1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 #include <sys/bitmap.h> 49 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 135 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 136 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 143 mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 149 int ioccmd, struct linkblk *li, boolean_t doconsist); 150 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 151 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 152 static void ipsq_flush(ill_t *ill); 153 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 162 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 163 boolean_t isv6); 164 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 165 static void ipif_delete_cache_ire(ire_t *, char *); 166 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 167 static void ipif_free(ipif_t *ipif); 168 static void ipif_free_tail(ipif_t *ipif); 169 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 170 static void ipif_multicast_down(ipif_t *ipif); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static boolean_t ill_has_usable_ipif(ill_t *); 194 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 195 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 196 static void ill_phyint_free(ill_t *ill); 197 static void ill_phyint_reinit(ill_t *ill); 198 static void ill_set_nce_router_flags(ill_t *, boolean_t); 199 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 200 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 201 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 202 static void ill_stq_cache_delete(ire_t *, char *); 203 204 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 206 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 207 in6_addr_t *); 208 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 ipaddr_t *); 210 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 211 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 212 in6_addr_t *); 213 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 ipaddr_t *); 215 216 static void ipif_save_ire(ipif_t *, ire_t *); 217 static void ipif_remove_ire(ipif_t *, ire_t *); 218 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 219 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 220 221 /* 222 * Per-ill IPsec capabilities management. 223 */ 224 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 225 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 226 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 227 static void ill_ipsec_capab_delete(ill_t *, uint_t); 228 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 229 static void ill_capability_proto(ill_t *, int, mblk_t *); 230 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 231 boolean_t); 232 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 235 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 236 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 237 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 239 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 240 dl_capability_sub_t *); 241 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 242 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 243 static void ill_capability_lso_reset(ill_t *, mblk_t **); 244 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 245 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 246 static void ill_capability_dls_reset(ill_t *, mblk_t **); 247 static void ill_capability_dls_disable(ill_t *); 248 249 static void illgrp_cache_delete(ire_t *, char *); 250 static void illgrp_delete(ill_t *ill); 251 static void illgrp_reset_schednext(ill_t *ill); 252 253 static ill_t *ill_prev_usesrc(ill_t *); 254 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 255 static void ill_disband_usesrc_group(ill_t *); 256 257 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 258 259 #ifdef DEBUG 260 static void ill_trace_cleanup(const ill_t *); 261 static void ipif_trace_cleanup(const ipif_t *); 262 #endif 263 264 /* 265 * if we go over the memory footprint limit more than once in this msec 266 * interval, we'll start pruning aggressively. 267 */ 268 int ip_min_frag_prune_time = 0; 269 270 /* 271 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 272 * and the IPsec DOI 273 */ 274 #define MAX_IPSEC_ALGS 256 275 276 #define BITSPERBYTE 8 277 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 278 279 #define IPSEC_ALG_ENABLE(algs, algid) \ 280 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 281 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 282 283 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 284 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 285 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 286 287 typedef uint8_t ipsec_capab_elem_t; 288 289 /* 290 * Per-algorithm parameters. Note that at present, only encryption 291 * algorithms have variable keysize (IKE does not provide a way to negotiate 292 * auth algorithm keysize). 293 * 294 * All sizes here are in bits. 295 */ 296 typedef struct 297 { 298 uint16_t minkeylen; 299 uint16_t maxkeylen; 300 } ipsec_capab_algparm_t; 301 302 /* 303 * Per-ill capabilities. 304 */ 305 struct ill_ipsec_capab_s { 306 ipsec_capab_elem_t *encr_hw_algs; 307 ipsec_capab_elem_t *auth_hw_algs; 308 uint32_t algs_size; /* size of _hw_algs in bytes */ 309 /* algorithm key lengths */ 310 ipsec_capab_algparm_t *encr_algparm; 311 uint32_t encr_algparm_size; 312 uint32_t encr_algparm_end; 313 }; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 393 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 394 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 916 if (ill->ill_frag_ptr != NULL) { 917 uint_t count; 918 919 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 920 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 921 } 922 mi_free(ill->ill_frag_ptr); 923 ill->ill_frag_ptr = NULL; 924 ill->ill_frag_hash_tbl = NULL; 925 } 926 927 freemsg(ill->ill_nd_lla_mp); 928 /* Free all retained control messages. */ 929 mpp = &ill->ill_first_mp_to_free; 930 do { 931 while (mpp[0]) { 932 mblk_t *mp; 933 mblk_t *mp1; 934 935 mp = mpp[0]; 936 mpp[0] = mp->b_next; 937 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 938 mp1->b_next = NULL; 939 mp1->b_prev = NULL; 940 } 941 freemsg(mp); 942 } 943 } while (mpp++ != &ill->ill_last_mp_to_free); 944 945 ill_free_mib(ill); 946 947 #ifdef DEBUG 948 ill_trace_cleanup(ill); 949 #endif 950 951 /* Drop refcnt here */ 952 netstack_rele(ill->ill_ipst->ips_netstack); 953 ill->ill_ipst = NULL; 954 } 955 956 static void 957 ill_free_mib(ill_t *ill) 958 { 959 ip_stack_t *ipst = ill->ill_ipst; 960 961 /* 962 * MIB statistics must not be lost, so when an interface 963 * goes away the counter values will be added to the global 964 * MIBs. 965 */ 966 if (ill->ill_ip_mib != NULL) { 967 if (ill->ill_isv6) { 968 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 969 ill->ill_ip_mib); 970 } else { 971 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 972 ill->ill_ip_mib); 973 } 974 975 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 976 ill->ill_ip_mib = NULL; 977 } 978 if (ill->ill_icmp6_mib != NULL) { 979 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 980 ill->ill_icmp6_mib); 981 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 982 ill->ill_icmp6_mib = NULL; 983 } 984 } 985 986 /* 987 * Concatenate together a physical address and a sap. 988 * 989 * Sap_lengths are interpreted as follows: 990 * sap_length == 0 ==> no sap 991 * sap_length > 0 ==> sap is at the head of the dlpi address 992 * sap_length < 0 ==> sap is at the tail of the dlpi address 993 */ 994 static void 995 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 996 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 997 { 998 uint16_t sap_addr = (uint16_t)sap_src; 999 1000 if (sap_length == 0) { 1001 if (phys_src == NULL) 1002 bzero(dst, phys_length); 1003 else 1004 bcopy(phys_src, dst, phys_length); 1005 } else if (sap_length < 0) { 1006 if (phys_src == NULL) 1007 bzero(dst, phys_length); 1008 else 1009 bcopy(phys_src, dst, phys_length); 1010 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1011 } else { 1012 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1013 if (phys_src == NULL) 1014 bzero((char *)dst + sap_length, phys_length); 1015 else 1016 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1017 } 1018 } 1019 1020 /* 1021 * Generate a dl_unitdata_req mblk for the device and address given. 1022 * addr_length is the length of the physical portion of the address. 1023 * If addr is NULL include an all zero address of the specified length. 1024 * TRUE? In any case, addr_length is taken to be the entire length of the 1025 * dlpi address, including the absolute value of sap_length. 1026 */ 1027 mblk_t * 1028 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1029 t_scalar_t sap_length) 1030 { 1031 dl_unitdata_req_t *dlur; 1032 mblk_t *mp; 1033 t_scalar_t abs_sap_length; /* absolute value */ 1034 1035 abs_sap_length = ABS(sap_length); 1036 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1037 DL_UNITDATA_REQ); 1038 if (mp == NULL) 1039 return (NULL); 1040 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1041 /* HACK: accomodate incompatible DLPI drivers */ 1042 if (addr_length == 8) 1043 addr_length = 6; 1044 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1045 dlur->dl_dest_addr_offset = sizeof (*dlur); 1046 dlur->dl_priority.dl_min = 0; 1047 dlur->dl_priority.dl_max = 0; 1048 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1049 (uchar_t *)&dlur[1]); 1050 return (mp); 1051 } 1052 1053 /* 1054 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1055 * Return an error if we already have 1 or more ioctls in progress. 1056 * This is used only for non-exclusive ioctls. Currently this is used 1057 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1058 * and thus need to use ipsq_pending_mp_add. 1059 */ 1060 boolean_t 1061 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1062 { 1063 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1064 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1065 /* 1066 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1067 */ 1068 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1069 (add_mp->b_datap->db_type == M_IOCTL)); 1070 1071 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1072 /* 1073 * Return error if the conn has started closing. The conn 1074 * could have finished cleaning up the pending mp list, 1075 * If so we should not add another mp to the list negating 1076 * the cleanup. 1077 */ 1078 if (connp->conn_state_flags & CONN_CLOSING) 1079 return (B_FALSE); 1080 /* 1081 * Add the pending mp to the head of the list, chained by b_next. 1082 * Note down the conn on which the ioctl request came, in b_prev. 1083 * This will be used to later get the conn, when we get a response 1084 * on the ill queue, from some other module (typically arp) 1085 */ 1086 add_mp->b_next = (void *)ill->ill_pending_mp; 1087 add_mp->b_queue = CONNP_TO_WQ(connp); 1088 ill->ill_pending_mp = add_mp; 1089 if (connp != NULL) 1090 connp->conn_oper_pending_ill = ill; 1091 return (B_TRUE); 1092 } 1093 1094 /* 1095 * Retrieve the ill_pending_mp and return it. We have to walk the list 1096 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1097 */ 1098 mblk_t * 1099 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1100 { 1101 mblk_t *prev = NULL; 1102 mblk_t *curr = NULL; 1103 uint_t id; 1104 conn_t *connp; 1105 1106 /* 1107 * When the conn closes, conn_ioctl_cleanup needs to clean 1108 * up the pending mp, but it does not know the ioc_id and 1109 * passes in a zero for it. 1110 */ 1111 mutex_enter(&ill->ill_lock); 1112 if (ioc_id != 0) 1113 *connpp = NULL; 1114 1115 /* Search the list for the appropriate ioctl based on ioc_id */ 1116 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1117 prev = curr, curr = curr->b_next) { 1118 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1119 connp = Q_TO_CONN(curr->b_queue); 1120 /* Match based on the ioc_id or based on the conn */ 1121 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1122 break; 1123 } 1124 1125 if (curr != NULL) { 1126 /* Unlink the mblk from the pending mp list */ 1127 if (prev != NULL) { 1128 prev->b_next = curr->b_next; 1129 } else { 1130 ASSERT(ill->ill_pending_mp == curr); 1131 ill->ill_pending_mp = curr->b_next; 1132 } 1133 1134 /* 1135 * conn refcnt must have been bumped up at the start of 1136 * the ioctl. So we can safely access the conn. 1137 */ 1138 ASSERT(CONN_Q(curr->b_queue)); 1139 *connpp = Q_TO_CONN(curr->b_queue); 1140 curr->b_next = NULL; 1141 curr->b_queue = NULL; 1142 } 1143 1144 mutex_exit(&ill->ill_lock); 1145 1146 return (curr); 1147 } 1148 1149 /* 1150 * Add the pending mp to the list. There can be only 1 pending mp 1151 * in the list. Any exclusive ioctl that needs to wait for a response 1152 * from another module or driver needs to use this function to set 1153 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1154 * the other module/driver. This is also used while waiting for the 1155 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1156 */ 1157 boolean_t 1158 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1159 int waitfor) 1160 { 1161 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1162 1163 ASSERT(IAM_WRITER_IPIF(ipif)); 1164 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1165 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1166 ASSERT(ipsq->ipsq_pending_mp == NULL); 1167 /* 1168 * The caller may be using a different ipif than the one passed into 1169 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1170 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1171 * that `ipsq_current_ipif == ipif'. 1172 */ 1173 ASSERT(ipsq->ipsq_current_ipif != NULL); 1174 1175 /* 1176 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1177 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1178 */ 1179 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1180 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1181 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1182 1183 if (connp != NULL) { 1184 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1185 /* 1186 * Return error if the conn has started closing. The conn 1187 * could have finished cleaning up the pending mp list, 1188 * If so we should not add another mp to the list negating 1189 * the cleanup. 1190 */ 1191 if (connp->conn_state_flags & CONN_CLOSING) 1192 return (B_FALSE); 1193 } 1194 mutex_enter(&ipsq->ipsq_lock); 1195 ipsq->ipsq_pending_ipif = ipif; 1196 /* 1197 * Note down the queue in b_queue. This will be returned by 1198 * ipsq_pending_mp_get. Caller will then use these values to restart 1199 * the processing 1200 */ 1201 add_mp->b_next = NULL; 1202 add_mp->b_queue = q; 1203 ipsq->ipsq_pending_mp = add_mp; 1204 ipsq->ipsq_waitfor = waitfor; 1205 1206 if (connp != NULL) 1207 connp->conn_oper_pending_ill = ipif->ipif_ill; 1208 mutex_exit(&ipsq->ipsq_lock); 1209 return (B_TRUE); 1210 } 1211 1212 /* 1213 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1214 * queued in the list. 1215 */ 1216 mblk_t * 1217 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1218 { 1219 mblk_t *curr = NULL; 1220 1221 mutex_enter(&ipsq->ipsq_lock); 1222 *connpp = NULL; 1223 if (ipsq->ipsq_pending_mp == NULL) { 1224 mutex_exit(&ipsq->ipsq_lock); 1225 return (NULL); 1226 } 1227 1228 /* There can be only 1 such excl message */ 1229 curr = ipsq->ipsq_pending_mp; 1230 ASSERT(curr != NULL && curr->b_next == NULL); 1231 ipsq->ipsq_pending_ipif = NULL; 1232 ipsq->ipsq_pending_mp = NULL; 1233 ipsq->ipsq_waitfor = 0; 1234 mutex_exit(&ipsq->ipsq_lock); 1235 1236 if (CONN_Q(curr->b_queue)) { 1237 /* 1238 * This mp did a refhold on the conn, at the start of the ioctl. 1239 * So we can safely return a pointer to the conn to the caller. 1240 */ 1241 *connpp = Q_TO_CONN(curr->b_queue); 1242 } else { 1243 *connpp = NULL; 1244 } 1245 curr->b_next = NULL; 1246 curr->b_prev = NULL; 1247 return (curr); 1248 } 1249 1250 /* 1251 * Cleanup the ioctl mp queued in ipsq_pending_mp 1252 * - Called in the ill_delete path 1253 * - Called in the M_ERROR or M_HANGUP path on the ill. 1254 * - Called in the conn close path. 1255 */ 1256 boolean_t 1257 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1258 { 1259 mblk_t *mp; 1260 ipsq_t *ipsq; 1261 queue_t *q; 1262 ipif_t *ipif; 1263 1264 ASSERT(IAM_WRITER_ILL(ill)); 1265 ipsq = ill->ill_phyint->phyint_ipsq; 1266 mutex_enter(&ipsq->ipsq_lock); 1267 /* 1268 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1269 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1270 * even if it is meant for another ill, since we have to enqueue 1271 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1272 * If connp is non-null we are called from the conn close path. 1273 */ 1274 mp = ipsq->ipsq_pending_mp; 1275 if (mp == NULL || (connp != NULL && 1276 mp->b_queue != CONNP_TO_WQ(connp))) { 1277 mutex_exit(&ipsq->ipsq_lock); 1278 return (B_FALSE); 1279 } 1280 /* Now remove from the ipsq_pending_mp */ 1281 ipsq->ipsq_pending_mp = NULL; 1282 q = mp->b_queue; 1283 mp->b_next = NULL; 1284 mp->b_prev = NULL; 1285 mp->b_queue = NULL; 1286 1287 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1288 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1289 if (ill->ill_move_in_progress) { 1290 ILL_CLEAR_MOVE(ill); 1291 } else if (ill->ill_up_ipifs) { 1292 ill_group_cleanup(ill); 1293 } 1294 1295 ipif = ipsq->ipsq_pending_ipif; 1296 ipsq->ipsq_pending_ipif = NULL; 1297 ipsq->ipsq_waitfor = 0; 1298 ipsq->ipsq_current_ipif = NULL; 1299 ipsq->ipsq_current_ioctl = 0; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_dhcpinit_ill == ill) { 1530 connp->conn_dhcpinit_ill = NULL; 1531 ASSERT(ill->ill_dhcpinit != 0); 1532 atomic_dec_32(&ill->ill_dhcpinit); 1533 } 1534 if (connp->conn_ire_cache != NULL) { 1535 ire = connp->conn_ire_cache; 1536 /* 1537 * ip_newroute creates IRE_CACHE with ire_stq coming from 1538 * interface X and ipif coming from interface Y, if interface 1539 * X and Y are part of the same IPMPgroup. Thus whenever 1540 * interface X goes down, remove all references to it by 1541 * checking both on ire_ipif and ire_stq. 1542 */ 1543 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1544 (ire->ire_type == IRE_CACHE && 1545 ire->ire_stq == ill->ill_wq)) { 1546 connp->conn_ire_cache = NULL; 1547 mutex_exit(&connp->conn_lock); 1548 ire_refrele_notr(ire); 1549 return; 1550 } 1551 } 1552 mutex_exit(&connp->conn_lock); 1553 1554 } 1555 1556 /* ARGSUSED */ 1557 void 1558 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1559 { 1560 ill_t *ill = q->q_ptr; 1561 ipif_t *ipif; 1562 1563 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1564 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1565 ipif_non_duplicate(ipif); 1566 ipif_down_tail(ipif); 1567 } 1568 freemsg(mp); 1569 ipsq_current_finish(ipsq); 1570 } 1571 1572 /* 1573 * ill_down_start is called when we want to down this ill and bring it up again 1574 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1575 * all interfaces, but don't tear down any plumbing. 1576 */ 1577 boolean_t 1578 ill_down_start(queue_t *q, mblk_t *mp) 1579 { 1580 ill_t *ill = q->q_ptr; 1581 ipif_t *ipif; 1582 1583 ASSERT(IAM_WRITER_ILL(ill)); 1584 1585 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1586 (void) ipif_down(ipif, NULL, NULL); 1587 1588 ill_down(ill); 1589 1590 (void) ipsq_pending_mp_cleanup(ill, NULL); 1591 1592 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1593 1594 /* 1595 * Atomically test and add the pending mp if references are active. 1596 */ 1597 mutex_enter(&ill->ill_lock); 1598 if (!ill_is_quiescent(ill)) { 1599 /* call cannot fail since `conn_t *' argument is NULL */ 1600 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1601 mp, ILL_DOWN); 1602 mutex_exit(&ill->ill_lock); 1603 return (B_FALSE); 1604 } 1605 mutex_exit(&ill->ill_lock); 1606 return (B_TRUE); 1607 } 1608 1609 static void 1610 ill_down(ill_t *ill) 1611 { 1612 ip_stack_t *ipst = ill->ill_ipst; 1613 1614 /* Blow off any IREs dependent on this ILL. */ 1615 ire_walk(ill_downi, (char *)ill, ipst); 1616 1617 /* Remove any conn_*_ill depending on this ill */ 1618 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1619 1620 if (ill->ill_group != NULL) { 1621 illgrp_delete(ill); 1622 } 1623 } 1624 1625 /* 1626 * ire_walk routine used to delete every IRE that depends on queues 1627 * associated with 'ill'. (Always called as writer.) 1628 */ 1629 static void 1630 ill_downi(ire_t *ire, char *ill_arg) 1631 { 1632 ill_t *ill = (ill_t *)ill_arg; 1633 1634 /* 1635 * ip_newroute creates IRE_CACHE with ire_stq coming from 1636 * interface X and ipif coming from interface Y, if interface 1637 * X and Y are part of the same IPMP group. Thus whenever interface 1638 * X goes down, remove all references to it by checking both 1639 * on ire_ipif and ire_stq. 1640 */ 1641 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1642 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1643 ire_delete(ire); 1644 } 1645 } 1646 1647 /* 1648 * Remove ire/nce from the fastpath list. 1649 */ 1650 void 1651 ill_fastpath_nack(ill_t *ill) 1652 { 1653 nce_fastpath_list_dispatch(ill, NULL, NULL); 1654 } 1655 1656 /* Consume an M_IOCACK of the fastpath probe. */ 1657 void 1658 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1659 { 1660 mblk_t *mp1 = mp; 1661 1662 /* 1663 * If this was the first attempt turn on the fastpath probing. 1664 */ 1665 mutex_enter(&ill->ill_lock); 1666 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1667 ill->ill_dlpi_fastpath_state = IDS_OK; 1668 mutex_exit(&ill->ill_lock); 1669 1670 /* Free the M_IOCACK mblk, hold on to the data */ 1671 mp = mp->b_cont; 1672 freeb(mp1); 1673 if (mp == NULL) 1674 return; 1675 if (mp->b_cont != NULL) { 1676 /* 1677 * Update all IRE's or NCE's that are waiting for 1678 * fastpath update. 1679 */ 1680 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1681 mp1 = mp->b_cont; 1682 freeb(mp); 1683 mp = mp1; 1684 } else { 1685 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1686 } 1687 1688 freeb(mp); 1689 } 1690 1691 /* 1692 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1693 * The data portion of the request is a dl_unitdata_req_t template for 1694 * what we would send downstream in the absence of a fastpath confirmation. 1695 */ 1696 int 1697 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1698 { 1699 struct iocblk *ioc; 1700 mblk_t *mp; 1701 1702 if (dlur_mp == NULL) 1703 return (EINVAL); 1704 1705 mutex_enter(&ill->ill_lock); 1706 switch (ill->ill_dlpi_fastpath_state) { 1707 case IDS_FAILED: 1708 /* 1709 * Driver NAKed the first fastpath ioctl - assume it doesn't 1710 * support it. 1711 */ 1712 mutex_exit(&ill->ill_lock); 1713 return (ENOTSUP); 1714 case IDS_UNKNOWN: 1715 /* This is the first probe */ 1716 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1717 break; 1718 default: 1719 break; 1720 } 1721 mutex_exit(&ill->ill_lock); 1722 1723 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1724 return (EAGAIN); 1725 1726 mp->b_cont = copyb(dlur_mp); 1727 if (mp->b_cont == NULL) { 1728 freeb(mp); 1729 return (EAGAIN); 1730 } 1731 1732 ioc = (struct iocblk *)mp->b_rptr; 1733 ioc->ioc_count = msgdsize(mp->b_cont); 1734 1735 putnext(ill->ill_wq, mp); 1736 return (0); 1737 } 1738 1739 void 1740 ill_capability_probe(ill_t *ill) 1741 { 1742 /* 1743 * Do so only if capabilities are still unknown. 1744 */ 1745 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1746 return; 1747 1748 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1749 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1750 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1751 } 1752 1753 void 1754 ill_capability_reset(ill_t *ill) 1755 { 1756 mblk_t *sc_mp = NULL; 1757 mblk_t *tmp; 1758 1759 /* 1760 * Note here that we reset the state to UNKNOWN, and later send 1761 * down the DL_CAPABILITY_REQ without first setting the state to 1762 * INPROGRESS. We do this in order to distinguish the 1763 * DL_CAPABILITY_ACK response which may come back in response to 1764 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1765 * also handle the case where the driver doesn't send us back 1766 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1767 * requires the state to be in UNKNOWN anyway. In any case, all 1768 * features are turned off until the state reaches IDS_OK. 1769 */ 1770 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1771 ill->ill_capab_reneg = B_FALSE; 1772 1773 /* 1774 * Disable sub-capabilities and request a list of sub-capability 1775 * messages which will be sent down to the driver. Each handler 1776 * allocates the corresponding dl_capability_sub_t inside an 1777 * mblk, and links it to the existing sc_mp mblk, or return it 1778 * as sc_mp if it's the first sub-capability (the passed in 1779 * sc_mp is NULL). Upon returning from all capability handlers, 1780 * sc_mp will be pulled-up, before passing it downstream. 1781 */ 1782 ill_capability_mdt_reset(ill, &sc_mp); 1783 ill_capability_hcksum_reset(ill, &sc_mp); 1784 ill_capability_zerocopy_reset(ill, &sc_mp); 1785 ill_capability_ipsec_reset(ill, &sc_mp); 1786 ill_capability_dls_reset(ill, &sc_mp); 1787 ill_capability_lso_reset(ill, &sc_mp); 1788 1789 /* Nothing to send down in order to disable the capabilities? */ 1790 if (sc_mp == NULL) 1791 return; 1792 1793 tmp = msgpullup(sc_mp, -1); 1794 freemsg(sc_mp); 1795 if ((sc_mp = tmp) == NULL) { 1796 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1797 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1798 return; 1799 } 1800 1801 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1802 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1803 } 1804 1805 /* 1806 * Request or set new-style hardware capabilities supported by DLS provider. 1807 */ 1808 static void 1809 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1810 { 1811 mblk_t *mp; 1812 dl_capability_req_t *capb; 1813 size_t size = 0; 1814 uint8_t *ptr; 1815 1816 if (reqp != NULL) 1817 size = MBLKL(reqp); 1818 1819 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1820 if (mp == NULL) { 1821 freemsg(reqp); 1822 return; 1823 } 1824 ptr = mp->b_rptr; 1825 1826 capb = (dl_capability_req_t *)ptr; 1827 ptr += sizeof (dl_capability_req_t); 1828 1829 if (reqp != NULL) { 1830 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1831 capb->dl_sub_length = size; 1832 bcopy(reqp->b_rptr, ptr, size); 1833 ptr += size; 1834 mp->b_cont = reqp->b_cont; 1835 freeb(reqp); 1836 } 1837 ASSERT(ptr == mp->b_wptr); 1838 1839 ill_dlpi_send(ill, mp); 1840 } 1841 1842 static void 1843 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1844 { 1845 dl_capab_id_t *id_ic; 1846 uint_t sub_dl_cap = outers->dl_cap; 1847 dl_capability_sub_t *inners; 1848 uint8_t *capend; 1849 1850 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1851 1852 /* 1853 * Note: range checks here are not absolutely sufficient to 1854 * make us robust against malformed messages sent by drivers; 1855 * this is in keeping with the rest of IP's dlpi handling. 1856 * (Remember, it's coming from something else in the kernel 1857 * address space) 1858 */ 1859 1860 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1861 if (capend > mp->b_wptr) { 1862 cmn_err(CE_WARN, "ill_capability_id_ack: " 1863 "malformed sub-capability too long for mblk"); 1864 return; 1865 } 1866 1867 id_ic = (dl_capab_id_t *)(outers + 1); 1868 1869 if (outers->dl_length < sizeof (*id_ic) || 1870 (inners = &id_ic->id_subcap, 1871 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1872 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1873 "encapsulated capab type %d too long for mblk", 1874 inners->dl_cap); 1875 return; 1876 } 1877 1878 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1879 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1880 "isn't as expected; pass-thru module(s) detected, " 1881 "discarding capability\n", inners->dl_cap)); 1882 return; 1883 } 1884 1885 /* Process the encapsulated sub-capability */ 1886 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1887 } 1888 1889 /* 1890 * Process Multidata Transmit capability negotiation ack received from a 1891 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1892 * DL_CAPABILITY_ACK message. 1893 */ 1894 static void 1895 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1896 { 1897 mblk_t *nmp = NULL; 1898 dl_capability_req_t *oc; 1899 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1900 ill_mdt_capab_t **ill_mdt_capab; 1901 uint_t sub_dl_cap = isub->dl_cap; 1902 uint8_t *capend; 1903 1904 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1905 1906 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1907 1908 /* 1909 * Note: range checks here are not absolutely sufficient to 1910 * make us robust against malformed messages sent by drivers; 1911 * this is in keeping with the rest of IP's dlpi handling. 1912 * (Remember, it's coming from something else in the kernel 1913 * address space) 1914 */ 1915 1916 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1917 if (capend > mp->b_wptr) { 1918 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1919 "malformed sub-capability too long for mblk"); 1920 return; 1921 } 1922 1923 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1924 1925 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1926 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1927 "unsupported MDT sub-capability (version %d, expected %d)", 1928 mdt_ic->mdt_version, MDT_VERSION_2); 1929 return; 1930 } 1931 1932 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1933 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1934 "capability isn't as expected; pass-thru module(s) " 1935 "detected, discarding capability\n")); 1936 return; 1937 } 1938 1939 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1940 1941 if (*ill_mdt_capab == NULL) { 1942 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1943 KM_NOSLEEP); 1944 1945 if (*ill_mdt_capab == NULL) { 1946 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1947 "could not enable MDT version %d " 1948 "for %s (ENOMEM)\n", MDT_VERSION_2, 1949 ill->ill_name); 1950 return; 1951 } 1952 } 1953 1954 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1955 "MDT version %d (%d bytes leading, %d bytes trailing " 1956 "header spaces, %d max pld bufs, %d span limit)\n", 1957 ill->ill_name, MDT_VERSION_2, 1958 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1959 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1960 1961 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1962 (*ill_mdt_capab)->ill_mdt_on = 1; 1963 /* 1964 * Round the following values to the nearest 32-bit; ULP 1965 * may further adjust them to accomodate for additional 1966 * protocol headers. We pass these values to ULP during 1967 * bind time. 1968 */ 1969 (*ill_mdt_capab)->ill_mdt_hdr_head = 1970 roundup(mdt_ic->mdt_hdr_head, 4); 1971 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1972 roundup(mdt_ic->mdt_hdr_tail, 4); 1973 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1974 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1975 1976 ill->ill_capabilities |= ILL_CAPAB_MDT; 1977 } else { 1978 uint_t size; 1979 uchar_t *rptr; 1980 1981 size = sizeof (dl_capability_req_t) + 1982 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1983 1984 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1985 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1986 "could not enable MDT for %s (ENOMEM)\n", 1987 ill->ill_name); 1988 return; 1989 } 1990 1991 rptr = nmp->b_rptr; 1992 /* initialize dl_capability_req_t */ 1993 oc = (dl_capability_req_t *)nmp->b_rptr; 1994 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1995 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1996 sizeof (dl_capab_mdt_t); 1997 nmp->b_rptr += sizeof (dl_capability_req_t); 1998 1999 /* initialize dl_capability_sub_t */ 2000 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2001 nmp->b_rptr += sizeof (*isub); 2002 2003 /* initialize dl_capab_mdt_t */ 2004 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2005 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2006 2007 nmp->b_rptr = rptr; 2008 2009 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2010 "to enable MDT version %d\n", ill->ill_name, 2011 MDT_VERSION_2)); 2012 2013 /* set ENABLE flag */ 2014 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2015 2016 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2017 ill_dlpi_send(ill, nmp); 2018 } 2019 } 2020 2021 static void 2022 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2023 { 2024 mblk_t *mp; 2025 dl_capab_mdt_t *mdt_subcap; 2026 dl_capability_sub_t *dl_subcap; 2027 int size; 2028 2029 if (!ILL_MDT_CAPABLE(ill)) 2030 return; 2031 2032 ASSERT(ill->ill_mdt_capab != NULL); 2033 /* 2034 * Clear the capability flag for MDT but retain the ill_mdt_capab 2035 * structure since it's possible that another thread is still 2036 * referring to it. The structure only gets deallocated when 2037 * we destroy the ill. 2038 */ 2039 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2040 2041 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2042 2043 mp = allocb(size, BPRI_HI); 2044 if (mp == NULL) { 2045 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2046 "request to disable MDT\n")); 2047 return; 2048 } 2049 2050 mp->b_wptr = mp->b_rptr + size; 2051 2052 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2053 dl_subcap->dl_cap = DL_CAPAB_MDT; 2054 dl_subcap->dl_length = sizeof (*mdt_subcap); 2055 2056 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2057 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2058 mdt_subcap->mdt_flags = 0; 2059 mdt_subcap->mdt_hdr_head = 0; 2060 mdt_subcap->mdt_hdr_tail = 0; 2061 2062 if (*sc_mp != NULL) 2063 linkb(*sc_mp, mp); 2064 else 2065 *sc_mp = mp; 2066 } 2067 2068 /* 2069 * Send a DL_NOTIFY_REQ to the specified ill to enable 2070 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2071 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2072 * acceleration. 2073 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2074 */ 2075 static boolean_t 2076 ill_enable_promisc_notify(ill_t *ill) 2077 { 2078 mblk_t *mp; 2079 dl_notify_req_t *req; 2080 2081 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2082 2083 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2084 if (mp == NULL) 2085 return (B_FALSE); 2086 2087 req = (dl_notify_req_t *)mp->b_rptr; 2088 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2089 DL_NOTE_PROMISC_OFF_PHYS; 2090 2091 ill_dlpi_send(ill, mp); 2092 2093 return (B_TRUE); 2094 } 2095 2096 2097 /* 2098 * Allocate an IPsec capability request which will be filled by our 2099 * caller to turn on support for one or more algorithms. 2100 */ 2101 static mblk_t * 2102 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2103 { 2104 mblk_t *nmp; 2105 dl_capability_req_t *ocap; 2106 dl_capab_ipsec_t *ocip; 2107 dl_capab_ipsec_t *icip; 2108 uint8_t *ptr; 2109 icip = (dl_capab_ipsec_t *)(isub + 1); 2110 2111 /* 2112 * The first time around, we send a DL_NOTIFY_REQ to enable 2113 * PROMISC_ON/OFF notification from the provider. We need to 2114 * do this before enabling the algorithms to avoid leakage of 2115 * cleartext packets. 2116 */ 2117 2118 if (!ill_enable_promisc_notify(ill)) 2119 return (NULL); 2120 2121 /* 2122 * Allocate new mblk which will contain a new capability 2123 * request to enable the capabilities. 2124 */ 2125 2126 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2127 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2128 if (nmp == NULL) 2129 return (NULL); 2130 2131 ptr = nmp->b_rptr; 2132 2133 /* initialize dl_capability_req_t */ 2134 ocap = (dl_capability_req_t *)ptr; 2135 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2136 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2137 ptr += sizeof (dl_capability_req_t); 2138 2139 /* initialize dl_capability_sub_t */ 2140 bcopy(isub, ptr, sizeof (*isub)); 2141 ptr += sizeof (*isub); 2142 2143 /* initialize dl_capab_ipsec_t */ 2144 ocip = (dl_capab_ipsec_t *)ptr; 2145 bcopy(icip, ocip, sizeof (*icip)); 2146 2147 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2148 return (nmp); 2149 } 2150 2151 /* 2152 * Process an IPsec capability negotiation ack received from a DLS Provider. 2153 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2154 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2155 */ 2156 static void 2157 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2158 { 2159 dl_capab_ipsec_t *icip; 2160 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2161 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2162 uint_t cipher, nciphers; 2163 mblk_t *nmp; 2164 uint_t alg_len; 2165 boolean_t need_sadb_dump; 2166 uint_t sub_dl_cap = isub->dl_cap; 2167 ill_ipsec_capab_t **ill_capab; 2168 uint64_t ill_capab_flag; 2169 uint8_t *capend, *ciphend; 2170 boolean_t sadb_resync; 2171 2172 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2173 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2174 2175 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2176 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2177 ill_capab_flag = ILL_CAPAB_AH; 2178 } else { 2179 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2180 ill_capab_flag = ILL_CAPAB_ESP; 2181 } 2182 2183 /* 2184 * If the ill capability structure exists, then this incoming 2185 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2186 * If this is so, then we'd need to resynchronize the SADB 2187 * after re-enabling the offloaded ciphers. 2188 */ 2189 sadb_resync = (*ill_capab != NULL); 2190 2191 /* 2192 * Note: range checks here are not absolutely sufficient to 2193 * make us robust against malformed messages sent by drivers; 2194 * this is in keeping with the rest of IP's dlpi handling. 2195 * (Remember, it's coming from something else in the kernel 2196 * address space) 2197 */ 2198 2199 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2200 if (capend > mp->b_wptr) { 2201 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2202 "malformed sub-capability too long for mblk"); 2203 return; 2204 } 2205 2206 /* 2207 * There are two types of acks we process here: 2208 * 1. acks in reply to a (first form) generic capability req 2209 * (no ENABLE flag set) 2210 * 2. acks in reply to a ENABLE capability req. 2211 * (ENABLE flag set) 2212 * 2213 * We process the subcapability passed as argument as follows: 2214 * 1 do initializations 2215 * 1.1 initialize nmp = NULL 2216 * 1.2 set need_sadb_dump to B_FALSE 2217 * 2 for each cipher in subcapability: 2218 * 2.1 if ENABLE flag is set: 2219 * 2.1.1 update per-ill ipsec capabilities info 2220 * 2.1.2 set need_sadb_dump to B_TRUE 2221 * 2.2 if ENABLE flag is not set: 2222 * 2.2.1 if nmp is NULL: 2223 * 2.2.1.1 allocate and initialize nmp 2224 * 2.2.1.2 init current pos in nmp 2225 * 2.2.2 copy current cipher to current pos in nmp 2226 * 2.2.3 set ENABLE flag in nmp 2227 * 2.2.4 update current pos 2228 * 3 if nmp is not equal to NULL, send enable request 2229 * 3.1 send capability request 2230 * 4 if need_sadb_dump is B_TRUE 2231 * 4.1 enable promiscuous on/off notifications 2232 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2233 * AH or ESP SA's to interface. 2234 */ 2235 2236 nmp = NULL; 2237 oalg = NULL; 2238 need_sadb_dump = B_FALSE; 2239 icip = (dl_capab_ipsec_t *)(isub + 1); 2240 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2241 2242 nciphers = icip->cip_nciphers; 2243 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2244 2245 if (ciphend > capend) { 2246 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2247 "too many ciphers for sub-capability len"); 2248 return; 2249 } 2250 2251 for (cipher = 0; cipher < nciphers; cipher++) { 2252 alg_len = sizeof (dl_capab_ipsec_alg_t); 2253 2254 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2255 /* 2256 * TBD: when we provide a way to disable capabilities 2257 * from above, need to manage the request-pending state 2258 * and fail if we were not expecting this ACK. 2259 */ 2260 IPSECHW_DEBUG(IPSECHW_CAPAB, 2261 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2262 2263 /* 2264 * Update IPsec capabilities for this ill 2265 */ 2266 2267 if (*ill_capab == NULL) { 2268 IPSECHW_DEBUG(IPSECHW_CAPAB, 2269 ("ill_capability_ipsec_ack: " 2270 "allocating ipsec_capab for ill\n")); 2271 *ill_capab = ill_ipsec_capab_alloc(); 2272 2273 if (*ill_capab == NULL) { 2274 cmn_err(CE_WARN, 2275 "ill_capability_ipsec_ack: " 2276 "could not enable IPsec Hardware " 2277 "acceleration for %s (ENOMEM)\n", 2278 ill->ill_name); 2279 return; 2280 } 2281 } 2282 2283 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2284 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2285 2286 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2287 cmn_err(CE_WARN, 2288 "ill_capability_ipsec_ack: " 2289 "malformed IPsec algorithm id %d", 2290 ialg->alg_prim); 2291 continue; 2292 } 2293 2294 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2295 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2296 ialg->alg_prim); 2297 } else { 2298 ipsec_capab_algparm_t *alp; 2299 2300 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2301 ialg->alg_prim); 2302 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2303 ialg->alg_prim)) { 2304 cmn_err(CE_WARN, 2305 "ill_capability_ipsec_ack: " 2306 "no space for IPsec alg id %d", 2307 ialg->alg_prim); 2308 continue; 2309 } 2310 alp = &((*ill_capab)->encr_algparm[ 2311 ialg->alg_prim]); 2312 alp->minkeylen = ialg->alg_minbits; 2313 alp->maxkeylen = ialg->alg_maxbits; 2314 } 2315 ill->ill_capabilities |= ill_capab_flag; 2316 /* 2317 * indicate that a capability was enabled, which 2318 * will be used below to kick off a SADB dump 2319 * to the ill. 2320 */ 2321 need_sadb_dump = B_TRUE; 2322 } else { 2323 IPSECHW_DEBUG(IPSECHW_CAPAB, 2324 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2325 ialg->alg_prim)); 2326 2327 if (nmp == NULL) { 2328 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2329 if (nmp == NULL) { 2330 /* 2331 * Sending the PROMISC_ON/OFF 2332 * notification request failed. 2333 * We cannot enable the algorithms 2334 * since the Provider will not 2335 * notify IP of promiscous mode 2336 * changes, which could lead 2337 * to leakage of packets. 2338 */ 2339 cmn_err(CE_WARN, 2340 "ill_capability_ipsec_ack: " 2341 "could not enable IPsec Hardware " 2342 "acceleration for %s (ENOMEM)\n", 2343 ill->ill_name); 2344 return; 2345 } 2346 /* ptr to current output alg specifier */ 2347 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2348 } 2349 2350 /* 2351 * Copy current alg specifier, set ENABLE 2352 * flag, and advance to next output alg. 2353 * For now we enable all IPsec capabilities. 2354 */ 2355 ASSERT(oalg != NULL); 2356 bcopy(ialg, oalg, alg_len); 2357 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2358 nmp->b_wptr += alg_len; 2359 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2360 } 2361 2362 /* move to next input algorithm specifier */ 2363 ialg = (dl_capab_ipsec_alg_t *) 2364 ((char *)ialg + alg_len); 2365 } 2366 2367 if (nmp != NULL) 2368 /* 2369 * nmp points to a DL_CAPABILITY_REQ message to enable 2370 * IPsec hardware acceleration. 2371 */ 2372 ill_dlpi_send(ill, nmp); 2373 2374 if (need_sadb_dump) 2375 /* 2376 * An acknowledgement corresponding to a request to 2377 * enable acceleration was received, notify SADB. 2378 */ 2379 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2380 } 2381 2382 /* 2383 * Given an mblk with enough space in it, create sub-capability entries for 2384 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2385 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2386 * in preparation for the reset the DL_CAPABILITY_REQ message. 2387 */ 2388 static void 2389 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2390 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2391 { 2392 dl_capab_ipsec_t *oipsec; 2393 dl_capab_ipsec_alg_t *oalg; 2394 dl_capability_sub_t *dl_subcap; 2395 int i, k; 2396 2397 ASSERT(nciphers > 0); 2398 ASSERT(ill_cap != NULL); 2399 ASSERT(mp != NULL); 2400 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2401 2402 /* dl_capability_sub_t for "stype" */ 2403 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2404 dl_subcap->dl_cap = stype; 2405 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2406 mp->b_wptr += sizeof (dl_capability_sub_t); 2407 2408 /* dl_capab_ipsec_t for "stype" */ 2409 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2410 oipsec->cip_version = 1; 2411 oipsec->cip_nciphers = nciphers; 2412 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2413 2414 /* create entries for "stype" AUTH ciphers */ 2415 for (i = 0; i < ill_cap->algs_size; i++) { 2416 for (k = 0; k < BITSPERBYTE; k++) { 2417 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2418 continue; 2419 2420 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2421 bzero((void *)oalg, sizeof (*oalg)); 2422 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2423 oalg->alg_prim = k + (BITSPERBYTE * i); 2424 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2425 } 2426 } 2427 /* create entries for "stype" ENCR ciphers */ 2428 for (i = 0; i < ill_cap->algs_size; i++) { 2429 for (k = 0; k < BITSPERBYTE; k++) { 2430 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2431 continue; 2432 2433 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2434 bzero((void *)oalg, sizeof (*oalg)); 2435 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2436 oalg->alg_prim = k + (BITSPERBYTE * i); 2437 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2438 } 2439 } 2440 } 2441 2442 /* 2443 * Macro to count number of 1s in a byte (8-bit word). The total count is 2444 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2445 * POPC instruction, but our macro is more flexible for an arbitrary length 2446 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2447 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2448 * stays that way, we can reduce the number of iterations required. 2449 */ 2450 #define COUNT_1S(val, sum) { \ 2451 uint8_t x = val & 0xff; \ 2452 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2453 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2454 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2455 } 2456 2457 /* ARGSUSED */ 2458 static void 2459 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2460 { 2461 mblk_t *mp; 2462 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2463 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2464 uint64_t ill_capabilities = ill->ill_capabilities; 2465 int ah_cnt = 0, esp_cnt = 0; 2466 int ah_len = 0, esp_len = 0; 2467 int i, size = 0; 2468 2469 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2470 return; 2471 2472 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2473 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2474 2475 /* Find out the number of ciphers for AH */ 2476 if (cap_ah != NULL) { 2477 for (i = 0; i < cap_ah->algs_size; i++) { 2478 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2479 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2480 } 2481 if (ah_cnt > 0) { 2482 size += sizeof (dl_capability_sub_t) + 2483 sizeof (dl_capab_ipsec_t); 2484 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2485 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2486 size += ah_len; 2487 } 2488 } 2489 2490 /* Find out the number of ciphers for ESP */ 2491 if (cap_esp != NULL) { 2492 for (i = 0; i < cap_esp->algs_size; i++) { 2493 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2494 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2495 } 2496 if (esp_cnt > 0) { 2497 size += sizeof (dl_capability_sub_t) + 2498 sizeof (dl_capab_ipsec_t); 2499 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2500 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2501 size += esp_len; 2502 } 2503 } 2504 2505 if (size == 0) { 2506 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2507 "there's nothing to reset\n")); 2508 return; 2509 } 2510 2511 mp = allocb(size, BPRI_HI); 2512 if (mp == NULL) { 2513 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2514 "request to disable IPSEC Hardware Acceleration\n")); 2515 return; 2516 } 2517 2518 /* 2519 * Clear the capability flags for IPsec HA but retain the ill 2520 * capability structures since it's possible that another thread 2521 * is still referring to them. The structures only get deallocated 2522 * when we destroy the ill. 2523 * 2524 * Various places check the flags to see if the ill is capable of 2525 * hardware acceleration, and by clearing them we ensure that new 2526 * outbound IPsec packets are sent down encrypted. 2527 */ 2528 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2529 2530 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2531 if (ah_cnt > 0) { 2532 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2533 cap_ah, mp); 2534 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2535 } 2536 2537 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2538 if (esp_cnt > 0) { 2539 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2540 cap_esp, mp); 2541 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2542 } 2543 2544 /* 2545 * At this point we've composed a bunch of sub-capabilities to be 2546 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2547 * by the caller. Upon receiving this reset message, the driver 2548 * must stop inbound decryption (by destroying all inbound SAs) 2549 * and let the corresponding packets come in encrypted. 2550 */ 2551 2552 if (*sc_mp != NULL) 2553 linkb(*sc_mp, mp); 2554 else 2555 *sc_mp = mp; 2556 } 2557 2558 static void 2559 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2560 boolean_t encapsulated) 2561 { 2562 boolean_t legacy = B_FALSE; 2563 2564 /* 2565 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2566 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2567 * instructed the driver to disable its advertised capabilities, 2568 * so there's no point in accepting any response at this moment. 2569 */ 2570 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2571 return; 2572 2573 /* 2574 * Note that only the following two sub-capabilities may be 2575 * considered as "legacy", since their original definitions 2576 * do not incorporate the dl_mid_t module ID token, and hence 2577 * may require the use of the wrapper sub-capability. 2578 */ 2579 switch (subp->dl_cap) { 2580 case DL_CAPAB_IPSEC_AH: 2581 case DL_CAPAB_IPSEC_ESP: 2582 legacy = B_TRUE; 2583 break; 2584 } 2585 2586 /* 2587 * For legacy sub-capabilities which don't incorporate a queue_t 2588 * pointer in their structures, discard them if we detect that 2589 * there are intermediate modules in between IP and the driver. 2590 */ 2591 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2592 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2593 "%d discarded; %d module(s) present below IP\n", 2594 subp->dl_cap, ill->ill_lmod_cnt)); 2595 return; 2596 } 2597 2598 switch (subp->dl_cap) { 2599 case DL_CAPAB_IPSEC_AH: 2600 case DL_CAPAB_IPSEC_ESP: 2601 ill_capability_ipsec_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_MDT: 2604 ill_capability_mdt_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_HCKSUM: 2607 ill_capability_hcksum_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_ZEROCOPY: 2610 ill_capability_zerocopy_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_POLL: 2613 if (!SOFT_RINGS_ENABLED()) 2614 ill_capability_dls_ack(ill, mp, subp); 2615 break; 2616 case DL_CAPAB_SOFT_RING: 2617 if (SOFT_RINGS_ENABLED()) 2618 ill_capability_dls_ack(ill, mp, subp); 2619 break; 2620 case DL_CAPAB_LSO: 2621 ill_capability_lso_ack(ill, mp, subp); 2622 break; 2623 default: 2624 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2625 subp->dl_cap)); 2626 } 2627 } 2628 2629 /* 2630 * As part of negotiating polling capability, the driver tells us 2631 * the default (or normal) blanking interval and packet threshold 2632 * (the receive timer fires if blanking interval is reached or 2633 * the packet threshold is reached). 2634 * 2635 * As part of manipulating the polling interval, we always use our 2636 * estimated interval (avg service time * number of packets queued 2637 * on the squeue) but we try to blank for a minimum of 2638 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2639 * packet threshold during this time. When we are not in polling mode 2640 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2641 * rr_min_blank_ratio but up the packet cnt by a ratio of 2642 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2643 * possible although for a shorter interval. 2644 */ 2645 #define RR_MAX_BLANK_RATIO 20 2646 #define RR_MIN_BLANK_RATIO 10 2647 #define RR_MAX_PKT_CNT_RATIO 3 2648 #define RR_MIN_PKT_CNT_RATIO 3 2649 2650 /* 2651 * These can be tuned via /etc/system. 2652 */ 2653 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2654 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2655 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2656 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2657 2658 static mac_resource_handle_t 2659 ill_ring_add(void *arg, mac_resource_t *mrp) 2660 { 2661 ill_t *ill = (ill_t *)arg; 2662 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2663 ill_rx_ring_t *rx_ring; 2664 int ip_rx_index; 2665 2666 ASSERT(mrp != NULL); 2667 if (mrp->mr_type != MAC_RX_FIFO) { 2668 return (NULL); 2669 } 2670 ASSERT(ill != NULL); 2671 ASSERT(ill->ill_dls_capab != NULL); 2672 2673 mutex_enter(&ill->ill_lock); 2674 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2675 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2676 ASSERT(rx_ring != NULL); 2677 2678 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2679 time_t normal_blank_time = 2680 mrfp->mrf_normal_blank_time; 2681 uint_t normal_pkt_cnt = 2682 mrfp->mrf_normal_pkt_count; 2683 2684 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2685 2686 rx_ring->rr_blank = mrfp->mrf_blank; 2687 rx_ring->rr_handle = mrfp->mrf_arg; 2688 rx_ring->rr_ill = ill; 2689 rx_ring->rr_normal_blank_time = normal_blank_time; 2690 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2691 2692 rx_ring->rr_max_blank_time = 2693 normal_blank_time * rr_max_blank_ratio; 2694 rx_ring->rr_min_blank_time = 2695 normal_blank_time * rr_min_blank_ratio; 2696 rx_ring->rr_max_pkt_cnt = 2697 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2698 rx_ring->rr_min_pkt_cnt = 2699 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2700 2701 rx_ring->rr_ring_state = ILL_RING_INUSE; 2702 mutex_exit(&ill->ill_lock); 2703 2704 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2705 (int), ip_rx_index); 2706 return ((mac_resource_handle_t)rx_ring); 2707 } 2708 } 2709 2710 /* 2711 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2712 * we have devices which can overwhelm this limit, ILL_MAX_RING 2713 * should be made configurable. Meanwhile it cause no panic because 2714 * driver will pass ip_input a NULL handle which will make 2715 * IP allocate the default squeue and Polling mode will not 2716 * be used for this ring. 2717 */ 2718 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2719 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2720 2721 mutex_exit(&ill->ill_lock); 2722 return (NULL); 2723 } 2724 2725 static boolean_t 2726 ill_capability_dls_init(ill_t *ill) 2727 { 2728 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2729 conn_t *connp; 2730 size_t sz; 2731 ip_stack_t *ipst = ill->ill_ipst; 2732 2733 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2734 if (ill_dls == NULL) { 2735 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2736 "soft_ring enabled for ill=%s (%p) but data " 2737 "structs uninitialized\n", ill->ill_name, 2738 (void *)ill); 2739 } 2740 return (B_TRUE); 2741 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2742 if (ill_dls == NULL) { 2743 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2744 "polling enabled for ill=%s (%p) but data " 2745 "structs uninitialized\n", ill->ill_name, 2746 (void *)ill); 2747 } 2748 return (B_TRUE); 2749 } 2750 2751 if (ill_dls != NULL) { 2752 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2753 /* Soft_Ring or polling is being re-enabled */ 2754 2755 connp = ill_dls->ill_unbind_conn; 2756 ASSERT(rx_ring != NULL); 2757 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2758 bzero((void *)rx_ring, 2759 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2760 ill_dls->ill_ring_tbl = rx_ring; 2761 ill_dls->ill_unbind_conn = connp; 2762 return (B_TRUE); 2763 } 2764 2765 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2766 ipst->ips_netstack)) == NULL) 2767 return (B_FALSE); 2768 2769 sz = sizeof (ill_dls_capab_t); 2770 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2771 2772 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2773 if (ill_dls == NULL) { 2774 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2775 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2776 (void *)ill); 2777 CONN_DEC_REF(connp); 2778 return (B_FALSE); 2779 } 2780 2781 /* Allocate space to hold ring table */ 2782 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2783 ill->ill_dls_capab = ill_dls; 2784 ill_dls->ill_unbind_conn = connp; 2785 return (B_TRUE); 2786 } 2787 2788 /* 2789 * ill_capability_dls_disable: disable soft_ring and/or polling 2790 * capability. Since any of the rings might already be in use, need 2791 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2792 * direct calls if necessary. 2793 */ 2794 static void 2795 ill_capability_dls_disable(ill_t *ill) 2796 { 2797 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2798 2799 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2800 ip_squeue_clean_all(ill); 2801 ill_dls->ill_tx = NULL; 2802 ill_dls->ill_tx_handle = NULL; 2803 ill_dls->ill_dls_change_status = NULL; 2804 ill_dls->ill_dls_bind = NULL; 2805 ill_dls->ill_dls_unbind = NULL; 2806 } 2807 2808 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2809 } 2810 2811 static void 2812 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2813 dl_capability_sub_t *isub) 2814 { 2815 uint_t size; 2816 uchar_t *rptr; 2817 dl_capab_dls_t dls, *odls; 2818 ill_dls_capab_t *ill_dls; 2819 mblk_t *nmp = NULL; 2820 dl_capability_req_t *ocap; 2821 uint_t sub_dl_cap = isub->dl_cap; 2822 2823 if (!ill_capability_dls_init(ill)) 2824 return; 2825 ill_dls = ill->ill_dls_capab; 2826 2827 /* Copy locally to get the members aligned */ 2828 bcopy((void *)idls, (void *)&dls, 2829 sizeof (dl_capab_dls_t)); 2830 2831 /* Get the tx function and handle from dld */ 2832 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2833 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2834 2835 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2836 ill_dls->ill_dls_change_status = 2837 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2838 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2839 ill_dls->ill_dls_unbind = 2840 (ip_dls_unbind_t)dls.dls_ring_unbind; 2841 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2842 } 2843 2844 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2845 isub->dl_length; 2846 2847 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2848 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2849 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2850 ill->ill_name, (void *)ill); 2851 return; 2852 } 2853 2854 /* initialize dl_capability_req_t */ 2855 rptr = nmp->b_rptr; 2856 ocap = (dl_capability_req_t *)rptr; 2857 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2858 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2859 rptr += sizeof (dl_capability_req_t); 2860 2861 /* initialize dl_capability_sub_t */ 2862 bcopy(isub, rptr, sizeof (*isub)); 2863 rptr += sizeof (*isub); 2864 2865 odls = (dl_capab_dls_t *)rptr; 2866 rptr += sizeof (dl_capab_dls_t); 2867 2868 /* initialize dl_capab_dls_t to be sent down */ 2869 dls.dls_rx_handle = (uintptr_t)ill; 2870 dls.dls_rx = (uintptr_t)ip_input; 2871 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2872 2873 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2874 dls.dls_ring_cnt = ip_soft_rings_cnt; 2875 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2876 dls.dls_flags = SOFT_RING_ENABLE; 2877 } else { 2878 dls.dls_flags = POLL_ENABLE; 2879 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2880 "to enable polling\n", ill->ill_name)); 2881 } 2882 bcopy((void *)&dls, (void *)odls, 2883 sizeof (dl_capab_dls_t)); 2884 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2885 /* 2886 * nmp points to a DL_CAPABILITY_REQ message to 2887 * enable either soft_ring or polling 2888 */ 2889 ill_dlpi_send(ill, nmp); 2890 } 2891 2892 static void 2893 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2894 { 2895 mblk_t *mp; 2896 dl_capab_dls_t *idls; 2897 dl_capability_sub_t *dl_subcap; 2898 int size; 2899 2900 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2901 return; 2902 2903 ASSERT(ill->ill_dls_capab != NULL); 2904 2905 size = sizeof (*dl_subcap) + sizeof (*idls); 2906 2907 mp = allocb(size, BPRI_HI); 2908 if (mp == NULL) { 2909 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2910 "request to disable soft_ring\n")); 2911 return; 2912 } 2913 2914 mp->b_wptr = mp->b_rptr + size; 2915 2916 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2917 dl_subcap->dl_length = sizeof (*idls); 2918 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2919 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2920 else 2921 dl_subcap->dl_cap = DL_CAPAB_POLL; 2922 2923 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2924 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2925 idls->dls_flags = SOFT_RING_DISABLE; 2926 else 2927 idls->dls_flags = POLL_DISABLE; 2928 2929 if (*sc_mp != NULL) 2930 linkb(*sc_mp, mp); 2931 else 2932 *sc_mp = mp; 2933 } 2934 2935 /* 2936 * Process a soft_ring/poll capability negotiation ack received 2937 * from a DLS Provider.isub must point to the sub-capability 2938 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2939 */ 2940 static void 2941 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2942 { 2943 dl_capab_dls_t *idls; 2944 uint_t sub_dl_cap = isub->dl_cap; 2945 uint8_t *capend; 2946 2947 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2948 sub_dl_cap == DL_CAPAB_POLL); 2949 2950 if (ill->ill_isv6) 2951 return; 2952 2953 /* 2954 * Note: range checks here are not absolutely sufficient to 2955 * make us robust against malformed messages sent by drivers; 2956 * this is in keeping with the rest of IP's dlpi handling. 2957 * (Remember, it's coming from something else in the kernel 2958 * address space) 2959 */ 2960 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2961 if (capend > mp->b_wptr) { 2962 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2963 "malformed sub-capability too long for mblk"); 2964 return; 2965 } 2966 2967 /* 2968 * There are two types of acks we process here: 2969 * 1. acks in reply to a (first form) generic capability req 2970 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2971 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2972 * capability req. 2973 */ 2974 idls = (dl_capab_dls_t *)(isub + 1); 2975 2976 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2977 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2978 "capability isn't as expected; pass-thru " 2979 "module(s) detected, discarding capability\n")); 2980 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2981 /* 2982 * This is a capability renegotitation case. 2983 * The interface better be unusable at this 2984 * point other wise bad things will happen 2985 * if we disable direct calls on a running 2986 * and up interface. 2987 */ 2988 ill_capability_dls_disable(ill); 2989 } 2990 return; 2991 } 2992 2993 switch (idls->dls_flags) { 2994 default: 2995 /* Disable if unknown flag */ 2996 case SOFT_RING_DISABLE: 2997 case POLL_DISABLE: 2998 ill_capability_dls_disable(ill); 2999 break; 3000 case SOFT_RING_CAPABLE: 3001 case POLL_CAPABLE: 3002 /* 3003 * If the capability was already enabled, its safe 3004 * to disable it first to get rid of stale information 3005 * and then start enabling it again. 3006 */ 3007 ill_capability_dls_disable(ill); 3008 ill_capability_dls_capable(ill, idls, isub); 3009 break; 3010 case SOFT_RING_ENABLE: 3011 case POLL_ENABLE: 3012 mutex_enter(&ill->ill_lock); 3013 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3014 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3015 ASSERT(ill->ill_dls_capab != NULL); 3016 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3017 } 3018 if (sub_dl_cap == DL_CAPAB_POLL && 3019 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3020 ASSERT(ill->ill_dls_capab != NULL); 3021 ill->ill_capabilities |= ILL_CAPAB_POLL; 3022 ip1dbg(("ill_capability_dls_ack: interface %s " 3023 "has enabled polling\n", ill->ill_name)); 3024 } 3025 mutex_exit(&ill->ill_lock); 3026 break; 3027 } 3028 } 3029 3030 /* 3031 * Process a hardware checksum offload capability negotiation ack received 3032 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3033 * of a DL_CAPABILITY_ACK message. 3034 */ 3035 static void 3036 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3037 { 3038 dl_capability_req_t *ocap; 3039 dl_capab_hcksum_t *ihck, *ohck; 3040 ill_hcksum_capab_t **ill_hcksum; 3041 mblk_t *nmp = NULL; 3042 uint_t sub_dl_cap = isub->dl_cap; 3043 uint8_t *capend; 3044 3045 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3046 3047 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3048 3049 /* 3050 * Note: range checks here are not absolutely sufficient to 3051 * make us robust against malformed messages sent by drivers; 3052 * this is in keeping with the rest of IP's dlpi handling. 3053 * (Remember, it's coming from something else in the kernel 3054 * address space) 3055 */ 3056 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3057 if (capend > mp->b_wptr) { 3058 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3059 "malformed sub-capability too long for mblk"); 3060 return; 3061 } 3062 3063 /* 3064 * There are two types of acks we process here: 3065 * 1. acks in reply to a (first form) generic capability req 3066 * (no ENABLE flag set) 3067 * 2. acks in reply to a ENABLE capability req. 3068 * (ENABLE flag set) 3069 */ 3070 ihck = (dl_capab_hcksum_t *)(isub + 1); 3071 3072 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3073 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3074 "unsupported hardware checksum " 3075 "sub-capability (version %d, expected %d)", 3076 ihck->hcksum_version, HCKSUM_VERSION_1); 3077 return; 3078 } 3079 3080 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3081 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3082 "checksum capability isn't as expected; pass-thru " 3083 "module(s) detected, discarding capability\n")); 3084 return; 3085 } 3086 3087 #define CURR_HCKSUM_CAPAB \ 3088 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3089 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3090 3091 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3092 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3093 /* do ENABLE processing */ 3094 if (*ill_hcksum == NULL) { 3095 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3096 KM_NOSLEEP); 3097 3098 if (*ill_hcksum == NULL) { 3099 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3100 "could not enable hcksum version %d " 3101 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3102 ill->ill_name); 3103 return; 3104 } 3105 } 3106 3107 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3108 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3109 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3110 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3111 "has enabled hardware checksumming\n ", 3112 ill->ill_name)); 3113 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3114 /* 3115 * Enabling hardware checksum offload 3116 * Currently IP supports {TCP,UDP}/IPv4 3117 * partial and full cksum offload and 3118 * IPv4 header checksum offload. 3119 * Allocate new mblk which will 3120 * contain a new capability request 3121 * to enable hardware checksum offload. 3122 */ 3123 uint_t size; 3124 uchar_t *rptr; 3125 3126 size = sizeof (dl_capability_req_t) + 3127 sizeof (dl_capability_sub_t) + isub->dl_length; 3128 3129 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3130 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3131 "could not enable hardware cksum for %s (ENOMEM)\n", 3132 ill->ill_name); 3133 return; 3134 } 3135 3136 rptr = nmp->b_rptr; 3137 /* initialize dl_capability_req_t */ 3138 ocap = (dl_capability_req_t *)nmp->b_rptr; 3139 ocap->dl_sub_offset = 3140 sizeof (dl_capability_req_t); 3141 ocap->dl_sub_length = 3142 sizeof (dl_capability_sub_t) + 3143 isub->dl_length; 3144 nmp->b_rptr += sizeof (dl_capability_req_t); 3145 3146 /* initialize dl_capability_sub_t */ 3147 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3148 nmp->b_rptr += sizeof (*isub); 3149 3150 /* initialize dl_capab_hcksum_t */ 3151 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3152 bcopy(ihck, ohck, sizeof (*ihck)); 3153 3154 nmp->b_rptr = rptr; 3155 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3156 3157 /* Set ENABLE flag */ 3158 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3159 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3160 3161 /* 3162 * nmp points to a DL_CAPABILITY_REQ message to enable 3163 * hardware checksum acceleration. 3164 */ 3165 ill_dlpi_send(ill, nmp); 3166 } else { 3167 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3168 "advertised %x hardware checksum capability flags\n", 3169 ill->ill_name, ihck->hcksum_txflags)); 3170 } 3171 } 3172 3173 static void 3174 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3175 { 3176 mblk_t *mp; 3177 dl_capab_hcksum_t *hck_subcap; 3178 dl_capability_sub_t *dl_subcap; 3179 int size; 3180 3181 if (!ILL_HCKSUM_CAPABLE(ill)) 3182 return; 3183 3184 ASSERT(ill->ill_hcksum_capab != NULL); 3185 /* 3186 * Clear the capability flag for hardware checksum offload but 3187 * retain the ill_hcksum_capab structure since it's possible that 3188 * another thread is still referring to it. The structure only 3189 * gets deallocated when we destroy the ill. 3190 */ 3191 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3192 3193 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3194 3195 mp = allocb(size, BPRI_HI); 3196 if (mp == NULL) { 3197 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3198 "request to disable hardware checksum offload\n")); 3199 return; 3200 } 3201 3202 mp->b_wptr = mp->b_rptr + size; 3203 3204 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3205 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3206 dl_subcap->dl_length = sizeof (*hck_subcap); 3207 3208 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3209 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3210 hck_subcap->hcksum_txflags = 0; 3211 3212 if (*sc_mp != NULL) 3213 linkb(*sc_mp, mp); 3214 else 3215 *sc_mp = mp; 3216 } 3217 3218 static void 3219 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3220 { 3221 mblk_t *nmp = NULL; 3222 dl_capability_req_t *oc; 3223 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3224 ill_zerocopy_capab_t **ill_zerocopy_capab; 3225 uint_t sub_dl_cap = isub->dl_cap; 3226 uint8_t *capend; 3227 3228 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3229 3230 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3231 3232 /* 3233 * Note: range checks here are not absolutely sufficient to 3234 * make us robust against malformed messages sent by drivers; 3235 * this is in keeping with the rest of IP's dlpi handling. 3236 * (Remember, it's coming from something else in the kernel 3237 * address space) 3238 */ 3239 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3240 if (capend > mp->b_wptr) { 3241 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3242 "malformed sub-capability too long for mblk"); 3243 return; 3244 } 3245 3246 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3247 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3248 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3249 "unsupported ZEROCOPY sub-capability (version %d, " 3250 "expected %d)", zc_ic->zerocopy_version, 3251 ZEROCOPY_VERSION_1); 3252 return; 3253 } 3254 3255 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3256 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3257 "capability isn't as expected; pass-thru module(s) " 3258 "detected, discarding capability\n")); 3259 return; 3260 } 3261 3262 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3263 if (*ill_zerocopy_capab == NULL) { 3264 *ill_zerocopy_capab = 3265 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3266 KM_NOSLEEP); 3267 3268 if (*ill_zerocopy_capab == NULL) { 3269 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3270 "could not enable Zero-copy version %d " 3271 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3272 ill->ill_name); 3273 return; 3274 } 3275 } 3276 3277 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3278 "supports Zero-copy version %d\n", ill->ill_name, 3279 ZEROCOPY_VERSION_1)); 3280 3281 (*ill_zerocopy_capab)->ill_zerocopy_version = 3282 zc_ic->zerocopy_version; 3283 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3284 zc_ic->zerocopy_flags; 3285 3286 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3287 } else { 3288 uint_t size; 3289 uchar_t *rptr; 3290 3291 size = sizeof (dl_capability_req_t) + 3292 sizeof (dl_capability_sub_t) + 3293 sizeof (dl_capab_zerocopy_t); 3294 3295 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3296 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3297 "could not enable zerocopy for %s (ENOMEM)\n", 3298 ill->ill_name); 3299 return; 3300 } 3301 3302 rptr = nmp->b_rptr; 3303 /* initialize dl_capability_req_t */ 3304 oc = (dl_capability_req_t *)rptr; 3305 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3306 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3307 sizeof (dl_capab_zerocopy_t); 3308 rptr += sizeof (dl_capability_req_t); 3309 3310 /* initialize dl_capability_sub_t */ 3311 bcopy(isub, rptr, sizeof (*isub)); 3312 rptr += sizeof (*isub); 3313 3314 /* initialize dl_capab_zerocopy_t */ 3315 zc_oc = (dl_capab_zerocopy_t *)rptr; 3316 *zc_oc = *zc_ic; 3317 3318 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3319 "to enable zero-copy version %d\n", ill->ill_name, 3320 ZEROCOPY_VERSION_1)); 3321 3322 /* set VMSAFE_MEM flag */ 3323 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3324 3325 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3326 ill_dlpi_send(ill, nmp); 3327 } 3328 } 3329 3330 static void 3331 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3332 { 3333 mblk_t *mp; 3334 dl_capab_zerocopy_t *zerocopy_subcap; 3335 dl_capability_sub_t *dl_subcap; 3336 int size; 3337 3338 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3339 return; 3340 3341 ASSERT(ill->ill_zerocopy_capab != NULL); 3342 /* 3343 * Clear the capability flag for Zero-copy but retain the 3344 * ill_zerocopy_capab structure since it's possible that another 3345 * thread is still referring to it. The structure only gets 3346 * deallocated when we destroy the ill. 3347 */ 3348 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3349 3350 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3351 3352 mp = allocb(size, BPRI_HI); 3353 if (mp == NULL) { 3354 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3355 "request to disable Zero-copy\n")); 3356 return; 3357 } 3358 3359 mp->b_wptr = mp->b_rptr + size; 3360 3361 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3362 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3363 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3364 3365 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3366 zerocopy_subcap->zerocopy_version = 3367 ill->ill_zerocopy_capab->ill_zerocopy_version; 3368 zerocopy_subcap->zerocopy_flags = 0; 3369 3370 if (*sc_mp != NULL) 3371 linkb(*sc_mp, mp); 3372 else 3373 *sc_mp = mp; 3374 } 3375 3376 /* 3377 * Process Large Segment Offload capability negotiation ack received from a 3378 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3379 * DL_CAPABILITY_ACK message. 3380 */ 3381 static void 3382 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3383 { 3384 mblk_t *nmp = NULL; 3385 dl_capability_req_t *oc; 3386 dl_capab_lso_t *lso_ic, *lso_oc; 3387 ill_lso_capab_t **ill_lso_capab; 3388 uint_t sub_dl_cap = isub->dl_cap; 3389 uint8_t *capend; 3390 3391 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3392 3393 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3394 3395 /* 3396 * Note: range checks here are not absolutely sufficient to 3397 * make us robust against malformed messages sent by drivers; 3398 * this is in keeping with the rest of IP's dlpi handling. 3399 * (Remember, it's coming from something else in the kernel 3400 * address space) 3401 */ 3402 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3403 if (capend > mp->b_wptr) { 3404 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3405 "malformed sub-capability too long for mblk"); 3406 return; 3407 } 3408 3409 lso_ic = (dl_capab_lso_t *)(isub + 1); 3410 3411 if (lso_ic->lso_version != LSO_VERSION_1) { 3412 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3413 "unsupported LSO sub-capability (version %d, expected %d)", 3414 lso_ic->lso_version, LSO_VERSION_1); 3415 return; 3416 } 3417 3418 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3419 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3420 "capability isn't as expected; pass-thru module(s) " 3421 "detected, discarding capability\n")); 3422 return; 3423 } 3424 3425 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3426 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3427 if (*ill_lso_capab == NULL) { 3428 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3429 KM_NOSLEEP); 3430 3431 if (*ill_lso_capab == NULL) { 3432 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3433 "could not enable LSO version %d " 3434 "for %s (ENOMEM)\n", LSO_VERSION_1, 3435 ill->ill_name); 3436 return; 3437 } 3438 } 3439 3440 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3441 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3442 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3443 ill->ill_capabilities |= ILL_CAPAB_LSO; 3444 3445 ip1dbg(("ill_capability_lso_ack: interface %s " 3446 "has enabled LSO\n ", ill->ill_name)); 3447 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3448 uint_t size; 3449 uchar_t *rptr; 3450 3451 size = sizeof (dl_capability_req_t) + 3452 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3453 3454 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3455 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3456 "could not enable LSO for %s (ENOMEM)\n", 3457 ill->ill_name); 3458 return; 3459 } 3460 3461 rptr = nmp->b_rptr; 3462 /* initialize dl_capability_req_t */ 3463 oc = (dl_capability_req_t *)nmp->b_rptr; 3464 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3465 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3466 sizeof (dl_capab_lso_t); 3467 nmp->b_rptr += sizeof (dl_capability_req_t); 3468 3469 /* initialize dl_capability_sub_t */ 3470 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3471 nmp->b_rptr += sizeof (*isub); 3472 3473 /* initialize dl_capab_lso_t */ 3474 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3475 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3476 3477 nmp->b_rptr = rptr; 3478 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3479 3480 /* set ENABLE flag */ 3481 lso_oc->lso_flags |= LSO_TX_ENABLE; 3482 3483 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3484 ill_dlpi_send(ill, nmp); 3485 } else { 3486 ip1dbg(("ill_capability_lso_ack: interface %s has " 3487 "advertised %x LSO capability flags\n", 3488 ill->ill_name, lso_ic->lso_flags)); 3489 } 3490 } 3491 3492 3493 static void 3494 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3495 { 3496 mblk_t *mp; 3497 dl_capab_lso_t *lso_subcap; 3498 dl_capability_sub_t *dl_subcap; 3499 int size; 3500 3501 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3502 return; 3503 3504 ASSERT(ill->ill_lso_capab != NULL); 3505 /* 3506 * Clear the capability flag for LSO but retain the 3507 * ill_lso_capab structure since it's possible that another 3508 * thread is still referring to it. The structure only gets 3509 * deallocated when we destroy the ill. 3510 */ 3511 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3512 3513 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3514 3515 mp = allocb(size, BPRI_HI); 3516 if (mp == NULL) { 3517 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3518 "request to disable LSO\n")); 3519 return; 3520 } 3521 3522 mp->b_wptr = mp->b_rptr + size; 3523 3524 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3525 dl_subcap->dl_cap = DL_CAPAB_LSO; 3526 dl_subcap->dl_length = sizeof (*lso_subcap); 3527 3528 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3529 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3530 lso_subcap->lso_flags = 0; 3531 3532 if (*sc_mp != NULL) 3533 linkb(*sc_mp, mp); 3534 else 3535 *sc_mp = mp; 3536 } 3537 3538 /* 3539 * Consume a new-style hardware capabilities negotiation ack. 3540 * Called from ip_rput_dlpi_writer(). 3541 */ 3542 void 3543 ill_capability_ack(ill_t *ill, mblk_t *mp) 3544 { 3545 dl_capability_ack_t *capp; 3546 dl_capability_sub_t *subp, *endp; 3547 3548 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3549 ill->ill_dlpi_capab_state = IDS_OK; 3550 3551 capp = (dl_capability_ack_t *)mp->b_rptr; 3552 3553 if (capp->dl_sub_length == 0) 3554 /* no new-style capabilities */ 3555 return; 3556 3557 /* make sure the driver supplied correct dl_sub_length */ 3558 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3559 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3560 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3561 return; 3562 } 3563 3564 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3565 /* 3566 * There are sub-capabilities. Process the ones we know about. 3567 * Loop until we don't have room for another sub-cap header.. 3568 */ 3569 for (subp = SC(capp, capp->dl_sub_offset), 3570 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3571 subp <= endp; 3572 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3573 3574 switch (subp->dl_cap) { 3575 case DL_CAPAB_ID_WRAPPER: 3576 ill_capability_id_ack(ill, mp, subp); 3577 break; 3578 default: 3579 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3580 break; 3581 } 3582 } 3583 #undef SC 3584 } 3585 3586 /* 3587 * This routine is called to scan the fragmentation reassembly table for 3588 * the specified ILL for any packets that are starting to smell. 3589 * dead_interval is the maximum time in seconds that will be tolerated. It 3590 * will either be the value specified in ip_g_frag_timeout, or zero if the 3591 * ILL is shutting down and it is time to blow everything off. 3592 * 3593 * It returns the number of seconds (as a time_t) that the next frag timer 3594 * should be scheduled for, 0 meaning that the timer doesn't need to be 3595 * re-started. Note that the method of calculating next_timeout isn't 3596 * entirely accurate since time will flow between the time we grab 3597 * current_time and the time we schedule the next timeout. This isn't a 3598 * big problem since this is the timer for sending an ICMP reassembly time 3599 * exceeded messages, and it doesn't have to be exactly accurate. 3600 * 3601 * This function is 3602 * sometimes called as writer, although this is not required. 3603 */ 3604 time_t 3605 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3606 { 3607 ipfb_t *ipfb; 3608 ipfb_t *endp; 3609 ipf_t *ipf; 3610 ipf_t *ipfnext; 3611 mblk_t *mp; 3612 time_t current_time = gethrestime_sec(); 3613 time_t next_timeout = 0; 3614 uint32_t hdr_length; 3615 mblk_t *send_icmp_head; 3616 mblk_t *send_icmp_head_v6; 3617 zoneid_t zoneid; 3618 ip_stack_t *ipst = ill->ill_ipst; 3619 3620 ipfb = ill->ill_frag_hash_tbl; 3621 if (ipfb == NULL) 3622 return (B_FALSE); 3623 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3624 /* Walk the frag hash table. */ 3625 for (; ipfb < endp; ipfb++) { 3626 send_icmp_head = NULL; 3627 send_icmp_head_v6 = NULL; 3628 mutex_enter(&ipfb->ipfb_lock); 3629 while ((ipf = ipfb->ipfb_ipf) != 0) { 3630 time_t frag_time = current_time - ipf->ipf_timestamp; 3631 time_t frag_timeout; 3632 3633 if (frag_time < dead_interval) { 3634 /* 3635 * There are some outstanding fragments 3636 * that will timeout later. Make note of 3637 * the time so that we can reschedule the 3638 * next timeout appropriately. 3639 */ 3640 frag_timeout = dead_interval - frag_time; 3641 if (next_timeout == 0 || 3642 frag_timeout < next_timeout) { 3643 next_timeout = frag_timeout; 3644 } 3645 break; 3646 } 3647 /* Time's up. Get it out of here. */ 3648 hdr_length = ipf->ipf_nf_hdr_len; 3649 ipfnext = ipf->ipf_hash_next; 3650 if (ipfnext) 3651 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3652 *ipf->ipf_ptphn = ipfnext; 3653 mp = ipf->ipf_mp->b_cont; 3654 for (; mp; mp = mp->b_cont) { 3655 /* Extra points for neatness. */ 3656 IP_REASS_SET_START(mp, 0); 3657 IP_REASS_SET_END(mp, 0); 3658 } 3659 mp = ipf->ipf_mp->b_cont; 3660 ill->ill_frag_count -= ipf->ipf_count; 3661 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3662 ipfb->ipfb_count -= ipf->ipf_count; 3663 ASSERT(ipfb->ipfb_frag_pkts > 0); 3664 ipfb->ipfb_frag_pkts--; 3665 /* 3666 * We do not send any icmp message from here because 3667 * we currently are holding the ipfb_lock for this 3668 * hash chain. If we try and send any icmp messages 3669 * from here we may end up via a put back into ip 3670 * trying to get the same lock, causing a recursive 3671 * mutex panic. Instead we build a list and send all 3672 * the icmp messages after we have dropped the lock. 3673 */ 3674 if (ill->ill_isv6) { 3675 if (hdr_length != 0) { 3676 mp->b_next = send_icmp_head_v6; 3677 send_icmp_head_v6 = mp; 3678 } else { 3679 freemsg(mp); 3680 } 3681 } else { 3682 if (hdr_length != 0) { 3683 mp->b_next = send_icmp_head; 3684 send_icmp_head = mp; 3685 } else { 3686 freemsg(mp); 3687 } 3688 } 3689 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3690 freeb(ipf->ipf_mp); 3691 } 3692 mutex_exit(&ipfb->ipfb_lock); 3693 /* 3694 * Now need to send any icmp messages that we delayed from 3695 * above. 3696 */ 3697 while (send_icmp_head_v6 != NULL) { 3698 ip6_t *ip6h; 3699 3700 mp = send_icmp_head_v6; 3701 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3702 mp->b_next = NULL; 3703 if (mp->b_datap->db_type == M_CTL) 3704 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3705 else 3706 ip6h = (ip6_t *)mp->b_rptr; 3707 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3708 ill, ipst); 3709 if (zoneid == ALL_ZONES) { 3710 freemsg(mp); 3711 } else { 3712 icmp_time_exceeded_v6(ill->ill_wq, mp, 3713 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3714 B_FALSE, zoneid, ipst); 3715 } 3716 } 3717 while (send_icmp_head != NULL) { 3718 ipaddr_t dst; 3719 3720 mp = send_icmp_head; 3721 send_icmp_head = send_icmp_head->b_next; 3722 mp->b_next = NULL; 3723 3724 if (mp->b_datap->db_type == M_CTL) 3725 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3726 else 3727 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3728 3729 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3730 if (zoneid == ALL_ZONES) { 3731 freemsg(mp); 3732 } else { 3733 icmp_time_exceeded(ill->ill_wq, mp, 3734 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3735 ipst); 3736 } 3737 } 3738 } 3739 /* 3740 * A non-dying ILL will use the return value to decide whether to 3741 * restart the frag timer, and for how long. 3742 */ 3743 return (next_timeout); 3744 } 3745 3746 /* 3747 * This routine is called when the approximate count of mblk memory used 3748 * for the specified ILL has exceeded max_count. 3749 */ 3750 void 3751 ill_frag_prune(ill_t *ill, uint_t max_count) 3752 { 3753 ipfb_t *ipfb; 3754 ipf_t *ipf; 3755 size_t count; 3756 3757 /* 3758 * If we are here within ip_min_frag_prune_time msecs remove 3759 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3760 * ill_frag_free_num_pkts. 3761 */ 3762 mutex_enter(&ill->ill_lock); 3763 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3764 (ip_min_frag_prune_time != 0 ? 3765 ip_min_frag_prune_time : msec_per_tick)) { 3766 3767 ill->ill_frag_free_num_pkts++; 3768 3769 } else { 3770 ill->ill_frag_free_num_pkts = 0; 3771 } 3772 ill->ill_last_frag_clean_time = lbolt; 3773 mutex_exit(&ill->ill_lock); 3774 3775 /* 3776 * free ill_frag_free_num_pkts oldest packets from each bucket. 3777 */ 3778 if (ill->ill_frag_free_num_pkts != 0) { 3779 int ix; 3780 3781 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3782 ipfb = &ill->ill_frag_hash_tbl[ix]; 3783 mutex_enter(&ipfb->ipfb_lock); 3784 if (ipfb->ipfb_ipf != NULL) { 3785 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3786 ill->ill_frag_free_num_pkts); 3787 } 3788 mutex_exit(&ipfb->ipfb_lock); 3789 } 3790 } 3791 /* 3792 * While the reassembly list for this ILL is too big, prune a fragment 3793 * queue by age, oldest first. Note that the per ILL count is 3794 * approximate, while the per frag hash bucket counts are accurate. 3795 */ 3796 while (ill->ill_frag_count > max_count) { 3797 int ix; 3798 ipfb_t *oipfb = NULL; 3799 uint_t oldest = UINT_MAX; 3800 3801 count = 0; 3802 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3803 ipfb = &ill->ill_frag_hash_tbl[ix]; 3804 mutex_enter(&ipfb->ipfb_lock); 3805 ipf = ipfb->ipfb_ipf; 3806 if (ipf != NULL && ipf->ipf_gen < oldest) { 3807 oldest = ipf->ipf_gen; 3808 oipfb = ipfb; 3809 } 3810 count += ipfb->ipfb_count; 3811 mutex_exit(&ipfb->ipfb_lock); 3812 } 3813 /* Refresh the per ILL count */ 3814 ill->ill_frag_count = count; 3815 if (oipfb == NULL) { 3816 ill->ill_frag_count = 0; 3817 break; 3818 } 3819 if (count <= max_count) 3820 return; /* Somebody beat us to it, nothing to do */ 3821 mutex_enter(&oipfb->ipfb_lock); 3822 ipf = oipfb->ipfb_ipf; 3823 if (ipf != NULL) { 3824 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3825 } 3826 mutex_exit(&oipfb->ipfb_lock); 3827 } 3828 } 3829 3830 /* 3831 * free 'free_cnt' fragmented packets starting at ipf. 3832 */ 3833 void 3834 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3835 { 3836 size_t count; 3837 mblk_t *mp; 3838 mblk_t *tmp; 3839 ipf_t **ipfp = ipf->ipf_ptphn; 3840 3841 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3842 ASSERT(ipfp != NULL); 3843 ASSERT(ipf != NULL); 3844 3845 while (ipf != NULL && free_cnt-- > 0) { 3846 count = ipf->ipf_count; 3847 mp = ipf->ipf_mp; 3848 ipf = ipf->ipf_hash_next; 3849 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3850 IP_REASS_SET_START(tmp, 0); 3851 IP_REASS_SET_END(tmp, 0); 3852 } 3853 ill->ill_frag_count -= count; 3854 ASSERT(ipfb->ipfb_count >= count); 3855 ipfb->ipfb_count -= count; 3856 ASSERT(ipfb->ipfb_frag_pkts > 0); 3857 ipfb->ipfb_frag_pkts--; 3858 freemsg(mp); 3859 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3860 } 3861 3862 if (ipf) 3863 ipf->ipf_ptphn = ipfp; 3864 ipfp[0] = ipf; 3865 } 3866 3867 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3868 "obsolete and may be removed in a future release of Solaris. Use " \ 3869 "ifconfig(1M) to manipulate the forwarding status of an interface." 3870 3871 /* 3872 * For obsolete per-interface forwarding configuration; 3873 * called in response to ND_GET. 3874 */ 3875 /* ARGSUSED */ 3876 static int 3877 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3878 { 3879 ill_t *ill = (ill_t *)cp; 3880 3881 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3882 3883 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3884 return (0); 3885 } 3886 3887 /* 3888 * For obsolete per-interface forwarding configuration; 3889 * called in response to ND_SET. 3890 */ 3891 /* ARGSUSED */ 3892 static int 3893 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3894 cred_t *ioc_cr) 3895 { 3896 long value; 3897 int retval; 3898 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3899 3900 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3901 3902 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3903 value < 0 || value > 1) { 3904 return (EINVAL); 3905 } 3906 3907 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3908 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3909 rw_exit(&ipst->ips_ill_g_lock); 3910 return (retval); 3911 } 3912 3913 /* 3914 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3915 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3916 * up RTS_IFINFO routing socket messages for each interface whose flags we 3917 * change. 3918 */ 3919 int 3920 ill_forward_set(ill_t *ill, boolean_t enable) 3921 { 3922 ill_group_t *illgrp; 3923 ip_stack_t *ipst = ill->ill_ipst; 3924 3925 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3926 3927 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3928 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3929 return (0); 3930 3931 if (IS_LOOPBACK(ill)) 3932 return (EINVAL); 3933 3934 /* 3935 * If the ill is in an IPMP group, set the forwarding policy on all 3936 * members of the group to the same value. 3937 */ 3938 illgrp = ill->ill_group; 3939 if (illgrp != NULL) { 3940 ill_t *tmp_ill; 3941 3942 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3943 tmp_ill = tmp_ill->ill_group_next) { 3944 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3945 (enable ? "Enabling" : "Disabling"), 3946 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3947 tmp_ill->ill_name)); 3948 mutex_enter(&tmp_ill->ill_lock); 3949 if (enable) 3950 tmp_ill->ill_flags |= ILLF_ROUTER; 3951 else 3952 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3953 mutex_exit(&tmp_ill->ill_lock); 3954 if (tmp_ill->ill_isv6) 3955 ill_set_nce_router_flags(tmp_ill, enable); 3956 /* Notify routing socket listeners of this change. */ 3957 ip_rts_ifmsg(tmp_ill->ill_ipif); 3958 } 3959 } else { 3960 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3961 (enable ? "Enabling" : "Disabling"), 3962 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3963 mutex_enter(&ill->ill_lock); 3964 if (enable) 3965 ill->ill_flags |= ILLF_ROUTER; 3966 else 3967 ill->ill_flags &= ~ILLF_ROUTER; 3968 mutex_exit(&ill->ill_lock); 3969 if (ill->ill_isv6) 3970 ill_set_nce_router_flags(ill, enable); 3971 /* Notify routing socket listeners of this change. */ 3972 ip_rts_ifmsg(ill->ill_ipif); 3973 } 3974 3975 return (0); 3976 } 3977 3978 /* 3979 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3980 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3981 * set or clear. 3982 */ 3983 static void 3984 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3985 { 3986 ipif_t *ipif; 3987 nce_t *nce; 3988 3989 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3990 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3991 if (nce != NULL) { 3992 mutex_enter(&nce->nce_lock); 3993 if (enable) 3994 nce->nce_flags |= NCE_F_ISROUTER; 3995 else 3996 nce->nce_flags &= ~NCE_F_ISROUTER; 3997 mutex_exit(&nce->nce_lock); 3998 NCE_REFRELE(nce); 3999 } 4000 } 4001 } 4002 4003 /* 4004 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4005 * for this ill. Make sure the v6/v4 question has been answered about this 4006 * ill. The creation of this ndd variable is only for backwards compatibility. 4007 * The preferred way to control per-interface IP forwarding is through the 4008 * ILLF_ROUTER interface flag. 4009 */ 4010 static int 4011 ill_set_ndd_name(ill_t *ill) 4012 { 4013 char *suffix; 4014 ip_stack_t *ipst = ill->ill_ipst; 4015 4016 ASSERT(IAM_WRITER_ILL(ill)); 4017 4018 if (ill->ill_isv6) 4019 suffix = ipv6_forward_suffix; 4020 else 4021 suffix = ipv4_forward_suffix; 4022 4023 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4024 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4025 /* 4026 * Copies over the '\0'. 4027 * Note that strlen(suffix) is always bounded. 4028 */ 4029 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4030 strlen(suffix) + 1); 4031 4032 /* 4033 * Use of the nd table requires holding the reader lock. 4034 * Modifying the nd table thru nd_load/nd_unload requires 4035 * the writer lock. 4036 */ 4037 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4038 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4039 nd_ill_forward_set, (caddr_t)ill)) { 4040 /* 4041 * If the nd_load failed, it only meant that it could not 4042 * allocate a new bunch of room for further NDD expansion. 4043 * Because of that, the ill_ndd_name will be set to 0, and 4044 * this interface is at the mercy of the global ip_forwarding 4045 * variable. 4046 */ 4047 rw_exit(&ipst->ips_ip_g_nd_lock); 4048 ill->ill_ndd_name = NULL; 4049 return (ENOMEM); 4050 } 4051 rw_exit(&ipst->ips_ip_g_nd_lock); 4052 return (0); 4053 } 4054 4055 /* 4056 * Intializes the context structure and returns the first ill in the list 4057 * cuurently start_list and end_list can have values: 4058 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4059 * IP_V4_G_HEAD Traverse IPV4 list only. 4060 * IP_V6_G_HEAD Traverse IPV6 list only. 4061 */ 4062 4063 /* 4064 * We don't check for CONDEMNED ills here. Caller must do that if 4065 * necessary under the ill lock. 4066 */ 4067 ill_t * 4068 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4069 ip_stack_t *ipst) 4070 { 4071 ill_if_t *ifp; 4072 ill_t *ill; 4073 avl_tree_t *avl_tree; 4074 4075 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4076 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4077 4078 /* 4079 * setup the lists to search 4080 */ 4081 if (end_list != MAX_G_HEADS) { 4082 ctx->ctx_current_list = start_list; 4083 ctx->ctx_last_list = end_list; 4084 } else { 4085 ctx->ctx_last_list = MAX_G_HEADS - 1; 4086 ctx->ctx_current_list = 0; 4087 } 4088 4089 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4090 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4091 if (ifp != (ill_if_t *) 4092 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4093 avl_tree = &ifp->illif_avl_by_ppa; 4094 ill = avl_first(avl_tree); 4095 /* 4096 * ill is guaranteed to be non NULL or ifp should have 4097 * not existed. 4098 */ 4099 ASSERT(ill != NULL); 4100 return (ill); 4101 } 4102 ctx->ctx_current_list++; 4103 } 4104 4105 return (NULL); 4106 } 4107 4108 /* 4109 * returns the next ill in the list. ill_first() must have been called 4110 * before calling ill_next() or bad things will happen. 4111 */ 4112 4113 /* 4114 * We don't check for CONDEMNED ills here. Caller must do that if 4115 * necessary under the ill lock. 4116 */ 4117 ill_t * 4118 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4119 { 4120 ill_if_t *ifp; 4121 ill_t *ill; 4122 ip_stack_t *ipst = lastill->ill_ipst; 4123 4124 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4125 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4126 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4127 AVL_AFTER)) != NULL) { 4128 return (ill); 4129 } 4130 4131 /* goto next ill_ifp in the list. */ 4132 ifp = lastill->ill_ifptr->illif_next; 4133 4134 /* make sure not at end of circular list */ 4135 while (ifp == 4136 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4137 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4138 return (NULL); 4139 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4140 } 4141 4142 return (avl_first(&ifp->illif_avl_by_ppa)); 4143 } 4144 4145 /* 4146 * Check interface name for correct format which is name+ppa. 4147 * name can contain characters and digits, the right most digits 4148 * make up the ppa number. use of octal is not allowed, name must contain 4149 * a ppa, return pointer to the start of ppa. 4150 * In case of error return NULL. 4151 */ 4152 static char * 4153 ill_get_ppa_ptr(char *name) 4154 { 4155 int namelen = mi_strlen(name); 4156 4157 int len = namelen; 4158 4159 name += len; 4160 while (len > 0) { 4161 name--; 4162 if (*name < '0' || *name > '9') 4163 break; 4164 len--; 4165 } 4166 4167 /* empty string, all digits, or no trailing digits */ 4168 if (len == 0 || len == (int)namelen) 4169 return (NULL); 4170 4171 name++; 4172 /* check for attempted use of octal */ 4173 if (*name == '0' && len != (int)namelen - 1) 4174 return (NULL); 4175 return (name); 4176 } 4177 4178 /* 4179 * use avl tree to locate the ill. 4180 */ 4181 static ill_t * 4182 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4183 ipsq_func_t func, int *error, ip_stack_t *ipst) 4184 { 4185 char *ppa_ptr = NULL; 4186 int len; 4187 uint_t ppa; 4188 ill_t *ill = NULL; 4189 ill_if_t *ifp; 4190 int list; 4191 ipsq_t *ipsq; 4192 4193 if (error != NULL) 4194 *error = 0; 4195 4196 /* 4197 * get ppa ptr 4198 */ 4199 if (isv6) 4200 list = IP_V6_G_HEAD; 4201 else 4202 list = IP_V4_G_HEAD; 4203 4204 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4205 if (error != NULL) 4206 *error = ENXIO; 4207 return (NULL); 4208 } 4209 4210 len = ppa_ptr - name + 1; 4211 4212 ppa = stoi(&ppa_ptr); 4213 4214 ifp = IP_VX_ILL_G_LIST(list, ipst); 4215 4216 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4217 /* 4218 * match is done on len - 1 as the name is not null 4219 * terminated it contains ppa in addition to the interface 4220 * name. 4221 */ 4222 if ((ifp->illif_name_len == len) && 4223 bcmp(ifp->illif_name, name, len - 1) == 0) { 4224 break; 4225 } else { 4226 ifp = ifp->illif_next; 4227 } 4228 } 4229 4230 4231 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4232 /* 4233 * Even the interface type does not exist. 4234 */ 4235 if (error != NULL) 4236 *error = ENXIO; 4237 return (NULL); 4238 } 4239 4240 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4241 if (ill != NULL) { 4242 /* 4243 * The block comment at the start of ipif_down 4244 * explains the use of the macros used below 4245 */ 4246 GRAB_CONN_LOCK(q); 4247 mutex_enter(&ill->ill_lock); 4248 if (ILL_CAN_LOOKUP(ill)) { 4249 ill_refhold_locked(ill); 4250 mutex_exit(&ill->ill_lock); 4251 RELEASE_CONN_LOCK(q); 4252 return (ill); 4253 } else if (ILL_CAN_WAIT(ill, q)) { 4254 ipsq = ill->ill_phyint->phyint_ipsq; 4255 mutex_enter(&ipsq->ipsq_lock); 4256 mutex_exit(&ill->ill_lock); 4257 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4258 mutex_exit(&ipsq->ipsq_lock); 4259 RELEASE_CONN_LOCK(q); 4260 if (error != NULL) 4261 *error = EINPROGRESS; 4262 return (NULL); 4263 } 4264 mutex_exit(&ill->ill_lock); 4265 RELEASE_CONN_LOCK(q); 4266 } 4267 if (error != NULL) 4268 *error = ENXIO; 4269 return (NULL); 4270 } 4271 4272 /* 4273 * comparison function for use with avl. 4274 */ 4275 static int 4276 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4277 { 4278 uint_t ppa; 4279 uint_t ill_ppa; 4280 4281 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4282 4283 ppa = *((uint_t *)ppa_ptr); 4284 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4285 /* 4286 * We want the ill with the lowest ppa to be on the 4287 * top. 4288 */ 4289 if (ill_ppa < ppa) 4290 return (1); 4291 if (ill_ppa > ppa) 4292 return (-1); 4293 return (0); 4294 } 4295 4296 /* 4297 * remove an interface type from the global list. 4298 */ 4299 static void 4300 ill_delete_interface_type(ill_if_t *interface) 4301 { 4302 ASSERT(interface != NULL); 4303 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4304 4305 avl_destroy(&interface->illif_avl_by_ppa); 4306 if (interface->illif_ppa_arena != NULL) 4307 vmem_destroy(interface->illif_ppa_arena); 4308 4309 remque(interface); 4310 4311 mi_free(interface); 4312 } 4313 4314 /* Defined in ip_netinfo.c */ 4315 extern ddi_taskq_t *eventq_queue_nic; 4316 4317 /* 4318 * remove ill from the global list. 4319 */ 4320 static void 4321 ill_glist_delete(ill_t *ill) 4322 { 4323 char *nicname; 4324 size_t nicnamelen; 4325 hook_nic_event_t *info; 4326 ip_stack_t *ipst; 4327 4328 if (ill == NULL) 4329 return; 4330 ipst = ill->ill_ipst; 4331 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4332 4333 if (ill->ill_name != NULL) { 4334 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4335 if (nicname != NULL) { 4336 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4337 nicnamelen = ill->ill_name_length; 4338 } 4339 } else { 4340 nicname = NULL; 4341 nicnamelen = 0; 4342 } 4343 4344 /* 4345 * If the ill was never inserted into the AVL tree 4346 * we skip the if branch. 4347 */ 4348 if (ill->ill_ifptr != NULL) { 4349 /* 4350 * remove from AVL tree and free ppa number 4351 */ 4352 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4353 4354 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4355 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4356 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4357 } 4358 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4359 ill_delete_interface_type(ill->ill_ifptr); 4360 } 4361 4362 /* 4363 * Indicate ill is no longer in the list. 4364 */ 4365 ill->ill_ifptr = NULL; 4366 ill->ill_name_length = 0; 4367 ill->ill_name[0] = '\0'; 4368 ill->ill_ppa = UINT_MAX; 4369 } 4370 4371 /* 4372 * Run the unplumb hook after the NIC has disappeared from being 4373 * visible so that attempts to revalidate its existance will fail. 4374 * 4375 * This needs to be run inside the ill_g_lock perimeter to ensure 4376 * that the ordering of delivered events to listeners matches the 4377 * order of them in the kernel. 4378 */ 4379 if ((info = ill->ill_nic_event_info) != NULL) { 4380 if (info->hne_event != NE_DOWN) { 4381 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4382 "attached for %s\n", info->hne_event, 4383 ill->ill_name)); 4384 if (info->hne_data != NULL) 4385 kmem_free(info->hne_data, info->hne_datalen); 4386 kmem_free(info, sizeof (hook_nic_event_t)); 4387 } else { 4388 if (ddi_taskq_dispatch(eventq_queue_nic, 4389 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4390 == DDI_FAILURE) { 4391 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4392 "failed\n")); 4393 if (info->hne_data != NULL) 4394 kmem_free(info->hne_data, 4395 info->hne_datalen); 4396 kmem_free(info, sizeof (hook_nic_event_t)); 4397 } 4398 } 4399 } 4400 4401 /* Generate NE_UNPLUMB event for ill_name. */ 4402 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4403 if (info != NULL) { 4404 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4405 info->hne_lif = 0; 4406 info->hne_event = NE_UNPLUMB; 4407 info->hne_data = nicname; 4408 info->hne_datalen = nicnamelen; 4409 info->hne_family = ill->ill_isv6 ? 4410 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4411 } else { 4412 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4413 "information for %s (ENOMEM)\n", ill->ill_name)); 4414 if (nicname != NULL) 4415 kmem_free(nicname, nicnamelen); 4416 } 4417 4418 ill->ill_nic_event_info = info; 4419 4420 ill_phyint_free(ill); 4421 rw_exit(&ipst->ips_ill_g_lock); 4422 } 4423 4424 /* 4425 * allocate a ppa, if the number of plumbed interfaces of this type are 4426 * less than ill_no_arena do a linear search to find a unused ppa. 4427 * When the number goes beyond ill_no_arena switch to using an arena. 4428 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4429 * is the return value for an error condition, so allocation starts at one 4430 * and is decremented by one. 4431 */ 4432 static int 4433 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4434 { 4435 ill_t *tmp_ill; 4436 uint_t start, end; 4437 int ppa; 4438 4439 if (ifp->illif_ppa_arena == NULL && 4440 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4441 /* 4442 * Create an arena. 4443 */ 4444 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4445 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4446 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4447 /* allocate what has already been assigned */ 4448 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4449 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4450 tmp_ill, AVL_AFTER)) { 4451 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4452 1, /* size */ 4453 1, /* align/quantum */ 4454 0, /* phase */ 4455 0, /* nocross */ 4456 /* minaddr */ 4457 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4458 /* maxaddr */ 4459 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4460 VM_NOSLEEP|VM_FIRSTFIT); 4461 if (ppa == 0) { 4462 ip1dbg(("ill_alloc_ppa: ppa allocation" 4463 " failed while switching")); 4464 vmem_destroy(ifp->illif_ppa_arena); 4465 ifp->illif_ppa_arena = NULL; 4466 break; 4467 } 4468 } 4469 } 4470 4471 if (ifp->illif_ppa_arena != NULL) { 4472 if (ill->ill_ppa == UINT_MAX) { 4473 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4474 1, VM_NOSLEEP|VM_FIRSTFIT); 4475 if (ppa == 0) 4476 return (EAGAIN); 4477 ill->ill_ppa = --ppa; 4478 } else { 4479 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4480 1, /* size */ 4481 1, /* align/quantum */ 4482 0, /* phase */ 4483 0, /* nocross */ 4484 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4485 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4486 VM_NOSLEEP|VM_FIRSTFIT); 4487 /* 4488 * Most likely the allocation failed because 4489 * the requested ppa was in use. 4490 */ 4491 if (ppa == 0) 4492 return (EEXIST); 4493 } 4494 return (0); 4495 } 4496 4497 /* 4498 * No arena is in use and not enough (>ill_no_arena) interfaces have 4499 * been plumbed to create one. Do a linear search to get a unused ppa. 4500 */ 4501 if (ill->ill_ppa == UINT_MAX) { 4502 end = UINT_MAX - 1; 4503 start = 0; 4504 } else { 4505 end = start = ill->ill_ppa; 4506 } 4507 4508 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4509 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4510 if (start++ >= end) { 4511 if (ill->ill_ppa == UINT_MAX) 4512 return (EAGAIN); 4513 else 4514 return (EEXIST); 4515 } 4516 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4517 } 4518 ill->ill_ppa = start; 4519 return (0); 4520 } 4521 4522 /* 4523 * Insert ill into the list of configured ill's. Once this function completes, 4524 * the ill is globally visible and is available through lookups. More precisely 4525 * this happens after the caller drops the ill_g_lock. 4526 */ 4527 static int 4528 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4529 { 4530 ill_if_t *ill_interface; 4531 avl_index_t where = 0; 4532 int error; 4533 int name_length; 4534 int index; 4535 boolean_t check_length = B_FALSE; 4536 ip_stack_t *ipst = ill->ill_ipst; 4537 4538 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4539 4540 name_length = mi_strlen(name) + 1; 4541 4542 if (isv6) 4543 index = IP_V6_G_HEAD; 4544 else 4545 index = IP_V4_G_HEAD; 4546 4547 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4548 /* 4549 * Search for interface type based on name 4550 */ 4551 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4552 if ((ill_interface->illif_name_len == name_length) && 4553 (strcmp(ill_interface->illif_name, name) == 0)) { 4554 break; 4555 } 4556 ill_interface = ill_interface->illif_next; 4557 } 4558 4559 /* 4560 * Interface type not found, create one. 4561 */ 4562 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4563 4564 ill_g_head_t ghead; 4565 4566 /* 4567 * allocate ill_if_t structure 4568 */ 4569 4570 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4571 if (ill_interface == NULL) { 4572 return (ENOMEM); 4573 } 4574 4575 4576 4577 (void) strcpy(ill_interface->illif_name, name); 4578 ill_interface->illif_name_len = name_length; 4579 4580 avl_create(&ill_interface->illif_avl_by_ppa, 4581 ill_compare_ppa, sizeof (ill_t), 4582 offsetof(struct ill_s, ill_avl_byppa)); 4583 4584 /* 4585 * link the structure in the back to maintain order 4586 * of configuration for ifconfig output. 4587 */ 4588 ghead = ipst->ips_ill_g_heads[index]; 4589 insque(ill_interface, ghead.ill_g_list_tail); 4590 4591 } 4592 4593 if (ill->ill_ppa == UINT_MAX) 4594 check_length = B_TRUE; 4595 4596 error = ill_alloc_ppa(ill_interface, ill); 4597 if (error != 0) { 4598 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4599 ill_delete_interface_type(ill->ill_ifptr); 4600 return (error); 4601 } 4602 4603 /* 4604 * When the ppa is choosen by the system, check that there is 4605 * enough space to insert ppa. if a specific ppa was passed in this 4606 * check is not required as the interface name passed in will have 4607 * the right ppa in it. 4608 */ 4609 if (check_length) { 4610 /* 4611 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4612 */ 4613 char buf[sizeof (uint_t) * 3]; 4614 4615 /* 4616 * convert ppa to string to calculate the amount of space 4617 * required for it in the name. 4618 */ 4619 numtos(ill->ill_ppa, buf); 4620 4621 /* Do we have enough space to insert ppa ? */ 4622 4623 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4624 /* Free ppa and interface type struct */ 4625 if (ill_interface->illif_ppa_arena != NULL) { 4626 vmem_free(ill_interface->illif_ppa_arena, 4627 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4628 } 4629 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4630 0) { 4631 ill_delete_interface_type(ill->ill_ifptr); 4632 } 4633 4634 return (EINVAL); 4635 } 4636 } 4637 4638 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4639 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4640 4641 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4642 &where); 4643 ill->ill_ifptr = ill_interface; 4644 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4645 4646 ill_phyint_reinit(ill); 4647 return (0); 4648 } 4649 4650 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4651 static boolean_t 4652 ipsq_init(ill_t *ill) 4653 { 4654 ipsq_t *ipsq; 4655 4656 /* Init the ipsq and impicitly enter as writer */ 4657 ill->ill_phyint->phyint_ipsq = 4658 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4659 if (ill->ill_phyint->phyint_ipsq == NULL) 4660 return (B_FALSE); 4661 ipsq = ill->ill_phyint->phyint_ipsq; 4662 ipsq->ipsq_phyint_list = ill->ill_phyint; 4663 ill->ill_phyint->phyint_ipsq_next = NULL; 4664 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4665 ipsq->ipsq_refs = 1; 4666 ipsq->ipsq_writer = curthread; 4667 ipsq->ipsq_reentry_cnt = 1; 4668 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4669 #ifdef DEBUG 4670 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4671 IPSQ_STACK_DEPTH); 4672 #endif 4673 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4674 return (B_TRUE); 4675 } 4676 4677 /* 4678 * ill_init is called by ip_open when a device control stream is opened. 4679 * It does a few initializations, and shoots a DL_INFO_REQ message down 4680 * to the driver. The response is later picked up in ip_rput_dlpi and 4681 * used to set up default mechanisms for talking to the driver. (Always 4682 * called as writer.) 4683 * 4684 * If this function returns error, ip_open will call ip_close which in 4685 * turn will call ill_delete to clean up any memory allocated here that 4686 * is not yet freed. 4687 */ 4688 int 4689 ill_init(queue_t *q, ill_t *ill) 4690 { 4691 int count; 4692 dl_info_req_t *dlir; 4693 mblk_t *info_mp; 4694 uchar_t *frag_ptr; 4695 4696 /* 4697 * The ill is initialized to zero by mi_alloc*(). In addition 4698 * some fields already contain valid values, initialized in 4699 * ip_open(), before we reach here. 4700 */ 4701 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4702 4703 ill->ill_rq = q; 4704 ill->ill_wq = WR(q); 4705 4706 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4707 BPRI_HI); 4708 if (info_mp == NULL) 4709 return (ENOMEM); 4710 4711 /* 4712 * Allocate sufficient space to contain our fragment hash table and 4713 * the device name. 4714 */ 4715 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4716 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4717 if (frag_ptr == NULL) { 4718 freemsg(info_mp); 4719 return (ENOMEM); 4720 } 4721 ill->ill_frag_ptr = frag_ptr; 4722 ill->ill_frag_free_num_pkts = 0; 4723 ill->ill_last_frag_clean_time = 0; 4724 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4725 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4726 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4727 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4728 NULL, MUTEX_DEFAULT, NULL); 4729 } 4730 4731 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4732 if (ill->ill_phyint == NULL) { 4733 freemsg(info_mp); 4734 mi_free(frag_ptr); 4735 return (ENOMEM); 4736 } 4737 4738 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4739 /* 4740 * For now pretend this is a v4 ill. We need to set phyint_ill* 4741 * at this point because of the following reason. If we can't 4742 * enter the ipsq at some point and cv_wait, the writer that 4743 * wakes us up tries to locate us using the list of all phyints 4744 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4745 * If we don't set it now, we risk a missed wakeup. 4746 */ 4747 ill->ill_phyint->phyint_illv4 = ill; 4748 ill->ill_ppa = UINT_MAX; 4749 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4750 4751 if (!ipsq_init(ill)) { 4752 freemsg(info_mp); 4753 mi_free(frag_ptr); 4754 mi_free(ill->ill_phyint); 4755 return (ENOMEM); 4756 } 4757 4758 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4759 4760 4761 /* Frag queue limit stuff */ 4762 ill->ill_frag_count = 0; 4763 ill->ill_ipf_gen = 0; 4764 4765 ill->ill_global_timer = INFINITY; 4766 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4767 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4768 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4769 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4770 4771 /* 4772 * Initialize IPv6 configuration variables. The IP module is always 4773 * opened as an IPv4 module. Instead tracking down the cases where 4774 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4775 * here for convenience, this has no effect until the ill is set to do 4776 * IPv6. 4777 */ 4778 ill->ill_reachable_time = ND_REACHABLE_TIME; 4779 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4780 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4781 ill->ill_max_buf = ND_MAX_Q; 4782 ill->ill_refcnt = 0; 4783 4784 /* Send down the Info Request to the driver. */ 4785 info_mp->b_datap->db_type = M_PCPROTO; 4786 dlir = (dl_info_req_t *)info_mp->b_rptr; 4787 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4788 dlir->dl_primitive = DL_INFO_REQ; 4789 4790 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4791 4792 qprocson(q); 4793 ill_dlpi_send(ill, info_mp); 4794 4795 return (0); 4796 } 4797 4798 /* 4799 * ill_dls_info 4800 * creates datalink socket info from the device. 4801 */ 4802 int 4803 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4804 { 4805 size_t len; 4806 ill_t *ill = ipif->ipif_ill; 4807 4808 sdl->sdl_family = AF_LINK; 4809 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4810 sdl->sdl_type = ill->ill_type; 4811 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4812 len = strlen(sdl->sdl_data); 4813 ASSERT(len < 256); 4814 sdl->sdl_nlen = (uchar_t)len; 4815 sdl->sdl_alen = ill->ill_phys_addr_length; 4816 sdl->sdl_slen = 0; 4817 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4818 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4819 4820 return (sizeof (struct sockaddr_dl)); 4821 } 4822 4823 /* 4824 * ill_xarp_info 4825 * creates xarp info from the device. 4826 */ 4827 static int 4828 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4829 { 4830 sdl->sdl_family = AF_LINK; 4831 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4832 sdl->sdl_type = ill->ill_type; 4833 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4834 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4835 sdl->sdl_alen = ill->ill_phys_addr_length; 4836 sdl->sdl_slen = 0; 4837 return (sdl->sdl_nlen); 4838 } 4839 4840 static int 4841 loopback_kstat_update(kstat_t *ksp, int rw) 4842 { 4843 kstat_named_t *kn; 4844 netstackid_t stackid; 4845 netstack_t *ns; 4846 ip_stack_t *ipst; 4847 4848 if (ksp == NULL || ksp->ks_data == NULL) 4849 return (EIO); 4850 4851 if (rw == KSTAT_WRITE) 4852 return (EACCES); 4853 4854 kn = KSTAT_NAMED_PTR(ksp); 4855 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4856 4857 ns = netstack_find_by_stackid(stackid); 4858 if (ns == NULL) 4859 return (-1); 4860 4861 ipst = ns->netstack_ip; 4862 if (ipst == NULL) { 4863 netstack_rele(ns); 4864 return (-1); 4865 } 4866 kn[0].value.ui32 = ipst->ips_loopback_packets; 4867 kn[1].value.ui32 = ipst->ips_loopback_packets; 4868 netstack_rele(ns); 4869 return (0); 4870 } 4871 4872 4873 /* 4874 * Has ifindex been plumbed already. 4875 * Compares both phyint_ifindex and phyint_group_ifindex. 4876 */ 4877 static boolean_t 4878 phyint_exists(uint_t index, ip_stack_t *ipst) 4879 { 4880 phyint_t *phyi; 4881 4882 ASSERT(index != 0); 4883 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4884 /* 4885 * Indexes are stored in the phyint - a common structure 4886 * to both IPv4 and IPv6. 4887 */ 4888 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4889 for (; phyi != NULL; 4890 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4891 phyi, AVL_AFTER)) { 4892 if (phyi->phyint_ifindex == index || 4893 phyi->phyint_group_ifindex == index) 4894 return (B_TRUE); 4895 } 4896 return (B_FALSE); 4897 } 4898 4899 /* Pick a unique ifindex */ 4900 boolean_t 4901 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4902 { 4903 uint_t starting_index; 4904 4905 if (!ipst->ips_ill_index_wrap) { 4906 *indexp = ipst->ips_ill_index++; 4907 if (ipst->ips_ill_index == 0) { 4908 /* Reached the uint_t limit Next time wrap */ 4909 ipst->ips_ill_index_wrap = B_TRUE; 4910 } 4911 return (B_TRUE); 4912 } 4913 4914 /* 4915 * Start reusing unused indexes. Note that we hold the ill_g_lock 4916 * at this point and don't want to call any function that attempts 4917 * to get the lock again. 4918 */ 4919 starting_index = ipst->ips_ill_index++; 4920 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4921 if (ipst->ips_ill_index != 0 && 4922 !phyint_exists(ipst->ips_ill_index, ipst)) { 4923 /* found unused index - use it */ 4924 *indexp = ipst->ips_ill_index; 4925 return (B_TRUE); 4926 } 4927 } 4928 4929 /* 4930 * all interface indicies are inuse. 4931 */ 4932 return (B_FALSE); 4933 } 4934 4935 /* 4936 * Assign a unique interface index for the phyint. 4937 */ 4938 static boolean_t 4939 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4940 { 4941 ASSERT(phyi->phyint_ifindex == 0); 4942 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4943 } 4944 4945 /* 4946 * Return a pointer to the ill which matches the supplied name. Note that 4947 * the ill name length includes the null termination character. (May be 4948 * called as writer.) 4949 * If do_alloc and the interface is "lo0" it will be automatically created. 4950 * Cannot bump up reference on condemned ills. So dup detect can't be done 4951 * using this func. 4952 */ 4953 ill_t * 4954 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4955 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4956 ip_stack_t *ipst) 4957 { 4958 ill_t *ill; 4959 ipif_t *ipif; 4960 kstat_named_t *kn; 4961 boolean_t isloopback; 4962 ipsq_t *old_ipsq; 4963 in6_addr_t ov6addr; 4964 4965 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4966 4967 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4968 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4969 rw_exit(&ipst->ips_ill_g_lock); 4970 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4971 return (ill); 4972 4973 /* 4974 * Couldn't find it. Does this happen to be a lookup for the 4975 * loopback device and are we allowed to allocate it? 4976 */ 4977 if (!isloopback || !do_alloc) 4978 return (NULL); 4979 4980 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4981 4982 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4983 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4984 rw_exit(&ipst->ips_ill_g_lock); 4985 return (ill); 4986 } 4987 4988 /* Create the loopback device on demand */ 4989 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4990 sizeof (ipif_loopback_name), BPRI_MED)); 4991 if (ill == NULL) 4992 goto done; 4993 4994 *ill = ill_null; 4995 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4996 ill->ill_ipst = ipst; 4997 netstack_hold(ipst->ips_netstack); 4998 /* 4999 * For exclusive stacks we set the zoneid to zero 5000 * to make IP operate as if in the global zone. 5001 */ 5002 ill->ill_zoneid = GLOBAL_ZONEID; 5003 5004 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5005 if (ill->ill_phyint == NULL) 5006 goto done; 5007 5008 if (isv6) 5009 ill->ill_phyint->phyint_illv6 = ill; 5010 else 5011 ill->ill_phyint->phyint_illv4 = ill; 5012 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5013 ill->ill_max_frag = IP_LOOPBACK_MTU; 5014 /* Add room for tcp+ip headers */ 5015 if (isv6) { 5016 ill->ill_isv6 = B_TRUE; 5017 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5018 } else { 5019 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5020 } 5021 if (!ill_allocate_mibs(ill)) 5022 goto done; 5023 ill->ill_max_mtu = ill->ill_max_frag; 5024 /* 5025 * ipif_loopback_name can't be pointed at directly because its used 5026 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5027 * from the glist, ill_glist_delete() sets the first character of 5028 * ill_name to '\0'. 5029 */ 5030 ill->ill_name = (char *)ill + sizeof (*ill); 5031 (void) strcpy(ill->ill_name, ipif_loopback_name); 5032 ill->ill_name_length = sizeof (ipif_loopback_name); 5033 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5034 5035 ill->ill_global_timer = INFINITY; 5036 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5037 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5038 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5039 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5040 5041 /* No resolver here. */ 5042 ill->ill_net_type = IRE_LOOPBACK; 5043 5044 /* Initialize the ipsq */ 5045 if (!ipsq_init(ill)) 5046 goto done; 5047 5048 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5049 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5050 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5051 #ifdef DEBUG 5052 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5053 #endif 5054 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5055 if (ipif == NULL) 5056 goto done; 5057 5058 ill->ill_flags = ILLF_MULTICAST; 5059 5060 ov6addr = ipif->ipif_v6lcl_addr; 5061 /* Set up default loopback address and mask. */ 5062 if (!isv6) { 5063 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5064 5065 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5066 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5067 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5068 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5069 ipif->ipif_v6subnet); 5070 ill->ill_flags |= ILLF_IPV4; 5071 } else { 5072 ipif->ipif_v6lcl_addr = ipv6_loopback; 5073 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5074 ipif->ipif_v6net_mask = ipv6_all_ones; 5075 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5076 ipif->ipif_v6subnet); 5077 ill->ill_flags |= ILLF_IPV6; 5078 } 5079 5080 /* 5081 * Chain us in at the end of the ill list. hold the ill 5082 * before we make it globally visible. 1 for the lookup. 5083 */ 5084 ill->ill_refcnt = 0; 5085 ill_refhold(ill); 5086 5087 ill->ill_frag_count = 0; 5088 ill->ill_frag_free_num_pkts = 0; 5089 ill->ill_last_frag_clean_time = 0; 5090 5091 old_ipsq = ill->ill_phyint->phyint_ipsq; 5092 5093 if (ill_glist_insert(ill, "lo", isv6) != 0) 5094 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5095 5096 /* Let SCTP know so that it can add this to its list */ 5097 sctp_update_ill(ill, SCTP_ILL_INSERT); 5098 5099 /* 5100 * We have already assigned ipif_v6lcl_addr above, but we need to 5101 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5102 * requires to be after ill_glist_insert() since we need the 5103 * ill_index set. Pass on ipv6_loopback as the old address. 5104 */ 5105 sctp_update_ipif_addr(ipif, ov6addr); 5106 5107 /* 5108 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5109 */ 5110 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5111 /* Loopback ills aren't in any IPMP group */ 5112 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5113 ipsq_delete(old_ipsq); 5114 } 5115 5116 /* 5117 * Delay this till the ipif is allocated as ipif_allocate 5118 * de-references ill_phyint for getting the ifindex. We 5119 * can't do this before ipif_allocate because ill_phyint_reinit 5120 * -> phyint_assign_ifindex expects ipif to be present. 5121 */ 5122 mutex_enter(&ill->ill_phyint->phyint_lock); 5123 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5124 mutex_exit(&ill->ill_phyint->phyint_lock); 5125 5126 if (ipst->ips_loopback_ksp == NULL) { 5127 /* Export loopback interface statistics */ 5128 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5129 ipif_loopback_name, "net", 5130 KSTAT_TYPE_NAMED, 2, 0, 5131 ipst->ips_netstack->netstack_stackid); 5132 if (ipst->ips_loopback_ksp != NULL) { 5133 ipst->ips_loopback_ksp->ks_update = 5134 loopback_kstat_update; 5135 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5136 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5137 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5138 ipst->ips_loopback_ksp->ks_private = 5139 (void *)(uintptr_t)ipst->ips_netstack-> 5140 netstack_stackid; 5141 kstat_install(ipst->ips_loopback_ksp); 5142 } 5143 } 5144 5145 if (error != NULL) 5146 *error = 0; 5147 *did_alloc = B_TRUE; 5148 rw_exit(&ipst->ips_ill_g_lock); 5149 return (ill); 5150 done: 5151 if (ill != NULL) { 5152 if (ill->ill_phyint != NULL) { 5153 ipsq_t *ipsq; 5154 5155 ipsq = ill->ill_phyint->phyint_ipsq; 5156 if (ipsq != NULL) { 5157 ipsq->ipsq_ipst = NULL; 5158 kmem_free(ipsq, sizeof (ipsq_t)); 5159 } 5160 mi_free(ill->ill_phyint); 5161 } 5162 ill_free_mib(ill); 5163 if (ill->ill_ipst != NULL) 5164 netstack_rele(ill->ill_ipst->ips_netstack); 5165 mi_free(ill); 5166 } 5167 rw_exit(&ipst->ips_ill_g_lock); 5168 if (error != NULL) 5169 *error = ENOMEM; 5170 return (NULL); 5171 } 5172 5173 /* 5174 * For IPP calls - use the ip_stack_t for global stack. 5175 */ 5176 ill_t * 5177 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5179 { 5180 ip_stack_t *ipst; 5181 ill_t *ill; 5182 5183 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5184 if (ipst == NULL) { 5185 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5186 return (NULL); 5187 } 5188 5189 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5190 netstack_rele(ipst->ips_netstack); 5191 return (ill); 5192 } 5193 5194 /* 5195 * Return a pointer to the ill which matches the index and IP version type. 5196 */ 5197 ill_t * 5198 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5199 ipsq_func_t func, int *err, ip_stack_t *ipst) 5200 { 5201 ill_t *ill; 5202 ipsq_t *ipsq; 5203 phyint_t *phyi; 5204 5205 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5206 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5207 5208 if (err != NULL) 5209 *err = 0; 5210 5211 /* 5212 * Indexes are stored in the phyint - a common structure 5213 * to both IPv4 and IPv6. 5214 */ 5215 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5216 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5217 (void *) &index, NULL); 5218 if (phyi != NULL) { 5219 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5220 if (ill != NULL) { 5221 /* 5222 * The block comment at the start of ipif_down 5223 * explains the use of the macros used below 5224 */ 5225 GRAB_CONN_LOCK(q); 5226 mutex_enter(&ill->ill_lock); 5227 if (ILL_CAN_LOOKUP(ill)) { 5228 ill_refhold_locked(ill); 5229 mutex_exit(&ill->ill_lock); 5230 RELEASE_CONN_LOCK(q); 5231 rw_exit(&ipst->ips_ill_g_lock); 5232 return (ill); 5233 } else if (ILL_CAN_WAIT(ill, q)) { 5234 ipsq = ill->ill_phyint->phyint_ipsq; 5235 mutex_enter(&ipsq->ipsq_lock); 5236 rw_exit(&ipst->ips_ill_g_lock); 5237 mutex_exit(&ill->ill_lock); 5238 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5239 mutex_exit(&ipsq->ipsq_lock); 5240 RELEASE_CONN_LOCK(q); 5241 if (err != NULL) 5242 *err = EINPROGRESS; 5243 return (NULL); 5244 } 5245 RELEASE_CONN_LOCK(q); 5246 mutex_exit(&ill->ill_lock); 5247 } 5248 } 5249 rw_exit(&ipst->ips_ill_g_lock); 5250 if (err != NULL) 5251 *err = ENXIO; 5252 return (NULL); 5253 } 5254 5255 /* 5256 * Return the ifindex next in sequence after the passed in ifindex. 5257 * If there is no next ifindex for the given protocol, return 0. 5258 */ 5259 uint_t 5260 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5261 { 5262 phyint_t *phyi; 5263 phyint_t *phyi_initial; 5264 uint_t ifindex; 5265 5266 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5267 5268 if (index == 0) { 5269 phyi = avl_first( 5270 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5271 } else { 5272 phyi = phyi_initial = avl_find( 5273 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5274 (void *) &index, NULL); 5275 } 5276 5277 for (; phyi != NULL; 5278 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5279 phyi, AVL_AFTER)) { 5280 /* 5281 * If we're not returning the first interface in the tree 5282 * and we still haven't moved past the phyint_t that 5283 * corresponds to index, avl_walk needs to be called again 5284 */ 5285 if (!((index != 0) && (phyi == phyi_initial))) { 5286 if (isv6) { 5287 if ((phyi->phyint_illv6) && 5288 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5289 (phyi->phyint_illv6->ill_isv6 == 1)) 5290 break; 5291 } else { 5292 if ((phyi->phyint_illv4) && 5293 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5294 (phyi->phyint_illv4->ill_isv6 == 0)) 5295 break; 5296 } 5297 } 5298 } 5299 5300 rw_exit(&ipst->ips_ill_g_lock); 5301 5302 if (phyi != NULL) 5303 ifindex = phyi->phyint_ifindex; 5304 else 5305 ifindex = 0; 5306 5307 return (ifindex); 5308 } 5309 5310 5311 /* 5312 * Return the ifindex for the named interface. 5313 * If there is no next ifindex for the interface, return 0. 5314 */ 5315 uint_t 5316 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5317 { 5318 phyint_t *phyi; 5319 avl_index_t where = 0; 5320 uint_t ifindex; 5321 5322 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5323 5324 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5325 name, &where)) == NULL) { 5326 rw_exit(&ipst->ips_ill_g_lock); 5327 return (0); 5328 } 5329 5330 ifindex = phyi->phyint_ifindex; 5331 5332 rw_exit(&ipst->ips_ill_g_lock); 5333 5334 return (ifindex); 5335 } 5336 5337 5338 /* 5339 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5340 * that gives a running thread a reference to the ill. This reference must be 5341 * released by the thread when it is done accessing the ill and related 5342 * objects. ill_refcnt can not be used to account for static references 5343 * such as other structures pointing to an ill. Callers must generally 5344 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5345 * or be sure that the ill is not being deleted or changing state before 5346 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5347 * ill won't change any of its critical state such as address, netmask etc. 5348 */ 5349 void 5350 ill_refhold(ill_t *ill) 5351 { 5352 mutex_enter(&ill->ill_lock); 5353 ill->ill_refcnt++; 5354 ILL_TRACE_REF(ill); 5355 mutex_exit(&ill->ill_lock); 5356 } 5357 5358 void 5359 ill_refhold_locked(ill_t *ill) 5360 { 5361 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5362 ill->ill_refcnt++; 5363 ILL_TRACE_REF(ill); 5364 } 5365 5366 int 5367 ill_check_and_refhold(ill_t *ill) 5368 { 5369 mutex_enter(&ill->ill_lock); 5370 if (ILL_CAN_LOOKUP(ill)) { 5371 ill_refhold_locked(ill); 5372 mutex_exit(&ill->ill_lock); 5373 return (0); 5374 } 5375 mutex_exit(&ill->ill_lock); 5376 return (ILL_LOOKUP_FAILED); 5377 } 5378 5379 /* 5380 * Must not be called while holding any locks. Otherwise if this is 5381 * the last reference to be released, there is a chance of recursive mutex 5382 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5383 * to restart an ioctl. 5384 */ 5385 void 5386 ill_refrele(ill_t *ill) 5387 { 5388 mutex_enter(&ill->ill_lock); 5389 ASSERT(ill->ill_refcnt != 0); 5390 ill->ill_refcnt--; 5391 ILL_UNTRACE_REF(ill); 5392 if (ill->ill_refcnt != 0) { 5393 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5394 mutex_exit(&ill->ill_lock); 5395 return; 5396 } 5397 5398 /* Drops the ill_lock */ 5399 ipif_ill_refrele_tail(ill); 5400 } 5401 5402 /* 5403 * Obtain a weak reference count on the ill. This reference ensures the 5404 * ill won't be freed, but the ill may change any of its critical state 5405 * such as netmask, address etc. Returns an error if the ill has started 5406 * closing. 5407 */ 5408 boolean_t 5409 ill_waiter_inc(ill_t *ill) 5410 { 5411 mutex_enter(&ill->ill_lock); 5412 if (ill->ill_state_flags & ILL_CONDEMNED) { 5413 mutex_exit(&ill->ill_lock); 5414 return (B_FALSE); 5415 } 5416 ill->ill_waiters++; 5417 mutex_exit(&ill->ill_lock); 5418 return (B_TRUE); 5419 } 5420 5421 void 5422 ill_waiter_dcr(ill_t *ill) 5423 { 5424 mutex_enter(&ill->ill_lock); 5425 ill->ill_waiters--; 5426 if (ill->ill_waiters == 0) 5427 cv_broadcast(&ill->ill_cv); 5428 mutex_exit(&ill->ill_lock); 5429 } 5430 5431 /* 5432 * Named Dispatch routine to produce a formatted report on all ILLs. 5433 * This report is accessed by using the ndd utility to "get" ND variable 5434 * "ip_ill_status". 5435 */ 5436 /* ARGSUSED */ 5437 int 5438 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5439 { 5440 ill_t *ill; 5441 ill_walk_context_t ctx; 5442 ip_stack_t *ipst; 5443 5444 ipst = CONNQ_TO_IPST(q); 5445 5446 (void) mi_mpprintf(mp, 5447 "ILL " MI_COL_HDRPAD_STR 5448 /* 01234567[89ABCDEF] */ 5449 "rq " MI_COL_HDRPAD_STR 5450 /* 01234567[89ABCDEF] */ 5451 "wq " MI_COL_HDRPAD_STR 5452 /* 01234567[89ABCDEF] */ 5453 "upcnt mxfrg err name"); 5454 /* 12345 12345 123 xxxxxxxx */ 5455 5456 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5457 ill = ILL_START_WALK_ALL(&ctx, ipst); 5458 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5459 (void) mi_mpprintf(mp, 5460 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5461 "%05u %05u %03d %s", 5462 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5463 ill->ill_ipif_up_count, 5464 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5465 } 5466 rw_exit(&ipst->ips_ill_g_lock); 5467 5468 return (0); 5469 } 5470 5471 /* 5472 * Named Dispatch routine to produce a formatted report on all IPIFs. 5473 * This report is accessed by using the ndd utility to "get" ND variable 5474 * "ip_ipif_status". 5475 */ 5476 /* ARGSUSED */ 5477 int 5478 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5479 { 5480 char buf1[INET6_ADDRSTRLEN]; 5481 char buf2[INET6_ADDRSTRLEN]; 5482 char buf3[INET6_ADDRSTRLEN]; 5483 char buf4[INET6_ADDRSTRLEN]; 5484 char buf5[INET6_ADDRSTRLEN]; 5485 char buf6[INET6_ADDRSTRLEN]; 5486 char buf[LIFNAMSIZ]; 5487 ill_t *ill; 5488 ipif_t *ipif; 5489 nv_t *nvp; 5490 uint64_t flags; 5491 zoneid_t zoneid; 5492 ill_walk_context_t ctx; 5493 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5494 5495 (void) mi_mpprintf(mp, 5496 "IPIF metric mtu in/out/forward name zone flags...\n" 5497 "\tlocal address\n" 5498 "\tsrc address\n" 5499 "\tsubnet\n" 5500 "\tmask\n" 5501 "\tbroadcast\n" 5502 "\tp-p-dst"); 5503 5504 ASSERT(q->q_next == NULL); 5505 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5506 5507 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5508 ill = ILL_START_WALK_ALL(&ctx, ipst); 5509 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5510 for (ipif = ill->ill_ipif; ipif != NULL; 5511 ipif = ipif->ipif_next) { 5512 if (zoneid != GLOBAL_ZONEID && 5513 zoneid != ipif->ipif_zoneid && 5514 ipif->ipif_zoneid != ALL_ZONES) 5515 continue; 5516 5517 ipif_get_name(ipif, buf, sizeof (buf)); 5518 (void) mi_mpprintf(mp, 5519 MI_COL_PTRFMT_STR 5520 "%04u %05u %u/%u/%u %s %d", 5521 (void *)ipif, 5522 ipif->ipif_metric, ipif->ipif_mtu, 5523 ipif->ipif_ib_pkt_count, 5524 ipif->ipif_ob_pkt_count, 5525 ipif->ipif_fo_pkt_count, 5526 buf, 5527 ipif->ipif_zoneid); 5528 5529 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5530 ipif->ipif_ill->ill_phyint->phyint_flags; 5531 5532 /* Tack on text strings for any flags. */ 5533 nvp = ipif_nv_tbl; 5534 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5535 if (nvp->nv_value & flags) 5536 (void) mi_mpprintf_nr(mp, " %s", 5537 nvp->nv_name); 5538 } 5539 (void) mi_mpprintf(mp, 5540 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5541 inet_ntop(AF_INET6, 5542 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5543 inet_ntop(AF_INET6, 5544 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5545 inet_ntop(AF_INET6, 5546 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5547 inet_ntop(AF_INET6, 5548 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5549 inet_ntop(AF_INET6, 5550 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5551 inet_ntop(AF_INET6, 5552 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5553 } 5554 } 5555 rw_exit(&ipst->ips_ill_g_lock); 5556 return (0); 5557 } 5558 5559 /* 5560 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5561 * driver. We construct best guess defaults for lower level information that 5562 * we need. If an interface is brought up without injection of any overriding 5563 * information from outside, we have to be ready to go with these defaults. 5564 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5565 * we primarely want the dl_provider_style. 5566 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5567 * at which point we assume the other part of the information is valid. 5568 */ 5569 void 5570 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5571 { 5572 uchar_t *brdcst_addr; 5573 uint_t brdcst_addr_length, phys_addr_length; 5574 t_scalar_t sap_length; 5575 dl_info_ack_t *dlia; 5576 ip_m_t *ipm; 5577 dl_qos_cl_sel1_t *sel1; 5578 5579 ASSERT(IAM_WRITER_ILL(ill)); 5580 5581 /* 5582 * Till the ill is fully up ILL_CHANGING will be set and 5583 * the ill is not globally visible. So no need for a lock. 5584 */ 5585 dlia = (dl_info_ack_t *)mp->b_rptr; 5586 ill->ill_mactype = dlia->dl_mac_type; 5587 5588 ipm = ip_m_lookup(dlia->dl_mac_type); 5589 if (ipm == NULL) { 5590 ipm = ip_m_lookup(DL_OTHER); 5591 ASSERT(ipm != NULL); 5592 } 5593 ill->ill_media = ipm; 5594 5595 /* 5596 * When the new DLPI stuff is ready we'll pull lengths 5597 * from dlia. 5598 */ 5599 if (dlia->dl_version == DL_VERSION_2) { 5600 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5601 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5602 brdcst_addr_length); 5603 if (brdcst_addr == NULL) { 5604 brdcst_addr_length = 0; 5605 } 5606 sap_length = dlia->dl_sap_length; 5607 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5608 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5609 brdcst_addr_length, sap_length, phys_addr_length)); 5610 } else { 5611 brdcst_addr_length = 6; 5612 brdcst_addr = ip_six_byte_all_ones; 5613 sap_length = -2; 5614 phys_addr_length = brdcst_addr_length; 5615 } 5616 5617 ill->ill_bcast_addr_length = brdcst_addr_length; 5618 ill->ill_phys_addr_length = phys_addr_length; 5619 ill->ill_sap_length = sap_length; 5620 ill->ill_max_frag = dlia->dl_max_sdu; 5621 ill->ill_max_mtu = ill->ill_max_frag; 5622 5623 ill->ill_type = ipm->ip_m_type; 5624 5625 if (!ill->ill_dlpi_style_set) { 5626 if (dlia->dl_provider_style == DL_STYLE2) 5627 ill->ill_needs_attach = 1; 5628 5629 /* 5630 * Allocate the first ipif on this ill. We don't delay it 5631 * further as ioctl handling assumes atleast one ipif to 5632 * be present. 5633 * 5634 * At this point we don't know whether the ill is v4 or v6. 5635 * We will know this whan the SIOCSLIFNAME happens and 5636 * the correct value for ill_isv6 will be assigned in 5637 * ipif_set_values(). We need to hold the ill lock and 5638 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5639 * the wakeup. 5640 */ 5641 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5642 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5643 mutex_enter(&ill->ill_lock); 5644 ASSERT(ill->ill_dlpi_style_set == 0); 5645 ill->ill_dlpi_style_set = 1; 5646 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5647 cv_broadcast(&ill->ill_cv); 5648 mutex_exit(&ill->ill_lock); 5649 freemsg(mp); 5650 return; 5651 } 5652 ASSERT(ill->ill_ipif != NULL); 5653 /* 5654 * We know whether it is IPv4 or IPv6 now, as this is the 5655 * second DL_INFO_ACK we are recieving in response to the 5656 * DL_INFO_REQ sent in ipif_set_values. 5657 */ 5658 if (ill->ill_isv6) 5659 ill->ill_sap = IP6_DL_SAP; 5660 else 5661 ill->ill_sap = IP_DL_SAP; 5662 /* 5663 * Set ipif_mtu which is used to set the IRE's 5664 * ire_max_frag value. The driver could have sent 5665 * a different mtu from what it sent last time. No 5666 * need to call ipif_mtu_change because IREs have 5667 * not yet been created. 5668 */ 5669 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5670 /* 5671 * Clear all the flags that were set based on ill_bcast_addr_length 5672 * and ill_phys_addr_length (in ipif_set_values) as these could have 5673 * changed now and we need to re-evaluate. 5674 */ 5675 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5676 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5677 5678 /* 5679 * Free ill_resolver_mp and ill_bcast_mp as things could have 5680 * changed now. 5681 */ 5682 if (ill->ill_bcast_addr_length == 0) { 5683 if (ill->ill_resolver_mp != NULL) 5684 freemsg(ill->ill_resolver_mp); 5685 if (ill->ill_bcast_mp != NULL) 5686 freemsg(ill->ill_bcast_mp); 5687 if (ill->ill_flags & ILLF_XRESOLV) 5688 ill->ill_net_type = IRE_IF_RESOLVER; 5689 else 5690 ill->ill_net_type = IRE_IF_NORESOLVER; 5691 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5692 ill->ill_phys_addr_length, 5693 ill->ill_sap, 5694 ill->ill_sap_length); 5695 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5696 5697 if (ill->ill_isv6) 5698 /* 5699 * Note: xresolv interfaces will eventually need NOARP 5700 * set here as well, but that will require those 5701 * external resolvers to have some knowledge of 5702 * that flag and act appropriately. Not to be changed 5703 * at present. 5704 */ 5705 ill->ill_flags |= ILLF_NONUD; 5706 else 5707 ill->ill_flags |= ILLF_NOARP; 5708 5709 if (ill->ill_phys_addr_length == 0) { 5710 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5711 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5712 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5713 } else { 5714 /* pt-pt supports multicast. */ 5715 ill->ill_flags |= ILLF_MULTICAST; 5716 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5717 } 5718 } 5719 } else { 5720 ill->ill_net_type = IRE_IF_RESOLVER; 5721 if (ill->ill_bcast_mp != NULL) 5722 freemsg(ill->ill_bcast_mp); 5723 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5724 ill->ill_bcast_addr_length, ill->ill_sap, 5725 ill->ill_sap_length); 5726 /* 5727 * Later detect lack of DLPI driver multicast 5728 * capability by catching DL_ENABMULTI errors in 5729 * ip_rput_dlpi. 5730 */ 5731 ill->ill_flags |= ILLF_MULTICAST; 5732 if (!ill->ill_isv6) 5733 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5734 } 5735 /* By default an interface does not support any CoS marking */ 5736 ill->ill_flags &= ~ILLF_COS_ENABLED; 5737 5738 /* 5739 * If we get QoS information in DL_INFO_ACK, the device supports 5740 * some form of CoS marking, set ILLF_COS_ENABLED. 5741 */ 5742 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5743 dlia->dl_qos_length); 5744 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5745 ill->ill_flags |= ILLF_COS_ENABLED; 5746 } 5747 5748 /* Clear any previous error indication. */ 5749 ill->ill_error = 0; 5750 freemsg(mp); 5751 } 5752 5753 /* 5754 * Perform various checks to verify that an address would make sense as a 5755 * local, remote, or subnet interface address. 5756 */ 5757 static boolean_t 5758 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5759 { 5760 ipaddr_t net_mask; 5761 5762 /* 5763 * Don't allow all zeroes, or all ones, but allow 5764 * all ones netmask. 5765 */ 5766 if ((net_mask = ip_net_mask(addr)) == 0) 5767 return (B_FALSE); 5768 /* A given netmask overrides the "guess" netmask */ 5769 if (subnet_mask != 0) 5770 net_mask = subnet_mask; 5771 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5772 (addr == (addr | ~net_mask)))) { 5773 return (B_FALSE); 5774 } 5775 5776 /* 5777 * Even if the netmask is all ones, we do not allow address to be 5778 * 255.255.255.255 5779 */ 5780 if (addr == INADDR_BROADCAST) 5781 return (B_FALSE); 5782 5783 if (CLASSD(addr)) 5784 return (B_FALSE); 5785 5786 return (B_TRUE); 5787 } 5788 5789 #define V6_IPIF_LINKLOCAL(p) \ 5790 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5791 5792 /* 5793 * Compare two given ipifs and check if the second one is better than 5794 * the first one using the order of preference (not taking deprecated 5795 * into acount) specified in ipif_lookup_multicast(). 5796 */ 5797 static boolean_t 5798 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5799 { 5800 /* Check the least preferred first. */ 5801 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5802 /* If both ipifs are the same, use the first one. */ 5803 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5804 return (B_FALSE); 5805 else 5806 return (B_TRUE); 5807 } 5808 5809 /* For IPv6, check for link local address. */ 5810 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5811 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5812 V6_IPIF_LINKLOCAL(new_ipif)) { 5813 /* The second one is equal or less preferred. */ 5814 return (B_FALSE); 5815 } else { 5816 return (B_TRUE); 5817 } 5818 } 5819 5820 /* Then check for point to point interface. */ 5821 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5822 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5823 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5824 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5825 return (B_FALSE); 5826 } else { 5827 return (B_TRUE); 5828 } 5829 } 5830 5831 /* old_ipif is a normal interface, so no need to use the new one. */ 5832 return (B_FALSE); 5833 } 5834 5835 /* 5836 * Find any non-virtual, not condemned, and up multicast capable interface 5837 * given an IP instance and zoneid. Order of preference is: 5838 * 5839 * 1. normal 5840 * 1.1 normal, but deprecated 5841 * 2. point to point 5842 * 2.1 point to point, but deprecated 5843 * 3. link local 5844 * 3.1 link local, but deprecated 5845 * 4. loopback. 5846 */ 5847 ipif_t * 5848 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5849 { 5850 ill_t *ill; 5851 ill_walk_context_t ctx; 5852 ipif_t *ipif; 5853 ipif_t *saved_ipif = NULL; 5854 ipif_t *dep_ipif = NULL; 5855 5856 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5857 if (isv6) 5858 ill = ILL_START_WALK_V6(&ctx, ipst); 5859 else 5860 ill = ILL_START_WALK_V4(&ctx, ipst); 5861 5862 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5863 mutex_enter(&ill->ill_lock); 5864 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5865 !(ill->ill_flags & ILLF_MULTICAST)) { 5866 mutex_exit(&ill->ill_lock); 5867 continue; 5868 } 5869 for (ipif = ill->ill_ipif; ipif != NULL; 5870 ipif = ipif->ipif_next) { 5871 if (zoneid != ipif->ipif_zoneid && 5872 zoneid != ALL_ZONES && 5873 ipif->ipif_zoneid != ALL_ZONES) { 5874 continue; 5875 } 5876 if (!(ipif->ipif_flags & IPIF_UP) || 5877 !IPIF_CAN_LOOKUP(ipif)) { 5878 continue; 5879 } 5880 5881 /* 5882 * Found one candidate. If it is deprecated, 5883 * remember it in dep_ipif. If it is not deprecated, 5884 * remember it in saved_ipif. 5885 */ 5886 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5887 if (dep_ipif == NULL) { 5888 dep_ipif = ipif; 5889 } else if (ipif_comp_multi(dep_ipif, ipif, 5890 isv6)) { 5891 /* 5892 * If the previous dep_ipif does not 5893 * belong to the same ill, we've done 5894 * a ipif_refhold() on it. So we need 5895 * to release it. 5896 */ 5897 if (dep_ipif->ipif_ill != ill) 5898 ipif_refrele(dep_ipif); 5899 dep_ipif = ipif; 5900 } 5901 continue; 5902 } 5903 if (saved_ipif == NULL) { 5904 saved_ipif = ipif; 5905 } else { 5906 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5907 if (saved_ipif->ipif_ill != ill) 5908 ipif_refrele(saved_ipif); 5909 saved_ipif = ipif; 5910 } 5911 } 5912 } 5913 /* 5914 * Before going to the next ill, do a ipif_refhold() on the 5915 * saved ones. 5916 */ 5917 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5918 ipif_refhold_locked(saved_ipif); 5919 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5920 ipif_refhold_locked(dep_ipif); 5921 mutex_exit(&ill->ill_lock); 5922 } 5923 rw_exit(&ipst->ips_ill_g_lock); 5924 5925 /* 5926 * If we have only the saved_ipif, return it. But if we have both 5927 * saved_ipif and dep_ipif, check to see which one is better. 5928 */ 5929 if (saved_ipif != NULL) { 5930 if (dep_ipif != NULL) { 5931 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5932 ipif_refrele(saved_ipif); 5933 return (dep_ipif); 5934 } else { 5935 ipif_refrele(dep_ipif); 5936 return (saved_ipif); 5937 } 5938 } 5939 return (saved_ipif); 5940 } else { 5941 return (dep_ipif); 5942 } 5943 } 5944 5945 /* 5946 * This function is called when an application does not specify an interface 5947 * to be used for multicast traffic (joining a group/sending data). It 5948 * calls ire_lookup_multi() to look for an interface route for the 5949 * specified multicast group. Doing this allows the administrator to add 5950 * prefix routes for multicast to indicate which interface to be used for 5951 * multicast traffic in the above scenario. The route could be for all 5952 * multicast (224.0/4), for a single multicast group (a /32 route) or 5953 * anything in between. If there is no such multicast route, we just find 5954 * any multicast capable interface and return it. The returned ipif 5955 * is refhold'ed. 5956 */ 5957 ipif_t * 5958 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5959 { 5960 ire_t *ire; 5961 ipif_t *ipif; 5962 5963 ire = ire_lookup_multi(group, zoneid, ipst); 5964 if (ire != NULL) { 5965 ipif = ire->ire_ipif; 5966 ipif_refhold(ipif); 5967 ire_refrele(ire); 5968 return (ipif); 5969 } 5970 5971 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5972 } 5973 5974 /* 5975 * Look for an ipif with the specified interface address and destination. 5976 * The destination address is used only for matching point-to-point interfaces. 5977 */ 5978 ipif_t * 5979 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5980 ipsq_func_t func, int *error, ip_stack_t *ipst) 5981 { 5982 ipif_t *ipif; 5983 ill_t *ill; 5984 ill_walk_context_t ctx; 5985 ipsq_t *ipsq; 5986 5987 if (error != NULL) 5988 *error = 0; 5989 5990 /* 5991 * First match all the point-to-point interfaces 5992 * before looking at non-point-to-point interfaces. 5993 * This is done to avoid returning non-point-to-point 5994 * ipif instead of unnumbered point-to-point ipif. 5995 */ 5996 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5997 ill = ILL_START_WALK_V4(&ctx, ipst); 5998 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5999 GRAB_CONN_LOCK(q); 6000 mutex_enter(&ill->ill_lock); 6001 for (ipif = ill->ill_ipif; ipif != NULL; 6002 ipif = ipif->ipif_next) { 6003 /* Allow the ipif to be down */ 6004 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 6005 (ipif->ipif_lcl_addr == if_addr) && 6006 (ipif->ipif_pp_dst_addr == dst)) { 6007 /* 6008 * The block comment at the start of ipif_down 6009 * explains the use of the macros used below 6010 */ 6011 if (IPIF_CAN_LOOKUP(ipif)) { 6012 ipif_refhold_locked(ipif); 6013 mutex_exit(&ill->ill_lock); 6014 RELEASE_CONN_LOCK(q); 6015 rw_exit(&ipst->ips_ill_g_lock); 6016 return (ipif); 6017 } else if (IPIF_CAN_WAIT(ipif, q)) { 6018 ipsq = ill->ill_phyint->phyint_ipsq; 6019 mutex_enter(&ipsq->ipsq_lock); 6020 mutex_exit(&ill->ill_lock); 6021 rw_exit(&ipst->ips_ill_g_lock); 6022 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6023 ill); 6024 mutex_exit(&ipsq->ipsq_lock); 6025 RELEASE_CONN_LOCK(q); 6026 if (error != NULL) 6027 *error = EINPROGRESS; 6028 return (NULL); 6029 } 6030 } 6031 } 6032 mutex_exit(&ill->ill_lock); 6033 RELEASE_CONN_LOCK(q); 6034 } 6035 rw_exit(&ipst->ips_ill_g_lock); 6036 6037 /* lookup the ipif based on interface address */ 6038 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 6039 ipst); 6040 ASSERT(ipif == NULL || !ipif->ipif_isv6); 6041 return (ipif); 6042 } 6043 6044 /* 6045 * Look for an ipif with the specified address. For point-point links 6046 * we look for matches on either the destination address and the local 6047 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6048 * is set. 6049 * Matches on a specific ill if match_ill is set. 6050 */ 6051 ipif_t * 6052 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 6053 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 6054 { 6055 ipif_t *ipif; 6056 ill_t *ill; 6057 boolean_t ptp = B_FALSE; 6058 ipsq_t *ipsq; 6059 ill_walk_context_t ctx; 6060 6061 if (error != NULL) 6062 *error = 0; 6063 6064 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6065 /* 6066 * Repeat twice, first based on local addresses and 6067 * next time for pointopoint. 6068 */ 6069 repeat: 6070 ill = ILL_START_WALK_V4(&ctx, ipst); 6071 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6072 if (match_ill != NULL && ill != match_ill) { 6073 continue; 6074 } 6075 GRAB_CONN_LOCK(q); 6076 mutex_enter(&ill->ill_lock); 6077 for (ipif = ill->ill_ipif; ipif != NULL; 6078 ipif = ipif->ipif_next) { 6079 if (zoneid != ALL_ZONES && 6080 zoneid != ipif->ipif_zoneid && 6081 ipif->ipif_zoneid != ALL_ZONES) 6082 continue; 6083 /* Allow the ipif to be down */ 6084 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6085 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6086 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6087 (ipif->ipif_pp_dst_addr == addr))) { 6088 /* 6089 * The block comment at the start of ipif_down 6090 * explains the use of the macros used below 6091 */ 6092 if (IPIF_CAN_LOOKUP(ipif)) { 6093 ipif_refhold_locked(ipif); 6094 mutex_exit(&ill->ill_lock); 6095 RELEASE_CONN_LOCK(q); 6096 rw_exit(&ipst->ips_ill_g_lock); 6097 return (ipif); 6098 } else if (IPIF_CAN_WAIT(ipif, q)) { 6099 ipsq = ill->ill_phyint->phyint_ipsq; 6100 mutex_enter(&ipsq->ipsq_lock); 6101 mutex_exit(&ill->ill_lock); 6102 rw_exit(&ipst->ips_ill_g_lock); 6103 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6104 ill); 6105 mutex_exit(&ipsq->ipsq_lock); 6106 RELEASE_CONN_LOCK(q); 6107 if (error != NULL) 6108 *error = EINPROGRESS; 6109 return (NULL); 6110 } 6111 } 6112 } 6113 mutex_exit(&ill->ill_lock); 6114 RELEASE_CONN_LOCK(q); 6115 } 6116 6117 /* If we already did the ptp case, then we are done */ 6118 if (ptp) { 6119 rw_exit(&ipst->ips_ill_g_lock); 6120 if (error != NULL) 6121 *error = ENXIO; 6122 return (NULL); 6123 } 6124 ptp = B_TRUE; 6125 goto repeat; 6126 } 6127 6128 /* 6129 * Look for an ipif with the specified address. For point-point links 6130 * we look for matches on either the destination address and the local 6131 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6132 * is set. 6133 * Matches on a specific ill if match_ill is set. 6134 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6135 */ 6136 zoneid_t 6137 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6138 { 6139 zoneid_t zoneid; 6140 ipif_t *ipif; 6141 ill_t *ill; 6142 boolean_t ptp = B_FALSE; 6143 ill_walk_context_t ctx; 6144 6145 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6146 /* 6147 * Repeat twice, first based on local addresses and 6148 * next time for pointopoint. 6149 */ 6150 repeat: 6151 ill = ILL_START_WALK_V4(&ctx, ipst); 6152 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6153 if (match_ill != NULL && ill != match_ill) { 6154 continue; 6155 } 6156 mutex_enter(&ill->ill_lock); 6157 for (ipif = ill->ill_ipif; ipif != NULL; 6158 ipif = ipif->ipif_next) { 6159 /* Allow the ipif to be down */ 6160 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6161 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6162 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6163 (ipif->ipif_pp_dst_addr == addr)) && 6164 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6165 zoneid = ipif->ipif_zoneid; 6166 mutex_exit(&ill->ill_lock); 6167 rw_exit(&ipst->ips_ill_g_lock); 6168 /* 6169 * If ipif_zoneid was ALL_ZONES then we have 6170 * a trusted extensions shared IP address. 6171 * In that case GLOBAL_ZONEID works to send. 6172 */ 6173 if (zoneid == ALL_ZONES) 6174 zoneid = GLOBAL_ZONEID; 6175 return (zoneid); 6176 } 6177 } 6178 mutex_exit(&ill->ill_lock); 6179 } 6180 6181 /* If we already did the ptp case, then we are done */ 6182 if (ptp) { 6183 rw_exit(&ipst->ips_ill_g_lock); 6184 return (ALL_ZONES); 6185 } 6186 ptp = B_TRUE; 6187 goto repeat; 6188 } 6189 6190 /* 6191 * Look for an ipif that matches the specified remote address i.e. the 6192 * ipif that would receive the specified packet. 6193 * First look for directly connected interfaces and then do a recursive 6194 * IRE lookup and pick the first ipif corresponding to the source address in the 6195 * ire. 6196 * Returns: held ipif 6197 */ 6198 ipif_t * 6199 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6200 { 6201 ipif_t *ipif; 6202 ire_t *ire; 6203 ip_stack_t *ipst = ill->ill_ipst; 6204 6205 ASSERT(!ill->ill_isv6); 6206 6207 /* 6208 * Someone could be changing this ipif currently or change it 6209 * after we return this. Thus a few packets could use the old 6210 * old values. However structure updates/creates (ire, ilg, ilm etc) 6211 * will atomically be updated or cleaned up with the new value 6212 * Thus we don't need a lock to check the flags or other attrs below. 6213 */ 6214 mutex_enter(&ill->ill_lock); 6215 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6216 if (!IPIF_CAN_LOOKUP(ipif)) 6217 continue; 6218 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6219 ipif->ipif_zoneid != ALL_ZONES) 6220 continue; 6221 /* Allow the ipif to be down */ 6222 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6223 if ((ipif->ipif_pp_dst_addr == addr) || 6224 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6225 ipif->ipif_lcl_addr == addr)) { 6226 ipif_refhold_locked(ipif); 6227 mutex_exit(&ill->ill_lock); 6228 return (ipif); 6229 } 6230 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6231 ipif_refhold_locked(ipif); 6232 mutex_exit(&ill->ill_lock); 6233 return (ipif); 6234 } 6235 } 6236 mutex_exit(&ill->ill_lock); 6237 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6238 NULL, MATCH_IRE_RECURSIVE, ipst); 6239 if (ire != NULL) { 6240 /* 6241 * The callers of this function wants to know the 6242 * interface on which they have to send the replies 6243 * back. For IRE_CACHES that have ire_stq and ire_ipif 6244 * derived from different ills, we really don't care 6245 * what we return here. 6246 */ 6247 ipif = ire->ire_ipif; 6248 if (ipif != NULL) { 6249 ipif_refhold(ipif); 6250 ire_refrele(ire); 6251 return (ipif); 6252 } 6253 ire_refrele(ire); 6254 } 6255 /* Pick the first interface */ 6256 ipif = ipif_get_next_ipif(NULL, ill); 6257 return (ipif); 6258 } 6259 6260 /* 6261 * This func does not prevent refcnt from increasing. But if 6262 * the caller has taken steps to that effect, then this func 6263 * can be used to determine whether the ill has become quiescent 6264 */ 6265 boolean_t 6266 ill_is_quiescent(ill_t *ill) 6267 { 6268 ipif_t *ipif; 6269 6270 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6271 6272 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6273 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6274 return (B_FALSE); 6275 } 6276 } 6277 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6278 ill->ill_nce_cnt != 0) { 6279 return (B_FALSE); 6280 } 6281 return (B_TRUE); 6282 } 6283 6284 /* 6285 * This func does not prevent refcnt from increasing. But if 6286 * the caller has taken steps to that effect, then this func 6287 * can be used to determine whether the ipif has become quiescent 6288 */ 6289 static boolean_t 6290 ipif_is_quiescent(ipif_t *ipif) 6291 { 6292 ill_t *ill; 6293 6294 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6295 6296 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6297 return (B_FALSE); 6298 } 6299 6300 ill = ipif->ipif_ill; 6301 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6302 ill->ill_logical_down) { 6303 return (B_TRUE); 6304 } 6305 6306 /* This is the last ipif going down or being deleted on this ill */ 6307 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6308 return (B_FALSE); 6309 } 6310 6311 return (B_TRUE); 6312 } 6313 6314 /* 6315 * This func does not prevent refcnt from increasing. But if 6316 * the caller has taken steps to that effect, then this func 6317 * can be used to determine whether the ipifs marked with IPIF_MOVING 6318 * have become quiescent and can be moved in a failover/failback. 6319 */ 6320 static ipif_t * 6321 ill_quiescent_to_move(ill_t *ill) 6322 { 6323 ipif_t *ipif; 6324 6325 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6326 6327 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6328 if (ipif->ipif_state_flags & IPIF_MOVING) { 6329 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6330 return (ipif); 6331 } 6332 } 6333 } 6334 return (NULL); 6335 } 6336 6337 /* 6338 * The ipif/ill/ire has been refreled. Do the tail processing. 6339 * Determine if the ipif or ill in question has become quiescent and if so 6340 * wakeup close and/or restart any queued pending ioctl that is waiting 6341 * for the ipif_down (or ill_down) 6342 */ 6343 void 6344 ipif_ill_refrele_tail(ill_t *ill) 6345 { 6346 mblk_t *mp; 6347 conn_t *connp; 6348 ipsq_t *ipsq; 6349 ipif_t *ipif; 6350 dl_notify_ind_t *dlindp; 6351 6352 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6353 6354 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6355 ill_is_quiescent(ill)) { 6356 /* ill_close may be waiting */ 6357 cv_broadcast(&ill->ill_cv); 6358 } 6359 6360 /* ipsq can't change because ill_lock is held */ 6361 ipsq = ill->ill_phyint->phyint_ipsq; 6362 if (ipsq->ipsq_waitfor == 0) { 6363 /* Not waiting for anything, just return. */ 6364 mutex_exit(&ill->ill_lock); 6365 return; 6366 } 6367 ASSERT(ipsq->ipsq_pending_mp != NULL && 6368 ipsq->ipsq_pending_ipif != NULL); 6369 /* 6370 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6371 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6372 * be zero for restarting an ioctl that ends up downing the ill. 6373 */ 6374 ipif = ipsq->ipsq_pending_ipif; 6375 if (ipif->ipif_ill != ill) { 6376 /* The ioctl is pending on some other ill. */ 6377 mutex_exit(&ill->ill_lock); 6378 return; 6379 } 6380 6381 switch (ipsq->ipsq_waitfor) { 6382 case IPIF_DOWN: 6383 case IPIF_FREE: 6384 if (!ipif_is_quiescent(ipif)) { 6385 mutex_exit(&ill->ill_lock); 6386 return; 6387 } 6388 break; 6389 6390 case ILL_DOWN: 6391 case ILL_FREE: 6392 /* 6393 * case ILL_FREE arises only for loopback. otherwise ill_delete 6394 * waits synchronously in ip_close, and no message is queued in 6395 * ipsq_pending_mp at all in this case 6396 */ 6397 if (!ill_is_quiescent(ill)) { 6398 mutex_exit(&ill->ill_lock); 6399 return; 6400 } 6401 6402 break; 6403 6404 case ILL_MOVE_OK: 6405 if (ill_quiescent_to_move(ill) != NULL) { 6406 mutex_exit(&ill->ill_lock); 6407 return; 6408 } 6409 6410 break; 6411 default: 6412 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6413 (void *)ipsq, ipsq->ipsq_waitfor); 6414 } 6415 6416 /* 6417 * Incr refcnt for the qwriter_ip call below which 6418 * does a refrele 6419 */ 6420 ill_refhold_locked(ill); 6421 mutex_exit(&ill->ill_lock); 6422 6423 mp = ipsq_pending_mp_get(ipsq, &connp); 6424 ASSERT(mp != NULL); 6425 6426 /* 6427 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6428 * we can only get here when the current operation decides it 6429 * it needs to quiesce via ipsq_pending_mp_add(). 6430 */ 6431 switch (mp->b_datap->db_type) { 6432 case M_PCPROTO: 6433 case M_PROTO: 6434 /* 6435 * For now, only DL_NOTIFY_IND messages can use this facility. 6436 */ 6437 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6438 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6439 6440 switch (dlindp->dl_notification) { 6441 case DL_NOTE_PHYS_ADDR: 6442 qwriter_ip(ill, ill->ill_rq, mp, 6443 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6444 return; 6445 default: 6446 ASSERT(0); 6447 } 6448 break; 6449 6450 case M_ERROR: 6451 case M_HANGUP: 6452 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6453 B_TRUE); 6454 return; 6455 6456 case M_IOCTL: 6457 case M_IOCDATA: 6458 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6459 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6460 return; 6461 6462 default: 6463 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6464 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6465 } 6466 } 6467 6468 #ifdef DEBUG 6469 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6470 static void 6471 th_trace_rrecord(th_trace_t *th_trace) 6472 { 6473 tr_buf_t *tr_buf; 6474 uint_t lastref; 6475 6476 lastref = th_trace->th_trace_lastref; 6477 lastref++; 6478 if (lastref == TR_BUF_MAX) 6479 lastref = 0; 6480 th_trace->th_trace_lastref = lastref; 6481 tr_buf = &th_trace->th_trbuf[lastref]; 6482 tr_buf->tr_time = lbolt; 6483 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6484 } 6485 6486 static void 6487 th_trace_free(void *value) 6488 { 6489 th_trace_t *th_trace = value; 6490 6491 ASSERT(th_trace->th_refcnt == 0); 6492 kmem_free(th_trace, sizeof (*th_trace)); 6493 } 6494 6495 /* 6496 * Find or create the per-thread hash table used to track object references. 6497 * The ipst argument is NULL if we shouldn't allocate. 6498 * 6499 * Accesses per-thread data, so there's no need to lock here. 6500 */ 6501 static mod_hash_t * 6502 th_trace_gethash(ip_stack_t *ipst) 6503 { 6504 th_hash_t *thh; 6505 6506 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6507 mod_hash_t *mh; 6508 char name[256]; 6509 size_t objsize, rshift; 6510 int retv; 6511 6512 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6513 return (NULL); 6514 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6515 6516 /* 6517 * We use mod_hash_create_extended here rather than the more 6518 * obvious mod_hash_create_ptrhash because the latter has a 6519 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6520 * block. 6521 */ 6522 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6523 MAX(sizeof (ire_t), sizeof (nce_t))); 6524 rshift = highbit(objsize); 6525 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6526 th_trace_free, mod_hash_byptr, (void *)rshift, 6527 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6528 if (mh == NULL) { 6529 kmem_free(thh, sizeof (*thh)); 6530 return (NULL); 6531 } 6532 thh->thh_hash = mh; 6533 thh->thh_ipst = ipst; 6534 /* 6535 * We trace ills, ipifs, ires, and nces. All of these are 6536 * per-IP-stack, so the lock on the thread list is as well. 6537 */ 6538 rw_enter(&ip_thread_rwlock, RW_WRITER); 6539 list_insert_tail(&ip_thread_list, thh); 6540 rw_exit(&ip_thread_rwlock); 6541 retv = tsd_set(ip_thread_data, thh); 6542 ASSERT(retv == 0); 6543 } 6544 return (thh != NULL ? thh->thh_hash : NULL); 6545 } 6546 6547 boolean_t 6548 th_trace_ref(const void *obj, ip_stack_t *ipst) 6549 { 6550 th_trace_t *th_trace; 6551 mod_hash_t *mh; 6552 mod_hash_val_t val; 6553 6554 if ((mh = th_trace_gethash(ipst)) == NULL) 6555 return (B_FALSE); 6556 6557 /* 6558 * Attempt to locate the trace buffer for this obj and thread. 6559 * If it does not exist, then allocate a new trace buffer and 6560 * insert into the hash. 6561 */ 6562 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6563 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6564 if (th_trace == NULL) 6565 return (B_FALSE); 6566 6567 th_trace->th_id = curthread; 6568 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6569 (mod_hash_val_t)th_trace) != 0) { 6570 kmem_free(th_trace, sizeof (th_trace_t)); 6571 return (B_FALSE); 6572 } 6573 } else { 6574 th_trace = (th_trace_t *)val; 6575 } 6576 6577 ASSERT(th_trace->th_refcnt >= 0 && 6578 th_trace->th_refcnt < TR_BUF_MAX - 1); 6579 6580 th_trace->th_refcnt++; 6581 th_trace_rrecord(th_trace); 6582 return (B_TRUE); 6583 } 6584 6585 /* 6586 * For the purpose of tracing a reference release, we assume that global 6587 * tracing is always on and that the same thread initiated the reference hold 6588 * is releasing. 6589 */ 6590 void 6591 th_trace_unref(const void *obj) 6592 { 6593 int retv; 6594 mod_hash_t *mh; 6595 th_trace_t *th_trace; 6596 mod_hash_val_t val; 6597 6598 mh = th_trace_gethash(NULL); 6599 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6600 ASSERT(retv == 0); 6601 th_trace = (th_trace_t *)val; 6602 6603 ASSERT(th_trace->th_refcnt > 0); 6604 th_trace->th_refcnt--; 6605 th_trace_rrecord(th_trace); 6606 } 6607 6608 /* 6609 * If tracing has been disabled, then we assume that the reference counts are 6610 * now useless, and we clear them out before destroying the entries. 6611 */ 6612 void 6613 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6614 { 6615 th_hash_t *thh; 6616 mod_hash_t *mh; 6617 mod_hash_val_t val; 6618 th_trace_t *th_trace; 6619 int retv; 6620 6621 rw_enter(&ip_thread_rwlock, RW_READER); 6622 for (thh = list_head(&ip_thread_list); thh != NULL; 6623 thh = list_next(&ip_thread_list, thh)) { 6624 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6625 &val) == 0) { 6626 th_trace = (th_trace_t *)val; 6627 if (trace_disable) 6628 th_trace->th_refcnt = 0; 6629 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6630 ASSERT(retv == 0); 6631 } 6632 } 6633 rw_exit(&ip_thread_rwlock); 6634 } 6635 6636 void 6637 ipif_trace_ref(ipif_t *ipif) 6638 { 6639 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6640 6641 if (ipif->ipif_trace_disable) 6642 return; 6643 6644 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6645 ipif->ipif_trace_disable = B_TRUE; 6646 ipif_trace_cleanup(ipif); 6647 } 6648 } 6649 6650 void 6651 ipif_untrace_ref(ipif_t *ipif) 6652 { 6653 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6654 6655 if (!ipif->ipif_trace_disable) 6656 th_trace_unref(ipif); 6657 } 6658 6659 void 6660 ill_trace_ref(ill_t *ill) 6661 { 6662 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6663 6664 if (ill->ill_trace_disable) 6665 return; 6666 6667 if (!th_trace_ref(ill, ill->ill_ipst)) { 6668 ill->ill_trace_disable = B_TRUE; 6669 ill_trace_cleanup(ill); 6670 } 6671 } 6672 6673 void 6674 ill_untrace_ref(ill_t *ill) 6675 { 6676 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6677 6678 if (!ill->ill_trace_disable) 6679 th_trace_unref(ill); 6680 } 6681 6682 /* 6683 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6684 * failure, ipif_trace_disable is set. 6685 */ 6686 static void 6687 ipif_trace_cleanup(const ipif_t *ipif) 6688 { 6689 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6690 } 6691 6692 /* 6693 * Called when ill is unplumbed or when memory alloc fails. Note that on 6694 * failure, ill_trace_disable is set. 6695 */ 6696 static void 6697 ill_trace_cleanup(const ill_t *ill) 6698 { 6699 th_trace_cleanup(ill, ill->ill_trace_disable); 6700 } 6701 #endif /* DEBUG */ 6702 6703 void 6704 ipif_refhold_locked(ipif_t *ipif) 6705 { 6706 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6707 ipif->ipif_refcnt++; 6708 IPIF_TRACE_REF(ipif); 6709 } 6710 6711 void 6712 ipif_refhold(ipif_t *ipif) 6713 { 6714 ill_t *ill; 6715 6716 ill = ipif->ipif_ill; 6717 mutex_enter(&ill->ill_lock); 6718 ipif->ipif_refcnt++; 6719 IPIF_TRACE_REF(ipif); 6720 mutex_exit(&ill->ill_lock); 6721 } 6722 6723 /* 6724 * Must not be called while holding any locks. Otherwise if this is 6725 * the last reference to be released there is a chance of recursive mutex 6726 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6727 * to restart an ioctl. 6728 */ 6729 void 6730 ipif_refrele(ipif_t *ipif) 6731 { 6732 ill_t *ill; 6733 6734 ill = ipif->ipif_ill; 6735 6736 mutex_enter(&ill->ill_lock); 6737 ASSERT(ipif->ipif_refcnt != 0); 6738 ipif->ipif_refcnt--; 6739 IPIF_UNTRACE_REF(ipif); 6740 if (ipif->ipif_refcnt != 0) { 6741 mutex_exit(&ill->ill_lock); 6742 return; 6743 } 6744 6745 /* Drops the ill_lock */ 6746 ipif_ill_refrele_tail(ill); 6747 } 6748 6749 ipif_t * 6750 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6751 { 6752 ipif_t *ipif; 6753 6754 mutex_enter(&ill->ill_lock); 6755 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6756 ipif != NULL; ipif = ipif->ipif_next) { 6757 if (!IPIF_CAN_LOOKUP(ipif)) 6758 continue; 6759 ipif_refhold_locked(ipif); 6760 mutex_exit(&ill->ill_lock); 6761 return (ipif); 6762 } 6763 mutex_exit(&ill->ill_lock); 6764 return (NULL); 6765 } 6766 6767 /* 6768 * TODO: make this table extendible at run time 6769 * Return a pointer to the mac type info for 'mac_type' 6770 */ 6771 static ip_m_t * 6772 ip_m_lookup(t_uscalar_t mac_type) 6773 { 6774 ip_m_t *ipm; 6775 6776 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6777 if (ipm->ip_m_mac_type == mac_type) 6778 return (ipm); 6779 return (NULL); 6780 } 6781 6782 /* 6783 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6784 * ipif_arg is passed in to associate it with the correct interface. 6785 * We may need to restart this operation if the ipif cannot be looked up 6786 * due to an exclusive operation that is currently in progress. The restart 6787 * entry point is specified by 'func' 6788 */ 6789 int 6790 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6791 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6792 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6793 struct rtsa_s *sp, ip_stack_t *ipst) 6794 { 6795 ire_t *ire; 6796 ire_t *gw_ire = NULL; 6797 ipif_t *ipif = NULL; 6798 boolean_t ipif_refheld = B_FALSE; 6799 uint_t type; 6800 int match_flags = MATCH_IRE_TYPE; 6801 int error; 6802 tsol_gc_t *gc = NULL; 6803 tsol_gcgrp_t *gcgrp = NULL; 6804 boolean_t gcgrp_xtraref = B_FALSE; 6805 6806 ip1dbg(("ip_rt_add:")); 6807 6808 if (ire_arg != NULL) 6809 *ire_arg = NULL; 6810 6811 /* 6812 * If this is the case of RTF_HOST being set, then we set the netmask 6813 * to all ones (regardless if one was supplied). 6814 */ 6815 if (flags & RTF_HOST) 6816 mask = IP_HOST_MASK; 6817 6818 /* 6819 * Prevent routes with a zero gateway from being created (since 6820 * interfaces can currently be plumbed and brought up no assigned 6821 * address). 6822 */ 6823 if (gw_addr == 0) 6824 return (ENETUNREACH); 6825 /* 6826 * Get the ipif, if any, corresponding to the gw_addr 6827 */ 6828 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6829 ipst); 6830 if (ipif != NULL) { 6831 if (IS_VNI(ipif->ipif_ill)) { 6832 ipif_refrele(ipif); 6833 return (EINVAL); 6834 } 6835 ipif_refheld = B_TRUE; 6836 } else if (error == EINPROGRESS) { 6837 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6838 return (EINPROGRESS); 6839 } else { 6840 error = 0; 6841 } 6842 6843 if (ipif != NULL) { 6844 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6845 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6846 } else { 6847 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6848 } 6849 6850 /* 6851 * GateD will attempt to create routes with a loopback interface 6852 * address as the gateway and with RTF_GATEWAY set. We allow 6853 * these routes to be added, but create them as interface routes 6854 * since the gateway is an interface address. 6855 */ 6856 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6857 flags &= ~RTF_GATEWAY; 6858 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6859 mask == IP_HOST_MASK) { 6860 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6861 ALL_ZONES, NULL, match_flags, ipst); 6862 if (ire != NULL) { 6863 ire_refrele(ire); 6864 if (ipif_refheld) 6865 ipif_refrele(ipif); 6866 return (EEXIST); 6867 } 6868 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6869 "for 0x%x\n", (void *)ipif, 6870 ipif->ipif_ire_type, 6871 ntohl(ipif->ipif_lcl_addr))); 6872 ire = ire_create( 6873 (uchar_t *)&dst_addr, /* dest address */ 6874 (uchar_t *)&mask, /* mask */ 6875 (uchar_t *)&ipif->ipif_src_addr, 6876 NULL, /* no gateway */ 6877 &ipif->ipif_mtu, 6878 NULL, 6879 ipif->ipif_rq, /* recv-from queue */ 6880 NULL, /* no send-to queue */ 6881 ipif->ipif_ire_type, /* LOOPBACK */ 6882 ipif, 6883 0, 6884 0, 6885 0, 6886 (ipif->ipif_flags & IPIF_PRIVATE) ? 6887 RTF_PRIVATE : 0, 6888 &ire_uinfo_null, 6889 NULL, 6890 NULL, 6891 ipst); 6892 6893 if (ire == NULL) { 6894 if (ipif_refheld) 6895 ipif_refrele(ipif); 6896 return (ENOMEM); 6897 } 6898 error = ire_add(&ire, q, mp, func, B_FALSE); 6899 if (error == 0) 6900 goto save_ire; 6901 if (ipif_refheld) 6902 ipif_refrele(ipif); 6903 return (error); 6904 6905 } 6906 } 6907 6908 /* 6909 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6910 * and the gateway address provided is one of the system's interface 6911 * addresses. By using the routing socket interface and supplying an 6912 * RTA_IFP sockaddr with an interface index, an alternate method of 6913 * specifying an interface route to be created is available which uses 6914 * the interface index that specifies the outgoing interface rather than 6915 * the address of an outgoing interface (which may not be able to 6916 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6917 * flag, routes can be specified which not only specify the next-hop to 6918 * be used when routing to a certain prefix, but also which outgoing 6919 * interface should be used. 6920 * 6921 * Previously, interfaces would have unique addresses assigned to them 6922 * and so the address assigned to a particular interface could be used 6923 * to identify a particular interface. One exception to this was the 6924 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6925 * 6926 * With the advent of IPv6 and its link-local addresses, this 6927 * restriction was relaxed and interfaces could share addresses between 6928 * themselves. In fact, typically all of the link-local interfaces on 6929 * an IPv6 node or router will have the same link-local address. In 6930 * order to differentiate between these interfaces, the use of an 6931 * interface index is necessary and this index can be carried inside a 6932 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6933 * of using the interface index, however, is that all of the ipif's that 6934 * are part of an ill have the same index and so the RTA_IFP sockaddr 6935 * cannot be used to differentiate between ipif's (or logical 6936 * interfaces) that belong to the same ill (physical interface). 6937 * 6938 * For example, in the following case involving IPv4 interfaces and 6939 * logical interfaces 6940 * 6941 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6942 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6943 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6944 * 6945 * the ipif's corresponding to each of these interface routes can be 6946 * uniquely identified by the "gateway" (actually interface address). 6947 * 6948 * In this case involving multiple IPv6 default routes to a particular 6949 * link-local gateway, the use of RTA_IFP is necessary to specify which 6950 * default route is of interest: 6951 * 6952 * default fe80::123:4567:89ab:cdef U if0 6953 * default fe80::123:4567:89ab:cdef U if1 6954 */ 6955 6956 /* RTF_GATEWAY not set */ 6957 if (!(flags & RTF_GATEWAY)) { 6958 queue_t *stq; 6959 6960 if (sp != NULL) { 6961 ip2dbg(("ip_rt_add: gateway security attributes " 6962 "cannot be set with interface route\n")); 6963 if (ipif_refheld) 6964 ipif_refrele(ipif); 6965 return (EINVAL); 6966 } 6967 6968 /* 6969 * As the interface index specified with the RTA_IFP sockaddr is 6970 * the same for all ipif's off of an ill, the matching logic 6971 * below uses MATCH_IRE_ILL if such an index was specified. 6972 * This means that routes sharing the same prefix when added 6973 * using a RTA_IFP sockaddr must have distinct interface 6974 * indices (namely, they must be on distinct ill's). 6975 * 6976 * On the other hand, since the gateway address will usually be 6977 * different for each ipif on the system, the matching logic 6978 * uses MATCH_IRE_IPIF in the case of a traditional interface 6979 * route. This means that interface routes for the same prefix 6980 * can be created if they belong to distinct ipif's and if a 6981 * RTA_IFP sockaddr is not present. 6982 */ 6983 if (ipif_arg != NULL) { 6984 if (ipif_refheld) { 6985 ipif_refrele(ipif); 6986 ipif_refheld = B_FALSE; 6987 } 6988 ipif = ipif_arg; 6989 match_flags |= MATCH_IRE_ILL; 6990 } else { 6991 /* 6992 * Check the ipif corresponding to the gw_addr 6993 */ 6994 if (ipif == NULL) 6995 return (ENETUNREACH); 6996 match_flags |= MATCH_IRE_IPIF; 6997 } 6998 ASSERT(ipif != NULL); 6999 7000 /* 7001 * We check for an existing entry at this point. 7002 * 7003 * Since a netmask isn't passed in via the ioctl interface 7004 * (SIOCADDRT), we don't check for a matching netmask in that 7005 * case. 7006 */ 7007 if (!ioctl_msg) 7008 match_flags |= MATCH_IRE_MASK; 7009 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7010 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7011 if (ire != NULL) { 7012 ire_refrele(ire); 7013 if (ipif_refheld) 7014 ipif_refrele(ipif); 7015 return (EEXIST); 7016 } 7017 7018 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7019 ? ipif->ipif_rq : ipif->ipif_wq; 7020 7021 /* 7022 * Create a copy of the IRE_LOOPBACK, 7023 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7024 * the modified address and netmask. 7025 */ 7026 ire = ire_create( 7027 (uchar_t *)&dst_addr, 7028 (uint8_t *)&mask, 7029 (uint8_t *)&ipif->ipif_src_addr, 7030 NULL, 7031 &ipif->ipif_mtu, 7032 NULL, 7033 NULL, 7034 stq, 7035 ipif->ipif_net_type, 7036 ipif, 7037 0, 7038 0, 7039 0, 7040 flags, 7041 &ire_uinfo_null, 7042 NULL, 7043 NULL, 7044 ipst); 7045 if (ire == NULL) { 7046 if (ipif_refheld) 7047 ipif_refrele(ipif); 7048 return (ENOMEM); 7049 } 7050 7051 /* 7052 * Some software (for example, GateD and Sun Cluster) attempts 7053 * to create (what amount to) IRE_PREFIX routes with the 7054 * loopback address as the gateway. This is primarily done to 7055 * set up prefixes with the RTF_REJECT flag set (for example, 7056 * when generating aggregate routes.) 7057 * 7058 * If the IRE type (as defined by ipif->ipif_net_type) is 7059 * IRE_LOOPBACK, then we map the request into a 7060 * IRE_IF_NORESOLVER. 7061 * 7062 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7063 * routine, but rather using ire_create() directly. 7064 * 7065 */ 7066 if (ipif->ipif_net_type == IRE_LOOPBACK) 7067 ire->ire_type = IRE_IF_NORESOLVER; 7068 7069 error = ire_add(&ire, q, mp, func, B_FALSE); 7070 if (error == 0) 7071 goto save_ire; 7072 7073 /* 7074 * In the result of failure, ire_add() will have already 7075 * deleted the ire in question, so there is no need to 7076 * do that here. 7077 */ 7078 if (ipif_refheld) 7079 ipif_refrele(ipif); 7080 return (error); 7081 } 7082 if (ipif_refheld) { 7083 ipif_refrele(ipif); 7084 ipif_refheld = B_FALSE; 7085 } 7086 7087 /* 7088 * Get an interface IRE for the specified gateway. 7089 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7090 * gateway, it is currently unreachable and we fail the request 7091 * accordingly. 7092 */ 7093 ipif = ipif_arg; 7094 if (ipif_arg != NULL) 7095 match_flags |= MATCH_IRE_ILL; 7096 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7097 ALL_ZONES, 0, NULL, match_flags, ipst); 7098 if (gw_ire == NULL) 7099 return (ENETUNREACH); 7100 7101 /* 7102 * We create one of three types of IREs as a result of this request 7103 * based on the netmask. A netmask of all ones (which is automatically 7104 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7105 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7106 * created. Otherwise, an IRE_PREFIX route is created for the 7107 * destination prefix. 7108 */ 7109 if (mask == IP_HOST_MASK) 7110 type = IRE_HOST; 7111 else if (mask == 0) 7112 type = IRE_DEFAULT; 7113 else 7114 type = IRE_PREFIX; 7115 7116 /* check for a duplicate entry */ 7117 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7118 NULL, ALL_ZONES, 0, NULL, 7119 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7120 if (ire != NULL) { 7121 ire_refrele(gw_ire); 7122 ire_refrele(ire); 7123 return (EEXIST); 7124 } 7125 7126 /* Security attribute exists */ 7127 if (sp != NULL) { 7128 tsol_gcgrp_addr_t ga; 7129 7130 /* find or create the gateway credentials group */ 7131 ga.ga_af = AF_INET; 7132 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7133 7134 /* we hold reference to it upon success */ 7135 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7136 if (gcgrp == NULL) { 7137 ire_refrele(gw_ire); 7138 return (ENOMEM); 7139 } 7140 7141 /* 7142 * Create and add the security attribute to the group; a 7143 * reference to the group is made upon allocating a new 7144 * entry successfully. If it finds an already-existing 7145 * entry for the security attribute in the group, it simply 7146 * returns it and no new reference is made to the group. 7147 */ 7148 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7149 if (gc == NULL) { 7150 /* release reference held by gcgrp_lookup */ 7151 GCGRP_REFRELE(gcgrp); 7152 ire_refrele(gw_ire); 7153 return (ENOMEM); 7154 } 7155 } 7156 7157 /* Create the IRE. */ 7158 ire = ire_create( 7159 (uchar_t *)&dst_addr, /* dest address */ 7160 (uchar_t *)&mask, /* mask */ 7161 /* src address assigned by the caller? */ 7162 (uchar_t *)(((src_addr != INADDR_ANY) && 7163 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7164 (uchar_t *)&gw_addr, /* gateway address */ 7165 &gw_ire->ire_max_frag, 7166 NULL, /* no src nce */ 7167 NULL, /* no recv-from queue */ 7168 NULL, /* no send-to queue */ 7169 (ushort_t)type, /* IRE type */ 7170 ipif_arg, 7171 0, 7172 0, 7173 0, 7174 flags, 7175 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7176 gc, /* security attribute */ 7177 NULL, 7178 ipst); 7179 7180 /* 7181 * The ire holds a reference to the 'gc' and the 'gc' holds a 7182 * reference to the 'gcgrp'. We can now release the extra reference 7183 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7184 */ 7185 if (gcgrp_xtraref) 7186 GCGRP_REFRELE(gcgrp); 7187 if (ire == NULL) { 7188 if (gc != NULL) 7189 GC_REFRELE(gc); 7190 ire_refrele(gw_ire); 7191 return (ENOMEM); 7192 } 7193 7194 /* 7195 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7196 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7197 */ 7198 7199 /* Add the new IRE. */ 7200 error = ire_add(&ire, q, mp, func, B_FALSE); 7201 if (error != 0) { 7202 /* 7203 * In the result of failure, ire_add() will have already 7204 * deleted the ire in question, so there is no need to 7205 * do that here. 7206 */ 7207 ire_refrele(gw_ire); 7208 return (error); 7209 } 7210 7211 if (flags & RTF_MULTIRT) { 7212 /* 7213 * Invoke the CGTP (multirouting) filtering module 7214 * to add the dst address in the filtering database. 7215 * Replicated inbound packets coming from that address 7216 * will be filtered to discard the duplicates. 7217 * It is not necessary to call the CGTP filter hook 7218 * when the dst address is a broadcast or multicast, 7219 * because an IP source address cannot be a broadcast 7220 * or a multicast. 7221 */ 7222 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7223 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7224 if (ire_dst != NULL) { 7225 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7226 ire_refrele(ire_dst); 7227 goto save_ire; 7228 } 7229 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7230 !CLASSD(ire->ire_addr)) { 7231 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7232 ipst->ips_netstack->netstack_stackid, 7233 ire->ire_addr, 7234 ire->ire_gateway_addr, 7235 ire->ire_src_addr, 7236 gw_ire->ire_src_addr); 7237 if (res != 0) { 7238 ire_refrele(gw_ire); 7239 ire_delete(ire); 7240 return (res); 7241 } 7242 } 7243 } 7244 7245 /* 7246 * Now that the prefix IRE entry has been created, delete any 7247 * existing gateway IRE cache entries as well as any IRE caches 7248 * using the gateway, and force them to be created through 7249 * ip_newroute. 7250 */ 7251 if (gc != NULL) { 7252 ASSERT(gcgrp != NULL); 7253 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7254 } 7255 7256 save_ire: 7257 if (gw_ire != NULL) { 7258 ire_refrele(gw_ire); 7259 } 7260 if (ipif != NULL) { 7261 /* 7262 * Save enough information so that we can recreate the IRE if 7263 * the interface goes down and then up. The metrics associated 7264 * with the route will be saved as well when rts_setmetrics() is 7265 * called after the IRE has been created. In the case where 7266 * memory cannot be allocated, none of this information will be 7267 * saved. 7268 */ 7269 ipif_save_ire(ipif, ire); 7270 } 7271 if (ioctl_msg) 7272 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7273 if (ire_arg != NULL) { 7274 /* 7275 * Store the ire that was successfully added into where ire_arg 7276 * points to so that callers don't have to look it up 7277 * themselves (but they are responsible for ire_refrele()ing 7278 * the ire when they are finished with it). 7279 */ 7280 *ire_arg = ire; 7281 } else { 7282 ire_refrele(ire); /* Held in ire_add */ 7283 } 7284 if (ipif_refheld) 7285 ipif_refrele(ipif); 7286 return (0); 7287 } 7288 7289 /* 7290 * ip_rt_delete is called to delete an IPv4 route. 7291 * ipif_arg is passed in to associate it with the correct interface. 7292 * We may need to restart this operation if the ipif cannot be looked up 7293 * due to an exclusive operation that is currently in progress. The restart 7294 * entry point is specified by 'func' 7295 */ 7296 /* ARGSUSED4 */ 7297 int 7298 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7299 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7300 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7301 { 7302 ire_t *ire = NULL; 7303 ipif_t *ipif; 7304 boolean_t ipif_refheld = B_FALSE; 7305 uint_t type; 7306 uint_t match_flags = MATCH_IRE_TYPE; 7307 int err = 0; 7308 7309 ip1dbg(("ip_rt_delete:")); 7310 /* 7311 * If this is the case of RTF_HOST being set, then we set the netmask 7312 * to all ones. Otherwise, we use the netmask if one was supplied. 7313 */ 7314 if (flags & RTF_HOST) { 7315 mask = IP_HOST_MASK; 7316 match_flags |= MATCH_IRE_MASK; 7317 } else if (rtm_addrs & RTA_NETMASK) { 7318 match_flags |= MATCH_IRE_MASK; 7319 } 7320 7321 /* 7322 * Note that RTF_GATEWAY is never set on a delete, therefore 7323 * we check if the gateway address is one of our interfaces first, 7324 * and fall back on RTF_GATEWAY routes. 7325 * 7326 * This makes it possible to delete an original 7327 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7328 * 7329 * As the interface index specified with the RTA_IFP sockaddr is the 7330 * same for all ipif's off of an ill, the matching logic below uses 7331 * MATCH_IRE_ILL if such an index was specified. This means a route 7332 * sharing the same prefix and interface index as the the route 7333 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7334 * is specified in the request. 7335 * 7336 * On the other hand, since the gateway address will usually be 7337 * different for each ipif on the system, the matching logic 7338 * uses MATCH_IRE_IPIF in the case of a traditional interface 7339 * route. This means that interface routes for the same prefix can be 7340 * uniquely identified if they belong to distinct ipif's and if a 7341 * RTA_IFP sockaddr is not present. 7342 * 7343 * For more detail on specifying routes by gateway address and by 7344 * interface index, see the comments in ip_rt_add(). 7345 */ 7346 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7347 ipst); 7348 if (ipif != NULL) 7349 ipif_refheld = B_TRUE; 7350 else if (err == EINPROGRESS) 7351 return (err); 7352 else 7353 err = 0; 7354 if (ipif != NULL) { 7355 if (ipif_arg != NULL) { 7356 if (ipif_refheld) { 7357 ipif_refrele(ipif); 7358 ipif_refheld = B_FALSE; 7359 } 7360 ipif = ipif_arg; 7361 match_flags |= MATCH_IRE_ILL; 7362 } else { 7363 match_flags |= MATCH_IRE_IPIF; 7364 } 7365 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7366 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7367 ALL_ZONES, NULL, match_flags, ipst); 7368 } 7369 if (ire == NULL) { 7370 ire = ire_ftable_lookup(dst_addr, mask, 0, 7371 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7372 match_flags, ipst); 7373 } 7374 } 7375 7376 if (ire == NULL) { 7377 /* 7378 * At this point, the gateway address is not one of our own 7379 * addresses or a matching interface route was not found. We 7380 * set the IRE type to lookup based on whether 7381 * this is a host route, a default route or just a prefix. 7382 * 7383 * If an ipif_arg was passed in, then the lookup is based on an 7384 * interface index so MATCH_IRE_ILL is added to match_flags. 7385 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7386 * set as the route being looked up is not a traditional 7387 * interface route. 7388 */ 7389 match_flags &= ~MATCH_IRE_IPIF; 7390 match_flags |= MATCH_IRE_GW; 7391 if (ipif_arg != NULL) 7392 match_flags |= MATCH_IRE_ILL; 7393 if (mask == IP_HOST_MASK) 7394 type = IRE_HOST; 7395 else if (mask == 0) 7396 type = IRE_DEFAULT; 7397 else 7398 type = IRE_PREFIX; 7399 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7400 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7401 } 7402 7403 if (ipif_refheld) 7404 ipif_refrele(ipif); 7405 7406 /* ipif is not refheld anymore */ 7407 if (ire == NULL) 7408 return (ESRCH); 7409 7410 if (ire->ire_flags & RTF_MULTIRT) { 7411 /* 7412 * Invoke the CGTP (multirouting) filtering module 7413 * to remove the dst address from the filtering database. 7414 * Packets coming from that address will no longer be 7415 * filtered to remove duplicates. 7416 */ 7417 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7418 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7419 ipst->ips_netstack->netstack_stackid, 7420 ire->ire_addr, ire->ire_gateway_addr); 7421 } 7422 ip_cgtp_bcast_delete(ire, ipst); 7423 } 7424 7425 ipif = ire->ire_ipif; 7426 if (ipif != NULL) 7427 ipif_remove_ire(ipif, ire); 7428 if (ioctl_msg) 7429 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7430 ire_delete(ire); 7431 ire_refrele(ire); 7432 return (err); 7433 } 7434 7435 /* 7436 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7437 */ 7438 /* ARGSUSED */ 7439 int 7440 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7441 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7442 { 7443 ipaddr_t dst_addr; 7444 ipaddr_t gw_addr; 7445 ipaddr_t mask; 7446 int error = 0; 7447 mblk_t *mp1; 7448 struct rtentry *rt; 7449 ipif_t *ipif = NULL; 7450 ip_stack_t *ipst; 7451 7452 ASSERT(q->q_next == NULL); 7453 ipst = CONNQ_TO_IPST(q); 7454 7455 ip1dbg(("ip_siocaddrt:")); 7456 /* Existence of mp1 verified in ip_wput_nondata */ 7457 mp1 = mp->b_cont->b_cont; 7458 rt = (struct rtentry *)mp1->b_rptr; 7459 7460 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7461 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7462 7463 /* 7464 * If the RTF_HOST flag is on, this is a request to assign a gateway 7465 * to a particular host address. In this case, we set the netmask to 7466 * all ones for the particular destination address. Otherwise, 7467 * determine the netmask to be used based on dst_addr and the interfaces 7468 * in use. 7469 */ 7470 if (rt->rt_flags & RTF_HOST) { 7471 mask = IP_HOST_MASK; 7472 } else { 7473 /* 7474 * Note that ip_subnet_mask returns a zero mask in the case of 7475 * default (an all-zeroes address). 7476 */ 7477 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7478 } 7479 7480 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7481 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7482 if (ipif != NULL) 7483 ipif_refrele(ipif); 7484 return (error); 7485 } 7486 7487 /* 7488 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7489 */ 7490 /* ARGSUSED */ 7491 int 7492 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7493 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7494 { 7495 ipaddr_t dst_addr; 7496 ipaddr_t gw_addr; 7497 ipaddr_t mask; 7498 int error; 7499 mblk_t *mp1; 7500 struct rtentry *rt; 7501 ipif_t *ipif = NULL; 7502 ip_stack_t *ipst; 7503 7504 ASSERT(q->q_next == NULL); 7505 ipst = CONNQ_TO_IPST(q); 7506 7507 ip1dbg(("ip_siocdelrt:")); 7508 /* Existence of mp1 verified in ip_wput_nondata */ 7509 mp1 = mp->b_cont->b_cont; 7510 rt = (struct rtentry *)mp1->b_rptr; 7511 7512 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7513 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7514 7515 /* 7516 * If the RTF_HOST flag is on, this is a request to delete a gateway 7517 * to a particular host address. In this case, we set the netmask to 7518 * all ones for the particular destination address. Otherwise, 7519 * determine the netmask to be used based on dst_addr and the interfaces 7520 * in use. 7521 */ 7522 if (rt->rt_flags & RTF_HOST) { 7523 mask = IP_HOST_MASK; 7524 } else { 7525 /* 7526 * Note that ip_subnet_mask returns a zero mask in the case of 7527 * default (an all-zeroes address). 7528 */ 7529 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7530 } 7531 7532 error = ip_rt_delete(dst_addr, mask, gw_addr, 7533 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7534 mp, ip_process_ioctl, ipst); 7535 if (ipif != NULL) 7536 ipif_refrele(ipif); 7537 return (error); 7538 } 7539 7540 /* 7541 * Enqueue the mp onto the ipsq, chained by b_next. 7542 * b_prev stores the function to be executed later, and b_queue the queue 7543 * where this mp originated. 7544 */ 7545 void 7546 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7547 ill_t *pending_ill) 7548 { 7549 conn_t *connp = NULL; 7550 7551 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7552 ASSERT(func != NULL); 7553 7554 mp->b_queue = q; 7555 mp->b_prev = (void *)func; 7556 mp->b_next = NULL; 7557 7558 switch (type) { 7559 case CUR_OP: 7560 if (ipsq->ipsq_mptail != NULL) { 7561 ASSERT(ipsq->ipsq_mphead != NULL); 7562 ipsq->ipsq_mptail->b_next = mp; 7563 } else { 7564 ASSERT(ipsq->ipsq_mphead == NULL); 7565 ipsq->ipsq_mphead = mp; 7566 } 7567 ipsq->ipsq_mptail = mp; 7568 break; 7569 7570 case NEW_OP: 7571 if (ipsq->ipsq_xopq_mptail != NULL) { 7572 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7573 ipsq->ipsq_xopq_mptail->b_next = mp; 7574 } else { 7575 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7576 ipsq->ipsq_xopq_mphead = mp; 7577 } 7578 ipsq->ipsq_xopq_mptail = mp; 7579 break; 7580 default: 7581 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7582 } 7583 7584 if (CONN_Q(q) && pending_ill != NULL) { 7585 connp = Q_TO_CONN(q); 7586 7587 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7588 connp->conn_oper_pending_ill = pending_ill; 7589 } 7590 } 7591 7592 /* 7593 * Return the mp at the head of the ipsq. After emptying the ipsq 7594 * look at the next ioctl, if this ioctl is complete. Otherwise 7595 * return, we will resume when we complete the current ioctl. 7596 * The current ioctl will wait till it gets a response from the 7597 * driver below. 7598 */ 7599 static mblk_t * 7600 ipsq_dq(ipsq_t *ipsq) 7601 { 7602 mblk_t *mp; 7603 7604 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7605 7606 mp = ipsq->ipsq_mphead; 7607 if (mp != NULL) { 7608 ipsq->ipsq_mphead = mp->b_next; 7609 if (ipsq->ipsq_mphead == NULL) 7610 ipsq->ipsq_mptail = NULL; 7611 mp->b_next = NULL; 7612 return (mp); 7613 } 7614 if (ipsq->ipsq_current_ipif != NULL) 7615 return (NULL); 7616 mp = ipsq->ipsq_xopq_mphead; 7617 if (mp != NULL) { 7618 ipsq->ipsq_xopq_mphead = mp->b_next; 7619 if (ipsq->ipsq_xopq_mphead == NULL) 7620 ipsq->ipsq_xopq_mptail = NULL; 7621 mp->b_next = NULL; 7622 return (mp); 7623 } 7624 return (NULL); 7625 } 7626 7627 /* 7628 * Enter the ipsq corresponding to ill, by waiting synchronously till 7629 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7630 * will have to drain completely before ipsq_enter returns success. 7631 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7632 * and the ipsq_exit logic will start the next enqueued ioctl after 7633 * completion of the current ioctl. If 'force' is used, we don't wait 7634 * for the enqueued ioctls. This is needed when a conn_close wants to 7635 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7636 * of an ill can also use this option. But we dont' use it currently. 7637 */ 7638 #define ENTER_SQ_WAIT_TICKS 100 7639 boolean_t 7640 ipsq_enter(ill_t *ill, boolean_t force) 7641 { 7642 ipsq_t *ipsq; 7643 boolean_t waited_enough = B_FALSE; 7644 7645 /* 7646 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7647 * Since the <ill-ipsq> assocs could change while we wait for the 7648 * writer, it is easier to wait on a fixed global rather than try to 7649 * cv_wait on a changing ipsq. 7650 */ 7651 mutex_enter(&ill->ill_lock); 7652 for (;;) { 7653 if (ill->ill_state_flags & ILL_CONDEMNED) { 7654 mutex_exit(&ill->ill_lock); 7655 return (B_FALSE); 7656 } 7657 7658 ipsq = ill->ill_phyint->phyint_ipsq; 7659 mutex_enter(&ipsq->ipsq_lock); 7660 if (ipsq->ipsq_writer == NULL && 7661 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7662 break; 7663 } else if (ipsq->ipsq_writer != NULL) { 7664 mutex_exit(&ipsq->ipsq_lock); 7665 cv_wait(&ill->ill_cv, &ill->ill_lock); 7666 } else { 7667 mutex_exit(&ipsq->ipsq_lock); 7668 if (force) { 7669 (void) cv_timedwait(&ill->ill_cv, 7670 &ill->ill_lock, 7671 lbolt + ENTER_SQ_WAIT_TICKS); 7672 waited_enough = B_TRUE; 7673 continue; 7674 } else { 7675 cv_wait(&ill->ill_cv, &ill->ill_lock); 7676 } 7677 } 7678 } 7679 7680 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7681 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7682 ipsq->ipsq_writer = curthread; 7683 ipsq->ipsq_reentry_cnt++; 7684 #ifdef DEBUG 7685 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7686 #endif 7687 mutex_exit(&ipsq->ipsq_lock); 7688 mutex_exit(&ill->ill_lock); 7689 return (B_TRUE); 7690 } 7691 7692 /* 7693 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7694 * certain critical operations like plumbing (i.e. most set ioctls), 7695 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7696 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7697 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7698 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7699 * threads executing in the ipsq. Responses from the driver pertain to the 7700 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7701 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7702 * 7703 * If a thread does not want to reenter the ipsq when it is already writer, 7704 * it must make sure that the specified reentry point to be called later 7705 * when the ipsq is empty, nor any code path starting from the specified reentry 7706 * point must never ever try to enter the ipsq again. Otherwise it can lead 7707 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7708 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7709 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7710 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7711 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7712 * ioctl if the current ioctl has completed. If the current ioctl is still 7713 * in progress it simply returns. The current ioctl could be waiting for 7714 * a response from another module (arp_ or the driver or could be waiting for 7715 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7716 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7717 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7718 * ipsq_current_ipif is clear which happens only on ioctl completion. 7719 */ 7720 7721 /* 7722 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7723 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7724 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7725 * completion. 7726 */ 7727 ipsq_t * 7728 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7729 ipsq_func_t func, int type, boolean_t reentry_ok) 7730 { 7731 ipsq_t *ipsq; 7732 7733 /* Only 1 of ipif or ill can be specified */ 7734 ASSERT((ipif != NULL) ^ (ill != NULL)); 7735 if (ipif != NULL) 7736 ill = ipif->ipif_ill; 7737 7738 /* 7739 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7740 * ipsq of an ill can't change when ill_lock is held. 7741 */ 7742 GRAB_CONN_LOCK(q); 7743 mutex_enter(&ill->ill_lock); 7744 ipsq = ill->ill_phyint->phyint_ipsq; 7745 mutex_enter(&ipsq->ipsq_lock); 7746 7747 /* 7748 * 1. Enter the ipsq if we are already writer and reentry is ok. 7749 * (Note: If the caller does not specify reentry_ok then neither 7750 * 'func' nor any of its callees must ever attempt to enter the ipsq 7751 * again. Otherwise it can lead to an infinite loop 7752 * 2. Enter the ipsq if there is no current writer and this attempted 7753 * entry is part of the current ioctl or operation 7754 * 3. Enter the ipsq if there is no current writer and this is a new 7755 * ioctl (or operation) and the ioctl (or operation) queue is 7756 * empty and there is no ioctl (or operation) currently in progress 7757 */ 7758 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7759 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7760 ipsq->ipsq_current_ipif == NULL))) || 7761 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7762 /* Success. */ 7763 ipsq->ipsq_reentry_cnt++; 7764 ipsq->ipsq_writer = curthread; 7765 mutex_exit(&ipsq->ipsq_lock); 7766 mutex_exit(&ill->ill_lock); 7767 RELEASE_CONN_LOCK(q); 7768 #ifdef DEBUG 7769 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7770 IPSQ_STACK_DEPTH); 7771 #endif 7772 return (ipsq); 7773 } 7774 7775 ipsq_enq(ipsq, q, mp, func, type, ill); 7776 7777 mutex_exit(&ipsq->ipsq_lock); 7778 mutex_exit(&ill->ill_lock); 7779 RELEASE_CONN_LOCK(q); 7780 return (NULL); 7781 } 7782 7783 /* 7784 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7785 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7786 * cannot be entered, the mp is queued for completion. 7787 */ 7788 void 7789 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7790 boolean_t reentry_ok) 7791 { 7792 ipsq_t *ipsq; 7793 7794 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7795 7796 /* 7797 * Drop the caller's refhold on the ill. This is safe since we either 7798 * entered the IPSQ (and thus are exclusive), or failed to enter the 7799 * IPSQ, in which case we return without accessing ill anymore. This 7800 * is needed because func needs to see the correct refcount. 7801 * e.g. removeif can work only then. 7802 */ 7803 ill_refrele(ill); 7804 if (ipsq != NULL) { 7805 (*func)(ipsq, q, mp, NULL); 7806 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7807 } 7808 } 7809 7810 /* 7811 * If there are more than ILL_GRP_CNT ills in a group, 7812 * we use kmem alloc'd buffers, else use the stack 7813 */ 7814 #define ILL_GRP_CNT 14 7815 /* 7816 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7817 * Called by a thread that is currently exclusive on this ipsq. 7818 */ 7819 void 7820 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7821 { 7822 queue_t *q; 7823 mblk_t *mp; 7824 ipsq_func_t func; 7825 int next; 7826 ill_t **ill_list = NULL; 7827 size_t ill_list_size = 0; 7828 int cnt = 0; 7829 boolean_t need_ipsq_free = B_FALSE; 7830 ip_stack_t *ipst = ipsq->ipsq_ipst; 7831 7832 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7833 mutex_enter(&ipsq->ipsq_lock); 7834 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7835 if (ipsq->ipsq_reentry_cnt != 1) { 7836 ipsq->ipsq_reentry_cnt--; 7837 mutex_exit(&ipsq->ipsq_lock); 7838 return; 7839 } 7840 7841 mp = ipsq_dq(ipsq); 7842 while (mp != NULL) { 7843 again: 7844 mutex_exit(&ipsq->ipsq_lock); 7845 func = (ipsq_func_t)mp->b_prev; 7846 q = (queue_t *)mp->b_queue; 7847 mp->b_prev = NULL; 7848 mp->b_queue = NULL; 7849 7850 /* 7851 * If 'q' is an conn queue, it is valid, since we did a 7852 * a refhold on the connp, at the start of the ioctl. 7853 * If 'q' is an ill queue, it is valid, since close of an 7854 * ill will clean up the 'ipsq'. 7855 */ 7856 (*func)(ipsq, q, mp, NULL); 7857 7858 mutex_enter(&ipsq->ipsq_lock); 7859 mp = ipsq_dq(ipsq); 7860 } 7861 7862 mutex_exit(&ipsq->ipsq_lock); 7863 7864 /* 7865 * Need to grab the locks in the right order. Need to 7866 * atomically check (under ipsq_lock) that there are no 7867 * messages before relinquishing the ipsq. Also need to 7868 * atomically wakeup waiters on ill_cv while holding ill_lock. 7869 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7870 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7871 * to grab ill_g_lock as writer. 7872 */ 7873 rw_enter(&ipst->ips_ill_g_lock, 7874 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7875 7876 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7877 if (ipsq->ipsq_refs != 0) { 7878 /* At most 2 ills v4/v6 per phyint */ 7879 cnt = ipsq->ipsq_refs << 1; 7880 ill_list_size = cnt * sizeof (ill_t *); 7881 /* 7882 * If memory allocation fails, we will do the split 7883 * the next time ipsq_exit is called for whatever reason. 7884 * As long as the ipsq_split flag is set the need to 7885 * split is remembered. 7886 */ 7887 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7888 if (ill_list != NULL) 7889 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7890 } 7891 mutex_enter(&ipsq->ipsq_lock); 7892 mp = ipsq_dq(ipsq); 7893 if (mp != NULL) { 7894 /* oops, some message has landed up, we can't get out */ 7895 if (ill_list != NULL) 7896 ill_unlock_ills(ill_list, cnt); 7897 rw_exit(&ipst->ips_ill_g_lock); 7898 if (ill_list != NULL) 7899 kmem_free(ill_list, ill_list_size); 7900 ill_list = NULL; 7901 ill_list_size = 0; 7902 cnt = 0; 7903 goto again; 7904 } 7905 7906 /* 7907 * Split only if no ioctl is pending and if memory alloc succeeded 7908 * above. 7909 */ 7910 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7911 ill_list != NULL) { 7912 /* 7913 * No new ill can join this ipsq since we are holding the 7914 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7915 * ipsq. ill_split_ipsq may fail due to memory shortage. 7916 * If so we will retry on the next ipsq_exit. 7917 */ 7918 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7919 } 7920 7921 /* 7922 * We are holding the ipsq lock, hence no new messages can 7923 * land up on the ipsq, and there are no messages currently. 7924 * Now safe to get out. Wake up waiters and relinquish ipsq 7925 * atomically while holding ill locks. 7926 */ 7927 ipsq->ipsq_writer = NULL; 7928 ipsq->ipsq_reentry_cnt--; 7929 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7930 #ifdef DEBUG 7931 ipsq->ipsq_depth = 0; 7932 #endif 7933 mutex_exit(&ipsq->ipsq_lock); 7934 /* 7935 * For IPMP this should wake up all ills in this ipsq. 7936 * We need to hold the ill_lock while waking up waiters to 7937 * avoid missed wakeups. But there is no need to acquire all 7938 * the ill locks and then wakeup. If we have not acquired all 7939 * the locks (due to memory failure above) ill_signal_ipsq_ills 7940 * wakes up ills one at a time after getting the right ill_lock 7941 */ 7942 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7943 if (ill_list != NULL) 7944 ill_unlock_ills(ill_list, cnt); 7945 if (ipsq->ipsq_refs == 0) 7946 need_ipsq_free = B_TRUE; 7947 rw_exit(&ipst->ips_ill_g_lock); 7948 if (ill_list != 0) 7949 kmem_free(ill_list, ill_list_size); 7950 7951 if (need_ipsq_free) { 7952 /* 7953 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7954 * looked up. ipsq can be looked up only thru ill or phyint 7955 * and there are no ills/phyint on this ipsq. 7956 */ 7957 ipsq_delete(ipsq); 7958 } 7959 /* 7960 * Now start any igmp or mld timers that could not be started 7961 * while inside the ipsq. The timers can't be started while inside 7962 * the ipsq, since igmp_start_timers may need to call untimeout() 7963 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7964 * there could be a deadlock since the timeout handlers 7965 * mld_timeout_handler / igmp_timeout_handler also synchronously 7966 * wait in ipsq_enter() trying to get the ipsq. 7967 * 7968 * However there is one exception to the above. If this thread is 7969 * itself the igmp/mld timeout handler thread, then we don't want 7970 * to start any new timer until the current handler is done. The 7971 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7972 * all others pass B_TRUE. 7973 */ 7974 if (start_igmp_timer) { 7975 mutex_enter(&ipst->ips_igmp_timer_lock); 7976 next = ipst->ips_igmp_deferred_next; 7977 ipst->ips_igmp_deferred_next = INFINITY; 7978 mutex_exit(&ipst->ips_igmp_timer_lock); 7979 7980 if (next != INFINITY) 7981 igmp_start_timers(next, ipst); 7982 } 7983 7984 if (start_mld_timer) { 7985 mutex_enter(&ipst->ips_mld_timer_lock); 7986 next = ipst->ips_mld_deferred_next; 7987 ipst->ips_mld_deferred_next = INFINITY; 7988 mutex_exit(&ipst->ips_mld_timer_lock); 7989 7990 if (next != INFINITY) 7991 mld_start_timers(next, ipst); 7992 } 7993 } 7994 7995 /* 7996 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7997 * and `ioccmd'. 7998 */ 7999 void 8000 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8001 { 8002 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8003 8004 mutex_enter(&ipsq->ipsq_lock); 8005 ASSERT(ipsq->ipsq_current_ipif == NULL); 8006 ASSERT(ipsq->ipsq_current_ioctl == 0); 8007 ipsq->ipsq_current_ipif = ipif; 8008 ipsq->ipsq_current_ioctl = ioccmd; 8009 mutex_exit(&ipsq->ipsq_lock); 8010 } 8011 8012 /* 8013 * Finish the current exclusive operation on `ipsq'. Note that other 8014 * operations will not be able to proceed until an ipsq_exit() is done. 8015 */ 8016 void 8017 ipsq_current_finish(ipsq_t *ipsq) 8018 { 8019 ipif_t *ipif = ipsq->ipsq_current_ipif; 8020 8021 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8022 8023 /* 8024 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8025 * (but we're careful to never set IPIF_CHANGING in that case). 8026 */ 8027 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8028 mutex_enter(&ipif->ipif_ill->ill_lock); 8029 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8030 8031 /* Send any queued event */ 8032 ill_nic_info_dispatch(ipif->ipif_ill); 8033 mutex_exit(&ipif->ipif_ill->ill_lock); 8034 } 8035 8036 mutex_enter(&ipsq->ipsq_lock); 8037 ASSERT(ipsq->ipsq_current_ipif != NULL); 8038 ipsq->ipsq_current_ipif = NULL; 8039 ipsq->ipsq_current_ioctl = 0; 8040 mutex_exit(&ipsq->ipsq_lock); 8041 } 8042 8043 /* 8044 * The ill is closing. Flush all messages on the ipsq that originated 8045 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8046 * for this ill since ipsq_enter could not have entered until then. 8047 * New messages can't be queued since the CONDEMNED flag is set. 8048 */ 8049 static void 8050 ipsq_flush(ill_t *ill) 8051 { 8052 queue_t *q; 8053 mblk_t *prev; 8054 mblk_t *mp; 8055 mblk_t *mp_next; 8056 ipsq_t *ipsq; 8057 8058 ASSERT(IAM_WRITER_ILL(ill)); 8059 ipsq = ill->ill_phyint->phyint_ipsq; 8060 /* 8061 * Flush any messages sent up by the driver. 8062 */ 8063 mutex_enter(&ipsq->ipsq_lock); 8064 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8065 mp_next = mp->b_next; 8066 q = mp->b_queue; 8067 if (q == ill->ill_rq || q == ill->ill_wq) { 8068 /* Remove the mp from the ipsq */ 8069 if (prev == NULL) 8070 ipsq->ipsq_mphead = mp->b_next; 8071 else 8072 prev->b_next = mp->b_next; 8073 if (ipsq->ipsq_mptail == mp) { 8074 ASSERT(mp_next == NULL); 8075 ipsq->ipsq_mptail = prev; 8076 } 8077 inet_freemsg(mp); 8078 } else { 8079 prev = mp; 8080 } 8081 } 8082 mutex_exit(&ipsq->ipsq_lock); 8083 (void) ipsq_pending_mp_cleanup(ill, NULL); 8084 ipsq_xopq_mp_cleanup(ill, NULL); 8085 ill_pending_mp_cleanup(ill); 8086 } 8087 8088 /* ARGSUSED */ 8089 int 8090 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8091 ip_ioctl_cmd_t *ipip, void *ifreq) 8092 { 8093 ill_t *ill; 8094 struct lifreq *lifr = (struct lifreq *)ifreq; 8095 boolean_t isv6; 8096 conn_t *connp; 8097 ip_stack_t *ipst; 8098 8099 connp = Q_TO_CONN(q); 8100 ipst = connp->conn_netstack->netstack_ip; 8101 isv6 = connp->conn_af_isv6; 8102 /* 8103 * Set original index. 8104 * Failover and failback move logical interfaces 8105 * from one physical interface to another. The 8106 * original index indicates the parent of a logical 8107 * interface, in other words, the physical interface 8108 * the logical interface will be moved back to on 8109 * failback. 8110 */ 8111 8112 /* 8113 * Don't allow the original index to be changed 8114 * for non-failover addresses, autoconfigured 8115 * addresses, or IPv6 link local addresses. 8116 */ 8117 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8118 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8119 return (EINVAL); 8120 } 8121 /* 8122 * The new original index must be in use by some 8123 * physical interface. 8124 */ 8125 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8126 NULL, NULL, ipst); 8127 if (ill == NULL) 8128 return (ENXIO); 8129 ill_refrele(ill); 8130 8131 ipif->ipif_orig_ifindex = lifr->lifr_index; 8132 /* 8133 * When this ipif gets failed back, don't 8134 * preserve the original id, as it is no 8135 * longer applicable. 8136 */ 8137 ipif->ipif_orig_ipifid = 0; 8138 /* 8139 * For IPv4, change the original index of any 8140 * multicast addresses associated with the 8141 * ipif to the new value. 8142 */ 8143 if (!isv6) { 8144 ilm_t *ilm; 8145 8146 mutex_enter(&ipif->ipif_ill->ill_lock); 8147 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8148 ilm = ilm->ilm_next) { 8149 if (ilm->ilm_ipif == ipif) { 8150 ilm->ilm_orig_ifindex = lifr->lifr_index; 8151 } 8152 } 8153 mutex_exit(&ipif->ipif_ill->ill_lock); 8154 } 8155 return (0); 8156 } 8157 8158 /* ARGSUSED */ 8159 int 8160 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8161 ip_ioctl_cmd_t *ipip, void *ifreq) 8162 { 8163 struct lifreq *lifr = (struct lifreq *)ifreq; 8164 8165 /* 8166 * Get the original interface index i.e the one 8167 * before FAILOVER if it ever happened. 8168 */ 8169 lifr->lifr_index = ipif->ipif_orig_ifindex; 8170 return (0); 8171 } 8172 8173 /* 8174 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8175 * refhold and return the associated ipif 8176 */ 8177 /* ARGSUSED */ 8178 int 8179 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8180 cmd_info_t *ci, ipsq_func_t func) 8181 { 8182 boolean_t exists; 8183 struct iftun_req *ta; 8184 ipif_t *ipif; 8185 ill_t *ill; 8186 boolean_t isv6; 8187 mblk_t *mp1; 8188 int error; 8189 conn_t *connp; 8190 ip_stack_t *ipst; 8191 8192 /* Existence verified in ip_wput_nondata */ 8193 mp1 = mp->b_cont->b_cont; 8194 ta = (struct iftun_req *)mp1->b_rptr; 8195 /* 8196 * Null terminate the string to protect against buffer 8197 * overrun. String was generated by user code and may not 8198 * be trusted. 8199 */ 8200 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8201 8202 connp = Q_TO_CONN(q); 8203 isv6 = connp->conn_af_isv6; 8204 ipst = connp->conn_netstack->netstack_ip; 8205 8206 /* Disallows implicit create */ 8207 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8208 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8209 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8210 if (ipif == NULL) 8211 return (error); 8212 8213 if (ipif->ipif_id != 0) { 8214 /* 8215 * We really don't want to set/get tunnel parameters 8216 * on virtual tunnel interfaces. Only allow the 8217 * base tunnel to do these. 8218 */ 8219 ipif_refrele(ipif); 8220 return (EINVAL); 8221 } 8222 8223 /* 8224 * Send down to tunnel mod for ioctl processing. 8225 * Will finish ioctl in ip_rput_other(). 8226 */ 8227 ill = ipif->ipif_ill; 8228 if (ill->ill_net_type == IRE_LOOPBACK) { 8229 ipif_refrele(ipif); 8230 return (EOPNOTSUPP); 8231 } 8232 8233 if (ill->ill_wq == NULL) { 8234 ipif_refrele(ipif); 8235 return (ENXIO); 8236 } 8237 /* 8238 * Mark the ioctl as coming from an IPv6 interface for 8239 * tun's convenience. 8240 */ 8241 if (ill->ill_isv6) 8242 ta->ifta_flags |= 0x80000000; 8243 ci->ci_ipif = ipif; 8244 return (0); 8245 } 8246 8247 /* 8248 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8249 * and return the associated ipif. 8250 * Return value: 8251 * Non zero: An error has occurred. ci may not be filled out. 8252 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8253 * a held ipif in ci.ci_ipif. 8254 */ 8255 int 8256 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8257 cmd_info_t *ci, ipsq_func_t func) 8258 { 8259 sin_t *sin; 8260 sin6_t *sin6; 8261 char *name; 8262 struct ifreq *ifr; 8263 struct lifreq *lifr; 8264 ipif_t *ipif = NULL; 8265 ill_t *ill; 8266 conn_t *connp; 8267 boolean_t isv6; 8268 boolean_t exists; 8269 int err; 8270 mblk_t *mp1; 8271 zoneid_t zoneid; 8272 ip_stack_t *ipst; 8273 8274 if (q->q_next != NULL) { 8275 ill = (ill_t *)q->q_ptr; 8276 isv6 = ill->ill_isv6; 8277 connp = NULL; 8278 zoneid = ALL_ZONES; 8279 ipst = ill->ill_ipst; 8280 } else { 8281 ill = NULL; 8282 connp = Q_TO_CONN(q); 8283 isv6 = connp->conn_af_isv6; 8284 zoneid = connp->conn_zoneid; 8285 if (zoneid == GLOBAL_ZONEID) { 8286 /* global zone can access ipifs in all zones */ 8287 zoneid = ALL_ZONES; 8288 } 8289 ipst = connp->conn_netstack->netstack_ip; 8290 } 8291 8292 /* Has been checked in ip_wput_nondata */ 8293 mp1 = mp->b_cont->b_cont; 8294 8295 if (ipip->ipi_cmd_type == IF_CMD) { 8296 /* This a old style SIOC[GS]IF* command */ 8297 ifr = (struct ifreq *)mp1->b_rptr; 8298 /* 8299 * Null terminate the string to protect against buffer 8300 * overrun. String was generated by user code and may not 8301 * be trusted. 8302 */ 8303 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8304 sin = (sin_t *)&ifr->ifr_addr; 8305 name = ifr->ifr_name; 8306 ci->ci_sin = sin; 8307 ci->ci_sin6 = NULL; 8308 ci->ci_lifr = (struct lifreq *)ifr; 8309 } else { 8310 /* This a new style SIOC[GS]LIF* command */ 8311 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8312 lifr = (struct lifreq *)mp1->b_rptr; 8313 /* 8314 * Null terminate the string to protect against buffer 8315 * overrun. String was generated by user code and may not 8316 * be trusted. 8317 */ 8318 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8319 name = lifr->lifr_name; 8320 sin = (sin_t *)&lifr->lifr_addr; 8321 sin6 = (sin6_t *)&lifr->lifr_addr; 8322 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8323 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8324 LIFNAMSIZ); 8325 } 8326 ci->ci_sin = sin; 8327 ci->ci_sin6 = sin6; 8328 ci->ci_lifr = lifr; 8329 } 8330 8331 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8332 /* 8333 * The ioctl will be failed if the ioctl comes down 8334 * an conn stream 8335 */ 8336 if (ill == NULL) { 8337 /* 8338 * Not an ill queue, return EINVAL same as the 8339 * old error code. 8340 */ 8341 return (ENXIO); 8342 } 8343 ipif = ill->ill_ipif; 8344 ipif_refhold(ipif); 8345 } else { 8346 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8347 &exists, isv6, zoneid, 8348 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8349 ipst); 8350 if (ipif == NULL) { 8351 if (err == EINPROGRESS) 8352 return (err); 8353 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8354 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8355 /* 8356 * Need to try both v4 and v6 since this 8357 * ioctl can come down either v4 or v6 8358 * socket. The lifreq.lifr_family passed 8359 * down by this ioctl is AF_UNSPEC. 8360 */ 8361 ipif = ipif_lookup_on_name(name, 8362 mi_strlen(name), B_FALSE, &exists, !isv6, 8363 zoneid, (connp == NULL) ? q : 8364 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8365 if (err == EINPROGRESS) 8366 return (err); 8367 } 8368 err = 0; /* Ensure we don't use it below */ 8369 } 8370 } 8371 8372 /* 8373 * Old style [GS]IFCMD does not admit IPv6 ipif 8374 */ 8375 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8376 ipif_refrele(ipif); 8377 return (ENXIO); 8378 } 8379 8380 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8381 name[0] == '\0') { 8382 /* 8383 * Handle a or a SIOC?IF* with a null name 8384 * during plumb (on the ill queue before the I_PLINK). 8385 */ 8386 ipif = ill->ill_ipif; 8387 ipif_refhold(ipif); 8388 } 8389 8390 if (ipif == NULL) 8391 return (ENXIO); 8392 8393 /* 8394 * Allow only GET operations if this ipif has been created 8395 * temporarily due to a MOVE operation. 8396 */ 8397 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8398 ipif_refrele(ipif); 8399 return (EINVAL); 8400 } 8401 8402 ci->ci_ipif = ipif; 8403 return (0); 8404 } 8405 8406 /* 8407 * Return the total number of ipifs. 8408 */ 8409 static uint_t 8410 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8411 { 8412 uint_t numifs = 0; 8413 ill_t *ill; 8414 ill_walk_context_t ctx; 8415 ipif_t *ipif; 8416 8417 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8418 ill = ILL_START_WALK_V4(&ctx, ipst); 8419 8420 while (ill != NULL) { 8421 for (ipif = ill->ill_ipif; ipif != NULL; 8422 ipif = ipif->ipif_next) { 8423 if (ipif->ipif_zoneid == zoneid || 8424 ipif->ipif_zoneid == ALL_ZONES) 8425 numifs++; 8426 } 8427 ill = ill_next(&ctx, ill); 8428 } 8429 rw_exit(&ipst->ips_ill_g_lock); 8430 return (numifs); 8431 } 8432 8433 /* 8434 * Return the total number of ipifs. 8435 */ 8436 static uint_t 8437 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8438 { 8439 uint_t numifs = 0; 8440 ill_t *ill; 8441 ipif_t *ipif; 8442 ill_walk_context_t ctx; 8443 8444 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8445 8446 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8447 if (family == AF_INET) 8448 ill = ILL_START_WALK_V4(&ctx, ipst); 8449 else if (family == AF_INET6) 8450 ill = ILL_START_WALK_V6(&ctx, ipst); 8451 else 8452 ill = ILL_START_WALK_ALL(&ctx, ipst); 8453 8454 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8455 for (ipif = ill->ill_ipif; ipif != NULL; 8456 ipif = ipif->ipif_next) { 8457 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8458 !(lifn_flags & LIFC_NOXMIT)) 8459 continue; 8460 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8461 !(lifn_flags & LIFC_TEMPORARY)) 8462 continue; 8463 if (((ipif->ipif_flags & 8464 (IPIF_NOXMIT|IPIF_NOLOCAL| 8465 IPIF_DEPRECATED)) || 8466 IS_LOOPBACK(ill) || 8467 !(ipif->ipif_flags & IPIF_UP)) && 8468 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8469 continue; 8470 8471 if (zoneid != ipif->ipif_zoneid && 8472 ipif->ipif_zoneid != ALL_ZONES && 8473 (zoneid != GLOBAL_ZONEID || 8474 !(lifn_flags & LIFC_ALLZONES))) 8475 continue; 8476 8477 numifs++; 8478 } 8479 } 8480 rw_exit(&ipst->ips_ill_g_lock); 8481 return (numifs); 8482 } 8483 8484 uint_t 8485 ip_get_lifsrcofnum(ill_t *ill) 8486 { 8487 uint_t numifs = 0; 8488 ill_t *ill_head = ill; 8489 ip_stack_t *ipst = ill->ill_ipst; 8490 8491 /* 8492 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8493 * other thread may be trying to relink the ILLs in this usesrc group 8494 * and adjusting the ill_usesrc_grp_next pointers 8495 */ 8496 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8497 if ((ill->ill_usesrc_ifindex == 0) && 8498 (ill->ill_usesrc_grp_next != NULL)) { 8499 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8500 ill = ill->ill_usesrc_grp_next) 8501 numifs++; 8502 } 8503 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8504 8505 return (numifs); 8506 } 8507 8508 /* Null values are passed in for ipif, sin, and ifreq */ 8509 /* ARGSUSED */ 8510 int 8511 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8512 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8513 { 8514 int *nump; 8515 conn_t *connp = Q_TO_CONN(q); 8516 8517 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8518 8519 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8520 nump = (int *)mp->b_cont->b_cont->b_rptr; 8521 8522 *nump = ip_get_numifs(connp->conn_zoneid, 8523 connp->conn_netstack->netstack_ip); 8524 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8525 return (0); 8526 } 8527 8528 /* Null values are passed in for ipif, sin, and ifreq */ 8529 /* ARGSUSED */ 8530 int 8531 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8532 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8533 { 8534 struct lifnum *lifn; 8535 mblk_t *mp1; 8536 conn_t *connp = Q_TO_CONN(q); 8537 8538 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8539 8540 /* Existence checked in ip_wput_nondata */ 8541 mp1 = mp->b_cont->b_cont; 8542 8543 lifn = (struct lifnum *)mp1->b_rptr; 8544 switch (lifn->lifn_family) { 8545 case AF_UNSPEC: 8546 case AF_INET: 8547 case AF_INET6: 8548 break; 8549 default: 8550 return (EAFNOSUPPORT); 8551 } 8552 8553 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8554 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8555 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8556 return (0); 8557 } 8558 8559 /* ARGSUSED */ 8560 int 8561 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8562 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8563 { 8564 STRUCT_HANDLE(ifconf, ifc); 8565 mblk_t *mp1; 8566 struct iocblk *iocp; 8567 struct ifreq *ifr; 8568 ill_walk_context_t ctx; 8569 ill_t *ill; 8570 ipif_t *ipif; 8571 struct sockaddr_in *sin; 8572 int32_t ifclen; 8573 zoneid_t zoneid; 8574 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8575 8576 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8577 8578 ip1dbg(("ip_sioctl_get_ifconf")); 8579 /* Existence verified in ip_wput_nondata */ 8580 mp1 = mp->b_cont->b_cont; 8581 iocp = (struct iocblk *)mp->b_rptr; 8582 zoneid = Q_TO_CONN(q)->conn_zoneid; 8583 8584 /* 8585 * The original SIOCGIFCONF passed in a struct ifconf which specified 8586 * the user buffer address and length into which the list of struct 8587 * ifreqs was to be copied. Since AT&T Streams does not seem to 8588 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8589 * the SIOCGIFCONF operation was redefined to simply provide 8590 * a large output buffer into which we are supposed to jam the ifreq 8591 * array. The same ioctl command code was used, despite the fact that 8592 * both the applications and the kernel code had to change, thus making 8593 * it impossible to support both interfaces. 8594 * 8595 * For reasons not good enough to try to explain, the following 8596 * algorithm is used for deciding what to do with one of these: 8597 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8598 * form with the output buffer coming down as the continuation message. 8599 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8600 * and we have to copy in the ifconf structure to find out how big the 8601 * output buffer is and where to copy out to. Sure no problem... 8602 * 8603 */ 8604 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8605 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8606 int numifs = 0; 8607 size_t ifc_bufsize; 8608 8609 /* 8610 * Must be (better be!) continuation of a TRANSPARENT 8611 * IOCTL. We just copied in the ifconf structure. 8612 */ 8613 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8614 (struct ifconf *)mp1->b_rptr); 8615 8616 /* 8617 * Allocate a buffer to hold requested information. 8618 * 8619 * If ifc_len is larger than what is needed, we only 8620 * allocate what we will use. 8621 * 8622 * If ifc_len is smaller than what is needed, return 8623 * EINVAL. 8624 * 8625 * XXX: the ill_t structure can hava 2 counters, for 8626 * v4 and v6 (not just ill_ipif_up_count) to store the 8627 * number of interfaces for a device, so we don't need 8628 * to count them here... 8629 */ 8630 numifs = ip_get_numifs(zoneid, ipst); 8631 8632 ifclen = STRUCT_FGET(ifc, ifc_len); 8633 ifc_bufsize = numifs * sizeof (struct ifreq); 8634 if (ifc_bufsize > ifclen) { 8635 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8636 /* old behaviour */ 8637 return (EINVAL); 8638 } else { 8639 ifc_bufsize = ifclen; 8640 } 8641 } 8642 8643 mp1 = mi_copyout_alloc(q, mp, 8644 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8645 if (mp1 == NULL) 8646 return (ENOMEM); 8647 8648 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8649 } 8650 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8651 /* 8652 * the SIOCGIFCONF ioctl only knows about 8653 * IPv4 addresses, so don't try to tell 8654 * it about interfaces with IPv6-only 8655 * addresses. (Last parm 'isv6' is B_FALSE) 8656 */ 8657 8658 ifr = (struct ifreq *)mp1->b_rptr; 8659 8660 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8661 ill = ILL_START_WALK_V4(&ctx, ipst); 8662 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8663 for (ipif = ill->ill_ipif; ipif != NULL; 8664 ipif = ipif->ipif_next) { 8665 if (zoneid != ipif->ipif_zoneid && 8666 ipif->ipif_zoneid != ALL_ZONES) 8667 continue; 8668 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8669 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8670 /* old behaviour */ 8671 rw_exit(&ipst->ips_ill_g_lock); 8672 return (EINVAL); 8673 } else { 8674 goto if_copydone; 8675 } 8676 } 8677 ipif_get_name(ipif, ifr->ifr_name, 8678 sizeof (ifr->ifr_name)); 8679 sin = (sin_t *)&ifr->ifr_addr; 8680 *sin = sin_null; 8681 sin->sin_family = AF_INET; 8682 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8683 ifr++; 8684 } 8685 } 8686 if_copydone: 8687 rw_exit(&ipst->ips_ill_g_lock); 8688 mp1->b_wptr = (uchar_t *)ifr; 8689 8690 if (STRUCT_BUF(ifc) != NULL) { 8691 STRUCT_FSET(ifc, ifc_len, 8692 (int)((uchar_t *)ifr - mp1->b_rptr)); 8693 } 8694 return (0); 8695 } 8696 8697 /* 8698 * Get the interfaces using the address hosted on the interface passed in, 8699 * as a source adddress 8700 */ 8701 /* ARGSUSED */ 8702 int 8703 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8704 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8705 { 8706 mblk_t *mp1; 8707 ill_t *ill, *ill_head; 8708 ipif_t *ipif, *orig_ipif; 8709 int numlifs = 0; 8710 size_t lifs_bufsize, lifsmaxlen; 8711 struct lifreq *lifr; 8712 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8713 uint_t ifindex; 8714 zoneid_t zoneid; 8715 int err = 0; 8716 boolean_t isv6 = B_FALSE; 8717 struct sockaddr_in *sin; 8718 struct sockaddr_in6 *sin6; 8719 STRUCT_HANDLE(lifsrcof, lifs); 8720 ip_stack_t *ipst; 8721 8722 ipst = CONNQ_TO_IPST(q); 8723 8724 ASSERT(q->q_next == NULL); 8725 8726 zoneid = Q_TO_CONN(q)->conn_zoneid; 8727 8728 /* Existence verified in ip_wput_nondata */ 8729 mp1 = mp->b_cont->b_cont; 8730 8731 /* 8732 * Must be (better be!) continuation of a TRANSPARENT 8733 * IOCTL. We just copied in the lifsrcof structure. 8734 */ 8735 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8736 (struct lifsrcof *)mp1->b_rptr); 8737 8738 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8739 return (EINVAL); 8740 8741 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8742 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8743 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8744 ip_process_ioctl, &err, ipst); 8745 if (ipif == NULL) { 8746 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8747 ifindex)); 8748 return (err); 8749 } 8750 8751 8752 /* Allocate a buffer to hold requested information */ 8753 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8754 lifs_bufsize = numlifs * sizeof (struct lifreq); 8755 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8756 /* The actual size needed is always returned in lifs_len */ 8757 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8758 8759 /* If the amount we need is more than what is passed in, abort */ 8760 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8761 ipif_refrele(ipif); 8762 return (0); 8763 } 8764 8765 mp1 = mi_copyout_alloc(q, mp, 8766 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8767 if (mp1 == NULL) { 8768 ipif_refrele(ipif); 8769 return (ENOMEM); 8770 } 8771 8772 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8773 bzero(mp1->b_rptr, lifs_bufsize); 8774 8775 lifr = (struct lifreq *)mp1->b_rptr; 8776 8777 ill = ill_head = ipif->ipif_ill; 8778 orig_ipif = ipif; 8779 8780 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8781 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8782 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8783 8784 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8785 for (; (ill != NULL) && (ill != ill_head); 8786 ill = ill->ill_usesrc_grp_next) { 8787 8788 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8789 break; 8790 8791 ipif = ill->ill_ipif; 8792 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8793 if (ipif->ipif_isv6) { 8794 sin6 = (sin6_t *)&lifr->lifr_addr; 8795 *sin6 = sin6_null; 8796 sin6->sin6_family = AF_INET6; 8797 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8798 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8799 &ipif->ipif_v6net_mask); 8800 } else { 8801 sin = (sin_t *)&lifr->lifr_addr; 8802 *sin = sin_null; 8803 sin->sin_family = AF_INET; 8804 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8805 lifr->lifr_addrlen = ip_mask_to_plen( 8806 ipif->ipif_net_mask); 8807 } 8808 lifr++; 8809 } 8810 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8811 rw_exit(&ipst->ips_ill_g_lock); 8812 ipif_refrele(orig_ipif); 8813 mp1->b_wptr = (uchar_t *)lifr; 8814 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8815 8816 return (0); 8817 } 8818 8819 /* ARGSUSED */ 8820 int 8821 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8822 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8823 { 8824 mblk_t *mp1; 8825 int list; 8826 ill_t *ill; 8827 ipif_t *ipif; 8828 int flags; 8829 int numlifs = 0; 8830 size_t lifc_bufsize; 8831 struct lifreq *lifr; 8832 sa_family_t family; 8833 struct sockaddr_in *sin; 8834 struct sockaddr_in6 *sin6; 8835 ill_walk_context_t ctx; 8836 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8837 int32_t lifclen; 8838 zoneid_t zoneid; 8839 STRUCT_HANDLE(lifconf, lifc); 8840 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8841 8842 ip1dbg(("ip_sioctl_get_lifconf")); 8843 8844 ASSERT(q->q_next == NULL); 8845 8846 zoneid = Q_TO_CONN(q)->conn_zoneid; 8847 8848 /* Existence verified in ip_wput_nondata */ 8849 mp1 = mp->b_cont->b_cont; 8850 8851 /* 8852 * An extended version of SIOCGIFCONF that takes an 8853 * additional address family and flags field. 8854 * AF_UNSPEC retrieve both IPv4 and IPv6. 8855 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8856 * interfaces are omitted. 8857 * Similarly, IPIF_TEMPORARY interfaces are omitted 8858 * unless LIFC_TEMPORARY is specified. 8859 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8860 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8861 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8862 * has priority over LIFC_NOXMIT. 8863 */ 8864 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8865 8866 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8867 return (EINVAL); 8868 8869 /* 8870 * Must be (better be!) continuation of a TRANSPARENT 8871 * IOCTL. We just copied in the lifconf structure. 8872 */ 8873 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8874 8875 family = STRUCT_FGET(lifc, lifc_family); 8876 flags = STRUCT_FGET(lifc, lifc_flags); 8877 8878 switch (family) { 8879 case AF_UNSPEC: 8880 /* 8881 * walk all ILL's. 8882 */ 8883 list = MAX_G_HEADS; 8884 break; 8885 case AF_INET: 8886 /* 8887 * walk only IPV4 ILL's. 8888 */ 8889 list = IP_V4_G_HEAD; 8890 break; 8891 case AF_INET6: 8892 /* 8893 * walk only IPV6 ILL's. 8894 */ 8895 list = IP_V6_G_HEAD; 8896 break; 8897 default: 8898 return (EAFNOSUPPORT); 8899 } 8900 8901 /* 8902 * Allocate a buffer to hold requested information. 8903 * 8904 * If lifc_len is larger than what is needed, we only 8905 * allocate what we will use. 8906 * 8907 * If lifc_len is smaller than what is needed, return 8908 * EINVAL. 8909 */ 8910 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8911 lifc_bufsize = numlifs * sizeof (struct lifreq); 8912 lifclen = STRUCT_FGET(lifc, lifc_len); 8913 if (lifc_bufsize > lifclen) { 8914 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8915 return (EINVAL); 8916 else 8917 lifc_bufsize = lifclen; 8918 } 8919 8920 mp1 = mi_copyout_alloc(q, mp, 8921 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8922 if (mp1 == NULL) 8923 return (ENOMEM); 8924 8925 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8926 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8927 8928 lifr = (struct lifreq *)mp1->b_rptr; 8929 8930 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8931 ill = ill_first(list, list, &ctx, ipst); 8932 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8933 for (ipif = ill->ill_ipif; ipif != NULL; 8934 ipif = ipif->ipif_next) { 8935 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8936 !(flags & LIFC_NOXMIT)) 8937 continue; 8938 8939 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8940 !(flags & LIFC_TEMPORARY)) 8941 continue; 8942 8943 if (((ipif->ipif_flags & 8944 (IPIF_NOXMIT|IPIF_NOLOCAL| 8945 IPIF_DEPRECATED)) || 8946 IS_LOOPBACK(ill) || 8947 !(ipif->ipif_flags & IPIF_UP)) && 8948 (flags & LIFC_EXTERNAL_SOURCE)) 8949 continue; 8950 8951 if (zoneid != ipif->ipif_zoneid && 8952 ipif->ipif_zoneid != ALL_ZONES && 8953 (zoneid != GLOBAL_ZONEID || 8954 !(flags & LIFC_ALLZONES))) 8955 continue; 8956 8957 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8958 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8959 rw_exit(&ipst->ips_ill_g_lock); 8960 return (EINVAL); 8961 } else { 8962 goto lif_copydone; 8963 } 8964 } 8965 8966 ipif_get_name(ipif, lifr->lifr_name, 8967 sizeof (lifr->lifr_name)); 8968 if (ipif->ipif_isv6) { 8969 sin6 = (sin6_t *)&lifr->lifr_addr; 8970 *sin6 = sin6_null; 8971 sin6->sin6_family = AF_INET6; 8972 sin6->sin6_addr = 8973 ipif->ipif_v6lcl_addr; 8974 lifr->lifr_addrlen = 8975 ip_mask_to_plen_v6( 8976 &ipif->ipif_v6net_mask); 8977 } else { 8978 sin = (sin_t *)&lifr->lifr_addr; 8979 *sin = sin_null; 8980 sin->sin_family = AF_INET; 8981 sin->sin_addr.s_addr = 8982 ipif->ipif_lcl_addr; 8983 lifr->lifr_addrlen = 8984 ip_mask_to_plen( 8985 ipif->ipif_net_mask); 8986 } 8987 lifr++; 8988 } 8989 } 8990 lif_copydone: 8991 rw_exit(&ipst->ips_ill_g_lock); 8992 8993 mp1->b_wptr = (uchar_t *)lifr; 8994 if (STRUCT_BUF(lifc) != NULL) { 8995 STRUCT_FSET(lifc, lifc_len, 8996 (int)((uchar_t *)lifr - mp1->b_rptr)); 8997 } 8998 return (0); 8999 } 9000 9001 /* ARGSUSED */ 9002 int 9003 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9004 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9005 { 9006 ip_stack_t *ipst; 9007 9008 if (q->q_next == NULL) 9009 ipst = CONNQ_TO_IPST(q); 9010 else 9011 ipst = ILLQ_TO_IPST(q); 9012 9013 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9014 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9015 return (0); 9016 } 9017 9018 static void 9019 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9020 { 9021 ip6_asp_t *table; 9022 size_t table_size; 9023 mblk_t *data_mp; 9024 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9025 ip_stack_t *ipst; 9026 9027 if (q->q_next == NULL) 9028 ipst = CONNQ_TO_IPST(q); 9029 else 9030 ipst = ILLQ_TO_IPST(q); 9031 9032 /* These two ioctls are I_STR only */ 9033 if (iocp->ioc_count == TRANSPARENT) { 9034 miocnak(q, mp, 0, EINVAL); 9035 return; 9036 } 9037 9038 data_mp = mp->b_cont; 9039 if (data_mp == NULL) { 9040 /* The user passed us a NULL argument */ 9041 table = NULL; 9042 table_size = iocp->ioc_count; 9043 } else { 9044 /* 9045 * The user provided a table. The stream head 9046 * may have copied in the user data in chunks, 9047 * so make sure everything is pulled up 9048 * properly. 9049 */ 9050 if (MBLKL(data_mp) < iocp->ioc_count) { 9051 mblk_t *new_data_mp; 9052 if ((new_data_mp = msgpullup(data_mp, -1)) == 9053 NULL) { 9054 miocnak(q, mp, 0, ENOMEM); 9055 return; 9056 } 9057 freemsg(data_mp); 9058 data_mp = new_data_mp; 9059 mp->b_cont = data_mp; 9060 } 9061 table = (ip6_asp_t *)data_mp->b_rptr; 9062 table_size = iocp->ioc_count; 9063 } 9064 9065 switch (iocp->ioc_cmd) { 9066 case SIOCGIP6ADDRPOLICY: 9067 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9068 if (iocp->ioc_rval == -1) 9069 iocp->ioc_error = EINVAL; 9070 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9071 else if (table != NULL && 9072 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9073 ip6_asp_t *src = table; 9074 ip6_asp32_t *dst = (void *)table; 9075 int count = table_size / sizeof (ip6_asp_t); 9076 int i; 9077 9078 /* 9079 * We need to do an in-place shrink of the array 9080 * to match the alignment attributes of the 9081 * 32-bit ABI looking at it. 9082 */ 9083 /* LINTED: logical expression always true: op "||" */ 9084 ASSERT(sizeof (*src) > sizeof (*dst)); 9085 for (i = 1; i < count; i++) 9086 bcopy(src + i, dst + i, sizeof (*dst)); 9087 } 9088 #endif 9089 break; 9090 9091 case SIOCSIP6ADDRPOLICY: 9092 ASSERT(mp->b_prev == NULL); 9093 mp->b_prev = (void *)q; 9094 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9095 /* 9096 * We pass in the datamodel here so that the ip6_asp_replace() 9097 * routine can handle converting from 32-bit to native formats 9098 * where necessary. 9099 * 9100 * A better way to handle this might be to convert the inbound 9101 * data structure here, and hang it off a new 'mp'; thus the 9102 * ip6_asp_replace() logic would always be dealing with native 9103 * format data structures.. 9104 * 9105 * (An even simpler way to handle these ioctls is to just 9106 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9107 * and just recompile everything that depends on it.) 9108 */ 9109 #endif 9110 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9111 iocp->ioc_flag & IOC_MODELS); 9112 return; 9113 } 9114 9115 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9116 qreply(q, mp); 9117 } 9118 9119 static void 9120 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9121 { 9122 mblk_t *data_mp; 9123 struct dstinforeq *dir; 9124 uint8_t *end, *cur; 9125 in6_addr_t *daddr, *saddr; 9126 ipaddr_t v4daddr; 9127 ire_t *ire; 9128 char *slabel, *dlabel; 9129 boolean_t isipv4; 9130 int match_ire; 9131 ill_t *dst_ill; 9132 ipif_t *src_ipif, *ire_ipif; 9133 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9134 zoneid_t zoneid; 9135 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9136 9137 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9138 zoneid = Q_TO_CONN(q)->conn_zoneid; 9139 9140 /* 9141 * This ioctl is I_STR only, and must have a 9142 * data mblk following the M_IOCTL mblk. 9143 */ 9144 data_mp = mp->b_cont; 9145 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9146 miocnak(q, mp, 0, EINVAL); 9147 return; 9148 } 9149 9150 if (MBLKL(data_mp) < iocp->ioc_count) { 9151 mblk_t *new_data_mp; 9152 9153 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9154 miocnak(q, mp, 0, ENOMEM); 9155 return; 9156 } 9157 freemsg(data_mp); 9158 data_mp = new_data_mp; 9159 mp->b_cont = data_mp; 9160 } 9161 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9162 9163 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9164 end - cur >= sizeof (struct dstinforeq); 9165 cur += sizeof (struct dstinforeq)) { 9166 dir = (struct dstinforeq *)cur; 9167 daddr = &dir->dir_daddr; 9168 saddr = &dir->dir_saddr; 9169 9170 /* 9171 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9172 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9173 * and ipif_select_source[_v6]() do not. 9174 */ 9175 dir->dir_dscope = ip_addr_scope_v6(daddr); 9176 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9177 9178 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9179 if (isipv4) { 9180 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9181 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9182 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9183 } else { 9184 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9185 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9186 } 9187 if (ire == NULL) { 9188 dir->dir_dreachable = 0; 9189 9190 /* move on to next dst addr */ 9191 continue; 9192 } 9193 dir->dir_dreachable = 1; 9194 9195 ire_ipif = ire->ire_ipif; 9196 if (ire_ipif == NULL) 9197 goto next_dst; 9198 9199 /* 9200 * We expect to get back an interface ire or a 9201 * gateway ire cache entry. For both types, the 9202 * output interface is ire_ipif->ipif_ill. 9203 */ 9204 dst_ill = ire_ipif->ipif_ill; 9205 dir->dir_dmactype = dst_ill->ill_mactype; 9206 9207 if (isipv4) { 9208 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9209 } else { 9210 src_ipif = ipif_select_source_v6(dst_ill, 9211 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9212 zoneid); 9213 } 9214 if (src_ipif == NULL) 9215 goto next_dst; 9216 9217 *saddr = src_ipif->ipif_v6lcl_addr; 9218 dir->dir_sscope = ip_addr_scope_v6(saddr); 9219 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9220 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9221 dir->dir_sdeprecated = 9222 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9223 ipif_refrele(src_ipif); 9224 next_dst: 9225 ire_refrele(ire); 9226 } 9227 miocack(q, mp, iocp->ioc_count, 0); 9228 } 9229 9230 9231 /* 9232 * Check if this is an address assigned to this machine. 9233 * Skips interfaces that are down by using ire checks. 9234 * Translates mapped addresses to v4 addresses and then 9235 * treats them as such, returning true if the v4 address 9236 * associated with this mapped address is configured. 9237 * Note: Applications will have to be careful what they do 9238 * with the response; use of mapped addresses limits 9239 * what can be done with the socket, especially with 9240 * respect to socket options and ioctls - neither IPv4 9241 * options nor IPv6 sticky options/ancillary data options 9242 * may be used. 9243 */ 9244 /* ARGSUSED */ 9245 int 9246 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9247 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9248 { 9249 struct sioc_addrreq *sia; 9250 sin_t *sin; 9251 ire_t *ire; 9252 mblk_t *mp1; 9253 zoneid_t zoneid; 9254 ip_stack_t *ipst; 9255 9256 ip1dbg(("ip_sioctl_tmyaddr")); 9257 9258 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9259 zoneid = Q_TO_CONN(q)->conn_zoneid; 9260 ipst = CONNQ_TO_IPST(q); 9261 9262 /* Existence verified in ip_wput_nondata */ 9263 mp1 = mp->b_cont->b_cont; 9264 sia = (struct sioc_addrreq *)mp1->b_rptr; 9265 sin = (sin_t *)&sia->sa_addr; 9266 switch (sin->sin_family) { 9267 case AF_INET6: { 9268 sin6_t *sin6 = (sin6_t *)sin; 9269 9270 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9271 ipaddr_t v4_addr; 9272 9273 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9274 v4_addr); 9275 ire = ire_ctable_lookup(v4_addr, 0, 9276 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9277 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9278 } else { 9279 in6_addr_t v6addr; 9280 9281 v6addr = sin6->sin6_addr; 9282 ire = ire_ctable_lookup_v6(&v6addr, 0, 9283 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9284 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9285 } 9286 break; 9287 } 9288 case AF_INET: { 9289 ipaddr_t v4addr; 9290 9291 v4addr = sin->sin_addr.s_addr; 9292 ire = ire_ctable_lookup(v4addr, 0, 9293 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9294 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9295 break; 9296 } 9297 default: 9298 return (EAFNOSUPPORT); 9299 } 9300 if (ire != NULL) { 9301 sia->sa_res = 1; 9302 ire_refrele(ire); 9303 } else { 9304 sia->sa_res = 0; 9305 } 9306 return (0); 9307 } 9308 9309 /* 9310 * Check if this is an address assigned on-link i.e. neighbor, 9311 * and makes sure it's reachable from the current zone. 9312 * Returns true for my addresses as well. 9313 * Translates mapped addresses to v4 addresses and then 9314 * treats them as such, returning true if the v4 address 9315 * associated with this mapped address is configured. 9316 * Note: Applications will have to be careful what they do 9317 * with the response; use of mapped addresses limits 9318 * what can be done with the socket, especially with 9319 * respect to socket options and ioctls - neither IPv4 9320 * options nor IPv6 sticky options/ancillary data options 9321 * may be used. 9322 */ 9323 /* ARGSUSED */ 9324 int 9325 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9326 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9327 { 9328 struct sioc_addrreq *sia; 9329 sin_t *sin; 9330 mblk_t *mp1; 9331 ire_t *ire = NULL; 9332 zoneid_t zoneid; 9333 ip_stack_t *ipst; 9334 9335 ip1dbg(("ip_sioctl_tonlink")); 9336 9337 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9338 zoneid = Q_TO_CONN(q)->conn_zoneid; 9339 ipst = CONNQ_TO_IPST(q); 9340 9341 /* Existence verified in ip_wput_nondata */ 9342 mp1 = mp->b_cont->b_cont; 9343 sia = (struct sioc_addrreq *)mp1->b_rptr; 9344 sin = (sin_t *)&sia->sa_addr; 9345 9346 /* 9347 * Match addresses with a zero gateway field to avoid 9348 * routes going through a router. 9349 * Exclude broadcast and multicast addresses. 9350 */ 9351 switch (sin->sin_family) { 9352 case AF_INET6: { 9353 sin6_t *sin6 = (sin6_t *)sin; 9354 9355 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9356 ipaddr_t v4_addr; 9357 9358 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9359 v4_addr); 9360 if (!CLASSD(v4_addr)) { 9361 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9362 NULL, NULL, zoneid, NULL, 9363 MATCH_IRE_GW, ipst); 9364 } 9365 } else { 9366 in6_addr_t v6addr; 9367 in6_addr_t v6gw; 9368 9369 v6addr = sin6->sin6_addr; 9370 v6gw = ipv6_all_zeros; 9371 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9372 ire = ire_route_lookup_v6(&v6addr, 0, 9373 &v6gw, 0, NULL, NULL, zoneid, 9374 NULL, MATCH_IRE_GW, ipst); 9375 } 9376 } 9377 break; 9378 } 9379 case AF_INET: { 9380 ipaddr_t v4addr; 9381 9382 v4addr = sin->sin_addr.s_addr; 9383 if (!CLASSD(v4addr)) { 9384 ire = ire_route_lookup(v4addr, 0, 0, 0, 9385 NULL, NULL, zoneid, NULL, 9386 MATCH_IRE_GW, ipst); 9387 } 9388 break; 9389 } 9390 default: 9391 return (EAFNOSUPPORT); 9392 } 9393 sia->sa_res = 0; 9394 if (ire != NULL) { 9395 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9396 IRE_LOCAL|IRE_LOOPBACK)) { 9397 sia->sa_res = 1; 9398 } 9399 ire_refrele(ire); 9400 } 9401 return (0); 9402 } 9403 9404 /* 9405 * TBD: implement when kernel maintaines a list of site prefixes. 9406 */ 9407 /* ARGSUSED */ 9408 int 9409 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9410 ip_ioctl_cmd_t *ipip, void *ifreq) 9411 { 9412 return (ENXIO); 9413 } 9414 9415 /* ARGSUSED */ 9416 int 9417 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9418 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9419 { 9420 ill_t *ill; 9421 mblk_t *mp1; 9422 conn_t *connp; 9423 boolean_t success; 9424 9425 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9426 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9427 /* ioctl comes down on an conn */ 9428 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9429 connp = Q_TO_CONN(q); 9430 9431 mp->b_datap->db_type = M_IOCTL; 9432 9433 /* 9434 * Send down a copy. (copymsg does not copy b_next/b_prev). 9435 * The original mp contains contaminated b_next values due to 'mi', 9436 * which is needed to do the mi_copy_done. Unfortunately if we 9437 * send down the original mblk itself and if we are popped due to an 9438 * an unplumb before the response comes back from tunnel, 9439 * the streamhead (which does a freemsg) will see this contaminated 9440 * message and the assertion in freemsg about non-null b_next/b_prev 9441 * will panic a DEBUG kernel. 9442 */ 9443 mp1 = copymsg(mp); 9444 if (mp1 == NULL) 9445 return (ENOMEM); 9446 9447 ill = ipif->ipif_ill; 9448 mutex_enter(&connp->conn_lock); 9449 mutex_enter(&ill->ill_lock); 9450 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9451 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9452 mp, 0); 9453 } else { 9454 success = ill_pending_mp_add(ill, connp, mp); 9455 } 9456 mutex_exit(&ill->ill_lock); 9457 mutex_exit(&connp->conn_lock); 9458 9459 if (success) { 9460 ip1dbg(("sending down tunparam request ")); 9461 putnext(ill->ill_wq, mp1); 9462 return (EINPROGRESS); 9463 } else { 9464 /* The conn has started closing */ 9465 freemsg(mp1); 9466 return (EINTR); 9467 } 9468 } 9469 9470 /* 9471 * ARP IOCTLs. 9472 * How does IP get in the business of fronting ARP configuration/queries? 9473 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9474 * are by tradition passed in through a datagram socket. That lands in IP. 9475 * As it happens, this is just as well since the interface is quite crude in 9476 * that it passes in no information about protocol or hardware types, or 9477 * interface association. After making the protocol assumption, IP is in 9478 * the position to look up the name of the ILL, which ARP will need, and 9479 * format a request that can be handled by ARP. The request is passed up 9480 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9481 * back a response. ARP supports its own set of more general IOCTLs, in 9482 * case anyone is interested. 9483 */ 9484 /* ARGSUSED */ 9485 int 9486 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9487 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9488 { 9489 mblk_t *mp1; 9490 mblk_t *mp2; 9491 mblk_t *pending_mp; 9492 ipaddr_t ipaddr; 9493 area_t *area; 9494 struct iocblk *iocp; 9495 conn_t *connp; 9496 struct arpreq *ar; 9497 struct xarpreq *xar; 9498 int flags, alength; 9499 char *lladdr; 9500 ip_stack_t *ipst; 9501 ill_t *ill = ipif->ipif_ill; 9502 boolean_t if_arp_ioctl = B_FALSE; 9503 9504 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9505 connp = Q_TO_CONN(q); 9506 ipst = connp->conn_netstack->netstack_ip; 9507 9508 if (ipip->ipi_cmd_type == XARP_CMD) { 9509 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9510 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9511 ar = NULL; 9512 9513 flags = xar->xarp_flags; 9514 lladdr = LLADDR(&xar->xarp_ha); 9515 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9516 /* 9517 * Validate against user's link layer address length 9518 * input and name and addr length limits. 9519 */ 9520 alength = ill->ill_phys_addr_length; 9521 if (ipip->ipi_cmd == SIOCSXARP) { 9522 if (alength != xar->xarp_ha.sdl_alen || 9523 (alength + xar->xarp_ha.sdl_nlen > 9524 sizeof (xar->xarp_ha.sdl_data))) 9525 return (EINVAL); 9526 } 9527 } else { 9528 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9529 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9530 xar = NULL; 9531 9532 flags = ar->arp_flags; 9533 lladdr = ar->arp_ha.sa_data; 9534 /* 9535 * Theoretically, the sa_family could tell us what link 9536 * layer type this operation is trying to deal with. By 9537 * common usage AF_UNSPEC means ethernet. We'll assume 9538 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9539 * for now. Our new SIOC*XARP ioctls can be used more 9540 * generally. 9541 * 9542 * If the underlying media happens to have a non 6 byte 9543 * address, arp module will fail set/get, but the del 9544 * operation will succeed. 9545 */ 9546 alength = 6; 9547 if ((ipip->ipi_cmd != SIOCDARP) && 9548 (alength != ill->ill_phys_addr_length)) { 9549 return (EINVAL); 9550 } 9551 } 9552 9553 /* 9554 * We are going to pass up to ARP a packet chain that looks 9555 * like: 9556 * 9557 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9558 * 9559 * Get a copy of the original IOCTL mblk to head the chain, 9560 * to be sent up (in mp1). Also get another copy to store 9561 * in the ill_pending_mp list, for matching the response 9562 * when it comes back from ARP. 9563 */ 9564 mp1 = copyb(mp); 9565 pending_mp = copymsg(mp); 9566 if (mp1 == NULL || pending_mp == NULL) { 9567 if (mp1 != NULL) 9568 freeb(mp1); 9569 if (pending_mp != NULL) 9570 inet_freemsg(pending_mp); 9571 return (ENOMEM); 9572 } 9573 9574 ipaddr = sin->sin_addr.s_addr; 9575 9576 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9577 (caddr_t)&ipaddr); 9578 if (mp2 == NULL) { 9579 freeb(mp1); 9580 inet_freemsg(pending_mp); 9581 return (ENOMEM); 9582 } 9583 /* Put together the chain. */ 9584 mp1->b_cont = mp2; 9585 mp1->b_datap->db_type = M_IOCTL; 9586 mp2->b_cont = mp; 9587 mp2->b_datap->db_type = M_DATA; 9588 9589 iocp = (struct iocblk *)mp1->b_rptr; 9590 9591 /* 9592 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9593 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9594 * cp_private field (or cp_rval on 32-bit systems) in place of the 9595 * ioc_count field; set ioc_count to be correct. 9596 */ 9597 iocp->ioc_count = MBLKL(mp1->b_cont); 9598 9599 /* 9600 * Set the proper command in the ARP message. 9601 * Convert the SIOC{G|S|D}ARP calls into our 9602 * AR_ENTRY_xxx calls. 9603 */ 9604 area = (area_t *)mp2->b_rptr; 9605 switch (iocp->ioc_cmd) { 9606 case SIOCDARP: 9607 case SIOCDXARP: 9608 /* 9609 * We defer deleting the corresponding IRE until 9610 * we return from arp. 9611 */ 9612 area->area_cmd = AR_ENTRY_DELETE; 9613 area->area_proto_mask_offset = 0; 9614 break; 9615 case SIOCGARP: 9616 case SIOCGXARP: 9617 area->area_cmd = AR_ENTRY_SQUERY; 9618 area->area_proto_mask_offset = 0; 9619 break; 9620 case SIOCSARP: 9621 case SIOCSXARP: 9622 /* 9623 * Delete the corresponding ire to make sure IP will 9624 * pick up any change from arp. 9625 */ 9626 if (!if_arp_ioctl) { 9627 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9628 } else { 9629 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9630 if (ipif != NULL) { 9631 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9632 ipst); 9633 ipif_refrele(ipif); 9634 } 9635 } 9636 break; 9637 } 9638 iocp->ioc_cmd = area->area_cmd; 9639 9640 /* 9641 * Fill in the rest of the ARP operation fields. 9642 */ 9643 area->area_hw_addr_length = alength; 9644 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9645 9646 /* Translate the flags. */ 9647 if (flags & ATF_PERM) 9648 area->area_flags |= ACE_F_PERMANENT; 9649 if (flags & ATF_PUBL) 9650 area->area_flags |= ACE_F_PUBLISH; 9651 if (flags & ATF_AUTHORITY) 9652 area->area_flags |= ACE_F_AUTHORITY; 9653 9654 /* 9655 * Before sending 'mp' to ARP, we have to clear the b_next 9656 * and b_prev. Otherwise if STREAMS encounters such a message 9657 * in freemsg(), (because ARP can close any time) it can cause 9658 * a panic. But mi code needs the b_next and b_prev values of 9659 * mp->b_cont, to complete the ioctl. So we store it here 9660 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9661 * when the response comes down from ARP. 9662 */ 9663 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9664 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9665 mp->b_cont->b_next = NULL; 9666 mp->b_cont->b_prev = NULL; 9667 9668 mutex_enter(&connp->conn_lock); 9669 mutex_enter(&ill->ill_lock); 9670 /* conn has not yet started closing, hence this can't fail */ 9671 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9672 mutex_exit(&ill->ill_lock); 9673 mutex_exit(&connp->conn_lock); 9674 9675 /* 9676 * Up to ARP it goes. The response will come back in ip_wput() as an 9677 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9678 */ 9679 putnext(ill->ill_rq, mp1); 9680 return (EINPROGRESS); 9681 } 9682 9683 /* 9684 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9685 * the associated sin and refhold and return the associated ipif via `ci'. 9686 */ 9687 int 9688 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9689 cmd_info_t *ci, ipsq_func_t func) 9690 { 9691 mblk_t *mp1; 9692 int err; 9693 sin_t *sin; 9694 conn_t *connp; 9695 ipif_t *ipif; 9696 ire_t *ire = NULL; 9697 ill_t *ill = NULL; 9698 boolean_t exists; 9699 ip_stack_t *ipst; 9700 struct arpreq *ar; 9701 struct xarpreq *xar; 9702 struct sockaddr_dl *sdl; 9703 9704 /* ioctl comes down on a conn */ 9705 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9706 connp = Q_TO_CONN(q); 9707 if (connp->conn_af_isv6) 9708 return (ENXIO); 9709 9710 ipst = connp->conn_netstack->netstack_ip; 9711 9712 /* Verified in ip_wput_nondata */ 9713 mp1 = mp->b_cont->b_cont; 9714 9715 if (ipip->ipi_cmd_type == XARP_CMD) { 9716 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9717 xar = (struct xarpreq *)mp1->b_rptr; 9718 sin = (sin_t *)&xar->xarp_pa; 9719 sdl = &xar->xarp_ha; 9720 9721 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9722 return (ENXIO); 9723 if (sdl->sdl_nlen >= LIFNAMSIZ) 9724 return (EINVAL); 9725 } else { 9726 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9727 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9728 ar = (struct arpreq *)mp1->b_rptr; 9729 sin = (sin_t *)&ar->arp_pa; 9730 } 9731 9732 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9733 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9734 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9735 mp, func, &err, ipst); 9736 if (ipif == NULL) 9737 return (err); 9738 if (ipif->ipif_id != 0 || 9739 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9740 ipif_refrele(ipif); 9741 return (ENXIO); 9742 } 9743 } else { 9744 /* 9745 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9746 * 0: use the IP address to figure out the ill. In the IPMP 9747 * case, a simple forwarding table lookup will return the 9748 * IRE_IF_RESOLVER for the first interface in the group, which 9749 * might not be the interface on which the requested IP 9750 * address was resolved due to the ill selection algorithm 9751 * (see ip_newroute_get_dst_ill()). So we do a cache table 9752 * lookup first: if the IRE cache entry for the IP address is 9753 * still there, it will contain the ill pointer for the right 9754 * interface, so we use that. If the cache entry has been 9755 * flushed, we fall back to the forwarding table lookup. This 9756 * should be rare enough since IRE cache entries have a longer 9757 * life expectancy than ARP cache entries. 9758 */ 9759 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9760 ipst); 9761 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9762 ((ill = ire_to_ill(ire)) == NULL) || 9763 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9764 if (ire != NULL) 9765 ire_refrele(ire); 9766 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9767 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9768 NULL, MATCH_IRE_TYPE, ipst); 9769 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9770 9771 if (ire != NULL) 9772 ire_refrele(ire); 9773 return (ENXIO); 9774 } 9775 } 9776 ASSERT(ire != NULL && ill != NULL); 9777 ipif = ill->ill_ipif; 9778 ipif_refhold(ipif); 9779 ire_refrele(ire); 9780 } 9781 ci->ci_sin = sin; 9782 ci->ci_ipif = ipif; 9783 return (0); 9784 } 9785 9786 /* 9787 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9788 * atomically set/clear the muxids. Also complete the ioctl by acking or 9789 * naking it. Note that the code is structured such that the link type, 9790 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9791 * its clones use the persistent link, while pppd(1M) and perhaps many 9792 * other daemons may use non-persistent link. When combined with some 9793 * ill_t states, linking and unlinking lower streams may be used as 9794 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9795 */ 9796 /* ARGSUSED */ 9797 void 9798 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9799 { 9800 mblk_t *mp1, *mp2; 9801 struct linkblk *li; 9802 struct ipmx_s *ipmxp; 9803 ill_t *ill; 9804 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9805 int err = 0; 9806 boolean_t entered_ipsq = B_FALSE; 9807 boolean_t islink; 9808 ip_stack_t *ipst; 9809 9810 if (CONN_Q(q)) 9811 ipst = CONNQ_TO_IPST(q); 9812 else 9813 ipst = ILLQ_TO_IPST(q); 9814 9815 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9816 ioccmd == I_LINK || ioccmd == I_UNLINK); 9817 9818 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9819 9820 mp1 = mp->b_cont; /* This is the linkblk info */ 9821 li = (struct linkblk *)mp1->b_rptr; 9822 9823 /* 9824 * ARP has added this special mblk, and the utility is asking us 9825 * to perform consistency checks, and also atomically set the 9826 * muxid. Ifconfig is an example. It achieves this by using 9827 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9828 * to /dev/udp[6] stream for use as the mux when plinking the IP 9829 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9830 * and other comments in this routine for more details. 9831 */ 9832 mp2 = mp1->b_cont; /* This is added by ARP */ 9833 9834 /* 9835 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9836 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9837 * get the special mblk above. For backward compatibility, we 9838 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9839 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9840 * not atomic, and can leave the streams unplumbable if the utility 9841 * is interrupted before it does the SIOCSLIFMUXID. 9842 */ 9843 if (mp2 == NULL) { 9844 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9845 if (err == EINPROGRESS) 9846 return; 9847 goto done; 9848 } 9849 9850 /* 9851 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9852 * ARP has appended this last mblk to tell us whether the lower stream 9853 * is an arp-dev stream or an IP module stream. 9854 */ 9855 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9856 if (ipmxp->ipmx_arpdev_stream) { 9857 /* 9858 * The lower stream is the arp-dev stream. 9859 */ 9860 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9861 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9862 if (ill == NULL) { 9863 if (err == EINPROGRESS) 9864 return; 9865 err = EINVAL; 9866 goto done; 9867 } 9868 9869 if (ipsq == NULL) { 9870 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9871 NEW_OP, B_TRUE); 9872 if (ipsq == NULL) { 9873 ill_refrele(ill); 9874 return; 9875 } 9876 entered_ipsq = B_TRUE; 9877 } 9878 ASSERT(IAM_WRITER_ILL(ill)); 9879 ill_refrele(ill); 9880 9881 /* 9882 * To ensure consistency between IP and ARP, the following 9883 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9884 * This is because the muxid's are stored in the IP stream on 9885 * the ill. 9886 * 9887 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9888 * the ARP stream. On an arp-dev stream, IP checks that it is 9889 * not yet plinked, and it also checks that the corresponding 9890 * IP stream is already plinked. 9891 * 9892 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9893 * punlinking the IP stream. IP does not allow punlink of the 9894 * IP stream unless the arp stream has been punlinked. 9895 */ 9896 if ((islink && 9897 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9898 (!islink && ill->ill_arp_muxid != li->l_index)) { 9899 err = EINVAL; 9900 goto done; 9901 } 9902 ill->ill_arp_muxid = islink ? li->l_index : 0; 9903 } else { 9904 /* 9905 * The lower stream is probably an IP module stream. Do 9906 * consistency checking. 9907 */ 9908 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9909 if (err == EINPROGRESS) 9910 return; 9911 } 9912 done: 9913 if (err == 0) 9914 miocack(q, mp, 0, 0); 9915 else 9916 miocnak(q, mp, 0, err); 9917 9918 /* Conn was refheld in ip_sioctl_copyin_setup */ 9919 if (CONN_Q(q)) 9920 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9921 if (entered_ipsq) 9922 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9923 } 9924 9925 /* 9926 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9927 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9928 * module stream). If `doconsist' is set, then do the extended consistency 9929 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9930 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9931 * an error code on failure. 9932 */ 9933 static int 9934 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9935 struct linkblk *li, boolean_t doconsist) 9936 { 9937 ill_t *ill; 9938 queue_t *ipwq, *dwq; 9939 const char *name; 9940 struct qinit *qinfo; 9941 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9942 boolean_t entered_ipsq = B_FALSE; 9943 9944 /* 9945 * Walk the lower stream to verify it's the IP module stream. 9946 * The IP module is identified by its name, wput function, 9947 * and non-NULL q_next. STREAMS ensures that the lower stream 9948 * (li->l_qbot) will not vanish until this ioctl completes. 9949 */ 9950 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9951 qinfo = ipwq->q_qinfo; 9952 name = qinfo->qi_minfo->mi_idname; 9953 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9954 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9955 break; 9956 } 9957 } 9958 9959 /* 9960 * If this isn't an IP module stream, bail. 9961 */ 9962 if (ipwq == NULL) 9963 return (0); 9964 9965 ill = ipwq->q_ptr; 9966 ASSERT(ill != NULL); 9967 9968 if (ipsq == NULL) { 9969 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9970 NEW_OP, B_TRUE); 9971 if (ipsq == NULL) 9972 return (EINPROGRESS); 9973 entered_ipsq = B_TRUE; 9974 } 9975 ASSERT(IAM_WRITER_ILL(ill)); 9976 9977 if (doconsist) { 9978 /* 9979 * Consistency checking requires that I_{P}LINK occurs 9980 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9981 * occurs prior to clearing ill_arp_muxid. 9982 */ 9983 if ((islink && ill->ill_ip_muxid != 0) || 9984 (!islink && ill->ill_arp_muxid != 0)) { 9985 if (entered_ipsq) 9986 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9987 return (EINVAL); 9988 } 9989 } 9990 9991 /* 9992 * As part of I_{P}LINKing, stash the number of downstream modules and 9993 * the read queue of the module immediately below IP in the ill. 9994 * These are used during the capability negotiation below. 9995 */ 9996 ill->ill_lmod_rq = NULL; 9997 ill->ill_lmod_cnt = 0; 9998 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9999 ill->ill_lmod_rq = RD(dwq); 10000 for (; dwq != NULL; dwq = dwq->q_next) 10001 ill->ill_lmod_cnt++; 10002 } 10003 10004 if (doconsist) 10005 ill->ill_ip_muxid = islink ? li->l_index : 0; 10006 10007 /* 10008 * If there's at least one up ipif on this ill, then we're bound to 10009 * the underlying driver via DLPI. In that case, renegotiate 10010 * capabilities to account for any possible change in modules 10011 * interposed between IP and the driver. 10012 */ 10013 if (ill->ill_ipif_up_count > 0) { 10014 if (islink) 10015 ill_capability_probe(ill); 10016 else 10017 ill_capability_reset(ill); 10018 } 10019 10020 if (entered_ipsq) 10021 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10022 10023 return (0); 10024 } 10025 10026 /* 10027 * Search the ioctl command in the ioctl tables and return a pointer 10028 * to the ioctl command information. The ioctl command tables are 10029 * static and fully populated at compile time. 10030 */ 10031 ip_ioctl_cmd_t * 10032 ip_sioctl_lookup(int ioc_cmd) 10033 { 10034 int index; 10035 ip_ioctl_cmd_t *ipip; 10036 ip_ioctl_cmd_t *ipip_end; 10037 10038 if (ioc_cmd == IPI_DONTCARE) 10039 return (NULL); 10040 10041 /* 10042 * Do a 2 step search. First search the indexed table 10043 * based on the least significant byte of the ioctl cmd. 10044 * If we don't find a match, then search the misc table 10045 * serially. 10046 */ 10047 index = ioc_cmd & 0xFF; 10048 if (index < ip_ndx_ioctl_count) { 10049 ipip = &ip_ndx_ioctl_table[index]; 10050 if (ipip->ipi_cmd == ioc_cmd) { 10051 /* Found a match in the ndx table */ 10052 return (ipip); 10053 } 10054 } 10055 10056 /* Search the misc table */ 10057 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10058 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10059 if (ipip->ipi_cmd == ioc_cmd) 10060 /* Found a match in the misc table */ 10061 return (ipip); 10062 } 10063 10064 return (NULL); 10065 } 10066 10067 /* 10068 * Wrapper function for resuming deferred ioctl processing 10069 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10070 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10071 */ 10072 /* ARGSUSED */ 10073 void 10074 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10075 void *dummy_arg) 10076 { 10077 ip_sioctl_copyin_setup(q, mp); 10078 } 10079 10080 /* 10081 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10082 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10083 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10084 * We establish here the size of the block to be copied in. mi_copyin 10085 * arranges for this to happen, an processing continues in ip_wput with 10086 * an M_IOCDATA message. 10087 */ 10088 void 10089 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10090 { 10091 int copyin_size; 10092 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10093 ip_ioctl_cmd_t *ipip; 10094 cred_t *cr; 10095 ip_stack_t *ipst; 10096 10097 if (CONN_Q(q)) 10098 ipst = CONNQ_TO_IPST(q); 10099 else 10100 ipst = ILLQ_TO_IPST(q); 10101 10102 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10103 if (ipip == NULL) { 10104 /* 10105 * The ioctl is not one we understand or own. 10106 * Pass it along to be processed down stream, 10107 * if this is a module instance of IP, else nak 10108 * the ioctl. 10109 */ 10110 if (q->q_next == NULL) { 10111 goto nak; 10112 } else { 10113 putnext(q, mp); 10114 return; 10115 } 10116 } 10117 10118 /* 10119 * If this is deferred, then we will do all the checks when we 10120 * come back. 10121 */ 10122 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10123 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10124 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10125 return; 10126 } 10127 10128 /* 10129 * Only allow a very small subset of IP ioctls on this stream if 10130 * IP is a module and not a driver. Allowing ioctls to be processed 10131 * in this case may cause assert failures or data corruption. 10132 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10133 * ioctls allowed on an IP module stream, after which this stream 10134 * normally becomes a multiplexor (at which time the stream head 10135 * will fail all ioctls). 10136 */ 10137 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10138 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10139 /* 10140 * Pass common Streams ioctls which the IP 10141 * module does not own or consume along to 10142 * be processed down stream. 10143 */ 10144 putnext(q, mp); 10145 return; 10146 } else { 10147 goto nak; 10148 } 10149 } 10150 10151 /* Make sure we have ioctl data to process. */ 10152 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10153 goto nak; 10154 10155 /* 10156 * Prefer dblk credential over ioctl credential; some synthesized 10157 * ioctls have kcred set because there's no way to crhold() 10158 * a credential in some contexts. (ioc_cr is not crfree() by 10159 * the framework; the caller of ioctl needs to hold the reference 10160 * for the duration of the call). 10161 */ 10162 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10163 10164 /* Make sure normal users don't send down privileged ioctls */ 10165 if ((ipip->ipi_flags & IPI_PRIV) && 10166 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10167 /* We checked the privilege earlier but log it here */ 10168 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10169 return; 10170 } 10171 10172 /* 10173 * The ioctl command tables can only encode fixed length 10174 * ioctl data. If the length is variable, the table will 10175 * encode the length as zero. Such special cases are handled 10176 * below in the switch. 10177 */ 10178 if (ipip->ipi_copyin_size != 0) { 10179 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10180 return; 10181 } 10182 10183 switch (iocp->ioc_cmd) { 10184 case O_SIOCGIFCONF: 10185 case SIOCGIFCONF: 10186 /* 10187 * This IOCTL is hilarious. See comments in 10188 * ip_sioctl_get_ifconf for the story. 10189 */ 10190 if (iocp->ioc_count == TRANSPARENT) 10191 copyin_size = SIZEOF_STRUCT(ifconf, 10192 iocp->ioc_flag); 10193 else 10194 copyin_size = iocp->ioc_count; 10195 mi_copyin(q, mp, NULL, copyin_size); 10196 return; 10197 10198 case O_SIOCGLIFCONF: 10199 case SIOCGLIFCONF: 10200 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10201 mi_copyin(q, mp, NULL, copyin_size); 10202 return; 10203 10204 case SIOCGLIFSRCOF: 10205 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10206 mi_copyin(q, mp, NULL, copyin_size); 10207 return; 10208 case SIOCGIP6ADDRPOLICY: 10209 ip_sioctl_ip6addrpolicy(q, mp); 10210 ip6_asp_table_refrele(ipst); 10211 return; 10212 10213 case SIOCSIP6ADDRPOLICY: 10214 ip_sioctl_ip6addrpolicy(q, mp); 10215 return; 10216 10217 case SIOCGDSTINFO: 10218 ip_sioctl_dstinfo(q, mp); 10219 ip6_asp_table_refrele(ipst); 10220 return; 10221 10222 case I_PLINK: 10223 case I_PUNLINK: 10224 case I_LINK: 10225 case I_UNLINK: 10226 /* 10227 * We treat non-persistent link similarly as the persistent 10228 * link case, in terms of plumbing/unplumbing, as well as 10229 * dynamic re-plumbing events indicator. See comments 10230 * in ip_sioctl_plink() for more. 10231 * 10232 * Request can be enqueued in the 'ipsq' while waiting 10233 * to become exclusive. So bump up the conn ref. 10234 */ 10235 if (CONN_Q(q)) 10236 CONN_INC_REF(Q_TO_CONN(q)); 10237 ip_sioctl_plink(NULL, q, mp, NULL); 10238 return; 10239 10240 case ND_GET: 10241 case ND_SET: 10242 /* 10243 * Use of the nd table requires holding the reader lock. 10244 * Modifying the nd table thru nd_load/nd_unload requires 10245 * the writer lock. 10246 */ 10247 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10248 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10249 rw_exit(&ipst->ips_ip_g_nd_lock); 10250 10251 if (iocp->ioc_error) 10252 iocp->ioc_count = 0; 10253 mp->b_datap->db_type = M_IOCACK; 10254 qreply(q, mp); 10255 return; 10256 } 10257 rw_exit(&ipst->ips_ip_g_nd_lock); 10258 /* 10259 * We don't understand this subioctl of ND_GET / ND_SET. 10260 * Maybe intended for some driver / module below us 10261 */ 10262 if (q->q_next) { 10263 putnext(q, mp); 10264 } else { 10265 iocp->ioc_error = ENOENT; 10266 mp->b_datap->db_type = M_IOCNAK; 10267 iocp->ioc_count = 0; 10268 qreply(q, mp); 10269 } 10270 return; 10271 10272 case IP_IOCTL: 10273 ip_wput_ioctl(q, mp); 10274 return; 10275 default: 10276 cmn_err(CE_PANIC, "should not happen "); 10277 } 10278 nak: 10279 if (mp->b_cont != NULL) { 10280 freemsg(mp->b_cont); 10281 mp->b_cont = NULL; 10282 } 10283 iocp->ioc_error = EINVAL; 10284 mp->b_datap->db_type = M_IOCNAK; 10285 iocp->ioc_count = 0; 10286 qreply(q, mp); 10287 } 10288 10289 /* ip_wput hands off ARP IOCTL responses to us */ 10290 void 10291 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10292 { 10293 struct arpreq *ar; 10294 struct xarpreq *xar; 10295 area_t *area; 10296 mblk_t *area_mp; 10297 struct iocblk *iocp; 10298 mblk_t *orig_ioc_mp, *tmp; 10299 struct iocblk *orig_iocp; 10300 ill_t *ill; 10301 conn_t *connp = NULL; 10302 uint_t ioc_id; 10303 mblk_t *pending_mp; 10304 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10305 int *flagsp; 10306 char *storage = NULL; 10307 sin_t *sin; 10308 ipaddr_t addr; 10309 int err; 10310 ip_stack_t *ipst; 10311 10312 ill = q->q_ptr; 10313 ASSERT(ill != NULL); 10314 ipst = ill->ill_ipst; 10315 10316 /* 10317 * We should get back from ARP a packet chain that looks like: 10318 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10319 */ 10320 if (!(area_mp = mp->b_cont) || 10321 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10322 !(orig_ioc_mp = area_mp->b_cont) || 10323 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10324 freemsg(mp); 10325 return; 10326 } 10327 10328 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10329 10330 tmp = (orig_ioc_mp->b_cont)->b_cont; 10331 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10332 (orig_iocp->ioc_cmd == SIOCSXARP) || 10333 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10334 x_arp_ioctl = B_TRUE; 10335 xar = (struct xarpreq *)tmp->b_rptr; 10336 sin = (sin_t *)&xar->xarp_pa; 10337 flagsp = &xar->xarp_flags; 10338 storage = xar->xarp_ha.sdl_data; 10339 if (xar->xarp_ha.sdl_nlen != 0) 10340 ifx_arp_ioctl = B_TRUE; 10341 } else { 10342 ar = (struct arpreq *)tmp->b_rptr; 10343 sin = (sin_t *)&ar->arp_pa; 10344 flagsp = &ar->arp_flags; 10345 storage = ar->arp_ha.sa_data; 10346 } 10347 10348 iocp = (struct iocblk *)mp->b_rptr; 10349 10350 /* 10351 * Pick out the originating queue based on the ioc_id. 10352 */ 10353 ioc_id = iocp->ioc_id; 10354 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10355 if (pending_mp == NULL) { 10356 ASSERT(connp == NULL); 10357 inet_freemsg(mp); 10358 return; 10359 } 10360 ASSERT(connp != NULL); 10361 q = CONNP_TO_WQ(connp); 10362 10363 /* Uncouple the internally generated IOCTL from the original one */ 10364 area = (area_t *)area_mp->b_rptr; 10365 area_mp->b_cont = NULL; 10366 10367 /* 10368 * Restore the b_next and b_prev used by mi code. This is needed 10369 * to complete the ioctl using mi* functions. We stored them in 10370 * the pending mp prior to sending the request to ARP. 10371 */ 10372 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10373 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10374 inet_freemsg(pending_mp); 10375 10376 /* 10377 * We're done if there was an error or if this is not an SIOCG{X}ARP 10378 * Catch the case where there is an IRE_CACHE by no entry in the 10379 * arp table. 10380 */ 10381 addr = sin->sin_addr.s_addr; 10382 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10383 ire_t *ire; 10384 dl_unitdata_req_t *dlup; 10385 mblk_t *llmp; 10386 int addr_len; 10387 ill_t *ipsqill = NULL; 10388 10389 if (ifx_arp_ioctl) { 10390 /* 10391 * There's no need to lookup the ill, since 10392 * we've already done that when we started 10393 * processing the ioctl and sent the message 10394 * to ARP on that ill. So use the ill that 10395 * is stored in q->q_ptr. 10396 */ 10397 ipsqill = ill; 10398 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10399 ipsqill->ill_ipif, ALL_ZONES, 10400 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10401 } else { 10402 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10403 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10404 if (ire != NULL) 10405 ipsqill = ire_to_ill(ire); 10406 } 10407 10408 if ((x_arp_ioctl) && (ipsqill != NULL)) 10409 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10410 10411 if (ire != NULL) { 10412 /* 10413 * Since the ire obtained from cachetable is used for 10414 * mac addr copying below, treat an incomplete ire as if 10415 * as if we never found it. 10416 */ 10417 if (ire->ire_nce != NULL && 10418 ire->ire_nce->nce_state != ND_REACHABLE) { 10419 ire_refrele(ire); 10420 ire = NULL; 10421 ipsqill = NULL; 10422 goto errack; 10423 } 10424 *flagsp = ATF_INUSE; 10425 llmp = (ire->ire_nce != NULL ? 10426 ire->ire_nce->nce_res_mp : NULL); 10427 if (llmp != NULL && ipsqill != NULL) { 10428 uchar_t *macaddr; 10429 10430 addr_len = ipsqill->ill_phys_addr_length; 10431 if (x_arp_ioctl && ((addr_len + 10432 ipsqill->ill_name_length) > 10433 sizeof (xar->xarp_ha.sdl_data))) { 10434 ire_refrele(ire); 10435 freemsg(mp); 10436 ip_ioctl_finish(q, orig_ioc_mp, 10437 EINVAL, NO_COPYOUT, NULL); 10438 return; 10439 } 10440 *flagsp |= ATF_COM; 10441 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10442 if (ipsqill->ill_sap_length < 0) 10443 macaddr = llmp->b_rptr + 10444 dlup->dl_dest_addr_offset; 10445 else 10446 macaddr = llmp->b_rptr + 10447 dlup->dl_dest_addr_offset + 10448 ipsqill->ill_sap_length; 10449 /* 10450 * For SIOCGARP, MAC address length 10451 * validation has already been done 10452 * before the ioctl was issued to ARP to 10453 * allow it to progress only on 6 byte 10454 * addressable (ethernet like) media. Thus 10455 * the mac address copying can not overwrite 10456 * the sa_data area below. 10457 */ 10458 bcopy(macaddr, storage, addr_len); 10459 } 10460 /* Ditch the internal IOCTL. */ 10461 freemsg(mp); 10462 ire_refrele(ire); 10463 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10464 return; 10465 } 10466 } 10467 10468 /* 10469 * Delete the coresponding IRE_CACHE if any. 10470 * Reset the error if there was one (in case there was no entry 10471 * in arp.) 10472 */ 10473 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10474 ipif_t *ipintf = NULL; 10475 10476 if (ifx_arp_ioctl) { 10477 /* 10478 * There's no need to lookup the ill, since 10479 * we've already done that when we started 10480 * processing the ioctl and sent the message 10481 * to ARP on that ill. So use the ill that 10482 * is stored in q->q_ptr. 10483 */ 10484 ipintf = ill->ill_ipif; 10485 } 10486 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10487 /* 10488 * The address in "addr" may be an entry for a 10489 * router. If that's true, then any off-net 10490 * IRE_CACHE entries that go through the router 10491 * with address "addr" must be clobbered. Use 10492 * ire_walk to achieve this goal. 10493 */ 10494 if (ifx_arp_ioctl) 10495 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10496 ire_delete_cache_gw, (char *)&addr, ill); 10497 else 10498 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10499 ALL_ZONES, ipst); 10500 iocp->ioc_error = 0; 10501 } 10502 } 10503 errack: 10504 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10505 err = iocp->ioc_error; 10506 freemsg(mp); 10507 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10508 return; 10509 } 10510 10511 /* 10512 * Completion of an SIOCG{X}ARP. Translate the information from 10513 * the area_t into the struct {x}arpreq. 10514 */ 10515 if (x_arp_ioctl) { 10516 storage += ill_xarp_info(&xar->xarp_ha, ill); 10517 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10518 sizeof (xar->xarp_ha.sdl_data)) { 10519 freemsg(mp); 10520 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10521 NULL); 10522 return; 10523 } 10524 } 10525 *flagsp = ATF_INUSE; 10526 if (area->area_flags & ACE_F_PERMANENT) 10527 *flagsp |= ATF_PERM; 10528 if (area->area_flags & ACE_F_PUBLISH) 10529 *flagsp |= ATF_PUBL; 10530 if (area->area_flags & ACE_F_AUTHORITY) 10531 *flagsp |= ATF_AUTHORITY; 10532 if (area->area_hw_addr_length != 0) { 10533 *flagsp |= ATF_COM; 10534 /* 10535 * For SIOCGARP, MAC address length validation has 10536 * already been done before the ioctl was issued to ARP 10537 * to allow it to progress only on 6 byte addressable 10538 * (ethernet like) media. Thus the mac address copying 10539 * can not overwrite the sa_data area below. 10540 */ 10541 bcopy((char *)area + area->area_hw_addr_offset, 10542 storage, area->area_hw_addr_length); 10543 } 10544 10545 /* Ditch the internal IOCTL. */ 10546 freemsg(mp); 10547 /* Complete the original. */ 10548 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10549 } 10550 10551 /* 10552 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10553 * interface) create the next available logical interface for this 10554 * physical interface. 10555 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10556 * ipif with the specified name. 10557 * 10558 * If the address family is not AF_UNSPEC then set the address as well. 10559 * 10560 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10561 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10562 * 10563 * Executed as a writer on the ill or ill group. 10564 * So no lock is needed to traverse the ipif chain, or examine the 10565 * phyint flags. 10566 */ 10567 /* ARGSUSED */ 10568 int 10569 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10570 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10571 { 10572 mblk_t *mp1; 10573 struct lifreq *lifr; 10574 boolean_t isv6; 10575 boolean_t exists; 10576 char *name; 10577 char *endp; 10578 char *cp; 10579 int namelen; 10580 ipif_t *ipif; 10581 long id; 10582 ipsq_t *ipsq; 10583 ill_t *ill; 10584 sin_t *sin; 10585 int err = 0; 10586 boolean_t found_sep = B_FALSE; 10587 conn_t *connp; 10588 zoneid_t zoneid; 10589 int orig_ifindex = 0; 10590 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10591 10592 ASSERT(q->q_next == NULL); 10593 ip1dbg(("ip_sioctl_addif\n")); 10594 /* Existence of mp1 has been checked in ip_wput_nondata */ 10595 mp1 = mp->b_cont->b_cont; 10596 /* 10597 * Null terminate the string to protect against buffer 10598 * overrun. String was generated by user code and may not 10599 * be trusted. 10600 */ 10601 lifr = (struct lifreq *)mp1->b_rptr; 10602 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10603 name = lifr->lifr_name; 10604 ASSERT(CONN_Q(q)); 10605 connp = Q_TO_CONN(q); 10606 isv6 = connp->conn_af_isv6; 10607 zoneid = connp->conn_zoneid; 10608 namelen = mi_strlen(name); 10609 if (namelen == 0) 10610 return (EINVAL); 10611 10612 exists = B_FALSE; 10613 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10614 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10615 /* 10616 * Allow creating lo0 using SIOCLIFADDIF. 10617 * can't be any other writer thread. So can pass null below 10618 * for the last 4 args to ipif_lookup_name. 10619 */ 10620 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10621 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10622 /* Prevent any further action */ 10623 if (ipif == NULL) { 10624 return (ENOBUFS); 10625 } else if (!exists) { 10626 /* We created the ipif now and as writer */ 10627 ipif_refrele(ipif); 10628 return (0); 10629 } else { 10630 ill = ipif->ipif_ill; 10631 ill_refhold(ill); 10632 ipif_refrele(ipif); 10633 } 10634 } else { 10635 /* Look for a colon in the name. */ 10636 endp = &name[namelen]; 10637 for (cp = endp; --cp > name; ) { 10638 if (*cp == IPIF_SEPARATOR_CHAR) { 10639 found_sep = B_TRUE; 10640 /* 10641 * Reject any non-decimal aliases for plumbing 10642 * of logical interfaces. Aliases with leading 10643 * zeroes are also rejected as they introduce 10644 * ambiguity in the naming of the interfaces. 10645 * Comparing with "0" takes care of all such 10646 * cases. 10647 */ 10648 if ((strncmp("0", cp+1, 1)) == 0) 10649 return (EINVAL); 10650 10651 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10652 id <= 0 || *endp != '\0') { 10653 return (EINVAL); 10654 } 10655 *cp = '\0'; 10656 break; 10657 } 10658 } 10659 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10660 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10661 if (found_sep) 10662 *cp = IPIF_SEPARATOR_CHAR; 10663 if (ill == NULL) 10664 return (err); 10665 } 10666 10667 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10668 B_TRUE); 10669 10670 /* 10671 * Release the refhold due to the lookup, now that we are excl 10672 * or we are just returning 10673 */ 10674 ill_refrele(ill); 10675 10676 if (ipsq == NULL) 10677 return (EINPROGRESS); 10678 10679 /* 10680 * If the interface is failed, inactive or offlined, look for a working 10681 * interface in the ill group and create the ipif there. If we can't 10682 * find a good interface, create the ipif anyway so that in.mpathd can 10683 * move it to the first repaired interface. 10684 */ 10685 if ((ill->ill_phyint->phyint_flags & 10686 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10687 ill->ill_phyint->phyint_groupname_len != 0) { 10688 phyint_t *phyi; 10689 char *groupname = ill->ill_phyint->phyint_groupname; 10690 10691 /* 10692 * We're looking for a working interface, but it doesn't matter 10693 * if it's up or down; so instead of following the group lists, 10694 * we look at each physical interface and compare the groupname. 10695 * We're only interested in interfaces with IPv4 (resp. IPv6) 10696 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10697 * Otherwise we create the ipif on the failed interface. 10698 */ 10699 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10700 phyi = avl_first(&ipst->ips_phyint_g_list-> 10701 phyint_list_avl_by_index); 10702 for (; phyi != NULL; 10703 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10704 phyint_list_avl_by_index, 10705 phyi, AVL_AFTER)) { 10706 if (phyi->phyint_groupname_len == 0) 10707 continue; 10708 ASSERT(phyi->phyint_groupname != NULL); 10709 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10710 !(phyi->phyint_flags & 10711 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10712 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10713 (phyi->phyint_illv4 != NULL))) { 10714 break; 10715 } 10716 } 10717 rw_exit(&ipst->ips_ill_g_lock); 10718 10719 if (phyi != NULL) { 10720 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10721 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10722 phyi->phyint_illv4); 10723 } 10724 } 10725 10726 /* 10727 * We are now exclusive on the ipsq, so an ill move will be serialized 10728 * before or after us. 10729 */ 10730 ASSERT(IAM_WRITER_ILL(ill)); 10731 ASSERT(ill->ill_move_in_progress == B_FALSE); 10732 10733 if (found_sep && orig_ifindex == 0) { 10734 /* Now see if there is an IPIF with this unit number. */ 10735 for (ipif = ill->ill_ipif; ipif != NULL; 10736 ipif = ipif->ipif_next) { 10737 if (ipif->ipif_id == id) { 10738 err = EEXIST; 10739 goto done; 10740 } 10741 } 10742 } 10743 10744 /* 10745 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10746 * of lo0. We never come here when we plumb lo0:0. It 10747 * happens in ipif_lookup_on_name. 10748 * The specified unit number is ignored when we create the ipif on a 10749 * different interface. However, we save it in ipif_orig_ipifid below so 10750 * that the ipif fails back to the right position. 10751 */ 10752 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10753 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10754 err = ENOBUFS; 10755 goto done; 10756 } 10757 10758 /* Return created name with ioctl */ 10759 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10760 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10761 ip1dbg(("created %s\n", lifr->lifr_name)); 10762 10763 /* Set address */ 10764 sin = (sin_t *)&lifr->lifr_addr; 10765 if (sin->sin_family != AF_UNSPEC) { 10766 err = ip_sioctl_addr(ipif, sin, q, mp, 10767 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10768 } 10769 10770 /* Set ifindex and unit number for failback */ 10771 if (err == 0 && orig_ifindex != 0) { 10772 ipif->ipif_orig_ifindex = orig_ifindex; 10773 if (found_sep) { 10774 ipif->ipif_orig_ipifid = id; 10775 } 10776 } 10777 10778 done: 10779 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10780 return (err); 10781 } 10782 10783 /* 10784 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10785 * interface) delete it based on the IP address (on this physical interface). 10786 * Otherwise delete it based on the ipif_id. 10787 * Also, special handling to allow a removeif of lo0. 10788 */ 10789 /* ARGSUSED */ 10790 int 10791 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10792 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10793 { 10794 conn_t *connp; 10795 ill_t *ill = ipif->ipif_ill; 10796 boolean_t success; 10797 ip_stack_t *ipst; 10798 10799 ipst = CONNQ_TO_IPST(q); 10800 10801 ASSERT(q->q_next == NULL); 10802 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10803 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10804 ASSERT(IAM_WRITER_IPIF(ipif)); 10805 10806 connp = Q_TO_CONN(q); 10807 /* 10808 * Special case for unplumbing lo0 (the loopback physical interface). 10809 * If unplumbing lo0, the incoming address structure has been 10810 * initialized to all zeros. When unplumbing lo0, all its logical 10811 * interfaces must be removed too. 10812 * 10813 * Note that this interface may be called to remove a specific 10814 * loopback logical interface (eg, lo0:1). But in that case 10815 * ipif->ipif_id != 0 so that the code path for that case is the 10816 * same as any other interface (meaning it skips the code directly 10817 * below). 10818 */ 10819 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10820 if (sin->sin_family == AF_UNSPEC && 10821 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10822 /* 10823 * Mark it condemned. No new ref. will be made to ill. 10824 */ 10825 mutex_enter(&ill->ill_lock); 10826 ill->ill_state_flags |= ILL_CONDEMNED; 10827 for (ipif = ill->ill_ipif; ipif != NULL; 10828 ipif = ipif->ipif_next) { 10829 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10830 } 10831 mutex_exit(&ill->ill_lock); 10832 10833 ipif = ill->ill_ipif; 10834 /* unplumb the loopback interface */ 10835 ill_delete(ill); 10836 mutex_enter(&connp->conn_lock); 10837 mutex_enter(&ill->ill_lock); 10838 ASSERT(ill->ill_group == NULL); 10839 10840 /* Are any references to this ill active */ 10841 if (ill_is_quiescent(ill)) { 10842 mutex_exit(&ill->ill_lock); 10843 mutex_exit(&connp->conn_lock); 10844 ill_delete_tail(ill); 10845 mi_free(ill); 10846 return (0); 10847 } 10848 success = ipsq_pending_mp_add(connp, ipif, 10849 CONNP_TO_WQ(connp), mp, ILL_FREE); 10850 mutex_exit(&connp->conn_lock); 10851 mutex_exit(&ill->ill_lock); 10852 if (success) 10853 return (EINPROGRESS); 10854 else 10855 return (EINTR); 10856 } 10857 } 10858 10859 /* 10860 * We are exclusive on the ipsq, so an ill move will be serialized 10861 * before or after us. 10862 */ 10863 ASSERT(ill->ill_move_in_progress == B_FALSE); 10864 10865 if (ipif->ipif_id == 0) { 10866 /* Find based on address */ 10867 if (ipif->ipif_isv6) { 10868 sin6_t *sin6; 10869 10870 if (sin->sin_family != AF_INET6) 10871 return (EAFNOSUPPORT); 10872 10873 sin6 = (sin6_t *)sin; 10874 /* We are a writer, so we should be able to lookup */ 10875 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10876 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10877 if (ipif == NULL) { 10878 /* 10879 * Maybe the address in on another interface in 10880 * the same IPMP group? We check this below. 10881 */ 10882 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10883 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10884 ipst); 10885 } 10886 } else { 10887 ipaddr_t addr; 10888 10889 if (sin->sin_family != AF_INET) 10890 return (EAFNOSUPPORT); 10891 10892 addr = sin->sin_addr.s_addr; 10893 /* We are a writer, so we should be able to lookup */ 10894 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10895 NULL, NULL, NULL, ipst); 10896 if (ipif == NULL) { 10897 /* 10898 * Maybe the address in on another interface in 10899 * the same IPMP group? We check this below. 10900 */ 10901 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10902 NULL, NULL, NULL, NULL, ipst); 10903 } 10904 } 10905 if (ipif == NULL) { 10906 return (EADDRNOTAVAIL); 10907 } 10908 /* 10909 * When the address to be removed is hosted on a different 10910 * interface, we check if the interface is in the same IPMP 10911 * group as the specified one; if so we proceed with the 10912 * removal. 10913 * ill->ill_group is NULL when the ill is down, so we have to 10914 * compare the group names instead. 10915 */ 10916 if (ipif->ipif_ill != ill && 10917 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10918 ill->ill_phyint->phyint_groupname_len == 0 || 10919 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10920 ill->ill_phyint->phyint_groupname) != 0)) { 10921 ipif_refrele(ipif); 10922 return (EADDRNOTAVAIL); 10923 } 10924 10925 /* This is a writer */ 10926 ipif_refrele(ipif); 10927 } 10928 10929 /* 10930 * Can not delete instance zero since it is tied to the ill. 10931 */ 10932 if (ipif->ipif_id == 0) 10933 return (EBUSY); 10934 10935 mutex_enter(&ill->ill_lock); 10936 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10937 mutex_exit(&ill->ill_lock); 10938 10939 ipif_free(ipif); 10940 10941 mutex_enter(&connp->conn_lock); 10942 mutex_enter(&ill->ill_lock); 10943 10944 /* Are any references to this ipif active */ 10945 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10946 mutex_exit(&ill->ill_lock); 10947 mutex_exit(&connp->conn_lock); 10948 ipif_non_duplicate(ipif); 10949 ipif_down_tail(ipif); 10950 ipif_free_tail(ipif); 10951 return (0); 10952 } 10953 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10954 IPIF_FREE); 10955 mutex_exit(&ill->ill_lock); 10956 mutex_exit(&connp->conn_lock); 10957 if (success) 10958 return (EINPROGRESS); 10959 else 10960 return (EINTR); 10961 } 10962 10963 /* 10964 * Restart the removeif ioctl. The refcnt has gone down to 0. 10965 * The ipif is already condemned. So can't find it thru lookups. 10966 */ 10967 /* ARGSUSED */ 10968 int 10969 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10970 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10971 { 10972 ill_t *ill = ipif->ipif_ill; 10973 10974 ASSERT(IAM_WRITER_IPIF(ipif)); 10975 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10976 10977 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10978 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10979 10980 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10981 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10982 ill_delete_tail(ill); 10983 mi_free(ill); 10984 return (0); 10985 } 10986 10987 ipif_non_duplicate(ipif); 10988 ipif_down_tail(ipif); 10989 ipif_free_tail(ipif); 10990 10991 ILL_UNMARK_CHANGING(ill); 10992 return (0); 10993 } 10994 10995 /* 10996 * Set the local interface address. 10997 * Allow an address of all zero when the interface is down. 10998 */ 10999 /* ARGSUSED */ 11000 int 11001 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11002 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11003 { 11004 int err = 0; 11005 in6_addr_t v6addr; 11006 boolean_t need_up = B_FALSE; 11007 11008 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11009 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11010 11011 ASSERT(IAM_WRITER_IPIF(ipif)); 11012 11013 if (ipif->ipif_isv6) { 11014 sin6_t *sin6; 11015 ill_t *ill; 11016 phyint_t *phyi; 11017 11018 if (sin->sin_family != AF_INET6) 11019 return (EAFNOSUPPORT); 11020 11021 sin6 = (sin6_t *)sin; 11022 v6addr = sin6->sin6_addr; 11023 ill = ipif->ipif_ill; 11024 phyi = ill->ill_phyint; 11025 11026 /* 11027 * Enforce that true multicast interfaces have a link-local 11028 * address for logical unit 0. 11029 */ 11030 if (ipif->ipif_id == 0 && 11031 (ill->ill_flags & ILLF_MULTICAST) && 11032 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11033 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11034 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11035 return (EADDRNOTAVAIL); 11036 } 11037 11038 /* 11039 * up interfaces shouldn't have the unspecified address 11040 * unless they also have the IPIF_NOLOCAL flags set and 11041 * have a subnet assigned. 11042 */ 11043 if ((ipif->ipif_flags & IPIF_UP) && 11044 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11045 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11046 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11047 return (EADDRNOTAVAIL); 11048 } 11049 11050 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11051 return (EADDRNOTAVAIL); 11052 } else { 11053 ipaddr_t addr; 11054 11055 if (sin->sin_family != AF_INET) 11056 return (EAFNOSUPPORT); 11057 11058 addr = sin->sin_addr.s_addr; 11059 11060 /* Allow 0 as the local address. */ 11061 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11062 return (EADDRNOTAVAIL); 11063 11064 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11065 } 11066 11067 11068 /* 11069 * Even if there is no change we redo things just to rerun 11070 * ipif_set_default. 11071 */ 11072 if (ipif->ipif_flags & IPIF_UP) { 11073 /* 11074 * Setting a new local address, make sure 11075 * we have net and subnet bcast ire's for 11076 * the old address if we need them. 11077 */ 11078 if (!ipif->ipif_isv6) 11079 ipif_check_bcast_ires(ipif); 11080 /* 11081 * If the interface is already marked up, 11082 * we call ipif_down which will take care 11083 * of ditching any IREs that have been set 11084 * up based on the old interface address. 11085 */ 11086 err = ipif_logical_down(ipif, q, mp); 11087 if (err == EINPROGRESS) 11088 return (err); 11089 ipif_down_tail(ipif); 11090 need_up = 1; 11091 } 11092 11093 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11094 return (err); 11095 } 11096 11097 int 11098 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11099 boolean_t need_up) 11100 { 11101 in6_addr_t v6addr; 11102 in6_addr_t ov6addr; 11103 ipaddr_t addr; 11104 sin6_t *sin6; 11105 int sinlen; 11106 int err = 0; 11107 ill_t *ill = ipif->ipif_ill; 11108 boolean_t need_dl_down; 11109 boolean_t need_arp_down; 11110 struct iocblk *iocp; 11111 11112 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11113 11114 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11115 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11116 ASSERT(IAM_WRITER_IPIF(ipif)); 11117 11118 /* Must cancel any pending timer before taking the ill_lock */ 11119 if (ipif->ipif_recovery_id != 0) 11120 (void) untimeout(ipif->ipif_recovery_id); 11121 ipif->ipif_recovery_id = 0; 11122 11123 if (ipif->ipif_isv6) { 11124 sin6 = (sin6_t *)sin; 11125 v6addr = sin6->sin6_addr; 11126 sinlen = sizeof (struct sockaddr_in6); 11127 } else { 11128 addr = sin->sin_addr.s_addr; 11129 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11130 sinlen = sizeof (struct sockaddr_in); 11131 } 11132 mutex_enter(&ill->ill_lock); 11133 ov6addr = ipif->ipif_v6lcl_addr; 11134 ipif->ipif_v6lcl_addr = v6addr; 11135 sctp_update_ipif_addr(ipif, ov6addr); 11136 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11137 ipif->ipif_v6src_addr = ipv6_all_zeros; 11138 } else { 11139 ipif->ipif_v6src_addr = v6addr; 11140 } 11141 ipif->ipif_addr_ready = 0; 11142 11143 /* 11144 * If the interface was previously marked as a duplicate, then since 11145 * we've now got a "new" address, it should no longer be considered a 11146 * duplicate -- even if the "new" address is the same as the old one. 11147 * Note that if all ipifs are down, we may have a pending ARP down 11148 * event to handle. This is because we want to recover from duplicates 11149 * and thus delay tearing down ARP until the duplicates have been 11150 * removed or disabled. 11151 */ 11152 need_dl_down = need_arp_down = B_FALSE; 11153 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11154 need_arp_down = !need_up; 11155 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11156 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11157 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11158 need_dl_down = B_TRUE; 11159 } 11160 } 11161 11162 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11163 !ill->ill_is_6to4tun) { 11164 queue_t *wqp = ill->ill_wq; 11165 11166 /* 11167 * The local address of this interface is a 6to4 address, 11168 * check if this interface is in fact a 6to4 tunnel or just 11169 * an interface configured with a 6to4 address. We are only 11170 * interested in the former. 11171 */ 11172 if (wqp != NULL) { 11173 while ((wqp->q_next != NULL) && 11174 (wqp->q_next->q_qinfo != NULL) && 11175 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11176 11177 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11178 == TUN6TO4_MODID) { 11179 /* set for use in IP */ 11180 ill->ill_is_6to4tun = 1; 11181 break; 11182 } 11183 wqp = wqp->q_next; 11184 } 11185 } 11186 } 11187 11188 ipif_set_default(ipif); 11189 11190 /* 11191 * When publishing an interface address change event, we only notify 11192 * the event listeners of the new address. It is assumed that if they 11193 * actively care about the addresses assigned that they will have 11194 * already discovered the previous address assigned (if there was one.) 11195 * 11196 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11197 */ 11198 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11199 hook_nic_event_t *info; 11200 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11201 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11202 "attached for %s\n", info->hne_event, 11203 ill->ill_name)); 11204 if (info->hne_data != NULL) 11205 kmem_free(info->hne_data, info->hne_datalen); 11206 kmem_free(info, sizeof (hook_nic_event_t)); 11207 } 11208 11209 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11210 if (info != NULL) { 11211 ip_stack_t *ipst = ill->ill_ipst; 11212 11213 info->hne_nic = 11214 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11215 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11216 info->hne_event = NE_ADDRESS_CHANGE; 11217 info->hne_family = ipif->ipif_isv6 ? 11218 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11219 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11220 if (info->hne_data != NULL) { 11221 info->hne_datalen = sinlen; 11222 bcopy(sin, info->hne_data, sinlen); 11223 } else { 11224 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11225 "address information for ADDRESS_CHANGE nic" 11226 " event of %s (ENOMEM)\n", 11227 ipif->ipif_ill->ill_name)); 11228 kmem_free(info, sizeof (hook_nic_event_t)); 11229 } 11230 } else 11231 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11232 "ADDRESS_CHANGE nic event information for %s " 11233 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11234 11235 ipif->ipif_ill->ill_nic_event_info = info; 11236 } 11237 11238 mutex_exit(&ill->ill_lock); 11239 11240 if (need_up) { 11241 /* 11242 * Now bring the interface back up. If this 11243 * is the only IPIF for the ILL, ipif_up 11244 * will have to re-bind to the device, so 11245 * we may get back EINPROGRESS, in which 11246 * case, this IOCTL will get completed in 11247 * ip_rput_dlpi when we see the DL_BIND_ACK. 11248 */ 11249 err = ipif_up(ipif, q, mp); 11250 } 11251 11252 if (need_dl_down) 11253 ill_dl_down(ill); 11254 if (need_arp_down) 11255 ipif_arp_down(ipif); 11256 11257 return (err); 11258 } 11259 11260 11261 /* 11262 * Restart entry point to restart the address set operation after the 11263 * refcounts have dropped to zero. 11264 */ 11265 /* ARGSUSED */ 11266 int 11267 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11268 ip_ioctl_cmd_t *ipip, void *ifreq) 11269 { 11270 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11271 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11272 ASSERT(IAM_WRITER_IPIF(ipif)); 11273 ipif_down_tail(ipif); 11274 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11275 } 11276 11277 /* ARGSUSED */ 11278 int 11279 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11280 ip_ioctl_cmd_t *ipip, void *if_req) 11281 { 11282 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11283 struct lifreq *lifr = (struct lifreq *)if_req; 11284 11285 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11286 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11287 /* 11288 * The net mask and address can't change since we have a 11289 * reference to the ipif. So no lock is necessary. 11290 */ 11291 if (ipif->ipif_isv6) { 11292 *sin6 = sin6_null; 11293 sin6->sin6_family = AF_INET6; 11294 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11295 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11296 lifr->lifr_addrlen = 11297 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11298 } else { 11299 *sin = sin_null; 11300 sin->sin_family = AF_INET; 11301 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11302 if (ipip->ipi_cmd_type == LIF_CMD) { 11303 lifr->lifr_addrlen = 11304 ip_mask_to_plen(ipif->ipif_net_mask); 11305 } 11306 } 11307 return (0); 11308 } 11309 11310 /* 11311 * Set the destination address for a pt-pt interface. 11312 */ 11313 /* ARGSUSED */ 11314 int 11315 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11316 ip_ioctl_cmd_t *ipip, void *if_req) 11317 { 11318 int err = 0; 11319 in6_addr_t v6addr; 11320 boolean_t need_up = B_FALSE; 11321 11322 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11323 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11324 ASSERT(IAM_WRITER_IPIF(ipif)); 11325 11326 if (ipif->ipif_isv6) { 11327 sin6_t *sin6; 11328 11329 if (sin->sin_family != AF_INET6) 11330 return (EAFNOSUPPORT); 11331 11332 sin6 = (sin6_t *)sin; 11333 v6addr = sin6->sin6_addr; 11334 11335 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11336 return (EADDRNOTAVAIL); 11337 } else { 11338 ipaddr_t addr; 11339 11340 if (sin->sin_family != AF_INET) 11341 return (EAFNOSUPPORT); 11342 11343 addr = sin->sin_addr.s_addr; 11344 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11345 return (EADDRNOTAVAIL); 11346 11347 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11348 } 11349 11350 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11351 return (0); /* No change */ 11352 11353 if (ipif->ipif_flags & IPIF_UP) { 11354 /* 11355 * If the interface is already marked up, 11356 * we call ipif_down which will take care 11357 * of ditching any IREs that have been set 11358 * up based on the old pp dst address. 11359 */ 11360 err = ipif_logical_down(ipif, q, mp); 11361 if (err == EINPROGRESS) 11362 return (err); 11363 ipif_down_tail(ipif); 11364 need_up = B_TRUE; 11365 } 11366 /* 11367 * could return EINPROGRESS. If so ioctl will complete in 11368 * ip_rput_dlpi_writer 11369 */ 11370 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11371 return (err); 11372 } 11373 11374 static int 11375 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11376 boolean_t need_up) 11377 { 11378 in6_addr_t v6addr; 11379 ill_t *ill = ipif->ipif_ill; 11380 int err = 0; 11381 boolean_t need_dl_down; 11382 boolean_t need_arp_down; 11383 11384 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11385 ipif->ipif_id, (void *)ipif)); 11386 11387 /* Must cancel any pending timer before taking the ill_lock */ 11388 if (ipif->ipif_recovery_id != 0) 11389 (void) untimeout(ipif->ipif_recovery_id); 11390 ipif->ipif_recovery_id = 0; 11391 11392 if (ipif->ipif_isv6) { 11393 sin6_t *sin6; 11394 11395 sin6 = (sin6_t *)sin; 11396 v6addr = sin6->sin6_addr; 11397 } else { 11398 ipaddr_t addr; 11399 11400 addr = sin->sin_addr.s_addr; 11401 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11402 } 11403 mutex_enter(&ill->ill_lock); 11404 /* Set point to point destination address. */ 11405 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11406 /* 11407 * Allow this as a means of creating logical 11408 * pt-pt interfaces on top of e.g. an Ethernet. 11409 * XXX Undocumented HACK for testing. 11410 * pt-pt interfaces are created with NUD disabled. 11411 */ 11412 ipif->ipif_flags |= IPIF_POINTOPOINT; 11413 ipif->ipif_flags &= ~IPIF_BROADCAST; 11414 if (ipif->ipif_isv6) 11415 ill->ill_flags |= ILLF_NONUD; 11416 } 11417 11418 /* 11419 * If the interface was previously marked as a duplicate, then since 11420 * we've now got a "new" address, it should no longer be considered a 11421 * duplicate -- even if the "new" address is the same as the old one. 11422 * Note that if all ipifs are down, we may have a pending ARP down 11423 * event to handle. 11424 */ 11425 need_dl_down = need_arp_down = B_FALSE; 11426 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11427 need_arp_down = !need_up; 11428 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11429 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11430 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11431 need_dl_down = B_TRUE; 11432 } 11433 } 11434 11435 /* Set the new address. */ 11436 ipif->ipif_v6pp_dst_addr = v6addr; 11437 /* Make sure subnet tracks pp_dst */ 11438 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11439 mutex_exit(&ill->ill_lock); 11440 11441 if (need_up) { 11442 /* 11443 * Now bring the interface back up. If this 11444 * is the only IPIF for the ILL, ipif_up 11445 * will have to re-bind to the device, so 11446 * we may get back EINPROGRESS, in which 11447 * case, this IOCTL will get completed in 11448 * ip_rput_dlpi when we see the DL_BIND_ACK. 11449 */ 11450 err = ipif_up(ipif, q, mp); 11451 } 11452 11453 if (need_dl_down) 11454 ill_dl_down(ill); 11455 11456 if (need_arp_down) 11457 ipif_arp_down(ipif); 11458 return (err); 11459 } 11460 11461 /* 11462 * Restart entry point to restart the dstaddress set operation after the 11463 * refcounts have dropped to zero. 11464 */ 11465 /* ARGSUSED */ 11466 int 11467 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11468 ip_ioctl_cmd_t *ipip, void *ifreq) 11469 { 11470 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11471 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11472 ipif_down_tail(ipif); 11473 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11474 } 11475 11476 /* ARGSUSED */ 11477 int 11478 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11479 ip_ioctl_cmd_t *ipip, void *if_req) 11480 { 11481 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11482 11483 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11484 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11485 /* 11486 * Get point to point destination address. The addresses can't 11487 * change since we hold a reference to the ipif. 11488 */ 11489 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11490 return (EADDRNOTAVAIL); 11491 11492 if (ipif->ipif_isv6) { 11493 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11494 *sin6 = sin6_null; 11495 sin6->sin6_family = AF_INET6; 11496 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11497 } else { 11498 *sin = sin_null; 11499 sin->sin_family = AF_INET; 11500 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11501 } 11502 return (0); 11503 } 11504 11505 /* 11506 * part of ipmp, make this func return the active/inactive state and 11507 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11508 */ 11509 /* 11510 * This function either sets or clears the IFF_INACTIVE flag. 11511 * 11512 * As long as there are some addresses or multicast memberships on the 11513 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11514 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11515 * will be used for outbound packets. 11516 * 11517 * Caller needs to verify the validity of setting IFF_INACTIVE. 11518 */ 11519 static void 11520 phyint_inactive(phyint_t *phyi) 11521 { 11522 ill_t *ill_v4; 11523 ill_t *ill_v6; 11524 ipif_t *ipif; 11525 ilm_t *ilm; 11526 11527 ill_v4 = phyi->phyint_illv4; 11528 ill_v6 = phyi->phyint_illv6; 11529 11530 /* 11531 * No need for a lock while traversing the list since iam 11532 * a writer 11533 */ 11534 if (ill_v4 != NULL) { 11535 ASSERT(IAM_WRITER_ILL(ill_v4)); 11536 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11537 ipif = ipif->ipif_next) { 11538 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11539 mutex_enter(&phyi->phyint_lock); 11540 phyi->phyint_flags &= ~PHYI_INACTIVE; 11541 mutex_exit(&phyi->phyint_lock); 11542 return; 11543 } 11544 } 11545 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11546 ilm = ilm->ilm_next) { 11547 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11548 mutex_enter(&phyi->phyint_lock); 11549 phyi->phyint_flags &= ~PHYI_INACTIVE; 11550 mutex_exit(&phyi->phyint_lock); 11551 return; 11552 } 11553 } 11554 } 11555 if (ill_v6 != NULL) { 11556 ill_v6 = phyi->phyint_illv6; 11557 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11558 ipif = ipif->ipif_next) { 11559 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11560 mutex_enter(&phyi->phyint_lock); 11561 phyi->phyint_flags &= ~PHYI_INACTIVE; 11562 mutex_exit(&phyi->phyint_lock); 11563 return; 11564 } 11565 } 11566 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11567 ilm = ilm->ilm_next) { 11568 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11569 mutex_enter(&phyi->phyint_lock); 11570 phyi->phyint_flags &= ~PHYI_INACTIVE; 11571 mutex_exit(&phyi->phyint_lock); 11572 return; 11573 } 11574 } 11575 } 11576 mutex_enter(&phyi->phyint_lock); 11577 phyi->phyint_flags |= PHYI_INACTIVE; 11578 mutex_exit(&phyi->phyint_lock); 11579 } 11580 11581 /* 11582 * This function is called only when the phyint flags change. Currently 11583 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11584 * that we can select a good ill. 11585 */ 11586 static void 11587 ip_redo_nomination(phyint_t *phyi) 11588 { 11589 ill_t *ill_v4; 11590 11591 ill_v4 = phyi->phyint_illv4; 11592 11593 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11594 ASSERT(IAM_WRITER_ILL(ill_v4)); 11595 if (ill_v4->ill_group->illgrp_ill_count > 1) 11596 ill_nominate_bcast_rcv(ill_v4->ill_group); 11597 } 11598 } 11599 11600 /* 11601 * Heuristic to check if ill is INACTIVE. 11602 * Checks if ill has an ipif with an usable ip address. 11603 * 11604 * Return values: 11605 * B_TRUE - ill is INACTIVE; has no usable ipif 11606 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11607 */ 11608 static boolean_t 11609 ill_is_inactive(ill_t *ill) 11610 { 11611 ipif_t *ipif; 11612 11613 /* Check whether it is in an IPMP group */ 11614 if (ill->ill_phyint->phyint_groupname == NULL) 11615 return (B_FALSE); 11616 11617 if (ill->ill_ipif_up_count == 0) 11618 return (B_TRUE); 11619 11620 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11621 uint64_t flags = ipif->ipif_flags; 11622 11623 /* 11624 * This ipif is usable if it is IPIF_UP and not a 11625 * dedicated test address. A dedicated test address 11626 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11627 * (note in particular that V6 test addresses are 11628 * link-local data addresses and thus are marked 11629 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11630 */ 11631 if ((flags & IPIF_UP) && 11632 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11633 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11634 return (B_FALSE); 11635 } 11636 return (B_TRUE); 11637 } 11638 11639 /* 11640 * Set interface flags. 11641 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11642 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11643 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11644 * 11645 * NOTE : We really don't enforce that ipif_id zero should be used 11646 * for setting any flags other than IFF_LOGINT_FLAGS. This 11647 * is because applications generally does SICGLIFFLAGS and 11648 * ORs in the new flags (that affects the logical) and does a 11649 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11650 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11651 * flags that will be turned on is correct with respect to 11652 * ipif_id 0. For backward compatibility reasons, it is not done. 11653 */ 11654 /* ARGSUSED */ 11655 int 11656 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11657 ip_ioctl_cmd_t *ipip, void *if_req) 11658 { 11659 uint64_t turn_on; 11660 uint64_t turn_off; 11661 int err; 11662 boolean_t need_up = B_FALSE; 11663 phyint_t *phyi; 11664 ill_t *ill; 11665 uint64_t intf_flags; 11666 boolean_t phyint_flags_modified = B_FALSE; 11667 uint64_t flags; 11668 struct ifreq *ifr; 11669 struct lifreq *lifr; 11670 boolean_t set_linklocal = B_FALSE; 11671 boolean_t zero_source = B_FALSE; 11672 ip_stack_t *ipst; 11673 11674 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11675 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11676 11677 ASSERT(IAM_WRITER_IPIF(ipif)); 11678 11679 ill = ipif->ipif_ill; 11680 phyi = ill->ill_phyint; 11681 ipst = ill->ill_ipst; 11682 11683 if (ipip->ipi_cmd_type == IF_CMD) { 11684 ifr = (struct ifreq *)if_req; 11685 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11686 } else { 11687 lifr = (struct lifreq *)if_req; 11688 flags = lifr->lifr_flags; 11689 } 11690 11691 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11692 11693 /* 11694 * Has the flags been set correctly till now ? 11695 */ 11696 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11697 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11698 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11699 /* 11700 * Compare the new flags to the old, and partition 11701 * into those coming on and those going off. 11702 * For the 16 bit command keep the bits above bit 16 unchanged. 11703 */ 11704 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11705 flags |= intf_flags & ~0xFFFF; 11706 11707 /* 11708 * First check which bits will change and then which will 11709 * go on and off 11710 */ 11711 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11712 if (!turn_on) 11713 return (0); /* No change */ 11714 11715 turn_off = intf_flags & turn_on; 11716 turn_on ^= turn_off; 11717 err = 0; 11718 11719 /* 11720 * Don't allow any bits belonging to the logical interface 11721 * to be set or cleared on the replacement ipif that was 11722 * created temporarily during a MOVE. 11723 */ 11724 if (ipif->ipif_replace_zero && 11725 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11726 return (EINVAL); 11727 } 11728 11729 /* 11730 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11731 * IPv6 interfaces. 11732 */ 11733 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11734 return (EINVAL); 11735 11736 /* 11737 * cannot turn off IFF_NOXMIT on VNI interfaces. 11738 */ 11739 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11740 return (EINVAL); 11741 11742 /* 11743 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11744 * interfaces. It makes no sense in that context. 11745 */ 11746 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11747 return (EINVAL); 11748 11749 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11750 zero_source = B_TRUE; 11751 11752 /* 11753 * For IPv6 ipif_id 0, don't allow the interface to be up without 11754 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11755 * If the link local address isn't set, and can be set, it will get 11756 * set later on in this function. 11757 */ 11758 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11759 (flags & IFF_UP) && !zero_source && 11760 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11761 if (ipif_cant_setlinklocal(ipif)) 11762 return (EINVAL); 11763 set_linklocal = B_TRUE; 11764 } 11765 11766 /* 11767 * ILL cannot be part of a usesrc group and and IPMP group at the 11768 * same time. No need to grab ill_g_usesrc_lock here, see 11769 * synchronization notes in ip.c 11770 */ 11771 if (turn_on & PHYI_STANDBY && 11772 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11773 return (EINVAL); 11774 } 11775 11776 /* 11777 * If we modify physical interface flags, we'll potentially need to 11778 * send up two routing socket messages for the changes (one for the 11779 * IPv4 ill, and another for the IPv6 ill). Note that here. 11780 */ 11781 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11782 phyint_flags_modified = B_TRUE; 11783 11784 /* 11785 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11786 * we need to flush the IRE_CACHES belonging to this ill. 11787 * We handle this case here without doing the DOWN/UP dance 11788 * like it is done for other flags. If some other flags are 11789 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11790 * below will handle it by bringing it down and then 11791 * bringing it UP. 11792 */ 11793 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11794 ill_t *ill_v4, *ill_v6; 11795 11796 ill_v4 = phyi->phyint_illv4; 11797 ill_v6 = phyi->phyint_illv6; 11798 11799 /* 11800 * First set the INACTIVE flag if needed. Then delete the ires. 11801 * ire_add will atomically prevent creating new IRE_CACHEs 11802 * unless hidden flag is set. 11803 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11804 */ 11805 if ((turn_on & PHYI_FAILED) && 11806 ((intf_flags & PHYI_STANDBY) || 11807 !ipst->ips_ipmp_enable_failback)) { 11808 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11809 phyi->phyint_flags &= ~PHYI_INACTIVE; 11810 } 11811 if ((turn_off & PHYI_FAILED) && 11812 ((intf_flags & PHYI_STANDBY) || 11813 (!ipst->ips_ipmp_enable_failback && 11814 ill_is_inactive(ill)))) { 11815 phyint_inactive(phyi); 11816 } 11817 11818 if (turn_on & PHYI_STANDBY) { 11819 /* 11820 * We implicitly set INACTIVE only when STANDBY is set. 11821 * INACTIVE is also set on non-STANDBY phyint when user 11822 * disables FAILBACK using configuration file. 11823 * Do not allow STANDBY to be set on such INACTIVE 11824 * phyint 11825 */ 11826 if (phyi->phyint_flags & PHYI_INACTIVE) 11827 return (EINVAL); 11828 if (!(phyi->phyint_flags & PHYI_FAILED)) 11829 phyint_inactive(phyi); 11830 } 11831 if (turn_off & PHYI_STANDBY) { 11832 if (ipst->ips_ipmp_enable_failback) { 11833 /* 11834 * Reset PHYI_INACTIVE. 11835 */ 11836 phyi->phyint_flags &= ~PHYI_INACTIVE; 11837 } else if (ill_is_inactive(ill) && 11838 !(phyi->phyint_flags & PHYI_FAILED)) { 11839 /* 11840 * Need to set INACTIVE, when user sets 11841 * STANDBY on a non-STANDBY phyint and 11842 * later resets STANDBY 11843 */ 11844 phyint_inactive(phyi); 11845 } 11846 } 11847 /* 11848 * We should always send up a message so that the 11849 * daemons come to know of it. Note that the zeroth 11850 * interface can be down and the check below for IPIF_UP 11851 * will not make sense as we are actually setting 11852 * a phyint flag here. We assume that the ipif used 11853 * is always the zeroth ipif. (ip_rts_ifmsg does not 11854 * send up any message for non-zero ipifs). 11855 */ 11856 phyint_flags_modified = B_TRUE; 11857 11858 if (ill_v4 != NULL) { 11859 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11860 IRE_CACHE, ill_stq_cache_delete, 11861 (char *)ill_v4, ill_v4); 11862 illgrp_reset_schednext(ill_v4); 11863 } 11864 if (ill_v6 != NULL) { 11865 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11866 IRE_CACHE, ill_stq_cache_delete, 11867 (char *)ill_v6, ill_v6); 11868 illgrp_reset_schednext(ill_v6); 11869 } 11870 } 11871 11872 /* 11873 * If ILLF_ROUTER changes, we need to change the ip forwarding 11874 * status of the interface and, if the interface is part of an IPMP 11875 * group, all other interfaces that are part of the same IPMP 11876 * group. 11877 */ 11878 if ((turn_on | turn_off) & ILLF_ROUTER) 11879 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11880 11881 /* 11882 * If the interface is not UP and we are not going to 11883 * bring it UP, record the flags and return. When the 11884 * interface comes UP later, the right actions will be 11885 * taken. 11886 */ 11887 if (!(ipif->ipif_flags & IPIF_UP) && 11888 !(turn_on & IPIF_UP)) { 11889 /* Record new flags in their respective places. */ 11890 mutex_enter(&ill->ill_lock); 11891 mutex_enter(&ill->ill_phyint->phyint_lock); 11892 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11893 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11894 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11895 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11896 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11897 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11898 mutex_exit(&ill->ill_lock); 11899 mutex_exit(&ill->ill_phyint->phyint_lock); 11900 11901 /* 11902 * We do the broadcast and nomination here rather 11903 * than waiting for a FAILOVER/FAILBACK to happen. In 11904 * the case of FAILBACK from INACTIVE standby to the 11905 * interface that has been repaired, PHYI_FAILED has not 11906 * been cleared yet. If there are only two interfaces in 11907 * that group, all we have is a FAILED and INACTIVE 11908 * interface. If we do the nomination soon after a failback, 11909 * the broadcast nomination code would select the 11910 * INACTIVE interface for receiving broadcasts as FAILED is 11911 * not yet cleared. As we don't want STANDBY/INACTIVE to 11912 * receive broadcast packets, we need to redo nomination 11913 * when the FAILED is cleared here. Thus, in general we 11914 * always do the nomination here for FAILED, STANDBY 11915 * and OFFLINE. 11916 */ 11917 if (((turn_on | turn_off) & 11918 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11919 ip_redo_nomination(phyi); 11920 } 11921 if (phyint_flags_modified) { 11922 if (phyi->phyint_illv4 != NULL) { 11923 ip_rts_ifmsg(phyi->phyint_illv4-> 11924 ill_ipif); 11925 } 11926 if (phyi->phyint_illv6 != NULL) { 11927 ip_rts_ifmsg(phyi->phyint_illv6-> 11928 ill_ipif); 11929 } 11930 } 11931 return (0); 11932 } else if (set_linklocal || zero_source) { 11933 mutex_enter(&ill->ill_lock); 11934 if (set_linklocal) 11935 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11936 if (zero_source) 11937 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11938 mutex_exit(&ill->ill_lock); 11939 } 11940 11941 /* 11942 * Disallow IPv6 interfaces coming up that have the unspecified address, 11943 * or point-to-point interfaces with an unspecified destination. We do 11944 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11945 * have a subnet assigned, which is how in.ndpd currently manages its 11946 * onlink prefix list when no addresses are configured with those 11947 * prefixes. 11948 */ 11949 if (ipif->ipif_isv6 && 11950 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11951 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11952 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11953 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11954 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11955 return (EINVAL); 11956 } 11957 11958 /* 11959 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11960 * from being brought up. 11961 */ 11962 if (!ipif->ipif_isv6 && 11963 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11964 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11965 return (EINVAL); 11966 } 11967 11968 /* 11969 * The only flag changes that we currently take specific action on 11970 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11971 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11972 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11973 * the flags and bringing it back up again. 11974 */ 11975 if ((turn_on|turn_off) & 11976 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11977 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11978 /* 11979 * Taking this ipif down, make sure we have 11980 * valid net and subnet bcast ire's for other 11981 * logical interfaces, if we need them. 11982 */ 11983 if (!ipif->ipif_isv6) 11984 ipif_check_bcast_ires(ipif); 11985 11986 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11987 !(turn_off & IPIF_UP)) { 11988 need_up = B_TRUE; 11989 if (ipif->ipif_flags & IPIF_UP) 11990 ill->ill_logical_down = 1; 11991 turn_on &= ~IPIF_UP; 11992 } 11993 err = ipif_down(ipif, q, mp); 11994 ip1dbg(("ipif_down returns %d err ", err)); 11995 if (err == EINPROGRESS) 11996 return (err); 11997 ipif_down_tail(ipif); 11998 } 11999 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12000 } 12001 12002 static int 12003 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12004 boolean_t need_up) 12005 { 12006 ill_t *ill; 12007 phyint_t *phyi; 12008 uint64_t turn_on; 12009 uint64_t turn_off; 12010 uint64_t intf_flags; 12011 boolean_t phyint_flags_modified = B_FALSE; 12012 int err = 0; 12013 boolean_t set_linklocal = B_FALSE; 12014 boolean_t zero_source = B_FALSE; 12015 12016 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12017 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12018 12019 ASSERT(IAM_WRITER_IPIF(ipif)); 12020 12021 ill = ipif->ipif_ill; 12022 phyi = ill->ill_phyint; 12023 12024 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12025 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12026 12027 turn_off = intf_flags & turn_on; 12028 turn_on ^= turn_off; 12029 12030 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12031 phyint_flags_modified = B_TRUE; 12032 12033 /* 12034 * Now we change the flags. Track current value of 12035 * other flags in their respective places. 12036 */ 12037 mutex_enter(&ill->ill_lock); 12038 mutex_enter(&phyi->phyint_lock); 12039 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12040 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12041 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12042 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12043 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12044 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12045 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12046 set_linklocal = B_TRUE; 12047 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12048 } 12049 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12050 zero_source = B_TRUE; 12051 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12052 } 12053 mutex_exit(&ill->ill_lock); 12054 mutex_exit(&phyi->phyint_lock); 12055 12056 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12057 ip_redo_nomination(phyi); 12058 12059 if (set_linklocal) 12060 (void) ipif_setlinklocal(ipif); 12061 12062 if (zero_source) 12063 ipif->ipif_v6src_addr = ipv6_all_zeros; 12064 else 12065 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12066 12067 if (need_up) { 12068 /* 12069 * XXX ipif_up really does not know whether a phyint flags 12070 * was modified or not. So, it sends up information on 12071 * only one routing sockets message. As we don't bring up 12072 * the interface and also set STANDBY/FAILED simultaneously 12073 * it should be okay. 12074 */ 12075 err = ipif_up(ipif, q, mp); 12076 } else { 12077 /* 12078 * Make sure routing socket sees all changes to the flags. 12079 * ipif_up_done* handles this when we use ipif_up. 12080 */ 12081 if (phyint_flags_modified) { 12082 if (phyi->phyint_illv4 != NULL) { 12083 ip_rts_ifmsg(phyi->phyint_illv4-> 12084 ill_ipif); 12085 } 12086 if (phyi->phyint_illv6 != NULL) { 12087 ip_rts_ifmsg(phyi->phyint_illv6-> 12088 ill_ipif); 12089 } 12090 } else { 12091 ip_rts_ifmsg(ipif); 12092 } 12093 /* 12094 * Update the flags in SCTP's IPIF list, ipif_up() will do 12095 * this in need_up case. 12096 */ 12097 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12098 } 12099 return (err); 12100 } 12101 12102 /* 12103 * Restart entry point to restart the flags restart operation after the 12104 * refcounts have dropped to zero. 12105 */ 12106 /* ARGSUSED */ 12107 int 12108 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12109 ip_ioctl_cmd_t *ipip, void *if_req) 12110 { 12111 int err; 12112 struct ifreq *ifr = (struct ifreq *)if_req; 12113 struct lifreq *lifr = (struct lifreq *)if_req; 12114 12115 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12116 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12117 12118 ipif_down_tail(ipif); 12119 if (ipip->ipi_cmd_type == IF_CMD) { 12120 /* 12121 * Since ip_sioctl_flags expects an int and ifr_flags 12122 * is a short we need to cast ifr_flags into an int 12123 * to avoid having sign extension cause bits to get 12124 * set that should not be. 12125 */ 12126 err = ip_sioctl_flags_tail(ipif, 12127 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12128 q, mp, B_TRUE); 12129 } else { 12130 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12131 q, mp, B_TRUE); 12132 } 12133 return (err); 12134 } 12135 12136 /* 12137 * Can operate on either a module or a driver queue. 12138 */ 12139 /* ARGSUSED */ 12140 int 12141 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12142 ip_ioctl_cmd_t *ipip, void *if_req) 12143 { 12144 /* 12145 * Has the flags been set correctly till now ? 12146 */ 12147 ill_t *ill = ipif->ipif_ill; 12148 phyint_t *phyi = ill->ill_phyint; 12149 12150 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12151 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12152 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12153 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12154 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12155 12156 /* 12157 * Need a lock since some flags can be set even when there are 12158 * references to the ipif. 12159 */ 12160 mutex_enter(&ill->ill_lock); 12161 if (ipip->ipi_cmd_type == IF_CMD) { 12162 struct ifreq *ifr = (struct ifreq *)if_req; 12163 12164 /* Get interface flags (low 16 only). */ 12165 ifr->ifr_flags = ((ipif->ipif_flags | 12166 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12167 } else { 12168 struct lifreq *lifr = (struct lifreq *)if_req; 12169 12170 /* Get interface flags. */ 12171 lifr->lifr_flags = ipif->ipif_flags | 12172 ill->ill_flags | phyi->phyint_flags; 12173 } 12174 mutex_exit(&ill->ill_lock); 12175 return (0); 12176 } 12177 12178 /* ARGSUSED */ 12179 int 12180 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12181 ip_ioctl_cmd_t *ipip, void *if_req) 12182 { 12183 int mtu; 12184 int ip_min_mtu; 12185 struct ifreq *ifr; 12186 struct lifreq *lifr; 12187 ire_t *ire; 12188 ip_stack_t *ipst; 12189 12190 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12191 ipif->ipif_id, (void *)ipif)); 12192 if (ipip->ipi_cmd_type == IF_CMD) { 12193 ifr = (struct ifreq *)if_req; 12194 mtu = ifr->ifr_metric; 12195 } else { 12196 lifr = (struct lifreq *)if_req; 12197 mtu = lifr->lifr_mtu; 12198 } 12199 12200 if (ipif->ipif_isv6) 12201 ip_min_mtu = IPV6_MIN_MTU; 12202 else 12203 ip_min_mtu = IP_MIN_MTU; 12204 12205 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12206 return (EINVAL); 12207 12208 /* 12209 * Change the MTU size in all relevant ire's. 12210 * Mtu change Vs. new ire creation - protocol below. 12211 * First change ipif_mtu and the ire_max_frag of the 12212 * interface ire. Then do an ire walk and change the 12213 * ire_max_frag of all affected ires. During ire_add 12214 * under the bucket lock, set the ire_max_frag of the 12215 * new ire being created from the ipif/ire from which 12216 * it is being derived. If an mtu change happens after 12217 * the ire is added, the new ire will be cleaned up. 12218 * Conversely if the mtu change happens before the ire 12219 * is added, ire_add will see the new value of the mtu. 12220 */ 12221 ipif->ipif_mtu = mtu; 12222 ipif->ipif_flags |= IPIF_FIXEDMTU; 12223 12224 if (ipif->ipif_isv6) 12225 ire = ipif_to_ire_v6(ipif); 12226 else 12227 ire = ipif_to_ire(ipif); 12228 if (ire != NULL) { 12229 ire->ire_max_frag = ipif->ipif_mtu; 12230 ire_refrele(ire); 12231 } 12232 ipst = ipif->ipif_ill->ill_ipst; 12233 if (ipif->ipif_flags & IPIF_UP) { 12234 if (ipif->ipif_isv6) 12235 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12236 ipst); 12237 else 12238 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12239 ipst); 12240 } 12241 /* Update the MTU in SCTP's list */ 12242 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12243 return (0); 12244 } 12245 12246 /* Get interface MTU. */ 12247 /* ARGSUSED */ 12248 int 12249 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12250 ip_ioctl_cmd_t *ipip, void *if_req) 12251 { 12252 struct ifreq *ifr; 12253 struct lifreq *lifr; 12254 12255 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12257 if (ipip->ipi_cmd_type == IF_CMD) { 12258 ifr = (struct ifreq *)if_req; 12259 ifr->ifr_metric = ipif->ipif_mtu; 12260 } else { 12261 lifr = (struct lifreq *)if_req; 12262 lifr->lifr_mtu = ipif->ipif_mtu; 12263 } 12264 return (0); 12265 } 12266 12267 /* Set interface broadcast address. */ 12268 /* ARGSUSED2 */ 12269 int 12270 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12271 ip_ioctl_cmd_t *ipip, void *if_req) 12272 { 12273 ipaddr_t addr; 12274 ire_t *ire; 12275 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12276 12277 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12278 ipif->ipif_id)); 12279 12280 ASSERT(IAM_WRITER_IPIF(ipif)); 12281 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12282 return (EADDRNOTAVAIL); 12283 12284 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12285 12286 if (sin->sin_family != AF_INET) 12287 return (EAFNOSUPPORT); 12288 12289 addr = sin->sin_addr.s_addr; 12290 if (ipif->ipif_flags & IPIF_UP) { 12291 /* 12292 * If we are already up, make sure the new 12293 * broadcast address makes sense. If it does, 12294 * there should be an IRE for it already. 12295 * Don't match on ipif, only on the ill 12296 * since we are sharing these now. Don't use 12297 * MATCH_IRE_ILL_GROUP as we are looking for 12298 * the broadcast ire on this ill and each ill 12299 * in the group has its own broadcast ire. 12300 */ 12301 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12302 ipif, ALL_ZONES, NULL, 12303 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12304 if (ire == NULL) { 12305 return (EINVAL); 12306 } else { 12307 ire_refrele(ire); 12308 } 12309 } 12310 /* 12311 * Changing the broadcast addr for this ipif. 12312 * Make sure we have valid net and subnet bcast 12313 * ire's for other logical interfaces, if needed. 12314 */ 12315 if (addr != ipif->ipif_brd_addr) 12316 ipif_check_bcast_ires(ipif); 12317 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12318 return (0); 12319 } 12320 12321 /* Get interface broadcast address. */ 12322 /* ARGSUSED */ 12323 int 12324 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12325 ip_ioctl_cmd_t *ipip, void *if_req) 12326 { 12327 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12328 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12329 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12330 return (EADDRNOTAVAIL); 12331 12332 /* IPIF_BROADCAST not possible with IPv6 */ 12333 ASSERT(!ipif->ipif_isv6); 12334 *sin = sin_null; 12335 sin->sin_family = AF_INET; 12336 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12337 return (0); 12338 } 12339 12340 /* 12341 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12342 */ 12343 /* ARGSUSED */ 12344 int 12345 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12346 ip_ioctl_cmd_t *ipip, void *if_req) 12347 { 12348 int err = 0; 12349 in6_addr_t v6mask; 12350 12351 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12352 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12353 12354 ASSERT(IAM_WRITER_IPIF(ipif)); 12355 12356 if (ipif->ipif_isv6) { 12357 sin6_t *sin6; 12358 12359 if (sin->sin_family != AF_INET6) 12360 return (EAFNOSUPPORT); 12361 12362 sin6 = (sin6_t *)sin; 12363 v6mask = sin6->sin6_addr; 12364 } else { 12365 ipaddr_t mask; 12366 12367 if (sin->sin_family != AF_INET) 12368 return (EAFNOSUPPORT); 12369 12370 mask = sin->sin_addr.s_addr; 12371 V4MASK_TO_V6(mask, v6mask); 12372 } 12373 12374 /* 12375 * No big deal if the interface isn't already up, or the mask 12376 * isn't really changing, or this is pt-pt. 12377 */ 12378 if (!(ipif->ipif_flags & IPIF_UP) || 12379 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12380 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12381 ipif->ipif_v6net_mask = v6mask; 12382 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12383 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12384 ipif->ipif_v6net_mask, 12385 ipif->ipif_v6subnet); 12386 } 12387 return (0); 12388 } 12389 /* 12390 * Make sure we have valid net and subnet broadcast ire's 12391 * for the old netmask, if needed by other logical interfaces. 12392 */ 12393 if (!ipif->ipif_isv6) 12394 ipif_check_bcast_ires(ipif); 12395 12396 err = ipif_logical_down(ipif, q, mp); 12397 if (err == EINPROGRESS) 12398 return (err); 12399 ipif_down_tail(ipif); 12400 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12401 return (err); 12402 } 12403 12404 static int 12405 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12406 { 12407 in6_addr_t v6mask; 12408 int err = 0; 12409 12410 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12411 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12412 12413 if (ipif->ipif_isv6) { 12414 sin6_t *sin6; 12415 12416 sin6 = (sin6_t *)sin; 12417 v6mask = sin6->sin6_addr; 12418 } else { 12419 ipaddr_t mask; 12420 12421 mask = sin->sin_addr.s_addr; 12422 V4MASK_TO_V6(mask, v6mask); 12423 } 12424 12425 ipif->ipif_v6net_mask = v6mask; 12426 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12427 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12428 ipif->ipif_v6subnet); 12429 } 12430 err = ipif_up(ipif, q, mp); 12431 12432 if (err == 0 || err == EINPROGRESS) { 12433 /* 12434 * The interface must be DL_BOUND if this packet has to 12435 * go out on the wire. Since we only go through a logical 12436 * down and are bound with the driver during an internal 12437 * down/up that is satisfied. 12438 */ 12439 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12440 /* Potentially broadcast an address mask reply. */ 12441 ipif_mask_reply(ipif); 12442 } 12443 } 12444 return (err); 12445 } 12446 12447 /* ARGSUSED */ 12448 int 12449 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12450 ip_ioctl_cmd_t *ipip, void *if_req) 12451 { 12452 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12453 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12454 ipif_down_tail(ipif); 12455 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12456 } 12457 12458 /* Get interface net mask. */ 12459 /* ARGSUSED */ 12460 int 12461 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12462 ip_ioctl_cmd_t *ipip, void *if_req) 12463 { 12464 struct lifreq *lifr = (struct lifreq *)if_req; 12465 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12466 12467 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12468 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12469 12470 /* 12471 * net mask can't change since we have a reference to the ipif. 12472 */ 12473 if (ipif->ipif_isv6) { 12474 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12475 *sin6 = sin6_null; 12476 sin6->sin6_family = AF_INET6; 12477 sin6->sin6_addr = ipif->ipif_v6net_mask; 12478 lifr->lifr_addrlen = 12479 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12480 } else { 12481 *sin = sin_null; 12482 sin->sin_family = AF_INET; 12483 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12484 if (ipip->ipi_cmd_type == LIF_CMD) { 12485 lifr->lifr_addrlen = 12486 ip_mask_to_plen(ipif->ipif_net_mask); 12487 } 12488 } 12489 return (0); 12490 } 12491 12492 /* ARGSUSED */ 12493 int 12494 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12495 ip_ioctl_cmd_t *ipip, void *if_req) 12496 { 12497 12498 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12499 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12500 /* 12501 * Set interface metric. We don't use this for 12502 * anything but we keep track of it in case it is 12503 * important to routing applications or such. 12504 */ 12505 if (ipip->ipi_cmd_type == IF_CMD) { 12506 struct ifreq *ifr; 12507 12508 ifr = (struct ifreq *)if_req; 12509 ipif->ipif_metric = ifr->ifr_metric; 12510 } else { 12511 struct lifreq *lifr; 12512 12513 lifr = (struct lifreq *)if_req; 12514 ipif->ipif_metric = lifr->lifr_metric; 12515 } 12516 return (0); 12517 } 12518 12519 12520 /* ARGSUSED */ 12521 int 12522 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12523 ip_ioctl_cmd_t *ipip, void *if_req) 12524 { 12525 12526 /* Get interface metric. */ 12527 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12528 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12529 if (ipip->ipi_cmd_type == IF_CMD) { 12530 struct ifreq *ifr; 12531 12532 ifr = (struct ifreq *)if_req; 12533 ifr->ifr_metric = ipif->ipif_metric; 12534 } else { 12535 struct lifreq *lifr; 12536 12537 lifr = (struct lifreq *)if_req; 12538 lifr->lifr_metric = ipif->ipif_metric; 12539 } 12540 12541 return (0); 12542 } 12543 12544 /* ARGSUSED */ 12545 int 12546 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12547 ip_ioctl_cmd_t *ipip, void *if_req) 12548 { 12549 12550 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12551 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12552 /* 12553 * Set the muxid returned from I_PLINK. 12554 */ 12555 if (ipip->ipi_cmd_type == IF_CMD) { 12556 struct ifreq *ifr = (struct ifreq *)if_req; 12557 12558 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12559 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12560 } else { 12561 struct lifreq *lifr = (struct lifreq *)if_req; 12562 12563 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12564 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12565 } 12566 return (0); 12567 } 12568 12569 /* ARGSUSED */ 12570 int 12571 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12572 ip_ioctl_cmd_t *ipip, void *if_req) 12573 { 12574 12575 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12576 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12577 /* 12578 * Get the muxid saved in ill for I_PUNLINK. 12579 */ 12580 if (ipip->ipi_cmd_type == IF_CMD) { 12581 struct ifreq *ifr = (struct ifreq *)if_req; 12582 12583 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12584 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12585 } else { 12586 struct lifreq *lifr = (struct lifreq *)if_req; 12587 12588 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12589 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12590 } 12591 return (0); 12592 } 12593 12594 /* 12595 * Set the subnet prefix. Does not modify the broadcast address. 12596 */ 12597 /* ARGSUSED */ 12598 int 12599 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12600 ip_ioctl_cmd_t *ipip, void *if_req) 12601 { 12602 int err = 0; 12603 in6_addr_t v6addr; 12604 in6_addr_t v6mask; 12605 boolean_t need_up = B_FALSE; 12606 int addrlen; 12607 12608 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12609 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12610 12611 ASSERT(IAM_WRITER_IPIF(ipif)); 12612 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12613 12614 if (ipif->ipif_isv6) { 12615 sin6_t *sin6; 12616 12617 if (sin->sin_family != AF_INET6) 12618 return (EAFNOSUPPORT); 12619 12620 sin6 = (sin6_t *)sin; 12621 v6addr = sin6->sin6_addr; 12622 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12623 return (EADDRNOTAVAIL); 12624 } else { 12625 ipaddr_t addr; 12626 12627 if (sin->sin_family != AF_INET) 12628 return (EAFNOSUPPORT); 12629 12630 addr = sin->sin_addr.s_addr; 12631 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12632 return (EADDRNOTAVAIL); 12633 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12634 /* Add 96 bits */ 12635 addrlen += IPV6_ABITS - IP_ABITS; 12636 } 12637 12638 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12639 return (EINVAL); 12640 12641 /* Check if bits in the address is set past the mask */ 12642 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12643 return (EINVAL); 12644 12645 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12646 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12647 return (0); /* No change */ 12648 12649 if (ipif->ipif_flags & IPIF_UP) { 12650 /* 12651 * If the interface is already marked up, 12652 * we call ipif_down which will take care 12653 * of ditching any IREs that have been set 12654 * up based on the old interface address. 12655 */ 12656 err = ipif_logical_down(ipif, q, mp); 12657 if (err == EINPROGRESS) 12658 return (err); 12659 ipif_down_tail(ipif); 12660 need_up = B_TRUE; 12661 } 12662 12663 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12664 return (err); 12665 } 12666 12667 static int 12668 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12669 queue_t *q, mblk_t *mp, boolean_t need_up) 12670 { 12671 ill_t *ill = ipif->ipif_ill; 12672 int err = 0; 12673 12674 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12675 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12676 12677 /* Set the new address. */ 12678 mutex_enter(&ill->ill_lock); 12679 ipif->ipif_v6net_mask = v6mask; 12680 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12681 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12682 ipif->ipif_v6subnet); 12683 } 12684 mutex_exit(&ill->ill_lock); 12685 12686 if (need_up) { 12687 /* 12688 * Now bring the interface back up. If this 12689 * is the only IPIF for the ILL, ipif_up 12690 * will have to re-bind to the device, so 12691 * we may get back EINPROGRESS, in which 12692 * case, this IOCTL will get completed in 12693 * ip_rput_dlpi when we see the DL_BIND_ACK. 12694 */ 12695 err = ipif_up(ipif, q, mp); 12696 if (err == EINPROGRESS) 12697 return (err); 12698 } 12699 return (err); 12700 } 12701 12702 /* ARGSUSED */ 12703 int 12704 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12705 ip_ioctl_cmd_t *ipip, void *if_req) 12706 { 12707 int addrlen; 12708 in6_addr_t v6addr; 12709 in6_addr_t v6mask; 12710 struct lifreq *lifr = (struct lifreq *)if_req; 12711 12712 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12713 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12714 ipif_down_tail(ipif); 12715 12716 addrlen = lifr->lifr_addrlen; 12717 if (ipif->ipif_isv6) { 12718 sin6_t *sin6; 12719 12720 sin6 = (sin6_t *)sin; 12721 v6addr = sin6->sin6_addr; 12722 } else { 12723 ipaddr_t addr; 12724 12725 addr = sin->sin_addr.s_addr; 12726 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12727 addrlen += IPV6_ABITS - IP_ABITS; 12728 } 12729 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12730 12731 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12732 } 12733 12734 /* ARGSUSED */ 12735 int 12736 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12737 ip_ioctl_cmd_t *ipip, void *if_req) 12738 { 12739 struct lifreq *lifr = (struct lifreq *)if_req; 12740 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12741 12742 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12743 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12744 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12745 12746 if (ipif->ipif_isv6) { 12747 *sin6 = sin6_null; 12748 sin6->sin6_family = AF_INET6; 12749 sin6->sin6_addr = ipif->ipif_v6subnet; 12750 lifr->lifr_addrlen = 12751 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12752 } else { 12753 *sin = sin_null; 12754 sin->sin_family = AF_INET; 12755 sin->sin_addr.s_addr = ipif->ipif_subnet; 12756 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12757 } 12758 return (0); 12759 } 12760 12761 /* 12762 * Set the IPv6 address token. 12763 */ 12764 /* ARGSUSED */ 12765 int 12766 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12767 ip_ioctl_cmd_t *ipi, void *if_req) 12768 { 12769 ill_t *ill = ipif->ipif_ill; 12770 int err; 12771 in6_addr_t v6addr; 12772 in6_addr_t v6mask; 12773 boolean_t need_up = B_FALSE; 12774 int i; 12775 sin6_t *sin6 = (sin6_t *)sin; 12776 struct lifreq *lifr = (struct lifreq *)if_req; 12777 int addrlen; 12778 12779 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12780 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12781 ASSERT(IAM_WRITER_IPIF(ipif)); 12782 12783 addrlen = lifr->lifr_addrlen; 12784 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12785 if (ipif->ipif_id != 0) 12786 return (EINVAL); 12787 12788 if (!ipif->ipif_isv6) 12789 return (EINVAL); 12790 12791 if (addrlen > IPV6_ABITS) 12792 return (EINVAL); 12793 12794 v6addr = sin6->sin6_addr; 12795 12796 /* 12797 * The length of the token is the length from the end. To get 12798 * the proper mask for this, compute the mask of the bits not 12799 * in the token; ie. the prefix, and then xor to get the mask. 12800 */ 12801 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12802 return (EINVAL); 12803 for (i = 0; i < 4; i++) { 12804 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12805 } 12806 12807 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12808 ill->ill_token_length == addrlen) 12809 return (0); /* No change */ 12810 12811 if (ipif->ipif_flags & IPIF_UP) { 12812 err = ipif_logical_down(ipif, q, mp); 12813 if (err == EINPROGRESS) 12814 return (err); 12815 ipif_down_tail(ipif); 12816 need_up = B_TRUE; 12817 } 12818 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12819 return (err); 12820 } 12821 12822 static int 12823 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12824 mblk_t *mp, boolean_t need_up) 12825 { 12826 in6_addr_t v6addr; 12827 in6_addr_t v6mask; 12828 ill_t *ill = ipif->ipif_ill; 12829 int i; 12830 int err = 0; 12831 12832 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12834 v6addr = sin6->sin6_addr; 12835 /* 12836 * The length of the token is the length from the end. To get 12837 * the proper mask for this, compute the mask of the bits not 12838 * in the token; ie. the prefix, and then xor to get the mask. 12839 */ 12840 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12841 for (i = 0; i < 4; i++) 12842 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12843 12844 mutex_enter(&ill->ill_lock); 12845 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12846 ill->ill_token_length = addrlen; 12847 mutex_exit(&ill->ill_lock); 12848 12849 if (need_up) { 12850 /* 12851 * Now bring the interface back up. If this 12852 * is the only IPIF for the ILL, ipif_up 12853 * will have to re-bind to the device, so 12854 * we may get back EINPROGRESS, in which 12855 * case, this IOCTL will get completed in 12856 * ip_rput_dlpi when we see the DL_BIND_ACK. 12857 */ 12858 err = ipif_up(ipif, q, mp); 12859 if (err == EINPROGRESS) 12860 return (err); 12861 } 12862 return (err); 12863 } 12864 12865 /* ARGSUSED */ 12866 int 12867 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12868 ip_ioctl_cmd_t *ipi, void *if_req) 12869 { 12870 ill_t *ill; 12871 sin6_t *sin6 = (sin6_t *)sin; 12872 struct lifreq *lifr = (struct lifreq *)if_req; 12873 12874 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12875 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12876 if (ipif->ipif_id != 0) 12877 return (EINVAL); 12878 12879 ill = ipif->ipif_ill; 12880 if (!ill->ill_isv6) 12881 return (ENXIO); 12882 12883 *sin6 = sin6_null; 12884 sin6->sin6_family = AF_INET6; 12885 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12886 sin6->sin6_addr = ill->ill_token; 12887 lifr->lifr_addrlen = ill->ill_token_length; 12888 return (0); 12889 } 12890 12891 /* 12892 * Set (hardware) link specific information that might override 12893 * what was acquired through the DL_INFO_ACK. 12894 * The logic is as follows. 12895 * 12896 * become exclusive 12897 * set CHANGING flag 12898 * change mtu on affected IREs 12899 * clear CHANGING flag 12900 * 12901 * An ire add that occurs before the CHANGING flag is set will have its mtu 12902 * changed by the ip_sioctl_lnkinfo. 12903 * 12904 * During the time the CHANGING flag is set, no new ires will be added to the 12905 * bucket, and ire add will fail (due the CHANGING flag). 12906 * 12907 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12908 * before it is added to the bucket. 12909 * 12910 * Obviously only 1 thread can set the CHANGING flag and we need to become 12911 * exclusive to set the flag. 12912 */ 12913 /* ARGSUSED */ 12914 int 12915 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12916 ip_ioctl_cmd_t *ipi, void *if_req) 12917 { 12918 ill_t *ill = ipif->ipif_ill; 12919 ipif_t *nipif; 12920 int ip_min_mtu; 12921 boolean_t mtu_walk = B_FALSE; 12922 struct lifreq *lifr = (struct lifreq *)if_req; 12923 lif_ifinfo_req_t *lir; 12924 ire_t *ire; 12925 12926 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12927 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12928 lir = &lifr->lifr_ifinfo; 12929 ASSERT(IAM_WRITER_IPIF(ipif)); 12930 12931 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12932 if (ipif->ipif_id != 0) 12933 return (EINVAL); 12934 12935 /* Set interface MTU. */ 12936 if (ipif->ipif_isv6) 12937 ip_min_mtu = IPV6_MIN_MTU; 12938 else 12939 ip_min_mtu = IP_MIN_MTU; 12940 12941 /* 12942 * Verify values before we set anything. Allow zero to 12943 * mean unspecified. 12944 */ 12945 if (lir->lir_maxmtu != 0 && 12946 (lir->lir_maxmtu > ill->ill_max_frag || 12947 lir->lir_maxmtu < ip_min_mtu)) 12948 return (EINVAL); 12949 if (lir->lir_reachtime != 0 && 12950 lir->lir_reachtime > ND_MAX_REACHTIME) 12951 return (EINVAL); 12952 if (lir->lir_reachretrans != 0 && 12953 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12954 return (EINVAL); 12955 12956 mutex_enter(&ill->ill_lock); 12957 ill->ill_state_flags |= ILL_CHANGING; 12958 for (nipif = ill->ill_ipif; nipif != NULL; 12959 nipif = nipif->ipif_next) { 12960 nipif->ipif_state_flags |= IPIF_CHANGING; 12961 } 12962 12963 mutex_exit(&ill->ill_lock); 12964 12965 if (lir->lir_maxmtu != 0) { 12966 ill->ill_max_mtu = lir->lir_maxmtu; 12967 ill->ill_mtu_userspecified = 1; 12968 mtu_walk = B_TRUE; 12969 } 12970 12971 if (lir->lir_reachtime != 0) 12972 ill->ill_reachable_time = lir->lir_reachtime; 12973 12974 if (lir->lir_reachretrans != 0) 12975 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12976 12977 ill->ill_max_hops = lir->lir_maxhops; 12978 12979 ill->ill_max_buf = ND_MAX_Q; 12980 12981 if (mtu_walk) { 12982 /* 12983 * Set the MTU on all ipifs associated with this ill except 12984 * for those whose MTU was fixed via SIOCSLIFMTU. 12985 */ 12986 for (nipif = ill->ill_ipif; nipif != NULL; 12987 nipif = nipif->ipif_next) { 12988 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12989 continue; 12990 12991 nipif->ipif_mtu = ill->ill_max_mtu; 12992 12993 if (!(nipif->ipif_flags & IPIF_UP)) 12994 continue; 12995 12996 if (nipif->ipif_isv6) 12997 ire = ipif_to_ire_v6(nipif); 12998 else 12999 ire = ipif_to_ire(nipif); 13000 if (ire != NULL) { 13001 ire->ire_max_frag = ipif->ipif_mtu; 13002 ire_refrele(ire); 13003 } 13004 if (ill->ill_isv6) { 13005 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13006 ipif_mtu_change, (char *)nipif, 13007 ill); 13008 } else { 13009 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13010 ipif_mtu_change, (char *)nipif, 13011 ill); 13012 } 13013 } 13014 } 13015 13016 mutex_enter(&ill->ill_lock); 13017 for (nipif = ill->ill_ipif; nipif != NULL; 13018 nipif = nipif->ipif_next) { 13019 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13020 } 13021 ILL_UNMARK_CHANGING(ill); 13022 mutex_exit(&ill->ill_lock); 13023 13024 return (0); 13025 } 13026 13027 /* ARGSUSED */ 13028 int 13029 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13030 ip_ioctl_cmd_t *ipi, void *if_req) 13031 { 13032 struct lif_ifinfo_req *lir; 13033 ill_t *ill = ipif->ipif_ill; 13034 13035 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13036 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13037 if (ipif->ipif_id != 0) 13038 return (EINVAL); 13039 13040 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13041 lir->lir_maxhops = ill->ill_max_hops; 13042 lir->lir_reachtime = ill->ill_reachable_time; 13043 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13044 lir->lir_maxmtu = ill->ill_max_mtu; 13045 13046 return (0); 13047 } 13048 13049 /* 13050 * Return best guess as to the subnet mask for the specified address. 13051 * Based on the subnet masks for all the configured interfaces. 13052 * 13053 * We end up returning a zero mask in the case of default, multicast or 13054 * experimental. 13055 */ 13056 static ipaddr_t 13057 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13058 { 13059 ipaddr_t net_mask; 13060 ill_t *ill; 13061 ipif_t *ipif; 13062 ill_walk_context_t ctx; 13063 ipif_t *fallback_ipif = NULL; 13064 13065 net_mask = ip_net_mask(addr); 13066 if (net_mask == 0) { 13067 *ipifp = NULL; 13068 return (0); 13069 } 13070 13071 /* Let's check to see if this is maybe a local subnet route. */ 13072 /* this function only applies to IPv4 interfaces */ 13073 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13074 ill = ILL_START_WALK_V4(&ctx, ipst); 13075 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13076 mutex_enter(&ill->ill_lock); 13077 for (ipif = ill->ill_ipif; ipif != NULL; 13078 ipif = ipif->ipif_next) { 13079 if (!IPIF_CAN_LOOKUP(ipif)) 13080 continue; 13081 if (!(ipif->ipif_flags & IPIF_UP)) 13082 continue; 13083 if ((ipif->ipif_subnet & net_mask) == 13084 (addr & net_mask)) { 13085 /* 13086 * Don't trust pt-pt interfaces if there are 13087 * other interfaces. 13088 */ 13089 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13090 if (fallback_ipif == NULL) { 13091 ipif_refhold_locked(ipif); 13092 fallback_ipif = ipif; 13093 } 13094 continue; 13095 } 13096 13097 /* 13098 * Fine. Just assume the same net mask as the 13099 * directly attached subnet interface is using. 13100 */ 13101 ipif_refhold_locked(ipif); 13102 mutex_exit(&ill->ill_lock); 13103 rw_exit(&ipst->ips_ill_g_lock); 13104 if (fallback_ipif != NULL) 13105 ipif_refrele(fallback_ipif); 13106 *ipifp = ipif; 13107 return (ipif->ipif_net_mask); 13108 } 13109 } 13110 mutex_exit(&ill->ill_lock); 13111 } 13112 rw_exit(&ipst->ips_ill_g_lock); 13113 13114 *ipifp = fallback_ipif; 13115 return ((fallback_ipif != NULL) ? 13116 fallback_ipif->ipif_net_mask : net_mask); 13117 } 13118 13119 /* 13120 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13121 */ 13122 static void 13123 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13124 { 13125 IOCP iocp; 13126 ipft_t *ipft; 13127 ipllc_t *ipllc; 13128 mblk_t *mp1; 13129 cred_t *cr; 13130 int error = 0; 13131 conn_t *connp; 13132 13133 ip1dbg(("ip_wput_ioctl")); 13134 iocp = (IOCP)mp->b_rptr; 13135 mp1 = mp->b_cont; 13136 if (mp1 == NULL) { 13137 iocp->ioc_error = EINVAL; 13138 mp->b_datap->db_type = M_IOCNAK; 13139 iocp->ioc_count = 0; 13140 qreply(q, mp); 13141 return; 13142 } 13143 13144 /* 13145 * These IOCTLs provide various control capabilities to 13146 * upstream agents such as ULPs and processes. There 13147 * are currently two such IOCTLs implemented. They 13148 * are used by TCP to provide update information for 13149 * existing IREs and to forcibly delete an IRE for a 13150 * host that is not responding, thereby forcing an 13151 * attempt at a new route. 13152 */ 13153 iocp->ioc_error = EINVAL; 13154 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13155 goto done; 13156 13157 ipllc = (ipllc_t *)mp1->b_rptr; 13158 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13159 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13160 break; 13161 } 13162 /* 13163 * prefer credential from mblk over ioctl; 13164 * see ip_sioctl_copyin_setup 13165 */ 13166 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13167 13168 /* 13169 * Refhold the conn in case the request gets queued up in some lookup 13170 */ 13171 ASSERT(CONN_Q(q)); 13172 connp = Q_TO_CONN(q); 13173 CONN_INC_REF(connp); 13174 if (ipft->ipft_pfi && 13175 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13176 pullupmsg(mp1, ipft->ipft_min_size))) { 13177 error = (*ipft->ipft_pfi)(q, 13178 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13179 } 13180 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13181 /* 13182 * CONN_OPER_PENDING_DONE happens in the function called 13183 * through ipft_pfi above. 13184 */ 13185 return; 13186 } 13187 13188 CONN_OPER_PENDING_DONE(connp); 13189 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13190 freemsg(mp); 13191 return; 13192 } 13193 iocp->ioc_error = error; 13194 13195 done: 13196 mp->b_datap->db_type = M_IOCACK; 13197 if (iocp->ioc_error) 13198 iocp->ioc_count = 0; 13199 qreply(q, mp); 13200 } 13201 13202 /* 13203 * Lookup an ipif using the sequence id (ipif_seqid) 13204 */ 13205 ipif_t * 13206 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13207 { 13208 ipif_t *ipif; 13209 13210 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13211 13212 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13213 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13214 return (ipif); 13215 } 13216 return (NULL); 13217 } 13218 13219 /* 13220 * Assign a unique id for the ipif. This is used later when we send 13221 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13222 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13223 * IRE is added, we verify that ipif has not disappeared. 13224 */ 13225 13226 static void 13227 ipif_assign_seqid(ipif_t *ipif) 13228 { 13229 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13230 13231 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13232 } 13233 13234 /* 13235 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13236 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13237 * be inserted into the first space available in the list. The value of 13238 * ipif_id will then be set to the appropriate value for its position. 13239 */ 13240 static int 13241 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13242 { 13243 ill_t *ill; 13244 ipif_t *tipif; 13245 ipif_t **tipifp; 13246 int id; 13247 ip_stack_t *ipst; 13248 13249 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13250 IAM_WRITER_IPIF(ipif)); 13251 13252 ill = ipif->ipif_ill; 13253 ASSERT(ill != NULL); 13254 ipst = ill->ill_ipst; 13255 13256 /* 13257 * In the case of lo0:0 we already hold the ill_g_lock. 13258 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13259 * ipif_insert. Another such caller is ipif_move. 13260 */ 13261 if (acquire_g_lock) 13262 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13263 if (acquire_ill_lock) 13264 mutex_enter(&ill->ill_lock); 13265 id = ipif->ipif_id; 13266 tipifp = &(ill->ill_ipif); 13267 if (id == -1) { /* need to find a real id */ 13268 id = 0; 13269 while ((tipif = *tipifp) != NULL) { 13270 ASSERT(tipif->ipif_id >= id); 13271 if (tipif->ipif_id != id) 13272 break; /* non-consecutive id */ 13273 id++; 13274 tipifp = &(tipif->ipif_next); 13275 } 13276 /* limit number of logical interfaces */ 13277 if (id >= ipst->ips_ip_addrs_per_if) { 13278 if (acquire_ill_lock) 13279 mutex_exit(&ill->ill_lock); 13280 if (acquire_g_lock) 13281 rw_exit(&ipst->ips_ill_g_lock); 13282 return (-1); 13283 } 13284 ipif->ipif_id = id; /* assign new id */ 13285 } else if (id < ipst->ips_ip_addrs_per_if) { 13286 /* we have a real id; insert ipif in the right place */ 13287 while ((tipif = *tipifp) != NULL) { 13288 ASSERT(tipif->ipif_id != id); 13289 if (tipif->ipif_id > id) 13290 break; /* found correct location */ 13291 tipifp = &(tipif->ipif_next); 13292 } 13293 } else { 13294 if (acquire_ill_lock) 13295 mutex_exit(&ill->ill_lock); 13296 if (acquire_g_lock) 13297 rw_exit(&ipst->ips_ill_g_lock); 13298 return (-1); 13299 } 13300 13301 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13302 13303 ipif->ipif_next = tipif; 13304 *tipifp = ipif; 13305 if (acquire_ill_lock) 13306 mutex_exit(&ill->ill_lock); 13307 if (acquire_g_lock) 13308 rw_exit(&ipst->ips_ill_g_lock); 13309 return (0); 13310 } 13311 13312 static void 13313 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13314 { 13315 ipif_t **ipifp; 13316 ill_t *ill = ipif->ipif_ill; 13317 13318 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13319 if (acquire_ill_lock) 13320 mutex_enter(&ill->ill_lock); 13321 else 13322 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13323 13324 ipifp = &ill->ill_ipif; 13325 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13326 if (*ipifp == ipif) { 13327 *ipifp = ipif->ipif_next; 13328 break; 13329 } 13330 } 13331 13332 if (acquire_ill_lock) 13333 mutex_exit(&ill->ill_lock); 13334 } 13335 13336 /* 13337 * Allocate and initialize a new interface control structure. (Always 13338 * called as writer.) 13339 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13340 * is not part of the global linked list of ills. ipif_seqid is unique 13341 * in the system and to preserve the uniqueness, it is assigned only 13342 * when ill becomes part of the global list. At that point ill will 13343 * have a name. If it doesn't get assigned here, it will get assigned 13344 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13345 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13346 * the interface flags or any other information from the DL_INFO_ACK for 13347 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13348 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13349 * second DL_INFO_ACK comes in from the driver. 13350 */ 13351 static ipif_t * 13352 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13353 { 13354 ipif_t *ipif; 13355 phyint_t *phyi; 13356 13357 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13358 ill->ill_name, id, (void *)ill)); 13359 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13360 13361 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13362 return (NULL); 13363 *ipif = ipif_zero; /* start clean */ 13364 13365 ipif->ipif_ill = ill; 13366 ipif->ipif_id = id; /* could be -1 */ 13367 /* 13368 * Inherit the zoneid from the ill; for the shared stack instance 13369 * this is always the global zone 13370 */ 13371 ipif->ipif_zoneid = ill->ill_zoneid; 13372 13373 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13374 13375 ipif->ipif_refcnt = 0; 13376 ipif->ipif_saved_ire_cnt = 0; 13377 13378 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13379 mi_free(ipif); 13380 return (NULL); 13381 } 13382 /* -1 id should have been replaced by real id */ 13383 id = ipif->ipif_id; 13384 ASSERT(id >= 0); 13385 13386 if (ill->ill_name[0] != '\0') 13387 ipif_assign_seqid(ipif); 13388 13389 /* 13390 * Keep a copy of original id in ipif_orig_ipifid. Failback 13391 * will attempt to restore the original id. The SIOCSLIFOINDEX 13392 * ioctl sets ipif_orig_ipifid to zero. 13393 */ 13394 ipif->ipif_orig_ipifid = id; 13395 13396 /* 13397 * We grab the ill_lock and phyint_lock to protect the flag changes. 13398 * The ipif is still not up and can't be looked up until the 13399 * ioctl completes and the IPIF_CHANGING flag is cleared. 13400 */ 13401 mutex_enter(&ill->ill_lock); 13402 mutex_enter(&ill->ill_phyint->phyint_lock); 13403 /* 13404 * Set the running flag when logical interface zero is created. 13405 * For subsequent logical interfaces, a DLPI link down 13406 * notification message may have cleared the running flag to 13407 * indicate the link is down, so we shouldn't just blindly set it. 13408 */ 13409 if (id == 0) 13410 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13411 ipif->ipif_ire_type = ire_type; 13412 phyi = ill->ill_phyint; 13413 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13414 13415 if (ipif->ipif_isv6) { 13416 ill->ill_flags |= ILLF_IPV6; 13417 } else { 13418 ipaddr_t inaddr_any = INADDR_ANY; 13419 13420 ill->ill_flags |= ILLF_IPV4; 13421 13422 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13423 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13424 &ipif->ipif_v6lcl_addr); 13425 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13426 &ipif->ipif_v6src_addr); 13427 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13428 &ipif->ipif_v6subnet); 13429 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13430 &ipif->ipif_v6net_mask); 13431 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13432 &ipif->ipif_v6brd_addr); 13433 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13434 &ipif->ipif_v6pp_dst_addr); 13435 } 13436 13437 /* 13438 * Don't set the interface flags etc. now, will do it in 13439 * ip_ll_subnet_defaults. 13440 */ 13441 if (!initialize) { 13442 mutex_exit(&ill->ill_lock); 13443 mutex_exit(&ill->ill_phyint->phyint_lock); 13444 return (ipif); 13445 } 13446 ipif->ipif_mtu = ill->ill_max_mtu; 13447 13448 if (ill->ill_bcast_addr_length != 0) { 13449 /* 13450 * Later detect lack of DLPI driver multicast 13451 * capability by catching DL_ENABMULTI errors in 13452 * ip_rput_dlpi. 13453 */ 13454 ill->ill_flags |= ILLF_MULTICAST; 13455 if (!ipif->ipif_isv6) 13456 ipif->ipif_flags |= IPIF_BROADCAST; 13457 } else { 13458 if (ill->ill_net_type != IRE_LOOPBACK) { 13459 if (ipif->ipif_isv6) 13460 /* 13461 * Note: xresolv interfaces will eventually need 13462 * NOARP set here as well, but that will require 13463 * those external resolvers to have some 13464 * knowledge of that flag and act appropriately. 13465 * Not to be changed at present. 13466 */ 13467 ill->ill_flags |= ILLF_NONUD; 13468 else 13469 ill->ill_flags |= ILLF_NOARP; 13470 } 13471 if (ill->ill_phys_addr_length == 0) { 13472 if (ill->ill_media && 13473 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13474 ipif->ipif_flags |= IPIF_NOXMIT; 13475 phyi->phyint_flags |= PHYI_VIRTUAL; 13476 } else { 13477 /* pt-pt supports multicast. */ 13478 ill->ill_flags |= ILLF_MULTICAST; 13479 if (ill->ill_net_type == IRE_LOOPBACK) { 13480 phyi->phyint_flags |= 13481 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13482 } else { 13483 ipif->ipif_flags |= IPIF_POINTOPOINT; 13484 } 13485 } 13486 } 13487 } 13488 mutex_exit(&ill->ill_lock); 13489 mutex_exit(&ill->ill_phyint->phyint_lock); 13490 return (ipif); 13491 } 13492 13493 /* 13494 * If appropriate, send a message up to the resolver delete the entry 13495 * for the address of this interface which is going out of business. 13496 * (Always called as writer). 13497 * 13498 * NOTE : We need to check for NULL mps as some of the fields are 13499 * initialized only for some interface types. See ipif_resolver_up() 13500 * for details. 13501 */ 13502 void 13503 ipif_arp_down(ipif_t *ipif) 13504 { 13505 mblk_t *mp; 13506 ill_t *ill = ipif->ipif_ill; 13507 13508 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13509 ASSERT(IAM_WRITER_IPIF(ipif)); 13510 13511 /* Delete the mapping for the local address */ 13512 mp = ipif->ipif_arp_del_mp; 13513 if (mp != NULL) { 13514 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13515 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13516 putnext(ill->ill_rq, mp); 13517 ipif->ipif_arp_del_mp = NULL; 13518 } 13519 13520 /* 13521 * If this is the last ipif that is going down and there are no 13522 * duplicate addresses we may yet attempt to re-probe, then we need to 13523 * clean up ARP completely. 13524 */ 13525 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13526 13527 /* Send up AR_INTERFACE_DOWN message */ 13528 mp = ill->ill_arp_down_mp; 13529 if (mp != NULL) { 13530 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13531 *(unsigned *)mp->b_rptr, ill->ill_name, 13532 ipif->ipif_id)); 13533 putnext(ill->ill_rq, mp); 13534 ill->ill_arp_down_mp = NULL; 13535 } 13536 13537 /* Tell ARP to delete the multicast mappings */ 13538 mp = ill->ill_arp_del_mapping_mp; 13539 if (mp != NULL) { 13540 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13541 *(unsigned *)mp->b_rptr, ill->ill_name, 13542 ipif->ipif_id)); 13543 putnext(ill->ill_rq, mp); 13544 ill->ill_arp_del_mapping_mp = NULL; 13545 } 13546 } 13547 } 13548 13549 /* 13550 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13551 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13552 * that it wants the add_mp allocated in this function to be returned 13553 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13554 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13555 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13556 * as it does a ipif_arp_down after calling this function - which will 13557 * remove what we add here. 13558 * 13559 * Returns -1 on failures and 0 on success. 13560 */ 13561 int 13562 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13563 { 13564 mblk_t *del_mp = NULL; 13565 mblk_t *add_mp = NULL; 13566 mblk_t *mp; 13567 ill_t *ill = ipif->ipif_ill; 13568 phyint_t *phyi = ill->ill_phyint; 13569 ipaddr_t addr, mask, extract_mask = 0; 13570 arma_t *arma; 13571 uint8_t *maddr, *bphys_addr; 13572 uint32_t hw_start; 13573 dl_unitdata_req_t *dlur; 13574 13575 ASSERT(IAM_WRITER_IPIF(ipif)); 13576 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13577 return (0); 13578 13579 /* 13580 * Delete the existing mapping from ARP. Normally ipif_down 13581 * -> ipif_arp_down should send this up to ARP. The only 13582 * reason we would find this when we are switching from 13583 * Multicast to Broadcast where we did not do a down. 13584 */ 13585 mp = ill->ill_arp_del_mapping_mp; 13586 if (mp != NULL) { 13587 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13588 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13589 putnext(ill->ill_rq, mp); 13590 ill->ill_arp_del_mapping_mp = NULL; 13591 } 13592 13593 if (arp_add_mapping_mp != NULL) 13594 *arp_add_mapping_mp = NULL; 13595 13596 /* 13597 * Check that the address is not to long for the constant 13598 * length reserved in the template arma_t. 13599 */ 13600 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13601 return (-1); 13602 13603 /* Add mapping mblk */ 13604 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13605 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13606 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13607 (caddr_t)&addr); 13608 if (add_mp == NULL) 13609 return (-1); 13610 arma = (arma_t *)add_mp->b_rptr; 13611 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13612 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13613 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13614 13615 /* 13616 * Determine the broadcast address. 13617 */ 13618 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13619 if (ill->ill_sap_length < 0) 13620 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13621 else 13622 bphys_addr = (uchar_t *)dlur + 13623 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13624 /* 13625 * Check PHYI_MULTI_BCAST and length of physical 13626 * address to determine if we use the mapping or the 13627 * broadcast address. 13628 */ 13629 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13630 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13631 bphys_addr, maddr, &hw_start, &extract_mask)) 13632 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13633 13634 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13635 (ill->ill_flags & ILLF_MULTICAST)) { 13636 /* Make sure this will not match the "exact" entry. */ 13637 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13638 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13639 (caddr_t)&addr); 13640 if (del_mp == NULL) { 13641 freemsg(add_mp); 13642 return (-1); 13643 } 13644 bcopy(&extract_mask, (char *)arma + 13645 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13646 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13647 /* Use link-layer broadcast address for MULTI_BCAST */ 13648 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13649 ip2dbg(("ipif_arp_setup_multicast: adding" 13650 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13651 } else { 13652 arma->arma_hw_mapping_start = hw_start; 13653 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13654 " ARP setup for %s\n", ill->ill_name)); 13655 } 13656 } else { 13657 freemsg(add_mp); 13658 ASSERT(del_mp == NULL); 13659 /* It is neither MULTICAST nor MULTI_BCAST */ 13660 return (0); 13661 } 13662 ASSERT(add_mp != NULL && del_mp != NULL); 13663 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13664 ill->ill_arp_del_mapping_mp = del_mp; 13665 if (arp_add_mapping_mp != NULL) { 13666 /* The caller just wants the mblks allocated */ 13667 *arp_add_mapping_mp = add_mp; 13668 } else { 13669 /* The caller wants us to send it to arp */ 13670 putnext(ill->ill_rq, add_mp); 13671 } 13672 return (0); 13673 } 13674 13675 /* 13676 * Get the resolver set up for a new interface address. 13677 * (Always called as writer.) 13678 * Called both for IPv4 and IPv6 interfaces, 13679 * though it only sets up the resolver for v6 13680 * if it's an xresolv interface (one using an external resolver). 13681 * Honors ILLF_NOARP. 13682 * The enumerated value res_act is used to tune the behavior. 13683 * If set to Res_act_initial, then we set up all the resolver 13684 * structures for a new interface. If set to Res_act_move, then 13685 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13686 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13687 * asynchronous hardware address change notification. If set to 13688 * Res_act_defend, then we tell ARP that it needs to send a single 13689 * gratuitous message in defense of the address. 13690 * Returns error on failure. 13691 */ 13692 int 13693 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13694 { 13695 caddr_t addr; 13696 mblk_t *arp_up_mp = NULL; 13697 mblk_t *arp_down_mp = NULL; 13698 mblk_t *arp_add_mp = NULL; 13699 mblk_t *arp_del_mp = NULL; 13700 mblk_t *arp_add_mapping_mp = NULL; 13701 mblk_t *arp_del_mapping_mp = NULL; 13702 ill_t *ill = ipif->ipif_ill; 13703 uchar_t *area_p = NULL; 13704 uchar_t *ared_p = NULL; 13705 int err = ENOMEM; 13706 boolean_t was_dup; 13707 13708 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13709 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13710 ASSERT(IAM_WRITER_IPIF(ipif)); 13711 13712 was_dup = B_FALSE; 13713 if (res_act == Res_act_initial) { 13714 ipif->ipif_addr_ready = 0; 13715 /* 13716 * We're bringing an interface up here. There's no way that we 13717 * should need to shut down ARP now. 13718 */ 13719 mutex_enter(&ill->ill_lock); 13720 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13721 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13722 ill->ill_ipif_dup_count--; 13723 was_dup = B_TRUE; 13724 } 13725 mutex_exit(&ill->ill_lock); 13726 } 13727 if (ipif->ipif_recovery_id != 0) 13728 (void) untimeout(ipif->ipif_recovery_id); 13729 ipif->ipif_recovery_id = 0; 13730 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13731 ipif->ipif_addr_ready = 1; 13732 return (0); 13733 } 13734 /* NDP will set the ipif_addr_ready flag when it's ready */ 13735 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13736 return (0); 13737 13738 if (ill->ill_isv6) { 13739 /* 13740 * External resolver for IPv6 13741 */ 13742 ASSERT(res_act == Res_act_initial); 13743 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13744 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13745 area_p = (uchar_t *)&ip6_area_template; 13746 ared_p = (uchar_t *)&ip6_ared_template; 13747 } 13748 } else { 13749 /* 13750 * IPv4 arp case. If the ARP stream has already started 13751 * closing, fail this request for ARP bringup. Else 13752 * record the fact that an ARP bringup is pending. 13753 */ 13754 mutex_enter(&ill->ill_lock); 13755 if (ill->ill_arp_closing) { 13756 mutex_exit(&ill->ill_lock); 13757 err = EINVAL; 13758 goto failed; 13759 } else { 13760 if (ill->ill_ipif_up_count == 0 && 13761 ill->ill_ipif_dup_count == 0 && !was_dup) 13762 ill->ill_arp_bringup_pending = 1; 13763 mutex_exit(&ill->ill_lock); 13764 } 13765 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13766 addr = (caddr_t)&ipif->ipif_lcl_addr; 13767 area_p = (uchar_t *)&ip_area_template; 13768 ared_p = (uchar_t *)&ip_ared_template; 13769 } 13770 } 13771 13772 /* 13773 * Add an entry for the local address in ARP only if it 13774 * is not UNNUMBERED and the address is not INADDR_ANY. 13775 */ 13776 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13777 area_t *area; 13778 13779 /* Now ask ARP to publish our address. */ 13780 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13781 if (arp_add_mp == NULL) 13782 goto failed; 13783 area = (area_t *)arp_add_mp->b_rptr; 13784 if (res_act != Res_act_initial) { 13785 /* 13786 * Copy the new hardware address and length into 13787 * arp_add_mp to be sent to ARP. 13788 */ 13789 area->area_hw_addr_length = ill->ill_phys_addr_length; 13790 bcopy(ill->ill_phys_addr, 13791 ((char *)area + area->area_hw_addr_offset), 13792 area->area_hw_addr_length); 13793 } 13794 13795 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13796 ACE_F_MYADDR; 13797 13798 if (res_act == Res_act_defend) { 13799 area->area_flags |= ACE_F_DEFEND; 13800 /* 13801 * If we're just defending our address now, then 13802 * there's no need to set up ARP multicast mappings. 13803 * The publish command is enough. 13804 */ 13805 goto done; 13806 } 13807 13808 if (res_act != Res_act_initial) 13809 goto arp_setup_multicast; 13810 13811 /* 13812 * Allocate an ARP deletion message so we know we can tell ARP 13813 * when the interface goes down. 13814 */ 13815 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13816 if (arp_del_mp == NULL) 13817 goto failed; 13818 13819 } else { 13820 if (res_act != Res_act_initial) 13821 goto done; 13822 } 13823 /* 13824 * Need to bring up ARP or setup multicast mapping only 13825 * when the first interface is coming UP. 13826 */ 13827 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13828 was_dup) { 13829 goto done; 13830 } 13831 13832 /* 13833 * Allocate an ARP down message (to be saved) and an ARP up 13834 * message. 13835 */ 13836 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13837 if (arp_down_mp == NULL) 13838 goto failed; 13839 13840 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13841 if (arp_up_mp == NULL) 13842 goto failed; 13843 13844 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13845 goto done; 13846 13847 arp_setup_multicast: 13848 /* 13849 * Setup the multicast mappings. This function initializes 13850 * ill_arp_del_mapping_mp also. This does not need to be done for 13851 * IPv6. 13852 */ 13853 if (!ill->ill_isv6) { 13854 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13855 if (err != 0) 13856 goto failed; 13857 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13858 ASSERT(arp_add_mapping_mp != NULL); 13859 } 13860 13861 done: 13862 if (arp_del_mp != NULL) { 13863 ASSERT(ipif->ipif_arp_del_mp == NULL); 13864 ipif->ipif_arp_del_mp = arp_del_mp; 13865 } 13866 if (arp_down_mp != NULL) { 13867 ASSERT(ill->ill_arp_down_mp == NULL); 13868 ill->ill_arp_down_mp = arp_down_mp; 13869 } 13870 if (arp_del_mapping_mp != NULL) { 13871 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13872 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13873 } 13874 if (arp_up_mp != NULL) { 13875 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13876 ill->ill_name, ipif->ipif_id)); 13877 putnext(ill->ill_rq, arp_up_mp); 13878 } 13879 if (arp_add_mp != NULL) { 13880 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13881 ill->ill_name, ipif->ipif_id)); 13882 /* 13883 * If it's an extended ARP implementation, then we'll wait to 13884 * hear that DAD has finished before using the interface. 13885 */ 13886 if (!ill->ill_arp_extend) 13887 ipif->ipif_addr_ready = 1; 13888 putnext(ill->ill_rq, arp_add_mp); 13889 } else { 13890 ipif->ipif_addr_ready = 1; 13891 } 13892 if (arp_add_mapping_mp != NULL) { 13893 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13894 ill->ill_name, ipif->ipif_id)); 13895 putnext(ill->ill_rq, arp_add_mapping_mp); 13896 } 13897 if (res_act != Res_act_initial) 13898 return (0); 13899 13900 if (ill->ill_flags & ILLF_NOARP) 13901 err = ill_arp_off(ill); 13902 else 13903 err = ill_arp_on(ill); 13904 if (err != 0) { 13905 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13906 freemsg(ipif->ipif_arp_del_mp); 13907 freemsg(ill->ill_arp_down_mp); 13908 freemsg(ill->ill_arp_del_mapping_mp); 13909 ipif->ipif_arp_del_mp = NULL; 13910 ill->ill_arp_down_mp = NULL; 13911 ill->ill_arp_del_mapping_mp = NULL; 13912 return (err); 13913 } 13914 return ((ill->ill_ipif_up_count != 0 || was_dup || 13915 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13916 13917 failed: 13918 ip1dbg(("ipif_resolver_up: FAILED\n")); 13919 freemsg(arp_add_mp); 13920 freemsg(arp_del_mp); 13921 freemsg(arp_add_mapping_mp); 13922 freemsg(arp_up_mp); 13923 freemsg(arp_down_mp); 13924 ill->ill_arp_bringup_pending = 0; 13925 return (err); 13926 } 13927 13928 /* 13929 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13930 * just gone back up. 13931 */ 13932 static void 13933 ipif_arp_start_dad(ipif_t *ipif) 13934 { 13935 ill_t *ill = ipif->ipif_ill; 13936 mblk_t *arp_add_mp; 13937 area_t *area; 13938 13939 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13940 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13941 ipif->ipif_lcl_addr == INADDR_ANY || 13942 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13943 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13944 /* 13945 * If we can't contact ARP for some reason, that's not really a 13946 * problem. Just send out the routing socket notification that 13947 * DAD completion would have done, and continue. 13948 */ 13949 ipif_mask_reply(ipif); 13950 ip_rts_ifmsg(ipif); 13951 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13952 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13953 ipif->ipif_addr_ready = 1; 13954 return; 13955 } 13956 13957 /* Setting the 'unverified' flag restarts DAD */ 13958 area = (area_t *)arp_add_mp->b_rptr; 13959 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13960 ACE_F_UNVERIFIED; 13961 putnext(ill->ill_rq, arp_add_mp); 13962 } 13963 13964 static void 13965 ipif_ndp_start_dad(ipif_t *ipif) 13966 { 13967 nce_t *nce; 13968 13969 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13970 if (nce == NULL) 13971 return; 13972 13973 if (!ndp_restart_dad(nce)) { 13974 /* 13975 * If we can't restart DAD for some reason, that's not really a 13976 * problem. Just send out the routing socket notification that 13977 * DAD completion would have done, and continue. 13978 */ 13979 ip_rts_ifmsg(ipif); 13980 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13981 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13982 ipif->ipif_addr_ready = 1; 13983 } 13984 NCE_REFRELE(nce); 13985 } 13986 13987 /* 13988 * Restart duplicate address detection on all interfaces on the given ill. 13989 * 13990 * This is called when an interface transitions from down to up 13991 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13992 * 13993 * Note that since the underlying physical link has transitioned, we must cause 13994 * at least one routing socket message to be sent here, either via DAD 13995 * completion or just by default on the first ipif. (If we don't do this, then 13996 * in.mpathd will see long delays when doing link-based failure recovery.) 13997 */ 13998 void 13999 ill_restart_dad(ill_t *ill, boolean_t went_up) 14000 { 14001 ipif_t *ipif; 14002 14003 if (ill == NULL) 14004 return; 14005 14006 /* 14007 * If layer two doesn't support duplicate address detection, then just 14008 * send the routing socket message now and be done with it. 14009 */ 14010 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14011 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14012 ip_rts_ifmsg(ill->ill_ipif); 14013 return; 14014 } 14015 14016 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14017 if (went_up) { 14018 if (ipif->ipif_flags & IPIF_UP) { 14019 if (ill->ill_isv6) 14020 ipif_ndp_start_dad(ipif); 14021 else 14022 ipif_arp_start_dad(ipif); 14023 } else if (ill->ill_isv6 && 14024 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14025 /* 14026 * For IPv4, the ARP module itself will 14027 * automatically start the DAD process when it 14028 * sees DL_NOTE_LINK_UP. We respond to the 14029 * AR_CN_READY at the completion of that task. 14030 * For IPv6, we must kick off the bring-up 14031 * process now. 14032 */ 14033 ndp_do_recovery(ipif); 14034 } else { 14035 /* 14036 * Unfortunately, the first ipif is "special" 14037 * and represents the underlying ill in the 14038 * routing socket messages. Thus, when this 14039 * one ipif is down, we must still notify so 14040 * that the user knows the IFF_RUNNING status 14041 * change. (If the first ipif is up, then 14042 * we'll handle eventual routing socket 14043 * notification via DAD completion.) 14044 */ 14045 if (ipif == ill->ill_ipif) 14046 ip_rts_ifmsg(ill->ill_ipif); 14047 } 14048 } else { 14049 /* 14050 * After link down, we'll need to send a new routing 14051 * message when the link comes back, so clear 14052 * ipif_addr_ready. 14053 */ 14054 ipif->ipif_addr_ready = 0; 14055 } 14056 } 14057 14058 /* 14059 * If we've torn down links, then notify the user right away. 14060 */ 14061 if (!went_up) 14062 ip_rts_ifmsg(ill->ill_ipif); 14063 } 14064 14065 /* 14066 * Wakeup all threads waiting to enter the ipsq, and sleeping 14067 * on any of the ills in this ipsq. The ill_lock of the ill 14068 * must be held so that waiters don't miss wakeups 14069 */ 14070 static void 14071 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14072 { 14073 phyint_t *phyint; 14074 14075 phyint = ipsq->ipsq_phyint_list; 14076 while (phyint != NULL) { 14077 if (phyint->phyint_illv4) { 14078 if (!caller_holds_lock) 14079 mutex_enter(&phyint->phyint_illv4->ill_lock); 14080 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14081 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14082 if (!caller_holds_lock) 14083 mutex_exit(&phyint->phyint_illv4->ill_lock); 14084 } 14085 if (phyint->phyint_illv6) { 14086 if (!caller_holds_lock) 14087 mutex_enter(&phyint->phyint_illv6->ill_lock); 14088 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14089 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14090 if (!caller_holds_lock) 14091 mutex_exit(&phyint->phyint_illv6->ill_lock); 14092 } 14093 phyint = phyint->phyint_ipsq_next; 14094 } 14095 } 14096 14097 static ipsq_t * 14098 ipsq_create(char *groupname, ip_stack_t *ipst) 14099 { 14100 ipsq_t *ipsq; 14101 14102 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14103 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14104 if (ipsq == NULL) { 14105 return (NULL); 14106 } 14107 14108 if (groupname != NULL) 14109 (void) strcpy(ipsq->ipsq_name, groupname); 14110 else 14111 ipsq->ipsq_name[0] = '\0'; 14112 14113 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14114 ipsq->ipsq_flags |= IPSQ_GROUP; 14115 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14116 ipst->ips_ipsq_g_head = ipsq; 14117 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14118 return (ipsq); 14119 } 14120 14121 /* 14122 * Return an ipsq correspoding to the groupname. If 'create' is true 14123 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14124 * uniquely with an IPMP group. However during IPMP groupname operations, 14125 * multiple IPMP groups may be associated with a single ipsq. But no 14126 * IPMP group can be associated with more than 1 ipsq at any time. 14127 * For example 14128 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14129 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14130 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14131 * 14132 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14133 * status shown below during the execution of the above command. 14134 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14135 * 14136 * After the completion of the above groupname command we return to the stable 14137 * state shown below. 14138 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14139 * hme4 mpk17-85 ipsq2 mpk17-85 1 14140 * 14141 * Because of the above, we don't search based on the ipsq_name since that 14142 * would miss the correct ipsq during certain windows as shown above. 14143 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14144 * natural state. 14145 */ 14146 static ipsq_t * 14147 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14148 ip_stack_t *ipst) 14149 { 14150 ipsq_t *ipsq; 14151 int group_len; 14152 phyint_t *phyint; 14153 14154 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14155 14156 group_len = strlen(groupname); 14157 ASSERT(group_len != 0); 14158 group_len++; 14159 14160 for (ipsq = ipst->ips_ipsq_g_head; 14161 ipsq != NULL; 14162 ipsq = ipsq->ipsq_next) { 14163 /* 14164 * When an ipsq is being split, and ill_split_ipsq 14165 * calls this function, we exclude it from being considered. 14166 */ 14167 if (ipsq == exclude_ipsq) 14168 continue; 14169 14170 /* 14171 * Compare against the ipsq_name. The groupname change happens 14172 * in 2 phases. The 1st phase merges the from group into 14173 * the to group's ipsq, by calling ill_merge_groups and restarts 14174 * the ioctl. The 2nd phase then locates the ipsq again thru 14175 * ipsq_name. At this point the phyint_groupname has not been 14176 * updated. 14177 */ 14178 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14179 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14180 /* 14181 * Verify that an ipmp groupname is exactly 14182 * part of 1 ipsq and is not found in any other 14183 * ipsq. 14184 */ 14185 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14186 NULL); 14187 return (ipsq); 14188 } 14189 14190 /* 14191 * Comparison against ipsq_name alone is not sufficient. 14192 * In the case when groups are currently being 14193 * merged, the ipsq could hold other IPMP groups temporarily. 14194 * so we walk the phyint list and compare against the 14195 * phyint_groupname as well. 14196 */ 14197 phyint = ipsq->ipsq_phyint_list; 14198 while (phyint != NULL) { 14199 if ((group_len == phyint->phyint_groupname_len) && 14200 (bcmp(phyint->phyint_groupname, groupname, 14201 group_len) == 0)) { 14202 /* 14203 * Verify that an ipmp groupname is exactly 14204 * part of 1 ipsq and is not found in any other 14205 * ipsq. 14206 */ 14207 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14208 ipst) == NULL); 14209 return (ipsq); 14210 } 14211 phyint = phyint->phyint_ipsq_next; 14212 } 14213 } 14214 if (create) 14215 ipsq = ipsq_create(groupname, ipst); 14216 return (ipsq); 14217 } 14218 14219 static void 14220 ipsq_delete(ipsq_t *ipsq) 14221 { 14222 ipsq_t *nipsq; 14223 ipsq_t *pipsq = NULL; 14224 ip_stack_t *ipst = ipsq->ipsq_ipst; 14225 14226 /* 14227 * We don't hold the ipsq lock, but we are sure no new 14228 * messages can land up, since the ipsq_refs is zero. 14229 * i.e. this ipsq is unnamed and no phyint or phyint group 14230 * is associated with this ipsq. (Lookups are based on ill_name 14231 * or phyint_groupname) 14232 */ 14233 ASSERT(ipsq->ipsq_refs == 0); 14234 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14235 ASSERT(ipsq->ipsq_pending_mp == NULL); 14236 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14237 /* 14238 * This is not the ipsq of an IPMP group. 14239 */ 14240 ipsq->ipsq_ipst = NULL; 14241 kmem_free(ipsq, sizeof (ipsq_t)); 14242 return; 14243 } 14244 14245 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14246 14247 /* 14248 * Locate the ipsq before we can remove it from 14249 * the singly linked list of ipsq's. 14250 */ 14251 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14252 nipsq = nipsq->ipsq_next) { 14253 if (nipsq == ipsq) { 14254 break; 14255 } 14256 pipsq = nipsq; 14257 } 14258 14259 ASSERT(nipsq == ipsq); 14260 14261 /* unlink ipsq from the list */ 14262 if (pipsq != NULL) 14263 pipsq->ipsq_next = ipsq->ipsq_next; 14264 else 14265 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14266 ipsq->ipsq_ipst = NULL; 14267 kmem_free(ipsq, sizeof (ipsq_t)); 14268 rw_exit(&ipst->ips_ill_g_lock); 14269 } 14270 14271 static void 14272 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14273 queue_t *q) 14274 { 14275 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14276 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14277 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14278 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14279 ASSERT(current_mp != NULL); 14280 14281 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14282 NEW_OP, NULL); 14283 14284 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14285 new_ipsq->ipsq_xopq_mphead != NULL); 14286 14287 /* 14288 * move from old ipsq to the new ipsq. 14289 */ 14290 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14291 if (old_ipsq->ipsq_xopq_mphead != NULL) 14292 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14293 14294 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14295 } 14296 14297 void 14298 ill_group_cleanup(ill_t *ill) 14299 { 14300 ill_t *ill_v4; 14301 ill_t *ill_v6; 14302 ipif_t *ipif; 14303 14304 ill_v4 = ill->ill_phyint->phyint_illv4; 14305 ill_v6 = ill->ill_phyint->phyint_illv6; 14306 14307 if (ill_v4 != NULL) { 14308 mutex_enter(&ill_v4->ill_lock); 14309 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14310 ipif = ipif->ipif_next) { 14311 IPIF_UNMARK_MOVING(ipif); 14312 } 14313 ill_v4->ill_up_ipifs = B_FALSE; 14314 mutex_exit(&ill_v4->ill_lock); 14315 } 14316 14317 if (ill_v6 != NULL) { 14318 mutex_enter(&ill_v6->ill_lock); 14319 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14320 ipif = ipif->ipif_next) { 14321 IPIF_UNMARK_MOVING(ipif); 14322 } 14323 ill_v6->ill_up_ipifs = B_FALSE; 14324 mutex_exit(&ill_v6->ill_lock); 14325 } 14326 } 14327 /* 14328 * This function is called when an ill has had a change in its group status 14329 * to bring up all the ipifs that were up before the change. 14330 */ 14331 int 14332 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14333 { 14334 ipif_t *ipif; 14335 ill_t *ill_v4; 14336 ill_t *ill_v6; 14337 ill_t *from_ill; 14338 int err = 0; 14339 14340 14341 ASSERT(IAM_WRITER_ILL(ill)); 14342 14343 /* 14344 * Except for ipif_state_flags and ill_state_flags the other 14345 * fields of the ipif/ill that are modified below are protected 14346 * implicitly since we are a writer. We would have tried to down 14347 * even an ipif that was already down, in ill_down_ipifs. So we 14348 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14349 */ 14350 ill_v4 = ill->ill_phyint->phyint_illv4; 14351 ill_v6 = ill->ill_phyint->phyint_illv6; 14352 if (ill_v4 != NULL) { 14353 ill_v4->ill_up_ipifs = B_TRUE; 14354 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14355 ipif = ipif->ipif_next) { 14356 mutex_enter(&ill_v4->ill_lock); 14357 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14358 IPIF_UNMARK_MOVING(ipif); 14359 mutex_exit(&ill_v4->ill_lock); 14360 if (ipif->ipif_was_up) { 14361 if (!(ipif->ipif_flags & IPIF_UP)) 14362 err = ipif_up(ipif, q, mp); 14363 ipif->ipif_was_up = B_FALSE; 14364 if (err != 0) { 14365 /* 14366 * Can there be any other error ? 14367 */ 14368 ASSERT(err == EINPROGRESS); 14369 return (err); 14370 } 14371 } 14372 } 14373 mutex_enter(&ill_v4->ill_lock); 14374 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14375 mutex_exit(&ill_v4->ill_lock); 14376 ill_v4->ill_up_ipifs = B_FALSE; 14377 if (ill_v4->ill_move_in_progress) { 14378 ASSERT(ill_v4->ill_move_peer != NULL); 14379 ill_v4->ill_move_in_progress = B_FALSE; 14380 from_ill = ill_v4->ill_move_peer; 14381 from_ill->ill_move_in_progress = B_FALSE; 14382 from_ill->ill_move_peer = NULL; 14383 mutex_enter(&from_ill->ill_lock); 14384 from_ill->ill_state_flags &= ~ILL_CHANGING; 14385 mutex_exit(&from_ill->ill_lock); 14386 if (ill_v6 == NULL) { 14387 if (from_ill->ill_phyint->phyint_flags & 14388 PHYI_STANDBY) { 14389 phyint_inactive(from_ill->ill_phyint); 14390 } 14391 if (ill_v4->ill_phyint->phyint_flags & 14392 PHYI_STANDBY) { 14393 phyint_inactive(ill_v4->ill_phyint); 14394 } 14395 } 14396 ill_v4->ill_move_peer = NULL; 14397 } 14398 } 14399 14400 if (ill_v6 != NULL) { 14401 ill_v6->ill_up_ipifs = B_TRUE; 14402 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14403 ipif = ipif->ipif_next) { 14404 mutex_enter(&ill_v6->ill_lock); 14405 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14406 IPIF_UNMARK_MOVING(ipif); 14407 mutex_exit(&ill_v6->ill_lock); 14408 if (ipif->ipif_was_up) { 14409 if (!(ipif->ipif_flags & IPIF_UP)) 14410 err = ipif_up(ipif, q, mp); 14411 ipif->ipif_was_up = B_FALSE; 14412 if (err != 0) { 14413 /* 14414 * Can there be any other error ? 14415 */ 14416 ASSERT(err == EINPROGRESS); 14417 return (err); 14418 } 14419 } 14420 } 14421 mutex_enter(&ill_v6->ill_lock); 14422 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14423 mutex_exit(&ill_v6->ill_lock); 14424 ill_v6->ill_up_ipifs = B_FALSE; 14425 if (ill_v6->ill_move_in_progress) { 14426 ASSERT(ill_v6->ill_move_peer != NULL); 14427 ill_v6->ill_move_in_progress = B_FALSE; 14428 from_ill = ill_v6->ill_move_peer; 14429 from_ill->ill_move_in_progress = B_FALSE; 14430 from_ill->ill_move_peer = NULL; 14431 mutex_enter(&from_ill->ill_lock); 14432 from_ill->ill_state_flags &= ~ILL_CHANGING; 14433 mutex_exit(&from_ill->ill_lock); 14434 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14435 phyint_inactive(from_ill->ill_phyint); 14436 } 14437 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14438 phyint_inactive(ill_v6->ill_phyint); 14439 } 14440 ill_v6->ill_move_peer = NULL; 14441 } 14442 } 14443 return (0); 14444 } 14445 14446 /* 14447 * bring down all the approriate ipifs. 14448 */ 14449 /* ARGSUSED */ 14450 static void 14451 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14452 { 14453 ipif_t *ipif; 14454 14455 ASSERT(IAM_WRITER_ILL(ill)); 14456 14457 /* 14458 * Except for ipif_state_flags the other fields of the ipif/ill that 14459 * are modified below are protected implicitly since we are a writer 14460 */ 14461 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14462 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14463 continue; 14464 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14465 /* 14466 * We go through the ipif_down logic even if the ipif 14467 * is already down, since routes can be added based 14468 * on down ipifs. Going through ipif_down once again 14469 * will delete any IREs created based on these routes. 14470 */ 14471 if (ipif->ipif_flags & IPIF_UP) 14472 ipif->ipif_was_up = B_TRUE; 14473 /* 14474 * If called with chk_nofailover true ipif is moving. 14475 */ 14476 mutex_enter(&ill->ill_lock); 14477 if (chk_nofailover) { 14478 ipif->ipif_state_flags |= 14479 IPIF_MOVING | IPIF_CHANGING; 14480 } else { 14481 ipif->ipif_state_flags |= IPIF_CHANGING; 14482 } 14483 mutex_exit(&ill->ill_lock); 14484 /* 14485 * Need to re-create net/subnet bcast ires if 14486 * they are dependent on ipif. 14487 */ 14488 if (!ipif->ipif_isv6) 14489 ipif_check_bcast_ires(ipif); 14490 (void) ipif_logical_down(ipif, NULL, NULL); 14491 ipif_non_duplicate(ipif); 14492 ipif_down_tail(ipif); 14493 } 14494 } 14495 } 14496 14497 #define IPSQ_INC_REF(ipsq, ipst) { \ 14498 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14499 (ipsq)->ipsq_refs++; \ 14500 } 14501 14502 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14503 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14504 (ipsq)->ipsq_refs--; \ 14505 if ((ipsq)->ipsq_refs == 0) \ 14506 (ipsq)->ipsq_name[0] = '\0'; \ 14507 } 14508 14509 /* 14510 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14511 * new_ipsq. 14512 */ 14513 static void 14514 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14515 { 14516 phyint_t *phyint; 14517 phyint_t *next_phyint; 14518 14519 /* 14520 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14521 * writer and the ill_lock of the ill in question. Also the dest 14522 * ipsq can't vanish while we hold the ill_g_lock as writer. 14523 */ 14524 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14525 14526 phyint = cur_ipsq->ipsq_phyint_list; 14527 cur_ipsq->ipsq_phyint_list = NULL; 14528 while (phyint != NULL) { 14529 next_phyint = phyint->phyint_ipsq_next; 14530 IPSQ_DEC_REF(cur_ipsq, ipst); 14531 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14532 new_ipsq->ipsq_phyint_list = phyint; 14533 IPSQ_INC_REF(new_ipsq, ipst); 14534 phyint->phyint_ipsq = new_ipsq; 14535 phyint = next_phyint; 14536 } 14537 } 14538 14539 #define SPLIT_SUCCESS 0 14540 #define SPLIT_NOT_NEEDED 1 14541 #define SPLIT_FAILED 2 14542 14543 int 14544 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14545 ip_stack_t *ipst) 14546 { 14547 ipsq_t *newipsq = NULL; 14548 14549 /* 14550 * Assertions denote pre-requisites for changing the ipsq of 14551 * a phyint 14552 */ 14553 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14554 /* 14555 * <ill-phyint> assocs can't change while ill_g_lock 14556 * is held as writer. See ill_phyint_reinit() 14557 */ 14558 ASSERT(phyint->phyint_illv4 == NULL || 14559 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14560 ASSERT(phyint->phyint_illv6 == NULL || 14561 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14562 14563 if ((phyint->phyint_groupname_len != 14564 (strlen(cur_ipsq->ipsq_name) + 1) || 14565 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14566 phyint->phyint_groupname_len) != 0)) { 14567 /* 14568 * Once we fail in creating a new ipsq due to memory shortage, 14569 * don't attempt to create new ipsq again, based on another 14570 * phyint, since we want all phyints belonging to an IPMP group 14571 * to be in the same ipsq even in the event of mem alloc fails. 14572 */ 14573 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14574 cur_ipsq, ipst); 14575 if (newipsq == NULL) { 14576 /* Memory allocation failure */ 14577 return (SPLIT_FAILED); 14578 } else { 14579 /* ipsq_refs protected by ill_g_lock (writer) */ 14580 IPSQ_DEC_REF(cur_ipsq, ipst); 14581 phyint->phyint_ipsq = newipsq; 14582 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14583 newipsq->ipsq_phyint_list = phyint; 14584 IPSQ_INC_REF(newipsq, ipst); 14585 return (SPLIT_SUCCESS); 14586 } 14587 } 14588 return (SPLIT_NOT_NEEDED); 14589 } 14590 14591 /* 14592 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14593 * to do this split 14594 */ 14595 static int 14596 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14597 { 14598 ipsq_t *newipsq; 14599 14600 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14601 /* 14602 * <ill-phyint> assocs can't change while ill_g_lock 14603 * is held as writer. See ill_phyint_reinit() 14604 */ 14605 14606 ASSERT(phyint->phyint_illv4 == NULL || 14607 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14608 ASSERT(phyint->phyint_illv6 == NULL || 14609 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14610 14611 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14612 phyint->phyint_illv4: phyint->phyint_illv6)) { 14613 /* 14614 * ipsq_init failed due to no memory 14615 * caller will use the same ipsq 14616 */ 14617 return (SPLIT_FAILED); 14618 } 14619 14620 /* ipsq_ref is protected by ill_g_lock (writer) */ 14621 IPSQ_DEC_REF(cur_ipsq, ipst); 14622 14623 /* 14624 * This is a new ipsq that is unknown to the world. 14625 * So we don't need to hold ipsq_lock, 14626 */ 14627 newipsq = phyint->phyint_ipsq; 14628 newipsq->ipsq_writer = NULL; 14629 newipsq->ipsq_reentry_cnt--; 14630 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14631 #ifdef DEBUG 14632 newipsq->ipsq_depth = 0; 14633 #endif 14634 14635 return (SPLIT_SUCCESS); 14636 } 14637 14638 /* 14639 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14640 * ipsq's representing their individual groups or themselves. Return 14641 * whether split needs to be retried again later. 14642 */ 14643 static boolean_t 14644 ill_split_ipsq(ipsq_t *cur_ipsq) 14645 { 14646 phyint_t *phyint; 14647 phyint_t *next_phyint; 14648 int error; 14649 boolean_t need_retry = B_FALSE; 14650 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14651 14652 phyint = cur_ipsq->ipsq_phyint_list; 14653 cur_ipsq->ipsq_phyint_list = NULL; 14654 while (phyint != NULL) { 14655 next_phyint = phyint->phyint_ipsq_next; 14656 /* 14657 * 'created' will tell us whether the callee actually 14658 * created an ipsq. Lack of memory may force the callee 14659 * to return without creating an ipsq. 14660 */ 14661 if (phyint->phyint_groupname == NULL) { 14662 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14663 } else { 14664 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14665 need_retry, ipst); 14666 } 14667 14668 switch (error) { 14669 case SPLIT_FAILED: 14670 need_retry = B_TRUE; 14671 /* FALLTHRU */ 14672 case SPLIT_NOT_NEEDED: 14673 /* 14674 * Keep it on the list. 14675 */ 14676 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14677 cur_ipsq->ipsq_phyint_list = phyint; 14678 break; 14679 case SPLIT_SUCCESS: 14680 break; 14681 default: 14682 ASSERT(0); 14683 } 14684 14685 phyint = next_phyint; 14686 } 14687 return (need_retry); 14688 } 14689 14690 /* 14691 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14692 * and return the ills in the list. This list will be 14693 * needed to unlock all the ills later on by the caller. 14694 * The <ill-ipsq> associations could change between the 14695 * lock and unlock. Hence the unlock can't traverse the 14696 * ipsq to get the list of ills. 14697 */ 14698 static int 14699 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14700 { 14701 int cnt = 0; 14702 phyint_t *phyint; 14703 ip_stack_t *ipst = ipsq->ipsq_ipst; 14704 14705 /* 14706 * The caller holds ill_g_lock to ensure that the ill memberships 14707 * of the ipsq don't change 14708 */ 14709 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14710 14711 phyint = ipsq->ipsq_phyint_list; 14712 while (phyint != NULL) { 14713 if (phyint->phyint_illv4 != NULL) { 14714 ASSERT(cnt < list_max); 14715 list[cnt++] = phyint->phyint_illv4; 14716 } 14717 if (phyint->phyint_illv6 != NULL) { 14718 ASSERT(cnt < list_max); 14719 list[cnt++] = phyint->phyint_illv6; 14720 } 14721 phyint = phyint->phyint_ipsq_next; 14722 } 14723 ill_lock_ills(list, cnt); 14724 return (cnt); 14725 } 14726 14727 void 14728 ill_lock_ills(ill_t **list, int cnt) 14729 { 14730 int i; 14731 14732 if (cnt > 1) { 14733 boolean_t try_again; 14734 do { 14735 try_again = B_FALSE; 14736 for (i = 0; i < cnt - 1; i++) { 14737 if (list[i] < list[i + 1]) { 14738 ill_t *tmp; 14739 14740 /* swap the elements */ 14741 tmp = list[i]; 14742 list[i] = list[i + 1]; 14743 list[i + 1] = tmp; 14744 try_again = B_TRUE; 14745 } 14746 } 14747 } while (try_again); 14748 } 14749 14750 for (i = 0; i < cnt; i++) { 14751 if (i == 0) { 14752 if (list[i] != NULL) 14753 mutex_enter(&list[i]->ill_lock); 14754 else 14755 return; 14756 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14757 mutex_enter(&list[i]->ill_lock); 14758 } 14759 } 14760 } 14761 14762 void 14763 ill_unlock_ills(ill_t **list, int cnt) 14764 { 14765 int i; 14766 14767 for (i = 0; i < cnt; i++) { 14768 if ((i == 0) && (list[i] != NULL)) { 14769 mutex_exit(&list[i]->ill_lock); 14770 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14771 mutex_exit(&list[i]->ill_lock); 14772 } 14773 } 14774 } 14775 14776 /* 14777 * Merge all the ills from 1 ipsq group into another ipsq group. 14778 * The source ipsq group is specified by the ipsq associated with 14779 * 'from_ill'. The destination ipsq group is specified by the ipsq 14780 * associated with 'to_ill' or 'groupname' respectively. 14781 * Note that ipsq itself does not have a reference count mechanism 14782 * and functions don't look up an ipsq and pass it around. Instead 14783 * functions pass around an ill or groupname, and the ipsq is looked 14784 * up from the ill or groupname and the required operation performed 14785 * atomically with the lookup on the ipsq. 14786 */ 14787 static int 14788 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14789 queue_t *q) 14790 { 14791 ipsq_t *old_ipsq; 14792 ipsq_t *new_ipsq; 14793 ill_t **ill_list; 14794 int cnt; 14795 size_t ill_list_size; 14796 boolean_t became_writer_on_new_sq = B_FALSE; 14797 ip_stack_t *ipst = from_ill->ill_ipst; 14798 14799 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14800 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14801 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14802 14803 /* 14804 * Need to hold ill_g_lock as writer and also the ill_lock to 14805 * change the <ill-ipsq> assoc of an ill. Need to hold the 14806 * ipsq_lock to prevent new messages from landing on an ipsq. 14807 */ 14808 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14809 14810 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14811 if (groupname != NULL) 14812 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14813 else { 14814 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14815 } 14816 14817 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14818 14819 /* 14820 * both groups are on the same ipsq. 14821 */ 14822 if (old_ipsq == new_ipsq) { 14823 rw_exit(&ipst->ips_ill_g_lock); 14824 return (0); 14825 } 14826 14827 cnt = old_ipsq->ipsq_refs << 1; 14828 ill_list_size = cnt * sizeof (ill_t *); 14829 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14830 if (ill_list == NULL) { 14831 rw_exit(&ipst->ips_ill_g_lock); 14832 return (ENOMEM); 14833 } 14834 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14835 14836 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14837 mutex_enter(&new_ipsq->ipsq_lock); 14838 if ((new_ipsq->ipsq_writer == NULL && 14839 new_ipsq->ipsq_current_ipif == NULL) || 14840 (new_ipsq->ipsq_writer == curthread)) { 14841 new_ipsq->ipsq_writer = curthread; 14842 new_ipsq->ipsq_reentry_cnt++; 14843 became_writer_on_new_sq = B_TRUE; 14844 } 14845 14846 /* 14847 * We are holding ill_g_lock as writer and all the ill locks of 14848 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14849 * message can land up on the old ipsq even though we don't hold the 14850 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14851 */ 14852 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14853 14854 /* 14855 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14856 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14857 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14858 */ 14859 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14860 14861 /* 14862 * Mark the new ipsq as needing a split since it is currently 14863 * being shared by more than 1 IPMP group. The split will 14864 * occur at the end of ipsq_exit 14865 */ 14866 new_ipsq->ipsq_split = B_TRUE; 14867 14868 /* Now release all the locks */ 14869 mutex_exit(&new_ipsq->ipsq_lock); 14870 ill_unlock_ills(ill_list, cnt); 14871 rw_exit(&ipst->ips_ill_g_lock); 14872 14873 kmem_free(ill_list, ill_list_size); 14874 14875 /* 14876 * If we succeeded in becoming writer on the new ipsq, then 14877 * drain the new ipsq and start processing all enqueued messages 14878 * including the current ioctl we are processing which is either 14879 * a set groupname or failover/failback. 14880 */ 14881 if (became_writer_on_new_sq) 14882 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14883 14884 /* 14885 * syncq has been changed and all the messages have been moved. 14886 */ 14887 mutex_enter(&old_ipsq->ipsq_lock); 14888 old_ipsq->ipsq_current_ipif = NULL; 14889 old_ipsq->ipsq_current_ioctl = 0; 14890 mutex_exit(&old_ipsq->ipsq_lock); 14891 return (EINPROGRESS); 14892 } 14893 14894 /* 14895 * Delete and add the loopback copy and non-loopback copy of 14896 * the BROADCAST ire corresponding to ill and addr. Used to 14897 * group broadcast ires together when ill becomes part of 14898 * a group. 14899 * 14900 * This function is also called when ill is leaving the group 14901 * so that the ires belonging to the group gets re-grouped. 14902 */ 14903 static void 14904 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14905 { 14906 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14907 ire_t **ire_ptpn = &ire_head; 14908 ip_stack_t *ipst = ill->ill_ipst; 14909 14910 /* 14911 * The loopback and non-loopback IREs are inserted in the order in which 14912 * they're found, on the basis that they are correctly ordered (loopback 14913 * first). 14914 */ 14915 for (;;) { 14916 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14917 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14918 if (ire == NULL) 14919 break; 14920 14921 /* 14922 * we are passing in KM_SLEEP because it is not easy to 14923 * go back to a sane state in case of memory failure. 14924 */ 14925 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14926 ASSERT(nire != NULL); 14927 bzero(nire, sizeof (ire_t)); 14928 /* 14929 * Don't use ire_max_frag directly since we don't 14930 * hold on to 'ire' until we add the new ire 'nire' and 14931 * we don't want the new ire to have a dangling reference 14932 * to 'ire'. The ire_max_frag of a broadcast ire must 14933 * be in sync with the ipif_mtu of the associate ipif. 14934 * For eg. this happens as a result of SIOCSLIFNAME, 14935 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14936 * the driver. A change in ire_max_frag triggered as 14937 * as a result of path mtu discovery, or due to an 14938 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14939 * route change -mtu command does not apply to broadcast ires. 14940 * 14941 * XXX We need a recovery strategy here if ire_init fails 14942 */ 14943 if (ire_init(nire, 14944 (uchar_t *)&ire->ire_addr, 14945 (uchar_t *)&ire->ire_mask, 14946 (uchar_t *)&ire->ire_src_addr, 14947 (uchar_t *)&ire->ire_gateway_addr, 14948 ire->ire_stq == NULL ? &ip_loopback_mtu : 14949 &ire->ire_ipif->ipif_mtu, 14950 ire->ire_nce, 14951 ire->ire_rfq, 14952 ire->ire_stq, 14953 ire->ire_type, 14954 ire->ire_ipif, 14955 ire->ire_cmask, 14956 ire->ire_phandle, 14957 ire->ire_ihandle, 14958 ire->ire_flags, 14959 &ire->ire_uinfo, 14960 NULL, 14961 NULL, 14962 ipst) == NULL) { 14963 cmn_err(CE_PANIC, "ire_init() failed"); 14964 } 14965 ire_delete(ire); 14966 ire_refrele(ire); 14967 14968 /* 14969 * The newly created IREs are inserted at the tail of the list 14970 * starting with ire_head. As we've just allocated them no one 14971 * knows about them so it's safe. 14972 */ 14973 *ire_ptpn = nire; 14974 ire_ptpn = &nire->ire_next; 14975 } 14976 14977 for (nire = ire_head; nire != NULL; nire = nire_next) { 14978 int error; 14979 ire_t *oire; 14980 /* unlink the IRE from our list before calling ire_add() */ 14981 nire_next = nire->ire_next; 14982 nire->ire_next = NULL; 14983 14984 /* ire_add adds the ire at the right place in the list */ 14985 oire = nire; 14986 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14987 ASSERT(error == 0); 14988 ASSERT(oire == nire); 14989 ire_refrele(nire); /* Held in ire_add */ 14990 } 14991 } 14992 14993 /* 14994 * This function is usually called when an ill is inserted in 14995 * a group and all the ipifs are already UP. As all the ipifs 14996 * are already UP, the broadcast ires have already been created 14997 * and been inserted. But, ire_add_v4 would not have grouped properly. 14998 * We need to re-group for the benefit of ip_wput_ire which 14999 * expects BROADCAST ires to be grouped properly to avoid sending 15000 * more than one copy of the broadcast packet per group. 15001 * 15002 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15003 * because when ipif_up_done ends up calling this, ires have 15004 * already been added before illgrp_insert i.e before ill_group 15005 * has been initialized. 15006 */ 15007 static void 15008 ill_group_bcast_for_xmit(ill_t *ill) 15009 { 15010 ill_group_t *illgrp; 15011 ipif_t *ipif; 15012 ipaddr_t addr; 15013 ipaddr_t net_mask; 15014 ipaddr_t subnet_netmask; 15015 15016 illgrp = ill->ill_group; 15017 15018 /* 15019 * This function is called even when an ill is deleted from 15020 * the group. Hence, illgrp could be null. 15021 */ 15022 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15023 return; 15024 15025 /* 15026 * Delete all the BROADCAST ires matching this ill and add 15027 * them back. This time, ire_add_v4 should take care of 15028 * grouping them with others because ill is part of the 15029 * group. 15030 */ 15031 ill_bcast_delete_and_add(ill, 0); 15032 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15033 15034 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15035 15036 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15037 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15038 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15039 } else { 15040 net_mask = htonl(IN_CLASSA_NET); 15041 } 15042 addr = net_mask & ipif->ipif_subnet; 15043 ill_bcast_delete_and_add(ill, addr); 15044 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15045 15046 subnet_netmask = ipif->ipif_net_mask; 15047 addr = ipif->ipif_subnet; 15048 ill_bcast_delete_and_add(ill, addr); 15049 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15050 } 15051 } 15052 15053 /* 15054 * This function is called from illgrp_delete when ill is being deleted 15055 * from the group. 15056 * 15057 * As ill is not there in the group anymore, any address belonging 15058 * to this ill should be cleared of IRE_MARK_NORECV. 15059 */ 15060 static void 15061 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15062 { 15063 ire_t *ire; 15064 irb_t *irb; 15065 ip_stack_t *ipst = ill->ill_ipst; 15066 15067 ASSERT(ill->ill_group == NULL); 15068 15069 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15070 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15071 15072 if (ire != NULL) { 15073 /* 15074 * IPMP and plumbing operations are serialized on the ipsq, so 15075 * no one will insert or delete a broadcast ire under our feet. 15076 */ 15077 irb = ire->ire_bucket; 15078 rw_enter(&irb->irb_lock, RW_READER); 15079 ire_refrele(ire); 15080 15081 for (; ire != NULL; ire = ire->ire_next) { 15082 if (ire->ire_addr != addr) 15083 break; 15084 if (ire_to_ill(ire) != ill) 15085 continue; 15086 15087 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15088 ire->ire_marks &= ~IRE_MARK_NORECV; 15089 } 15090 rw_exit(&irb->irb_lock); 15091 } 15092 } 15093 15094 /* 15095 * This function must be called only after the broadcast ires 15096 * have been grouped together. For a given address addr, nominate 15097 * only one of the ires whose interface is not FAILED or OFFLINE. 15098 * 15099 * This is also called when an ipif goes down, so that we can nominate 15100 * a different ire with the same address for receiving. 15101 */ 15102 static void 15103 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15104 { 15105 irb_t *irb; 15106 ire_t *ire; 15107 ire_t *ire1; 15108 ire_t *save_ire; 15109 ire_t **irep = NULL; 15110 boolean_t first = B_TRUE; 15111 ire_t *clear_ire = NULL; 15112 ire_t *start_ire = NULL; 15113 ire_t *new_lb_ire; 15114 ire_t *new_nlb_ire; 15115 boolean_t new_lb_ire_used = B_FALSE; 15116 boolean_t new_nlb_ire_used = B_FALSE; 15117 uint64_t match_flags; 15118 uint64_t phyi_flags; 15119 boolean_t fallback = B_FALSE; 15120 uint_t max_frag; 15121 15122 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15123 NULL, MATCH_IRE_TYPE, ipst); 15124 /* 15125 * We may not be able to find some ires if a previous 15126 * ire_create failed. This happens when an ipif goes 15127 * down and we are unable to create BROADCAST ires due 15128 * to memory failure. Thus, we have to check for NULL 15129 * below. This should handle the case for LOOPBACK, 15130 * POINTOPOINT and interfaces with some POINTOPOINT 15131 * logicals for which there are no BROADCAST ires. 15132 */ 15133 if (ire == NULL) 15134 return; 15135 /* 15136 * Currently IRE_BROADCASTS are deleted when an ipif 15137 * goes down which runs exclusively. Thus, setting 15138 * IRE_MARK_RCVD should not race with ire_delete marking 15139 * IRE_MARK_CONDEMNED. We grab the lock below just to 15140 * be consistent with other parts of the code that walks 15141 * a given bucket. 15142 */ 15143 save_ire = ire; 15144 irb = ire->ire_bucket; 15145 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15146 if (new_lb_ire == NULL) { 15147 ire_refrele(ire); 15148 return; 15149 } 15150 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15151 if (new_nlb_ire == NULL) { 15152 ire_refrele(ire); 15153 kmem_cache_free(ire_cache, new_lb_ire); 15154 return; 15155 } 15156 IRB_REFHOLD(irb); 15157 rw_enter(&irb->irb_lock, RW_WRITER); 15158 /* 15159 * Get to the first ire matching the address and the 15160 * group. If the address does not match we are done 15161 * as we could not find the IRE. If the address matches 15162 * we should get to the first one matching the group. 15163 */ 15164 while (ire != NULL) { 15165 if (ire->ire_addr != addr || 15166 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15167 break; 15168 } 15169 ire = ire->ire_next; 15170 } 15171 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15172 start_ire = ire; 15173 redo: 15174 while (ire != NULL && ire->ire_addr == addr && 15175 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15176 /* 15177 * The first ire for any address within a group 15178 * should always be the one with IRE_MARK_NORECV cleared 15179 * so that ip_wput_ire can avoid searching for one. 15180 * Note down the insertion point which will be used 15181 * later. 15182 */ 15183 if (first && (irep == NULL)) 15184 irep = ire->ire_ptpn; 15185 /* 15186 * PHYI_FAILED is set when the interface fails. 15187 * This interface might have become good, but the 15188 * daemon has not yet detected. We should still 15189 * not receive on this. PHYI_OFFLINE should never 15190 * be picked as this has been offlined and soon 15191 * be removed. 15192 */ 15193 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15194 if (phyi_flags & PHYI_OFFLINE) { 15195 ire->ire_marks |= IRE_MARK_NORECV; 15196 ire = ire->ire_next; 15197 continue; 15198 } 15199 if (phyi_flags & match_flags) { 15200 ire->ire_marks |= IRE_MARK_NORECV; 15201 ire = ire->ire_next; 15202 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15203 PHYI_INACTIVE) { 15204 fallback = B_TRUE; 15205 } 15206 continue; 15207 } 15208 if (first) { 15209 /* 15210 * We will move this to the front of the list later 15211 * on. 15212 */ 15213 clear_ire = ire; 15214 ire->ire_marks &= ~IRE_MARK_NORECV; 15215 } else { 15216 ire->ire_marks |= IRE_MARK_NORECV; 15217 } 15218 first = B_FALSE; 15219 ire = ire->ire_next; 15220 } 15221 /* 15222 * If we never nominated anybody, try nominating at least 15223 * an INACTIVE, if we found one. Do it only once though. 15224 */ 15225 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15226 fallback) { 15227 match_flags = PHYI_FAILED; 15228 ire = start_ire; 15229 irep = NULL; 15230 goto redo; 15231 } 15232 ire_refrele(save_ire); 15233 15234 /* 15235 * irep non-NULL indicates that we entered the while loop 15236 * above. If clear_ire is at the insertion point, we don't 15237 * have to do anything. clear_ire will be NULL if all the 15238 * interfaces are failed. 15239 * 15240 * We cannot unlink and reinsert the ire at the right place 15241 * in the list since there can be other walkers of this bucket. 15242 * Instead we delete and recreate the ire 15243 */ 15244 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15245 ire_t *clear_ire_stq = NULL; 15246 15247 bzero(new_lb_ire, sizeof (ire_t)); 15248 /* XXX We need a recovery strategy here. */ 15249 if (ire_init(new_lb_ire, 15250 (uchar_t *)&clear_ire->ire_addr, 15251 (uchar_t *)&clear_ire->ire_mask, 15252 (uchar_t *)&clear_ire->ire_src_addr, 15253 (uchar_t *)&clear_ire->ire_gateway_addr, 15254 &clear_ire->ire_max_frag, 15255 NULL, /* let ire_nce_init derive the resolver info */ 15256 clear_ire->ire_rfq, 15257 clear_ire->ire_stq, 15258 clear_ire->ire_type, 15259 clear_ire->ire_ipif, 15260 clear_ire->ire_cmask, 15261 clear_ire->ire_phandle, 15262 clear_ire->ire_ihandle, 15263 clear_ire->ire_flags, 15264 &clear_ire->ire_uinfo, 15265 NULL, 15266 NULL, 15267 ipst) == NULL) 15268 cmn_err(CE_PANIC, "ire_init() failed"); 15269 if (clear_ire->ire_stq == NULL) { 15270 ire_t *ire_next = clear_ire->ire_next; 15271 if (ire_next != NULL && 15272 ire_next->ire_stq != NULL && 15273 ire_next->ire_addr == clear_ire->ire_addr && 15274 ire_next->ire_ipif->ipif_ill == 15275 clear_ire->ire_ipif->ipif_ill) { 15276 clear_ire_stq = ire_next; 15277 15278 bzero(new_nlb_ire, sizeof (ire_t)); 15279 /* XXX We need a recovery strategy here. */ 15280 if (ire_init(new_nlb_ire, 15281 (uchar_t *)&clear_ire_stq->ire_addr, 15282 (uchar_t *)&clear_ire_stq->ire_mask, 15283 (uchar_t *)&clear_ire_stq->ire_src_addr, 15284 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15285 &clear_ire_stq->ire_max_frag, 15286 NULL, 15287 clear_ire_stq->ire_rfq, 15288 clear_ire_stq->ire_stq, 15289 clear_ire_stq->ire_type, 15290 clear_ire_stq->ire_ipif, 15291 clear_ire_stq->ire_cmask, 15292 clear_ire_stq->ire_phandle, 15293 clear_ire_stq->ire_ihandle, 15294 clear_ire_stq->ire_flags, 15295 &clear_ire_stq->ire_uinfo, 15296 NULL, 15297 NULL, 15298 ipst) == NULL) 15299 cmn_err(CE_PANIC, "ire_init() failed"); 15300 } 15301 } 15302 15303 /* 15304 * Delete the ire. We can't call ire_delete() since 15305 * we are holding the bucket lock. We can't release the 15306 * bucket lock since we can't allow irep to change. So just 15307 * mark it CONDEMNED. The IRB_REFRELE will delete the 15308 * ire from the list and do the refrele. 15309 */ 15310 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15311 irb->irb_marks |= IRB_MARK_CONDEMNED; 15312 15313 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15314 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15315 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15316 } 15317 15318 /* 15319 * Also take care of otherfields like ib/ob pkt count 15320 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15321 */ 15322 15323 /* Set the max_frag before adding the ire */ 15324 max_frag = *new_lb_ire->ire_max_fragp; 15325 new_lb_ire->ire_max_fragp = NULL; 15326 new_lb_ire->ire_max_frag = max_frag; 15327 15328 /* Add the new ire's. Insert at *irep */ 15329 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15330 ire1 = *irep; 15331 if (ire1 != NULL) 15332 ire1->ire_ptpn = &new_lb_ire->ire_next; 15333 new_lb_ire->ire_next = ire1; 15334 /* Link the new one in. */ 15335 new_lb_ire->ire_ptpn = irep; 15336 membar_producer(); 15337 *irep = new_lb_ire; 15338 new_lb_ire_used = B_TRUE; 15339 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15340 new_lb_ire->ire_bucket->irb_ire_cnt++; 15341 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15342 15343 if (clear_ire_stq != NULL) { 15344 /* Set the max_frag before adding the ire */ 15345 max_frag = *new_nlb_ire->ire_max_fragp; 15346 new_nlb_ire->ire_max_fragp = NULL; 15347 new_nlb_ire->ire_max_frag = max_frag; 15348 15349 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15350 irep = &new_lb_ire->ire_next; 15351 /* Add the new ire. Insert at *irep */ 15352 ire1 = *irep; 15353 if (ire1 != NULL) 15354 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15355 new_nlb_ire->ire_next = ire1; 15356 /* Link the new one in. */ 15357 new_nlb_ire->ire_ptpn = irep; 15358 membar_producer(); 15359 *irep = new_nlb_ire; 15360 new_nlb_ire_used = B_TRUE; 15361 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15362 ire_stats_inserted); 15363 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15364 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15365 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15366 } 15367 } 15368 rw_exit(&irb->irb_lock); 15369 if (!new_lb_ire_used) 15370 kmem_cache_free(ire_cache, new_lb_ire); 15371 if (!new_nlb_ire_used) 15372 kmem_cache_free(ire_cache, new_nlb_ire); 15373 IRB_REFRELE(irb); 15374 } 15375 15376 /* 15377 * Whenever an ipif goes down we have to renominate a different 15378 * broadcast ire to receive. Whenever an ipif comes up, we need 15379 * to make sure that we have only one nominated to receive. 15380 */ 15381 static void 15382 ipif_renominate_bcast(ipif_t *ipif) 15383 { 15384 ill_t *ill = ipif->ipif_ill; 15385 ipaddr_t subnet_addr; 15386 ipaddr_t net_addr; 15387 ipaddr_t net_mask = 0; 15388 ipaddr_t subnet_netmask; 15389 ipaddr_t addr; 15390 ill_group_t *illgrp; 15391 ip_stack_t *ipst = ill->ill_ipst; 15392 15393 illgrp = ill->ill_group; 15394 /* 15395 * If this is the last ipif going down, it might take 15396 * the ill out of the group. In that case ipif_down -> 15397 * illgrp_delete takes care of doing the nomination. 15398 * ipif_down does not call for this case. 15399 */ 15400 ASSERT(illgrp != NULL); 15401 15402 /* There could not have been any ires associated with this */ 15403 if (ipif->ipif_subnet == 0) 15404 return; 15405 15406 ill_mark_bcast(illgrp, 0, ipst); 15407 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15408 15409 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15410 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15411 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15412 } else { 15413 net_mask = htonl(IN_CLASSA_NET); 15414 } 15415 addr = net_mask & ipif->ipif_subnet; 15416 ill_mark_bcast(illgrp, addr, ipst); 15417 15418 net_addr = ~net_mask | addr; 15419 ill_mark_bcast(illgrp, net_addr, ipst); 15420 15421 subnet_netmask = ipif->ipif_net_mask; 15422 addr = ipif->ipif_subnet; 15423 ill_mark_bcast(illgrp, addr, ipst); 15424 15425 subnet_addr = ~subnet_netmask | addr; 15426 ill_mark_bcast(illgrp, subnet_addr, ipst); 15427 } 15428 15429 /* 15430 * Whenever we form or delete ill groups, we need to nominate one set of 15431 * BROADCAST ires for receiving in the group. 15432 * 15433 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15434 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15435 * for ill_ipif_up_count to be non-zero. This is the only case where 15436 * ill_ipif_up_count is zero and we would still find the ires. 15437 * 15438 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15439 * ipif is UP and we just have to do the nomination. 15440 * 15441 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15442 * from the group. So, we have to do the nomination. 15443 * 15444 * Because of (3), there could be just one ill in the group. But we have 15445 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15446 * Thus, this function does not optimize when there is only one ill as 15447 * it is not correct for (3). 15448 */ 15449 static void 15450 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15451 { 15452 ill_t *ill; 15453 ipif_t *ipif; 15454 ipaddr_t subnet_addr; 15455 ipaddr_t prev_subnet_addr = 0; 15456 ipaddr_t net_addr; 15457 ipaddr_t prev_net_addr = 0; 15458 ipaddr_t net_mask = 0; 15459 ipaddr_t subnet_netmask; 15460 ipaddr_t addr; 15461 ip_stack_t *ipst; 15462 15463 /* 15464 * When the last memeber is leaving, there is nothing to 15465 * nominate. 15466 */ 15467 if (illgrp->illgrp_ill_count == 0) { 15468 ASSERT(illgrp->illgrp_ill == NULL); 15469 return; 15470 } 15471 15472 ill = illgrp->illgrp_ill; 15473 ASSERT(!ill->ill_isv6); 15474 ipst = ill->ill_ipst; 15475 /* 15476 * We assume that ires with same address and belonging to the 15477 * same group, has been grouped together. Nominating a *single* 15478 * ill in the group for sending and receiving broadcast is done 15479 * by making sure that the first BROADCAST ire (which will be 15480 * the one returned by ire_ctable_lookup for ip_rput and the 15481 * one that will be used in ip_wput_ire) will be the one that 15482 * will not have IRE_MARK_NORECV set. 15483 * 15484 * 1) ip_rput checks and discards packets received on ires marked 15485 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15486 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15487 * first ire in the group for every broadcast address in the group. 15488 * ip_rput will accept packets only on the first ire i.e only 15489 * one copy of the ill. 15490 * 15491 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15492 * packet for the whole group. It needs to send out on the ill 15493 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15494 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15495 * the copy echoed back on other port where the ire is not marked 15496 * with IRE_MARK_NORECV. 15497 * 15498 * Note that we just need to have the first IRE either loopback or 15499 * non-loopback (either of them may not exist if ire_create failed 15500 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15501 * always hit the first one and hence will always accept one copy. 15502 * 15503 * We have a broadcast ire per ill for all the unique prefixes 15504 * hosted on that ill. As we don't have a way of knowing the 15505 * unique prefixes on a given ill and hence in the whole group, 15506 * we just call ill_mark_bcast on all the prefixes that exist 15507 * in the group. For the common case of one prefix, the code 15508 * below optimizes by remebering the last address used for 15509 * markng. In the case of multiple prefixes, this will still 15510 * optimize depending the order of prefixes. 15511 * 15512 * The only unique address across the whole group is 0.0.0.0 and 15513 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15514 * the first ire in the bucket for receiving and disables the 15515 * others. 15516 */ 15517 ill_mark_bcast(illgrp, 0, ipst); 15518 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15519 for (; ill != NULL; ill = ill->ill_group_next) { 15520 15521 for (ipif = ill->ill_ipif; ipif != NULL; 15522 ipif = ipif->ipif_next) { 15523 15524 if (!(ipif->ipif_flags & IPIF_UP) || 15525 ipif->ipif_subnet == 0) { 15526 continue; 15527 } 15528 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15529 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15530 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15531 } else { 15532 net_mask = htonl(IN_CLASSA_NET); 15533 } 15534 addr = net_mask & ipif->ipif_subnet; 15535 if (prev_net_addr == 0 || prev_net_addr != addr) { 15536 ill_mark_bcast(illgrp, addr, ipst); 15537 net_addr = ~net_mask | addr; 15538 ill_mark_bcast(illgrp, net_addr, ipst); 15539 } 15540 prev_net_addr = addr; 15541 15542 subnet_netmask = ipif->ipif_net_mask; 15543 addr = ipif->ipif_subnet; 15544 if (prev_subnet_addr == 0 || 15545 prev_subnet_addr != addr) { 15546 ill_mark_bcast(illgrp, addr, ipst); 15547 subnet_addr = ~subnet_netmask | addr; 15548 ill_mark_bcast(illgrp, subnet_addr, ipst); 15549 } 15550 prev_subnet_addr = addr; 15551 } 15552 } 15553 } 15554 15555 /* 15556 * This function is called while forming ill groups. 15557 * 15558 * Currently, we handle only allmulti groups. We want to join 15559 * allmulti on only one of the ills in the groups. In future, 15560 * when we have link aggregation, we may have to join normal 15561 * multicast groups on multiple ills as switch does inbound load 15562 * balancing. Following are the functions that calls this 15563 * function : 15564 * 15565 * 1) ill_recover_multicast : Interface is coming back UP. 15566 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15567 * will call ill_recover_multicast to recover all the multicast 15568 * groups. We need to make sure that only one member is joined 15569 * in the ill group. 15570 * 15571 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15572 * Somebody is joining allmulti. We need to make sure that only one 15573 * member is joined in the group. 15574 * 15575 * 3) illgrp_insert : If allmulti has already joined, we need to make 15576 * sure that only one member is joined in the group. 15577 * 15578 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15579 * allmulti who we have nominated. We need to pick someother ill. 15580 * 15581 * 5) illgrp_delete : The ill we nominated is leaving the group, 15582 * we need to pick a new ill to join the group. 15583 * 15584 * For (1), (2), (5) - we just have to check whether there is 15585 * a good ill joined in the group. If we could not find any ills 15586 * joined the group, we should join. 15587 * 15588 * For (4), the one that was nominated to receive, left the group. 15589 * There could be nobody joined in the group when this function is 15590 * called. 15591 * 15592 * For (3) - we need to explicitly check whether there are multiple 15593 * ills joined in the group. 15594 * 15595 * For simplicity, we don't differentiate any of the above cases. We 15596 * just leave the group if it is joined on any of them and join on 15597 * the first good ill. 15598 */ 15599 int 15600 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15601 { 15602 ilm_t *ilm; 15603 ill_t *ill; 15604 ill_t *fallback_inactive_ill = NULL; 15605 ill_t *fallback_failed_ill = NULL; 15606 int ret = 0; 15607 15608 /* 15609 * Leave the allmulti on all the ills and start fresh. 15610 */ 15611 for (ill = illgrp->illgrp_ill; ill != NULL; 15612 ill = ill->ill_group_next) { 15613 if (ill->ill_join_allmulti) 15614 (void) ip_leave_allmulti(ill->ill_ipif); 15615 } 15616 15617 /* 15618 * Choose a good ill. Fallback to inactive or failed if 15619 * none available. We need to fallback to FAILED in the 15620 * case where we have 2 interfaces in a group - where 15621 * one of them is failed and another is a good one and 15622 * the good one (not marked inactive) is leaving the group. 15623 */ 15624 ret = 0; 15625 for (ill = illgrp->illgrp_ill; ill != NULL; 15626 ill = ill->ill_group_next) { 15627 /* Never pick an offline interface */ 15628 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15629 continue; 15630 15631 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15632 fallback_failed_ill = ill; 15633 continue; 15634 } 15635 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15636 fallback_inactive_ill = ill; 15637 continue; 15638 } 15639 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15640 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15641 ret = ip_join_allmulti(ill->ill_ipif); 15642 /* 15643 * ip_join_allmulti can fail because of memory 15644 * failures. So, make sure we join at least 15645 * on one ill. 15646 */ 15647 if (ill->ill_join_allmulti) 15648 return (0); 15649 } 15650 } 15651 } 15652 if (ret != 0) { 15653 /* 15654 * If we tried nominating above and failed to do so, 15655 * return error. We might have tried multiple times. 15656 * But, return the latest error. 15657 */ 15658 return (ret); 15659 } 15660 if ((ill = fallback_inactive_ill) != NULL) { 15661 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15662 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15663 ret = ip_join_allmulti(ill->ill_ipif); 15664 return (ret); 15665 } 15666 } 15667 } else if ((ill = fallback_failed_ill) != NULL) { 15668 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15669 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15670 ret = ip_join_allmulti(ill->ill_ipif); 15671 return (ret); 15672 } 15673 } 15674 } 15675 return (0); 15676 } 15677 15678 /* 15679 * This function is called from illgrp_delete after it is 15680 * deleted from the group to reschedule responsibilities 15681 * to a different ill. 15682 */ 15683 static void 15684 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15685 { 15686 ilm_t *ilm; 15687 ipif_t *ipif; 15688 ipaddr_t subnet_addr; 15689 ipaddr_t net_addr; 15690 ipaddr_t net_mask = 0; 15691 ipaddr_t subnet_netmask; 15692 ipaddr_t addr; 15693 ip_stack_t *ipst = ill->ill_ipst; 15694 15695 ASSERT(ill->ill_group == NULL); 15696 /* 15697 * Broadcast Responsibility: 15698 * 15699 * 1. If this ill has been nominated for receiving broadcast 15700 * packets, we need to find a new one. Before we find a new 15701 * one, we need to re-group the ires that are part of this new 15702 * group (assumed by ill_nominate_bcast_rcv). We do this by 15703 * calling ill_group_bcast_for_xmit(ill) which will do the right 15704 * thing for us. 15705 * 15706 * 2. If this ill was not nominated for receiving broadcast 15707 * packets, we need to clear the IRE_MARK_NORECV flag 15708 * so that we continue to send up broadcast packets. 15709 */ 15710 if (!ill->ill_isv6) { 15711 /* 15712 * Case 1 above : No optimization here. Just redo the 15713 * nomination. 15714 */ 15715 ill_group_bcast_for_xmit(ill); 15716 ill_nominate_bcast_rcv(illgrp); 15717 15718 /* 15719 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15720 */ 15721 ill_clear_bcast_mark(ill, 0); 15722 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15723 15724 for (ipif = ill->ill_ipif; ipif != NULL; 15725 ipif = ipif->ipif_next) { 15726 15727 if (!(ipif->ipif_flags & IPIF_UP) || 15728 ipif->ipif_subnet == 0) { 15729 continue; 15730 } 15731 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15732 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15733 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15734 } else { 15735 net_mask = htonl(IN_CLASSA_NET); 15736 } 15737 addr = net_mask & ipif->ipif_subnet; 15738 ill_clear_bcast_mark(ill, addr); 15739 15740 net_addr = ~net_mask | addr; 15741 ill_clear_bcast_mark(ill, net_addr); 15742 15743 subnet_netmask = ipif->ipif_net_mask; 15744 addr = ipif->ipif_subnet; 15745 ill_clear_bcast_mark(ill, addr); 15746 15747 subnet_addr = ~subnet_netmask | addr; 15748 ill_clear_bcast_mark(ill, subnet_addr); 15749 } 15750 } 15751 15752 /* 15753 * Multicast Responsibility. 15754 * 15755 * If we have joined allmulti on this one, find a new member 15756 * in the group to join allmulti. As this ill is already part 15757 * of allmulti, we don't have to join on this one. 15758 * 15759 * If we have not joined allmulti on this one, there is no 15760 * responsibility to handoff. But we need to take new 15761 * responsibility i.e, join allmulti on this one if we need 15762 * to. 15763 */ 15764 if (ill->ill_join_allmulti) { 15765 (void) ill_nominate_mcast_rcv(illgrp); 15766 } else { 15767 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15768 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15769 (void) ip_join_allmulti(ill->ill_ipif); 15770 break; 15771 } 15772 } 15773 } 15774 15775 /* 15776 * We intentionally do the flushing of IRE_CACHES only matching 15777 * on the ill and not on groups. Note that we are already deleted 15778 * from the group. 15779 * 15780 * This will make sure that all IRE_CACHES whose stq is pointing 15781 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15782 * deleted and IRE_CACHES that are not pointing at this ill will 15783 * be left alone. 15784 */ 15785 if (ill->ill_isv6) { 15786 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15787 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15788 } else { 15789 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15790 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15791 } 15792 15793 /* 15794 * Some conn may have cached one of the IREs deleted above. By removing 15795 * the ire reference, we clean up the extra reference to the ill held in 15796 * ire->ire_stq. 15797 */ 15798 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15799 15800 /* 15801 * Re-do source address selection for all the members in the 15802 * group, if they borrowed source address from one of the ipifs 15803 * in this ill. 15804 */ 15805 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15806 if (ill->ill_isv6) { 15807 ipif_update_other_ipifs_v6(ipif, illgrp); 15808 } else { 15809 ipif_update_other_ipifs(ipif, illgrp); 15810 } 15811 } 15812 } 15813 15814 /* 15815 * Delete the ill from the group. The caller makes sure that it is 15816 * in a group and it okay to delete from the group. So, we always 15817 * delete here. 15818 */ 15819 static void 15820 illgrp_delete(ill_t *ill) 15821 { 15822 ill_group_t *illgrp; 15823 ill_group_t *tmpg; 15824 ill_t *tmp_ill; 15825 ip_stack_t *ipst = ill->ill_ipst; 15826 15827 /* 15828 * Reset illgrp_ill_schednext if it was pointing at us. 15829 * We need to do this before we set ill_group to NULL. 15830 */ 15831 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15832 mutex_enter(&ill->ill_lock); 15833 15834 illgrp_reset_schednext(ill); 15835 15836 illgrp = ill->ill_group; 15837 15838 /* Delete the ill from illgrp. */ 15839 if (illgrp->illgrp_ill == ill) { 15840 illgrp->illgrp_ill = ill->ill_group_next; 15841 } else { 15842 tmp_ill = illgrp->illgrp_ill; 15843 while (tmp_ill->ill_group_next != ill) { 15844 tmp_ill = tmp_ill->ill_group_next; 15845 ASSERT(tmp_ill != NULL); 15846 } 15847 tmp_ill->ill_group_next = ill->ill_group_next; 15848 } 15849 ill->ill_group = NULL; 15850 ill->ill_group_next = NULL; 15851 15852 illgrp->illgrp_ill_count--; 15853 mutex_exit(&ill->ill_lock); 15854 rw_exit(&ipst->ips_ill_g_lock); 15855 15856 /* 15857 * As this ill is leaving the group, we need to hand off 15858 * the responsibilities to the other ills in the group, if 15859 * this ill had some responsibilities. 15860 */ 15861 15862 ill_handoff_responsibility(ill, illgrp); 15863 15864 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15865 15866 if (illgrp->illgrp_ill_count == 0) { 15867 15868 ASSERT(illgrp->illgrp_ill == NULL); 15869 if (ill->ill_isv6) { 15870 if (illgrp == ipst->ips_illgrp_head_v6) { 15871 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15872 } else { 15873 tmpg = ipst->ips_illgrp_head_v6; 15874 while (tmpg->illgrp_next != illgrp) { 15875 tmpg = tmpg->illgrp_next; 15876 ASSERT(tmpg != NULL); 15877 } 15878 tmpg->illgrp_next = illgrp->illgrp_next; 15879 } 15880 } else { 15881 if (illgrp == ipst->ips_illgrp_head_v4) { 15882 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15883 } else { 15884 tmpg = ipst->ips_illgrp_head_v4; 15885 while (tmpg->illgrp_next != illgrp) { 15886 tmpg = tmpg->illgrp_next; 15887 ASSERT(tmpg != NULL); 15888 } 15889 tmpg->illgrp_next = illgrp->illgrp_next; 15890 } 15891 } 15892 mutex_destroy(&illgrp->illgrp_lock); 15893 mi_free(illgrp); 15894 } 15895 rw_exit(&ipst->ips_ill_g_lock); 15896 15897 /* 15898 * Even though the ill is out of the group its not necessary 15899 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15900 * We will split the ipsq when phyint_groupname is set to NULL. 15901 */ 15902 15903 /* 15904 * Send a routing sockets message if we are deleting from 15905 * groups with names. 15906 */ 15907 if (ill->ill_phyint->phyint_groupname_len != 0) 15908 ip_rts_ifmsg(ill->ill_ipif); 15909 } 15910 15911 /* 15912 * Re-do source address selection. This is normally called when 15913 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15914 * ipif comes up. 15915 */ 15916 void 15917 ill_update_source_selection(ill_t *ill) 15918 { 15919 ipif_t *ipif; 15920 15921 ASSERT(IAM_WRITER_ILL(ill)); 15922 15923 if (ill->ill_group != NULL) 15924 ill = ill->ill_group->illgrp_ill; 15925 15926 for (; ill != NULL; ill = ill->ill_group_next) { 15927 for (ipif = ill->ill_ipif; ipif != NULL; 15928 ipif = ipif->ipif_next) { 15929 if (ill->ill_isv6) 15930 ipif_recreate_interface_routes_v6(NULL, ipif); 15931 else 15932 ipif_recreate_interface_routes(NULL, ipif); 15933 } 15934 } 15935 } 15936 15937 /* 15938 * Insert ill in a group headed by illgrp_head. The caller can either 15939 * pass a groupname in which case we search for a group with the 15940 * same name to insert in or pass a group to insert in. This function 15941 * would only search groups with names. 15942 * 15943 * NOTE : The caller should make sure that there is at least one ipif 15944 * UP on this ill so that illgrp_scheduler can pick this ill 15945 * for outbound packets. If ill_ipif_up_count is zero, we have 15946 * already sent a DL_UNBIND to the driver and we don't want to 15947 * send anymore packets. We don't assert for ipif_up_count 15948 * to be greater than zero, because ipif_up_done wants to call 15949 * this function before bumping up the ipif_up_count. See 15950 * ipif_up_done() for details. 15951 */ 15952 int 15953 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15954 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15955 { 15956 ill_group_t *illgrp; 15957 ill_t *prev_ill; 15958 phyint_t *phyi; 15959 ip_stack_t *ipst = ill->ill_ipst; 15960 15961 ASSERT(ill->ill_group == NULL); 15962 15963 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15964 mutex_enter(&ill->ill_lock); 15965 15966 if (groupname != NULL) { 15967 /* 15968 * Look for a group with a matching groupname to insert. 15969 */ 15970 for (illgrp = *illgrp_head; illgrp != NULL; 15971 illgrp = illgrp->illgrp_next) { 15972 15973 ill_t *tmp_ill; 15974 15975 /* 15976 * If we have an ill_group_t in the list which has 15977 * no ill_t assigned then we must be in the process of 15978 * removing this group. We skip this as illgrp_delete() 15979 * will remove it from the list. 15980 */ 15981 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15982 ASSERT(illgrp->illgrp_ill_count == 0); 15983 continue; 15984 } 15985 15986 ASSERT(tmp_ill->ill_phyint != NULL); 15987 phyi = tmp_ill->ill_phyint; 15988 /* 15989 * Look at groups which has names only. 15990 */ 15991 if (phyi->phyint_groupname_len == 0) 15992 continue; 15993 /* 15994 * Names are stored in the phyint common to both 15995 * IPv4 and IPv6. 15996 */ 15997 if (mi_strcmp(phyi->phyint_groupname, 15998 groupname) == 0) { 15999 break; 16000 } 16001 } 16002 } else { 16003 /* 16004 * If the caller passes in a NULL "grp_to_insert", we 16005 * allocate one below and insert this singleton. 16006 */ 16007 illgrp = grp_to_insert; 16008 } 16009 16010 ill->ill_group_next = NULL; 16011 16012 if (illgrp == NULL) { 16013 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16014 if (illgrp == NULL) { 16015 return (ENOMEM); 16016 } 16017 illgrp->illgrp_next = *illgrp_head; 16018 *illgrp_head = illgrp; 16019 illgrp->illgrp_ill = ill; 16020 illgrp->illgrp_ill_count = 1; 16021 ill->ill_group = illgrp; 16022 /* 16023 * Used in illgrp_scheduler to protect multiple threads 16024 * from traversing the list. 16025 */ 16026 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16027 } else { 16028 ASSERT(ill->ill_net_type == 16029 illgrp->illgrp_ill->ill_net_type); 16030 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16031 16032 /* Insert ill at tail of this group */ 16033 prev_ill = illgrp->illgrp_ill; 16034 while (prev_ill->ill_group_next != NULL) 16035 prev_ill = prev_ill->ill_group_next; 16036 prev_ill->ill_group_next = ill; 16037 ill->ill_group = illgrp; 16038 illgrp->illgrp_ill_count++; 16039 /* 16040 * Inherit group properties. Currently only forwarding 16041 * is the property we try to keep the same with all the 16042 * ills. When there are more, we will abstract this into 16043 * a function. 16044 */ 16045 ill->ill_flags &= ~ILLF_ROUTER; 16046 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16047 } 16048 mutex_exit(&ill->ill_lock); 16049 rw_exit(&ipst->ips_ill_g_lock); 16050 16051 /* 16052 * 1) When ipif_up_done() calls this function, ipif_up_count 16053 * may be zero as it has not yet been bumped. But the ires 16054 * have already been added. So, we do the nomination here 16055 * itself. But, when ip_sioctl_groupname calls this, it checks 16056 * for ill_ipif_up_count != 0. Thus we don't check for 16057 * ill_ipif_up_count here while nominating broadcast ires for 16058 * receive. 16059 * 16060 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16061 * to group them properly as ire_add() has already happened 16062 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16063 * case, we need to do it here anyway. 16064 */ 16065 if (!ill->ill_isv6) { 16066 ill_group_bcast_for_xmit(ill); 16067 ill_nominate_bcast_rcv(illgrp); 16068 } 16069 16070 if (!ipif_is_coming_up) { 16071 /* 16072 * When ipif_up_done() calls this function, the multicast 16073 * groups have not been joined yet. So, there is no point in 16074 * nomination. ip_join_allmulti will handle groups when 16075 * ill_recover_multicast is called from ipif_up_done() later. 16076 */ 16077 (void) ill_nominate_mcast_rcv(illgrp); 16078 /* 16079 * ipif_up_done calls ill_update_source_selection 16080 * anyway. Moreover, we don't want to re-create 16081 * interface routes while ipif_up_done() still has reference 16082 * to them. Refer to ipif_up_done() for more details. 16083 */ 16084 ill_update_source_selection(ill); 16085 } 16086 16087 /* 16088 * Send a routing sockets message if we are inserting into 16089 * groups with names. 16090 */ 16091 if (groupname != NULL) 16092 ip_rts_ifmsg(ill->ill_ipif); 16093 return (0); 16094 } 16095 16096 /* 16097 * Return the first phyint matching the groupname. There could 16098 * be more than one when there are ill groups. 16099 * 16100 * If 'usable' is set, then we exclude ones that are marked with any of 16101 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16102 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16103 * emulation of ipmp. 16104 */ 16105 phyint_t * 16106 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16107 { 16108 phyint_t *phyi; 16109 16110 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16111 /* 16112 * Group names are stored in the phyint - a common structure 16113 * to both IPv4 and IPv6. 16114 */ 16115 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16116 for (; phyi != NULL; 16117 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16118 phyi, AVL_AFTER)) { 16119 if (phyi->phyint_groupname_len == 0) 16120 continue; 16121 /* 16122 * Skip the ones that should not be used since the callers 16123 * sometime use this for sending packets. 16124 */ 16125 if (usable && (phyi->phyint_flags & 16126 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16127 continue; 16128 16129 ASSERT(phyi->phyint_groupname != NULL); 16130 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16131 return (phyi); 16132 } 16133 return (NULL); 16134 } 16135 16136 16137 /* 16138 * Return the first usable phyint matching the group index. By 'usable' 16139 * we exclude ones that are marked ununsable with any of 16140 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16141 * 16142 * Used only for the ipmp/netinfo emulation of ipmp. 16143 */ 16144 phyint_t * 16145 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16146 { 16147 phyint_t *phyi; 16148 16149 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16150 16151 if (!ipst->ips_ipmp_hook_emulation) 16152 return (NULL); 16153 16154 /* 16155 * Group indicies are stored in the phyint - a common structure 16156 * to both IPv4 and IPv6. 16157 */ 16158 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16159 for (; phyi != NULL; 16160 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16161 phyi, AVL_AFTER)) { 16162 /* Ignore the ones that do not have a group */ 16163 if (phyi->phyint_groupname_len == 0) 16164 continue; 16165 16166 ASSERT(phyi->phyint_group_ifindex != 0); 16167 /* 16168 * Skip the ones that should not be used since the callers 16169 * sometime use this for sending packets. 16170 */ 16171 if (phyi->phyint_flags & 16172 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16173 continue; 16174 if (phyi->phyint_group_ifindex == group_ifindex) 16175 return (phyi); 16176 } 16177 return (NULL); 16178 } 16179 16180 16181 /* 16182 * MT notes on creation and deletion of IPMP groups 16183 * 16184 * Creation and deletion of IPMP groups introduce the need to merge or 16185 * split the associated serialization objects i.e the ipsq's. Normally all 16186 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16187 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16188 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16189 * is a need to change the <ill-ipsq> association and we have to operate on both 16190 * the source and destination IPMP groups. For eg. attempting to set the 16191 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16192 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16193 * source or destination IPMP group are mapped to a single ipsq for executing 16194 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16195 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16196 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16197 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16198 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16199 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16200 * 16201 * In the above example the ioctl handling code locates the current ipsq of hme0 16202 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16203 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16204 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16205 * the destination ipsq. If the destination ipsq is not busy, it also enters 16206 * the destination ipsq exclusively. Now the actual groupname setting operation 16207 * can proceed. If the destination ipsq is busy, the operation is enqueued 16208 * on the destination (merged) ipsq and will be handled in the unwind from 16209 * ipsq_exit. 16210 * 16211 * To prevent other threads accessing the ill while the group name change is 16212 * in progres, we bring down the ipifs which also removes the ill from the 16213 * group. The group is changed in phyint and when the first ipif on the ill 16214 * is brought up, the ill is inserted into the right IPMP group by 16215 * illgrp_insert. 16216 */ 16217 /* ARGSUSED */ 16218 int 16219 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16220 ip_ioctl_cmd_t *ipip, void *ifreq) 16221 { 16222 int i; 16223 char *tmp; 16224 int namelen; 16225 ill_t *ill = ipif->ipif_ill; 16226 ill_t *ill_v4, *ill_v6; 16227 int err = 0; 16228 phyint_t *phyi; 16229 phyint_t *phyi_tmp; 16230 struct lifreq *lifr; 16231 mblk_t *mp1; 16232 char *groupname; 16233 ipsq_t *ipsq; 16234 ip_stack_t *ipst = ill->ill_ipst; 16235 16236 ASSERT(IAM_WRITER_IPIF(ipif)); 16237 16238 /* Existance verified in ip_wput_nondata */ 16239 mp1 = mp->b_cont->b_cont; 16240 lifr = (struct lifreq *)mp1->b_rptr; 16241 groupname = lifr->lifr_groupname; 16242 16243 if (ipif->ipif_id != 0) 16244 return (EINVAL); 16245 16246 phyi = ill->ill_phyint; 16247 ASSERT(phyi != NULL); 16248 16249 if (phyi->phyint_flags & PHYI_VIRTUAL) 16250 return (EINVAL); 16251 16252 tmp = groupname; 16253 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16254 ; 16255 16256 if (i == LIFNAMSIZ) { 16257 /* no null termination */ 16258 return (EINVAL); 16259 } 16260 16261 /* 16262 * Calculate the namelen exclusive of the null 16263 * termination character. 16264 */ 16265 namelen = tmp - groupname; 16266 16267 ill_v4 = phyi->phyint_illv4; 16268 ill_v6 = phyi->phyint_illv6; 16269 16270 /* 16271 * ILL cannot be part of a usesrc group and and IPMP group at the 16272 * same time. No need to grab the ill_g_usesrc_lock here, see 16273 * synchronization notes in ip.c 16274 */ 16275 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16276 return (EINVAL); 16277 } 16278 16279 /* 16280 * mark the ill as changing. 16281 * this should queue all new requests on the syncq. 16282 */ 16283 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16284 16285 if (ill_v4 != NULL) 16286 ill_v4->ill_state_flags |= ILL_CHANGING; 16287 if (ill_v6 != NULL) 16288 ill_v6->ill_state_flags |= ILL_CHANGING; 16289 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16290 16291 if (namelen == 0) { 16292 /* 16293 * Null string means remove this interface from the 16294 * existing group. 16295 */ 16296 if (phyi->phyint_groupname_len == 0) { 16297 /* 16298 * Never was in a group. 16299 */ 16300 err = 0; 16301 goto done; 16302 } 16303 16304 /* 16305 * IPv4 or IPv6 may be temporarily out of the group when all 16306 * the ipifs are down. Thus, we need to check for ill_group to 16307 * be non-NULL. 16308 */ 16309 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16310 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16311 mutex_enter(&ill_v4->ill_lock); 16312 if (!ill_is_quiescent(ill_v4)) { 16313 /* 16314 * ipsq_pending_mp_add will not fail since 16315 * connp is NULL 16316 */ 16317 (void) ipsq_pending_mp_add(NULL, 16318 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16319 mutex_exit(&ill_v4->ill_lock); 16320 err = EINPROGRESS; 16321 goto done; 16322 } 16323 mutex_exit(&ill_v4->ill_lock); 16324 } 16325 16326 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16327 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16328 mutex_enter(&ill_v6->ill_lock); 16329 if (!ill_is_quiescent(ill_v6)) { 16330 (void) ipsq_pending_mp_add(NULL, 16331 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16332 mutex_exit(&ill_v6->ill_lock); 16333 err = EINPROGRESS; 16334 goto done; 16335 } 16336 mutex_exit(&ill_v6->ill_lock); 16337 } 16338 16339 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16340 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16341 mutex_enter(&phyi->phyint_lock); 16342 ASSERT(phyi->phyint_groupname != NULL); 16343 mi_free(phyi->phyint_groupname); 16344 phyi->phyint_groupname = NULL; 16345 phyi->phyint_groupname_len = 0; 16346 16347 /* Restore the ifindex used to be the per interface one */ 16348 phyi->phyint_group_ifindex = 0; 16349 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16350 mutex_exit(&phyi->phyint_lock); 16351 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16352 rw_exit(&ipst->ips_ill_g_lock); 16353 err = ill_up_ipifs(ill, q, mp); 16354 16355 /* 16356 * set the split flag so that the ipsq can be split 16357 */ 16358 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16359 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16360 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16361 16362 } else { 16363 if (phyi->phyint_groupname_len != 0) { 16364 ASSERT(phyi->phyint_groupname != NULL); 16365 /* Are we inserting in the same group ? */ 16366 if (mi_strcmp(groupname, 16367 phyi->phyint_groupname) == 0) { 16368 err = 0; 16369 goto done; 16370 } 16371 } 16372 16373 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16374 /* 16375 * Merge ipsq for the group's. 16376 * This check is here as multiple groups/ills might be 16377 * sharing the same ipsq. 16378 * If we have to merege than the operation is restarted 16379 * on the new ipsq. 16380 */ 16381 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16382 if (phyi->phyint_ipsq != ipsq) { 16383 rw_exit(&ipst->ips_ill_g_lock); 16384 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16385 goto done; 16386 } 16387 /* 16388 * Running exclusive on new ipsq. 16389 */ 16390 16391 ASSERT(ipsq != NULL); 16392 ASSERT(ipsq->ipsq_writer == curthread); 16393 16394 /* 16395 * Check whether the ill_type and ill_net_type matches before 16396 * we allocate any memory so that the cleanup is easier. 16397 * 16398 * We can't group dissimilar ones as we can't load spread 16399 * packets across the group because of potential link-level 16400 * header differences. 16401 */ 16402 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16403 if (phyi_tmp != NULL) { 16404 if ((ill_v4 != NULL && 16405 phyi_tmp->phyint_illv4 != NULL) && 16406 ((ill_v4->ill_net_type != 16407 phyi_tmp->phyint_illv4->ill_net_type) || 16408 (ill_v4->ill_type != 16409 phyi_tmp->phyint_illv4->ill_type))) { 16410 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16411 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16412 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16413 rw_exit(&ipst->ips_ill_g_lock); 16414 return (EINVAL); 16415 } 16416 if ((ill_v6 != NULL && 16417 phyi_tmp->phyint_illv6 != NULL) && 16418 ((ill_v6->ill_net_type != 16419 phyi_tmp->phyint_illv6->ill_net_type) || 16420 (ill_v6->ill_type != 16421 phyi_tmp->phyint_illv6->ill_type))) { 16422 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16423 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16424 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16425 rw_exit(&ipst->ips_ill_g_lock); 16426 return (EINVAL); 16427 } 16428 } 16429 16430 rw_exit(&ipst->ips_ill_g_lock); 16431 16432 /* 16433 * bring down all v4 ipifs. 16434 */ 16435 if (ill_v4 != NULL) { 16436 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16437 } 16438 16439 /* 16440 * bring down all v6 ipifs. 16441 */ 16442 if (ill_v6 != NULL) { 16443 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16444 } 16445 16446 /* 16447 * make sure all ipifs are down and there are no active 16448 * references. Call to ipsq_pending_mp_add will not fail 16449 * since connp is NULL. 16450 */ 16451 if (ill_v4 != NULL) { 16452 mutex_enter(&ill_v4->ill_lock); 16453 if (!ill_is_quiescent(ill_v4)) { 16454 (void) ipsq_pending_mp_add(NULL, 16455 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16456 mutex_exit(&ill_v4->ill_lock); 16457 err = EINPROGRESS; 16458 goto done; 16459 } 16460 mutex_exit(&ill_v4->ill_lock); 16461 } 16462 16463 if (ill_v6 != NULL) { 16464 mutex_enter(&ill_v6->ill_lock); 16465 if (!ill_is_quiescent(ill_v6)) { 16466 (void) ipsq_pending_mp_add(NULL, 16467 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16468 mutex_exit(&ill_v6->ill_lock); 16469 err = EINPROGRESS; 16470 goto done; 16471 } 16472 mutex_exit(&ill_v6->ill_lock); 16473 } 16474 16475 /* 16476 * allocate including space for null terminator 16477 * before we insert. 16478 */ 16479 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16480 if (tmp == NULL) 16481 return (ENOMEM); 16482 16483 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16484 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16485 mutex_enter(&phyi->phyint_lock); 16486 if (phyi->phyint_groupname_len != 0) { 16487 ASSERT(phyi->phyint_groupname != NULL); 16488 mi_free(phyi->phyint_groupname); 16489 } 16490 16491 /* 16492 * setup the new group name. 16493 */ 16494 phyi->phyint_groupname = tmp; 16495 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16496 phyi->phyint_groupname_len = namelen + 1; 16497 16498 if (ipst->ips_ipmp_hook_emulation) { 16499 /* 16500 * If the group already exists we use the existing 16501 * group_ifindex, otherwise we pick a new index here. 16502 */ 16503 if (phyi_tmp != NULL) { 16504 phyi->phyint_group_ifindex = 16505 phyi_tmp->phyint_group_ifindex; 16506 } else { 16507 /* XXX We need a recovery strategy here. */ 16508 if (!ip_assign_ifindex( 16509 &phyi->phyint_group_ifindex, ipst)) 16510 cmn_err(CE_PANIC, 16511 "ip_assign_ifindex() failed"); 16512 } 16513 } 16514 /* 16515 * Select whether the netinfo and hook use the per-interface 16516 * or per-group ifindex. 16517 */ 16518 if (ipst->ips_ipmp_hook_emulation) 16519 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16520 else 16521 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16522 16523 if (ipst->ips_ipmp_hook_emulation && 16524 phyi_tmp != NULL) { 16525 /* First phyint in group - group PLUMB event */ 16526 ill_nic_info_plumb(ill, B_TRUE); 16527 } 16528 mutex_exit(&phyi->phyint_lock); 16529 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16530 rw_exit(&ipst->ips_ill_g_lock); 16531 16532 err = ill_up_ipifs(ill, q, mp); 16533 } 16534 16535 done: 16536 /* 16537 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16538 */ 16539 if (err != EINPROGRESS) { 16540 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16541 if (ill_v4 != NULL) 16542 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16543 if (ill_v6 != NULL) 16544 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16545 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16546 } 16547 return (err); 16548 } 16549 16550 /* ARGSUSED */ 16551 int 16552 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16553 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16554 { 16555 ill_t *ill; 16556 phyint_t *phyi; 16557 struct lifreq *lifr; 16558 mblk_t *mp1; 16559 16560 /* Existence verified in ip_wput_nondata */ 16561 mp1 = mp->b_cont->b_cont; 16562 lifr = (struct lifreq *)mp1->b_rptr; 16563 ill = ipif->ipif_ill; 16564 phyi = ill->ill_phyint; 16565 16566 lifr->lifr_groupname[0] = '\0'; 16567 /* 16568 * ill_group may be null if all the interfaces 16569 * are down. But still, the phyint should always 16570 * hold the name. 16571 */ 16572 if (phyi->phyint_groupname_len != 0) { 16573 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16574 phyi->phyint_groupname_len); 16575 } 16576 16577 return (0); 16578 } 16579 16580 16581 typedef struct conn_move_s { 16582 ill_t *cm_from_ill; 16583 ill_t *cm_to_ill; 16584 int cm_ifindex; 16585 } conn_move_t; 16586 16587 /* 16588 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16589 */ 16590 static void 16591 conn_move(conn_t *connp, caddr_t arg) 16592 { 16593 conn_move_t *connm; 16594 int ifindex; 16595 int i; 16596 ill_t *from_ill; 16597 ill_t *to_ill; 16598 ilg_t *ilg; 16599 ilm_t *ret_ilm; 16600 16601 connm = (conn_move_t *)arg; 16602 ifindex = connm->cm_ifindex; 16603 from_ill = connm->cm_from_ill; 16604 to_ill = connm->cm_to_ill; 16605 16606 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16607 16608 /* All multicast fields protected by conn_lock */ 16609 mutex_enter(&connp->conn_lock); 16610 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16611 if ((connp->conn_outgoing_ill == from_ill) && 16612 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16613 connp->conn_outgoing_ill = to_ill; 16614 connp->conn_incoming_ill = to_ill; 16615 } 16616 16617 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16618 16619 if ((connp->conn_multicast_ill == from_ill) && 16620 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16621 connp->conn_multicast_ill = connm->cm_to_ill; 16622 } 16623 16624 /* 16625 * Change the ilg_ill to point to the new one. This assumes 16626 * ilm_move_v6 has moved the ilms to new_ill and the driver 16627 * has been told to receive packets on this interface. 16628 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16629 * But when doing a FAILOVER, it might fail with ENOMEM and so 16630 * some ilms may not have moved. We check to see whether 16631 * the ilms have moved to to_ill. We can't check on from_ill 16632 * as in the process of moving, we could have split an ilm 16633 * in to two - which has the same orig_ifindex and v6group. 16634 * 16635 * For IPv4, ilg_ipif moves implicitly. The code below really 16636 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16637 */ 16638 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16639 ilg = &connp->conn_ilg[i]; 16640 if ((ilg->ilg_ill == from_ill) && 16641 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16642 /* ifindex != 0 indicates failback */ 16643 if (ifindex != 0) { 16644 connp->conn_ilg[i].ilg_ill = to_ill; 16645 continue; 16646 } 16647 16648 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16649 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16650 connp->conn_zoneid); 16651 16652 if (ret_ilm != NULL) 16653 connp->conn_ilg[i].ilg_ill = to_ill; 16654 } 16655 } 16656 mutex_exit(&connp->conn_lock); 16657 } 16658 16659 static void 16660 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16661 { 16662 conn_move_t connm; 16663 ip_stack_t *ipst = from_ill->ill_ipst; 16664 16665 connm.cm_from_ill = from_ill; 16666 connm.cm_to_ill = to_ill; 16667 connm.cm_ifindex = ifindex; 16668 16669 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16670 } 16671 16672 /* 16673 * ilm has been moved from from_ill to to_ill. 16674 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16675 * appropriately. 16676 * 16677 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16678 * the code there de-references ipif_ill to get the ill to 16679 * send multicast requests. It does not work as ipif is on its 16680 * move and already moved when this function is called. 16681 * Thus, we need to use from_ill and to_ill send down multicast 16682 * requests. 16683 */ 16684 static void 16685 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16686 { 16687 ipif_t *ipif; 16688 ilm_t *ilm; 16689 16690 /* 16691 * See whether we need to send down DL_ENABMULTI_REQ on 16692 * to_ill as ilm has just been added. 16693 */ 16694 ASSERT(IAM_WRITER_ILL(to_ill)); 16695 ASSERT(IAM_WRITER_ILL(from_ill)); 16696 16697 ILM_WALKER_HOLD(to_ill); 16698 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16699 16700 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16701 continue; 16702 /* 16703 * no locks held, ill/ipif cannot dissappear as long 16704 * as we are writer. 16705 */ 16706 ipif = to_ill->ill_ipif; 16707 /* 16708 * No need to hold any lock as we are the writer and this 16709 * can only be changed by a writer. 16710 */ 16711 ilm->ilm_is_new = B_FALSE; 16712 16713 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16714 ipif->ipif_flags & IPIF_POINTOPOINT) { 16715 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16716 "resolver\n")); 16717 continue; /* Must be IRE_IF_NORESOLVER */ 16718 } 16719 16720 16721 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16722 ip1dbg(("ilm_send_multicast_reqs: " 16723 "to_ill MULTI_BCAST\n")); 16724 goto from; 16725 } 16726 16727 if (to_ill->ill_isv6) 16728 mld_joingroup(ilm); 16729 else 16730 igmp_joingroup(ilm); 16731 16732 if (to_ill->ill_ipif_up_count == 0) { 16733 /* 16734 * Nobody there. All multicast addresses will be 16735 * re-joined when we get the DL_BIND_ACK bringing the 16736 * interface up. 16737 */ 16738 ilm->ilm_notify_driver = B_FALSE; 16739 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16740 goto from; 16741 } 16742 16743 /* 16744 * For allmulti address, we want to join on only one interface. 16745 * Checking for ilm_numentries_v6 is not correct as you may 16746 * find an ilm with zero address on to_ill, but we may not 16747 * have nominated to_ill for receiving. Thus, if we have 16748 * nominated from_ill (ill_join_allmulti is set), nominate 16749 * only if to_ill is not already nominated (to_ill normally 16750 * should not have been nominated if "from_ill" has already 16751 * been nominated. As we don't prevent failovers from happening 16752 * across groups, we don't assert). 16753 */ 16754 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16755 /* 16756 * There is no need to hold ill locks as we are 16757 * writer on both ills and when ill_join_allmulti 16758 * is changed the thread is always a writer. 16759 */ 16760 if (from_ill->ill_join_allmulti && 16761 !to_ill->ill_join_allmulti) { 16762 (void) ip_join_allmulti(to_ill->ill_ipif); 16763 } 16764 } else if (ilm->ilm_notify_driver) { 16765 16766 /* 16767 * This is a newly moved ilm so we need to tell the 16768 * driver about the new group. There can be more than 16769 * one ilm's for the same group in the list each with a 16770 * different orig_ifindex. We have to inform the driver 16771 * once. In ilm_move_v[4,6] we only set the flag 16772 * ilm_notify_driver for the first ilm. 16773 */ 16774 16775 (void) ip_ll_send_enabmulti_req(to_ill, 16776 &ilm->ilm_v6addr); 16777 } 16778 16779 ilm->ilm_notify_driver = B_FALSE; 16780 16781 /* 16782 * See whether we need to send down DL_DISABMULTI_REQ on 16783 * from_ill as ilm has just been removed. 16784 */ 16785 from: 16786 ipif = from_ill->ill_ipif; 16787 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16788 ipif->ipif_flags & IPIF_POINTOPOINT) { 16789 ip1dbg(("ilm_send_multicast_reqs: " 16790 "from_ill not resolver\n")); 16791 continue; /* Must be IRE_IF_NORESOLVER */ 16792 } 16793 16794 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16795 ip1dbg(("ilm_send_multicast_reqs: " 16796 "from_ill MULTI_BCAST\n")); 16797 continue; 16798 } 16799 16800 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16801 if (from_ill->ill_join_allmulti) 16802 (void) ip_leave_allmulti(from_ill->ill_ipif); 16803 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16804 (void) ip_ll_send_disabmulti_req(from_ill, 16805 &ilm->ilm_v6addr); 16806 } 16807 } 16808 ILM_WALKER_RELE(to_ill); 16809 } 16810 16811 /* 16812 * This function is called when all multicast memberships needs 16813 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16814 * called only once unlike the IPv4 counterpart where it is called after 16815 * every logical interface is moved. The reason is due to multicast 16816 * memberships are joined using an interface address in IPv4 while in 16817 * IPv6, interface index is used. 16818 */ 16819 static void 16820 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16821 { 16822 ilm_t *ilm; 16823 ilm_t *ilm_next; 16824 ilm_t *new_ilm; 16825 ilm_t **ilmp; 16826 int count; 16827 char buf[INET6_ADDRSTRLEN]; 16828 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16829 ip_stack_t *ipst = from_ill->ill_ipst; 16830 16831 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16832 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16833 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16834 16835 if (ifindex == 0) { 16836 /* 16837 * Form the solicited node mcast address which is used later. 16838 */ 16839 ipif_t *ipif; 16840 16841 ipif = from_ill->ill_ipif; 16842 ASSERT(ipif->ipif_id == 0); 16843 16844 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16845 } 16846 16847 ilmp = &from_ill->ill_ilm; 16848 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16849 ilm_next = ilm->ilm_next; 16850 16851 if (ilm->ilm_flags & ILM_DELETED) { 16852 ilmp = &ilm->ilm_next; 16853 continue; 16854 } 16855 16856 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16857 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16858 ASSERT(ilm->ilm_orig_ifindex != 0); 16859 if (ilm->ilm_orig_ifindex == ifindex) { 16860 /* 16861 * We are failing back multicast memberships. 16862 * If the same ilm exists in to_ill, it means somebody 16863 * has joined the same group there e.g. ff02::1 16864 * is joined within the kernel when the interfaces 16865 * came UP. 16866 */ 16867 ASSERT(ilm->ilm_ipif == NULL); 16868 if (new_ilm != NULL) { 16869 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16870 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16871 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16872 new_ilm->ilm_is_new = B_TRUE; 16873 } 16874 } else { 16875 /* 16876 * check if we can just move the ilm 16877 */ 16878 if (from_ill->ill_ilm_walker_cnt != 0) { 16879 /* 16880 * We have walkers we cannot move 16881 * the ilm, so allocate a new ilm, 16882 * this (old) ilm will be marked 16883 * ILM_DELETED at the end of the loop 16884 * and will be freed when the 16885 * last walker exits. 16886 */ 16887 new_ilm = (ilm_t *)mi_zalloc 16888 (sizeof (ilm_t)); 16889 if (new_ilm == NULL) { 16890 ip0dbg(("ilm_move_v6: " 16891 "FAILBACK of IPv6" 16892 " multicast address %s : " 16893 "from %s to" 16894 " %s failed : ENOMEM \n", 16895 inet_ntop(AF_INET6, 16896 &ilm->ilm_v6addr, buf, 16897 sizeof (buf)), 16898 from_ill->ill_name, 16899 to_ill->ill_name)); 16900 16901 ilmp = &ilm->ilm_next; 16902 continue; 16903 } 16904 *new_ilm = *ilm; 16905 /* 16906 * we don't want new_ilm linked to 16907 * ilm's filter list. 16908 */ 16909 new_ilm->ilm_filter = NULL; 16910 } else { 16911 /* 16912 * No walkers we can move the ilm. 16913 * lets take it out of the list. 16914 */ 16915 *ilmp = ilm->ilm_next; 16916 ilm->ilm_next = NULL; 16917 new_ilm = ilm; 16918 } 16919 16920 /* 16921 * if this is the first ilm for the group 16922 * set ilm_notify_driver so that we notify the 16923 * driver in ilm_send_multicast_reqs. 16924 */ 16925 if (ilm_lookup_ill_v6(to_ill, 16926 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16927 new_ilm->ilm_notify_driver = B_TRUE; 16928 16929 new_ilm->ilm_ill = to_ill; 16930 /* Add to the to_ill's list */ 16931 new_ilm->ilm_next = to_ill->ill_ilm; 16932 to_ill->ill_ilm = new_ilm; 16933 /* 16934 * set the flag so that mld_joingroup is 16935 * called in ilm_send_multicast_reqs(). 16936 */ 16937 new_ilm->ilm_is_new = B_TRUE; 16938 } 16939 goto bottom; 16940 } else if (ifindex != 0) { 16941 /* 16942 * If this is FAILBACK (ifindex != 0) and the ifindex 16943 * has not matched above, look at the next ilm. 16944 */ 16945 ilmp = &ilm->ilm_next; 16946 continue; 16947 } 16948 /* 16949 * If we are here, it means ifindex is 0. Failover 16950 * everything. 16951 * 16952 * We need to handle solicited node mcast address 16953 * and all_nodes mcast address differently as they 16954 * are joined witin the kenrel (ipif_multicast_up) 16955 * and potentially from the userland. We are called 16956 * after the ipifs of from_ill has been moved. 16957 * If we still find ilms on ill with solicited node 16958 * mcast address or all_nodes mcast address, it must 16959 * belong to the UP interface that has not moved e.g. 16960 * ipif_id 0 with the link local prefix does not move. 16961 * We join this on the new ill accounting for all the 16962 * userland memberships so that applications don't 16963 * see any failure. 16964 * 16965 * We need to make sure that we account only for the 16966 * solicited node and all node multicast addresses 16967 * that was brought UP on these. In the case of 16968 * a failover from A to B, we might have ilms belonging 16969 * to A (ilm_orig_ifindex pointing at A) on B accounting 16970 * for the membership from the userland. If we are failing 16971 * over from B to C now, we will find the ones belonging 16972 * to A on B. These don't account for the ill_ipif_up_count. 16973 * They just move from B to C. The check below on 16974 * ilm_orig_ifindex ensures that. 16975 */ 16976 if ((ilm->ilm_orig_ifindex == 16977 from_ill->ill_phyint->phyint_ifindex) && 16978 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16979 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16980 &ilm->ilm_v6addr))) { 16981 ASSERT(ilm->ilm_refcnt > 0); 16982 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16983 /* 16984 * For indentation reasons, we are not using a 16985 * "else" here. 16986 */ 16987 if (count == 0) { 16988 ilmp = &ilm->ilm_next; 16989 continue; 16990 } 16991 ilm->ilm_refcnt -= count; 16992 if (new_ilm != NULL) { 16993 /* 16994 * Can find one with the same 16995 * ilm_orig_ifindex, if we are failing 16996 * over to a STANDBY. This happens 16997 * when somebody wants to join a group 16998 * on a STANDBY interface and we 16999 * internally join on a different one. 17000 * If we had joined on from_ill then, a 17001 * failover now will find a new ilm 17002 * with this index. 17003 */ 17004 ip1dbg(("ilm_move_v6: FAILOVER, found" 17005 " new ilm on %s, group address %s\n", 17006 to_ill->ill_name, 17007 inet_ntop(AF_INET6, 17008 &ilm->ilm_v6addr, buf, 17009 sizeof (buf)))); 17010 new_ilm->ilm_refcnt += count; 17011 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17012 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17013 new_ilm->ilm_is_new = B_TRUE; 17014 } 17015 } else { 17016 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17017 if (new_ilm == NULL) { 17018 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17019 " multicast address %s : from %s to" 17020 " %s failed : ENOMEM \n", 17021 inet_ntop(AF_INET6, 17022 &ilm->ilm_v6addr, buf, 17023 sizeof (buf)), from_ill->ill_name, 17024 to_ill->ill_name)); 17025 ilmp = &ilm->ilm_next; 17026 continue; 17027 } 17028 *new_ilm = *ilm; 17029 new_ilm->ilm_filter = NULL; 17030 new_ilm->ilm_refcnt = count; 17031 new_ilm->ilm_timer = INFINITY; 17032 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17033 new_ilm->ilm_is_new = B_TRUE; 17034 /* 17035 * If the to_ill has not joined this 17036 * group we need to tell the driver in 17037 * ill_send_multicast_reqs. 17038 */ 17039 if (ilm_lookup_ill_v6(to_ill, 17040 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17041 new_ilm->ilm_notify_driver = B_TRUE; 17042 17043 new_ilm->ilm_ill = to_ill; 17044 /* Add to the to_ill's list */ 17045 new_ilm->ilm_next = to_ill->ill_ilm; 17046 to_ill->ill_ilm = new_ilm; 17047 ASSERT(new_ilm->ilm_ipif == NULL); 17048 } 17049 if (ilm->ilm_refcnt == 0) { 17050 goto bottom; 17051 } else { 17052 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17053 CLEAR_SLIST(new_ilm->ilm_filter); 17054 ilmp = &ilm->ilm_next; 17055 } 17056 continue; 17057 } else { 17058 /* 17059 * ifindex = 0 means, move everything pointing at 17060 * from_ill. We are doing this becuase ill has 17061 * either FAILED or became INACTIVE. 17062 * 17063 * As we would like to move things later back to 17064 * from_ill, we want to retain the identity of this 17065 * ilm. Thus, we don't blindly increment the reference 17066 * count on the ilms matching the address alone. We 17067 * need to match on the ilm_orig_index also. new_ilm 17068 * was obtained by matching ilm_orig_index also. 17069 */ 17070 if (new_ilm != NULL) { 17071 /* 17072 * This is possible only if a previous restore 17073 * was incomplete i.e restore to 17074 * ilm_orig_ifindex left some ilms because 17075 * of some failures. Thus when we are failing 17076 * again, we might find our old friends there. 17077 */ 17078 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17079 " on %s, group address %s\n", 17080 to_ill->ill_name, 17081 inet_ntop(AF_INET6, 17082 &ilm->ilm_v6addr, buf, 17083 sizeof (buf)))); 17084 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17085 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17086 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17087 new_ilm->ilm_is_new = B_TRUE; 17088 } 17089 } else { 17090 if (from_ill->ill_ilm_walker_cnt != 0) { 17091 new_ilm = (ilm_t *) 17092 mi_zalloc(sizeof (ilm_t)); 17093 if (new_ilm == NULL) { 17094 ip0dbg(("ilm_move_v6: " 17095 "FAILOVER of IPv6" 17096 " multicast address %s : " 17097 "from %s to" 17098 " %s failed : ENOMEM \n", 17099 inet_ntop(AF_INET6, 17100 &ilm->ilm_v6addr, buf, 17101 sizeof (buf)), 17102 from_ill->ill_name, 17103 to_ill->ill_name)); 17104 17105 ilmp = &ilm->ilm_next; 17106 continue; 17107 } 17108 *new_ilm = *ilm; 17109 new_ilm->ilm_filter = NULL; 17110 } else { 17111 *ilmp = ilm->ilm_next; 17112 new_ilm = ilm; 17113 } 17114 /* 17115 * If the to_ill has not joined this 17116 * group we need to tell the driver in 17117 * ill_send_multicast_reqs. 17118 */ 17119 if (ilm_lookup_ill_v6(to_ill, 17120 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17121 new_ilm->ilm_notify_driver = B_TRUE; 17122 17123 /* Add to the to_ill's list */ 17124 new_ilm->ilm_next = to_ill->ill_ilm; 17125 to_ill->ill_ilm = new_ilm; 17126 ASSERT(ilm->ilm_ipif == NULL); 17127 new_ilm->ilm_ill = to_ill; 17128 new_ilm->ilm_is_new = B_TRUE; 17129 } 17130 17131 } 17132 17133 bottom: 17134 /* 17135 * Revert multicast filter state to (EXCLUDE, NULL). 17136 * new_ilm->ilm_is_new should already be set if needed. 17137 */ 17138 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17139 CLEAR_SLIST(new_ilm->ilm_filter); 17140 /* 17141 * We allocated/got a new ilm, free the old one. 17142 */ 17143 if (new_ilm != ilm) { 17144 if (from_ill->ill_ilm_walker_cnt == 0) { 17145 *ilmp = ilm->ilm_next; 17146 ilm->ilm_next = NULL; 17147 FREE_SLIST(ilm->ilm_filter); 17148 FREE_SLIST(ilm->ilm_pendsrcs); 17149 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17150 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17151 mi_free((char *)ilm); 17152 } else { 17153 ilm->ilm_flags |= ILM_DELETED; 17154 from_ill->ill_ilm_cleanup_reqd = 1; 17155 ilmp = &ilm->ilm_next; 17156 } 17157 } 17158 } 17159 } 17160 17161 /* 17162 * Move all the multicast memberships to to_ill. Called when 17163 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17164 * different from IPv6 counterpart as multicast memberships are associated 17165 * with ills in IPv6. This function is called after every ipif is moved 17166 * unlike IPv6, where it is moved only once. 17167 */ 17168 static void 17169 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17170 { 17171 ilm_t *ilm; 17172 ilm_t *ilm_next; 17173 ilm_t *new_ilm; 17174 ilm_t **ilmp; 17175 ip_stack_t *ipst = from_ill->ill_ipst; 17176 17177 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17178 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17179 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17180 17181 ilmp = &from_ill->ill_ilm; 17182 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17183 ilm_next = ilm->ilm_next; 17184 17185 if (ilm->ilm_flags & ILM_DELETED) { 17186 ilmp = &ilm->ilm_next; 17187 continue; 17188 } 17189 17190 ASSERT(ilm->ilm_ipif != NULL); 17191 17192 if (ilm->ilm_ipif != ipif) { 17193 ilmp = &ilm->ilm_next; 17194 continue; 17195 } 17196 17197 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17198 htonl(INADDR_ALLHOSTS_GROUP)) { 17199 new_ilm = ilm_lookup_ipif(ipif, 17200 V4_PART_OF_V6(ilm->ilm_v6addr)); 17201 if (new_ilm != NULL) { 17202 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17203 /* 17204 * We still need to deal with the from_ill. 17205 */ 17206 new_ilm->ilm_is_new = B_TRUE; 17207 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17208 CLEAR_SLIST(new_ilm->ilm_filter); 17209 goto delete_ilm; 17210 } 17211 /* 17212 * If we could not find one e.g. ipif is 17213 * still down on to_ill, we add this ilm 17214 * on ill_new to preserve the reference 17215 * count. 17216 */ 17217 } 17218 /* 17219 * When ipifs move, ilms always move with it 17220 * to the NEW ill. Thus we should never be 17221 * able to find ilm till we really move it here. 17222 */ 17223 ASSERT(ilm_lookup_ipif(ipif, 17224 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17225 17226 if (from_ill->ill_ilm_walker_cnt != 0) { 17227 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17228 if (new_ilm == NULL) { 17229 char buf[INET6_ADDRSTRLEN]; 17230 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17231 " multicast address %s : " 17232 "from %s to" 17233 " %s failed : ENOMEM \n", 17234 inet_ntop(AF_INET, 17235 &ilm->ilm_v6addr, buf, 17236 sizeof (buf)), 17237 from_ill->ill_name, 17238 to_ill->ill_name)); 17239 17240 ilmp = &ilm->ilm_next; 17241 continue; 17242 } 17243 *new_ilm = *ilm; 17244 /* We don't want new_ilm linked to ilm's filter list */ 17245 new_ilm->ilm_filter = NULL; 17246 } else { 17247 /* Remove from the list */ 17248 *ilmp = ilm->ilm_next; 17249 new_ilm = ilm; 17250 } 17251 17252 /* 17253 * If we have never joined this group on the to_ill 17254 * make sure we tell the driver. 17255 */ 17256 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17257 ALL_ZONES) == NULL) 17258 new_ilm->ilm_notify_driver = B_TRUE; 17259 17260 /* Add to the to_ill's list */ 17261 new_ilm->ilm_next = to_ill->ill_ilm; 17262 to_ill->ill_ilm = new_ilm; 17263 new_ilm->ilm_is_new = B_TRUE; 17264 17265 /* 17266 * Revert multicast filter state to (EXCLUDE, NULL) 17267 */ 17268 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17269 CLEAR_SLIST(new_ilm->ilm_filter); 17270 17271 /* 17272 * Delete only if we have allocated a new ilm. 17273 */ 17274 if (new_ilm != ilm) { 17275 delete_ilm: 17276 if (from_ill->ill_ilm_walker_cnt == 0) { 17277 /* Remove from the list */ 17278 *ilmp = ilm->ilm_next; 17279 ilm->ilm_next = NULL; 17280 FREE_SLIST(ilm->ilm_filter); 17281 FREE_SLIST(ilm->ilm_pendsrcs); 17282 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17283 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17284 mi_free((char *)ilm); 17285 } else { 17286 ilm->ilm_flags |= ILM_DELETED; 17287 from_ill->ill_ilm_cleanup_reqd = 1; 17288 ilmp = &ilm->ilm_next; 17289 } 17290 } 17291 } 17292 } 17293 17294 static uint_t 17295 ipif_get_id(ill_t *ill, uint_t id) 17296 { 17297 uint_t unit; 17298 ipif_t *tipif; 17299 boolean_t found = B_FALSE; 17300 ip_stack_t *ipst = ill->ill_ipst; 17301 17302 /* 17303 * During failback, we want to go back to the same id 17304 * instead of the smallest id so that the original 17305 * configuration is maintained. id is non-zero in that 17306 * case. 17307 */ 17308 if (id != 0) { 17309 /* 17310 * While failing back, if we still have an ipif with 17311 * MAX_ADDRS_PER_IF, it means this will be replaced 17312 * as soon as we return from this function. It was 17313 * to set to MAX_ADDRS_PER_IF by the caller so that 17314 * we can choose the smallest id. Thus we return zero 17315 * in that case ignoring the hint. 17316 */ 17317 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17318 return (0); 17319 for (tipif = ill->ill_ipif; tipif != NULL; 17320 tipif = tipif->ipif_next) { 17321 if (tipif->ipif_id == id) { 17322 found = B_TRUE; 17323 break; 17324 } 17325 } 17326 /* 17327 * If somebody already plumbed another logical 17328 * with the same id, we won't be able to find it. 17329 */ 17330 if (!found) 17331 return (id); 17332 } 17333 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17334 found = B_FALSE; 17335 for (tipif = ill->ill_ipif; tipif != NULL; 17336 tipif = tipif->ipif_next) { 17337 if (tipif->ipif_id == unit) { 17338 found = B_TRUE; 17339 break; 17340 } 17341 } 17342 if (!found) 17343 break; 17344 } 17345 return (unit); 17346 } 17347 17348 /* ARGSUSED */ 17349 static int 17350 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17351 ipif_t **rep_ipif_ptr) 17352 { 17353 ill_t *from_ill; 17354 ipif_t *rep_ipif; 17355 uint_t unit; 17356 int err = 0; 17357 ipif_t *to_ipif; 17358 struct iocblk *iocp; 17359 boolean_t failback_cmd; 17360 boolean_t remove_ipif; 17361 int rc; 17362 ip_stack_t *ipst; 17363 17364 ASSERT(IAM_WRITER_ILL(to_ill)); 17365 ASSERT(IAM_WRITER_IPIF(ipif)); 17366 17367 iocp = (struct iocblk *)mp->b_rptr; 17368 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17369 remove_ipif = B_FALSE; 17370 17371 from_ill = ipif->ipif_ill; 17372 ipst = from_ill->ill_ipst; 17373 17374 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17375 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17376 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17377 17378 /* 17379 * Don't move LINK LOCAL addresses as they are tied to 17380 * physical interface. 17381 */ 17382 if (from_ill->ill_isv6 && 17383 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17384 ipif->ipif_was_up = B_FALSE; 17385 IPIF_UNMARK_MOVING(ipif); 17386 return (0); 17387 } 17388 17389 /* 17390 * We set the ipif_id to maximum so that the search for 17391 * ipif_id will pick the lowest number i.e 0 in the 17392 * following 2 cases : 17393 * 17394 * 1) We have a replacement ipif at the head of to_ill. 17395 * We can't remove it yet as we can exceed ip_addrs_per_if 17396 * on to_ill and hence the MOVE might fail. We want to 17397 * remove it only if we could move the ipif. Thus, by 17398 * setting it to the MAX value, we make the search in 17399 * ipif_get_id return the zeroth id. 17400 * 17401 * 2) When DR pulls out the NIC and re-plumbs the interface, 17402 * we might just have a zero address plumbed on the ipif 17403 * with zero id in the case of IPv4. We remove that while 17404 * doing the failback. We want to remove it only if we 17405 * could move the ipif. Thus, by setting it to the MAX 17406 * value, we make the search in ipif_get_id return the 17407 * zeroth id. 17408 * 17409 * Both (1) and (2) are done only when when we are moving 17410 * an ipif (either due to failover/failback) which originally 17411 * belonged to this interface i.e the ipif_orig_ifindex is 17412 * the same as to_ill's ifindex. This is needed so that 17413 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17414 * from B -> A (B is being removed from the group) and 17415 * FAILBACK from A -> B restores the original configuration. 17416 * Without the check for orig_ifindex, the second FAILOVER 17417 * could make the ipif belonging to B replace the A's zeroth 17418 * ipif and the subsequent failback re-creating the replacement 17419 * ipif again. 17420 * 17421 * NOTE : We created the replacement ipif when we did a 17422 * FAILOVER (See below). We could check for FAILBACK and 17423 * then look for replacement ipif to be removed. But we don't 17424 * want to do that because we wan't to allow the possibility 17425 * of a FAILOVER from A -> B (which creates the replacement ipif), 17426 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17427 * from B -> A. 17428 */ 17429 to_ipif = to_ill->ill_ipif; 17430 if ((to_ill->ill_phyint->phyint_ifindex == 17431 ipif->ipif_orig_ifindex) && 17432 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17433 ASSERT(to_ipif->ipif_id == 0); 17434 remove_ipif = B_TRUE; 17435 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17436 } 17437 /* 17438 * Find the lowest logical unit number on the to_ill. 17439 * If we are failing back, try to get the original id 17440 * rather than the lowest one so that the original 17441 * configuration is maintained. 17442 * 17443 * XXX need a better scheme for this. 17444 */ 17445 if (failback_cmd) { 17446 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17447 } else { 17448 unit = ipif_get_id(to_ill, 0); 17449 } 17450 17451 /* Reset back to zero in case we fail below */ 17452 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17453 to_ipif->ipif_id = 0; 17454 17455 if (unit == ipst->ips_ip_addrs_per_if) { 17456 ipif->ipif_was_up = B_FALSE; 17457 IPIF_UNMARK_MOVING(ipif); 17458 return (EINVAL); 17459 } 17460 17461 /* 17462 * ipif is ready to move from "from_ill" to "to_ill". 17463 * 17464 * 1) If we are moving ipif with id zero, create a 17465 * replacement ipif for this ipif on from_ill. If this fails 17466 * fail the MOVE operation. 17467 * 17468 * 2) Remove the replacement ipif on to_ill if any. 17469 * We could remove the replacement ipif when we are moving 17470 * the ipif with id zero. But what if somebody already 17471 * unplumbed it ? Thus we always remove it if it is present. 17472 * We want to do it only if we are sure we are going to 17473 * move the ipif to to_ill which is why there are no 17474 * returns due to error till ipif is linked to to_ill. 17475 * Note that the first ipif that we failback will always 17476 * be zero if it is present. 17477 */ 17478 if (ipif->ipif_id == 0) { 17479 ipaddr_t inaddr_any = INADDR_ANY; 17480 17481 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17482 if (rep_ipif == NULL) { 17483 ipif->ipif_was_up = B_FALSE; 17484 IPIF_UNMARK_MOVING(ipif); 17485 return (ENOMEM); 17486 } 17487 *rep_ipif = ipif_zero; 17488 /* 17489 * Before we put the ipif on the list, store the addresses 17490 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17491 * assumes so. This logic is not any different from what 17492 * ipif_allocate does. 17493 */ 17494 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17495 &rep_ipif->ipif_v6lcl_addr); 17496 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17497 &rep_ipif->ipif_v6src_addr); 17498 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17499 &rep_ipif->ipif_v6subnet); 17500 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17501 &rep_ipif->ipif_v6net_mask); 17502 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17503 &rep_ipif->ipif_v6brd_addr); 17504 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17505 &rep_ipif->ipif_v6pp_dst_addr); 17506 /* 17507 * We mark IPIF_NOFAILOVER so that this can never 17508 * move. 17509 */ 17510 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17511 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17512 rep_ipif->ipif_replace_zero = B_TRUE; 17513 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17514 MUTEX_DEFAULT, NULL); 17515 rep_ipif->ipif_id = 0; 17516 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17517 rep_ipif->ipif_ill = from_ill; 17518 rep_ipif->ipif_orig_ifindex = 17519 from_ill->ill_phyint->phyint_ifindex; 17520 /* Insert at head */ 17521 rep_ipif->ipif_next = from_ill->ill_ipif; 17522 from_ill->ill_ipif = rep_ipif; 17523 /* 17524 * We don't really care to let apps know about 17525 * this interface. 17526 */ 17527 } 17528 17529 if (remove_ipif) { 17530 /* 17531 * We set to a max value above for this case to get 17532 * id zero. ASSERT that we did get one. 17533 */ 17534 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17535 rep_ipif = to_ipif; 17536 to_ill->ill_ipif = rep_ipif->ipif_next; 17537 rep_ipif->ipif_next = NULL; 17538 /* 17539 * If some apps scanned and find this interface, 17540 * it is time to let them know, so that they can 17541 * delete it. 17542 */ 17543 17544 *rep_ipif_ptr = rep_ipif; 17545 } 17546 17547 /* Get it out of the ILL interface list. */ 17548 ipif_remove(ipif, B_FALSE); 17549 17550 /* Assign the new ill */ 17551 ipif->ipif_ill = to_ill; 17552 ipif->ipif_id = unit; 17553 /* id has already been checked */ 17554 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17555 ASSERT(rc == 0); 17556 /* Let SCTP update its list */ 17557 sctp_move_ipif(ipif, from_ill, to_ill); 17558 /* 17559 * Handle the failover and failback of ipif_t between 17560 * ill_t that have differing maximum mtu values. 17561 */ 17562 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17563 if (ipif->ipif_saved_mtu == 0) { 17564 /* 17565 * As this ipif_t is moving to an ill_t 17566 * that has a lower ill_max_mtu, its 17567 * ipif_mtu needs to be saved so it can 17568 * be restored during failback or during 17569 * failover to an ill_t which has a 17570 * higher ill_max_mtu. 17571 */ 17572 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17573 ipif->ipif_mtu = to_ill->ill_max_mtu; 17574 } else { 17575 /* 17576 * The ipif_t is, once again, moving to 17577 * an ill_t that has a lower maximum mtu 17578 * value. 17579 */ 17580 ipif->ipif_mtu = to_ill->ill_max_mtu; 17581 } 17582 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17583 ipif->ipif_saved_mtu != 0) { 17584 /* 17585 * The mtu of this ipif_t had to be reduced 17586 * during an earlier failover; this is an 17587 * opportunity for it to be increased (either as 17588 * part of another failover or a failback). 17589 */ 17590 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17591 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17592 ipif->ipif_saved_mtu = 0; 17593 } else { 17594 ipif->ipif_mtu = to_ill->ill_max_mtu; 17595 } 17596 } 17597 17598 /* 17599 * We preserve all the other fields of the ipif including 17600 * ipif_saved_ire_mp. The routes that are saved here will 17601 * be recreated on the new interface and back on the old 17602 * interface when we move back. 17603 */ 17604 ASSERT(ipif->ipif_arp_del_mp == NULL); 17605 17606 return (err); 17607 } 17608 17609 static int 17610 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17611 int ifindex, ipif_t **rep_ipif_ptr) 17612 { 17613 ipif_t *mipif; 17614 ipif_t *ipif_next; 17615 int err; 17616 17617 /* 17618 * We don't really try to MOVE back things if some of the 17619 * operations fail. The daemon will take care of moving again 17620 * later on. 17621 */ 17622 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17623 ipif_next = mipif->ipif_next; 17624 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17625 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17626 17627 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17628 17629 /* 17630 * When the MOVE fails, it is the job of the 17631 * application to take care of this properly 17632 * i.e try again if it is ENOMEM. 17633 */ 17634 if (mipif->ipif_ill != from_ill) { 17635 /* 17636 * ipif has moved. 17637 * 17638 * Move the multicast memberships associated 17639 * with this ipif to the new ill. For IPv6, we 17640 * do it once after all the ipifs are moved 17641 * (in ill_move) as they are not associated 17642 * with ipifs. 17643 * 17644 * We need to move the ilms as the ipif has 17645 * already been moved to a new ill even 17646 * in the case of errors. Neither 17647 * ilm_free(ipif) will find the ilm 17648 * when somebody unplumbs this ipif nor 17649 * ilm_delete(ilm) will be able to find the 17650 * ilm, if we don't move now. 17651 */ 17652 if (!from_ill->ill_isv6) 17653 ilm_move_v4(from_ill, to_ill, mipif); 17654 } 17655 17656 if (err != 0) 17657 return (err); 17658 } 17659 } 17660 return (0); 17661 } 17662 17663 static int 17664 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17665 { 17666 int ifindex; 17667 int err; 17668 struct iocblk *iocp; 17669 ipif_t *ipif; 17670 ipif_t *rep_ipif_ptr = NULL; 17671 ipif_t *from_ipif = NULL; 17672 boolean_t check_rep_if = B_FALSE; 17673 ip_stack_t *ipst = from_ill->ill_ipst; 17674 17675 iocp = (struct iocblk *)mp->b_rptr; 17676 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17677 /* 17678 * Move everything pointing at from_ill to to_ill. 17679 * We acheive this by passing in 0 as ifindex. 17680 */ 17681 ifindex = 0; 17682 } else { 17683 /* 17684 * Move everything pointing at from_ill whose original 17685 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17686 * We acheive this by passing in ifindex rather than 0. 17687 * Multicast vifs, ilgs move implicitly because ipifs move. 17688 */ 17689 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17690 ifindex = to_ill->ill_phyint->phyint_ifindex; 17691 } 17692 17693 /* 17694 * Determine if there is at least one ipif that would move from 17695 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17696 * ipif (if it exists) on the to_ill would be consumed as a result of 17697 * the move, in which case we need to quiesce the replacement ipif also. 17698 */ 17699 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17700 from_ipif = from_ipif->ipif_next) { 17701 if (((ifindex == 0) || 17702 (ifindex == from_ipif->ipif_orig_ifindex)) && 17703 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17704 check_rep_if = B_TRUE; 17705 break; 17706 } 17707 } 17708 17709 17710 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17711 17712 GRAB_ILL_LOCKS(from_ill, to_ill); 17713 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17714 (void) ipsq_pending_mp_add(NULL, ipif, q, 17715 mp, ILL_MOVE_OK); 17716 RELEASE_ILL_LOCKS(from_ill, to_ill); 17717 return (EINPROGRESS); 17718 } 17719 17720 /* Check if the replacement ipif is quiescent to delete */ 17721 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17722 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17723 to_ill->ill_ipif->ipif_state_flags |= 17724 IPIF_MOVING | IPIF_CHANGING; 17725 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17726 (void) ipsq_pending_mp_add(NULL, ipif, q, 17727 mp, ILL_MOVE_OK); 17728 RELEASE_ILL_LOCKS(from_ill, to_ill); 17729 return (EINPROGRESS); 17730 } 17731 } 17732 RELEASE_ILL_LOCKS(from_ill, to_ill); 17733 17734 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17735 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17736 GRAB_ILL_LOCKS(from_ill, to_ill); 17737 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17738 17739 /* ilm_move is done inside ipif_move for IPv4 */ 17740 if (err == 0 && from_ill->ill_isv6) 17741 ilm_move_v6(from_ill, to_ill, ifindex); 17742 17743 RELEASE_ILL_LOCKS(from_ill, to_ill); 17744 rw_exit(&ipst->ips_ill_g_lock); 17745 17746 /* 17747 * send rts messages and multicast messages. 17748 */ 17749 if (rep_ipif_ptr != NULL) { 17750 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17751 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17752 rep_ipif_ptr->ipif_recovery_id = 0; 17753 } 17754 ip_rts_ifmsg(rep_ipif_ptr); 17755 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17756 #ifdef DEBUG 17757 ipif_trace_cleanup(rep_ipif_ptr); 17758 #endif 17759 mi_free(rep_ipif_ptr); 17760 } 17761 17762 conn_move_ill(from_ill, to_ill, ifindex); 17763 17764 return (err); 17765 } 17766 17767 /* 17768 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17769 * Also checks for the validity of the arguments. 17770 * Note: We are already exclusive inside the from group. 17771 * It is upto the caller to release refcnt on the to_ill's. 17772 */ 17773 static int 17774 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17775 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17776 { 17777 int dst_index; 17778 ipif_t *ipif_v4, *ipif_v6; 17779 struct lifreq *lifr; 17780 mblk_t *mp1; 17781 boolean_t exists; 17782 sin_t *sin; 17783 int err = 0; 17784 ip_stack_t *ipst; 17785 17786 if (CONN_Q(q)) 17787 ipst = CONNQ_TO_IPST(q); 17788 else 17789 ipst = ILLQ_TO_IPST(q); 17790 17791 17792 if ((mp1 = mp->b_cont) == NULL) 17793 return (EPROTO); 17794 17795 if ((mp1 = mp1->b_cont) == NULL) 17796 return (EPROTO); 17797 17798 lifr = (struct lifreq *)mp1->b_rptr; 17799 sin = (sin_t *)&lifr->lifr_addr; 17800 17801 /* 17802 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17803 * specific operations. 17804 */ 17805 if (sin->sin_family != AF_UNSPEC) 17806 return (EINVAL); 17807 17808 /* 17809 * Get ipif with id 0. We are writer on the from ill. So we can pass 17810 * NULLs for the last 4 args and we know the lookup won't fail 17811 * with EINPROGRESS. 17812 */ 17813 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17814 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17815 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17816 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17817 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17818 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17819 17820 if (ipif_v4 == NULL && ipif_v6 == NULL) 17821 return (ENXIO); 17822 17823 if (ipif_v4 != NULL) { 17824 ASSERT(ipif_v4->ipif_refcnt != 0); 17825 if (ipif_v4->ipif_id != 0) { 17826 err = EINVAL; 17827 goto done; 17828 } 17829 17830 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17831 *ill_from_v4 = ipif_v4->ipif_ill; 17832 } 17833 17834 if (ipif_v6 != NULL) { 17835 ASSERT(ipif_v6->ipif_refcnt != 0); 17836 if (ipif_v6->ipif_id != 0) { 17837 err = EINVAL; 17838 goto done; 17839 } 17840 17841 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17842 *ill_from_v6 = ipif_v6->ipif_ill; 17843 } 17844 17845 err = 0; 17846 dst_index = lifr->lifr_movetoindex; 17847 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17848 q, mp, ip_process_ioctl, &err, ipst); 17849 if (err != 0) { 17850 /* 17851 * There could be only v6. 17852 */ 17853 if (err != ENXIO) 17854 goto done; 17855 err = 0; 17856 } 17857 17858 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17859 q, mp, ip_process_ioctl, &err, ipst); 17860 if (err != 0) { 17861 if (err != ENXIO) 17862 goto done; 17863 if (*ill_to_v4 == NULL) { 17864 err = ENXIO; 17865 goto done; 17866 } 17867 err = 0; 17868 } 17869 17870 /* 17871 * If we have something to MOVE i.e "from" not NULL, 17872 * "to" should be non-NULL. 17873 */ 17874 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17875 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17876 err = EINVAL; 17877 } 17878 17879 done: 17880 if (ipif_v4 != NULL) 17881 ipif_refrele(ipif_v4); 17882 if (ipif_v6 != NULL) 17883 ipif_refrele(ipif_v6); 17884 return (err); 17885 } 17886 17887 /* 17888 * FAILOVER and FAILBACK are modelled as MOVE operations. 17889 * 17890 * We don't check whether the MOVE is within the same group or 17891 * not, because this ioctl can be used as a generic mechanism 17892 * to failover from interface A to B, though things will function 17893 * only if they are really part of the same group. Moreover, 17894 * all ipifs may be down and hence temporarily out of the group. 17895 * 17896 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17897 * down first and then V6. For each we wait for the ipif's to become quiescent. 17898 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17899 * have been deleted and there are no active references. Once quiescent the 17900 * ipif's are moved and brought up on the new ill. 17901 * 17902 * Normally the source ill and destination ill belong to the same IPMP group 17903 * and hence the same ipsq_t. In the event they don't belong to the same 17904 * same group the two ipsq's are first merged into one ipsq - that of the 17905 * to_ill. The multicast memberships on the source and destination ill cannot 17906 * change during the move operation since multicast joins/leaves also have to 17907 * execute on the same ipsq and are hence serialized. 17908 */ 17909 /* ARGSUSED */ 17910 int 17911 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17912 ip_ioctl_cmd_t *ipip, void *ifreq) 17913 { 17914 ill_t *ill_to_v4 = NULL; 17915 ill_t *ill_to_v6 = NULL; 17916 ill_t *ill_from_v4 = NULL; 17917 ill_t *ill_from_v6 = NULL; 17918 int err = 0; 17919 17920 /* 17921 * setup from and to ill's, we can get EINPROGRESS only for 17922 * to_ill's. 17923 */ 17924 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17925 &ill_to_v4, &ill_to_v6); 17926 17927 if (err != 0) { 17928 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17929 goto done; 17930 } 17931 17932 /* 17933 * nothing to do. 17934 */ 17935 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17936 goto done; 17937 } 17938 17939 /* 17940 * nothing to do. 17941 */ 17942 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17943 goto done; 17944 } 17945 17946 /* 17947 * Mark the ill as changing. 17948 * ILL_CHANGING flag is cleared when the ipif's are brought up 17949 * in ill_up_ipifs in case of error they are cleared below. 17950 */ 17951 17952 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17953 if (ill_from_v4 != NULL) 17954 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17955 if (ill_from_v6 != NULL) 17956 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17957 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17958 17959 /* 17960 * Make sure that both src and dst are 17961 * in the same syncq group. If not make it happen. 17962 * We are not holding any locks because we are the writer 17963 * on the from_ipsq and we will hold locks in ill_merge_groups 17964 * to protect to_ipsq against changing. 17965 */ 17966 if (ill_from_v4 != NULL) { 17967 if (ill_from_v4->ill_phyint->phyint_ipsq != 17968 ill_to_v4->ill_phyint->phyint_ipsq) { 17969 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17970 NULL, mp, q); 17971 goto err_ret; 17972 17973 } 17974 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17975 } else { 17976 17977 if (ill_from_v6->ill_phyint->phyint_ipsq != 17978 ill_to_v6->ill_phyint->phyint_ipsq) { 17979 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17980 NULL, mp, q); 17981 goto err_ret; 17982 17983 } 17984 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17985 } 17986 17987 /* 17988 * Now that the ipsq's have been merged and we are the writer 17989 * lets mark to_ill as changing as well. 17990 */ 17991 17992 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17993 if (ill_to_v4 != NULL) 17994 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17995 if (ill_to_v6 != NULL) 17996 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17997 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17998 17999 /* 18000 * Its ok for us to proceed with the move even if 18001 * ill_pending_mp is non null on one of the from ill's as the reply 18002 * should not be looking at the ipif, it should only care about the 18003 * ill itself. 18004 */ 18005 18006 /* 18007 * lets move ipv4 first. 18008 */ 18009 if (ill_from_v4 != NULL) { 18010 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18011 ill_from_v4->ill_move_in_progress = B_TRUE; 18012 ill_to_v4->ill_move_in_progress = B_TRUE; 18013 ill_to_v4->ill_move_peer = ill_from_v4; 18014 ill_from_v4->ill_move_peer = ill_to_v4; 18015 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18016 } 18017 18018 /* 18019 * Now lets move ipv6. 18020 */ 18021 if (err == 0 && ill_from_v6 != NULL) { 18022 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18023 ill_from_v6->ill_move_in_progress = B_TRUE; 18024 ill_to_v6->ill_move_in_progress = B_TRUE; 18025 ill_to_v6->ill_move_peer = ill_from_v6; 18026 ill_from_v6->ill_move_peer = ill_to_v6; 18027 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18028 } 18029 18030 err_ret: 18031 /* 18032 * EINPROGRESS means we are waiting for the ipif's that need to be 18033 * moved to become quiescent. 18034 */ 18035 if (err == EINPROGRESS) { 18036 goto done; 18037 } 18038 18039 /* 18040 * if err is set ill_up_ipifs will not be called 18041 * lets clear the flags. 18042 */ 18043 18044 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18045 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18046 /* 18047 * Some of the clearing may be redundant. But it is simple 18048 * not making any extra checks. 18049 */ 18050 if (ill_from_v6 != NULL) { 18051 ill_from_v6->ill_move_in_progress = B_FALSE; 18052 ill_from_v6->ill_move_peer = NULL; 18053 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18054 } 18055 if (ill_from_v4 != NULL) { 18056 ill_from_v4->ill_move_in_progress = B_FALSE; 18057 ill_from_v4->ill_move_peer = NULL; 18058 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18059 } 18060 if (ill_to_v6 != NULL) { 18061 ill_to_v6->ill_move_in_progress = B_FALSE; 18062 ill_to_v6->ill_move_peer = NULL; 18063 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18064 } 18065 if (ill_to_v4 != NULL) { 18066 ill_to_v4->ill_move_in_progress = B_FALSE; 18067 ill_to_v4->ill_move_peer = NULL; 18068 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18069 } 18070 18071 /* 18072 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18073 * Do this always to maintain proper state i.e even in case of errors. 18074 * As phyint_inactive looks at both v4 and v6 interfaces, 18075 * we need not call on both v4 and v6 interfaces. 18076 */ 18077 if (ill_from_v4 != NULL) { 18078 if ((ill_from_v4->ill_phyint->phyint_flags & 18079 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18080 phyint_inactive(ill_from_v4->ill_phyint); 18081 } 18082 } else if (ill_from_v6 != NULL) { 18083 if ((ill_from_v6->ill_phyint->phyint_flags & 18084 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18085 phyint_inactive(ill_from_v6->ill_phyint); 18086 } 18087 } 18088 18089 if (ill_to_v4 != NULL) { 18090 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18091 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18092 } 18093 } else if (ill_to_v6 != NULL) { 18094 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18095 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18096 } 18097 } 18098 18099 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18100 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18101 18102 no_err: 18103 /* 18104 * lets bring the interfaces up on the to_ill. 18105 */ 18106 if (err == 0) { 18107 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18108 q, mp); 18109 } 18110 18111 if (err == 0) { 18112 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18113 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18114 18115 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18116 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18117 } 18118 done: 18119 18120 if (ill_to_v4 != NULL) { 18121 ill_refrele(ill_to_v4); 18122 } 18123 if (ill_to_v6 != NULL) { 18124 ill_refrele(ill_to_v6); 18125 } 18126 18127 return (err); 18128 } 18129 18130 static void 18131 ill_dl_down(ill_t *ill) 18132 { 18133 /* 18134 * The ill is down; unbind but stay attached since we're still 18135 * associated with a PPA. If we have negotiated DLPI capabilites 18136 * with the data link service provider (IDS_OK) then reset them. 18137 * The interval between unbinding and rebinding is potentially 18138 * unbounded hence we cannot assume things will be the same. 18139 * The DLPI capabilities will be probed again when the data link 18140 * is brought up. 18141 */ 18142 mblk_t *mp = ill->ill_unbind_mp; 18143 hook_nic_event_t *info; 18144 18145 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18146 18147 ill->ill_unbind_mp = NULL; 18148 if (mp != NULL) { 18149 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18150 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18151 ill->ill_name)); 18152 mutex_enter(&ill->ill_lock); 18153 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18154 mutex_exit(&ill->ill_lock); 18155 /* 18156 * Reset the capabilities if the negotiation is done or is 18157 * still in progress. Note that ill_capability_reset() will 18158 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18159 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18160 * 18161 * Further, reset ill_capab_reneg to be B_FALSE so that the 18162 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18163 * the capabilities renegotiation from happening. 18164 */ 18165 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18166 ill_capability_reset(ill); 18167 ill->ill_capab_reneg = B_FALSE; 18168 18169 ill_dlpi_send(ill, mp); 18170 } 18171 18172 /* 18173 * Toss all of our multicast memberships. We could keep them, but 18174 * then we'd have to do bookkeeping of any joins and leaves performed 18175 * by the application while the the interface is down (we can't just 18176 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18177 * on a downed interface). 18178 */ 18179 ill_leave_multicast(ill); 18180 18181 mutex_enter(&ill->ill_lock); 18182 18183 ill->ill_dl_up = 0; 18184 18185 if ((info = ill->ill_nic_event_info) != NULL) { 18186 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18187 info->hne_event, ill->ill_name)); 18188 if (info->hne_data != NULL) 18189 kmem_free(info->hne_data, info->hne_datalen); 18190 kmem_free(info, sizeof (hook_nic_event_t)); 18191 } 18192 18193 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18194 if (info != NULL) { 18195 ip_stack_t *ipst = ill->ill_ipst; 18196 18197 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18198 info->hne_lif = 0; 18199 info->hne_event = NE_DOWN; 18200 info->hne_data = NULL; 18201 info->hne_datalen = 0; 18202 info->hne_family = ill->ill_isv6 ? 18203 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18204 } else 18205 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18206 "information for %s (ENOMEM)\n", ill->ill_name)); 18207 18208 ill->ill_nic_event_info = info; 18209 18210 mutex_exit(&ill->ill_lock); 18211 } 18212 18213 static void 18214 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18215 { 18216 union DL_primitives *dlp; 18217 t_uscalar_t prim; 18218 18219 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18220 18221 dlp = (union DL_primitives *)mp->b_rptr; 18222 prim = dlp->dl_primitive; 18223 18224 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18225 dlpi_prim_str(prim), prim, ill->ill_name)); 18226 18227 switch (prim) { 18228 case DL_PHYS_ADDR_REQ: 18229 { 18230 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18231 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18232 break; 18233 } 18234 case DL_BIND_REQ: 18235 mutex_enter(&ill->ill_lock); 18236 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18237 mutex_exit(&ill->ill_lock); 18238 break; 18239 } 18240 18241 /* 18242 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18243 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18244 * we only wait for the ACK of the DL_UNBIND_REQ. 18245 */ 18246 mutex_enter(&ill->ill_lock); 18247 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18248 (prim == DL_UNBIND_REQ)) { 18249 ill->ill_dlpi_pending = prim; 18250 } 18251 mutex_exit(&ill->ill_lock); 18252 18253 putnext(ill->ill_wq, mp); 18254 } 18255 18256 /* 18257 * Helper function for ill_dlpi_send(). 18258 */ 18259 /* ARGSUSED */ 18260 static void 18261 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18262 { 18263 ill_dlpi_send((ill_t *)q->q_ptr, mp); 18264 } 18265 18266 /* 18267 * Send a DLPI control message to the driver but make sure there 18268 * is only one outstanding message. Uses ill_dlpi_pending to tell 18269 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18270 * when an ACK or a NAK is received to process the next queued message. 18271 */ 18272 void 18273 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18274 { 18275 mblk_t **mpp; 18276 18277 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18278 18279 /* 18280 * To ensure that any DLPI requests for current exclusive operation 18281 * are always completely sent before any DLPI messages for other 18282 * operations, require writer access before enqueuing. 18283 */ 18284 if (!IAM_WRITER_ILL(ill)) { 18285 ill_refhold(ill); 18286 /* qwriter_ip() does the ill_refrele() */ 18287 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18288 NEW_OP, B_TRUE); 18289 return; 18290 } 18291 18292 mutex_enter(&ill->ill_lock); 18293 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18294 /* Must queue message. Tail insertion */ 18295 mpp = &ill->ill_dlpi_deferred; 18296 while (*mpp != NULL) 18297 mpp = &((*mpp)->b_next); 18298 18299 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18300 ill->ill_name)); 18301 18302 *mpp = mp; 18303 mutex_exit(&ill->ill_lock); 18304 return; 18305 } 18306 mutex_exit(&ill->ill_lock); 18307 ill_dlpi_dispatch(ill, mp); 18308 } 18309 18310 /* 18311 * Send all deferred DLPI messages without waiting for their ACKs. 18312 */ 18313 void 18314 ill_dlpi_send_deferred(ill_t *ill) 18315 { 18316 mblk_t *mp, *nextmp; 18317 18318 /* 18319 * Clear ill_dlpi_pending so that the message is not queued in 18320 * ill_dlpi_send(). 18321 */ 18322 mutex_enter(&ill->ill_lock); 18323 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18324 mp = ill->ill_dlpi_deferred; 18325 ill->ill_dlpi_deferred = NULL; 18326 mutex_exit(&ill->ill_lock); 18327 18328 for (; mp != NULL; mp = nextmp) { 18329 nextmp = mp->b_next; 18330 mp->b_next = NULL; 18331 ill_dlpi_send(ill, mp); 18332 } 18333 } 18334 18335 /* 18336 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18337 */ 18338 boolean_t 18339 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18340 { 18341 t_uscalar_t pending; 18342 18343 mutex_enter(&ill->ill_lock); 18344 if (ill->ill_dlpi_pending == prim) { 18345 mutex_exit(&ill->ill_lock); 18346 return (B_TRUE); 18347 } 18348 18349 /* 18350 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18351 * without waiting, so don't print any warnings in that case. 18352 */ 18353 if (ill->ill_state_flags & ILL_CONDEMNED) { 18354 mutex_exit(&ill->ill_lock); 18355 return (B_FALSE); 18356 } 18357 pending = ill->ill_dlpi_pending; 18358 mutex_exit(&ill->ill_lock); 18359 18360 if (pending == DL_PRIM_INVAL) { 18361 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18362 "received unsolicited ack for %s on %s\n", 18363 dlpi_prim_str(prim), ill->ill_name); 18364 } else { 18365 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18366 "received unexpected ack for %s on %s (expecting %s)\n", 18367 dlpi_prim_str(prim), ill->ill_name, dlpi_prim_str(pending)); 18368 } 18369 return (B_FALSE); 18370 } 18371 18372 /* 18373 * Called when an DLPI control message has been acked or nacked to 18374 * send down the next queued message (if any). 18375 */ 18376 void 18377 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18378 { 18379 mblk_t *mp; 18380 18381 ASSERT(IAM_WRITER_ILL(ill)); 18382 mutex_enter(&ill->ill_lock); 18383 18384 ASSERT(prim != DL_PRIM_INVAL); 18385 ASSERT(ill->ill_dlpi_pending == prim); 18386 18387 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18388 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18389 18390 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18391 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18392 cv_signal(&ill->ill_cv); 18393 mutex_exit(&ill->ill_lock); 18394 return; 18395 } 18396 18397 ill->ill_dlpi_deferred = mp->b_next; 18398 mp->b_next = NULL; 18399 mutex_exit(&ill->ill_lock); 18400 18401 ill_dlpi_dispatch(ill, mp); 18402 } 18403 18404 void 18405 conn_delete_ire(conn_t *connp, caddr_t arg) 18406 { 18407 ipif_t *ipif = (ipif_t *)arg; 18408 ire_t *ire; 18409 18410 /* 18411 * Look at the cached ires on conns which has pointers to ipifs. 18412 * We just call ire_refrele which clears up the reference 18413 * to ire. Called when a conn closes. Also called from ipif_free 18414 * to cleanup indirect references to the stale ipif via the cached ire. 18415 */ 18416 mutex_enter(&connp->conn_lock); 18417 ire = connp->conn_ire_cache; 18418 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18419 connp->conn_ire_cache = NULL; 18420 mutex_exit(&connp->conn_lock); 18421 IRE_REFRELE_NOTR(ire); 18422 return; 18423 } 18424 mutex_exit(&connp->conn_lock); 18425 18426 } 18427 18428 /* 18429 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18430 * of IREs. Those IREs may have been previously cached in the conn structure. 18431 * This ipcl_walk() walker function releases all references to such IREs based 18432 * on the condemned flag. 18433 */ 18434 /* ARGSUSED */ 18435 void 18436 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18437 { 18438 ire_t *ire; 18439 18440 mutex_enter(&connp->conn_lock); 18441 ire = connp->conn_ire_cache; 18442 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18443 connp->conn_ire_cache = NULL; 18444 mutex_exit(&connp->conn_lock); 18445 IRE_REFRELE_NOTR(ire); 18446 return; 18447 } 18448 mutex_exit(&connp->conn_lock); 18449 } 18450 18451 /* 18452 * Take down a specific interface, but don't lose any information about it. 18453 * Also delete interface from its interface group (ifgrp). 18454 * (Always called as writer.) 18455 * This function goes through the down sequence even if the interface is 18456 * already down. There are 2 reasons. 18457 * a. Currently we permit interface routes that depend on down interfaces 18458 * to be added. This behaviour itself is questionable. However it appears 18459 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18460 * time. We go thru the cleanup in order to remove these routes. 18461 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18462 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18463 * down, but we need to cleanup i.e. do ill_dl_down and 18464 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18465 * 18466 * IP-MT notes: 18467 * 18468 * Model of reference to interfaces. 18469 * 18470 * The following members in ipif_t track references to the ipif. 18471 * int ipif_refcnt; Active reference count 18472 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18473 * The following members in ill_t track references to the ill. 18474 * int ill_refcnt; active refcnt 18475 * uint_t ill_ire_cnt; Number of ires referencing ill 18476 * uint_t ill_nce_cnt; Number of nces referencing ill 18477 * 18478 * Reference to an ipif or ill can be obtained in any of the following ways. 18479 * 18480 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18481 * Pointers to ipif / ill from other data structures viz ire and conn. 18482 * Implicit reference to the ipif / ill by holding a reference to the ire. 18483 * 18484 * The ipif/ill lookup functions return a reference held ipif / ill. 18485 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18486 * This is a purely dynamic reference count associated with threads holding 18487 * references to the ipif / ill. Pointers from other structures do not 18488 * count towards this reference count. 18489 * 18490 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18491 * ipif/ill. This is incremented whenever a new ire is created referencing the 18492 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18493 * actually added to the ire hash table. The count is decremented in 18494 * ire_inactive where the ire is destroyed. 18495 * 18496 * nce's reference ill's thru nce_ill and the count of nce's associated with 18497 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18498 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18499 * table. Similarly it is decremented in ndp_inactive() where the nce 18500 * is destroyed. 18501 * 18502 * Flow of ioctls involving interface down/up 18503 * 18504 * The following is the sequence of an attempt to set some critical flags on an 18505 * up interface. 18506 * ip_sioctl_flags 18507 * ipif_down 18508 * wait for ipif to be quiescent 18509 * ipif_down_tail 18510 * ip_sioctl_flags_tail 18511 * 18512 * All set ioctls that involve down/up sequence would have a skeleton similar 18513 * to the above. All the *tail functions are called after the refcounts have 18514 * dropped to the appropriate values. 18515 * 18516 * The mechanism to quiesce an ipif is as follows. 18517 * 18518 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18519 * on the ipif. Callers either pass a flag requesting wait or the lookup 18520 * functions will return NULL. 18521 * 18522 * Delete all ires referencing this ipif 18523 * 18524 * Any thread attempting to do an ipif_refhold on an ipif that has been 18525 * obtained thru a cached pointer will first make sure that 18526 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18527 * increment the refcount. 18528 * 18529 * The above guarantees that the ipif refcount will eventually come down to 18530 * zero and the ipif will quiesce, once all threads that currently hold a 18531 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18532 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18533 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18534 * drop to zero. 18535 * 18536 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18537 * 18538 * Threads trying to lookup an ipif or ill can pass a flag requesting 18539 * wait and restart if the ipif / ill cannot be looked up currently. 18540 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18541 * failure if the ipif is currently undergoing an exclusive operation, and 18542 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18543 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18544 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18545 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18546 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18547 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18548 * until we release the ipsq_lock, even though the the ill/ipif state flags 18549 * can change after we drop the ill_lock. 18550 * 18551 * An attempt to send out a packet using an ipif that is currently 18552 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18553 * operation and restart it later when the exclusive condition on the ipif ends. 18554 * This is an example of not passing the wait flag to the lookup functions. For 18555 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18556 * out a multicast packet on that ipif will fail while the ipif is 18557 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18558 * currently IPIF_CHANGING will also fail. 18559 */ 18560 int 18561 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18562 { 18563 ill_t *ill = ipif->ipif_ill; 18564 phyint_t *phyi; 18565 conn_t *connp; 18566 boolean_t success; 18567 boolean_t ipif_was_up = B_FALSE; 18568 ip_stack_t *ipst = ill->ill_ipst; 18569 18570 ASSERT(IAM_WRITER_IPIF(ipif)); 18571 18572 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18573 18574 if (ipif->ipif_flags & IPIF_UP) { 18575 mutex_enter(&ill->ill_lock); 18576 ipif->ipif_flags &= ~IPIF_UP; 18577 ASSERT(ill->ill_ipif_up_count > 0); 18578 --ill->ill_ipif_up_count; 18579 mutex_exit(&ill->ill_lock); 18580 ipif_was_up = B_TRUE; 18581 /* Update status in SCTP's list */ 18582 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18583 } 18584 18585 /* 18586 * Blow away memberships we established in ipif_multicast_up(). 18587 */ 18588 ipif_multicast_down(ipif); 18589 18590 /* 18591 * Remove from the mapping for __sin6_src_id. We insert only 18592 * when the address is not INADDR_ANY. As IPv4 addresses are 18593 * stored as mapped addresses, we need to check for mapped 18594 * INADDR_ANY also. 18595 */ 18596 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18597 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18598 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18599 int err; 18600 18601 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18602 ipif->ipif_zoneid, ipst); 18603 if (err != 0) { 18604 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18605 } 18606 } 18607 18608 /* 18609 * Before we delete the ill from the group (if any), we need 18610 * to make sure that we delete all the routes dependent on 18611 * this and also any ipifs dependent on this ipif for 18612 * source address. We need to do before we delete from 18613 * the group because 18614 * 18615 * 1) ipif_down_delete_ire de-references ill->ill_group. 18616 * 18617 * 2) ipif_update_other_ipifs needs to walk the whole group 18618 * for re-doing source address selection. Note that 18619 * ipif_select_source[_v6] called from 18620 * ipif_update_other_ipifs[_v6] will not pick this ipif 18621 * because we have already marked down here i.e cleared 18622 * IPIF_UP. 18623 */ 18624 if (ipif->ipif_isv6) { 18625 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18626 ipst); 18627 } else { 18628 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18629 ipst); 18630 } 18631 18632 /* 18633 * Cleaning up the conn_ire_cache or conns must be done only after the 18634 * ires have been deleted above. Otherwise a thread could end up 18635 * caching an ire in a conn after we have finished the cleanup of the 18636 * conn. The caching is done after making sure that the ire is not yet 18637 * condemned. Also documented in the block comment above ip_output 18638 */ 18639 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18640 /* Also, delete the ires cached in SCTP */ 18641 sctp_ire_cache_flush(ipif); 18642 18643 /* 18644 * Update any other ipifs which have used "our" local address as 18645 * a source address. This entails removing and recreating IRE_INTERFACE 18646 * entries for such ipifs. 18647 */ 18648 if (ipif->ipif_isv6) 18649 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18650 else 18651 ipif_update_other_ipifs(ipif, ill->ill_group); 18652 18653 if (ipif_was_up) { 18654 /* 18655 * Check whether it is last ipif to leave this group. 18656 * If this is the last ipif to leave, we should remove 18657 * this ill from the group as ipif_select_source will not 18658 * be able to find any useful ipifs if this ill is selected 18659 * for load balancing. 18660 * 18661 * For nameless groups, we should call ifgrp_delete if this 18662 * belongs to some group. As this ipif is going down, we may 18663 * need to reconstruct groups. 18664 */ 18665 phyi = ill->ill_phyint; 18666 /* 18667 * If the phyint_groupname_len is 0, it may or may not 18668 * be in the nameless group. If the phyint_groupname_len is 18669 * not 0, then this ill should be part of some group. 18670 * As we always insert this ill in the group if 18671 * phyint_groupname_len is not zero when the first ipif 18672 * comes up (in ipif_up_done), it should be in a group 18673 * when the namelen is not 0. 18674 * 18675 * NOTE : When we delete the ill from the group,it will 18676 * blow away all the IRE_CACHES pointing either at this ipif or 18677 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18678 * should be pointing at this ill. 18679 */ 18680 ASSERT(phyi->phyint_groupname_len == 0 || 18681 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18682 18683 if (phyi->phyint_groupname_len != 0) { 18684 if (ill->ill_ipif_up_count == 0) 18685 illgrp_delete(ill); 18686 } 18687 18688 /* 18689 * If we have deleted some of the broadcast ires associated 18690 * with this ipif, we need to re-nominate somebody else if 18691 * the ires that we deleted were the nominated ones. 18692 */ 18693 if (ill->ill_group != NULL && !ill->ill_isv6) 18694 ipif_renominate_bcast(ipif); 18695 } 18696 18697 /* 18698 * neighbor-discovery or arp entries for this interface. 18699 */ 18700 ipif_ndp_down(ipif); 18701 18702 /* 18703 * If mp is NULL the caller will wait for the appropriate refcnt. 18704 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18705 * and ill_delete -> ipif_free -> ipif_down 18706 */ 18707 if (mp == NULL) { 18708 ASSERT(q == NULL); 18709 return (0); 18710 } 18711 18712 if (CONN_Q(q)) { 18713 connp = Q_TO_CONN(q); 18714 mutex_enter(&connp->conn_lock); 18715 } else { 18716 connp = NULL; 18717 } 18718 mutex_enter(&ill->ill_lock); 18719 /* 18720 * Are there any ire's pointing to this ipif that are still active ? 18721 * If this is the last ipif going down, are there any ire's pointing 18722 * to this ill that are still active ? 18723 */ 18724 if (ipif_is_quiescent(ipif)) { 18725 mutex_exit(&ill->ill_lock); 18726 if (connp != NULL) 18727 mutex_exit(&connp->conn_lock); 18728 return (0); 18729 } 18730 18731 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18732 ill->ill_name, (void *)ill)); 18733 /* 18734 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18735 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18736 * which in turn is called by the last refrele on the ipif/ill/ire. 18737 */ 18738 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18739 if (!success) { 18740 /* The conn is closing. So just return */ 18741 ASSERT(connp != NULL); 18742 mutex_exit(&ill->ill_lock); 18743 mutex_exit(&connp->conn_lock); 18744 return (EINTR); 18745 } 18746 18747 mutex_exit(&ill->ill_lock); 18748 if (connp != NULL) 18749 mutex_exit(&connp->conn_lock); 18750 return (EINPROGRESS); 18751 } 18752 18753 void 18754 ipif_down_tail(ipif_t *ipif) 18755 { 18756 ill_t *ill = ipif->ipif_ill; 18757 18758 /* 18759 * Skip any loopback interface (null wq). 18760 * If this is the last logical interface on the ill 18761 * have ill_dl_down tell the driver we are gone (unbind) 18762 * Note that lun 0 can ipif_down even though 18763 * there are other logical units that are up. 18764 * This occurs e.g. when we change a "significant" IFF_ flag. 18765 */ 18766 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18767 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18768 ill->ill_dl_up) { 18769 ill_dl_down(ill); 18770 } 18771 ill->ill_logical_down = 0; 18772 18773 /* 18774 * Have to be after removing the routes in ipif_down_delete_ire. 18775 */ 18776 if (ipif->ipif_isv6) { 18777 if (ill->ill_flags & ILLF_XRESOLV) 18778 ipif_arp_down(ipif); 18779 } else { 18780 ipif_arp_down(ipif); 18781 } 18782 18783 ip_rts_ifmsg(ipif); 18784 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18785 } 18786 18787 /* 18788 * Bring interface logically down without bringing the physical interface 18789 * down e.g. when the netmask is changed. This avoids long lasting link 18790 * negotiations between an ethernet interface and a certain switches. 18791 */ 18792 static int 18793 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18794 { 18795 /* 18796 * The ill_logical_down flag is a transient flag. It is set here 18797 * and is cleared once the down has completed in ipif_down_tail. 18798 * This flag does not indicate whether the ill stream is in the 18799 * DL_BOUND state with the driver. Instead this flag is used by 18800 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18801 * the driver. The state of the ill stream i.e. whether it is 18802 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18803 */ 18804 ipif->ipif_ill->ill_logical_down = 1; 18805 return (ipif_down(ipif, q, mp)); 18806 } 18807 18808 /* 18809 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18810 * If the usesrc client ILL is already part of a usesrc group or not, 18811 * in either case a ire_stq with the matching usesrc client ILL will 18812 * locate the IRE's that need to be deleted. We want IREs to be created 18813 * with the new source address. 18814 */ 18815 static void 18816 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18817 { 18818 ill_t *ucill = (ill_t *)ill_arg; 18819 18820 ASSERT(IAM_WRITER_ILL(ucill)); 18821 18822 if (ire->ire_stq == NULL) 18823 return; 18824 18825 if ((ire->ire_type == IRE_CACHE) && 18826 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18827 ire_delete(ire); 18828 } 18829 18830 /* 18831 * ire_walk routine to delete every IRE dependent on the interface 18832 * address that is going down. (Always called as writer.) 18833 * Works for both v4 and v6. 18834 * In addition for checking for ire_ipif matches it also checks for 18835 * IRE_CACHE entries which have the same source address as the 18836 * disappearing ipif since ipif_select_source might have picked 18837 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18838 * care of any IRE_INTERFACE with the disappearing source address. 18839 */ 18840 static void 18841 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18842 { 18843 ipif_t *ipif = (ipif_t *)ipif_arg; 18844 ill_t *ire_ill; 18845 ill_t *ipif_ill; 18846 18847 ASSERT(IAM_WRITER_IPIF(ipif)); 18848 if (ire->ire_ipif == NULL) 18849 return; 18850 18851 /* 18852 * For IPv4, we derive source addresses for an IRE from ipif's 18853 * belonging to the same IPMP group as the IRE's outgoing 18854 * interface. If an IRE's outgoing interface isn't in the 18855 * same IPMP group as a particular ipif, then that ipif 18856 * couldn't have been used as a source address for this IRE. 18857 * 18858 * For IPv6, source addresses are only restricted to the IPMP group 18859 * if the IRE is for a link-local address or a multicast address. 18860 * Otherwise, source addresses for an IRE can be chosen from 18861 * interfaces other than the the outgoing interface for that IRE. 18862 * 18863 * For source address selection details, see ipif_select_source() 18864 * and ipif_select_source_v6(). 18865 */ 18866 if (ire->ire_ipversion == IPV4_VERSION || 18867 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18868 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18869 ire_ill = ire->ire_ipif->ipif_ill; 18870 ipif_ill = ipif->ipif_ill; 18871 18872 if (ire_ill->ill_group != ipif_ill->ill_group) { 18873 return; 18874 } 18875 } 18876 18877 18878 if (ire->ire_ipif != ipif) { 18879 /* 18880 * Look for a matching source address. 18881 */ 18882 if (ire->ire_type != IRE_CACHE) 18883 return; 18884 if (ipif->ipif_flags & IPIF_NOLOCAL) 18885 return; 18886 18887 if (ire->ire_ipversion == IPV4_VERSION) { 18888 if (ire->ire_src_addr != ipif->ipif_src_addr) 18889 return; 18890 } else { 18891 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18892 &ipif->ipif_v6lcl_addr)) 18893 return; 18894 } 18895 ire_delete(ire); 18896 return; 18897 } 18898 /* 18899 * ire_delete() will do an ire_flush_cache which will delete 18900 * all ire_ipif matches 18901 */ 18902 ire_delete(ire); 18903 } 18904 18905 /* 18906 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18907 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18908 * 2) when an interface is brought up or down (on that ill). 18909 * This ensures that the IRE_CACHE entries don't retain stale source 18910 * address selection results. 18911 */ 18912 void 18913 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18914 { 18915 ill_t *ill = (ill_t *)ill_arg; 18916 ill_t *ipif_ill; 18917 18918 ASSERT(IAM_WRITER_ILL(ill)); 18919 /* 18920 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18921 * Hence this should be IRE_CACHE. 18922 */ 18923 ASSERT(ire->ire_type == IRE_CACHE); 18924 18925 /* 18926 * We are called for IRE_CACHES whose ire_ipif matches ill. 18927 * We are only interested in IRE_CACHES that has borrowed 18928 * the source address from ill_arg e.g. ipif_up_done[_v6] 18929 * for which we need to look at ire_ipif->ipif_ill match 18930 * with ill. 18931 */ 18932 ASSERT(ire->ire_ipif != NULL); 18933 ipif_ill = ire->ire_ipif->ipif_ill; 18934 if (ipif_ill == ill || (ill->ill_group != NULL && 18935 ipif_ill->ill_group == ill->ill_group)) { 18936 ire_delete(ire); 18937 } 18938 } 18939 18940 /* 18941 * Delete all the ire whose stq references ill_arg. 18942 */ 18943 static void 18944 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18945 { 18946 ill_t *ill = (ill_t *)ill_arg; 18947 ill_t *ire_ill; 18948 18949 ASSERT(IAM_WRITER_ILL(ill)); 18950 /* 18951 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18952 * Hence this should be IRE_CACHE. 18953 */ 18954 ASSERT(ire->ire_type == IRE_CACHE); 18955 18956 /* 18957 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18958 * matches ill. We are only interested in IRE_CACHES that 18959 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18960 * filtering here. 18961 */ 18962 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18963 18964 if (ire_ill == ill) 18965 ire_delete(ire); 18966 } 18967 18968 /* 18969 * This is called when an ill leaves the group. We want to delete 18970 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18971 * pointing at ill. 18972 */ 18973 static void 18974 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18975 { 18976 ill_t *ill = (ill_t *)ill_arg; 18977 18978 ASSERT(IAM_WRITER_ILL(ill)); 18979 ASSERT(ill->ill_group == NULL); 18980 /* 18981 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18982 * Hence this should be IRE_CACHE. 18983 */ 18984 ASSERT(ire->ire_type == IRE_CACHE); 18985 /* 18986 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18987 * matches ill. We are interested in both. 18988 */ 18989 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18990 (ire->ire_ipif->ipif_ill == ill)); 18991 18992 ire_delete(ire); 18993 } 18994 18995 /* 18996 * Initiate deallocate of an IPIF. Always called as writer. Called by 18997 * ill_delete or ip_sioctl_removeif. 18998 */ 18999 static void 19000 ipif_free(ipif_t *ipif) 19001 { 19002 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19003 19004 ASSERT(IAM_WRITER_IPIF(ipif)); 19005 19006 if (ipif->ipif_recovery_id != 0) 19007 (void) untimeout(ipif->ipif_recovery_id); 19008 ipif->ipif_recovery_id = 0; 19009 19010 /* Remove conn references */ 19011 reset_conn_ipif(ipif); 19012 19013 /* 19014 * Make sure we have valid net and subnet broadcast ire's for the 19015 * other ipif's which share them with this ipif. 19016 */ 19017 if (!ipif->ipif_isv6) 19018 ipif_check_bcast_ires(ipif); 19019 19020 /* 19021 * Take down the interface. We can be called either from ill_delete 19022 * or from ip_sioctl_removeif. 19023 */ 19024 (void) ipif_down(ipif, NULL, NULL); 19025 19026 /* 19027 * Now that the interface is down, there's no chance it can still 19028 * become a duplicate. Cancel any timer that may have been set while 19029 * tearing down. 19030 */ 19031 if (ipif->ipif_recovery_id != 0) 19032 (void) untimeout(ipif->ipif_recovery_id); 19033 ipif->ipif_recovery_id = 0; 19034 19035 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19036 /* Remove pointers to this ill in the multicast routing tables */ 19037 reset_mrt_vif_ipif(ipif); 19038 rw_exit(&ipst->ips_ill_g_lock); 19039 } 19040 19041 /* 19042 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19043 * also ill_move(). 19044 */ 19045 static void 19046 ipif_free_tail(ipif_t *ipif) 19047 { 19048 mblk_t *mp; 19049 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19050 19051 /* 19052 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19053 */ 19054 mutex_enter(&ipif->ipif_saved_ire_lock); 19055 mp = ipif->ipif_saved_ire_mp; 19056 ipif->ipif_saved_ire_mp = NULL; 19057 mutex_exit(&ipif->ipif_saved_ire_lock); 19058 freemsg(mp); 19059 19060 /* 19061 * Need to hold both ill_g_lock and ill_lock while 19062 * inserting or removing an ipif from the linked list 19063 * of ipifs hanging off the ill. 19064 */ 19065 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19066 /* 19067 * Remove all IPv4 multicast memberships on the interface now. 19068 * IPv6 is not handled here as the multicast memberships are 19069 * tied to the ill rather than the ipif. 19070 */ 19071 ilm_free(ipif); 19072 19073 /* 19074 * Since we held the ill_g_lock while doing the ilm_free above, 19075 * we can assert the ilms were really deleted and not just marked 19076 * ILM_DELETED. 19077 */ 19078 ASSERT(ilm_walk_ipif(ipif) == 0); 19079 19080 #ifdef DEBUG 19081 ipif_trace_cleanup(ipif); 19082 #endif 19083 19084 /* Ask SCTP to take it out of it list */ 19085 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19086 19087 /* Get it out of the ILL interface list. */ 19088 ipif_remove(ipif, B_TRUE); 19089 rw_exit(&ipst->ips_ill_g_lock); 19090 19091 mutex_destroy(&ipif->ipif_saved_ire_lock); 19092 19093 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19094 ASSERT(ipif->ipif_recovery_id == 0); 19095 19096 /* Free the memory. */ 19097 mi_free(ipif); 19098 } 19099 19100 /* 19101 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19102 * is zero. 19103 */ 19104 void 19105 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19106 { 19107 char lbuf[LIFNAMSIZ]; 19108 char *name; 19109 size_t name_len; 19110 19111 buf[0] = '\0'; 19112 name = ipif->ipif_ill->ill_name; 19113 name_len = ipif->ipif_ill->ill_name_length; 19114 if (ipif->ipif_id != 0) { 19115 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19116 ipif->ipif_id); 19117 name = lbuf; 19118 name_len = mi_strlen(name) + 1; 19119 } 19120 len -= 1; 19121 buf[len] = '\0'; 19122 len = MIN(len, name_len); 19123 bcopy(name, buf, len); 19124 } 19125 19126 /* 19127 * Find an IPIF based on the name passed in. Names can be of the 19128 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19129 * The <phys> string can have forms like <dev><#> (e.g., le0), 19130 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19131 * When there is no colon, the implied unit id is zero. <phys> must 19132 * correspond to the name of an ILL. (May be called as writer.) 19133 */ 19134 static ipif_t * 19135 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19136 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19137 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19138 { 19139 char *cp; 19140 char *endp; 19141 long id; 19142 ill_t *ill; 19143 ipif_t *ipif; 19144 uint_t ire_type; 19145 boolean_t did_alloc = B_FALSE; 19146 ipsq_t *ipsq; 19147 19148 if (error != NULL) 19149 *error = 0; 19150 19151 /* 19152 * If the caller wants to us to create the ipif, make sure we have a 19153 * valid zoneid 19154 */ 19155 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19156 19157 if (namelen == 0) { 19158 if (error != NULL) 19159 *error = ENXIO; 19160 return (NULL); 19161 } 19162 19163 *exists = B_FALSE; 19164 /* Look for a colon in the name. */ 19165 endp = &name[namelen]; 19166 for (cp = endp; --cp > name; ) { 19167 if (*cp == IPIF_SEPARATOR_CHAR) 19168 break; 19169 } 19170 19171 if (*cp == IPIF_SEPARATOR_CHAR) { 19172 /* 19173 * Reject any non-decimal aliases for logical 19174 * interfaces. Aliases with leading zeroes 19175 * are also rejected as they introduce ambiguity 19176 * in the naming of the interfaces. 19177 * In order to confirm with existing semantics, 19178 * and to not break any programs/script relying 19179 * on that behaviour, if<0>:0 is considered to be 19180 * a valid interface. 19181 * 19182 * If alias has two or more digits and the first 19183 * is zero, fail. 19184 */ 19185 if (&cp[2] < endp && cp[1] == '0') { 19186 if (error != NULL) 19187 *error = EINVAL; 19188 return (NULL); 19189 } 19190 } 19191 19192 if (cp <= name) { 19193 cp = endp; 19194 } else { 19195 *cp = '\0'; 19196 } 19197 19198 /* 19199 * Look up the ILL, based on the portion of the name 19200 * before the slash. ill_lookup_on_name returns a held ill. 19201 * Temporary to check whether ill exists already. If so 19202 * ill_lookup_on_name will clear it. 19203 */ 19204 ill = ill_lookup_on_name(name, do_alloc, isv6, 19205 q, mp, func, error, &did_alloc, ipst); 19206 if (cp != endp) 19207 *cp = IPIF_SEPARATOR_CHAR; 19208 if (ill == NULL) 19209 return (NULL); 19210 19211 /* Establish the unit number in the name. */ 19212 id = 0; 19213 if (cp < endp && *endp == '\0') { 19214 /* If there was a colon, the unit number follows. */ 19215 cp++; 19216 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19217 ill_refrele(ill); 19218 if (error != NULL) 19219 *error = ENXIO; 19220 return (NULL); 19221 } 19222 } 19223 19224 GRAB_CONN_LOCK(q); 19225 mutex_enter(&ill->ill_lock); 19226 /* Now see if there is an IPIF with this unit number. */ 19227 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19228 if (ipif->ipif_id == id) { 19229 if (zoneid != ALL_ZONES && 19230 zoneid != ipif->ipif_zoneid && 19231 ipif->ipif_zoneid != ALL_ZONES) { 19232 mutex_exit(&ill->ill_lock); 19233 RELEASE_CONN_LOCK(q); 19234 ill_refrele(ill); 19235 if (error != NULL) 19236 *error = ENXIO; 19237 return (NULL); 19238 } 19239 /* 19240 * The block comment at the start of ipif_down 19241 * explains the use of the macros used below 19242 */ 19243 if (IPIF_CAN_LOOKUP(ipif)) { 19244 ipif_refhold_locked(ipif); 19245 mutex_exit(&ill->ill_lock); 19246 if (!did_alloc) 19247 *exists = B_TRUE; 19248 /* 19249 * Drop locks before calling ill_refrele 19250 * since it can potentially call into 19251 * ipif_ill_refrele_tail which can end up 19252 * in trying to acquire any lock. 19253 */ 19254 RELEASE_CONN_LOCK(q); 19255 ill_refrele(ill); 19256 return (ipif); 19257 } else if (IPIF_CAN_WAIT(ipif, q)) { 19258 ipsq = ill->ill_phyint->phyint_ipsq; 19259 mutex_enter(&ipsq->ipsq_lock); 19260 mutex_exit(&ill->ill_lock); 19261 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19262 mutex_exit(&ipsq->ipsq_lock); 19263 RELEASE_CONN_LOCK(q); 19264 ill_refrele(ill); 19265 if (error != NULL) 19266 *error = EINPROGRESS; 19267 return (NULL); 19268 } 19269 } 19270 } 19271 RELEASE_CONN_LOCK(q); 19272 19273 if (!do_alloc) { 19274 mutex_exit(&ill->ill_lock); 19275 ill_refrele(ill); 19276 if (error != NULL) 19277 *error = ENXIO; 19278 return (NULL); 19279 } 19280 19281 /* 19282 * If none found, atomically allocate and return a new one. 19283 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19284 * to support "receive only" use of lo0:1 etc. as is still done 19285 * below as an initial guess. 19286 * However, this is now likely to be overriden later in ipif_up_done() 19287 * when we know for sure what address has been configured on the 19288 * interface, since we might have more than one loopback interface 19289 * with a loopback address, e.g. in the case of zones, and all the 19290 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19291 */ 19292 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19293 ire_type = IRE_LOOPBACK; 19294 else 19295 ire_type = IRE_LOCAL; 19296 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19297 if (ipif != NULL) 19298 ipif_refhold_locked(ipif); 19299 else if (error != NULL) 19300 *error = ENOMEM; 19301 mutex_exit(&ill->ill_lock); 19302 ill_refrele(ill); 19303 return (ipif); 19304 } 19305 19306 /* 19307 * This routine is called whenever a new address comes up on an ipif. If 19308 * we are configured to respond to address mask requests, then we are supposed 19309 * to broadcast an address mask reply at this time. This routine is also 19310 * called if we are already up, but a netmask change is made. This is legal 19311 * but might not make the system manager very popular. (May be called 19312 * as writer.) 19313 */ 19314 void 19315 ipif_mask_reply(ipif_t *ipif) 19316 { 19317 icmph_t *icmph; 19318 ipha_t *ipha; 19319 mblk_t *mp; 19320 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19321 19322 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19323 19324 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19325 return; 19326 19327 /* ICMP mask reply is IPv4 only */ 19328 ASSERT(!ipif->ipif_isv6); 19329 /* ICMP mask reply is not for a loopback interface */ 19330 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19331 19332 mp = allocb(REPLY_LEN, BPRI_HI); 19333 if (mp == NULL) 19334 return; 19335 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19336 19337 ipha = (ipha_t *)mp->b_rptr; 19338 bzero(ipha, REPLY_LEN); 19339 *ipha = icmp_ipha; 19340 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19341 ipha->ipha_src = ipif->ipif_src_addr; 19342 ipha->ipha_dst = ipif->ipif_brd_addr; 19343 ipha->ipha_length = htons(REPLY_LEN); 19344 ipha->ipha_ident = 0; 19345 19346 icmph = (icmph_t *)&ipha[1]; 19347 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19348 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19349 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19350 19351 put(ipif->ipif_wq, mp); 19352 19353 #undef REPLY_LEN 19354 } 19355 19356 /* 19357 * When the mtu in the ipif changes, we call this routine through ire_walk 19358 * to update all the relevant IREs. 19359 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19360 */ 19361 static void 19362 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19363 { 19364 ipif_t *ipif = (ipif_t *)ipif_arg; 19365 19366 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19367 return; 19368 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19369 } 19370 19371 /* 19372 * When the mtu in the ill changes, we call this routine through ire_walk 19373 * to update all the relevant IREs. 19374 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19375 */ 19376 void 19377 ill_mtu_change(ire_t *ire, char *ill_arg) 19378 { 19379 ill_t *ill = (ill_t *)ill_arg; 19380 19381 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19382 return; 19383 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19384 } 19385 19386 /* 19387 * Join the ipif specific multicast groups. 19388 * Must be called after a mapping has been set up in the resolver. (Always 19389 * called as writer.) 19390 */ 19391 void 19392 ipif_multicast_up(ipif_t *ipif) 19393 { 19394 int err, index; 19395 ill_t *ill; 19396 19397 ASSERT(IAM_WRITER_IPIF(ipif)); 19398 19399 ill = ipif->ipif_ill; 19400 index = ill->ill_phyint->phyint_ifindex; 19401 19402 ip1dbg(("ipif_multicast_up\n")); 19403 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19404 return; 19405 19406 if (ipif->ipif_isv6) { 19407 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19408 return; 19409 19410 /* Join the all hosts multicast address */ 19411 ip1dbg(("ipif_multicast_up - addmulti\n")); 19412 /* 19413 * Passing B_TRUE means we have to join the multicast 19414 * membership on this interface even though this is 19415 * FAILED. If we join on a different one in the group, 19416 * we will not be able to delete the membership later 19417 * as we currently don't track where we join when we 19418 * join within the kernel unlike applications where 19419 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19420 * for more on this. 19421 */ 19422 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19423 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19424 if (err != 0) { 19425 ip0dbg(("ipif_multicast_up: " 19426 "all_hosts_mcast failed %d\n", 19427 err)); 19428 return; 19429 } 19430 /* 19431 * Enable multicast for the solicited node multicast address 19432 */ 19433 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19434 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19435 19436 ipv6_multi.s6_addr32[3] |= 19437 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19438 19439 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19440 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19441 NULL); 19442 if (err != 0) { 19443 ip0dbg(("ipif_multicast_up: solicited MC" 19444 " failed %d\n", err)); 19445 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19446 ill, ill->ill_phyint->phyint_ifindex, 19447 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19448 return; 19449 } 19450 } 19451 } else { 19452 if (ipif->ipif_lcl_addr == INADDR_ANY) 19453 return; 19454 19455 /* Join the all hosts multicast address */ 19456 ip1dbg(("ipif_multicast_up - addmulti\n")); 19457 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19458 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19459 if (err) { 19460 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19461 return; 19462 } 19463 } 19464 ipif->ipif_multicast_up = 1; 19465 } 19466 19467 /* 19468 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19469 * (Explicit memberships are blown away in ill_leave_multicast() when the 19470 * ill is brought down.) 19471 */ 19472 static void 19473 ipif_multicast_down(ipif_t *ipif) 19474 { 19475 int err; 19476 19477 ASSERT(IAM_WRITER_IPIF(ipif)); 19478 19479 ip1dbg(("ipif_multicast_down\n")); 19480 if (!ipif->ipif_multicast_up) 19481 return; 19482 19483 ip1dbg(("ipif_multicast_down - delmulti\n")); 19484 19485 if (!ipif->ipif_isv6) { 19486 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19487 B_TRUE); 19488 if (err != 0) 19489 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19490 19491 ipif->ipif_multicast_up = 0; 19492 return; 19493 } 19494 19495 /* 19496 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19497 * we should look for ilms on this ill rather than the ones that have 19498 * been failed over here. They are here temporarily. As 19499 * ipif_multicast_up has joined on this ill, we should delete only 19500 * from this ill. 19501 */ 19502 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19503 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19504 B_TRUE, B_TRUE); 19505 if (err != 0) { 19506 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19507 err)); 19508 } 19509 /* 19510 * Disable multicast for the solicited node multicast address 19511 */ 19512 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19513 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19514 19515 ipv6_multi.s6_addr32[3] |= 19516 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19517 19518 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19519 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19520 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19521 19522 if (err != 0) { 19523 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19524 err)); 19525 } 19526 } 19527 19528 ipif->ipif_multicast_up = 0; 19529 } 19530 19531 /* 19532 * Used when an interface comes up to recreate any extra routes on this 19533 * interface. 19534 */ 19535 static ire_t ** 19536 ipif_recover_ire(ipif_t *ipif) 19537 { 19538 mblk_t *mp; 19539 ire_t **ipif_saved_irep; 19540 ire_t **irep; 19541 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19542 19543 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19544 ipif->ipif_id)); 19545 19546 mutex_enter(&ipif->ipif_saved_ire_lock); 19547 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19548 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19549 if (ipif_saved_irep == NULL) { 19550 mutex_exit(&ipif->ipif_saved_ire_lock); 19551 return (NULL); 19552 } 19553 19554 irep = ipif_saved_irep; 19555 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19556 ire_t *ire; 19557 queue_t *rfq; 19558 queue_t *stq; 19559 ifrt_t *ifrt; 19560 uchar_t *src_addr; 19561 uchar_t *gateway_addr; 19562 ushort_t type; 19563 19564 /* 19565 * When the ire was initially created and then added in 19566 * ip_rt_add(), it was created either using ipif->ipif_net_type 19567 * in the case of a traditional interface route, or as one of 19568 * the IRE_OFFSUBNET types (with the exception of 19569 * IRE_HOST types ire which is created by icmp_redirect() and 19570 * which we don't need to save or recover). In the case where 19571 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19572 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19573 * to satisfy software like GateD and Sun Cluster which creates 19574 * routes using the the loopback interface's address as a 19575 * gateway. 19576 * 19577 * As ifrt->ifrt_type reflects the already updated ire_type, 19578 * ire_create() will be called in the same way here as 19579 * in ip_rt_add(), namely using ipif->ipif_net_type when 19580 * the route looks like a traditional interface route (where 19581 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19582 * the saved ifrt->ifrt_type. This means that in the case where 19583 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19584 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19585 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19586 */ 19587 ifrt = (ifrt_t *)mp->b_rptr; 19588 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19589 if (ifrt->ifrt_type & IRE_INTERFACE) { 19590 rfq = NULL; 19591 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19592 ? ipif->ipif_rq : ipif->ipif_wq; 19593 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19594 ? (uint8_t *)&ifrt->ifrt_src_addr 19595 : (uint8_t *)&ipif->ipif_src_addr; 19596 gateway_addr = NULL; 19597 type = ipif->ipif_net_type; 19598 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19599 /* Recover multiroute broadcast IRE. */ 19600 rfq = ipif->ipif_rq; 19601 stq = ipif->ipif_wq; 19602 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19603 ? (uint8_t *)&ifrt->ifrt_src_addr 19604 : (uint8_t *)&ipif->ipif_src_addr; 19605 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19606 type = ifrt->ifrt_type; 19607 } else { 19608 rfq = NULL; 19609 stq = NULL; 19610 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19611 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19612 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19613 type = ifrt->ifrt_type; 19614 } 19615 19616 /* 19617 * Create a copy of the IRE with the saved address and netmask. 19618 */ 19619 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19620 "0x%x/0x%x\n", 19621 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19622 ntohl(ifrt->ifrt_addr), 19623 ntohl(ifrt->ifrt_mask))); 19624 ire = ire_create( 19625 (uint8_t *)&ifrt->ifrt_addr, 19626 (uint8_t *)&ifrt->ifrt_mask, 19627 src_addr, 19628 gateway_addr, 19629 &ifrt->ifrt_max_frag, 19630 NULL, 19631 rfq, 19632 stq, 19633 type, 19634 ipif, 19635 0, 19636 0, 19637 0, 19638 ifrt->ifrt_flags, 19639 &ifrt->ifrt_iulp_info, 19640 NULL, 19641 NULL, 19642 ipst); 19643 19644 if (ire == NULL) { 19645 mutex_exit(&ipif->ipif_saved_ire_lock); 19646 kmem_free(ipif_saved_irep, 19647 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19648 return (NULL); 19649 } 19650 19651 /* 19652 * Some software (for example, GateD and Sun Cluster) attempts 19653 * to create (what amount to) IRE_PREFIX routes with the 19654 * loopback address as the gateway. This is primarily done to 19655 * set up prefixes with the RTF_REJECT flag set (for example, 19656 * when generating aggregate routes.) 19657 * 19658 * If the IRE type (as defined by ipif->ipif_net_type) is 19659 * IRE_LOOPBACK, then we map the request into a 19660 * IRE_IF_NORESOLVER. 19661 */ 19662 if (ipif->ipif_net_type == IRE_LOOPBACK) 19663 ire->ire_type = IRE_IF_NORESOLVER; 19664 /* 19665 * ire held by ire_add, will be refreled' towards the 19666 * the end of ipif_up_done 19667 */ 19668 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19669 *irep = ire; 19670 irep++; 19671 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19672 } 19673 mutex_exit(&ipif->ipif_saved_ire_lock); 19674 return (ipif_saved_irep); 19675 } 19676 19677 /* 19678 * Used to set the netmask and broadcast address to default values when the 19679 * interface is brought up. (Always called as writer.) 19680 */ 19681 static void 19682 ipif_set_default(ipif_t *ipif) 19683 { 19684 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19685 19686 if (!ipif->ipif_isv6) { 19687 /* 19688 * Interface holds an IPv4 address. Default 19689 * mask is the natural netmask. 19690 */ 19691 if (!ipif->ipif_net_mask) { 19692 ipaddr_t v4mask; 19693 19694 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19695 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19696 } 19697 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19698 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19699 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19700 } else { 19701 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19702 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19703 } 19704 /* 19705 * NOTE: SunOS 4.X does this even if the broadcast address 19706 * has been already set thus we do the same here. 19707 */ 19708 if (ipif->ipif_flags & IPIF_BROADCAST) { 19709 ipaddr_t v4addr; 19710 19711 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19712 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19713 } 19714 } else { 19715 /* 19716 * Interface holds an IPv6-only address. Default 19717 * mask is all-ones. 19718 */ 19719 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19720 ipif->ipif_v6net_mask = ipv6_all_ones; 19721 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19722 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19723 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19724 } else { 19725 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19726 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19727 } 19728 } 19729 } 19730 19731 /* 19732 * Return 0 if this address can be used as local address without causing 19733 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19734 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19735 * Special checks are needed to allow the same IPv6 link-local address 19736 * on different ills. 19737 * TODO: allowing the same site-local address on different ill's. 19738 */ 19739 int 19740 ip_addr_availability_check(ipif_t *new_ipif) 19741 { 19742 in6_addr_t our_v6addr; 19743 ill_t *ill; 19744 ipif_t *ipif; 19745 ill_walk_context_t ctx; 19746 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19747 19748 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19749 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19750 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19751 19752 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19753 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19754 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19755 return (0); 19756 19757 our_v6addr = new_ipif->ipif_v6lcl_addr; 19758 19759 if (new_ipif->ipif_isv6) 19760 ill = ILL_START_WALK_V6(&ctx, ipst); 19761 else 19762 ill = ILL_START_WALK_V4(&ctx, ipst); 19763 19764 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19765 for (ipif = ill->ill_ipif; ipif != NULL; 19766 ipif = ipif->ipif_next) { 19767 if ((ipif == new_ipif) || 19768 !(ipif->ipif_flags & IPIF_UP) || 19769 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19770 continue; 19771 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19772 &our_v6addr)) { 19773 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19774 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19775 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19776 ipif->ipif_flags |= IPIF_UNNUMBERED; 19777 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19778 new_ipif->ipif_ill != ill) 19779 continue; 19780 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19781 new_ipif->ipif_ill != ill) 19782 continue; 19783 else if (new_ipif->ipif_zoneid != 19784 ipif->ipif_zoneid && 19785 ipif->ipif_zoneid != ALL_ZONES && 19786 IS_LOOPBACK(ill)) 19787 continue; 19788 else if (new_ipif->ipif_ill == ill) 19789 return (EADDRINUSE); 19790 else 19791 return (EADDRNOTAVAIL); 19792 } 19793 } 19794 } 19795 19796 return (0); 19797 } 19798 19799 /* 19800 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19801 * IREs for the ipif. 19802 * When the routine returns EINPROGRESS then mp has been consumed and 19803 * the ioctl will be acked from ip_rput_dlpi. 19804 */ 19805 static int 19806 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19807 { 19808 ill_t *ill = ipif->ipif_ill; 19809 boolean_t isv6 = ipif->ipif_isv6; 19810 int err = 0; 19811 boolean_t success; 19812 19813 ASSERT(IAM_WRITER_IPIF(ipif)); 19814 19815 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19816 19817 /* Shouldn't get here if it is already up. */ 19818 if (ipif->ipif_flags & IPIF_UP) 19819 return (EALREADY); 19820 19821 /* Skip arp/ndp for any loopback interface. */ 19822 if (ill->ill_wq != NULL) { 19823 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19824 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19825 19826 if (!ill->ill_dl_up) { 19827 /* 19828 * ill_dl_up is not yet set. i.e. we are yet to 19829 * DL_BIND with the driver and this is the first 19830 * logical interface on the ill to become "up". 19831 * Tell the driver to get going (via DL_BIND_REQ). 19832 * Note that changing "significant" IFF_ flags 19833 * address/netmask etc cause a down/up dance, but 19834 * does not cause an unbind (DL_UNBIND) with the driver 19835 */ 19836 return (ill_dl_up(ill, ipif, mp, q)); 19837 } 19838 19839 /* 19840 * ipif_resolver_up may end up sending an 19841 * AR_INTERFACE_UP message to ARP, which would, in 19842 * turn send a DLPI message to the driver. ioctls are 19843 * serialized and so we cannot send more than one 19844 * interface up message at a time. If ipif_resolver_up 19845 * does send an interface up message to ARP, we get 19846 * EINPROGRESS and we will complete in ip_arp_done. 19847 */ 19848 19849 ASSERT(connp != NULL || !CONN_Q(q)); 19850 ASSERT(ipsq->ipsq_pending_mp == NULL); 19851 if (connp != NULL) 19852 mutex_enter(&connp->conn_lock); 19853 mutex_enter(&ill->ill_lock); 19854 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19855 mutex_exit(&ill->ill_lock); 19856 if (connp != NULL) 19857 mutex_exit(&connp->conn_lock); 19858 if (!success) 19859 return (EINTR); 19860 19861 /* 19862 * Crank up IPv6 neighbor discovery 19863 * Unlike ARP, this should complete when 19864 * ipif_ndp_up returns. However, for 19865 * ILLF_XRESOLV interfaces we also send a 19866 * AR_INTERFACE_UP to the external resolver. 19867 * That ioctl will complete in ip_rput. 19868 */ 19869 if (isv6) { 19870 err = ipif_ndp_up(ipif); 19871 if (err != 0) { 19872 if (err != EINPROGRESS) 19873 mp = ipsq_pending_mp_get(ipsq, &connp); 19874 return (err); 19875 } 19876 } 19877 /* Now, ARP */ 19878 err = ipif_resolver_up(ipif, Res_act_initial); 19879 if (err == EINPROGRESS) { 19880 /* We will complete it in ip_arp_done */ 19881 return (err); 19882 } 19883 mp = ipsq_pending_mp_get(ipsq, &connp); 19884 ASSERT(mp != NULL); 19885 if (err != 0) 19886 return (err); 19887 } else { 19888 /* 19889 * Interfaces without underlying hardware don't do duplicate 19890 * address detection. 19891 */ 19892 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19893 ipif->ipif_addr_ready = 1; 19894 } 19895 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19896 } 19897 19898 /* 19899 * Perform a bind for the physical device. 19900 * When the routine returns EINPROGRESS then mp has been consumed and 19901 * the ioctl will be acked from ip_rput_dlpi. 19902 * Allocate an unbind message and save it until ipif_down. 19903 */ 19904 static int 19905 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19906 { 19907 areq_t *areq; 19908 mblk_t *areq_mp = NULL; 19909 mblk_t *bind_mp = NULL; 19910 mblk_t *unbind_mp = NULL; 19911 conn_t *connp; 19912 boolean_t success; 19913 uint16_t sap_addr; 19914 19915 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19916 ASSERT(IAM_WRITER_ILL(ill)); 19917 ASSERT(mp != NULL); 19918 19919 /* Create a resolver cookie for ARP */ 19920 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19921 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19922 if (areq_mp == NULL) 19923 return (ENOMEM); 19924 19925 freemsg(ill->ill_resolver_mp); 19926 ill->ill_resolver_mp = areq_mp; 19927 areq = (areq_t *)areq_mp->b_rptr; 19928 sap_addr = ill->ill_sap; 19929 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19930 } 19931 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19932 DL_BIND_REQ); 19933 if (bind_mp == NULL) 19934 goto bad; 19935 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19936 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19937 19938 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19939 if (unbind_mp == NULL) 19940 goto bad; 19941 19942 /* 19943 * Record state needed to complete this operation when the 19944 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19945 */ 19946 ASSERT(WR(q)->q_next == NULL); 19947 connp = Q_TO_CONN(q); 19948 19949 mutex_enter(&connp->conn_lock); 19950 mutex_enter(&ipif->ipif_ill->ill_lock); 19951 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19952 mutex_exit(&ipif->ipif_ill->ill_lock); 19953 mutex_exit(&connp->conn_lock); 19954 if (!success) 19955 goto bad; 19956 19957 /* 19958 * Save the unbind message for ill_dl_down(); it will be consumed when 19959 * the interface goes down. 19960 */ 19961 ASSERT(ill->ill_unbind_mp == NULL); 19962 ill->ill_unbind_mp = unbind_mp; 19963 19964 ill_dlpi_send(ill, bind_mp); 19965 /* Send down link-layer capabilities probe if not already done. */ 19966 ill_capability_probe(ill); 19967 19968 /* 19969 * Sysid used to rely on the fact that netboots set domainname 19970 * and the like. Now that miniroot boots aren't strictly netboots 19971 * and miniroot network configuration is driven from userland 19972 * these things still need to be set. This situation can be detected 19973 * by comparing the interface being configured here to the one 19974 * dhcifname was set to reference by the boot loader. Once sysid is 19975 * converted to use dhcp_ipc_getinfo() this call can go away. 19976 */ 19977 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19978 (strcmp(ill->ill_name, dhcifname) == 0) && 19979 (strlen(srpc_domain) == 0)) { 19980 if (dhcpinit() != 0) 19981 cmn_err(CE_WARN, "no cached dhcp response"); 19982 } 19983 19984 /* 19985 * This operation will complete in ip_rput_dlpi with either 19986 * a DL_BIND_ACK or DL_ERROR_ACK. 19987 */ 19988 return (EINPROGRESS); 19989 bad: 19990 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19991 /* 19992 * We don't have to check for possible removal from illgrp 19993 * as we have not yet inserted in illgrp. For groups 19994 * without names, this ipif is still not UP and hence 19995 * this could not have possibly had any influence in forming 19996 * groups. 19997 */ 19998 19999 freemsg(bind_mp); 20000 freemsg(unbind_mp); 20001 return (ENOMEM); 20002 } 20003 20004 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20005 20006 /* 20007 * DLPI and ARP is up. 20008 * Create all the IREs associated with an interface bring up multicast. 20009 * Set the interface flag and finish other initialization 20010 * that potentially had to be differed to after DL_BIND_ACK. 20011 */ 20012 int 20013 ipif_up_done(ipif_t *ipif) 20014 { 20015 ire_t *ire_array[20]; 20016 ire_t **irep = ire_array; 20017 ire_t **irep1; 20018 ipaddr_t net_mask = 0; 20019 ipaddr_t subnet_mask, route_mask; 20020 ill_t *ill = ipif->ipif_ill; 20021 queue_t *stq; 20022 ipif_t *src_ipif; 20023 ipif_t *tmp_ipif; 20024 boolean_t flush_ire_cache = B_TRUE; 20025 int err = 0; 20026 phyint_t *phyi; 20027 ire_t **ipif_saved_irep = NULL; 20028 int ipif_saved_ire_cnt; 20029 int cnt; 20030 boolean_t src_ipif_held = B_FALSE; 20031 boolean_t ire_added = B_FALSE; 20032 boolean_t loopback = B_FALSE; 20033 ip_stack_t *ipst = ill->ill_ipst; 20034 20035 ip1dbg(("ipif_up_done(%s:%u)\n", 20036 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20037 /* Check if this is a loopback interface */ 20038 if (ipif->ipif_ill->ill_wq == NULL) 20039 loopback = B_TRUE; 20040 20041 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20042 /* 20043 * If all other interfaces for this ill are down or DEPRECATED, 20044 * or otherwise unsuitable for source address selection, remove 20045 * any IRE_CACHE entries for this ill to make sure source 20046 * address selection gets to take this new ipif into account. 20047 * No need to hold ill_lock while traversing the ipif list since 20048 * we are writer 20049 */ 20050 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20051 tmp_ipif = tmp_ipif->ipif_next) { 20052 if (((tmp_ipif->ipif_flags & 20053 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20054 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20055 (tmp_ipif == ipif)) 20056 continue; 20057 /* first useable pre-existing interface */ 20058 flush_ire_cache = B_FALSE; 20059 break; 20060 } 20061 if (flush_ire_cache) 20062 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20063 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20064 20065 /* 20066 * Figure out which way the send-to queue should go. Only 20067 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20068 * should show up here. 20069 */ 20070 switch (ill->ill_net_type) { 20071 case IRE_IF_RESOLVER: 20072 stq = ill->ill_rq; 20073 break; 20074 case IRE_IF_NORESOLVER: 20075 case IRE_LOOPBACK: 20076 stq = ill->ill_wq; 20077 break; 20078 default: 20079 return (EINVAL); 20080 } 20081 20082 if (IS_LOOPBACK(ill)) { 20083 /* 20084 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20085 * ipif_lookup_on_name(), but in the case of zones we can have 20086 * several loopback addresses on lo0. So all the interfaces with 20087 * loopback addresses need to be marked IRE_LOOPBACK. 20088 */ 20089 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20090 htonl(INADDR_LOOPBACK)) 20091 ipif->ipif_ire_type = IRE_LOOPBACK; 20092 else 20093 ipif->ipif_ire_type = IRE_LOCAL; 20094 } 20095 20096 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20097 /* 20098 * Can't use our source address. Select a different 20099 * source address for the IRE_INTERFACE and IRE_LOCAL 20100 */ 20101 src_ipif = ipif_select_source(ipif->ipif_ill, 20102 ipif->ipif_subnet, ipif->ipif_zoneid); 20103 if (src_ipif == NULL) 20104 src_ipif = ipif; /* Last resort */ 20105 else 20106 src_ipif_held = B_TRUE; 20107 } else { 20108 src_ipif = ipif; 20109 } 20110 20111 /* Create all the IREs associated with this interface */ 20112 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20113 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20114 20115 /* 20116 * If we're on a labeled system then make sure that zone- 20117 * private addresses have proper remote host database entries. 20118 */ 20119 if (is_system_labeled() && 20120 ipif->ipif_ire_type != IRE_LOOPBACK && 20121 !tsol_check_interface_address(ipif)) 20122 return (EINVAL); 20123 20124 /* Register the source address for __sin6_src_id */ 20125 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20126 ipif->ipif_zoneid, ipst); 20127 if (err != 0) { 20128 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20129 return (err); 20130 } 20131 20132 /* If the interface address is set, create the local IRE. */ 20133 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20134 (void *)ipif, 20135 ipif->ipif_ire_type, 20136 ntohl(ipif->ipif_lcl_addr))); 20137 *irep++ = ire_create( 20138 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20139 (uchar_t *)&ip_g_all_ones, /* mask */ 20140 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20141 NULL, /* no gateway */ 20142 &ip_loopback_mtuplus, /* max frag size */ 20143 NULL, 20144 ipif->ipif_rq, /* recv-from queue */ 20145 NULL, /* no send-to queue */ 20146 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20147 ipif, 20148 0, 20149 0, 20150 0, 20151 (ipif->ipif_flags & IPIF_PRIVATE) ? 20152 RTF_PRIVATE : 0, 20153 &ire_uinfo_null, 20154 NULL, 20155 NULL, 20156 ipst); 20157 } else { 20158 ip1dbg(( 20159 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20160 ipif->ipif_ire_type, 20161 ntohl(ipif->ipif_lcl_addr), 20162 (uint_t)ipif->ipif_flags)); 20163 } 20164 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20165 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20166 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20167 } else { 20168 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20169 } 20170 20171 subnet_mask = ipif->ipif_net_mask; 20172 20173 /* 20174 * If mask was not specified, use natural netmask of 20175 * interface address. Also, store this mask back into the 20176 * ipif struct. 20177 */ 20178 if (subnet_mask == 0) { 20179 subnet_mask = net_mask; 20180 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20181 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20182 ipif->ipif_v6subnet); 20183 } 20184 20185 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20186 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20187 ipif->ipif_subnet != INADDR_ANY) { 20188 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20189 20190 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20191 route_mask = IP_HOST_MASK; 20192 } else { 20193 route_mask = subnet_mask; 20194 } 20195 20196 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20197 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20198 (void *)ipif, (void *)ill, 20199 ill->ill_net_type, 20200 ntohl(ipif->ipif_subnet))); 20201 *irep++ = ire_create( 20202 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20203 (uchar_t *)&route_mask, /* mask */ 20204 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20205 NULL, /* no gateway */ 20206 &ipif->ipif_mtu, /* max frag */ 20207 NULL, 20208 NULL, /* no recv queue */ 20209 stq, /* send-to queue */ 20210 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20211 ipif, 20212 0, 20213 0, 20214 0, 20215 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20216 &ire_uinfo_null, 20217 NULL, 20218 NULL, 20219 ipst); 20220 } 20221 20222 /* 20223 * Create any necessary broadcast IREs. 20224 */ 20225 if (ipif->ipif_flags & IPIF_BROADCAST) 20226 irep = ipif_create_bcast_ires(ipif, irep); 20227 20228 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20229 20230 /* If an earlier ire_create failed, get out now */ 20231 for (irep1 = irep; irep1 > ire_array; ) { 20232 irep1--; 20233 if (*irep1 == NULL) { 20234 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20235 err = ENOMEM; 20236 goto bad; 20237 } 20238 } 20239 20240 /* 20241 * Need to atomically check for ip_addr_availablity_check 20242 * under ip_addr_avail_lock, and if it fails got bad, and remove 20243 * from group also.The ill_g_lock is grabbed as reader 20244 * just to make sure no new ills or new ipifs are being added 20245 * to the system while we are checking the uniqueness of addresses. 20246 */ 20247 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20248 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20249 /* Mark it up, and increment counters. */ 20250 ipif->ipif_flags |= IPIF_UP; 20251 ill->ill_ipif_up_count++; 20252 err = ip_addr_availability_check(ipif); 20253 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20254 rw_exit(&ipst->ips_ill_g_lock); 20255 20256 if (err != 0) { 20257 /* 20258 * Our address may already be up on the same ill. In this case, 20259 * the ARP entry for our ipif replaced the one for the other 20260 * ipif. So we don't want to delete it (otherwise the other ipif 20261 * would be unable to send packets). 20262 * ip_addr_availability_check() identifies this case for us and 20263 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20264 * which is the expected error code. 20265 */ 20266 if (err == EADDRINUSE) { 20267 freemsg(ipif->ipif_arp_del_mp); 20268 ipif->ipif_arp_del_mp = NULL; 20269 err = EADDRNOTAVAIL; 20270 } 20271 ill->ill_ipif_up_count--; 20272 ipif->ipif_flags &= ~IPIF_UP; 20273 goto bad; 20274 } 20275 20276 /* 20277 * Add in all newly created IREs. ire_create_bcast() has 20278 * already checked for duplicates of the IRE_BROADCAST type. 20279 * We want to add before we call ifgrp_insert which wants 20280 * to know whether IRE_IF_RESOLVER exists or not. 20281 * 20282 * NOTE : We refrele the ire though we may branch to "bad" 20283 * later on where we do ire_delete. This is okay 20284 * because nobody can delete it as we are running 20285 * exclusively. 20286 */ 20287 for (irep1 = irep; irep1 > ire_array; ) { 20288 irep1--; 20289 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20290 /* 20291 * refheld by ire_add. refele towards the end of the func 20292 */ 20293 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20294 } 20295 ire_added = B_TRUE; 20296 /* 20297 * Form groups if possible. 20298 * 20299 * If we are supposed to be in a ill_group with a name, insert it 20300 * now as we know that at least one ipif is UP. Otherwise form 20301 * nameless groups. 20302 * 20303 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20304 * this ipif into the appropriate interface group, or create a 20305 * new one. If this is already in a nameless group, we try to form 20306 * a bigger group looking at other ills potentially sharing this 20307 * ipif's prefix. 20308 */ 20309 phyi = ill->ill_phyint; 20310 if (phyi->phyint_groupname_len != 0) { 20311 ASSERT(phyi->phyint_groupname != NULL); 20312 if (ill->ill_ipif_up_count == 1) { 20313 ASSERT(ill->ill_group == NULL); 20314 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20315 phyi->phyint_groupname, NULL, B_TRUE); 20316 if (err != 0) { 20317 ip1dbg(("ipif_up_done: illgrp allocation " 20318 "failed, error %d\n", err)); 20319 goto bad; 20320 } 20321 } 20322 ASSERT(ill->ill_group != NULL); 20323 } 20324 20325 /* 20326 * When this is part of group, we need to make sure that 20327 * any broadcast ires created because of this ipif coming 20328 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20329 * so that we don't receive duplicate broadcast packets. 20330 */ 20331 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20332 ipif_renominate_bcast(ipif); 20333 20334 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20335 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20336 ipif_saved_irep = ipif_recover_ire(ipif); 20337 20338 if (!loopback) { 20339 /* 20340 * If the broadcast address has been set, make sure it makes 20341 * sense based on the interface address. 20342 * Only match on ill since we are sharing broadcast addresses. 20343 */ 20344 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20345 (ipif->ipif_flags & IPIF_BROADCAST)) { 20346 ire_t *ire; 20347 20348 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20349 IRE_BROADCAST, ipif, ALL_ZONES, 20350 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20351 20352 if (ire == NULL) { 20353 /* 20354 * If there isn't a matching broadcast IRE, 20355 * revert to the default for this netmask. 20356 */ 20357 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20358 mutex_enter(&ipif->ipif_ill->ill_lock); 20359 ipif_set_default(ipif); 20360 mutex_exit(&ipif->ipif_ill->ill_lock); 20361 } else { 20362 ire_refrele(ire); 20363 } 20364 } 20365 20366 } 20367 20368 /* This is the first interface on this ill */ 20369 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20370 /* 20371 * Need to recover all multicast memberships in the driver. 20372 * This had to be deferred until we had attached. 20373 */ 20374 ill_recover_multicast(ill); 20375 } 20376 /* Join the allhosts multicast address */ 20377 ipif_multicast_up(ipif); 20378 20379 if (!loopback) { 20380 /* 20381 * See whether anybody else would benefit from the 20382 * new ipif that we added. We call this always rather 20383 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20384 * ipif is for the benefit of illgrp_insert (done above) 20385 * which does not do source address selection as it does 20386 * not want to re-create interface routes that we are 20387 * having reference to it here. 20388 */ 20389 ill_update_source_selection(ill); 20390 } 20391 20392 for (irep1 = irep; irep1 > ire_array; ) { 20393 irep1--; 20394 if (*irep1 != NULL) { 20395 /* was held in ire_add */ 20396 ire_refrele(*irep1); 20397 } 20398 } 20399 20400 cnt = ipif_saved_ire_cnt; 20401 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20402 if (*irep1 != NULL) { 20403 /* was held in ire_add */ 20404 ire_refrele(*irep1); 20405 } 20406 } 20407 20408 if (!loopback && ipif->ipif_addr_ready) { 20409 /* Broadcast an address mask reply. */ 20410 ipif_mask_reply(ipif); 20411 } 20412 if (ipif_saved_irep != NULL) { 20413 kmem_free(ipif_saved_irep, 20414 ipif_saved_ire_cnt * sizeof (ire_t *)); 20415 } 20416 if (src_ipif_held) 20417 ipif_refrele(src_ipif); 20418 20419 /* 20420 * This had to be deferred until we had bound. Tell routing sockets and 20421 * others that this interface is up if it looks like the address has 20422 * been validated. Otherwise, if it isn't ready yet, wait for 20423 * duplicate address detection to do its thing. 20424 */ 20425 if (ipif->ipif_addr_ready) { 20426 ip_rts_ifmsg(ipif); 20427 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20428 /* Let SCTP update the status for this ipif */ 20429 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20430 } 20431 return (0); 20432 20433 bad: 20434 ip1dbg(("ipif_up_done: FAILED \n")); 20435 /* 20436 * We don't have to bother removing from ill groups because 20437 * 20438 * 1) For groups with names, we insert only when the first ipif 20439 * comes up. In that case if it fails, it will not be in any 20440 * group. So, we need not try to remove for that case. 20441 * 20442 * 2) For groups without names, either we tried to insert ipif_ill 20443 * in a group as singleton or found some other group to become 20444 * a bigger group. For the former, if it fails we don't have 20445 * anything to do as ipif_ill is not in the group and for the 20446 * latter, there are no failures in illgrp_insert/illgrp_delete 20447 * (ENOMEM can't occur for this. Check ifgrp_insert). 20448 */ 20449 while (irep > ire_array) { 20450 irep--; 20451 if (*irep != NULL) { 20452 ire_delete(*irep); 20453 if (ire_added) 20454 ire_refrele(*irep); 20455 } 20456 } 20457 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20458 20459 if (ipif_saved_irep != NULL) { 20460 kmem_free(ipif_saved_irep, 20461 ipif_saved_ire_cnt * sizeof (ire_t *)); 20462 } 20463 if (src_ipif_held) 20464 ipif_refrele(src_ipif); 20465 20466 ipif_arp_down(ipif); 20467 return (err); 20468 } 20469 20470 /* 20471 * Turn off the ARP with the ILLF_NOARP flag. 20472 */ 20473 static int 20474 ill_arp_off(ill_t *ill) 20475 { 20476 mblk_t *arp_off_mp = NULL; 20477 mblk_t *arp_on_mp = NULL; 20478 20479 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20480 20481 ASSERT(IAM_WRITER_ILL(ill)); 20482 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20483 20484 /* 20485 * If the on message is still around we've already done 20486 * an arp_off without doing an arp_on thus there is no 20487 * work needed. 20488 */ 20489 if (ill->ill_arp_on_mp != NULL) 20490 return (0); 20491 20492 /* 20493 * Allocate an ARP on message (to be saved) and an ARP off message 20494 */ 20495 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20496 if (!arp_off_mp) 20497 return (ENOMEM); 20498 20499 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20500 if (!arp_on_mp) 20501 goto failed; 20502 20503 ASSERT(ill->ill_arp_on_mp == NULL); 20504 ill->ill_arp_on_mp = arp_on_mp; 20505 20506 /* Send an AR_INTERFACE_OFF request */ 20507 putnext(ill->ill_rq, arp_off_mp); 20508 return (0); 20509 failed: 20510 20511 if (arp_off_mp) 20512 freemsg(arp_off_mp); 20513 return (ENOMEM); 20514 } 20515 20516 /* 20517 * Turn on ARP by turning off the ILLF_NOARP flag. 20518 */ 20519 static int 20520 ill_arp_on(ill_t *ill) 20521 { 20522 mblk_t *mp; 20523 20524 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20525 20526 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20527 20528 ASSERT(IAM_WRITER_ILL(ill)); 20529 /* 20530 * Send an AR_INTERFACE_ON request if we have already done 20531 * an arp_off (which allocated the message). 20532 */ 20533 if (ill->ill_arp_on_mp != NULL) { 20534 mp = ill->ill_arp_on_mp; 20535 ill->ill_arp_on_mp = NULL; 20536 putnext(ill->ill_rq, mp); 20537 } 20538 return (0); 20539 } 20540 20541 /* 20542 * Called after either deleting ill from the group or when setting 20543 * FAILED or STANDBY on the interface. 20544 */ 20545 static void 20546 illgrp_reset_schednext(ill_t *ill) 20547 { 20548 ill_group_t *illgrp; 20549 ill_t *save_ill; 20550 20551 ASSERT(IAM_WRITER_ILL(ill)); 20552 /* 20553 * When called from illgrp_delete, ill_group will be non-NULL. 20554 * But when called from ip_sioctl_flags, it could be NULL if 20555 * somebody is setting FAILED/INACTIVE on some interface which 20556 * is not part of a group. 20557 */ 20558 illgrp = ill->ill_group; 20559 if (illgrp == NULL) 20560 return; 20561 if (illgrp->illgrp_ill_schednext != ill) 20562 return; 20563 20564 illgrp->illgrp_ill_schednext = NULL; 20565 save_ill = ill; 20566 /* 20567 * Choose a good ill to be the next one for 20568 * outbound traffic. As the flags FAILED/STANDBY is 20569 * not yet marked when called from ip_sioctl_flags, 20570 * we check for ill separately. 20571 */ 20572 for (ill = illgrp->illgrp_ill; ill != NULL; 20573 ill = ill->ill_group_next) { 20574 if ((ill != save_ill) && 20575 !(ill->ill_phyint->phyint_flags & 20576 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20577 illgrp->illgrp_ill_schednext = ill; 20578 return; 20579 } 20580 } 20581 } 20582 20583 /* 20584 * Given an ill, find the next ill in the group to be scheduled. 20585 * (This should be called by ip_newroute() before ire_create().) 20586 * The passed in ill may be pulled out of the group, after we have picked 20587 * up a different outgoing ill from the same group. However ire add will 20588 * atomically check this. 20589 */ 20590 ill_t * 20591 illgrp_scheduler(ill_t *ill) 20592 { 20593 ill_t *retill; 20594 ill_group_t *illgrp; 20595 int illcnt; 20596 int i; 20597 uint64_t flags; 20598 ip_stack_t *ipst = ill->ill_ipst; 20599 20600 /* 20601 * We don't use a lock to check for the ill_group. If this ill 20602 * is currently being inserted we may end up just returning this 20603 * ill itself. That is ok. 20604 */ 20605 if (ill->ill_group == NULL) { 20606 ill_refhold(ill); 20607 return (ill); 20608 } 20609 20610 /* 20611 * Grab the ill_g_lock as reader to make sure we are dealing with 20612 * a set of stable ills. No ill can be added or deleted or change 20613 * group while we hold the reader lock. 20614 */ 20615 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20616 if ((illgrp = ill->ill_group) == NULL) { 20617 rw_exit(&ipst->ips_ill_g_lock); 20618 ill_refhold(ill); 20619 return (ill); 20620 } 20621 20622 illcnt = illgrp->illgrp_ill_count; 20623 mutex_enter(&illgrp->illgrp_lock); 20624 retill = illgrp->illgrp_ill_schednext; 20625 20626 if (retill == NULL) 20627 retill = illgrp->illgrp_ill; 20628 20629 /* 20630 * We do a circular search beginning at illgrp_ill_schednext 20631 * or illgrp_ill. We don't check the flags against the ill lock 20632 * since it can change anytime. The ire creation will be atomic 20633 * and will fail if the ill is FAILED or OFFLINE. 20634 */ 20635 for (i = 0; i < illcnt; i++) { 20636 flags = retill->ill_phyint->phyint_flags; 20637 20638 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20639 ILL_CAN_LOOKUP(retill)) { 20640 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20641 ill_refhold(retill); 20642 break; 20643 } 20644 retill = retill->ill_group_next; 20645 if (retill == NULL) 20646 retill = illgrp->illgrp_ill; 20647 } 20648 mutex_exit(&illgrp->illgrp_lock); 20649 rw_exit(&ipst->ips_ill_g_lock); 20650 20651 return (i == illcnt ? NULL : retill); 20652 } 20653 20654 /* 20655 * Checks for availbility of a usable source address (if there is one) when the 20656 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20657 * this selection is done regardless of the destination. 20658 */ 20659 boolean_t 20660 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20661 { 20662 uint_t ifindex; 20663 ipif_t *ipif = NULL; 20664 ill_t *uill; 20665 boolean_t isv6; 20666 ip_stack_t *ipst = ill->ill_ipst; 20667 20668 ASSERT(ill != NULL); 20669 20670 isv6 = ill->ill_isv6; 20671 ifindex = ill->ill_usesrc_ifindex; 20672 if (ifindex != 0) { 20673 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20674 NULL, ipst); 20675 if (uill == NULL) 20676 return (NULL); 20677 mutex_enter(&uill->ill_lock); 20678 for (ipif = uill->ill_ipif; ipif != NULL; 20679 ipif = ipif->ipif_next) { 20680 if (!IPIF_CAN_LOOKUP(ipif)) 20681 continue; 20682 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20683 continue; 20684 if (!(ipif->ipif_flags & IPIF_UP)) 20685 continue; 20686 if (ipif->ipif_zoneid != zoneid) 20687 continue; 20688 if ((isv6 && 20689 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20690 (ipif->ipif_lcl_addr == INADDR_ANY)) 20691 continue; 20692 mutex_exit(&uill->ill_lock); 20693 ill_refrele(uill); 20694 return (B_TRUE); 20695 } 20696 mutex_exit(&uill->ill_lock); 20697 ill_refrele(uill); 20698 } 20699 return (B_FALSE); 20700 } 20701 20702 /* 20703 * Determine the best source address given a destination address and an ill. 20704 * Prefers non-deprecated over deprecated but will return a deprecated 20705 * address if there is no other choice. If there is a usable source address 20706 * on the interface pointed to by ill_usesrc_ifindex then that is given 20707 * first preference. 20708 * 20709 * Returns NULL if there is no suitable source address for the ill. 20710 * This only occurs when there is no valid source address for the ill. 20711 */ 20712 ipif_t * 20713 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20714 { 20715 ipif_t *ipif; 20716 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20717 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20718 int index = 0; 20719 boolean_t wrapped = B_FALSE; 20720 boolean_t same_subnet_only = B_FALSE; 20721 boolean_t ipif_same_found, ipif_other_found; 20722 boolean_t specific_found; 20723 ill_t *till, *usill = NULL; 20724 tsol_tpc_t *src_rhtp, *dst_rhtp; 20725 ip_stack_t *ipst = ill->ill_ipst; 20726 20727 if (ill->ill_usesrc_ifindex != 0) { 20728 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20729 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20730 if (usill != NULL) 20731 ill = usill; /* Select source from usesrc ILL */ 20732 else 20733 return (NULL); 20734 } 20735 20736 /* 20737 * If we're dealing with an unlabeled destination on a labeled system, 20738 * make sure that we ignore source addresses that are incompatible with 20739 * the destination's default label. That destination's default label 20740 * must dominate the minimum label on the source address. 20741 */ 20742 dst_rhtp = NULL; 20743 if (is_system_labeled()) { 20744 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20745 if (dst_rhtp == NULL) 20746 return (NULL); 20747 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20748 TPC_RELE(dst_rhtp); 20749 dst_rhtp = NULL; 20750 } 20751 } 20752 20753 /* 20754 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20755 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20756 * After selecting the right ipif, under ill_lock make sure ipif is 20757 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20758 * we retry. Inside the loop we still need to check for CONDEMNED, 20759 * but not under a lock. 20760 */ 20761 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20762 20763 retry: 20764 till = ill; 20765 ipif_arr[0] = NULL; 20766 20767 if (till->ill_group != NULL) 20768 till = till->ill_group->illgrp_ill; 20769 20770 /* 20771 * Choose one good source address from each ill across the group. 20772 * If possible choose a source address in the same subnet as 20773 * the destination address. 20774 * 20775 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20776 * This is okay because of the following. 20777 * 20778 * If PHYI_FAILED is set and we still have non-deprecated 20779 * addresses, it means the addresses have not yet been 20780 * failed over to a different interface. We potentially 20781 * select them to create IRE_CACHES, which will be later 20782 * flushed when the addresses move over. 20783 * 20784 * If PHYI_INACTIVE is set and we still have non-deprecated 20785 * addresses, it means either the user has configured them 20786 * or PHYI_INACTIVE has not been cleared after the addresses 20787 * been moved over. For the former, in.mpathd does a failover 20788 * when the interface becomes INACTIVE and hence we should 20789 * not find them. Once INACTIVE is set, we don't allow them 20790 * to create logical interfaces anymore. For the latter, a 20791 * flush will happen when INACTIVE is cleared which will 20792 * flush the IRE_CACHES. 20793 * 20794 * If PHYI_OFFLINE is set, all the addresses will be failed 20795 * over soon. We potentially select them to create IRE_CACHEs, 20796 * which will be later flushed when the addresses move over. 20797 * 20798 * NOTE : As ipif_select_source is called to borrow source address 20799 * for an ipif that is part of a group, source address selection 20800 * will be re-done whenever the group changes i.e either an 20801 * insertion/deletion in the group. 20802 * 20803 * Fill ipif_arr[] with source addresses, using these rules: 20804 * 20805 * 1. At most one source address from a given ill ends up 20806 * in ipif_arr[] -- that is, at most one of the ipif's 20807 * associated with a given ill ends up in ipif_arr[]. 20808 * 20809 * 2. If there is at least one non-deprecated ipif in the 20810 * IPMP group with a source address on the same subnet as 20811 * our destination, then fill ipif_arr[] only with 20812 * source addresses on the same subnet as our destination. 20813 * Note that because of (1), only the first 20814 * non-deprecated ipif found with a source address 20815 * matching the destination ends up in ipif_arr[]. 20816 * 20817 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20818 * addresses not in the same subnet as our destination. 20819 * Again, because of (1), only the first off-subnet source 20820 * address will be chosen. 20821 * 20822 * 4. If there are no non-deprecated ipifs, then just use 20823 * the source address associated with the last deprecated 20824 * one we find that happens to be on the same subnet, 20825 * otherwise the first one not in the same subnet. 20826 */ 20827 specific_found = B_FALSE; 20828 for (; till != NULL; till = till->ill_group_next) { 20829 ipif_same_found = B_FALSE; 20830 ipif_other_found = B_FALSE; 20831 for (ipif = till->ill_ipif; ipif != NULL; 20832 ipif = ipif->ipif_next) { 20833 if (!IPIF_CAN_LOOKUP(ipif)) 20834 continue; 20835 /* Always skip NOLOCAL and ANYCAST interfaces */ 20836 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20837 continue; 20838 if (!(ipif->ipif_flags & IPIF_UP) || 20839 !ipif->ipif_addr_ready) 20840 continue; 20841 if (ipif->ipif_zoneid != zoneid && 20842 ipif->ipif_zoneid != ALL_ZONES) 20843 continue; 20844 /* 20845 * Interfaces with 0.0.0.0 address are allowed to be UP, 20846 * but are not valid as source addresses. 20847 */ 20848 if (ipif->ipif_lcl_addr == INADDR_ANY) 20849 continue; 20850 20851 /* 20852 * Check compatibility of local address for 20853 * destination's default label if we're on a labeled 20854 * system. Incompatible addresses can't be used at 20855 * all. 20856 */ 20857 if (dst_rhtp != NULL) { 20858 boolean_t incompat; 20859 20860 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20861 IPV4_VERSION, B_FALSE); 20862 if (src_rhtp == NULL) 20863 continue; 20864 incompat = 20865 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20866 src_rhtp->tpc_tp.tp_doi != 20867 dst_rhtp->tpc_tp.tp_doi || 20868 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20869 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20870 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20871 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20872 TPC_RELE(src_rhtp); 20873 if (incompat) 20874 continue; 20875 } 20876 20877 /* 20878 * We prefer not to use all all-zones addresses, if we 20879 * can avoid it, as they pose problems with unlabeled 20880 * destinations. 20881 */ 20882 if (ipif->ipif_zoneid != ALL_ZONES) { 20883 if (!specific_found && 20884 (!same_subnet_only || 20885 (ipif->ipif_net_mask & dst) == 20886 ipif->ipif_subnet)) { 20887 index = 0; 20888 specific_found = B_TRUE; 20889 ipif_other_found = B_FALSE; 20890 } 20891 } else { 20892 if (specific_found) 20893 continue; 20894 } 20895 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20896 if (ipif_dep == NULL || 20897 (ipif->ipif_net_mask & dst) == 20898 ipif->ipif_subnet) 20899 ipif_dep = ipif; 20900 continue; 20901 } 20902 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20903 /* found a source address in the same subnet */ 20904 if (!same_subnet_only) { 20905 same_subnet_only = B_TRUE; 20906 index = 0; 20907 } 20908 ipif_same_found = B_TRUE; 20909 } else { 20910 if (same_subnet_only || ipif_other_found) 20911 continue; 20912 ipif_other_found = B_TRUE; 20913 } 20914 ipif_arr[index++] = ipif; 20915 if (index == MAX_IPIF_SELECT_SOURCE) { 20916 wrapped = B_TRUE; 20917 index = 0; 20918 } 20919 if (ipif_same_found) 20920 break; 20921 } 20922 } 20923 20924 if (ipif_arr[0] == NULL) { 20925 ipif = ipif_dep; 20926 } else { 20927 if (wrapped) 20928 index = MAX_IPIF_SELECT_SOURCE; 20929 ipif = ipif_arr[ipif_rand(ipst) % index]; 20930 ASSERT(ipif != NULL); 20931 } 20932 20933 if (ipif != NULL) { 20934 mutex_enter(&ipif->ipif_ill->ill_lock); 20935 if (!IPIF_CAN_LOOKUP(ipif)) { 20936 mutex_exit(&ipif->ipif_ill->ill_lock); 20937 goto retry; 20938 } 20939 ipif_refhold_locked(ipif); 20940 mutex_exit(&ipif->ipif_ill->ill_lock); 20941 } 20942 20943 rw_exit(&ipst->ips_ill_g_lock); 20944 if (usill != NULL) 20945 ill_refrele(usill); 20946 if (dst_rhtp != NULL) 20947 TPC_RELE(dst_rhtp); 20948 20949 #ifdef DEBUG 20950 if (ipif == NULL) { 20951 char buf1[INET6_ADDRSTRLEN]; 20952 20953 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20954 ill->ill_name, 20955 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20956 } else { 20957 char buf1[INET6_ADDRSTRLEN]; 20958 char buf2[INET6_ADDRSTRLEN]; 20959 20960 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20961 ipif->ipif_ill->ill_name, 20962 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20963 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20964 buf2, sizeof (buf2)))); 20965 } 20966 #endif /* DEBUG */ 20967 return (ipif); 20968 } 20969 20970 20971 /* 20972 * If old_ipif is not NULL, see if ipif was derived from old 20973 * ipif and if so, recreate the interface route by re-doing 20974 * source address selection. This happens when ipif_down -> 20975 * ipif_update_other_ipifs calls us. 20976 * 20977 * If old_ipif is NULL, just redo the source address selection 20978 * if needed. This happens when illgrp_insert or ipif_up_done 20979 * calls us. 20980 */ 20981 static void 20982 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20983 { 20984 ire_t *ire; 20985 ire_t *ipif_ire; 20986 queue_t *stq; 20987 ipif_t *nipif; 20988 ill_t *ill; 20989 boolean_t need_rele = B_FALSE; 20990 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20991 20992 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20993 ASSERT(IAM_WRITER_IPIF(ipif)); 20994 20995 ill = ipif->ipif_ill; 20996 if (!(ipif->ipif_flags & 20997 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20998 /* 20999 * Can't possibly have borrowed the source 21000 * from old_ipif. 21001 */ 21002 return; 21003 } 21004 21005 /* 21006 * Is there any work to be done? No work if the address 21007 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21008 * ipif_select_source() does not borrow addresses from 21009 * NOLOCAL and ANYCAST interfaces). 21010 */ 21011 if ((old_ipif != NULL) && 21012 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21013 (old_ipif->ipif_ill->ill_wq == NULL) || 21014 (old_ipif->ipif_flags & 21015 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21016 return; 21017 } 21018 21019 /* 21020 * Perform the same checks as when creating the 21021 * IRE_INTERFACE in ipif_up_done. 21022 */ 21023 if (!(ipif->ipif_flags & IPIF_UP)) 21024 return; 21025 21026 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21027 (ipif->ipif_subnet == INADDR_ANY)) 21028 return; 21029 21030 ipif_ire = ipif_to_ire(ipif); 21031 if (ipif_ire == NULL) 21032 return; 21033 21034 /* 21035 * We know that ipif uses some other source for its 21036 * IRE_INTERFACE. Is it using the source of this 21037 * old_ipif? 21038 */ 21039 if (old_ipif != NULL && 21040 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21041 ire_refrele(ipif_ire); 21042 return; 21043 } 21044 if (ip_debug > 2) { 21045 /* ip1dbg */ 21046 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21047 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21048 } 21049 21050 stq = ipif_ire->ire_stq; 21051 21052 /* 21053 * Can't use our source address. Select a different 21054 * source address for the IRE_INTERFACE. 21055 */ 21056 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21057 if (nipif == NULL) { 21058 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21059 nipif = ipif; 21060 } else { 21061 need_rele = B_TRUE; 21062 } 21063 21064 ire = ire_create( 21065 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21066 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21067 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21068 NULL, /* no gateway */ 21069 &ipif->ipif_mtu, /* max frag */ 21070 NULL, /* no src nce */ 21071 NULL, /* no recv from queue */ 21072 stq, /* send-to queue */ 21073 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21074 ipif, 21075 0, 21076 0, 21077 0, 21078 0, 21079 &ire_uinfo_null, 21080 NULL, 21081 NULL, 21082 ipst); 21083 21084 if (ire != NULL) { 21085 ire_t *ret_ire; 21086 int error; 21087 21088 /* 21089 * We don't need ipif_ire anymore. We need to delete 21090 * before we add so that ire_add does not detect 21091 * duplicates. 21092 */ 21093 ire_delete(ipif_ire); 21094 ret_ire = ire; 21095 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21096 ASSERT(error == 0); 21097 ASSERT(ire == ret_ire); 21098 /* Held in ire_add */ 21099 ire_refrele(ret_ire); 21100 } 21101 /* 21102 * Either we are falling through from above or could not 21103 * allocate a replacement. 21104 */ 21105 ire_refrele(ipif_ire); 21106 if (need_rele) 21107 ipif_refrele(nipif); 21108 } 21109 21110 /* 21111 * This old_ipif is going away. 21112 * 21113 * Determine if any other ipif's is using our address as 21114 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21115 * IPIF_DEPRECATED). 21116 * Find the IRE_INTERFACE for such ipifs and recreate them 21117 * to use an different source address following the rules in 21118 * ipif_up_done. 21119 * 21120 * This function takes an illgrp as an argument so that illgrp_delete 21121 * can call this to update source address even after deleting the 21122 * old_ipif->ipif_ill from the ill group. 21123 */ 21124 static void 21125 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21126 { 21127 ipif_t *ipif; 21128 ill_t *ill; 21129 char buf[INET6_ADDRSTRLEN]; 21130 21131 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21132 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21133 21134 ill = old_ipif->ipif_ill; 21135 21136 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21137 ill->ill_name, 21138 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21139 buf, sizeof (buf)))); 21140 /* 21141 * If this part of a group, look at all ills as ipif_select_source 21142 * borrows source address across all the ills in the group. 21143 */ 21144 if (illgrp != NULL) 21145 ill = illgrp->illgrp_ill; 21146 21147 for (; ill != NULL; ill = ill->ill_group_next) { 21148 for (ipif = ill->ill_ipif; ipif != NULL; 21149 ipif = ipif->ipif_next) { 21150 21151 if (ipif == old_ipif) 21152 continue; 21153 21154 ipif_recreate_interface_routes(old_ipif, ipif); 21155 } 21156 } 21157 } 21158 21159 /* ARGSUSED */ 21160 int 21161 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21162 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21163 { 21164 /* 21165 * ill_phyint_reinit merged the v4 and v6 into a single 21166 * ipsq. Could also have become part of a ipmp group in the 21167 * process, and we might not have been able to complete the 21168 * operation in ipif_set_values, if we could not become 21169 * exclusive. If so restart it here. 21170 */ 21171 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21172 } 21173 21174 21175 /* 21176 * Can operate on either a module or a driver queue. 21177 * Returns an error if not a module queue. 21178 */ 21179 /* ARGSUSED */ 21180 int 21181 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21182 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21183 { 21184 queue_t *q1 = q; 21185 char *cp; 21186 char interf_name[LIFNAMSIZ]; 21187 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21188 21189 if (q->q_next == NULL) { 21190 ip1dbg(( 21191 "if_unitsel: IF_UNITSEL: no q_next\n")); 21192 return (EINVAL); 21193 } 21194 21195 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21196 return (EALREADY); 21197 21198 do { 21199 q1 = q1->q_next; 21200 } while (q1->q_next); 21201 cp = q1->q_qinfo->qi_minfo->mi_idname; 21202 (void) sprintf(interf_name, "%s%d", cp, ppa); 21203 21204 /* 21205 * Here we are not going to delay the ioack until after 21206 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21207 * original ioctl message before sending the requests. 21208 */ 21209 return (ipif_set_values(q, mp, interf_name, &ppa)); 21210 } 21211 21212 /* ARGSUSED */ 21213 int 21214 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21215 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21216 { 21217 return (ENXIO); 21218 } 21219 21220 /* 21221 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21222 * `irep'. Returns a pointer to the next free `irep' entry (just like 21223 * ire_check_and_create_bcast()). 21224 */ 21225 static ire_t ** 21226 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21227 { 21228 ipaddr_t addr; 21229 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21230 ipaddr_t subnetmask = ipif->ipif_net_mask; 21231 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21232 21233 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21234 21235 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21236 21237 if (ipif->ipif_lcl_addr == INADDR_ANY || 21238 (ipif->ipif_flags & IPIF_NOLOCAL)) 21239 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21240 21241 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21242 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21243 21244 /* 21245 * For backward compatibility, we create net broadcast IREs based on 21246 * the old "IP address class system", since some old machines only 21247 * respond to these class derived net broadcast. However, we must not 21248 * create these net broadcast IREs if the subnetmask is shorter than 21249 * the IP address class based derived netmask. Otherwise, we may 21250 * create a net broadcast address which is the same as an IP address 21251 * on the subnet -- and then TCP will refuse to talk to that address. 21252 */ 21253 if (netmask < subnetmask) { 21254 addr = netmask & ipif->ipif_subnet; 21255 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21256 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21257 flags); 21258 } 21259 21260 /* 21261 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21262 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21263 * created. Creating these broadcast IREs will only create confusion 21264 * as `addr' will be the same as the IP address. 21265 */ 21266 if (subnetmask != 0xFFFFFFFF) { 21267 addr = ipif->ipif_subnet; 21268 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21269 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21270 irep, flags); 21271 } 21272 21273 return (irep); 21274 } 21275 21276 /* 21277 * Broadcast IRE info structure used in the functions below. Since we 21278 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21279 */ 21280 typedef struct bcast_ireinfo { 21281 uchar_t bi_type; /* BCAST_* value from below */ 21282 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21283 bi_needrep:1, /* do we need to replace it? */ 21284 bi_haverep:1, /* have we replaced it? */ 21285 bi_pad:5; 21286 ipaddr_t bi_addr; /* IRE address */ 21287 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21288 } bcast_ireinfo_t; 21289 21290 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21291 21292 /* 21293 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21294 * return B_TRUE if it should immediately be used to recreate the IRE. 21295 */ 21296 static boolean_t 21297 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21298 { 21299 ipaddr_t addr; 21300 21301 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21302 21303 switch (bireinfop->bi_type) { 21304 case BCAST_NET: 21305 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21306 if (addr != bireinfop->bi_addr) 21307 return (B_FALSE); 21308 break; 21309 case BCAST_SUBNET: 21310 if (ipif->ipif_subnet != bireinfop->bi_addr) 21311 return (B_FALSE); 21312 break; 21313 } 21314 21315 bireinfop->bi_needrep = 1; 21316 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21317 if (bireinfop->bi_backup == NULL) 21318 bireinfop->bi_backup = ipif; 21319 return (B_FALSE); 21320 } 21321 return (B_TRUE); 21322 } 21323 21324 /* 21325 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21326 * them ala ire_check_and_create_bcast(). 21327 */ 21328 static ire_t ** 21329 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21330 { 21331 ipaddr_t mask, addr; 21332 21333 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21334 21335 addr = bireinfop->bi_addr; 21336 irep = ire_create_bcast(ipif, addr, irep); 21337 21338 switch (bireinfop->bi_type) { 21339 case BCAST_NET: 21340 mask = ip_net_mask(ipif->ipif_subnet); 21341 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21342 break; 21343 case BCAST_SUBNET: 21344 mask = ipif->ipif_net_mask; 21345 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21346 break; 21347 } 21348 21349 bireinfop->bi_haverep = 1; 21350 return (irep); 21351 } 21352 21353 /* 21354 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21355 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21356 * that are going away are still needed. If so, have ipif_create_bcast() 21357 * recreate them (except for the deprecated case, as explained below). 21358 */ 21359 static ire_t ** 21360 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21361 ire_t **irep) 21362 { 21363 int i; 21364 ipif_t *ipif; 21365 21366 ASSERT(!ill->ill_isv6); 21367 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21368 /* 21369 * Skip this ipif if it's (a) the one being taken down, (b) 21370 * not in the same zone, or (c) has no valid local address. 21371 */ 21372 if (ipif == test_ipif || 21373 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21374 ipif->ipif_subnet == 0 || 21375 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21376 (IPIF_UP|IPIF_BROADCAST)) 21377 continue; 21378 21379 /* 21380 * For each dying IRE that hasn't yet been replaced, see if 21381 * `ipif' needs it and whether the IRE should be recreated on 21382 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21383 * will return B_FALSE even if `ipif' needs the IRE on the 21384 * hopes that we'll later find a needy non-deprecated ipif. 21385 * However, the ipif is recorded in bi_backup for possible 21386 * subsequent use by ipif_check_bcast_ires(). 21387 */ 21388 for (i = 0; i < BCAST_COUNT; i++) { 21389 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21390 continue; 21391 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21392 continue; 21393 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21394 } 21395 21396 /* 21397 * If we've replaced all of the broadcast IREs that are going 21398 * to be taken down, we know we're done. 21399 */ 21400 for (i = 0; i < BCAST_COUNT; i++) { 21401 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21402 break; 21403 } 21404 if (i == BCAST_COUNT) 21405 break; 21406 } 21407 return (irep); 21408 } 21409 21410 /* 21411 * Check if `test_ipif' (which is going away) is associated with any existing 21412 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21413 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21414 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21415 * 21416 * This is necessary because broadcast IREs are shared. In particular, a 21417 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21418 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21419 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21420 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21421 * same zone, they will share the same set of broadcast IREs. 21422 * 21423 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21424 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21425 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21426 */ 21427 static void 21428 ipif_check_bcast_ires(ipif_t *test_ipif) 21429 { 21430 ill_t *ill = test_ipif->ipif_ill; 21431 ire_t *ire, *ire_array[12]; /* see note above */ 21432 ire_t **irep1, **irep = &ire_array[0]; 21433 uint_t i, willdie; 21434 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21435 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21436 21437 ASSERT(!test_ipif->ipif_isv6); 21438 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21439 21440 /* 21441 * No broadcast IREs for the LOOPBACK interface 21442 * or others such as point to point and IPIF_NOXMIT. 21443 */ 21444 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21445 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21446 return; 21447 21448 bzero(bireinfo, sizeof (bireinfo)); 21449 bireinfo[0].bi_type = BCAST_ALLZEROES; 21450 bireinfo[0].bi_addr = 0; 21451 21452 bireinfo[1].bi_type = BCAST_ALLONES; 21453 bireinfo[1].bi_addr = INADDR_BROADCAST; 21454 21455 bireinfo[2].bi_type = BCAST_NET; 21456 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21457 21458 if (test_ipif->ipif_net_mask != 0) 21459 mask = test_ipif->ipif_net_mask; 21460 bireinfo[3].bi_type = BCAST_SUBNET; 21461 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21462 21463 /* 21464 * Figure out what (if any) broadcast IREs will die as a result of 21465 * `test_ipif' going away. If none will die, we're done. 21466 */ 21467 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21468 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21469 test_ipif, ALL_ZONES, NULL, 21470 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21471 if (ire != NULL) { 21472 willdie++; 21473 bireinfo[i].bi_willdie = 1; 21474 ire_refrele(ire); 21475 } 21476 } 21477 21478 if (willdie == 0) 21479 return; 21480 21481 /* 21482 * Walk through all the ipifs that will be affected by the dying IREs, 21483 * and recreate the IREs as necessary. 21484 */ 21485 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21486 21487 /* 21488 * Scan through the set of broadcast IREs and see if there are any 21489 * that we need to replace that have not yet been replaced. If so, 21490 * replace them using the appropriate backup ipif. 21491 */ 21492 for (i = 0; i < BCAST_COUNT; i++) { 21493 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21494 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21495 &bireinfo[i], irep); 21496 } 21497 21498 /* 21499 * If we can't create all of them, don't add any of them. (Code in 21500 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21501 * non-loopback copy and loopback copy for a given address.) 21502 */ 21503 for (irep1 = irep; irep1 > ire_array; ) { 21504 irep1--; 21505 if (*irep1 == NULL) { 21506 ip0dbg(("ipif_check_bcast_ires: can't create " 21507 "IRE_BROADCAST, memory allocation failure\n")); 21508 while (irep > ire_array) { 21509 irep--; 21510 if (*irep != NULL) 21511 ire_delete(*irep); 21512 } 21513 return; 21514 } 21515 } 21516 21517 for (irep1 = irep; irep1 > ire_array; ) { 21518 irep1--; 21519 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21520 ire_refrele(*irep1); /* Held in ire_add */ 21521 } 21522 } 21523 21524 /* 21525 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21526 * from lifr_flags and the name from lifr_name. 21527 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21528 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21529 * Returns EINPROGRESS when mp has been consumed by queueing it on 21530 * ill_pending_mp and the ioctl will complete in ip_rput. 21531 * 21532 * Can operate on either a module or a driver queue. 21533 * Returns an error if not a module queue. 21534 */ 21535 /* ARGSUSED */ 21536 int 21537 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21538 ip_ioctl_cmd_t *ipip, void *if_req) 21539 { 21540 int err; 21541 ill_t *ill; 21542 struct lifreq *lifr = (struct lifreq *)if_req; 21543 21544 ASSERT(ipif != NULL); 21545 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21546 21547 if (q->q_next == NULL) { 21548 ip1dbg(( 21549 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21550 return (EINVAL); 21551 } 21552 21553 ill = (ill_t *)q->q_ptr; 21554 /* 21555 * If we are not writer on 'q' then this interface exists already 21556 * and previous lookups (ipif_extract_lifreq()) found this ipif. 21557 * So return EALREADY 21558 */ 21559 if (ill != ipif->ipif_ill) 21560 return (EALREADY); 21561 21562 if (ill->ill_name[0] != '\0') 21563 return (EALREADY); 21564 21565 /* 21566 * Set all the flags. Allows all kinds of override. Provide some 21567 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21568 * unless there is either multicast/broadcast support in the driver 21569 * or it is a pt-pt link. 21570 */ 21571 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21572 /* Meaningless to IP thus don't allow them to be set. */ 21573 ip1dbg(("ip_setname: EINVAL 1\n")); 21574 return (EINVAL); 21575 } 21576 /* 21577 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21578 * ill_bcast_addr_length info. 21579 */ 21580 if (!ill->ill_needs_attach && 21581 ((lifr->lifr_flags & IFF_MULTICAST) && 21582 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21583 ill->ill_bcast_addr_length == 0)) { 21584 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21585 ip1dbg(("ip_setname: EINVAL 2\n")); 21586 return (EINVAL); 21587 } 21588 if ((lifr->lifr_flags & IFF_BROADCAST) && 21589 ((lifr->lifr_flags & IFF_IPV6) || 21590 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21591 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21592 ip1dbg(("ip_setname: EINVAL 3\n")); 21593 return (EINVAL); 21594 } 21595 if (lifr->lifr_flags & IFF_UP) { 21596 /* Can only be set with SIOCSLIFFLAGS */ 21597 ip1dbg(("ip_setname: EINVAL 4\n")); 21598 return (EINVAL); 21599 } 21600 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21601 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21602 ip1dbg(("ip_setname: EINVAL 5\n")); 21603 return (EINVAL); 21604 } 21605 /* 21606 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21607 */ 21608 if ((lifr->lifr_flags & IFF_XRESOLV) && 21609 !(lifr->lifr_flags & IFF_IPV6) && 21610 !(ipif->ipif_isv6)) { 21611 ip1dbg(("ip_setname: EINVAL 6\n")); 21612 return (EINVAL); 21613 } 21614 21615 /* 21616 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21617 * we have all the flags here. So, we assign rather than we OR. 21618 * We can't OR the flags here because we don't want to set 21619 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21620 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21621 * on lifr_flags value here. 21622 */ 21623 /* 21624 * This ill has not been inserted into the global list. 21625 * So we are still single threaded and don't need any lock 21626 */ 21627 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21628 ~IFF_DUPLICATE; 21629 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21630 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21631 21632 /* We started off as V4. */ 21633 if (ill->ill_flags & ILLF_IPV6) { 21634 ill->ill_phyint->phyint_illv6 = ill; 21635 ill->ill_phyint->phyint_illv4 = NULL; 21636 } 21637 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21638 return (err); 21639 } 21640 21641 /* ARGSUSED */ 21642 int 21643 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21644 ip_ioctl_cmd_t *ipip, void *if_req) 21645 { 21646 /* 21647 * ill_phyint_reinit merged the v4 and v6 into a single 21648 * ipsq. Could also have become part of a ipmp group in the 21649 * process, and we might not have been able to complete the 21650 * slifname in ipif_set_values, if we could not become 21651 * exclusive. If so restart it here 21652 */ 21653 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21654 } 21655 21656 /* 21657 * Return a pointer to the ipif which matches the index, IP version type and 21658 * zoneid. 21659 */ 21660 ipif_t * 21661 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21662 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21663 { 21664 ill_t *ill; 21665 ipif_t *ipif = NULL; 21666 21667 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21668 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21669 21670 if (err != NULL) 21671 *err = 0; 21672 21673 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21674 if (ill != NULL) { 21675 mutex_enter(&ill->ill_lock); 21676 for (ipif = ill->ill_ipif; ipif != NULL; 21677 ipif = ipif->ipif_next) { 21678 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21679 zoneid == ipif->ipif_zoneid || 21680 ipif->ipif_zoneid == ALL_ZONES)) { 21681 ipif_refhold_locked(ipif); 21682 break; 21683 } 21684 } 21685 mutex_exit(&ill->ill_lock); 21686 ill_refrele(ill); 21687 if (ipif == NULL && err != NULL) 21688 *err = ENXIO; 21689 } 21690 return (ipif); 21691 } 21692 21693 typedef struct conn_change_s { 21694 uint_t cc_old_ifindex; 21695 uint_t cc_new_ifindex; 21696 } conn_change_t; 21697 21698 /* 21699 * ipcl_walk function for changing interface index. 21700 */ 21701 static void 21702 conn_change_ifindex(conn_t *connp, caddr_t arg) 21703 { 21704 conn_change_t *connc; 21705 uint_t old_ifindex; 21706 uint_t new_ifindex; 21707 int i; 21708 ilg_t *ilg; 21709 21710 connc = (conn_change_t *)arg; 21711 old_ifindex = connc->cc_old_ifindex; 21712 new_ifindex = connc->cc_new_ifindex; 21713 21714 if (connp->conn_orig_bound_ifindex == old_ifindex) 21715 connp->conn_orig_bound_ifindex = new_ifindex; 21716 21717 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21718 connp->conn_orig_multicast_ifindex = new_ifindex; 21719 21720 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21721 ilg = &connp->conn_ilg[i]; 21722 if (ilg->ilg_orig_ifindex == old_ifindex) 21723 ilg->ilg_orig_ifindex = new_ifindex; 21724 } 21725 } 21726 21727 /* 21728 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21729 * to new_index if it matches the old_index. 21730 * 21731 * Failovers typically happen within a group of ills. But somebody 21732 * can remove an ill from the group after a failover happened. If 21733 * we are setting the ifindex after this, we potentially need to 21734 * look at all the ills rather than just the ones in the group. 21735 * We cut down the work by looking at matching ill_net_types 21736 * and ill_types as we could not possibly grouped them together. 21737 */ 21738 static void 21739 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21740 { 21741 ill_t *ill; 21742 ipif_t *ipif; 21743 uint_t old_ifindex; 21744 uint_t new_ifindex; 21745 ilm_t *ilm; 21746 ill_walk_context_t ctx; 21747 ip_stack_t *ipst = ill_orig->ill_ipst; 21748 21749 old_ifindex = connc->cc_old_ifindex; 21750 new_ifindex = connc->cc_new_ifindex; 21751 21752 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21753 ill = ILL_START_WALK_ALL(&ctx, ipst); 21754 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21755 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21756 (ill_orig->ill_type != ill->ill_type)) { 21757 continue; 21758 } 21759 for (ipif = ill->ill_ipif; ipif != NULL; 21760 ipif = ipif->ipif_next) { 21761 if (ipif->ipif_orig_ifindex == old_ifindex) 21762 ipif->ipif_orig_ifindex = new_ifindex; 21763 } 21764 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21765 if (ilm->ilm_orig_ifindex == old_ifindex) 21766 ilm->ilm_orig_ifindex = new_ifindex; 21767 } 21768 } 21769 rw_exit(&ipst->ips_ill_g_lock); 21770 } 21771 21772 /* 21773 * We first need to ensure that the new index is unique, and 21774 * then carry the change across both v4 and v6 ill representation 21775 * of the physical interface. 21776 */ 21777 /* ARGSUSED */ 21778 int 21779 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21780 ip_ioctl_cmd_t *ipip, void *ifreq) 21781 { 21782 ill_t *ill; 21783 ill_t *ill_other; 21784 phyint_t *phyi; 21785 int old_index; 21786 conn_change_t connc; 21787 struct ifreq *ifr = (struct ifreq *)ifreq; 21788 struct lifreq *lifr = (struct lifreq *)ifreq; 21789 uint_t index; 21790 ill_t *ill_v4; 21791 ill_t *ill_v6; 21792 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21793 21794 if (ipip->ipi_cmd_type == IF_CMD) 21795 index = ifr->ifr_index; 21796 else 21797 index = lifr->lifr_index; 21798 21799 /* 21800 * Only allow on physical interface. Also, index zero is illegal. 21801 * 21802 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21803 * 21804 * 1) If PHYI_FAILED is set, a failover could have happened which 21805 * implies a possible failback might have to happen. As failback 21806 * depends on the old index, we should fail setting the index. 21807 * 21808 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21809 * any addresses or multicast memberships are failed over to 21810 * a non-STANDBY interface. As failback depends on the old 21811 * index, we should fail setting the index for this case also. 21812 * 21813 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21814 * Be consistent with PHYI_FAILED and fail the ioctl. 21815 */ 21816 ill = ipif->ipif_ill; 21817 phyi = ill->ill_phyint; 21818 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21819 ipif->ipif_id != 0 || index == 0) { 21820 return (EINVAL); 21821 } 21822 old_index = phyi->phyint_ifindex; 21823 21824 /* If the index is not changing, no work to do */ 21825 if (old_index == index) 21826 return (0); 21827 21828 /* 21829 * Use ill_lookup_on_ifindex to determine if the 21830 * new index is unused and if so allow the change. 21831 */ 21832 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21833 ipst); 21834 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21835 ipst); 21836 if (ill_v6 != NULL || ill_v4 != NULL) { 21837 if (ill_v4 != NULL) 21838 ill_refrele(ill_v4); 21839 if (ill_v6 != NULL) 21840 ill_refrele(ill_v6); 21841 return (EBUSY); 21842 } 21843 21844 /* 21845 * The new index is unused. Set it in the phyint. 21846 * Locate the other ill so that we can send a routing 21847 * sockets message. 21848 */ 21849 if (ill->ill_isv6) { 21850 ill_other = phyi->phyint_illv4; 21851 } else { 21852 ill_other = phyi->phyint_illv6; 21853 } 21854 21855 phyi->phyint_ifindex = index; 21856 21857 /* Update SCTP's ILL list */ 21858 sctp_ill_reindex(ill, old_index); 21859 21860 connc.cc_old_ifindex = old_index; 21861 connc.cc_new_ifindex = index; 21862 ip_change_ifindex(ill, &connc); 21863 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21864 21865 /* Send the routing sockets message */ 21866 ip_rts_ifmsg(ipif); 21867 if (ill_other != NULL) 21868 ip_rts_ifmsg(ill_other->ill_ipif); 21869 21870 return (0); 21871 } 21872 21873 /* ARGSUSED */ 21874 int 21875 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21876 ip_ioctl_cmd_t *ipip, void *ifreq) 21877 { 21878 struct ifreq *ifr = (struct ifreq *)ifreq; 21879 struct lifreq *lifr = (struct lifreq *)ifreq; 21880 21881 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21882 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21883 /* Get the interface index */ 21884 if (ipip->ipi_cmd_type == IF_CMD) { 21885 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21886 } else { 21887 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21888 } 21889 return (0); 21890 } 21891 21892 /* ARGSUSED */ 21893 int 21894 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21895 ip_ioctl_cmd_t *ipip, void *ifreq) 21896 { 21897 struct lifreq *lifr = (struct lifreq *)ifreq; 21898 21899 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21900 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21901 /* Get the interface zone */ 21902 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21903 lifr->lifr_zoneid = ipif->ipif_zoneid; 21904 return (0); 21905 } 21906 21907 /* 21908 * Set the zoneid of an interface. 21909 */ 21910 /* ARGSUSED */ 21911 int 21912 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21913 ip_ioctl_cmd_t *ipip, void *ifreq) 21914 { 21915 struct lifreq *lifr = (struct lifreq *)ifreq; 21916 int err = 0; 21917 boolean_t need_up = B_FALSE; 21918 zone_t *zptr; 21919 zone_status_t status; 21920 zoneid_t zoneid; 21921 21922 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21923 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21924 if (!is_system_labeled()) 21925 return (ENOTSUP); 21926 zoneid = GLOBAL_ZONEID; 21927 } 21928 21929 /* cannot assign instance zero to a non-global zone */ 21930 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21931 return (ENOTSUP); 21932 21933 /* 21934 * Cannot assign to a zone that doesn't exist or is shutting down. In 21935 * the event of a race with the zone shutdown processing, since IP 21936 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21937 * interface will be cleaned up even if the zone is shut down 21938 * immediately after the status check. If the interface can't be brought 21939 * down right away, and the zone is shut down before the restart 21940 * function is called, we resolve the possible races by rechecking the 21941 * zone status in the restart function. 21942 */ 21943 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21944 return (EINVAL); 21945 status = zone_status_get(zptr); 21946 zone_rele(zptr); 21947 21948 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21949 return (EINVAL); 21950 21951 if (ipif->ipif_flags & IPIF_UP) { 21952 /* 21953 * If the interface is already marked up, 21954 * we call ipif_down which will take care 21955 * of ditching any IREs that have been set 21956 * up based on the old interface address. 21957 */ 21958 err = ipif_logical_down(ipif, q, mp); 21959 if (err == EINPROGRESS) 21960 return (err); 21961 ipif_down_tail(ipif); 21962 need_up = B_TRUE; 21963 } 21964 21965 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21966 return (err); 21967 } 21968 21969 static int 21970 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21971 queue_t *q, mblk_t *mp, boolean_t need_up) 21972 { 21973 int err = 0; 21974 ip_stack_t *ipst; 21975 21976 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21977 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21978 21979 if (CONN_Q(q)) 21980 ipst = CONNQ_TO_IPST(q); 21981 else 21982 ipst = ILLQ_TO_IPST(q); 21983 21984 /* 21985 * For exclusive stacks we don't allow a different zoneid than 21986 * global. 21987 */ 21988 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21989 zoneid != GLOBAL_ZONEID) 21990 return (EINVAL); 21991 21992 /* Set the new zone id. */ 21993 ipif->ipif_zoneid = zoneid; 21994 21995 /* Update sctp list */ 21996 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21997 21998 if (need_up) { 21999 /* 22000 * Now bring the interface back up. If this 22001 * is the only IPIF for the ILL, ipif_up 22002 * will have to re-bind to the device, so 22003 * we may get back EINPROGRESS, in which 22004 * case, this IOCTL will get completed in 22005 * ip_rput_dlpi when we see the DL_BIND_ACK. 22006 */ 22007 err = ipif_up(ipif, q, mp); 22008 } 22009 return (err); 22010 } 22011 22012 /* ARGSUSED */ 22013 int 22014 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22015 ip_ioctl_cmd_t *ipip, void *if_req) 22016 { 22017 struct lifreq *lifr = (struct lifreq *)if_req; 22018 zoneid_t zoneid; 22019 zone_t *zptr; 22020 zone_status_t status; 22021 22022 ASSERT(ipif->ipif_id != 0); 22023 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22024 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22025 zoneid = GLOBAL_ZONEID; 22026 22027 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22028 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22029 22030 /* 22031 * We recheck the zone status to resolve the following race condition: 22032 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22033 * 2) hme0:1 is up and can't be brought down right away; 22034 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22035 * 3) zone "myzone" is halted; the zone status switches to 22036 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22037 * the interfaces to remove - hme0:1 is not returned because it's not 22038 * yet in "myzone", so it won't be removed; 22039 * 4) the restart function for SIOCSLIFZONE is called; without the 22040 * status check here, we would have hme0:1 in "myzone" after it's been 22041 * destroyed. 22042 * Note that if the status check fails, we need to bring the interface 22043 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22044 * ipif_up_done[_v6](). 22045 */ 22046 status = ZONE_IS_UNINITIALIZED; 22047 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22048 status = zone_status_get(zptr); 22049 zone_rele(zptr); 22050 } 22051 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22052 if (ipif->ipif_isv6) { 22053 (void) ipif_up_done_v6(ipif); 22054 } else { 22055 (void) ipif_up_done(ipif); 22056 } 22057 return (EINVAL); 22058 } 22059 22060 ipif_down_tail(ipif); 22061 22062 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22063 B_TRUE)); 22064 } 22065 22066 /* ARGSUSED */ 22067 int 22068 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22069 ip_ioctl_cmd_t *ipip, void *ifreq) 22070 { 22071 struct lifreq *lifr = ifreq; 22072 22073 ASSERT(q->q_next == NULL); 22074 ASSERT(CONN_Q(q)); 22075 22076 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22077 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22078 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22079 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22080 22081 return (0); 22082 } 22083 22084 22085 /* Find the previous ILL in this usesrc group */ 22086 static ill_t * 22087 ill_prev_usesrc(ill_t *uill) 22088 { 22089 ill_t *ill; 22090 22091 for (ill = uill->ill_usesrc_grp_next; 22092 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22093 ill = ill->ill_usesrc_grp_next) 22094 /* do nothing */; 22095 return (ill); 22096 } 22097 22098 /* 22099 * Release all members of the usesrc group. This routine is called 22100 * from ill_delete when the interface being unplumbed is the 22101 * group head. 22102 */ 22103 static void 22104 ill_disband_usesrc_group(ill_t *uill) 22105 { 22106 ill_t *next_ill, *tmp_ill; 22107 ip_stack_t *ipst = uill->ill_ipst; 22108 22109 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22110 next_ill = uill->ill_usesrc_grp_next; 22111 22112 do { 22113 ASSERT(next_ill != NULL); 22114 tmp_ill = next_ill->ill_usesrc_grp_next; 22115 ASSERT(tmp_ill != NULL); 22116 next_ill->ill_usesrc_grp_next = NULL; 22117 next_ill->ill_usesrc_ifindex = 0; 22118 next_ill = tmp_ill; 22119 } while (next_ill->ill_usesrc_ifindex != 0); 22120 uill->ill_usesrc_grp_next = NULL; 22121 } 22122 22123 /* 22124 * Remove the client usesrc ILL from the list and relink to a new list 22125 */ 22126 int 22127 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22128 { 22129 ill_t *ill, *tmp_ill; 22130 ip_stack_t *ipst = ucill->ill_ipst; 22131 22132 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22133 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22134 22135 /* 22136 * Check if the usesrc client ILL passed in is not already 22137 * in use as a usesrc ILL i.e one whose source address is 22138 * in use OR a usesrc ILL is not already in use as a usesrc 22139 * client ILL 22140 */ 22141 if ((ucill->ill_usesrc_ifindex == 0) || 22142 (uill->ill_usesrc_ifindex != 0)) { 22143 return (-1); 22144 } 22145 22146 ill = ill_prev_usesrc(ucill); 22147 ASSERT(ill->ill_usesrc_grp_next != NULL); 22148 22149 /* Remove from the current list */ 22150 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22151 /* Only two elements in the list */ 22152 ASSERT(ill->ill_usesrc_ifindex == 0); 22153 ill->ill_usesrc_grp_next = NULL; 22154 } else { 22155 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22156 } 22157 22158 if (ifindex == 0) { 22159 ucill->ill_usesrc_ifindex = 0; 22160 ucill->ill_usesrc_grp_next = NULL; 22161 return (0); 22162 } 22163 22164 ucill->ill_usesrc_ifindex = ifindex; 22165 tmp_ill = uill->ill_usesrc_grp_next; 22166 uill->ill_usesrc_grp_next = ucill; 22167 ucill->ill_usesrc_grp_next = 22168 (tmp_ill != NULL) ? tmp_ill : uill; 22169 return (0); 22170 } 22171 22172 /* 22173 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22174 * ip.c for locking details. 22175 */ 22176 /* ARGSUSED */ 22177 int 22178 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22179 ip_ioctl_cmd_t *ipip, void *ifreq) 22180 { 22181 struct lifreq *lifr = (struct lifreq *)ifreq; 22182 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22183 ill_flag_changed = B_FALSE; 22184 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22185 int err = 0, ret; 22186 uint_t ifindex; 22187 phyint_t *us_phyint, *us_cli_phyint; 22188 ipsq_t *ipsq = NULL; 22189 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22190 22191 ASSERT(IAM_WRITER_IPIF(ipif)); 22192 ASSERT(q->q_next == NULL); 22193 ASSERT(CONN_Q(q)); 22194 22195 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22196 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22197 22198 ASSERT(us_cli_phyint != NULL); 22199 22200 /* 22201 * If the client ILL is being used for IPMP, abort. 22202 * Note, this can be done before ipsq_try_enter since we are already 22203 * exclusive on this ILL 22204 */ 22205 if ((us_cli_phyint->phyint_groupname != NULL) || 22206 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22207 return (EINVAL); 22208 } 22209 22210 ifindex = lifr->lifr_index; 22211 if (ifindex == 0) { 22212 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22213 /* non usesrc group interface, nothing to reset */ 22214 return (0); 22215 } 22216 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22217 /* valid reset request */ 22218 reset_flg = B_TRUE; 22219 } 22220 22221 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22222 ip_process_ioctl, &err, ipst); 22223 22224 if (usesrc_ill == NULL) { 22225 return (err); 22226 } 22227 22228 /* 22229 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22230 * group nor can either of the interfaces be used for standy. So 22231 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22232 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22233 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22234 * We are already exlusive on this ipsq i.e ipsq corresponding to 22235 * the usesrc_cli_ill 22236 */ 22237 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22238 NEW_OP, B_TRUE); 22239 if (ipsq == NULL) { 22240 err = EINPROGRESS; 22241 /* Operation enqueued on the ipsq of the usesrc ILL */ 22242 goto done; 22243 } 22244 22245 /* Check if the usesrc_ill is used for IPMP */ 22246 us_phyint = usesrc_ill->ill_phyint; 22247 if ((us_phyint->phyint_groupname != NULL) || 22248 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22249 err = EINVAL; 22250 goto done; 22251 } 22252 22253 /* 22254 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22255 * already a client then return EINVAL 22256 */ 22257 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22258 err = EINVAL; 22259 goto done; 22260 } 22261 22262 /* 22263 * If the ill_usesrc_ifindex field is already set to what it needs to 22264 * be then this is a duplicate operation. 22265 */ 22266 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22267 err = 0; 22268 goto done; 22269 } 22270 22271 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22272 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22273 usesrc_ill->ill_isv6)); 22274 22275 /* 22276 * The next step ensures that no new ires will be created referencing 22277 * the client ill, until the ILL_CHANGING flag is cleared. Then 22278 * we go through an ire walk deleting all ire caches that reference 22279 * the client ill. New ires referencing the client ill that are added 22280 * to the ire table before the ILL_CHANGING flag is set, will be 22281 * cleaned up by the ire walk below. Attempt to add new ires referencing 22282 * the client ill while the ILL_CHANGING flag is set will be failed 22283 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22284 * checks (under the ill_g_usesrc_lock) that the ire being added 22285 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22286 * belong to the same usesrc group. 22287 */ 22288 mutex_enter(&usesrc_cli_ill->ill_lock); 22289 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22290 mutex_exit(&usesrc_cli_ill->ill_lock); 22291 ill_flag_changed = B_TRUE; 22292 22293 if (ipif->ipif_isv6) 22294 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22295 ALL_ZONES, ipst); 22296 else 22297 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22298 ALL_ZONES, ipst); 22299 22300 /* 22301 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22302 * and the ill_usesrc_ifindex fields 22303 */ 22304 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22305 22306 if (reset_flg) { 22307 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22308 if (ret != 0) { 22309 err = EINVAL; 22310 } 22311 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22312 goto done; 22313 } 22314 22315 /* 22316 * Four possibilities to consider: 22317 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22318 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22319 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22320 * 4. Both are part of their respective usesrc groups 22321 */ 22322 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22323 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22324 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22325 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22326 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22327 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22328 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22329 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22330 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22331 /* Insert at head of list */ 22332 usesrc_cli_ill->ill_usesrc_grp_next = 22333 usesrc_ill->ill_usesrc_grp_next; 22334 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22335 } else { 22336 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22337 ifindex); 22338 if (ret != 0) 22339 err = EINVAL; 22340 } 22341 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22342 22343 done: 22344 if (ill_flag_changed) { 22345 mutex_enter(&usesrc_cli_ill->ill_lock); 22346 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22347 mutex_exit(&usesrc_cli_ill->ill_lock); 22348 } 22349 if (ipsq != NULL) 22350 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22351 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22352 ill_refrele(usesrc_ill); 22353 return (err); 22354 } 22355 22356 /* 22357 * comparison function used by avl. 22358 */ 22359 static int 22360 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22361 { 22362 22363 uint_t index; 22364 22365 ASSERT(phyip != NULL && index_ptr != NULL); 22366 22367 index = *((uint_t *)index_ptr); 22368 /* 22369 * let the phyint with the lowest index be on top. 22370 */ 22371 if (((phyint_t *)phyip)->phyint_ifindex < index) 22372 return (1); 22373 if (((phyint_t *)phyip)->phyint_ifindex > index) 22374 return (-1); 22375 return (0); 22376 } 22377 22378 /* 22379 * comparison function used by avl. 22380 */ 22381 static int 22382 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22383 { 22384 ill_t *ill; 22385 int res = 0; 22386 22387 ASSERT(phyip != NULL && name_ptr != NULL); 22388 22389 if (((phyint_t *)phyip)->phyint_illv4) 22390 ill = ((phyint_t *)phyip)->phyint_illv4; 22391 else 22392 ill = ((phyint_t *)phyip)->phyint_illv6; 22393 ASSERT(ill != NULL); 22394 22395 res = strcmp(ill->ill_name, (char *)name_ptr); 22396 if (res > 0) 22397 return (1); 22398 else if (res < 0) 22399 return (-1); 22400 return (0); 22401 } 22402 /* 22403 * This function is called from ill_delete when the ill is being 22404 * unplumbed. We remove the reference from the phyint and we also 22405 * free the phyint when there are no more references to it. 22406 */ 22407 static void 22408 ill_phyint_free(ill_t *ill) 22409 { 22410 phyint_t *phyi; 22411 phyint_t *next_phyint; 22412 ipsq_t *cur_ipsq; 22413 ip_stack_t *ipst = ill->ill_ipst; 22414 22415 ASSERT(ill->ill_phyint != NULL); 22416 22417 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22418 phyi = ill->ill_phyint; 22419 ill->ill_phyint = NULL; 22420 /* 22421 * ill_init allocates a phyint always to store the copy 22422 * of flags relevant to phyint. At that point in time, we could 22423 * not assign the name and hence phyint_illv4/v6 could not be 22424 * initialized. Later in ipif_set_values, we assign the name to 22425 * the ill, at which point in time we assign phyint_illv4/v6. 22426 * Thus we don't rely on phyint_illv6 to be initialized always. 22427 */ 22428 if (ill->ill_flags & ILLF_IPV6) { 22429 phyi->phyint_illv6 = NULL; 22430 } else { 22431 phyi->phyint_illv4 = NULL; 22432 } 22433 /* 22434 * ipif_down removes it from the group when the last ipif goes 22435 * down. 22436 */ 22437 ASSERT(ill->ill_group == NULL); 22438 22439 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22440 return; 22441 22442 /* 22443 * Make sure this phyint was put in the list. 22444 */ 22445 if (phyi->phyint_ifindex > 0) { 22446 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22447 phyi); 22448 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22449 phyi); 22450 } 22451 /* 22452 * remove phyint from the ipsq list. 22453 */ 22454 cur_ipsq = phyi->phyint_ipsq; 22455 if (phyi == cur_ipsq->ipsq_phyint_list) { 22456 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22457 } else { 22458 next_phyint = cur_ipsq->ipsq_phyint_list; 22459 while (next_phyint != NULL) { 22460 if (next_phyint->phyint_ipsq_next == phyi) { 22461 next_phyint->phyint_ipsq_next = 22462 phyi->phyint_ipsq_next; 22463 break; 22464 } 22465 next_phyint = next_phyint->phyint_ipsq_next; 22466 } 22467 ASSERT(next_phyint != NULL); 22468 } 22469 IPSQ_DEC_REF(cur_ipsq, ipst); 22470 22471 if (phyi->phyint_groupname_len != 0) { 22472 ASSERT(phyi->phyint_groupname != NULL); 22473 mi_free(phyi->phyint_groupname); 22474 } 22475 mi_free(phyi); 22476 } 22477 22478 /* 22479 * Attach the ill to the phyint structure which can be shared by both 22480 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22481 * function is called from ipif_set_values and ill_lookup_on_name (for 22482 * loopback) where we know the name of the ill. We lookup the ill and if 22483 * there is one present already with the name use that phyint. Otherwise 22484 * reuse the one allocated by ill_init. 22485 */ 22486 static void 22487 ill_phyint_reinit(ill_t *ill) 22488 { 22489 boolean_t isv6 = ill->ill_isv6; 22490 phyint_t *phyi_old; 22491 phyint_t *phyi; 22492 avl_index_t where = 0; 22493 ill_t *ill_other = NULL; 22494 ipsq_t *ipsq; 22495 ip_stack_t *ipst = ill->ill_ipst; 22496 22497 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22498 22499 phyi_old = ill->ill_phyint; 22500 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22501 phyi_old->phyint_illv6 == NULL)); 22502 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22503 phyi_old->phyint_illv4 == NULL)); 22504 ASSERT(phyi_old->phyint_ifindex == 0); 22505 22506 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22507 ill->ill_name, &where); 22508 22509 /* 22510 * 1. We grabbed the ill_g_lock before inserting this ill into 22511 * the global list of ills. So no other thread could have located 22512 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22513 * 2. Now locate the other protocol instance of this ill. 22514 * 3. Now grab both ill locks in the right order, and the phyint lock of 22515 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22516 * of neither ill can change. 22517 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22518 * other ill. 22519 * 5. Release all locks. 22520 */ 22521 22522 /* 22523 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22524 * we are initializing IPv4. 22525 */ 22526 if (phyi != NULL) { 22527 ill_other = (isv6) ? phyi->phyint_illv4 : 22528 phyi->phyint_illv6; 22529 ASSERT(ill_other->ill_phyint != NULL); 22530 ASSERT((isv6 && !ill_other->ill_isv6) || 22531 (!isv6 && ill_other->ill_isv6)); 22532 GRAB_ILL_LOCKS(ill, ill_other); 22533 /* 22534 * We are potentially throwing away phyint_flags which 22535 * could be different from the one that we obtain from 22536 * ill_other->ill_phyint. But it is okay as we are assuming 22537 * that the state maintained within IP is correct. 22538 */ 22539 mutex_enter(&phyi->phyint_lock); 22540 if (isv6) { 22541 ASSERT(phyi->phyint_illv6 == NULL); 22542 phyi->phyint_illv6 = ill; 22543 } else { 22544 ASSERT(phyi->phyint_illv4 == NULL); 22545 phyi->phyint_illv4 = ill; 22546 } 22547 /* 22548 * This is a new ill, currently undergoing SLIFNAME 22549 * So we could not have joined an IPMP group until now. 22550 */ 22551 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22552 phyi_old->phyint_groupname == NULL); 22553 22554 /* 22555 * This phyi_old is going away. Decref ipsq_refs and 22556 * assert it is zero. The ipsq itself will be freed in 22557 * ipsq_exit 22558 */ 22559 ipsq = phyi_old->phyint_ipsq; 22560 IPSQ_DEC_REF(ipsq, ipst); 22561 ASSERT(ipsq->ipsq_refs == 0); 22562 /* Get the singleton phyint out of the ipsq list */ 22563 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22564 ipsq->ipsq_phyint_list = NULL; 22565 phyi_old->phyint_illv4 = NULL; 22566 phyi_old->phyint_illv6 = NULL; 22567 mi_free(phyi_old); 22568 } else { 22569 mutex_enter(&ill->ill_lock); 22570 /* 22571 * We don't need to acquire any lock, since 22572 * the ill is not yet visible globally and we 22573 * have not yet released the ill_g_lock. 22574 */ 22575 phyi = phyi_old; 22576 mutex_enter(&phyi->phyint_lock); 22577 /* XXX We need a recovery strategy here. */ 22578 if (!phyint_assign_ifindex(phyi, ipst)) 22579 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22580 22581 /* No IPMP group yet, thus the hook uses the ifindex */ 22582 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22583 22584 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22585 (void *)phyi, where); 22586 22587 (void) avl_find(&ipst->ips_phyint_g_list-> 22588 phyint_list_avl_by_index, 22589 &phyi->phyint_ifindex, &where); 22590 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22591 (void *)phyi, where); 22592 } 22593 22594 /* 22595 * Reassigning ill_phyint automatically reassigns the ipsq also. 22596 * pending mp is not affected because that is per ill basis. 22597 */ 22598 ill->ill_phyint = phyi; 22599 22600 /* 22601 * Keep the index on ipif_orig_index to be used by FAILOVER. 22602 * We do this here as when the first ipif was allocated, 22603 * ipif_allocate does not know the right interface index. 22604 */ 22605 22606 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22607 /* 22608 * Now that the phyint's ifindex has been assigned, complete the 22609 * remaining 22610 */ 22611 22612 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22613 if (ill->ill_isv6) { 22614 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22615 ill->ill_phyint->phyint_ifindex; 22616 ill->ill_mcast_type = ipst->ips_mld_max_version; 22617 } else { 22618 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22619 } 22620 22621 /* 22622 * Generate an event within the hooks framework to indicate that 22623 * a new interface has just been added to IP. For this event to 22624 * be generated, the network interface must, at least, have an 22625 * ifindex assigned to it. 22626 * 22627 * This needs to be run inside the ill_g_lock perimeter to ensure 22628 * that the ordering of delivered events to listeners matches the 22629 * order of them in the kernel. 22630 * 22631 * This function could be called from ill_lookup_on_name. In that case 22632 * the interface is loopback "lo", which will not generate a NIC event. 22633 */ 22634 if (ill->ill_name_length <= 2 || 22635 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22636 /* 22637 * Generate nic plumb event for ill_name even if 22638 * ipmp_hook_emulation is set. That avoids generating events 22639 * for the ill_names should ipmp_hook_emulation be turned on 22640 * later. 22641 */ 22642 ill_nic_info_plumb(ill, B_FALSE); 22643 } 22644 RELEASE_ILL_LOCKS(ill, ill_other); 22645 mutex_exit(&phyi->phyint_lock); 22646 } 22647 22648 /* 22649 * Allocate a NE_PLUMB nic info event and store in the ill. 22650 * If 'group' is set we do it for the group name, otherwise the ill name. 22651 * It will be sent when we leave the ipsq. 22652 */ 22653 void 22654 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22655 { 22656 phyint_t *phyi = ill->ill_phyint; 22657 ip_stack_t *ipst = ill->ill_ipst; 22658 hook_nic_event_t *info; 22659 char *name; 22660 int namelen; 22661 22662 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22663 22664 if ((info = ill->ill_nic_event_info) != NULL) { 22665 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 22666 "attached for %s\n", info->hne_event, 22667 ill->ill_name)); 22668 if (info->hne_data != NULL) 22669 kmem_free(info->hne_data, info->hne_datalen); 22670 kmem_free(info, sizeof (hook_nic_event_t)); 22671 ill->ill_nic_event_info = NULL; 22672 } 22673 22674 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 22675 if (info == NULL) { 22676 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 22677 "event information for %s (ENOMEM)\n", 22678 ill->ill_name)); 22679 return; 22680 } 22681 22682 if (group) { 22683 ASSERT(phyi->phyint_groupname_len != 0); 22684 namelen = phyi->phyint_groupname_len; 22685 name = phyi->phyint_groupname; 22686 } else { 22687 namelen = ill->ill_name_length; 22688 name = ill->ill_name; 22689 } 22690 22691 info->hne_nic = phyi->phyint_hook_ifindex; 22692 info->hne_lif = 0; 22693 info->hne_event = NE_PLUMB; 22694 info->hne_family = ill->ill_isv6 ? 22695 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 22696 22697 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 22698 if (info->hne_data != NULL) { 22699 info->hne_datalen = namelen; 22700 bcopy(name, info->hne_data, info->hne_datalen); 22701 } else { 22702 ip2dbg(("ill_nic_info_plumb: could not attach " 22703 "name information for PLUMB nic event " 22704 "of %s (ENOMEM)\n", name)); 22705 kmem_free(info, sizeof (hook_nic_event_t)); 22706 info = NULL; 22707 } 22708 ill->ill_nic_event_info = info; 22709 } 22710 22711 /* 22712 * Unhook the nic event message from the ill and enqueue it 22713 * into the nic event taskq. 22714 */ 22715 void 22716 ill_nic_info_dispatch(ill_t *ill) 22717 { 22718 hook_nic_event_t *info; 22719 22720 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22721 22722 if ((info = ill->ill_nic_event_info) != NULL) { 22723 if (ddi_taskq_dispatch(eventq_queue_nic, 22724 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22725 ip2dbg(("ill_nic_info_dispatch: " 22726 "ddi_taskq_dispatch failed\n")); 22727 if (info->hne_data != NULL) 22728 kmem_free(info->hne_data, info->hne_datalen); 22729 kmem_free(info, sizeof (hook_nic_event_t)); 22730 } 22731 ill->ill_nic_event_info = NULL; 22732 } 22733 } 22734 22735 /* 22736 * Notify any downstream modules of the name of this interface. 22737 * An M_IOCTL is used even though we don't expect a successful reply. 22738 * Any reply message from the driver (presumably an M_IOCNAK) will 22739 * eventually get discarded somewhere upstream. The message format is 22740 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22741 * to IP. 22742 */ 22743 static void 22744 ip_ifname_notify(ill_t *ill, queue_t *q) 22745 { 22746 mblk_t *mp1, *mp2; 22747 struct iocblk *iocp; 22748 struct lifreq *lifr; 22749 22750 mp1 = mkiocb(SIOCSLIFNAME); 22751 if (mp1 == NULL) 22752 return; 22753 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22754 if (mp2 == NULL) { 22755 freeb(mp1); 22756 return; 22757 } 22758 22759 mp1->b_cont = mp2; 22760 iocp = (struct iocblk *)mp1->b_rptr; 22761 iocp->ioc_count = sizeof (struct lifreq); 22762 22763 lifr = (struct lifreq *)mp2->b_rptr; 22764 mp2->b_wptr += sizeof (struct lifreq); 22765 bzero(lifr, sizeof (struct lifreq)); 22766 22767 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22768 lifr->lifr_ppa = ill->ill_ppa; 22769 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22770 22771 putnext(q, mp1); 22772 } 22773 22774 static int 22775 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22776 { 22777 int err; 22778 ip_stack_t *ipst = ill->ill_ipst; 22779 22780 /* Set the obsolete NDD per-interface forwarding name. */ 22781 err = ill_set_ndd_name(ill); 22782 if (err != 0) { 22783 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22784 err); 22785 } 22786 22787 /* Tell downstream modules where they are. */ 22788 ip_ifname_notify(ill, q); 22789 22790 /* 22791 * ill_dl_phys returns EINPROGRESS in the usual case. 22792 * Error cases are ENOMEM ... 22793 */ 22794 err = ill_dl_phys(ill, ipif, mp, q); 22795 22796 /* 22797 * If there is no IRE expiration timer running, get one started. 22798 * igmp and mld timers will be triggered by the first multicast 22799 */ 22800 if (ipst->ips_ip_ire_expire_id == 0) { 22801 /* 22802 * acquire the lock and check again. 22803 */ 22804 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22805 if (ipst->ips_ip_ire_expire_id == 0) { 22806 ipst->ips_ip_ire_expire_id = timeout( 22807 ip_trash_timer_expire, ipst, 22808 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22809 } 22810 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22811 } 22812 22813 if (ill->ill_isv6) { 22814 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22815 if (ipst->ips_mld_slowtimeout_id == 0) { 22816 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22817 (void *)ipst, 22818 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22819 } 22820 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22821 } else { 22822 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22823 if (ipst->ips_igmp_slowtimeout_id == 0) { 22824 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22825 (void *)ipst, 22826 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22827 } 22828 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22829 } 22830 22831 return (err); 22832 } 22833 22834 /* 22835 * Common routine for ppa and ifname setting. Should be called exclusive. 22836 * 22837 * Returns EINPROGRESS when mp has been consumed by queueing it on 22838 * ill_pending_mp and the ioctl will complete in ip_rput. 22839 * 22840 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22841 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22842 * For SLIFNAME, we pass these values back to the userland. 22843 */ 22844 static int 22845 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22846 { 22847 ill_t *ill; 22848 ipif_t *ipif; 22849 ipsq_t *ipsq; 22850 char *ppa_ptr; 22851 char *old_ptr; 22852 char old_char; 22853 int error; 22854 ip_stack_t *ipst; 22855 22856 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22857 ASSERT(q->q_next != NULL); 22858 ASSERT(interf_name != NULL); 22859 22860 ill = (ill_t *)q->q_ptr; 22861 ipst = ill->ill_ipst; 22862 22863 ASSERT(ill->ill_ipst != NULL); 22864 ASSERT(ill->ill_name[0] == '\0'); 22865 ASSERT(IAM_WRITER_ILL(ill)); 22866 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22867 ASSERT(ill->ill_ppa == UINT_MAX); 22868 22869 /* The ppa is sent down by ifconfig or is chosen */ 22870 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22871 return (EINVAL); 22872 } 22873 22874 /* 22875 * make sure ppa passed in is same as ppa in the name. 22876 * This check is not made when ppa == UINT_MAX in that case ppa 22877 * in the name could be anything. System will choose a ppa and 22878 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22879 */ 22880 if (*new_ppa_ptr != UINT_MAX) { 22881 /* stoi changes the pointer */ 22882 old_ptr = ppa_ptr; 22883 /* 22884 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22885 * (they don't have an externally visible ppa). We assign one 22886 * here so that we can manage the interface. Note that in 22887 * the past this value was always 0 for DLPI 1 drivers. 22888 */ 22889 if (*new_ppa_ptr == 0) 22890 *new_ppa_ptr = stoi(&old_ptr); 22891 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22892 return (EINVAL); 22893 } 22894 /* 22895 * terminate string before ppa 22896 * save char at that location. 22897 */ 22898 old_char = ppa_ptr[0]; 22899 ppa_ptr[0] = '\0'; 22900 22901 ill->ill_ppa = *new_ppa_ptr; 22902 /* 22903 * Finish as much work now as possible before calling ill_glist_insert 22904 * which makes the ill globally visible and also merges it with the 22905 * other protocol instance of this phyint. The remaining work is 22906 * done after entering the ipsq which may happen sometime later. 22907 * ill_set_ndd_name occurs after the ill has been made globally visible. 22908 */ 22909 ipif = ill->ill_ipif; 22910 22911 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22912 ipif_assign_seqid(ipif); 22913 22914 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22915 ill->ill_flags |= ILLF_IPV4; 22916 22917 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22918 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22919 22920 if (ill->ill_flags & ILLF_IPV6) { 22921 22922 ill->ill_isv6 = B_TRUE; 22923 if (ill->ill_rq != NULL) { 22924 ill->ill_rq->q_qinfo = &iprinitv6; 22925 ill->ill_wq->q_qinfo = &ipwinitv6; 22926 } 22927 22928 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22929 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22930 ipif->ipif_v6src_addr = ipv6_all_zeros; 22931 ipif->ipif_v6subnet = ipv6_all_zeros; 22932 ipif->ipif_v6net_mask = ipv6_all_zeros; 22933 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22934 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22935 /* 22936 * point-to-point or Non-mulicast capable 22937 * interfaces won't do NUD unless explicitly 22938 * configured to do so. 22939 */ 22940 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22941 !(ill->ill_flags & ILLF_MULTICAST)) { 22942 ill->ill_flags |= ILLF_NONUD; 22943 } 22944 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22945 if (ill->ill_flags & ILLF_NOARP) { 22946 /* 22947 * Note: xresolv interfaces will eventually need 22948 * NOARP set here as well, but that will require 22949 * those external resolvers to have some 22950 * knowledge of that flag and act appropriately. 22951 * Not to be changed at present. 22952 */ 22953 ill->ill_flags &= ~ILLF_NOARP; 22954 } 22955 /* 22956 * Set the ILLF_ROUTER flag according to the global 22957 * IPv6 forwarding policy. 22958 */ 22959 if (ipst->ips_ipv6_forward != 0) 22960 ill->ill_flags |= ILLF_ROUTER; 22961 } else if (ill->ill_flags & ILLF_IPV4) { 22962 ill->ill_isv6 = B_FALSE; 22963 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22964 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22965 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22966 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22967 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22968 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22969 /* 22970 * Set the ILLF_ROUTER flag according to the global 22971 * IPv4 forwarding policy. 22972 */ 22973 if (ipst->ips_ip_g_forward != 0) 22974 ill->ill_flags |= ILLF_ROUTER; 22975 } 22976 22977 ASSERT(ill->ill_phyint != NULL); 22978 22979 /* 22980 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22981 * be completed in ill_glist_insert -> ill_phyint_reinit 22982 */ 22983 if (!ill_allocate_mibs(ill)) 22984 return (ENOMEM); 22985 22986 /* 22987 * Pick a default sap until we get the DL_INFO_ACK back from 22988 * the driver. 22989 */ 22990 if (ill->ill_sap == 0) { 22991 if (ill->ill_isv6) 22992 ill->ill_sap = IP6_DL_SAP; 22993 else 22994 ill->ill_sap = IP_DL_SAP; 22995 } 22996 22997 ill->ill_ifname_pending = 1; 22998 ill->ill_ifname_pending_err = 0; 22999 23000 ill_refhold(ill); 23001 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23002 if ((error = ill_glist_insert(ill, interf_name, 23003 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23004 ill->ill_ppa = UINT_MAX; 23005 ill->ill_name[0] = '\0'; 23006 /* 23007 * undo null termination done above. 23008 */ 23009 ppa_ptr[0] = old_char; 23010 rw_exit(&ipst->ips_ill_g_lock); 23011 ill_refrele(ill); 23012 return (error); 23013 } 23014 23015 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23016 23017 /* 23018 * When we return the buffer pointed to by interf_name should contain 23019 * the same name as in ill_name. 23020 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23021 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23022 * so copy full name and update the ppa ptr. 23023 * When ppa passed in != UINT_MAX all values are correct just undo 23024 * null termination, this saves a bcopy. 23025 */ 23026 if (*new_ppa_ptr == UINT_MAX) { 23027 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23028 *new_ppa_ptr = ill->ill_ppa; 23029 } else { 23030 /* 23031 * undo null termination done above. 23032 */ 23033 ppa_ptr[0] = old_char; 23034 } 23035 23036 /* Let SCTP know about this ILL */ 23037 sctp_update_ill(ill, SCTP_ILL_INSERT); 23038 23039 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23040 B_TRUE); 23041 23042 rw_exit(&ipst->ips_ill_g_lock); 23043 ill_refrele(ill); 23044 if (ipsq == NULL) 23045 return (EINPROGRESS); 23046 23047 /* 23048 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23049 */ 23050 if (ipsq->ipsq_current_ipif == NULL) 23051 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23052 else 23053 ASSERT(ipsq->ipsq_current_ipif == ipif); 23054 23055 error = ipif_set_values_tail(ill, ipif, mp, q); 23056 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23057 if (error != 0 && error != EINPROGRESS) { 23058 /* 23059 * restore previous values 23060 */ 23061 ill->ill_isv6 = B_FALSE; 23062 } 23063 return (error); 23064 } 23065 23066 23067 void 23068 ipif_init(ip_stack_t *ipst) 23069 { 23070 hrtime_t hrt; 23071 int i; 23072 23073 /* 23074 * Can't call drv_getparm here as it is too early in the boot. 23075 * As we use ipif_src_random just for picking a different 23076 * source address everytime, this need not be really random. 23077 */ 23078 hrt = gethrtime(); 23079 ipst->ips_ipif_src_random = 23080 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23081 23082 for (i = 0; i < MAX_G_HEADS; i++) { 23083 ipst->ips_ill_g_heads[i].ill_g_list_head = 23084 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23085 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23086 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23087 } 23088 23089 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23090 ill_phyint_compare_index, 23091 sizeof (phyint_t), 23092 offsetof(struct phyint, phyint_avl_by_index)); 23093 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23094 ill_phyint_compare_name, 23095 sizeof (phyint_t), 23096 offsetof(struct phyint, phyint_avl_by_name)); 23097 } 23098 23099 /* 23100 * Lookup the ipif corresponding to the onlink destination address. For 23101 * point-to-point interfaces, it matches with remote endpoint destination 23102 * address. For point-to-multipoint interfaces it only tries to match the 23103 * destination with the interface's subnet address. The longest, most specific 23104 * match is found to take care of such rare network configurations like - 23105 * le0: 129.146.1.1/16 23106 * le1: 129.146.2.2/24 23107 * It is used only by SO_DONTROUTE at the moment. 23108 */ 23109 ipif_t * 23110 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23111 { 23112 ipif_t *ipif, *best_ipif; 23113 ill_t *ill; 23114 ill_walk_context_t ctx; 23115 23116 ASSERT(zoneid != ALL_ZONES); 23117 best_ipif = NULL; 23118 23119 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23120 ill = ILL_START_WALK_V4(&ctx, ipst); 23121 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23122 mutex_enter(&ill->ill_lock); 23123 for (ipif = ill->ill_ipif; ipif != NULL; 23124 ipif = ipif->ipif_next) { 23125 if (!IPIF_CAN_LOOKUP(ipif)) 23126 continue; 23127 if (ipif->ipif_zoneid != zoneid && 23128 ipif->ipif_zoneid != ALL_ZONES) 23129 continue; 23130 /* 23131 * Point-to-point case. Look for exact match with 23132 * destination address. 23133 */ 23134 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23135 if (ipif->ipif_pp_dst_addr == addr) { 23136 ipif_refhold_locked(ipif); 23137 mutex_exit(&ill->ill_lock); 23138 rw_exit(&ipst->ips_ill_g_lock); 23139 if (best_ipif != NULL) 23140 ipif_refrele(best_ipif); 23141 return (ipif); 23142 } 23143 } else if (ipif->ipif_subnet == (addr & 23144 ipif->ipif_net_mask)) { 23145 /* 23146 * Point-to-multipoint case. Looping through to 23147 * find the most specific match. If there are 23148 * multiple best match ipif's then prefer ipif's 23149 * that are UP. If there is only one best match 23150 * ipif and it is DOWN we must still return it. 23151 */ 23152 if ((best_ipif == NULL) || 23153 (ipif->ipif_net_mask > 23154 best_ipif->ipif_net_mask) || 23155 ((ipif->ipif_net_mask == 23156 best_ipif->ipif_net_mask) && 23157 ((ipif->ipif_flags & IPIF_UP) && 23158 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23159 ipif_refhold_locked(ipif); 23160 mutex_exit(&ill->ill_lock); 23161 rw_exit(&ipst->ips_ill_g_lock); 23162 if (best_ipif != NULL) 23163 ipif_refrele(best_ipif); 23164 best_ipif = ipif; 23165 rw_enter(&ipst->ips_ill_g_lock, 23166 RW_READER); 23167 mutex_enter(&ill->ill_lock); 23168 } 23169 } 23170 } 23171 mutex_exit(&ill->ill_lock); 23172 } 23173 rw_exit(&ipst->ips_ill_g_lock); 23174 return (best_ipif); 23175 } 23176 23177 23178 /* 23179 * Save enough information so that we can recreate the IRE if 23180 * the interface goes down and then up. 23181 */ 23182 static void 23183 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23184 { 23185 mblk_t *save_mp; 23186 23187 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23188 if (save_mp != NULL) { 23189 ifrt_t *ifrt; 23190 23191 save_mp->b_wptr += sizeof (ifrt_t); 23192 ifrt = (ifrt_t *)save_mp->b_rptr; 23193 bzero(ifrt, sizeof (ifrt_t)); 23194 ifrt->ifrt_type = ire->ire_type; 23195 ifrt->ifrt_addr = ire->ire_addr; 23196 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23197 ifrt->ifrt_src_addr = ire->ire_src_addr; 23198 ifrt->ifrt_mask = ire->ire_mask; 23199 ifrt->ifrt_flags = ire->ire_flags; 23200 ifrt->ifrt_max_frag = ire->ire_max_frag; 23201 mutex_enter(&ipif->ipif_saved_ire_lock); 23202 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23203 ipif->ipif_saved_ire_mp = save_mp; 23204 ipif->ipif_saved_ire_cnt++; 23205 mutex_exit(&ipif->ipif_saved_ire_lock); 23206 } 23207 } 23208 23209 23210 static void 23211 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23212 { 23213 mblk_t **mpp; 23214 mblk_t *mp; 23215 ifrt_t *ifrt; 23216 23217 /* Remove from ipif_saved_ire_mp list if it is there */ 23218 mutex_enter(&ipif->ipif_saved_ire_lock); 23219 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23220 mpp = &(*mpp)->b_cont) { 23221 /* 23222 * On a given ipif, the triple of address, gateway and 23223 * mask is unique for each saved IRE (in the case of 23224 * ordinary interface routes, the gateway address is 23225 * all-zeroes). 23226 */ 23227 mp = *mpp; 23228 ifrt = (ifrt_t *)mp->b_rptr; 23229 if (ifrt->ifrt_addr == ire->ire_addr && 23230 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23231 ifrt->ifrt_mask == ire->ire_mask) { 23232 *mpp = mp->b_cont; 23233 ipif->ipif_saved_ire_cnt--; 23234 freeb(mp); 23235 break; 23236 } 23237 } 23238 mutex_exit(&ipif->ipif_saved_ire_lock); 23239 } 23240 23241 23242 /* 23243 * IP multirouting broadcast routes handling 23244 * Append CGTP broadcast IREs to regular ones created 23245 * at ifconfig time. 23246 */ 23247 static void 23248 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23249 { 23250 ire_t *ire_prim; 23251 23252 ASSERT(ire != NULL); 23253 ASSERT(ire_dst != NULL); 23254 23255 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23256 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23257 if (ire_prim != NULL) { 23258 /* 23259 * We are in the special case of broadcasts for 23260 * CGTP. We add an IRE_BROADCAST that holds 23261 * the RTF_MULTIRT flag, the destination 23262 * address of ire_dst and the low level 23263 * info of ire_prim. In other words, CGTP 23264 * broadcast is added to the redundant ipif. 23265 */ 23266 ipif_t *ipif_prim; 23267 ire_t *bcast_ire; 23268 23269 ipif_prim = ire_prim->ire_ipif; 23270 23271 ip2dbg(("ip_cgtp_filter_bcast_add: " 23272 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23273 (void *)ire_dst, (void *)ire_prim, 23274 (void *)ipif_prim)); 23275 23276 bcast_ire = ire_create( 23277 (uchar_t *)&ire->ire_addr, 23278 (uchar_t *)&ip_g_all_ones, 23279 (uchar_t *)&ire_dst->ire_src_addr, 23280 (uchar_t *)&ire->ire_gateway_addr, 23281 &ipif_prim->ipif_mtu, 23282 NULL, 23283 ipif_prim->ipif_rq, 23284 ipif_prim->ipif_wq, 23285 IRE_BROADCAST, 23286 ipif_prim, 23287 0, 23288 0, 23289 0, 23290 ire->ire_flags, 23291 &ire_uinfo_null, 23292 NULL, 23293 NULL, 23294 ipst); 23295 23296 if (bcast_ire != NULL) { 23297 23298 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23299 B_FALSE) == 0) { 23300 ip2dbg(("ip_cgtp_filter_bcast_add: " 23301 "added bcast_ire %p\n", 23302 (void *)bcast_ire)); 23303 23304 ipif_save_ire(bcast_ire->ire_ipif, 23305 bcast_ire); 23306 ire_refrele(bcast_ire); 23307 } 23308 } 23309 ire_refrele(ire_prim); 23310 } 23311 } 23312 23313 23314 /* 23315 * IP multirouting broadcast routes handling 23316 * Remove the broadcast ire 23317 */ 23318 static void 23319 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23320 { 23321 ire_t *ire_dst; 23322 23323 ASSERT(ire != NULL); 23324 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23325 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23326 if (ire_dst != NULL) { 23327 ire_t *ire_prim; 23328 23329 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23330 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23331 if (ire_prim != NULL) { 23332 ipif_t *ipif_prim; 23333 ire_t *bcast_ire; 23334 23335 ipif_prim = ire_prim->ire_ipif; 23336 23337 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23338 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23339 (void *)ire_dst, (void *)ire_prim, 23340 (void *)ipif_prim)); 23341 23342 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23343 ire->ire_gateway_addr, 23344 IRE_BROADCAST, 23345 ipif_prim, ALL_ZONES, 23346 NULL, 23347 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23348 MATCH_IRE_MASK, ipst); 23349 23350 if (bcast_ire != NULL) { 23351 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23352 "looked up bcast_ire %p\n", 23353 (void *)bcast_ire)); 23354 ipif_remove_ire(bcast_ire->ire_ipif, 23355 bcast_ire); 23356 ire_delete(bcast_ire); 23357 ire_refrele(bcast_ire); 23358 } 23359 ire_refrele(ire_prim); 23360 } 23361 ire_refrele(ire_dst); 23362 } 23363 } 23364 23365 /* 23366 * IPsec hardware acceleration capabilities related functions. 23367 */ 23368 23369 /* 23370 * Free a per-ill IPsec capabilities structure. 23371 */ 23372 static void 23373 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23374 { 23375 if (capab->auth_hw_algs != NULL) 23376 kmem_free(capab->auth_hw_algs, capab->algs_size); 23377 if (capab->encr_hw_algs != NULL) 23378 kmem_free(capab->encr_hw_algs, capab->algs_size); 23379 if (capab->encr_algparm != NULL) 23380 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23381 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23382 } 23383 23384 /* 23385 * Allocate a new per-ill IPsec capabilities structure. This structure 23386 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23387 * an array which specifies, for each algorithm, whether this algorithm 23388 * is supported by the ill or not. 23389 */ 23390 static ill_ipsec_capab_t * 23391 ill_ipsec_capab_alloc(void) 23392 { 23393 ill_ipsec_capab_t *capab; 23394 uint_t nelems; 23395 23396 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23397 if (capab == NULL) 23398 return (NULL); 23399 23400 /* we need one bit per algorithm */ 23401 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23402 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23403 23404 /* allocate memory to store algorithm flags */ 23405 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23406 if (capab->encr_hw_algs == NULL) 23407 goto nomem; 23408 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23409 if (capab->auth_hw_algs == NULL) 23410 goto nomem; 23411 /* 23412 * Leave encr_algparm NULL for now since we won't need it half 23413 * the time 23414 */ 23415 return (capab); 23416 23417 nomem: 23418 ill_ipsec_capab_free(capab); 23419 return (NULL); 23420 } 23421 23422 /* 23423 * Resize capability array. Since we're exclusive, this is OK. 23424 */ 23425 static boolean_t 23426 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23427 { 23428 ipsec_capab_algparm_t *nalp, *oalp; 23429 uint32_t olen, nlen; 23430 23431 oalp = capab->encr_algparm; 23432 olen = capab->encr_algparm_size; 23433 23434 if (oalp != NULL) { 23435 if (algid < capab->encr_algparm_end) 23436 return (B_TRUE); 23437 } 23438 23439 nlen = (algid + 1) * sizeof (*nalp); 23440 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23441 if (nalp == NULL) 23442 return (B_FALSE); 23443 23444 if (oalp != NULL) { 23445 bcopy(oalp, nalp, olen); 23446 kmem_free(oalp, olen); 23447 } 23448 capab->encr_algparm = nalp; 23449 capab->encr_algparm_size = nlen; 23450 capab->encr_algparm_end = algid + 1; 23451 23452 return (B_TRUE); 23453 } 23454 23455 /* 23456 * Compare the capabilities of the specified ill with the protocol 23457 * and algorithms specified by the SA passed as argument. 23458 * If they match, returns B_TRUE, B_FALSE if they do not match. 23459 * 23460 * The ill can be passed as a pointer to it, or by specifying its index 23461 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23462 * 23463 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23464 * packet is eligible for hardware acceleration, and by 23465 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23466 * to a particular ill. 23467 */ 23468 boolean_t 23469 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23470 ipsa_t *sa, netstack_t *ns) 23471 { 23472 boolean_t sa_isv6; 23473 uint_t algid; 23474 struct ill_ipsec_capab_s *cpp; 23475 boolean_t need_refrele = B_FALSE; 23476 ip_stack_t *ipst = ns->netstack_ip; 23477 23478 if (ill == NULL) { 23479 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23480 NULL, NULL, NULL, ipst); 23481 if (ill == NULL) { 23482 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23483 return (B_FALSE); 23484 } 23485 need_refrele = B_TRUE; 23486 } 23487 23488 /* 23489 * Use the address length specified by the SA to determine 23490 * if it corresponds to a IPv6 address, and fail the matching 23491 * if the isv6 flag passed as argument does not match. 23492 * Note: this check is used for SADB capability checking before 23493 * sending SA information to an ill. 23494 */ 23495 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23496 if (sa_isv6 != ill_isv6) 23497 /* protocol mismatch */ 23498 goto done; 23499 23500 /* 23501 * Check if the ill supports the protocol, algorithm(s) and 23502 * key size(s) specified by the SA, and get the pointers to 23503 * the algorithms supported by the ill. 23504 */ 23505 switch (sa->ipsa_type) { 23506 23507 case SADB_SATYPE_ESP: 23508 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23509 /* ill does not support ESP acceleration */ 23510 goto done; 23511 cpp = ill->ill_ipsec_capab_esp; 23512 algid = sa->ipsa_auth_alg; 23513 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23514 goto done; 23515 algid = sa->ipsa_encr_alg; 23516 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23517 goto done; 23518 if (algid < cpp->encr_algparm_end) { 23519 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23520 if (sa->ipsa_encrkeybits < alp->minkeylen) 23521 goto done; 23522 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23523 goto done; 23524 } 23525 break; 23526 23527 case SADB_SATYPE_AH: 23528 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23529 /* ill does not support AH acceleration */ 23530 goto done; 23531 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23532 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23533 goto done; 23534 break; 23535 } 23536 23537 if (need_refrele) 23538 ill_refrele(ill); 23539 return (B_TRUE); 23540 done: 23541 if (need_refrele) 23542 ill_refrele(ill); 23543 return (B_FALSE); 23544 } 23545 23546 23547 /* 23548 * Add a new ill to the list of IPsec capable ills. 23549 * Called from ill_capability_ipsec_ack() when an ACK was received 23550 * indicating that IPsec hardware processing was enabled for an ill. 23551 * 23552 * ill must point to the ill for which acceleration was enabled. 23553 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23554 */ 23555 static void 23556 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23557 { 23558 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23559 uint_t sa_type; 23560 uint_t ipproto; 23561 ip_stack_t *ipst = ill->ill_ipst; 23562 23563 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23564 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23565 23566 switch (dl_cap) { 23567 case DL_CAPAB_IPSEC_AH: 23568 sa_type = SADB_SATYPE_AH; 23569 ills = &ipst->ips_ipsec_capab_ills_ah; 23570 ipproto = IPPROTO_AH; 23571 break; 23572 case DL_CAPAB_IPSEC_ESP: 23573 sa_type = SADB_SATYPE_ESP; 23574 ills = &ipst->ips_ipsec_capab_ills_esp; 23575 ipproto = IPPROTO_ESP; 23576 break; 23577 } 23578 23579 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23580 23581 /* 23582 * Add ill index to list of hardware accelerators. If 23583 * already in list, do nothing. 23584 */ 23585 for (cur_ill = *ills; cur_ill != NULL && 23586 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23587 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23588 ; 23589 23590 if (cur_ill == NULL) { 23591 /* if this is a new entry for this ill */ 23592 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23593 if (new_ill == NULL) { 23594 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23595 return; 23596 } 23597 23598 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23599 new_ill->ill_isv6 = ill->ill_isv6; 23600 new_ill->next = *ills; 23601 *ills = new_ill; 23602 } else if (!sadb_resync) { 23603 /* not resync'ing SADB and an entry exists for this ill */ 23604 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23605 return; 23606 } 23607 23608 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23609 23610 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23611 /* 23612 * IPsec module for protocol loaded, initiate dump 23613 * of the SADB to this ill. 23614 */ 23615 sadb_ill_download(ill, sa_type); 23616 } 23617 23618 /* 23619 * Remove an ill from the list of IPsec capable ills. 23620 */ 23621 static void 23622 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23623 { 23624 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23625 ip_stack_t *ipst = ill->ill_ipst; 23626 23627 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23628 dl_cap == DL_CAPAB_IPSEC_ESP); 23629 23630 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23631 &ipst->ips_ipsec_capab_ills_esp; 23632 23633 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23634 23635 prev_ill = NULL; 23636 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23637 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23638 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23639 ; 23640 if (cur_ill == NULL) { 23641 /* entry not found */ 23642 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23643 return; 23644 } 23645 if (prev_ill == NULL) { 23646 /* entry at front of list */ 23647 *ills = NULL; 23648 } else { 23649 prev_ill->next = cur_ill->next; 23650 } 23651 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23652 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23653 } 23654 23655 /* 23656 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23657 * supporting the specified IPsec protocol acceleration. 23658 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23659 * We free the mblk and, if sa is non-null, release the held referece. 23660 */ 23661 void 23662 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23663 netstack_t *ns) 23664 { 23665 ipsec_capab_ill_t *ici, *cur_ici; 23666 ill_t *ill; 23667 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23668 ip_stack_t *ipst = ns->netstack_ip; 23669 23670 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23671 ipst->ips_ipsec_capab_ills_esp; 23672 23673 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23674 23675 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23676 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23677 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23678 23679 /* 23680 * Handle the case where the ill goes away while the SADB is 23681 * attempting to send messages. If it's going away, it's 23682 * nuking its shadow SADB, so we don't care.. 23683 */ 23684 23685 if (ill == NULL) 23686 continue; 23687 23688 if (sa != NULL) { 23689 /* 23690 * Make sure capabilities match before 23691 * sending SA to ill. 23692 */ 23693 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23694 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23695 ill_refrele(ill); 23696 continue; 23697 } 23698 23699 mutex_enter(&sa->ipsa_lock); 23700 sa->ipsa_flags |= IPSA_F_HW; 23701 mutex_exit(&sa->ipsa_lock); 23702 } 23703 23704 /* 23705 * Copy template message, and add it to the front 23706 * of the mblk ship list. We want to avoid holding 23707 * the ipsec_capab_ills_lock while sending the 23708 * message to the ills. 23709 * 23710 * The b_next and b_prev are temporarily used 23711 * to build a list of mblks to be sent down, and to 23712 * save the ill to which they must be sent. 23713 */ 23714 nmp = copymsg(mp); 23715 if (nmp == NULL) { 23716 ill_refrele(ill); 23717 continue; 23718 } 23719 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23720 nmp->b_next = mp_ship_list; 23721 mp_ship_list = nmp; 23722 nmp->b_prev = (mblk_t *)ill; 23723 } 23724 23725 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23726 23727 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23728 /* restore the mblk to a sane state */ 23729 next_mp = nmp->b_next; 23730 nmp->b_next = NULL; 23731 ill = (ill_t *)nmp->b_prev; 23732 nmp->b_prev = NULL; 23733 23734 ill_dlpi_send(ill, nmp); 23735 ill_refrele(ill); 23736 } 23737 23738 if (sa != NULL) 23739 IPSA_REFRELE(sa); 23740 freemsg(mp); 23741 } 23742 23743 /* 23744 * Derive an interface id from the link layer address. 23745 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23746 */ 23747 static boolean_t 23748 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23749 { 23750 char *addr; 23751 23752 if (phys_length != ETHERADDRL) 23753 return (B_FALSE); 23754 23755 /* Form EUI-64 like address */ 23756 addr = (char *)&v6addr->s6_addr32[2]; 23757 bcopy((char *)phys_addr, addr, 3); 23758 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23759 addr[3] = (char)0xff; 23760 addr[4] = (char)0xfe; 23761 bcopy((char *)phys_addr + 3, addr + 5, 3); 23762 return (B_TRUE); 23763 } 23764 23765 /* ARGSUSED */ 23766 static boolean_t 23767 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23768 { 23769 return (B_FALSE); 23770 } 23771 23772 /* ARGSUSED */ 23773 static boolean_t 23774 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23775 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23776 { 23777 /* 23778 * Multicast address mappings used over Ethernet/802.X. 23779 * This address is used as a base for mappings. 23780 */ 23781 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23782 0x00, 0x00, 0x00}; 23783 23784 /* 23785 * Extract low order 32 bits from IPv6 multicast address. 23786 * Or that into the link layer address, starting from the 23787 * second byte. 23788 */ 23789 *hw_start = 2; 23790 v6_extract_mask->s6_addr32[0] = 0; 23791 v6_extract_mask->s6_addr32[1] = 0; 23792 v6_extract_mask->s6_addr32[2] = 0; 23793 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23794 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23795 return (B_TRUE); 23796 } 23797 23798 /* 23799 * Indicate by return value whether multicast is supported. If not, 23800 * this code should not touch/change any parameters. 23801 */ 23802 /* ARGSUSED */ 23803 static boolean_t 23804 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23805 uint32_t *hw_start, ipaddr_t *extract_mask) 23806 { 23807 /* 23808 * Multicast address mappings used over Ethernet/802.X. 23809 * This address is used as a base for mappings. 23810 */ 23811 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23812 0x00, 0x00, 0x00 }; 23813 23814 if (phys_length != ETHERADDRL) 23815 return (B_FALSE); 23816 23817 *extract_mask = htonl(0x007fffff); 23818 *hw_start = 2; 23819 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23820 return (B_TRUE); 23821 } 23822 23823 /* 23824 * Derive IPoIB interface id from the link layer address. 23825 */ 23826 static boolean_t 23827 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23828 { 23829 char *addr; 23830 23831 if (phys_length != 20) 23832 return (B_FALSE); 23833 addr = (char *)&v6addr->s6_addr32[2]; 23834 bcopy(phys_addr + 12, addr, 8); 23835 /* 23836 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23837 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23838 * rules. In these cases, the IBA considers these GUIDs to be in 23839 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23840 * required; vendors are required not to assign global EUI-64's 23841 * that differ only in u/l bit values, thus guaranteeing uniqueness 23842 * of the interface identifier. Whether the GUID is in modified 23843 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23844 * bit set to 1. 23845 */ 23846 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23847 return (B_TRUE); 23848 } 23849 23850 /* 23851 * Note on mapping from multicast IP addresses to IPoIB multicast link 23852 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23853 * The format of an IPoIB multicast address is: 23854 * 23855 * 4 byte QPN Scope Sign. Pkey 23856 * +--------------------------------------------+ 23857 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23858 * +--------------------------------------------+ 23859 * 23860 * The Scope and Pkey components are properties of the IBA port and 23861 * network interface. They can be ascertained from the broadcast address. 23862 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23863 */ 23864 23865 static boolean_t 23866 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23867 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23868 { 23869 /* 23870 * Base IPoIB IPv6 multicast address used for mappings. 23871 * Does not contain the IBA scope/Pkey values. 23872 */ 23873 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23874 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23875 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23876 23877 /* 23878 * Extract low order 80 bits from IPv6 multicast address. 23879 * Or that into the link layer address, starting from the 23880 * sixth byte. 23881 */ 23882 *hw_start = 6; 23883 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23884 23885 /* 23886 * Now fill in the IBA scope/Pkey values from the broadcast address. 23887 */ 23888 *(maddr + 5) = *(bphys_addr + 5); 23889 *(maddr + 8) = *(bphys_addr + 8); 23890 *(maddr + 9) = *(bphys_addr + 9); 23891 23892 v6_extract_mask->s6_addr32[0] = 0; 23893 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23894 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23895 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23896 return (B_TRUE); 23897 } 23898 23899 static boolean_t 23900 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23901 uint32_t *hw_start, ipaddr_t *extract_mask) 23902 { 23903 /* 23904 * Base IPoIB IPv4 multicast address used for mappings. 23905 * Does not contain the IBA scope/Pkey values. 23906 */ 23907 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23908 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23909 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23910 23911 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23912 return (B_FALSE); 23913 23914 /* 23915 * Extract low order 28 bits from IPv4 multicast address. 23916 * Or that into the link layer address, starting from the 23917 * sixteenth byte. 23918 */ 23919 *extract_mask = htonl(0x0fffffff); 23920 *hw_start = 16; 23921 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23922 23923 /* 23924 * Now fill in the IBA scope/Pkey values from the broadcast address. 23925 */ 23926 *(maddr + 5) = *(bphys_addr + 5); 23927 *(maddr + 8) = *(bphys_addr + 8); 23928 *(maddr + 9) = *(bphys_addr + 9); 23929 return (B_TRUE); 23930 } 23931 23932 /* 23933 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23934 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23935 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23936 * the link-local address is preferred. 23937 */ 23938 boolean_t 23939 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23940 { 23941 ipif_t *ipif; 23942 ipif_t *maybe_ipif = NULL; 23943 23944 mutex_enter(&ill->ill_lock); 23945 if (ill->ill_state_flags & ILL_CONDEMNED) { 23946 mutex_exit(&ill->ill_lock); 23947 if (ipifp != NULL) 23948 *ipifp = NULL; 23949 return (B_FALSE); 23950 } 23951 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23952 if (!IPIF_CAN_LOOKUP(ipif)) 23953 continue; 23954 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23955 ipif->ipif_zoneid != ALL_ZONES) 23956 continue; 23957 if ((ipif->ipif_flags & flags) != flags) 23958 continue; 23959 23960 if (ipifp == NULL) { 23961 mutex_exit(&ill->ill_lock); 23962 ASSERT(maybe_ipif == NULL); 23963 return (B_TRUE); 23964 } 23965 if (!ill->ill_isv6 || 23966 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23967 ipif_refhold_locked(ipif); 23968 mutex_exit(&ill->ill_lock); 23969 *ipifp = ipif; 23970 return (B_TRUE); 23971 } 23972 if (maybe_ipif == NULL) 23973 maybe_ipif = ipif; 23974 } 23975 if (ipifp != NULL) { 23976 if (maybe_ipif != NULL) 23977 ipif_refhold_locked(maybe_ipif); 23978 *ipifp = maybe_ipif; 23979 } 23980 mutex_exit(&ill->ill_lock); 23981 return (maybe_ipif != NULL); 23982 } 23983 23984 /* 23985 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23986 */ 23987 boolean_t 23988 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23989 { 23990 ill_t *illg; 23991 ip_stack_t *ipst = ill->ill_ipst; 23992 23993 /* 23994 * We look at the passed-in ill first without grabbing ill_g_lock. 23995 */ 23996 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23997 return (B_TRUE); 23998 } 23999 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24000 if (ill->ill_group == NULL) { 24001 /* ill not in a group */ 24002 rw_exit(&ipst->ips_ill_g_lock); 24003 return (B_FALSE); 24004 } 24005 24006 /* 24007 * There's no ipif in the zone on ill, however ill is part of an IPMP 24008 * group. We need to look for an ipif in the zone on all the ills in the 24009 * group. 24010 */ 24011 illg = ill->ill_group->illgrp_ill; 24012 do { 24013 /* 24014 * We don't call ipif_lookup_zoneid() on ill as we already know 24015 * that it's not there. 24016 */ 24017 if (illg != ill && 24018 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24019 break; 24020 } 24021 } while ((illg = illg->ill_group_next) != NULL); 24022 rw_exit(&ipst->ips_ill_g_lock); 24023 return (illg != NULL); 24024 } 24025 24026 /* 24027 * Check if this ill is only being used to send ICMP probes for IPMP 24028 */ 24029 boolean_t 24030 ill_is_probeonly(ill_t *ill) 24031 { 24032 /* 24033 * Check if the interface is FAILED, or INACTIVE 24034 */ 24035 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24036 return (B_TRUE); 24037 24038 return (B_FALSE); 24039 } 24040 24041 /* 24042 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24043 * If a pointer to an ipif_t is returned then the caller will need to do 24044 * an ill_refrele(). 24045 * 24046 * If there is no real interface which matches the ifindex, then it looks 24047 * for a group that has a matching index. In the case of a group match the 24048 * lifidx must be zero. We don't need emulate the logical interfaces 24049 * since IP Filter's use of netinfo doesn't use that. 24050 */ 24051 ipif_t * 24052 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24053 ip_stack_t *ipst) 24054 { 24055 ipif_t *ipif; 24056 ill_t *ill; 24057 24058 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24059 ipst); 24060 24061 if (ill == NULL) { 24062 /* Fallback to group names only if hook_emulation set */ 24063 if (!ipst->ips_ipmp_hook_emulation) 24064 return (NULL); 24065 24066 if (lifidx != 0) 24067 return (NULL); 24068 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24069 if (ill == NULL) 24070 return (NULL); 24071 } 24072 24073 mutex_enter(&ill->ill_lock); 24074 if (ill->ill_state_flags & ILL_CONDEMNED) { 24075 mutex_exit(&ill->ill_lock); 24076 ill_refrele(ill); 24077 return (NULL); 24078 } 24079 24080 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24081 if (!IPIF_CAN_LOOKUP(ipif)) 24082 continue; 24083 if (lifidx == ipif->ipif_id) { 24084 ipif_refhold_locked(ipif); 24085 break; 24086 } 24087 } 24088 24089 mutex_exit(&ill->ill_lock); 24090 ill_refrele(ill); 24091 return (ipif); 24092 } 24093 24094 /* 24095 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24096 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24097 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24098 * for details. 24099 */ 24100 void 24101 ill_fastpath_flush(ill_t *ill) 24102 { 24103 ip_stack_t *ipst = ill->ill_ipst; 24104 24105 nce_fastpath_list_dispatch(ill, NULL, NULL); 24106 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24107 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24108 } 24109 24110 /* 24111 * Set the physical address information for `ill' to the contents of the 24112 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24113 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24114 * EINPROGRESS will be returned. 24115 */ 24116 int 24117 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24118 { 24119 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24120 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24121 24122 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24123 24124 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24125 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24126 /* Changing DL_IPV6_TOKEN is not yet supported */ 24127 return (0); 24128 } 24129 24130 /* 24131 * We need to store up to two copies of `mp' in `ill'. Due to the 24132 * design of ipsq_pending_mp_add(), we can't pass them as separate 24133 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24134 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24135 */ 24136 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24137 freemsg(mp); 24138 return (ENOMEM); 24139 } 24140 24141 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24142 24143 /* 24144 * If we can quiesce the ill, then set the address. If not, then 24145 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24146 */ 24147 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24148 mutex_enter(&ill->ill_lock); 24149 if (!ill_is_quiescent(ill)) { 24150 /* call cannot fail since `conn_t *' argument is NULL */ 24151 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24152 mp, ILL_DOWN); 24153 mutex_exit(&ill->ill_lock); 24154 return (EINPROGRESS); 24155 } 24156 mutex_exit(&ill->ill_lock); 24157 24158 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24159 return (0); 24160 } 24161 24162 /* 24163 * Once the ill associated with `q' has quiesced, set its physical address 24164 * information to the values in `addrmp'. Note that two copies of `addrmp' 24165 * are passed (linked by b_cont), since we sometimes need to save two distinct 24166 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24167 * failure (we'll free the other copy if it's not needed). Since the ill_t 24168 * is quiesced, we know any stale IREs with the old address information have 24169 * already been removed, so we don't need to call ill_fastpath_flush(). 24170 */ 24171 /* ARGSUSED */ 24172 static void 24173 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24174 { 24175 ill_t *ill = q->q_ptr; 24176 mblk_t *addrmp2 = unlinkb(addrmp); 24177 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24178 uint_t addrlen, addroff; 24179 24180 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24181 24182 addroff = dlindp->dl_addr_offset; 24183 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24184 24185 switch (dlindp->dl_data) { 24186 case DL_IPV6_LINK_LAYER_ADDR: 24187 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24188 freemsg(addrmp2); 24189 break; 24190 24191 case DL_CURR_PHYS_ADDR: 24192 freemsg(ill->ill_phys_addr_mp); 24193 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24194 ill->ill_phys_addr_mp = addrmp; 24195 ill->ill_phys_addr_length = addrlen; 24196 24197 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24198 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24199 else 24200 freemsg(addrmp2); 24201 break; 24202 default: 24203 ASSERT(0); 24204 } 24205 24206 /* 24207 * If there are ipifs to bring up, ill_up_ipifs() will return 24208 * EINPROGRESS, and ipsq_current_finish() will be called by 24209 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24210 * brought up. 24211 */ 24212 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24213 ipsq_current_finish(ipsq); 24214 } 24215 24216 /* 24217 * Helper routine for setting the ill_nd_lla fields. 24218 */ 24219 void 24220 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24221 { 24222 freemsg(ill->ill_nd_lla_mp); 24223 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24224 ill->ill_nd_lla_mp = ndmp; 24225 ill->ill_nd_lla_len = addrlen; 24226 } 24227 24228 major_t IP_MAJ; 24229 #define IP "ip" 24230 24231 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24232 #define UDPDEV "/devices/pseudo/udp@0:udp" 24233 24234 /* 24235 * Issue REMOVEIF ioctls to have the loopback interfaces 24236 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24237 * the former going away when the user-level processes in the zone 24238 * are killed * and the latter are cleaned up by the stream head 24239 * str_stack_shutdown callback that undoes all I_PLINKs. 24240 */ 24241 void 24242 ip_loopback_cleanup(ip_stack_t *ipst) 24243 { 24244 int error; 24245 ldi_handle_t lh = NULL; 24246 ldi_ident_t li = NULL; 24247 int rval; 24248 cred_t *cr; 24249 struct strioctl iocb; 24250 struct lifreq lifreq; 24251 24252 IP_MAJ = ddi_name_to_major(IP); 24253 24254 #ifdef NS_DEBUG 24255 (void) printf("ip_loopback_cleanup() stackid %d\n", 24256 ipst->ips_netstack->netstack_stackid); 24257 #endif 24258 24259 bzero(&lifreq, sizeof (lifreq)); 24260 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24261 24262 error = ldi_ident_from_major(IP_MAJ, &li); 24263 if (error) { 24264 #ifdef DEBUG 24265 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24266 error); 24267 #endif 24268 return; 24269 } 24270 24271 cr = zone_get_kcred(netstackid_to_zoneid( 24272 ipst->ips_netstack->netstack_stackid)); 24273 ASSERT(cr != NULL); 24274 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24275 if (error) { 24276 #ifdef DEBUG 24277 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24278 error); 24279 #endif 24280 goto out; 24281 } 24282 iocb.ic_cmd = SIOCLIFREMOVEIF; 24283 iocb.ic_timout = 15; 24284 iocb.ic_len = sizeof (lifreq); 24285 iocb.ic_dp = (char *)&lifreq; 24286 24287 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24288 /* LINTED - statement has no consequent */ 24289 if (error) { 24290 #ifdef NS_DEBUG 24291 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24292 "UDP6 error %d\n", error); 24293 #endif 24294 } 24295 (void) ldi_close(lh, FREAD|FWRITE, cr); 24296 lh = NULL; 24297 24298 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24299 if (error) { 24300 #ifdef NS_DEBUG 24301 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24302 error); 24303 #endif 24304 goto out; 24305 } 24306 24307 iocb.ic_cmd = SIOCLIFREMOVEIF; 24308 iocb.ic_timout = 15; 24309 iocb.ic_len = sizeof (lifreq); 24310 iocb.ic_dp = (char *)&lifreq; 24311 24312 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24313 /* LINTED - statement has no consequent */ 24314 if (error) { 24315 #ifdef NS_DEBUG 24316 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24317 "UDP error %d\n", error); 24318 #endif 24319 } 24320 (void) ldi_close(lh, FREAD|FWRITE, cr); 24321 lh = NULL; 24322 24323 out: 24324 /* Close layered handles */ 24325 if (lh) 24326 (void) ldi_close(lh, FREAD|FWRITE, cr); 24327 if (li) 24328 ldi_ident_release(li); 24329 24330 crfree(cr); 24331 } 24332