = (sin_t *)&lifr->lifr_addr;
8480 		sin6 = (sin6_t *)&lifr->lifr_addr;
8481 		if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) {
8482 			(void) strncpy(ci->ci_groupname, lifr->lifr_groupname,
8483 			    LIFNAMSIZ);
8484 		}
8485 		ci->ci_sin = sin;
8486 		ci->ci_sin6 = sin6;
8487 		ci->ci_lifr = lifr;
8488 	}
8489 
8490 	if (iocp->ioc_cmd == SIOCSLIFNAME) {
8491 		/*
8492 		 * The ioctl will be failed if the ioctl comes down
8493 		 * an conn stream
8494 		 */
8495 		if (ill == NULL) {
8496 			/*
8497 			 * Not an ill queue, return EINVAL same as the
8498 			 * old error code.
8499 			 */
8500 			return (ENXIO);
8501 		}
8502 		ipif = ill->ill_ipif;
8503 		ipif_refhold(ipif);
8504 	} else {
8505 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8506 		    &exists, isv6, zoneid,
8507 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8508 		    ipst);
8509 		if (ipif == NULL) {
8510 			if (err == EINPROGRESS)
8511 				return (err);
8512 			if (iocp->ioc_cmd == SIOCLIFFAILOVER ||
8513 			    iocp->ioc_cmd == SIOCLIFFAILBACK) {
8514 				/*
8515 				 * Need to try both v4 and v6 since this
8516 				 * ioctl can come down either v4 or v6
8517 				 * socket. The lifreq.lifr_family passed
8518 				 * down by this ioctl is AF_UNSPEC.
8519 				 */
8520 				ipif = ipif_lookup_on_name(name,
8521 				    mi_strlen(name), B_FALSE, &exists, !isv6,
8522 				    zoneid, (connp == NULL) ? q :
8523 				    CONNP_TO_WQ(connp), mp, func, &err, ipst);
8524 				if (err == EINPROGRESS)
8525 					return (err);
8526 			}
8527 			err = 0;	/* Ensure we don't use it below */
8528 		}
8529 	}
8530 
8531 	/*
8532 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8533 	 */
8534 	if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) {
8535 		ipif_refrele(ipif);
8536 		return (ENXIO);
8537 	}
8538 
8539 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8540 	    name[0] == '\0') {
8541 		/*
8542 		 * Handle a or a SIOC?IF* with a null name
8543 		 * during plumb (on the ill queue before the I_PLINK).
8544 		 */
8545 		ipif = ill->ill_ipif;
8546 		ipif_refhold(ipif);
8547 	}
8548 
8549 	if (ipif == NULL)
8550 		return (ENXIO);
8551 
8552 	/*
8553 	 * Allow only GET operations if this ipif has been created
8554 	 * temporarily due to a MOVE operation.
8555 	 */
8556 	if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) {
8557 		ipif_refrele(ipif);
8558 		return (EINVAL);
8559 	}
8560 
8561 	ci->ci_ipif = ipif;
8562 	return (0);
8563 }
8564 
8565 /*
8566  * Return the total number of ipifs.
8567  */
8568 static uint_t
8569 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8570 {
8571 	uint_t numifs = 0;
8572 	ill_t	*ill;
8573 	ill_walk_context_t	ctx;
8574 	ipif_t	*ipif;
8575 
8576 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8577 	ill = ILL_START_WALK_V4(&ctx, ipst);
8578 
8579 	while (ill != NULL) {
8580 		for (ipif = ill->ill_ipif; ipif != NULL;
8581 		    ipif = ipif->ipif_next) {
8582 			if (ipif->ipif_zoneid == zoneid ||
8583 			    ipif->ipif_zoneid == ALL_ZONES)
8584 				numifs++;
8585 		}
8586 		ill = ill_next(&ctx, ill);
8587 	}
8588 	rw_exit(&ipst->ips_ill_g_lock);
8589 	return (numifs);
8590 }
8591 
8592 /*
8593  * Return the total number of ipifs.
8594  */
8595 static uint_t
8596 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8597 {
8598 	uint_t numifs = 0;
8599 	ill_t	*ill;
8600 	ipif_t	*ipif;
8601 	ill_walk_context_t	ctx;
8602 
8603 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8604 
8605 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8606 	if (family == AF_INET)
8607 		ill = ILL_START_WALK_V4(&ctx, ipst);
8608 	else if (family == AF_INET6)
8609 		ill = ILL_START_WALK_V6(&ctx, ipst);
8610 	else
8611 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8612 
8613 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8614 		for (ipif = ill->ill_ipif; ipif != NULL;
8615 		    ipif = ipif->ipif_next) {
8616 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8617 			    !(lifn_flags & LIFC_NOXMIT))
8618 				continue;
8619 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8620 			    !(lifn_flags & LIFC_TEMPORARY))
8621 				continue;
8622 			if (((ipif->ipif_flags &
8623 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8624 			    IPIF_DEPRECATED)) ||
8625 			    (ill->ill_phyint->phyint_flags &
8626 			    PHYI_LOOPBACK) ||
8627 			    !(ipif->ipif_flags & IPIF_UP)) &&
8628 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8629 				continue;
8630 
8631 			if (zoneid != ipif->ipif_zoneid &&
8632 			    ipif->ipif_zoneid != ALL_ZONES &&
8633 			    (zoneid != GLOBAL_ZONEID ||
8634 			    !(lifn_flags & LIFC_ALLZONES)))
8635 				continue;
8636 
8637 			numifs++;
8638 		}
8639 	}
8640 	rw_exit(&ipst->ips_ill_g_lock);
8641 	return (numifs);
8642 }
8643 
8644 uint_t
8645 ip_get_lifsrcofnum(ill_t *ill)
8646 {
8647 	uint_t numifs = 0;
8648 	ill_t	*ill_head = ill;
8649 	ip_stack_t	*ipst = ill->ill_ipst;
8650 
8651 	/*
8652 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8653 	 * other thread may be trying to relink the ILLs in this usesrc group
8654 	 * and adjusting the ill_usesrc_grp_next pointers
8655 	 */
8656 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8657 	if ((ill->ill_usesrc_ifindex == 0) &&
8658 	    (ill->ill_usesrc_grp_next != NULL)) {
8659 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8660 		    ill = ill->ill_usesrc_grp_next)
8661 			numifs++;
8662 	}
8663 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8664 
8665 	return (numifs);
8666 }
8667 
8668 /* Null values are passed in for ipif, sin, and ifreq */
8669 /* ARGSUSED */
8670 int
8671 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8672     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8673 {
8674 	int *nump;
8675 	conn_t *connp = Q_TO_CONN(q);
8676 
8677 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8678 
8679 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8680 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8681 
8682 	*nump = ip_get_numifs(connp->conn_zoneid,
8683 	    connp->conn_netstack->netstack_ip);
8684 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8685 	return (0);
8686 }
8687 
8688 /* Null values are passed in for ipif, sin, and ifreq */
8689 /* ARGSUSED */
8690 int
8691 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8692     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8693 {
8694 	struct lifnum *lifn;
8695 	mblk_t	*mp1;
8696 	conn_t *connp = Q_TO_CONN(q);
8697 
8698 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8699 
8700 	/* Existence checked in ip_wput_nondata */
8701 	mp1 = mp->b_cont->b_cont;
8702 
8703 	lifn = (struct lifnum *)mp1->b_rptr;
8704 	switch (lifn->lifn_family) {
8705 	case AF_UNSPEC:
8706 	case AF_INET:
8707 	case AF_INET6:
8708 		break;
8709 	default:
8710 		return (EAFNOSUPPORT);
8711 	}
8712 
8713 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8714 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8715 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8716 	return (0);
8717 }
8718 
8719 /* ARGSUSED */
8720 int
8721 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8722     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8723 {
8724 	STRUCT_HANDLE(ifconf, ifc);
8725 	mblk_t *mp1;
8726 	struct iocblk *iocp;
8727 	struct ifreq *ifr;
8728 	ill_walk_context_t	ctx;
8729 	ill_t	*ill;
8730 	ipif_t	*ipif;
8731 	struct sockaddr_in *sin;
8732 	int32_t	ifclen;
8733 	zoneid_t zoneid;
8734 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8735 
8736 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8737 
8738 	ip1dbg(("ip_sioctl_get_ifconf"));
8739 	/* Existence verified in ip_wput_nondata */
8740 	mp1 = mp->b_cont->b_cont;
8741 	iocp = (struct iocblk *)mp->b_rptr;
8742 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8743 
8744 	/*
8745 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8746 	 * the user buffer address and length into which the list of struct
8747 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8748 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8749 	 * the SIOCGIFCONF operation was redefined to simply provide
8750 	 * a large output buffer into which we are supposed to jam the ifreq
8751 	 * array.  The same ioctl command code was used, despite the fact that
8752 	 * both the applications and the kernel code had to change, thus making
8753 	 * it impossible to support both interfaces.
8754 	 *
8755 	 * For reasons not good enough to try to explain, the following
8756 	 * algorithm is used for deciding what to do with one of these:
8757 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8758 	 * form with the output buffer coming down as the continuation message.
8759 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8760 	 * and we have to copy in the ifconf structure to find out how big the
8761 	 * output buffer is and where to copy out to.  Sure no problem...
8762 	 *
8763 	 */
8764 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8765 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8766 		int numifs = 0;
8767 		size_t ifc_bufsize;
8768 
8769 		/*
8770 		 * Must be (better be!) continuation of a TRANSPARENT
8771 		 * IOCTL.  We just copied in the ifconf structure.
8772 		 */
8773 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8774 		    (struct ifconf *)mp1->b_rptr);
8775 
8776 		/*
8777 		 * Allocate a buffer to hold requested information.
8778 		 *
8779 		 * If ifc_len is larger than what is needed, we only
8780 		 * allocate what we will use.
8781 		 *
8782 		 * If ifc_len is smaller than what is needed, return
8783 		 * EINVAL.
8784 		 *
8785 		 * XXX: the ill_t structure can hava 2 counters, for
8786 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8787 		 * number of interfaces for a device, so we don't need
8788 		 * to count them here...
8789 		 */
8790 		numifs = ip_get_numifs(zoneid, ipst);
8791 
8792 		ifclen = STRUCT_FGET(ifc, ifc_len);
8793 		ifc_bufsize = numifs * sizeof (struct ifreq);
8794 		if (ifc_bufsize > ifclen) {
8795 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8796 				/* old behaviour */
8797 				return (EINVAL);
8798 			} else {
8799 				ifc_bufsize = ifclen;
8800 			}
8801 		}
8802 
8803 		mp1 = mi_copyout_alloc(q, mp,
8804 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8805 		if (mp1 == NULL)
8806 			return (ENOMEM);
8807 
8808 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8809 	}
8810 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8811 	/*
8812 	 * the SIOCGIFCONF ioctl only knows about
8813 	 * IPv4 addresses, so don't try to tell
8814 	 * it about interfaces with IPv6-only
8815 	 * addresses. (Last parm 'isv6' is B_FALSE)
8816 	 */
8817 
8818 	ifr = (struct ifreq *)mp1->b_rptr;
8819 
8820 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8821 	ill = ILL_START_WALK_V4(&ctx, ipst);
8822 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8823 		for (ipif = ill->ill_ipif; ipif != NULL;
8824 		    ipif = ipif->ipif_next) {
8825 			if (zoneid != ipif->ipif_zoneid &&
8826 			    ipif->ipif_zoneid != ALL_ZONES)
8827 				continue;
8828 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8829 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8830 					/* old behaviour */
8831 					rw_exit(&ipst->ips_ill_g_lock);
8832 					return (EINVAL);
8833 				} else {
8834 					goto if_copydone;
8835 				}
8836 			}
8837 			(void) ipif_get_name(ipif,
8838 			    ifr->ifr_name,
8839 			    sizeof (ifr->ifr_name));
8840 			sin = (sin_t *)&ifr->ifr_addr;
8841 			*sin = sin_null;
8842 			sin->sin_family = AF_INET;
8843 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8844 			ifr++;
8845 		}
8846 	}
8847 if_copydone:
8848 	rw_exit(&ipst->ips_ill_g_lock);
8849 	mp1->b_wptr = (uchar_t *)ifr;
8850 
8851 	if (STRUCT_BUF(ifc) != NULL) {
8852 		STRUCT_FSET(ifc, ifc_len,
8853 			(int)((uchar_t *)ifr - mp1->b_rptr));
8854 	}
8855 	return (0);
8856 }
8857 
8858 /*
8859  * Get the interfaces using the address hosted on the interface passed in,
8860  * as a source adddress
8861  */
8862 /* ARGSUSED */
8863 int
8864 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8865     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8866 {
8867 	mblk_t *mp1;
8868 	ill_t	*ill, *ill_head;
8869 	ipif_t	*ipif, *orig_ipif;
8870 	int	numlifs = 0;
8871 	size_t	lifs_bufsize, lifsmaxlen;
8872 	struct	lifreq *lifr;
8873 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8874 	uint_t	ifindex;
8875 	zoneid_t zoneid;
8876 	int err = 0;
8877 	boolean_t isv6 = B_FALSE;
8878 	struct	sockaddr_in	*sin;
8879 	struct	sockaddr_in6	*sin6;
8880 	STRUCT_HANDLE(lifsrcof, lifs);
8881 	ip_stack_t		*ipst;
8882 
8883 	ipst = CONNQ_TO_IPST(q);
8884 
8885 	ASSERT(q->q_next == NULL);
8886 
8887 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8888 
8889 	/* Existence verified in ip_wput_nondata */
8890 	mp1 = mp->b_cont->b_cont;
8891 
8892 	/*
8893 	 * Must be (better be!) continuation of a TRANSPARENT
8894 	 * IOCTL.  We just copied in the lifsrcof structure.
8895 	 */
8896 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8897 	    (struct lifsrcof *)mp1->b_rptr);
8898 
8899 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8900 		return (EINVAL);
8901 
8902 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8903 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8904 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8905 	    ip_process_ioctl, &err, ipst);
8906 	if (ipif == NULL) {
8907 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8908 		    ifindex));
8909 		return (err);
8910 	}
8911 
8912 
8913 	/* Allocate a buffer to hold requested information */
8914 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8915 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8916 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8917 	/* The actual size needed is always returned in lifs_len */
8918 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8919 
8920 	/* If the amount we need is more than what is passed in, abort */
8921 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8922 		ipif_refrele(ipif);
8923 		return (0);
8924 	}
8925 
8926 	mp1 = mi_copyout_alloc(q, mp,
8927 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8928 	if (mp1 == NULL) {
8929 		ipif_refrele(ipif);
8930 		return (ENOMEM);
8931 	}
8932 
8933 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8934 	bzero(mp1->b_rptr, lifs_bufsize);
8935 
8936 	lifr = (struct lifreq *)mp1->b_rptr;
8937 
8938 	ill = ill_head = ipif->ipif_ill;
8939 	orig_ipif = ipif;
8940 
8941 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8942 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8943 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8944 
8945 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8946 	for (; (ill != NULL) && (ill != ill_head);
8947 	    ill = ill->ill_usesrc_grp_next) {
8948 
8949 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8950 			break;
8951 
8952 		ipif = ill->ill_ipif;
8953 		(void) ipif_get_name(ipif,
8954 		    lifr->lifr_name, sizeof (lifr->lifr_name));
8955 		if (ipif->ipif_isv6) {
8956 			sin6 = (sin6_t *)&lifr->lifr_addr;
8957 			*sin6 = sin6_null;
8958 			sin6->sin6_family = AF_INET6;
8959 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8960 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8961 			    &ipif->ipif_v6net_mask);
8962 		} else {
8963 			sin = (sin_t *)&lifr->lifr_addr;
8964 			*sin = sin_null;
8965 			sin->sin_family = AF_INET;
8966 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8967 			lifr->lifr_addrlen = ip_mask_to_plen(
8968 			    ipif->ipif_net_mask);
8969 		}
8970 		lifr++;
8971 	}
8972 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8973 	rw_exit(&ipst->ips_ill_g_lock);
8974 	ipif_refrele(orig_ipif);
8975 	mp1->b_wptr = (uchar_t *)lifr;
8976 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8977 
8978 	return (0);
8979 }
8980 
8981 /* ARGSUSED */
8982 int
8983 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8984     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8985 {
8986 	mblk_t *mp1;
8987 	int	list;
8988 	ill_t	*ill;
8989 	ipif_t	*ipif;
8990 	int	flags;
8991 	int	numlifs = 0;
8992 	size_t	lifc_bufsize;
8993 	struct	lifreq *lifr;
8994 	sa_family_t	family;
8995 	struct	sockaddr_in	*sin;
8996 	struct	sockaddr_in6	*sin6;
8997 	ill_walk_context_t	ctx;
8998 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8999 	int32_t	lifclen;
9000 	zoneid_t zoneid;
9001 	STRUCT_HANDLE(lifconf, lifc);
9002 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
9003 
9004 	ip1dbg(("ip_sioctl_get_lifconf"));
9005 
9006 	ASSERT(q->q_next == NULL);
9007 
9008 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9009 
9010 	/* Existence verified in ip_wput_nondata */
9011 	mp1 = mp->b_cont->b_cont;
9012 
9013 	/*
9014 	 * An extended version of SIOCGIFCONF that takes an
9015 	 * additional address family and flags field.
9016 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
9017 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
9018 	 * interfaces are omitted.
9019 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
9020 	 * unless LIFC_TEMPORARY is specified.
9021 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
9022 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
9023 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
9024 	 * has priority over LIFC_NOXMIT.
9025 	 */
9026 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
9027 
9028 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
9029 		return (EINVAL);
9030 
9031 	/*
9032 	 * Must be (better be!) continuation of a TRANSPARENT
9033 	 * IOCTL.  We just copied in the lifconf structure.
9034 	 */
9035 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
9036 
9037 	family = STRUCT_FGET(lifc, lifc_family);
9038 	flags = STRUCT_FGET(lifc, lifc_flags);
9039 
9040 	switch (family) {
9041 	case AF_UNSPEC:
9042 		/*
9043 		 * walk all ILL's.
9044 		 */
9045 		list = MAX_G_HEADS;
9046 		break;
9047 	case AF_INET:
9048 		/*
9049 		 * walk only IPV4 ILL's.
9050 		 */
9051 		list = IP_V4_G_HEAD;
9052 		break;
9053 	case AF_INET6:
9054 		/*
9055 		 * walk only IPV6 ILL's.
9056 		 */
9057 		list = IP_V6_G_HEAD;
9058 		break;
9059 	default:
9060 		return (EAFNOSUPPORT);
9061 	}
9062 
9063 	/*
9064 	 * Allocate a buffer to hold requested information.
9065 	 *
9066 	 * If lifc_len is larger than what is needed, we only
9067 	 * allocate what we will use.
9068 	 *
9069 	 * If lifc_len is smaller than what is needed, return
9070 	 * EINVAL.
9071 	 */
9072 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
9073 	lifc_bufsize = numlifs * sizeof (struct lifreq);
9074 	lifclen = STRUCT_FGET(lifc, lifc_len);
9075 	if (lifc_bufsize > lifclen) {
9076 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
9077 			return (EINVAL);
9078 		else
9079 			lifc_bufsize = lifclen;
9080 	}
9081 
9082 	mp1 = mi_copyout_alloc(q, mp,
9083 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
9084 	if (mp1 == NULL)
9085 		return (ENOMEM);
9086 
9087 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
9088 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
9089 
9090 	lifr = (struct lifreq *)mp1->b_rptr;
9091 
9092 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9093 	ill = ill_first(list, list, &ctx, ipst);
9094 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9095 		for (ipif = ill->ill_ipif; ipif != NULL;
9096 		    ipif = ipif->ipif_next) {
9097 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
9098 			    !(flags & LIFC_NOXMIT))
9099 				continue;
9100 
9101 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
9102 			    !(flags & LIFC_TEMPORARY))
9103 				continue;
9104 
9105 			if (((ipif->ipif_flags &
9106 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
9107 			    IPIF_DEPRECATED)) ||
9108 			    (ill->ill_phyint->phyint_flags &
9109 			    PHYI_LOOPBACK) ||
9110 			    !(ipif->ipif_flags & IPIF_UP)) &&
9111 			    (flags & LIFC_EXTERNAL_SOURCE))
9112 				continue;
9113 
9114 			if (zoneid != ipif->ipif_zoneid &&
9115 			    ipif->ipif_zoneid != ALL_ZONES &&
9116 			    (zoneid != GLOBAL_ZONEID ||
9117 			    !(flags & LIFC_ALLZONES)))
9118 				continue;
9119 
9120 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
9121 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
9122 					rw_exit(&ipst->ips_ill_g_lock);
9123 					return (EINVAL);
9124 				} else {
9125 					goto lif_copydone;
9126 				}
9127 			}
9128 
9129 			(void) ipif_get_name(ipif,
9130 				lifr->lifr_name,
9131 				sizeof (lifr->lifr_name));
9132 			if (ipif->ipif_isv6) {
9133 				sin6 = (sin6_t *)&lifr->lifr_addr;
9134 				*sin6 = sin6_null;
9135 				sin6->sin6_family = AF_INET6;
9136 				sin6->sin6_addr =
9137 				ipif->ipif_v6lcl_addr;
9138 				lifr->lifr_addrlen =
9139 				ip_mask_to_plen_v6(
9140 				    &ipif->ipif_v6net_mask);
9141 			} else {
9142 				sin = (sin_t *)&lifr->lifr_addr;
9143 				*sin = sin_null;
9144 				sin->sin_family = AF_INET;
9145 				sin->sin_addr.s_addr =
9146 				    ipif->ipif_lcl_addr;
9147 				lifr->lifr_addrlen =
9148 				    ip_mask_to_plen(
9149 				    ipif->ipif_net_mask);
9150 			}
9151 			lifr++;
9152 		}
9153 	}
9154 lif_copydone:
9155 	rw_exit(&ipst->ips_ill_g_lock);
9156 
9157 	mp1->b_wptr = (uchar_t *)lifr;
9158 	if (STRUCT_BUF(lifc) != NULL) {
9159 		STRUCT_FSET(lifc, lifc_len,
9160 			(int)((uchar_t *)lifr - mp1->b_rptr));
9161 	}
9162 	return (0);
9163 }
9164 
9165 /* ARGSUSED */
9166 int
9167 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin,
9168     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
9169 {
9170 	ip_stack_t	*ipst;
9171 
9172 	if (q->q_next == NULL)
9173 		ipst = CONNQ_TO_IPST(q);
9174 	else
9175 		ipst = ILLQ_TO_IPST(q);
9176 
9177 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
9178 	ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr;
9179 	return (0);
9180 }
9181 
9182 static void
9183 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
9184 {
9185 	ip6_asp_t *table;
9186 	size_t table_size;
9187 	mblk_t *data_mp;
9188 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9189 	ip_stack_t	*ipst;
9190 
9191 	if (q->q_next == NULL)
9192 		ipst = CONNQ_TO_IPST(q);
9193 	else
9194 		ipst = ILLQ_TO_IPST(q);
9195 
9196 	/* These two ioctls are I_STR only */
9197 	if (iocp->ioc_count == TRANSPARENT) {
9198 		miocnak(q, mp, 0, EINVAL);
9199 		return;
9200 	}
9201 
9202 	data_mp = mp->b_cont;
9203 	if (data_mp == NULL) {
9204 		/* The user passed us a NULL argument */
9205 		table = NULL;
9206 		table_size = iocp->ioc_count;
9207 	} else {
9208 		/*
9209 		 * The user provided a table.  The stream head
9210 		 * may have copied in the user data in chunks,
9211 		 * so make sure everything is pulled up
9212 		 * properly.
9213 		 */
9214 		if (MBLKL(data_mp) < iocp->ioc_count) {
9215 			mblk_t *new_data_mp;
9216 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
9217 			    NULL) {
9218 				miocnak(q, mp, 0, ENOMEM);
9219 				return;
9220 			}
9221 			freemsg(data_mp);
9222 			data_mp = new_data_mp;
9223 			mp->b_cont = data_mp;
9224 		}
9225 		table = (ip6_asp_t *)data_mp->b_rptr;
9226 		table_size = iocp->ioc_count;
9227 	}
9228 
9229 	switch (iocp->ioc_cmd) {
9230 	case SIOCGIP6ADDRPOLICY:
9231 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
9232 		if (iocp->ioc_rval == -1)
9233 			iocp->ioc_error = EINVAL;
9234 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9235 		else if (table != NULL &&
9236 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
9237 			ip6_asp_t *src = table;
9238 			ip6_asp32_t *dst = (void *)table;
9239 			int count = table_size / sizeof (ip6_asp_t);
9240 			int i;
9241 
9242 			/*
9243 			 * We need to do an in-place shrink of the array
9244 			 * to match the alignment attributes of the
9245 			 * 32-bit ABI looking at it.
9246 			 */
9247 			/* LINTED: logical expression always true: op "||" */
9248 			ASSERT(sizeof (*src) > sizeof (*dst));
9249 			for (i = 1; i < count; i++)
9250 				bcopy(src + i, dst + i, sizeof (*dst));
9251 		}
9252 #endif
9253 		break;
9254 
9255 	case SIOCSIP6ADDRPOLICY:
9256 		ASSERT(mp->b_prev == NULL);
9257 		mp->b_prev = (void *)q;
9258 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
9259 		/*
9260 		 * We pass in the datamodel here so that the ip6_asp_replace()
9261 		 * routine can handle converting from 32-bit to native formats
9262 		 * where necessary.
9263 		 *
9264 		 * A better way to handle this might be to convert the inbound
9265 		 * data structure here, and hang it off a new 'mp'; thus the
9266 		 * ip6_asp_replace() logic would always be dealing with native
9267 		 * format data structures..
9268 		 *
9269 		 * (An even simpler way to handle these ioctls is to just
9270 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
9271 		 * and just recompile everything that depends on it.)
9272 		 */
9273 #endif
9274 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
9275 		    iocp->ioc_flag & IOC_MODELS);
9276 		return;
9277 	}
9278 
9279 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
9280 	qreply(q, mp);
9281 }
9282 
9283 static void
9284 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
9285 {
9286 	mblk_t 		*data_mp;
9287 	struct dstinforeq	*dir;
9288 	uint8_t		*end, *cur;
9289 	in6_addr_t	*daddr, *saddr;
9290 	ipaddr_t	v4daddr;
9291 	ire_t		*ire;
9292 	char		*slabel, *dlabel;
9293 	boolean_t	isipv4;
9294 	int		match_ire;
9295 	ill_t		*dst_ill;
9296 	ipif_t		*src_ipif, *ire_ipif;
9297 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
9298 	zoneid_t	zoneid;
9299 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
9300 
9301 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9302 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9303 
9304 	/*
9305 	 * This ioctl is I_STR only, and must have a
9306 	 * data mblk following the M_IOCTL mblk.
9307 	 */
9308 	data_mp = mp->b_cont;
9309 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
9310 		miocnak(q, mp, 0, EINVAL);
9311 		return;
9312 	}
9313 
9314 	if (MBLKL(data_mp) < iocp->ioc_count) {
9315 		mblk_t *new_data_mp;
9316 
9317 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
9318 			miocnak(q, mp, 0, ENOMEM);
9319 			return;
9320 		}
9321 		freemsg(data_mp);
9322 		data_mp = new_data_mp;
9323 		mp->b_cont = data_mp;
9324 	}
9325 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
9326 
9327 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
9328 	    end - cur >= sizeof (struct dstinforeq);
9329 	    cur += sizeof (struct dstinforeq)) {
9330 		dir = (struct dstinforeq *)cur;
9331 		daddr = &dir->dir_daddr;
9332 		saddr = &dir->dir_saddr;
9333 
9334 		/*
9335 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
9336 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
9337 		 * and ipif_select_source[_v6]() do not.
9338 		 */
9339 		dir->dir_dscope = ip_addr_scope_v6(daddr);
9340 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
9341 
9342 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
9343 		if (isipv4) {
9344 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
9345 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9346 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9347 		} else {
9348 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9349 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9350 		}
9351 		if (ire == NULL) {
9352 			dir->dir_dreachable = 0;
9353 
9354 			/* move on to next dst addr */
9355 			continue;
9356 		}
9357 		dir->dir_dreachable = 1;
9358 
9359 		ire_ipif = ire->ire_ipif;
9360 		if (ire_ipif == NULL)
9361 			goto next_dst;
9362 
9363 		/*
9364 		 * We expect to get back an interface ire or a
9365 		 * gateway ire cache entry.  For both types, the
9366 		 * output interface is ire_ipif->ipif_ill.
9367 		 */
9368 		dst_ill = ire_ipif->ipif_ill;
9369 		dir->dir_dmactype = dst_ill->ill_mactype;
9370 
9371 		if (isipv4) {
9372 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9373 		} else {
9374 			src_ipif = ipif_select_source_v6(dst_ill,
9375 			    daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT,
9376 			    zoneid);
9377 		}
9378 		if (src_ipif == NULL)
9379 			goto next_dst;
9380 
9381 		*saddr = src_ipif->ipif_v6lcl_addr;
9382 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9383 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9384 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9385 		dir->dir_sdeprecated =
9386 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9387 		ipif_refrele(src_ipif);
9388 next_dst:
9389 		ire_refrele(ire);
9390 	}
9391 	miocack(q, mp, iocp->ioc_count, 0);
9392 }
9393 
9394 
9395 /*
9396  * Check if this is an address assigned to this machine.
9397  * Skips interfaces that are down by using ire checks.
9398  * Translates mapped addresses to v4 addresses and then
9399  * treats them as such, returning true if the v4 address
9400  * associated with this mapped address is configured.
9401  * Note: Applications will have to be careful what they do
9402  * with the response; use of mapped addresses limits
9403  * what can be done with the socket, especially with
9404  * respect to socket options and ioctls - neither IPv4
9405  * options nor IPv6 sticky options/ancillary data options
9406  * may be used.
9407  */
9408 /* ARGSUSED */
9409 int
9410 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9411     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9412 {
9413 	struct sioc_addrreq *sia;
9414 	sin_t *sin;
9415 	ire_t *ire;
9416 	mblk_t *mp1;
9417 	zoneid_t zoneid;
9418 	ip_stack_t	*ipst;
9419 
9420 	ip1dbg(("ip_sioctl_tmyaddr"));
9421 
9422 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9423 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9424 	ipst = CONNQ_TO_IPST(q);
9425 
9426 	/* Existence verified in ip_wput_nondata */
9427 	mp1 = mp->b_cont->b_cont;
9428 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9429 	sin = (sin_t *)&sia->sa_addr;
9430 	switch (sin->sin_family) {
9431 	case AF_INET6: {
9432 		sin6_t *sin6 = (sin6_t *)sin;
9433 
9434 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9435 			ipaddr_t v4_addr;
9436 
9437 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9438 			    v4_addr);
9439 			ire = ire_ctable_lookup(v4_addr, 0,
9440 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9441 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9442 		} else {
9443 			in6_addr_t v6addr;
9444 
9445 			v6addr = sin6->sin6_addr;
9446 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9447 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9448 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9449 		}
9450 		break;
9451 	}
9452 	case AF_INET: {
9453 		ipaddr_t v4addr;
9454 
9455 		v4addr = sin->sin_addr.s_addr;
9456 		ire = ire_ctable_lookup(v4addr, 0,
9457 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9458 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9459 		break;
9460 	}
9461 	default:
9462 		return (EAFNOSUPPORT);
9463 	}
9464 	if (ire != NULL) {
9465 		sia->sa_res = 1;
9466 		ire_refrele(ire);
9467 	} else {
9468 		sia->sa_res = 0;
9469 	}
9470 	return (0);
9471 }
9472 
9473 /*
9474  * Check if this is an address assigned on-link i.e. neighbor,
9475  * and makes sure it's reachable from the current zone.
9476  * Returns true for my addresses as well.
9477  * Translates mapped addresses to v4 addresses and then
9478  * treats them as such, returning true if the v4 address
9479  * associated with this mapped address is configured.
9480  * Note: Applications will have to be careful what they do
9481  * with the response; use of mapped addresses limits
9482  * what can be done with the socket, especially with
9483  * respect to socket options and ioctls - neither IPv4
9484  * options nor IPv6 sticky options/ancillary data options
9485  * may be used.
9486  */
9487 /* ARGSUSED */
9488 int
9489 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9490     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9491 {
9492 	struct sioc_addrreq *sia;
9493 	sin_t *sin;
9494 	mblk_t	*mp1;
9495 	ire_t *ire = NULL;
9496 	zoneid_t zoneid;
9497 	ip_stack_t	*ipst;
9498 
9499 	ip1dbg(("ip_sioctl_tonlink"));
9500 
9501 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9502 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9503 	ipst = CONNQ_TO_IPST(q);
9504 
9505 	/* Existence verified in ip_wput_nondata */
9506 	mp1 = mp->b_cont->b_cont;
9507 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9508 	sin = (sin_t *)&sia->sa_addr;
9509 
9510 	/*
9511 	 * Match addresses with a zero gateway field to avoid
9512 	 * routes going through a router.
9513 	 * Exclude broadcast and multicast addresses.
9514 	 */
9515 	switch (sin->sin_family) {
9516 	case AF_INET6: {
9517 		sin6_t *sin6 = (sin6_t *)sin;
9518 
9519 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9520 			ipaddr_t v4_addr;
9521 
9522 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9523 			    v4_addr);
9524 			if (!CLASSD(v4_addr)) {
9525 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9526 				    NULL, NULL, zoneid, NULL,
9527 				    MATCH_IRE_GW, ipst);
9528 			}
9529 		} else {
9530 			in6_addr_t v6addr;
9531 			in6_addr_t v6gw;
9532 
9533 			v6addr = sin6->sin6_addr;
9534 			v6gw = ipv6_all_zeros;
9535 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9536 				ire = ire_route_lookup_v6(&v6addr, 0,
9537 				    &v6gw, 0, NULL, NULL, zoneid,
9538 				    NULL, MATCH_IRE_GW, ipst);
9539 			}
9540 		}
9541 		break;
9542 	}
9543 	case AF_INET: {
9544 		ipaddr_t v4addr;
9545 
9546 		v4addr = sin->sin_addr.s_addr;
9547 		if (!CLASSD(v4addr)) {
9548 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9549 			    NULL, NULL, zoneid, NULL,
9550 			    MATCH_IRE_GW, ipst);
9551 		}
9552 		break;
9553 	}
9554 	default:
9555 		return (EAFNOSUPPORT);
9556 	}
9557 	sia->sa_res = 0;
9558 	if (ire != NULL) {
9559 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9560 		    IRE_LOCAL|IRE_LOOPBACK)) {
9561 			sia->sa_res = 1;
9562 		}
9563 		ire_refrele(ire);
9564 	}
9565 	return (0);
9566 }
9567 
9568 /*
9569  * TBD: implement when kernel maintaines a list of site prefixes.
9570  */
9571 /* ARGSUSED */
9572 int
9573 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9574     ip_ioctl_cmd_t *ipip, void *ifreq)
9575 {
9576 	return (ENXIO);
9577 }
9578 
9579 /* ARGSUSED */
9580 int
9581 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9582     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9583 {
9584 	ill_t  		*ill;
9585 	mblk_t		*mp1;
9586 	conn_t		*connp;
9587 	boolean_t	success;
9588 
9589 	ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n",
9590 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
9591 	/* ioctl comes down on an conn */
9592 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9593 	connp = Q_TO_CONN(q);
9594 
9595 	mp->b_datap->db_type = M_IOCTL;
9596 
9597 	/*
9598 	 * Send down a copy. (copymsg does not copy b_next/b_prev).
9599 	 * The original mp contains contaminated b_next values due to 'mi',
9600 	 * which is needed to do the mi_copy_done. Unfortunately if we
9601 	 * send down the original mblk itself and if we are popped due to an
9602 	 * an unplumb before the response comes back from tunnel,
9603 	 * the streamhead (which does a freemsg) will see this contaminated
9604 	 * message and the assertion in freemsg about non-null b_next/b_prev
9605 	 * will panic a DEBUG kernel.
9606 	 */
9607 	mp1 = copymsg(mp);
9608 	if (mp1 == NULL)
9609 		return (ENOMEM);
9610 
9611 	ill = ipif->ipif_ill;
9612 	mutex_enter(&connp->conn_lock);
9613 	mutex_enter(&ill->ill_lock);
9614 	if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) {
9615 		success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9616 		    mp, 0);
9617 	} else {
9618 		success = ill_pending_mp_add(ill, connp, mp);
9619 	}
9620 	mutex_exit(&ill->ill_lock);
9621 	mutex_exit(&connp->conn_lock);
9622 
9623 	if (success) {
9624 		ip1dbg(("sending down tunparam request "));
9625 		putnext(ill->ill_wq, mp1);
9626 		return (EINPROGRESS);
9627 	} else {
9628 		/* The conn has started closing */
9629 		freemsg(mp1);
9630 		return (EINTR);
9631 	}
9632 }
9633 
9634 static int
9635 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin,
9636     boolean_t x_arp_ioctl, boolean_t if_arp_ioctl)
9637 {
9638 	mblk_t *mp1;
9639 	mblk_t *mp2;
9640 	mblk_t *pending_mp;
9641 	ipaddr_t ipaddr;
9642 	area_t *area;
9643 	struct iocblk *iocp;
9644 	conn_t *connp;
9645 	struct arpreq *ar;
9646 	struct xarpreq *xar;
9647 	boolean_t success;
9648 	int flags, alength;
9649 	char *lladdr;
9650 	ip_stack_t	*ipst;
9651 
9652 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9653 	connp = Q_TO_CONN(q);
9654 	ipst = connp->conn_netstack->netstack_ip;
9655 
9656 	iocp = (struct iocblk *)mp->b_rptr;
9657 	/*
9658 	 * ill has already been set depending on whether
9659 	 * bsd style or interface style ioctl.
9660 	 */
9661 	ASSERT(ill != NULL);
9662 
9663 	/*
9664 	 * Is this one of the new SIOC*XARP ioctls?
9665 	 */
9666 	if (x_arp_ioctl) {
9667 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9668 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9669 		ar = NULL;
9670 
9671 		flags = xar->xarp_flags;
9672 		lladdr = LLADDR(&xar->xarp_ha);
9673 		/*
9674 		 * Validate against user's link layer address length
9675 		 * input and name and addr length limits.
9676 		 */
9677 		alength = ill->ill_phys_addr_length;
9678 		if (iocp->ioc_cmd == SIOCSXARP) {
9679 			if (alength != xar->xarp_ha.sdl_alen ||
9680 			    (alength + xar->xarp_ha.sdl_nlen >
9681 			    sizeof (xar->xarp_ha.sdl_data)))
9682 				return (EINVAL);
9683 		}
9684 	} else {
9685 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9686 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9687 		xar = NULL;
9688 
9689 		flags = ar->arp_flags;
9690 		lladdr = ar->arp_ha.sa_data;
9691 		/*
9692 		 * Theoretically, the sa_family could tell us what link
9693 		 * layer type this operation is trying to deal with. By
9694 		 * common usage AF_UNSPEC means ethernet. We'll assume
9695 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9696 		 * for now. Our new SIOC*XARP ioctls can be used more
9697 		 * generally.
9698 		 *
9699 		 * If the underlying media happens to have a non 6 byte
9700 		 * address, arp module will fail set/get, but the del
9701 		 * operation will succeed.
9702 		 */
9703 		alength = 6;
9704 		if ((iocp->ioc_cmd != SIOCDARP) &&
9705 		    (alength != ill->ill_phys_addr_length)) {
9706 			return (EINVAL);
9707 		}
9708 	}
9709 
9710 	/*
9711 	 * We are going to pass up to ARP a packet chain that looks
9712 	 * like:
9713 	 *
9714 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9715 	 *
9716 	 * Get a copy of the original IOCTL mblk to head the chain,
9717 	 * to be sent up (in mp1). Also get another copy to store
9718 	 * in the ill_pending_mp list, for matching the response
9719 	 * when it comes back from ARP.
9720 	 */
9721 	mp1 = copyb(mp);
9722 	pending_mp = copymsg(mp);
9723 	if (mp1 == NULL || pending_mp == NULL) {
9724 		if (mp1 != NULL)
9725 			freeb(mp1);
9726 		if (pending_mp != NULL)
9727 			inet_freemsg(pending_mp);
9728 		return (ENOMEM);
9729 	}
9730 
9731 	ipaddr = sin->sin_addr.s_addr;
9732 
9733 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9734 	    (caddr_t)&ipaddr);
9735 	if (mp2 == NULL) {
9736 		freeb(mp1);
9737 		inet_freemsg(pending_mp);
9738 		return (ENOMEM);
9739 	}
9740 	/* Put together the chain. */
9741 	mp1->b_cont = mp2;
9742 	mp1->b_datap->db_type = M_IOCTL;
9743 	mp2->b_cont = mp;
9744 	mp2->b_datap->db_type = M_DATA;
9745 
9746 	iocp = (struct iocblk *)mp1->b_rptr;
9747 
9748 	/*
9749 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9750 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9751 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9752 	 * ioc_count field; set ioc_count to be correct.
9753 	 */
9754 	iocp->ioc_count = MBLKL(mp1->b_cont);
9755 
9756 	/*
9757 	 * Set the proper command in the ARP message.
9758 	 * Convert the SIOC{G|S|D}ARP calls into our
9759 	 * AR_ENTRY_xxx calls.
9760 	 */
9761 	area = (area_t *)mp2->b_rptr;
9762 	switch (iocp->ioc_cmd) {
9763 	case SIOCDARP:
9764 	case SIOCDXARP:
9765 		/*
9766 		 * We defer deleting the corresponding IRE until
9767 		 * we return from arp.
9768 		 */
9769 		area->area_cmd = AR_ENTRY_DELETE;
9770 		area->area_proto_mask_offset = 0;
9771 		break;
9772 	case SIOCGARP:
9773 	case SIOCGXARP:
9774 		area->area_cmd = AR_ENTRY_SQUERY;
9775 		area->area_proto_mask_offset = 0;
9776 		break;
9777 	case SIOCSARP:
9778 	case SIOCSXARP: {
9779 		/*
9780 		 * Delete the corresponding ire to make sure IP will
9781 		 * pick up any change from arp.
9782 		 */
9783 		if (!if_arp_ioctl) {
9784 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9785 			break;
9786 		} else {
9787 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9788 			if (ipif != NULL) {
9789 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9790 				    ipst);
9791 				ipif_refrele(ipif);
9792 			}
9793 			break;
9794 		}
9795 	}
9796 	}
9797 	iocp->ioc_cmd = area->area_cmd;
9798 
9799 	/*
9800 	 * Before sending 'mp' to ARP, we have to clear the b_next
9801 	 * and b_prev. Otherwise if STREAMS encounters such a message
9802 	 * in freemsg(), (because ARP can close any time) it can cause
9803 	 * a panic. But mi code needs the b_next and b_prev values of
9804 	 * mp->b_cont, to complete the ioctl. So we store it here
9805 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9806 	 * when the response comes down from ARP.
9807 	 */
9808 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9809 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9810 	mp->b_cont->b_next = NULL;
9811 	mp->b_cont->b_prev = NULL;
9812 
9813 	mutex_enter(&connp->conn_lock);
9814 	mutex_enter(&ill->ill_lock);
9815 	/* conn has not yet started closing, hence this can't fail */
9816 	success = ill_pending_mp_add(ill, connp, pending_mp);
9817 	ASSERT(success);
9818 	mutex_exit(&ill->ill_lock);
9819 	mutex_exit(&connp->conn_lock);
9820 
9821 	/*
9822 	 * Fill in the rest of the ARP operation fields.
9823 	 */
9824 	area->area_hw_addr_length = alength;
9825 	bcopy(lladdr,
9826 	    (char *)area + area->area_hw_addr_offset,
9827 	    area->area_hw_addr_length);
9828 	/* Translate the flags. */
9829 	if (flags & ATF_PERM)
9830 		area->area_flags |= ACE_F_PERMANENT;
9831 	if (flags & ATF_PUBL)
9832 		area->area_flags |= ACE_F_PUBLISH;
9833 	if (flags & ATF_AUTHORITY)
9834 		area->area_flags |= ACE_F_AUTHORITY;
9835 
9836 	/*
9837 	 * Up to ARP it goes.  The response will come
9838 	 * back in ip_wput as an M_IOCACK message, and
9839 	 * will be handed to ip_sioctl_iocack for
9840 	 * completion.
9841 	 */
9842 	putnext(ill->ill_rq, mp1);
9843 	return (EINPROGRESS);
9844 }
9845 
9846 /* ARGSUSED */
9847 int
9848 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9849     ip_ioctl_cmd_t *ipip, void *ifreq)
9850 {
9851 	struct xarpreq *xar;
9852 	boolean_t isv6;
9853 	mblk_t	*mp1;
9854 	int	err;
9855 	conn_t	*connp;
9856 	int ifnamelen;
9857 	ire_t	*ire = NULL;
9858 	ill_t	*ill = NULL;
9859 	struct sockaddr_in *sin;
9860 	boolean_t if_arp_ioctl = B_FALSE;
9861 	ip_stack_t	*ipst;
9862 
9863 	/* ioctl comes down on an conn */
9864 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9865 	connp = Q_TO_CONN(q);
9866 	isv6 = connp->conn_af_isv6;
9867 	ipst = connp->conn_netstack->netstack_ip;
9868 
9869 	/* Existance verified in ip_wput_nondata */
9870 	mp1 = mp->b_cont->b_cont;
9871 
9872 	ASSERT(MBLKL(mp1) >= sizeof (*xar));
9873 	xar = (struct xarpreq *)mp1->b_rptr;
9874 	sin = (sin_t *)&xar->xarp_pa;
9875 
9876 	if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) ||
9877 	    (xar->xarp_pa.ss_family != AF_INET))
9878 		return (ENXIO);
9879 
9880 	ifnamelen = xar->xarp_ha.sdl_nlen;
9881 	if (ifnamelen != 0) {
9882 		char	*cptr, cval;
9883 
9884 		if (ifnamelen >= LIFNAMSIZ)
9885 			return (EINVAL);
9886 
9887 		/*
9888 		 * Instead of bcopying a bunch of bytes,
9889 		 * null-terminate the string in-situ.
9890 		 */
9891 		cptr = xar->xarp_ha.sdl_data + ifnamelen;
9892 		cval = *cptr;
9893 		*cptr = '\0';
9894 		ill = ill_lookup_on_name(xar->xarp_ha.sdl_data,
9895 		    B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl,
9896 		    &err, NULL, ipst);
9897 		*cptr = cval;
9898 		if (ill == NULL)
9899 			return (err);
9900 		if (ill->ill_net_type != IRE_IF_RESOLVER) {
9901 			ill_refrele(ill);
9902 			return (ENXIO);
9903 		}
9904 
9905 		if_arp_ioctl = B_TRUE;
9906 	} else {
9907 		/*
9908 		 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves
9909 		 * as an extended BSD ioctl. The kernel uses the IP address
9910 		 * to figure out the network interface.
9911 		 */
9912 		ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL,
9913 		    ipst);
9914 		if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
9915 		    ((ill = ire_to_ill(ire)) == NULL) ||
9916 		    (ill->ill_net_type != IRE_IF_RESOLVER)) {
9917 			if (ire != NULL)
9918 				ire_refrele(ire);
9919 			ire = ire_ftable_lookup(sin->sin_addr.s_addr,
9920 			    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
9921 			    NULL, MATCH_IRE_TYPE, ipst);
9922 			if ((ire == NULL) ||
9923 			    ((ill = ire_to_ill(ire)) == NULL)) {
9924 				if (ire != NULL)
9925 					ire_refrele(ire);
9926 				return (ENXIO);
9927 			}
9928 		}
9929 		ASSERT(ire != NULL && ill != NULL);
9930 	}
9931 
9932 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl);
9933 	if (if_arp_ioctl)
9934 		ill_refrele(ill);
9935 	if (ire != NULL)
9936 		ire_refrele(ire);
9937 
9938 	return (err);
9939 }
9940 
9941 /*
9942  * ARP IOCTLs.
9943  * How does IP get in the business of fronting ARP configuration/queries?
9944  * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9945  * are by tradition passed in through a datagram socket.  That lands in IP.
9946  * As it happens, this is just as well since the interface is quite crude in
9947  * that it passes in no information about protocol or hardware types, or
9948  * interface association.  After making the protocol assumption, IP is in
9949  * the position to look up the name of the ILL, which ARP will need, and
9950  * format a request that can be handled by ARP.	 The request is passed up
9951  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9952  * back a response.  ARP supports its own set of more general IOCTLs, in
9953  * case anyone is interested.
9954  */
9955 /* ARGSUSED */
9956 int
9957 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9958     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9959 {
9960 	struct arpreq *ar;
9961 	struct sockaddr_in *sin;
9962 	ire_t	*ire;
9963 	boolean_t isv6;
9964 	mblk_t	*mp1;
9965 	int	err;
9966 	conn_t	*connp;
9967 	ill_t	*ill;
9968 	ip_stack_t	*ipst;
9969 
9970 	/* ioctl comes down on an conn */
9971 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9972 	connp = Q_TO_CONN(q);
9973 	ipst = CONNQ_TO_IPST(q);
9974 	isv6 = connp->conn_af_isv6;
9975 	if (isv6)
9976 		return (ENXIO);
9977 
9978 	/* Existance verified in ip_wput_nondata */
9979 	mp1 = mp->b_cont->b_cont;
9980 
9981 	ar = (struct arpreq *)mp1->b_rptr;
9982 	sin = (sin_t *)&ar->arp_pa;
9983 
9984 	/*
9985 	 * We need to let ARP know on which interface the IP
9986 	 * address has an ARP mapping. In the IPMP case, a
9987 	 * simple forwarding table lookup will return the
9988 	 * IRE_IF_RESOLVER for the first interface in the group,
9989 	 * which might not be the interface on which the
9990 	 * requested IP address was resolved due to the ill
9991 	 * selection algorithm (see ip_newroute_get_dst_ill()).
9992 	 * So we do a cache table lookup first: if the IRE cache
9993 	 * entry for the IP address is still there, it will
9994 	 * contain the ill pointer for the right interface, so
9995 	 * we use that. If the cache entry has been flushed, we
9996 	 * fall back to the forwarding table lookup. This should
9997 	 * be rare enough since IRE cache entries have a longer
9998 	 * life expectancy than ARP cache entries.
9999 	 */
10000 	ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst);
10001 	if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) ||
10002 	    ((ill = ire_to_ill(ire)) == NULL)) {
10003 		if (ire != NULL)
10004 			ire_refrele(ire);
10005 		ire = ire_ftable_lookup(sin->sin_addr.s_addr,
10006 		    0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0,
10007 		    NULL, MATCH_IRE_TYPE, ipst);
10008 		if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) {
10009 			if (ire != NULL)
10010 				ire_refrele(ire);
10011 			return (ENXIO);
10012 		}
10013 	}
10014 	ASSERT(ire != NULL && ill != NULL);
10015 
10016 	err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE);
10017 	ire_refrele(ire);
10018 	return (err);
10019 }
10020 
10021 /*
10022  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
10023  * atomically set/clear the muxids. Also complete the ioctl by acking or
10024  * naking it.  Note that the code is structured such that the link type,
10025  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
10026  * its clones use the persistent link, while pppd(1M) and perhaps many
10027  * other daemons may use non-persistent link.  When combined with some
10028  * ill_t states, linking and unlinking lower streams may be used as
10029  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
10030  */
10031 /* ARGSUSED */
10032 void
10033 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
10034 {
10035 	mblk_t *mp1;
10036 	mblk_t *mp2;
10037 	struct linkblk *li;
10038 	queue_t	*ipwq;
10039 	char	*name;
10040 	struct qinit *qinfo;
10041 	struct ipmx_s *ipmxp;
10042 	ill_t	*ill = NULL;
10043 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10044 	int	err = 0;
10045 	boolean_t	entered_ipsq = B_FALSE;
10046 	boolean_t islink;
10047 	queue_t *dwq = NULL;
10048 	ip_stack_t	*ipst;
10049 
10050 	if (CONN_Q(q))
10051 		ipst = CONNQ_TO_IPST(q);
10052 	else
10053 		ipst = ILLQ_TO_IPST(q);
10054 
10055 	ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK ||
10056 	    iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK);
10057 
10058 	islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ?
10059 	    B_TRUE : B_FALSE;
10060 
10061 	mp1 = mp->b_cont;	/* This is the linkblk info */
10062 	li = (struct linkblk *)mp1->b_rptr;
10063 
10064 	/*
10065 	 * ARP has added this special mblk, and the utility is asking us
10066 	 * to perform consistency checks, and also atomically set the
10067 	 * muxid. Ifconfig is an example.  It achieves this by using
10068 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
10069 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
10070 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
10071 	 * and other comments in this routine for more details.
10072 	 */
10073 	mp2 = mp1->b_cont;	/* This is added by ARP */
10074 
10075 	/*
10076 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
10077 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
10078 	 * get the special mblk above.  For backward compatibility, we just
10079 	 * return success.  The utility will use SIOCSLIFMUXID to store
10080 	 * the muxids.  This is not atomic, and can leave the streams
10081 	 * unplumbable if the utility is interrrupted, before it does the
10082 	 * SIOCSLIFMUXID.
10083 	 */
10084 	if (mp2 == NULL) {
10085 		/*
10086 		 * At this point we don't know whether or not this is the
10087 		 * IP module stream or the ARP device stream.  We need to
10088 		 * walk the lower stream in order to find this out, since
10089 		 * the capability negotiation is done only on the IP module
10090 		 * stream.  IP module instance is identified by the module
10091 		 * name IP, non-null q_next, and it's wput not being ip_lwput.
10092 		 * STREAMS ensures that the lower stream (l_qbot) will not
10093 		 * vanish until this ioctl completes. So we can safely walk
10094 		 * the stream or refer to the q_ptr.
10095 		 */
10096 		ipwq = li->l_qbot;
10097 		while (ipwq != NULL) {
10098 			qinfo = ipwq->q_qinfo;
10099 			name = qinfo->qi_minfo->mi_idname;
10100 			if (name != NULL && name[0] != NULL &&
10101 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10102 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10103 			    (ipwq->q_next != NULL)) {
10104 				break;
10105 			}
10106 			ipwq = ipwq->q_next;
10107 		}
10108 		/*
10109 		 * This looks like an IP module stream, so trigger
10110 		 * the capability reset or re-negotiation if necessary.
10111 		 */
10112 		if (ipwq != NULL) {
10113 			ill = ipwq->q_ptr;
10114 			ASSERT(ill != NULL);
10115 
10116 			if (ipsq == NULL) {
10117 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10118 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10119 				if (ipsq == NULL)
10120 					return;
10121 				entered_ipsq = B_TRUE;
10122 			}
10123 			ASSERT(IAM_WRITER_ILL(ill));
10124 			/*
10125 			 * Store the upper read queue of the module
10126 			 * immediately below IP, and count the total
10127 			 * number of lower modules.  Do this only
10128 			 * for I_PLINK or I_LINK event.
10129 			 */
10130 			ill->ill_lmod_rq = NULL;
10131 			ill->ill_lmod_cnt = 0;
10132 			if (islink && (dwq = ipwq->q_next) != NULL) {
10133 				ill->ill_lmod_rq = RD(dwq);
10134 
10135 				while (dwq != NULL) {
10136 					ill->ill_lmod_cnt++;
10137 					dwq = dwq->q_next;
10138 				}
10139 			}
10140 			/*
10141 			 * There's no point in resetting or re-negotiating if
10142 			 * we are not bound to the driver, so only do this if
10143 			 * the DLPI state is idle (up); we assume such state
10144 			 * since ill_ipif_up_count gets incremented in
10145 			 * ipif_up_done(), which is after we are bound to the
10146 			 * driver.  Note that in the case of logical
10147 			 * interfaces, IP won't rebind to the driver unless
10148 			 * the ill_ipif_up_count is 0, meaning that all other
10149 			 * IP interfaces (including the main ipif) are in the
10150 			 * down state.  Because of this, we use such counter
10151 			 * as an indicator, instead of relying on the IPIF_UP
10152 			 * flag, which is per ipif instance.
10153 			 */
10154 			if (ill->ill_ipif_up_count > 0) {
10155 				if (islink)
10156 					ill_capability_probe(ill);
10157 				else
10158 					ill_capability_reset(ill);
10159 			}
10160 		}
10161 		goto done;
10162 	}
10163 
10164 	/*
10165 	 * This is an I_{P}LINK sent down by ifconfig on
10166 	 * /dev/arp. ARP has appended this last (3rd) mblk,
10167 	 * giving more info. STREAMS ensures that the lower
10168 	 * stream (l_qbot) will not vanish until this ioctl
10169 	 * completes. So we can safely walk the stream or refer
10170 	 * to the q_ptr.
10171 	 */
10172 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
10173 	if (ipmxp->ipmx_arpdev_stream) {
10174 		/*
10175 		 * The operation is occuring on the arp-device
10176 		 * stream.
10177 		 */
10178 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
10179 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
10180 		if (ill == NULL) {
10181 			if (err == EINPROGRESS) {
10182 				return;
10183 			} else {
10184 				err = EINVAL;
10185 				goto done;
10186 			}
10187 		}
10188 
10189 		if (ipsq == NULL) {
10190 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
10191 			    NEW_OP, B_TRUE);
10192 			if (ipsq == NULL) {
10193 				ill_refrele(ill);
10194 				return;
10195 			}
10196 			entered_ipsq = B_TRUE;
10197 		}
10198 		ASSERT(IAM_WRITER_ILL(ill));
10199 		ill_refrele(ill);
10200 		/*
10201 		 * To ensure consistency between IP and ARP,
10202 		 * the following LIFO scheme is used in
10203 		 * plink/punlink. (IP first, ARP last).
10204 		 * This is because the muxid's are stored
10205 		 * in the IP stream on the ill.
10206 		 *
10207 		 * I_{P}LINK: ifconfig plinks the IP stream before
10208 		 * plinking the ARP stream. On an arp-dev
10209 		 * stream, IP checks that it is not yet
10210 		 * plinked, and it also checks that the
10211 		 * corresponding IP stream is already plinked.
10212 		 *
10213 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream
10214 		 * before punlinking the IP stream. IP does
10215 		 * not allow punlink of the IP stream unless
10216 		 * the arp stream has been punlinked.
10217 		 *
10218 		 */
10219 		if ((islink &&
10220 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
10221 		    (!islink &&
10222 		    ill->ill_arp_muxid != li->l_index)) {
10223 			err = EINVAL;
10224 			goto done;
10225 		}
10226 		if (islink) {
10227 			ill->ill_arp_muxid = li->l_index;
10228 		} else {
10229 			ill->ill_arp_muxid = 0;
10230 		}
10231 	} else {
10232 		/*
10233 		 * This must be the IP module stream with or
10234 		 * without arp. Walk the stream and locate the
10235 		 * IP module. An IP module instance is
10236 		 * identified by the module name IP, non-null
10237 		 * q_next, and it's wput not being ip_lwput.
10238 		 */
10239 		ipwq = li->l_qbot;
10240 		while (ipwq != NULL) {
10241 			qinfo = ipwq->q_qinfo;
10242 			name = qinfo->qi_minfo->mi_idname;
10243 			if (name != NULL && name[0] != NULL &&
10244 			    (strcmp(name, ip_mod_info.mi_idname) == 0) &&
10245 			    ((void *)(qinfo->qi_putp) != (void *)ip_lwput) &&
10246 			    (ipwq->q_next != NULL)) {
10247 				break;
10248 			}
10249 			ipwq = ipwq->q_next;
10250 		}
10251 		if (ipwq != NULL) {
10252 			ill = ipwq->q_ptr;
10253 			ASSERT(ill != NULL);
10254 
10255 			if (ipsq == NULL) {
10256 				ipsq = ipsq_try_enter(NULL, ill, q, mp,
10257 				    ip_sioctl_plink, NEW_OP, B_TRUE);
10258 				if (ipsq == NULL)
10259 					return;
10260 				entered_ipsq = B_TRUE;
10261 			}
10262 			ASSERT(IAM_WRITER_ILL(ill));
10263 			/*
10264 			 * Return error if the ip_mux_id is
10265 			 * non-zero and command is I_{P}LINK.
10266 			 * If command is I_{P}UNLINK, return
10267 			 * error if the arp-devstr is not
10268 			 * yet punlinked.
10269 			 */
10270 			if ((islink && ill->ill_ip_muxid != 0) ||
10271 			    (!islink && ill->ill_arp_muxid != 0)) {
10272 				err = EINVAL;
10273 				goto done;
10274 			}
10275 			ill->ill_lmod_rq = NULL;
10276 			ill->ill_lmod_cnt = 0;
10277 			if (islink) {
10278 				/*
10279 				 * Store the upper read queue of the module
10280 				 * immediately below IP, and count the total
10281 				 * number of lower modules.
10282 				 */
10283 				if ((dwq = ipwq->q_next) != NULL) {
10284 					ill->ill_lmod_rq = RD(dwq);
10285 
10286 					while (dwq != NULL) {
10287 						ill->ill_lmod_cnt++;
10288 						dwq = dwq->q_next;
10289 					}
10290 				}
10291 				ill->ill_ip_muxid = li->l_index;
10292 			} else {
10293 				ill->ill_ip_muxid = 0;
10294 			}
10295 
10296 			/*
10297 			 * See comments above about resetting/re-
10298 			 * negotiating driver sub-capabilities.
10299 			 */
10300 			if (ill->ill_ipif_up_count > 0) {
10301 				if (islink)
10302 					ill_capability_probe(ill);
10303 				else
10304 					ill_capability_reset(ill);
10305 			}
10306 		}
10307 	}
10308 done:
10309 	iocp->ioc_count = 0;
10310 	iocp->ioc_error = err;
10311 	if (err == 0)
10312 		mp->b_datap->db_type = M_IOCACK;
10313 	else
10314 		mp->b_datap->db_type = M_IOCNAK;
10315 	qreply(q, mp);
10316 
10317 	/* Conn was refheld in ip_sioctl_copyin_setup */
10318 	if (CONN_Q(q))
10319 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
10320 	if (entered_ipsq)
10321 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
10322 }
10323 
10324 /*
10325  * Search the ioctl command in the ioctl tables and return a pointer
10326  * to the ioctl command information. The ioctl command tables are
10327  * static and fully populated at compile time.
10328  */
10329 ip_ioctl_cmd_t *
10330 ip_sioctl_lookup(int ioc_cmd)
10331 {
10332 	int index;
10333 	ip_ioctl_cmd_t *ipip;
10334 	ip_ioctl_cmd_t *ipip_end;
10335 
10336 	if (ioc_cmd == IPI_DONTCARE)
10337 		return (NULL);
10338 
10339 	/*
10340 	 * Do a 2 step search. First search the indexed table
10341 	 * based on the least significant byte of the ioctl cmd.
10342 	 * If we don't find a match, then search the misc table
10343 	 * serially.
10344 	 */
10345 	index = ioc_cmd & 0xFF;
10346 	if (index < ip_ndx_ioctl_count) {
10347 		ipip = &ip_ndx_ioctl_table[index];
10348 		if (ipip->ipi_cmd == ioc_cmd) {
10349 			/* Found a match in the ndx table */
10350 			return (ipip);
10351 		}
10352 	}
10353 
10354 	/* Search the misc table */
10355 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
10356 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
10357 		if (ipip->ipi_cmd == ioc_cmd)
10358 			/* Found a match in the misc table */
10359 			return (ipip);
10360 	}
10361 
10362 	return (NULL);
10363 }
10364 
10365 /*
10366  * Wrapper function for resuming deferred ioctl processing
10367  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
10368  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
10369  */
10370 /* ARGSUSED */
10371 void
10372 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
10373     void *dummy_arg)
10374 {
10375 	ip_sioctl_copyin_setup(q, mp);
10376 }
10377 
10378 /*
10379  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10380  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10381  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10382  * We establish here the size of the block to be copied in.  mi_copyin
10383  * arranges for this to happen, an processing continues in ip_wput with
10384  * an M_IOCDATA message.
10385  */
10386 void
10387 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10388 {
10389 	int	copyin_size;
10390 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10391 	ip_ioctl_cmd_t *ipip;
10392 	cred_t *cr;
10393 	ip_stack_t	*ipst;
10394 
10395 	if (CONN_Q(q))
10396 		ipst = CONNQ_TO_IPST(q);
10397 	else
10398 		ipst = ILLQ_TO_IPST(q);
10399 
10400 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10401 	if (ipip == NULL) {
10402 		/*
10403 		 * The ioctl is not one we understand or own.
10404 		 * Pass it along to be processed down stream,
10405 		 * if this is a module instance of IP, else nak
10406 		 * the ioctl.
10407 		 */
10408 		if (q->q_next == NULL) {
10409 			goto nak;
10410 		} else {
10411 			putnext(q, mp);
10412 			return;
10413 		}
10414 	}
10415 
10416 	/*
10417 	 * If this is deferred, then we will do all the checks when we
10418 	 * come back.
10419 	 */
10420 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10421 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10422 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10423 		return;
10424 	}
10425 
10426 	/*
10427 	 * Only allow a very small subset of IP ioctls on this stream if
10428 	 * IP is a module and not a driver. Allowing ioctls to be processed
10429 	 * in this case may cause assert failures or data corruption.
10430 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10431 	 * ioctls allowed on an IP module stream, after which this stream
10432 	 * normally becomes a multiplexor (at which time the stream head
10433 	 * will fail all ioctls).
10434 	 */
10435 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10436 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10437 			/*
10438 			 * Pass common Streams ioctls which the IP
10439 			 * module does not own or consume along to
10440 			 * be processed down stream.
10441 			 */
10442 			putnext(q, mp);
10443 			return;
10444 		} else {
10445 			goto nak;
10446 		}
10447 	}
10448 
10449 	/* Make sure we have ioctl data to process. */
10450 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10451 		goto nak;
10452 
10453 	/*
10454 	 * Prefer dblk credential over ioctl credential; some synthesized
10455 	 * ioctls have kcred set because there's no way to crhold()
10456 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10457 	 * the framework; the caller of ioctl needs to hold the reference
10458 	 * for the duration of the call).
10459 	 */
10460 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
10461 
10462 	/* Make sure normal users don't send down privileged ioctls */
10463 	if ((ipip->ipi_flags & IPI_PRIV) &&
10464 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10465 		/* We checked the privilege earlier but log it here */
10466 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10467 		return;
10468 	}
10469 
10470 	/*
10471 	 * The ioctl command tables can only encode fixed length
10472 	 * ioctl data. If the length is variable, the table will
10473 	 * encode the length as zero. Such special cases are handled
10474 	 * below in the switch.
10475 	 */
10476 	if (ipip->ipi_copyin_size != 0) {
10477 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10478 		return;
10479 	}
10480 
10481 	switch (iocp->ioc_cmd) {
10482 	case O_SIOCGIFCONF:
10483 	case SIOCGIFCONF:
10484 		/*
10485 		 * This IOCTL is hilarious.  See comments in
10486 		 * ip_sioctl_get_ifconf for the story.
10487 		 */
10488 		if (iocp->ioc_count == TRANSPARENT)
10489 			copyin_size = SIZEOF_STRUCT(ifconf,
10490 			    iocp->ioc_flag);
10491 		else
10492 			copyin_size = iocp->ioc_count;
10493 		mi_copyin(q, mp, NULL, copyin_size);
10494 		return;
10495 
10496 	case O_SIOCGLIFCONF:
10497 	case SIOCGLIFCONF:
10498 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10499 		mi_copyin(q, mp, NULL, copyin_size);
10500 		return;
10501 
10502 	case SIOCGLIFSRCOF:
10503 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10504 		mi_copyin(q, mp, NULL, copyin_size);
10505 		return;
10506 	case SIOCGIP6ADDRPOLICY:
10507 		ip_sioctl_ip6addrpolicy(q, mp);
10508 		ip6_asp_table_refrele(ipst);
10509 		return;
10510 
10511 	case SIOCSIP6ADDRPOLICY:
10512 		ip_sioctl_ip6addrpolicy(q, mp);
10513 		return;
10514 
10515 	case SIOCGDSTINFO:
10516 		ip_sioctl_dstinfo(q, mp);
10517 		ip6_asp_table_refrele(ipst);
10518 		return;
10519 
10520 	case I_PLINK:
10521 	case I_PUNLINK:
10522 	case I_LINK:
10523 	case I_UNLINK:
10524 		/*
10525 		 * We treat non-persistent link similarly as the persistent
10526 		 * link case, in terms of plumbing/unplumbing, as well as
10527 		 * dynamic re-plumbing events indicator.  See comments
10528 		 * in ip_sioctl_plink() for more.
10529 		 *
10530 		 * Request can be enqueued in the 'ipsq' while waiting
10531 		 * to become exclusive. So bump up the conn ref.
10532 		 */
10533 		if (CONN_Q(q))
10534 			CONN_INC_REF(Q_TO_CONN(q));
10535 		ip_sioctl_plink(NULL, q, mp, NULL);
10536 		return;
10537 
10538 	case ND_GET:
10539 	case ND_SET:
10540 		/*
10541 		 * Use of the nd table requires holding the reader lock.
10542 		 * Modifying the nd table thru nd_load/nd_unload requires
10543 		 * the writer lock.
10544 		 */
10545 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10546 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10547 			rw_exit(&ipst->ips_ip_g_nd_lock);
10548 
10549 			if (iocp->ioc_error)
10550 				iocp->ioc_count = 0;
10551 			mp->b_datap->db_type = M_IOCACK;
10552 			qreply(q, mp);
10553 			return;
10554 		}
10555 		rw_exit(&ipst->ips_ip_g_nd_lock);
10556 		/*
10557 		 * We don't understand this subioctl of ND_GET / ND_SET.
10558 		 * Maybe intended for some driver / module below us
10559 		 */
10560 		if (q->q_next) {
10561 			putnext(q, mp);
10562 		} else {
10563 			iocp->ioc_error = ENOENT;
10564 			mp->b_datap->db_type = M_IOCNAK;
10565 			iocp->ioc_count = 0;
10566 			qreply(q, mp);
10567 		}
10568 		return;
10569 
10570 	case IP_IOCTL:
10571 		ip_wput_ioctl(q, mp);
10572 		return;
10573 	default:
10574 		cmn_err(CE_PANIC, "should not happen ");
10575 	}
10576 nak:
10577 	if (mp->b_cont != NULL) {
10578 		freemsg(mp->b_cont);
10579 		mp->b_cont = NULL;
10580 	}
10581 	iocp->ioc_error = EINVAL;
10582 	mp->b_datap->db_type = M_IOCNAK;
10583 	iocp->ioc_count = 0;
10584 	qreply(q, mp);
10585 }
10586 
10587 /* ip_wput hands off ARP IOCTL responses to us */
10588 void
10589 ip_sioctl_iocack(queue_t *q, mblk_t *mp)
10590 {
10591 	struct arpreq *ar;
10592 	struct xarpreq *xar;
10593 	area_t	*area;
10594 	mblk_t	*area_mp;
10595 	struct iocblk *iocp;
10596 	mblk_t	*orig_ioc_mp, *tmp;
10597 	struct iocblk	*orig_iocp;
10598 	ill_t *ill;
10599 	conn_t *connp = NULL;
10600 	uint_t ioc_id;
10601 	mblk_t *pending_mp;
10602 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10603 	int *flagsp;
10604 	char *storage = NULL;
10605 	sin_t *sin;
10606 	ipaddr_t addr;
10607 	int err;
10608 	ip_stack_t *ipst;
10609 
10610 	ill = q->q_ptr;
10611 	ASSERT(ill != NULL);
10612 	ipst = ill->ill_ipst;
10613 
10614 	/*
10615 	 * We should get back from ARP a packet chain that looks like:
10616 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10617 	 */
10618 	if (!(area_mp = mp->b_cont) ||
10619 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10620 	    !(orig_ioc_mp = area_mp->b_cont) ||
10621 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10622 		freemsg(mp);
10623 		return;
10624 	}
10625 
10626 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10627 
10628 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10629 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10630 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10631 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10632 		x_arp_ioctl = B_TRUE;
10633 		xar = (struct xarpreq *)tmp->b_rptr;
10634 		sin = (sin_t *)&xar->xarp_pa;
10635 		flagsp = &xar->xarp_flags;
10636 		storage = xar->xarp_ha.sdl_data;
10637 		if (xar->xarp_ha.sdl_nlen != 0)
10638 			ifx_arp_ioctl = B_TRUE;
10639 	} else {
10640 		ar = (struct arpreq *)tmp->b_rptr;
10641 		sin = (sin_t *)&ar->arp_pa;
10642 		flagsp = &ar->arp_flags;
10643 		storage = ar->arp_ha.sa_data;
10644 	}
10645 
10646 	iocp = (struct iocblk *)mp->b_rptr;
10647 
10648 	/*
10649 	 * Pick out the originating queue based on the ioc_id.
10650 	 */
10651 	ioc_id = iocp->ioc_id;
10652 	pending_mp = ill_pending_mp_get(ill, &connp, ioc_id);
10653 	if (pending_mp == NULL) {
10654 		ASSERT(connp == NULL);
10655 		inet_freemsg(mp);
10656 		return;
10657 	}
10658 	ASSERT(connp != NULL);
10659 	q = CONNP_TO_WQ(connp);
10660 
10661 	/* Uncouple the internally generated IOCTL from the original one */
10662 	area = (area_t *)area_mp->b_rptr;
10663 	area_mp->b_cont = NULL;
10664 
10665 	/*
10666 	 * Restore the b_next and b_prev used by mi code. This is needed
10667 	 * to complete the ioctl using mi* functions. We stored them in
10668 	 * the pending mp prior to sending the request to ARP.
10669 	 */
10670 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10671 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10672 	inet_freemsg(pending_mp);
10673 
10674 	/*
10675 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10676 	 * Catch the case where there is an IRE_CACHE by no entry in the
10677 	 * arp table.
10678 	 */
10679 	addr = sin->sin_addr.s_addr;
10680 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10681 		ire_t			*ire;
10682 		dl_unitdata_req_t	*dlup;
10683 		mblk_t			*llmp;
10684 		int			addr_len;
10685 		ill_t			*ipsqill = NULL;
10686 
10687 		if (ifx_arp_ioctl) {
10688 			/*
10689 			 * There's no need to lookup the ill, since
10690 			 * we've already done that when we started
10691 			 * processing the ioctl and sent the message
10692 			 * to ARP on that ill.  So use the ill that
10693 			 * is stored in q->q_ptr.
10694 			 */
10695 			ipsqill = ill;
10696 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10697 			    ipsqill->ill_ipif, ALL_ZONES,
10698 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10699 		} else {
10700 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10701 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10702 			if (ire != NULL)
10703 				ipsqill = ire_to_ill(ire);
10704 		}
10705 
10706 		if ((x_arp_ioctl) && (ipsqill != NULL))
10707 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10708 
10709 		if (ire != NULL) {
10710 			/*
10711 			 * Since the ire obtained from cachetable is used for
10712 			 * mac addr copying below, treat an incomplete ire as if
10713 			 * as if we never found it.
10714 			 */
10715 			if (ire->ire_nce != NULL &&
10716 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10717 				ire_refrele(ire);
10718 				ire = NULL;
10719 				ipsqill = NULL;
10720 				goto errack;
10721 			}
10722 			*flagsp = ATF_INUSE;
10723 			llmp = (ire->ire_nce != NULL ?
10724 			    ire->ire_nce->nce_res_mp : NULL);
10725 			if (llmp != NULL && ipsqill != NULL) {
10726 				uchar_t *macaddr;
10727 
10728 				addr_len = ipsqill->ill_phys_addr_length;
10729 				if (x_arp_ioctl && ((addr_len +
10730 				    ipsqill->ill_name_length) >
10731 				    sizeof (xar->xarp_ha.sdl_data))) {
10732 					ire_refrele(ire);
10733 					freemsg(mp);
10734 					ip_ioctl_finish(q, orig_ioc_mp,
10735 					    EINVAL, NO_COPYOUT, NULL);
10736 					return;
10737 				}
10738 				*flagsp |= ATF_COM;
10739 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10740 				if (ipsqill->ill_sap_length < 0)
10741 					macaddr = llmp->b_rptr +
10742 					    dlup->dl_dest_addr_offset;
10743 				else
10744 					macaddr = llmp->b_rptr +
10745 					    dlup->dl_dest_addr_offset +
10746 					    ipsqill->ill_sap_length;
10747 				/*
10748 				 * For SIOCGARP, MAC address length
10749 				 * validation has already been done
10750 				 * before the ioctl was issued to ARP to
10751 				 * allow it to progress only on 6 byte
10752 				 * addressable (ethernet like) media. Thus
10753 				 * the mac address copying can not overwrite
10754 				 * the sa_data area below.
10755 				 */
10756 				bcopy(macaddr, storage, addr_len);
10757 			}
10758 			/* Ditch the internal IOCTL. */
10759 			freemsg(mp);
10760 			ire_refrele(ire);
10761 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10762 			return;
10763 		}
10764 	}
10765 
10766 	/*
10767 	 * Delete the coresponding IRE_CACHE if any.
10768 	 * Reset the error if there was one (in case there was no entry
10769 	 * in arp.)
10770 	 */
10771 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10772 		ipif_t *ipintf = NULL;
10773 
10774 		if (ifx_arp_ioctl) {
10775 			/*
10776 			 * There's no need to lookup the ill, since
10777 			 * we've already done that when we started
10778 			 * processing the ioctl and sent the message
10779 			 * to ARP on that ill.  So use the ill that
10780 			 * is stored in q->q_ptr.
10781 			 */
10782 			ipintf = ill->ill_ipif;
10783 		}
10784 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10785 			/*
10786 			 * The address in "addr" may be an entry for a
10787 			 * router. If that's true, then any off-net
10788 			 * IRE_CACHE entries that go through the router
10789 			 * with address "addr" must be clobbered. Use
10790 			 * ire_walk to achieve this goal.
10791 			 */
10792 			if (ifx_arp_ioctl)
10793 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10794 				    ire_delete_cache_gw, (char *)&addr, ill);
10795 			else
10796 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10797 				    ALL_ZONES, ipst);
10798 			iocp->ioc_error = 0;
10799 		}
10800 	}
10801 errack:
10802 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10803 		err = iocp->ioc_error;
10804 		freemsg(mp);
10805 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL);
10806 		return;
10807 	}
10808 
10809 	/*
10810 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10811 	 * the area_t into the struct {x}arpreq.
10812 	 */
10813 	if (x_arp_ioctl) {
10814 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10815 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10816 		    sizeof (xar->xarp_ha.sdl_data)) {
10817 			freemsg(mp);
10818 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10819 			    NULL);
10820 			return;
10821 		}
10822 	}
10823 	*flagsp = ATF_INUSE;
10824 	if (area->area_flags & ACE_F_PERMANENT)
10825 		*flagsp |= ATF_PERM;
10826 	if (area->area_flags & ACE_F_PUBLISH)
10827 		*flagsp |= ATF_PUBL;
10828 	if (area->area_flags & ACE_F_AUTHORITY)
10829 		*flagsp |= ATF_AUTHORITY;
10830 	if (area->area_hw_addr_length != 0) {
10831 		*flagsp |= ATF_COM;
10832 		/*
10833 		 * For SIOCGARP, MAC address length validation has
10834 		 * already been done before the ioctl was issued to ARP
10835 		 * to allow it to progress only on 6 byte addressable
10836 		 * (ethernet like) media. Thus the mac address copying
10837 		 * can not overwrite the sa_data area below.
10838 		 */
10839 		bcopy((char *)area + area->area_hw_addr_offset,
10840 		    storage, area->area_hw_addr_length);
10841 	}
10842 
10843 	/* Ditch the internal IOCTL. */
10844 	freemsg(mp);
10845 	/* Complete the original. */
10846 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL);
10847 }
10848 
10849 /*
10850  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10851  * interface) create the next available logical interface for this
10852  * physical interface.
10853  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10854  * ipif with the specified name.
10855  *
10856  * If the address family is not AF_UNSPEC then set the address as well.
10857  *
10858  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10859  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10860  *
10861  * Executed as a writer on the ill or ill group.
10862  * So no lock is needed to traverse the ipif chain, or examine the
10863  * phyint flags.
10864  */
10865 /* ARGSUSED */
10866 int
10867 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10868     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10869 {
10870 	mblk_t	*mp1;
10871 	struct lifreq *lifr;
10872 	boolean_t	isv6;
10873 	boolean_t	exists;
10874 	char 	*name;
10875 	char	*endp;
10876 	char	*cp;
10877 	int	namelen;
10878 	ipif_t	*ipif;
10879 	long	id;
10880 	ipsq_t	*ipsq;
10881 	ill_t	*ill;
10882 	sin_t	*sin;
10883 	int	err = 0;
10884 	boolean_t found_sep = B_FALSE;
10885 	conn_t	*connp;
10886 	zoneid_t zoneid;
10887 	int	orig_ifindex = 0;
10888 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10889 
10890 	ASSERT(q->q_next == NULL);
10891 	ip1dbg(("ip_sioctl_addif\n"));
10892 	/* Existence of mp1 has been checked in ip_wput_nondata */
10893 	mp1 = mp->b_cont->b_cont;
10894 	/*
10895 	 * Null terminate the string to protect against buffer
10896 	 * overrun. String was generated by user code and may not
10897 	 * be trusted.
10898 	 */
10899 	lifr = (struct lifreq *)mp1->b_rptr;
10900 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10901 	name = lifr->lifr_name;
10902 	ASSERT(CONN_Q(q));
10903 	connp = Q_TO_CONN(q);
10904 	isv6 = connp->conn_af_isv6;
10905 	zoneid = connp->conn_zoneid;
10906 	namelen = mi_strlen(name);
10907 	if (namelen == 0)
10908 		return (EINVAL);
10909 
10910 	exists = B_FALSE;
10911 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10912 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10913 		/*
10914 		 * Allow creating lo0 using SIOCLIFADDIF.
10915 		 * can't be any other writer thread. So can pass null below
10916 		 * for the last 4 args to ipif_lookup_name.
10917 		 */
10918 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10919 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10920 		/* Prevent any further action */
10921 		if (ipif == NULL) {
10922 			return (ENOBUFS);
10923 		} else if (!exists) {
10924 			/* We created the ipif now and as writer */
10925 			ipif_refrele(ipif);
10926 			return (0);
10927 		} else {
10928 			ill = ipif->ipif_ill;
10929 			ill_refhold(ill);
10930 			ipif_refrele(ipif);
10931 		}
10932 	} else {
10933 		/* Look for a colon in the name. */
10934 		endp = &name[namelen];
10935 		for (cp = endp; --cp > name; ) {
10936 			if (*cp == IPIF_SEPARATOR_CHAR) {
10937 				found_sep = B_TRUE;
10938 				/*
10939 				 * Reject any non-decimal aliases for plumbing
10940 				 * of logical interfaces. Aliases with leading
10941 				 * zeroes are also rejected as they introduce
10942 				 * ambiguity in the naming of the interfaces.
10943 				 * Comparing with "0" takes care of all such
10944 				 * cases.
10945 				 */
10946 				if ((strncmp("0", cp+1, 1)) == 0)
10947 					return (EINVAL);
10948 
10949 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10950 				    id <= 0 || *endp != '\0') {
10951 					return (EINVAL);
10952 				}
10953 				*cp = '\0';
10954 				break;
10955 			}
10956 		}
10957 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10958 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10959 		if (found_sep)
10960 			*cp = IPIF_SEPARATOR_CHAR;
10961 		if (ill == NULL)
10962 			return (err);
10963 	}
10964 
10965 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10966 	    B_TRUE);
10967 
10968 	/*
10969 	 * Release the refhold due to the lookup, now that we are excl
10970 	 * or we are just returning
10971 	 */
10972 	ill_refrele(ill);
10973 
10974 	if (ipsq == NULL)
10975 		return (EINPROGRESS);
10976 
10977 	/*
10978 	 * If the interface is failed, inactive or offlined, look for a working
10979 	 * interface in the ill group and create the ipif there. If we can't
10980 	 * find a good interface, create the ipif anyway so that in.mpathd can
10981 	 * move it to the first repaired interface.
10982 	 */
10983 	if ((ill->ill_phyint->phyint_flags &
10984 	    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
10985 	    ill->ill_phyint->phyint_groupname_len != 0) {
10986 		phyint_t *phyi;
10987 		char *groupname = ill->ill_phyint->phyint_groupname;
10988 
10989 		/*
10990 		 * We're looking for a working interface, but it doesn't matter
10991 		 * if it's up or down; so instead of following the group lists,
10992 		 * we look at each physical interface and compare the groupname.
10993 		 * We're only interested in interfaces with IPv4 (resp. IPv6)
10994 		 * plumbed when we're adding an IPv4 (resp. IPv6) ipif.
10995 		 * Otherwise we create the ipif on the failed interface.
10996 		 */
10997 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10998 		phyi = avl_first(&ipst->ips_phyint_g_list->
10999 		    phyint_list_avl_by_index);
11000 		for (; phyi != NULL;
11001 		    phyi = avl_walk(&ipst->ips_phyint_g_list->
11002 		    phyint_list_avl_by_index,
11003 		    phyi, AVL_AFTER)) {
11004 			if (phyi->phyint_groupname_len == 0)
11005 				continue;
11006 			ASSERT(phyi->phyint_groupname != NULL);
11007 			if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 &&
11008 			    !(phyi->phyint_flags &
11009 			    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
11010 			    (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) :
11011 			    (phyi->phyint_illv4 != NULL))) {
11012 				break;
11013 			}
11014 		}
11015 		rw_exit(&ipst->ips_ill_g_lock);
11016 
11017 		if (phyi != NULL) {
11018 			orig_ifindex = ill->ill_phyint->phyint_ifindex;
11019 			ill = (ill->ill_isv6 ? phyi->phyint_illv6 :
11020 			    phyi->phyint_illv4);
11021 		}
11022 	}
11023 
11024 	/*
11025 	 * We are now exclusive on the ipsq, so an ill move will be serialized
11026 	 * before or after us.
11027 	 */
11028 	ASSERT(IAM_WRITER_ILL(ill));
11029 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11030 
11031 	if (found_sep && orig_ifindex == 0) {
11032 		/* Now see if there is an IPIF with this unit number. */
11033 		for (ipif = ill->ill_ipif; ipif != NULL;
11034 		    ipif = ipif->ipif_next) {
11035 			if (ipif->ipif_id == id) {
11036 				err = EEXIST;
11037 				goto done;
11038 			}
11039 		}
11040 	}
11041 
11042 	/*
11043 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
11044 	 * of lo0. We never come here when we plumb lo0:0. It
11045 	 * happens in ipif_lookup_on_name.
11046 	 * The specified unit number is ignored when we create the ipif on a
11047 	 * different interface. However, we save it in ipif_orig_ipifid below so
11048 	 * that the ipif fails back to the right position.
11049 	 */
11050 	if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ?
11051 	    id : -1, IRE_LOCAL, B_TRUE)) == NULL) {
11052 		err = ENOBUFS;
11053 		goto done;
11054 	}
11055 
11056 	/* Return created name with ioctl */
11057 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
11058 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
11059 	ip1dbg(("created %s\n", lifr->lifr_name));
11060 
11061 	/* Set address */
11062 	sin = (sin_t *)&lifr->lifr_addr;
11063 	if (sin->sin_family != AF_UNSPEC) {
11064 		err = ip_sioctl_addr(ipif, sin, q, mp,
11065 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
11066 	}
11067 
11068 	/* Set ifindex and unit number for failback */
11069 	if (err == 0 && orig_ifindex != 0) {
11070 		ipif->ipif_orig_ifindex = orig_ifindex;
11071 		if (found_sep) {
11072 			ipif->ipif_orig_ipifid = id;
11073 		}
11074 	}
11075 
11076 done:
11077 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
11078 	return (err);
11079 }
11080 
11081 /*
11082  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
11083  * interface) delete it based on the IP address (on this physical interface).
11084  * Otherwise delete it based on the ipif_id.
11085  * Also, special handling to allow a removeif of lo0.
11086  */
11087 /* ARGSUSED */
11088 int
11089 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11090     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11091 {
11092 	conn_t		*connp;
11093 	ill_t		*ill = ipif->ipif_ill;
11094 	boolean_t	 success;
11095 	ip_stack_t	*ipst;
11096 
11097 	ipst = CONNQ_TO_IPST(q);
11098 
11099 	ASSERT(q->q_next == NULL);
11100 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
11101 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11102 	ASSERT(IAM_WRITER_IPIF(ipif));
11103 
11104 	connp = Q_TO_CONN(q);
11105 	/*
11106 	 * Special case for unplumbing lo0 (the loopback physical interface).
11107 	 * If unplumbing lo0, the incoming address structure has been
11108 	 * initialized to all zeros. When unplumbing lo0, all its logical
11109 	 * interfaces must be removed too.
11110 	 *
11111 	 * Note that this interface may be called to remove a specific
11112 	 * loopback logical interface (eg, lo0:1). But in that case
11113 	 * ipif->ipif_id != 0 so that the code path for that case is the
11114 	 * same as any other interface (meaning it skips the code directly
11115 	 * below).
11116 	 */
11117 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11118 		if (sin->sin_family == AF_UNSPEC &&
11119 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
11120 			/*
11121 			 * Mark it condemned. No new ref. will be made to ill.
11122 			 */
11123 			mutex_enter(&ill->ill_lock);
11124 			ill->ill_state_flags |= ILL_CONDEMNED;
11125 			for (ipif = ill->ill_ipif; ipif != NULL;
11126 			    ipif = ipif->ipif_next) {
11127 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
11128 			}
11129 			mutex_exit(&ill->ill_lock);
11130 
11131 			ipif = ill->ill_ipif;
11132 			/* unplumb the loopback interface */
11133 			ill_delete(ill);
11134 			mutex_enter(&connp->conn_lock);
11135 			mutex_enter(&ill->ill_lock);
11136 			ASSERT(ill->ill_group == NULL);
11137 
11138 			/* Are any references to this ill active */
11139 			if (ill_is_quiescent(ill)) {
11140 				mutex_exit(&ill->ill_lock);
11141 				mutex_exit(&connp->conn_lock);
11142 				ill_delete_tail(ill);
11143 				mi_free(ill);
11144 				return (0);
11145 			}
11146 			success = ipsq_pending_mp_add(connp, ipif,
11147 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
11148 			mutex_exit(&connp->conn_lock);
11149 			mutex_exit(&ill->ill_lock);
11150 			if (success)
11151 				return (EINPROGRESS);
11152 			else
11153 				return (EINTR);
11154 		}
11155 	}
11156 
11157 	/*
11158 	 * We are exclusive on the ipsq, so an ill move will be serialized
11159 	 * before or after us.
11160 	 */
11161 	ASSERT(ill->ill_move_in_progress == B_FALSE);
11162 
11163 	if (ipif->ipif_id == 0) {
11164 		/* Find based on address */
11165 		if (ipif->ipif_isv6) {
11166 			sin6_t *sin6;
11167 
11168 			if (sin->sin_family != AF_INET6)
11169 				return (EAFNOSUPPORT);
11170 
11171 			sin6 = (sin6_t *)sin;
11172 			/* We are a writer, so we should be able to lookup */
11173 			ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11174 			    ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
11175 			if (ipif == NULL) {
11176 				/*
11177 				 * Maybe the address in on another interface in
11178 				 * the same IPMP group? We check this below.
11179 				 */
11180 				ipif = ipif_lookup_addr_v6(&sin6->sin6_addr,
11181 				    NULL, ALL_ZONES, NULL, NULL, NULL, NULL,
11182 				    ipst);
11183 			}
11184 		} else {
11185 			ipaddr_t addr;
11186 
11187 			if (sin->sin_family != AF_INET)
11188 				return (EAFNOSUPPORT);
11189 
11190 			addr = sin->sin_addr.s_addr;
11191 			/* We are a writer, so we should be able to lookup */
11192 			ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL,
11193 			    NULL, NULL, NULL, ipst);
11194 			if (ipif == NULL) {
11195 				/*
11196 				 * Maybe the address in on another interface in
11197 				 * the same IPMP group? We check this below.
11198 				 */
11199 				ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES,
11200 				    NULL, NULL, NULL, NULL, ipst);
11201 			}
11202 		}
11203 		if (ipif == NULL) {
11204 			return (EADDRNOTAVAIL);
11205 		}
11206 		/*
11207 		 * When the address to be removed is hosted on a different
11208 		 * interface, we check if the interface is in the same IPMP
11209 		 * group as the specified one; if so we proceed with the
11210 		 * removal.
11211 		 * ill->ill_group is NULL when the ill is down, so we have to
11212 		 * compare the group names instead.
11213 		 */
11214 		if (ipif->ipif_ill != ill &&
11215 		    (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 ||
11216 		    ill->ill_phyint->phyint_groupname_len == 0 ||
11217 		    mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname,
11218 		    ill->ill_phyint->phyint_groupname) != 0)) {
11219 			ipif_refrele(ipif);
11220 			return (EADDRNOTAVAIL);
11221 		}
11222 
11223 		/* This is a writer */
11224 		ipif_refrele(ipif);
11225 	}
11226 
11227 	/*
11228 	 * Can not delete instance zero since it is tied to the ill.
11229 	 */
11230 	if (ipif->ipif_id == 0)
11231 		return (EBUSY);
11232 
11233 	mutex_enter(&ill->ill_lock);
11234 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
11235 	mutex_exit(&ill->ill_lock);
11236 
11237 	ipif_free(ipif);
11238 
11239 	mutex_enter(&connp->conn_lock);
11240 	mutex_enter(&ill->ill_lock);
11241 
11242 	/* Are any references to this ipif active */
11243 	if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) {
11244 		mutex_exit(&ill->ill_lock);
11245 		mutex_exit(&connp->conn_lock);
11246 		ipif_non_duplicate(ipif);
11247 		ipif_down_tail(ipif);
11248 		ipif_free_tail(ipif);
11249 		return (0);
11250 	}
11251 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
11252 	    IPIF_FREE);
11253 	mutex_exit(&ill->ill_lock);
11254 	mutex_exit(&connp->conn_lock);
11255 	if (success)
11256 		return (EINPROGRESS);
11257 	else
11258 		return (EINTR);
11259 }
11260 
11261 /*
11262  * Restart the removeif ioctl. The refcnt has gone down to 0.
11263  * The ipif is already condemned. So can't find it thru lookups.
11264  */
11265 /* ARGSUSED */
11266 int
11267 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
11268     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
11269 {
11270 	ill_t *ill;
11271 
11272 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
11273 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11274 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
11275 		ill = ipif->ipif_ill;
11276 		ASSERT(IAM_WRITER_ILL(ill));
11277 		ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) &&
11278 		    (ill->ill_state_flags & IPIF_CONDEMNED));
11279 		ill_delete_tail(ill);
11280 		mi_free(ill);
11281 		return (0);
11282 	}
11283 
11284 	ill = ipif->ipif_ill;
11285 	ASSERT(IAM_WRITER_IPIF(ipif));
11286 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
11287 
11288 	ipif_non_duplicate(ipif);
11289 	ipif_down_tail(ipif);
11290 	ipif_free_tail(ipif);
11291 
11292 	ILL_UNMARK_CHANGING(ill);
11293 	return (0);
11294 }
11295 
11296 /*
11297  * Set the local interface address.
11298  * Allow an address of all zero when the interface is down.
11299  */
11300 /* ARGSUSED */
11301 int
11302 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11303     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
11304 {
11305 	int err = 0;
11306 	in6_addr_t v6addr;
11307 	boolean_t need_up = B_FALSE;
11308 
11309 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
11310 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11311 
11312 	ASSERT(IAM_WRITER_IPIF(ipif));
11313 
11314 	if (ipif->ipif_isv6) {
11315 		sin6_t *sin6;
11316 		ill_t *ill;
11317 		phyint_t *phyi;
11318 
11319 		if (sin->sin_family != AF_INET6)
11320 			return (EAFNOSUPPORT);
11321 
11322 		sin6 = (sin6_t *)sin;
11323 		v6addr = sin6->sin6_addr;
11324 		ill = ipif->ipif_ill;
11325 		phyi = ill->ill_phyint;
11326 
11327 		/*
11328 		 * Enforce that true multicast interfaces have a link-local
11329 		 * address for logical unit 0.
11330 		 */
11331 		if (ipif->ipif_id == 0 &&
11332 		    (ill->ill_flags & ILLF_MULTICAST) &&
11333 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
11334 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
11335 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
11336 			return (EADDRNOTAVAIL);
11337 		}
11338 
11339 		/*
11340 		 * up interfaces shouldn't have the unspecified address
11341 		 * unless they also have the IPIF_NOLOCAL flags set and
11342 		 * have a subnet assigned.
11343 		 */
11344 		if ((ipif->ipif_flags & IPIF_UP) &&
11345 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
11346 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
11347 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
11348 			return (EADDRNOTAVAIL);
11349 		}
11350 
11351 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11352 			return (EADDRNOTAVAIL);
11353 	} else {
11354 		ipaddr_t addr;
11355 
11356 		if (sin->sin_family != AF_INET)
11357 			return (EAFNOSUPPORT);
11358 
11359 		addr = sin->sin_addr.s_addr;
11360 
11361 		/* Allow 0 as the local address. */
11362 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11363 			return (EADDRNOTAVAIL);
11364 
11365 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11366 	}
11367 
11368 
11369 	/*
11370 	 * Even if there is no change we redo things just to rerun
11371 	 * ipif_set_default.
11372 	 */
11373 	if (ipif->ipif_flags & IPIF_UP) {
11374 		/*
11375 		 * Setting a new local address, make sure
11376 		 * we have net and subnet bcast ire's for
11377 		 * the old address if we need them.
11378 		 */
11379 		if (!ipif->ipif_isv6)
11380 			ipif_check_bcast_ires(ipif);
11381 		/*
11382 		 * If the interface is already marked up,
11383 		 * we call ipif_down which will take care
11384 		 * of ditching any IREs that have been set
11385 		 * up based on the old interface address.
11386 		 */
11387 		err = ipif_logical_down(ipif, q, mp);
11388 		if (err == EINPROGRESS)
11389 			return (err);
11390 		ipif_down_tail(ipif);
11391 		need_up = 1;
11392 	}
11393 
11394 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
11395 	return (err);
11396 }
11397 
11398 int
11399 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11400     boolean_t need_up)
11401 {
11402 	in6_addr_t v6addr;
11403 	in6_addr_t ov6addr;
11404 	ipaddr_t addr;
11405 	sin6_t	*sin6;
11406 	int	sinlen;
11407 	int	err = 0;
11408 	ill_t	*ill = ipif->ipif_ill;
11409 	boolean_t need_dl_down;
11410 	boolean_t need_arp_down;
11411 	struct iocblk *iocp;
11412 
11413 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
11414 
11415 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
11416 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
11417 	ASSERT(IAM_WRITER_IPIF(ipif));
11418 
11419 	/* Must cancel any pending timer before taking the ill_lock */
11420 	if (ipif->ipif_recovery_id != 0)
11421 		(void) untimeout(ipif->ipif_recovery_id);
11422 	ipif->ipif_recovery_id = 0;
11423 
11424 	if (ipif->ipif_isv6) {
11425 		sin6 = (sin6_t *)sin;
11426 		v6addr = sin6->sin6_addr;
11427 		sinlen = sizeof (struct sockaddr_in6);
11428 	} else {
11429 		addr = sin->sin_addr.s_addr;
11430 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11431 		sinlen = sizeof (struct sockaddr_in);
11432 	}
11433 	mutex_enter(&ill->ill_lock);
11434 	ov6addr = ipif->ipif_v6lcl_addr;
11435 	ipif->ipif_v6lcl_addr = v6addr;
11436 	sctp_update_ipif_addr(ipif, ov6addr);
11437 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
11438 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11439 	} else {
11440 		ipif->ipif_v6src_addr = v6addr;
11441 	}
11442 	ipif->ipif_addr_ready = 0;
11443 
11444 	/*
11445 	 * If the interface was previously marked as a duplicate, then since
11446 	 * we've now got a "new" address, it should no longer be considered a
11447 	 * duplicate -- even if the "new" address is the same as the old one.
11448 	 * Note that if all ipifs are down, we may have a pending ARP down
11449 	 * event to handle.  This is because we want to recover from duplicates
11450 	 * and thus delay tearing down ARP until the duplicates have been
11451 	 * removed or disabled.
11452 	 */
11453 	need_dl_down = need_arp_down = B_FALSE;
11454 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11455 		need_arp_down = !need_up;
11456 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11457 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11458 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11459 			need_dl_down = B_TRUE;
11460 		}
11461 	}
11462 
11463 	if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) &&
11464 	    !ill->ill_is_6to4tun) {
11465 		queue_t *wqp = ill->ill_wq;
11466 
11467 		/*
11468 		 * The local address of this interface is a 6to4 address,
11469 		 * check if this interface is in fact a 6to4 tunnel or just
11470 		 * an interface configured with a 6to4 address.  We are only
11471 		 * interested in the former.
11472 		 */
11473 		if (wqp != NULL) {
11474 			while ((wqp->q_next != NULL) &&
11475 			    (wqp->q_next->q_qinfo != NULL) &&
11476 			    (wqp->q_next->q_qinfo->qi_minfo != NULL)) {
11477 
11478 				if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum
11479 				    == TUN6TO4_MODID) {
11480 					/* set for use in IP */
11481 					ill->ill_is_6to4tun = 1;
11482 					break;
11483 				}
11484 				wqp = wqp->q_next;
11485 			}
11486 		}
11487 	}
11488 
11489 	ipif_set_default(ipif);
11490 
11491 	/*
11492 	 * When publishing an interface address change event, we only notify
11493 	 * the event listeners of the new address.  It is assumed that if they
11494 	 * actively care about the addresses assigned that they will have
11495 	 * already discovered the previous address assigned (if there was one.)
11496 	 *
11497 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11498 	 */
11499 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11500 		hook_nic_event_t *info;
11501 		if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) {
11502 			ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d "
11503 			    "attached for %s\n", info->hne_event,
11504 			    ill->ill_name));
11505 			if (info->hne_data != NULL)
11506 				kmem_free(info->hne_data, info->hne_datalen);
11507 			kmem_free(info, sizeof (hook_nic_event_t));
11508 		}
11509 
11510 		info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
11511 		if (info != NULL) {
11512 			ip_stack_t	*ipst = ill->ill_ipst;
11513 
11514 			info->hne_nic =
11515 			    ipif->ipif_ill->ill_phyint->phyint_hook_ifindex;
11516 			info->hne_lif = MAP_IPIF_ID(ipif->ipif_id);
11517 			info->hne_event = NE_ADDRESS_CHANGE;
11518 			info->hne_family = ipif->ipif_isv6 ?
11519 			    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
11520 			info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP);
11521 			if (info->hne_data != NULL) {
11522 				info->hne_datalen = sinlen;
11523 				bcopy(sin, info->hne_data, sinlen);
11524 			} else {
11525 				ip2dbg(("ip_sioctl_addr_tail: could not attach "
11526 				    "address information for ADDRESS_CHANGE nic"
11527 				    " event of %s (ENOMEM)\n",
11528 				    ipif->ipif_ill->ill_name));
11529 				kmem_free(info, sizeof (hook_nic_event_t));
11530 			}
11531 		} else
11532 			ip2dbg(("ip_sioctl_addr_tail: could not attach "
11533 			    "ADDRESS_CHANGE nic event information for %s "
11534 			    "(ENOMEM)\n", ipif->ipif_ill->ill_name));
11535 
11536 		ipif->ipif_ill->ill_nic_event_info = info;
11537 	}
11538 
11539 	mutex_exit(&ill->ill_lock);
11540 
11541 	if (need_up) {
11542 		/*
11543 		 * Now bring the interface back up.  If this
11544 		 * is the only IPIF for the ILL, ipif_up
11545 		 * will have to re-bind to the device, so
11546 		 * we may get back EINPROGRESS, in which
11547 		 * case, this IOCTL will get completed in
11548 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11549 		 */
11550 		err = ipif_up(ipif, q, mp);
11551 	}
11552 
11553 	if (need_dl_down)
11554 		ill_dl_down(ill);
11555 	if (need_arp_down)
11556 		ipif_arp_down(ipif);
11557 
11558 	return (err);
11559 }
11560 
11561 
11562 /*
11563  * Restart entry point to restart the address set operation after the
11564  * refcounts have dropped to zero.
11565  */
11566 /* ARGSUSED */
11567 int
11568 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11569     ip_ioctl_cmd_t *ipip, void *ifreq)
11570 {
11571 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11572 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11573 	ASSERT(IAM_WRITER_IPIF(ipif));
11574 	ipif_down_tail(ipif);
11575 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11576 }
11577 
11578 /* ARGSUSED */
11579 int
11580 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11581     ip_ioctl_cmd_t *ipip, void *if_req)
11582 {
11583 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11584 	struct lifreq *lifr = (struct lifreq *)if_req;
11585 
11586 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11587 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11588 	/*
11589 	 * The net mask and address can't change since we have a
11590 	 * reference to the ipif. So no lock is necessary.
11591 	 */
11592 	if (ipif->ipif_isv6) {
11593 		*sin6 = sin6_null;
11594 		sin6->sin6_family = AF_INET6;
11595 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11596 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11597 		lifr->lifr_addrlen =
11598 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11599 	} else {
11600 		*sin = sin_null;
11601 		sin->sin_family = AF_INET;
11602 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11603 		if (ipip->ipi_cmd_type == LIF_CMD) {
11604 			lifr->lifr_addrlen =
11605 			    ip_mask_to_plen(ipif->ipif_net_mask);
11606 		}
11607 	}
11608 	return (0);
11609 }
11610 
11611 /*
11612  * Set the destination address for a pt-pt interface.
11613  */
11614 /* ARGSUSED */
11615 int
11616 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11617     ip_ioctl_cmd_t *ipip, void *if_req)
11618 {
11619 	int err = 0;
11620 	in6_addr_t v6addr;
11621 	boolean_t need_up = B_FALSE;
11622 
11623 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11624 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11625 	ASSERT(IAM_WRITER_IPIF(ipif));
11626 
11627 	if (ipif->ipif_isv6) {
11628 		sin6_t *sin6;
11629 
11630 		if (sin->sin_family != AF_INET6)
11631 			return (EAFNOSUPPORT);
11632 
11633 		sin6 = (sin6_t *)sin;
11634 		v6addr = sin6->sin6_addr;
11635 
11636 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11637 			return (EADDRNOTAVAIL);
11638 	} else {
11639 		ipaddr_t addr;
11640 
11641 		if (sin->sin_family != AF_INET)
11642 			return (EAFNOSUPPORT);
11643 
11644 		addr = sin->sin_addr.s_addr;
11645 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11646 			return (EADDRNOTAVAIL);
11647 
11648 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11649 	}
11650 
11651 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11652 		return (0);	/* No change */
11653 
11654 	if (ipif->ipif_flags & IPIF_UP) {
11655 		/*
11656 		 * If the interface is already marked up,
11657 		 * we call ipif_down which will take care
11658 		 * of ditching any IREs that have been set
11659 		 * up based on the old pp dst address.
11660 		 */
11661 		err = ipif_logical_down(ipif, q, mp);
11662 		if (err == EINPROGRESS)
11663 			return (err);
11664 		ipif_down_tail(ipif);
11665 		need_up = B_TRUE;
11666 	}
11667 	/*
11668 	 * could return EINPROGRESS. If so ioctl will complete in
11669 	 * ip_rput_dlpi_writer
11670 	 */
11671 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11672 	return (err);
11673 }
11674 
11675 static int
11676 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11677     boolean_t need_up)
11678 {
11679 	in6_addr_t v6addr;
11680 	ill_t	*ill = ipif->ipif_ill;
11681 	int	err = 0;
11682 	boolean_t need_dl_down;
11683 	boolean_t need_arp_down;
11684 
11685 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11686 	    ipif->ipif_id, (void *)ipif));
11687 
11688 	/* Must cancel any pending timer before taking the ill_lock */
11689 	if (ipif->ipif_recovery_id != 0)
11690 		(void) untimeout(ipif->ipif_recovery_id);
11691 	ipif->ipif_recovery_id = 0;
11692 
11693 	if (ipif->ipif_isv6) {
11694 		sin6_t *sin6;
11695 
11696 		sin6 = (sin6_t *)sin;
11697 		v6addr = sin6->sin6_addr;
11698 	} else {
11699 		ipaddr_t addr;
11700 
11701 		addr = sin->sin_addr.s_addr;
11702 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11703 	}
11704 	mutex_enter(&ill->ill_lock);
11705 	/* Set point to point destination address. */
11706 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11707 		/*
11708 		 * Allow this as a means of creating logical
11709 		 * pt-pt interfaces on top of e.g. an Ethernet.
11710 		 * XXX Undocumented HACK for testing.
11711 		 * pt-pt interfaces are created with NUD disabled.
11712 		 */
11713 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11714 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11715 		if (ipif->ipif_isv6)
11716 			ill->ill_flags |= ILLF_NONUD;
11717 	}
11718 
11719 	/*
11720 	 * If the interface was previously marked as a duplicate, then since
11721 	 * we've now got a "new" address, it should no longer be considered a
11722 	 * duplicate -- even if the "new" address is the same as the old one.
11723 	 * Note that if all ipifs are down, we may have a pending ARP down
11724 	 * event to handle.
11725 	 */
11726 	need_dl_down = need_arp_down = B_FALSE;
11727 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11728 		need_arp_down = !need_up;
11729 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11730 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11731 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11732 			need_dl_down = B_TRUE;
11733 		}
11734 	}
11735 
11736 	/* Set the new address. */
11737 	ipif->ipif_v6pp_dst_addr = v6addr;
11738 	/* Make sure subnet tracks pp_dst */
11739 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11740 	mutex_exit(&ill->ill_lock);
11741 
11742 	if (need_up) {
11743 		/*
11744 		 * Now bring the interface back up.  If this
11745 		 * is the only IPIF for the ILL, ipif_up
11746 		 * will have to re-bind to the device, so
11747 		 * we may get back EINPROGRESS, in which
11748 		 * case, this IOCTL will get completed in
11749 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11750 		 */
11751 		err = ipif_up(ipif, q, mp);
11752 	}
11753 
11754 	if (need_dl_down)
11755 		ill_dl_down(ill);
11756 
11757 	if (need_arp_down)
11758 		ipif_arp_down(ipif);
11759 	return (err);
11760 }
11761 
11762 /*
11763  * Restart entry point to restart the dstaddress set operation after the
11764  * refcounts have dropped to zero.
11765  */
11766 /* ARGSUSED */
11767 int
11768 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11769     ip_ioctl_cmd_t *ipip, void *ifreq)
11770 {
11771 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11772 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11773 	ipif_down_tail(ipif);
11774 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11775 }
11776 
11777 /* ARGSUSED */
11778 int
11779 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11780     ip_ioctl_cmd_t *ipip, void *if_req)
11781 {
11782 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11783 
11784 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11785 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11786 	/*
11787 	 * Get point to point destination address. The addresses can't
11788 	 * change since we hold a reference to the ipif.
11789 	 */
11790 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11791 		return (EADDRNOTAVAIL);
11792 
11793 	if (ipif->ipif_isv6) {
11794 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11795 		*sin6 = sin6_null;
11796 		sin6->sin6_family = AF_INET6;
11797 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11798 	} else {
11799 		*sin = sin_null;
11800 		sin->sin_family = AF_INET;
11801 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11802 	}
11803 	return (0);
11804 }
11805 
11806 /*
11807  * part of ipmp, make this func return the active/inactive state and
11808  * caller can set once atomically instead of multiple mutex_enter/mutex_exit
11809  */
11810 /*
11811  * This function either sets or clears the IFF_INACTIVE flag.
11812  *
11813  * As long as there are some addresses or multicast memberships on the
11814  * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we
11815  * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface
11816  * will be used for outbound packets.
11817  *
11818  * Caller needs to verify the validity of setting IFF_INACTIVE.
11819  */
11820 static void
11821 phyint_inactive(phyint_t *phyi)
11822 {
11823 	ill_t *ill_v4;
11824 	ill_t *ill_v6;
11825 	ipif_t *ipif;
11826 	ilm_t *ilm;
11827 
11828 	ill_v4 = phyi->phyint_illv4;
11829 	ill_v6 = phyi->phyint_illv6;
11830 
11831 	/*
11832 	 * No need for a lock while traversing the list since iam
11833 	 * a writer
11834 	 */
11835 	if (ill_v4 != NULL) {
11836 		ASSERT(IAM_WRITER_ILL(ill_v4));
11837 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
11838 		    ipif = ipif->ipif_next) {
11839 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11840 				mutex_enter(&phyi->phyint_lock);
11841 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11842 				mutex_exit(&phyi->phyint_lock);
11843 				return;
11844 			}
11845 		}
11846 		for (ilm = ill_v4->ill_ilm; ilm != NULL;
11847 		    ilm = ilm->ilm_next) {
11848 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11849 				mutex_enter(&phyi->phyint_lock);
11850 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11851 				mutex_exit(&phyi->phyint_lock);
11852 				return;
11853 			}
11854 		}
11855 	}
11856 	if (ill_v6 != NULL) {
11857 		ill_v6 = phyi->phyint_illv6;
11858 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
11859 		    ipif = ipif->ipif_next) {
11860 			if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) {
11861 				mutex_enter(&phyi->phyint_lock);
11862 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11863 				mutex_exit(&phyi->phyint_lock);
11864 				return;
11865 			}
11866 		}
11867 		for (ilm = ill_v6->ill_ilm; ilm != NULL;
11868 		    ilm = ilm->ilm_next) {
11869 			if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) {
11870 				mutex_enter(&phyi->phyint_lock);
11871 				phyi->phyint_flags &= ~PHYI_INACTIVE;
11872 				mutex_exit(&phyi->phyint_lock);
11873 				return;
11874 			}
11875 		}
11876 	}
11877 	mutex_enter(&phyi->phyint_lock);
11878 	phyi->phyint_flags |= PHYI_INACTIVE;
11879 	mutex_exit(&phyi->phyint_lock);
11880 }
11881 
11882 /*
11883  * This function is called only when the phyint flags change. Currently
11884  * called from ip_sioctl_flags. We re-do the broadcast nomination so
11885  * that we can select a good ill.
11886  */
11887 static void
11888 ip_redo_nomination(phyint_t *phyi)
11889 {
11890 	ill_t *ill_v4;
11891 
11892 	ill_v4 = phyi->phyint_illv4;
11893 
11894 	if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
11895 		ASSERT(IAM_WRITER_ILL(ill_v4));
11896 		if (ill_v4->ill_group->illgrp_ill_count > 1)
11897 			ill_nominate_bcast_rcv(ill_v4->ill_group);
11898 	}
11899 }
11900 
11901 /*
11902  * Heuristic to check if ill is INACTIVE.
11903  * Checks if ill has an ipif with an usable ip address.
11904  *
11905  * Return values:
11906  *	B_TRUE	- ill is INACTIVE; has no usable ipif
11907  *	B_FALSE - ill is not INACTIVE; ill has at least one usable ipif
11908  */
11909 static boolean_t
11910 ill_is_inactive(ill_t *ill)
11911 {
11912 	ipif_t *ipif;
11913 
11914 	/* Check whether it is in an IPMP group */
11915 	if (ill->ill_phyint->phyint_groupname == NULL)
11916 		return (B_FALSE);
11917 
11918 	if (ill->ill_ipif_up_count == 0)
11919 		return (B_TRUE);
11920 
11921 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
11922 		uint64_t flags = ipif->ipif_flags;
11923 
11924 		/*
11925 		 * This ipif is usable if it is IPIF_UP and not a
11926 		 * dedicated test address.  A dedicated test address
11927 		 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED
11928 		 * (note in particular that V6 test addresses are
11929 		 * link-local data addresses and thus are marked
11930 		 * IPIF_NOFAILOVER but not IPIF_DEPRECATED).
11931 		 */
11932 		if ((flags & IPIF_UP) &&
11933 		    ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) !=
11934 		    (IPIF_DEPRECATED|IPIF_NOFAILOVER)))
11935 			return (B_FALSE);
11936 	}
11937 	return (B_TRUE);
11938 }
11939 
11940 /*
11941  * Set interface flags.
11942  * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT,
11943  * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST,
11944  * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE.
11945  *
11946  * NOTE : We really don't enforce that ipif_id zero should be used
11947  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11948  *	  is because applications generally does SICGLIFFLAGS and
11949  *	  ORs in the new flags (that affects the logical) and does a
11950  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11951  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11952  *	  flags that will be turned on is correct with respect to
11953  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11954  */
11955 /* ARGSUSED */
11956 int
11957 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11958     ip_ioctl_cmd_t *ipip, void *if_req)
11959 {
11960 	uint64_t turn_on;
11961 	uint64_t turn_off;
11962 	int	err;
11963 	boolean_t need_up = B_FALSE;
11964 	phyint_t *phyi;
11965 	ill_t *ill;
11966 	uint64_t intf_flags;
11967 	boolean_t phyint_flags_modified = B_FALSE;
11968 	uint64_t flags;
11969 	struct ifreq *ifr;
11970 	struct lifreq *lifr;
11971 	boolean_t set_linklocal = B_FALSE;
11972 	boolean_t zero_source = B_FALSE;
11973 	ip_stack_t *ipst;
11974 
11975 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11976 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11977 
11978 	ASSERT(IAM_WRITER_IPIF(ipif));
11979 
11980 	ill = ipif->ipif_ill;
11981 	phyi = ill->ill_phyint;
11982 	ipst = ill->ill_ipst;
11983 
11984 	if (ipip->ipi_cmd_type == IF_CMD) {
11985 		ifr = (struct ifreq *)if_req;
11986 		flags =  (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11987 	} else {
11988 		lifr = (struct lifreq *)if_req;
11989 		flags = lifr->lifr_flags;
11990 	}
11991 
11992 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11993 
11994 	/*
11995 	 * Has the flags been set correctly till now ?
11996 	 */
11997 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11998 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11999 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12000 	/*
12001 	 * Compare the new flags to the old, and partition
12002 	 * into those coming on and those going off.
12003 	 * For the 16 bit command keep the bits above bit 16 unchanged.
12004 	 */
12005 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
12006 		flags |= intf_flags & ~0xFFFF;
12007 
12008 	/*
12009 	 * First check which bits will change and then which will
12010 	 * go on and off
12011 	 */
12012 	turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE;
12013 	if (!turn_on)
12014 		return (0);	/* No change */
12015 
12016 	turn_off = intf_flags & turn_on;
12017 	turn_on ^= turn_off;
12018 	err = 0;
12019 
12020 	/*
12021 	 * Don't allow any bits belonging to the logical interface
12022 	 * to be set or cleared on the replacement ipif that was
12023 	 * created temporarily during a MOVE.
12024 	 */
12025 	if (ipif->ipif_replace_zero &&
12026 	    ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) {
12027 		return (EINVAL);
12028 	}
12029 
12030 	/*
12031 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
12032 	 * IPv6 interfaces.
12033 	 */
12034 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
12035 		return (EINVAL);
12036 
12037 	/*
12038 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
12039 	 * interfaces.  It makes no sense in that context.
12040 	 */
12041 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
12042 		return (EINVAL);
12043 
12044 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
12045 		zero_source = B_TRUE;
12046 
12047 	/*
12048 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
12049 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
12050 	 * If the link local address isn't set, and can be set, it will get
12051 	 * set later on in this function.
12052 	 */
12053 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
12054 	    (flags & IFF_UP) && !zero_source &&
12055 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
12056 		if (ipif_cant_setlinklocal(ipif))
12057 			return (EINVAL);
12058 		set_linklocal = B_TRUE;
12059 	}
12060 
12061 	/*
12062 	 * ILL cannot be part of a usesrc group and and IPMP group at the
12063 	 * same time. No need to grab ill_g_usesrc_lock here, see
12064 	 * synchronization notes in ip.c
12065 	 */
12066 	if (turn_on & PHYI_STANDBY &&
12067 	    ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
12068 		return (EINVAL);
12069 	}
12070 
12071 	/*
12072 	 * If we modify physical interface flags, we'll potentially need to
12073 	 * send up two routing socket messages for the changes (one for the
12074 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
12075 	 */
12076 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
12077 		phyint_flags_modified = B_TRUE;
12078 
12079 	/*
12080 	 * If we are setting or clearing FAILED or STANDBY or OFFLINE,
12081 	 * we need to flush the IRE_CACHES belonging to this ill.
12082 	 * We handle this case here without doing the DOWN/UP dance
12083 	 * like it is done for other flags. If some other flags are
12084 	 * being turned on/off with FAILED/STANDBY/OFFLINE, the code
12085 	 * below will handle it by bringing it down and then
12086 	 * bringing it UP.
12087 	 */
12088 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) {
12089 		ill_t *ill_v4, *ill_v6;
12090 
12091 		ill_v4 = phyi->phyint_illv4;
12092 		ill_v6 = phyi->phyint_illv6;
12093 
12094 		/*
12095 		 * First set the INACTIVE flag if needed. Then delete the ires.
12096 		 * ire_add will atomically prevent creating new IRE_CACHEs
12097 		 * unless hidden flag is set.
12098 		 * PHYI_FAILED and PHYI_INACTIVE are exclusive
12099 		 */
12100 		if ((turn_on & PHYI_FAILED) &&
12101 		    ((intf_flags & PHYI_STANDBY) ||
12102 		    !ipst->ips_ipmp_enable_failback)) {
12103 			/* Reset PHYI_INACTIVE when PHYI_FAILED is being set */
12104 			phyi->phyint_flags &= ~PHYI_INACTIVE;
12105 		}
12106 		if ((turn_off & PHYI_FAILED) &&
12107 		    ((intf_flags & PHYI_STANDBY) ||
12108 		    (!ipst->ips_ipmp_enable_failback &&
12109 		    ill_is_inactive(ill)))) {
12110 			phyint_inactive(phyi);
12111 		}
12112 
12113 		if (turn_on & PHYI_STANDBY) {
12114 			/*
12115 			 * We implicitly set INACTIVE only when STANDBY is set.
12116 			 * INACTIVE is also set on non-STANDBY phyint when user
12117 			 * disables FAILBACK using configuration file.
12118 			 * Do not allow STANDBY to be set on such INACTIVE
12119 			 * phyint
12120 			 */
12121 			if (phyi->phyint_flags & PHYI_INACTIVE)
12122 				return (EINVAL);
12123 			if (!(phyi->phyint_flags & PHYI_FAILED))
12124 				phyint_inactive(phyi);
12125 		}
12126 		if (turn_off & PHYI_STANDBY) {
12127 			if (ipst->ips_ipmp_enable_failback) {
12128 				/*
12129 				 * Reset PHYI_INACTIVE.
12130 				 */
12131 				phyi->phyint_flags &= ~PHYI_INACTIVE;
12132 			} else if (ill_is_inactive(ill) &&
12133 			    !(phyi->phyint_flags & PHYI_FAILED)) {
12134 				/*
12135 				 * Need to set INACTIVE, when user sets
12136 				 * STANDBY on a non-STANDBY phyint and
12137 				 * later resets STANDBY
12138 				 */
12139 				phyint_inactive(phyi);
12140 			}
12141 		}
12142 		/*
12143 		 * We should always send up a message so that the
12144 		 * daemons come to know of it. Note that the zeroth
12145 		 * interface can be down and the check below for IPIF_UP
12146 		 * will not make sense as we are actually setting
12147 		 * a phyint flag here. We assume that the ipif used
12148 		 * is always the zeroth ipif. (ip_rts_ifmsg does not
12149 		 * send up any message for non-zero ipifs).
12150 		 */
12151 		phyint_flags_modified = B_TRUE;
12152 
12153 		if (ill_v4 != NULL) {
12154 			ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12155 			    IRE_CACHE, ill_stq_cache_delete,
12156 			    (char *)ill_v4, ill_v4);
12157 			illgrp_reset_schednext(ill_v4);
12158 		}
12159 		if (ill_v6 != NULL) {
12160 			ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
12161 			    IRE_CACHE, ill_stq_cache_delete,
12162 			    (char *)ill_v6, ill_v6);
12163 			illgrp_reset_schednext(ill_v6);
12164 		}
12165 	}
12166 
12167 	/*
12168 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
12169 	 * status of the interface and, if the interface is part of an IPMP
12170 	 * group, all other interfaces that are part of the same IPMP
12171 	 * group.
12172 	 */
12173 	if ((turn_on | turn_off) & ILLF_ROUTER) {
12174 		(void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0),
12175 		    (caddr_t)ill);
12176 	}
12177 
12178 	/*
12179 	 * If the interface is not UP and we are not going to
12180 	 * bring it UP, record the flags and return. When the
12181 	 * interface comes UP later, the right actions will be
12182 	 * taken.
12183 	 */
12184 	if (!(ipif->ipif_flags & IPIF_UP) &&
12185 	    !(turn_on & IPIF_UP)) {
12186 		/* Record new flags in their respective places. */
12187 		mutex_enter(&ill->ill_lock);
12188 		mutex_enter(&ill->ill_phyint->phyint_lock);
12189 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12190 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12191 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12192 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12193 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12194 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12195 		mutex_exit(&ill->ill_lock);
12196 		mutex_exit(&ill->ill_phyint->phyint_lock);
12197 
12198 		/*
12199 		 * We do the broadcast and nomination here rather
12200 		 * than waiting for a FAILOVER/FAILBACK to happen. In
12201 		 * the case of FAILBACK from INACTIVE standby to the
12202 		 * interface that has been repaired, PHYI_FAILED has not
12203 		 * been cleared yet. If there are only two interfaces in
12204 		 * that group, all we have is a FAILED and INACTIVE
12205 		 * interface. If we do the nomination soon after a failback,
12206 		 * the broadcast nomination code would select the
12207 		 * INACTIVE interface for receiving broadcasts as FAILED is
12208 		 * not yet cleared. As we don't want STANDBY/INACTIVE to
12209 		 * receive broadcast packets, we need to redo nomination
12210 		 * when the FAILED is cleared here. Thus, in general we
12211 		 * always do the nomination here for FAILED, STANDBY
12212 		 * and OFFLINE.
12213 		 */
12214 		if (((turn_on | turn_off) &
12215 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) {
12216 			ip_redo_nomination(phyi);
12217 		}
12218 		if (phyint_flags_modified) {
12219 			if (phyi->phyint_illv4 != NULL) {
12220 				ip_rts_ifmsg(phyi->phyint_illv4->
12221 				    ill_ipif);
12222 			}
12223 			if (phyi->phyint_illv6 != NULL) {
12224 				ip_rts_ifmsg(phyi->phyint_illv6->
12225 				    ill_ipif);
12226 			}
12227 		}
12228 		return (0);
12229 	} else if (set_linklocal || zero_source) {
12230 		mutex_enter(&ill->ill_lock);
12231 		if (set_linklocal)
12232 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
12233 		if (zero_source)
12234 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
12235 		mutex_exit(&ill->ill_lock);
12236 	}
12237 
12238 	/*
12239 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
12240 	 * or point-to-point interfaces with an unspecified destination. We do
12241 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
12242 	 * have a subnet assigned, which is how in.ndpd currently manages its
12243 	 * onlink prefix list when no addresses are configured with those
12244 	 * prefixes.
12245 	 */
12246 	if (ipif->ipif_isv6 &&
12247 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
12248 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
12249 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
12250 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12251 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
12252 		return (EINVAL);
12253 	}
12254 
12255 	/*
12256 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
12257 	 * from being brought up.
12258 	 */
12259 	if (!ipif->ipif_isv6 &&
12260 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
12261 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
12262 		return (EINVAL);
12263 	}
12264 
12265 	/*
12266 	 * The only flag changes that we currently take specific action on
12267 	 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL,
12268 	 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and
12269 	 * IPIF_PREFERRED.  This is done by bring the ipif down, changing
12270 	 * the flags and bringing it back up again.
12271 	 */
12272 	if ((turn_on|turn_off) &
12273 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
12274 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) {
12275 		/*
12276 		 * Taking this ipif down, make sure we have
12277 		 * valid net and subnet bcast ire's for other
12278 		 * logical interfaces, if we need them.
12279 		 */
12280 		if (!ipif->ipif_isv6)
12281 			ipif_check_bcast_ires(ipif);
12282 
12283 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
12284 		    !(turn_off & IPIF_UP)) {
12285 			need_up = B_TRUE;
12286 			if (ipif->ipif_flags & IPIF_UP)
12287 				ill->ill_logical_down = 1;
12288 			turn_on &= ~IPIF_UP;
12289 		}
12290 		err = ipif_down(ipif, q, mp);
12291 		ip1dbg(("ipif_down returns %d err ", err));
12292 		if (err == EINPROGRESS)
12293 			return (err);
12294 		ipif_down_tail(ipif);
12295 	}
12296 	return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up));
12297 }
12298 
12299 static int
12300 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp,
12301     boolean_t need_up)
12302 {
12303 	ill_t	*ill;
12304 	phyint_t *phyi;
12305 	uint64_t turn_on;
12306 	uint64_t turn_off;
12307 	uint64_t intf_flags;
12308 	boolean_t phyint_flags_modified = B_FALSE;
12309 	int	err = 0;
12310 	boolean_t set_linklocal = B_FALSE;
12311 	boolean_t zero_source = B_FALSE;
12312 
12313 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
12314 		ipif->ipif_ill->ill_name, ipif->ipif_id));
12315 
12316 	ASSERT(IAM_WRITER_IPIF(ipif));
12317 
12318 	ill = ipif->ipif_ill;
12319 	phyi = ill->ill_phyint;
12320 
12321 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
12322 	turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP);
12323 
12324 	turn_off = intf_flags & turn_on;
12325 	turn_on ^= turn_off;
12326 
12327 	if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))
12328 		phyint_flags_modified = B_TRUE;
12329 
12330 	/*
12331 	 * Now we change the flags. Track current value of
12332 	 * other flags in their respective places.
12333 	 */
12334 	mutex_enter(&ill->ill_lock);
12335 	mutex_enter(&phyi->phyint_lock);
12336 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
12337 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
12338 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
12339 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
12340 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
12341 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
12342 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
12343 		set_linklocal = B_TRUE;
12344 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
12345 	}
12346 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
12347 		zero_source = B_TRUE;
12348 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
12349 	}
12350 	mutex_exit(&ill->ill_lock);
12351 	mutex_exit(&phyi->phyint_lock);
12352 
12353 	if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)))
12354 		ip_redo_nomination(phyi);
12355 
12356 	if (set_linklocal)
12357 		(void) ipif_setlinklocal(ipif);
12358 
12359 	if (zero_source)
12360 		ipif->ipif_v6src_addr = ipv6_all_zeros;
12361 	else
12362 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
12363 
12364 	if (need_up) {
12365 		/*
12366 		 * XXX ipif_up really does not know whether a phyint flags
12367 		 * was modified or not. So, it sends up information on
12368 		 * only one routing sockets message. As we don't bring up
12369 		 * the interface and also set STANDBY/FAILED simultaneously
12370 		 * it should be okay.
12371 		 */
12372 		err = ipif_up(ipif, q, mp);
12373 	} else {
12374 		/*
12375 		 * Make sure routing socket sees all changes to the flags.
12376 		 * ipif_up_done* handles this when we use ipif_up.
12377 		 */
12378 		if (phyint_flags_modified) {
12379 			if (phyi->phyint_illv4 != NULL) {
12380 				ip_rts_ifmsg(phyi->phyint_illv4->
12381 				    ill_ipif);
12382 			}
12383 			if (phyi->phyint_illv6 != NULL) {
12384 				ip_rts_ifmsg(phyi->phyint_illv6->
12385 				    ill_ipif);
12386 			}
12387 		} else {
12388 			ip_rts_ifmsg(ipif);
12389 		}
12390 		/*
12391 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
12392 		 * this in need_up case.
12393 		 */
12394 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12395 	}
12396 	return (err);
12397 }
12398 
12399 /*
12400  * Restart entry point to restart the flags restart operation after the
12401  * refcounts have dropped to zero.
12402  */
12403 /* ARGSUSED */
12404 int
12405 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12406     ip_ioctl_cmd_t *ipip, void *if_req)
12407 {
12408 	int	err;
12409 	struct ifreq *ifr = (struct ifreq *)if_req;
12410 	struct lifreq *lifr = (struct lifreq *)if_req;
12411 
12412 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
12413 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12414 
12415 	ipif_down_tail(ipif);
12416 	if (ipip->ipi_cmd_type == IF_CMD) {
12417 		/*
12418 		 * Since ip_sioctl_flags expects an int and ifr_flags
12419 		 * is a short we need to cast ifr_flags into an int
12420 		 * to avoid having sign extension cause bits to get
12421 		 * set that should not be.
12422 		 */
12423 		err = ip_sioctl_flags_tail(ipif,
12424 		    (uint64_t)(ifr->ifr_flags & 0x0000ffff),
12425 		    q, mp, B_TRUE);
12426 	} else {
12427 		err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags,
12428 		    q, mp, B_TRUE);
12429 	}
12430 	return (err);
12431 }
12432 
12433 /*
12434  * Can operate on either a module or a driver queue.
12435  */
12436 /* ARGSUSED */
12437 int
12438 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12439     ip_ioctl_cmd_t *ipip, void *if_req)
12440 {
12441 	/*
12442 	 * Has the flags been set correctly till now ?
12443 	 */
12444 	ill_t *ill = ipif->ipif_ill;
12445 	phyint_t *phyi = ill->ill_phyint;
12446 
12447 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
12448 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12449 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
12450 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
12451 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
12452 
12453 	/*
12454 	 * Need a lock since some flags can be set even when there are
12455 	 * references to the ipif.
12456 	 */
12457 	mutex_enter(&ill->ill_lock);
12458 	if (ipip->ipi_cmd_type == IF_CMD) {
12459 		struct ifreq *ifr = (struct ifreq *)if_req;
12460 
12461 		/* Get interface flags (low 16 only). */
12462 		ifr->ifr_flags = ((ipif->ipif_flags |
12463 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
12464 	} else {
12465 		struct lifreq *lifr = (struct lifreq *)if_req;
12466 
12467 		/* Get interface flags. */
12468 		lifr->lifr_flags = ipif->ipif_flags |
12469 		    ill->ill_flags | phyi->phyint_flags;
12470 	}
12471 	mutex_exit(&ill->ill_lock);
12472 	return (0);
12473 }
12474 
12475 /* ARGSUSED */
12476 int
12477 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12478     ip_ioctl_cmd_t *ipip, void *if_req)
12479 {
12480 	int mtu;
12481 	int ip_min_mtu;
12482 	struct ifreq	*ifr;
12483 	struct lifreq *lifr;
12484 	ire_t	*ire;
12485 	ip_stack_t *ipst;
12486 
12487 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
12488 	    ipif->ipif_id, (void *)ipif));
12489 	if (ipip->ipi_cmd_type == IF_CMD) {
12490 		ifr = (struct ifreq *)if_req;
12491 		mtu = ifr->ifr_metric;
12492 	} else {
12493 		lifr = (struct lifreq *)if_req;
12494 		mtu = lifr->lifr_mtu;
12495 	}
12496 
12497 	if (ipif->ipif_isv6)
12498 		ip_min_mtu = IPV6_MIN_MTU;
12499 	else
12500 		ip_min_mtu = IP_MIN_MTU;
12501 
12502 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
12503 		return (EINVAL);
12504 
12505 	/*
12506 	 * Change the MTU size in all relevant ire's.
12507 	 * Mtu change Vs. new ire creation - protocol below.
12508 	 * First change ipif_mtu and the ire_max_frag of the
12509 	 * interface ire. Then do an ire walk and change the
12510 	 * ire_max_frag of all affected ires. During ire_add
12511 	 * under the bucket lock, set the ire_max_frag of the
12512 	 * new ire being created from the ipif/ire from which
12513 	 * it is being derived. If an mtu change happens after
12514 	 * the ire is added, the new ire will be cleaned up.
12515 	 * Conversely if the mtu change happens before the ire
12516 	 * is added, ire_add will see the new value of the mtu.
12517 	 */
12518 	ipif->ipif_mtu = mtu;
12519 	ipif->ipif_flags |= IPIF_FIXEDMTU;
12520 
12521 	if (ipif->ipif_isv6)
12522 		ire = ipif_to_ire_v6(ipif);
12523 	else
12524 		ire = ipif_to_ire(ipif);
12525 	if (ire != NULL) {
12526 		ire->ire_max_frag = ipif->ipif_mtu;
12527 		ire_refrele(ire);
12528 	}
12529 	ipst = ipif->ipif_ill->ill_ipst;
12530 	if (ipif->ipif_flags & IPIF_UP) {
12531 		if (ipif->ipif_isv6)
12532 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12533 			    ipst);
12534 		else
12535 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
12536 			    ipst);
12537 	}
12538 	/* Update the MTU in SCTP's list */
12539 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
12540 	return (0);
12541 }
12542 
12543 /* Get interface MTU. */
12544 /* ARGSUSED */
12545 int
12546 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12547 	ip_ioctl_cmd_t *ipip, void *if_req)
12548 {
12549 	struct ifreq	*ifr;
12550 	struct lifreq	*lifr;
12551 
12552 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
12553 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12554 	if (ipip->ipi_cmd_type == IF_CMD) {
12555 		ifr = (struct ifreq *)if_req;
12556 		ifr->ifr_metric = ipif->ipif_mtu;
12557 	} else {
12558 		lifr = (struct lifreq *)if_req;
12559 		lifr->lifr_mtu = ipif->ipif_mtu;
12560 	}
12561 	return (0);
12562 }
12563 
12564 /* Set interface broadcast address. */
12565 /* ARGSUSED2 */
12566 int
12567 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12568 	ip_ioctl_cmd_t *ipip, void *if_req)
12569 {
12570 	ipaddr_t addr;
12571 	ire_t	*ire;
12572 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12573 
12574 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
12575 	    ipif->ipif_id));
12576 
12577 	ASSERT(IAM_WRITER_IPIF(ipif));
12578 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12579 		return (EADDRNOTAVAIL);
12580 
12581 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
12582 
12583 	if (sin->sin_family != AF_INET)
12584 		return (EAFNOSUPPORT);
12585 
12586 	addr = sin->sin_addr.s_addr;
12587 	if (ipif->ipif_flags & IPIF_UP) {
12588 		/*
12589 		 * If we are already up, make sure the new
12590 		 * broadcast address makes sense.  If it does,
12591 		 * there should be an IRE for it already.
12592 		 * Don't match on ipif, only on the ill
12593 		 * since we are sharing these now. Don't use
12594 		 * MATCH_IRE_ILL_GROUP as we are looking for
12595 		 * the broadcast ire on this ill and each ill
12596 		 * in the group has its own broadcast ire.
12597 		 */
12598 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
12599 		    ipif, ALL_ZONES, NULL,
12600 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
12601 		if (ire == NULL) {
12602 			return (EINVAL);
12603 		} else {
12604 			ire_refrele(ire);
12605 		}
12606 	}
12607 	/*
12608 	 * Changing the broadcast addr for this ipif.
12609 	 * Make sure we have valid net and subnet bcast
12610 	 * ire's for other logical interfaces, if needed.
12611 	 */
12612 	if (addr != ipif->ipif_brd_addr)
12613 		ipif_check_bcast_ires(ipif);
12614 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
12615 	return (0);
12616 }
12617 
12618 /* Get interface broadcast address. */
12619 /* ARGSUSED */
12620 int
12621 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12622     ip_ioctl_cmd_t *ipip, void *if_req)
12623 {
12624 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
12625 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12626 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
12627 		return (EADDRNOTAVAIL);
12628 
12629 	/* IPIF_BROADCAST not possible with IPv6 */
12630 	ASSERT(!ipif->ipif_isv6);
12631 	*sin = sin_null;
12632 	sin->sin_family = AF_INET;
12633 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
12634 	return (0);
12635 }
12636 
12637 /*
12638  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
12639  */
12640 /* ARGSUSED */
12641 int
12642 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12643     ip_ioctl_cmd_t *ipip, void *if_req)
12644 {
12645 	int err = 0;
12646 	in6_addr_t v6mask;
12647 
12648 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
12649 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12650 
12651 	ASSERT(IAM_WRITER_IPIF(ipif));
12652 
12653 	if (ipif->ipif_isv6) {
12654 		sin6_t *sin6;
12655 
12656 		if (sin->sin_family != AF_INET6)
12657 			return (EAFNOSUPPORT);
12658 
12659 		sin6 = (sin6_t *)sin;
12660 		v6mask = sin6->sin6_addr;
12661 	} else {
12662 		ipaddr_t mask;
12663 
12664 		if (sin->sin_family != AF_INET)
12665 			return (EAFNOSUPPORT);
12666 
12667 		mask = sin->sin_addr.s_addr;
12668 		V4MASK_TO_V6(mask, v6mask);
12669 	}
12670 
12671 	/*
12672 	 * No big deal if the interface isn't already up, or the mask
12673 	 * isn't really changing, or this is pt-pt.
12674 	 */
12675 	if (!(ipif->ipif_flags & IPIF_UP) ||
12676 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12677 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12678 		ipif->ipif_v6net_mask = v6mask;
12679 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12680 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12681 			    ipif->ipif_v6net_mask,
12682 			    ipif->ipif_v6subnet);
12683 		}
12684 		return (0);
12685 	}
12686 	/*
12687 	 * Make sure we have valid net and subnet broadcast ire's
12688 	 * for the old netmask, if needed by other logical interfaces.
12689 	 */
12690 	if (!ipif->ipif_isv6)
12691 		ipif_check_bcast_ires(ipif);
12692 
12693 	err = ipif_logical_down(ipif, q, mp);
12694 	if (err == EINPROGRESS)
12695 		return (err);
12696 	ipif_down_tail(ipif);
12697 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12698 	return (err);
12699 }
12700 
12701 static int
12702 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12703 {
12704 	in6_addr_t v6mask;
12705 	int err = 0;
12706 
12707 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12708 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12709 
12710 	if (ipif->ipif_isv6) {
12711 		sin6_t *sin6;
12712 
12713 		sin6 = (sin6_t *)sin;
12714 		v6mask = sin6->sin6_addr;
12715 	} else {
12716 		ipaddr_t mask;
12717 
12718 		mask = sin->sin_addr.s_addr;
12719 		V4MASK_TO_V6(mask, v6mask);
12720 	}
12721 
12722 	ipif->ipif_v6net_mask = v6mask;
12723 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12724 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12725 		    ipif->ipif_v6subnet);
12726 	}
12727 	err = ipif_up(ipif, q, mp);
12728 
12729 	if (err == 0 || err == EINPROGRESS) {
12730 		/*
12731 		 * The interface must be DL_BOUND if this packet has to
12732 		 * go out on the wire. Since we only go through a logical
12733 		 * down and are bound with the driver during an internal
12734 		 * down/up that is satisfied.
12735 		 */
12736 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12737 			/* Potentially broadcast an address mask reply. */
12738 			ipif_mask_reply(ipif);
12739 		}
12740 	}
12741 	return (err);
12742 }
12743 
12744 /* ARGSUSED */
12745 int
12746 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12747     ip_ioctl_cmd_t *ipip, void *if_req)
12748 {
12749 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12750 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12751 	ipif_down_tail(ipif);
12752 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12753 }
12754 
12755 /* Get interface net mask. */
12756 /* ARGSUSED */
12757 int
12758 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12759     ip_ioctl_cmd_t *ipip, void *if_req)
12760 {
12761 	struct lifreq *lifr = (struct lifreq *)if_req;
12762 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12763 
12764 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12765 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12766 
12767 	/*
12768 	 * net mask can't change since we have a reference to the ipif.
12769 	 */
12770 	if (ipif->ipif_isv6) {
12771 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12772 		*sin6 = sin6_null;
12773 		sin6->sin6_family = AF_INET6;
12774 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12775 		lifr->lifr_addrlen =
12776 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12777 	} else {
12778 		*sin = sin_null;
12779 		sin->sin_family = AF_INET;
12780 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12781 		if (ipip->ipi_cmd_type == LIF_CMD) {
12782 			lifr->lifr_addrlen =
12783 			    ip_mask_to_plen(ipif->ipif_net_mask);
12784 		}
12785 	}
12786 	return (0);
12787 }
12788 
12789 /* ARGSUSED */
12790 int
12791 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12792     ip_ioctl_cmd_t *ipip, void *if_req)
12793 {
12794 
12795 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12796 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12797 	/*
12798 	 * Set interface metric.  We don't use this for
12799 	 * anything but we keep track of it in case it is
12800 	 * important to routing applications or such.
12801 	 */
12802 	if (ipip->ipi_cmd_type == IF_CMD) {
12803 		struct ifreq    *ifr;
12804 
12805 		ifr = (struct ifreq *)if_req;
12806 		ipif->ipif_metric = ifr->ifr_metric;
12807 	} else {
12808 		struct lifreq   *lifr;
12809 
12810 		lifr = (struct lifreq *)if_req;
12811 		ipif->ipif_metric = lifr->lifr_metric;
12812 	}
12813 	return (0);
12814 }
12815 
12816 
12817 /* ARGSUSED */
12818 int
12819 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12820     ip_ioctl_cmd_t *ipip, void *if_req)
12821 {
12822 
12823 	/* Get interface metric. */
12824 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12825 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12826 	if (ipip->ipi_cmd_type == IF_CMD) {
12827 		struct ifreq    *ifr;
12828 
12829 		ifr = (struct ifreq *)if_req;
12830 		ifr->ifr_metric = ipif->ipif_metric;
12831 	} else {
12832 		struct lifreq   *lifr;
12833 
12834 		lifr = (struct lifreq *)if_req;
12835 		lifr->lifr_metric = ipif->ipif_metric;
12836 	}
12837 
12838 	return (0);
12839 }
12840 
12841 /* ARGSUSED */
12842 int
12843 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12844     ip_ioctl_cmd_t *ipip, void *if_req)
12845 {
12846 
12847 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12848 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12849 	/*
12850 	 * Set the muxid returned from I_PLINK.
12851 	 */
12852 	if (ipip->ipi_cmd_type == IF_CMD) {
12853 		struct ifreq *ifr = (struct ifreq *)if_req;
12854 
12855 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12856 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12857 	} else {
12858 		struct lifreq *lifr = (struct lifreq *)if_req;
12859 
12860 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12861 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12862 	}
12863 	return (0);
12864 }
12865 
12866 /* ARGSUSED */
12867 int
12868 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12869     ip_ioctl_cmd_t *ipip, void *if_req)
12870 {
12871 
12872 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12873 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12874 	/*
12875 	 * Get the muxid saved in ill for I_PUNLINK.
12876 	 */
12877 	if (ipip->ipi_cmd_type == IF_CMD) {
12878 		struct ifreq *ifr = (struct ifreq *)if_req;
12879 
12880 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12881 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12882 	} else {
12883 		struct lifreq *lifr = (struct lifreq *)if_req;
12884 
12885 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12886 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12887 	}
12888 	return (0);
12889 }
12890 
12891 /*
12892  * Set the subnet prefix. Does not modify the broadcast address.
12893  */
12894 /* ARGSUSED */
12895 int
12896 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12897     ip_ioctl_cmd_t *ipip, void *if_req)
12898 {
12899 	int err = 0;
12900 	in6_addr_t v6addr;
12901 	in6_addr_t v6mask;
12902 	boolean_t need_up = B_FALSE;
12903 	int addrlen;
12904 
12905 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12906 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12907 
12908 	ASSERT(IAM_WRITER_IPIF(ipif));
12909 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12910 
12911 	if (ipif->ipif_isv6) {
12912 		sin6_t *sin6;
12913 
12914 		if (sin->sin_family != AF_INET6)
12915 			return (EAFNOSUPPORT);
12916 
12917 		sin6 = (sin6_t *)sin;
12918 		v6addr = sin6->sin6_addr;
12919 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12920 			return (EADDRNOTAVAIL);
12921 	} else {
12922 		ipaddr_t addr;
12923 
12924 		if (sin->sin_family != AF_INET)
12925 			return (EAFNOSUPPORT);
12926 
12927 		addr = sin->sin_addr.s_addr;
12928 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12929 			return (EADDRNOTAVAIL);
12930 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12931 		/* Add 96 bits */
12932 		addrlen += IPV6_ABITS - IP_ABITS;
12933 	}
12934 
12935 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12936 		return (EINVAL);
12937 
12938 	/* Check if bits in the address is set past the mask */
12939 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12940 		return (EINVAL);
12941 
12942 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12943 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12944 		return (0);	/* No change */
12945 
12946 	if (ipif->ipif_flags & IPIF_UP) {
12947 		/*
12948 		 * If the interface is already marked up,
12949 		 * we call ipif_down which will take care
12950 		 * of ditching any IREs that have been set
12951 		 * up based on the old interface address.
12952 		 */
12953 		err = ipif_logical_down(ipif, q, mp);
12954 		if (err == EINPROGRESS)
12955 			return (err);
12956 		ipif_down_tail(ipif);
12957 		need_up = B_TRUE;
12958 	}
12959 
12960 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12961 	return (err);
12962 }
12963 
12964 static int
12965 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12966     queue_t *q, mblk_t *mp, boolean_t need_up)
12967 {
12968 	ill_t	*ill = ipif->ipif_ill;
12969 	int	err = 0;
12970 
12971 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12972 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12973 
12974 	/* Set the new address. */
12975 	mutex_enter(&ill->ill_lock);
12976 	ipif->ipif_v6net_mask = v6mask;
12977 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12978 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12979 		    ipif->ipif_v6subnet);
12980 	}
12981 	mutex_exit(&ill->ill_lock);
12982 
12983 	if (need_up) {
12984 		/*
12985 		 * Now bring the interface back up.  If this
12986 		 * is the only IPIF for the ILL, ipif_up
12987 		 * will have to re-bind to the device, so
12988 		 * we may get back EINPROGRESS, in which
12989 		 * case, this IOCTL will get completed in
12990 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12991 		 */
12992 		err = ipif_up(ipif, q, mp);
12993 		if (err == EINPROGRESS)
12994 			return (err);
12995 	}
12996 	return (err);
12997 }
12998 
12999 /* ARGSUSED */
13000 int
13001 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13002     ip_ioctl_cmd_t *ipip, void *if_req)
13003 {
13004 	int	addrlen;
13005 	in6_addr_t v6addr;
13006 	in6_addr_t v6mask;
13007 	struct lifreq *lifr = (struct lifreq *)if_req;
13008 
13009 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
13010 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13011 	ipif_down_tail(ipif);
13012 
13013 	addrlen = lifr->lifr_addrlen;
13014 	if (ipif->ipif_isv6) {
13015 		sin6_t *sin6;
13016 
13017 		sin6 = (sin6_t *)sin;
13018 		v6addr = sin6->sin6_addr;
13019 	} else {
13020 		ipaddr_t addr;
13021 
13022 		addr = sin->sin_addr.s_addr;
13023 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
13024 		addrlen += IPV6_ABITS - IP_ABITS;
13025 	}
13026 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
13027 
13028 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
13029 }
13030 
13031 /* ARGSUSED */
13032 int
13033 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13034     ip_ioctl_cmd_t *ipip, void *if_req)
13035 {
13036 	struct lifreq *lifr = (struct lifreq *)if_req;
13037 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
13038 
13039 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
13040 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13041 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
13042 
13043 	if (ipif->ipif_isv6) {
13044 		*sin6 = sin6_null;
13045 		sin6->sin6_family = AF_INET6;
13046 		sin6->sin6_addr = ipif->ipif_v6subnet;
13047 		lifr->lifr_addrlen =
13048 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
13049 	} else {
13050 		*sin = sin_null;
13051 		sin->sin_family = AF_INET;
13052 		sin->sin_addr.s_addr = ipif->ipif_subnet;
13053 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
13054 	}
13055 	return (0);
13056 }
13057 
13058 /*
13059  * Set the IPv6 address token.
13060  */
13061 /* ARGSUSED */
13062 int
13063 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13064     ip_ioctl_cmd_t *ipi, void *if_req)
13065 {
13066 	ill_t *ill = ipif->ipif_ill;
13067 	int err;
13068 	in6_addr_t v6addr;
13069 	in6_addr_t v6mask;
13070 	boolean_t need_up = B_FALSE;
13071 	int i;
13072 	sin6_t *sin6 = (sin6_t *)sin;
13073 	struct lifreq *lifr = (struct lifreq *)if_req;
13074 	int addrlen;
13075 
13076 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
13077 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13078 	ASSERT(IAM_WRITER_IPIF(ipif));
13079 
13080 	addrlen = lifr->lifr_addrlen;
13081 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13082 	if (ipif->ipif_id != 0)
13083 		return (EINVAL);
13084 
13085 	if (!ipif->ipif_isv6)
13086 		return (EINVAL);
13087 
13088 	if (addrlen > IPV6_ABITS)
13089 		return (EINVAL);
13090 
13091 	v6addr = sin6->sin6_addr;
13092 
13093 	/*
13094 	 * The length of the token is the length from the end.  To get
13095 	 * the proper mask for this, compute the mask of the bits not
13096 	 * in the token; ie. the prefix, and then xor to get the mask.
13097 	 */
13098 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
13099 		return (EINVAL);
13100 	for (i = 0; i < 4; i++) {
13101 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13102 	}
13103 
13104 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
13105 	    ill->ill_token_length == addrlen)
13106 		return (0);	/* No change */
13107 
13108 	if (ipif->ipif_flags & IPIF_UP) {
13109 		err = ipif_logical_down(ipif, q, mp);
13110 		if (err == EINPROGRESS)
13111 			return (err);
13112 		ipif_down_tail(ipif);
13113 		need_up = B_TRUE;
13114 	}
13115 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
13116 	return (err);
13117 }
13118 
13119 static int
13120 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
13121     mblk_t *mp, boolean_t need_up)
13122 {
13123 	in6_addr_t v6addr;
13124 	in6_addr_t v6mask;
13125 	ill_t	*ill = ipif->ipif_ill;
13126 	int	i;
13127 	int	err = 0;
13128 
13129 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
13130 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13131 	v6addr = sin6->sin6_addr;
13132 	/*
13133 	 * The length of the token is the length from the end.  To get
13134 	 * the proper mask for this, compute the mask of the bits not
13135 	 * in the token; ie. the prefix, and then xor to get the mask.
13136 	 */
13137 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
13138 	for (i = 0; i < 4; i++)
13139 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
13140 
13141 	mutex_enter(&ill->ill_lock);
13142 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
13143 	ill->ill_token_length = addrlen;
13144 	mutex_exit(&ill->ill_lock);
13145 
13146 	if (need_up) {
13147 		/*
13148 		 * Now bring the interface back up.  If this
13149 		 * is the only IPIF for the ILL, ipif_up
13150 		 * will have to re-bind to the device, so
13151 		 * we may get back EINPROGRESS, in which
13152 		 * case, this IOCTL will get completed in
13153 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
13154 		 */
13155 		err = ipif_up(ipif, q, mp);
13156 		if (err == EINPROGRESS)
13157 			return (err);
13158 	}
13159 	return (err);
13160 }
13161 
13162 /* ARGSUSED */
13163 int
13164 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13165     ip_ioctl_cmd_t *ipi, void *if_req)
13166 {
13167 	ill_t *ill;
13168 	sin6_t *sin6 = (sin6_t *)sin;
13169 	struct lifreq *lifr = (struct lifreq *)if_req;
13170 
13171 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
13172 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13173 	if (ipif->ipif_id != 0)
13174 		return (EINVAL);
13175 
13176 	ill = ipif->ipif_ill;
13177 	if (!ill->ill_isv6)
13178 		return (ENXIO);
13179 
13180 	*sin6 = sin6_null;
13181 	sin6->sin6_family = AF_INET6;
13182 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
13183 	sin6->sin6_addr = ill->ill_token;
13184 	lifr->lifr_addrlen = ill->ill_token_length;
13185 	return (0);
13186 }
13187 
13188 /*
13189  * Set (hardware) link specific information that might override
13190  * what was acquired through the DL_INFO_ACK.
13191  * The logic is as follows.
13192  *
13193  * become exclusive
13194  * set CHANGING flag
13195  * change mtu on affected IREs
13196  * clear CHANGING flag
13197  *
13198  * An ire add that occurs before the CHANGING flag is set will have its mtu
13199  * changed by the ip_sioctl_lnkinfo.
13200  *
13201  * During the time the CHANGING flag is set, no new ires will be added to the
13202  * bucket, and ire add will fail (due the CHANGING flag).
13203  *
13204  * An ire add that occurs after the CHANGING flag is set will have the right mtu
13205  * before it is added to the bucket.
13206  *
13207  * Obviously only 1 thread can set the CHANGING flag and we need to become
13208  * exclusive to set the flag.
13209  */
13210 /* ARGSUSED */
13211 int
13212 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13213     ip_ioctl_cmd_t *ipi, void *if_req)
13214 {
13215 	ill_t		*ill = ipif->ipif_ill;
13216 	ipif_t		*nipif;
13217 	int		ip_min_mtu;
13218 	boolean_t	mtu_walk = B_FALSE;
13219 	struct lifreq	*lifr = (struct lifreq *)if_req;
13220 	lif_ifinfo_req_t *lir;
13221 	ire_t		*ire;
13222 
13223 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
13224 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13225 	lir = &lifr->lifr_ifinfo;
13226 	ASSERT(IAM_WRITER_IPIF(ipif));
13227 
13228 	/* Only allow for logical unit zero i.e. not on "le0:17" */
13229 	if (ipif->ipif_id != 0)
13230 		return (EINVAL);
13231 
13232 	/* Set interface MTU. */
13233 	if (ipif->ipif_isv6)
13234 		ip_min_mtu = IPV6_MIN_MTU;
13235 	else
13236 		ip_min_mtu = IP_MIN_MTU;
13237 
13238 	/*
13239 	 * Verify values before we set anything. Allow zero to
13240 	 * mean unspecified.
13241 	 */
13242 	if (lir->lir_maxmtu != 0 &&
13243 	    (lir->lir_maxmtu > ill->ill_max_frag ||
13244 	    lir->lir_maxmtu < ip_min_mtu))
13245 		return (EINVAL);
13246 	if (lir->lir_reachtime != 0 &&
13247 	    lir->lir_reachtime > ND_MAX_REACHTIME)
13248 		return (EINVAL);
13249 	if (lir->lir_reachretrans != 0 &&
13250 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
13251 		return (EINVAL);
13252 
13253 	mutex_enter(&ill->ill_lock);
13254 	ill->ill_state_flags |= ILL_CHANGING;
13255 	for (nipif = ill->ill_ipif; nipif != NULL;
13256 	    nipif = nipif->ipif_next) {
13257 		nipif->ipif_state_flags |= IPIF_CHANGING;
13258 	}
13259 
13260 	mutex_exit(&ill->ill_lock);
13261 
13262 	if (lir->lir_maxmtu != 0) {
13263 		ill->ill_max_mtu = lir->lir_maxmtu;
13264 		ill->ill_mtu_userspecified = 1;
13265 		mtu_walk = B_TRUE;
13266 	}
13267 
13268 	if (lir->lir_reachtime != 0)
13269 		ill->ill_reachable_time = lir->lir_reachtime;
13270 
13271 	if (lir->lir_reachretrans != 0)
13272 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
13273 
13274 	ill->ill_max_hops = lir->lir_maxhops;
13275 
13276 	ill->ill_max_buf = ND_MAX_Q;
13277 
13278 	if (mtu_walk) {
13279 		/*
13280 		 * Set the MTU on all ipifs associated with this ill except
13281 		 * for those whose MTU was fixed via SIOCSLIFMTU.
13282 		 */
13283 		for (nipif = ill->ill_ipif; nipif != NULL;
13284 		    nipif = nipif->ipif_next) {
13285 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
13286 				continue;
13287 
13288 			nipif->ipif_mtu = ill->ill_max_mtu;
13289 
13290 			if (!(nipif->ipif_flags & IPIF_UP))
13291 				continue;
13292 
13293 			if (nipif->ipif_isv6)
13294 				ire = ipif_to_ire_v6(nipif);
13295 			else
13296 				ire = ipif_to_ire(nipif);
13297 			if (ire != NULL) {
13298 				ire->ire_max_frag = ipif->ipif_mtu;
13299 				ire_refrele(ire);
13300 			}
13301 			if (ill->ill_isv6) {
13302 				ire_walk_ill_v6(MATCH_IRE_ILL, 0,
13303 				    ipif_mtu_change, (char *)nipif,
13304 				    ill);
13305 			} else {
13306 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
13307 				    ipif_mtu_change, (char *)nipif,
13308 				    ill);
13309 			}
13310 		}
13311 	}
13312 
13313 	mutex_enter(&ill->ill_lock);
13314 	for (nipif = ill->ill_ipif; nipif != NULL;
13315 	    nipif = nipif->ipif_next) {
13316 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
13317 	}
13318 	ILL_UNMARK_CHANGING(ill);
13319 	mutex_exit(&ill->ill_lock);
13320 
13321 	return (0);
13322 }
13323 
13324 /* ARGSUSED */
13325 int
13326 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13327     ip_ioctl_cmd_t *ipi, void *if_req)
13328 {
13329 	struct lif_ifinfo_req *lir;
13330 	ill_t *ill = ipif->ipif_ill;
13331 
13332 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
13333 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
13334 	if (ipif->ipif_id != 0)
13335 		return (EINVAL);
13336 
13337 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
13338 	lir->lir_maxhops = ill->ill_max_hops;
13339 	lir->lir_reachtime = ill->ill_reachable_time;
13340 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
13341 	lir->lir_maxmtu = ill->ill_max_mtu;
13342 
13343 	return (0);
13344 }
13345 
13346 /*
13347  * Return best guess as to the subnet mask for the specified address.
13348  * Based on the subnet masks for all the configured interfaces.
13349  *
13350  * We end up returning a zero mask in the case of default, multicast or
13351  * experimental.
13352  */
13353 static ipaddr_t
13354 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
13355 {
13356 	ipaddr_t net_mask;
13357 	ill_t	*ill;
13358 	ipif_t	*ipif;
13359 	ill_walk_context_t ctx;
13360 	ipif_t	*fallback_ipif = NULL;
13361 
13362 	net_mask = ip_net_mask(addr);
13363 	if (net_mask == 0) {
13364 		*ipifp = NULL;
13365 		return (0);
13366 	}
13367 
13368 	/* Let's check to see if this is maybe a local subnet route. */
13369 	/* this function only applies to IPv4 interfaces */
13370 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
13371 	ill = ILL_START_WALK_V4(&ctx, ipst);
13372 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
13373 		mutex_enter(&ill->ill_lock);
13374 		for (ipif = ill->ill_ipif; ipif != NULL;
13375 		    ipif = ipif->ipif_next) {
13376 			if (!IPIF_CAN_LOOKUP(ipif))
13377 				continue;
13378 			if (!(ipif->ipif_flags & IPIF_UP))
13379 				continue;
13380 			if ((ipif->ipif_subnet & net_mask) ==
13381 			    (addr & net_mask)) {
13382 				/*
13383 				 * Don't trust pt-pt interfaces if there are
13384 				 * other interfaces.
13385 				 */
13386 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
13387 					if (fallback_ipif == NULL) {
13388 						ipif_refhold_locked(ipif);
13389 						fallback_ipif = ipif;
13390 					}
13391 					continue;
13392 				}
13393 
13394 				/*
13395 				 * Fine. Just assume the same net mask as the
13396 				 * directly attached subnet interface is using.
13397 				 */
13398 				ipif_refhold_locked(ipif);
13399 				mutex_exit(&ill->ill_lock);
13400 				rw_exit(&ipst->ips_ill_g_lock);
13401 				if (fallback_ipif != NULL)
13402 					ipif_refrele(fallback_ipif);
13403 				*ipifp = ipif;
13404 				return (ipif->ipif_net_mask);
13405 			}
13406 		}
13407 		mutex_exit(&ill->ill_lock);
13408 	}
13409 	rw_exit(&ipst->ips_ill_g_lock);
13410 
13411 	*ipifp = fallback_ipif;
13412 	return ((fallback_ipif != NULL) ?
13413 	    fallback_ipif->ipif_net_mask : net_mask);
13414 }
13415 
13416 /*
13417  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
13418  */
13419 static void
13420 ip_wput_ioctl(queue_t *q, mblk_t *mp)
13421 {
13422 	IOCP	iocp;
13423 	ipft_t	*ipft;
13424 	ipllc_t	*ipllc;
13425 	mblk_t	*mp1;
13426 	cred_t	*cr;
13427 	int	error = 0;
13428 	conn_t	*connp;
13429 
13430 	ip1dbg(("ip_wput_ioctl"));
13431 	iocp = (IOCP)mp->b_rptr;
13432 	mp1 = mp->b_cont;
13433 	if (mp1 == NULL) {
13434 		iocp->ioc_error = EINVAL;
13435 		mp->b_datap->db_type = M_IOCNAK;
13436 		iocp->ioc_count = 0;
13437 		qreply(q, mp);
13438 		return;
13439 	}
13440 
13441 	/*
13442 	 * These IOCTLs provide various control capabilities to
13443 	 * upstream agents such as ULPs and processes.	There
13444 	 * are currently two such IOCTLs implemented.  They
13445 	 * are used by TCP to provide update information for
13446 	 * existing IREs and to forcibly delete an IRE for a
13447 	 * host that is not responding, thereby forcing an
13448 	 * attempt at a new route.
13449 	 */
13450 	iocp->ioc_error = EINVAL;
13451 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
13452 		goto done;
13453 
13454 	ipllc = (ipllc_t *)mp1->b_rptr;
13455 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
13456 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
13457 			break;
13458 	}
13459 	/*
13460 	 * prefer credential from mblk over ioctl;
13461 	 * see ip_sioctl_copyin_setup
13462 	 */
13463 	cr = DB_CREDDEF(mp, iocp->ioc_cr);
13464 
13465 	/*
13466 	 * Refhold the conn in case the request gets queued up in some lookup
13467 	 */
13468 	ASSERT(CONN_Q(q));
13469 	connp = Q_TO_CONN(q);
13470 	CONN_INC_REF(connp);
13471 	if (ipft->ipft_pfi &&
13472 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
13473 		pullupmsg(mp1, ipft->ipft_min_size))) {
13474 		error = (*ipft->ipft_pfi)(q,
13475 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
13476 	}
13477 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
13478 		/*
13479 		 * CONN_OPER_PENDING_DONE happens in the function called
13480 		 * through ipft_pfi above.
13481 		 */
13482 		return;
13483 	}
13484 
13485 	CONN_OPER_PENDING_DONE(connp);
13486 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
13487 		freemsg(mp);
13488 		return;
13489 	}
13490 	iocp->ioc_error = error;
13491 
13492 done:
13493 	mp->b_datap->db_type = M_IOCACK;
13494 	if (iocp->ioc_error)
13495 		iocp->ioc_count = 0;
13496 	qreply(q, mp);
13497 }
13498 
13499 /*
13500  * Lookup an ipif using the sequence id (ipif_seqid)
13501  */
13502 ipif_t *
13503 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
13504 {
13505 	ipif_t *ipif;
13506 
13507 	ASSERT(MUTEX_HELD(&ill->ill_lock));
13508 
13509 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13510 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
13511 			return (ipif);
13512 	}
13513 	return (NULL);
13514 }
13515 
13516 /*
13517  * Assign a unique id for the ipif. This is used later when we send
13518  * IRES to ARP for resolution where we initialize ire_ipif_seqid
13519  * to the value pointed by ire_ipif->ipif_seqid. Later when the
13520  * IRE is added, we verify that ipif has not disappeared.
13521  */
13522 
13523 static void
13524 ipif_assign_seqid(ipif_t *ipif)
13525 {
13526 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
13527 
13528 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
13529 }
13530 
13531 /*
13532  * Insert the ipif, so that the list of ipifs on the ill will be sorted
13533  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
13534  * be inserted into the first space available in the list. The value of
13535  * ipif_id will then be set to the appropriate value for its position.
13536  */
13537 static int
13538 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock)
13539 {
13540 	ill_t *ill;
13541 	ipif_t *tipif;
13542 	ipif_t **tipifp;
13543 	int id;
13544 	ip_stack_t	*ipst;
13545 
13546 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13547 	    IAM_WRITER_IPIF(ipif));
13548 
13549 	ill = ipif->ipif_ill;
13550 	ASSERT(ill != NULL);
13551 	ipst = ill->ill_ipst;
13552 
13553 	/*
13554 	 * In the case of lo0:0 we already hold the ill_g_lock.
13555 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13556 	 * ipif_insert. Another such caller is ipif_move.
13557 	 */
13558 	if (acquire_g_lock)
13559 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13560 	if (acquire_ill_lock)
13561 		mutex_enter(&ill->ill_lock);
13562 	id = ipif->ipif_id;
13563 	tipifp = &(ill->ill_ipif);
13564 	if (id == -1) {	/* need to find a real id */
13565 		id = 0;
13566 		while ((tipif = *tipifp) != NULL) {
13567 			ASSERT(tipif->ipif_id >= id);
13568 			if (tipif->ipif_id != id)
13569 				break; /* non-consecutive id */
13570 			id++;
13571 			tipifp = &(tipif->ipif_next);
13572 		}
13573 		/* limit number of logical interfaces */
13574 		if (id >= ipst->ips_ip_addrs_per_if) {
13575 			if (acquire_ill_lock)
13576 				mutex_exit(&ill->ill_lock);
13577 			if (acquire_g_lock)
13578 				rw_exit(&ipst->ips_ill_g_lock);
13579 			return (-1);
13580 		}
13581 		ipif->ipif_id = id; /* assign new id */
13582 	} else if (id < ipst->ips_ip_addrs_per_if) {
13583 		/* we have a real id; insert ipif in the right place */
13584 		while ((tipif = *tipifp) != NULL) {
13585 			ASSERT(tipif->ipif_id != id);
13586 			if (tipif->ipif_id > id)
13587 				break; /* found correct location */
13588 			tipifp = &(tipif->ipif_next);
13589 		}
13590 	} else {
13591 		if (acquire_ill_lock)
13592 			mutex_exit(&ill->ill_lock);
13593 		if (acquire_g_lock)
13594 			rw_exit(&ipst->ips_ill_g_lock);
13595 		return (-1);
13596 	}
13597 
13598 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13599 
13600 	ipif->ipif_next = tipif;
13601 	*tipifp = ipif;
13602 	if (acquire_ill_lock)
13603 		mutex_exit(&ill->ill_lock);
13604 	if (acquire_g_lock)
13605 		rw_exit(&ipst->ips_ill_g_lock);
13606 	return (0);
13607 }
13608 
13609 /*
13610  * Allocate and initialize a new interface control structure.  (Always
13611  * called as writer.)
13612  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13613  * is not part of the global linked list of ills. ipif_seqid is unique
13614  * in the system and to preserve the uniqueness, it is assigned only
13615  * when ill becomes part of the global list. At that point ill will
13616  * have a name. If it doesn't get assigned here, it will get assigned
13617  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13618  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13619  * the interface flags or any other information from the DL_INFO_ACK for
13620  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13621  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13622  * second DL_INFO_ACK comes in from the driver.
13623  */
13624 static ipif_t *
13625 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize)
13626 {
13627 	ipif_t	*ipif;
13628 	phyint_t *phyi;
13629 
13630 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13631 	    ill->ill_name, id, (void *)ill));
13632 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13633 
13634 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13635 		return (NULL);
13636 	*ipif = ipif_zero;	/* start clean */
13637 
13638 	ipif->ipif_ill = ill;
13639 	ipif->ipif_id = id;	/* could be -1 */
13640 	/*
13641 	 * Inherit the zoneid from the ill; for the shared stack instance
13642 	 * this is always the global zone
13643 	 */
13644 	ipif->ipif_zoneid = ill->ill_zoneid;
13645 
13646 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13647 
13648 	ipif->ipif_refcnt = 0;
13649 	ipif->ipif_saved_ire_cnt = 0;
13650 
13651 	if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) {
13652 		mi_free(ipif);
13653 		return (NULL);
13654 	}
13655 	/* -1 id should have been replaced by real id */
13656 	id = ipif->ipif_id;
13657 	ASSERT(id >= 0);
13658 
13659 	if (ill->ill_name[0] != '\0')
13660 		ipif_assign_seqid(ipif);
13661 
13662 	/*
13663 	 * Keep a copy of original id in ipif_orig_ipifid.  Failback
13664 	 * will attempt to restore the original id.  The SIOCSLIFOINDEX
13665 	 * ioctl sets ipif_orig_ipifid to zero.
13666 	 */
13667 	ipif->ipif_orig_ipifid = id;
13668 
13669 	/*
13670 	 * We grab the ill_lock and phyint_lock to protect the flag changes.
13671 	 * The ipif is still not up and can't be looked up until the
13672 	 * ioctl completes and the IPIF_CHANGING flag is cleared.
13673 	 */
13674 	mutex_enter(&ill->ill_lock);
13675 	mutex_enter(&ill->ill_phyint->phyint_lock);
13676 	/*
13677 	 * Set the running flag when logical interface zero is created.
13678 	 * For subsequent logical interfaces, a DLPI link down
13679 	 * notification message may have cleared the running flag to
13680 	 * indicate the link is down, so we shouldn't just blindly set it.
13681 	 */
13682 	if (id == 0)
13683 		ill->ill_phyint->phyint_flags |= PHYI_RUNNING;
13684 	ipif->ipif_ire_type = ire_type;
13685 	phyi = ill->ill_phyint;
13686 	ipif->ipif_orig_ifindex = phyi->phyint_ifindex;
13687 
13688 	if (ipif->ipif_isv6) {
13689 		ill->ill_flags |= ILLF_IPV6;
13690 	} else {
13691 		ipaddr_t inaddr_any = INADDR_ANY;
13692 
13693 		ill->ill_flags |= ILLF_IPV4;
13694 
13695 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13696 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13697 		    &ipif->ipif_v6lcl_addr);
13698 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13699 		    &ipif->ipif_v6src_addr);
13700 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13701 		    &ipif->ipif_v6subnet);
13702 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13703 		    &ipif->ipif_v6net_mask);
13704 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13705 		    &ipif->ipif_v6brd_addr);
13706 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13707 		    &ipif->ipif_v6pp_dst_addr);
13708 	}
13709 
13710 	/*
13711 	 * Don't set the interface flags etc. now, will do it in
13712 	 * ip_ll_subnet_defaults.
13713 	 */
13714 	if (!initialize) {
13715 		mutex_exit(&ill->ill_lock);
13716 		mutex_exit(&ill->ill_phyint->phyint_lock);
13717 		return (ipif);
13718 	}
13719 	ipif->ipif_mtu = ill->ill_max_mtu;
13720 
13721 	if (ill->ill_bcast_addr_length != 0) {
13722 		/*
13723 		 * Later detect lack of DLPI driver multicast
13724 		 * capability by catching DL_ENABMULTI errors in
13725 		 * ip_rput_dlpi.
13726 		 */
13727 		ill->ill_flags |= ILLF_MULTICAST;
13728 		if (!ipif->ipif_isv6)
13729 			ipif->ipif_flags |= IPIF_BROADCAST;
13730 	} else {
13731 		if (ill->ill_net_type != IRE_LOOPBACK) {
13732 			if (ipif->ipif_isv6)
13733 				/*
13734 				 * Note: xresolv interfaces will eventually need
13735 				 * NOARP set here as well, but that will require
13736 				 * those external resolvers to have some
13737 				 * knowledge of that flag and act appropriately.
13738 				 * Not to be changed at present.
13739 				 */
13740 				ill->ill_flags |= ILLF_NONUD;
13741 			else
13742 				ill->ill_flags |= ILLF_NOARP;
13743 		}
13744 		if (ill->ill_phys_addr_length == 0) {
13745 			if (ill->ill_media &&
13746 			    ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) {
13747 				ipif->ipif_flags |= IPIF_NOXMIT;
13748 				phyi->phyint_flags |= PHYI_VIRTUAL;
13749 			} else {
13750 				/* pt-pt supports multicast. */
13751 				ill->ill_flags |= ILLF_MULTICAST;
13752 				if (ill->ill_net_type == IRE_LOOPBACK) {
13753 					phyi->phyint_flags |=
13754 					    (PHYI_LOOPBACK | PHYI_VIRTUAL);
13755 				} else {
13756 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13757 				}
13758 			}
13759 		}
13760 	}
13761 	mutex_exit(&ill->ill_lock);
13762 	mutex_exit(&ill->ill_phyint->phyint_lock);
13763 	return (ipif);
13764 }
13765 
13766 /*
13767  * If appropriate, send a message up to the resolver delete the entry
13768  * for the address of this interface which is going out of business.
13769  * (Always called as writer).
13770  *
13771  * NOTE : We need to check for NULL mps as some of the fields are
13772  *	  initialized only for some interface types. See ipif_resolver_up()
13773  *	  for details.
13774  */
13775 void
13776 ipif_arp_down(ipif_t *ipif)
13777 {
13778 	mblk_t	*mp;
13779 	ill_t	*ill = ipif->ipif_ill;
13780 
13781 	ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13782 	ASSERT(IAM_WRITER_IPIF(ipif));
13783 
13784 	/* Delete the mapping for the local address */
13785 	mp = ipif->ipif_arp_del_mp;
13786 	if (mp != NULL) {
13787 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13788 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13789 		putnext(ill->ill_rq, mp);
13790 		ipif->ipif_arp_del_mp = NULL;
13791 	}
13792 
13793 	/*
13794 	 * If this is the last ipif that is going down and there are no
13795 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13796 	 * clean up ARP completely.
13797 	 */
13798 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13799 
13800 		/* Send up AR_INTERFACE_DOWN message */
13801 		mp = ill->ill_arp_down_mp;
13802 		if (mp != NULL) {
13803 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13804 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13805 			    ipif->ipif_id));
13806 			putnext(ill->ill_rq, mp);
13807 			ill->ill_arp_down_mp = NULL;
13808 		}
13809 
13810 		/* Tell ARP to delete the multicast mappings */
13811 		mp = ill->ill_arp_del_mapping_mp;
13812 		if (mp != NULL) {
13813 			ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13814 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13815 			    ipif->ipif_id));
13816 			putnext(ill->ill_rq, mp);
13817 			ill->ill_arp_del_mapping_mp = NULL;
13818 		}
13819 	}
13820 }
13821 
13822 /*
13823  * This function sets up the multicast mappings in ARP. When ipif_resolver_up
13824  * calls this function, it passes a non-NULL arp_add_mapping_mp indicating
13825  * that it wants the add_mp allocated in this function to be returned
13826  * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to
13827  * just re-do the multicast, it wants us to send the add_mp to ARP also.
13828  * ipif_resolver_up does not want us to do the "add" i.e sending to ARP,
13829  * as it does a ipif_arp_down after calling this function - which will
13830  * remove what we add here.
13831  *
13832  * Returns -1 on failures and 0 on success.
13833  */
13834 int
13835 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13836 {
13837 	mblk_t	*del_mp = NULL;
13838 	mblk_t *add_mp = NULL;
13839 	mblk_t *mp;
13840 	ill_t	*ill = ipif->ipif_ill;
13841 	phyint_t *phyi = ill->ill_phyint;
13842 	ipaddr_t addr, mask, extract_mask = 0;
13843 	arma_t	*arma;
13844 	uint8_t *maddr, *bphys_addr;
13845 	uint32_t hw_start;
13846 	dl_unitdata_req_t *dlur;
13847 
13848 	ASSERT(IAM_WRITER_IPIF(ipif));
13849 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13850 		return (0);
13851 
13852 	/*
13853 	 * Delete the existing mapping from ARP. Normally ipif_down
13854 	 * -> ipif_arp_down should send this up to ARP. The only
13855 	 * reason we would find this when we are switching from
13856 	 * Multicast to Broadcast where we did not do a down.
13857 	 */
13858 	mp = ill->ill_arp_del_mapping_mp;
13859 	if (mp != NULL) {
13860 		ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n",
13861 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13862 		putnext(ill->ill_rq, mp);
13863 		ill->ill_arp_del_mapping_mp = NULL;
13864 	}
13865 
13866 	if (arp_add_mapping_mp != NULL)
13867 		*arp_add_mapping_mp = NULL;
13868 
13869 	/*
13870 	 * Check that the address is not to long for the constant
13871 	 * length reserved in the template arma_t.
13872 	 */
13873 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13874 		return (-1);
13875 
13876 	/* Add mapping mblk */
13877 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13878 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13879 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13880 	    (caddr_t)&addr);
13881 	if (add_mp == NULL)
13882 		return (-1);
13883 	arma = (arma_t *)add_mp->b_rptr;
13884 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13885 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13886 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13887 
13888 	/*
13889 	 * Determine the broadcast address.
13890 	 */
13891 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13892 	if (ill->ill_sap_length < 0)
13893 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13894 	else
13895 		bphys_addr = (uchar_t *)dlur +
13896 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13897 	/*
13898 	 * Check PHYI_MULTI_BCAST and length of physical
13899 	 * address to determine if we use the mapping or the
13900 	 * broadcast address.
13901 	 */
13902 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13903 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13904 		    bphys_addr, maddr, &hw_start, &extract_mask))
13905 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13906 
13907 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13908 	    (ill->ill_flags & ILLF_MULTICAST)) {
13909 		/* Make sure this will not match the "exact" entry. */
13910 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13911 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13912 		    (caddr_t)&addr);
13913 		if (del_mp == NULL) {
13914 			freemsg(add_mp);
13915 			return (-1);
13916 		}
13917 		bcopy(&extract_mask, (char *)arma +
13918 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13919 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13920 			/* Use link-layer broadcast address for MULTI_BCAST */
13921 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13922 			ip2dbg(("ipif_arp_setup_multicast: adding"
13923 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13924 		} else {
13925 			arma->arma_hw_mapping_start = hw_start;
13926 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13927 			    " ARP setup for %s\n", ill->ill_name));
13928 		}
13929 	} else {
13930 		freemsg(add_mp);
13931 		ASSERT(del_mp == NULL);
13932 		/* It is neither MULTICAST nor MULTI_BCAST */
13933 		return (0);
13934 	}
13935 	ASSERT(add_mp != NULL && del_mp != NULL);
13936 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13937 	ill->ill_arp_del_mapping_mp = del_mp;
13938 	if (arp_add_mapping_mp != NULL) {
13939 		/* The caller just wants the mblks allocated */
13940 		*arp_add_mapping_mp = add_mp;
13941 	} else {
13942 		/* The caller wants us to send it to arp */
13943 		putnext(ill->ill_rq, add_mp);
13944 	}
13945 	return (0);
13946 }
13947 
13948 /*
13949  * Get the resolver set up for a new interface address.
13950  * (Always called as writer.)
13951  * Called both for IPv4 and IPv6 interfaces,
13952  * though it only sets up the resolver for v6
13953  * if it's an xresolv interface (one using an external resolver).
13954  * Honors ILLF_NOARP.
13955  * The enumerated value res_act is used to tune the behavior.
13956  * If set to Res_act_initial, then we set up all the resolver
13957  * structures for a new interface.  If set to Res_act_move, then
13958  * we just send an AR_ENTRY_ADD message up to ARP for IPv4
13959  * interfaces; this is called by ip_rput_dlpi_writer() to handle
13960  * asynchronous hardware address change notification.  If set to
13961  * Res_act_defend, then we tell ARP that it needs to send a single
13962  * gratuitous message in defense of the address.
13963  * Returns error on failure.
13964  */
13965 int
13966 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13967 {
13968 	caddr_t	addr;
13969 	mblk_t	*arp_up_mp = NULL;
13970 	mblk_t	*arp_down_mp = NULL;
13971 	mblk_t	*arp_add_mp = NULL;
13972 	mblk_t	*arp_del_mp = NULL;
13973 	mblk_t	*arp_add_mapping_mp = NULL;
13974 	mblk_t	*arp_del_mapping_mp = NULL;
13975 	ill_t	*ill = ipif->ipif_ill;
13976 	uchar_t	*area_p = NULL;
13977 	uchar_t	*ared_p = NULL;
13978 	int	err = ENOMEM;
13979 	boolean_t was_dup;
13980 
13981 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13982 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13983 	ASSERT(IAM_WRITER_IPIF(ipif));
13984 
13985 	was_dup = B_FALSE;
13986 	if (res_act == Res_act_initial) {
13987 		ipif->ipif_addr_ready = 0;
13988 		/*
13989 		 * We're bringing an interface up here.  There's no way that we
13990 		 * should need to shut down ARP now.
13991 		 */
13992 		mutex_enter(&ill->ill_lock);
13993 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13994 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13995 			ill->ill_ipif_dup_count--;
13996 			was_dup = B_TRUE;
13997 		}
13998 		mutex_exit(&ill->ill_lock);
13999 	}
14000 	if (ipif->ipif_recovery_id != 0)
14001 		(void) untimeout(ipif->ipif_recovery_id);
14002 	ipif->ipif_recovery_id = 0;
14003 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
14004 		ipif->ipif_addr_ready = 1;
14005 		return (0);
14006 	}
14007 	/* NDP will set the ipif_addr_ready flag when it's ready */
14008 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
14009 		return (0);
14010 
14011 	if (ill->ill_isv6) {
14012 		/*
14013 		 * External resolver for IPv6
14014 		 */
14015 		ASSERT(res_act == Res_act_initial);
14016 		if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
14017 			addr = (caddr_t)&ipif->ipif_v6lcl_addr;
14018 			area_p = (uchar_t *)&ip6_area_template;
14019 			ared_p = (uchar_t *)&ip6_ared_template;
14020 		}
14021 	} else {
14022 		/*
14023 		 * IPv4 arp case. If the ARP stream has already started
14024 		 * closing, fail this request for ARP bringup. Else
14025 		 * record the fact that an ARP bringup is pending.
14026 		 */
14027 		mutex_enter(&ill->ill_lock);
14028 		if (ill->ill_arp_closing) {
14029 			mutex_exit(&ill->ill_lock);
14030 			err = EINVAL;
14031 			goto failed;
14032 		} else {
14033 			if (ill->ill_ipif_up_count == 0 &&
14034 			    ill->ill_ipif_dup_count == 0 && !was_dup)
14035 				ill->ill_arp_bringup_pending = 1;
14036 			mutex_exit(&ill->ill_lock);
14037 		}
14038 		if (ipif->ipif_lcl_addr != INADDR_ANY) {
14039 			addr = (caddr_t)&ipif->ipif_lcl_addr;
14040 			area_p = (uchar_t *)&ip_area_template;
14041 			ared_p = (uchar_t *)&ip_ared_template;
14042 		}
14043 	}
14044 
14045 	/*
14046 	 * Add an entry for the local address in ARP only if it
14047 	 * is not UNNUMBERED and the address is not INADDR_ANY.
14048 	 */
14049 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) {
14050 		area_t *area;
14051 
14052 		/* Now ask ARP to publish our address. */
14053 		arp_add_mp = ill_arp_alloc(ill, area_p, addr);
14054 		if (arp_add_mp == NULL)
14055 			goto failed;
14056 		area = (area_t *)arp_add_mp->b_rptr;
14057 		if (res_act != Res_act_initial) {
14058 			/*
14059 			 * Copy the new hardware address and length into
14060 			 * arp_add_mp to be sent to ARP.
14061 			 */
14062 			area->area_hw_addr_length = ill->ill_phys_addr_length;
14063 			bcopy(ill->ill_phys_addr,
14064 			    ((char *)area + area->area_hw_addr_offset),
14065 			    area->area_hw_addr_length);
14066 		}
14067 
14068 		area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH |
14069 		    ACE_F_MYADDR;
14070 
14071 		if (res_act == Res_act_defend) {
14072 			area->area_flags |= ACE_F_DEFEND;
14073 			/*
14074 			 * If we're just defending our address now, then
14075 			 * there's no need to set up ARP multicast mappings.
14076 			 * The publish command is enough.
14077 			 */
14078 			goto done;
14079 		}
14080 
14081 		if (res_act != Res_act_initial)
14082 			goto arp_setup_multicast;
14083 
14084 		/*
14085 		 * Allocate an ARP deletion message so we know we can tell ARP
14086 		 * when the interface goes down.
14087 		 */
14088 		arp_del_mp = ill_arp_alloc(ill, ared_p, addr);
14089 		if (arp_del_mp == NULL)
14090 			goto failed;
14091 
14092 	} else {
14093 		if (res_act != Res_act_initial)
14094 			goto done;
14095 	}
14096 	/*
14097 	 * Need to bring up ARP or setup multicast mapping only
14098 	 * when the first interface is coming UP.
14099 	 */
14100 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
14101 	    was_dup) {
14102 		goto done;
14103 	}
14104 
14105 	/*
14106 	 * Allocate an ARP down message (to be saved) and an ARP up
14107 	 * message.
14108 	 */
14109 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
14110 	if (arp_down_mp == NULL)
14111 		goto failed;
14112 
14113 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
14114 	if (arp_up_mp == NULL)
14115 		goto failed;
14116 
14117 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
14118 		goto done;
14119 
14120 arp_setup_multicast:
14121 	/*
14122 	 * Setup the multicast mappings. This function initializes
14123 	 * ill_arp_del_mapping_mp also. This does not need to be done for
14124 	 * IPv6.
14125 	 */
14126 	if (!ill->ill_isv6) {
14127 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
14128 		if (err != 0)
14129 			goto failed;
14130 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
14131 		ASSERT(arp_add_mapping_mp != NULL);
14132 	}
14133 
14134 done:
14135 	if (arp_del_mp != NULL) {
14136 		ASSERT(ipif->ipif_arp_del_mp == NULL);
14137 		ipif->ipif_arp_del_mp = arp_del_mp;
14138 	}
14139 	if (arp_down_mp != NULL) {
14140 		ASSERT(ill->ill_arp_down_mp == NULL);
14141 		ill->ill_arp_down_mp = arp_down_mp;
14142 	}
14143 	if (arp_del_mapping_mp != NULL) {
14144 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
14145 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
14146 	}
14147 	if (arp_up_mp != NULL) {
14148 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
14149 		    ill->ill_name, ipif->ipif_id));
14150 		putnext(ill->ill_rq, arp_up_mp);
14151 	}
14152 	if (arp_add_mp != NULL) {
14153 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
14154 		    ill->ill_name, ipif->ipif_id));
14155 		/*
14156 		 * If it's an extended ARP implementation, then we'll wait to
14157 		 * hear that DAD has finished before using the interface.
14158 		 */
14159 		if (!ill->ill_arp_extend)
14160 			ipif->ipif_addr_ready = 1;
14161 		putnext(ill->ill_rq, arp_add_mp);
14162 	} else {
14163 		ipif->ipif_addr_ready = 1;
14164 	}
14165 	if (arp_add_mapping_mp != NULL) {
14166 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
14167 		    ill->ill_name, ipif->ipif_id));
14168 		putnext(ill->ill_rq, arp_add_mapping_mp);
14169 	}
14170 	if (res_act != Res_act_initial)
14171 		return (0);
14172 
14173 	if (ill->ill_flags & ILLF_NOARP)
14174 		err = ill_arp_off(ill);
14175 	else
14176 		err = ill_arp_on(ill);
14177 	if (err != 0) {
14178 		ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err));
14179 		freemsg(ipif->ipif_arp_del_mp);
14180 		freemsg(ill->ill_arp_down_mp);
14181 		freemsg(ill->ill_arp_del_mapping_mp);
14182 		ipif->ipif_arp_del_mp = NULL;
14183 		ill->ill_arp_down_mp = NULL;
14184 		ill->ill_arp_del_mapping_mp = NULL;
14185 		return (err);
14186 	}
14187 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
14188 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
14189 
14190 failed:
14191 	ip1dbg(("ipif_resolver_up: FAILED\n"));
14192 	freemsg(arp_add_mp);
14193 	freemsg(arp_del_mp);
14194 	freemsg(arp_add_mapping_mp);
14195 	freemsg(arp_up_mp);
14196 	freemsg(arp_down_mp);
14197 	ill->ill_arp_bringup_pending = 0;
14198 	return (err);
14199 }
14200 
14201 /*
14202  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
14203  * just gone back up.
14204  */
14205 static void
14206 ipif_arp_start_dad(ipif_t *ipif)
14207 {
14208 	ill_t *ill = ipif->ipif_ill;
14209 	mblk_t *arp_add_mp;
14210 	area_t *area;
14211 
14212 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
14213 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
14214 	    ipif->ipif_lcl_addr == INADDR_ANY ||
14215 	    (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
14216 	    (char *)&ipif->ipif_lcl_addr)) == NULL) {
14217 		/*
14218 		 * If we can't contact ARP for some reason, that's not really a
14219 		 * problem.  Just send out the routing socket notification that
14220 		 * DAD completion would have done, and continue.
14221 		 */
14222 		ipif_mask_reply(ipif);
14223 		ip_rts_ifmsg(ipif);
14224 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14225 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14226 		ipif->ipif_addr_ready = 1;
14227 		return;
14228 	}
14229 
14230 	/* Setting the 'unverified' flag restarts DAD */
14231 	area = (area_t *)arp_add_mp->b_rptr;
14232 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR |
14233 	    ACE_F_UNVERIFIED;
14234 	putnext(ill->ill_rq, arp_add_mp);
14235 }
14236 
14237 static void
14238 ipif_ndp_start_dad(ipif_t *ipif)
14239 {
14240 	nce_t *nce;
14241 
14242 	nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE);
14243 	if (nce == NULL)
14244 		return;
14245 
14246 	if (!ndp_restart_dad(nce)) {
14247 		/*
14248 		 * If we can't restart DAD for some reason, that's not really a
14249 		 * problem.  Just send out the routing socket notification that
14250 		 * DAD completion would have done, and continue.
14251 		 */
14252 		ip_rts_ifmsg(ipif);
14253 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
14254 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
14255 		ipif->ipif_addr_ready = 1;
14256 	}
14257 	NCE_REFRELE(nce);
14258 }
14259 
14260 /*
14261  * Restart duplicate address detection on all interfaces on the given ill.
14262  *
14263  * This is called when an interface transitions from down to up
14264  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
14265  *
14266  * Note that since the underlying physical link has transitioned, we must cause
14267  * at least one routing socket message to be sent here, either via DAD
14268  * completion or just by default on the first ipif.  (If we don't do this, then
14269  * in.mpathd will see long delays when doing link-based failure recovery.)
14270  */
14271 void
14272 ill_restart_dad(ill_t *ill, boolean_t went_up)
14273 {
14274 	ipif_t *ipif;
14275 
14276 	if (ill == NULL)
14277 		return;
14278 
14279 	/*
14280 	 * If layer two doesn't support duplicate address detection, then just
14281 	 * send the routing socket message now and be done with it.
14282 	 */
14283 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
14284 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
14285 		ip_rts_ifmsg(ill->ill_ipif);
14286 		return;
14287 	}
14288 
14289 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14290 		if (went_up) {
14291 			if (ipif->ipif_flags & IPIF_UP) {
14292 				if (ill->ill_isv6)
14293 					ipif_ndp_start_dad(ipif);
14294 				else
14295 					ipif_arp_start_dad(ipif);
14296 			} else if (ill->ill_isv6 &&
14297 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
14298 				/*
14299 				 * For IPv4, the ARP module itself will
14300 				 * automatically start the DAD process when it
14301 				 * sees DL_NOTE_LINK_UP.  We respond to the
14302 				 * AR_CN_READY at the completion of that task.
14303 				 * For IPv6, we must kick off the bring-up
14304 				 * process now.
14305 				 */
14306 				ndp_do_recovery(ipif);
14307 			} else {
14308 				/*
14309 				 * Unfortunately, the first ipif is "special"
14310 				 * and represents the underlying ill in the
14311 				 * routing socket messages.  Thus, when this
14312 				 * one ipif is down, we must still notify so
14313 				 * that the user knows the IFF_RUNNING status
14314 				 * change.  (If the first ipif is up, then
14315 				 * we'll handle eventual routing socket
14316 				 * notification via DAD completion.)
14317 				 */
14318 				if (ipif == ill->ill_ipif)
14319 					ip_rts_ifmsg(ill->ill_ipif);
14320 			}
14321 		} else {
14322 			/*
14323 			 * After link down, we'll need to send a new routing
14324 			 * message when the link comes back, so clear
14325 			 * ipif_addr_ready.
14326 			 */
14327 			ipif->ipif_addr_ready = 0;
14328 		}
14329 	}
14330 
14331 	/*
14332 	 * If we've torn down links, then notify the user right away.
14333 	 */
14334 	if (!went_up)
14335 		ip_rts_ifmsg(ill->ill_ipif);
14336 }
14337 
14338 /*
14339  * Wakeup all threads waiting to enter the ipsq, and sleeping
14340  * on any of the ills in this ipsq. The ill_lock of the ill
14341  * must be held so that waiters don't miss wakeups
14342  */
14343 static void
14344 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock)
14345 {
14346 	phyint_t *phyint;
14347 
14348 	phyint = ipsq->ipsq_phyint_list;
14349 	while (phyint != NULL) {
14350 		if (phyint->phyint_illv4) {
14351 			if (!caller_holds_lock)
14352 				mutex_enter(&phyint->phyint_illv4->ill_lock);
14353 			ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14354 			cv_broadcast(&phyint->phyint_illv4->ill_cv);
14355 			if (!caller_holds_lock)
14356 				mutex_exit(&phyint->phyint_illv4->ill_lock);
14357 		}
14358 		if (phyint->phyint_illv6) {
14359 			if (!caller_holds_lock)
14360 				mutex_enter(&phyint->phyint_illv6->ill_lock);
14361 			ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14362 			cv_broadcast(&phyint->phyint_illv6->ill_cv);
14363 			if (!caller_holds_lock)
14364 				mutex_exit(&phyint->phyint_illv6->ill_lock);
14365 		}
14366 		phyint = phyint->phyint_ipsq_next;
14367 	}
14368 }
14369 
14370 static ipsq_t *
14371 ipsq_create(char *groupname, ip_stack_t *ipst)
14372 {
14373 	ipsq_t	*ipsq;
14374 
14375 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14376 	ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP);
14377 	if (ipsq == NULL) {
14378 		return (NULL);
14379 	}
14380 
14381 	if (groupname != NULL)
14382 		(void) strcpy(ipsq->ipsq_name, groupname);
14383 	else
14384 		ipsq->ipsq_name[0] = '\0';
14385 
14386 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL);
14387 	ipsq->ipsq_flags |= IPSQ_GROUP;
14388 	ipsq->ipsq_next = ipst->ips_ipsq_g_head;
14389 	ipst->ips_ipsq_g_head = ipsq;
14390 	ipsq->ipsq_ipst = ipst;		/* No netstack_hold */
14391 	return (ipsq);
14392 }
14393 
14394 /*
14395  * Return an ipsq correspoding to the groupname. If 'create' is true
14396  * allocate a new ipsq if one does not exist. Usually an ipsq is associated
14397  * uniquely with an IPMP group. However during IPMP groupname operations,
14398  * multiple IPMP groups may be associated with a single ipsq. But no
14399  * IPMP group can be associated with more than 1 ipsq at any time.
14400  * For example
14401  *	Interfaces		IPMP grpname	ipsq	ipsq_name      ipsq_refs
14402  * 	hme1, hme2		mpk17-84	ipsq1	mpk17-84	2
14403  *	hme3, hme4		mpk17-85	ipsq2	mpk17-85	2
14404  *
14405  * Now the command ifconfig hme3 group mpk17-84 results in the temporary
14406  * status shown below during the execution of the above command.
14407  * 	hme1, hme2, hme3, hme4	mpk17-84, mpk17-85	ipsq1	mpk17-84  4
14408  *
14409  * After the completion of the above groupname command we return to the stable
14410  * state shown below.
14411  * 	hme1, hme2, hme3	mpk17-84	ipsq1	mpk17-84	3
14412  *	hme4			mpk17-85	ipsq2	mpk17-85	1
14413  *
14414  * Because of the above, we don't search based on the ipsq_name since that
14415  * would miss the correct ipsq during certain windows as shown above.
14416  * The ipsq_name is only used during split of an ipsq to return the ipsq to its
14417  * natural state.
14418  */
14419 static ipsq_t *
14420 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq,
14421     ip_stack_t *ipst)
14422 {
14423 	ipsq_t	*ipsq;
14424 	int	group_len;
14425 	phyint_t *phyint;
14426 
14427 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14428 
14429 	group_len = strlen(groupname);
14430 	ASSERT(group_len != 0);
14431 	group_len++;
14432 
14433 	for (ipsq = ipst->ips_ipsq_g_head;
14434 	    ipsq != NULL;
14435 	    ipsq = ipsq->ipsq_next) {
14436 		/*
14437 		 * When an ipsq is being split, and ill_split_ipsq
14438 		 * calls this function, we exclude it from being considered.
14439 		 */
14440 		if (ipsq == exclude_ipsq)
14441 			continue;
14442 
14443 		/*
14444 		 * Compare against the ipsq_name. The groupname change happens
14445 		 * in 2 phases. The 1st phase merges the from group into
14446 		 * the to group's ipsq, by calling ill_merge_groups and restarts
14447 		 * the ioctl. The 2nd phase then locates the ipsq again thru
14448 		 * ipsq_name. At this point the phyint_groupname has not been
14449 		 * updated.
14450 		 */
14451 		if ((group_len == strlen(ipsq->ipsq_name) + 1) &&
14452 		    (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) {
14453 			/*
14454 			 * Verify that an ipmp groupname is exactly
14455 			 * part of 1 ipsq and is not found in any other
14456 			 * ipsq.
14457 			 */
14458 			ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) ==
14459 			    NULL);
14460 			return (ipsq);
14461 		}
14462 
14463 		/*
14464 		 * Comparison against ipsq_name alone is not sufficient.
14465 		 * In the case when groups are currently being
14466 		 * merged, the ipsq could hold other IPMP groups temporarily.
14467 		 * so we walk the phyint list and compare against the
14468 		 * phyint_groupname as well.
14469 		 */
14470 		phyint = ipsq->ipsq_phyint_list;
14471 		while (phyint != NULL) {
14472 			if ((group_len == phyint->phyint_groupname_len) &&
14473 			    (bcmp(phyint->phyint_groupname, groupname,
14474 			    group_len) == 0)) {
14475 				/*
14476 				 * Verify that an ipmp groupname is exactly
14477 				 * part of 1 ipsq and is not found in any other
14478 				 * ipsq.
14479 				 */
14480 				ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq,
14481 				    ipst) == NULL);
14482 				return (ipsq);
14483 			}
14484 			phyint = phyint->phyint_ipsq_next;
14485 		}
14486 	}
14487 	if (create)
14488 		ipsq = ipsq_create(groupname, ipst);
14489 	return (ipsq);
14490 }
14491 
14492 static void
14493 ipsq_delete(ipsq_t *ipsq)
14494 {
14495 	ipsq_t *nipsq;
14496 	ipsq_t *pipsq = NULL;
14497 	ip_stack_t *ipst = ipsq->ipsq_ipst;
14498 
14499 	/*
14500 	 * We don't hold the ipsq lock, but we are sure no new
14501 	 * messages can land up, since the ipsq_refs is zero.
14502 	 * i.e. this ipsq is unnamed and no phyint or phyint group
14503 	 * is associated with this ipsq. (Lookups are based on ill_name
14504 	 * or phyint_groupname)
14505 	 */
14506 	ASSERT(ipsq->ipsq_refs == 0);
14507 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL);
14508 	ASSERT(ipsq->ipsq_pending_mp == NULL);
14509 	if (!(ipsq->ipsq_flags & IPSQ_GROUP)) {
14510 		/*
14511 		 * This is not the ipsq of an IPMP group.
14512 		 */
14513 		ipsq->ipsq_ipst = NULL;
14514 		kmem_free(ipsq, sizeof (ipsq_t));
14515 		return;
14516 	}
14517 
14518 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14519 
14520 	/*
14521 	 * Locate the ipsq  before we can remove it from
14522 	 * the singly linked list of ipsq's.
14523 	 */
14524 	for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL;
14525 	    nipsq = nipsq->ipsq_next) {
14526 		if (nipsq == ipsq) {
14527 			break;
14528 		}
14529 		pipsq = nipsq;
14530 	}
14531 
14532 	ASSERT(nipsq == ipsq);
14533 
14534 	/* unlink ipsq from the list */
14535 	if (pipsq != NULL)
14536 		pipsq->ipsq_next = ipsq->ipsq_next;
14537 	else
14538 		ipst->ips_ipsq_g_head = ipsq->ipsq_next;
14539 	ipsq->ipsq_ipst = NULL;
14540 	kmem_free(ipsq, sizeof (ipsq_t));
14541 	rw_exit(&ipst->ips_ill_g_lock);
14542 }
14543 
14544 static void
14545 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp,
14546     queue_t *q)
14547 {
14548 	ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock));
14549 	ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL);
14550 	ASSERT(old_ipsq->ipsq_pending_ipif == NULL);
14551 	ASSERT(old_ipsq->ipsq_pending_mp == NULL);
14552 	ASSERT(current_mp != NULL);
14553 
14554 	ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl,
14555 		NEW_OP, NULL);
14556 
14557 	ASSERT(new_ipsq->ipsq_xopq_mptail != NULL &&
14558 	    new_ipsq->ipsq_xopq_mphead != NULL);
14559 
14560 	/*
14561 	 * move from old ipsq to the new ipsq.
14562 	 */
14563 	new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead;
14564 	if (old_ipsq->ipsq_xopq_mphead != NULL)
14565 		new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail;
14566 
14567 	old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL;
14568 }
14569 
14570 void
14571 ill_group_cleanup(ill_t *ill)
14572 {
14573 	ill_t *ill_v4;
14574 	ill_t *ill_v6;
14575 	ipif_t *ipif;
14576 
14577 	ill_v4 = ill->ill_phyint->phyint_illv4;
14578 	ill_v6 = ill->ill_phyint->phyint_illv6;
14579 
14580 	if (ill_v4 != NULL) {
14581 		mutex_enter(&ill_v4->ill_lock);
14582 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14583 		    ipif = ipif->ipif_next) {
14584 			IPIF_UNMARK_MOVING(ipif);
14585 		}
14586 		ill_v4->ill_up_ipifs = B_FALSE;
14587 		mutex_exit(&ill_v4->ill_lock);
14588 	}
14589 
14590 	if (ill_v6 != NULL) {
14591 		mutex_enter(&ill_v6->ill_lock);
14592 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14593 		    ipif = ipif->ipif_next) {
14594 			IPIF_UNMARK_MOVING(ipif);
14595 		}
14596 		ill_v6->ill_up_ipifs = B_FALSE;
14597 		mutex_exit(&ill_v6->ill_lock);
14598 	}
14599 }
14600 /*
14601  * This function is called when an ill has had a change in its group status
14602  * to bring up all the ipifs that were up before the change.
14603  */
14604 int
14605 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
14606 {
14607 	ipif_t *ipif;
14608 	ill_t *ill_v4;
14609 	ill_t *ill_v6;
14610 	ill_t *from_ill;
14611 	int err = 0;
14612 
14613 
14614 	ASSERT(IAM_WRITER_ILL(ill));
14615 
14616 	/*
14617 	 * Except for ipif_state_flags and ill_state_flags the other
14618 	 * fields of the ipif/ill that are modified below are protected
14619 	 * implicitly since we are a writer. We would have tried to down
14620 	 * even an ipif that was already down, in ill_down_ipifs. So we
14621 	 * just blindly clear the IPIF_CHANGING flag here on all ipifs.
14622 	 */
14623 	ill_v4 = ill->ill_phyint->phyint_illv4;
14624 	ill_v6 = ill->ill_phyint->phyint_illv6;
14625 	if (ill_v4 != NULL) {
14626 		ill_v4->ill_up_ipifs = B_TRUE;
14627 		for (ipif = ill_v4->ill_ipif; ipif != NULL;
14628 		    ipif = ipif->ipif_next) {
14629 			mutex_enter(&ill_v4->ill_lock);
14630 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14631 			IPIF_UNMARK_MOVING(ipif);
14632 			mutex_exit(&ill_v4->ill_lock);
14633 			if (ipif->ipif_was_up) {
14634 				if (!(ipif->ipif_flags & IPIF_UP))
14635 					err = ipif_up(ipif, q, mp);
14636 				ipif->ipif_was_up = B_FALSE;
14637 				if (err != 0) {
14638 					/*
14639 					 * Can there be any other error ?
14640 					 */
14641 					ASSERT(err == EINPROGRESS);
14642 					return (err);
14643 				}
14644 			}
14645 		}
14646 		mutex_enter(&ill_v4->ill_lock);
14647 		ill_v4->ill_state_flags &= ~ILL_CHANGING;
14648 		mutex_exit(&ill_v4->ill_lock);
14649 		ill_v4->ill_up_ipifs = B_FALSE;
14650 		if (ill_v4->ill_move_in_progress) {
14651 			ASSERT(ill_v4->ill_move_peer != NULL);
14652 			ill_v4->ill_move_in_progress = B_FALSE;
14653 			from_ill = ill_v4->ill_move_peer;
14654 			from_ill->ill_move_in_progress = B_FALSE;
14655 			from_ill->ill_move_peer = NULL;
14656 			mutex_enter(&from_ill->ill_lock);
14657 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14658 			mutex_exit(&from_ill->ill_lock);
14659 			if (ill_v6 == NULL) {
14660 				if (from_ill->ill_phyint->phyint_flags &
14661 				    PHYI_STANDBY) {
14662 					phyint_inactive(from_ill->ill_phyint);
14663 				}
14664 				if (ill_v4->ill_phyint->phyint_flags &
14665 				    PHYI_STANDBY) {
14666 					phyint_inactive(ill_v4->ill_phyint);
14667 				}
14668 			}
14669 			ill_v4->ill_move_peer = NULL;
14670 		}
14671 	}
14672 
14673 	if (ill_v6 != NULL) {
14674 		ill_v6->ill_up_ipifs = B_TRUE;
14675 		for (ipif = ill_v6->ill_ipif; ipif != NULL;
14676 		    ipif = ipif->ipif_next) {
14677 			mutex_enter(&ill_v6->ill_lock);
14678 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
14679 			IPIF_UNMARK_MOVING(ipif);
14680 			mutex_exit(&ill_v6->ill_lock);
14681 			if (ipif->ipif_was_up) {
14682 				if (!(ipif->ipif_flags & IPIF_UP))
14683 					err = ipif_up(ipif, q, mp);
14684 				ipif->ipif_was_up = B_FALSE;
14685 				if (err != 0) {
14686 					/*
14687 					 * Can there be any other error ?
14688 					 */
14689 					ASSERT(err == EINPROGRESS);
14690 					return (err);
14691 				}
14692 			}
14693 		}
14694 		mutex_enter(&ill_v6->ill_lock);
14695 		ill_v6->ill_state_flags &= ~ILL_CHANGING;
14696 		mutex_exit(&ill_v6->ill_lock);
14697 		ill_v6->ill_up_ipifs = B_FALSE;
14698 		if (ill_v6->ill_move_in_progress) {
14699 			ASSERT(ill_v6->ill_move_peer != NULL);
14700 			ill_v6->ill_move_in_progress = B_FALSE;
14701 			from_ill = ill_v6->ill_move_peer;
14702 			from_ill->ill_move_in_progress = B_FALSE;
14703 			from_ill->ill_move_peer = NULL;
14704 			mutex_enter(&from_ill->ill_lock);
14705 			from_ill->ill_state_flags &= ~ILL_CHANGING;
14706 			mutex_exit(&from_ill->ill_lock);
14707 			if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
14708 				phyint_inactive(from_ill->ill_phyint);
14709 			}
14710 			if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) {
14711 				phyint_inactive(ill_v6->ill_phyint);
14712 			}
14713 			ill_v6->ill_move_peer = NULL;
14714 		}
14715 	}
14716 	return (0);
14717 }
14718 
14719 /*
14720  * bring down all the approriate ipifs.
14721  */
14722 /* ARGSUSED */
14723 static void
14724 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover)
14725 {
14726 	ipif_t *ipif;
14727 
14728 	ASSERT(IAM_WRITER_ILL(ill));
14729 
14730 	/*
14731 	 * Except for ipif_state_flags the other fields of the ipif/ill that
14732 	 * are modified below are protected implicitly since we are a writer
14733 	 */
14734 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
14735 		if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER))
14736 			continue;
14737 		if (index == 0 || index == ipif->ipif_orig_ifindex) {
14738 			/*
14739 			 * We go through the ipif_down logic even if the ipif
14740 			 * is already down, since routes can be added based
14741 			 * on down ipifs. Going through ipif_down once again
14742 			 * will delete any IREs created based on these routes.
14743 			 */
14744 			if (ipif->ipif_flags & IPIF_UP)
14745 				ipif->ipif_was_up = B_TRUE;
14746 			/*
14747 			 * If called with chk_nofailover true ipif is moving.
14748 			 */
14749 			mutex_enter(&ill->ill_lock);
14750 			if (chk_nofailover) {
14751 				ipif->ipif_state_flags |=
14752 					IPIF_MOVING | IPIF_CHANGING;
14753 			} else {
14754 				ipif->ipif_state_flags |= IPIF_CHANGING;
14755 			}
14756 			mutex_exit(&ill->ill_lock);
14757 			/*
14758 			 * Need to re-create net/subnet bcast ires if
14759 			 * they are dependent on ipif.
14760 			 */
14761 			if (!ipif->ipif_isv6)
14762 				ipif_check_bcast_ires(ipif);
14763 			(void) ipif_logical_down(ipif, NULL, NULL);
14764 			ipif_non_duplicate(ipif);
14765 			ipif_down_tail(ipif);
14766 			/*
14767 			 * We don't do ipif_multicast_down for IPv4 in
14768 			 * ipif_down. We need to set this so that
14769 			 * ipif_multicast_up will join the
14770 			 * ALLHOSTS_GROUP on to_ill.
14771 			 */
14772 			ipif->ipif_multicast_up = B_FALSE;
14773 		}
14774 	}
14775 }
14776 
14777 #define	IPSQ_INC_REF(ipsq, ipst)	{			\
14778 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14779 	(ipsq)->ipsq_refs++;				\
14780 }
14781 
14782 #define	IPSQ_DEC_REF(ipsq, ipst)	{			\
14783 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));		\
14784 	(ipsq)->ipsq_refs--;				\
14785 	if ((ipsq)->ipsq_refs == 0)				\
14786 		(ipsq)->ipsq_name[0] = '\0'; 		\
14787 }
14788 
14789 /*
14790  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14791  * new_ipsq.
14792  */
14793 static void
14794 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst)
14795 {
14796 	phyint_t *phyint;
14797 	phyint_t *next_phyint;
14798 
14799 	/*
14800 	 * To change the ipsq of an ill, we need to hold the ill_g_lock as
14801 	 * writer and the ill_lock of the ill in question. Also the dest
14802 	 * ipsq can't vanish while we hold the ill_g_lock as writer.
14803 	 */
14804 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14805 
14806 	phyint = cur_ipsq->ipsq_phyint_list;
14807 	cur_ipsq->ipsq_phyint_list = NULL;
14808 	while (phyint != NULL) {
14809 		next_phyint = phyint->phyint_ipsq_next;
14810 		IPSQ_DEC_REF(cur_ipsq, ipst);
14811 		phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list;
14812 		new_ipsq->ipsq_phyint_list = phyint;
14813 		IPSQ_INC_REF(new_ipsq, ipst);
14814 		phyint->phyint_ipsq = new_ipsq;
14815 		phyint = next_phyint;
14816 	}
14817 }
14818 
14819 #define	SPLIT_SUCCESS		0
14820 #define	SPLIT_NOT_NEEDED	1
14821 #define	SPLIT_FAILED		2
14822 
14823 int
14824 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry,
14825     ip_stack_t *ipst)
14826 {
14827 	ipsq_t *newipsq = NULL;
14828 
14829 	/*
14830 	 * Assertions denote pre-requisites for changing the ipsq of
14831 	 * a phyint
14832 	 */
14833 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14834 	/*
14835 	 * <ill-phyint> assocs can't change while ill_g_lock
14836 	 * is held as writer. See ill_phyint_reinit()
14837 	 */
14838 	ASSERT(phyint->phyint_illv4 == NULL ||
14839 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14840 	ASSERT(phyint->phyint_illv6 == NULL ||
14841 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14842 
14843 	if ((phyint->phyint_groupname_len !=
14844 	    (strlen(cur_ipsq->ipsq_name) + 1) ||
14845 	    bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name,
14846 	    phyint->phyint_groupname_len) != 0)) {
14847 		/*
14848 		 * Once we fail in creating a new ipsq due to memory shortage,
14849 		 * don't attempt to create new ipsq again, based on another
14850 		 * phyint, since we want all phyints belonging to an IPMP group
14851 		 * to be in the same ipsq even in the event of mem alloc fails.
14852 		 */
14853 		newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry,
14854 		    cur_ipsq, ipst);
14855 		if (newipsq == NULL) {
14856 			/* Memory allocation failure */
14857 			return (SPLIT_FAILED);
14858 		} else {
14859 			/* ipsq_refs protected by ill_g_lock (writer) */
14860 			IPSQ_DEC_REF(cur_ipsq, ipst);
14861 			phyint->phyint_ipsq = newipsq;
14862 			phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list;
14863 			newipsq->ipsq_phyint_list = phyint;
14864 			IPSQ_INC_REF(newipsq, ipst);
14865 			return (SPLIT_SUCCESS);
14866 		}
14867 	}
14868 	return (SPLIT_NOT_NEEDED);
14869 }
14870 
14871 /*
14872  * The ill locks of the phyint and the ill_g_lock (writer) must be held
14873  * to do this split
14874  */
14875 static int
14876 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst)
14877 {
14878 	ipsq_t *newipsq;
14879 
14880 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
14881 	/*
14882 	 * <ill-phyint> assocs can't change while ill_g_lock
14883 	 * is held as writer. See ill_phyint_reinit()
14884 	 */
14885 
14886 	ASSERT(phyint->phyint_illv4 == NULL ||
14887 	    MUTEX_HELD(&phyint->phyint_illv4->ill_lock));
14888 	ASSERT(phyint->phyint_illv6 == NULL ||
14889 	    MUTEX_HELD(&phyint->phyint_illv6->ill_lock));
14890 
14891 	if (!ipsq_init((phyint->phyint_illv4 != NULL) ?
14892 	    phyint->phyint_illv4: phyint->phyint_illv6)) {
14893 		/*
14894 		 * ipsq_init failed due to no memory
14895 		 * caller will use the same ipsq
14896 		 */
14897 		return (SPLIT_FAILED);
14898 	}
14899 
14900 	/* ipsq_ref is protected by ill_g_lock (writer) */
14901 	IPSQ_DEC_REF(cur_ipsq, ipst);
14902 
14903 	/*
14904 	 * This is a new ipsq that is unknown to the world.
14905 	 * So we don't need to hold ipsq_lock,
14906 	 */
14907 	newipsq = phyint->phyint_ipsq;
14908 	newipsq->ipsq_writer = NULL;
14909 	newipsq->ipsq_reentry_cnt--;
14910 	ASSERT(newipsq->ipsq_reentry_cnt == 0);
14911 #ifdef ILL_DEBUG
14912 	newipsq->ipsq_depth = 0;
14913 #endif
14914 
14915 	return (SPLIT_SUCCESS);
14916 }
14917 
14918 /*
14919  * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to
14920  * ipsq's representing their individual groups or themselves. Return
14921  * whether split needs to be retried again later.
14922  */
14923 static boolean_t
14924 ill_split_ipsq(ipsq_t *cur_ipsq)
14925 {
14926 	phyint_t *phyint;
14927 	phyint_t *next_phyint;
14928 	int	error;
14929 	boolean_t need_retry = B_FALSE;
14930 	ip_stack_t	*ipst = cur_ipsq->ipsq_ipst;
14931 
14932 	phyint = cur_ipsq->ipsq_phyint_list;
14933 	cur_ipsq->ipsq_phyint_list = NULL;
14934 	while (phyint != NULL) {
14935 		next_phyint = phyint->phyint_ipsq_next;
14936 		/*
14937 		 * 'created' will tell us whether the callee actually
14938 		 * created an ipsq. Lack of memory may force the callee
14939 		 * to return without creating an ipsq.
14940 		 */
14941 		if (phyint->phyint_groupname == NULL) {
14942 			error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst);
14943 		} else {
14944 			error = ill_split_to_grp_ipsq(phyint, cur_ipsq,
14945 					need_retry, ipst);
14946 		}
14947 
14948 		switch (error) {
14949 		case SPLIT_FAILED:
14950 			need_retry = B_TRUE;
14951 			/* FALLTHRU */
14952 		case SPLIT_NOT_NEEDED:
14953 			/*
14954 			 * Keep it on the list.
14955 			 */
14956 			phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list;
14957 			cur_ipsq->ipsq_phyint_list = phyint;
14958 			break;
14959 		case SPLIT_SUCCESS:
14960 			break;
14961 		default:
14962 			ASSERT(0);
14963 		}
14964 
14965 		phyint = next_phyint;
14966 	}
14967 	return (need_retry);
14968 }
14969 
14970 /*
14971  * given an ipsq 'ipsq' lock all ills associated with this ipsq.
14972  * and return the ills in the list. This list will be
14973  * needed to unlock all the ills later on by the caller.
14974  * The <ill-ipsq> associations could change between the
14975  * lock and unlock. Hence the unlock can't traverse the
14976  * ipsq to get the list of ills.
14977  */
14978 static int
14979 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max)
14980 {
14981 	int	cnt = 0;
14982 	phyint_t	*phyint;
14983 	ip_stack_t	*ipst = ipsq->ipsq_ipst;
14984 
14985 	/*
14986 	 * The caller holds ill_g_lock to ensure that the ill memberships
14987 	 * of the ipsq don't change
14988 	 */
14989 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
14990 
14991 	phyint = ipsq->ipsq_phyint_list;
14992 	while (phyint != NULL) {
14993 		if (phyint->phyint_illv4 != NULL) {
14994 			ASSERT(cnt < list_max);
14995 			list[cnt++] = phyint->phyint_illv4;
14996 		}
14997 		if (phyint->phyint_illv6 != NULL) {
14998 			ASSERT(cnt < list_max);
14999 			list[cnt++] = phyint->phyint_illv6;
15000 		}
15001 		phyint = phyint->phyint_ipsq_next;
15002 	}
15003 	ill_lock_ills(list, cnt);
15004 	return (cnt);
15005 }
15006 
15007 void
15008 ill_lock_ills(ill_t **list, int cnt)
15009 {
15010 	int	i;
15011 
15012 	if (cnt > 1) {
15013 		boolean_t try_again;
15014 		do {
15015 			try_again = B_FALSE;
15016 			for (i = 0; i < cnt - 1; i++) {
15017 				if (list[i] < list[i + 1]) {
15018 					ill_t	*tmp;
15019 
15020 					/* swap the elements */
15021 					tmp = list[i];
15022 					list[i] = list[i + 1];
15023 					list[i + 1] = tmp;
15024 					try_again = B_TRUE;
15025 				}
15026 			}
15027 		} while (try_again);
15028 	}
15029 
15030 	for (i = 0; i < cnt; i++) {
15031 		if (i == 0) {
15032 			if (list[i] != NULL)
15033 				mutex_enter(&list[i]->ill_lock);
15034 			else
15035 				return;
15036 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
15037 			mutex_enter(&list[i]->ill_lock);
15038 		}
15039 	}
15040 }
15041 
15042 void
15043 ill_unlock_ills(ill_t **list, int cnt)
15044 {
15045 	int	i;
15046 
15047 	for (i = 0; i < cnt; i++) {
15048 		if ((i == 0) && (list[i] != NULL)) {
15049 			mutex_exit(&list[i]->ill_lock);
15050 		} else if ((list[i-1] != list[i]) && (list[i] != NULL)) {
15051 			mutex_exit(&list[i]->ill_lock);
15052 		}
15053 	}
15054 }
15055 
15056 /*
15057  * Merge all the ills from 1 ipsq group into another ipsq group.
15058  * The source ipsq group is specified by the ipsq associated with
15059  * 'from_ill'. The destination ipsq group is specified by the ipsq
15060  * associated with 'to_ill' or 'groupname' respectively.
15061  * Note that ipsq itself does not have a reference count mechanism
15062  * and functions don't look up an ipsq and pass it around. Instead
15063  * functions pass around an ill or groupname, and the ipsq is looked
15064  * up from the ill or groupname and the required operation performed
15065  * atomically with the lookup on the ipsq.
15066  */
15067 static int
15068 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp,
15069     queue_t *q)
15070 {
15071 	ipsq_t *old_ipsq;
15072 	ipsq_t *new_ipsq;
15073 	ill_t	**ill_list;
15074 	int	cnt;
15075 	size_t	ill_list_size;
15076 	boolean_t became_writer_on_new_sq = B_FALSE;
15077 	ip_stack_t	*ipst = from_ill->ill_ipst;
15078 
15079 	ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst);
15080 	/* Exactly 1 of 'to_ill' and groupname can be specified. */
15081 	ASSERT((to_ill != NULL) ^ (groupname != NULL));
15082 
15083 	/*
15084 	 * Need to hold ill_g_lock as writer and also the ill_lock to
15085 	 * change the <ill-ipsq> assoc of an ill. Need to hold the
15086 	 * ipsq_lock to prevent new messages from landing on an ipsq.
15087 	 */
15088 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15089 
15090 	old_ipsq = from_ill->ill_phyint->phyint_ipsq;
15091 	if (groupname != NULL)
15092 		new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst);
15093 	else {
15094 		new_ipsq = to_ill->ill_phyint->phyint_ipsq;
15095 	}
15096 
15097 	ASSERT(old_ipsq != NULL && new_ipsq != NULL);
15098 
15099 	/*
15100 	 * both groups are on the same ipsq.
15101 	 */
15102 	if (old_ipsq == new_ipsq) {
15103 		rw_exit(&ipst->ips_ill_g_lock);
15104 		return (0);
15105 	}
15106 
15107 	cnt = old_ipsq->ipsq_refs << 1;
15108 	ill_list_size = cnt * sizeof (ill_t *);
15109 	ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP);
15110 	if (ill_list == NULL) {
15111 		rw_exit(&ipst->ips_ill_g_lock);
15112 		return (ENOMEM);
15113 	}
15114 	cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt);
15115 
15116 	/* Need ipsq lock to enque messages on new ipsq or to become writer */
15117 	mutex_enter(&new_ipsq->ipsq_lock);
15118 	if ((new_ipsq->ipsq_writer == NULL &&
15119 		new_ipsq->ipsq_current_ipif == NULL) ||
15120 	    (new_ipsq->ipsq_writer == curthread)) {
15121 		new_ipsq->ipsq_writer = curthread;
15122 		new_ipsq->ipsq_reentry_cnt++;
15123 		became_writer_on_new_sq = B_TRUE;
15124 	}
15125 
15126 	/*
15127 	 * We are holding ill_g_lock as writer and all the ill locks of
15128 	 * the old ipsq. So the old_ipsq can't be looked up, and hence no new
15129 	 * message can land up on the old ipsq even though we don't hold the
15130 	 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq.
15131 	 */
15132 	ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q);
15133 
15134 	/*
15135 	 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'.
15136 	 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq>
15137 	 * assocs. till we release the ill_g_lock, and hence it can't vanish.
15138 	 */
15139 	ill_merge_ipsq(old_ipsq, new_ipsq, ipst);
15140 
15141 	/*
15142 	 * Mark the new ipsq as needing a split since it is currently
15143 	 * being shared by more than 1 IPMP group. The split will
15144 	 * occur at the end of ipsq_exit
15145 	 */
15146 	new_ipsq->ipsq_split = B_TRUE;
15147 
15148 	/* Now release all the locks */
15149 	mutex_exit(&new_ipsq->ipsq_lock);
15150 	ill_unlock_ills(ill_list, cnt);
15151 	rw_exit(&ipst->ips_ill_g_lock);
15152 
15153 	kmem_free(ill_list, ill_list_size);
15154 
15155 	/*
15156 	 * If we succeeded in becoming writer on the new ipsq, then
15157 	 * drain the new ipsq and start processing  all enqueued messages
15158 	 * including the current ioctl we are processing which is either
15159 	 * a set groupname or failover/failback.
15160 	 */
15161 	if (became_writer_on_new_sq)
15162 		ipsq_exit(new_ipsq, B_TRUE, B_TRUE);
15163 
15164 	/*
15165 	 * syncq has been changed and all the messages have been moved.
15166 	 */
15167 	mutex_enter(&old_ipsq->ipsq_lock);
15168 	old_ipsq->ipsq_current_ipif = NULL;
15169 	old_ipsq->ipsq_current_ioctl = 0;
15170 	mutex_exit(&old_ipsq->ipsq_lock);
15171 	return (EINPROGRESS);
15172 }
15173 
15174 /*
15175  * Delete and add the loopback copy and non-loopback copy of
15176  * the BROADCAST ire corresponding to ill and addr. Used to
15177  * group broadcast ires together when ill becomes part of
15178  * a group.
15179  *
15180  * This function is also called when ill is leaving the group
15181  * so that the ires belonging to the group gets re-grouped.
15182  */
15183 static void
15184 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr)
15185 {
15186 	ire_t *ire, *nire, *nire_next, *ire_head = NULL;
15187 	ire_t **ire_ptpn = &ire_head;
15188 	ip_stack_t	*ipst = ill->ill_ipst;
15189 
15190 	/*
15191 	 * The loopback and non-loopback IREs are inserted in the order in which
15192 	 * they're found, on the basis that they are correctly ordered (loopback
15193 	 * first).
15194 	 */
15195 	for (;;) {
15196 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15197 		    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15198 		if (ire == NULL)
15199 			break;
15200 
15201 		/*
15202 		 * we are passing in KM_SLEEP because it is not easy to
15203 		 * go back to a sane state in case of memory failure.
15204 		 */
15205 		nire = kmem_cache_alloc(ire_cache, KM_SLEEP);
15206 		ASSERT(nire != NULL);
15207 		bzero(nire, sizeof (ire_t));
15208 		/*
15209 		 * Don't use ire_max_frag directly since we don't
15210 		 * hold on to 'ire' until we add the new ire 'nire' and
15211 		 * we don't want the new ire to have a dangling reference
15212 		 * to 'ire'. The ire_max_frag of a broadcast ire must
15213 		 * be in sync with the ipif_mtu of the associate ipif.
15214 		 * For eg. this happens as a result of SIOCSLIFNAME,
15215 		 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by
15216 		 * the driver. A change in ire_max_frag triggered as
15217 		 * as a result of path mtu discovery, or due to an
15218 		 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a
15219 		 * route change -mtu command does not apply to broadcast ires.
15220 		 *
15221 		 * XXX We need a recovery strategy here if ire_init fails
15222 		 */
15223 		if (ire_init(nire,
15224 		    (uchar_t *)&ire->ire_addr,
15225 		    (uchar_t *)&ire->ire_mask,
15226 		    (uchar_t *)&ire->ire_src_addr,
15227 		    (uchar_t *)&ire->ire_gateway_addr,
15228 		    (uchar_t *)&ire->ire_in_src_addr,
15229 		    ire->ire_stq == NULL ? &ip_loopback_mtu :
15230 			&ire->ire_ipif->ipif_mtu,
15231 		    (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL),
15232 		    ire->ire_rfq,
15233 		    ire->ire_stq,
15234 		    ire->ire_type,
15235 		    (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL),
15236 		    ire->ire_ipif,
15237 		    ire->ire_in_ill,
15238 		    ire->ire_cmask,
15239 		    ire->ire_phandle,
15240 		    ire->ire_ihandle,
15241 		    ire->ire_flags,
15242 		    &ire->ire_uinfo,
15243 		    NULL,
15244 		    NULL,
15245 		    ipst) == NULL) {
15246 			cmn_err(CE_PANIC, "ire_init() failed");
15247 		}
15248 		ire_delete(ire);
15249 		ire_refrele(ire);
15250 
15251 		/*
15252 		 * The newly created IREs are inserted at the tail of the list
15253 		 * starting with ire_head. As we've just allocated them no one
15254 		 * knows about them so it's safe.
15255 		 */
15256 		*ire_ptpn = nire;
15257 		ire_ptpn = &nire->ire_next;
15258 	}
15259 
15260 	for (nire = ire_head; nire != NULL; nire = nire_next) {
15261 		int error;
15262 		ire_t *oire;
15263 		/* unlink the IRE from our list before calling ire_add() */
15264 		nire_next = nire->ire_next;
15265 		nire->ire_next = NULL;
15266 
15267 		/* ire_add adds the ire at the right place in the list */
15268 		oire = nire;
15269 		error = ire_add(&nire, NULL, NULL, NULL, B_FALSE);
15270 		ASSERT(error == 0);
15271 		ASSERT(oire == nire);
15272 		ire_refrele(nire);	/* Held in ire_add */
15273 	}
15274 }
15275 
15276 /*
15277  * This function is usually called when an ill is inserted in
15278  * a group and all the ipifs are already UP. As all the ipifs
15279  * are already UP, the broadcast ires have already been created
15280  * and been inserted. But, ire_add_v4 would not have grouped properly.
15281  * We need to re-group for the benefit of ip_wput_ire which
15282  * expects BROADCAST ires to be grouped properly to avoid sending
15283  * more than one copy of the broadcast packet per group.
15284  *
15285  * NOTE : We don't check for ill_ipif_up_count to be non-zero here
15286  *	  because when ipif_up_done ends up calling this, ires have
15287  *        already been added before illgrp_insert i.e before ill_group
15288  *	  has been initialized.
15289  */
15290 static void
15291 ill_group_bcast_for_xmit(ill_t *ill)
15292 {
15293 	ill_group_t *illgrp;
15294 	ipif_t *ipif;
15295 	ipaddr_t addr;
15296 	ipaddr_t net_mask;
15297 	ipaddr_t subnet_netmask;
15298 
15299 	illgrp = ill->ill_group;
15300 
15301 	/*
15302 	 * This function is called even when an ill is deleted from
15303 	 * the group. Hence, illgrp could be null.
15304 	 */
15305 	if (illgrp != NULL && illgrp->illgrp_ill_count == 1)
15306 		return;
15307 
15308 	/*
15309 	 * Delete all the BROADCAST ires matching this ill and add
15310 	 * them back. This time, ire_add_v4 should take care of
15311 	 * grouping them with others because ill is part of the
15312 	 * group.
15313 	 */
15314 	ill_bcast_delete_and_add(ill, 0);
15315 	ill_bcast_delete_and_add(ill, INADDR_BROADCAST);
15316 
15317 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15318 
15319 		if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15320 		    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15321 			net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15322 		} else {
15323 			net_mask = htonl(IN_CLASSA_NET);
15324 		}
15325 		addr = net_mask & ipif->ipif_subnet;
15326 		ill_bcast_delete_and_add(ill, addr);
15327 		ill_bcast_delete_and_add(ill, ~net_mask | addr);
15328 
15329 		subnet_netmask = ipif->ipif_net_mask;
15330 		addr = ipif->ipif_subnet;
15331 		ill_bcast_delete_and_add(ill, addr);
15332 		ill_bcast_delete_and_add(ill, ~subnet_netmask | addr);
15333 	}
15334 }
15335 
15336 /*
15337  * This function is called from illgrp_delete when ill is being deleted
15338  * from the group.
15339  *
15340  * As ill is not there in the group anymore, any address belonging
15341  * to this ill should be cleared of IRE_MARK_NORECV.
15342  */
15343 static void
15344 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr)
15345 {
15346 	ire_t *ire;
15347 	irb_t *irb;
15348 	ip_stack_t	*ipst = ill->ill_ipst;
15349 
15350 	ASSERT(ill->ill_group == NULL);
15351 
15352 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif,
15353 	    ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
15354 
15355 	if (ire != NULL) {
15356 		/*
15357 		 * IPMP and plumbing operations are serialized on the ipsq, so
15358 		 * no one will insert or delete a broadcast ire under our feet.
15359 		 */
15360 		irb = ire->ire_bucket;
15361 		rw_enter(&irb->irb_lock, RW_READER);
15362 		ire_refrele(ire);
15363 
15364 		for (; ire != NULL; ire = ire->ire_next) {
15365 			if (ire->ire_addr != addr)
15366 				break;
15367 			if (ire_to_ill(ire) != ill)
15368 				continue;
15369 
15370 			ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED));
15371 			ire->ire_marks &= ~IRE_MARK_NORECV;
15372 		}
15373 		rw_exit(&irb->irb_lock);
15374 	}
15375 }
15376 
15377 /*
15378  * This function must be called only after the broadcast ires
15379  * have been grouped together. For a given address addr, nominate
15380  * only one of the ires whose interface is not FAILED or OFFLINE.
15381  *
15382  * This is also called when an ipif goes down, so that we can nominate
15383  * a different ire with the same address for receiving.
15384  */
15385 static void
15386 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst)
15387 {
15388 	irb_t *irb;
15389 	ire_t *ire;
15390 	ire_t *ire1;
15391 	ire_t *save_ire;
15392 	ire_t **irep = NULL;
15393 	boolean_t first = B_TRUE;
15394 	ire_t *clear_ire = NULL;
15395 	ire_t *start_ire = NULL;
15396 	ire_t	*new_lb_ire;
15397 	ire_t	*new_nlb_ire;
15398 	boolean_t new_lb_ire_used = B_FALSE;
15399 	boolean_t new_nlb_ire_used = B_FALSE;
15400 	uint64_t match_flags;
15401 	uint64_t phyi_flags;
15402 	boolean_t fallback = B_FALSE;
15403 	uint_t	max_frag;
15404 
15405 	ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES,
15406 	    NULL, MATCH_IRE_TYPE, ipst);
15407 	/*
15408 	 * We may not be able to find some ires if a previous
15409 	 * ire_create failed. This happens when an ipif goes
15410 	 * down and we are unable to create BROADCAST ires due
15411 	 * to memory failure. Thus, we have to check for NULL
15412 	 * below. This should handle the case for LOOPBACK,
15413 	 * POINTOPOINT and interfaces with some POINTOPOINT
15414 	 * logicals for which there are no BROADCAST ires.
15415 	 */
15416 	if (ire == NULL)
15417 		return;
15418 	/*
15419 	 * Currently IRE_BROADCASTS are deleted when an ipif
15420 	 * goes down which runs exclusively. Thus, setting
15421 	 * IRE_MARK_RCVD should not race with ire_delete marking
15422 	 * IRE_MARK_CONDEMNED. We grab the lock below just to
15423 	 * be consistent with other parts of the code that walks
15424 	 * a given bucket.
15425 	 */
15426 	save_ire = ire;
15427 	irb = ire->ire_bucket;
15428 	new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15429 	if (new_lb_ire == NULL) {
15430 		ire_refrele(ire);
15431 		return;
15432 	}
15433 	new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP);
15434 	if (new_nlb_ire == NULL) {
15435 		ire_refrele(ire);
15436 		kmem_cache_free(ire_cache, new_lb_ire);
15437 		return;
15438 	}
15439 	IRB_REFHOLD(irb);
15440 	rw_enter(&irb->irb_lock, RW_WRITER);
15441 	/*
15442 	 * Get to the first ire matching the address and the
15443 	 * group. If the address does not match we are done
15444 	 * as we could not find the IRE. If the address matches
15445 	 * we should get to the first one matching the group.
15446 	 */
15447 	while (ire != NULL) {
15448 		if (ire->ire_addr != addr ||
15449 		    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15450 			break;
15451 		}
15452 		ire = ire->ire_next;
15453 	}
15454 	match_flags = PHYI_FAILED | PHYI_INACTIVE;
15455 	start_ire = ire;
15456 redo:
15457 	while (ire != NULL && ire->ire_addr == addr &&
15458 	    ire->ire_ipif->ipif_ill->ill_group == illgrp) {
15459 		/*
15460 		 * The first ire for any address within a group
15461 		 * should always be the one with IRE_MARK_NORECV cleared
15462 		 * so that ip_wput_ire can avoid searching for one.
15463 		 * Note down the insertion point which will be used
15464 		 * later.
15465 		 */
15466 		if (first && (irep == NULL))
15467 			irep = ire->ire_ptpn;
15468 		/*
15469 		 * PHYI_FAILED is set when the interface fails.
15470 		 * This interface might have become good, but the
15471 		 * daemon has not yet detected. We should still
15472 		 * not receive on this. PHYI_OFFLINE should never
15473 		 * be picked as this has been offlined and soon
15474 		 * be removed.
15475 		 */
15476 		phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags;
15477 		if (phyi_flags & PHYI_OFFLINE) {
15478 			ire->ire_marks |= IRE_MARK_NORECV;
15479 			ire = ire->ire_next;
15480 			continue;
15481 		}
15482 		if (phyi_flags & match_flags) {
15483 			ire->ire_marks |= IRE_MARK_NORECV;
15484 			ire = ire->ire_next;
15485 			if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
15486 			    PHYI_INACTIVE) {
15487 				fallback = B_TRUE;
15488 			}
15489 			continue;
15490 		}
15491 		if (first) {
15492 			/*
15493 			 * We will move this to the front of the list later
15494 			 * on.
15495 			 */
15496 			clear_ire = ire;
15497 			ire->ire_marks &= ~IRE_MARK_NORECV;
15498 		} else {
15499 			ire->ire_marks |= IRE_MARK_NORECV;
15500 		}
15501 		first = B_FALSE;
15502 		ire = ire->ire_next;
15503 	}
15504 	/*
15505 	 * If we never nominated anybody, try nominating at least
15506 	 * an INACTIVE, if we found one. Do it only once though.
15507 	 */
15508 	if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) &&
15509 	    fallback) {
15510 		match_flags = PHYI_FAILED;
15511 		ire = start_ire;
15512 		irep = NULL;
15513 		goto redo;
15514 	}
15515 	ire_refrele(save_ire);
15516 
15517 	/*
15518 	 * irep non-NULL indicates that we entered the while loop
15519 	 * above. If clear_ire is at the insertion point, we don't
15520 	 * have to do anything. clear_ire will be NULL if all the
15521 	 * interfaces are failed.
15522 	 *
15523 	 * We cannot unlink and reinsert the ire at the right place
15524 	 * in the list since there can be other walkers of this bucket.
15525 	 * Instead we delete and recreate the ire
15526 	 */
15527 	if (clear_ire != NULL && irep != NULL && *irep != clear_ire) {
15528 		ire_t *clear_ire_stq = NULL;
15529 		mblk_t *fp_mp = NULL, *res_mp = NULL;
15530 
15531 		bzero(new_lb_ire, sizeof (ire_t));
15532 		if (clear_ire->ire_nce != NULL) {
15533 			fp_mp = clear_ire->ire_nce->nce_fp_mp;
15534 			res_mp = clear_ire->ire_nce->nce_res_mp;
15535 		}
15536 		/* XXX We need a recovery strategy here. */
15537 		if (ire_init(new_lb_ire,
15538 		    (uchar_t *)&clear_ire->ire_addr,
15539 		    (uchar_t *)&clear_ire->ire_mask,
15540 		    (uchar_t *)&clear_ire->ire_src_addr,
15541 		    (uchar_t *)&clear_ire->ire_gateway_addr,
15542 		    (uchar_t *)&clear_ire->ire_in_src_addr,
15543 		    &clear_ire->ire_max_frag,
15544 		    fp_mp,
15545 		    clear_ire->ire_rfq,
15546 		    clear_ire->ire_stq,
15547 		    clear_ire->ire_type,
15548 		    res_mp,
15549 		    clear_ire->ire_ipif,
15550 		    clear_ire->ire_in_ill,
15551 		    clear_ire->ire_cmask,
15552 		    clear_ire->ire_phandle,
15553 		    clear_ire->ire_ihandle,
15554 		    clear_ire->ire_flags,
15555 		    &clear_ire->ire_uinfo,
15556 		    NULL,
15557 		    NULL,
15558 		    ipst) == NULL)
15559 			cmn_err(CE_PANIC, "ire_init() failed");
15560 		if (clear_ire->ire_stq == NULL) {
15561 			ire_t *ire_next = clear_ire->ire_next;
15562 			if (ire_next != NULL &&
15563 			    ire_next->ire_stq != NULL &&
15564 			    ire_next->ire_addr == clear_ire->ire_addr &&
15565 			    ire_next->ire_ipif->ipif_ill ==
15566 			    clear_ire->ire_ipif->ipif_ill) {
15567 				clear_ire_stq = ire_next;
15568 
15569 				bzero(new_nlb_ire, sizeof (ire_t));
15570 				if (clear_ire_stq->ire_nce != NULL) {
15571 					fp_mp =
15572 					    clear_ire_stq->ire_nce->nce_fp_mp;
15573 					res_mp =
15574 					    clear_ire_stq->ire_nce->nce_res_mp;
15575 				} else {
15576 					fp_mp = res_mp = NULL;
15577 				}
15578 				/* XXX We need a recovery strategy here. */
15579 				if (ire_init(new_nlb_ire,
15580 				    (uchar_t *)&clear_ire_stq->ire_addr,
15581 				    (uchar_t *)&clear_ire_stq->ire_mask,
15582 				    (uchar_t *)&clear_ire_stq->ire_src_addr,
15583 				    (uchar_t *)&clear_ire_stq->ire_gateway_addr,
15584 				    (uchar_t *)&clear_ire_stq->ire_in_src_addr,
15585 				    &clear_ire_stq->ire_max_frag,
15586 				    fp_mp,
15587 				    clear_ire_stq->ire_rfq,
15588 				    clear_ire_stq->ire_stq,
15589 				    clear_ire_stq->ire_type,
15590 				    res_mp,
15591 				    clear_ire_stq->ire_ipif,
15592 				    clear_ire_stq->ire_in_ill,
15593 				    clear_ire_stq->ire_cmask,
15594 				    clear_ire_stq->ire_phandle,
15595 				    clear_ire_stq->ire_ihandle,
15596 				    clear_ire_stq->ire_flags,
15597 				    &clear_ire_stq->ire_uinfo,
15598 				    NULL,
15599 				    NULL,
15600 				    ipst) == NULL)
15601 					cmn_err(CE_PANIC, "ire_init() failed");
15602 			}
15603 		}
15604 
15605 		/*
15606 		 * Delete the ire. We can't call ire_delete() since
15607 		 * we are holding the bucket lock. We can't release the
15608 		 * bucket lock since we can't allow irep to change. So just
15609 		 * mark it CONDEMNED. The IRB_REFRELE will delete the
15610 		 * ire from the list and do the refrele.
15611 		 */
15612 		clear_ire->ire_marks |= IRE_MARK_CONDEMNED;
15613 		irb->irb_marks |= IRB_MARK_CONDEMNED;
15614 
15615 		if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) {
15616 			nce_fastpath_list_delete(clear_ire_stq->ire_nce);
15617 			clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED;
15618 		}
15619 
15620 		/*
15621 		 * Also take care of otherfields like ib/ob pkt count
15622 		 * etc. Need to dup them. ditto in ill_bcast_delete_and_add
15623 		 */
15624 
15625 		/* Set the max_frag before adding the ire */
15626 		max_frag = *new_lb_ire->ire_max_fragp;
15627 		new_lb_ire->ire_max_fragp = NULL;
15628 		new_lb_ire->ire_max_frag = max_frag;
15629 
15630 		/* Add the new ire's. Insert at *irep */
15631 		new_lb_ire->ire_bucket = clear_ire->ire_bucket;
15632 		ire1 = *irep;
15633 		if (ire1 != NULL)
15634 			ire1->ire_ptpn = &new_lb_ire->ire_next;
15635 		new_lb_ire->ire_next = ire1;
15636 		/* Link the new one in. */
15637 		new_lb_ire->ire_ptpn = irep;
15638 		membar_producer();
15639 		*irep = new_lb_ire;
15640 		new_lb_ire_used = B_TRUE;
15641 		BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted);
15642 		new_lb_ire->ire_bucket->irb_ire_cnt++;
15643 		new_lb_ire->ire_ipif->ipif_ire_cnt++;
15644 
15645 		if (clear_ire_stq != NULL) {
15646 			/* Set the max_frag before adding the ire */
15647 			max_frag = *new_nlb_ire->ire_max_fragp;
15648 			new_nlb_ire->ire_max_fragp = NULL;
15649 			new_nlb_ire->ire_max_frag = max_frag;
15650 
15651 			new_nlb_ire->ire_bucket = clear_ire->ire_bucket;
15652 			irep = &new_lb_ire->ire_next;
15653 			/* Add the new ire. Insert at *irep */
15654 			ire1 = *irep;
15655 			if (ire1 != NULL)
15656 				ire1->ire_ptpn = &new_nlb_ire->ire_next;
15657 			new_nlb_ire->ire_next = ire1;
15658 			/* Link the new one in. */
15659 			new_nlb_ire->ire_ptpn = irep;
15660 			membar_producer();
15661 			*irep = new_nlb_ire;
15662 			new_nlb_ire_used = B_TRUE;
15663 			BUMP_IRE_STATS(ipst->ips_ire_stats_v4,
15664 			    ire_stats_inserted);
15665 			new_nlb_ire->ire_bucket->irb_ire_cnt++;
15666 			new_nlb_ire->ire_ipif->ipif_ire_cnt++;
15667 			((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++;
15668 		}
15669 	}
15670 	rw_exit(&irb->irb_lock);
15671 	if (!new_lb_ire_used)
15672 		kmem_cache_free(ire_cache, new_lb_ire);
15673 	if (!new_nlb_ire_used)
15674 		kmem_cache_free(ire_cache, new_nlb_ire);
15675 	IRB_REFRELE(irb);
15676 }
15677 
15678 /*
15679  * Whenever an ipif goes down we have to renominate a different
15680  * broadcast ire to receive. Whenever an ipif comes up, we need
15681  * to make sure that we have only one nominated to receive.
15682  */
15683 static void
15684 ipif_renominate_bcast(ipif_t *ipif)
15685 {
15686 	ill_t *ill = ipif->ipif_ill;
15687 	ipaddr_t subnet_addr;
15688 	ipaddr_t net_addr;
15689 	ipaddr_t net_mask = 0;
15690 	ipaddr_t subnet_netmask;
15691 	ipaddr_t addr;
15692 	ill_group_t *illgrp;
15693 	ip_stack_t	*ipst = ill->ill_ipst;
15694 
15695 	illgrp = ill->ill_group;
15696 	/*
15697 	 * If this is the last ipif going down, it might take
15698 	 * the ill out of the group. In that case ipif_down ->
15699 	 * illgrp_delete takes care of doing the nomination.
15700 	 * ipif_down does not call for this case.
15701 	 */
15702 	ASSERT(illgrp != NULL);
15703 
15704 	/* There could not have been any ires associated with this */
15705 	if (ipif->ipif_subnet == 0)
15706 		return;
15707 
15708 	ill_mark_bcast(illgrp, 0, ipst);
15709 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15710 
15711 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15712 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15713 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15714 	} else {
15715 		net_mask = htonl(IN_CLASSA_NET);
15716 	}
15717 	addr = net_mask & ipif->ipif_subnet;
15718 	ill_mark_bcast(illgrp, addr, ipst);
15719 
15720 	net_addr = ~net_mask | addr;
15721 	ill_mark_bcast(illgrp, net_addr, ipst);
15722 
15723 	subnet_netmask = ipif->ipif_net_mask;
15724 	addr = ipif->ipif_subnet;
15725 	ill_mark_bcast(illgrp, addr, ipst);
15726 
15727 	subnet_addr = ~subnet_netmask | addr;
15728 	ill_mark_bcast(illgrp, subnet_addr, ipst);
15729 }
15730 
15731 /*
15732  * Whenever we form or delete ill groups, we need to nominate one set of
15733  * BROADCAST ires for receiving in the group.
15734  *
15735  * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires
15736  *    have been added, but ill_ipif_up_count is 0. Thus, we don't assert
15737  *    for ill_ipif_up_count to be non-zero. This is the only case where
15738  *    ill_ipif_up_count is zero and we would still find the ires.
15739  *
15740  * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one
15741  *    ipif is UP and we just have to do the nomination.
15742  *
15743  * 3) When ill_handoff_responsibility calls us, some ill has been removed
15744  *    from the group. So, we have to do the nomination.
15745  *
15746  * Because of (3), there could be just one ill in the group. But we have
15747  * to nominate still as IRE_MARK_NORCV may have been marked on this.
15748  * Thus, this function does not optimize when there is only one ill as
15749  * it is not correct for (3).
15750  */
15751 static void
15752 ill_nominate_bcast_rcv(ill_group_t *illgrp)
15753 {
15754 	ill_t *ill;
15755 	ipif_t *ipif;
15756 	ipaddr_t subnet_addr;
15757 	ipaddr_t prev_subnet_addr = 0;
15758 	ipaddr_t net_addr;
15759 	ipaddr_t prev_net_addr = 0;
15760 	ipaddr_t net_mask = 0;
15761 	ipaddr_t subnet_netmask;
15762 	ipaddr_t addr;
15763 	ip_stack_t	*ipst;
15764 
15765 	/*
15766 	 * When the last memeber is leaving, there is nothing to
15767 	 * nominate.
15768 	 */
15769 	if (illgrp->illgrp_ill_count == 0) {
15770 		ASSERT(illgrp->illgrp_ill == NULL);
15771 		return;
15772 	}
15773 
15774 	ill = illgrp->illgrp_ill;
15775 	ASSERT(!ill->ill_isv6);
15776 	ipst = ill->ill_ipst;
15777 	/*
15778 	 * We assume that ires with same address and belonging to the
15779 	 * same group, has been grouped together. Nominating a *single*
15780 	 * ill in the group for sending and receiving broadcast is done
15781 	 * by making sure that the first BROADCAST ire (which will be
15782 	 * the one returned by ire_ctable_lookup for ip_rput and the
15783 	 * one that will be used in ip_wput_ire) will be the one that
15784 	 * will not have IRE_MARK_NORECV set.
15785 	 *
15786 	 * 1) ip_rput checks and discards packets received on ires marked
15787 	 *    with IRE_MARK_NORECV. Thus, we don't send up duplicate
15788 	 *    broadcast packets. We need to clear IRE_MARK_NORECV on the
15789 	 *    first ire in the group for every broadcast address in the group.
15790 	 *    ip_rput will accept packets only on the first ire i.e only
15791 	 *    one copy of the ill.
15792 	 *
15793 	 * 2) ip_wput_ire needs to send out just one copy of the broadcast
15794 	 *    packet for the whole group. It needs to send out on the ill
15795 	 *    whose ire has not been marked with IRE_MARK_NORECV. If it sends
15796 	 *    on the one marked with IRE_MARK_NORECV, ip_rput will accept
15797 	 *    the copy echoed back on other port where the ire is not marked
15798 	 *    with IRE_MARK_NORECV.
15799 	 *
15800 	 * Note that we just need to have the first IRE either loopback or
15801 	 * non-loopback (either of them may not exist if ire_create failed
15802 	 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will
15803 	 * always hit the first one and hence will always accept one copy.
15804 	 *
15805 	 * We have a broadcast ire per ill for all the unique prefixes
15806 	 * hosted on that ill. As we don't have a way of knowing the
15807 	 * unique prefixes on a given ill and hence in the whole group,
15808 	 * we just call ill_mark_bcast on all the prefixes that exist
15809 	 * in the group. For the common case of one prefix, the code
15810 	 * below optimizes by remebering the last address used for
15811 	 * markng. In the case of multiple prefixes, this will still
15812 	 * optimize depending the order of prefixes.
15813 	 *
15814 	 * The only unique address across the whole group is 0.0.0.0 and
15815 	 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables
15816 	 * the first ire in the bucket for receiving and disables the
15817 	 * others.
15818 	 */
15819 	ill_mark_bcast(illgrp, 0, ipst);
15820 	ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst);
15821 	for (; ill != NULL; ill = ill->ill_group_next) {
15822 
15823 		for (ipif = ill->ill_ipif; ipif != NULL;
15824 		    ipif = ipif->ipif_next) {
15825 
15826 			if (!(ipif->ipif_flags & IPIF_UP) ||
15827 			    ipif->ipif_subnet == 0) {
15828 				continue;
15829 			}
15830 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
15831 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
15832 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
15833 			} else {
15834 				net_mask = htonl(IN_CLASSA_NET);
15835 			}
15836 			addr = net_mask & ipif->ipif_subnet;
15837 			if (prev_net_addr == 0 || prev_net_addr != addr) {
15838 				ill_mark_bcast(illgrp, addr, ipst);
15839 				net_addr = ~net_mask | addr;
15840 				ill_mark_bcast(illgrp, net_addr, ipst);
15841 			}
15842 			prev_net_addr = addr;
15843 
15844 			subnet_netmask = ipif->ipif_net_mask;
15845 			addr = ipif->ipif_subnet;
15846 			if (prev_subnet_addr == 0 ||
15847 			    prev_subnet_addr != addr) {
15848 				ill_mark_bcast(illgrp, addr, ipst);
15849 				subnet_addr = ~subnet_netmask | addr;
15850 				ill_mark_bcast(illgrp, subnet_addr, ipst);
15851 			}
15852 			prev_subnet_addr = addr;
15853 		}
15854 	}
15855 }
15856 
15857 /*
15858  * This function is called while forming ill groups.
15859  *
15860  * Currently, we handle only allmulti groups. We want to join
15861  * allmulti on only one of the ills in the groups. In future,
15862  * when we have link aggregation, we may have to join normal
15863  * multicast groups on multiple ills as switch does inbound load
15864  * balancing. Following are the functions that calls this
15865  * function :
15866  *
15867  * 1) ill_recover_multicast : Interface is coming back UP.
15868  *    When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6
15869  *    will call ill_recover_multicast to recover all the multicast
15870  *    groups. We need to make sure that only one member is joined
15871  *    in the ill group.
15872  *
15873  * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed.
15874  *    Somebody is joining allmulti. We need to make sure that only one
15875  *    member is joined in the group.
15876  *
15877  * 3) illgrp_insert : If allmulti has already joined, we need to make
15878  *    sure that only one member is joined in the group.
15879  *
15880  * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving
15881  *    allmulti who we have nominated. We need to pick someother ill.
15882  *
15883  * 5) illgrp_delete : The ill we nominated is leaving the group,
15884  *    we need to pick a new ill to join the group.
15885  *
15886  * For (1), (2), (5) - we just have to check whether there is
15887  * a good ill joined in the group. If we could not find any ills
15888  * joined the group, we should join.
15889  *
15890  * For (4), the one that was nominated to receive, left the group.
15891  * There could be nobody joined in the group when this function is
15892  * called.
15893  *
15894  * For (3) - we need to explicitly check whether there are multiple
15895  * ills joined in the group.
15896  *
15897  * For simplicity, we don't differentiate any of the above cases. We
15898  * just leave the group if it is joined on any of them and join on
15899  * the first good ill.
15900  */
15901 int
15902 ill_nominate_mcast_rcv(ill_group_t *illgrp)
15903 {
15904 	ilm_t *ilm;
15905 	ill_t *ill;
15906 	ill_t *fallback_inactive_ill = NULL;
15907 	ill_t *fallback_failed_ill = NULL;
15908 	int ret = 0;
15909 
15910 	/*
15911 	 * Leave the allmulti on all the ills and start fresh.
15912 	 */
15913 	for (ill = illgrp->illgrp_ill; ill != NULL;
15914 	    ill = ill->ill_group_next) {
15915 		if (ill->ill_join_allmulti)
15916 			(void) ip_leave_allmulti(ill->ill_ipif);
15917 	}
15918 
15919 	/*
15920 	 * Choose a good ill. Fallback to inactive or failed if
15921 	 * none available. We need to fallback to FAILED in the
15922 	 * case where we have 2 interfaces in a group - where
15923 	 * one of them is failed and another is a good one and
15924 	 * the good one (not marked inactive) is leaving the group.
15925 	 */
15926 	ret = 0;
15927 	for (ill = illgrp->illgrp_ill; ill != NULL;
15928 	    ill = ill->ill_group_next) {
15929 		/* Never pick an offline interface */
15930 		if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE)
15931 			continue;
15932 
15933 		if (ill->ill_phyint->phyint_flags & PHYI_FAILED) {
15934 			fallback_failed_ill = ill;
15935 			continue;
15936 		}
15937 		if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) {
15938 			fallback_inactive_ill = ill;
15939 			continue;
15940 		}
15941 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15942 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15943 				ret = ip_join_allmulti(ill->ill_ipif);
15944 				/*
15945 				 * ip_join_allmulti can fail because of memory
15946 				 * failures. So, make sure we join at least
15947 				 * on one ill.
15948 				 */
15949 				if (ill->ill_join_allmulti)
15950 					return (0);
15951 			}
15952 		}
15953 	}
15954 	if (ret != 0) {
15955 		/*
15956 		 * If we tried nominating above and failed to do so,
15957 		 * return error. We might have tried multiple times.
15958 		 * But, return the latest error.
15959 		 */
15960 		return (ret);
15961 	}
15962 	if ((ill = fallback_inactive_ill) != NULL) {
15963 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15964 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15965 				ret = ip_join_allmulti(ill->ill_ipif);
15966 				return (ret);
15967 			}
15968 		}
15969 	} else if ((ill = fallback_failed_ill) != NULL) {
15970 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
15971 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
15972 				ret = ip_join_allmulti(ill->ill_ipif);
15973 				return (ret);
15974 			}
15975 		}
15976 	}
15977 	return (0);
15978 }
15979 
15980 /*
15981  * This function is called from illgrp_delete after it is
15982  * deleted from the group to reschedule responsibilities
15983  * to a different ill.
15984  */
15985 static void
15986 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp)
15987 {
15988 	ilm_t	*ilm;
15989 	ipif_t	*ipif;
15990 	ipaddr_t subnet_addr;
15991 	ipaddr_t net_addr;
15992 	ipaddr_t net_mask = 0;
15993 	ipaddr_t subnet_netmask;
15994 	ipaddr_t addr;
15995 	ip_stack_t *ipst = ill->ill_ipst;
15996 
15997 	ASSERT(ill->ill_group == NULL);
15998 	/*
15999 	 * Broadcast Responsibility:
16000 	 *
16001 	 * 1. If this ill has been nominated for receiving broadcast
16002 	 * packets, we need to find a new one. Before we find a new
16003 	 * one, we need to re-group the ires that are part of this new
16004 	 * group (assumed by ill_nominate_bcast_rcv). We do this by
16005 	 * calling ill_group_bcast_for_xmit(ill) which will do the right
16006 	 * thing for us.
16007 	 *
16008 	 * 2. If this ill was not nominated for receiving broadcast
16009 	 * packets, we need to clear the IRE_MARK_NORECV flag
16010 	 * so that we continue to send up broadcast packets.
16011 	 */
16012 	if (!ill->ill_isv6) {
16013 		/*
16014 		 * Case 1 above : No optimization here. Just redo the
16015 		 * nomination.
16016 		 */
16017 		ill_group_bcast_for_xmit(ill);
16018 		ill_nominate_bcast_rcv(illgrp);
16019 
16020 		/*
16021 		 * Case 2 above : Lookup and clear IRE_MARK_NORECV.
16022 		 */
16023 		ill_clear_bcast_mark(ill, 0);
16024 		ill_clear_bcast_mark(ill, INADDR_BROADCAST);
16025 
16026 		for (ipif = ill->ill_ipif; ipif != NULL;
16027 		    ipif = ipif->ipif_next) {
16028 
16029 			if (!(ipif->ipif_flags & IPIF_UP) ||
16030 			    ipif->ipif_subnet == 0) {
16031 				continue;
16032 			}
16033 			if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16034 			    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16035 				net_mask = ip_net_mask(ipif->ipif_lcl_addr);
16036 			} else {
16037 				net_mask = htonl(IN_CLASSA_NET);
16038 			}
16039 			addr = net_mask & ipif->ipif_subnet;
16040 			ill_clear_bcast_mark(ill, addr);
16041 
16042 			net_addr = ~net_mask | addr;
16043 			ill_clear_bcast_mark(ill, net_addr);
16044 
16045 			subnet_netmask = ipif->ipif_net_mask;
16046 			addr = ipif->ipif_subnet;
16047 			ill_clear_bcast_mark(ill, addr);
16048 
16049 			subnet_addr = ~subnet_netmask | addr;
16050 			ill_clear_bcast_mark(ill, subnet_addr);
16051 		}
16052 	}
16053 
16054 	/*
16055 	 * Multicast Responsibility.
16056 	 *
16057 	 * If we have joined allmulti on this one, find a new member
16058 	 * in the group to join allmulti. As this ill is already part
16059 	 * of allmulti, we don't have to join on this one.
16060 	 *
16061 	 * If we have not joined allmulti on this one, there is no
16062 	 * responsibility to handoff. But we need to take new
16063 	 * responsibility i.e, join allmulti on this one if we need
16064 	 * to.
16065 	 */
16066 	if (ill->ill_join_allmulti) {
16067 		(void) ill_nominate_mcast_rcv(illgrp);
16068 	} else {
16069 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
16070 			if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
16071 				(void) ip_join_allmulti(ill->ill_ipif);
16072 				break;
16073 			}
16074 		}
16075 	}
16076 
16077 	/*
16078 	 * We intentionally do the flushing of IRE_CACHES only matching
16079 	 * on the ill and not on groups. Note that we are already deleted
16080 	 * from the group.
16081 	 *
16082 	 * This will make sure that all IRE_CACHES whose stq is pointing
16083 	 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get
16084 	 * deleted and IRE_CACHES that are not pointing at this ill will
16085 	 * be left alone.
16086 	 */
16087 	if (ill->ill_isv6) {
16088 		ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16089 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
16090 	} else {
16091 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16092 		    IRE_CACHE, illgrp_cache_delete, (char *)ill, ill);
16093 	}
16094 
16095 	/*
16096 	 * Some conn may have cached one of the IREs deleted above. By removing
16097 	 * the ire reference, we clean up the extra reference to the ill held in
16098 	 * ire->ire_stq.
16099 	 */
16100 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
16101 
16102 	/*
16103 	 * Re-do source address selection for all the members in the
16104 	 * group, if they borrowed source address from one of the ipifs
16105 	 * in this ill.
16106 	 */
16107 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
16108 		if (ill->ill_isv6) {
16109 			ipif_update_other_ipifs_v6(ipif, illgrp);
16110 		} else {
16111 			ipif_update_other_ipifs(ipif, illgrp);
16112 		}
16113 	}
16114 }
16115 
16116 /*
16117  * Delete the ill from the group. The caller makes sure that it is
16118  * in a group and it okay to delete from the group. So, we always
16119  * delete here.
16120  */
16121 static void
16122 illgrp_delete(ill_t *ill)
16123 {
16124 	ill_group_t *illgrp;
16125 	ill_group_t *tmpg;
16126 	ill_t *tmp_ill;
16127 	ip_stack_t	*ipst = ill->ill_ipst;
16128 
16129 	/*
16130 	 * Reset illgrp_ill_schednext if it was pointing at us.
16131 	 * We need to do this before we set ill_group to NULL.
16132 	 */
16133 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16134 	mutex_enter(&ill->ill_lock);
16135 
16136 	illgrp_reset_schednext(ill);
16137 
16138 	illgrp = ill->ill_group;
16139 
16140 	/* Delete the ill from illgrp. */
16141 	if (illgrp->illgrp_ill == ill) {
16142 		illgrp->illgrp_ill = ill->ill_group_next;
16143 	} else {
16144 		tmp_ill = illgrp->illgrp_ill;
16145 		while (tmp_ill->ill_group_next != ill) {
16146 			tmp_ill = tmp_ill->ill_group_next;
16147 			ASSERT(tmp_ill != NULL);
16148 		}
16149 		tmp_ill->ill_group_next = ill->ill_group_next;
16150 	}
16151 	ill->ill_group = NULL;
16152 	ill->ill_group_next = NULL;
16153 
16154 	illgrp->illgrp_ill_count--;
16155 	mutex_exit(&ill->ill_lock);
16156 	rw_exit(&ipst->ips_ill_g_lock);
16157 
16158 	/*
16159 	 * As this ill is leaving the group, we need to hand off
16160 	 * the responsibilities to the other ills in the group, if
16161 	 * this ill had some responsibilities.
16162 	 */
16163 
16164 	ill_handoff_responsibility(ill, illgrp);
16165 
16166 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16167 
16168 	if (illgrp->illgrp_ill_count == 0) {
16169 
16170 		ASSERT(illgrp->illgrp_ill == NULL);
16171 		if (ill->ill_isv6) {
16172 			if (illgrp == ipst->ips_illgrp_head_v6) {
16173 				ipst->ips_illgrp_head_v6 = illgrp->illgrp_next;
16174 			} else {
16175 				tmpg = ipst->ips_illgrp_head_v6;
16176 				while (tmpg->illgrp_next != illgrp) {
16177 					tmpg = tmpg->illgrp_next;
16178 					ASSERT(tmpg != NULL);
16179 				}
16180 				tmpg->illgrp_next = illgrp->illgrp_next;
16181 			}
16182 		} else {
16183 			if (illgrp == ipst->ips_illgrp_head_v4) {
16184 				ipst->ips_illgrp_head_v4 = illgrp->illgrp_next;
16185 			} else {
16186 				tmpg = ipst->ips_illgrp_head_v4;
16187 				while (tmpg->illgrp_next != illgrp) {
16188 					tmpg = tmpg->illgrp_next;
16189 					ASSERT(tmpg != NULL);
16190 				}
16191 				tmpg->illgrp_next = illgrp->illgrp_next;
16192 			}
16193 		}
16194 		mutex_destroy(&illgrp->illgrp_lock);
16195 		mi_free(illgrp);
16196 	}
16197 	rw_exit(&ipst->ips_ill_g_lock);
16198 
16199 	/*
16200 	 * Even though the ill is out of the group its not necessary
16201 	 * to set ipsq_split as TRUE as the ipifs could be down temporarily
16202 	 * We will split the ipsq when phyint_groupname is set to NULL.
16203 	 */
16204 
16205 	/*
16206 	 * Send a routing sockets message if we are deleting from
16207 	 * groups with names.
16208 	 */
16209 	if (ill->ill_phyint->phyint_groupname_len != 0)
16210 		ip_rts_ifmsg(ill->ill_ipif);
16211 }
16212 
16213 /*
16214  * Re-do source address selection. This is normally called when
16215  * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST
16216  * ipif comes up.
16217  */
16218 void
16219 ill_update_source_selection(ill_t *ill)
16220 {
16221 	ipif_t *ipif;
16222 
16223 	ASSERT(IAM_WRITER_ILL(ill));
16224 
16225 	if (ill->ill_group != NULL)
16226 		ill = ill->ill_group->illgrp_ill;
16227 
16228 	for (; ill != NULL; ill = ill->ill_group_next) {
16229 		for (ipif = ill->ill_ipif; ipif != NULL;
16230 		    ipif = ipif->ipif_next) {
16231 			if (ill->ill_isv6)
16232 				ipif_recreate_interface_routes_v6(NULL, ipif);
16233 			else
16234 				ipif_recreate_interface_routes(NULL, ipif);
16235 		}
16236 	}
16237 }
16238 
16239 /*
16240  * Insert ill in a group headed by illgrp_head. The caller can either
16241  * pass a groupname in which case we search for a group with the
16242  * same name to insert in or pass a group to insert in. This function
16243  * would only search groups with names.
16244  *
16245  * NOTE : The caller should make sure that there is at least one ipif
16246  *	  UP on this ill so that illgrp_scheduler can pick this ill
16247  *	  for outbound packets. If ill_ipif_up_count is zero, we have
16248  *	  already sent a DL_UNBIND to the driver and we don't want to
16249  *	  send anymore packets. We don't assert for ipif_up_count
16250  *	  to be greater than zero, because ipif_up_done wants to call
16251  *	  this function before bumping up the ipif_up_count. See
16252  *	  ipif_up_done() for details.
16253  */
16254 int
16255 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname,
16256     ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up)
16257 {
16258 	ill_group_t *illgrp;
16259 	ill_t *prev_ill;
16260 	phyint_t *phyi;
16261 	ip_stack_t	*ipst = ill->ill_ipst;
16262 
16263 	ASSERT(ill->ill_group == NULL);
16264 
16265 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16266 	mutex_enter(&ill->ill_lock);
16267 
16268 	if (groupname != NULL) {
16269 		/*
16270 		 * Look for a group with a matching groupname to insert.
16271 		 */
16272 		for (illgrp = *illgrp_head; illgrp != NULL;
16273 		    illgrp = illgrp->illgrp_next) {
16274 
16275 			ill_t *tmp_ill;
16276 
16277 			/*
16278 			 * If we have an ill_group_t in the list which has
16279 			 * no ill_t assigned then we must be in the process of
16280 			 * removing this group. We skip this as illgrp_delete()
16281 			 * will remove it from the list.
16282 			 */
16283 			if ((tmp_ill = illgrp->illgrp_ill) == NULL) {
16284 				ASSERT(illgrp->illgrp_ill_count == 0);
16285 				continue;
16286 			}
16287 
16288 			ASSERT(tmp_ill->ill_phyint != NULL);
16289 			phyi = tmp_ill->ill_phyint;
16290 			/*
16291 			 * Look at groups which has names only.
16292 			 */
16293 			if (phyi->phyint_groupname_len == 0)
16294 				continue;
16295 			/*
16296 			 * Names are stored in the phyint common to both
16297 			 * IPv4 and IPv6.
16298 			 */
16299 			if (mi_strcmp(phyi->phyint_groupname,
16300 			    groupname) == 0) {
16301 				break;
16302 			}
16303 		}
16304 	} else {
16305 		/*
16306 		 * If the caller passes in a NULL "grp_to_insert", we
16307 		 * allocate one below and insert this singleton.
16308 		 */
16309 		illgrp = grp_to_insert;
16310 	}
16311 
16312 	ill->ill_group_next = NULL;
16313 
16314 	if (illgrp == NULL) {
16315 		illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t));
16316 		if (illgrp == NULL) {
16317 			return (ENOMEM);
16318 		}
16319 		illgrp->illgrp_next = *illgrp_head;
16320 		*illgrp_head = illgrp;
16321 		illgrp->illgrp_ill = ill;
16322 		illgrp->illgrp_ill_count = 1;
16323 		ill->ill_group = illgrp;
16324 		/*
16325 		 * Used in illgrp_scheduler to protect multiple threads
16326 		 * from traversing the list.
16327 		 */
16328 		mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0);
16329 	} else {
16330 		ASSERT(ill->ill_net_type ==
16331 		    illgrp->illgrp_ill->ill_net_type);
16332 		ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type);
16333 
16334 		/* Insert ill at tail of this group */
16335 		prev_ill = illgrp->illgrp_ill;
16336 		while (prev_ill->ill_group_next != NULL)
16337 			prev_ill = prev_ill->ill_group_next;
16338 		prev_ill->ill_group_next = ill;
16339 		ill->ill_group = illgrp;
16340 		illgrp->illgrp_ill_count++;
16341 		/*
16342 		 * Inherit group properties. Currently only forwarding
16343 		 * is the property we try to keep the same with all the
16344 		 * ills. When there are more, we will abstract this into
16345 		 * a function.
16346 		 */
16347 		ill->ill_flags &= ~ILLF_ROUTER;
16348 		ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER);
16349 	}
16350 	mutex_exit(&ill->ill_lock);
16351 	rw_exit(&ipst->ips_ill_g_lock);
16352 
16353 	/*
16354 	 * 1) When ipif_up_done() calls this function, ipif_up_count
16355 	 *    may be zero as it has not yet been bumped. But the ires
16356 	 *    have already been added. So, we do the nomination here
16357 	 *    itself. But, when ip_sioctl_groupname calls this, it checks
16358 	 *    for ill_ipif_up_count != 0. Thus we don't check for
16359 	 *    ill_ipif_up_count here while nominating broadcast ires for
16360 	 *    receive.
16361 	 *
16362 	 * 2) Similarly, we need to call ill_group_bcast_for_xmit here
16363 	 *    to group them properly as ire_add() has already happened
16364 	 *    in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert
16365 	 *    case, we need to do it here anyway.
16366 	 */
16367 	if (!ill->ill_isv6) {
16368 		ill_group_bcast_for_xmit(ill);
16369 		ill_nominate_bcast_rcv(illgrp);
16370 	}
16371 
16372 	if (!ipif_is_coming_up) {
16373 		/*
16374 		 * When ipif_up_done() calls this function, the multicast
16375 		 * groups have not been joined yet. So, there is no point in
16376 		 * nomination. ip_join_allmulti will handle groups when
16377 		 * ill_recover_multicast is called from ipif_up_done() later.
16378 		 */
16379 		(void) ill_nominate_mcast_rcv(illgrp);
16380 		/*
16381 		 * ipif_up_done calls ill_update_source_selection
16382 		 * anyway. Moreover, we don't want to re-create
16383 		 * interface routes while ipif_up_done() still has reference
16384 		 * to them. Refer to ipif_up_done() for more details.
16385 		 */
16386 		ill_update_source_selection(ill);
16387 	}
16388 
16389 	/*
16390 	 * Send a routing sockets message if we are inserting into
16391 	 * groups with names.
16392 	 */
16393 	if (groupname != NULL)
16394 		ip_rts_ifmsg(ill->ill_ipif);
16395 	return (0);
16396 }
16397 
16398 /*
16399  * Return the first phyint matching the groupname. There could
16400  * be more than one when there are ill groups.
16401  *
16402  * If 'usable' is set, then we exclude ones that are marked with any of
16403  * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE).
16404  * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo
16405  * emulation of ipmp.
16406  */
16407 phyint_t *
16408 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst)
16409 {
16410 	phyint_t *phyi;
16411 
16412 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16413 	/*
16414 	 * Group names are stored in the phyint - a common structure
16415 	 * to both IPv4 and IPv6.
16416 	 */
16417 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16418 	for (; phyi != NULL;
16419 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16420 	    phyi, AVL_AFTER)) {
16421 		if (phyi->phyint_groupname_len == 0)
16422 			continue;
16423 		/*
16424 		 * Skip the ones that should not be used since the callers
16425 		 * sometime use this for sending packets.
16426 		 */
16427 		if (usable && (phyi->phyint_flags &
16428 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE)))
16429 			continue;
16430 
16431 		ASSERT(phyi->phyint_groupname != NULL);
16432 		if (mi_strcmp(groupname, phyi->phyint_groupname) == 0)
16433 			return (phyi);
16434 	}
16435 	return (NULL);
16436 }
16437 
16438 
16439 /*
16440  * Return the first usable phyint matching the group index. By 'usable'
16441  * we exclude ones that are marked ununsable with any of
16442  * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE).
16443  *
16444  * Used only for the ipmp/netinfo emulation of ipmp.
16445  */
16446 phyint_t *
16447 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst)
16448 {
16449 	phyint_t *phyi;
16450 
16451 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
16452 
16453 	if (!ipst->ips_ipmp_hook_emulation)
16454 		return (NULL);
16455 
16456 	/*
16457 	 * Group indicies are stored in the phyint - a common structure
16458 	 * to both IPv4 and IPv6.
16459 	 */
16460 	phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index);
16461 	for (; phyi != NULL;
16462 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
16463 	    phyi, AVL_AFTER)) {
16464 		/* Ignore the ones that do not have a group */
16465 		if (phyi->phyint_groupname_len == 0)
16466 			continue;
16467 
16468 		ASSERT(phyi->phyint_group_ifindex != 0);
16469 		/*
16470 		 * Skip the ones that should not be used since the callers
16471 		 * sometime use this for sending packets.
16472 		 */
16473 		if (phyi->phyint_flags &
16474 		    (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE))
16475 			continue;
16476 		if (phyi->phyint_group_ifindex == group_ifindex)
16477 			return (phyi);
16478 	}
16479 	return (NULL);
16480 }
16481 
16482 
16483 /*
16484  * MT notes on creation and deletion of IPMP groups
16485  *
16486  * Creation and deletion of IPMP groups introduce the need to merge or
16487  * split the associated serialization objects i.e the ipsq's. Normally all
16488  * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled
16489  * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during
16490  * the execution of the SIOCSLIFGROUPNAME command the picture changes. There
16491  * is a need to change the <ill-ipsq> association and we have to operate on both
16492  * the source and destination IPMP groups. For eg. attempting to set the
16493  * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to
16494  * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the
16495  * source or destination IPMP group are mapped to a single ipsq for executing
16496  * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's.
16497  * The <ill-ipsq> mapping is restored back to normal at a later point. This is
16498  * termed as a split of the ipsq. The converse of the merge i.e. a split of the
16499  * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname
16500  * occurred on the ipsq, then the ipsq_split flag is set. This indicates the
16501  * ipsq has to be examined for redoing the <ill-ipsq> associations.
16502  *
16503  * In the above example the ioctl handling code locates the current ipsq of hme0
16504  * which is ipsq(mpk17-84). It then enters the above ipsq immediately or
16505  * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates
16506  * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into
16507  * the destination ipsq. If the destination ipsq is not busy, it also enters
16508  * the destination ipsq exclusively. Now the actual groupname setting operation
16509  * can proceed. If the destination ipsq is busy, the operation is enqueued
16510  * on the destination (merged) ipsq and will be handled in the unwind from
16511  * ipsq_exit.
16512  *
16513  * To prevent other threads accessing the ill while the group name change is
16514  * in progres, we bring down the ipifs which also removes the ill from the
16515  * group. The group is changed in phyint and when the first ipif on the ill
16516  * is brought up, the ill is inserted into the right IPMP group by
16517  * illgrp_insert.
16518  */
16519 /* ARGSUSED */
16520 int
16521 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
16522     ip_ioctl_cmd_t *ipip, void *ifreq)
16523 {
16524 	int i;
16525 	char *tmp;
16526 	int namelen;
16527 	ill_t *ill = ipif->ipif_ill;
16528 	ill_t *ill_v4, *ill_v6;
16529 	int err = 0;
16530 	phyint_t *phyi;
16531 	phyint_t *phyi_tmp;
16532 	struct lifreq *lifr;
16533 	mblk_t	*mp1;
16534 	char *groupname;
16535 	ipsq_t *ipsq;
16536 	ip_stack_t	*ipst = ill->ill_ipst;
16537 
16538 	ASSERT(IAM_WRITER_IPIF(ipif));
16539 
16540 	/* Existance verified in ip_wput_nondata */
16541 	mp1 = mp->b_cont->b_cont;
16542 	lifr = (struct lifreq *)mp1->b_rptr;
16543 	groupname = lifr->lifr_groupname;
16544 
16545 	if (ipif->ipif_id != 0)
16546 		return (EINVAL);
16547 
16548 	phyi = ill->ill_phyint;
16549 	ASSERT(phyi != NULL);
16550 
16551 	if (phyi->phyint_flags & PHYI_VIRTUAL)
16552 		return (EINVAL);
16553 
16554 	tmp = groupname;
16555 	for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++)
16556 		;
16557 
16558 	if (i == LIFNAMSIZ) {
16559 		/* no null termination */
16560 		return (EINVAL);
16561 	}
16562 
16563 	/*
16564 	 * Calculate the namelen exclusive of the null
16565 	 * termination character.
16566 	 */
16567 	namelen = tmp - groupname;
16568 
16569 	ill_v4 = phyi->phyint_illv4;
16570 	ill_v6 = phyi->phyint_illv6;
16571 
16572 	/*
16573 	 * ILL cannot be part of a usesrc group and and IPMP group at the
16574 	 * same time. No need to grab the ill_g_usesrc_lock here, see
16575 	 * synchronization notes in ip.c
16576 	 */
16577 	if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) {
16578 		return (EINVAL);
16579 	}
16580 
16581 	/*
16582 	 * mark the ill as changing.
16583 	 * this should queue all new requests on the syncq.
16584 	 */
16585 	GRAB_ILL_LOCKS(ill_v4, ill_v6);
16586 
16587 	if (ill_v4 != NULL)
16588 		ill_v4->ill_state_flags |= ILL_CHANGING;
16589 	if (ill_v6 != NULL)
16590 		ill_v6->ill_state_flags |= ILL_CHANGING;
16591 	RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16592 
16593 	if (namelen == 0) {
16594 		/*
16595 		 * Null string means remove this interface from the
16596 		 * existing group.
16597 		 */
16598 		if (phyi->phyint_groupname_len == 0) {
16599 			/*
16600 			 * Never was in a group.
16601 			 */
16602 			err = 0;
16603 			goto done;
16604 		}
16605 
16606 		/*
16607 		 * IPv4 or IPv6 may be temporarily out of the group when all
16608 		 * the ipifs are down. Thus, we need to check for ill_group to
16609 		 * be non-NULL.
16610 		 */
16611 		if (ill_v4 != NULL && ill_v4->ill_group != NULL) {
16612 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16613 			mutex_enter(&ill_v4->ill_lock);
16614 			if (!ill_is_quiescent(ill_v4)) {
16615 				/*
16616 				 * ipsq_pending_mp_add will not fail since
16617 				 * connp is NULL
16618 				 */
16619 				(void) ipsq_pending_mp_add(NULL,
16620 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16621 				mutex_exit(&ill_v4->ill_lock);
16622 				err = EINPROGRESS;
16623 				goto done;
16624 			}
16625 			mutex_exit(&ill_v4->ill_lock);
16626 		}
16627 
16628 		if (ill_v6 != NULL && ill_v6->ill_group != NULL) {
16629 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16630 			mutex_enter(&ill_v6->ill_lock);
16631 			if (!ill_is_quiescent(ill_v6)) {
16632 				(void) ipsq_pending_mp_add(NULL,
16633 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16634 				mutex_exit(&ill_v6->ill_lock);
16635 				err = EINPROGRESS;
16636 				goto done;
16637 			}
16638 			mutex_exit(&ill_v6->ill_lock);
16639 		}
16640 
16641 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16642 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16643 		mutex_enter(&phyi->phyint_lock);
16644 		ASSERT(phyi->phyint_groupname != NULL);
16645 		mi_free(phyi->phyint_groupname);
16646 		phyi->phyint_groupname = NULL;
16647 		phyi->phyint_groupname_len = 0;
16648 
16649 		/* Restore the ifindex used to be the per interface one */
16650 		phyi->phyint_group_ifindex = 0;
16651 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16652 		mutex_exit(&phyi->phyint_lock);
16653 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16654 		rw_exit(&ipst->ips_ill_g_lock);
16655 		err = ill_up_ipifs(ill, q, mp);
16656 
16657 		/*
16658 		 * set the split flag so that the ipsq can be split
16659 		 */
16660 		mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16661 		phyi->phyint_ipsq->ipsq_split = B_TRUE;
16662 		mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16663 
16664 	} else {
16665 		if (phyi->phyint_groupname_len != 0) {
16666 			ASSERT(phyi->phyint_groupname != NULL);
16667 			/* Are we inserting in the same group ? */
16668 			if (mi_strcmp(groupname,
16669 			    phyi->phyint_groupname) == 0) {
16670 				err = 0;
16671 				goto done;
16672 			}
16673 		}
16674 
16675 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16676 		/*
16677 		 * Merge ipsq for the group's.
16678 		 * This check is here as multiple groups/ills might be
16679 		 * sharing the same ipsq.
16680 		 * If we have to merege than the operation is restarted
16681 		 * on the new ipsq.
16682 		 */
16683 		ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst);
16684 		if (phyi->phyint_ipsq != ipsq) {
16685 			rw_exit(&ipst->ips_ill_g_lock);
16686 			err = ill_merge_groups(ill, NULL, groupname, mp, q);
16687 			goto done;
16688 		}
16689 		/*
16690 		 * Running exclusive on new ipsq.
16691 		 */
16692 
16693 		ASSERT(ipsq != NULL);
16694 		ASSERT(ipsq->ipsq_writer == curthread);
16695 
16696 		/*
16697 		 * Check whether the ill_type and ill_net_type matches before
16698 		 * we allocate any memory so that the cleanup is easier.
16699 		 *
16700 		 * We can't group dissimilar ones as we can't load spread
16701 		 * packets across the group because of potential link-level
16702 		 * header differences.
16703 		 */
16704 		phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst);
16705 		if (phyi_tmp != NULL) {
16706 			if ((ill_v4 != NULL &&
16707 			    phyi_tmp->phyint_illv4 != NULL) &&
16708 			    ((ill_v4->ill_net_type !=
16709 			    phyi_tmp->phyint_illv4->ill_net_type) ||
16710 			    (ill_v4->ill_type !=
16711 			    phyi_tmp->phyint_illv4->ill_type))) {
16712 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16713 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16714 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16715 				rw_exit(&ipst->ips_ill_g_lock);
16716 				return (EINVAL);
16717 			}
16718 			if ((ill_v6 != NULL &&
16719 			    phyi_tmp->phyint_illv6 != NULL) &&
16720 			    ((ill_v6->ill_net_type !=
16721 			    phyi_tmp->phyint_illv6->ill_net_type) ||
16722 			    (ill_v6->ill_type !=
16723 			    phyi_tmp->phyint_illv6->ill_type))) {
16724 				mutex_enter(&phyi->phyint_ipsq->ipsq_lock);
16725 				phyi->phyint_ipsq->ipsq_split = B_TRUE;
16726 				mutex_exit(&phyi->phyint_ipsq->ipsq_lock);
16727 				rw_exit(&ipst->ips_ill_g_lock);
16728 				return (EINVAL);
16729 			}
16730 		}
16731 
16732 		rw_exit(&ipst->ips_ill_g_lock);
16733 
16734 		/*
16735 		 * bring down all v4 ipifs.
16736 		 */
16737 		if (ill_v4 != NULL) {
16738 			ill_down_ipifs(ill_v4, mp, 0, B_FALSE);
16739 		}
16740 
16741 		/*
16742 		 * bring down all v6 ipifs.
16743 		 */
16744 		if (ill_v6 != NULL) {
16745 			ill_down_ipifs(ill_v6, mp, 0, B_FALSE);
16746 		}
16747 
16748 		/*
16749 		 * make sure all ipifs are down and there are no active
16750 		 * references. Call to ipsq_pending_mp_add will not fail
16751 		 * since connp is NULL.
16752 		 */
16753 		if (ill_v4 != NULL) {
16754 			mutex_enter(&ill_v4->ill_lock);
16755 			if (!ill_is_quiescent(ill_v4)) {
16756 				(void) ipsq_pending_mp_add(NULL,
16757 				    ill_v4->ill_ipif, q, mp, ILL_DOWN);
16758 				mutex_exit(&ill_v4->ill_lock);
16759 				err = EINPROGRESS;
16760 				goto done;
16761 			}
16762 			mutex_exit(&ill_v4->ill_lock);
16763 		}
16764 
16765 		if (ill_v6 != NULL) {
16766 			mutex_enter(&ill_v6->ill_lock);
16767 			if (!ill_is_quiescent(ill_v6)) {
16768 				(void) ipsq_pending_mp_add(NULL,
16769 				    ill_v6->ill_ipif, q, mp, ILL_DOWN);
16770 				mutex_exit(&ill_v6->ill_lock);
16771 				err = EINPROGRESS;
16772 				goto done;
16773 			}
16774 			mutex_exit(&ill_v6->ill_lock);
16775 		}
16776 
16777 		/*
16778 		 * allocate including space for null terminator
16779 		 * before we insert.
16780 		 */
16781 		tmp = (char *)mi_alloc(namelen + 1, BPRI_MED);
16782 		if (tmp == NULL)
16783 			return (ENOMEM);
16784 
16785 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
16786 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16787 		mutex_enter(&phyi->phyint_lock);
16788 		if (phyi->phyint_groupname_len != 0) {
16789 			ASSERT(phyi->phyint_groupname != NULL);
16790 			mi_free(phyi->phyint_groupname);
16791 		}
16792 
16793 		/*
16794 		 * setup the new group name.
16795 		 */
16796 		phyi->phyint_groupname = tmp;
16797 		bcopy(groupname, phyi->phyint_groupname, namelen + 1);
16798 		phyi->phyint_groupname_len = namelen + 1;
16799 
16800 		if (ipst->ips_ipmp_hook_emulation) {
16801 			/*
16802 			 * If the group already exists we use the existing
16803 			 * group_ifindex, otherwise we pick a new index here.
16804 			 */
16805 			if (phyi_tmp != NULL) {
16806 				phyi->phyint_group_ifindex =
16807 				    phyi_tmp->phyint_group_ifindex;
16808 			} else {
16809 				/* XXX We need a recovery strategy here. */
16810 				if (!ip_assign_ifindex(
16811 				    &phyi->phyint_group_ifindex, ipst))
16812 					cmn_err(CE_PANIC,
16813 					    "ip_assign_ifindex() failed");
16814 			}
16815 		}
16816 		/*
16817 		 * Select whether the netinfo and hook use the per-interface
16818 		 * or per-group ifindex.
16819 		 */
16820 		if (ipst->ips_ipmp_hook_emulation)
16821 			phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex;
16822 		else
16823 			phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
16824 
16825 		if (ipst->ips_ipmp_hook_emulation &&
16826 		    phyi_tmp != NULL) {
16827 			/* First phyint in group - group PLUMB event */
16828 			ill_nic_info_plumb(ill, B_TRUE);
16829 		}
16830 		mutex_exit(&phyi->phyint_lock);
16831 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16832 		rw_exit(&ipst->ips_ill_g_lock);
16833 
16834 		err = ill_up_ipifs(ill, q, mp);
16835 	}
16836 
16837 done:
16838 	/*
16839 	 *  normally ILL_CHANGING is cleared in ill_up_ipifs.
16840 	 */
16841 	if (err != EINPROGRESS) {
16842 		GRAB_ILL_LOCKS(ill_v4, ill_v6);
16843 		if (ill_v4 != NULL)
16844 			ill_v4->ill_state_flags &= ~ILL_CHANGING;
16845 		if (ill_v6 != NULL)
16846 			ill_v6->ill_state_flags &= ~ILL_CHANGING;
16847 		RELEASE_ILL_LOCKS(ill_v4, ill_v6);
16848 	}
16849 	return (err);
16850 }
16851 
16852 /* ARGSUSED */
16853 int
16854 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
16855     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16856 {
16857 	ill_t *ill;
16858 	phyint_t *phyi;
16859 	struct lifreq *lifr;
16860 	mblk_t	*mp1;
16861 
16862 	/* Existence verified in ip_wput_nondata */
16863 	mp1 = mp->b_cont->b_cont;
16864 	lifr = (struct lifreq *)mp1->b_rptr;
16865 	ill = ipif->ipif_ill;
16866 	phyi = ill->ill_phyint;
16867 
16868 	lifr->lifr_groupname[0] = '\0';
16869 	/*
16870 	 * ill_group may be null if all the interfaces
16871 	 * are down. But still, the phyint should always
16872 	 * hold the name.
16873 	 */
16874 	if (phyi->phyint_groupname_len != 0) {
16875 		bcopy(phyi->phyint_groupname, lifr->lifr_groupname,
16876 		    phyi->phyint_groupname_len);
16877 	}
16878 
16879 	return (0);
16880 }
16881 
16882 
16883 typedef struct conn_move_s {
16884 	ill_t	*cm_from_ill;
16885 	ill_t	*cm_to_ill;
16886 	int	cm_ifindex;
16887 } conn_move_t;
16888 
16889 /*
16890  * ipcl_walk function for moving conn_multicast_ill for a given ill.
16891  */
16892 static void
16893 conn_move(conn_t *connp, caddr_t arg)
16894 {
16895 	conn_move_t *connm;
16896 	int ifindex;
16897 	int i;
16898 	ill_t *from_ill;
16899 	ill_t *to_ill;
16900 	ilg_t *ilg;
16901 	ilm_t *ret_ilm;
16902 
16903 	connm = (conn_move_t *)arg;
16904 	ifindex = connm->cm_ifindex;
16905 	from_ill = connm->cm_from_ill;
16906 	to_ill = connm->cm_to_ill;
16907 
16908 	/* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */
16909 
16910 	/* All multicast fields protected by conn_lock */
16911 	mutex_enter(&connp->conn_lock);
16912 	ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
16913 	if ((connp->conn_outgoing_ill == from_ill) &&
16914 	    (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) {
16915 		connp->conn_outgoing_ill = to_ill;
16916 		connp->conn_incoming_ill = to_ill;
16917 	}
16918 
16919 	/* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */
16920 
16921 	if ((connp->conn_multicast_ill == from_ill) &&
16922 	    (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) {
16923 		connp->conn_multicast_ill = connm->cm_to_ill;
16924 	}
16925 
16926 	/* Change IP_XMIT_IF associations */
16927 	if ((connp->conn_xmit_if_ill == from_ill) &&
16928 	    (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) {
16929 		connp->conn_xmit_if_ill = to_ill;
16930 	}
16931 	/*
16932 	 * Change the ilg_ill to point to the new one. This assumes
16933 	 * ilm_move_v6 has moved the ilms to new_ill and the driver
16934 	 * has been told to receive packets on this interface.
16935 	 * ilm_move_v6 FAILBACKS all the ilms successfully always.
16936 	 * But when doing a FAILOVER, it might fail with ENOMEM and so
16937 	 * some ilms may not have moved. We check to see whether
16938 	 * the ilms have moved to to_ill. We can't check on from_ill
16939 	 * as in the process of moving, we could have split an ilm
16940 	 * in to two - which has the same orig_ifindex and v6group.
16941 	 *
16942 	 * For IPv4, ilg_ipif moves implicitly. The code below really
16943 	 * does not do anything for IPv4 as ilg_ill is NULL for IPv4.
16944 	 */
16945 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
16946 		ilg = &connp->conn_ilg[i];
16947 		if ((ilg->ilg_ill == from_ill) &&
16948 		    (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) {
16949 			/* ifindex != 0 indicates failback */
16950 			if (ifindex != 0) {
16951 				connp->conn_ilg[i].ilg_ill = to_ill;
16952 				continue;
16953 			}
16954 
16955 			ret_ilm = ilm_lookup_ill_index_v6(to_ill,
16956 			    &ilg->ilg_v6group, ilg->ilg_orig_ifindex,
16957 			    connp->conn_zoneid);
16958 
16959 			if (ret_ilm != NULL)
16960 				connp->conn_ilg[i].ilg_ill = to_ill;
16961 		}
16962 	}
16963 	mutex_exit(&connp->conn_lock);
16964 }
16965 
16966 static void
16967 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex)
16968 {
16969 	conn_move_t connm;
16970 	ip_stack_t	*ipst = from_ill->ill_ipst;
16971 
16972 	connm.cm_from_ill = from_ill;
16973 	connm.cm_to_ill = to_ill;
16974 	connm.cm_ifindex = ifindex;
16975 
16976 	ipcl_walk(conn_move, (caddr_t)&connm, ipst);
16977 }
16978 
16979 /*
16980  * ilm has been moved from from_ill to to_ill.
16981  * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill.
16982  * appropriately.
16983  *
16984  * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because
16985  *	  the code there de-references ipif_ill to get the ill to
16986  *	  send multicast requests. It does not work as ipif is on its
16987  *	  move and already moved when this function is called.
16988  *	  Thus, we need to use from_ill and to_ill send down multicast
16989  *	  requests.
16990  */
16991 static void
16992 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill)
16993 {
16994 	ipif_t *ipif;
16995 	ilm_t *ilm;
16996 
16997 	/*
16998 	 * See whether we need to send down DL_ENABMULTI_REQ on
16999 	 * to_ill as ilm has just been added.
17000 	 */
17001 	ASSERT(IAM_WRITER_ILL(to_ill));
17002 	ASSERT(IAM_WRITER_ILL(from_ill));
17003 
17004 	ILM_WALKER_HOLD(to_ill);
17005 	for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
17006 
17007 		if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED))
17008 			continue;
17009 		/*
17010 		 * no locks held, ill/ipif cannot dissappear as long
17011 		 * as we are writer.
17012 		 */
17013 		ipif = to_ill->ill_ipif;
17014 		/*
17015 		 * No need to hold any lock as we are the writer and this
17016 		 * can only be changed by a writer.
17017 		 */
17018 		ilm->ilm_is_new = B_FALSE;
17019 
17020 		if (to_ill->ill_net_type != IRE_IF_RESOLVER ||
17021 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
17022 			ip1dbg(("ilm_send_multicast_reqs: to_ill not "
17023 			    "resolver\n"));
17024 			continue;		/* Must be IRE_IF_NORESOLVER */
17025 		}
17026 
17027 
17028 		if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
17029 			ip1dbg(("ilm_send_multicast_reqs: "
17030 			    "to_ill MULTI_BCAST\n"));
17031 			goto from;
17032 		}
17033 
17034 		if (to_ill->ill_isv6)
17035 			mld_joingroup(ilm);
17036 		else
17037 			igmp_joingroup(ilm);
17038 
17039 		if (to_ill->ill_ipif_up_count == 0) {
17040 			/*
17041 			 * Nobody there. All multicast addresses will be
17042 			 * re-joined when we get the DL_BIND_ACK bringing the
17043 			 * interface up.
17044 			 */
17045 			ilm->ilm_notify_driver = B_FALSE;
17046 			ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n"));
17047 			goto from;
17048 		}
17049 
17050 		/*
17051 		 * For allmulti address, we want to join on only one interface.
17052 		 * Checking for ilm_numentries_v6 is not correct as you may
17053 		 * find an ilm with zero address on to_ill, but we may not
17054 		 * have nominated to_ill for receiving. Thus, if we have
17055 		 * nominated from_ill (ill_join_allmulti is set), nominate
17056 		 * only if to_ill is not already nominated (to_ill normally
17057 		 * should not have been nominated if "from_ill" has already
17058 		 * been nominated. As we don't prevent failovers from happening
17059 		 * across groups, we don't assert).
17060 		 */
17061 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
17062 			/*
17063 			 * There is no need to hold ill locks as we are
17064 			 * writer on both ills and when ill_join_allmulti
17065 			 * is changed the thread is always a writer.
17066 			 */
17067 			if (from_ill->ill_join_allmulti &&
17068 			    !to_ill->ill_join_allmulti) {
17069 				(void) ip_join_allmulti(to_ill->ill_ipif);
17070 			}
17071 		} else if (ilm->ilm_notify_driver) {
17072 
17073 			/*
17074 			 * This is a newly moved ilm so we need to tell the
17075 			 * driver about the new group. There can be more than
17076 			 * one ilm's for the same group in the list each with a
17077 			 * different orig_ifindex. We have to inform the driver
17078 			 * once. In ilm_move_v[4,6] we only set the flag
17079 			 * ilm_notify_driver for the first ilm.
17080 			 */
17081 
17082 			(void) ip_ll_send_enabmulti_req(to_ill,
17083 			    &ilm->ilm_v6addr);
17084 		}
17085 
17086 		ilm->ilm_notify_driver = B_FALSE;
17087 
17088 		/*
17089 		 * See whether we need to send down DL_DISABMULTI_REQ on
17090 		 * from_ill as ilm has just been removed.
17091 		 */
17092 from:
17093 		ipif = from_ill->ill_ipif;
17094 		if (from_ill->ill_net_type != IRE_IF_RESOLVER ||
17095 		    ipif->ipif_flags & IPIF_POINTOPOINT) {
17096 			ip1dbg(("ilm_send_multicast_reqs: "
17097 			    "from_ill not resolver\n"));
17098 			continue;		/* Must be IRE_IF_NORESOLVER */
17099 		}
17100 
17101 		if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) {
17102 			ip1dbg(("ilm_send_multicast_reqs: "
17103 			    "from_ill MULTI_BCAST\n"));
17104 			continue;
17105 		}
17106 
17107 		if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) {
17108 			if (from_ill->ill_join_allmulti)
17109 			    (void) ip_leave_allmulti(from_ill->ill_ipif);
17110 		} else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) {
17111 			(void) ip_ll_send_disabmulti_req(from_ill,
17112 		    &ilm->ilm_v6addr);
17113 		}
17114 	}
17115 	ILM_WALKER_RELE(to_ill);
17116 }
17117 
17118 /*
17119  * This function is called when all multicast memberships needs
17120  * to be moved from "from_ill" to "to_ill" for IPv6. This function is
17121  * called only once unlike the IPv4 counterpart where it is called after
17122  * every logical interface is moved. The reason is due to multicast
17123  * memberships are joined using an interface address in IPv4 while in
17124  * IPv6, interface index is used.
17125  */
17126 static void
17127 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex)
17128 {
17129 	ilm_t	*ilm;
17130 	ilm_t	*ilm_next;
17131 	ilm_t	*new_ilm;
17132 	ilm_t	**ilmp;
17133 	int	count;
17134 	char buf[INET6_ADDRSTRLEN];
17135 	in6_addr_t ipv6_snm = ipv6_solicited_node_mcast;
17136 	ip_stack_t	*ipst = from_ill->ill_ipst;
17137 
17138 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17139 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17140 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17141 
17142 	if (ifindex == 0) {
17143 		/*
17144 		 * Form the solicited node mcast address which is used later.
17145 		 */
17146 		ipif_t *ipif;
17147 
17148 		ipif = from_ill->ill_ipif;
17149 		ASSERT(ipif->ipif_id == 0);
17150 
17151 		ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
17152 	}
17153 
17154 	ilmp = &from_ill->ill_ilm;
17155 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17156 		ilm_next = ilm->ilm_next;
17157 
17158 		if (ilm->ilm_flags & ILM_DELETED) {
17159 			ilmp = &ilm->ilm_next;
17160 			continue;
17161 		}
17162 
17163 		new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr,
17164 		    ilm->ilm_orig_ifindex, ilm->ilm_zoneid);
17165 		ASSERT(ilm->ilm_orig_ifindex != 0);
17166 		if (ilm->ilm_orig_ifindex == ifindex) {
17167 			/*
17168 			 * We are failing back multicast memberships.
17169 			 * If the same ilm exists in to_ill, it means somebody
17170 			 * has joined the same group there e.g. ff02::1
17171 			 * is joined within the kernel when the interfaces
17172 			 * came UP.
17173 			 */
17174 			ASSERT(ilm->ilm_ipif == NULL);
17175 			if (new_ilm != NULL) {
17176 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17177 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17178 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17179 					new_ilm->ilm_is_new = B_TRUE;
17180 				}
17181 			} else {
17182 				/*
17183 				 * check if we can just move the ilm
17184 				 */
17185 				if (from_ill->ill_ilm_walker_cnt != 0) {
17186 					/*
17187 					 * We have walkers we cannot move
17188 					 * the ilm, so allocate a new ilm,
17189 					 * this (old) ilm will be marked
17190 					 * ILM_DELETED at the end of the loop
17191 					 * and will be freed when the
17192 					 * last walker exits.
17193 					 */
17194 					new_ilm = (ilm_t *)mi_zalloc
17195 					    (sizeof (ilm_t));
17196 					if (new_ilm == NULL) {
17197 						ip0dbg(("ilm_move_v6: "
17198 						    "FAILBACK of IPv6"
17199 						    " multicast address %s : "
17200 						    "from %s to"
17201 						    " %s failed : ENOMEM \n",
17202 						    inet_ntop(AF_INET6,
17203 						    &ilm->ilm_v6addr, buf,
17204 						    sizeof (buf)),
17205 						    from_ill->ill_name,
17206 						    to_ill->ill_name));
17207 
17208 							ilmp = &ilm->ilm_next;
17209 							continue;
17210 					}
17211 					*new_ilm = *ilm;
17212 					/*
17213 					 * we don't want new_ilm linked to
17214 					 * ilm's filter list.
17215 					 */
17216 					new_ilm->ilm_filter = NULL;
17217 				} else {
17218 					/*
17219 					 * No walkers we can move the ilm.
17220 					 * lets take it out of the list.
17221 					 */
17222 					*ilmp = ilm->ilm_next;
17223 					ilm->ilm_next = NULL;
17224 					new_ilm = ilm;
17225 				}
17226 
17227 				/*
17228 				 * if this is the first ilm for the group
17229 				 * set ilm_notify_driver so that we notify the
17230 				 * driver in ilm_send_multicast_reqs.
17231 				 */
17232 				if (ilm_lookup_ill_v6(to_ill,
17233 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17234 					new_ilm->ilm_notify_driver = B_TRUE;
17235 
17236 				new_ilm->ilm_ill = to_ill;
17237 				/* Add to the to_ill's list */
17238 				new_ilm->ilm_next = to_ill->ill_ilm;
17239 				to_ill->ill_ilm = new_ilm;
17240 				/*
17241 				 * set the flag so that mld_joingroup is
17242 				 * called in ilm_send_multicast_reqs().
17243 				 */
17244 				new_ilm->ilm_is_new = B_TRUE;
17245 			}
17246 			goto bottom;
17247 		} else if (ifindex != 0) {
17248 			/*
17249 			 * If this is FAILBACK (ifindex != 0) and the ifindex
17250 			 * has not matched above, look at the next ilm.
17251 			 */
17252 			ilmp = &ilm->ilm_next;
17253 			continue;
17254 		}
17255 		/*
17256 		 * If we are here, it means ifindex is 0. Failover
17257 		 * everything.
17258 		 *
17259 		 * We need to handle solicited node mcast address
17260 		 * and all_nodes mcast address differently as they
17261 		 * are joined witin the kenrel (ipif_multicast_up)
17262 		 * and potentially from the userland. We are called
17263 		 * after the ipifs of from_ill has been moved.
17264 		 * If we still find ilms on ill with solicited node
17265 		 * mcast address or all_nodes mcast address, it must
17266 		 * belong to the UP interface that has not moved e.g.
17267 		 * ipif_id 0 with the link local prefix does not move.
17268 		 * We join this on the new ill accounting for all the
17269 		 * userland memberships so that applications don't
17270 		 * see any failure.
17271 		 *
17272 		 * We need to make sure that we account only for the
17273 		 * solicited node and all node multicast addresses
17274 		 * that was brought UP on these. In the case of
17275 		 * a failover from A to B, we might have ilms belonging
17276 		 * to A (ilm_orig_ifindex pointing at A) on B accounting
17277 		 * for the membership from the userland. If we are failing
17278 		 * over from B to C now, we will find the ones belonging
17279 		 * to A on B. These don't account for the ill_ipif_up_count.
17280 		 * They just move from B to C. The check below on
17281 		 * ilm_orig_ifindex ensures that.
17282 		 */
17283 		if ((ilm->ilm_orig_ifindex ==
17284 		    from_ill->ill_phyint->phyint_ifindex) &&
17285 		    (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) ||
17286 		    IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast,
17287 		    &ilm->ilm_v6addr))) {
17288 			ASSERT(ilm->ilm_refcnt > 0);
17289 			count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count;
17290 			/*
17291 			 * For indentation reasons, we are not using a
17292 			 * "else" here.
17293 			 */
17294 			if (count == 0) {
17295 				ilmp = &ilm->ilm_next;
17296 				continue;
17297 			}
17298 			ilm->ilm_refcnt -= count;
17299 			if (new_ilm != NULL) {
17300 				/*
17301 				 * Can find one with the same
17302 				 * ilm_orig_ifindex, if we are failing
17303 				 * over to a STANDBY. This happens
17304 				 * when somebody wants to join a group
17305 				 * on a STANDBY interface and we
17306 				 * internally join on a different one.
17307 				 * If we had joined on from_ill then, a
17308 				 * failover now will find a new ilm
17309 				 * with this index.
17310 				 */
17311 				ip1dbg(("ilm_move_v6: FAILOVER, found"
17312 				    " new ilm on %s, group address %s\n",
17313 				    to_ill->ill_name,
17314 				    inet_ntop(AF_INET6,
17315 				    &ilm->ilm_v6addr, buf,
17316 				    sizeof (buf))));
17317 				new_ilm->ilm_refcnt += count;
17318 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17319 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17320 					new_ilm->ilm_is_new = B_TRUE;
17321 				}
17322 			} else {
17323 				new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17324 				if (new_ilm == NULL) {
17325 					ip0dbg(("ilm_move_v6: FAILOVER of IPv6"
17326 					    " multicast address %s : from %s to"
17327 					    " %s failed : ENOMEM \n",
17328 					    inet_ntop(AF_INET6,
17329 					    &ilm->ilm_v6addr, buf,
17330 					    sizeof (buf)), from_ill->ill_name,
17331 					    to_ill->ill_name));
17332 					ilmp = &ilm->ilm_next;
17333 					continue;
17334 				}
17335 				*new_ilm = *ilm;
17336 				new_ilm->ilm_filter = NULL;
17337 				new_ilm->ilm_refcnt = count;
17338 				new_ilm->ilm_timer = INFINITY;
17339 				new_ilm->ilm_rtx.rtx_timer = INFINITY;
17340 				new_ilm->ilm_is_new = B_TRUE;
17341 				/*
17342 				 * If the to_ill has not joined this
17343 				 * group we need to tell the driver in
17344 				 * ill_send_multicast_reqs.
17345 				 */
17346 				if (ilm_lookup_ill_v6(to_ill,
17347 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17348 					new_ilm->ilm_notify_driver = B_TRUE;
17349 
17350 				new_ilm->ilm_ill = to_ill;
17351 				/* Add to the to_ill's list */
17352 				new_ilm->ilm_next = to_ill->ill_ilm;
17353 				to_ill->ill_ilm = new_ilm;
17354 				ASSERT(new_ilm->ilm_ipif == NULL);
17355 			}
17356 			if (ilm->ilm_refcnt == 0) {
17357 				goto bottom;
17358 			} else {
17359 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17360 				CLEAR_SLIST(new_ilm->ilm_filter);
17361 				ilmp = &ilm->ilm_next;
17362 			}
17363 			continue;
17364 		} else {
17365 			/*
17366 			 * ifindex = 0 means, move everything pointing at
17367 			 * from_ill. We are doing this becuase ill has
17368 			 * either FAILED or became INACTIVE.
17369 			 *
17370 			 * As we would like to move things later back to
17371 			 * from_ill, we want to retain the identity of this
17372 			 * ilm. Thus, we don't blindly increment the reference
17373 			 * count on the ilms matching the address alone. We
17374 			 * need to match on the ilm_orig_index also. new_ilm
17375 			 * was obtained by matching ilm_orig_index also.
17376 			 */
17377 			if (new_ilm != NULL) {
17378 				/*
17379 				 * This is possible only if a previous restore
17380 				 * was incomplete i.e restore to
17381 				 * ilm_orig_ifindex left some ilms because
17382 				 * of some failures. Thus when we are failing
17383 				 * again, we might find our old friends there.
17384 				 */
17385 				ip1dbg(("ilm_move_v6: FAILOVER, found new ilm"
17386 				    " on %s, group address %s\n",
17387 				    to_ill->ill_name,
17388 				    inet_ntop(AF_INET6,
17389 				    &ilm->ilm_v6addr, buf,
17390 				    sizeof (buf))));
17391 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17392 				if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE ||
17393 				    !SLIST_IS_EMPTY(new_ilm->ilm_filter)) {
17394 					new_ilm->ilm_is_new = B_TRUE;
17395 				}
17396 			} else {
17397 				if (from_ill->ill_ilm_walker_cnt != 0) {
17398 					new_ilm = (ilm_t *)
17399 					    mi_zalloc(sizeof (ilm_t));
17400 					if (new_ilm == NULL) {
17401 						ip0dbg(("ilm_move_v6: "
17402 						    "FAILOVER of IPv6"
17403 						    " multicast address %s : "
17404 						    "from %s to"
17405 						    " %s failed : ENOMEM \n",
17406 						    inet_ntop(AF_INET6,
17407 						    &ilm->ilm_v6addr, buf,
17408 						    sizeof (buf)),
17409 						    from_ill->ill_name,
17410 						    to_ill->ill_name));
17411 
17412 							ilmp = &ilm->ilm_next;
17413 							continue;
17414 					}
17415 					*new_ilm = *ilm;
17416 					new_ilm->ilm_filter = NULL;
17417 				} else {
17418 					*ilmp = ilm->ilm_next;
17419 					new_ilm = ilm;
17420 				}
17421 				/*
17422 				 * If the to_ill has not joined this
17423 				 * group we need to tell the driver in
17424 				 * ill_send_multicast_reqs.
17425 				 */
17426 				if (ilm_lookup_ill_v6(to_ill,
17427 				    &new_ilm->ilm_v6addr, ALL_ZONES) == NULL)
17428 					new_ilm->ilm_notify_driver = B_TRUE;
17429 
17430 				/* Add to the to_ill's list */
17431 				new_ilm->ilm_next = to_ill->ill_ilm;
17432 				to_ill->ill_ilm = new_ilm;
17433 				ASSERT(ilm->ilm_ipif == NULL);
17434 				new_ilm->ilm_ill = to_ill;
17435 				new_ilm->ilm_is_new = B_TRUE;
17436 			}
17437 
17438 		}
17439 
17440 bottom:
17441 		/*
17442 		 * Revert multicast filter state to (EXCLUDE, NULL).
17443 		 * new_ilm->ilm_is_new should already be set if needed.
17444 		 */
17445 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17446 		CLEAR_SLIST(new_ilm->ilm_filter);
17447 		/*
17448 		 * We allocated/got a new ilm, free the old one.
17449 		 */
17450 		if (new_ilm != ilm) {
17451 			if (from_ill->ill_ilm_walker_cnt == 0) {
17452 				*ilmp = ilm->ilm_next;
17453 				ilm->ilm_next = NULL;
17454 				FREE_SLIST(ilm->ilm_filter);
17455 				FREE_SLIST(ilm->ilm_pendsrcs);
17456 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17457 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17458 				mi_free((char *)ilm);
17459 			} else {
17460 				ilm->ilm_flags |= ILM_DELETED;
17461 				from_ill->ill_ilm_cleanup_reqd = 1;
17462 				ilmp = &ilm->ilm_next;
17463 			}
17464 		}
17465 	}
17466 }
17467 
17468 /*
17469  * Move all the multicast memberships to to_ill. Called when
17470  * an ipif moves from "from_ill" to "to_ill". This function is slightly
17471  * different from IPv6 counterpart as multicast memberships are associated
17472  * with ills in IPv6. This function is called after every ipif is moved
17473  * unlike IPv6, where it is moved only once.
17474  */
17475 static void
17476 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif)
17477 {
17478 	ilm_t	*ilm;
17479 	ilm_t	*ilm_next;
17480 	ilm_t	*new_ilm;
17481 	ilm_t	**ilmp;
17482 	ip_stack_t	*ipst = from_ill->ill_ipst;
17483 
17484 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17485 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17486 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17487 
17488 	ilmp = &from_ill->ill_ilm;
17489 	for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) {
17490 		ilm_next = ilm->ilm_next;
17491 
17492 		if (ilm->ilm_flags & ILM_DELETED) {
17493 			ilmp = &ilm->ilm_next;
17494 			continue;
17495 		}
17496 
17497 		ASSERT(ilm->ilm_ipif != NULL);
17498 
17499 		if (ilm->ilm_ipif != ipif) {
17500 			ilmp = &ilm->ilm_next;
17501 			continue;
17502 		}
17503 
17504 		if (V4_PART_OF_V6(ilm->ilm_v6addr) ==
17505 		    htonl(INADDR_ALLHOSTS_GROUP)) {
17506 			/*
17507 			 * We joined this in ipif_multicast_up
17508 			 * and we never did an ipif_multicast_down
17509 			 * for IPv4. If nobody else from the userland
17510 			 * has reference, we free the ilm, and later
17511 			 * when this ipif comes up on the new ill,
17512 			 * we will join this again.
17513 			 */
17514 			if (--ilm->ilm_refcnt == 0)
17515 				goto delete_ilm;
17516 
17517 			new_ilm = ilm_lookup_ipif(ipif,
17518 			    V4_PART_OF_V6(ilm->ilm_v6addr));
17519 			if (new_ilm != NULL) {
17520 				new_ilm->ilm_refcnt += ilm->ilm_refcnt;
17521 				/*
17522 				 * We still need to deal with the from_ill.
17523 				 */
17524 				new_ilm->ilm_is_new = B_TRUE;
17525 				new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17526 				CLEAR_SLIST(new_ilm->ilm_filter);
17527 				goto delete_ilm;
17528 			}
17529 			/*
17530 			 * If we could not find one e.g. ipif is
17531 			 * still down on to_ill, we add this ilm
17532 			 * on ill_new to preserve the reference
17533 			 * count.
17534 			 */
17535 		}
17536 		/*
17537 		 * When ipifs move, ilms always move with it
17538 		 * to the NEW ill. Thus we should never be
17539 		 * able to find ilm till we really move it here.
17540 		 */
17541 		ASSERT(ilm_lookup_ipif(ipif,
17542 		    V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL);
17543 
17544 		if (from_ill->ill_ilm_walker_cnt != 0) {
17545 			new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t));
17546 			if (new_ilm == NULL) {
17547 				char buf[INET6_ADDRSTRLEN];
17548 				ip0dbg(("ilm_move_v4: FAILBACK of IPv4"
17549 				    " multicast address %s : "
17550 				    "from %s to"
17551 				    " %s failed : ENOMEM \n",
17552 				    inet_ntop(AF_INET,
17553 				    &ilm->ilm_v6addr, buf,
17554 				    sizeof (buf)),
17555 				    from_ill->ill_name,
17556 				    to_ill->ill_name));
17557 
17558 				ilmp = &ilm->ilm_next;
17559 				continue;
17560 			}
17561 			*new_ilm = *ilm;
17562 			/* We don't want new_ilm linked to ilm's filter list */
17563 			new_ilm->ilm_filter = NULL;
17564 		} else {
17565 			/* Remove from the list */
17566 			*ilmp = ilm->ilm_next;
17567 			new_ilm = ilm;
17568 		}
17569 
17570 		/*
17571 		 * If we have never joined this group on the to_ill
17572 		 * make sure we tell the driver.
17573 		 */
17574 		if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr,
17575 		    ALL_ZONES) == NULL)
17576 			new_ilm->ilm_notify_driver = B_TRUE;
17577 
17578 		/* Add to the to_ill's list */
17579 		new_ilm->ilm_next = to_ill->ill_ilm;
17580 		to_ill->ill_ilm = new_ilm;
17581 		new_ilm->ilm_is_new = B_TRUE;
17582 
17583 		/*
17584 		 * Revert multicast filter state to (EXCLUDE, NULL)
17585 		 */
17586 		new_ilm->ilm_fmode = MODE_IS_EXCLUDE;
17587 		CLEAR_SLIST(new_ilm->ilm_filter);
17588 
17589 		/*
17590 		 * Delete only if we have allocated a new ilm.
17591 		 */
17592 		if (new_ilm != ilm) {
17593 delete_ilm:
17594 			if (from_ill->ill_ilm_walker_cnt == 0) {
17595 				/* Remove from the list */
17596 				*ilmp = ilm->ilm_next;
17597 				ilm->ilm_next = NULL;
17598 				FREE_SLIST(ilm->ilm_filter);
17599 				FREE_SLIST(ilm->ilm_pendsrcs);
17600 				FREE_SLIST(ilm->ilm_rtx.rtx_allow);
17601 				FREE_SLIST(ilm->ilm_rtx.rtx_block);
17602 				mi_free((char *)ilm);
17603 			} else {
17604 				ilm->ilm_flags |= ILM_DELETED;
17605 				from_ill->ill_ilm_cleanup_reqd = 1;
17606 				ilmp = &ilm->ilm_next;
17607 			}
17608 		}
17609 	}
17610 }
17611 
17612 static uint_t
17613 ipif_get_id(ill_t *ill, uint_t id)
17614 {
17615 	uint_t	unit;
17616 	ipif_t	*tipif;
17617 	boolean_t found = B_FALSE;
17618 	ip_stack_t	*ipst = ill->ill_ipst;
17619 
17620 	/*
17621 	 * During failback, we want to go back to the same id
17622 	 * instead of the smallest id so that the original
17623 	 * configuration is maintained. id is non-zero in that
17624 	 * case.
17625 	 */
17626 	if (id != 0) {
17627 		/*
17628 		 * While failing back, if we still have an ipif with
17629 		 * MAX_ADDRS_PER_IF, it means this will be replaced
17630 		 * as soon as we return from this function. It was
17631 		 * to set to MAX_ADDRS_PER_IF by the caller so that
17632 		 * we can choose the smallest id. Thus we return zero
17633 		 * in that case ignoring the hint.
17634 		 */
17635 		if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF)
17636 			return (0);
17637 		for (tipif = ill->ill_ipif; tipif != NULL;
17638 		    tipif = tipif->ipif_next) {
17639 			if (tipif->ipif_id == id) {
17640 				found = B_TRUE;
17641 				break;
17642 			}
17643 		}
17644 		/*
17645 		 * If somebody already plumbed another logical
17646 		 * with the same id, we won't be able to find it.
17647 		 */
17648 		if (!found)
17649 			return (id);
17650 	}
17651 	for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) {
17652 		found = B_FALSE;
17653 		for (tipif = ill->ill_ipif; tipif != NULL;
17654 		    tipif = tipif->ipif_next) {
17655 			if (tipif->ipif_id == unit) {
17656 				found = B_TRUE;
17657 				break;
17658 			}
17659 		}
17660 		if (!found)
17661 			break;
17662 	}
17663 	return (unit);
17664 }
17665 
17666 /* ARGSUSED */
17667 static int
17668 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp,
17669     ipif_t **rep_ipif_ptr)
17670 {
17671 	ill_t	*from_ill;
17672 	ipif_t	*rep_ipif;
17673 	ipif_t	**ipifp;
17674 	uint_t	unit;
17675 	int err = 0;
17676 	ipif_t	*to_ipif;
17677 	struct iocblk	*iocp;
17678 	boolean_t failback_cmd;
17679 	boolean_t remove_ipif;
17680 	int	rc;
17681 	ip_stack_t	*ipst;
17682 
17683 	ASSERT(IAM_WRITER_ILL(to_ill));
17684 	ASSERT(IAM_WRITER_IPIF(ipif));
17685 
17686 	iocp = (struct iocblk *)mp->b_rptr;
17687 	failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK);
17688 	remove_ipif = B_FALSE;
17689 
17690 	from_ill = ipif->ipif_ill;
17691 	ipst = from_ill->ill_ipst;
17692 
17693 	ASSERT(MUTEX_HELD(&to_ill->ill_lock));
17694 	ASSERT(MUTEX_HELD(&from_ill->ill_lock));
17695 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
17696 
17697 	/*
17698 	 * Don't move LINK LOCAL addresses as they are tied to
17699 	 * physical interface.
17700 	 */
17701 	if (from_ill->ill_isv6 &&
17702 	    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) {
17703 		ipif->ipif_was_up = B_FALSE;
17704 		IPIF_UNMARK_MOVING(ipif);
17705 		return (0);
17706 	}
17707 
17708 	/*
17709 	 * We set the ipif_id to maximum so that the search for
17710 	 * ipif_id will pick the lowest number i.e 0 in the
17711 	 * following 2 cases :
17712 	 *
17713 	 * 1) We have a replacement ipif at the head of to_ill.
17714 	 *    We can't remove it yet as we can exceed ip_addrs_per_if
17715 	 *    on to_ill and hence the MOVE might fail. We want to
17716 	 *    remove it only if we could move the ipif. Thus, by
17717 	 *    setting it to the MAX value, we make the search in
17718 	 *    ipif_get_id return the zeroth id.
17719 	 *
17720 	 * 2) When DR pulls out the NIC and re-plumbs the interface,
17721 	 *    we might just have a zero address plumbed on the ipif
17722 	 *    with zero id in the case of IPv4. We remove that while
17723 	 *    doing the failback. We want to remove it only if we
17724 	 *    could move the ipif. Thus, by setting it to the MAX
17725 	 *    value, we make the search in ipif_get_id return the
17726 	 *    zeroth id.
17727 	 *
17728 	 * Both (1) and (2) are done only when when we are moving
17729 	 * an ipif (either due to failover/failback) which originally
17730 	 * belonged to this interface i.e the ipif_orig_ifindex is
17731 	 * the same as to_ill's ifindex. This is needed so that
17732 	 * FAILOVER from A -> B ( A failed) followed by FAILOVER
17733 	 * from B -> A (B is being removed from the group) and
17734 	 * FAILBACK from A -> B restores the original configuration.
17735 	 * Without the check for orig_ifindex, the second FAILOVER
17736 	 * could make the ipif belonging to B replace the A's zeroth
17737 	 * ipif and the subsequent failback re-creating the replacement
17738 	 * ipif again.
17739 	 *
17740 	 * NOTE : We created the replacement ipif when we did a
17741 	 * FAILOVER (See below). We could check for FAILBACK and
17742 	 * then look for replacement ipif to be removed. But we don't
17743 	 * want to do that because we wan't to allow the possibility
17744 	 * of a FAILOVER from A -> B (which creates the replacement ipif),
17745 	 * followed by a *FAILOVER* from B -> A instead of a FAILBACK
17746 	 * from B -> A.
17747 	 */
17748 	to_ipif = to_ill->ill_ipif;
17749 	if ((to_ill->ill_phyint->phyint_ifindex ==
17750 	    ipif->ipif_orig_ifindex) &&
17751 	    IPIF_REPL_CHECK(to_ipif, failback_cmd)) {
17752 		ASSERT(to_ipif->ipif_id == 0);
17753 		remove_ipif = B_TRUE;
17754 		to_ipif->ipif_id = MAX_ADDRS_PER_IF;
17755 	}
17756 	/*
17757 	 * Find the lowest logical unit number on the to_ill.
17758 	 * If we are failing back, try to get the original id
17759 	 * rather than the lowest one so that the original
17760 	 * configuration is maintained.
17761 	 *
17762 	 * XXX need a better scheme for this.
17763 	 */
17764 	if (failback_cmd) {
17765 		unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid);
17766 	} else {
17767 		unit = ipif_get_id(to_ill, 0);
17768 	}
17769 
17770 	/* Reset back to zero in case we fail below */
17771 	if (to_ipif->ipif_id == MAX_ADDRS_PER_IF)
17772 		to_ipif->ipif_id = 0;
17773 
17774 	if (unit == ipst->ips_ip_addrs_per_if) {
17775 		ipif->ipif_was_up = B_FALSE;
17776 		IPIF_UNMARK_MOVING(ipif);
17777 		return (EINVAL);
17778 	}
17779 
17780 	/*
17781 	 * ipif is ready to move from "from_ill" to "to_ill".
17782 	 *
17783 	 * 1) If we are moving ipif with id zero, create a
17784 	 *    replacement ipif for this ipif on from_ill. If this fails
17785 	 *    fail the MOVE operation.
17786 	 *
17787 	 * 2) Remove the replacement ipif on to_ill if any.
17788 	 *    We could remove the replacement ipif when we are moving
17789 	 *    the ipif with id zero. But what if somebody already
17790 	 *    unplumbed it ? Thus we always remove it if it is present.
17791 	 *    We want to do it only if we are sure we are going to
17792 	 *    move the ipif to to_ill which is why there are no
17793 	 *    returns due to error till ipif is linked to to_ill.
17794 	 *    Note that the first ipif that we failback will always
17795 	 *    be zero if it is present.
17796 	 */
17797 	if (ipif->ipif_id == 0) {
17798 		ipaddr_t inaddr_any = INADDR_ANY;
17799 
17800 		rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED);
17801 		if (rep_ipif == NULL) {
17802 			ipif->ipif_was_up = B_FALSE;
17803 			IPIF_UNMARK_MOVING(ipif);
17804 			return (ENOMEM);
17805 		}
17806 		*rep_ipif = ipif_zero;
17807 		/*
17808 		 * Before we put the ipif on the list, store the addresses
17809 		 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR
17810 		 * assumes so. This logic is not any different from what
17811 		 * ipif_allocate does.
17812 		 */
17813 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17814 		    &rep_ipif->ipif_v6lcl_addr);
17815 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17816 		    &rep_ipif->ipif_v6src_addr);
17817 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17818 		    &rep_ipif->ipif_v6subnet);
17819 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17820 		    &rep_ipif->ipif_v6net_mask);
17821 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17822 		    &rep_ipif->ipif_v6brd_addr);
17823 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
17824 		    &rep_ipif->ipif_v6pp_dst_addr);
17825 		/*
17826 		 * We mark IPIF_NOFAILOVER so that this can never
17827 		 * move.
17828 		 */
17829 		rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER;
17830 		rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE;
17831 		rep_ipif->ipif_replace_zero = B_TRUE;
17832 		mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL,
17833 		    MUTEX_DEFAULT, NULL);
17834 		rep_ipif->ipif_id = 0;
17835 		rep_ipif->ipif_ire_type = ipif->ipif_ire_type;
17836 		rep_ipif->ipif_ill = from_ill;
17837 		rep_ipif->ipif_orig_ifindex =
17838 		    from_ill->ill_phyint->phyint_ifindex;
17839 		/* Insert at head */
17840 		rep_ipif->ipif_next = from_ill->ill_ipif;
17841 		from_ill->ill_ipif = rep_ipif;
17842 		/*
17843 		 * We don't really care to let apps know about
17844 		 * this interface.
17845 		 */
17846 	}
17847 
17848 	if (remove_ipif) {
17849 		/*
17850 		 * We set to a max value above for this case to get
17851 		 * id zero. ASSERT that we did get one.
17852 		 */
17853 		ASSERT((to_ipif->ipif_id == 0) && (unit == 0));
17854 		rep_ipif = to_ipif;
17855 		to_ill->ill_ipif = rep_ipif->ipif_next;
17856 		rep_ipif->ipif_next = NULL;
17857 		/*
17858 		 * If some apps scanned and find this interface,
17859 		 * it is time to let them know, so that they can
17860 		 * delete it.
17861 		 */
17862 
17863 		*rep_ipif_ptr = rep_ipif;
17864 	}
17865 
17866 	/* Get it out of the ILL interface list. */
17867 	ipifp = &ipif->ipif_ill->ill_ipif;
17868 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
17869 		if (*ipifp == ipif) {
17870 			*ipifp = ipif->ipif_next;
17871 			break;
17872 		}
17873 	}
17874 
17875 	/* Assign the new ill */
17876 	ipif->ipif_ill = to_ill;
17877 	ipif->ipif_id = unit;
17878 	/* id has already been checked */
17879 	rc = ipif_insert(ipif, B_FALSE, B_FALSE);
17880 	ASSERT(rc == 0);
17881 	/* Let SCTP update its list */
17882 	sctp_move_ipif(ipif, from_ill, to_ill);
17883 	/*
17884 	 * Handle the failover and failback of ipif_t between
17885 	 * ill_t that have differing maximum mtu values.
17886 	 */
17887 	if (ipif->ipif_mtu > to_ill->ill_max_mtu) {
17888 		if (ipif->ipif_saved_mtu == 0) {
17889 			/*
17890 			 * As this ipif_t is moving to an ill_t
17891 			 * that has a lower ill_max_mtu, its
17892 			 * ipif_mtu needs to be saved so it can
17893 			 * be restored during failback or during
17894 			 * failover to an ill_t which has a
17895 			 * higher ill_max_mtu.
17896 			 */
17897 			ipif->ipif_saved_mtu = ipif->ipif_mtu;
17898 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17899 		} else {
17900 			/*
17901 			 * The ipif_t is, once again, moving to
17902 			 * an ill_t that has a lower maximum mtu
17903 			 * value.
17904 			 */
17905 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17906 		}
17907 	} else if (ipif->ipif_mtu < to_ill->ill_max_mtu &&
17908 	    ipif->ipif_saved_mtu != 0) {
17909 		/*
17910 		 * The mtu of this ipif_t had to be reduced
17911 		 * during an earlier failover; this is an
17912 		 * opportunity for it to be increased (either as
17913 		 * part of another failover or a failback).
17914 		 */
17915 		if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) {
17916 			ipif->ipif_mtu = ipif->ipif_saved_mtu;
17917 			ipif->ipif_saved_mtu = 0;
17918 		} else {
17919 			ipif->ipif_mtu = to_ill->ill_max_mtu;
17920 		}
17921 	}
17922 
17923 	/*
17924 	 * We preserve all the other fields of the ipif including
17925 	 * ipif_saved_ire_mp. The routes that are saved here will
17926 	 * be recreated on the new interface and back on the old
17927 	 * interface when we move back.
17928 	 */
17929 	ASSERT(ipif->ipif_arp_del_mp == NULL);
17930 
17931 	return (err);
17932 }
17933 
17934 static int
17935 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp,
17936     int ifindex, ipif_t **rep_ipif_ptr)
17937 {
17938 	ipif_t *mipif;
17939 	ipif_t *ipif_next;
17940 	int err;
17941 
17942 	/*
17943 	 * We don't really try to MOVE back things if some of the
17944 	 * operations fail. The daemon will take care of moving again
17945 	 * later on.
17946 	 */
17947 	for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) {
17948 		ipif_next = mipif->ipif_next;
17949 		if (!(mipif->ipif_flags & IPIF_NOFAILOVER) &&
17950 		    (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) {
17951 
17952 			err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr);
17953 
17954 			/*
17955 			 * When the MOVE fails, it is the job of the
17956 			 * application to take care of this properly
17957 			 * i.e try again if it is ENOMEM.
17958 			 */
17959 			if (mipif->ipif_ill != from_ill) {
17960 				/*
17961 				 * ipif has moved.
17962 				 *
17963 				 * Move the multicast memberships associated
17964 				 * with this ipif to the new ill. For IPv6, we
17965 				 * do it once after all the ipifs are moved
17966 				 * (in ill_move) as they are not associated
17967 				 * with ipifs.
17968 				 *
17969 				 * We need to move the ilms as the ipif has
17970 				 * already been moved to a new ill even
17971 				 * in the case of errors. Neither
17972 				 * ilm_free(ipif) will find the ilm
17973 				 * when somebody unplumbs this ipif nor
17974 				 * ilm_delete(ilm) will be able to find the
17975 				 * ilm, if we don't move now.
17976 				 */
17977 				if (!from_ill->ill_isv6)
17978 					ilm_move_v4(from_ill, to_ill, mipif);
17979 			}
17980 
17981 			if (err != 0)
17982 				return (err);
17983 		}
17984 	}
17985 	return (0);
17986 }
17987 
17988 static int
17989 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp)
17990 {
17991 	int ifindex;
17992 	int err;
17993 	struct iocblk	*iocp;
17994 	ipif_t	*ipif;
17995 	ipif_t *rep_ipif_ptr = NULL;
17996 	ipif_t	*from_ipif = NULL;
17997 	boolean_t check_rep_if = B_FALSE;
17998 	ip_stack_t	*ipst = from_ill->ill_ipst;
17999 
18000 	iocp = (struct iocblk *)mp->b_rptr;
18001 	if (iocp->ioc_cmd == SIOCLIFFAILOVER) {
18002 		/*
18003 		 * Move everything pointing at from_ill to to_ill.
18004 		 * We acheive this by passing in 0 as ifindex.
18005 		 */
18006 		ifindex = 0;
18007 	} else {
18008 		/*
18009 		 * Move everything pointing at from_ill whose original
18010 		 * ifindex of connp, ipif, ilm points at to_ill->ill_index.
18011 		 * We acheive this by passing in ifindex rather than 0.
18012 		 * Multicast vifs, ilgs move implicitly because ipifs move.
18013 		 */
18014 		ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK);
18015 		ifindex = to_ill->ill_phyint->phyint_ifindex;
18016 	}
18017 
18018 	/*
18019 	 * Determine if there is at least one ipif that would move from
18020 	 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement
18021 	 * ipif (if it exists) on the to_ill would be consumed as a result of
18022 	 * the move, in which case we need to quiesce the replacement ipif also.
18023 	 */
18024 	for (from_ipif = from_ill->ill_ipif; from_ipif != NULL;
18025 	    from_ipif = from_ipif->ipif_next) {
18026 		if (((ifindex == 0) ||
18027 		    (ifindex == from_ipif->ipif_orig_ifindex)) &&
18028 		    !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) {
18029 			check_rep_if = B_TRUE;
18030 			break;
18031 		}
18032 	}
18033 
18034 
18035 	ill_down_ipifs(from_ill, mp, ifindex, B_TRUE);
18036 
18037 	GRAB_ILL_LOCKS(from_ill, to_ill);
18038 	if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) {
18039 		(void) ipsq_pending_mp_add(NULL, ipif, q,
18040 		    mp, ILL_MOVE_OK);
18041 		RELEASE_ILL_LOCKS(from_ill, to_ill);
18042 		return (EINPROGRESS);
18043 	}
18044 
18045 	/* Check if the replacement ipif is quiescent to delete */
18046 	if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif,
18047 	    (iocp->ioc_cmd == SIOCLIFFAILBACK))) {
18048 		to_ill->ill_ipif->ipif_state_flags |=
18049 		    IPIF_MOVING | IPIF_CHANGING;
18050 		if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) {
18051 			(void) ipsq_pending_mp_add(NULL, ipif, q,
18052 			    mp, ILL_MOVE_OK);
18053 			RELEASE_ILL_LOCKS(from_ill, to_ill);
18054 			return (EINPROGRESS);
18055 		}
18056 	}
18057 	RELEASE_ILL_LOCKS(from_ill, to_ill);
18058 
18059 	ASSERT(!MUTEX_HELD(&to_ill->ill_lock));
18060 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
18061 	GRAB_ILL_LOCKS(from_ill, to_ill);
18062 	err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr);
18063 
18064 	/* ilm_move is done inside ipif_move for IPv4 */
18065 	if (err == 0 && from_ill->ill_isv6)
18066 		ilm_move_v6(from_ill, to_ill, ifindex);
18067 
18068 	RELEASE_ILL_LOCKS(from_ill, to_ill);
18069 	rw_exit(&ipst->ips_ill_g_lock);
18070 
18071 	/*
18072 	 * send rts messages and multicast messages.
18073 	 */
18074 	if (rep_ipif_ptr != NULL) {
18075 		if (rep_ipif_ptr->ipif_recovery_id != 0) {
18076 			(void) untimeout(rep_ipif_ptr->ipif_recovery_id);
18077 			rep_ipif_ptr->ipif_recovery_id = 0;
18078 		}
18079 		ip_rts_ifmsg(rep_ipif_ptr);
18080 		ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr);
18081 		IPIF_TRACE_CLEANUP(rep_ipif_ptr);
18082 		mi_free(rep_ipif_ptr);
18083 	}
18084 
18085 	conn_move_ill(from_ill, to_ill, ifindex);
18086 
18087 	return (err);
18088 }
18089 
18090 /*
18091  * Used to extract arguments for FAILOVER/FAILBACK ioctls.
18092  * Also checks for the validity of the arguments.
18093  * Note: We are already exclusive inside the from group.
18094  * It is upto the caller to release refcnt on the to_ill's.
18095  */
18096 static int
18097 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4,
18098     ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6)
18099 {
18100 	int dst_index;
18101 	ipif_t *ipif_v4, *ipif_v6;
18102 	struct lifreq *lifr;
18103 	mblk_t *mp1;
18104 	boolean_t exists;
18105 	sin_t	*sin;
18106 	int	err = 0;
18107 	ip_stack_t	*ipst;
18108 
18109 	if (CONN_Q(q))
18110 		ipst = CONNQ_TO_IPST(q);
18111 	else
18112 		ipst = ILLQ_TO_IPST(q);
18113 
18114 
18115 	if ((mp1 = mp->b_cont) == NULL)
18116 		return (EPROTO);
18117 
18118 	if ((mp1 = mp1->b_cont) == NULL)
18119 		return (EPROTO);
18120 
18121 	lifr = (struct lifreq *)mp1->b_rptr;
18122 	sin = (sin_t *)&lifr->lifr_addr;
18123 
18124 	/*
18125 	 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6
18126 	 * specific operations.
18127 	 */
18128 	if (sin->sin_family != AF_UNSPEC)
18129 		return (EINVAL);
18130 
18131 	/*
18132 	 * Get ipif with id 0. We are writer on the from ill. So we can pass
18133 	 * NULLs for the last 4 args and we know the lookup won't fail
18134 	 * with EINPROGRESS.
18135 	 */
18136 	ipif_v4 = ipif_lookup_on_name(lifr->lifr_name,
18137 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE,
18138 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
18139 	ipif_v6 = ipif_lookup_on_name(lifr->lifr_name,
18140 	    mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE,
18141 	    ALL_ZONES, NULL, NULL, NULL, NULL, ipst);
18142 
18143 	if (ipif_v4 == NULL && ipif_v6 == NULL)
18144 		return (ENXIO);
18145 
18146 	if (ipif_v4 != NULL) {
18147 		ASSERT(ipif_v4->ipif_refcnt != 0);
18148 		if (ipif_v4->ipif_id != 0) {
18149 			err = EINVAL;
18150 			goto done;
18151 		}
18152 
18153 		ASSERT(IAM_WRITER_IPIF(ipif_v4));
18154 		*ill_from_v4 = ipif_v4->ipif_ill;
18155 	}
18156 
18157 	if (ipif_v6 != NULL) {
18158 		ASSERT(ipif_v6->ipif_refcnt != 0);
18159 		if (ipif_v6->ipif_id != 0) {
18160 			err = EINVAL;
18161 			goto done;
18162 		}
18163 
18164 		ASSERT(IAM_WRITER_IPIF(ipif_v6));
18165 		*ill_from_v6 = ipif_v6->ipif_ill;
18166 	}
18167 
18168 	err = 0;
18169 	dst_index = lifr->lifr_movetoindex;
18170 	*ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE,
18171 	    q, mp, ip_process_ioctl, &err, ipst);
18172 	if (err != 0) {
18173 		/*
18174 		 * There could be only v6.
18175 		 */
18176 		if (err != ENXIO)
18177 			goto done;
18178 		err = 0;
18179 	}
18180 
18181 	*ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE,
18182 	    q, mp, ip_process_ioctl, &err, ipst);
18183 	if (err != 0) {
18184 		if (err != ENXIO)
18185 			goto done;
18186 		if (*ill_to_v4 == NULL) {
18187 			err = ENXIO;
18188 			goto done;
18189 		}
18190 		err = 0;
18191 	}
18192 
18193 	/*
18194 	 * If we have something to MOVE i.e "from" not NULL,
18195 	 * "to" should be non-NULL.
18196 	 */
18197 	if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) ||
18198 	    (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) {
18199 		err = EINVAL;
18200 	}
18201 
18202 done:
18203 	if (ipif_v4 != NULL)
18204 		ipif_refrele(ipif_v4);
18205 	if (ipif_v6 != NULL)
18206 		ipif_refrele(ipif_v6);
18207 	return (err);
18208 }
18209 
18210 /*
18211  * FAILOVER and FAILBACK are modelled as MOVE operations.
18212  *
18213  * We don't check whether the MOVE is within the same group or
18214  * not, because this ioctl can be used as a generic mechanism
18215  * to failover from interface A to B, though things will function
18216  * only if they are really part of the same group. Moreover,
18217  * all ipifs may be down and hence temporarily out of the group.
18218  *
18219  * ipif's that need to be moved are first brought down; V4 ipifs are brought
18220  * down first and then V6.  For each we wait for the ipif's to become quiescent.
18221  * Bringing down the ipifs ensures that all ires pointing to these ipifs's
18222  * have been deleted and there are no active references. Once quiescent the
18223  * ipif's are moved and brought up on the new ill.
18224  *
18225  * Normally the source ill and destination ill belong to the same IPMP group
18226  * and hence the same ipsq_t. In the event they don't belong to the same
18227  * same group the two ipsq's are first merged into one ipsq - that of the
18228  * to_ill. The multicast memberships on the source and destination ill cannot
18229  * change during the move operation since multicast joins/leaves also have to
18230  * execute on the same ipsq and are hence serialized.
18231  */
18232 /* ARGSUSED */
18233 int
18234 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18235     ip_ioctl_cmd_t *ipip, void *ifreq)
18236 {
18237 	ill_t *ill_to_v4 = NULL;
18238 	ill_t *ill_to_v6 = NULL;
18239 	ill_t *ill_from_v4 = NULL;
18240 	ill_t *ill_from_v6 = NULL;
18241 	int err = 0;
18242 
18243 	/*
18244 	 * setup from and to ill's, we can get EINPROGRESS only for
18245 	 * to_ill's.
18246 	 */
18247 	err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6,
18248 	    &ill_to_v4, &ill_to_v6);
18249 
18250 	if (err != 0) {
18251 		ip0dbg(("ip_sioctl_move: extract args failed\n"));
18252 		goto done;
18253 	}
18254 
18255 	/*
18256 	 * nothing to do.
18257 	 */
18258 	if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) {
18259 		goto done;
18260 	}
18261 
18262 	/*
18263 	 * nothing to do.
18264 	 */
18265 	if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) {
18266 		goto done;
18267 	}
18268 
18269 	/*
18270 	 * Mark the ill as changing.
18271 	 * ILL_CHANGING flag is cleared when the ipif's are brought up
18272 	 * in ill_up_ipifs in case of error they are cleared below.
18273 	 */
18274 
18275 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18276 	if (ill_from_v4 != NULL)
18277 		ill_from_v4->ill_state_flags |= ILL_CHANGING;
18278 	if (ill_from_v6 != NULL)
18279 		ill_from_v6->ill_state_flags |= ILL_CHANGING;
18280 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18281 
18282 	/*
18283 	 * Make sure that both src and dst are
18284 	 * in the same syncq group. If not make it happen.
18285 	 * We are not holding any locks because we are the writer
18286 	 * on the from_ipsq and we will hold locks in ill_merge_groups
18287 	 * to protect to_ipsq against changing.
18288 	 */
18289 	if (ill_from_v4 != NULL) {
18290 		if (ill_from_v4->ill_phyint->phyint_ipsq !=
18291 		    ill_to_v4->ill_phyint->phyint_ipsq) {
18292 			err = ill_merge_groups(ill_from_v4, ill_to_v4,
18293 			    NULL, mp, q);
18294 			goto err_ret;
18295 
18296 		}
18297 		ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock));
18298 	} else {
18299 
18300 		if (ill_from_v6->ill_phyint->phyint_ipsq !=
18301 		    ill_to_v6->ill_phyint->phyint_ipsq) {
18302 			err = ill_merge_groups(ill_from_v6, ill_to_v6,
18303 			    NULL, mp, q);
18304 			goto err_ret;
18305 
18306 		}
18307 		ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock));
18308 	}
18309 
18310 	/*
18311 	 * Now that the ipsq's have been merged and we are the writer
18312 	 * lets mark to_ill as changing as well.
18313 	 */
18314 
18315 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18316 	if (ill_to_v4 != NULL)
18317 		ill_to_v4->ill_state_flags |= ILL_CHANGING;
18318 	if (ill_to_v6 != NULL)
18319 		ill_to_v6->ill_state_flags |= ILL_CHANGING;
18320 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18321 
18322 	/*
18323 	 * Its ok for us to proceed with the move even if
18324 	 * ill_pending_mp is non null on one of the from ill's as the reply
18325 	 * should not be looking at the ipif, it should only care about the
18326 	 * ill itself.
18327 	 */
18328 
18329 	/*
18330 	 * lets move ipv4 first.
18331 	 */
18332 	if (ill_from_v4 != NULL) {
18333 		ASSERT(IAM_WRITER_ILL(ill_to_v4));
18334 		ill_from_v4->ill_move_in_progress = B_TRUE;
18335 		ill_to_v4->ill_move_in_progress = B_TRUE;
18336 		ill_to_v4->ill_move_peer = ill_from_v4;
18337 		ill_from_v4->ill_move_peer = ill_to_v4;
18338 		err = ill_move(ill_from_v4, ill_to_v4, q, mp);
18339 	}
18340 
18341 	/*
18342 	 * Now lets move ipv6.
18343 	 */
18344 	if (err == 0 && ill_from_v6 != NULL) {
18345 		ASSERT(IAM_WRITER_ILL(ill_to_v6));
18346 		ill_from_v6->ill_move_in_progress = B_TRUE;
18347 		ill_to_v6->ill_move_in_progress = B_TRUE;
18348 		ill_to_v6->ill_move_peer = ill_from_v6;
18349 		ill_from_v6->ill_move_peer = ill_to_v6;
18350 		err = ill_move(ill_from_v6, ill_to_v6, q, mp);
18351 	}
18352 
18353 err_ret:
18354 	/*
18355 	 * EINPROGRESS means we are waiting for the ipif's that need to be
18356 	 * moved to become quiescent.
18357 	 */
18358 	if (err == EINPROGRESS) {
18359 		goto done;
18360 	}
18361 
18362 	/*
18363 	 * if err is set ill_up_ipifs will not be called
18364 	 * lets clear the flags.
18365 	 */
18366 
18367 	GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6);
18368 	GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6);
18369 	/*
18370 	 * Some of the clearing may be redundant. But it is simple
18371 	 * not making any extra checks.
18372 	 */
18373 	if (ill_from_v6 != NULL) {
18374 		ill_from_v6->ill_move_in_progress = B_FALSE;
18375 		ill_from_v6->ill_move_peer = NULL;
18376 		ill_from_v6->ill_state_flags &= ~ILL_CHANGING;
18377 	}
18378 	if (ill_from_v4 != NULL) {
18379 		ill_from_v4->ill_move_in_progress = B_FALSE;
18380 		ill_from_v4->ill_move_peer = NULL;
18381 		ill_from_v4->ill_state_flags &= ~ILL_CHANGING;
18382 	}
18383 	if (ill_to_v6 != NULL) {
18384 		ill_to_v6->ill_move_in_progress = B_FALSE;
18385 		ill_to_v6->ill_move_peer = NULL;
18386 		ill_to_v6->ill_state_flags &= ~ILL_CHANGING;
18387 	}
18388 	if (ill_to_v4 != NULL) {
18389 		ill_to_v4->ill_move_in_progress = B_FALSE;
18390 		ill_to_v4->ill_move_peer = NULL;
18391 		ill_to_v4->ill_state_flags &= ~ILL_CHANGING;
18392 	}
18393 
18394 	/*
18395 	 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set.
18396 	 * Do this always to maintain proper state i.e even in case of errors.
18397 	 * As phyint_inactive looks at both v4 and v6 interfaces,
18398 	 * we need not call on both v4 and v6 interfaces.
18399 	 */
18400 	if (ill_from_v4 != NULL) {
18401 		if ((ill_from_v4->ill_phyint->phyint_flags &
18402 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18403 			phyint_inactive(ill_from_v4->ill_phyint);
18404 		}
18405 	} else if (ill_from_v6 != NULL) {
18406 		if ((ill_from_v6->ill_phyint->phyint_flags &
18407 		    (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) {
18408 			phyint_inactive(ill_from_v6->ill_phyint);
18409 		}
18410 	}
18411 
18412 	if (ill_to_v4 != NULL) {
18413 		if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18414 			ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18415 		}
18416 	} else if (ill_to_v6 != NULL) {
18417 		if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) {
18418 			ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE;
18419 		}
18420 	}
18421 
18422 	RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6);
18423 	RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6);
18424 
18425 no_err:
18426 	/*
18427 	 * lets bring the interfaces up on the to_ill.
18428 	 */
18429 	if (err == 0) {
18430 		err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4,
18431 		    q, mp);
18432 	}
18433 
18434 	if (err == 0) {
18435 		if (ill_from_v4 != NULL && ill_to_v4 != NULL)
18436 			ilm_send_multicast_reqs(ill_from_v4, ill_to_v4);
18437 
18438 		if (ill_from_v6 != NULL && ill_to_v6 != NULL)
18439 			ilm_send_multicast_reqs(ill_from_v6, ill_to_v6);
18440 	}
18441 done:
18442 
18443 	if (ill_to_v4 != NULL) {
18444 		ill_refrele(ill_to_v4);
18445 	}
18446 	if (ill_to_v6 != NULL) {
18447 		ill_refrele(ill_to_v6);
18448 	}
18449 
18450 	return (err);
18451 }
18452 
18453 static void
18454 ill_dl_down(ill_t *ill)
18455 {
18456 	/*
18457 	 * The ill is down; unbind but stay attached since we're still
18458 	 * associated with a PPA. If we have negotiated DLPI capabilites
18459 	 * with the data link service provider (IDS_OK) then reset them.
18460 	 * The interval between unbinding and rebinding is potentially
18461 	 * unbounded hence we cannot assume things will be the same.
18462 	 * The DLPI capabilities will be probed again when the data link
18463 	 * is brought up.
18464 	 */
18465 	mblk_t	*mp = ill->ill_unbind_mp;
18466 	hook_nic_event_t *info;
18467 
18468 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
18469 
18470 	ill->ill_unbind_mp = NULL;
18471 	if (mp != NULL) {
18472 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
18473 		    dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
18474 		    ill->ill_name));
18475 		mutex_enter(&ill->ill_lock);
18476 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
18477 		mutex_exit(&ill->ill_lock);
18478 		if (ill->ill_dlpi_capab_state == IDS_OK)
18479 			ill_capability_reset(ill);
18480 		ill_dlpi_send(ill, mp);
18481 	}
18482 
18483 	/*
18484 	 * Toss all of our multicast memberships.  We could keep them, but
18485 	 * then we'd have to do bookkeeping of any joins and leaves performed
18486 	 * by the application while the the interface is down (we can't just
18487 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
18488 	 * on a downed interface).
18489 	 */
18490 	ill_leave_multicast(ill);
18491 
18492 	mutex_enter(&ill->ill_lock);
18493 
18494 	ill->ill_dl_up = 0;
18495 
18496 	if ((info = ill->ill_nic_event_info) != NULL) {
18497 		ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n",
18498 		    info->hne_event, ill->ill_name));
18499 		if (info->hne_data != NULL)
18500 			kmem_free(info->hne_data, info->hne_datalen);
18501 		kmem_free(info, sizeof (hook_nic_event_t));
18502 	}
18503 
18504 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
18505 	if (info != NULL) {
18506 		ip_stack_t	*ipst = ill->ill_ipst;
18507 
18508 		info->hne_nic = ill->ill_phyint->phyint_hook_ifindex;
18509 		info->hne_lif = 0;
18510 		info->hne_event = NE_DOWN;
18511 		info->hne_data = NULL;
18512 		info->hne_datalen = 0;
18513 		info->hne_family = ill->ill_isv6 ?
18514 		    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
18515 	} else
18516 		ip2dbg(("ill_dl_down: could not attach DOWN nic event "
18517 		    "information for %s (ENOMEM)\n", ill->ill_name));
18518 
18519 	ill->ill_nic_event_info = info;
18520 
18521 	mutex_exit(&ill->ill_lock);
18522 }
18523 
18524 void
18525 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
18526 {
18527 	union DL_primitives *dlp;
18528 	t_uscalar_t prim;
18529 
18530 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18531 
18532 	dlp = (union DL_primitives *)mp->b_rptr;
18533 	prim = dlp->dl_primitive;
18534 
18535 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
18536 		dlpi_prim_str(prim), prim, ill->ill_name));
18537 
18538 	switch (prim) {
18539 	case DL_PHYS_ADDR_REQ:
18540 	{
18541 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
18542 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
18543 		break;
18544 	}
18545 	case DL_BIND_REQ:
18546 		mutex_enter(&ill->ill_lock);
18547 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
18548 		mutex_exit(&ill->ill_lock);
18549 		break;
18550 	}
18551 
18552 	/*
18553 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
18554 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
18555 	 * we only wait for the ACK of the DL_UNBIND_REQ.
18556 	 */
18557 	mutex_enter(&ill->ill_lock);
18558 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
18559 	    (prim == DL_UNBIND_REQ)) {
18560 		ill->ill_dlpi_pending = prim;
18561 	}
18562 	mutex_exit(&ill->ill_lock);
18563 
18564 	/*
18565 	 * Some drivers send M_FLUSH up to IP as part of unbind
18566 	 * request.  When this M_FLUSH is sent back to the driver,
18567 	 * this can go after we send the detach request if the
18568 	 * M_FLUSH ends up in IP's syncq. To avoid that, we reply
18569 	 * to the M_FLUSH in ip_rput and locally generate another
18570 	 * M_FLUSH for the correctness.  This will get freed in
18571 	 * ip_wput_nondata.
18572 	 */
18573 	if (prim == DL_UNBIND_REQ)
18574 		(void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW);
18575 
18576 	putnext(ill->ill_wq, mp);
18577 }
18578 
18579 /*
18580  * Send a DLPI control message to the driver but make sure there
18581  * is only one outstanding message. Uses ill_dlpi_pending to tell
18582  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
18583  * when an ACK or a NAK is received to process the next queued message.
18584  *
18585  * We don't protect ill_dlpi_pending with any lock. This is okay as
18586  * every place where its accessed, ip is exclusive while accessing
18587  * ill_dlpi_pending except when this function is called from ill_init()
18588  */
18589 void
18590 ill_dlpi_send(ill_t *ill, mblk_t *mp)
18591 {
18592 	mblk_t **mpp;
18593 
18594 	ASSERT(IAM_WRITER_ILL(ill));
18595 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
18596 
18597 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
18598 		/* Must queue message. Tail insertion */
18599 		mpp = &ill->ill_dlpi_deferred;
18600 		while (*mpp != NULL)
18601 			mpp = &((*mpp)->b_next);
18602 
18603 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
18604 		    ill->ill_name));
18605 
18606 		*mpp = mp;
18607 		return;
18608 	}
18609 
18610 	ill_dlpi_dispatch(ill, mp);
18611 }
18612 
18613 /*
18614  * Called when an DLPI control message has been acked or nacked to
18615  * send down the next queued message (if any).
18616  */
18617 void
18618 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
18619 {
18620 	mblk_t *mp;
18621 
18622 	ASSERT(IAM_WRITER_ILL(ill));
18623 
18624 	ASSERT(prim != DL_PRIM_INVAL);
18625 	if (ill->ill_dlpi_pending != prim) {
18626 		if (ill->ill_dlpi_pending == DL_PRIM_INVAL) {
18627 			(void) mi_strlog(ill->ill_rq, 1,
18628 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18629 			    "ill_dlpi_done: unsolicited ack for %s from %s\n",
18630 			    dlpi_prim_str(prim), ill->ill_name);
18631 		} else {
18632 			(void) mi_strlog(ill->ill_rq, 1,
18633 			    SL_CONSOLE|SL_ERROR|SL_TRACE,
18634 			    "ill_dlpi_done: unexpected ack for %s from %s "
18635 			    "(expecting ack for %s)\n",
18636 			    dlpi_prim_str(prim), ill->ill_name,
18637 			    dlpi_prim_str(ill->ill_dlpi_pending));
18638 		}
18639 		return;
18640 	}
18641 
18642 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
18643 	    dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
18644 
18645 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
18646 		mutex_enter(&ill->ill_lock);
18647 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
18648 		cv_signal(&ill->ill_cv);
18649 		mutex_exit(&ill->ill_lock);
18650 		return;
18651 	}
18652 
18653 	ill->ill_dlpi_deferred = mp->b_next;
18654 	mp->b_next = NULL;
18655 
18656 	ill_dlpi_dispatch(ill, mp);
18657 }
18658 
18659 void
18660 conn_delete_ire(conn_t *connp, caddr_t arg)
18661 {
18662 	ipif_t	*ipif = (ipif_t *)arg;
18663 	ire_t	*ire;
18664 
18665 	/*
18666 	 * Look at the cached ires on conns which has pointers to ipifs.
18667 	 * We just call ire_refrele which clears up the reference
18668 	 * to ire. Called when a conn closes. Also called from ipif_free
18669 	 * to cleanup indirect references to the stale ipif via the cached ire.
18670 	 */
18671 	mutex_enter(&connp->conn_lock);
18672 	ire = connp->conn_ire_cache;
18673 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
18674 		connp->conn_ire_cache = NULL;
18675 		mutex_exit(&connp->conn_lock);
18676 		IRE_REFRELE_NOTR(ire);
18677 		return;
18678 	}
18679 	mutex_exit(&connp->conn_lock);
18680 
18681 }
18682 
18683 /*
18684  * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number
18685  * of IREs. Those IREs may have been previously cached in the conn structure.
18686  * This ipcl_walk() walker function releases all references to such IREs based
18687  * on the condemned flag.
18688  */
18689 /* ARGSUSED */
18690 void
18691 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
18692 {
18693 	ire_t	*ire;
18694 
18695 	mutex_enter(&connp->conn_lock);
18696 	ire = connp->conn_ire_cache;
18697 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
18698 		connp->conn_ire_cache = NULL;
18699 		mutex_exit(&connp->conn_lock);
18700 		IRE_REFRELE_NOTR(ire);
18701 		return;
18702 	}
18703 	mutex_exit(&connp->conn_lock);
18704 }
18705 
18706 /*
18707  * Take down a specific interface, but don't lose any information about it.
18708  * Also delete interface from its interface group (ifgrp).
18709  * (Always called as writer.)
18710  * This function goes through the down sequence even if the interface is
18711  * already down. There are 2 reasons.
18712  * a. Currently we permit interface routes that depend on down interfaces
18713  *    to be added. This behaviour itself is questionable. However it appears
18714  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
18715  *    time. We go thru the cleanup in order to remove these routes.
18716  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
18717  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
18718  *    down, but we need to cleanup i.e. do ill_dl_down and
18719  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
18720  *
18721  * IP-MT notes:
18722  *
18723  * Model of reference to interfaces.
18724  *
18725  * The following members in ipif_t track references to the ipif.
18726  *	int     ipif_refcnt;    Active reference count
18727  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
18728  * The following members in ill_t track references to the ill.
18729  *	int             ill_refcnt;     active refcnt
18730  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
18731  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
18732  *
18733  * Reference to an ipif or ill can be obtained in any of the following ways.
18734  *
18735  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
18736  * Pointers to ipif / ill from other data structures viz ire and conn.
18737  * Implicit reference to the ipif / ill by holding a reference to the ire.
18738  *
18739  * The ipif/ill lookup functions return a reference held ipif / ill.
18740  * ipif_refcnt and ill_refcnt track the reference counts respectively.
18741  * This is a purely dynamic reference count associated with threads holding
18742  * references to the ipif / ill. Pointers from other structures do not
18743  * count towards this reference count.
18744  *
18745  * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the
18746  * ipif/ill. This is incremented whenever a new ire is created referencing the
18747  * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is
18748  * actually added to the ire hash table. The count is decremented in
18749  * ire_inactive where the ire is destroyed.
18750  *
18751  * nce's reference ill's thru nce_ill and the count of nce's associated with
18752  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
18753  * ndp_add() where the nce is actually added to the table. Similarly it is
18754  * decremented in ndp_inactive where the nce is destroyed.
18755  *
18756  * Flow of ioctls involving interface down/up
18757  *
18758  * The following is the sequence of an attempt to set some critical flags on an
18759  * up interface.
18760  * ip_sioctl_flags
18761  * ipif_down
18762  * wait for ipif to be quiescent
18763  * ipif_down_tail
18764  * ip_sioctl_flags_tail
18765  *
18766  * All set ioctls that involve down/up sequence would have a skeleton similar
18767  * to the above. All the *tail functions are called after the refcounts have
18768  * dropped to the appropriate values.
18769  *
18770  * The mechanism to quiesce an ipif is as follows.
18771  *
18772  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
18773  * on the ipif. Callers either pass a flag requesting wait or the lookup
18774  *  functions will return NULL.
18775  *
18776  * Delete all ires referencing this ipif
18777  *
18778  * Any thread attempting to do an ipif_refhold on an ipif that has been
18779  * obtained thru a cached pointer will first make sure that
18780  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
18781  * increment the refcount.
18782  *
18783  * The above guarantees that the ipif refcount will eventually come down to
18784  * zero and the ipif will quiesce, once all threads that currently hold a
18785  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
18786  * ipif_refcount has dropped to zero and all ire's associated with this ipif
18787  * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both
18788  * drop to zero.
18789  *
18790  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
18791  *
18792  * Threads trying to lookup an ipif or ill can pass a flag requesting
18793  * wait and restart if the ipif / ill cannot be looked up currently.
18794  * For eg. bind, and route operations (Eg. route add / delete) cannot return
18795  * failure if the ipif is currently undergoing an exclusive operation, and
18796  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
18797  * is restarted by ipsq_exit() when the currently exclusive ioctl completes.
18798  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
18799  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
18800  * change while the ill_lock is held. Before dropping the ill_lock we acquire
18801  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
18802  * until we release the ipsq_lock, even though the the ill/ipif state flags
18803  * can change after we drop the ill_lock.
18804  *
18805  * An attempt to send out a packet using an ipif that is currently
18806  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
18807  * operation and restart it later when the exclusive condition on the ipif ends.
18808  * This is an example of not passing the wait flag to the lookup functions. For
18809  * example an attempt to refhold and use conn->conn_multicast_ipif and send
18810  * out a multicast packet on that ipif will fail while the ipif is
18811  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
18812  * currently IPIF_CHANGING will also fail.
18813  */
18814 int
18815 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
18816 {
18817 	ill_t		*ill = ipif->ipif_ill;
18818 	phyint_t	*phyi;
18819 	conn_t		*connp;
18820 	boolean_t	success;
18821 	boolean_t	ipif_was_up = B_FALSE;
18822 	ip_stack_t	*ipst = ill->ill_ipst;
18823 
18824 	ASSERT(IAM_WRITER_IPIF(ipif));
18825 
18826 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
18827 
18828 	if (ipif->ipif_flags & IPIF_UP) {
18829 		mutex_enter(&ill->ill_lock);
18830 		ipif->ipif_flags &= ~IPIF_UP;
18831 		ASSERT(ill->ill_ipif_up_count > 0);
18832 		--ill->ill_ipif_up_count;
18833 		mutex_exit(&ill->ill_lock);
18834 		ipif_was_up = B_TRUE;
18835 		/* Update status in SCTP's list */
18836 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
18837 	}
18838 
18839 	/*
18840 	 * Blow away v6 memberships we established in ipif_multicast_up(); the
18841 	 * v4 ones are left alone (as is the ipif_multicast_up flag, so we
18842 	 * know not to rejoin when the interface is brought back up).
18843 	 */
18844 	if (ipif->ipif_isv6)
18845 		ipif_multicast_down(ipif);
18846 	/*
18847 	 * Remove from the mapping for __sin6_src_id. We insert only
18848 	 * when the address is not INADDR_ANY. As IPv4 addresses are
18849 	 * stored as mapped addresses, we need to check for mapped
18850 	 * INADDR_ANY also.
18851 	 */
18852 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
18853 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
18854 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
18855 		int err;
18856 
18857 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
18858 		    ipif->ipif_zoneid, ipst);
18859 		if (err != 0) {
18860 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
18861 		}
18862 	}
18863 
18864 	/*
18865 	 * Before we delete the ill from the group (if any), we need
18866 	 * to make sure that we delete all the routes dependent on
18867 	 * this and also any ipifs dependent on this ipif for
18868 	 * source address. We need to do before we delete from
18869 	 * the group because
18870 	 *
18871 	 * 1) ipif_down_delete_ire de-references ill->ill_group.
18872 	 *
18873 	 * 2) ipif_update_other_ipifs needs to walk the whole group
18874 	 *    for re-doing source address selection. Note that
18875 	 *    ipif_select_source[_v6] called from
18876 	 *    ipif_update_other_ipifs[_v6] will not pick this ipif
18877 	 *    because we have already marked down here i.e cleared
18878 	 *    IPIF_UP.
18879 	 */
18880 	if (ipif->ipif_isv6) {
18881 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18882 		    ipst);
18883 	} else {
18884 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
18885 		    ipst);
18886 	}
18887 
18888 	/*
18889 	 * Need to add these also to be saved and restored when the
18890 	 * ipif is brought down and up
18891 	 */
18892 	mutex_enter(&ipst->ips_ire_mrtun_lock);
18893 	if (ipst->ips_ire_mrtun_count != 0) {
18894 		mutex_exit(&ipst->ips_ire_mrtun_lock);
18895 		ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire,
18896 		    (char *)ipif, NULL, ipst);
18897 	} else {
18898 		mutex_exit(&ipst->ips_ire_mrtun_lock);
18899 	}
18900 
18901 	mutex_enter(&ipst->ips_ire_srcif_table_lock);
18902 	if (ipst->ips_ire_srcif_table_count > 0) {
18903 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
18904 		ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif,
18905 		    ipst);
18906 	} else {
18907 		mutex_exit(&ipst->ips_ire_srcif_table_lock);
18908 	}
18909 
18910 	/*
18911 	 * Cleaning up the conn_ire_cache or conns must be done only after the
18912 	 * ires have been deleted above. Otherwise a thread could end up
18913 	 * caching an ire in a conn after we have finished the cleanup of the
18914 	 * conn. The caching is done after making sure that the ire is not yet
18915 	 * condemned. Also documented in the block comment above ip_output
18916 	 */
18917 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
18918 	/* Also, delete the ires cached in SCTP */
18919 	sctp_ire_cache_flush(ipif);
18920 
18921 	/* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */
18922 	nattymod_clean_ipif(ipif);
18923 
18924 	/*
18925 	 * Update any other ipifs which have used "our" local address as
18926 	 * a source address. This entails removing and recreating IRE_INTERFACE
18927 	 * entries for such ipifs.
18928 	 */
18929 	if (ipif->ipif_isv6)
18930 		ipif_update_other_ipifs_v6(ipif, ill->ill_group);
18931 	else
18932 		ipif_update_other_ipifs(ipif, ill->ill_group);
18933 
18934 	if (ipif_was_up) {
18935 		/*
18936 		 * Check whether it is last ipif to leave this group.
18937 		 * If this is the last ipif to leave, we should remove
18938 		 * this ill from the group as ipif_select_source will not
18939 		 * be able to find any useful ipifs if this ill is selected
18940 		 * for load balancing.
18941 		 *
18942 		 * For nameless groups, we should call ifgrp_delete if this
18943 		 * belongs to some group. As this ipif is going down, we may
18944 		 * need to reconstruct groups.
18945 		 */
18946 		phyi = ill->ill_phyint;
18947 		/*
18948 		 * If the phyint_groupname_len is 0, it may or may not
18949 		 * be in the nameless group. If the phyint_groupname_len is
18950 		 * not 0, then this ill should be part of some group.
18951 		 * As we always insert this ill in the group if
18952 		 * phyint_groupname_len is not zero when the first ipif
18953 		 * comes up (in ipif_up_done), it should be in a group
18954 		 * when the namelen is not 0.
18955 		 *
18956 		 * NOTE : When we delete the ill from the group,it will
18957 		 * blow away all the IRE_CACHES pointing either at this ipif or
18958 		 * ill_wq (illgrp_cache_delete does this). Thus, no IRES
18959 		 * should be pointing at this ill.
18960 		 */
18961 		ASSERT(phyi->phyint_groupname_len == 0 ||
18962 		    (phyi->phyint_groupname != NULL && ill->ill_group != NULL));
18963 
18964 		if (phyi->phyint_groupname_len != 0) {
18965 			if (ill->ill_ipif_up_count == 0)
18966 				illgrp_delete(ill);
18967 		}
18968 
18969 		/*
18970 		 * If we have deleted some of the broadcast ires associated
18971 		 * with this ipif, we need to re-nominate somebody else if
18972 		 * the ires that we deleted were the nominated ones.
18973 		 */
18974 		if (ill->ill_group != NULL && !ill->ill_isv6)
18975 			ipif_renominate_bcast(ipif);
18976 	}
18977 
18978 	/*
18979 	 * neighbor-discovery or arp entries for this interface.
18980 	 */
18981 	ipif_ndp_down(ipif);
18982 
18983 	/*
18984 	 * If mp is NULL the caller will wait for the appropriate refcnt.
18985 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
18986 	 * and ill_delete -> ipif_free -> ipif_down
18987 	 */
18988 	if (mp == NULL) {
18989 		ASSERT(q == NULL);
18990 		return (0);
18991 	}
18992 
18993 	if (CONN_Q(q)) {
18994 		connp = Q_TO_CONN(q);
18995 		mutex_enter(&connp->conn_lock);
18996 	} else {
18997 		connp = NULL;
18998 	}
18999 	mutex_enter(&ill->ill_lock);
19000 	/*
19001 	 * Are there any ire's pointing to this ipif that are still active ?
19002 	 * If this is the last ipif going down, are there any ire's pointing
19003 	 * to this ill that are still active ?
19004 	 */
19005 	if (ipif_is_quiescent(ipif)) {
19006 		mutex_exit(&ill->ill_lock);
19007 		if (connp != NULL)
19008 			mutex_exit(&connp->conn_lock);
19009 		return (0);
19010 	}
19011 
19012 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
19013 	    ill->ill_name, (void *)ill));
19014 	/*
19015 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
19016 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
19017 	 * which in turn is called by the last refrele on the ipif/ill/ire.
19018 	 */
19019 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
19020 	if (!success) {
19021 		/* The conn is closing. So just return */
19022 		ASSERT(connp != NULL);
19023 		mutex_exit(&ill->ill_lock);
19024 		mutex_exit(&connp->conn_lock);
19025 		return (EINTR);
19026 	}
19027 
19028 	mutex_exit(&ill->ill_lock);
19029 	if (connp != NULL)
19030 		mutex_exit(&connp->conn_lock);
19031 	return (EINPROGRESS);
19032 }
19033 
19034 void
19035 ipif_down_tail(ipif_t *ipif)
19036 {
19037 	ill_t	*ill = ipif->ipif_ill;
19038 
19039 	/*
19040 	 * Skip any loopback interface (null wq).
19041 	 * If this is the last logical interface on the ill
19042 	 * have ill_dl_down tell the driver we are gone (unbind)
19043 	 * Note that lun 0 can ipif_down even though
19044 	 * there are other logical units that are up.
19045 	 * This occurs e.g. when we change a "significant" IFF_ flag.
19046 	 */
19047 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
19048 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
19049 	    ill->ill_dl_up) {
19050 		ill_dl_down(ill);
19051 	}
19052 	ill->ill_logical_down = 0;
19053 
19054 	/*
19055 	 * Have to be after removing the routes in ipif_down_delete_ire.
19056 	 */
19057 	if (ipif->ipif_isv6) {
19058 		if (ill->ill_flags & ILLF_XRESOLV)
19059 			ipif_arp_down(ipif);
19060 	} else {
19061 		ipif_arp_down(ipif);
19062 	}
19063 
19064 	ip_rts_ifmsg(ipif);
19065 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif);
19066 }
19067 
19068 /*
19069  * Bring interface logically down without bringing the physical interface
19070  * down e.g. when the netmask is changed. This avoids long lasting link
19071  * negotiations between an ethernet interface and a certain switches.
19072  */
19073 static int
19074 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
19075 {
19076 	/*
19077 	 * The ill_logical_down flag is a transient flag. It is set here
19078 	 * and is cleared once the down has completed in ipif_down_tail.
19079 	 * This flag does not indicate whether the ill stream is in the
19080 	 * DL_BOUND state with the driver. Instead this flag is used by
19081 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
19082 	 * the driver. The state of the ill stream i.e. whether it is
19083 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
19084 	 */
19085 	ipif->ipif_ill->ill_logical_down = 1;
19086 	return (ipif_down(ipif, q, mp));
19087 }
19088 
19089 /*
19090  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
19091  * If the usesrc client ILL is already part of a usesrc group or not,
19092  * in either case a ire_stq with the matching usesrc client ILL will
19093  * locate the IRE's that need to be deleted. We want IREs to be created
19094  * with the new source address.
19095  */
19096 static void
19097 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
19098 {
19099 	ill_t	*ucill = (ill_t *)ill_arg;
19100 
19101 	ASSERT(IAM_WRITER_ILL(ucill));
19102 
19103 	if (ire->ire_stq == NULL)
19104 		return;
19105 
19106 	if ((ire->ire_type == IRE_CACHE) &&
19107 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
19108 		ire_delete(ire);
19109 }
19110 
19111 /*
19112  * ire_walk routine to delete every IRE dependent on the interface
19113  * address that is going down.	(Always called as writer.)
19114  * Works for both v4 and v6.
19115  * In addition for checking for ire_ipif matches it also checks for
19116  * IRE_CACHE entries which have the same source address as the
19117  * disappearing ipif since ipif_select_source might have picked
19118  * that source. Note that ipif_down/ipif_update_other_ipifs takes
19119  * care of any IRE_INTERFACE with the disappearing source address.
19120  */
19121 static void
19122 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
19123 {
19124 	ipif_t	*ipif = (ipif_t *)ipif_arg;
19125 	ill_t *ire_ill;
19126 	ill_t *ipif_ill;
19127 
19128 	ASSERT(IAM_WRITER_IPIF(ipif));
19129 	if (ire->ire_ipif == NULL)
19130 		return;
19131 
19132 	/*
19133 	 * For IPv4, we derive source addresses for an IRE from ipif's
19134 	 * belonging to the same IPMP group as the IRE's outgoing
19135 	 * interface.  If an IRE's outgoing interface isn't in the
19136 	 * same IPMP group as a particular ipif, then that ipif
19137 	 * couldn't have been used as a source address for this IRE.
19138 	 *
19139 	 * For IPv6, source addresses are only restricted to the IPMP group
19140 	 * if the IRE is for a link-local address or a multicast address.
19141 	 * Otherwise, source addresses for an IRE can be chosen from
19142 	 * interfaces other than the the outgoing interface for that IRE.
19143 	 *
19144 	 * For source address selection details, see ipif_select_source()
19145 	 * and ipif_select_source_v6().
19146 	 */
19147 	if (ire->ire_ipversion == IPV4_VERSION ||
19148 	    IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) ||
19149 	    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
19150 		ire_ill = ire->ire_ipif->ipif_ill;
19151 		ipif_ill = ipif->ipif_ill;
19152 
19153 		if (ire_ill->ill_group != ipif_ill->ill_group) {
19154 			return;
19155 		}
19156 	}
19157 
19158 
19159 	if (ire->ire_ipif != ipif) {
19160 		/*
19161 		 * Look for a matching source address.
19162 		 */
19163 		if (ire->ire_type != IRE_CACHE)
19164 			return;
19165 		if (ipif->ipif_flags & IPIF_NOLOCAL)
19166 			return;
19167 
19168 		if (ire->ire_ipversion == IPV4_VERSION) {
19169 			if (ire->ire_src_addr != ipif->ipif_src_addr)
19170 				return;
19171 		} else {
19172 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
19173 			    &ipif->ipif_v6lcl_addr))
19174 				return;
19175 		}
19176 		ire_delete(ire);
19177 		return;
19178 	}
19179 	/*
19180 	 * ire_delete() will do an ire_flush_cache which will delete
19181 	 * all ire_ipif matches
19182 	 */
19183 	ire_delete(ire);
19184 }
19185 
19186 /*
19187  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
19188  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
19189  * 2) when an interface is brought up or down (on that ill).
19190  * This ensures that the IRE_CACHE entries don't retain stale source
19191  * address selection results.
19192  */
19193 void
19194 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
19195 {
19196 	ill_t	*ill = (ill_t *)ill_arg;
19197 	ill_t	*ipif_ill;
19198 
19199 	ASSERT(IAM_WRITER_ILL(ill));
19200 	/*
19201 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19202 	 * Hence this should be IRE_CACHE.
19203 	 */
19204 	ASSERT(ire->ire_type == IRE_CACHE);
19205 
19206 	/*
19207 	 * We are called for IRE_CACHES whose ire_ipif matches ill.
19208 	 * We are only interested in IRE_CACHES that has borrowed
19209 	 * the source address from ill_arg e.g. ipif_up_done[_v6]
19210 	 * for which we need to look at ire_ipif->ipif_ill match
19211 	 * with ill.
19212 	 */
19213 	ASSERT(ire->ire_ipif != NULL);
19214 	ipif_ill = ire->ire_ipif->ipif_ill;
19215 	if (ipif_ill == ill || (ill->ill_group != NULL &&
19216 	    ipif_ill->ill_group == ill->ill_group)) {
19217 		ire_delete(ire);
19218 	}
19219 }
19220 
19221 /*
19222  * Delete all the ire whose stq references ill_arg.
19223  */
19224 static void
19225 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
19226 {
19227 	ill_t	*ill = (ill_t *)ill_arg;
19228 	ill_t	*ire_ill;
19229 
19230 	ASSERT(IAM_WRITER_ILL(ill));
19231 	/*
19232 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19233 	 * Hence this should be IRE_CACHE.
19234 	 */
19235 	ASSERT(ire->ire_type == IRE_CACHE);
19236 
19237 	/*
19238 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
19239 	 * matches ill. We are only interested in IRE_CACHES that
19240 	 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the
19241 	 * filtering here.
19242 	 */
19243 	ire_ill = (ill_t *)ire->ire_stq->q_ptr;
19244 
19245 	if (ire_ill == ill)
19246 		ire_delete(ire);
19247 }
19248 
19249 /*
19250  * This is called when an ill leaves the group. We want to delete
19251  * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is
19252  * pointing at ill.
19253  */
19254 static void
19255 illgrp_cache_delete(ire_t *ire, char *ill_arg)
19256 {
19257 	ill_t	*ill = (ill_t *)ill_arg;
19258 
19259 	ASSERT(IAM_WRITER_ILL(ill));
19260 	ASSERT(ill->ill_group == NULL);
19261 	/*
19262 	 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4.
19263 	 * Hence this should be IRE_CACHE.
19264 	 */
19265 	ASSERT(ire->ire_type == IRE_CACHE);
19266 	/*
19267 	 * We are called for IRE_CACHES whose ire_stq and ire_ipif
19268 	 * matches ill. We are interested in both.
19269 	 */
19270 	ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) ||
19271 	    (ire->ire_ipif->ipif_ill == ill));
19272 
19273 	ire_delete(ire);
19274 }
19275 
19276 /*
19277  * Initiate deallocate of an IPIF. Always called as writer. Called by
19278  * ill_delete or ip_sioctl_removeif.
19279  */
19280 static void
19281 ipif_free(ipif_t *ipif)
19282 {
19283 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19284 
19285 	ASSERT(IAM_WRITER_IPIF(ipif));
19286 
19287 	if (ipif->ipif_recovery_id != 0)
19288 		(void) untimeout(ipif->ipif_recovery_id);
19289 	ipif->ipif_recovery_id = 0;
19290 
19291 	/* Remove conn references */
19292 	reset_conn_ipif(ipif);
19293 
19294 	/*
19295 	 * Make sure we have valid net and subnet broadcast ire's for the
19296 	 * other ipif's which share them with this ipif.
19297 	 */
19298 	if (!ipif->ipif_isv6)
19299 		ipif_check_bcast_ires(ipif);
19300 
19301 	/*
19302 	 * Take down the interface. We can be called either from ill_delete
19303 	 * or from ip_sioctl_removeif.
19304 	 */
19305 	(void) ipif_down(ipif, NULL, NULL);
19306 
19307 	/*
19308 	 * Now that the interface is down, there's no chance it can still
19309 	 * become a duplicate.  Cancel any timer that may have been set while
19310 	 * tearing down.
19311 	 */
19312 	if (ipif->ipif_recovery_id != 0)
19313 		(void) untimeout(ipif->ipif_recovery_id);
19314 	ipif->ipif_recovery_id = 0;
19315 
19316 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19317 	/* Remove pointers to this ill in the multicast routing tables */
19318 	reset_mrt_vif_ipif(ipif);
19319 	rw_exit(&ipst->ips_ill_g_lock);
19320 }
19321 
19322 /*
19323  * Warning: this is not the only function that calls mi_free on an ipif_t.  See
19324  * also ill_move().
19325  */
19326 static void
19327 ipif_free_tail(ipif_t *ipif)
19328 {
19329 	mblk_t	*mp;
19330 	ipif_t	**ipifp;
19331 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19332 
19333 	/*
19334 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
19335 	 */
19336 	mutex_enter(&ipif->ipif_saved_ire_lock);
19337 	mp = ipif->ipif_saved_ire_mp;
19338 	ipif->ipif_saved_ire_mp = NULL;
19339 	mutex_exit(&ipif->ipif_saved_ire_lock);
19340 	freemsg(mp);
19341 
19342 	/*
19343 	 * Need to hold both ill_g_lock and ill_lock while
19344 	 * inserting or removing an ipif from the linked list
19345 	 * of ipifs hanging off the ill.
19346 	 */
19347 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
19348 	/*
19349 	 * Remove all multicast memberships on the interface now.
19350 	 * This removes IPv4 multicast memberships joined within
19351 	 * the kernel as ipif_down does not do ipif_multicast_down
19352 	 * for IPv4. IPv6 is not handled here as the multicast memberships
19353 	 * are based on ill and not on ipif.
19354 	 */
19355 	ilm_free(ipif);
19356 
19357 	/*
19358 	 * Since we held the ill_g_lock while doing the ilm_free above,
19359 	 * we can assert the ilms were really deleted and not just marked
19360 	 * ILM_DELETED.
19361 	 */
19362 	ASSERT(ilm_walk_ipif(ipif) == 0);
19363 
19364 
19365 	IPIF_TRACE_CLEANUP(ipif);
19366 
19367 	/* Ask SCTP to take it out of it list */
19368 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
19369 
19370 	mutex_enter(&ipif->ipif_ill->ill_lock);
19371 	/* Get it out of the ILL interface list. */
19372 	ipifp = &ipif->ipif_ill->ill_ipif;
19373 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
19374 		if (*ipifp == ipif) {
19375 			*ipifp = ipif->ipif_next;
19376 			break;
19377 		}
19378 	}
19379 
19380 	mutex_exit(&ipif->ipif_ill->ill_lock);
19381 	rw_exit(&ipst->ips_ill_g_lock);
19382 
19383 	mutex_destroy(&ipif->ipif_saved_ire_lock);
19384 
19385 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
19386 	ASSERT(ipif->ipif_recovery_id == 0);
19387 
19388 	/* Free the memory. */
19389 	mi_free((char *)ipif);
19390 }
19391 
19392 /*
19393  * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero,
19394  * "ill_name" otherwise.
19395  */
19396 char *
19397 ipif_get_name(const ipif_t *ipif, char *buf, int len)
19398 {
19399 	char	lbuf[32];
19400 	char	*name;
19401 	size_t	name_len;
19402 
19403 	buf[0] = '\0';
19404 	if (!ipif)
19405 		return (buf);
19406 	name = ipif->ipif_ill->ill_name;
19407 	name_len = ipif->ipif_ill->ill_name_length;
19408 	if (ipif->ipif_id != 0) {
19409 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
19410 		    ipif->ipif_id);
19411 		name = lbuf;
19412 		name_len = mi_strlen(name) + 1;
19413 	}
19414 	len -= 1;
19415 	buf[len] = '\0';
19416 	len = MIN(len, name_len);
19417 	bcopy(name, buf, len);
19418 	return (buf);
19419 }
19420 
19421 /*
19422  * Find an IPIF based on the name passed in.  Names can be of the
19423  * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1),
19424  * The <phys> string can have forms like <dev><#> (e.g., le0),
19425  * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3).
19426  * When there is no colon, the implied unit id is zero. <phys> must
19427  * correspond to the name of an ILL.  (May be called as writer.)
19428  */
19429 static ipif_t *
19430 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
19431     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
19432     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
19433 {
19434 	char	*cp;
19435 	char	*endp;
19436 	long	id;
19437 	ill_t	*ill;
19438 	ipif_t	*ipif;
19439 	uint_t	ire_type;
19440 	boolean_t did_alloc = B_FALSE;
19441 	ipsq_t	*ipsq;
19442 
19443 	if (error != NULL)
19444 		*error = 0;
19445 
19446 	/*
19447 	 * If the caller wants to us to create the ipif, make sure we have a
19448 	 * valid zoneid
19449 	 */
19450 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
19451 
19452 	if (namelen == 0) {
19453 		if (error != NULL)
19454 			*error = ENXIO;
19455 		return (NULL);
19456 	}
19457 
19458 	*exists = B_FALSE;
19459 	/* Look for a colon in the name. */
19460 	endp = &name[namelen];
19461 	for (cp = endp; --cp > name; ) {
19462 		if (*cp == IPIF_SEPARATOR_CHAR)
19463 			break;
19464 	}
19465 
19466 	if (*cp == IPIF_SEPARATOR_CHAR) {
19467 		/*
19468 		 * Reject any non-decimal aliases for logical
19469 		 * interfaces. Aliases with leading zeroes
19470 		 * are also rejected as they introduce ambiguity
19471 		 * in the naming of the interfaces.
19472 		 * In order to confirm with existing semantics,
19473 		 * and to not break any programs/script relying
19474 		 * on that behaviour, if<0>:0 is considered to be
19475 		 * a valid interface.
19476 		 *
19477 		 * If alias has two or more digits and the first
19478 		 * is zero, fail.
19479 		 */
19480 		if (&cp[2] < endp && cp[1] == '0')
19481 			return (NULL);
19482 	}
19483 
19484 	if (cp <= name) {
19485 		cp = endp;
19486 	} else {
19487 		*cp = '\0';
19488 	}
19489 
19490 	/*
19491 	 * Look up the ILL, based on the portion of the name
19492 	 * before the slash. ill_lookup_on_name returns a held ill.
19493 	 * Temporary to check whether ill exists already. If so
19494 	 * ill_lookup_on_name will clear it.
19495 	 */
19496 	ill = ill_lookup_on_name(name, do_alloc, isv6,
19497 	    q, mp, func, error, &did_alloc, ipst);
19498 	if (cp != endp)
19499 		*cp = IPIF_SEPARATOR_CHAR;
19500 	if (ill == NULL)
19501 		return (NULL);
19502 
19503 	/* Establish the unit number in the name. */
19504 	id = 0;
19505 	if (cp < endp && *endp == '\0') {
19506 		/* If there was a colon, the unit number follows. */
19507 		cp++;
19508 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
19509 			ill_refrele(ill);
19510 			if (error != NULL)
19511 				*error = ENXIO;
19512 			return (NULL);
19513 		}
19514 	}
19515 
19516 	GRAB_CONN_LOCK(q);
19517 	mutex_enter(&ill->ill_lock);
19518 	/* Now see if there is an IPIF with this unit number. */
19519 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19520 		if (ipif->ipif_id == id) {
19521 			if (zoneid != ALL_ZONES &&
19522 			    zoneid != ipif->ipif_zoneid &&
19523 			    ipif->ipif_zoneid != ALL_ZONES) {
19524 				mutex_exit(&ill->ill_lock);
19525 				RELEASE_CONN_LOCK(q);
19526 				ill_refrele(ill);
19527 				if (error != NULL)
19528 					*error = ENXIO;
19529 				return (NULL);
19530 			}
19531 			/*
19532 			 * The block comment at the start of ipif_down
19533 			 * explains the use of the macros used below
19534 			 */
19535 			if (IPIF_CAN_LOOKUP(ipif)) {
19536 				ipif_refhold_locked(ipif);
19537 				mutex_exit(&ill->ill_lock);
19538 				if (!did_alloc)
19539 					*exists = B_TRUE;
19540 				/*
19541 				 * Drop locks before calling ill_refrele
19542 				 * since it can potentially call into
19543 				 * ipif_ill_refrele_tail which can end up
19544 				 * in trying to acquire any lock.
19545 				 */
19546 				RELEASE_CONN_LOCK(q);
19547 				ill_refrele(ill);
19548 				return (ipif);
19549 			} else if (IPIF_CAN_WAIT(ipif, q)) {
19550 				ipsq = ill->ill_phyint->phyint_ipsq;
19551 				mutex_enter(&ipsq->ipsq_lock);
19552 				mutex_exit(&ill->ill_lock);
19553 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
19554 				mutex_exit(&ipsq->ipsq_lock);
19555 				RELEASE_CONN_LOCK(q);
19556 				ill_refrele(ill);
19557 				*error = EINPROGRESS;
19558 				return (NULL);
19559 			}
19560 		}
19561 	}
19562 	RELEASE_CONN_LOCK(q);
19563 
19564 	if (!do_alloc) {
19565 		mutex_exit(&ill->ill_lock);
19566 		ill_refrele(ill);
19567 		if (error != NULL)
19568 			*error = ENXIO;
19569 		return (NULL);
19570 	}
19571 
19572 	/*
19573 	 * If none found, atomically allocate and return a new one.
19574 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
19575 	 * to support "receive only" use of lo0:1 etc. as is still done
19576 	 * below as an initial guess.
19577 	 * However, this is now likely to be overriden later in ipif_up_done()
19578 	 * when we know for sure what address has been configured on the
19579 	 * interface, since we might have more than one loopback interface
19580 	 * with a loopback address, e.g. in the case of zones, and all the
19581 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
19582 	 */
19583 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
19584 		ire_type = IRE_LOOPBACK;
19585 	else
19586 		ire_type = IRE_LOCAL;
19587 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE);
19588 	if (ipif != NULL)
19589 		ipif_refhold_locked(ipif);
19590 	else if (error != NULL)
19591 		*error = ENOMEM;
19592 	mutex_exit(&ill->ill_lock);
19593 	ill_refrele(ill);
19594 	return (ipif);
19595 }
19596 
19597 /*
19598  * This routine is called whenever a new address comes up on an ipif.  If
19599  * we are configured to respond to address mask requests, then we are supposed
19600  * to broadcast an address mask reply at this time.  This routine is also
19601  * called if we are already up, but a netmask change is made.  This is legal
19602  * but might not make the system manager very popular.	(May be called
19603  * as writer.)
19604  */
19605 void
19606 ipif_mask_reply(ipif_t *ipif)
19607 {
19608 	icmph_t	*icmph;
19609 	ipha_t	*ipha;
19610 	mblk_t	*mp;
19611 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19612 
19613 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
19614 
19615 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
19616 		return;
19617 
19618 	/* ICMP mask reply is IPv4 only */
19619 	ASSERT(!ipif->ipif_isv6);
19620 	/* ICMP mask reply is not for a loopback interface */
19621 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
19622 
19623 	mp = allocb(REPLY_LEN, BPRI_HI);
19624 	if (mp == NULL)
19625 		return;
19626 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
19627 
19628 	ipha = (ipha_t *)mp->b_rptr;
19629 	bzero(ipha, REPLY_LEN);
19630 	*ipha = icmp_ipha;
19631 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
19632 	ipha->ipha_src = ipif->ipif_src_addr;
19633 	ipha->ipha_dst = ipif->ipif_brd_addr;
19634 	ipha->ipha_length = htons(REPLY_LEN);
19635 	ipha->ipha_ident = 0;
19636 
19637 	icmph = (icmph_t *)&ipha[1];
19638 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
19639 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
19640 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
19641 	if (icmph->icmph_checksum == 0)
19642 		icmph->icmph_checksum = 0xffff;
19643 
19644 	put(ipif->ipif_wq, mp);
19645 
19646 #undef	REPLY_LEN
19647 }
19648 
19649 /*
19650  * When the mtu in the ipif changes, we call this routine through ire_walk
19651  * to update all the relevant IREs.
19652  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19653  */
19654 static void
19655 ipif_mtu_change(ire_t *ire, char *ipif_arg)
19656 {
19657 	ipif_t *ipif = (ipif_t *)ipif_arg;
19658 
19659 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
19660 		return;
19661 	ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
19662 }
19663 
19664 /*
19665  * When the mtu in the ill changes, we call this routine through ire_walk
19666  * to update all the relevant IREs.
19667  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
19668  */
19669 void
19670 ill_mtu_change(ire_t *ire, char *ill_arg)
19671 {
19672 	ill_t	*ill = (ill_t *)ill_arg;
19673 
19674 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
19675 		return;
19676 	ire->ire_max_frag = ire->ire_ipif->ipif_mtu;
19677 }
19678 
19679 /*
19680  * Join the ipif specific multicast groups.
19681  * Must be called after a mapping has been set up in the resolver.  (Always
19682  * called as writer.)
19683  */
19684 void
19685 ipif_multicast_up(ipif_t *ipif)
19686 {
19687 	int err, index;
19688 	ill_t *ill;
19689 
19690 	ASSERT(IAM_WRITER_IPIF(ipif));
19691 
19692 	ill = ipif->ipif_ill;
19693 	index = ill->ill_phyint->phyint_ifindex;
19694 
19695 	ip1dbg(("ipif_multicast_up\n"));
19696 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
19697 		return;
19698 
19699 	if (ipif->ipif_isv6) {
19700 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
19701 			return;
19702 
19703 		/* Join the all hosts multicast address */
19704 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19705 		/*
19706 		 * Passing B_TRUE means we have to join the multicast
19707 		 * membership on this interface even though this is
19708 		 * FAILED. If we join on a different one in the group,
19709 		 * we will not be able to delete the membership later
19710 		 * as we currently don't track where we join when we
19711 		 * join within the kernel unlike applications where
19712 		 * we have ilg/ilg_orig_index. See ip_addmulti_v6
19713 		 * for more on this.
19714 		 */
19715 		err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index,
19716 		    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19717 		if (err != 0) {
19718 			ip0dbg(("ipif_multicast_up: "
19719 			    "all_hosts_mcast failed %d\n",
19720 			    err));
19721 			return;
19722 		}
19723 		/*
19724 		 * Enable multicast for the solicited node multicast address
19725 		 */
19726 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19727 			in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19728 
19729 			ipv6_multi.s6_addr32[3] |=
19730 			    ipif->ipif_v6lcl_addr.s6_addr32[3];
19731 
19732 			err = ip_addmulti_v6(&ipv6_multi, ill, index,
19733 			    ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE,
19734 			    NULL);
19735 			if (err != 0) {
19736 				ip0dbg(("ipif_multicast_up: solicited MC"
19737 				    " failed %d\n", err));
19738 				(void) ip_delmulti_v6(&ipv6_all_hosts_mcast,
19739 				    ill, ill->ill_phyint->phyint_ifindex,
19740 				    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19741 				return;
19742 			}
19743 		}
19744 	} else {
19745 		if (ipif->ipif_lcl_addr == INADDR_ANY)
19746 			return;
19747 
19748 		/* Join the all hosts multicast address */
19749 		ip1dbg(("ipif_multicast_up - addmulti\n"));
19750 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
19751 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
19752 		if (err) {
19753 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
19754 			return;
19755 		}
19756 	}
19757 	ipif->ipif_multicast_up = 1;
19758 }
19759 
19760 /*
19761  * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up();
19762  * any explicit memberships are blown away in ill_leave_multicast() when the
19763  * ill is brought down.
19764  */
19765 static void
19766 ipif_multicast_down(ipif_t *ipif)
19767 {
19768 	int err;
19769 
19770 	ASSERT(IAM_WRITER_IPIF(ipif));
19771 
19772 	ip1dbg(("ipif_multicast_down\n"));
19773 	if (!ipif->ipif_multicast_up)
19774 		return;
19775 
19776 	ASSERT(ipif->ipif_isv6);
19777 
19778 	ip1dbg(("ipif_multicast_down - delmulti\n"));
19779 
19780 	/*
19781 	 * Leave the all hosts multicast address. Similar to ip_addmulti_v6,
19782 	 * we should look for ilms on this ill rather than the ones that have
19783 	 * been failed over here.  They are here temporarily. As
19784 	 * ipif_multicast_up has joined on this ill, we should delete only
19785 	 * from this ill.
19786 	 */
19787 	err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
19788 	    ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid,
19789 	    B_TRUE, B_TRUE);
19790 	if (err != 0) {
19791 		ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n",
19792 		    err));
19793 	}
19794 	/*
19795 	 * Disable multicast for the solicited node multicast address
19796 	 */
19797 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
19798 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
19799 
19800 		ipv6_multi.s6_addr32[3] |=
19801 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
19802 
19803 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
19804 		    ipif->ipif_ill->ill_phyint->phyint_ifindex,
19805 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
19806 
19807 		if (err != 0) {
19808 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
19809 			    err));
19810 		}
19811 	}
19812 
19813 	ipif->ipif_multicast_up = 0;
19814 }
19815 
19816 /*
19817  * Used when an interface comes up to recreate any extra routes on this
19818  * interface.
19819  */
19820 static ire_t **
19821 ipif_recover_ire(ipif_t *ipif)
19822 {
19823 	mblk_t	*mp;
19824 	ire_t	**ipif_saved_irep;
19825 	ire_t	**irep;
19826 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
19827 
19828 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
19829 	    ipif->ipif_id));
19830 
19831 	mutex_enter(&ipif->ipif_saved_ire_lock);
19832 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
19833 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
19834 	if (ipif_saved_irep == NULL) {
19835 		mutex_exit(&ipif->ipif_saved_ire_lock);
19836 		return (NULL);
19837 	}
19838 
19839 	irep = ipif_saved_irep;
19840 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
19841 		ire_t		*ire;
19842 		queue_t		*rfq;
19843 		queue_t		*stq;
19844 		ifrt_t		*ifrt;
19845 		uchar_t		*src_addr;
19846 		uchar_t		*gateway_addr;
19847 		mblk_t		*resolver_mp;
19848 		ushort_t	type;
19849 
19850 		/*
19851 		 * When the ire was initially created and then added in
19852 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
19853 		 * in the case of a traditional interface route, or as one of
19854 		 * the IRE_OFFSUBNET types (with the exception of
19855 		 * IRE_HOST types ire which is created by icmp_redirect() and
19856 		 * which we don't need to save or recover).  In the case where
19857 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
19858 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
19859 		 * to satisfy software like GateD and Sun Cluster which creates
19860 		 * routes using the the loopback interface's address as a
19861 		 * gateway.
19862 		 *
19863 		 * As ifrt->ifrt_type reflects the already updated ire_type and
19864 		 * since ire_create() expects that IRE_IF_NORESOLVER will have
19865 		 * a valid nce_res_mp field (which doesn't make sense for a
19866 		 * IRE_LOOPBACK), ire_create() will be called in the same way
19867 		 * here as in ip_rt_add(), namely using ipif->ipif_net_type when
19868 		 * the route looks like a traditional interface route (where
19869 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
19870 		 * the saved ifrt->ifrt_type.  This means that in the case where
19871 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
19872 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
19873 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
19874 		 */
19875 		ifrt = (ifrt_t *)mp->b_rptr;
19876 		if (ifrt->ifrt_type & IRE_INTERFACE) {
19877 			rfq = NULL;
19878 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
19879 			    ? ipif->ipif_rq : ipif->ipif_wq;
19880 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19881 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19882 			    : (uint8_t *)&ipif->ipif_src_addr;
19883 			gateway_addr = NULL;
19884 			resolver_mp = ipif->ipif_resolver_mp;
19885 			type = ipif->ipif_net_type;
19886 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
19887 			/* Recover multiroute broadcast IRE. */
19888 			rfq = ipif->ipif_rq;
19889 			stq = ipif->ipif_wq;
19890 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19891 			    ? (uint8_t *)&ifrt->ifrt_src_addr
19892 			    : (uint8_t *)&ipif->ipif_src_addr;
19893 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19894 			resolver_mp = ipif->ipif_bcast_mp;
19895 			type = ifrt->ifrt_type;
19896 		} else {
19897 			rfq = NULL;
19898 			stq = NULL;
19899 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
19900 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
19901 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
19902 			resolver_mp = NULL;
19903 			type = ifrt->ifrt_type;
19904 		}
19905 
19906 		/*
19907 		 * Create a copy of the IRE with the saved address and netmask.
19908 		 */
19909 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
19910 		    "0x%x/0x%x\n",
19911 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
19912 		    ntohl(ifrt->ifrt_addr),
19913 		    ntohl(ifrt->ifrt_mask)));
19914 		ire = ire_create(
19915 		    (uint8_t *)&ifrt->ifrt_addr,
19916 		    (uint8_t *)&ifrt->ifrt_mask,
19917 		    src_addr,
19918 		    gateway_addr,
19919 		    NULL,
19920 		    &ifrt->ifrt_max_frag,
19921 		    NULL,
19922 		    rfq,
19923 		    stq,
19924 		    type,
19925 		    resolver_mp,
19926 		    ipif,
19927 		    NULL,
19928 		    0,
19929 		    0,
19930 		    0,
19931 		    ifrt->ifrt_flags,
19932 		    &ifrt->ifrt_iulp_info,
19933 		    NULL,
19934 		    NULL,
19935 		    ipst);
19936 
19937 		if (ire == NULL) {
19938 			mutex_exit(&ipif->ipif_saved_ire_lock);
19939 			kmem_free(ipif_saved_irep,
19940 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
19941 			return (NULL);
19942 		}
19943 
19944 		/*
19945 		 * Some software (for example, GateD and Sun Cluster) attempts
19946 		 * to create (what amount to) IRE_PREFIX routes with the
19947 		 * loopback address as the gateway.  This is primarily done to
19948 		 * set up prefixes with the RTF_REJECT flag set (for example,
19949 		 * when generating aggregate routes.)
19950 		 *
19951 		 * If the IRE type (as defined by ipif->ipif_net_type) is
19952 		 * IRE_LOOPBACK, then we map the request into a
19953 		 * IRE_IF_NORESOLVER.
19954 		 */
19955 		if (ipif->ipif_net_type == IRE_LOOPBACK)
19956 			ire->ire_type = IRE_IF_NORESOLVER;
19957 		/*
19958 		 * ire held by ire_add, will be refreled' towards the
19959 		 * the end of ipif_up_done
19960 		 */
19961 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
19962 		*irep = ire;
19963 		irep++;
19964 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
19965 	}
19966 	mutex_exit(&ipif->ipif_saved_ire_lock);
19967 	return (ipif_saved_irep);
19968 }
19969 
19970 /*
19971  * Used to set the netmask and broadcast address to default values when the
19972  * interface is brought up.  (Always called as writer.)
19973  */
19974 static void
19975 ipif_set_default(ipif_t *ipif)
19976 {
19977 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
19978 
19979 	if (!ipif->ipif_isv6) {
19980 		/*
19981 		 * Interface holds an IPv4 address. Default
19982 		 * mask is the natural netmask.
19983 		 */
19984 		if (!ipif->ipif_net_mask) {
19985 			ipaddr_t	v4mask;
19986 
19987 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
19988 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
19989 		}
19990 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
19991 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
19992 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
19993 		} else {
19994 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
19995 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
19996 		}
19997 		/*
19998 		 * NOTE: SunOS 4.X does this even if the broadcast address
19999 		 * has been already set thus we do the same here.
20000 		 */
20001 		if (ipif->ipif_flags & IPIF_BROADCAST) {
20002 			ipaddr_t	v4addr;
20003 
20004 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
20005 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
20006 		}
20007 	} else {
20008 		/*
20009 		 * Interface holds an IPv6-only address.  Default
20010 		 * mask is all-ones.
20011 		 */
20012 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
20013 			ipif->ipif_v6net_mask = ipv6_all_ones;
20014 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20015 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20016 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
20017 		} else {
20018 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
20019 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
20020 		}
20021 	}
20022 }
20023 
20024 /*
20025  * Return 0 if this address can be used as local address without causing
20026  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
20027  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
20028  * Special checks are needed to allow the same IPv6 link-local address
20029  * on different ills.
20030  * TODO: allowing the same site-local address on different ill's.
20031  */
20032 int
20033 ip_addr_availability_check(ipif_t *new_ipif)
20034 {
20035 	in6_addr_t our_v6addr;
20036 	ill_t *ill;
20037 	ipif_t *ipif;
20038 	ill_walk_context_t ctx;
20039 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
20040 
20041 	ASSERT(IAM_WRITER_IPIF(new_ipif));
20042 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
20043 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
20044 
20045 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
20046 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
20047 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
20048 		return (0);
20049 
20050 	our_v6addr = new_ipif->ipif_v6lcl_addr;
20051 
20052 	if (new_ipif->ipif_isv6)
20053 		ill = ILL_START_WALK_V6(&ctx, ipst);
20054 	else
20055 		ill = ILL_START_WALK_V4(&ctx, ipst);
20056 
20057 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
20058 		for (ipif = ill->ill_ipif; ipif != NULL;
20059 		    ipif = ipif->ipif_next) {
20060 			if ((ipif == new_ipif) ||
20061 			    !(ipif->ipif_flags & IPIF_UP) ||
20062 			    (ipif->ipif_flags & IPIF_UNNUMBERED))
20063 				continue;
20064 			if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
20065 			    &our_v6addr)) {
20066 				if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
20067 				    new_ipif->ipif_flags |= IPIF_UNNUMBERED;
20068 				else if (ipif->ipif_flags & IPIF_POINTOPOINT)
20069 				    ipif->ipif_flags |= IPIF_UNNUMBERED;
20070 				else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) &&
20071 				    new_ipif->ipif_ill != ill)
20072 					continue;
20073 				else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) &&
20074 				    new_ipif->ipif_ill != ill)
20075 					continue;
20076 				else if (new_ipif->ipif_zoneid !=
20077 				    ipif->ipif_zoneid &&
20078 				    ipif->ipif_zoneid != ALL_ZONES &&
20079 				    (ill->ill_phyint->phyint_flags &
20080 				    PHYI_LOOPBACK))
20081 					continue;
20082 				else if (new_ipif->ipif_ill == ill)
20083 					return (EADDRINUSE);
20084 				else
20085 					return (EADDRNOTAVAIL);
20086 			}
20087 		}
20088 	}
20089 
20090 	return (0);
20091 }
20092 
20093 /*
20094  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
20095  * IREs for the ipif.
20096  * When the routine returns EINPROGRESS then mp has been consumed and
20097  * the ioctl will be acked from ip_rput_dlpi.
20098  */
20099 static int
20100 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
20101 {
20102 	ill_t	*ill = ipif->ipif_ill;
20103 	boolean_t isv6 = ipif->ipif_isv6;
20104 	int	err = 0;
20105 	boolean_t success;
20106 
20107 	ASSERT(IAM_WRITER_IPIF(ipif));
20108 
20109 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
20110 
20111 	/* Shouldn't get here if it is already up. */
20112 	if (ipif->ipif_flags & IPIF_UP)
20113 		return (EALREADY);
20114 
20115 	/* Skip arp/ndp for any loopback interface. */
20116 	if (ill->ill_wq != NULL) {
20117 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
20118 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
20119 
20120 		if (!ill->ill_dl_up) {
20121 			/*
20122 			 * ill_dl_up is not yet set. i.e. we are yet to
20123 			 * DL_BIND with the driver and this is the first
20124 			 * logical interface on the ill to become "up".
20125 			 * Tell the driver to get going (via DL_BIND_REQ).
20126 			 * Note that changing "significant" IFF_ flags
20127 			 * address/netmask etc cause a down/up dance, but
20128 			 * does not cause an unbind (DL_UNBIND) with the driver
20129 			 */
20130 			return (ill_dl_up(ill, ipif, mp, q));
20131 		}
20132 
20133 		/*
20134 		 * ipif_resolver_up may end up sending an
20135 		 * AR_INTERFACE_UP message to ARP, which would, in
20136 		 * turn send a DLPI message to the driver. ioctls are
20137 		 * serialized and so we cannot send more than one
20138 		 * interface up message at a time. If ipif_resolver_up
20139 		 * does send an interface up message to ARP, we get
20140 		 * EINPROGRESS and we will complete in ip_arp_done.
20141 		 */
20142 
20143 		ASSERT(connp != NULL || !CONN_Q(q));
20144 		ASSERT(ipsq->ipsq_pending_mp == NULL);
20145 		if (connp != NULL)
20146 			mutex_enter(&connp->conn_lock);
20147 		mutex_enter(&ill->ill_lock);
20148 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
20149 		mutex_exit(&ill->ill_lock);
20150 		if (connp != NULL)
20151 			mutex_exit(&connp->conn_lock);
20152 		if (!success)
20153 			return (EINTR);
20154 
20155 		/*
20156 		 * Crank up IPv6 neighbor discovery
20157 		 * Unlike ARP, this should complete when
20158 		 * ipif_ndp_up returns. However, for
20159 		 * ILLF_XRESOLV interfaces we also send a
20160 		 * AR_INTERFACE_UP to the external resolver.
20161 		 * That ioctl will complete in ip_rput.
20162 		 */
20163 		if (isv6) {
20164 			err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr);
20165 			if (err != 0) {
20166 				if (err != EINPROGRESS)
20167 					mp = ipsq_pending_mp_get(ipsq, &connp);
20168 				return (err);
20169 			}
20170 		}
20171 		/* Now, ARP */
20172 		err = ipif_resolver_up(ipif, Res_act_initial);
20173 		if (err == EINPROGRESS) {
20174 			/* We will complete it in ip_arp_done */
20175 			return (err);
20176 		}
20177 		mp = ipsq_pending_mp_get(ipsq, &connp);
20178 		ASSERT(mp != NULL);
20179 		if (err != 0)
20180 			return (err);
20181 	} else {
20182 		/*
20183 		 * Interfaces without underlying hardware don't do duplicate
20184 		 * address detection.
20185 		 */
20186 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
20187 		ipif->ipif_addr_ready = 1;
20188 	}
20189 	return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif));
20190 }
20191 
20192 /*
20193  * Perform a bind for the physical device.
20194  * When the routine returns EINPROGRESS then mp has been consumed and
20195  * the ioctl will be acked from ip_rput_dlpi.
20196  * Allocate an unbind message and save it until ipif_down.
20197  */
20198 static int
20199 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
20200 {
20201 	mblk_t	*areq_mp = NULL;
20202 	mblk_t	*bind_mp = NULL;
20203 	mblk_t	*unbind_mp = NULL;
20204 	conn_t	*connp;
20205 	boolean_t success;
20206 
20207 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
20208 	ASSERT(IAM_WRITER_ILL(ill));
20209 
20210 	ASSERT(mp != NULL);
20211 
20212 	/* Create a resolver cookie for ARP */
20213 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
20214 		areq_t		*areq;
20215 		uint16_t	sap_addr;
20216 
20217 		areq_mp = ill_arp_alloc(ill,
20218 			(uchar_t *)&ip_areq_template, 0);
20219 		if (areq_mp == NULL) {
20220 			return (ENOMEM);
20221 		}
20222 		freemsg(ill->ill_resolver_mp);
20223 		ill->ill_resolver_mp = areq_mp;
20224 		areq = (areq_t *)areq_mp->b_rptr;
20225 		sap_addr = ill->ill_sap;
20226 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
20227 		/*
20228 		 * Wait till we call ill_pending_mp_add to determine
20229 		 * the success before we free the ill_resolver_mp and
20230 		 * attach areq_mp in it's place.
20231 		 */
20232 	}
20233 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
20234 	    DL_BIND_REQ);
20235 	if (bind_mp == NULL)
20236 		goto bad;
20237 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
20238 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
20239 
20240 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
20241 	if (unbind_mp == NULL)
20242 		goto bad;
20243 
20244 	/*
20245 	 * Record state needed to complete this operation when the
20246 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
20247 	 */
20248 	ASSERT(WR(q)->q_next == NULL);
20249 	connp = Q_TO_CONN(q);
20250 
20251 	mutex_enter(&connp->conn_lock);
20252 	mutex_enter(&ipif->ipif_ill->ill_lock);
20253 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
20254 	mutex_exit(&ipif->ipif_ill->ill_lock);
20255 	mutex_exit(&connp->conn_lock);
20256 	if (!success)
20257 		goto bad;
20258 
20259 	/*
20260 	 * Save the unbind message for ill_dl_down(); it will be consumed when
20261 	 * the interface goes down.
20262 	 */
20263 	ASSERT(ill->ill_unbind_mp == NULL);
20264 	ill->ill_unbind_mp = unbind_mp;
20265 
20266 	ill_dlpi_send(ill, bind_mp);
20267 	/* Send down link-layer capabilities probe if not already done. */
20268 	ill_capability_probe(ill);
20269 
20270 	/*
20271 	 * Sysid used to rely on the fact that netboots set domainname
20272 	 * and the like. Now that miniroot boots aren't strictly netboots
20273 	 * and miniroot network configuration is driven from userland
20274 	 * these things still need to be set. This situation can be detected
20275 	 * by comparing the interface being configured here to the one
20276 	 * dhcack was set to reference by the boot loader. Once sysid is
20277 	 * converted to use dhcp_ipc_getinfo() this call can go away.
20278 	 */
20279 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) &&
20280 	    (strcmp(ill->ill_name, dhcack) == 0) &&
20281 	    (strlen(srpc_domain) == 0)) {
20282 		if (dhcpinit() != 0)
20283 			cmn_err(CE_WARN, "no cached dhcp response");
20284 	}
20285 
20286 	/*
20287 	 * This operation will complete in ip_rput_dlpi with either
20288 	 * a DL_BIND_ACK or DL_ERROR_ACK.
20289 	 */
20290 	return (EINPROGRESS);
20291 bad:
20292 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
20293 	/*
20294 	 * We don't have to check for possible removal from illgrp
20295 	 * as we have not yet inserted in illgrp. For groups
20296 	 * without names, this ipif is still not UP and hence
20297 	 * this could not have possibly had any influence in forming
20298 	 * groups.
20299 	 */
20300 
20301 	freemsg(bind_mp);
20302 	freemsg(unbind_mp);
20303 	return (ENOMEM);
20304 }
20305 
20306 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
20307 
20308 /*
20309  * DLPI and ARP is up.
20310  * Create all the IREs associated with an interface bring up multicast.
20311  * Set the interface flag and finish other initialization
20312  * that potentially had to be differed to after DL_BIND_ACK.
20313  */
20314 int
20315 ipif_up_done(ipif_t *ipif)
20316 {
20317 	ire_t	*ire_array[20];
20318 	ire_t	**irep = ire_array;
20319 	ire_t	**irep1;
20320 	ipaddr_t net_mask = 0;
20321 	ipaddr_t subnet_mask, route_mask;
20322 	ill_t	*ill = ipif->ipif_ill;
20323 	queue_t	*stq;
20324 	ipif_t	 *src_ipif;
20325 	ipif_t   *tmp_ipif;
20326 	boolean_t	flush_ire_cache = B_TRUE;
20327 	int	err = 0;
20328 	phyint_t *phyi;
20329 	ire_t	**ipif_saved_irep = NULL;
20330 	int ipif_saved_ire_cnt;
20331 	int	cnt;
20332 	boolean_t	src_ipif_held = B_FALSE;
20333 	boolean_t	ire_added = B_FALSE;
20334 	boolean_t	loopback = B_FALSE;
20335 	ip_stack_t	*ipst = ill->ill_ipst;
20336 
20337 	ip1dbg(("ipif_up_done(%s:%u)\n",
20338 		ipif->ipif_ill->ill_name, ipif->ipif_id));
20339 	/* Check if this is a loopback interface */
20340 	if (ipif->ipif_ill->ill_wq == NULL)
20341 		loopback = B_TRUE;
20342 
20343 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20344 	/*
20345 	 * If all other interfaces for this ill are down or DEPRECATED,
20346 	 * or otherwise unsuitable for source address selection, remove
20347 	 * any IRE_CACHE entries for this ill to make sure source
20348 	 * address selection gets to take this new ipif into account.
20349 	 * No need to hold ill_lock while traversing the ipif list since
20350 	 * we are writer
20351 	 */
20352 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
20353 		tmp_ipif = tmp_ipif->ipif_next) {
20354 		if (((tmp_ipif->ipif_flags &
20355 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
20356 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
20357 		    (tmp_ipif == ipif))
20358 			continue;
20359 		/* first useable pre-existing interface */
20360 		flush_ire_cache = B_FALSE;
20361 		break;
20362 	}
20363 	if (flush_ire_cache)
20364 		ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE,
20365 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
20366 
20367 	/*
20368 	 * Figure out which way the send-to queue should go.  Only
20369 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
20370 	 * should show up here.
20371 	 */
20372 	switch (ill->ill_net_type) {
20373 	case IRE_IF_RESOLVER:
20374 		stq = ill->ill_rq;
20375 		break;
20376 	case IRE_IF_NORESOLVER:
20377 	case IRE_LOOPBACK:
20378 		stq = ill->ill_wq;
20379 		break;
20380 	default:
20381 		return (EINVAL);
20382 	}
20383 
20384 	if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) {
20385 		/*
20386 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
20387 		 * ipif_lookup_on_name(), but in the case of zones we can have
20388 		 * several loopback addresses on lo0. So all the interfaces with
20389 		 * loopback addresses need to be marked IRE_LOOPBACK.
20390 		 */
20391 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
20392 		    htonl(INADDR_LOOPBACK))
20393 			ipif->ipif_ire_type = IRE_LOOPBACK;
20394 		else
20395 			ipif->ipif_ire_type = IRE_LOCAL;
20396 	}
20397 
20398 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) {
20399 		/*
20400 		 * Can't use our source address. Select a different
20401 		 * source address for the IRE_INTERFACE and IRE_LOCAL
20402 		 */
20403 		src_ipif = ipif_select_source(ipif->ipif_ill,
20404 		    ipif->ipif_subnet, ipif->ipif_zoneid);
20405 		if (src_ipif == NULL)
20406 			src_ipif = ipif;	/* Last resort */
20407 		else
20408 			src_ipif_held = B_TRUE;
20409 	} else {
20410 		src_ipif = ipif;
20411 	}
20412 
20413 	/* Create all the IREs associated with this interface */
20414 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20415 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20416 
20417 		/*
20418 		 * If we're on a labeled system then make sure that zone-
20419 		 * private addresses have proper remote host database entries.
20420 		 */
20421 		if (is_system_labeled() &&
20422 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
20423 		    !tsol_check_interface_address(ipif))
20424 			return (EINVAL);
20425 
20426 		/* Register the source address for __sin6_src_id */
20427 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
20428 		    ipif->ipif_zoneid, ipst);
20429 		if (err != 0) {
20430 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
20431 			return (err);
20432 		}
20433 
20434 		/* If the interface address is set, create the local IRE. */
20435 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
20436 			(void *)ipif,
20437 			ipif->ipif_ire_type,
20438 			ntohl(ipif->ipif_lcl_addr)));
20439 		*irep++ = ire_create(
20440 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
20441 		    (uchar_t *)&ip_g_all_ones,		/* mask */
20442 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
20443 		    NULL,				/* no gateway */
20444 		    NULL,
20445 		    &ip_loopback_mtuplus,		/* max frag size */
20446 		    NULL,
20447 		    ipif->ipif_rq,			/* recv-from queue */
20448 		    NULL,				/* no send-to queue */
20449 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
20450 		    NULL,
20451 		    ipif,
20452 		    NULL,
20453 		    0,
20454 		    0,
20455 		    0,
20456 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
20457 		    RTF_PRIVATE : 0,
20458 		    &ire_uinfo_null,
20459 		    NULL,
20460 		    NULL,
20461 		    ipst);
20462 	} else {
20463 		ip1dbg((
20464 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
20465 		    ipif->ipif_ire_type,
20466 		    ntohl(ipif->ipif_lcl_addr),
20467 		    (uint_t)ipif->ipif_flags));
20468 	}
20469 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
20470 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
20471 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
20472 	} else {
20473 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
20474 	}
20475 
20476 	subnet_mask = ipif->ipif_net_mask;
20477 
20478 	/*
20479 	 * If mask was not specified, use natural netmask of
20480 	 * interface address. Also, store this mask back into the
20481 	 * ipif struct.
20482 	 */
20483 	if (subnet_mask == 0) {
20484 		subnet_mask = net_mask;
20485 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
20486 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
20487 		    ipif->ipif_v6subnet);
20488 	}
20489 
20490 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
20491 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
20492 	    ipif->ipif_subnet != INADDR_ANY) {
20493 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
20494 
20495 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
20496 			route_mask = IP_HOST_MASK;
20497 		} else {
20498 			route_mask = subnet_mask;
20499 		}
20500 
20501 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
20502 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
20503 			(void *)ipif, (void *)ill,
20504 			ill->ill_net_type,
20505 			ntohl(ipif->ipif_subnet)));
20506 		*irep++ = ire_create(
20507 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
20508 		    (uchar_t *)&route_mask,		/* mask */
20509 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
20510 		    NULL,				/* no gateway */
20511 		    NULL,
20512 		    &ipif->ipif_mtu,			/* max frag */
20513 		    NULL,
20514 		    NULL,				/* no recv queue */
20515 		    stq,				/* send-to queue */
20516 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
20517 		    ill->ill_resolver_mp,		/* xmit header */
20518 		    ipif,
20519 		    NULL,
20520 		    0,
20521 		    0,
20522 		    0,
20523 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
20524 		    &ire_uinfo_null,
20525 		    NULL,
20526 		    NULL,
20527 		    ipst);
20528 	}
20529 
20530 	/*
20531 	 * If the interface address is set, create the broadcast IREs.
20532 	 *
20533 	 * ire_create_bcast checks if the proposed new IRE matches
20534 	 * any existing IRE's with the same physical interface (ILL).
20535 	 * This should get rid of duplicates.
20536 	 * ire_create_bcast also check IPIF_NOXMIT and does not create
20537 	 * any broadcast ires.
20538 	 */
20539 	if ((ipif->ipif_subnet != INADDR_ANY) &&
20540 	    (ipif->ipif_flags & IPIF_BROADCAST)) {
20541 		ipaddr_t addr;
20542 
20543 		ip1dbg(("ipif_up_done: creating broadcast IRE\n"));
20544 		irep = ire_check_and_create_bcast(ipif, 0, irep,
20545 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20546 		irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep,
20547 		    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20548 
20549 		/*
20550 		 * For backward compatibility, we need to create net
20551 		 * broadcast ire's based on the old "IP address class
20552 		 * system."  The reason is that some old machines only
20553 		 * respond to these class derived net broadcast.
20554 		 *
20555 		 * But we should not create these net broadcast ire's if
20556 		 * the subnet_mask is shorter than the IP address class based
20557 		 * derived netmask.  Otherwise, we may create a net
20558 		 * broadcast address which is the same as an IP address
20559 		 * on the subnet.  Then TCP will refuse to talk to that
20560 		 * address.
20561 		 *
20562 		 * Nor do we need IRE_BROADCAST ire's for the interface
20563 		 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that
20564 		 * interface is already created.  Creating these broadcast
20565 		 * ire's will only create confusion as the "addr" is going
20566 		 * to be same as that of the IP address of the interface.
20567 		 */
20568 		if (net_mask < subnet_mask) {
20569 			addr = net_mask & ipif->ipif_subnet;
20570 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20571 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20572 			irep = ire_check_and_create_bcast(ipif,
20573 			    ~net_mask | addr, irep,
20574 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20575 		}
20576 
20577 		if (subnet_mask != 0xFFFFFFFF) {
20578 			addr = ipif->ipif_subnet;
20579 			irep = ire_check_and_create_bcast(ipif, addr, irep,
20580 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20581 			irep = ire_check_and_create_bcast(ipif,
20582 			    ~subnet_mask|addr, irep,
20583 			    (MATCH_IRE_TYPE | MATCH_IRE_ILL));
20584 		}
20585 	}
20586 
20587 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
20588 
20589 	/* If an earlier ire_create failed, get out now */
20590 	for (irep1 = irep; irep1 > ire_array; ) {
20591 		irep1--;
20592 		if (*irep1 == NULL) {
20593 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
20594 			err = ENOMEM;
20595 			goto bad;
20596 		}
20597 	}
20598 
20599 	/*
20600 	 * Need to atomically check for ip_addr_availablity_check
20601 	 * under ip_addr_avail_lock, and if it fails got bad, and remove
20602 	 * from group also.The ill_g_lock is grabbed as reader
20603 	 * just to make sure no new ills or new ipifs are being added
20604 	 * to the system while we are checking the uniqueness of addresses.
20605 	 */
20606 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20607 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
20608 	/* Mark it up, and increment counters. */
20609 	ipif->ipif_flags |= IPIF_UP;
20610 	ill->ill_ipif_up_count++;
20611 	err = ip_addr_availability_check(ipif);
20612 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
20613 	rw_exit(&ipst->ips_ill_g_lock);
20614 
20615 	if (err != 0) {
20616 		/*
20617 		 * Our address may already be up on the same ill. In this case,
20618 		 * the ARP entry for our ipif replaced the one for the other
20619 		 * ipif. So we don't want to delete it (otherwise the other ipif
20620 		 * would be unable to send packets).
20621 		 * ip_addr_availability_check() identifies this case for us and
20622 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
20623 		 * which is the expected error code.
20624 		 */
20625 		if (err == EADDRINUSE) {
20626 			freemsg(ipif->ipif_arp_del_mp);
20627 			ipif->ipif_arp_del_mp = NULL;
20628 			err = EADDRNOTAVAIL;
20629 		}
20630 		ill->ill_ipif_up_count--;
20631 		ipif->ipif_flags &= ~IPIF_UP;
20632 		goto bad;
20633 	}
20634 
20635 	/*
20636 	 * Add in all newly created IREs.  ire_create_bcast() has
20637 	 * already checked for duplicates of the IRE_BROADCAST type.
20638 	 * We want to add before we call ifgrp_insert which wants
20639 	 * to know whether IRE_IF_RESOLVER exists or not.
20640 	 *
20641 	 * NOTE : We refrele the ire though we may branch to "bad"
20642 	 *	  later on where we do ire_delete. This is okay
20643 	 *	  because nobody can delete it as we are running
20644 	 *	  exclusively.
20645 	 */
20646 	for (irep1 = irep; irep1 > ire_array; ) {
20647 		irep1--;
20648 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
20649 		/*
20650 		 * refheld by ire_add. refele towards the end of the func
20651 		 */
20652 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
20653 	}
20654 	ire_added = B_TRUE;
20655 	/*
20656 	 * Form groups if possible.
20657 	 *
20658 	 * If we are supposed to be in a ill_group with a name, insert it
20659 	 * now as we know that at least one ipif is UP. Otherwise form
20660 	 * nameless groups.
20661 	 *
20662 	 * If ip_enable_group_ifs is set and ipif address is not 0, insert
20663 	 * this ipif into the appropriate interface group, or create a
20664 	 * new one. If this is already in a nameless group, we try to form
20665 	 * a bigger group looking at other ills potentially sharing this
20666 	 * ipif's prefix.
20667 	 */
20668 	phyi = ill->ill_phyint;
20669 	if (phyi->phyint_groupname_len != 0) {
20670 		ASSERT(phyi->phyint_groupname != NULL);
20671 		if (ill->ill_ipif_up_count == 1) {
20672 			ASSERT(ill->ill_group == NULL);
20673 			err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill,
20674 			    phyi->phyint_groupname, NULL, B_TRUE);
20675 			if (err != 0) {
20676 				ip1dbg(("ipif_up_done: illgrp allocation "
20677 				    "failed, error %d\n", err));
20678 				goto bad;
20679 			}
20680 		}
20681 		ASSERT(ill->ill_group != NULL);
20682 	}
20683 
20684 	/*
20685 	 * When this is part of group, we need to make sure that
20686 	 * any broadcast ires created because of this ipif coming
20687 	 * UP gets marked/cleared with IRE_MARK_NORECV appropriately
20688 	 * so that we don't receive duplicate broadcast packets.
20689 	 */
20690 	if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0)
20691 		ipif_renominate_bcast(ipif);
20692 
20693 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
20694 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
20695 	ipif_saved_irep = ipif_recover_ire(ipif);
20696 
20697 	if (!loopback) {
20698 		/*
20699 		 * If the broadcast address has been set, make sure it makes
20700 		 * sense based on the interface address.
20701 		 * Only match on ill since we are sharing broadcast addresses.
20702 		 */
20703 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
20704 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
20705 			ire_t	*ire;
20706 
20707 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
20708 			    IRE_BROADCAST, ipif, ALL_ZONES,
20709 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
20710 
20711 			if (ire == NULL) {
20712 				/*
20713 				 * If there isn't a matching broadcast IRE,
20714 				 * revert to the default for this netmask.
20715 				 */
20716 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
20717 				mutex_enter(&ipif->ipif_ill->ill_lock);
20718 				ipif_set_default(ipif);
20719 				mutex_exit(&ipif->ipif_ill->ill_lock);
20720 			} else {
20721 				ire_refrele(ire);
20722 			}
20723 		}
20724 
20725 	}
20726 
20727 	/* This is the first interface on this ill */
20728 	if (ipif->ipif_ipif_up_count == 1 && !loopback) {
20729 		/*
20730 		 * Need to recover all multicast memberships in the driver.
20731 		 * This had to be deferred until we had attached.
20732 		 */
20733 		ill_recover_multicast(ill);
20734 	}
20735 	/* Join the allhosts multicast address */
20736 	ipif_multicast_up(ipif);
20737 
20738 	if (!loopback) {
20739 		/*
20740 		 * See whether anybody else would benefit from the
20741 		 * new ipif that we added. We call this always rather
20742 		 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST
20743 		 * ipif is for the benefit of illgrp_insert (done above)
20744 		 * which does not do source address selection as it does
20745 		 * not want to re-create interface routes that we are
20746 		 * having reference to it here.
20747 		 */
20748 		ill_update_source_selection(ill);
20749 	}
20750 
20751 	for (irep1 = irep; irep1 > ire_array; ) {
20752 		irep1--;
20753 		if (*irep1 != NULL) {
20754 			/* was held in ire_add */
20755 			ire_refrele(*irep1);
20756 		}
20757 	}
20758 
20759 	cnt = ipif_saved_ire_cnt;
20760 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
20761 		if (*irep1 != NULL) {
20762 			/* was held in ire_add */
20763 			ire_refrele(*irep1);
20764 		}
20765 	}
20766 
20767 	if (!loopback && ipif->ipif_addr_ready) {
20768 		/* Broadcast an address mask reply. */
20769 		ipif_mask_reply(ipif);
20770 	}
20771 	if (ipif_saved_irep != NULL) {
20772 		kmem_free(ipif_saved_irep,
20773 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20774 	}
20775 	if (src_ipif_held)
20776 		ipif_refrele(src_ipif);
20777 
20778 	/*
20779 	 * This had to be deferred until we had bound.  Tell routing sockets and
20780 	 * others that this interface is up if it looks like the address has
20781 	 * been validated.  Otherwise, if it isn't ready yet, wait for
20782 	 * duplicate address detection to do its thing.
20783 	 */
20784 	if (ipif->ipif_addr_ready) {
20785 		ip_rts_ifmsg(ipif);
20786 		ip_rts_newaddrmsg(RTM_ADD, 0, ipif);
20787 		/* Let SCTP update the status for this ipif */
20788 		sctp_update_ipif(ipif, SCTP_IPIF_UP);
20789 	}
20790 	return (0);
20791 
20792 bad:
20793 	ip1dbg(("ipif_up_done: FAILED \n"));
20794 	/*
20795 	 * We don't have to bother removing from ill groups because
20796 	 *
20797 	 * 1) For groups with names, we insert only when the first ipif
20798 	 *    comes up. In that case if it fails, it will not be in any
20799 	 *    group. So, we need not try to remove for that case.
20800 	 *
20801 	 * 2) For groups without names, either we tried to insert ipif_ill
20802 	 *    in a group as singleton or found some other group to become
20803 	 *    a bigger group. For the former, if it fails we don't have
20804 	 *    anything to do as ipif_ill is not in the group and for the
20805 	 *    latter, there are no failures in illgrp_insert/illgrp_delete
20806 	 *    (ENOMEM can't occur for this. Check ifgrp_insert).
20807 	 */
20808 	while (irep > ire_array) {
20809 		irep--;
20810 		if (*irep != NULL) {
20811 			ire_delete(*irep);
20812 			if (ire_added)
20813 				ire_refrele(*irep);
20814 		}
20815 	}
20816 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
20817 
20818 	if (ipif_saved_irep != NULL) {
20819 		kmem_free(ipif_saved_irep,
20820 		    ipif_saved_ire_cnt * sizeof (ire_t *));
20821 	}
20822 	if (src_ipif_held)
20823 		ipif_refrele(src_ipif);
20824 
20825 	ipif_arp_down(ipif);
20826 	return (err);
20827 }
20828 
20829 /*
20830  * Turn off the ARP with the ILLF_NOARP flag.
20831  */
20832 static int
20833 ill_arp_off(ill_t *ill)
20834 {
20835 	mblk_t	*arp_off_mp = NULL;
20836 	mblk_t	*arp_on_mp = NULL;
20837 
20838 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
20839 
20840 	ASSERT(IAM_WRITER_ILL(ill));
20841 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20842 
20843 	/*
20844 	 * If the on message is still around we've already done
20845 	 * an arp_off without doing an arp_on thus there is no
20846 	 * work needed.
20847 	 */
20848 	if (ill->ill_arp_on_mp != NULL)
20849 		return (0);
20850 
20851 	/*
20852 	 * Allocate an ARP on message (to be saved) and an ARP off message
20853 	 */
20854 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
20855 	if (!arp_off_mp)
20856 		return (ENOMEM);
20857 
20858 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
20859 	if (!arp_on_mp)
20860 		goto failed;
20861 
20862 	ASSERT(ill->ill_arp_on_mp == NULL);
20863 	ill->ill_arp_on_mp = arp_on_mp;
20864 
20865 	/* Send an AR_INTERFACE_OFF request */
20866 	putnext(ill->ill_rq, arp_off_mp);
20867 	return (0);
20868 failed:
20869 
20870 	if (arp_off_mp)
20871 		freemsg(arp_off_mp);
20872 	return (ENOMEM);
20873 }
20874 
20875 /*
20876  * Turn on ARP by turning off the ILLF_NOARP flag.
20877  */
20878 static int
20879 ill_arp_on(ill_t *ill)
20880 {
20881 	mblk_t	*mp;
20882 
20883 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
20884 
20885 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
20886 
20887 	ASSERT(IAM_WRITER_ILL(ill));
20888 	/*
20889 	 * Send an AR_INTERFACE_ON request if we have already done
20890 	 * an arp_off (which allocated the message).
20891 	 */
20892 	if (ill->ill_arp_on_mp != NULL) {
20893 		mp = ill->ill_arp_on_mp;
20894 		ill->ill_arp_on_mp = NULL;
20895 		putnext(ill->ill_rq, mp);
20896 	}
20897 	return (0);
20898 }
20899 
20900 /*
20901  * Called after either deleting ill from the group or when setting
20902  * FAILED or STANDBY on the interface.
20903  */
20904 static void
20905 illgrp_reset_schednext(ill_t *ill)
20906 {
20907 	ill_group_t *illgrp;
20908 	ill_t *save_ill;
20909 
20910 	ASSERT(IAM_WRITER_ILL(ill));
20911 	/*
20912 	 * When called from illgrp_delete, ill_group will be non-NULL.
20913 	 * But when called from ip_sioctl_flags, it could be NULL if
20914 	 * somebody is setting FAILED/INACTIVE on some interface which
20915 	 * is not part of a group.
20916 	 */
20917 	illgrp = ill->ill_group;
20918 	if (illgrp == NULL)
20919 		return;
20920 	if (illgrp->illgrp_ill_schednext != ill)
20921 		return;
20922 
20923 	illgrp->illgrp_ill_schednext = NULL;
20924 	save_ill = ill;
20925 	/*
20926 	 * Choose a good ill to be the next one for
20927 	 * outbound traffic. As the flags FAILED/STANDBY is
20928 	 * not yet marked when called from ip_sioctl_flags,
20929 	 * we check for ill separately.
20930 	 */
20931 	for (ill = illgrp->illgrp_ill; ill != NULL;
20932 	    ill = ill->ill_group_next) {
20933 		if ((ill != save_ill) &&
20934 		    !(ill->ill_phyint->phyint_flags &
20935 		    (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) {
20936 			illgrp->illgrp_ill_schednext = ill;
20937 			return;
20938 		}
20939 	}
20940 }
20941 
20942 /*
20943  * Given an ill, find the next ill in the group to be scheduled.
20944  * (This should be called by ip_newroute() before ire_create().)
20945  * The passed in ill may be pulled out of the group, after we have picked
20946  * up a different outgoing ill from the same group. However ire add will
20947  * atomically check this.
20948  */
20949 ill_t *
20950 illgrp_scheduler(ill_t *ill)
20951 {
20952 	ill_t *retill;
20953 	ill_group_t *illgrp;
20954 	int illcnt;
20955 	int i;
20956 	uint64_t flags;
20957 	ip_stack_t	*ipst = ill->ill_ipst;
20958 
20959 	/*
20960 	 * We don't use a lock to check for the ill_group. If this ill
20961 	 * is currently being inserted we may end up just returning this
20962 	 * ill itself. That is ok.
20963 	 */
20964 	if (ill->ill_group == NULL) {
20965 		ill_refhold(ill);
20966 		return (ill);
20967 	}
20968 
20969 	/*
20970 	 * Grab the ill_g_lock as reader to make sure we are dealing with
20971 	 * a set of stable ills. No ill can be added or deleted or change
20972 	 * group while we hold the reader lock.
20973 	 */
20974 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
20975 	if ((illgrp = ill->ill_group) == NULL) {
20976 		rw_exit(&ipst->ips_ill_g_lock);
20977 		ill_refhold(ill);
20978 		return (ill);
20979 	}
20980 
20981 	illcnt = illgrp->illgrp_ill_count;
20982 	mutex_enter(&illgrp->illgrp_lock);
20983 	retill = illgrp->illgrp_ill_schednext;
20984 
20985 	if (retill == NULL)
20986 		retill = illgrp->illgrp_ill;
20987 
20988 	/*
20989 	 * We do a circular search beginning at illgrp_ill_schednext
20990 	 * or illgrp_ill. We don't check the flags against the ill lock
20991 	 * since it can change anytime. The ire creation will be atomic
20992 	 * and will fail if the ill is FAILED or OFFLINE.
20993 	 */
20994 	for (i = 0; i < illcnt; i++) {
20995 		flags = retill->ill_phyint->phyint_flags;
20996 
20997 		if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) &&
20998 		    ILL_CAN_LOOKUP(retill)) {
20999 			illgrp->illgrp_ill_schednext = retill->ill_group_next;
21000 			ill_refhold(retill);
21001 			break;
21002 		}
21003 		retill = retill->ill_group_next;
21004 		if (retill == NULL)
21005 			retill = illgrp->illgrp_ill;
21006 	}
21007 	mutex_exit(&illgrp->illgrp_lock);
21008 	rw_exit(&ipst->ips_ill_g_lock);
21009 
21010 	return (i == illcnt ? NULL : retill);
21011 }
21012 
21013 /*
21014  * Checks for availbility of a usable source address (if there is one) when the
21015  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
21016  * this selection is done regardless of the destination.
21017  */
21018 boolean_t
21019 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
21020 {
21021 	uint_t	ifindex;
21022 	ipif_t	*ipif = NULL;
21023 	ill_t	*uill;
21024 	boolean_t isv6;
21025 	ip_stack_t	*ipst = ill->ill_ipst;
21026 
21027 	ASSERT(ill != NULL);
21028 
21029 	isv6 = ill->ill_isv6;
21030 	ifindex = ill->ill_usesrc_ifindex;
21031 	if (ifindex != 0) {
21032 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
21033 		    NULL, ipst);
21034 		if (uill == NULL)
21035 			return (NULL);
21036 		mutex_enter(&uill->ill_lock);
21037 		for (ipif = uill->ill_ipif; ipif != NULL;
21038 		    ipif = ipif->ipif_next) {
21039 			if (!IPIF_CAN_LOOKUP(ipif))
21040 				continue;
21041 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
21042 				continue;
21043 			if (!(ipif->ipif_flags & IPIF_UP))
21044 				continue;
21045 			if (ipif->ipif_zoneid != zoneid)
21046 				continue;
21047 			if ((isv6 &&
21048 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
21049 			    (ipif->ipif_lcl_addr == INADDR_ANY))
21050 				continue;
21051 			mutex_exit(&uill->ill_lock);
21052 			ill_refrele(uill);
21053 			return (B_TRUE);
21054 		}
21055 		mutex_exit(&uill->ill_lock);
21056 		ill_refrele(uill);
21057 	}
21058 	return (B_FALSE);
21059 }
21060 
21061 /*
21062  * Determine the best source address given a destination address and an ill.
21063  * Prefers non-deprecated over deprecated but will return a deprecated
21064  * address if there is no other choice. If there is a usable source address
21065  * on the interface pointed to by ill_usesrc_ifindex then that is given
21066  * first preference.
21067  *
21068  * Returns NULL if there is no suitable source address for the ill.
21069  * This only occurs when there is no valid source address for the ill.
21070  */
21071 ipif_t *
21072 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
21073 {
21074 	ipif_t *ipif;
21075 	ipif_t *ipif_dep = NULL;	/* Fallback to deprecated */
21076 	ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE];
21077 	int index = 0;
21078 	boolean_t wrapped = B_FALSE;
21079 	boolean_t same_subnet_only = B_FALSE;
21080 	boolean_t ipif_same_found, ipif_other_found;
21081 	boolean_t specific_found;
21082 	ill_t	*till, *usill = NULL;
21083 	tsol_tpc_t *src_rhtp, *dst_rhtp;
21084 	ip_stack_t	*ipst = ill->ill_ipst;
21085 
21086 	if (ill->ill_usesrc_ifindex != 0) {
21087 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
21088 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
21089 		if (usill != NULL)
21090 			ill = usill;	/* Select source from usesrc ILL */
21091 		else
21092 			return (NULL);
21093 	}
21094 
21095 	/*
21096 	 * If we're dealing with an unlabeled destination on a labeled system,
21097 	 * make sure that we ignore source addresses that are incompatible with
21098 	 * the destination's default label.  That destination's default label
21099 	 * must dominate the minimum label on the source address.
21100 	 */
21101 	dst_rhtp = NULL;
21102 	if (is_system_labeled()) {
21103 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
21104 		if (dst_rhtp == NULL)
21105 			return (NULL);
21106 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
21107 			TPC_RELE(dst_rhtp);
21108 			dst_rhtp = NULL;
21109 		}
21110 	}
21111 
21112 	/*
21113 	 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill
21114 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
21115 	 * After selecting the right ipif, under ill_lock make sure ipif is
21116 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
21117 	 * we retry. Inside the loop we still need to check for CONDEMNED,
21118 	 * but not under a lock.
21119 	 */
21120 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
21121 
21122 retry:
21123 	till = ill;
21124 	ipif_arr[0] = NULL;
21125 
21126 	if (till->ill_group != NULL)
21127 		till = till->ill_group->illgrp_ill;
21128 
21129 	/*
21130 	 * Choose one good source address from each ill across the group.
21131 	 * If possible choose a source address in the same subnet as
21132 	 * the destination address.
21133 	 *
21134 	 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE
21135 	 * This is okay because of the following.
21136 	 *
21137 	 *    If PHYI_FAILED is set and we still have non-deprecated
21138 	 *    addresses, it means the addresses have not yet been
21139 	 *    failed over to a different interface. We potentially
21140 	 *    select them to create IRE_CACHES, which will be later
21141 	 *    flushed when the addresses move over.
21142 	 *
21143 	 *    If PHYI_INACTIVE is set and we still have non-deprecated
21144 	 *    addresses, it means either the user has configured them
21145 	 *    or PHYI_INACTIVE has not been cleared after the addresses
21146 	 *    been moved over. For the former, in.mpathd does a failover
21147 	 *    when the interface becomes INACTIVE and hence we should
21148 	 *    not find them. Once INACTIVE is set, we don't allow them
21149 	 *    to create logical interfaces anymore. For the latter, a
21150 	 *    flush will happen when INACTIVE is cleared which will
21151 	 *    flush the IRE_CACHES.
21152 	 *
21153 	 *    If PHYI_OFFLINE is set, all the addresses will be failed
21154 	 *    over soon. We potentially select them to create IRE_CACHEs,
21155 	 *    which will be later flushed when the addresses move over.
21156 	 *
21157 	 * NOTE : As ipif_select_source is called to borrow source address
21158 	 * for an ipif that is part of a group, source address selection
21159 	 * will be re-done whenever the group changes i.e either an
21160 	 * insertion/deletion in the group.
21161 	 *
21162 	 * Fill ipif_arr[] with source addresses, using these rules:
21163 	 *
21164 	 *	1. At most one source address from a given ill ends up
21165 	 *	   in ipif_arr[] -- that is, at most one of the ipif's
21166 	 *	   associated with a given ill ends up in ipif_arr[].
21167 	 *
21168 	 *	2. If there is at least one non-deprecated ipif in the
21169 	 *	   IPMP group with a source address on the same subnet as
21170 	 *	   our destination, then fill ipif_arr[] only with
21171 	 *	   source addresses on the same subnet as our destination.
21172 	 *	   Note that because of (1), only the first
21173 	 *	   non-deprecated ipif found with a source address
21174 	 *	   matching the destination ends up in ipif_arr[].
21175 	 *
21176 	 *	3. Otherwise, fill ipif_arr[] with non-deprecated source
21177 	 *	   addresses not in the same subnet as our destination.
21178 	 *	   Again, because of (1), only the first off-subnet source
21179 	 *	   address will be chosen.
21180 	 *
21181 	 *	4. If there are no non-deprecated ipifs, then just use
21182 	 *	   the source address associated with the last deprecated
21183 	 *	   one we find that happens to be on the same subnet,
21184 	 *	   otherwise the first one not in the same subnet.
21185 	 */
21186 	specific_found = B_FALSE;
21187 	for (; till != NULL; till = till->ill_group_next) {
21188 		ipif_same_found = B_FALSE;
21189 		ipif_other_found = B_FALSE;
21190 		for (ipif = till->ill_ipif; ipif != NULL;
21191 		    ipif = ipif->ipif_next) {
21192 			if (!IPIF_CAN_LOOKUP(ipif))
21193 				continue;
21194 			/* Always skip NOLOCAL and ANYCAST interfaces */
21195 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
21196 				continue;
21197 			if (!(ipif->ipif_flags & IPIF_UP) ||
21198 			    !ipif->ipif_addr_ready)
21199 				continue;
21200 			if (ipif->ipif_zoneid != zoneid &&
21201 			    ipif->ipif_zoneid != ALL_ZONES)
21202 				continue;
21203 			/*
21204 			 * Interfaces with 0.0.0.0 address are allowed to be UP,
21205 			 * but are not valid as source addresses.
21206 			 */
21207 			if (ipif->ipif_lcl_addr == INADDR_ANY)
21208 				continue;
21209 
21210 			/*
21211 			 * Check compatibility of local address for
21212 			 * destination's default label if we're on a labeled
21213 			 * system.  Incompatible addresses can't be used at
21214 			 * all.
21215 			 */
21216 			if (dst_rhtp != NULL) {
21217 				boolean_t incompat;
21218 
21219 				src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
21220 				    IPV4_VERSION, B_FALSE);
21221 				if (src_rhtp == NULL)
21222 					continue;
21223 				incompat =
21224 				    src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
21225 				    src_rhtp->tpc_tp.tp_doi !=
21226 				    dst_rhtp->tpc_tp.tp_doi ||
21227 				    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
21228 				    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
21229 				    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
21230 				    src_rhtp->tpc_tp.tp_sl_set_cipso));
21231 				TPC_RELE(src_rhtp);
21232 				if (incompat)
21233 					continue;
21234 			}
21235 
21236 			/*
21237 			 * We prefer not to use all all-zones addresses, if we
21238 			 * can avoid it, as they pose problems with unlabeled
21239 			 * destinations.
21240 			 */
21241 			if (ipif->ipif_zoneid != ALL_ZONES) {
21242 				if (!specific_found &&
21243 				    (!same_subnet_only ||
21244 				    (ipif->ipif_net_mask & dst) ==
21245 				    ipif->ipif_subnet)) {
21246 					index = 0;
21247 					specific_found = B_TRUE;
21248 					ipif_other_found = B_FALSE;
21249 				}
21250 			} else {
21251 				if (specific_found)
21252 					continue;
21253 			}
21254 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
21255 				if (ipif_dep == NULL ||
21256 				    (ipif->ipif_net_mask & dst) ==
21257 				    ipif->ipif_subnet)
21258 					ipif_dep = ipif;
21259 				continue;
21260 			}
21261 			if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) {
21262 				/* found a source address in the same subnet */
21263 				if (!same_subnet_only) {
21264 					same_subnet_only = B_TRUE;
21265 					index = 0;
21266 				}
21267 				ipif_same_found = B_TRUE;
21268 			} else {
21269 				if (same_subnet_only || ipif_other_found)
21270 					continue;
21271 				ipif_other_found = B_TRUE;
21272 			}
21273 			ipif_arr[index++] = ipif;
21274 			if (index == MAX_IPIF_SELECT_SOURCE) {
21275 				wrapped = B_TRUE;
21276 				index = 0;
21277 			}
21278 			if (ipif_same_found)
21279 				break;
21280 		}
21281 	}
21282 
21283 	if (ipif_arr[0] == NULL) {
21284 		ipif = ipif_dep;
21285 	} else {
21286 		if (wrapped)
21287 			index = MAX_IPIF_SELECT_SOURCE;
21288 		ipif = ipif_arr[ipif_rand(ipst) % index];
21289 		ASSERT(ipif != NULL);
21290 	}
21291 
21292 	if (ipif != NULL) {
21293 		mutex_enter(&ipif->ipif_ill->ill_lock);
21294 		if (!IPIF_CAN_LOOKUP(ipif)) {
21295 			mutex_exit(&ipif->ipif_ill->ill_lock);
21296 			goto retry;
21297 		}
21298 		ipif_refhold_locked(ipif);
21299 		mutex_exit(&ipif->ipif_ill->ill_lock);
21300 	}
21301 
21302 	rw_exit(&ipst->ips_ill_g_lock);
21303 	if (usill != NULL)
21304 		ill_refrele(usill);
21305 	if (dst_rhtp != NULL)
21306 		TPC_RELE(dst_rhtp);
21307 
21308 #ifdef DEBUG
21309 	if (ipif == NULL) {
21310 		char buf1[INET6_ADDRSTRLEN];
21311 
21312 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
21313 		    ill->ill_name,
21314 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
21315 	} else {
21316 		char buf1[INET6_ADDRSTRLEN];
21317 		char buf2[INET6_ADDRSTRLEN];
21318 
21319 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
21320 		    ipif->ipif_ill->ill_name,
21321 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
21322 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
21323 		    buf2, sizeof (buf2))));
21324 	}
21325 #endif /* DEBUG */
21326 	return (ipif);
21327 }
21328 
21329 
21330 /*
21331  * If old_ipif is not NULL, see if ipif was derived from old
21332  * ipif and if so, recreate the interface route by re-doing
21333  * source address selection. This happens when ipif_down ->
21334  * ipif_update_other_ipifs calls us.
21335  *
21336  * If old_ipif is NULL, just redo the source address selection
21337  * if needed. This happens when illgrp_insert or ipif_up_done
21338  * calls us.
21339  */
21340 static void
21341 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
21342 {
21343 	ire_t *ire;
21344 	ire_t *ipif_ire;
21345 	queue_t *stq;
21346 	ipif_t *nipif;
21347 	ill_t *ill;
21348 	boolean_t need_rele = B_FALSE;
21349 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
21350 
21351 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
21352 	ASSERT(IAM_WRITER_IPIF(ipif));
21353 
21354 	ill = ipif->ipif_ill;
21355 	if (!(ipif->ipif_flags &
21356 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
21357 		/*
21358 		 * Can't possibly have borrowed the source
21359 		 * from old_ipif.
21360 		 */
21361 		return;
21362 	}
21363 
21364 	/*
21365 	 * Is there any work to be done? No work if the address
21366 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
21367 	 * ipif_select_source() does not borrow addresses from
21368 	 * NOLOCAL and ANYCAST interfaces).
21369 	 */
21370 	if ((old_ipif != NULL) &&
21371 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
21372 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
21373 	    (old_ipif->ipif_flags &
21374 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
21375 		return;
21376 	}
21377 
21378 	/*
21379 	 * Perform the same checks as when creating the
21380 	 * IRE_INTERFACE in ipif_up_done.
21381 	 */
21382 	if (!(ipif->ipif_flags & IPIF_UP))
21383 		return;
21384 
21385 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
21386 	    (ipif->ipif_subnet == INADDR_ANY))
21387 		return;
21388 
21389 	ipif_ire = ipif_to_ire(ipif);
21390 	if (ipif_ire == NULL)
21391 		return;
21392 
21393 	/*
21394 	 * We know that ipif uses some other source for its
21395 	 * IRE_INTERFACE. Is it using the source of this
21396 	 * old_ipif?
21397 	 */
21398 	if (old_ipif != NULL &&
21399 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
21400 		ire_refrele(ipif_ire);
21401 		return;
21402 	}
21403 	if (ip_debug > 2) {
21404 		/* ip1dbg */
21405 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
21406 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
21407 	}
21408 
21409 	stq = ipif_ire->ire_stq;
21410 
21411 	/*
21412 	 * Can't use our source address. Select a different
21413 	 * source address for the IRE_INTERFACE.
21414 	 */
21415 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
21416 	if (nipif == NULL) {
21417 		/* Last resort - all ipif's have IPIF_NOLOCAL */
21418 		nipif = ipif;
21419 	} else {
21420 		need_rele = B_TRUE;
21421 	}
21422 
21423 	ire = ire_create(
21424 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
21425 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
21426 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
21427 	    NULL,				/* no gateway */
21428 	    NULL,
21429 	    &ipif->ipif_mtu,			/* max frag */
21430 	    NULL,				/* fast path header */
21431 	    NULL,				/* no recv from queue */
21432 	    stq,				/* send-to queue */
21433 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
21434 	    ill->ill_resolver_mp,		/* xmit header */
21435 	    ipif,
21436 	    NULL,
21437 	    0,
21438 	    0,
21439 	    0,
21440 	    0,
21441 	    &ire_uinfo_null,
21442 	    NULL,
21443 	    NULL,
21444 	    ipst);
21445 
21446 	if (ire != NULL) {
21447 		ire_t *ret_ire;
21448 		int error;
21449 
21450 		/*
21451 		 * We don't need ipif_ire anymore. We need to delete
21452 		 * before we add so that ire_add does not detect
21453 		 * duplicates.
21454 		 */
21455 		ire_delete(ipif_ire);
21456 		ret_ire = ire;
21457 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
21458 		ASSERT(error == 0);
21459 		ASSERT(ire == ret_ire);
21460 		/* Held in ire_add */
21461 		ire_refrele(ret_ire);
21462 	}
21463 	/*
21464 	 * Either we are falling through from above or could not
21465 	 * allocate a replacement.
21466 	 */
21467 	ire_refrele(ipif_ire);
21468 	if (need_rele)
21469 		ipif_refrele(nipif);
21470 }
21471 
21472 /*
21473  * This old_ipif is going away.
21474  *
21475  * Determine if any other ipif's is using our address as
21476  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
21477  * IPIF_DEPRECATED).
21478  * Find the IRE_INTERFACE for such ipifs and recreate them
21479  * to use an different source address following the rules in
21480  * ipif_up_done.
21481  *
21482  * This function takes an illgrp as an argument so that illgrp_delete
21483  * can call this to update source address even after deleting the
21484  * old_ipif->ipif_ill from the ill group.
21485  */
21486 static void
21487 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp)
21488 {
21489 	ipif_t *ipif;
21490 	ill_t *ill;
21491 	char	buf[INET6_ADDRSTRLEN];
21492 
21493 	ASSERT(IAM_WRITER_IPIF(old_ipif));
21494 	ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif));
21495 
21496 	ill = old_ipif->ipif_ill;
21497 
21498 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n",
21499 	    ill->ill_name,
21500 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr,
21501 	    buf, sizeof (buf))));
21502 	/*
21503 	 * If this part of a group, look at all ills as ipif_select_source
21504 	 * borrows source address across all the ills in the group.
21505 	 */
21506 	if (illgrp != NULL)
21507 		ill = illgrp->illgrp_ill;
21508 
21509 	for (; ill != NULL; ill = ill->ill_group_next) {
21510 		for (ipif = ill->ill_ipif; ipif != NULL;
21511 		    ipif = ipif->ipif_next) {
21512 
21513 			if (ipif == old_ipif)
21514 				continue;
21515 
21516 			ipif_recreate_interface_routes(old_ipif, ipif);
21517 		}
21518 	}
21519 }
21520 
21521 /* ARGSUSED */
21522 int
21523 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21524 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21525 {
21526 	/*
21527 	 * ill_phyint_reinit merged the v4 and v6 into a single
21528 	 * ipsq. Could also have become part of a ipmp group in the
21529 	 * process, and we might not have been able to complete the
21530 	 * operation in ipif_set_values, if we could not become
21531 	 * exclusive.  If so restart it here.
21532 	 */
21533 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
21534 }
21535 
21536 
21537 /*
21538  * Can operate on either a module or a driver queue.
21539  * Returns an error if not a module queue.
21540  */
21541 /* ARGSUSED */
21542 int
21543 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21544     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21545 {
21546 	queue_t		*q1 = q;
21547 	char 		*cp;
21548 	char		interf_name[LIFNAMSIZ];
21549 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
21550 
21551 	if (q->q_next == NULL) {
21552 		ip1dbg((
21553 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
21554 		return (EINVAL);
21555 	}
21556 
21557 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
21558 		return (EALREADY);
21559 
21560 	do {
21561 		q1 = q1->q_next;
21562 	} while (q1->q_next);
21563 	cp = q1->q_qinfo->qi_minfo->mi_idname;
21564 	(void) sprintf(interf_name, "%s%d", cp, ppa);
21565 
21566 	/*
21567 	 * Here we are not going to delay the ioack until after
21568 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
21569 	 * original ioctl message before sending the requests.
21570 	 */
21571 	return (ipif_set_values(q, mp, interf_name, &ppa));
21572 }
21573 
21574 /* ARGSUSED */
21575 int
21576 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
21577     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
21578 {
21579 	return (ENXIO);
21580 }
21581 
21582 /*
21583  * Net and subnet broadcast ire's are now specific to the particular
21584  * physical interface (ill) and not to any one locigal interface (ipif).
21585  * However, if a particular logical interface is being taken down, it's
21586  * associated ire's will be taken down as well.  Hence, when we go to
21587  * take down or change the local address, broadcast address or netmask
21588  * of a specific logical interface, we must check to make sure that we
21589  * have valid net and subnet broadcast ire's for the other logical
21590  * interfaces which may have been shared with the logical interface
21591  * being brought down or changed.
21592  *
21593  * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it
21594  * is tied to the first interface coming UP. If that ipif is going down,
21595  * we need to recreate them on the next valid ipif.
21596  *
21597  * Note: assume that the ipif passed in is still up so that it's IRE
21598  * entries are still valid.
21599  */
21600 static void
21601 ipif_check_bcast_ires(ipif_t *test_ipif)
21602 {
21603 	ipif_t	*ipif;
21604 	ire_t	*test_subnet_ire, *test_net_ire;
21605 	ire_t	*test_allzero_ire, *test_allone_ire;
21606 	ire_t	*ire_array[12];
21607 	ire_t	**irep = &ire_array[0];
21608 	ire_t	**irep1;
21609 	ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask;
21610 	ipaddr_t test_net_addr, test_subnet_addr;
21611 	ipaddr_t test_net_mask, test_subnet_mask;
21612 	boolean_t need_net_bcast_ire = B_FALSE;
21613 	boolean_t need_subnet_bcast_ire = B_FALSE;
21614 	boolean_t allzero_bcast_ire_created = B_FALSE;
21615 	boolean_t allone_bcast_ire_created = B_FALSE;
21616 	boolean_t net_bcast_ire_created = B_FALSE;
21617 	boolean_t subnet_bcast_ire_created = B_FALSE;
21618 
21619 	ipif_t  *backup_ipif_net = (ipif_t *)NULL;
21620 	ipif_t  *backup_ipif_subnet = (ipif_t *)NULL;
21621 	ipif_t  *backup_ipif_allzeros = (ipif_t *)NULL;
21622 	ipif_t  *backup_ipif_allones = (ipif_t *)NULL;
21623 	uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST;
21624 	ip_stack_t	*ipst = test_ipif->ipif_ill->ill_ipst;
21625 
21626 	ASSERT(!test_ipif->ipif_isv6);
21627 	ASSERT(IAM_WRITER_IPIF(test_ipif));
21628 
21629 	/*
21630 	 * No broadcast IREs for the LOOPBACK interface
21631 	 * or others such as point to point and IPIF_NOXMIT.
21632 	 */
21633 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
21634 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
21635 		return;
21636 
21637 	test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST,
21638 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21639 	    ipst);
21640 
21641 	test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST,
21642 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21643 	    ipst);
21644 
21645 	test_net_mask = ip_net_mask(test_ipif->ipif_subnet);
21646 	test_subnet_mask = test_ipif->ipif_net_mask;
21647 
21648 	/*
21649 	 * If no net mask set, assume the default based on net class.
21650 	 */
21651 	if (test_subnet_mask == 0)
21652 		test_subnet_mask = test_net_mask;
21653 
21654 	/*
21655 	 * Check if there is a network broadcast ire associated with this ipif
21656 	 */
21657 	test_net_addr = test_net_mask  & test_ipif->ipif_subnet;
21658 	test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST,
21659 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21660 	    ipst);
21661 
21662 	/*
21663 	 * Check if there is a subnet broadcast IRE associated with this ipif
21664 	 */
21665 	test_subnet_addr = test_subnet_mask  & test_ipif->ipif_subnet;
21666 	test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST,
21667 	    test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF),
21668 	    ipst);
21669 
21670 	/*
21671 	 * No broadcast ire's associated with this ipif.
21672 	 */
21673 	if ((test_subnet_ire == NULL) && (test_net_ire == NULL) &&
21674 	    (test_allzero_ire == NULL) && (test_allone_ire == NULL)) {
21675 		return;
21676 	}
21677 
21678 	/*
21679 	 * We have established which bcast ires have to be replaced.
21680 	 * Next we try to locate ipifs that match there ires.
21681 	 * The rules are simple: If we find an ipif that matches on the subnet
21682 	 * address it will also match on the net address, the allzeros and
21683 	 * allones address. Any ipif that matches only on the net address will
21684 	 * also match the allzeros and allones addresses.
21685 	 * The other criterion is the ipif_flags. We look for non-deprecated
21686 	 * (and non-anycast and non-nolocal) ipifs as the best choice.
21687 	 * ipifs with check_flags matching (deprecated, etc) are used only
21688 	 * if good ipifs are not available. While looping, we save existing
21689 	 * deprecated ipifs as backup_ipif.
21690 	 * We loop through all the ipifs for this ill looking for ipifs
21691 	 * whose broadcast addr match the ipif passed in, but do not have
21692 	 * their own broadcast ires. For creating 0.0.0.0 and
21693 	 * 255.255.255.255 we just need an ipif on this ill to create.
21694 	 */
21695 	for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL;
21696 	    ipif = ipif->ipif_next) {
21697 
21698 		ASSERT(!ipif->ipif_isv6);
21699 		/*
21700 		 * Already checked the ipif passed in.
21701 		 */
21702 		if (ipif == test_ipif) {
21703 			continue;
21704 		}
21705 
21706 		/*
21707 		 * We only need to recreate broadcast ires if another ipif in
21708 		 * the same zone uses them. The new ires must be created in the
21709 		 * same zone.
21710 		 */
21711 		if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) {
21712 			continue;
21713 		}
21714 
21715 		/*
21716 		 * Only interested in logical interfaces with valid local
21717 		 * addresses or with the ability to broadcast.
21718 		 */
21719 		if ((ipif->ipif_subnet == 0) ||
21720 		    !(ipif->ipif_flags & IPIF_BROADCAST) ||
21721 		    (ipif->ipif_flags & IPIF_NOXMIT) ||
21722 		    !(ipif->ipif_flags & IPIF_UP)) {
21723 			continue;
21724 		}
21725 		/*
21726 		 * Check if there is a net broadcast ire for this
21727 		 * net address.  If it turns out that the ipif we are
21728 		 * about to take down owns this ire, we must make a
21729 		 * new one because it is potentially going away.
21730 		 */
21731 		if (test_net_ire && (!net_bcast_ire_created)) {
21732 			net_mask = ip_net_mask(ipif->ipif_subnet);
21733 			net_addr = net_mask & ipif->ipif_subnet;
21734 			if (net_addr == test_net_addr) {
21735 				need_net_bcast_ire = B_TRUE;
21736 				/*
21737 				 * Use DEPRECATED ipif only if no good
21738 				 * ires are available. subnet_addr is
21739 				 * a better match than net_addr.
21740 				 */
21741 				if ((ipif->ipif_flags & check_flags) &&
21742 				    (backup_ipif_net == NULL)) {
21743 					backup_ipif_net = ipif;
21744 				}
21745 			}
21746 		}
21747 		/*
21748 		 * Check if there is a subnet broadcast ire for this
21749 		 * net address.  If it turns out that the ipif we are
21750 		 * about to take down owns this ire, we must make a
21751 		 * new one because it is potentially going away.
21752 		 */
21753 		if (test_subnet_ire && (!subnet_bcast_ire_created)) {
21754 			subnet_mask = ipif->ipif_net_mask;
21755 			subnet_addr = ipif->ipif_subnet;
21756 			if (subnet_addr == test_subnet_addr) {
21757 				need_subnet_bcast_ire = B_TRUE;
21758 				if ((ipif->ipif_flags & check_flags) &&
21759 				    (backup_ipif_subnet == NULL)) {
21760 					backup_ipif_subnet = ipif;
21761 				}
21762 			}
21763 		}
21764 
21765 
21766 		/* Short circuit here if this ipif is deprecated */
21767 		if (ipif->ipif_flags & check_flags) {
21768 			if ((test_allzero_ire != NULL) &&
21769 			    (!allzero_bcast_ire_created) &&
21770 			    (backup_ipif_allzeros == NULL)) {
21771 				backup_ipif_allzeros = ipif;
21772 			}
21773 			if ((test_allone_ire != NULL) &&
21774 			    (!allone_bcast_ire_created) &&
21775 			    (backup_ipif_allones == NULL)) {
21776 				backup_ipif_allones = ipif;
21777 			}
21778 			continue;
21779 		}
21780 
21781 		/*
21782 		 * Found an ipif which has the same broadcast ire as the
21783 		 * ipif passed in and the ipif passed in "owns" the ire.
21784 		 * Create new broadcast ire's for this broadcast addr.
21785 		 */
21786 		if (need_net_bcast_ire && !net_bcast_ire_created) {
21787 			irep = ire_create_bcast(ipif, net_addr, irep);
21788 			irep = ire_create_bcast(ipif,
21789 			    ~net_mask | net_addr, irep);
21790 			net_bcast_ire_created = B_TRUE;
21791 		}
21792 		if (need_subnet_bcast_ire && !subnet_bcast_ire_created) {
21793 			irep = ire_create_bcast(ipif, subnet_addr, irep);
21794 			irep = ire_create_bcast(ipif,
21795 			    ~subnet_mask | subnet_addr, irep);
21796 			subnet_bcast_ire_created = B_TRUE;
21797 		}
21798 		if (test_allzero_ire != NULL && !allzero_bcast_ire_created) {
21799 			irep = ire_create_bcast(ipif, 0, irep);
21800 			allzero_bcast_ire_created = B_TRUE;
21801 		}
21802 		if (test_allone_ire != NULL && !allone_bcast_ire_created) {
21803 			irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep);
21804 			allone_bcast_ire_created = B_TRUE;
21805 		}
21806 		/*
21807 		 * Once we have created all the appropriate ires, we
21808 		 * just break out of this loop to add what we have created.
21809 		 * This has been indented similar to ire_match_args for
21810 		 * readability.
21811 		 */
21812 		if (((test_net_ire == NULL) ||
21813 			(net_bcast_ire_created)) &&
21814 		    ((test_subnet_ire == NULL) ||
21815 			(subnet_bcast_ire_created)) &&
21816 		    ((test_allzero_ire == NULL) ||
21817 			(allzero_bcast_ire_created)) &&
21818 		    ((test_allone_ire == NULL) ||
21819 			(allone_bcast_ire_created))) {
21820 			break;
21821 		}
21822 	}
21823 
21824 	/*
21825 	 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs
21826 	 * exist. 6 pairs of bcast ires are needed.
21827 	 * Note - the old ires are deleted in ipif_down.
21828 	 */
21829 	if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) {
21830 		ipif = backup_ipif_net;
21831 		irep = ire_create_bcast(ipif, net_addr, irep);
21832 		irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep);
21833 		net_bcast_ire_created = B_TRUE;
21834 	}
21835 	if (need_subnet_bcast_ire && !subnet_bcast_ire_created &&
21836 	    backup_ipif_subnet) {
21837 		ipif = backup_ipif_subnet;
21838 		irep = ire_create_bcast(ipif, subnet_addr, irep);
21839 		irep = ire_create_bcast(ipif,
21840 		    ~subnet_mask | subnet_addr, irep);
21841 		subnet_bcast_ire_created = B_TRUE;
21842 	}
21843 	if (test_allzero_ire != NULL && !allzero_bcast_ire_created &&
21844 	    backup_ipif_allzeros) {
21845 		irep = ire_create_bcast(backup_ipif_allzeros, 0, irep);
21846 		allzero_bcast_ire_created = B_TRUE;
21847 	}
21848 	if (test_allone_ire != NULL && !allone_bcast_ire_created &&
21849 	    backup_ipif_allones) {
21850 		irep = ire_create_bcast(backup_ipif_allones,
21851 		    INADDR_BROADCAST, irep);
21852 		allone_bcast_ire_created = B_TRUE;
21853 	}
21854 
21855 	/*
21856 	 * If we can't create all of them, don't add any of them.
21857 	 * Code in ip_wput_ire and ire_to_ill assumes that we
21858 	 * always have a non-loopback copy and loopback copy
21859 	 * for a given address.
21860 	 */
21861 	for (irep1 = irep; irep1 > ire_array; ) {
21862 		irep1--;
21863 		if (*irep1 == NULL) {
21864 			ip0dbg(("ipif_check_bcast_ires: can't create "
21865 			    "IRE_BROADCAST, memory allocation failure\n"));
21866 			while (irep > ire_array) {
21867 				irep--;
21868 				if (*irep != NULL)
21869 					ire_delete(*irep);
21870 			}
21871 			goto bad;
21872 		}
21873 	}
21874 	for (irep1 = irep; irep1 > ire_array; ) {
21875 		int error;
21876 
21877 		irep1--;
21878 		error = ire_add(irep1, NULL, NULL, NULL, B_FALSE);
21879 		if (error == 0) {
21880 			ire_refrele(*irep1);		/* Held in ire_add */
21881 		}
21882 	}
21883 bad:
21884 	if (test_allzero_ire != NULL)
21885 		ire_refrele(test_allzero_ire);
21886 	if (test_allone_ire != NULL)
21887 		ire_refrele(test_allone_ire);
21888 	if (test_net_ire != NULL)
21889 		ire_refrele(test_net_ire);
21890 	if (test_subnet_ire != NULL)
21891 		ire_refrele(test_subnet_ire);
21892 }
21893 
21894 /*
21895  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
21896  * from lifr_flags and the name from lifr_name.
21897  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
21898  * since ipif_lookup_on_name uses the _isv6 flags when matching.
21899  * Returns EINPROGRESS when mp has been consumed by queueing it on
21900  * ill_pending_mp and the ioctl will complete in ip_rput.
21901  *
21902  * Can operate on either a module or a driver queue.
21903  * Returns an error if not a module queue.
21904  */
21905 /* ARGSUSED */
21906 int
21907 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
21908     ip_ioctl_cmd_t *ipip, void *if_req)
21909 {
21910 	int	err;
21911 	ill_t	*ill;
21912 	struct lifreq *lifr = (struct lifreq *)if_req;
21913 
21914 	ASSERT(ipif != NULL);
21915 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
21916 
21917 	if (q->q_next == NULL) {
21918 		ip1dbg((
21919 		    "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
21920 		return (EINVAL);
21921 	}
21922 
21923 	ill = (ill_t *)q->q_ptr;
21924 	/*
21925 	 * If we are not writer on 'q' then this interface exists already
21926 	 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif.
21927 	 * So return EALREADY
21928 	 */
21929 	if (ill != ipif->ipif_ill)
21930 		return (EALREADY);
21931 
21932 	if (ill->ill_name[0] != '\0')
21933 		return (EALREADY);
21934 
21935 	/*
21936 	 * Set all the flags. Allows all kinds of override. Provide some
21937 	 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST
21938 	 * unless there is either multicast/broadcast support in the driver
21939 	 * or it is a pt-pt link.
21940 	 */
21941 	if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) {
21942 		/* Meaningless to IP thus don't allow them to be set. */
21943 		ip1dbg(("ip_setname: EINVAL 1\n"));
21944 		return (EINVAL);
21945 	}
21946 	/*
21947 	 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the
21948 	 * ill_bcast_addr_length info.
21949 	 */
21950 	if (!ill->ill_needs_attach &&
21951 	    ((lifr->lifr_flags & IFF_MULTICAST) &&
21952 	    !(lifr->lifr_flags & IFF_POINTOPOINT) &&
21953 	    ill->ill_bcast_addr_length == 0)) {
21954 		/* Link not broadcast/pt-pt capable i.e. no multicast */
21955 		ip1dbg(("ip_setname: EINVAL 2\n"));
21956 		return (EINVAL);
21957 	}
21958 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
21959 	    ((lifr->lifr_flags & IFF_IPV6) ||
21960 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
21961 		/* Link not broadcast capable or IPv6 i.e. no broadcast */
21962 		ip1dbg(("ip_setname: EINVAL 3\n"));
21963 		return (EINVAL);
21964 	}
21965 	if (lifr->lifr_flags & IFF_UP) {
21966 		/* Can only be set with SIOCSLIFFLAGS */
21967 		ip1dbg(("ip_setname: EINVAL 4\n"));
21968 		return (EINVAL);
21969 	}
21970 	if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 &&
21971 	    (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) {
21972 		ip1dbg(("ip_setname: EINVAL 5\n"));
21973 		return (EINVAL);
21974 	}
21975 	/*
21976 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
21977 	 */
21978 	if ((lifr->lifr_flags & IFF_XRESOLV) &&
21979 	    !(lifr->lifr_flags & IFF_IPV6) &&
21980 	    !(ipif->ipif_isv6)) {
21981 		ip1dbg(("ip_setname: EINVAL 6\n"));
21982 		return (EINVAL);
21983 	}
21984 
21985 	/*
21986 	 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence
21987 	 * we have all the flags here. So, we assign rather than we OR.
21988 	 * We can't OR the flags here because we don't want to set
21989 	 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in
21990 	 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending
21991 	 * on lifr_flags value here.
21992 	 */
21993 	/*
21994 	 * This ill has not been inserted into the global list.
21995 	 * So we are still single threaded and don't need any lock
21996 	 */
21997 	ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS &
21998 	    ~IFF_DUPLICATE;
21999 	ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS;
22000 	ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS;
22001 
22002 	/* We started off as V4. */
22003 	if (ill->ill_flags & ILLF_IPV6) {
22004 		ill->ill_phyint->phyint_illv6 = ill;
22005 		ill->ill_phyint->phyint_illv4 = NULL;
22006 	}
22007 	err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa);
22008 	return (err);
22009 }
22010 
22011 /* ARGSUSED */
22012 int
22013 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22014     ip_ioctl_cmd_t *ipip, void *if_req)
22015 {
22016 	/*
22017 	 * ill_phyint_reinit merged the v4 and v6 into a single
22018 	 * ipsq. Could also have become part of a ipmp group in the
22019 	 * process, and we might not have been able to complete the
22020 	 * slifname in ipif_set_values, if we could not become
22021 	 * exclusive.  If so restart it here
22022 	 */
22023 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
22024 }
22025 
22026 /*
22027  * Return a pointer to the ipif which matches the index, IP version type and
22028  * zoneid.
22029  */
22030 ipif_t *
22031 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
22032     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
22033 {
22034 	ill_t	*ill;
22035 	ipsq_t  *ipsq;
22036 	phyint_t *phyi;
22037 	ipif_t	*ipif;
22038 
22039 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
22040 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
22041 
22042 	if (err != NULL)
22043 		*err = 0;
22044 
22045 	/*
22046 	 * Indexes are stored in the phyint - a common structure
22047 	 * to both IPv4 and IPv6.
22048 	 */
22049 
22050 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
22051 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22052 	    (void *) &index, NULL);
22053 	if (phyi != NULL) {
22054 		ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4;
22055 		if (ill == NULL) {
22056 			rw_exit(&ipst->ips_ill_g_lock);
22057 			if (err != NULL)
22058 				*err = ENXIO;
22059 			return (NULL);
22060 		}
22061 		GRAB_CONN_LOCK(q);
22062 		mutex_enter(&ill->ill_lock);
22063 		if (ILL_CAN_LOOKUP(ill)) {
22064 			for (ipif = ill->ill_ipif; ipif != NULL;
22065 			    ipif = ipif->ipif_next) {
22066 				if (IPIF_CAN_LOOKUP(ipif) &&
22067 				    (zoneid == ALL_ZONES ||
22068 				    zoneid == ipif->ipif_zoneid ||
22069 				    ipif->ipif_zoneid == ALL_ZONES)) {
22070 					ipif_refhold_locked(ipif);
22071 					mutex_exit(&ill->ill_lock);
22072 					RELEASE_CONN_LOCK(q);
22073 					rw_exit(&ipst->ips_ill_g_lock);
22074 					return (ipif);
22075 				}
22076 			}
22077 		} else if (ILL_CAN_WAIT(ill, q)) {
22078 			ipsq = ill->ill_phyint->phyint_ipsq;
22079 			mutex_enter(&ipsq->ipsq_lock);
22080 			rw_exit(&ipst->ips_ill_g_lock);
22081 			mutex_exit(&ill->ill_lock);
22082 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
22083 			mutex_exit(&ipsq->ipsq_lock);
22084 			RELEASE_CONN_LOCK(q);
22085 			*err = EINPROGRESS;
22086 			return (NULL);
22087 		}
22088 		mutex_exit(&ill->ill_lock);
22089 		RELEASE_CONN_LOCK(q);
22090 	}
22091 	rw_exit(&ipst->ips_ill_g_lock);
22092 	if (err != NULL)
22093 		*err = ENXIO;
22094 	return (NULL);
22095 }
22096 
22097 typedef struct conn_change_s {
22098 	uint_t cc_old_ifindex;
22099 	uint_t cc_new_ifindex;
22100 } conn_change_t;
22101 
22102 /*
22103  * ipcl_walk function for changing interface index.
22104  */
22105 static void
22106 conn_change_ifindex(conn_t *connp, caddr_t arg)
22107 {
22108 	conn_change_t *connc;
22109 	uint_t old_ifindex;
22110 	uint_t new_ifindex;
22111 	int i;
22112 	ilg_t *ilg;
22113 
22114 	connc = (conn_change_t *)arg;
22115 	old_ifindex = connc->cc_old_ifindex;
22116 	new_ifindex = connc->cc_new_ifindex;
22117 
22118 	if (connp->conn_orig_bound_ifindex == old_ifindex)
22119 		connp->conn_orig_bound_ifindex = new_ifindex;
22120 
22121 	if (connp->conn_orig_multicast_ifindex == old_ifindex)
22122 		connp->conn_orig_multicast_ifindex = new_ifindex;
22123 
22124 	if (connp->conn_orig_xmit_ifindex == old_ifindex)
22125 		connp->conn_orig_xmit_ifindex = new_ifindex;
22126 
22127 	for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) {
22128 		ilg = &connp->conn_ilg[i];
22129 		if (ilg->ilg_orig_ifindex == old_ifindex)
22130 			ilg->ilg_orig_ifindex = new_ifindex;
22131 	}
22132 }
22133 
22134 /*
22135  * Walk all the ipifs and ilms on this ill and change the orig_ifindex
22136  * to new_index if it matches the old_index.
22137  *
22138  * Failovers typically happen within a group of ills. But somebody
22139  * can remove an ill from the group after a failover happened. If
22140  * we are setting the ifindex after this, we potentially need to
22141  * look at all the ills rather than just the ones in the group.
22142  * We cut down the work by looking at matching ill_net_types
22143  * and ill_types as we could not possibly grouped them together.
22144  */
22145 static void
22146 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc)
22147 {
22148 	ill_t *ill;
22149 	ipif_t *ipif;
22150 	uint_t old_ifindex;
22151 	uint_t new_ifindex;
22152 	ilm_t *ilm;
22153 	ill_walk_context_t ctx;
22154 	ip_stack_t	*ipst = ill_orig->ill_ipst;
22155 
22156 	old_ifindex = connc->cc_old_ifindex;
22157 	new_ifindex = connc->cc_new_ifindex;
22158 
22159 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
22160 	ill = ILL_START_WALK_ALL(&ctx, ipst);
22161 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
22162 		if ((ill_orig->ill_net_type != ill->ill_net_type) ||
22163 			(ill_orig->ill_type != ill->ill_type)) {
22164 			continue;
22165 		}
22166 		for (ipif = ill->ill_ipif; ipif != NULL;
22167 				ipif = ipif->ipif_next) {
22168 			if (ipif->ipif_orig_ifindex == old_ifindex)
22169 				ipif->ipif_orig_ifindex = new_ifindex;
22170 		}
22171 		for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) {
22172 			if (ilm->ilm_orig_ifindex == old_ifindex)
22173 				ilm->ilm_orig_ifindex = new_ifindex;
22174 		}
22175 	}
22176 	rw_exit(&ipst->ips_ill_g_lock);
22177 }
22178 
22179 /*
22180  * We first need to ensure that the new index is unique, and
22181  * then carry the change across both v4 and v6 ill representation
22182  * of the physical interface.
22183  */
22184 /* ARGSUSED */
22185 int
22186 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22187     ip_ioctl_cmd_t *ipip, void *ifreq)
22188 {
22189 	ill_t		*ill;
22190 	ill_t		*ill_other;
22191 	phyint_t	*phyi;
22192 	int		old_index;
22193 	conn_change_t	connc;
22194 	struct ifreq	*ifr = (struct ifreq *)ifreq;
22195 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22196 	uint_t	index;
22197 	ill_t	*ill_v4;
22198 	ill_t	*ill_v6;
22199 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22200 
22201 	if (ipip->ipi_cmd_type == IF_CMD)
22202 		index = ifr->ifr_index;
22203 	else
22204 		index = lifr->lifr_index;
22205 
22206 	/*
22207 	 * Only allow on physical interface. Also, index zero is illegal.
22208 	 *
22209 	 * Need to check for PHYI_FAILED and PHYI_INACTIVE
22210 	 *
22211 	 * 1) If PHYI_FAILED is set, a failover could have happened which
22212 	 *    implies a possible failback might have to happen. As failback
22213 	 *    depends on the old index, we should fail setting the index.
22214 	 *
22215 	 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that
22216 	 *    any addresses or multicast memberships are failed over to
22217 	 *    a non-STANDBY interface. As failback depends on the old
22218 	 *    index, we should fail setting the index for this case also.
22219 	 *
22220 	 * 3) If PHYI_OFFLINE is set, a possible failover has happened.
22221 	 *    Be consistent with PHYI_FAILED and fail the ioctl.
22222 	 */
22223 	ill = ipif->ipif_ill;
22224 	phyi = ill->ill_phyint;
22225 	if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) ||
22226 	    ipif->ipif_id != 0 || index == 0) {
22227 		return (EINVAL);
22228 	}
22229 	old_index = phyi->phyint_ifindex;
22230 
22231 	/* If the index is not changing, no work to do */
22232 	if (old_index == index)
22233 		return (0);
22234 
22235 	/*
22236 	 * Use ill_lookup_on_ifindex to determine if the
22237 	 * new index is unused and if so allow the change.
22238 	 */
22239 	ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL,
22240 	    ipst);
22241 	ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL,
22242 	    ipst);
22243 	if (ill_v6 != NULL || ill_v4 != NULL) {
22244 		if (ill_v4 != NULL)
22245 			ill_refrele(ill_v4);
22246 		if (ill_v6 != NULL)
22247 			ill_refrele(ill_v6);
22248 		return (EBUSY);
22249 	}
22250 
22251 	/*
22252 	 * The new index is unused. Set it in the phyint.
22253 	 * Locate the other ill so that we can send a routing
22254 	 * sockets message.
22255 	 */
22256 	if (ill->ill_isv6) {
22257 		ill_other = phyi->phyint_illv4;
22258 	} else {
22259 		ill_other = phyi->phyint_illv6;
22260 	}
22261 
22262 	phyi->phyint_ifindex = index;
22263 
22264 	connc.cc_old_ifindex = old_index;
22265 	connc.cc_new_ifindex = index;
22266 	ip_change_ifindex(ill, &connc);
22267 	ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst);
22268 
22269 	/* Send the routing sockets message */
22270 	ip_rts_ifmsg(ipif);
22271 	if (ill_other != NULL)
22272 		ip_rts_ifmsg(ill_other->ill_ipif);
22273 
22274 	return (0);
22275 }
22276 
22277 /* ARGSUSED */
22278 int
22279 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22280     ip_ioctl_cmd_t *ipip, void *ifreq)
22281 {
22282 	struct ifreq	*ifr = (struct ifreq *)ifreq;
22283 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22284 
22285 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
22286 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22287 	/* Get the interface index */
22288 	if (ipip->ipi_cmd_type == IF_CMD) {
22289 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
22290 	} else {
22291 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
22292 	}
22293 	return (0);
22294 }
22295 
22296 /* ARGSUSED */
22297 int
22298 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22299     ip_ioctl_cmd_t *ipip, void *ifreq)
22300 {
22301 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22302 
22303 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
22304 		ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22305 	/* Get the interface zone */
22306 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22307 	lifr->lifr_zoneid = ipif->ipif_zoneid;
22308 	return (0);
22309 }
22310 
22311 /*
22312  * Set the zoneid of an interface.
22313  */
22314 /* ARGSUSED */
22315 int
22316 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22317     ip_ioctl_cmd_t *ipip, void *ifreq)
22318 {
22319 	struct lifreq	*lifr = (struct lifreq *)ifreq;
22320 	int err = 0;
22321 	boolean_t need_up = B_FALSE;
22322 	zone_t *zptr;
22323 	zone_status_t status;
22324 	zoneid_t zoneid;
22325 
22326 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22327 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
22328 		if (!is_system_labeled())
22329 			return (ENOTSUP);
22330 		zoneid = GLOBAL_ZONEID;
22331 	}
22332 
22333 	/* cannot assign instance zero to a non-global zone */
22334 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
22335 		return (ENOTSUP);
22336 
22337 	/*
22338 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
22339 	 * the event of a race with the zone shutdown processing, since IP
22340 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
22341 	 * interface will be cleaned up even if the zone is shut down
22342 	 * immediately after the status check. If the interface can't be brought
22343 	 * down right away, and the zone is shut down before the restart
22344 	 * function is called, we resolve the possible races by rechecking the
22345 	 * zone status in the restart function.
22346 	 */
22347 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
22348 		return (EINVAL);
22349 	status = zone_status_get(zptr);
22350 	zone_rele(zptr);
22351 
22352 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
22353 		return (EINVAL);
22354 
22355 	if (ipif->ipif_flags & IPIF_UP) {
22356 		/*
22357 		 * If the interface is already marked up,
22358 		 * we call ipif_down which will take care
22359 		 * of ditching any IREs that have been set
22360 		 * up based on the old interface address.
22361 		 */
22362 		err = ipif_logical_down(ipif, q, mp);
22363 		if (err == EINPROGRESS)
22364 			return (err);
22365 		ipif_down_tail(ipif);
22366 		need_up = B_TRUE;
22367 	}
22368 
22369 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
22370 	return (err);
22371 }
22372 
22373 static int
22374 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
22375     queue_t *q, mblk_t *mp, boolean_t need_up)
22376 {
22377 	int	err = 0;
22378 	ip_stack_t	*ipst;
22379 
22380 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
22381 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22382 
22383 	if (CONN_Q(q))
22384 		ipst = CONNQ_TO_IPST(q);
22385 	else
22386 		ipst = ILLQ_TO_IPST(q);
22387 
22388 	/*
22389 	 * For exclusive stacks we don't allow a different zoneid than
22390 	 * global.
22391 	 */
22392 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
22393 	    zoneid != GLOBAL_ZONEID)
22394 		return (EINVAL);
22395 
22396 	/* Set the new zone id. */
22397 	ipif->ipif_zoneid = zoneid;
22398 
22399 	/* Update sctp list */
22400 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
22401 
22402 	if (need_up) {
22403 		/*
22404 		 * Now bring the interface back up.  If this
22405 		 * is the only IPIF for the ILL, ipif_up
22406 		 * will have to re-bind to the device, so
22407 		 * we may get back EINPROGRESS, in which
22408 		 * case, this IOCTL will get completed in
22409 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
22410 		 */
22411 		err = ipif_up(ipif, q, mp);
22412 	}
22413 	return (err);
22414 }
22415 
22416 /* ARGSUSED */
22417 int
22418 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22419     ip_ioctl_cmd_t *ipip, void *if_req)
22420 {
22421 	struct lifreq *lifr = (struct lifreq *)if_req;
22422 	zoneid_t zoneid;
22423 	zone_t *zptr;
22424 	zone_status_t status;
22425 
22426 	ASSERT(ipif->ipif_id != 0);
22427 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
22428 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
22429 		zoneid = GLOBAL_ZONEID;
22430 
22431 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
22432 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22433 
22434 	/*
22435 	 * We recheck the zone status to resolve the following race condition:
22436 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
22437 	 * 2) hme0:1 is up and can't be brought down right away;
22438 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
22439 	 * 3) zone "myzone" is halted; the zone status switches to
22440 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
22441 	 * the interfaces to remove - hme0:1 is not returned because it's not
22442 	 * yet in "myzone", so it won't be removed;
22443 	 * 4) the restart function for SIOCSLIFZONE is called; without the
22444 	 * status check here, we would have hme0:1 in "myzone" after it's been
22445 	 * destroyed.
22446 	 * Note that if the status check fails, we need to bring the interface
22447 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
22448 	 * ipif_up_done[_v6]().
22449 	 */
22450 	status = ZONE_IS_UNINITIALIZED;
22451 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
22452 		status = zone_status_get(zptr);
22453 		zone_rele(zptr);
22454 	}
22455 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
22456 		if (ipif->ipif_isv6) {
22457 			(void) ipif_up_done_v6(ipif);
22458 		} else {
22459 			(void) ipif_up_done(ipif);
22460 		}
22461 		return (EINVAL);
22462 	}
22463 
22464 	ipif_down_tail(ipif);
22465 
22466 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
22467 	    B_TRUE));
22468 }
22469 
22470 /* ARGSUSED */
22471 int
22472 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22473 	ip_ioctl_cmd_t *ipip, void *ifreq)
22474 {
22475 	struct lifreq	*lifr = ifreq;
22476 
22477 	ASSERT(q->q_next == NULL);
22478 	ASSERT(CONN_Q(q));
22479 
22480 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
22481 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
22482 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
22483 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
22484 
22485 	return (0);
22486 }
22487 
22488 
22489 /* Find the previous ILL in this usesrc group */
22490 static ill_t *
22491 ill_prev_usesrc(ill_t *uill)
22492 {
22493 	ill_t *ill;
22494 
22495 	for (ill = uill->ill_usesrc_grp_next;
22496 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
22497 	    ill = ill->ill_usesrc_grp_next)
22498 		/* do nothing */;
22499 	return (ill);
22500 }
22501 
22502 /*
22503  * Release all members of the usesrc group. This routine is called
22504  * from ill_delete when the interface being unplumbed is the
22505  * group head.
22506  */
22507 static void
22508 ill_disband_usesrc_group(ill_t *uill)
22509 {
22510 	ill_t *next_ill, *tmp_ill;
22511 	ip_stack_t	*ipst = uill->ill_ipst;
22512 
22513 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22514 	next_ill = uill->ill_usesrc_grp_next;
22515 
22516 	do {
22517 		ASSERT(next_ill != NULL);
22518 		tmp_ill = next_ill->ill_usesrc_grp_next;
22519 		ASSERT(tmp_ill != NULL);
22520 		next_ill->ill_usesrc_grp_next = NULL;
22521 		next_ill->ill_usesrc_ifindex = 0;
22522 		next_ill = tmp_ill;
22523 	} while (next_ill->ill_usesrc_ifindex != 0);
22524 	uill->ill_usesrc_grp_next = NULL;
22525 }
22526 
22527 /*
22528  * Remove the client usesrc ILL from the list and relink to a new list
22529  */
22530 int
22531 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
22532 {
22533 	ill_t *ill, *tmp_ill;
22534 	ip_stack_t	*ipst = ucill->ill_ipst;
22535 
22536 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
22537 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
22538 
22539 	/*
22540 	 * Check if the usesrc client ILL passed in is not already
22541 	 * in use as a usesrc ILL i.e one whose source address is
22542 	 * in use OR a usesrc ILL is not already in use as a usesrc
22543 	 * client ILL
22544 	 */
22545 	if ((ucill->ill_usesrc_ifindex == 0) ||
22546 	    (uill->ill_usesrc_ifindex != 0)) {
22547 		return (-1);
22548 	}
22549 
22550 	ill = ill_prev_usesrc(ucill);
22551 	ASSERT(ill->ill_usesrc_grp_next != NULL);
22552 
22553 	/* Remove from the current list */
22554 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
22555 		/* Only two elements in the list */
22556 		ASSERT(ill->ill_usesrc_ifindex == 0);
22557 		ill->ill_usesrc_grp_next = NULL;
22558 	} else {
22559 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
22560 	}
22561 
22562 	if (ifindex == 0) {
22563 		ucill->ill_usesrc_ifindex = 0;
22564 		ucill->ill_usesrc_grp_next = NULL;
22565 		return (0);
22566 	}
22567 
22568 	ucill->ill_usesrc_ifindex = ifindex;
22569 	tmp_ill = uill->ill_usesrc_grp_next;
22570 	uill->ill_usesrc_grp_next = ucill;
22571 	ucill->ill_usesrc_grp_next =
22572 	    (tmp_ill != NULL) ? tmp_ill : uill;
22573 	return (0);
22574 }
22575 
22576 /*
22577  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
22578  * ip.c for locking details.
22579  */
22580 /* ARGSUSED */
22581 int
22582 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
22583     ip_ioctl_cmd_t *ipip, void *ifreq)
22584 {
22585 	struct lifreq *lifr = (struct lifreq *)ifreq;
22586 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
22587 	    ill_flag_changed = B_FALSE;
22588 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
22589 	int err = 0, ret;
22590 	uint_t ifindex;
22591 	phyint_t *us_phyint, *us_cli_phyint;
22592 	ipsq_t *ipsq = NULL;
22593 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
22594 
22595 	ASSERT(IAM_WRITER_IPIF(ipif));
22596 	ASSERT(q->q_next == NULL);
22597 	ASSERT(CONN_Q(q));
22598 
22599 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
22600 	us_cli_phyint = usesrc_cli_ill->ill_phyint;
22601 
22602 	ASSERT(us_cli_phyint != NULL);
22603 
22604 	/*
22605 	 * If the client ILL is being used for IPMP, abort.
22606 	 * Note, this can be done before ipsq_try_enter since we are already
22607 	 * exclusive on this ILL
22608 	 */
22609 	if ((us_cli_phyint->phyint_groupname != NULL) ||
22610 	    (us_cli_phyint->phyint_flags & PHYI_STANDBY)) {
22611 		return (EINVAL);
22612 	}
22613 
22614 	ifindex = lifr->lifr_index;
22615 	if (ifindex == 0) {
22616 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
22617 			/* non usesrc group interface, nothing to reset */
22618 			return (0);
22619 		}
22620 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
22621 		/* valid reset request */
22622 		reset_flg = B_TRUE;
22623 	}
22624 
22625 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
22626 	    ip_process_ioctl, &err, ipst);
22627 
22628 	if (usesrc_ill == NULL) {
22629 		return (err);
22630 	}
22631 
22632 	/*
22633 	 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP
22634 	 * group nor can either of the interfaces be used for standy. So
22635 	 * to guarantee mutual exclusion with ip_sioctl_flags (which sets
22636 	 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname)
22637 	 * we need to be exclusive on the ipsq belonging to the usesrc_ill.
22638 	 * We are already exlusive on this ipsq i.e ipsq corresponding to
22639 	 * the usesrc_cli_ill
22640 	 */
22641 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
22642 	    NEW_OP, B_TRUE);
22643 	if (ipsq == NULL) {
22644 		err = EINPROGRESS;
22645 		/* Operation enqueued on the ipsq of the usesrc ILL */
22646 		goto done;
22647 	}
22648 
22649 	/* Check if the usesrc_ill is used for IPMP */
22650 	us_phyint = usesrc_ill->ill_phyint;
22651 	if ((us_phyint->phyint_groupname != NULL) ||
22652 	    (us_phyint->phyint_flags & PHYI_STANDBY)) {
22653 		err = EINVAL;
22654 		goto done;
22655 	}
22656 
22657 	/*
22658 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
22659 	 * already a client then return EINVAL
22660 	 */
22661 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
22662 		err = EINVAL;
22663 		goto done;
22664 	}
22665 
22666 	/*
22667 	 * If the ill_usesrc_ifindex field is already set to what it needs to
22668 	 * be then this is a duplicate operation.
22669 	 */
22670 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
22671 		err = 0;
22672 		goto done;
22673 	}
22674 
22675 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
22676 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
22677 	    usesrc_ill->ill_isv6));
22678 
22679 	/*
22680 	 * The next step ensures that no new ires will be created referencing
22681 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
22682 	 * we go through an ire walk deleting all ire caches that reference
22683 	 * the client ill. New ires referencing the client ill that are added
22684 	 * to the ire table before the ILL_CHANGING flag is set, will be
22685 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
22686 	 * the client ill while the ILL_CHANGING flag is set will be failed
22687 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
22688 	 * checks (under the ill_g_usesrc_lock) that the ire being added
22689 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
22690 	 * belong to the same usesrc group.
22691 	 */
22692 	mutex_enter(&usesrc_cli_ill->ill_lock);
22693 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
22694 	mutex_exit(&usesrc_cli_ill->ill_lock);
22695 	ill_flag_changed = B_TRUE;
22696 
22697 	if (ipif->ipif_isv6)
22698 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22699 		    ALL_ZONES, ipst);
22700 	else
22701 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
22702 		    ALL_ZONES, ipst);
22703 
22704 	/*
22705 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
22706 	 * and the ill_usesrc_ifindex fields
22707 	 */
22708 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
22709 
22710 	if (reset_flg) {
22711 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
22712 		if (ret != 0) {
22713 			err = EINVAL;
22714 		}
22715 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
22716 		goto done;
22717 	}
22718 
22719 	/*
22720 	 * Four possibilities to consider:
22721 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
22722 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
22723 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
22724 	 * 4. Both are part of their respective usesrc groups
22725 	 */
22726 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
22727 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22728 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
22729 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22730 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22731 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
22732 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
22733 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
22734 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
22735 		/* Insert at head of list */
22736 		usesrc_cli_ill->ill_usesrc_grp_next =
22737 		    usesrc_ill->ill_usesrc_grp_next;
22738 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
22739 	} else {
22740 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
22741 		    ifindex);
22742 		if (ret != 0)
22743 			err = EINVAL;
22744 	}
22745 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
22746 
22747 done:
22748 	if (ill_flag_changed) {
22749 		mutex_enter(&usesrc_cli_ill->ill_lock);
22750 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
22751 		mutex_exit(&usesrc_cli_ill->ill_lock);
22752 	}
22753 	if (ipsq != NULL)
22754 		ipsq_exit(ipsq, B_TRUE, B_TRUE);
22755 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
22756 	ill_refrele(usesrc_ill);
22757 	return (err);
22758 }
22759 
22760 /*
22761  * comparison function used by avl.
22762  */
22763 static int
22764 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
22765 {
22766 
22767 	uint_t index;
22768 
22769 	ASSERT(phyip != NULL && index_ptr != NULL);
22770 
22771 	index = *((uint_t *)index_ptr);
22772 	/*
22773 	 * let the phyint with the lowest index be on top.
22774 	 */
22775 	if (((phyint_t *)phyip)->phyint_ifindex < index)
22776 		return (1);
22777 	if (((phyint_t *)phyip)->phyint_ifindex > index)
22778 		return (-1);
22779 	return (0);
22780 }
22781 
22782 /*
22783  * comparison function used by avl.
22784  */
22785 static int
22786 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
22787 {
22788 	ill_t *ill;
22789 	int res = 0;
22790 
22791 	ASSERT(phyip != NULL && name_ptr != NULL);
22792 
22793 	if (((phyint_t *)phyip)->phyint_illv4)
22794 		ill = ((phyint_t *)phyip)->phyint_illv4;
22795 	else
22796 		ill = ((phyint_t *)phyip)->phyint_illv6;
22797 	ASSERT(ill != NULL);
22798 
22799 	res = strcmp(ill->ill_name, (char *)name_ptr);
22800 	if (res > 0)
22801 		return (1);
22802 	else if (res < 0)
22803 		return (-1);
22804 	return (0);
22805 }
22806 /*
22807  * This function is called from ill_delete when the ill is being
22808  * unplumbed. We remove the reference from the phyint and we also
22809  * free the phyint when there are no more references to it.
22810  */
22811 static void
22812 ill_phyint_free(ill_t *ill)
22813 {
22814 	phyint_t *phyi;
22815 	phyint_t *next_phyint;
22816 	ipsq_t *cur_ipsq;
22817 	ip_stack_t	*ipst = ill->ill_ipst;
22818 
22819 	ASSERT(ill->ill_phyint != NULL);
22820 
22821 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22822 	phyi = ill->ill_phyint;
22823 	ill->ill_phyint = NULL;
22824 	/*
22825 	 * ill_init allocates a phyint always to store the copy
22826 	 * of flags relevant to phyint. At that point in time, we could
22827 	 * not assign the name and hence phyint_illv4/v6 could not be
22828 	 * initialized. Later in ipif_set_values, we assign the name to
22829 	 * the ill, at which point in time we assign phyint_illv4/v6.
22830 	 * Thus we don't rely on phyint_illv6 to be initialized always.
22831 	 */
22832 	if (ill->ill_flags & ILLF_IPV6) {
22833 		phyi->phyint_illv6 = NULL;
22834 	} else {
22835 		phyi->phyint_illv4 = NULL;
22836 	}
22837 	/*
22838 	 * ipif_down removes it from the group when the last ipif goes
22839 	 * down.
22840 	 */
22841 	ASSERT(ill->ill_group == NULL);
22842 
22843 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL)
22844 		return;
22845 
22846 	/*
22847 	 * Make sure this phyint was put in the list.
22848 	 */
22849 	if (phyi->phyint_ifindex > 0) {
22850 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22851 		    phyi);
22852 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22853 		    phyi);
22854 	}
22855 	/*
22856 	 * remove phyint from the ipsq list.
22857 	 */
22858 	cur_ipsq = phyi->phyint_ipsq;
22859 	if (phyi == cur_ipsq->ipsq_phyint_list) {
22860 		cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next;
22861 	} else {
22862 		next_phyint = cur_ipsq->ipsq_phyint_list;
22863 		while (next_phyint != NULL) {
22864 			if (next_phyint->phyint_ipsq_next == phyi) {
22865 				next_phyint->phyint_ipsq_next =
22866 					phyi->phyint_ipsq_next;
22867 				break;
22868 			}
22869 			next_phyint = next_phyint->phyint_ipsq_next;
22870 		}
22871 		ASSERT(next_phyint != NULL);
22872 	}
22873 	IPSQ_DEC_REF(cur_ipsq, ipst);
22874 
22875 	if (phyi->phyint_groupname_len != 0) {
22876 		ASSERT(phyi->phyint_groupname != NULL);
22877 		mi_free(phyi->phyint_groupname);
22878 	}
22879 	mi_free(phyi);
22880 }
22881 
22882 /*
22883  * Attach the ill to the phyint structure which can be shared by both
22884  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
22885  * function is called from ipif_set_values and ill_lookup_on_name (for
22886  * loopback) where we know the name of the ill. We lookup the ill and if
22887  * there is one present already with the name use that phyint. Otherwise
22888  * reuse the one allocated by ill_init.
22889  */
22890 static void
22891 ill_phyint_reinit(ill_t *ill)
22892 {
22893 	boolean_t isv6 = ill->ill_isv6;
22894 	phyint_t *phyi_old;
22895 	phyint_t *phyi;
22896 	avl_index_t where = 0;
22897 	ill_t	*ill_other = NULL;
22898 	ipsq_t	*ipsq;
22899 	ip_stack_t	*ipst = ill->ill_ipst;
22900 
22901 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
22902 
22903 	phyi_old = ill->ill_phyint;
22904 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
22905 	    phyi_old->phyint_illv6 == NULL));
22906 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
22907 	    phyi_old->phyint_illv4 == NULL));
22908 	ASSERT(phyi_old->phyint_ifindex == 0);
22909 
22910 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22911 	    ill->ill_name, &where);
22912 
22913 	/*
22914 	 * 1. We grabbed the ill_g_lock before inserting this ill into
22915 	 *    the global list of ills. So no other thread could have located
22916 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
22917 	 * 2. Now locate the other protocol instance of this ill.
22918 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
22919 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
22920 	 *    of neither ill can change.
22921 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
22922 	 *    other ill.
22923 	 * 5. Release all locks.
22924 	 */
22925 
22926 	/*
22927 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
22928 	 * we are initializing IPv4.
22929 	 */
22930 	if (phyi != NULL) {
22931 		ill_other = (isv6) ? phyi->phyint_illv4 :
22932 		    phyi->phyint_illv6;
22933 		ASSERT(ill_other->ill_phyint != NULL);
22934 		ASSERT((isv6 && !ill_other->ill_isv6) ||
22935 		    (!isv6 && ill_other->ill_isv6));
22936 		GRAB_ILL_LOCKS(ill, ill_other);
22937 		/*
22938 		 * We are potentially throwing away phyint_flags which
22939 		 * could be different from the one that we obtain from
22940 		 * ill_other->ill_phyint. But it is okay as we are assuming
22941 		 * that the state maintained within IP is correct.
22942 		 */
22943 		mutex_enter(&phyi->phyint_lock);
22944 		if (isv6) {
22945 			ASSERT(phyi->phyint_illv6 == NULL);
22946 			phyi->phyint_illv6 = ill;
22947 		} else {
22948 			ASSERT(phyi->phyint_illv4 == NULL);
22949 			phyi->phyint_illv4 = ill;
22950 		}
22951 		/*
22952 		 * This is a new ill, currently undergoing SLIFNAME
22953 		 * So we could not have joined an IPMP group until now.
22954 		 */
22955 		ASSERT(phyi_old->phyint_ipsq_next == NULL &&
22956 		    phyi_old->phyint_groupname == NULL);
22957 
22958 		/*
22959 		 * This phyi_old is going away. Decref ipsq_refs and
22960 		 * assert it is zero. The ipsq itself will be freed in
22961 		 * ipsq_exit
22962 		 */
22963 		ipsq = phyi_old->phyint_ipsq;
22964 		IPSQ_DEC_REF(ipsq, ipst);
22965 		ASSERT(ipsq->ipsq_refs == 0);
22966 		/* Get the singleton phyint out of the ipsq list */
22967 		ASSERT(phyi_old->phyint_ipsq_next == NULL);
22968 		ipsq->ipsq_phyint_list = NULL;
22969 		phyi_old->phyint_illv4 = NULL;
22970 		phyi_old->phyint_illv6 = NULL;
22971 		mi_free(phyi_old);
22972 	} else {
22973 		mutex_enter(&ill->ill_lock);
22974 		/*
22975 		 * We don't need to acquire any lock, since
22976 		 * the ill is not yet visible globally  and we
22977 		 * have not yet released the ill_g_lock.
22978 		 */
22979 		phyi = phyi_old;
22980 		mutex_enter(&phyi->phyint_lock);
22981 		/* XXX We need a recovery strategy here. */
22982 		if (!phyint_assign_ifindex(phyi, ipst))
22983 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
22984 
22985 		/* No IPMP group yet, thus the hook uses the ifindex */
22986 		phyi->phyint_hook_ifindex = phyi->phyint_ifindex;
22987 
22988 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
22989 		    (void *)phyi, where);
22990 
22991 		(void) avl_find(&ipst->ips_phyint_g_list->
22992 		    phyint_list_avl_by_index,
22993 		    &phyi->phyint_ifindex, &where);
22994 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
22995 		    (void *)phyi, where);
22996 	}
22997 
22998 	/*
22999 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
23000 	 * pending mp is not affected because that is per ill basis.
23001 	 */
23002 	ill->ill_phyint = phyi;
23003 
23004 	/*
23005 	 * Keep the index on ipif_orig_index to be used by FAILOVER.
23006 	 * We do this here as when the first ipif was allocated,
23007 	 * ipif_allocate does not know the right interface index.
23008 	 */
23009 
23010 	ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex;
23011 	/*
23012 	 * Now that the phyint's ifindex has been assigned, complete the
23013 	 * remaining
23014 	 */
23015 
23016 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
23017 	if (ill->ill_isv6) {
23018 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
23019 		    ill->ill_phyint->phyint_ifindex;
23020 	}
23021 
23022 	/*
23023 	 * Generate an event within the hooks framework to indicate that
23024 	 * a new interface has just been added to IP.  For this event to
23025 	 * be generated, the network interface must, at least, have an
23026 	 * ifindex assigned to it.
23027 	 *
23028 	 * This needs to be run inside the ill_g_lock perimeter to ensure
23029 	 * that the ordering of delivered events to listeners matches the
23030 	 * order of them in the kernel.
23031 	 *
23032 	 * This function could be called from ill_lookup_on_name. In that case
23033 	 * the interface is loopback "lo", which will not generate a NIC event.
23034 	 */
23035 	if (ill->ill_name_length <= 2 ||
23036 	    ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') {
23037 		/*
23038 		 * Generate nic plumb event for ill_name even if
23039 		 * ipmp_hook_emulation is set. That avoids generating events
23040 		 * for the ill_names should ipmp_hook_emulation be turned on
23041 		 * later.
23042 		 */
23043 		ill_nic_info_plumb(ill, B_FALSE);
23044 	}
23045 	RELEASE_ILL_LOCKS(ill, ill_other);
23046 	mutex_exit(&phyi->phyint_lock);
23047 }
23048 
23049 /*
23050  * Allocate a NE_PLUMB nic info event and store in the ill.
23051  * If 'group' is set we do it for the group name, otherwise the ill name.
23052  * It will be sent when we leave the ipsq.
23053  */
23054 void
23055 ill_nic_info_plumb(ill_t *ill, boolean_t group)
23056 {
23057 	phyint_t	*phyi = ill->ill_phyint;
23058 	ip_stack_t	*ipst = ill->ill_ipst;
23059 	hook_nic_event_t *info;
23060 	char		*name;
23061 	int		namelen;
23062 
23063 	ASSERT(MUTEX_HELD(&ill->ill_lock));
23064 
23065 	if ((info = ill->ill_nic_event_info) != NULL) {
23066 		ip2dbg(("ill_nic_info_plumb: unexpected nic event %d "
23067 		    "attached for %s\n", info->hne_event,
23068 		    ill->ill_name));
23069 		if (info->hne_data != NULL)
23070 			kmem_free(info->hne_data, info->hne_datalen);
23071 		kmem_free(info, sizeof (hook_nic_event_t));
23072 		ill->ill_nic_event_info = NULL;
23073 	}
23074 
23075 	info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP);
23076 	if (info == NULL) {
23077 		ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic "
23078 		    "event information for %s (ENOMEM)\n",
23079 		    ill->ill_name));
23080 		return;
23081 	}
23082 
23083 	if (group) {
23084 		ASSERT(phyi->phyint_groupname_len != 0);
23085 		namelen = phyi->phyint_groupname_len;
23086 		name = phyi->phyint_groupname;
23087 	} else {
23088 		namelen = ill->ill_name_length;
23089 		name = ill->ill_name;
23090 	}
23091 
23092 	info->hne_nic = phyi->phyint_hook_ifindex;
23093 	info->hne_lif = 0;
23094 	info->hne_event = NE_PLUMB;
23095 	info->hne_family = ill->ill_isv6 ?
23096 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
23097 
23098 	info->hne_data = kmem_alloc(namelen, KM_NOSLEEP);
23099 	if (info->hne_data != NULL) {
23100 		info->hne_datalen = namelen;
23101 		bcopy(name, info->hne_data, info->hne_datalen);
23102 	} else {
23103 		ip2dbg(("ill_nic_info_plumb: could not attach "
23104 		    "name information for PLUMB nic event "
23105 		    "of %s (ENOMEM)\n", name));
23106 		kmem_free(info, sizeof (hook_nic_event_t));
23107 		info = NULL;
23108 	}
23109 	ill->ill_nic_event_info = info;
23110 }
23111 
23112 /*
23113  * Unhook the nic event message from the ill and enqueue it
23114  * into the nic event taskq.
23115  */
23116 void
23117 ill_nic_info_dispatch(ill_t *ill)
23118 {
23119 	hook_nic_event_t *info;
23120 
23121 	ASSERT(MUTEX_HELD(&ill->ill_lock));
23122 
23123 	if ((info = ill->ill_nic_event_info) != NULL) {
23124 		if (ddi_taskq_dispatch(eventq_queue_nic,
23125 		    ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) {
23126 			ip2dbg(("ill_nic_info_dispatch: "
23127 			    "ddi_taskq_dispatch failed\n"));
23128 			if (info->hne_data != NULL)
23129 				kmem_free(info->hne_data, info->hne_datalen);
23130 			kmem_free(info, sizeof (hook_nic_event_t));
23131 		}
23132 		ill->ill_nic_event_info = NULL;
23133 	}
23134 }
23135 
23136 /*
23137  * Notify any downstream modules of the name of this interface.
23138  * An M_IOCTL is used even though we don't expect a successful reply.
23139  * Any reply message from the driver (presumably an M_IOCNAK) will
23140  * eventually get discarded somewhere upstream.  The message format is
23141  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
23142  * to IP.
23143  */
23144 static void
23145 ip_ifname_notify(ill_t *ill, queue_t *q)
23146 {
23147 	mblk_t *mp1, *mp2;
23148 	struct iocblk *iocp;
23149 	struct lifreq *lifr;
23150 
23151 	mp1 = mkiocb(SIOCSLIFNAME);
23152 	if (mp1 == NULL)
23153 		return;
23154 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
23155 	if (mp2 == NULL) {
23156 		freeb(mp1);
23157 		return;
23158 	}
23159 
23160 	mp1->b_cont = mp2;
23161 	iocp = (struct iocblk *)mp1->b_rptr;
23162 	iocp->ioc_count = sizeof (struct lifreq);
23163 
23164 	lifr = (struct lifreq *)mp2->b_rptr;
23165 	mp2->b_wptr += sizeof (struct lifreq);
23166 	bzero(lifr, sizeof (struct lifreq));
23167 
23168 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
23169 	lifr->lifr_ppa = ill->ill_ppa;
23170 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
23171 
23172 	putnext(q, mp1);
23173 }
23174 
23175 static int
23176 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
23177 {
23178 	int err;
23179 	ip_stack_t	*ipst = ill->ill_ipst;
23180 
23181 	/* Set the obsolete NDD per-interface forwarding name. */
23182 	err = ill_set_ndd_name(ill);
23183 	if (err != 0) {
23184 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
23185 		    err);
23186 	}
23187 
23188 	/* Tell downstream modules where they are. */
23189 	ip_ifname_notify(ill, q);
23190 
23191 	/*
23192 	 * ill_dl_phys returns EINPROGRESS in the usual case.
23193 	 * Error cases are ENOMEM ...
23194 	 */
23195 	err = ill_dl_phys(ill, ipif, mp, q);
23196 
23197 	/*
23198 	 * If there is no IRE expiration timer running, get one started.
23199 	 * igmp and mld timers will be triggered by the first multicast
23200 	 */
23201 	if (ipst->ips_ip_ire_expire_id == 0) {
23202 		/*
23203 		 * acquire the lock and check again.
23204 		 */
23205 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
23206 		if (ipst->ips_ip_ire_expire_id == 0) {
23207 			ipst->ips_ip_ire_expire_id = timeout(
23208 			    ip_trash_timer_expire, ipst,
23209 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
23210 		}
23211 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
23212 	}
23213 
23214 	if (ill->ill_isv6) {
23215 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
23216 		if (ipst->ips_mld_slowtimeout_id == 0) {
23217 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
23218 			    (void *)ipst,
23219 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
23220 		}
23221 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
23222 	} else {
23223 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
23224 		if (ipst->ips_igmp_slowtimeout_id == 0) {
23225 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
23226 				(void *)ipst,
23227 				MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
23228 		}
23229 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
23230 	}
23231 
23232 	return (err);
23233 }
23234 
23235 /*
23236  * Common routine for ppa and ifname setting. Should be called exclusive.
23237  *
23238  * Returns EINPROGRESS when mp has been consumed by queueing it on
23239  * ill_pending_mp and the ioctl will complete in ip_rput.
23240  *
23241  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
23242  * the new name and new ppa in lifr_name and lifr_ppa respectively.
23243  * For SLIFNAME, we pass these values back to the userland.
23244  */
23245 static int
23246 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
23247 {
23248 	ill_t	*ill;
23249 	ipif_t	*ipif;
23250 	ipsq_t	*ipsq;
23251 	char	*ppa_ptr;
23252 	char	*old_ptr;
23253 	char	old_char;
23254 	int	error;
23255 	ip_stack_t	*ipst;
23256 
23257 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
23258 	ASSERT(q->q_next != NULL);
23259 	ASSERT(interf_name != NULL);
23260 
23261 	ill = (ill_t *)q->q_ptr;
23262 	ipst = ill->ill_ipst;
23263 
23264 	ASSERT(ill->ill_ipst != NULL);
23265 	ASSERT(ill->ill_name[0] == '\0');
23266 	ASSERT(IAM_WRITER_ILL(ill));
23267 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
23268 	ASSERT(ill->ill_ppa == UINT_MAX);
23269 
23270 	/* The ppa is sent down by ifconfig or is chosen */
23271 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
23272 		return (EINVAL);
23273 	}
23274 
23275 	/*
23276 	 * make sure ppa passed in is same as ppa in the name.
23277 	 * This check is not made when ppa == UINT_MAX in that case ppa
23278 	 * in the name could be anything. System will choose a ppa and
23279 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
23280 	 */
23281 	if (*new_ppa_ptr != UINT_MAX) {
23282 		/* stoi changes the pointer */
23283 		old_ptr = ppa_ptr;
23284 		/*
23285 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
23286 		 * (they don't have an externally visible ppa).  We assign one
23287 		 * here so that we can manage the interface.  Note that in
23288 		 * the past this value was always 0 for DLPI 1 drivers.
23289 		 */
23290 		if (*new_ppa_ptr == 0)
23291 			*new_ppa_ptr = stoi(&old_ptr);
23292 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
23293 			return (EINVAL);
23294 	}
23295 	/*
23296 	 * terminate string before ppa
23297 	 * save char at that location.
23298 	 */
23299 	old_char = ppa_ptr[0];
23300 	ppa_ptr[0] = '\0';
23301 
23302 	ill->ill_ppa = *new_ppa_ptr;
23303 	/*
23304 	 * Finish as much work now as possible before calling ill_glist_insert
23305 	 * which makes the ill globally visible and also merges it with the
23306 	 * other protocol instance of this phyint. The remaining work is
23307 	 * done after entering the ipsq which may happen sometime later.
23308 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
23309 	 */
23310 	ipif = ill->ill_ipif;
23311 
23312 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
23313 	ipif_assign_seqid(ipif);
23314 
23315 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
23316 		ill->ill_flags |= ILLF_IPV4;
23317 
23318 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
23319 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
23320 
23321 	if (ill->ill_flags & ILLF_IPV6) {
23322 
23323 		ill->ill_isv6 = B_TRUE;
23324 		if (ill->ill_rq != NULL) {
23325 			ill->ill_rq->q_qinfo = &rinit_ipv6;
23326 			ill->ill_wq->q_qinfo = &winit_ipv6;
23327 		}
23328 
23329 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
23330 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
23331 		ipif->ipif_v6src_addr = ipv6_all_zeros;
23332 		ipif->ipif_v6subnet = ipv6_all_zeros;
23333 		ipif->ipif_v6net_mask = ipv6_all_zeros;
23334 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
23335 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
23336 		/*
23337 		 * point-to-point or Non-mulicast capable
23338 		 * interfaces won't do NUD unless explicitly
23339 		 * configured to do so.
23340 		 */
23341 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
23342 		    !(ill->ill_flags & ILLF_MULTICAST)) {
23343 			ill->ill_flags |= ILLF_NONUD;
23344 		}
23345 		/* Make sure IPv4 specific flag is not set on IPv6 if */
23346 		if (ill->ill_flags & ILLF_NOARP) {
23347 			/*
23348 			 * Note: xresolv interfaces will eventually need
23349 			 * NOARP set here as well, but that will require
23350 			 * those external resolvers to have some
23351 			 * knowledge of that flag and act appropriately.
23352 			 * Not to be changed at present.
23353 			 */
23354 			ill->ill_flags &= ~ILLF_NOARP;
23355 		}
23356 		/*
23357 		 * Set the ILLF_ROUTER flag according to the global
23358 		 * IPv6 forwarding policy.
23359 		 */
23360 		if (ipst->ips_ipv6_forward != 0)
23361 			ill->ill_flags |= ILLF_ROUTER;
23362 	} else if (ill->ill_flags & ILLF_IPV4) {
23363 		ill->ill_isv6 = B_FALSE;
23364 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
23365 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
23366 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
23367 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
23368 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
23369 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
23370 		/*
23371 		 * Set the ILLF_ROUTER flag according to the global
23372 		 * IPv4 forwarding policy.
23373 		 */
23374 		if (ipst->ips_ip_g_forward != 0)
23375 			ill->ill_flags |= ILLF_ROUTER;
23376 	}
23377 
23378 	ASSERT(ill->ill_phyint != NULL);
23379 
23380 	/*
23381 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
23382 	 * be completed in ill_glist_insert -> ill_phyint_reinit
23383 	 */
23384 	if (!ill_allocate_mibs(ill))
23385 		return (ENOMEM);
23386 
23387 	/*
23388 	 * Pick a default sap until we get the DL_INFO_ACK back from
23389 	 * the driver.
23390 	 */
23391 	if (ill->ill_sap == 0) {
23392 		if (ill->ill_isv6)
23393 			ill->ill_sap  = IP6_DL_SAP;
23394 		else
23395 			ill->ill_sap  = IP_DL_SAP;
23396 	}
23397 
23398 	ill->ill_ifname_pending = 1;
23399 	ill->ill_ifname_pending_err = 0;
23400 
23401 	ill_refhold(ill);
23402 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
23403 	if ((error = ill_glist_insert(ill, interf_name,
23404 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
23405 		ill->ill_ppa = UINT_MAX;
23406 		ill->ill_name[0] = '\0';
23407 		/*
23408 		 * undo null termination done above.
23409 		 */
23410 		ppa_ptr[0] = old_char;
23411 		rw_exit(&ipst->ips_ill_g_lock);
23412 		ill_refrele(ill);
23413 		return (error);
23414 	}
23415 
23416 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
23417 
23418 	/*
23419 	 * When we return the buffer pointed to by interf_name should contain
23420 	 * the same name as in ill_name.
23421 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
23422 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
23423 	 * so copy full name and update the ppa ptr.
23424 	 * When ppa passed in != UINT_MAX all values are correct just undo
23425 	 * null termination, this saves a bcopy.
23426 	 */
23427 	if (*new_ppa_ptr == UINT_MAX) {
23428 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
23429 		*new_ppa_ptr = ill->ill_ppa;
23430 	} else {
23431 		/*
23432 		 * undo null termination done above.
23433 		 */
23434 		ppa_ptr[0] = old_char;
23435 	}
23436 
23437 	/* Let SCTP know about this ILL */
23438 	sctp_update_ill(ill, SCTP_ILL_INSERT);
23439 
23440 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP,
23441 	    B_TRUE);
23442 
23443 	rw_exit(&ipst->ips_ill_g_lock);
23444 	ill_refrele(ill);
23445 	if (ipsq == NULL)
23446 		return (EINPROGRESS);
23447 
23448 	/*
23449 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
23450 	 */
23451 	if (ipsq->ipsq_current_ipif == NULL)
23452 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
23453 	else
23454 		ASSERT(ipsq->ipsq_current_ipif == ipif);
23455 
23456 	error = ipif_set_values_tail(ill, ipif, mp, q);
23457 	ipsq_exit(ipsq, B_TRUE, B_TRUE);
23458 	if (error != 0 && error != EINPROGRESS) {
23459 		/*
23460 		 * restore previous values
23461 		 */
23462 		ill->ill_isv6 = B_FALSE;
23463 	}
23464 	return (error);
23465 }
23466 
23467 
23468 void
23469 ipif_init(ip_stack_t *ipst)
23470 {
23471 	hrtime_t hrt;
23472 	int i;
23473 
23474 	/*
23475 	 * Can't call drv_getparm here as it is too early in the boot.
23476 	 * As we use ipif_src_random just for picking a different
23477 	 * source address everytime, this need not be really random.
23478 	 */
23479 	hrt = gethrtime();
23480 	ipst->ips_ipif_src_random =
23481 	    ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff);
23482 
23483 	for (i = 0; i < MAX_G_HEADS; i++) {
23484 		ipst->ips_ill_g_heads[i].ill_g_list_head =
23485 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23486 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
23487 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
23488 	}
23489 
23490 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
23491 	    ill_phyint_compare_index,
23492 	    sizeof (phyint_t),
23493 	    offsetof(struct phyint, phyint_avl_by_index));
23494 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
23495 	    ill_phyint_compare_name,
23496 	    sizeof (phyint_t),
23497 	    offsetof(struct phyint, phyint_avl_by_name));
23498 }
23499 
23500 /*
23501  * This is called by ip_rt_add when src_addr value is other than zero.
23502  * src_addr signifies the source address of the incoming packet. For
23503  * reverse tunnel route we need to create a source addr based routing
23504  * table. This routine creates ip_mrtun_table if it's empty and then
23505  * it adds the route entry hashed by source address. It verifies that
23506  * the outgoing interface is always a non-resolver interface (tunnel).
23507  */
23508 int
23509 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg,
23510     ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func,
23511     ip_stack_t *ipst)
23512 {
23513 	ire_t   *ire;
23514 	ire_t	*save_ire;
23515 	ipif_t  *ipif;
23516 	ill_t   *in_ill = NULL;
23517 	ill_t	*out_ill;
23518 	queue_t	*stq;
23519 	mblk_t	*dlureq_mp;
23520 	int	error;
23521 
23522 	if (ire_arg != NULL)
23523 		*ire_arg = NULL;
23524 	ASSERT(in_src_addr != INADDR_ANY);
23525 
23526 	ipif = ipif_arg;
23527 	if (ipif != NULL) {
23528 		out_ill = ipif->ipif_ill;
23529 	} else {
23530 		ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n"));
23531 		return (EINVAL);
23532 	}
23533 
23534 	if (src_ipif == NULL) {
23535 		ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n"));
23536 		return (EINVAL);
23537 	}
23538 	in_ill = src_ipif->ipif_ill;
23539 
23540 	/*
23541 	 * Check for duplicates. We don't need to
23542 	 * match out_ill, because the uniqueness of
23543 	 * a route is only dependent on src_addr and
23544 	 * in_ill.
23545 	 */
23546 	ire = ire_mrtun_lookup(in_src_addr, in_ill);
23547 	if (ire != NULL) {
23548 		ire_refrele(ire);
23549 		return (EEXIST);
23550 	}
23551 	if (ipif->ipif_net_type != IRE_IF_NORESOLVER) {
23552 		ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n",
23553 		    ipif->ipif_net_type));
23554 		return (EINVAL);
23555 	}
23556 
23557 	stq = ipif->ipif_wq;
23558 	ASSERT(stq != NULL);
23559 
23560 	/*
23561 	 * The outgoing interface must be non-resolver
23562 	 * interface.
23563 	 */
23564 	dlureq_mp = ill_dlur_gen(NULL,
23565 	    out_ill->ill_phys_addr_length, out_ill->ill_sap,
23566 	    out_ill->ill_sap_length);
23567 
23568 	if (dlureq_mp == NULL) {
23569 		ip1dbg(("ip_newroute: dlureq_mp NULL\n"));
23570 		return (ENOMEM);
23571 	}
23572 
23573 	/* Create the IRE. */
23574 
23575 	ire = ire_create(
23576 	    NULL,				/* Zero dst addr */
23577 	    NULL,				/* Zero mask */
23578 	    NULL,				/* Zero gateway addr */
23579 	    NULL,				/* Zero ipif_src addr */
23580 	    (uint8_t *)&in_src_addr,		/* in_src-addr */
23581 	    &ipif->ipif_mtu,
23582 	    NULL,
23583 	    NULL,				/* rfq */
23584 	    stq,
23585 	    IRE_MIPRTUN,
23586 	    dlureq_mp,
23587 	    ipif,
23588 	    in_ill,
23589 	    0,
23590 	    0,
23591 	    0,
23592 	    flags,
23593 	    &ire_uinfo_null,
23594 	    NULL,
23595 	    NULL,
23596 	    ipst);
23597 
23598 	if (ire == NULL) {
23599 		freeb(dlureq_mp);
23600 		return (ENOMEM);
23601 	}
23602 	ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n",
23603 	    ire->ire_type));
23604 	save_ire = ire;
23605 	ASSERT(save_ire != NULL);
23606 	error = ire_add_mrtun(&ire, q, mp, func);
23607 	/*
23608 	 * If ire_add_mrtun() failed, the ire passed in was freed
23609 	 * so there is no need to do so here.
23610 	 */
23611 	if (error != 0) {
23612 		return (error);
23613 	}
23614 
23615 	/* Duplicate check */
23616 	if (ire != save_ire) {
23617 		/* route already exists by now */
23618 		ire_refrele(ire);
23619 		return (EEXIST);
23620 	}
23621 
23622 	if (ire_arg != NULL) {
23623 		/*
23624 		 * Store the ire that was just added. the caller
23625 		 * ip_rts_request responsible for doing ire_refrele()
23626 		 * on it.
23627 		 */
23628 		*ire_arg = ire;
23629 	} else {
23630 		ire_refrele(ire);	/* held in ire_add_mrtun */
23631 	}
23632 
23633 	return (0);
23634 }
23635 
23636 /*
23637  * It is called by ip_rt_delete() only when mipagent requests to delete
23638  * a reverse tunnel route that was added by ip_mrtun_rt_add() before.
23639  */
23640 
23641 int
23642 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif)
23643 {
23644 	ire_t   *ire = NULL;
23645 
23646 	if (in_src_addr == INADDR_ANY)
23647 		return (EINVAL);
23648 	if (src_ipif == NULL)
23649 		return (EINVAL);
23650 
23651 	/* search if this route exists in the ip_mrtun_table */
23652 	ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill);
23653 	if (ire == NULL) {
23654 		ip2dbg(("ip_mrtun_rt_delete: ire not found\n"));
23655 		return (ESRCH);
23656 	}
23657 	ire_delete(ire);
23658 	ire_refrele(ire);
23659 	return (0);
23660 }
23661 
23662 /*
23663  * Lookup the ipif corresponding to the onlink destination address. For
23664  * point-to-point interfaces, it matches with remote endpoint destination
23665  * address. For point-to-multipoint interfaces it only tries to match the
23666  * destination with the interface's subnet address. The longest, most specific
23667  * match is found to take care of such rare network configurations like -
23668  * le0: 129.146.1.1/16
23669  * le1: 129.146.2.2/24
23670  * It is used only by SO_DONTROUTE at the moment.
23671  */
23672 ipif_t *
23673 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
23674 {
23675 	ipif_t	*ipif, *best_ipif;
23676 	ill_t	*ill;
23677 	ill_walk_context_t ctx;
23678 
23679 	ASSERT(zoneid != ALL_ZONES);
23680 	best_ipif = NULL;
23681 
23682 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
23683 	ill = ILL_START_WALK_V4(&ctx, ipst);
23684 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
23685 		mutex_enter(&ill->ill_lock);
23686 		for (ipif = ill->ill_ipif; ipif != NULL;
23687 		    ipif = ipif->ipif_next) {
23688 			if (!IPIF_CAN_LOOKUP(ipif))
23689 				continue;
23690 			if (ipif->ipif_zoneid != zoneid &&
23691 			    ipif->ipif_zoneid != ALL_ZONES)
23692 				continue;
23693 			/*
23694 			 * Point-to-point case. Look for exact match with
23695 			 * destination address.
23696 			 */
23697 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
23698 				if (ipif->ipif_pp_dst_addr == addr) {
23699 					ipif_refhold_locked(ipif);
23700 					mutex_exit(&ill->ill_lock);
23701 					rw_exit(&ipst->ips_ill_g_lock);
23702 					if (best_ipif != NULL)
23703 						ipif_refrele(best_ipif);
23704 					return (ipif);
23705 				}
23706 			} else if (ipif->ipif_subnet == (addr &
23707 			    ipif->ipif_net_mask)) {
23708 				/*
23709 				 * Point-to-multipoint case. Looping through to
23710 				 * find the most specific match. If there are
23711 				 * multiple best match ipif's then prefer ipif's
23712 				 * that are UP. If there is only one best match
23713 				 * ipif and it is DOWN we must still return it.
23714 				 */
23715 				if ((best_ipif == NULL) ||
23716 				    (ipif->ipif_net_mask >
23717 				    best_ipif->ipif_net_mask) ||
23718 				    ((ipif->ipif_net_mask ==
23719 				    best_ipif->ipif_net_mask) &&
23720 				    ((ipif->ipif_flags & IPIF_UP) &&
23721 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
23722 					ipif_refhold_locked(ipif);
23723 					mutex_exit(&ill->ill_lock);
23724 					rw_exit(&ipst->ips_ill_g_lock);
23725 					if (best_ipif != NULL)
23726 						ipif_refrele(best_ipif);
23727 					best_ipif = ipif;
23728 					rw_enter(&ipst->ips_ill_g_lock,
23729 					    RW_READER);
23730 					mutex_enter(&ill->ill_lock);
23731 				}
23732 			}
23733 		}
23734 		mutex_exit(&ill->ill_lock);
23735 	}
23736 	rw_exit(&ipst->ips_ill_g_lock);
23737 	return (best_ipif);
23738 }
23739 
23740 
23741 /*
23742  * Save enough information so that we can recreate the IRE if
23743  * the interface goes down and then up.
23744  */
23745 static void
23746 ipif_save_ire(ipif_t *ipif, ire_t *ire)
23747 {
23748 	mblk_t	*save_mp;
23749 
23750 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
23751 	if (save_mp != NULL) {
23752 		ifrt_t	*ifrt;
23753 
23754 		save_mp->b_wptr += sizeof (ifrt_t);
23755 		ifrt = (ifrt_t *)save_mp->b_rptr;
23756 		bzero(ifrt, sizeof (ifrt_t));
23757 		ifrt->ifrt_type = ire->ire_type;
23758 		ifrt->ifrt_addr = ire->ire_addr;
23759 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
23760 		ifrt->ifrt_src_addr = ire->ire_src_addr;
23761 		ifrt->ifrt_mask = ire->ire_mask;
23762 		ifrt->ifrt_flags = ire->ire_flags;
23763 		ifrt->ifrt_max_frag = ire->ire_max_frag;
23764 		mutex_enter(&ipif->ipif_saved_ire_lock);
23765 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
23766 		ipif->ipif_saved_ire_mp = save_mp;
23767 		ipif->ipif_saved_ire_cnt++;
23768 		mutex_exit(&ipif->ipif_saved_ire_lock);
23769 	}
23770 }
23771 
23772 
23773 static void
23774 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
23775 {
23776 	mblk_t	**mpp;
23777 	mblk_t	*mp;
23778 	ifrt_t	*ifrt;
23779 
23780 	/* Remove from ipif_saved_ire_mp list if it is there */
23781 	mutex_enter(&ipif->ipif_saved_ire_lock);
23782 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
23783 	    mpp = &(*mpp)->b_cont) {
23784 		/*
23785 		 * On a given ipif, the triple of address, gateway and
23786 		 * mask is unique for each saved IRE (in the case of
23787 		 * ordinary interface routes, the gateway address is
23788 		 * all-zeroes).
23789 		 */
23790 		mp = *mpp;
23791 		ifrt = (ifrt_t *)mp->b_rptr;
23792 		if (ifrt->ifrt_addr == ire->ire_addr &&
23793 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
23794 		    ifrt->ifrt_mask == ire->ire_mask) {
23795 			*mpp = mp->b_cont;
23796 			ipif->ipif_saved_ire_cnt--;
23797 			freeb(mp);
23798 			break;
23799 		}
23800 	}
23801 	mutex_exit(&ipif->ipif_saved_ire_lock);
23802 }
23803 
23804 
23805 /*
23806  * IP multirouting broadcast routes handling
23807  * Append CGTP broadcast IREs to regular ones created
23808  * at ifconfig time.
23809  */
23810 static void
23811 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
23812 {
23813 	ire_t *ire_prim;
23814 
23815 	ASSERT(ire != NULL);
23816 	ASSERT(ire_dst != NULL);
23817 
23818 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23819 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23820 	if (ire_prim != NULL) {
23821 		/*
23822 		 * We are in the special case of broadcasts for
23823 		 * CGTP. We add an IRE_BROADCAST that holds
23824 		 * the RTF_MULTIRT flag, the destination
23825 		 * address of ire_dst and the low level
23826 		 * info of ire_prim. In other words, CGTP
23827 		 * broadcast is added to the redundant ipif.
23828 		 */
23829 		ipif_t *ipif_prim;
23830 		ire_t  *bcast_ire;
23831 
23832 		ipif_prim = ire_prim->ire_ipif;
23833 
23834 		ip2dbg(("ip_cgtp_filter_bcast_add: "
23835 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23836 		    (void *)ire_dst, (void *)ire_prim,
23837 		    (void *)ipif_prim));
23838 
23839 		bcast_ire = ire_create(
23840 		    (uchar_t *)&ire->ire_addr,
23841 		    (uchar_t *)&ip_g_all_ones,
23842 		    (uchar_t *)&ire_dst->ire_src_addr,
23843 		    (uchar_t *)&ire->ire_gateway_addr,
23844 		    NULL,
23845 		    &ipif_prim->ipif_mtu,
23846 		    NULL,
23847 		    ipif_prim->ipif_rq,
23848 		    ipif_prim->ipif_wq,
23849 		    IRE_BROADCAST,
23850 		    ipif_prim->ipif_bcast_mp,
23851 		    ipif_prim,
23852 		    NULL,
23853 		    0,
23854 		    0,
23855 		    0,
23856 		    ire->ire_flags,
23857 		    &ire_uinfo_null,
23858 		    NULL,
23859 		    NULL,
23860 		    ipst);
23861 
23862 		if (bcast_ire != NULL) {
23863 
23864 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
23865 			    B_FALSE) == 0) {
23866 				ip2dbg(("ip_cgtp_filter_bcast_add: "
23867 				    "added bcast_ire %p\n",
23868 				    (void *)bcast_ire));
23869 
23870 				ipif_save_ire(bcast_ire->ire_ipif,
23871 				    bcast_ire);
23872 				ire_refrele(bcast_ire);
23873 			}
23874 		}
23875 		ire_refrele(ire_prim);
23876 	}
23877 }
23878 
23879 
23880 /*
23881  * IP multirouting broadcast routes handling
23882  * Remove the broadcast ire
23883  */
23884 static void
23885 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
23886 {
23887 	ire_t *ire_dst;
23888 
23889 	ASSERT(ire != NULL);
23890 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
23891 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23892 	if (ire_dst != NULL) {
23893 		ire_t *ire_prim;
23894 
23895 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
23896 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
23897 		if (ire_prim != NULL) {
23898 			ipif_t *ipif_prim;
23899 			ire_t  *bcast_ire;
23900 
23901 			ipif_prim = ire_prim->ire_ipif;
23902 
23903 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
23904 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
23905 			    (void *)ire_dst, (void *)ire_prim,
23906 			    (void *)ipif_prim));
23907 
23908 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
23909 			    ire->ire_gateway_addr,
23910 			    IRE_BROADCAST,
23911 			    ipif_prim, ALL_ZONES,
23912 			    NULL,
23913 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
23914 			    MATCH_IRE_MASK, ipst);
23915 
23916 			if (bcast_ire != NULL) {
23917 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
23918 				    "looked up bcast_ire %p\n",
23919 				    (void *)bcast_ire));
23920 				ipif_remove_ire(bcast_ire->ire_ipif,
23921 					bcast_ire);
23922 				ire_delete(bcast_ire);
23923 			}
23924 			ire_refrele(ire_prim);
23925 		}
23926 		ire_refrele(ire_dst);
23927 	}
23928 }
23929 
23930 /*
23931  * IPsec hardware acceleration capabilities related functions.
23932  */
23933 
23934 /*
23935  * Free a per-ill IPsec capabilities structure.
23936  */
23937 static void
23938 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
23939 {
23940 	if (capab->auth_hw_algs != NULL)
23941 		kmem_free(capab->auth_hw_algs, capab->algs_size);
23942 	if (capab->encr_hw_algs != NULL)
23943 		kmem_free(capab->encr_hw_algs, capab->algs_size);
23944 	if (capab->encr_algparm != NULL)
23945 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
23946 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
23947 }
23948 
23949 /*
23950  * Allocate a new per-ill IPsec capabilities structure. This structure
23951  * is specific to an IPsec protocol (AH or ESP). It is implemented as
23952  * an array which specifies, for each algorithm, whether this algorithm
23953  * is supported by the ill or not.
23954  */
23955 static ill_ipsec_capab_t *
23956 ill_ipsec_capab_alloc(void)
23957 {
23958 	ill_ipsec_capab_t *capab;
23959 	uint_t nelems;
23960 
23961 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
23962 	if (capab == NULL)
23963 		return (NULL);
23964 
23965 	/* we need one bit per algorithm */
23966 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
23967 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
23968 
23969 	/* allocate memory to store algorithm flags */
23970 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23971 	if (capab->encr_hw_algs == NULL)
23972 		goto nomem;
23973 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
23974 	if (capab->auth_hw_algs == NULL)
23975 		goto nomem;
23976 	/*
23977 	 * Leave encr_algparm NULL for now since we won't need it half
23978 	 * the time
23979 	 */
23980 	return (capab);
23981 
23982 nomem:
23983 	ill_ipsec_capab_free(capab);
23984 	return (NULL);
23985 }
23986 
23987 /*
23988  * Resize capability array.  Since we're exclusive, this is OK.
23989  */
23990 static boolean_t
23991 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
23992 {
23993 	ipsec_capab_algparm_t *nalp, *oalp;
23994 	uint32_t olen, nlen;
23995 
23996 	oalp = capab->encr_algparm;
23997 	olen = capab->encr_algparm_size;
23998 
23999 	if (oalp != NULL) {
24000 		if (algid < capab->encr_algparm_end)
24001 			return (B_TRUE);
24002 	}
24003 
24004 	nlen = (algid + 1) * sizeof (*nalp);
24005 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
24006 	if (nalp == NULL)
24007 		return (B_FALSE);
24008 
24009 	if (oalp != NULL) {
24010 		bcopy(oalp, nalp, olen);
24011 		kmem_free(oalp, olen);
24012 	}
24013 	capab->encr_algparm = nalp;
24014 	capab->encr_algparm_size = nlen;
24015 	capab->encr_algparm_end = algid + 1;
24016 
24017 	return (B_TRUE);
24018 }
24019 
24020 /*
24021  * Compare the capabilities of the specified ill with the protocol
24022  * and algorithms specified by the SA passed as argument.
24023  * If they match, returns B_TRUE, B_FALSE if they do not match.
24024  *
24025  * The ill can be passed as a pointer to it, or by specifying its index
24026  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
24027  *
24028  * Called by ipsec_out_is_accelerated() do decide whether an outbound
24029  * packet is eligible for hardware acceleration, and by
24030  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
24031  * to a particular ill.
24032  */
24033 boolean_t
24034 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
24035     ipsa_t *sa, netstack_t *ns)
24036 {
24037 	boolean_t sa_isv6;
24038 	uint_t algid;
24039 	struct ill_ipsec_capab_s *cpp;
24040 	boolean_t need_refrele = B_FALSE;
24041 	ip_stack_t	*ipst = ns->netstack_ip;
24042 
24043 	if (ill == NULL) {
24044 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
24045 		    NULL, NULL, NULL, ipst);
24046 		if (ill == NULL) {
24047 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
24048 			return (B_FALSE);
24049 		}
24050 		need_refrele = B_TRUE;
24051 	}
24052 
24053 	/*
24054 	 * Use the address length specified by the SA to determine
24055 	 * if it corresponds to a IPv6 address, and fail the matching
24056 	 * if the isv6 flag passed as argument does not match.
24057 	 * Note: this check is used for SADB capability checking before
24058 	 * sending SA information to an ill.
24059 	 */
24060 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
24061 	if (sa_isv6 != ill_isv6)
24062 		/* protocol mismatch */
24063 		goto done;
24064 
24065 	/*
24066 	 * Check if the ill supports the protocol, algorithm(s) and
24067 	 * key size(s) specified by the SA, and get the pointers to
24068 	 * the algorithms supported by the ill.
24069 	 */
24070 	switch (sa->ipsa_type) {
24071 
24072 	case SADB_SATYPE_ESP:
24073 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
24074 			/* ill does not support ESP acceleration */
24075 			goto done;
24076 		cpp = ill->ill_ipsec_capab_esp;
24077 		algid = sa->ipsa_auth_alg;
24078 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
24079 			goto done;
24080 		algid = sa->ipsa_encr_alg;
24081 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
24082 			goto done;
24083 		if (algid < cpp->encr_algparm_end) {
24084 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
24085 			if (sa->ipsa_encrkeybits < alp->minkeylen)
24086 				goto done;
24087 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
24088 				goto done;
24089 		}
24090 		break;
24091 
24092 	case SADB_SATYPE_AH:
24093 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
24094 			/* ill does not support AH acceleration */
24095 			goto done;
24096 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
24097 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
24098 			goto done;
24099 		break;
24100 	}
24101 
24102 	if (need_refrele)
24103 		ill_refrele(ill);
24104 	return (B_TRUE);
24105 done:
24106 	if (need_refrele)
24107 		ill_refrele(ill);
24108 	return (B_FALSE);
24109 }
24110 
24111 
24112 /*
24113  * Add a new ill to the list of IPsec capable ills.
24114  * Called from ill_capability_ipsec_ack() when an ACK was received
24115  * indicating that IPsec hardware processing was enabled for an ill.
24116  *
24117  * ill must point to the ill for which acceleration was enabled.
24118  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
24119  */
24120 static void
24121 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
24122 {
24123 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
24124 	uint_t sa_type;
24125 	uint_t ipproto;
24126 	ip_stack_t	*ipst = ill->ill_ipst;
24127 
24128 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
24129 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
24130 
24131 	switch (dl_cap) {
24132 	case DL_CAPAB_IPSEC_AH:
24133 		sa_type = SADB_SATYPE_AH;
24134 		ills = &ipst->ips_ipsec_capab_ills_ah;
24135 		ipproto = IPPROTO_AH;
24136 		break;
24137 	case DL_CAPAB_IPSEC_ESP:
24138 		sa_type = SADB_SATYPE_ESP;
24139 		ills = &ipst->ips_ipsec_capab_ills_esp;
24140 		ipproto = IPPROTO_ESP;
24141 		break;
24142 	}
24143 
24144 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
24145 
24146 	/*
24147 	 * Add ill index to list of hardware accelerators. If
24148 	 * already in list, do nothing.
24149 	 */
24150 	for (cur_ill = *ills; cur_ill != NULL &&
24151 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
24152 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
24153 		;
24154 
24155 	if (cur_ill == NULL) {
24156 		/* if this is a new entry for this ill */
24157 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
24158 		if (new_ill == NULL) {
24159 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24160 			return;
24161 		}
24162 
24163 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
24164 		new_ill->ill_isv6 = ill->ill_isv6;
24165 		new_ill->next = *ills;
24166 		*ills = new_ill;
24167 	} else if (!sadb_resync) {
24168 		/* not resync'ing SADB and an entry exists for this ill */
24169 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24170 		return;
24171 	}
24172 
24173 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24174 
24175 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
24176 		/*
24177 		 * IPsec module for protocol loaded, initiate dump
24178 		 * of the SADB to this ill.
24179 		 */
24180 		sadb_ill_download(ill, sa_type);
24181 }
24182 
24183 /*
24184  * Remove an ill from the list of IPsec capable ills.
24185  */
24186 static void
24187 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
24188 {
24189 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
24190 	ip_stack_t	*ipst = ill->ill_ipst;
24191 
24192 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
24193 	    dl_cap == DL_CAPAB_IPSEC_ESP);
24194 
24195 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
24196 	    &ipst->ips_ipsec_capab_ills_esp;
24197 
24198 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
24199 
24200 	prev_ill = NULL;
24201 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
24202 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
24203 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
24204 		;
24205 	if (cur_ill == NULL) {
24206 		/* entry not found */
24207 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24208 		return;
24209 	}
24210 	if (prev_ill == NULL) {
24211 		/* entry at front of list */
24212 		*ills = NULL;
24213 	} else {
24214 		prev_ill->next = cur_ill->next;
24215 	}
24216 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
24217 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24218 }
24219 
24220 
24221 /*
24222  * Handling of DL_CONTROL_REQ messages that must be sent down to
24223  * an ill while having exclusive access.
24224  */
24225 /* ARGSUSED */
24226 static void
24227 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
24228 {
24229 	ill_t *ill = (ill_t *)q->q_ptr;
24230 
24231 	ill_dlpi_send(ill, mp);
24232 }
24233 
24234 
24235 /*
24236  * Called by SADB to send a DL_CONTROL_REQ message to every ill
24237  * supporting the specified IPsec protocol acceleration.
24238  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
24239  * We free the mblk and, if sa is non-null, release the held referece.
24240  */
24241 void
24242 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
24243     netstack_t *ns)
24244 {
24245 	ipsec_capab_ill_t *ici, *cur_ici;
24246 	ill_t *ill;
24247 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
24248 	ip_stack_t	*ipst = ns->netstack_ip;
24249 
24250 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
24251 	    ipst->ips_ipsec_capab_ills_esp;
24252 
24253 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
24254 
24255 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
24256 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
24257 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
24258 
24259 		/*
24260 		 * Handle the case where the ill goes away while the SADB is
24261 		 * attempting to send messages.  If it's going away, it's
24262 		 * nuking its shadow SADB, so we don't care..
24263 		 */
24264 
24265 		if (ill == NULL)
24266 			continue;
24267 
24268 		if (sa != NULL) {
24269 			/*
24270 			 * Make sure capabilities match before
24271 			 * sending SA to ill.
24272 			 */
24273 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
24274 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
24275 				ill_refrele(ill);
24276 				continue;
24277 			}
24278 
24279 			mutex_enter(&sa->ipsa_lock);
24280 			sa->ipsa_flags |= IPSA_F_HW;
24281 			mutex_exit(&sa->ipsa_lock);
24282 		}
24283 
24284 		/*
24285 		 * Copy template message, and add it to the front
24286 		 * of the mblk ship list. We want to avoid holding
24287 		 * the ipsec_capab_ills_lock while sending the
24288 		 * message to the ills.
24289 		 *
24290 		 * The b_next and b_prev are temporarily used
24291 		 * to build a list of mblks to be sent down, and to
24292 		 * save the ill to which they must be sent.
24293 		 */
24294 		nmp = copymsg(mp);
24295 		if (nmp == NULL) {
24296 			ill_refrele(ill);
24297 			continue;
24298 		}
24299 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
24300 		nmp->b_next = mp_ship_list;
24301 		mp_ship_list = nmp;
24302 		nmp->b_prev = (mblk_t *)ill;
24303 	}
24304 
24305 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
24306 
24307 	nmp = mp_ship_list;
24308 	while (nmp != NULL) {
24309 		/* restore the mblk to a sane state */
24310 		next_mp = nmp->b_next;
24311 		nmp->b_next = NULL;
24312 		ill = (ill_t *)nmp->b_prev;
24313 		nmp->b_prev = NULL;
24314 
24315 		/*
24316 		 * Ship the mblk to the ill, must be exclusive. Keep the
24317 		 * reference to the ill as qwriter_ip() does a ill_referele().
24318 		 */
24319 		(void) qwriter_ip(NULL, ill, ill->ill_wq, nmp,
24320 		    ill_ipsec_capab_send_writer, NEW_OP, B_TRUE);
24321 
24322 		nmp = next_mp;
24323 	}
24324 
24325 	if (sa != NULL)
24326 		IPSA_REFRELE(sa);
24327 	freemsg(mp);
24328 }
24329 
24330 
24331 /*
24332  * Derive an interface id from the link layer address.
24333  * Knows about IEEE 802 and IEEE EUI-64 mappings.
24334  */
24335 static boolean_t
24336 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24337 {
24338 	char		*addr;
24339 
24340 	if (phys_length != ETHERADDRL)
24341 		return (B_FALSE);
24342 
24343 	/* Form EUI-64 like address */
24344 	addr = (char *)&v6addr->s6_addr32[2];
24345 	bcopy((char *)phys_addr, addr, 3);
24346 	addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
24347 	addr[3] = (char)0xff;
24348 	addr[4] = (char)0xfe;
24349 	bcopy((char *)phys_addr + 3, addr + 5, 3);
24350 	return (B_TRUE);
24351 }
24352 
24353 /* ARGSUSED */
24354 static boolean_t
24355 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24356 {
24357 	return (B_FALSE);
24358 }
24359 
24360 /* ARGSUSED */
24361 static boolean_t
24362 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24363     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24364 {
24365 	/*
24366 	 * Multicast address mappings used over Ethernet/802.X.
24367 	 * This address is used as a base for mappings.
24368 	 */
24369 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
24370 	    0x00, 0x00, 0x00};
24371 
24372 	/*
24373 	 * Extract low order 32 bits from IPv6 multicast address.
24374 	 * Or that into the link layer address, starting from the
24375 	 * second byte.
24376 	 */
24377 	*hw_start = 2;
24378 	v6_extract_mask->s6_addr32[0] = 0;
24379 	v6_extract_mask->s6_addr32[1] = 0;
24380 	v6_extract_mask->s6_addr32[2] = 0;
24381 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24382 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
24383 	return (B_TRUE);
24384 }
24385 
24386 /*
24387  * Indicate by return value whether multicast is supported. If not,
24388  * this code should not touch/change any parameters.
24389  */
24390 /* ARGSUSED */
24391 static boolean_t
24392 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24393     uint32_t *hw_start, ipaddr_t *extract_mask)
24394 {
24395 	/*
24396 	 * Multicast address mappings used over Ethernet/802.X.
24397 	 * This address is used as a base for mappings.
24398 	 */
24399 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
24400 	    0x00, 0x00, 0x00 };
24401 
24402 	if (phys_length != ETHERADDRL)
24403 		return (B_FALSE);
24404 
24405 	*extract_mask = htonl(0x007fffff);
24406 	*hw_start = 2;
24407 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
24408 	return (B_TRUE);
24409 }
24410 
24411 /*
24412  * Derive IPoIB interface id from the link layer address.
24413  */
24414 static boolean_t
24415 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr)
24416 {
24417 	char		*addr;
24418 
24419 	if (phys_length != 20)
24420 		return (B_FALSE);
24421 	addr = (char *)&v6addr->s6_addr32[2];
24422 	bcopy(phys_addr + 12, addr, 8);
24423 	/*
24424 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
24425 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
24426 	 * rules. In these cases, the IBA considers these GUIDs to be in
24427 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
24428 	 * required; vendors are required not to assign global EUI-64's
24429 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
24430 	 * of the interface identifier. Whether the GUID is in modified
24431 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
24432 	 * bit set to 1.
24433 	 */
24434 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
24435 	return (B_TRUE);
24436 }
24437 
24438 /*
24439  * Note on mapping from multicast IP addresses to IPoIB multicast link
24440  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
24441  * The format of an IPoIB multicast address is:
24442  *
24443  *  4 byte QPN      Scope Sign.  Pkey
24444  * +--------------------------------------------+
24445  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
24446  * +--------------------------------------------+
24447  *
24448  * The Scope and Pkey components are properties of the IBA port and
24449  * network interface. They can be ascertained from the broadcast address.
24450  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
24451  */
24452 
24453 static boolean_t
24454 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
24455     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
24456 {
24457 	/*
24458 	 * Base IPoIB IPv6 multicast address used for mappings.
24459 	 * Does not contain the IBA scope/Pkey values.
24460 	 */
24461 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24462 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
24463 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24464 
24465 	/*
24466 	 * Extract low order 80 bits from IPv6 multicast address.
24467 	 * Or that into the link layer address, starting from the
24468 	 * sixth byte.
24469 	 */
24470 	*hw_start = 6;
24471 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
24472 
24473 	/*
24474 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24475 	 */
24476 	*(maddr + 5) = *(bphys_addr + 5);
24477 	*(maddr + 8) = *(bphys_addr + 8);
24478 	*(maddr + 9) = *(bphys_addr + 9);
24479 
24480 	v6_extract_mask->s6_addr32[0] = 0;
24481 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
24482 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
24483 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
24484 	return (B_TRUE);
24485 }
24486 
24487 static boolean_t
24488 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
24489     uint32_t *hw_start, ipaddr_t *extract_mask)
24490 {
24491 	/*
24492 	 * Base IPoIB IPv4 multicast address used for mappings.
24493 	 * Does not contain the IBA scope/Pkey values.
24494 	 */
24495 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
24496 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
24497 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
24498 
24499 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
24500 		return (B_FALSE);
24501 
24502 	/*
24503 	 * Extract low order 28 bits from IPv4 multicast address.
24504 	 * Or that into the link layer address, starting from the
24505 	 * sixteenth byte.
24506 	 */
24507 	*extract_mask = htonl(0x0fffffff);
24508 	*hw_start = 16;
24509 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
24510 
24511 	/*
24512 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
24513 	 */
24514 	*(maddr + 5) = *(bphys_addr + 5);
24515 	*(maddr + 8) = *(bphys_addr + 8);
24516 	*(maddr + 9) = *(bphys_addr + 9);
24517 	return (B_TRUE);
24518 }
24519 
24520 /*
24521  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
24522  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
24523  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
24524  * the link-local address is preferred.
24525  */
24526 boolean_t
24527 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24528 {
24529 	ipif_t	*ipif;
24530 	ipif_t	*maybe_ipif = NULL;
24531 
24532 	mutex_enter(&ill->ill_lock);
24533 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24534 		mutex_exit(&ill->ill_lock);
24535 		if (ipifp != NULL)
24536 			*ipifp = NULL;
24537 		return (B_FALSE);
24538 	}
24539 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24540 		if (!IPIF_CAN_LOOKUP(ipif))
24541 			continue;
24542 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
24543 		    ipif->ipif_zoneid != ALL_ZONES)
24544 			continue;
24545 		if ((ipif->ipif_flags & flags) != flags)
24546 			continue;
24547 
24548 		if (ipifp == NULL) {
24549 			mutex_exit(&ill->ill_lock);
24550 			ASSERT(maybe_ipif == NULL);
24551 			return (B_TRUE);
24552 		}
24553 		if (!ill->ill_isv6 ||
24554 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
24555 			ipif_refhold_locked(ipif);
24556 			mutex_exit(&ill->ill_lock);
24557 			*ipifp = ipif;
24558 			return (B_TRUE);
24559 		}
24560 		if (maybe_ipif == NULL)
24561 			maybe_ipif = ipif;
24562 	}
24563 	if (ipifp != NULL) {
24564 		if (maybe_ipif != NULL)
24565 			ipif_refhold_locked(maybe_ipif);
24566 		*ipifp = maybe_ipif;
24567 	}
24568 	mutex_exit(&ill->ill_lock);
24569 	return (maybe_ipif != NULL);
24570 }
24571 
24572 /*
24573  * Same as ipif_lookup_zoneid() but looks at all the ills in the same group.
24574  */
24575 boolean_t
24576 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
24577 {
24578 	ill_t *illg;
24579 	ip_stack_t	*ipst = ill->ill_ipst;
24580 
24581 	/*
24582 	 * We look at the passed-in ill first without grabbing ill_g_lock.
24583 	 */
24584 	if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) {
24585 		return (B_TRUE);
24586 	}
24587 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
24588 	if (ill->ill_group == NULL) {
24589 		/* ill not in a group */
24590 		rw_exit(&ipst->ips_ill_g_lock);
24591 		return (B_FALSE);
24592 	}
24593 
24594 	/*
24595 	 * There's no ipif in the zone on ill, however ill is part of an IPMP
24596 	 * group. We need to look for an ipif in the zone on all the ills in the
24597 	 * group.
24598 	 */
24599 	illg = ill->ill_group->illgrp_ill;
24600 	do {
24601 		/*
24602 		 * We don't call ipif_lookup_zoneid() on ill as we already know
24603 		 * that it's not there.
24604 		 */
24605 		if (illg != ill &&
24606 		    ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) {
24607 			break;
24608 		}
24609 	} while ((illg = illg->ill_group_next) != NULL);
24610 	rw_exit(&ipst->ips_ill_g_lock);
24611 	return (illg != NULL);
24612 }
24613 
24614 /*
24615  * Check if this ill is only being used to send ICMP probes for IPMP
24616  */
24617 boolean_t
24618 ill_is_probeonly(ill_t *ill)
24619 {
24620 	/*
24621 	 * Check if the interface is FAILED, or INACTIVE
24622 	 */
24623 	if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE))
24624 		return (B_TRUE);
24625 
24626 	return (B_FALSE);
24627 }
24628 
24629 /*
24630  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
24631  * If a pointer to an ipif_t is returned then the caller will need to do
24632  * an ill_refrele().
24633  *
24634  * If there is no real interface which matches the ifindex, then it looks
24635  * for a group that has a matching index. In the case of a group match the
24636  * lifidx must be zero. We don't need emulate the logical interfaces
24637  * since IP Filter's use of netinfo doesn't use that.
24638  */
24639 ipif_t *
24640 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
24641     ip_stack_t *ipst)
24642 {
24643 	ipif_t *ipif;
24644 	ill_t *ill;
24645 
24646 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
24647 	    ipst);
24648 
24649 	if (ill == NULL) {
24650 		/* Fallback to group names only if hook_emulation set */
24651 		if (!ipst->ips_ipmp_hook_emulation)
24652 			return (NULL);
24653 
24654 		if (lifidx != 0)
24655 			return (NULL);
24656 		ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst);
24657 		if (ill == NULL)
24658 			return (NULL);
24659 	}
24660 
24661 	mutex_enter(&ill->ill_lock);
24662 	if (ill->ill_state_flags & ILL_CONDEMNED) {
24663 		mutex_exit(&ill->ill_lock);
24664 		ill_refrele(ill);
24665 		return (NULL);
24666 	}
24667 
24668 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
24669 		if (!IPIF_CAN_LOOKUP(ipif))
24670 			continue;
24671 		if (lifidx == ipif->ipif_id) {
24672 			ipif_refhold_locked(ipif);
24673 			break;
24674 		}
24675 	}
24676 
24677 	mutex_exit(&ill->ill_lock);
24678 	ill_refrele(ill);
24679 	return (ipif);
24680 }
24681 
24682 /*
24683  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
24684  * There is one exceptions IRE_BROADCAST are difficult to recreate,
24685  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
24686  * for details.
24687  */
24688 void
24689 ill_fastpath_flush(ill_t *ill)
24690 {
24691 	ip_stack_t *ipst = ill->ill_ipst;
24692 
24693 	nce_fastpath_list_dispatch(ill, NULL, NULL);
24694 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
24695 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
24696 }
24697 
24698 /*
24699  * Set the physical address information for `ill' to the contents of the
24700  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
24701  * asynchronous if `ill' cannot immediately be quiesced -- in which case
24702  * EINPROGRESS will be returned.
24703  */
24704 int
24705 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
24706 {
24707 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
24708 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
24709 
24710 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24711 
24712 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
24713 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
24714 		/* Changing DL_IPV6_TOKEN is not yet supported */
24715 		return (0);
24716 	}
24717 
24718 	/*
24719 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
24720 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
24721 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
24722 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
24723 	 */
24724 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
24725 		freemsg(mp);
24726 		return (ENOMEM);
24727 	}
24728 
24729 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
24730 
24731 	/*
24732 	 * If we can quiesce the ill, then set the address.  If not, then
24733 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
24734 	 */
24735 	ill_down_ipifs(ill, NULL, 0, B_FALSE);
24736 	mutex_enter(&ill->ill_lock);
24737 	if (!ill_is_quiescent(ill)) {
24738 		/* call cannot fail since `conn_t *' argument is NULL */
24739 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
24740 		    mp, ILL_DOWN);
24741 		mutex_exit(&ill->ill_lock);
24742 		return (EINPROGRESS);
24743 	}
24744 	mutex_exit(&ill->ill_lock);
24745 
24746 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
24747 	return (0);
24748 }
24749 
24750 /*
24751  * Once the ill associated with `q' has quiesced, set its physical address
24752  * information to the values in `addrmp'.  Note that two copies of `addrmp'
24753  * are passed (linked by b_cont), since we sometimes need to save two distinct
24754  * copies in the ill_t, and our context doesn't permit sleeping or allocation
24755  * failure (we'll free the other copy if it's not needed).  Since the ill_t
24756  * is quiesced, we know any stale IREs with the old address information have
24757  * already been removed, so we don't need to call ill_fastpath_flush().
24758  */
24759 /* ARGSUSED */
24760 static void
24761 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
24762 {
24763 	ill_t		*ill = q->q_ptr;
24764 	mblk_t		*addrmp2 = unlinkb(addrmp);
24765 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
24766 	uint_t		addrlen, addroff;
24767 
24768 	ASSERT(IAM_WRITER_IPSQ(ipsq));
24769 
24770 	addroff	= dlindp->dl_addr_offset;
24771 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
24772 
24773 	switch (dlindp->dl_data) {
24774 	case DL_IPV6_LINK_LAYER_ADDR:
24775 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
24776 		freemsg(addrmp2);
24777 		break;
24778 
24779 	case DL_CURR_PHYS_ADDR:
24780 		freemsg(ill->ill_phys_addr_mp);
24781 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
24782 		ill->ill_phys_addr_mp = addrmp;
24783 		ill->ill_phys_addr_length = addrlen;
24784 
24785 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
24786 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
24787 		else
24788 			freemsg(addrmp2);
24789 		break;
24790 	default:
24791 		ASSERT(0);
24792 	}
24793 
24794 	/*
24795 	 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero,
24796 	 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer()
24797 	 * or ip_arp_done() when the last ipif is brought up.
24798 	 */
24799 	if (ill_up_ipifs(ill, q, addrmp) == 0)
24800 		ipsq_current_finish(ipsq);
24801 }
24802 
24803 /*
24804  * Helper routine for setting the ill_nd_lla fields.
24805  */
24806 void
24807 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
24808 {
24809 	freemsg(ill->ill_nd_lla_mp);
24810 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
24811 	ill->ill_nd_lla_mp = ndmp;
24812 	ill->ill_nd_lla_len = addrlen;
24813 }
24814 
24815 
24816 
24817 major_t IP_MAJ;
24818 #define	IP	"ip"
24819 
24820 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
24821 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
24822 
24823 /*
24824  * Issue REMOVEIF ioctls to have the loopback interfaces
24825  * go away.  Other interfaces are either I_LINKed or I_PLINKed;
24826  * the former going away when the user-level processes in the zone
24827  * are killed  * and the latter are cleaned up by the stream head
24828  * str_stack_shutdown callback that undoes all I_PLINKs.
24829  */
24830 void
24831 ip_loopback_cleanup(ip_stack_t *ipst)
24832 {
24833 	int error;
24834 	ldi_handle_t	lh = NULL;
24835 	ldi_ident_t	li = NULL;
24836 	int		rval;
24837 	cred_t		*cr;
24838 	struct strioctl iocb;
24839 	struct lifreq	lifreq;
24840 
24841 	IP_MAJ = ddi_name_to_major(IP);
24842 
24843 #ifdef NS_DEBUG
24844 	(void) printf("ip_loopback_cleanup() stackid %d\n",
24845 	    ipst->ips_netstack->netstack_stackid);
24846 #endif
24847 
24848 	bzero(&lifreq, sizeof (lifreq));
24849 	(void) strcpy(lifreq.lifr_name, ipif_loopback_name);
24850 
24851 	error = ldi_ident_from_major(IP_MAJ, &li);
24852 	if (error) {
24853 #ifdef DEBUG
24854 		printf("ip_loopback_cleanup: lyr ident get failed error %d\n",
24855 		    error);
24856 #endif
24857 		return;
24858 	}
24859 
24860 	cr = zone_get_kcred(netstackid_to_zoneid(
24861 		ipst->ips_netstack->netstack_stackid));
24862 	ASSERT(cr != NULL);
24863 	error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li);
24864 	if (error) {
24865 #ifdef DEBUG
24866 		printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n",
24867 		    error);
24868 #endif
24869 		goto out;
24870 	}
24871 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24872 	iocb.ic_timout = 15;
24873 	iocb.ic_len = sizeof (lifreq);
24874 	iocb.ic_dp = (char *)&lifreq;
24875 
24876 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24877 	/* LINTED - statement has no consequent */
24878 	if (error) {
24879 #ifdef NS_DEBUG
24880 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24881 		    "UDP6 error %d\n", error);
24882 #endif
24883 	}
24884 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24885 	lh = NULL;
24886 
24887 	error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li);
24888 	if (error) {
24889 #ifdef NS_DEBUG
24890 		printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n",
24891 		    error);
24892 #endif
24893 		goto out;
24894 	}
24895 
24896 	iocb.ic_cmd = SIOCLIFREMOVEIF;
24897 	iocb.ic_timout = 15;
24898 	iocb.ic_len = sizeof (lifreq);
24899 	iocb.ic_dp = (char *)&lifreq;
24900 
24901 	error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval);
24902 	/* LINTED - statement has no consequent */
24903 	if (error) {
24904 #ifdef NS_DEBUG
24905 		printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on "
24906 		    "UDP error %d\n", error);
24907 #endif
24908 	}
24909 	(void) ldi_close(lh, FREAD|FWRITE, cr);
24910 	lh = NULL;
24911 
24912 out:
24913 	/* Close layered handles */
24914 	if (lh)
24915 		(void) ldi_close(lh, FREAD|FWRITE, cr);
24916 	if (li)
24917 		ldi_ident_release(li);
24918 
24919 	crfree(cr);
24920 }
24921